
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Microsoft® SQL
Server® 2012 Administration

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Microsoft® SQL
Server® 2012

Administration
Real World Skills for MCSA
Certification and Beyond

Tom Carpenter

www.allitebooks.com

http://www.allitebooks.org

Senior Acquisitions Editor: Jeff Kellum
Development Editor: Jim Compton
Technical Editors: Mitchell Sellers and Denny Cherry
Production Editor: Liz Britten
Copy Editor: Kim Wimpsett
Editorial Manager: Pete Gaughan
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde
Media Project Manager 1: Laura Moss-Hollister
Media Associate Producer: Marilyn Hummel
Media Quality Assurance: Shawn Patrick
Book Designers: Judy Fung and Bill Gibson
Proofreader: Sarah Kaikini, WordOne New York
Indexer: Ted Laux
Project Coordinator, Cover: Katherine Crocker
Cover Designer: Ryan Sneed
Cover Image: iStockphoto.com / Sami Suni

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-48716-7
ISBN: 978-1-118-65473-6 (ebk.)
ISBN: 978-1-118-65490-3 (ebk.)
ISBN: 978-1-118-65468-2 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent pro-
fessional person should be sought. Neither the publisher nor the author shall be liable for damages arising here-
from. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information the organization or
Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites
listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013933939

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Microsoft and SQL Server are registered trademarks of Microsoft Corporation. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any prod-
uct or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com
http://iStockphoto.com/SamiSuni
http://www.allitebooks.org

Dear Reader,

Thank you for choosing Microsoft SQL Server 2012 Administration. This book is part of
a family of premium-quality Sybex books, all of which are written by outstanding authors
who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing
consistently exceptional books. With each of our titles, we’re working hard to set a new
standard for the industry. From the paper we print on, to the authors we work with, our
goal is to bring you the best books available.

I hope you see all that refl ected in these pages. I’d be very interested to hear your com-
ments and get your feedback on how we’re doing. Feel free to let me know what you think
about this or any other Sybex book by sending me an email at nedde@wiley.com. If you
think you’ve found a technical error in this book, please visit http://sybex.custhelp.com.
Customer feedback is critical to our efforts at Sybex.

 Best regards,

 Neil Edde
 Vice President and Publisher
 Sybex, an Imprint of Wiley

www.allitebooks.com

mailto:nedde@wiley.com
http://sybex.custhelp.com
http://www.allitebooks.org

I dedicate this book to my family and God—the two most important

relationships in my life. Thanks for all you do.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments
I would like to acknowledge the many people who have impacted my technology journey;
Jeff Kellum, Jamie Franzman, Mark Minasi, Tim Green, Carl Behn, Rick LaFollette, Jan
Richardson, Sharon Yoder, Kevin Sandlin, Devin Akin, and many more have impacted my
life through the good, bad, and ugly. Thank you, all.

www.allitebooks.com

http://www.allitebooks.org

About the Author
Tom Carpenter is a consultant and trainer based in Marysville, Ohio. He is the founder
and current senior consultant for the Systems Education and Consulting Company (SysEdCo,
LLC). SysEdCo provides technical content development services and training for Microsoft
technologies, wireless networking, security, and IT professional development. Tom is the
author of several books on topics ranging from wireless network administration to SQL
Server database administration and optimization. He spends every spare moment he can with
his amazing wife and children and his church family, where he is honored to pastor a fi ne
group of believers.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance
Introduction xxix

Part I Introducing SQL Server 2012 1

Chapter 1 Understanding SQL Server’s Role 3

Chapter 2 Installing SQL Server 2012 45

Chapter 3 Working with the Administration Tools 83

Chapter 4 SQL Server Command-Line Administration 129

Chapter 5 Querying SQL Server 171

Part II Designing Database Solutions 223

Chapter 6 Database Concepts and Terminology 225

Chapter 7 ERD and Capacity Planning 249

Chapter 8 Normalization and Other Design Issues 279

Part III Implementing Database Solutions 299

Chapter 9 Creating SQL Server Databases 301

Chapter 10 Creating Tables 337

Chapter 11 Indexes and Views 363

Chapter 12 Triggers and Stored Procedures 395

Chapter 13 Implementing Advanced Features 411

Part IV Administering and Maintaining SQL Server 2012 447

Chapter 14 Creating Jobs, Operators, and Alerts 449

Chapter 15 Performance Monitoring and Tuning 491

Chapter 16 Policy-Based Management 533

Chapter 17 Backup and Restoration 569

Part V SQL Server Security 597

Chapter 18 Security Threats and Principles 599

Chapter 19 Authentication and Encryption 641

Chapter 20 Security Best Practices 677

Part VI Implementing High Availability and Data Distribution 719

Chapter 21 AlwaysOn and High Availability 721

Chapter 22 SQL Server Failover Clustering 733

Chapter 23 Database Mirroring and Snapshots 753

Chapter 24 Implementing Replication 773

Part VII Implementing Business Intelligence and Reporting 799

Chapter 25 Data Warehousing 801

Chapter 26 SQL Server Integration Services 813

Chapter 27 Data Quality Solutions 837

Appendices 849

Appendix A Microsoft’s Certification Program 851

Appendix B About the Additional Study Tools 859

Index 863

Contents

Introduction xxix

Part I Introducing SQL Server 2012 1

Chapter 1 Understanding SQL Server’s Role 3

What Is Information Technology? 4
The Importance of IT 4
The Components of IT 6

Introduction to Databases 7
Types of Databases 7
Weighing the Benefits of Using a Local or Server-Based

Database 11
Important Database Terms 16

Database Servers and Applications 18
Database Application Types 18

SQL Server’s Role 20
New Features Introduced in SQL Server 2012 21
Features Introduced in SQL Server 2008 25
Features Introduced in SQL Server 2005 29
Core Features of SQL Server 38
SQL Server Roles 39

Summary 43
Chapter Essentials 43

Chapter 2 Installing SQL Server 2012 45

Installation Planning 46
SQL Server 2012 Architecture 46
Installation Planning Process 56
Managing Permissions 60

Installing a Default Instance 62
SQL Server Installation Center Tasks 63
Installation 64

Installing Named Instances 73
Installing to a Cluster 76
Installing Extra Features 77
Upgrading from Previous Versions 77

Handling Upgrades 78
Understanding Migrations 79

xii Contents

Validating an Installation 79
Removing an Installation 80
Summary 80
Chapter Essentials 80

Chapter 3 Working with the Administration Tools 83

SQL Server Configuration Manager 84
Overview of the SSCM 85
Performing Common SSCM Tasks 86

SQL Server Management Studio 92
Overview of the SSMS 92
Performing Common SSMS Tasks 94

SQL Server Data Tools 102
Overview of SSDT 102
Performing Common SSDT Tasks 104

SQL Server Profiler 113
Books Online 116
Windows Server Administration

for the DBA 118
User Account Management 118
File System Management 119
Network Configuration Administration 120

Summary 127
Chapter Essentials 127

Chapter 4 SQL Server Command-Line Administration 129

Introducing the Command Prompt 130
General Command-Prompt Options 132
Font Settings 133
Screen Layout 134
Color Choices 135

General Commands 135
Directory and Folder Navigation 136
Directory and Folder Listing 137
Screen Management 141
Displaying Information 142
Redirecting Output 146
Administrative Commands 148

Batch Files 155
Using Logic (IF and GOTO) 155
Passing Data 156
Including Comments 157

Mastering SQLCMD 161
Introducing Windows PowerShell 164

Contents xiii

Using SQL Server PowerShell Extensions 165
Summary 169
Chapter Essentials 169

Chapter 5 Querying SQL Server 171

Understanding the SQL Language 172
Queries 172
Short Learning Curve 173
Varied Query Modes 173
Standardization 175
Added Logical Capabilities of T-SQL 176

SQL Statement Types 176
Data Manipulation Language 176
Data Definition Language 177
Data Control Language 177

SQL Syntactical Elements 177
Keywords 177
Comments 178
Batch Directives 178
SQL Statements 180
Clauses 180
Identifiers 180
Variables 181
Data Types 182
System Functions 182
Operators and Expressions 182
Statement Terminator 184

Coding Recommendations 184
Capitalize Keywords 184
Use Standard SQL 185
Do Not Use Keywords as Identifiers 185

Using SELECT Statements 185
Basic SELECT Statements 186
Filtered SELECT Statements 191
Sorted SELECT Statements 196
Handling NULL Data 197
Converting Data in Result Sets 199
Identifying Collation Details 201
Using Data from Multiple Tables 201

Advanced Query Techniques 204
Subqueries 204
Aggregate Queries 206

Using DDL Statements 207
Creating Objects 207

xiv Contents

Altering Objects 209
Deleting Objects 210

Using DCL Statements 212
Granting Access 212
Denying Access 213
Revoking Permissions 213

Modifying Data 214
The INSERT Statement 214
The UPDATE Statement 215
The DELETE Statement 216

Tuning and Optimizing Queries 216
Transaction Processing 216
Error Handling 218

Summary 220
Chapter Essentials 220

Part Il Designing Database Solutions 223

Chapter 6 Database Concepts and Terminology 225

Relational Database Theory 226
Data 226
Information 227
Tables 227
Table Components 228
Relationship Types 232

Database Design Processes 236
Systems Development Life Cycle 237
Database Life Cycle 238
Business, Users, Model 239

Project Management for the DBA 243
The Define Phase 244
The Design Phase 246
The Deliver Phase 246
The Determine Phase 247

Summary 247
Chapter Essentials 248

Chapter 7 ERD and Capacity Planning 249

Planning a Database 250
User Surveys 250
Evaluating Business Processes 252
Developing Use Cases 254

Understanding Entity Relationship Diagramming 255

Contents xv

Building an ERD 257
Creating an ERD in Visio 258
Creating an ERD in OSA 264

Capacity Planning 271
Summary 276
Chapter Essentials 277

Chapter 8 Normalization and Other Design Issues 279

Designing for Normalization 280
Normal Forms 282
Normalizing a Database 291
Denormalizing a Database 294

Designing for Performance 295
Designing for Availability 295
Designing for Security 297
Summary 297
Chapter Essentials 297

Part Ill Implementing Database Solutions 299

Chapter 9 Creating SQL Server Databases 301

SQL Server Databases 302
System Databases 303
User Databases 308

Database Storage 308
Database Data Files 308
Database Filegroups 309
Transaction Logs 311

Database Options and Properties 312
Autogrowth 312
Recovery Model 313
Compatibility Level 316
Auto Shrink 316
Restrict Access 317
More Database Properties 318

Creating Databases in the GUI 321
Creating Databases with T-SQL 323
Creating Databases with PowerShell 326
Attaching and Detaching Databases 328
Database Snapshots 331

Creating Snapshots 332
Reverting to Snapshots 334

Summary 335
Chapter Essentials 335

xvi Contents

Chapter 10 Creating Tables 337

Data Types 338
Data Type Categories 340

Collations 344
Configuring Server Instance Collations 345
Configuring Database Collations 346
Configuring Column Collations 346

Table Creation Process 349
Creating Tables with the Table Designer 349
Creating Tables with T-SQL 357

Data Partitioning 358
Vertical and Horizontal Partitioning 359
Data Partitioning with Functions and Schemes 360

Summary 361
Chapter Essentials 362

Chapter 11 Indexes and Views 363

Understanding Indexes 364
Indexes Defined 365
Index Types 369

Creating Basic Indexes 373
Creating a Clustered Index 374
Creating a Nonclustered Index 376

Creating Advanced Indexes 379
Creating a Covering Index 380
Creating a Filtered Index 381

Managing Indexes 383
Dropping an Index 384
Disabling and Enabling Indexes 384
Understanding Index Fragmentation 387

Understanding Views 389
Creating Views 390
Summary 392
Chapter Essentials 393

Chapter 12 Triggers and Stored Procedures 395

Triggers Defined 396
Types of Triggers 397
Recursive and Nested Triggers 398

Using Triggers 399
Creating Triggers 401
Understanding Stored Procedures 406
Creating Stored Procedures 407

Contents xvii

How Triggers Differ from Stored Procedures 409
Summary 409
Chapter Essentials 409

Chapter 13 Implementing Advanced Features 411

Understanding and Installing Analysis
Services 413

Analysis Services Tools 413
Analysis Services Optional Components 415
Installing and Configuring Analysis Services 416

Understanding Integration Services 419
Installing and Configuring Integration Services 419
Creating a Basic Integration Services Package 421
Troubleshooting and Debugging an SSIS Package 427
Scheduling Your Package to Run Automatically 429
Security Protection Levels 431

Understanding and Installing Reporting Services 432
Implementing Database Mail 436
Configuring Full-Text Indexing 439
Implementing Transparent Data Encryption 441

TDE Architecture 441
TDE Implementation Process 442

Data Compression 443
Summary 444
Chapter Essentials 444

Part IV Administering and Maintaining
SQL Server 2012 447

Chapter 14 Creating Jobs, Operators, and Alerts 449

Standardize, Automate, and Update 450
Understanding SQL Server Jobs 452

Job Steps 452
Job Configuration Properties 454
Typical Jobs 462

Creating T-SQL Jobs 465
Creating SSIS Jobs 470
Creating Windows Command Jobs 476
Creating and Using Operators 480
Creating and Using Alerts 482
Using WSUS for SQL Server 2012 487
Summary 488
Chapter Essentials 488

xviii Contents

Chapter 15 Performance Monitoring and Tuning 491

Performance Tuning Principles 492
Why Performance Tuning Matters 492
Common Performance Tuning Myths 494

Performance and Troubleshooting Tools 496
Blocks, Locks, and Deadlocks 497

Understanding Locks 498
Lock Types 498
Granularity of Locks 498
Lock Isolation Levels 499
Blocks and Deadlocks 499

SQL Server Profiler 503
Database Engine Tuning Advisor 506

Creating a DTA Workload File 506
Analyzing Your Workload File 507
Applying DTA Recommendations 509

Performance Monitoring
with System Monitor 511

Installing the System Monitor 511
Viewing Live Performance Data 512
Logging Counters in Windows Server 2003 514
Data Collection in Windows Server 2008 515

Using the Resource Governor 519
Performance Studio 520
Advanced Monitoring Tools 523

Dynamic Management Views 523
DBCC 525
Resource Monitor 527

Summary 529
Chapter Essentials 530

Chapter 16 Policy-Based Management 533

Policy-Based Management 534
PBM Components 536
Creating Conditions 550
Creating Policies 553
Evaluating Policies 558

Centralized Server Management 558
Major Benefits and Requirements 558
Creating a Central Management Server 559
Registering Subscriber Servers 559

Standardizing with PBM and CMS 563
Standardizing 563

Contents xix

Automating 564
Updating 566

Summary 567
Chapter Essentials 567

Chapter 17 Backup and Restoration 569

Backing Up a Database 570
Creating a Backup Plan 571
Choosing a Recovery Model 573
Using the Different Backup Types 578
Working with Backup Devices and Files 584
Compressing Backups 587
Performing File and Filegroup Backups 588

Backing Up System Databases 588
Restoring a Database 589

Choosing a Restore Method 589
Restoring to a Point in Time 590
Restoring to the Point of Failure 591
Restoring System Databases 592

Backing Up the Environment 593
Built-in Backup Tools 594
Imaging and Third-Party Tools 595

Summary 596
Chapter Essentials 596

Part V SQL Server Security 597

Chapter 18 Security Threats and Principles 599

Security Defined 600
How to Classify Data for Security Purposes 603
Security in Theory 603
Security in the Real World 605

Security Threats 605
Threats, Vulnerabilities, and Exploits Defined 606
Attack Point 1: Windows Server 608
Attack Point 2: SQL Server 613
Attack Point 3: The Network 614
Attack Point 4: The Client 618
Cracking Examples 621

Security Principles 633
Start with Good Design 634
Trust, but Monitor 635
Defense-in-Depth 637

xx Contents

Least Privilege 638
Summary 638
Chapter Essentials 639

Chapter 19 Authentication and Encryption 641

Understanding Authentication 642
Credentials 644
Common Authentication Methods 646
Regulatory Compliance 648

SQL Server Authentication Methods 652
Logins, Users, and Roles 653

Configuring the Authentication Mode 653
Creating and Managing Principals and Roles 655
Creating Database Users 668

Understanding Encryption 669
SQL Server Encryption Solutions 669
Implementing Application-Level Encryption 671
Implementing Transparent Encryption 673

Summary 674
Chapter Essentials 675

Chapter 20 Security Best Practices 677

Establishing Baselines 678
Working with Security Templates 679
Analyzing a Server’s Security Settings 686
Using the Security Configuration Wizard 688

Implementing Least Privilege 691
Permissions and Authorization 692
Ownership Chains 698
Credentials 699

Auditing SQL Server Activity 701
Using Audits 701
Notifications 705
DDL Triggers 706
Logon Triggers 706

Configuring the Surface Area 707
SP_Configure for Surface Area Management 707
Policy-Based Management Surface Area Options 709

Understanding Common Criteria and C2 712
GRC 712
C2 Compliance 713
Common Criteria 716

Summary 717
Chapter Essentials 718

Contents xxi

Part VI Implementing High Availability and
Data Distribution 719

Chapter 21 AlwaysOn and High Availability 721

Introducing AlwaysOn Technology 722
Understanding High Availability 722
AlwaysOn Defined 725

Mirroring and AlwaysOn 727
Replacing Traditional Mirroring 727
Using Traditional Mirroring 728

Failover Solutions 728
Synchronous-Commit 728
Asynchronous-Commit 729
The Failover Process 729

Selecting Hardware for AlwaysOn 730
Highly Available Servers 730
Highly Available Storage 731
Highly Available Networks 731

Summary 732
Chapter Essentials 732

Chapter 22 SQL Server Failover Clustering 733

Understanding Windows Failover Clustering Service 734
Implementing a Windows Cluster 735

Failover Clustering Components 735
The Failover Clustering Installation Process 738

Installing SQL Server 2012 to a Cluster 747
Monitoring and Managing a

SQL Server Cluster 748
Service Packs and Update Management 748
Failover Management 749
Cluster Troubleshooting 750

Summary 750
Chapter Essentials 750

Chapter 23 Database Mirroring and Snapshots 753

RAID-based Data Redundancy 754
Using Database Mirroring 757

Database Mirroring Components 758
Understanding Mirror Operating Modes 759
Planning for Role Switching 759
Implementing Database Mirroring 760

Understanding Log Shipping 764

xxii Contents

Inside the Log-Shipping Process 764
Configuring Log Shipping and Monitoring 766

Implementing Database Snapshots 768
Database Snapshot Functionality 768
Implementing a Snapshot 770
Querying a Snapshot 770
Reverting to a Snapshot 770

Summary 771
Chapter Essentials 771

Chapter 24 Implementing Replication 773

SQL Server Replication 774
SQL Server Replication Roles and Concepts 775
Replication Types 775
Replication Models 778
New Features in SQL Server 2012 778
Configuring a Publisher and Distributor 779
Configuring a Subscriber 787
Monitoring Replication 790
Replication Performance 790
Replication Recovery 791

Importing and Exporting Data 791
Using BCP 792
Bulk Insert Commands 793
Using SQL Server Integration Services 795

Summary 797
Chapter Essentials 798

Part VII Implementing Business Intelligence and
Reporting 799

Chapter 25 Data Warehousing 801

Understanding Data Warehouses 802
Defining Terminology 803
Defining Usage 805

Implementing Fact Tables 806
Understanding and Planning for Fact Tables 806
Creating Fact Tables 807

Implementing Dimensions 808
Understanding and Planning for Dimensions 808
Creating Dimensions 810

Summary 811
Chapter Essentials 811

Contents xxiii

Chapter 26 SQL Server Integration Services 813

Integration Issues 814
Existing Systems 814
Existing Data 815
Co-existence 816

Installing SSIS 816
Providing Prerequisites 816
Installing the SSIS Components 817
Development vs. Production Servers 817
Configuring SSIS for Operations 818

Configuring SSIS Security Settings 819
SSIS Service 819
SSIS Roles 820
Access Control 821
Digital Signatures 821

Deploying Packages 823
Working with the SSIS Catalog 823
Using the Deployment Utility 824
Deploying to SQL Server or Files 825
Using DTUTIL 826

SSIS Auditing and Event Handling 826
Auditing Packages 826
Using Log Providers 827
Using Event Handlers 828

Extracting, Transforming,
and Loading Data 828

Connection Managers 829
Data Flow Design 831
Understanding Data Load Options 833
Using Script Tasks 835

Summary 836
Chapter Essentials 836

Chapter 27 Data Quality Solutions 837

Understanding Data Quality Concerns 838
Data Quality Problems 838
Data Quality Dimensions 839
Data Quality Processes 839

Installing Data Quality Services 840
Prerequisites 840
Performing the Installation 841
Data Governance 842

Using Master Data Services 843

xxiv Contents

Installing and Implementing MDS 843
Creating MDS Objects 844

Cleaning Data 845
Profiling Systems 845
Knowledge Base Management 846
Creating the Project 847

Summary 848
Chapter Essentials 848

Appendices 849

Appendix A Microsoft’s Certification Program 851

How Do You Become Certified on SQL Server 2012? 852
Tips for Taking a Microsoft Exam 853

Exam Registration 853
Certification Objectives Map 854

Appendix B About the Additional Study Tools 859

Additional Study Tools 860
Videos 860
Sybex Test Engine 860
Electronic Flashcards 860
Glossary of Terms 860
Adobe Reader 861

System Requirements 861
Using the Study Tools 861
Troubleshooting 861

Customer Care 862

Index 863

Table of Exercises
Exercise 2.1 Installing a Named Instance . 74

Exercise 3.1 Starting and Stopping Services . 87

Exercise 3.2 Configuring Service Properties. 88

Exercise 3.3 Configuring Protocols . 91

Exercise 3.4 Performing the Initial SSMS Configuration. 97

Exercise 3.5 Opening a New Query Window and Viewing the Error List. 99

Exercise 3.6 Viewing Predesigned Reports. 100

Exercise 3.7 Generating Administrative Task Scripts. 101

Exercise 3.8 Creating a New Project and a New Solution . 106

Exercise 3.9 Creating a New Project in an Existing Solution. 106

Exercise 3.10 Deleting a Project from a Solution . 107

Exercise 3.11 Using the Import and Export Wizard . 107

Exercise 3.12 Configuring IP Settings in the GUI . 121

Exercise 3.13 Opening the Windows Command Prompt. 122

Exercise 3.14 Configuring the Windows Firewall . 126

Exercise 4.1 Preparing Your System for the Batch File . 158

Exercise 4.2 Creating the Batch File . 158

Exercise 4.3 Running the Batch File . 160

Exercise 7.1 Preparing the Visio Environment for Entity Relationship
Diagramming. 258

Exercise 7.2 Creating the Visio Entity Relationship Diagram . 260

Exercise 7.3 Creating Relationships Between Entities . 262

Exercise 7.4 Creating an ERD File . 266

Exercise 7.5 Creating the Entities . 266

Exercise 7.6 Creating Relationships . 270

Exercise 7.7 Estimating the Size of a Clustered Index . 272

Exercise 7.8 Estimating the Size of a Clustered Index Table . 273

Exercise 9.1 Creating Multiple Filegroups . 310

Exercise 9.2 Creating the Books Database in the GUI . 322

Exercise 9.3 Detaching the Books Database in the GUI . 328

Exercise 9.4 Attaching the Books Database in the GUI . 330

Exercise 10.1 Assigning Collations at the Column Level . 346

xxvi Table of Exercises

Exercise 10.2 Launching the Table Designer . 351

Exercise 10.3 Creating Columns . 352

Exercise 10.4 Selecting a Primary Key . 352

Exercise 10.5 Specifying Table Properties and Saving the Table 354

Exercise 10.6 Scripting the Table for Documentation . 355

Exercise 11.1 Setting the Primary Key . 375

Exercise 11.2 Creating the LastName Nonclustered Index . 376

Exercise 11.3 Creating the City Nonclustered Index . 378

Exercise 11.4 Creating the Covering Index . 380

Exercise 11.5 Creating the Filtered Index. 382

Exercise 11.6 Creating a View . 390

Exercise 12.1 Creating a DML Trigger . 402

Exercise 12.2 Creating a DDL Trigger . 404

Exercise 13.1 Installing Analysis Services . 416

Exercise 13.2 Installing Integration Services . 419

Exercise 13.3 Creating a Basic Integration Services Package . 422

Exercise 13.4 Troubleshooting an SSIS Package with Debug. 428

Exercise 13.5 Saving and Scheduling Packages . 429

Exercise 13.6 Installing and Configuring Reporting Services . 433

Exercise 13.7 Configuring Database Mail . 437

Exercise 13.8 Creating a Full-Text Index . 439

Exercise 14.1 Creating a T-SQL Job . 465

Exercise 14.2 Creating the SSIS Export Package . 470

Exercise 14.3 Creating an SSIS Job . 473

Exercise 14.4 Creating a Batch File for Information Gathering . 476

Exercise 14.5 Creating a Windows Command Job. 477

Exercise 14.6 Creating an Operator . 480

Exercise 14.7 Creating a SQL Server Alert in SSMS . 482

Exercise 14.8 Creating a Free Drive Space Alert. 484

Exercise 15.1 Generating a Deadlock Scenario. 502

Exercise 15.2 Creating a Trace with SQL Server Profiler . 504

Exercise 15.3 Creating a DTA Workload File in SQL Server Profiler. 506

Exercise 15.4 Analyzing the Workload File with the DTA Tool . 508

Exercise 15.5 Applying the Saved DTA Recommendations. 509

Exercise 15.6 Installing the System Monitor in a Custom MMC 511

Table of Exercises xxvii

Exercise 15.7 Viewing Live Performance Data on Windows Server 2003 512

Exercise 15.8 Viewing Live Performance Data on Windows Server 2008 R2 513

Exercise 15.9 Creating a Performance Counter Log in Windows Server 2003 514

Exercise 15.10 Creating a Data Collector Set in Windows Server 2008 R2 516

Exercise 15.11 Adding SQL Server Counters to a Data Collector Set 517

Exercise 15.12 Creating the MDW for Performance Studio. 521

Exercise 15.13 Setting Up Data Collection Options . 521

Exercise 15.14 Viewing Performance Studio Reports . 523

Exercise 15.15 Launching the Resource Monitor Directly . 527

Exercise 16.1 Determining Read-Only Properties of Facets . 537

Exercise 16.2 Importing the Microsoft Sample Policies . 545

Exercise 16.3 Creating Custom Categories for Policies . 548

Exercise 16.4 Subscribing to a Category . 549

Exercise 16.5 Creating the conDatabaseSize Condition. 551

Exercise 16.6 Creating the conPasswordRules Condition . 551

Exercise 16.7 Creating the conSurfaceArea Condition . 552

Exercise 16.8 Creating the polDatabaseSizeScheduled Policy . 553

Exercise 16.9 Creating the polPasswordRulesPrevent Policy . 556

Exercise 16.10 Creating the polSurfaceAreaLog Policy . 557

Exercise 16.11 Creating a CMS in SSMS . 559

Exercise 16.12 Creating Server Groups in the CMS . 560

Exercise 16.13 Registering a Server . 560

Exercise 16.14 Creating an Automated Event Log Monitoring Solution 565

Exercise 17.1 Setting the Recovery Model in SSMS . 578

Exercise 17.2 Creating a Full Backup of the Database . 580

Exercise 17.3 Creating a Backup Device That Points to a File . 585

Exercise 17.4 Restoring to a Point in Time . 590

Exercise 17.5 Backing Up the Tail Log After a Database File Storage Failure 592

Exercise 17.6 Starting the SQL Server Database Engine in Single-User Mode 593

Exercise 17.7 Installing Windows Server Backup. 594

Exercise 18.1 Using the MBSA Utility from Microsoft . 610

Exercise 18.2 Creating Strong Password Policies in Windows Domains. 630

Exercise 19.1 Configuring the Authentication Mode in SSMS . 655

Exercise 19.2 Creating a SQL Login . 658

Exercise 19.3 Viewing Local Password Policies . 659

xxviii Table of Exercises

Exercise 19.4 Creating Windows Logins . 662

Exercise 19.5 Creating a Database Role with SSMS . 667

Exercise 19.6 Creating a Database User . 668

Exercise 20.1 Installing Microsoft SCM . 680

Exercise 20.2 Creating a Custom Security Template . 684

Exercise 20.3 Analyzing Security with Templates . 686

Exercise 20.4 Creating a Baseline from Current Settings with SCW 688

Exercise 20.5 Managing Permissions in SQL Server Management Studio 692

Exercise 20.6 Enabling a SQL Server Audit . 702

Exercise 20.7 Using sp_configure to Configure the Surface Area 708

Exercise 20.8 Configuring the Surface Area with PBM . 709

Exercise 20.9 Enabling the C2 Audit Trace. 715

Exercise 22.1 Installing Windows Failover Clustering . 740

Exercise 22.2 Running the Validate A Configuration Wizard. 742

Exercise 22.3 Creating a Failover Cluster. 745

Exercise 23.1 Creating the Mirroring Endpoints . 761

Exercise 23.2 Implementing Log Shipping . 767

Exercise 23.3 Generating a Log Shipping Report . 768

Exercise 24.1 Configuring the Publisher and Distributor. 779

Exercise 24.2 Creating a Publication with a Single Table to Replicate the
Production.Product Table . 783

Exercise 24.3 Creating a Subscription . 787

Exercise 24.4 Exporting Data with the Import/Export Wizard . 795

Exercise 26.1 Signing a Package in SSDT . 822

Exercise 26.2 Creating a Deployment Utility. 824

Exercise 26.3 Deploying with the Package Installation Wizard. 825

Exercise 27.1 Creating a Data Quality Project . 847

www.allitebooks.com

http://www.allitebooks.org

Introduction
Administering SQL Server 2012 is no simple task. As database management systems go,
SQL Server 2012 is one of the most complex solutions available today. Offering more than
just straightforward database management, SQL Server 2012 includes data management for
data transfer and transformation, data distribution through replication, and high availability
through database mirroring and server clustering. Modern database administrators (DBAs)
must understand all of these components and more to successfully administer effi cient and
secure data facilities, and this book has been written for just such people.

This book was written from two perspectives. First and primarily, it covers the most
important administrative tasks that the DBA in organizations of all sizes will need to
perform. These are covered with a real-world focus on SQL Server 2012 administration.
Second and in part, it covers the MCSA: SQL Server 2012 exam objectives (70-461,
70-462, and 70-463), through the written pages of the book and the additional resources
available for download. Whether you’re preparing for these exams or preparing for life as a
DBA, you’ll fi nd this book a useful reference and starting point.

Who Should Read This Book
As you can probably tell by the title of this book, SQL Server 2012 Administration: Real
World Skills for MCSA Certifi cation and Beyond, this book is primarily aimed at two
groups: those seeking real-world SQL Server database administration knowledge and those
preparing for the MCSA: SQL Server 2012 exams. Yet a third group may benefi t from
reading this book as well. The following are descriptions of those who will fi nd this book
useful:

■ DBAs looking for a reference for common administrative tasks. Everything from
backing up your databases to securing them is covered in this book. You’ll find
coverage of the extra SQL Server 2012 components such as SQL Server Integration
Services and SQL Server Reporting Services as well.

■ Exam candidates preparing to take the MCSA: SQL Server 2012 exams.

70-461 Querying Microsoft SQL Server 2012

70-462 Administering Microsoft SQL Server 2012 Databases

70-463 Implementing a Data Warehouse with Microsoft SQL Server 2012

You’ll fi nd that all of the objectives are addressed at some level when you use the
complete training kit this book provides, which includes the book and the additional
online resources. It’s important to note that what you hold in your hands is more
than just a book. The online resources include video training and memory-jogging
fl ashcards, as well as practice exams and more, to help you on your journey to master
the objectives of the MCSA exams.

xxx Introduction

■ Programmers will also find value in this book. This book does not contain
programming guidance or detailed explanations of the T-SQL language or CLR
code; however, it does provide programmers with a reference to the SQL Server 2012
functionality and how to install and manage the SQL Server that may be used as the
backend for their data-driven applications.

As you can see, this book is useful to several groups. I have worked as a systems engineer
creating applications that access SQL Servers, so I know the value of a good administration
book sitting on my shelf, and I’ve striven to write this book with that in mind.

What You Will Learn
As you progress through this book, you will go from understanding what SQL Server
2012 has to offer to your organization to implementing it with all the bells and whistles
it provides. You’ll learn to select the appropriate hardware for your servers and then
install SQL Server 2012 right the fi rst time. Then you’ll move on to learn how to use the
administration tools from both the graphical user interface (GUI) of Windows and the
command-line interface (my favorite place to be).

Next, you’ll learn how to design and implement database design solutions for SQL Server
2012. During this process, you’ll learn all about normal forms and database optimization
and the many terms you’ll need to understand to master database administration and design.
You’ll learn to create databases with the SQL Server Management Studio and with T-SQL
code. Of course, part of the optimization process will be to implement indexes, so I’ll make
sure you really understand what they are and how they work to improve the performance of
your database queries. You’ll also learn to enforce rules and data standards by using triggers,
stored procedures, and other advanced administration solutions.

Once your database is in place, you’ll need to provide ongoing support for that database.
One of the fi rst things you must implement is a working backup and recovery plan. You’ll
learn how to do this by fi rst learning to create jobs, operators, and alerts. Then you’ll learn
to perform performance analysis and optimization and take advantage of the Declarative
Management Framework (DMF), also known as Policy-Based Management (PBM). And, of
course, you’ll learn how to back up and restore your databases. The primary focus of this
ongoing administration process will be to standardize, automate, and update so that your
workload is reduced over the long haul.

Once you have the maintenance plans in place, it’s time to think seriously about security,
which is a very important issue for databases, networks, and anything else of value. There
are three chapters in this section. First, you’ll learn about security threats and vulnerabilities.
You’ll then move on to learn about authentication and encryption in detail. Finally, I’ll
provide you with several best practices for securing a SQL Server 2012 environment.

The fi nal sections of the book address SQL Server 2008 high availability and data
warehousing. You’ll learn about failover clustering, database mirroring, database snapshots,
data replication, and data quality in these chapters.

Throughout the book, you’ll fi nd real-world exercises that walk you through the
processes required to implement and support commonly used features of SQL Server 2012.

Introduction xxxi

You’ll also fi nd notes and warnings scattered throughout the book to help you understand
more detailed concepts. Additionally, real-world scenarios provide you with insights into
the daily life of a DBA or database consultant.

This book was written to address the complete collection of tasks the DBA will be
required to perform in the real world, while also covering all exam topics at some level so
readers can prepare to pass their MCSA exams. Each section offers real-world exercises
so you can learn with hands-on tasks. I have also provided videos of some of these exercises
as well in the online resources.

Yet it’s also important that you remember what this book is not; this book is not a
programming reference. My goal here is not to teach you everything about the T-SQL
language. That would require a 700+ page volume itself and is well beyond the scope of
this book. However, I have good news for you: if you are new to T-SQL, you will fi nd an
introduction to the T-SQL language and some code examples in the demonstration and
training videos in the online resources that are included with this book. Additionally,
you can visit www.TomCarpenter.net to fi nd blog posts related to SQL Server and other
technologies. In these posts, I often cover T-SQL best practices and optimization techniques
as well as many other technology topics.

What You Need
The exercises in this book assume you are running SQL Server 2012 on Windows Server
2008 or newer. If you are using Windows Server 2003 R2 or previous versions, the
exercises should work in most cases; however, they were tested only on Windows Server
2008 and newer.

If you do not have a Windows Server 2008 or 2008 R2 machine, you might want to
create a virtual machine so that you can go through every exercise in the book. Here are
your options:

■ You can also download a trial version of Windows Server 2008 from,

http://www.microsoft.com/windowsserver2008/en/us/trial-software.aspx

and install it as the host operating system. I recommend a machine with 4GB of RAM
to perform this operation at a minimum.

■ You may be able to use the VMware Player found at www.vmware.com.

You will also need the SQL Server 2012 media for installation. If you do not have a
licensed copy of SQL Server 2012, you have two choices:

■ First, you can download a trial version from Microsoft’s website at:

http://www.microsoft.com/en-us/sqlserver/get-sql-server/try-it.aspx

■ Second, you can purchase the Developer edition of SQL Server 2012. It usually costs
between $50 and $70 and is the same as the Enterprise edition except for the licensing.
The Developer edition license allows you to develop solutions but not deploy them. For
example, you cannot implement a production database server for your users with the
Developer edition; however, you can work through every exercise in this book using it.

http://www.TomCarpenter.net
http://www.microsoft.com/windowsserver2008/en/us/trial-software.aspx
http://www.vmware.com
http://www.microsoft.com/en-us/sqlserver/get-sql-server/try-it.aspx

xxxii Introduction

Suggested Home Lab Setup
The following list is a recommended home lab setup that should work well for all exercises
in this book:

■ A desktop or laptop computer with 16GB of RAM:

■ Must support virtualization extensions (Intel VT or AMD-V).

■ Should have 1TB or more of storage for virtual machine storage.

■ Windows Server 2008 R2 installed natively on the system:

■ Optionally, install Windows Server 2012.

■ Drivers for Windows 7 will work on Server 2008 R2.

■ Drivers for Windows 8 will work on Server 2012.

■ Installation instructions for Server 2008 R2 can be found at http://bit.ly/
HPXSAb.

■ Installation instructions for installing Server 2012 can be found at http://bit
.ly/ShDkKq.

■ Hyper-V installed on the system:

■ Installation instructions for Hyper-V on Server 2008 R2 can be found at http://
bit.ly/13n0C1B.

■ Installation instructions for Hyper-V on Server 2012 can be found at http://bit
.ly/Tsvui8.

■ Hyper-V to create virtual machines (VMs) for SQL Server and a domain controller:

■ The domain controller VM will run Windows Server 2008 R2 and can run on
only 1GB of RAM.

■ The SQL Server VMs should have 4GB to 6GB of RAM each (this is the reason for
using a 16GB machine).

As an alternative to this confi guration, you can use only one SQL Server VM, and this
would allow for the use of a machine with 8GB to 12GB of RAM. However, you would not
be able to test things such as replication and mirroring with this confi guration. Of course,
instead of VMs, if you have the computers, you can certainly implement multiple physical
machines with 2GB to 6GB of RAM each and native installations of Windows Server. The
recommendations in this section are simply that—recommendations. You can implement any
lab you desire, but the lab suggested here will provide a good learning and testing experience.

What Is Covered in This Book
SQL Server 2012 Administration: Real World Skills for MCSA Certifi cation and Beyond
is organized to provide you with the information you need to effectively administer your
SQL Server 2012 instances. The following list provides an overview of the topics covered in
each chapter:

http://bit.ly/HPXSAb
http://bit.ly/HPXSAb
http://bit.ly/ShDkKq
http://bit.ly/ShDkKq
http://bit.ly/13n0C1B
http://bit.ly/13n0C1B
http://bit.ly/Tsvui8
http://bit.ly/Tsvui8

Introduction xxxiii

Part I—Introducing SQL Server 2012

Chapter 1—Understanding SQL Server’s Role: In this chapter, you will learn about
the role of a database server and the various roles SQL Server 2012 can play in
your organization.

Chapter 2—Installing SQL Server 2012: Master the SQL Server installation
process by actually doing it in this chapter. You will install a named instance and
also learn how to install a default instance. Each step of the installation process is
covered in detail.

Chapter 3—Working with the Administration Tools: Take a tour of the
administration tools provided with SQL Server and Windows Server and learn to
use them to keep your SQL Servers running smoothly.

Chapter 4—SQL Server Command-Line Administration: This chapter teaches
you how to use the command line and Windows PowerShell for SQL Server 2012
administration. You’ll learn how to use the SQLCMD command and also how to use
the general command-line commands that ship with Windows itself.

Chapter 5—Querying SQL Server: This chapter introduces you to the basics of the
SQL language. You learn the core language statements and build a foundational
knowledge base that allows you to learn how to create any needed queries in the
future.

Part II—Designing Database Solutions

Chapter 6—Database Concepts and Terminology: It’s time to begin learning the
theory behind database systems. You’ll learn all the important terms and what
they mean. This chapter lays a foundation for the following chapters of the book.

Chapter 7—ERD and Capacity Planning: Have you heard of entity relationship
diagramming? In this chapter, you will learn what it is and how to use it by using
common tools and free tools available on the Internet. You’ll also learn to estimate
the capacity needs for a given database specifi cation.

Chapter 8—Normalization and Other Design Issues: Normalization is an
important process, and this chapter teaches you how to use it to optimize your
database designs. You’ll also look briefl y at performance, availability, and
security—topics of their own chapters—as design considerations.

Part III—Implementing Database Solutions

Chapter 9—Creating SQL Server Databases: You will learn to create databases
using the SQL Server Management Studio as well as T-SQL code in this chapter.
This is where the theory meets reality in the SQL Server database system.

Chapter 10—Creating Tables: To create well-performing tables, you must
understand data types. This chapter provides a reference of data types in SQL
Server 2012 and how to choose the best data type for any situation. You’ll also
learn the difference between a heap and a clustered index.

xxxiv Introduction

Chapter 11—Indexes and Views: Trainers like to talk about them. DBAs like to
implement them. Now, you will learn what they really are and how they improve
the performance of your databases. What are they? Indexes, of course. You’ll also
learn about views and the benefi ts they provide.

Chapter 12—Triggers and Stored Procedures: Triggers and stored procedures are
often used to centralize business rules or business logic. This chapter introduces
the concepts and provides examples of both.

Chapter 13—Implementing Advanced Features: SQL Server 2012 provides some
advanced functionality right out of the box, and this chapter introduces these
capabilities with coverage of SQL Server Analysis Services, SQL Server Reporting
Services, and SQL Server Integration Services.

Part IV—Administering and Maintaining SQL Server 2012

Chapter 14—Creating Jobs, Operators, and Alerts: Now that your databases are
in place, it’s time to maintain them. In this chapter, I introduce the Standardize,
Automate, and Update (SAU) model of administration and provide steps for
creating jobs, operators, and alerts.

Chapter 15—Performance Monitoring and Tuning: This chapter introduces you to
the performance maintenance tools available in Windows Server and SQL Server
2012. You’ll learn how to track down performance problems and improve the
responsiveness of your servers.

Chapter 16—Policy-Based Management: Policy-Based Management is also known
as the Declarative Management Framework. This chapter teaches you how to
implement Policy-Based Management from the ground up.

Chapter 17—Backup and Restoration: This fi nal general administration
chapter will focus on the very important task of backing up and restoring your
databases. You’ll learn about the different backup types and how to implement
them. You’ll also learn about the importance of recovery testing and recovery
procedures.

Part V—SQL Server Security

Chapter 18—Security Threats and Principles: When administering databases,
you are often managing the most valuable asset in modern organizations. For
this reason, I take a very serious approach to security when it comes to SQL
Server 2012. This chapter begins the security journey by evaluating threats and
vulnerabilities in a SQL Server 2012 networked environment.

Chapter 19—Authentication and Encryption: Continuing from Chapter 18, this
chapter moves on to the topics of authentication and encryption. You’ll learn
how authentication helps protect your environment and about the authentication
options SQL Server provides. You’ll also learn to implement and manage
encryption in SQL Server databases.

Introduction xxxv

Chapter 20—Security Best Practices: In this third and fi nal chapter on security,
you’ll learn several best practices to help you maintain the security of your
environment. You’ll learn to perform surface area reduction and auditing in this
chapter.

Part VI— Implementing High Availability and Data Distribution

Chapter 21—AlwaysOn and High Availability: SQL Server 2012 introduces
a new technology called AlwaysOn. This chapter provides an understanding of
this new technology and explains how to select the appropriate hardware for use
with it.

Chapter 22—SQL Server Failover Clustering: SQL Server 2008 supports the
failover clustering feature of Windows Server, and this chapter introduces
you to the topic of clustering and how it is implemented in a SQL Server 2008
environment.

Chapter 23—Database Mirroring and Snapshots: Database mirroring was new in
SQL Server 2005, and it has continued to be supported in SQL Server 2012. This
chapter provides instruction for implementing database mirroring and database
snapshots for point-in-time data recovery and analysis.

Chapter 24—Implementing Replication: This chapter introduces the features of
SQL Server replication. You’ll learn about the different replication types and how
to implement them. You’ll also learn how to confi gure subscribers to receive the
replicated data.

Part VI—Implementing Business Intelligence and Reporting

Chapter 25—Data Warehousing: This chapter introduces you to data warehouses
and data marts. It explains the various components and forms a foundation for
further studies into this specialty of database management and administration.

Chapter 26—SQL Server Integration Services: While SSIS was introduced in
earlier chapters, this chapter will cover it in more depth to ensure that you
understand what you can do with this powerful ETL tool.

Chapter 27—Data Quality Solutions: The fi nal chapter in the book introduces
the features of SQL Server that assist in data quality management, including Data
Quality Services and Master Data Services. You will learn about the importance of
data quality and the tools used to assure it.

Appendices

Appendix A—Microsoft’s Certifi cation Program: Appendix A provides an
objectives map for exams 70-461, 70-462, and 70-463. If you are studying for the
exams, use this appendix to fi nd the portion of the book that covers the objectives
you are currently studying. Also, use the referenced resources in those locations to
learn more about the objectives online at Microsoft TechNet and MSDN.

Appendix B—About the Additional Study Tools: Appendix B discusses what
is included with the additional study tools available at www.sybex.com/go/
sqlserver12admin.

http://www.sybex.com/go/sqlserver12admin
http://www.sybex.com/go/sqlserver12admin

xxxvi Introduction

Additional Study Tools
With this book, I am including quite an array of training resources. The study tools, which
can be found at www.sybex.com/go/sqlserver12admin, offer sample videos, a PDF glossary
of terms, bonus exams, and fl ashcards to help you study if you’re a certifi cation candidate.
The study tools are described here:

Sample Videos Throughout the book, I have included numerous hands-on exercises
showing you how to perform a variety of tasks. For some of these tasks, I have also
included video walk-throughs. Look for the video icon for exercises that include video
walk-throughs.

The Sybex Test Engine Since this book is also a supplement for MCSA: SQL Server 2012
candidates, I have also included three bonus exams, one for each of the MCSA exams
(70-461, 70-462, and 70-463). These exams are intended to test your understanding of the
objectives and do not contain actual questions from the Microsoft exams.

Sybex Flashcards The “fl ashcard” style of question offers an effective way to quickly and
effi ciently test your understanding of the fundamental concepts.

Glossary of Terms I have also included a PDF defi ning terms you should be familiar with
as a SQL Server 2012 DBA or certifi cation candidate. If there is a term in the book you’re
not familiar with, chances are you’ll fi nd it in the glossary.

You can download the additional study tools from www.sybex.com/go
/sqlserver12admin.

How to Contact the Author
If you have any questions on your certifi cation or administration journey, please contact
me. My email address is carpenter@sysedco.com, and I always respond when I receive an
email from a reader. More than a decade ago, I sent an email to a well-known author, and
he responded. I was shocked because I had never gotten a response from any other author
I’d written. I told myself then that, if I ever had the chance to write a book, I would respond
to any and all email messages that I received. When I respond to your email, just remember
that you have Mark Minasi to thank, since he was the author who responded to me. If you
don’t hear back within a few days, please email me again. You know how spam fi lters are!
This is my seventh book, and I still love hearing from my readers.

http://www.sybex.com/go/sqlserver12admin
http://www.sybex.com/go/sqlserver12admin
http://www.sybex.com/go/sqlserver12admin
mailto:carpenter@sysedco.com

Introducing SQL
Server 2012

PART

I
CHAPTER 1 ■ Understanding SQL

 Server’s Role

CHAPTER 2 ■ Installing SQL Server 2012

CHAPTER 3 ■ Working with the
 Administration Tools

CHAPTER 4 ■ SQL Server Command-Line
Administration

CHAPTER 5 ■ Querying SQL Server

Chapter

1
Understanding SQL
Server’s Role

TOPICS COVERED IN THIS CHAPTER:

 ✓ What Is Information Technology?

 ✓ Introduction to Databases

 ✓ Database Servers and Applications

 ✓ SQL Server’s Role

Microsoft SQL Server 2012 is a database management system
that provides enterprise-class features for organizations of all
sizes. If you are tasked with administering a SQL Server, you

need to understand the various roles it can play within an organization. This understanding
comes best by studying from the foundation up, and this chapter provides that foundation.
From this foundation, you will move through this book to learn how to administer the
essential aspects of SQL Server 2012. In addition, the contents of exams 70-461 (Querying
Microsoft SQL Server 2012), 70-462 (Administering a Microsoft SQL Server 2012 Data-
base), and 70-463 (Implementing Data Warehouses with Microsoft SQL Server 2012) are
covered throughout the book.

The fi rst major topics you’ll tackle in this chapter are the concept of information tech-
nology and the role a database or database system plays within this concept. Next, you’ll
look at databases in more detail and gain an understanding of fundamental concepts
that apply to all databases, not just SQL Server databases. Once you’ve suffi ciently cov-
ered the general database concepts, you’ll investigate database servers and applications.
Finally, you’ll explore SQL Server’s features and the roles SQL Server can play in modern
organizations.

What Is Information Technology?
Many organizations differentiate between information systems (IS) and information tech-
nology (IT). In general, IS deals with software and system development, and IT is con-
cerned with technology management. Certainly, IT is the collection of technologies and
resources used to manage information. Organizations place great value on their informa-
tion, as they should, and they expect the IT group to manage this information well. It is
essential that those of us who work in IT remember the I stands for information and that
our primary responsibilities are to collect, retain, distribute, protect, and when appropriate
destroy that information. When a single group is responsible for these tasks, consistency is
accomplished and security can be achieved.

The Importance of IT
Consider an organization that manufactures and sells the components used to make
 fi shing lures. These components are used by many different fabricators and distributors.
What would happen if a competing company stole the customer database of the world’s

What Is Information Technology? 5

top fi shing-lure company? The results could be catastrophic. However, if the company’s
IT department creates and uses the proper information-protection mechanisms, the event
could be mitigated or the theft itself could be prevented.

Throughout this book, the term SQL Server will refer to Microsoft’s data-
base server product in general. When a discussion is applicable only to a
specific version of SQL Server, the appropriate version number, such as
SQL Server 2012, will be specified.

In addition, I pronounce SQL Server as “sequel server,” and I pronounce
the SQL language as “ess-cue-el.” You’ll notice this based on the articles
(“a” versus “an”) that I use. I have reasons for my pronunciations, but I’ll
reserve those for a later chapter.

Although losing a database to a competitor is an extreme example of why an IT depart-
ment is needed, there are many day-to-day problems and issues that arise within a company
that are best handled by the IT department. For instance, customer service professionals
aren’t as productive or effective when they cannot access data (information distribution)
when they need it to answer customers’ questions. Customers may become impatient if their
questions aren’t suffi ciently addressed, and they could very well choose a different provider.
An effective IT department helps everyone within a company manage information so each
team can be successful.

Effective IT solutions enable the fi ve key responsibilities of information management to
be accomplished.

Information Collection Database systems and applications are used to collect information
from users. Well-coded applications validate data integrity and ensure that only valid users
can enter or modify information.

Information Retention A good information storage system provides effective storage
and backup mechanisms. You’ll learn about SQL Server’s backup solutions in Chapter 17,
“Backup and Restoration.”

Information Distribution The right people need the right information at the right time,
and information distribution solutions allow for this. Examples include replication, mirror-
ing, Integration Services packages, and more.

Information Protection There are many different types of information with varying
degrees of priority and confi dentiality. In most organizations, only certain users should have
access to certain information. Security solutions from authentication to storage encryption
should be used to protect valuable data. Additionally, coding best practices should be fol-
lowed in order to prevent the opening of accidental back doors into your information stores.

Information Destruction Sometimes information needs to be destroyed. Your IT solutions
should account for this and ensure that a nonrecoverable method is used to destroy the data
when it is required.

6 Chapter 1 ■ Understanding SQL Server’s Role

These fi ve facets of information management must be included in any IT plan. SQL
Server databases can assist with these processes. Although SQL Server features and capa-
bilities can be integrated with client solutions and network infrastructure solutions to do
so, SQL Server cannot provide all of the best solutions alone. An authentication system,
such as Microsoft’s Active Directory, will be needed to provide secure authentication. Addi-
tionally, although SQL Server integrates with Windows Server Active Directory domains
to provide stronger authentication, if the SQL Server is not integrated with a Windows
domain and the client computers are running non-Windows operating systems, you may
be required to implement a virtual private network (VPN) or Internet Protocol Security
(IPSec) association with the SQL Server before the users can authenticate. This VPN solu-
tion can be implemented using Microsoft’s Routing and Remote Access Services (RRAS)
service or a third-party product.

The Components of IT
In today’s computing environments, IT is responsible for three core components:

Client Solutions These include desk-top computers, laptops or notebooks, portable
devices, and even telephones in Voice over IP implementations.

Network Infrastructure Solutions These include switches, routers, and network commu-
nications services. Network communications services allow communications to take place
on the network, such as DNS, DHCP, authentication services, and so on.

Information Storage Solutions These include databases, fi le servers, and networked stor-
age such as Network Attached Storage (NAS) and storage area networks (SANs).

These core components will be discussed further throughout this book as you learn
about SQL Server and how to deploy and administer it in any environment.

Figure 1.1 shows the core components of IT.

F I GU R E 1.1 The core components of IT

Client

Infrastructure

Storage

Understanding how SQL Server operates within these three areas is crucial for the mod-
ern database administrator (DBA). Unlike DBAs in the past, today’s DBAs must understand
the basics of the operating system on which the database solution runs, the fundamentals
of network communications, and the clients that talk to the database server. Gone are the
days of simply replacing a dumb terminal if a user cannot communicate with the database
(or at least those days are far less common for most of us).

Introduction to Databases 7

When you implement advanced SQL Server features, such as database mirroring, you
need to understand how to determine whether a communication problem is caused by an
internal confi guration error or a problem in the network infrastructure between the two
SQL Servers involved. Even if you’re not responsible for repairing the network infrastruc-
ture, you’ll need to know when to contact the network administrator at the very least.

Many support professionals work in small organizations (or small groups within larger
organizations), and they must be able to support practically everything that has a wire in
their buildings. Of course, this means they need to understand everything in the commu-
nication chain from the database server to the client and back again. For this reason, this
book will teach you more than just how to work with SQL Server. It will explain how SQL
Server works with your other systems, including Windows clients, non-Windows clients,
and other servers.

Introduction to Databases
The word data is defi ned as meaningful information, and it can include words, numbers,
letters, and binary information such as images. The word base means foundation or place.
Simply put, a database is a place to put your data. If you’re looking for a more technical
defi nition of a database, it would go something like this: a computer database is a (usually)
structured collection of information stored according to a defi ned model and accessible
through standard or proprietary database communications languages.

If you’ve been working with databases for many years, you may choose to
skip this section and move on to, “SQL Server’s Role.” However, if you do
read this section, you may be surprised and learn a few things. This choice
is yours.

Make sure you don’t confuse the database with the database management system.
The, “Database Servers and Applications,” section of this chapter will cover this
 difference in more detail. For now, just remember that the database is separate from
the database management system, and it can usually be transferred from one computer
running the compatible database management system to another computer running the
same system.

Types of Databases
The database model defi nes the way in which the data is stored. Most modern databases
use the relational model, but other models also exist. In general terms, the database model
is the type of database. Two primary types are still in use today: fl at-fi le and relational
databases.

8 Chapter 1 ■ Understanding SQL Server’s Role

Flat-File Databases
All of the information in a fl at-fi le database is stored in a single storage container. When
stored in a database, information regarding customer orders might look something like
Figure 1.2.

F I GU R E 1. 2 A table of flat-file databases

OrderID

23

27

36

42

CustomerNum

413

413

413

413

CustomerName

Dale Thomas

Dale Thomas

Dale Thomas

Dale Thomas

Phone

937-555-0135

937-555-0135

937-555-0135

937-555-0135

Email

DaleThomas4532@company.net

DaleThomas4532@company.net

DaleThomas4532@company.net

DaleThomas4532@company.net

Here are a few key points to consider regarding fl at-fi le databases:

Flat-file databases result in high levels of data redundancy. If you examine Figure 1.2,
you can see redundancy in action. Note that the name Dale Thomas is repeated for each
line item, as well as the customer number, phone number, and email address. If a separate
table were used to store the customer information, this redundancy could be avoided.

Flat-file databases cost more when data is added. Because fl at-fi le databases result in more
redundancy, the system simply must write more information when data is added. When
referring to an information system, the term cost can mean dollars and cents, or it can
mean resource costs (CPU, memory, and so on). In this case, the costs are resource costs.
You cannot ask a system to do more without consuming more resources within that system.

Working with flat-file databases may be easier for some users. This point is actually a
positive characteristic of fl at-fi le databases, and it is one of the many reasons you create
views in relational databases. Flat-fi le databases are often easier for users to work with
because all of the data is in one location. Consider the two SQL statements in Listing 1.1.
(Don’t worry if you don’t fully understand SQL yet; you will learn more about it in Chapter
5, “Querying SQL Server.”) Although the increased complexity of the relational database
query may seem trivial, consider what it might look like if you have to join fi ve or more
tables together to retrieve the needed information. Because all of the data is in a container
in the fl at-fi le format, no join statements are needed, and all of the data is easily accessed by
decision-support professionals or business managers who may not understand the
complexities of relational queries.

Listing 1.1: SQL Statement Examples

--This first query is on a relational database

SELECT dbo.Products.ProductID, dbo.Products.ProductName,
 dbo.Sales.OrderID, dbo.Sales.Quantity, dbo.Sales.Price

mailto:DaleThomas4532@company.net
mailto:DaleThomas4532@company.net
mailto:DaleThomas4532@company.net
mailto:DaleThomas4532@company.net

Introduction to Databases 9

FROM dbo.Products
INNER JOIN dbo.Sales ON dbo.Products.ProductID = dbo.Sales.ProductID;

--This second query retrieves the same information from a flat-file database
SELECT dbo.Sales.ProductID, dbo.Sales.ProductName,
 Dbo.Sales.OrderID, dbo.Sales.Quantity, dbo.Sales.Price
FROM dbo.Products;

This simplifi cation is one of the driving factors behind many views that are created and
behind many of the decisions that are made when online analytical processing (OLAP)
databases are implemented. OLAP databases are usually read from (far more read-
operations are performed as opposed to write-operations), and they may benefi t from a
fl attened model; however, even with OLAP databases, it is still common to have multiple
tables. The tables may simply be less normalized (understood as more redundant) than
those for an online transaction processing (OLTP) database that processes large numbers of
writes to the data.

Normalization is the process used to ensure that relational data is stored
in a manner that removes or reduces anomalies in data modifications. The
process also results in a reduction in redundancy within the data store.
Normalization will be covered in more detail in Chapter 8, “Normalization
and Other Design Issues.”

Relational Databases
Relational databases store information in separate containers called tables. Each table rep-
resents a single entity, although denormalized relational databases may not always do so.
You’ll learn about normalization in Chapter 8; for now, you just need to know that a rela-
tional database is a collection of entity containers (tables) that are related to one another in
various ways.

When you convert the data in Figure 1.2 to a relational database model, the results
should be similar to those shown in Figure 1.3. Notice that the Customers table is related
to the Sales table so that the customer information is entered only once. In each order, the
customer ID is used to reference everything about the customer. You could further optimize
this database by breaking the Sales table into two tables: Sales and Items. The Sales table
would contain the header information for the sale (sale date, sale ID, customer ID, and so
on), and the Items table would list the details for each item purchased (product ID, price,
quantity, and so on).

10 Chapter 1 ■ Understanding SQL Server’s Role

F I GU R E 1. 3 The Sales and Items tables interact in a relational structure.

OrderID

23

27

36

42

CustomerNum

413

413

413

413

ProductID

45

32

78

98

Quantity

12

6

53

13

UnitPrice

12.45

14.97

3.78

12.17

City

Marysville

Urbana

Austin

CustomerNum

413

414

415

416

CustomerName

Dale Thomas

Amie Freeman

Tracy Mathys

Jose Ramos

Phone

937-555-0135

405-555-9090

417-555-0078

913-555-1616

Email

DaleThomas4532@company.net

Amie_F@company.net

Tracy@thenet.com

JoseRamos@company.net Elk City

The relational model provides several benefi ts.

Relational databases can be indexed and optimized more efficiently. Relational databases
can be indexed and optimized more effi ciently because you are dealing with smaller units
of information in each data store (each table). For example, you can index the Customers
table uniquely for retrieving common columns of information, and you can index the
Sales table uniquely for retrieving common columns of information retrieved from the Sales
table. If the two tables were crammed together into a single fl at structure, you would have
to ask which is more important: customer columns or sales columns. You can create only so
many indexes before you start hurting more than you help.

Relational databases consume less space to store the same information than flat-file data-
bases. Because the redundancies have been removed, a relational database requires less
space to store the same information as a fl at-fi le database. For example, consider Figure 1.2
again. The customer ID, customer name, phone number, and email address must be added
every time Dale Thomas places an order; however, with the structure in Figure 1.3, only
the customer ID must be added with each order. You are, therefore, dealing with one
column instead of four. You can see how the relational structure saves on storage space.

Relational databases can handle more concurrent users more easily. Because data is bro-
ken into logical chunks, relational databases can handle more concurrent users more easily.
With the data store represented in Figure 1.2, even if the user wants only the sales-specifi c
information with no information about the customer, all of the data must be locked in
some way while the user retrieves the information. This behavior prevents other users from
accessing the data, and everyone else must wait in line (what a database system usually calls
a queue). The relational model is better because one user can be in the Sales table while
another is in the Customers table. Of course, modern database systems go even further and
usually allow locking at the data page or even the row (record) level.

Relational databases are more scalable. Because they allow for more granular tweaking
and tuning, relational databases scale better. They store more information in less space.

mailto:DaleThomas4532@company.net
mailto:JoseRamos@company.net
mailto:Amie_F@company.net
mailto:Tracy@thenet.com

Introduction to Databases 11

They allow more users to access the data more quickly. These benefi ts are all realized in
SQL Server 2012 databases.

Of course, the fact remains that a relational database that is heavily normalized
(with extreme reductions in redundancy) may be much more diffi cult for users to utilize.
For example, it is not uncommon to see the typical customer record build from four or
more underlying tables in modern relational databases. This structure means that the users
have to join the four or more tables together to retrieve that typical customer record. One
of the key decisions a DBA makes is determining just how normalized a database needs to
be. That question is addressed in Chapter 8.

Weighing the Benefits of Using a Local
or Server-Based Database
In addition to the fl at-fi le versus relational database debate, the value of local databases
versus server-based databases needs to be considered. Developers must continually decide
which to use, and IT support professionals in general must also make this decision fre-
quently. For example, when a vendor tells you that you can run their application with a
locally installed database for a single user or with a SQL Server server–based database for
several users, you must choose between the two.

Additionally, you may have to choose between using a database intended for local use
(i.e., Access) and a database intended for server-based access (i.e., SQL Server) when just a few
users need access to the data. Some organizations have successfully implemented Microsoft
Access databases for 5 to 10 people, and others have faced tremendous diffi culties allowing
just 2 or 3 users to share a Microsoft Access database. Databases that are designed primar-
ily for local access simply do not scale well, and when multiple users need access to the data,
implementing a server-based database system is usually a better multiuser solution.

Understanding Local Databases
A local database, such as Microsoft Access or FileMaker Pro, is completely stored on
the user’s machine or a network share the user can access. When using local fi le storage, the
application that accesses the database uses a local data access engine to talk to the database
fi le. No network communications occur. When it is stored on a network share, the
database fi le is still treated as a local fi le from the perspective of the database application.
The networking functionality in Windows is handled in a different part of the operating
system called Kernel mode.

Truly local databases are good from one perspective: they do not consume network
bandwidth. If only one user needs access to the data, local databases are often the way to
go. The good news is that Microsoft provides a free version of SQL Server for this scenario,
called SQL Server 2012 Express. In addition, Microsoft provides the SQL Server Compact
edition for use on mobile devices such as PDAs. The features of these free editions are simi-
lar to those of the SQL Server 2012 Standard edition as long as you are using small data-
bases, and you can use a solution you are familiar with for both your local databases and
your server-based databases.

12 Chapter 1 ■ Understanding SQL Server’s Role

Three versions of Express edition are available: Express, Express with
Tools, and Express with Advanced Services. Express edition comes
with no GUI management tools, but both Express with Tools and Express with
Advanced Services come with SQL Server Management Studio. Express
with Advanced Services also adds more features such as full-text search
and Reporting Services Express.

So, why use Microsoft Access or any other single-user database system today? For many
organizations, the built-in forms engine in Microsoft Access is enough to justify continued
use of the tool, while other IT departments simply don’t have any use for it. Of course, you
can use Microsoft Access to build forms, queries, and reports against a backend SQL Server
database as well. The latter option is probably the best use of Microsoft Access today. And,
yes, Microsoft Access can be used as a frontend for local SQL Server 2012 Express data-
bases, although you will probably have to design the database in SQL Server Management
Studio Express 2012.

Understanding Server-Based Databases
The benefi ts of server-based databases can be grouped into three primary categories:

■ Data availability

■ Data integrity

■ Data security

Data Availability

Users need access to data when they need it. Although this point may seem obvious, it is
often overlooked when developers build database solutions. Data availability can be consid-
ered from two viewpoints:

■ Data persistence or existence

■ Data access effi ciency

From the perspective of data persistence, you need to ensure that your data is stored
safely, is backed up properly, and is accessible to the appropriate users. To accomplish
this, data that must be accessed by multiple users should be stored in a network location.
Of course, Microsoft Access databases can be stored in a network location; however,
depending on the database in question, fewer than fi ve users may be able to access that
data concurrently. The power of server-based databases really shines in this area; many
server-based databases can handle hundreds or even thousands of users accessing the data
concurrently. Local databases simply cannot match this scale.

Although network storage ensures that the data is accessible, the storage engine used
by the server-based database will ensure that the data is stored safely. SQL Server uses
transaction logs to help in this area. Active transaction logs are used to recover from minor
failures, and backed-up transaction logs may be used to recover from major mistakes
or failures. Either way, the server system establishes solid data storage processes to make
sure the data gets into the database properly.

The last element of data existence is backup. The backup features of a server-based data-
base system are usually far more extensive than those of local databases. In fact, most local

www.allitebooks.com

http://www.allitebooks.org

Introduction to Databases 13

databases are backed up at the fi le level only. The entire fi le is copied to a backup location,
and the data is backed up in this simple way. This simple method may seem benefi cial, but
it is missing an important feature: the ability to back up the database while a user is con-
nected to it. Server-based systems usually provide this feature. For example, SQL Server
allows online backups of the data that is in the database. This feature allows backups to
occur even in 24/7 businesses, and it is essential to modern database systems.

For the data to exist or persist, regardless of the calamity, all three of these factors must
be in place:

■ The data must be appropriately stored when it is initially entered.

■ The data must be backed up to protect against catastrophic failures.

■ The data must be available when users want it.

SQL Server provides for all three factors.
The next element of data availability is access effi ciency. It’s one thing to say that users

can get to the data they need. It is quite another to say that they can get to it in a timely
fashion. Server-based database systems have much more complex locking algorithms, which
allow them to handle many more users more quickly than a local or single-user database
system. SQL Server can lock an entire table, a single data page (which may contain one or
more rows), or a single row (record). In addition, SQL Server can use different lock types.
For example, a shared lock can be acquired for data reads. This type of lock allows other
users to read the same data without waiting for the fi rst user’s shared lock to release.
Of course, exclusive locks can also be used when modifying data to ensure data integrity.

From the perspective of data availability for multiuser applications, there is just no com-
parison between a proper server-based database system like SQL Server and an intended
single-user database system like Microsoft Access. When you need the data to be available
to the right users at the right time and multiple users must access the same data, server-
based systems win every time.

Data Integrity

For the purposes of this book, data integrity is defi ned in a slightly different way than in
most resources. Data integrity means that the data could be what it should be. Notice that
the defi nition reads could be what it should be and not that it is what it should be. There
is a simple reason for this defi nition: it is impossible to guarantee that all data is what it is
supposed to be even with excellent data integrity policies and procedures. Why? It’s because
of the human element.

Most of the time, data is entered by humans and not by machines. As long as the pro-
gramming is accurate, you can predict with certainty what a machine will do or generate in
relation to data output; however, humans are not so predictable.

For example, imagine a company has a website form that a user must fi ll out in order to
retrieve a white paper from the company. In that form, they ask the user to enter his or her
email address, and they require that the email address fi eld include data that is formatted
like an email address (i.e., it has some characters followed by the @ sign, followed by more
characters, and then a period and at least two more characters). Will every user enter their
valid email address? Of course not! Users will often use completely fabricated addresses to
avoid receiving spam from the company.

14 Chapter 1 ■ Understanding SQL Server’s Role

The company may decide to send a link to the email address in order to download the
white paper. Will this force users to enter email addresses where the company can actually
reach them? Not really. They could simply use something like, http://10MinuteMail.com
or any of the dozens of free email servers. Yes, users really hate spam that much.

In the end, website applications usually settle for something that looks like an email
address. They may try emailing the link just to see whether it is a valid email address, but
there is no way to know if it is the user’s real email address. So, the outcome is simple. The
email address could be what it should be, but you don’t know that it is what it should be.

For some data elements, there may be methods to guarantee that the data is accurate.
For email addresses and many other similar data elements, you have to accept reality. How-
ever, this acquiescence does not mean you give up on data integrity. It simply means you
employ data integrity measures that are worth the effort and stop there.

In the area of data integrity, there is not a tremendous difference between local database
systems and server-based systems. For example, SQL Server offers triggers, and Access
offers macros. SQL Server offers stored procedures, and, again, Access offers macros. SQL
Server offers data types (to ensure that numbers are numbers, for example) and so does
Access. The line is not as clear-cut here, but you will fi nd that SQL Server triggers and
stored procedures offer much more power than Access macros, thanks to the ability to run
.NET code. Earlier versions of SQL Server used extended stored procedures, which were
basically DLL fi les called by the SQL Server. This ability to run code developed in advanced
languages is one of the separating factors between SQL Server and Microsoft Access in the
area of data integrity. In addition, SQL Server has the Transact-SQL language, which is
more powerful than the SQL version used in Microsoft Access.

In this context, data integrity is viewed from the perspective of accuracy.
Data integrity can also be considered from a security or storage consis-
tency perspective. From a security perspective, data integrity ensures that
no malicious changes are made to the data. From a consistency perspec-
tive, it ensures that the data is not corrupted under normal data processing
or storage operations. In Chapters 18 through 20, you’ll learn about SQL
Server security solutions. In Chapter 14, you’ll learn how to analyze the
integrity of the stored data.

Data Security

Information is valuable, and for most organizations this information is stored primarily
in two types of locations. The fi rst type is a data fi le such as a spreadsheet, presentation,
or typed document. The second is a server-based database. While databases are ultimately
stored in fi les, the access methods for spreadsheets, presentations, and word processor
documents differ. Server-based databases provide enhanced security for these databases.
Figure 1.4 illustrates the difference between local or single-user database security and
server-based database security.

http://10MinuteMail.com

Introduction to Databases 15

F I GU R E 1. 4 Comparing Microsoft Access and SQL Server database security

G
ra

nt
ed

 A
cc

es
s

Microsoft
Access

MDB File

Logical
database Service Access

Physical
database

File

SQL Server Service

User accessing a
Microsoft Access database

User accessing a
SQL Server database

M
ust H

ave A
ccess

In the example in Figure 1.4, notice that the Access database requires users to have per-
missions on the database fi le itself. A user who wants to open an Access database from a
network location must have at least Read permissions on the MDB fi le that holds the data-
base. This presents a security concern in that many network operating systems allow a user
with read access to a fi le to copy that fi le to their own computer or removable media such
as a USB thumb drive.

Notice the difference in Figure 1.4 in the represented access to a SQL Server database.
The user is given access to talk to the SQL Server service but is given no access to the data
fi les themselves. This confi guration means the user can access the data only through pro-
vided applications. If a user with read access wanted to copy all of the data to a thumb
drive, the user would have to export the data. Such behavior could be easily logged and
prevented through the use of security features built into SQL Server.

For example, access to data could be designed to occur only through stored procedures.
With such a confi guration, users are not given direct access to the tables. They are given
access only to execute stored procedures. The stored procedures execute as a different user
than the calling user, so they can access the data on the user’s behalf. A data access model
that relies solely on stored procedures could ultimately make it impossible for nonadmin-
istrative users to make a copy of the entire data set. Not only would the stored procedures
limit the data returned with each execution, but they may further look for nonstandard use
and disallow a given account access to the data until further investigation has been done or
some acceptable time has passed.

A more passive security method would be the simple logging of any SELECT statements
(basic database statements used mostly to read information) that read all of the data in a
given table. For example, the system could watch for nonfi ltered SELECT statements (state-
ments without a WHERE clause) and log the username, the time of execution, and the actual
statement. This log could be sent to security personnel who audit data access. Additionally,

16 Chapter 1 ■ Understanding SQL Server’s Role

the system could disallow more than one nonfi ltered SELECT statement in a given window of
time against multiple tables.

These actions do not need to be taken for every database. In fact, they should not be
taken for most. However, these brief examples illustrate the power derived from an inter-
mediary data access method that could be used if a very sensitive database must be placed
online. The SQL Server service acts as the intermediary between the client and the data-
base. As the man in the middle, SQL Server can provide many different data protection
mechanisms. In Chapters 18 through 20, you’ll learn about the most important security
techniques at your disposal.

Important Database Terms
As you learn about programming and SQL Server, you will encounter many terms related
to SQL Server implementation and management. It is important that you understand the
defi nitions for these terms as used in this book. Many terms have more than one defi nition,
and it is important that you understand the meaning poured into the words in context.
Some of these terms are basic, and some are more complex, but you will see them appear-
ing again and again throughout this book and as you read articles, white papers, and web-
sites related to the work of a DBA. The following list will defi ne these common terms used
in the world of databases and specifi cally SQL Server:

Table/Record Set/Relation In relational database design, a table is not something at
which you sit down to eat. Rather, a table is a container for data describing a particular
entity. Tables are sometimes called record sets, but the term record set usually references a
result set acquired by a SELECT statement that may include all or a portion of the table data.
The formal name for a table is a relation. All of the entries in the table are related in that
they describe the same kind of thing. For example, a table used to track LCD projectors
describes projectors. All entries are related to projectors.

Column/Field/Domain To describe the entity represented in a table, you must store infor-
mation about that entity’s properties or attributes. This information is stored in columns or
fi elds depending on the database system you’re using. SQL Server calls them columns, and
Microsoft Access calls them fi elds, but they are the same thing. For example, the LCD Pro-
jectors table would include columns such as Brand, Model, SerialNum, and Lumens. Note
that these properties all describe the projector. The term domain is used to reference a type
of property or attribute that may be used throughout the database. For example, you may
consider City, LastName, and eMail to be domains. To ensure domain integrity, you would
enforce the same data type, constraints, and data entry rules throughout the database for
these domains.

Record/Row/Tuple A collection of columns describing or documenting a specifi c instance
of an entity is called a record. Stated simply, one entry for a specifi c unit in the LCD Projec-
tors table is a record. Records are also called rows in many database systems and by many
DBAs. The formal term for a record is a tuple (usually pronounced “too-pel,” but some
argue for “tyoo-pel”).

Introduction to Databases 17

Index An index is a collection of data and reference information used to locate records
more quickly in a table. SQL Server supports two primary index types: clustered and non-
clustered. Clustered indexes are similar to a dictionary or telephone book. Nonclustered
indexes are similar to those found at the back of a book. For now, it’s enough to know that
they can be used to increase database performance and that they can equally decrease data-
base performance when used improperly. You will learn about them in detail in Chapter 11,
“Indexes and Views.”

View One of the most over-explained objects in databases is the view. Here’s the simple
defi nition: a view is a stored SQL SELECT statement. That’s really all it is. Views are used
to make data access simple, to abstract security management, and to improve the perfor-
mance of some operations. The most common use of views is the simplifi cation of data
access.

SQL SQL is the database communications language managed by the ANSI organization.
It is a vendor-neutral standard language that is supported at some level by nearly every
database product on the planet. SQL Server implements a customized version of SQL called
Transact-SQL, or T-SQL for short.

Stored Procedure When you want to process logical operations at the server instead of the
client, stored procedures can be used. A stored procedure is either a collection of T-SQL
statements or a compiled .NET stored procedure in SQL Server 2008 and newer. Earlier
versions of SQL Server supported and recommended extended stored procedures, which
were really just DLLs called by the SQL Server. Stored procedures are used to centralize
business rules or logic, to abstract security management, or to improve performance. Other
reasons exist, but these are the three big motivators.

Trigger A trigger is like a dynamic stored procedure. A trigger is a group of T-SQL state-
ments that is executed automatically when specifi ed events occur. For example, you may
want to launch a special procedure anytime someone attempts to execute a DROP TABLE
(delete a table) statement. The trigger could either back up the table before deleting it or
simply refuse to delete the table.

Concurrence Concurrence is defi ned as acting together. In the database world, either a
system supports multiple concurrent users or it does not. Concurrency is a single word that
says a database system supports multiple users reading and writing data without the loss of
data integrity.

DBA A DBA is a database administrator. A DBA is the person who installs the routers
and switches, implements the network operating system, builds the user databases, confi g-
ures the client computers, programs the telephone system, troubleshoots production and
security problems, and, oh yeah, works with databases on occasion. But seriously, you live
in a new world of IT. Today, most IT professionals must wear multiple hats. This reality
means that DBAs usually have to know about the database server service, the server operat-
ing system, and even a bit about the network infrastructure across which users communi-
cate with the database system. It’s a brave new world.

18 Chapter 1 ■ Understanding SQL Server’s Role

Remember, these are the basic terms that will appear throughout your
experiences with databases, regardless of the database system with which
you are working. Be sure you know what these terms mean. You’ll learn
about many more database terms as you read the rest of this book.

Database Servers and Applications
Now that you’ve learned the fundamental concepts of a database, it’s time to investigate
server-side databases and database applications in a bit more detail. Let’s immediately clear
up one thing:

The database is not the database server, and the database server is not the database.

It’s not uncommon for a DBA to say, “I have to restart the SQL Server database.” What
he really means is that he needs to restart the SQL Server service, which manages access to
the database. The database is separate from the database management system. SQL Server
is the database management system. Databases may be detached from one SQL Server instance
and then attached to another. In fact, you can attach Excel spreadsheets, Access databases,
and virtually any data source that you can connect to with Open Database Connectivity
(ODBC) to a SQL Server as a linked server object. Once the link is made, the SQL Server
service can manage access to that data source (via the ODBC or other connection type) for
your users. ODBC is a standard database access method used by many database manage-
ment systems.

To help you better understand the relationship that applications have with a database
server, the following section will explain the three kinds of database applications:

■ Localized

■ Client-server (single tier)

■ N-tier (multiple client-server relationships)

Database Application Types
The three primary kinds of applications are localized, client-server, and n-tier applications.
Localized applications will not be covered in detail here because our primary focus is on
running SQL “servers” and not SQL Server on the clients. However, you should know that
a localized application usually talks to a local install of SQL Server using a protocol called
Shared Memory. The name says it all: the local application talks to the local SQL Server
installation (usually SQL Server Express) without using the network interface card.

Client-Server (Single Tier)
Client-server implementations, also called single tier, involve a client application communi-
cating directly with the database in most cases. An example of a client-server application is
a Microsoft Access frontend that communicates with a SQL Server backend database. The
SQL Server database is the server, and Microsoft Access is the client. Technically, an Excel

Database Servers and Applications 19

data import from a SQL Server is a client-server application. Figure 1.5 shows an example
of this model.

F I GU R E 1.5 A simple implementation of client-server technology with a client
accessing a single server directly

Client application
runs on the PC

Data for the client
stored on the server

Figure 1.5 shows an application communicating with a SQL Server. Notice that the user
interacts with the application as if everything is installed on her local machine. In fact, as
long as the network is working and the database server is available, the user will usually
feel as if the data is indeed in her computer. Of course, as you add more users—without
increasing servers or the single server’s capacity—she will likely notice a drop in perfor-
mance; however, this drop should be minimal as long as the database server is well main-
tained and upgraded as needed.

N-Tier (Multiple Client-Server Relationships)
An n-tier application is an application that requires multiple levels (tiers) of communica-
tion in order to accomplish meaningful work. For example, a SharePoint server farm that
includes one server for the database and another server for the website is an n-tier applica-
tion or, more specifi cally in this case, a two-tier application. The user communicates with
the web server (tier 1), and the web server communicates with the database on the user’s
behalf (tier 2). The n in n-tier is simply replaced with the number of links in the communi-
cation chain.

Figure 1.6 shows the SharePoint implementation visually. You can see the links or tiers
in the application. Such an implementation provides several benefi ts. First, developers can
change the database without necessarily rewriting all of the code at the web server. This
benefi t assumes that a standard data access method was used between the web server
and the database. Second, the developers can completely change the look and feel of the
 application without changing any of the data. In three-, four-, and more-tier implementa-
tions, the solution is even more componentized, and the result is greater fl exibility in the
solution over time.

20 Chapter 1 ■ Understanding SQL Server’s Role

F I GU R E 1.6 An n-tier application using a SharePoint server to access a backend
database server

Data for SharePoint is
stored in the database

server.

Client application
runs on the PC.

SharePoint runs on the
application server.

Finally, n-tier applications are easier to scale. Single-tier applications are notoriously
 diffi cult to scale. Everything is resting on a single server. If the performance of the database
becomes too slow, you are very limited in what you can do. With an n-tier application,
you can distribute the data across several servers on the backend and absolutely nothing
changes from the users’ perspectives. No wonder developers love to use this model. It’s not
without its faults, but it certainly has its benefi ts.

SQL Server’s Role
You are fi nally ready to explore how SQL Server fi ts into all of this discussion of database
technologies. To help you understand the roles SQL Server can play in your organization,
this section will begin by explaining the product’s major new features and its evolution.
First, you’ll explore the new features introduced in SQL Server 2012. Next, you’ll look
at the features SQL Server 2008 introduced (and that, of course, are still in SQL Server
2012). The fi nal new features section focuses on those features introduced in SQL Server
2005. This coverage of the two previous editions is very important. Some organizations
are moving directly from SQL Server 2000 and skipping SQL Server 2005 and 2008 alto-
gether. That decision is certainly acceptable as long as you can ensure compatibility with
your applications. But compatibility was also an important consideration for those who
upgraded from SQL Server 7.0 or 2000 to SQL Server 2005 a few years ago. This section
provides you with a quick overview of the evolution of SQL Server for a little more than
the last decade.

Finally, this section covers the roles SQL Server can play based on these new features.
You’ll learn about enterprise databases, departmental databases, reporting servers, ETL
servers, analysis servers, and more. Let’s jump into these exciting new features.

SQL Server’s Role 21

New Features Introduced in SQL Server 2012
This section introduces the newest features found only in SQL Server 2012 and not in
 previous editions. To make the coverage simpler, the features are separated into two cat-
egories: management features and development. This book is primarily focused on manage-
ment and administration of SQL Server 2012, so more information about the management
enhancement features is provided; however, it is practically impossible to manage a SQL
Server without doing some development or without understanding the components, lan-
guages, and processes used by developers. For this reason, the development features will be
covered here and throughout the rest of the book, although less exhaustively.

New Management Features
SQL Server 2012 introduces several features that enhance the manageability of the
database engine (the core of SQL Server). These features and enhancements include the
following:

■ SQL Server Management Studio

■ Contained databases

■ Windows PowerShell

■ New and improved dynamic management views (DMVs)

SQL Server Management Studio

The fi rst and most signifi cant change to SQL Server Management Studio (SSMS) is that it is
now built in the Visual Studio environment. This change makes the SSMS interface similar
to other Visual Studio–based solutions, like the traditional Business Intelligence Develop-
ment Studio (BIDS) used in previous versions of SQL Server. It also adds the powerful capa-
bilities of the Visual Studio IDE, including the following:

■ New Visual Studio default keyboard shortcuts

■ Transact-SQL IntelliSense enhancements such as breakpoints, code snippets, and
 templates

■ Watching Transact-SQL expressions during execution

■ Quick Info pop-ups when you move the mouse cursor over a Transact-SQL identifi er

In addition to this overall change to SSMS, the new database engine Query Editor adds
many new debugging features for SQL code. This enhancement may seem more appropri-
ate for the database developer than the database administrator at fi rst glance; however,
experienced administrators spend a tremendous amount of time working in SQL code with
performance analysis and troubleshooting endeavors. The new debugging features benefi t
you, too.

SSMS also introduces enhanced database restore capabilities. The Restore feature is
more effi cient, and this improves restore times. A new visual timeline is available for point-
in-time restores, making them much easier. Select corrupt pages can also be restored with
the new Page Restore dialog using a GUI interface.

22 Chapter 1 ■ Understanding SQL Server’s Role

Contained Databases

Contained databases allow users to exist in a user database without having associations with
logins in the instance of SQL Server. You create a user in the database without creating a
login for the SQL Server itself, which is where the phrase contained database comes from.
This can make database moves from one instance to another much easier. SQL Server 2012
actually implemented partially contained databases because some items still depend on the
instance. These items can be viewed using the sys.dm_db_uncontained_entitied and
sys.sql_modules views. The partially contained databases allow for improved database
movement, improved failover when using the new AlwaysOn feature, and improved
development processes for testing and troubleshooting.

Windows PowerShell

Windows PowerShell 2.0 is a prerequisite for installing SQL Server 2012. PowerShell
 modules are used to load the SQL Server components into the PowerShell environment.
The sqlps module is imported into PowerShell to load the SQL Server snap-ins. Two new
cmdlets are backup-sqldatabase and restore-sqldatabase.

New and Improved Dynamic Management Views

SQL Server provides DMVs and dynamic management functions (DMFs) for insight into
the SQL Server operations. The following system views have been added or changed in
SQL Server 2012:

■ sys.dm_exec_query_stats (modifi ed)

■ sys.dm_os_colume_stats (added)

■ sys.dm_os_windows_info (added)

■ sys.dm_server_memory_dumps (added)

■ sys.dm_server_services (added)

■ sys.dm_server_revistry (added)

New Development Features
The database engine of SQL Server 2012 offers the following development or programma-
bility features:

■ FileTables

■ Statistical semantic search

■ Full-text search enhancements

■ New functions

■ SQL Server Express LocalDB

FileTables

The FileTable is an enhancement or extension to the fi lestream technology introduced in
earlier versions of SQL Server. The FileTable feature allows you to store fi les and documents
in SQL Server tables and access them as if they were stored in the Windows fi le

SQL Server’s Role 23

system. The FileTable is also called a table of fi les. Each row in a FileTable represents a fi le
or a directory and contains a fi le_id, path_locator, and parent_path_locator. Traditional
fi le attributes are also stored, such as date modifi ed and last access time.

Files can be bulk-loaded into FileTables to convert traditional file storage
(such as image asset libraries) into SQL Server data tables. Use the BCP,
BULK INSERT, and INSERT INTO commands to accomplish this.

Statistical Semantic Search

Full-text search has been in SQL Server for several versions. Statistical semantic search
adds the element of meaning to full-text search. Where full-text searching allows you to
locate data based on included words, semantic search allows you to locate data based on
meaning. The SemanticSimilarityTable function can be used to locate documents or data
similar to a specifi ed document. Statistical semantic search is most commonly used with
documents stored in the SQL Server. These documents are likely to be stored in FileTables
moving forward.

Full-Text Search Enhancements

In addition to semantic searches, full-text indexes now support property-scoped searching
for documents stored in FileTables. For example, you can search by author, title, and other
document properties. Only documents with appropriate fi lters installed can be searched in
this way.

You can also now use a NEAR statement within a CONTAINS or CONTAINSTABLE function
to perform proximity searches. You can determine that multiple words must exist in a
data column or document and that they must exist in a specifi c order. You can also specify
the number of words within which the defi ned words must occur. For example, NEAR((Tom,
Carpenter), 2, TRUE) would require that Tom is before Carpenter (this is what the keyword
TRUE means) and that it is within two words of Carpenter. Therefore, Tom Dale Carpenter
would match.

New Commands and Functions

Fourteen new commands and functions were introduced to Transact-SQL in SQL Server 2012:

PARSE The PARSE command is used to translate an input value to a new data type. For
example, you can translate or convert a string that contains a date into an actual datetime2
data type. It is used only with string source values. The PARSE command uses the following
syntax:

PARSE (string_value AS data_type [USING culture])

TRY_PARSE TRY_PARSE is like PARSE except that it can return a NULL value if the command
fails. The TRY_PARSE command uses the following syntax:

TRY_PARSE (string_value AS data_type [USING culture])

24 Chapter 1 ■ Understanding SQL Server’s Role

TRY_CONVERT The TRY_CONVERT command is similar to the CONVERT command except that it can
return a NULL value if the command fails. The TRY_CONVERT command uses the following syntax:

TRY_CONVERT (data_type [(length)], expression [, style])

DATEFROMPARTS The DATEFROMPARTS function takes individual values and converts them to
a single date value. For example, it can take 2000, 10, and 24 as separate values and convert
them to 200—10—24 as an actual date value. The following syntax is used:

DATEFROMPARTS (year, month, day)

DATETIMEFROMPARTS This function is the same as DATEFROMPARTS except that it returns the
data as a datetime data type and receives more inputs. The following syntax is used:

DATETIMEFROMPARTS (year, month, day, hour, minute, seconds, milliseconds)

DATETIME2FROMPARTS This function is the same as DATEFROMPARTS except that it returns
the data as a datetime2 data type and receives more inputs. The following syntax is used:

DATETIME2FROMPARTS (year, month, day, hour, minute, seconds,
 fractions, precision)

DATETIMEOFFSETFROMPARTS This function is the same as DATEFROMPARTS except it returns the
data as a datetimeoffset data type and receives more inputs. The following syntax is used:

DATETIMEOFFSETFROMPARTS (year, month, day, hour, minute, seconds,
 fractions, hour_offset, minute_offset, precision)

SMALLDATETIMEFROMPARTS This function is the same as DATEFROMPARTS except it returns
the data as a smalldatetime data type and receives more inputs. The following syntax is
used:

SMALLDATETIMEFROMPARTS (year, month, day, hour, minute)

TIMEFROMPARTS The TIMEFROMPARTS function returns a time value and data type when
provided the hour, minute, seconds, fractions, and precision as input. The following syntax
is used:

TIMEFROMPARTS (hour, minute, seconds, fractions, precision)

EOMONTH The EOMONTH function is used to determine the end-of-month date for the month
in which a provided date exists. For example, given the input of 2/12/2016, it would return
29, because 2016 is a leap year. The following syntax is used:

EOMONTH (start_date [, month_to_add])

CHOOSE The CHOOSE function returns an item in a list based on the provided index value.
For example, in the list horse, cow, pig, the value of 2 for the index returns cow. The fol-
lowing syntax is used:

CHOOSE (index, val_1, val_2 [, val_n])

IIF The IIF function returns one of two values depending on whether the input expres-
sion equates to true or false. It is a short way for writing a CASE statement, which was avail-
able in previous versions of SQL Server. The following syntax is used:

SQL Server’s Role 25

IIF (boolean_expression, true_value, false_value)

CONCAT The CONCAT function takes two or more string values and combines them into
a single string. You simply provide it with the string values you want to concatenate. For
example, CONCAT (‘Tom’, ‘ ’, ‘Carpenter’) would return Tom Carpenter. The following
syntax is used:

CONCAT (string_value1, string_value2 [, string_valueN])

FORMAT The fi nal new function in SQL Server 2012 is the FORMAT function. It can be used
to convert data from one format to another, for example from U.S.-formatted dates to
European-formatted dates. The following syntax is used:

FORMAT (value, format [, culture])

SQL Server Express

The SQL Server Express LocalDB is a lightweight version of SQL Server Express. It
includes the same programmability features, but it runs in user mode and is installed
quickly with no confi guration. It is used for those projects where the developers desire to
have a local database similar to a Microsoft Access database but in the format of SQL
Server databases. The SQL Server Express LocalDB edition is managed using a utility
called SqlLocalDB.exe. The database fi les (with an .mdf extension) can be attached to full
SQL Server installations later, if desired.

Features Introduced in SQL Server 2008
If you are upgrading from SQL Server 2005 to SQL Server 2012, the features covered
in this section will be of great interest to you. The features were either new or greatly
enhanced in SQL Server 2008. Like the new 2012 features, they are grouped here into
management and development features.

All of the features mentioned here will be discussed in more detail in later chapters. The
intent here is to help you understand the roles SQL Server 2012 can play in an organization
based on the enterprise-class feature set it provides.

Management Features Added in SQL Server 2008
The management features added in SQL Server 2008 were among the most talked-about
new features. From policy-based management to the Resource Governor, SQL Server 2008
defi nitely provided the major capabilities needed for large multiserver enterprise implemen-
tations. These features included the following:

■ Policy-based management

■ Confi guration servers

■ The Resource Governor

■ Transparent data encryption

■ Performance data collectors

26 Chapter 1 ■ Understanding SQL Server’s Role

Policy-Based Management

Policy-based management (PBM) allows for the confi guration of SQL Server services
through policies. This functionality means that DBAs can confi gure pools of SQL Servers
together rather than having to confi gure each server individually. Of course, PBM is most
useful for environments with 10 or more servers, but it may provide benefi ts to smaller
organizations as well.

To use PBM, policies are grouped into facets that are confi gured as conditions
and applied to targets. For example, the Surface Area facet can be used to disable the
xp_cmdshell extended system stored procedure, and then this policy can be applied to
every server or a selection of servers. A policy, in the PBM world, is defi ned as a condition
enforced on one or more targets.

Configuration Servers

Confi guration servers are special SQL Servers that are used to centrally confi gure other
servers. Any SQL Server instance can be converted to a confi guration server. Once the
confi guration server is implemented, two primary tasks can be performed: centralized
management of PBM and multiserver queries. The centralized management of PBM with
a confi guration server causes PBM to provide functionality similar to group policies in
a Windows domain. From one central server, you can confi gure all of your SQL Servers
based on confi guration groups.

The multiserver query feature is exceptional. With this feature, you can execute a query
from the confi guration server to be run against all of the servers in a confi guration group.
For example, if you need to create a table in a database that has been replicated or simply
duplicated to seven different servers, a confi guration server would allow you to execute
the code to create that table on all seven servers at the same time. Figure 1.7 illustrates the
 concept of the multiserver query.

F I GU R E 1.7 An example of multiserver queries with the user querying one server that
queries three other servers in turn

Server
Group

Central
Configuration

Server

Multiserver
Query

SQL Server’s Role 27

The Resource Governor

The Resource Governor is used to impose limits on workloads based on the user request-
ing the work, the application requesting the work, or the database against which the work
is performed. Workloads can be assigned priorities so that, for example, a single user’s
actions do not prevent other users from completing necessary work. With previous versions
of SQL Server, DBAs could use the Windows System Resource Manager (WSRM) on Enter-
prise editions of Windows Server to perform similar operations. Now, the feature is built
into SQL Server and has more granular control over the resources in relation to SQL Server.

Transparent Data Encryption

SQL Server 2005 fi rst introduced encryption into the SQL Server Database Engine. The
only problem was that existing applications could not use it because the application had
to call both the encrypting and decrypting routines. SQL Server 2008 solved this problem
with transparent data encryption (TDE). To use TDE, you must still generate the appropriate
encryption keys and enable encryption for the database; however, these steps are taken at the
server by the DBA, and the developers will not have to change anything in their applications.
The encryption and decryption happen automatically, and the data is accessed in the same
way as unencrypted data.

The TDE feature provides storage encryption. The data is decrypted by the SQL Server
and then transferred to the client. Do not confuse this with transit encryption or communi-
cations encryption. To encrypt the communications between the SQL Server and the client,
you will still usually need to implement IPSec or a VPN protocol.

Performance Data Collectors

The next major management feature is the performance data collectors. Data collectors are
simply the tools used to collect performance information about your server. Historical per-
formance data can be automatically stored in a management data warehouse, allowing the
DBA to review historical performance data at any time. The process of collecting the data
is as follows:

1. SQL Server Agent schedules and launches the Data Collector component.

2. The Data Collector component launches the needed SSIS package.

3. The SSIS package collects the performance data and stores it in the management data
warehouse.

As you can see, Microsoft has taken advantage of existing technologies from earlier ver-
sions of SQL Server to build the Data Collector engine. You could have accomplished some-
thing similar in earlier versions of SQL Server by collecting performance data using the
System Monitor and confi guring it to automatically store the data in a SQL Server table;
however, the built-in tools to accomplish this are much more integrated in SQL Server 2008
and newer versions.

Development Features Added in SQL Server 2008
The development enhancements in SQL Server 2008 were also important. As a DBA, you
may never write a single line of code that gets compiled into an application, or you may

28 Chapter 1 ■ Understanding SQL Server’s Role

be a “programming DBA.” Many times programmers/developers must manage their own
SQL Servers. However, even if you do not write the code, it is useful to understand its basic
structure so that you can better troubleshoot problems in SQL Server–based applications.
The development features new to SQL Server 2008 are included here.

Developer Tool Improvements

The SQL Server 2008 Query Editor, which was still built into SQL Server Management
Studio, supported IntelliSense capabilities. This meant that the Query Editor could com-
plete entire words for you representing functions, keywords, variables, and more. If you
found yourself testing scripts in the Query Editor, this feature proved priceless. Addition-
ally, an error list feature similar to that in Visual Studio had been incorporated into the
Query Editor. When the editor detected errors, they would appear (see Figure 1.8), and you
could click the instance to see the error and fi nd help to repair it. The Query Editor is even
better now in SQL Server 2012 because the entire SQL Server Management Studio has been
reworked to operate within Visual Studio’s development environment.

F I GU R E 1. 8 Errors listed in the Error List dialog

Change Data Capture

Developers have been writing triggers and stored procedures for years in order to capture
data changes. When a user modifi es a record, for example, the trigger fi res and saves to a
History table a copy of what the data looked like before the modifi cation. SQL Server 2008
Enterprise and Developer editions support a feature called Change Data Capture. This
 feature is still supported in SQL Server 2012. It is easily enabled for the entire database or a
specifi c set of tables. Once enabled, historical states of the data can be queried.

Data Type Changes

SQL Server 2008 provided several data type enhancements and changes. The date and
time data types were upgraded with a new datetime2 data type. The datetime2 data type
supports a broader range of dates and greater accuracy. The new hierarchyid data type is
used to reference the position of items in a hierarchy, such as an employee’s position in an
organizational chart. Finally, the new filestream data type allows data to be stored on the
NTFS fi les system outside of the database data fi les but managed by SQL Server like other
data types.

SQL Server’s Role 29

New Report Designer

SQL Server 2005 introduced the Report Builder, but SQL Server 2008 took this to the next
level with the Report Designer. The Report Designer took on the look and feel of Microsoft
Offi ce 2007, including the Ribbon bar. Charting was enhanced, and there was a new tablix
data region that looked oddly similar to a pivot table, although that name never seems to
appear in Microsoft’s documentation related to the tablix.

Sparse Columns

When Windows 2000 was released in 1999, Microsoft implemented sparse fi les in the
NTFS fi le system. These fi les consumed 0 literal bytes on the drive, although they appeared
to consume from 1 byte to terabytes of space. Now, sparse columns have been added to the
feature set of SQL Server 2008 and are still supported in SQL Server 2012. Sparse columns
are most useful for columns that may have excessive records with NULL values. When the
value is NULL, the column will consume 0 bytes in the data pages. Sparse columns can help
you fi t a few more bytes of data into that 8,060-byte limit imposed by SQL Server.

LINQ to SQL Provider

Microsoft developed the Language Integrated Query (LINQ) feature for .NET development
some time ago; however, there was no direct support for it in SQL Server 2005 and older.
SQL Server 2008 implemented a LINQ-to-SQL provider, which meant that developers
could write queries in standard .NET code (instead of embedded SQL variables), and SQL
Server would take care of translating the request into T-SQL that the server could process.

Features Introduced in SQL Server 2005
If you are upgrading from SQL Server 2000 to SQL Server 2012, you will get all of the new
features covered in the previous sections, but you will also acquire all of the features that
were fi rst introduced in SQL Server 2005. Moving from SQL Server 2005 to SQL Server 2012
is like climbing a three- or four-rung stepladder; signifi cant changes have occurred, but they
are not massive. However, moving from SQL Server 2000 to 2012 is like climbing 35 to 40
rungs on a ladder. As you will see, SQL Server 2005 introduced drastically different adminis-
tration tools, an entirely new way of thinking about custom stored procedures, and the ability
to mirror databases, just to name a few changes. Like SQL Server 2012’s and 2008’s features,
the features can be divided into management and development enhancements.

Management Features Added in SQL Server 2005
The management features introduced in SQL Server 2005 were many. This section focuses
on a few key features:

30 Chapter 1 ■ Understanding SQL Server’s Role

■ New management tools

■ Database Mail

■ Dedicated administrator connection

■ SQL Server Integration Services

■ Database snapshots

■ Database mirroring

■ Failover clustering for Analysis Services

■ Online indexing

■ Security enhancements

■ Reporting services

New Management Tools

The new management tools introduced in SQL Server 2005 and enhanced in SQL Server
2008 were very welcome additions. As described earlier, they have been further enhanced in
SQL Server 2012. The SQL Server 2005 tools did not simply upgrade what was available
in SQL Server 2000; they completely replaced them. The Enterprise Manager (shown in
Figure 1.9) and Query Analyzer (shown in Figure 1.10) were both replaced with SQL Server
Management Studio.

F I GU R E 1. 9 The SQL Server 2000 Enterprise Manager used in earlier versions of
SQL Server

SQL Server’s Role 31

SSMS incorporated a query window into the management environment. Now, instead
of switching between the Enterprise Manager and the Query Analyzer during testing and
optimization efforts, you can use one tool to get the job done.

Of course, everything is not perfect in the new management tools—at least for those of
us who used the earlier tools extensively. One example is the Object Browser in the Query
Analyzer that shipped with SQL Server 2000. The Object Browser allowed you to easily
browse through T-SQL functions to locate the one you needed by category. SSMS does
not support this same Object Browser; although it does offer dynamic help, this feature
requires that you remember the function name. You can always create a favorite link in
Books Online (the SQL Server help system) to the T-SQL functions page, but you might
miss the Object Browser just the same.

Database Mail

In versions of SQL Server before SQL Server 2005, sending mail from the server was an
arduous task. Oddly, you had to install Outlook on the server (although standard docu-
mentation suggested only the need to install “a MAPI client”). This was not because SQL
Server used Outlook to send email but because you had to install Outlook to get a needed
Control Panel applet for the confi guration of SMTP accounts. By putting Outlook on the
server, you were creating yet one more component to update and secure. The old way can
be summarized by saying it was kludgy at best.

SQL Server 2005 solved the problem by introducing Database Mail, which provides direct
sending of SMTP mail messages. This component can be used to send email from your jobs
or applications. The component that actually does the sending runs outside of the memory
space of SQL Server, and it simply checks in with the SQL Server periodically to see whether
messages are waiting to be sent. The Service Broker component is used to queue the mail mes-
sages. Confi guring Database Mail is as simple as stepping through a wizard (see Figure 1.11)
and entering the parameters for your available SMTP servers. For your reference, the execut-
able that sends the mail is DatabaseMail90.exe in SQL Server 2005. The new Database Mail
solution is both more effi cient and less annoying than the older SQL Mail alternative.

F I GU R E 1.10 The Query Analyzer from SQL Server 2000

32 Chapter 1 ■ Understanding SQL Server’s Role

F I GU R E 1.11 The SQL Server 2005 Database Mail Configuration Wizard

Dedicated Administrator Connection

The dedicated administrator connection (DAC) allows you to connect to a SQL Server sys-
tem that is not responding to normal connections. The DAC was made available through
the new SQLCMD command-prompt tool and could be initiated only by the members of the
sysadmin server role. Once connected, you could execute standard diagnostic commands,
such as basic DBCC commands and potentially data-query commands.

SQL Server listens for DAC connections on a different TCP port than used for normal
connections. The default instance of SQL Server usually listens on TCP port 1433, but the
DAC listens on TCP port 1434 by default.

SQL Server Integration Services

Data Transformation Services (DTS) provided an extraction, transformation, and load-
ing (ETL) tool in SQL Server 2000. The tool was simple and to the point. This simplicity,
however, also meant that it lacked the power for more advanced ETL procedures. With
SQL Server Integration Services (SSIS), you have one of the most powerful ETL tool sets

SQL Server’s Role 33

in existence and certainly one of the best bundled ETL tool sets available with any data-
base management system. With SSIS, you can do everything you did in DTS (you can
even run an old DTS package if necessary) and a whole lot more. Figure 1.12 shows the
SSIS interface.

F I GU R E 1.12 SQL Server Integration Services showing a sample project

Database Snapshots

Database snapshots allow you to capture a point-in-time view of your entire database.
The snapshots are created using sparse fi les on NTFS volumes, so they are created very
quickly. In fact, the initial snapshot fi le contains 0 bytes of actual data. Before informa-
tion changes in the database, the old information is copied into the snapshot fi le. This
implementation allows several snapshots to exist at the same time without a tremendous
burden on the server. Snapshots are useful for several practical functions, including
these:
■ Viewing and reporting on data as it existed at a point in the past

■ Selectively restoring data to a specifi c point in time, such as restoring the Customers
table to the state it was in before a user accidentally set everyone’s email address to the
same value

■ Reverting the entire database to the state in the snapshot

34 Chapter 1 ■ Understanding SQL Server’s Role

Database Mirroring

If you want to confi gure a warm or hot standby server, database mirroring is a potential
solution. Standby servers are covered in detail in Chapter 23, “Database Mirrors and
Snapshots.” Database mirroring allows you to mirror one database or several databases
from one SQL Server onto another. The primary server will receive all changes, and those
changes are then immediately transferred to the mirror database server transactionally
(based on changes and not simply accesses). The latency is very low with database mirror-
ing, which means that in the event of a failure, very little data should be lost.

Database mirroring can be implemented in two ways: warm standby and hot standby.
In warm standby implementations, the mirror database cannot automatically be promoted
to become the primary database. Some DBA intervention will be required. In hot standby
implementations, the mirror database can automatically be promoted to become the pri-
mary database. However, to implement a hot standby mirroring solution, a third server is
required. It is known as the witness server and ensures that the mirror server does not pro-
mote itself unless the primary server is really down.

Failover Clustering for Analysis Services

Failover clustering provides fault tolerance for SQL Server. Earlier versions of SQL Server
supported failover clustering for the database engine, but it was not supported for the other
services. With the release of SQL Server 2005, failover clustering was supported for SQL
Server Analysis Services (SSAS) as well. SSAS is used for data warehousing, data analysis,
and various data management and storage operations. Failover clustering allows one server
to act as the primary server and another server to automatically take over should the pri-
mary server fail. In addition to SSAS, failover clustering is also supported for Notifi cation
Services and Replication servers.

Online Indexing

SQL Server 2005 fi rst introduced online indexing. The concept is simple: you can create
an index on a table while users are accessing that table for reads and writes. This feature
means you do not have to wait for a nonbusy window to create indexes. In previous ver-
sions of SQL Server, it was common to schedule index creation during downtimes, such as
12 a.m. to 5 a.m. The only problem was that it was very diffi cult to fi nd an inactive time
window in 24/7 shops.

Consultants often spend a large portion of their consulting time optimizing existing
databases. One key optimization strategy is the creation of indexes (and the deletion of
unneeded indexes). The ability to create indexes on the fl y without the need for downtime
is priceless—not just to consultants but to their clients as well. They no longer have to care-
fully schedule consulting windows or prepare a mirror server that matches their production
server for performance testing. A performance analysis can usually be scheduled to run on
the server while users are accessing the data, and then that information can be analyzed
offl ine. Next, proper indexes can be created, and the performance analysis can be run
again to determine whether the desired outcome was accomplished. You’ll learn all about
this process in Chapter 15, “Performance Monitoring and Tuning.”

SQL Server’s Role 35

Security Enhancements

Many security enhancements were introduced in SQL Server 2005, including these:

Storage Encryption Data can be encrypted in the database. SQL Server 2005 requires
that the application be aware of the encryption and implement code to both encrypt and
decrypt the data. Storage encryption helps protect your data if the backup media is stolen
or an attacker otherwise steals the entire database fi le.

Password Policies for SQL Logins SQL logins have been a negative issue for SQL Server
for years. The authentication process is not the most secure, and it is hampered even more
by the use of weak passwords. Password policy association allows you to require that users’
passwords meet the policy requirements established in the Windows domain or on the local
server. Users can be required to select passwords greater than a specifi ed length and requir-
ing complexity in character types.

Separated Owners and Schemas Before SQL Server 2005, if you made a user the owner
of a table, that table was placed in the user’s schema. You would end up with table names
such as fred.sales and jose.marketing. Needless to say, this structure was less than ideal.
Because of this functionality, most DBAs chose to use the dbo schema for everything and,
therefore, ensured that the dbo owned everything. With the release of SQL Server 2005,
schemas became usable—in a practical way—for the fi rst time. A user can own a table, and
that table can remain in the assigned schema.

Surface Area Configuration Tool The Surface Area Confi guration tool is used to lock
down a SQL Server installation. The tool allows you to control the SQL Server services and
enable or disable features as needed. Figure 1.13 shows the Surface Area Confi guration for
Features interface.

F I GU R E 1.13 The Surface Area Configuration for Features dialog box

36 Chapter 1 ■ Understanding SQL Server’s Role

Reporting Services

Reporting Services was fi rst introduced as an add-on for SQL Server 2000. The product
was not supplied on the SQL Server 2000 distribution CDs but was an after-the-fact down-
load or could be purchased on a CD. As the name implies, Reporting Services provides
reporting features for your database deployments. Be careful not to be fooled by the fact
that Reporting Services “comes with” SQL Server 2005 and newer. You must still license
the product separately from your SQL Server deployment. Each Reporting Services server
requires SQL Server licenses—either per processor or a server license, plus client access
license (CAL) for each user who accesses the reports.

SQL Server 2005’s implementation of Reporting Services added a new reporting tool.
The Report Builder application provides simplifi ed report creation for users. Because the
Report Builder uses concepts familiar to those who use Microsoft Offi ce 2003 and older,
the learning curve is reduced. You can format, preview, print, and publish reports from the
Report Builder.

Of course, Reporting Services not only comes with SQL Server 2012 today, but Express
Edition with Advanced Services even includes a limited version of Reporting Services.

New Development Features in SQL Server 2005
The enhancements for those developing applications for SQL Server were also important in
the release of SQL Server 2005. They are briefl y listed here and are covered in more detail
in the appropriate locations throughout the book.

.NET Integration

The integration of .NET and CLR capabilities into SQL Server means that developers can
code stored procedures, triggers, and functions in the many modern languages supported
by .NET. Additionally, the integration of .NET into the memory space of SQL Server
improves performance and provides improved security. Because .NET integration is more
of a programming feature than an administration feature, it is not covered in detail in this
book.

Transact-SQL Changes

Every version of SQL Server has introduced changes to the T-SQL language. Sometimes
these changes add support for new commands and capabilities, and sometimes they remove
support for older commands that are no longer needed or for which Microsoft simply chose
to end support. SQL Server 2005 made improvements in the area of error handling, support
for new database engine features (such as database snapshots), and recursive query capabili-
ties. Chapter 5 covers T-SQL in depth.

Enhanced Development Tools

The development tools that shipped with SQL Server 2005 were a huge leap over what was
available in SQL Server 2000. Most developers used third-party tools or extra Microsoft
tools to get the job done. With SQL Server 2005, many developers found that the built-in tools
provided suffi cient capabilities to accomplish their objectives. The Business Intelligence

SQL Server’s Role 37

Development Studio is a key component among these development tools. Figure 1.13 ear-
lier in the chapter shows the BIDS environment while developing an SSIS solution. The
enhancements to the administrative and development tools are covered in Chapter 3.

HTTP Endpoints

SOAP is a communications protocol used to allow applications to interact based on XML
data. If you wanted to implement an HTTP endpoint for use with SOAP development
in SQL Server 2000, you had to install Internet Information Services (IIS) on the SQL
Server. SQL Server 2005 introduced HTTP endpoints. These endpoints can be created
without requiring IIS on the server, and they are more secure by default. For example, you
can control which stored procedures are permitted for execution through the endpoint.
HTTP endpoints are not commonly created by administrators, but they are important for
some development projects using older versions of SQL Server before SQL Server 2012.
SQL Server 2012 no longer supports XML web services endpoints.

XML Support Improvements

The XML support in SQL Server 2000 was minimal. You could store XML data in col-
umns with a text data type, but your application had to retrieve the data as text and then
parse it as XML. No support existed for direct querying of the XML data within the SQL
Server. However, you were able to return SELECT statement result sets as XML using the
FOR XML clause. SQL Server 2005 takes XML support to the next level. You can store the
data in an XML data-typed column, and you can use the XQuery subset of the SQL/T-SQL
language in order to retrieve only the XML values you require. Chapter 10, “Data Types
and Table Types,” will cover the XML data type in more detail.

Service Broker

You’re probably used to databases working in a synchronous manner. The client submits
a request to the SQL Server and waits for the server to respond. The server receives the
request from the client and processes it as quickly as the current workload allows and then
responds to the client. This traditional database communications model does not scale well
when a customer submits an order at a website and that order must update an inventory
system, a shipment system, a billing system, and a website tracking system. Service Broker
provides asynchronous communications without the need for building the entire core
communications engine. It provides queuing, queue processing, and other services that
allow a more scalable application. Service Broker is primarily an application development
architecture and is not covered in detail in this book. To learn more, search: http://msdn
.microsoft.com for Server Broker SQL Server 2012.

Notification Services

If you’ve used SQL Server for any amount of time, you’ve probably used operators and had
notifi cations sent to you when a backup completes or when a job fails. Notifi cation Services
provides similar notifi cations to your users. For example, Notifi cation Services provides
the framework to allow a sales representative to subscribe to a change in pricing. Imagine
a customer who is ready to buy 50,000 units of item number 2043978 as soon as the price

http://msdn.microsoft.com
http://msdn.microsoft.com

38 Chapter 1 ■ Understanding SQL Server’s Role

drops below $0.70 per unit. The salesperson can confi gure a notifi cation so that she is noti-
fi ed immediately when the price-drop takes place. Notifi cation Services is no longer in SQL
Server 2012. Instead, most developers use Reporting Services to provide the same notifi ca-
tion capabilities.

Core Features of SQL Server
In addition to the special features introduced with SQL Server 2005, 2008, and 2012, core
features have existed in the product going all the way back to SQL Server 6.5 and earlier.
These important features include the following:

Support for Concurrent Users Support for concurrent users is provided using worker
threads and connections. Each connection receives its own process ID and can be managed
individually (for example, a single connection can be killed). The number of concurrent
users that can be supported will be determined by the resources available in the server—for
example, as memory, processors, network cards, and hard drives.

Transactional Processing Transactional processing ensures that the database maintains
consistency. For example, in a banking application, you would not want to allow a trans-
fer from savings to checking to take place in such a way that the money is removed from
savings but doesn’t make it into checking. Transactional processing ensures that the entire
transaction is successful or none of the transaction components are allowed. Transactions
can be implicit or explicit, and all changes are treated as transactions.

Large Database Support SQL Servers support large databases. SQL Server 2000 allowed
database sizes as large as 1,048,516 terabytes, which is equivalent to 1 exabyte in size,
which is very large. Of course, fi nding hardware that can handle a database that size is
a different story. Interestingly, according to Microsoft’s documentation, the maximum
allowed database size was reduced in SQL Server 2005 and 2008 to 524,272 terabytes.
This size constraint is still very large at 524 petabytes, so it will not likely be a problem
soon. Very few databases exceed 5 terabytes in size today. The database size constraints
imposed in SQL Server 2005 and 2008 remain the same in SQL Server 2012.

Advanced Storage Mechanisms The storage mechanisms provided by SQL Server allow
databases to be stored in single fi les or multiple fi les. The database can be spread across
multiple fi les located on multiple storage volumes. By using fi legroups, the DBA can control
on which fi le which tables will be placed. The storage mechanisms are far more advanced
than those available in a simple database system such as Microsoft Access.

Large Object Support Large objects, up to 2GB, can be stored in SQL Server databases.
Depending on the application, however, it may be better to store the large objects (LOBs)
outside of the database and simply reference them in the database; however, internal stor-
age is supported. You can store large amounts of text (up to 2GB) in the text data type. You
can store any binary data in the image data type, which also allows up to 2GB of data to be
stored in a single record.

SQL Server’s Role 39

Replication Sometimes you need to distribute your data to multiple locations. You may
need to provide localized reporting servers at branch offi ces, or you may need to aggregate
new data from several remote offi ces into a central reporting server. Whatever the motiva-
tion behind data distribution, SQL Server offers replication as a solution. SQL Server 6.5
supported basic replication features. With each version since then, more capabilities have
been added. For example, SQL Server 2005 added support for replication over the HTTP
protocol, and SQL Server 2008 adds a new graphical tool for creating peer-to-peer replica-
tion maps and an enhanced version of the Replication Monitor tool.

These core features, and more, have been with SQL Server for well over 10 years, and
they continue to evolve and improve. They have a tremendous impact on the roles that SQL
Server can play within your organization and can help you decide between it and other
database systems—particularly single-user database systems.

Many people have been waiting for SQL Server 2012 to upgrade their SQL
Server 2000 installations. If you’re one of those people, don’t forget about
the features that were deprecated in SQL Server 2005 and 2008; they may
be gone now in SQL Server 2012. To locate such features, search for SQL
Server 2005 deprecated features or SQL Server 2008 deprecated features in
your favorite search engine. Several sites provide information about these
removed features.

SQL Server Roles
Now that you’ve explored the many features and capabilities of databases in general and
SQL Server specifi cally, let’s quickly explore the roles that SQL Servers can play in your
organization. This section will cover the following roles:

■ Enterprise database servers

■ Departmental database servers

■ Web database servers

■ Reporting servers

■ ETL servers

■ Analysis and decision support servers

■ Intermediary servers

■ Standby servers

■ Local databases

This list may be longer than you expected, but believe it or not, it’s not exhaustive. More
roles exist, but these are the most common roles played by SQL Servers.

40 Chapter 1 ■ Understanding SQL Server’s Role

Enterprise Database Servers
Enterprise database servers provide data access to the entire organization. These servers
usually house enterprise resource planning (ERP) applications, customer resource manage-
ment (CRM) applications, and other applications that are accessed by individuals from
practically every department in the organization. The databases tend to be very large and
must usually be distributed across multiple servers.

As an example, consider a SharePoint implementation that is used as a company portal.
Each department may have a section on the SharePoint server, but the portal is there for the
entire company. With an implementation this large, the SharePoint installation would most
likely be a farm-based installation with one or more backend SQL Servers. This implemen-
tation qualifi es as an enterprise database server implementation.

Common SQL Server features and concepts used on enterprise database servers include
the following:

■ Failover clustering

■ Log shipping or database mirroring

■ 64-bit implementations for increased memory support

■ Replication

■ Encryption

■ Third-party backup software

■ ETL packages

■ Reporting Services

■ Windows domain membership

■ RAID or SAN data storage

Departmental Database Servers
Many times an application is needed only for a single department. For example, the engi-
neering group may need a database server for the management of their drawings, or the
marketing group may need a database server to track their marketing efforts. While this
information could be stored in an enterprise server, if the server will be heavily used by the
department, it may be more effi cient to use a dedicated server. The hardware may be identi-
cal to that which is commonly implemented for enterprise servers. The only difference is
usually the number of users who access the server.

Departmental servers tend to utilize features and concepts such as the following:

■ Built-in backup software

■ Log shipping or database mirroring

■ Reporting Services

■ Windows domain membership

■ RAID data storage

SQL Server’s Role 41

Web Database Servers
Web database servers are used to provide data for websites. The data is frequently repli-
cated or otherwise merged into the web database server from other internal servers. Web
database servers are usually less powerful than enterprise servers, with the obvious excep-
tion of web-based companies such as eBay or Amazon.com.

Web database servers tend to utilize features and concepts such as the following:

■ Built-in backup software

■ Reporting Services

■ RAID data storage

■ Explicitly no Windows domain membership

Reporting Servers
Dedicated reporting servers are used to gather report information from enterprise,
 departmental, and other database servers. A dedicated reporting server usually houses the
reporting databases locally but accesses all other data from remote database servers.

Reporting servers tend to utilize features and concepts such as the following:

■ Built-in backup software

■ Reporting Services

■ RAID data storage

■ Windows domain membership

ETL Servers
Dedicated ETL servers are used to perform nightly or periodic data moves, data transfor-
mations, and even data destruction. Because of licensing costs, dedicated ETL servers are
usually found only on very large-scale deployments. Many smaller deployments simply use
SSIS on existing database servers.

Analysis and Decision Support Servers
Analysis, or decision support, servers are used by business analysts to determine the state of
operations within an organization. Analysis servers may run Microsoft’s Analysis Services,
or they may run third-party tools as well. These servers get their data from other servers in
the environment. Depending on the size of deployment, the transaction processing servers
may send data to a warehouse from which the analysis servers retrieve it, or the data may
be housed entirely within the analysis server.

Intermediary Servers
Intermediary servers are becoming more common. These servers exist between two or more
servers. An example of an intermediary server is a replication distributor server. The distribu-
tor sits between the publisher and the subscriber. The subscriber pulls information from the
distributor that was fi rst pulled by the distributor from the publisher. A model that deploys
intermediary servers can often scale to be much larger than a single-server model.

http://Amazon.com

42 Chapter 1 ■ Understanding SQL Server’s Role

Standby Servers
Standby servers include log-shipping receiver servers, database mirror servers, and any
server that is not actively used unless the primary server fails. Standby servers fall into
three primary categories: cold standby, warm standby, and hot standby. These standby
solutions are categorized by two factors.

The fi rst factor is the latency of updates. A hot standby server receives updates at the
same time as (or within seconds of) the primary server. A warm standby server may receive
updates within minutes, and a cold standby server may receive updates only every few
hours.

The second factor is the amount of time it takes to bring the standby server online. A
hot standby server comes online immediately when the primary server fails. A cold standby
server will never come online without manual intervention. A warm standby server may
require manual intervention, or it may simply delay before coming online.

Local Databases
The fi nal role that SQL Server can play is the local database role. Many assume that only
SQL Server Express edition is used as a local database; however, because of the size con-
straints of SQL Server Express (the maximum database size is 4GB), some applications
require SQL Server Standard edition to be installed for a local database. The good news is
that no client access licenses will be required; the bad news is that there is some expense,
which is the price of the SQL Server Express edition.

Enterprise Databases and 64-Bit Computing

When choosing the role of your SQL Server implementation, remember to also choose the
proper edition. I was working with an organization that used SQL Server for a very large
database application. Both performance and stability problems were prevalent, and we had
to fi nd a solution. I went through the normal performance and confi guration analysis proce-
dures and found no signifi cant changes that could be made with the existing hardware.

In the end, we decided to upgrade the system to a 64-bit server running Windows Server
2003 Enterprise edition 64-bit. We also installed the 64-bit version of SQL Server 2005.
What do you think happened? If you guessed that both the performance problems and
the stability problems disappeared, you are correct. The culprit was, as it often is,
memory—and the 64-bit version provided us with much more memory to utilize. Don’t
forget this when considering your implementation.

At the same time, it is important to ensure that your applications will run on a 64-bit
installation of SQL Server. Many application vendors still develop extended stored proce-
dures, which are basically DLL fi les called by the SQL Server. If these DLLs are provided
only in 32-bit versions, they may or may not work with a 64-bit edition of SQL Server.
Yes, there is much involved, but selecting the right edition and bit level is very important.
Chapter 2, “Installing SQL Server 2012,” explores this choice in more detail.

Chapter Essentials 43

Summary
The goal of this chapter was to lay a solid foundation on which to build the information
contained in the rest of this book. You learned about the role played by databases in gen-
eral and the specifi c roles that Microsoft recommends for SQL Server. You also learned
the defi nitions of several important terms and concepts and found out what features were
introduced in SQL Server 2005, 2008, and 2012. Now you’re ready to begin installing
and working with SQL Server.

Chapter Essentials

Understanding Information Technology’s Many Components Database servers make up
one part of information technology (IT); however, they are a very important part. After all,
they are the permanent locations where most of your data is stored.

Understanding Databases’ Many Flavors Both server-based and local databases are com-
mon. Server-based databases provide advanced features such as support for concurrent
users, improved security, and improved availability.

Understanding SQL Server’s Evolution Over the years the SQL Server product line has
matured into a very stable and feature-rich database solution. SQL Server 2005 was a big
upgrade over SQL Server 2000, and SQL Server 2008 took the product to even greater
heights. SQL Server 2012 adds to these capabilities in the areas of availability, manage-
ment, and programmability.

Understanding SQL Server’s Many Roles From enterprise servers to local databases, the
SQL Server product can be utilized throughout an organization. Choosing the appropriate
edition for the intended role is essential for performance and stability.

Installing SQL Server
2012

TOPICS COVERED IN THIS CHAPTER:

 ✓ Installation Planning

 ✓ Installing a Default Instance

 ✓ Installing Named Instances

 ✓ Installing to a Cluster

 ✓ Installing Extra Features

 ✓ Upgrading from Previous Versions

 ✓ Validating an Installation

 ✓ Removing an Installation

Chapter

2

Installing SQL Server is really a very painless task; however,
it is important that you plan the installation well. A poorly
planned installation may result in security, stability, and func-

tional problems. To help you avoid these problems, and because of its importance, this
chapter will cover installation planning fi rst.

Once a plan is in place, you’ll need to learn how to install a default instance, a named
instance, and even a clustered installation of SQL Server, so these will be covered next. We
will then explore the installation of additional features within an instance and conclude the
chapter with an explanation of the upgrade, migration, and removal options.

The goal of the chapter is to provide you with complete information for installing SQL
Server and beginning to use it. In addition, working through the installation will provide
you with the foundation needed to test and develop solutions based on what you’ll learn in
the remaining chapters in this book.

Installation Planning
Installation planning can be divided into two broad topics: understanding the SQL Server
2012 architecture and understanding the installation planning process. Both topics are
addressed in this section.

SQL Server 2012 Architecture
You can’t really plan the implementation of a technology you do not understand. Imagine
trying to build a car without understanding the components used to build one. You would
probably end up with some sort of vehicle, but it probably wouldn’t run well or for very
long. SQL Server 2012 is no different. You must understand how it works in order to make
it work effi ciently. To provide that understanding, this section presents the architecture of
SQL Server 2012 from a logical perspective. Later chapters will address physical processes
that take place under the hood, such as data fi le structures, log fi le access, and other
such topics. Here, the goal is to understand how SQL Server works so you can ensure
an effective implementation; however, it is important to realize that the best-performing
installations take into account the many concepts that are addressed throughout this book.
The good news is that most servers can be optimized after the installation, if required.

So, how does SQL Server 2012 work? To understand the answer to this question, you
must understand the following concepts:

Installation Planning 47

■ Database system components

■ Data access methods

■ Data write methods

■ Deployment features

As each concept is addressed, remember that you are being shown a bird’s-eye view of
the architecture to help you understand the basic operations of the database system. As you
read through the rest of this book, you’ll be going deeper and deeper into the true physical
actions that take place in memory and on the disk system; however, the concepts covered
here will remain true, and the remaining chapters simply provide much more detail.

Database System Components
Figure 2.1 shows the basic components involved in a typical SQL Server 2012 application.
As you can see, database access is more complex with a server-based system than the access
provided by a single-user system. You must understand the components shown in the
fi gure.

Database
Application

Access Granted

Access Denied

Database Server

Buffer Memory

Data Pages

DB User Client Computer

MDF
Data File

SQL Server Services

Logical
Database

Transaction
Log File

(LDF)

F I GU R E 2 .1 SQL Server logical architecture

Database Server

The database server will run a compatible version of Windows Server. SQL Server 2012
supports several versions of Windows Server, and it operates differently depending on the
version used. Windows Vista and newer clients, as well as Windows Server 2008 and newer

48 Chapter 2 ■ Installing SQL Server 2012

servers, can all run SQL Server 2012. However, enhanced security features are available
when you install SQL Server 2012 on a Windows Server 2008 or newer server instead of
a client operating system. If you choose to install the database management system on
Windows Server 2008 or Windows Vista, the operating systems must be running Service
Pack 2 or higher. SQL Server 2012 will install and run on Windows Vista and Windows
7. It has been tested on Windows 8 with success, although Windows 8 is not listed as a
supported operating system.

SQL Server 2012 also supports installation on a Server Core installation of Windows
Server. Server Core is a special installation with a reduced footprint on the hard drive and
in memory. This is supported only on Windows Server 2008 R2 with SP1.

In addition to selecting the proper operating system, you must ensure that the users
requiring access to the SQL Server have access to the Windows server. Think of this
structure as a layered approach. Before users can access a database, they must have
access to the SQL Server service. Before the users can access the SQL Server service, they
must have access to the server. Three layers protect your database and, when confi gured
properly, can provide functionality that supports multiple databases used by different users
on the same instance in the same server.

The most important thing to remember is that the users must have access to the
database server fi rst and then to the database services. Starting with Windows 2000 Server,
Windows servers have supported a Group Policy right named Access this computer from
the network. The policy is still in Windows Server 2008 R2, and the users who need access
to the databases stored on a server must be granted this right, assuming their applications
directly access the SQL Server instance. You can grant the right through Windows groups
so that you are not required to add each individual user.

SQL Server Services

Several services are used to provide the various functions of SQL Server. The two most
frequently used are the SQL Server service (also known as the database engine) and the
SQL Server Agent service.

The SQL Server service performs the core functionality of SQL Server data storage and
retrieval. The SQL Server service for the default instance is named MSSQLSERVER in SQL
Server 2012 and is sometimes more completely called the SQL Server Database Services
service. The service shows up as SQL Server (MSSQLSERVER) in the Services management
tool, but the name MSSQLSERVER is assigned to the service by default and used with the
NET STOP command at the Windows command prompt. When you run multiple instances

Different editions of SQL Server may have different requirements for the
supported operating systems. Be sure to check Microsoft’s website for the
latest information.

Installation Planning 49

of SQL Server, each instance runs its own services. The SQL Server service is named
MSSQL$Instance_Name for a named instance and shows up in the Services management
tool as SQL Server (Instance_Name). Figure 2.2 shows these services running with a
default instance and a named instance, which is named Sales.

F I GU R E 2 . 2 The SQL Server services are displayed.

The SQL Server Agent service is used to monitor the databases and database server. It is
also used to automate maintenance and administration tasks through the use of jobs. The
SQL Server Agent service is named SQL Server Agent (MSSQLSERVER) for the default
instance and SQL Server Agent (instance_name) for named instances.

As depicted in Figure 2.1, all user database access occurs through the SQL Server
service. Users do not have direct access to the physical data fi les that store the databases.
These MDF (master data fi le) fi les are accessed by the SQL Server service on behalf of the
users. Because the users do not have access to the physical data fi le, the system is more
secure than a single-user database system that does require the user to have access to the
database fi les.

Logical Databases

Notice that Figure 2.1 identifi es the database as a logical database. The reasons for this
are twofold. First, a database may be stored as one physical fi le or as several. To reduce
confusion, the database that the users access may be referred to as the logical database.
The database appears to be a single entity, and the users are unaware of the actual storage
method used for the data. You can refer to this apparent single entity as a database or as
a logical database; both terms are acceptable. Modern databases are frequently built from
several underlying fi les.

Second, users never access the actual database. They appear to be accessing the
database, but they are actually communicating with the SQL Server service, which is

50 Chapter 2 ■ Installing SQL Server 2012

representing the database to the users based on the users’ permissions and not based on
what is literally in the database. For example, some users may be able to read data only
through views that have been implemented by the DBA. To these users, the database “looks
like” the representation provided by the views; however, a real physical database exists
beneath this representation.

If you prefer to think of the database without this logical conceptualization, that is fi ne.
Just remember to consider that different users may see the database very differently. Also,
remember that users never access the database, but they interact with a representation
of the database provided to them by the SQL Server service, and the SQL Server service
accesses the database on their behalf.

Data Files

The data stored in your database must be placed on a physical disk somewhere. SQL Server
uses a default data fi le extension of .mdf for the master data fi le and .ndf for additional
databases. Databases always use one MDF fi le and may use one or more NDF fi les. The
MDF fi le contains the schema information, or the structure for the database objects.

The data fi les are structured using pages and extents. A data page is 8KB (8,192 bytes)
in size and provides up to 8,060 bytes for an individual record consisting of standard
data types. When eight pages are grouped together, they form an extent. The result is a
64KB extent. SQL Server allocates space in data fi les on an extent-by-extent basis, but the
actual data is stored and retrieved from the individual 8KB data pages. The extents can be
uniform (the entire extent belongs to a single table or index) or mixed (the extent is shared
among up to eight different tables or indexes).

For now, this description is suffi cient. Chapters 6, 7, and 9 will explain the storage
engine in detail because a database designer must understand how SQL Server stores and
retrieves data, if he is to implement a well-performing database. At this time, however, it is
simply important to remember that SQL Server database data is never modifi ed directly in
the physical database fi les.

You will understand this statement better after you learn about buffer memory in the
next few pages, but it is very important that you understand this concept. Otherwise, you’ll
never be able to grasp how SQL Server uses transaction logs for automatic recovery or how
to best optimize a database. If you assume that data modifi cations are made directly in
the data fi le, you may focus solely on hard-drive performance; however, when you know that
data modifi cations happen in memory and understand how that buffer memory is used,
you will know that memory optimization can often have a greater impact on database
performance.

Transaction Logs

Transaction logs are used by every database attached to a SQL Server instance. If you’ve
worked with SQL Server for a while, you may have heard the rumor that simple recovery
databases do not use a transaction log. This statement is not correct. Even databases in the
simple recovery model use a transaction log; they simply wrap around to the beginning of
the log and overwrite the oldest transactions instead of preserving them between backups.
Why does a simple recovery database still use a transaction log? To answer this question,
consider the three primary benefi ts of a transaction log-based database system:

Installation Planning 51

Database Atomicity Atomicity in a database system means that all tasks in a transaction
are completed successfully or no task is performed. The transaction log assists with
atomicity in that every step in the transaction is entered in the transaction log, but if a
step fails, all previous steps can be removed (rolled back). The transaction log is essential
because many transactions may be too large to perform completely in memory.

Automatic Recovery Automatic recovery occurs when the SQL Server service starts.
During start-up, the service looks in the transaction log for any transactions that are
completely entered in the log but have not been committed. Data is committed to the
physical MDF fi le only when a checkpoint occurs. The automatic recovery process uses
checkpoints and transaction-commits to determine which transactions should be executed
again (rolled forward) and which should be ignored (rolled back).

Disaster Recovery Disaster recovery is a manual process performed by an administrator.
Assuming your data (MDF and NDF fi les) is on one physical drive and your transaction
log (LDF fi le) is on another physical drive, you can restore to the point of failure. This
restoration is accomplished by using the transactions in the current transaction log that
were executed since the last backup.

As you can see, the transaction log is very important. In the later section, “Data Write
Methods,” you’ll discover more details about the role played by the transaction log.

Buffer Memory

The buffer memory or buffer pool is used to store data in RAM so that it can be read from
and written to. A buffer is a storage location in RAM that can hold a single 8KB data or
index page. When data is accessed and the data already exists in the buffer pool, access is
much faster. When data is accessed and the data does not exist in the buffer pool, buffers
must be requested in the buffer pool (this request may result in some buffers being fl ushed
to free space for the requested data), and the pages must be loaded from the physical data
fi les into the assigned buffers.

Data Access Methods
Now that the major components in the SQL Server logical architecture have been defi ned,
it’s time to explore the way in which data is accessed. For this explanation, assume that
a user executed the following SQL statement against a database located on a SQL Server
2012 server:

SELECT CustomerID, FirstName, LastName, eMail
FROM Sales.Customers
WHERE LastName = ‘Smith’;

Assume that 1,200 records match this query and are spread across 750 data pages.
Furthermore, assume that none of the needed pages are in memory. SQL Server uses the
following high-level steps to retrieve the data for the user:

1. Locate the pages containing the matching records and read the pages into buffers.

2. Read the records from the pages and return them to the user as a result set or record set.

52 Chapter 2 ■ Installing SQL Server 2012

Notice that the pages are not removed from memory after the data is transferred to the
user. The pages are left in the buffers until the buffers are needed for other pages. This
behavior allows future reads of the same pages without the need to load the pages from
disk. For example, imagine that the following SQL statement was executed immediately
after the previous one:

SELECT CustomerID, FirstName, LastName, eMail, Phone
FROM Sales.Customers
WHERE LastName = ‘Smith’ and FirstName = ‘John’;

This statement would need data that is located in the same pages as the previous
statement. While all pages would not be required, all required pages would already be in
the buffers, assuming the buffers had not been required for an intermediate statement.
Performing data access in this manner dramatically improves the performance of read
operations.

Data Write Methods
Data write operations work much the same way as data read operations—at least in the
initial stages. For example, imagine the following SQL statement is executed against a
database:

UPDATE Sales.Customers
SET Phone = ‘937-555-1029’
WHERE CustomerID = 63807;

Remember, data modifi cations are never performed directly against the physical data
fi les. Therefore, the fi rst step is reading the data into the buffers just like a data read
operation. Once the appropriate pages are loaded into the buffers, the data changes are
made in the buffer memory. Next, the transaction is recorded in the transaction log. Believe
it or not, the data write is complete.

You may be wondering how the data gets back into the actual data fi les on disk. At this
point, the data is in memory and the transaction is in the log, but the data fi le has not been
updated. However, keep in mind that you have only modifi ed a value in a specifi c column
for a specifi c customer. Furthermore, remember that the page is retained in memory so that
the data is available for future reads and writes. You have not created the demand for any
new data pages at this point.

The key to understanding how the data is updated in the data fi les is found in SQL
Server actions called checkpoints and lazy writers. Any page that has been modifi ed is
designated as a dirty page. When a checkpoint occurs, the SQL Server service processes the
pages in the buffers. Dirty pages are written back out to the data fi les during a checkpoint
and are designated as not dirty pages. The buffers holding the dirty pages before the
checkpoint are not cleared or freed for use at this time.

The lazy writer and worker processes are responsible for freeing buffers so that suffi cient
buffers are available as needed by applications. The lazy writer sleeps much of the time, but
when it wakes, it evaluates the free buffers and, if they are not suffi cient, writes dirty pages

Installation Planning 53

to disk so that the buffers can be freed. The lazy writer uses an algorithm that is dependent
on the size of the buffer pool to determine suffi cient free buffers. In addition, the workers
(processes that work with data) are also responsible for writing dirty pages and freeing
buffers. When a worker accesses the buffer pool, it is also assigned 64 buffers to analyze.
Any buffered pages in those 64 buffers that are not worth keeping in memory are written
to the disk or discarded depending on whether they were dirty pages or not. Dirty pages
are always written to disk before they are discarded.

As you can see, it is quite a myth that dirty pages are written to disk only when a
checkpoint occurs. Indeed, if the server has massively more memory than it requires for the
attached databases, dirty pages may be written to disk only during checkpoints, but it is
far more common that dirty pages are written to disk by all three processes: checkpoints,
lazy writer actions, and worker actions. The primary purpose of checkpoints is to make
sure that dirty pages are written to disk frequently enough so that the autorecovery process
completes in a timely fashion should the SQL Server service require a restart for any reason.

Deployment Features
Several features and confi guration options must be considered to effectively plan and
deploy a SQL Server installation. These features and options include the following:

■ SQL Server components

■ Multiple instances

■ TCP ports

■ Installation options

SQL Server Components

When you install SQL Server 2012, you have the option of installing several components.
You will need to understand these components and what they offer in order to determine
whether they are needed for your installation. The most important components include the
database engine, Integration Services, administration tools, Analysis Services, Reporting
Services, full-text search, and Books Online:

Database Engine This is the core of SQL Server. Without the database engine, you can’t
really do much, so you will install this with every instance. The database engine provides
access to your databases.

Integration Services The Integration Services component is the extraction,
transformation, and loading (ETL) tool set provided by SQL Server. With this service,
you can move data from one server to another and massage the data (transform or modify
it in some way) during the process. Additionally, database maintenance plans depend on
Integration Services in SQL Server 2005 and newer versions.

Administration Tools You may not want to install the administration tools, such as SQL
Server Management Studio and Visual Studio for SQL Server, on the server itself. However,
it is often convenient to have the tools installed on the server so that you can access them
locally if needed.

54 Chapter 2 ■ Installing SQL Server 2012

Analysis Services The Analysis Services (AS) component is one of those special
components of SQL Server that warrants its own book. For now, it’s enough to know that
AS is used to perform business intelligence work and for data warehousing operations.

Reporting Services Reporting Services provides a report generation service for your
SQL Server (and possibly other) databases. Larger organizations usually choose to install
dedicated reporting servers, but smaller organizations may opt to install Reporting Services
on one or more servers used as standard database servers as well.

Full-Text Search The full-text search feature allows for searching of large and small text
data types. Normal WHERE clause searches are limited to string-based patterns. Full-text
search performs word searches and understands language elements. For example, infl ection
forms can be searched such as tooth and teeth, while only specifying teeth. Additionally,
searches can be performed for words close to one another, and the results can be ranked
based on how close together the words are.

Books Online Books Online is the famous, and sometimes infamous, electronic help
for SQL Server. The SQL Server 2012 Books Online is, thankfully, a little smaller than
its predecessor and according to Microsoft weighs in at 200MB (SQL Server 2008 Books
Online was 240MB). If you’ve ever downloaded an ebook, you know that a 200MB ebook
is huge, and SQL Server 2012 Books Online is just that. However, it is searchable, and you
can usually fi nd what you need eventually. Additionally, SQL Server 2012 supports a small
installation of Books Online that requires less than 400KB of local storage, but Internet
access must always be available to view it.

Multiple Instances

SQL Server 2012 supports multiple instances on the same machine. In fact, you can
run SQL Server 2000, 2005, 2008, and 2012 all on the same server at the same time. In some
upgrade and migration scenarios, this multiversion confi guration may be desired.
All instances of a single version share certain components, such as the Books Online, but
each instance has its own set of executables. There are several reasons you might need to
install multiple instances; the following are the most common:

Service Pack Compatibility You can install several instances of SQL Server 2012 on the
same physical host and install different service packs. For example, one vendor may require
Service Pack 1 (SP1) at a minimum, while another does not yet support SP1. You could
install one instance with SP1 and the other without it and support both applications on the
same server.

SQL Server Version Compatibility As with the service packs, you may need to run multiple
versions of SQL Server on the same physical host. If you have an internal application that
does not work on SQL Server 2012, you can run it in a SQL Server 2005 or 2008 instance
and run other applications in a SQL Server 2012 instance on the same server.

Policy Compliance Many organizations have security policies that require limiting user
access to database services. In fact, the policy could state something like “A single database
service shall provide access only to databases that share a common set of users.” A policy
such as this may force you to create separate instances to house different databases accessed
by different users without requiring multiple physical servers.

Installation Planning 55

Testing and Development Building test and development labs can be expensive.
With multiple instances, a single physical host can house several instances for various
development projects. These instances can be used for testing different service packs, SQL
Server versions, and codebases for the supported applications.

Global Service Settings Finally, any time you must implement one global service setting
for one application and a different value for the same setting for another application,
you will be required to implement either separate instances or separate physical hosts.
Of course, implementing separate instances would be cheaper. An example global setting is
the authentication mode. You cannot have one database using Windows authentication and
another database using Mixed authentication within the same instance.

Why So Many Instances?

I can’t move on from this discussion of multiple instances without addressing a common
question I’ve received from training attendees over the years: why in the world do SQL
Server 2005, 2008, and 2012 support up to 50 instances?

The answer to this question is obvious today because we run so many instances on our
machines, but we must travel through time in order to understand why such a large
allowance is built into the system. First, let’s travel back to the year 2000. SQL Server
2000 was released to manufacturers on August 9, 2000. This version of SQL Server sup-
ported up to 11 instances on a single server. At the time, this seemed like a lot, since
servers were commonly less than 10 percent as powerful as they are today (remember
that many of the early servers used to run SQL Server 2000 were purchased from 1998 to
2000). In fact, the minimum requirement for SQL Server 2000 was a 166MHz Pentium with
64MB RAM.

The thought of running 11 instances of SQL Server 2000 on a server in the year 2000
would cause most DBAs to cringe or even cry out in pain; however, the thought of run-
ning 11 instances today on a quad-processor quad-core server (16 total cores) wouldn’t
even cause the same DBAs to blink. Microsoft ended mainstream support for SQL Server
2000 in April 2008; extended support will continue until April 2013. With mainstream sup-
port, both security updates and nonsecurity hotfi xes are provided to everyone. During
extended support, only those who purchase an extended support contract get the nonse-
curity hotfi xes.

Here’s the point: if SQL Server 2000 support is lasting until 2013, how long will SQL Server
2012 support last? Well, support is currently promised through the year 2019. Imagine
what a new server will look like then. Will it have 8 cores in each of 16 processors at a
price similar to that of today’s quad/quad servers? Will it use 20GBps solid-state drives
providing 250 terabytes of storage per drive? I can’t guarantee it, but I won’t say no.
Maybe now you can see why 50 instances just might be possible in the very near future.

56 Chapter 2 ■ Installing SQL Server 2012

TCP Ports

Another fl exible confi guration option is the TCP port on which SQL Server listens for
incoming connections to the databases. A default instance of SQL Server uses port 1433 by
default, but this can be changed. Named instances use a dynamically assigned port, but it
can be changed as well. You use the SQL Server Confi guration Manager to confi gure the
TCP ports for installed instances.

Be very thoughtful when changing the TCP port. If you are not also the
network administrator, you should check with her to verify that the new
port will function properly on the network. Many networks block commu-
nications using deep packet inspections, and a port other than 1433 might
not work properly, or the administrator might need to adjust the network
configuration.

Installation Options

Several options are available for the installation of each instance. You can choose the
installation directory for the instance and the shared components. You can confi gure the
service accounts for improved security, and you can choose to enable the new fi lestream
support. The fi lestream feature allows for the storage of large external data sets so that
the MDF and NDF fi les do not become unnecessarily large. In the past, DBAs stored
videos, large drawings, and other binary large objects (BLOBs) outside of the database and
simply stored a reference to the fi le location inside the database. This structure resulted
in diffi culty managing the database and the application. With the fi lestream feature, both
database management and application updates become easier.

Installation Planning Process
A SQL Server 2012 installation planning process consists of three phases:

Phase 1 In the fi rst phase, analysis of server use should be performed. It is in this phase
that the planning team determines the various ways in which each server will be utilized.
The output of phase 1 should be a plan document (usually an Excel spreadsheet listing each
server and the databases that will run on the server with details about each database) that
can be used as the input for phase 2.

Phase 2 This phase involves requirements analysis. In this phase, the planning team
determines the hardware requirements based on the server use analysis report document.
The output of phase 2 should be an amended plan document that now includes the
hardware requirements for the servers to be deployed.

Phase 3 Finally, in phase 3, the plan is fi nalized with projected deployment dates for each
server. Plans normally include testing start and completion dates, implementation start and
completion dates, and post-installation user interview dates. This complete plan ensures
that all activities are scheduled, and they are, therefore, more likely to be performed.

Installation Planning 57

The following sections cover these three phases in more detail.

Phase 1: Server Use Analysis
Assuming you have existing databases deployed as SQL Server or some other type of
database, you’ll begin your installation planning by analyzing existing servers. But before
you begin, two considerations must be made. The fi rst consideration is the structure
and size of the database itself. The second is the utilization of that database. If you are
analyzing only SQL Server 2000 or 2005 database servers, you can use a tool from the SQL
Server 2012 disc. The tool is the Installed SQL Server Features Discovery Report, and it
will create a report of the installed SQL Server instances and features.

To run the tool, follow these steps:

1. Insert the SQL Server 2012 disc.

2. Click Tools on the left menu of the SQL Server Installation Center.

3. From here, click Installed SQL Server Features Discovery Report.

The Installed SQL Server Features Discovery Report will show the following
information:

■ Product description

■ Instance name

■ Instance ID

■ Feature listing

■ Language installed

■ Edition installed

■ Version number

■ Clustered status

This report can help you start the process. The following information should be gathered
during the server use analysis phase:

■ Database server instance information such as the instance name, version of SQL Server,
service pack level, and important confi guration settings

■ Databases attached to each instance, and information such as database size, features
used, and storage structure

■ Database utilization including number of users and minimum, maximum, and average
query sizes

Once you’ve collected this information, you may want to create a spreadsheet that can
be used to track this information and the added information collected and developed
throughout the next two phases.

58 Chapter 2 ■ Installing SQL Server 2012

Phase 2: Hardware Requirements Analysis
Hardware requirements must be considered from two perspectives:

■ Minimum requirements

■ Implementation requirements

The minimum requirements provide an absolute baseline below which you know you
cannot install SQL Server; however, these minimum requirements are seldom enough for
any implementation. So, what is the DBA to do? Start with the minimum requirements and
then calculate the additional demands you will place on the system.

Minimum Requirements

SQL Server 2012 has different minimum requirements depending on the edition you select.
Table 2.1 lists the hardware requirements for each edition.

TA B LE 2 .1 Hardware Requirements

Edition Processor Memory Storage Space

Enterprise/Developer 1.0GHz 32-bit/1.4GHz 64-bit 1GB 811MB to 6GB

Standard 1.0GHz 32-bit/1.4GHz 64-bit 1GB 811MB to 6GB

Workgroup 1.0GHz 32-bit/1.4GHz 64-bit 1GB 811MB to 6GB

Express 1.0GHz 32-bit/1.4GHz 64-bit 512MB 2.2GB

Web 1.0GHz 32-bit/1.4GHz 64-bit 1GB 811MB to 6GB

If your organization chooses to implement SQL Server Enterprise edition for all instances,
you are starting with a minimum baseline of a 1GHz processor with 1GB of RAM.
Next, you’ll need to calculate additional demands.

Configuring an operating system (OS) disk is an important component of
SQL Server installation. You may be required to partition and format a disk
for use with data by the SQL Server. To get more information on this, use
the Windows Server help and search for disk management.

Calculating Additional Demands

When calculating demands above the minimum requirements, you should do two things.
First, calculate the expected workload; then, multiply that number by 1.5 to determine
what is needed for a given server. For example, assume the following fi gures:

Installation Planning 59

■ 80 concurrent users

■ 16 queries per minute

■ 23KB average query size

■ 4GB database with 55 percent data utilization

Before you start to calculate the demands, you need to understand the terminology.
Concurrent users is a reference to the number of users connected to the database at a given
time. The average query size can be used in conjunction with the concurrent users and the
queries per minute to calculate the workload in a given window of time.

In the previous example, the fi gures result in 80 × 23 × 16, or 29,440 kilobytes, or
28.75MB per minute. This is not an intensive workload for a server, but it also does not
factor in the overhead required to manage the 80-user processes. Each user connection
consumes between 40KB and 50KB. With only 80 users, the memory overhead is only
about 400KB, or less than half a megabyte. Unless you have more than 500 concurrent
connections, you will not usually worry about calculating the connection overhead.

Two important decisions will eventually be made based on these memory and size
calculations. First, you must choose the amount of RAM for the server, which you’ll
calculate in a moment. Second, you must ensure that you have the drive I/O capabilities
and the network throughput capabilities to handle the workload. In this example, drive and
network capabilities will be no problem. In fact, this example would allow for a
10Mbps network interface card (NIC) and just a single SATA hard drive, if you’re strictly
considering the needs of this application.

Now, examine the 55 percent data utilization fi gure. This calculation simply means that,
out of the 4GB of data, about 2GB is actually used regularly. Therefore, if this is the only
instance and database on the server and you can provide about 3.5GB of RAM (which
means 4GB of physical memory to meet the 3.5GB need), the server should work quite well.
Remember, if you are running Enterprise edition, you need 1GB of RAM as a minimum.
If you add 2.5GB for the SQL Server to use for this database, you should achieve relatively
good performance.

You’re probably wondering about the processor at this point. Well, that’s a different
set of calculations. You need to factor in the processor utilization during an average
query operation on a given processor speed, and from there, you can determine the
processor requirements. For example, imagine that your average 23KB query runs and
the processor is at 10 percent utilization with a 1GHz processor. If you have 16 such queries
that you need to run per minute and the queries each take about fi ve seconds to run (just
an arbitrary number for your calculations here, but you can get the exact number using
tools you’ll learn about in Chapter 14), you’ll have at most two to three queries running
at the same time. The result would be a maximum of 30 percent utilization, not factoring
in operating system–level scheduling and multitasking, which would likely be at 5 to 10
percent utilization.

Now, let’s look at your resulting numbers:

60 Chapter 2 ■ Installing SQL Server 2012

■ 1GHz processor 40 percent utilized

■ 3.5GB or 4GB of RAM

■ 10Mbps NIC (certainly, you should go with 100Mbps minimum today or more likely
1Gbps)

■ SATA hard drive

And now it’s time for a reality check. Most organizations have minimum standards for
hardware. Additionally, you always want to make room for the future, so you’ll calculate
new numbers by a factor of 1.5 (rounded up to common values) and utilizing common
current organizational minimums (these will likely change during the life of this book):

■ 1.6GHz dual-core processor

■ 6GB RAM

■ 1Gbps NIC

■ Three SATA drives in a RAID 5 array

This resulting server confi guration will work very well for a 4GB database on a SQL
Server 2012 implementation. Additionally, it represents common minimum hardware
allowances for many organizations.

In many cases, you will be implementing SQL Server 2012 databases for
vendor-provided applications. When you are implementing these data-
bases, you can usually inform the vendor of the total expected number
of users and the ways in which these users will utilize the system. The
vendor can usually calculate the needed hardware once this information is
provided.

Phase 3: Complete the Implementation Plan
Phase 1 provided you with an inventory of existing database servers that could be upgraded
or migrated to SQL Server 2012. Phase 2 provided you with the hardware specifi cations for
the individual database applications. In phase 3, you can look at those requirements and
determine which databases can be housed on shared servers and even in shared instances.
Once you’ve determined this, you can select the appropriate servers to upgrade or migrate
fi rst, second, third, and so on. You may take months or years to complete the process of
upgrading all databases, or, in smaller organizations, you may complete the entire process
in a weekend.

Managing Permissions
One last issue must be addressed before you begin installing the SQL Server 2012 instances
that are required in your organization. You must determine the permissions with which the
services will run. The permissions granted to the services will be dependent on the service

Installation Planning 61

account used. All SQL Server services must run in a context in order to access resources on
the local machine or the network.

Service Account Options
You have three options when confi guring service accounts:

Network Service The Network Service option runs the SQL Server services with
permissions to access the network as the computer account. You may choose to use this
option in a lab environment, but it should never be used in production (in this context, the
term production refers to a system used by active users for real and useful data).

Local System Like the Network Service option, the Local System option is far too
powerful to be used in a production setting; however, you may choose this as an easy
installation choice in a lab environment.

Windows Account This is the preferred choice for production SQL Servers. When a SQL
Server is installed in a Windows domain, a domain service account will be used. When it’s
installed on a standalone server, a local Windows account will be used.
In addition to using Windows accounts for the SQL Server services, you should use a
separate account for each service. Although this confi guration requires more work, it is
more secure, as you’ll soon see.

The Argument for Differentiation
In the world of information and system security, an important principle known as least
privilege is often cited. This term describes a system where a subject (a user or process) can
do no more than is needed to perform the required functions of that subject. For example,
if a user needs to be able to read the data in a particular network share, he is given
read-only access and not modify access. The only way to accomplish least privilege is to
determine the permissions and rights needed by a subject and then either directly assign the
permissions and rights to that subject or place the subject in a group that possesses only
the necessary permissions and rights.

SQL Server includes several services, and here’s an important reminder: not all of the
services are required by all installations. This statement can be true only if the services
perform different functions. Indeed they do. The SQL Server service provides access to the
data. The SQL Server Agent service supports jobs and database monitoring. The Reporting
Service is used to talk to the SQL Server service and generate reports. The point is simple.
Each service performs different functions and should run in the contexts of different
accounts (differentiation) in order to implement least privilege.

62 Chapter 2 ■ Installing SQL Server 2012

The process to confi gure least privilege and differentiation for a new SQL Server
installation is simple:

1. Create the separate Windows accounts for each service.

2. Confi gure these accounts to be used during installation.

3. Test the installation to ensure that all necessary permissions are available.

Some database applications will require more permissions than are granted to the service
account during installation. This is particularly true when the database application uses
external application code or a multitier implementation model. Always check with the
vendor and ensure that the service account is given the minimum permissions required
and no more. By combining this practice with differentiation, you’ll achieve a more secure
implementation.

Installing a Default Instance
The preceding sections explained the installation planning process. Now it’s time to walk
through a typical installation. Along the way, the options available will be explained, and
you will be told when you might want to change the default settings. However, you will
fi nd that the default settings work in most situations when you intend to install a single
instance on a server.

Getting a Trial Copy of SQL Server 2012

If you do not have a licensed copy of the Enterprise edition of SQL Server 2012, search for
SQL Server 2012 trial download using Google, and follow the link to the Microsoft website
that references Trial Software. Download the SQL Server 2012 120-day trial of Enterprise
edition and burn it to a disc. You can do the same thing to download the Windows Server
2008 R2 trial software. The following steps assume you’ve installed Windows Server 2008
R2 already.

SQL Server 2012 can be installed on Windows Server 2008 machines running SP2
or higher and on newer server operating systems such as Windows Server 2008 R2. In
this example, you will be installing the database system on a Windows Server 2008 R2
Enterprise edition server. To begin the installation, follow these steps:

www.allitebooks.com

http://www.allitebooks.org

Installing a Default Instance 63

1. Log on as an administrator of the Windows domain, if possible. Alternatively, log on
as a local machine domain, if the server is not part of a domain.

2. Insert the DVD, and open My Computer.

3. From here, double-click the DVD-ROM drive to begin the installation.

4. If the installation does not begin when you insert or double-click the DVD-ROM drive,
you may need to run the SETUP.EXE application directly on the disc.

At this point, if you were installing SQL Server 2012 on a Windows Server 2003 machine
without the .NET 3.5 Framework, the installation would immediately prompt you with
an update message. However, the needed update is included on the SQL Server 2012
installation disc, so you can simply click OK to allow it to update your machine. Because
the server is running Windows Server 2008 R2 and is up-to-date, you see the screen in
Figure 2.3. This screen is now called the SQL Server Installation Center.

F I GU R E 2 . 3 SQL Server Installation Center

SQL Server Installation Center Tasks
From the SQL Server Installation Center, you can perform several tasks. You can do far
more than simply install SQL Server 2012. The following tasks can be performed:

Planning The planning tasks include reviewing documentation, analyzing system
confi guration, and installing the Upgrade Advisor. The system confi guration analysis task

64 Chapter 2 ■ Installing SQL Server 2012

evaluates your current confi guration to make sure nothing will hinder the installation. The
Upgrade Advisor may be used on a machine running an earlier version of SQL Server in
order to detect potential upgrade issues. The majority of the links on the Planning page are
simply to help information. The actual tools include the Install Upgrade Advisor and the
System Confi guration Checker.

Installation While this option may seem obvious since this is a setup program,
several installation tasks may be performed. A stand-alone instance of SQL Server may be
installed, or a clustered installation may be launched from here. You can also add a node
to an existing cluster or search for updates for the SQL Server products. Finally, you can
upgrade from SQL Server 2005 through 2008 R2 on this page.

Maintenance On the Maintenance page, you may upgrade from one edition of SQL Server
2012 to another. For example, you could upgrade from Standard edition to Enterprise. You
may also repair a damaged installation or remove a node from a cluster. A new feature in
the SQL Server 2012 Installation Center is the ability to launch Windows Update to search
for product updates.

Tools The Tools page allows you to launch the same system confi guration checker as the
Planning page. You may also run an important installation tool, the Installed SQL Server
Features Discovery Report. This report was explained earlier in this chapter. You can
also use the Microsoft Assessment and Planning (MAP) Toolkit for SQL Server and the
PowerPivot Confi guration Tool.

Resources The Resources page is fi lled with links to documentation that may be relevant
to your installations. You can also review the SQL Server 2012 license agreement here.

Advanced On the Advanced page, you may install SQL Server 2012 from a confi guration
fi le. This feature allows for automated installations. You may also prepare and complete
cluster installation from this page. New to SQL Server 2012 is the ability to prepare and
use images for installation from the Advanced page.

Options The Options page allows you to select the distribution of SQL Server 2012 to
install. You may choose x86, x64, or ia64 depending on the distributions your hardware
will support. You can also redirect the installation engine to a new disc location.

Installation
Because you are installing a default instance of SQL Server 2012, select the Installation
page and choose the New SQL Server Stand-Alone Installation or Add Features to An
Existing Installation option. When one of these options is selected, a brief fl ash of a
command prompt will sometimes appear and then quickly disappear. This behavior is
normal because the SQL Server Installation Center is shelling out to the proper routine to
perform the installation.

Installing a Default Instance 65

F I GU R E 2 . 4 The Setup Support Rules screen

The next useful screen is Setup Support Rules, shown in Figure 2.4 with the details
expanded. When you click the Show Details button, you’ll see that your server has passed
all the rules. These rules must be met in order to install SQL Server 2012. For example,
the server cannot be in a state where a reboot is pending, and the account credentials that
launched the installation must be those of an administrator.

When you click OK, the next stage of the installation begins. The fi rst thing you have to
do is choose whether to install a free evaluation edition or provide a product key to install
a licensed product. Enter the product key, if you plan to install a licensed product, and
then click Next. Then agree to the license text and click Next. This takes you to the screen
shown in Figure 2.5. This is the prerequisites screen, and only the setup support fi les are
required. Click the Install button to install the needed support fi les.

66 Chapter 2 ■ Installing SQL Server 2012

F I GU R E 2 .5 The Install Setup Files screen

Do not be alarmed if at several points during the installation the installa-
tion program seems to have left the screen and you’ve been returned to
the SQL Server Installation Center. This behavior, while a bit historically
unorthodox for installation engines, is normal.

After the setup support fi les are installed, you will be presented with the screen in
Figure 2.6. This screen warns of any impending problems you may encounter. You may see
the warning about the Windows Firewall, if it is not currently confi gured to allow traffi c on
TCP port 1433. The fi rewall confi gured this way would prevent incoming communications
on that port. If you see the warning, you can fi x it later or go to the Windows Firewall
immediately and allow port 1433 communications before continuing. Figure 2.6 shows no
such issues, because the Windows Firewall is disabled on the target Windows Server 2008
R2 installation. When you are ready, click Next to continue the installation.

Installing a Default Instance 67

The next screen is the Setup Role screen. You can choose from one of three roles:

■ SQL Server Feature Installation

■ SQL Server PowerPivot for SharePoint

■ All Features with Defaults

If you choose SQL Server Feature Installation, which is recommended for greater control
over the installation process, you can select the individual features you desire. Select this
option, and click Next to continue.

Now you are fi nally at the point where you can choose the installation options you want
for this server. Figure 2.7 shows several features that are selected to install. In fact, the only
features not being installed at this point are the Data Quality Services, Analysis Services,
and Reporting Services components. These features can be useful. They simply may not
be needed on this particular server. You can also change the shared features directory, but
the example leaves this at the default so that all instances look to the same location for
these fi les. Select the features shown in Figure 2.7, and click Next, accepting the default
installation folders.

F I GU R E 2 .6 Potential installation issues

68 Chapter 2 ■ Installing SQL Server 2012

F I GU R E 2 .7 The Feature Selection screen

Data Quality Services is covered in detail in Chapter 27, “Data Quality Solu-
tions.” You will learn about its operations and the features it offers.

Based on the features you have selected, the installation engine will now verify that all
prerequisites are available on the target server. The Installation Rules screen should show
a status of Passed for all rules. If not, install the prerequisite required and then restart the
installation. Click Next once the installation rules have all passed.

The next screen is Instance Confi guration, and it provides the functionality to choose
between a default and a named instance. You can also specify an instance ID and view
installed instances to ensure that you do not create a duplicate named instance. The
instance root folder or directory can also be specifi ed. In this example, you’ll install a
default instance and accept all of the default options. Therefore, the default instance ID will
be MSSQLSERVER. Because this server’s name is SQL1 in the example installation in this
book, you will be able to connect to the default instance on the server by connecting to
\\SQL1. After choosing the default instance, click Next.

The next screen shows the disk space requirements. The installation chosen here will
require 5,621MB of storage space. The server should have more than that, so click Next to
continue the installation.

Installing a Default Instance 69

Figure 2.8 shows the next screen. The Server Confi guration screen is where you set up
the service accounts. Two accounts were created before the example installation began.
Because they are Windows domain accounts and the example could have several SQL
Servers, service account names that refl ect the server and the purpose of the account were
chosen. The SQL Server Database Engine service on the SQL1 server will log on with
the sql1sqldef account. The sqldef portion indicates that this is the service account
for the default SQL Server instance on that server. It is a simple naming convention
that I use to simplify account setup. Notice that the SQL Server Agent will log on with
the sql1sqldefagent account. The account names may be longer, but they are more
meaningful than names like SQL1, SQL2, and SQL3. However, you will need to discover
a naming convention that works for you. No requirement is imposed on you other than
the character-length limit for Windows domain account names. Windows accounts can
be longer than 100 characters, but if you keep the character length to 20 or less, the
names will be easier to use. Many logon dialogs throughout Windows systems only allow
20-character usernames even though the backend will allow for longer names.

F I GU R E 2 . 8 The Server Configuration screen

If you do not have the permissions needed to create the Windows accounts, you may need
to request these accounts in advance of the installation. Any Active Directory administrator
should be able to create these accounts for you. For a standard installation, simply ask
them to create accounts and add them to no groups. The exception is the SQL Server Agent
account. This account should be added to the Pre-Windows 2000 Compatible group in the
domain. The account must also be granted local permission to log on as a service on the local
server. The SQL Server installation process will assign the needed permissions automatically.

70 Chapter 2 ■ Installing SQL Server 2012

Based on the information provided in, “The Argument for Differentiation,” earlier in
this chapter, you should create separate accounts for each service. Additionally, you should
typically confi gure the SQL Server service and the SQL Server Agent service to start up
automatically. If you are running named instances, you will also want the SQL Server
Browser service to start up automatically.

After you’ve confi gured the service accounts, you could also click the Collation tab
shown in Figure 2.8 and modify the collation settings. It’s handy that Microsoft made
the collation settings an “as needed” interface element, because you accept the default
chosen collation most of the time anyway. The collation ensures that the proper language,
sort order, and character set are utilized. On most servers, the Windows locale settings
are what you need for the SQL Server installation, and that is the default chosen collation.
Without changing the collation settings, click Next.

Figure 2.9 shows the Database Engine Confi guration screen. Here, you can choose
the authentication mode, confi gure the data directories, and choose whether to enable
fi lestreams. The authentication modes will be covered in more detail in Chapter 19,
“Authentication and Encryption,” but for now, choose Mixed Mode so you can access both
Windows logins and SQL logins throughout this book. Set the sa password to a strong
password because the sa (system administrator) account is very powerful. Because you’re
installing with an administrator account, you can click the Add Current User button to add
a valid administrator account, which is needed to perform the actual installation.

F I GU R E 2 . 9 The Database Engine Configuration screen

Installing a Default Instance 71

Accept the default on the Data Directories tab, because these settings can be
reconfi gured at any time. Finally, accept the default of not enabling fi lestreams at this time.
With these settings in place, click Next.

The next screen requests permission to send error reports to Microsoft or a corporate
reporting server. If you do not want to do either, accept the defaults of not reporting errors
and click Next. Based on the installation options you’ve chosen, the setup routine evaluates
the potential for problems. The example server passes all tests. When yours passes, you can
click Next again.

Finally, you’ll see the screen in Figure 2.10, which is the Ready To Install screen
that provides a summary of the features and settings you’ve chosen to deploy for this
installation. Once you are satisfi ed that everything is correct, click Install to begin the
process. The installation will take a few minutes, so go get a cup of coffee.

F I GU R E 2 .10 Installation summary

The installation should complete in about nine or ten minutes. When you’re fi lled with
caffeine and ready to go, you can see the results in the Complete dialog, as shown in
Figure 2.11. If it looks like everything completed without errors, click Close. You’re ready
to test the installation now. To do this test, just launch SQL Server Management Studio

72 Chapter 2 ■ Installing SQL Server 2012

(SSMS) and make sure you can connect to the local default instance. While a reboot is not
required, you should always perform one after the installation of a major service or set of
services if you have time. Reboot the server and then launch SSMS.

F I GU R E 2 .11 The installation is complete.

When you launch SSMS, you are prompted for the instance to which you want to
connect. For the example, I chose the local default instance and logon with Windows
authentication by accepting the default settings in the Connect To Server dialog upon
SSMS launch. Windows authentication uses the administrator credentials with which you
are currently logged on. The local Administrators group is automatically given access to
the SQL Server installation, so you will be able to connect to the server and quickly see the
screen shown in Figure 2.12. In the fi gure, the Databases container is expanded, and
a query has been executed against one of the databases.

Installing Named Instances 73

In addition to testing the functionality of the installation, you may want to consider
checking for updates. Service packs (SPs) may be available for the installation immediately.
The SPs often fi x bugs in the system and also add compatibility for newer operating systems
(such as Windows 8). In addition, they may introduce new and important features.

F I GU R E 2 .12 SSMS connecting to the installed instance

I downloaded the sample database (AdventureWorks) from CodePlex and
placed the AdventureWorks2010_Data.mdf file in the default instance data
directory before launching SSMS. Then I launched SSMS and attached
the AdventureWorks database before capturing the screen in Figure 2.12.
Microsoft no longer distributes sample databases with SQL Server 2012.
You can find the SQL Server 2012 sample databases by visiting: http://
sqlserversamples.CodePlex.com.

Installing Named Instances
Installing a named instance is very similar to installing the default instance. Exercise 2.1
provides the step-by-step instructions for a named instance installation. The primary
difference is that on the Instance Confi guration page, you will choose to install a named

http://sqlserversamples.CodePlex.com
http://sqlserversamples.CodePlex.com

74 Chapter 2 ■ Installing SQL Server 2012

instance and provide a unique name for the instance. When installing named instances,
keep the following facts in mind:

■ You can install instances with the same name on different physical hosts. For example,
you can have a \\sql1\marketing instance and a \\sql2\marketing instance.

■ Installing a named instance is a little faster than installing the default instance, if the
default instance is already installed. This is because the shared components are already
on the machine.

■ SQL Server 2012 Express edition should always be installed as a named instance.
Express edition is used mostly as a local database, and this installation recommenda-
tion ensures that multiple applications can run their own instances of the database.

■ Remember that you are allowed to install 50 instances with SQL Server 2012 Enter-
prise edition and only 16 instances with all other editions.

■ If a single instance of SQL Server 2012 is to be installed on a server and the instance is
not using Express edition, it should be installed as a default instance.

■ Some applications are written in a way that disallows the use of named instances.
Always check with your application vendor or developer.

If you have trouble installing drivers for Windows Server 2008 or Windows
Server 2008 R2 on a desktop computer used for evaluation, download the
vendor’s Vista or Windows 7 drivers. They usually work.

E X E R C I S E 2 .1

Installing a Named Instance

In this exercise, you will install a named instance of SQL Server 2012. These instructions will
walk you through the installation of a named instance. The resulting instance name will be
Sales. I have included a video of this exercise on the companion website. You can download
all the videos and additional study tools at www.sybex.com/go/sqlserver12admin.

1. Boot the Windows Server 2008 operating system, and log on as an administrator.

2. Insert the SQL Server 2012 Enterprise Trial disc.

3. If the installation does not start automatically, open Computer from the Start menu, and
double-click the SQL Server 2012 installation disc drive.

4. Once the SQL Server Installation Center loads (see Figure 2.3 earlier in this chapter),
click Installation on the left side of the page.

5. Select New SQL Server Stand-Alone Installation or Add Features To An Existing
Installation.

http://www.sybex.com/go/sqlserver12admin

Installing Named Instances 75

6. If all the setup support rules passed, click OK to continue the installation. Otherwise,
resolve the problem indicated and then restart the installation.

7. On the Product Updates page, install any required updates; otherwise, click Next for all
the setup fi les to be installed as needed.

8. You are now in the actual installation process and should see a screen (Setup Support
Rules) warning you if any potential problems exist that could hinder a successful instal-
lation (see Figure 2.6 earlier in this chapter). Address any displayed issues; then click
Next.

9. On the Installation Type screen, choose Perform A New Installation, and click Next.

10. If you are using a licensed version, enter the product key; otherwise, choose Enterprise
Evaluation, and click Next.

11. Read and accept the license terms, and click Next.

12. On the Setup Role page, choose SQL Server Feature Installation, click Next, and then
install the features selected in the image shown here (if this is not the fi rst instance
you’ve installed, the shared components will show gray check marks instead of black).

13. Once you’ve checked the appropriate boxes, click Next, and on the Installation Rules
page, click Next after all rules pass.

14. You can now choose the Instance options. Install a named instance with the name and
ID of Sales, as shown here.

76 Chapter 2 ■ Installing SQL Server 2012

15. Once your installation screen looks like the one in the preceding image, click Next.

16. Assuming you have suffi cient drive space on the Disk Space Requirements screen,
click Next.

17. On the Server Confi guration screen, confi gure both the SQL Server Agent and the SQL
Server Database Engine to run as the account credentials you desire. In a production
environment, these services should run as Windows accounts. Make sure both services
are set as Startup Type = Automatic (see Figure 2.8 earlier in this chapter). When the
confi guration of the services is complete, click Next.

18. On the next screen, set the authentication mode to Mixed so you can work with SQL log-
ins for testing. Enter a secure password for the sa account, but do not forget it because
you may need it to connect to the SQL Server instance for troubleshooting purposes.
Click the Add Current User button, and then click Next.

19. Do not send any report information. Simply click Next.

20. As long as the installation rules show no errors, click Next. Otherwise, you may need to
analyze the errors and potentially restart this exercise.

21. On the Ready To Install screen, click Install to begin the installation of the named
instance.

After a few minutes, the installation will complete. You can test the installation by opening
SQL Server Management Studio and ensuring that you can connect to the named instance.

Installing to a Cluster
If high-availability is important for your database server instance, clustering is an excellent
choice. Clustering and the steps required to implement it are covered in detail in Chapters
21 and 22; however, a brief overview is presented here.

Clustering is a technology that allows more than one physical server to be available for
processing a single application. For example, you may implement a SQL Server instance
that primarily runs on SERVER32, but SERVER33 is prepped and ready to take over the
instance should SERVER32 fail. SQL Server 2012 can be installed to a failover cluster.

To implement a SQL Server cluster, several things must be in place. First, you must have
the Windows Clustering service installed and confi gured properly. SQL Server clustering
actually uses the underlying Windows Clustering service. The Windows Clustering
service implements a shared IP address for a group of one or more servers (called nodes)
participating in the cluster. Only one node is servicing the clients at any given time.

Upgrading from Previous Versions 77

Second, you must provide shared storage for the cluster nodes. If the active node fails,
the failover node can take over the operations only if it can access the most current data.
This external data may be directly attached external SCSI or even a storage area
network (SAN).

Next, you must install SQL Server 2012 as a cluster install. This can be done with the
installation program, as you will see in Chapter 22. You can install one node at a time, and
you can also perform enterprise installations.

Installing Extra Features
It is not uncommon to install SQL Server 2012 only to realize that you missed a
component. You can run the installation programs as many times as required to install
additional components. For example, you may choose not to install Reporting Services
when you fi rst set up the database server. After running the server for six months, several
users ask you to provide a reporting solution. You analyze the server and determine that it
is only 36 percent utilized and decide that it can also support Reporting Services.

At this point, you really have two options. You could run the installation program
to add features (Reporting Services) to the existing instance, or you could install a new
instance dedicated to Reporting Services. Valid arguments exist for both options in
different situations. As the DBA, you’ll need to evaluate the situation and then respond as
needed. If the reporting users are not the same users who regularly access and modify the
production database, you might want to install Reporting Services in its own instance. It is
common to have business analysts who report against data that they do not create.

In addition to the features available from within the installation program, you may
choose to download add-ons for SQL Server. You can download several items from the
Microsoft websites including the following:

■ Sample databases

■ End-to-end example applications

■ Service-specifi c samples (Reporting Services, Integration Services, and so on)

These samples and more can be downloaded from: http:\\sqlserversamples
.codeplex.com. If you’re trying to grasp how you might use a feature of SQL Server, these
sample projects can be very useful. Because they are open source, they can also act as a
starting point for new projects you may be required to build.

 Upgrading from Previous Versions
So far, we have considered only clean or new installations. The installations were not
dependent on existing versions of SQL Server. In many cases, you can install a clean
installation and then migrate a database from a previous installation. However, you
sometimes need to perform an in-place upgrade. Several options are available. The

http://sqlserversamples.codeplex.com
http://sqlserversamples.codeplex.com

78 Chapter 2 ■ Installing SQL Server 2012

following section addresses upgrades fi rst and then provides a brief overview of the
migration processes used to move databases from older versions of SQL Server to SQL
Server 2012.

Handling Upgrades
Upgrading an application on a client computer is risky business. Upgrading a server that is
accessed by many users is downright scary. However, much of the concern can be removed
by following two important best practices.

■ Always perform a full backup of your databases (including the system databases used
by SQL Server) before beginning the upgrade process.

■ You should attempt to discover as many potential problems as you can before you start
the upgrade.

Upgrading from SQL Server 2005, 2008, or 2008 R2 to 2012
The upgrade from SQL Server 2005 to 2012 is the upgrade most likely to result in
application problems. More SQL Server 2005 features have been removed or changed in
SQL Server 2012 than SQL newer versions, such as SQL Server 2008 or 2008 R2. For this
reason alone, you are likely to experience application problems. It’s important to look for
the use of deprecated features in the current SQL Server 2005 application and database.
Finding the deprecated features that were either dropped when SQL Server 2005 was
released or dropped between the 2005 and 2012 release can be a bit diffi cult.

Two sources, however, are helpful. In the SQL Server 2005 Books Online, you can read
about features that were in 6.5, 7.0, and 2000 that were no longer in SQL Server 2005.
In the SQL Server 2012 Books Online, you can read the Installation section and look for
the Backwards Compatibility section. Here, the deprecated featured are listed. If your
application uses any of these features, it will fail in those areas.

You can also use the Upgrade Advisor to see whether it can detect any problems in
your databases or applications. Remember, however, that the Upgrade Advisor looks at the
database and may not have access to analyze all of your application code. You will need to
ensure that the code is compatible.

Using the SQL Server Profiles
When you need to fi nd the features that were in earlier versions of SQL Server but no
longer exist in SQL Server 2012, your job can be much easier. You can simply run the
SQL Server Profi ler and monitor for deprecated features and specifi cally for the deprecated
features under fi nal notice. These features will no longer exist in SQL Server 2012. You
will run the SQL Server Profi ler on the older version of SQL Server and not on SQL Server
2012. The good news is that you can have your users run against the existing SQL Server
database like they normally do. All the while, you’re monitoring the access to look for these
deprecated features. If you fi nd any, you’ll have to either rewrite the code for that section of
the application or contact the vendor and request an upgrade or a patch.

Validating an Installation 79

Understanding Migrations
Migrations are different from upgrades. Upgrades are accomplished by installing on top
of the existing deployment. Migrations are accomplished by performing clean installations
and then moving the databases to the newly installed servers. The clean installations may
be named instances on the older server as well.

Migrations are usually simpler than upgrades from a pure database access point of view.
However, the feature deprecation issue is still a concern. Whether you upgrade a SQL
Server 2000 database to 2012 or copy a database from a 2005 instance to a 2012 instance,
you still have to deal with application compatibility issues. That said, migrating a database
from SQL Server 7.0 (or earlier) is possible, but you can upgrade to SQL Server 2012
only from a SQL Server 2005 or newer installation.

Migrating from SQL Server 2000 and 2005 to 2012
As you might have guessed while reading the previous paragraph, you can migrate a 2000
database to a 2012 server by simply attaching the database to a 2005 server fi rst. Yes, you
can use the Copy Database Wizard, and it may make things simple for a beginning DBA,
but eventually, you’ll need to learn how to manually detach and attach databases. SQL
Server 2005 databases are migrated in the same way, except they can be attached directly
to the SQL Server 2012 installation. Attaching and detaching databases is covered in
Chapter 9, “Creating SQL Server Databases.”

Migrating from SQL Server 7.0 to 2012
The trick to migrating a SQL Server 7.0 database to a SQL Server 2012 instance is to
migrate it to a SQL Server 2000 instance fi rst. That’s right. You simply have to attach
the database to a SQL Server 2000 instance, and it will be automatically converted to
a SQL Server 2000 database. Now, you can detach the database from SQL Server 2000
and attach it directly to a SQL Server 2005 server in order to migrate it to that version.
Finally, attach the SQL Server 2005 database to the SQL Server 2012 instance. However, you
must still ensure that the database works with SQL Server 2012. Just because you can attach
it doesn’t mean that all the stored procedures and application code will function properly.

Validating an Installation
After installing a default or named instance of SQL Server, you should validate the
installation. The fi rst and simplest method to use is simply connecting to the database
server and verifying communications. Ensure that all required capabilities are available and
operational. Consider performing the following tasks to validate the installation:

1. Connect to the server using SSMS.

2. Attach a database, such as the AdventureWorks sample database.

3. Run a query against the database.

80 Chapter 2 ■ Installing SQL Server 2012

4. Back up the database.

5. Reboot the server and ensure that all capabilities still function as expected.

The last item, rebooting the server, is often overlooked. In many situations, a server
will work after installation but will fail on the fi rst reboot. This failure can occur because
the services are not confi gured to start automatically or because of security changes in the
environment, such as passwords expiring for the service accounts.

Removing an Installation
You’re probably thinking that a section devoted to removing an installation seems to be
unneeded. However, improper database removals do occur. In most cases, the mistakes
were easy ones to avoid. When you run the Uninstall feature in Add/Remove Programs or
simply Programs in Control Panel, pay close attention to these issues:

■ Be sure to back up the databases before removing the instance. The Uninstall program
doesn’t usually delete the databases, but some administrators act too quickly and delete
them manually without proper backups.

■ Make sure you select the proper instance to uninstall. Because SQL Server supports
multiple instances, it’s easy to accidentally uninstall the wrong instance.

■ Test the remaining instances to make sure they are still operating properly. For
example, you may delete one instance and accidentally delete a few shared components
with it.

As long as you pay close attention to these reminders, you should fi nd success when
removing SQL Server instances.

Summary
This chapter provided the information you needed to install a default or named instance
of SQL Server 2012. Of greater importance, you learned how to plan an installation
effectively. In addition, upgrades and migrations were covered so that you can implement
SQL Server 2012 in an environment where SQL Server 2000 or newer already exists.
Finally, you learned the simple process used to remove an installation.

Chapter Essentials

Planning the Installation Planning an installation includes discovering current server
utilization levels, determining hardware requirements for the new SQL Server 2012 servers,
and formulating a time-based plan for implementation.

Chapter Essentials 81

Understanding SQL Server Architecture It is essential that you understand the architecture
of any product if you are to implement it successfully. The SQL Server architecture includes
the database system components, data access methods, data write methods, and
deployment features.

Understanding Data Access The data access model, in SQL Server, is based on memory
buffers. Data is read into the memory buffer and is not removed until space is needed. This
behavior increases the likelihood that requested data will already exist in memory and,
therefore, improves performance.

Configuring Service Accounts The SQL Server service accounts should be least-privilege
accounts. You should not run a production server using the Network Service or System
accounts. Windows domain accounts are the preferred service authentication method.

Installing a Default Instance Default instances are accessed using UNC paths or IP
addresses such as \\SERVER1 or \\10.10.13.89. Some applications require that the database
instance used by the application be a default instance.

Installing Named Instances Named instances are usually accessed using UNC paths such
as \\SERVER1\Marketing or \\DB3\Sales. You can install up to 50 instances of SQL Server
2012 Enterprise edition or up to 16 instances of any other edition.

Installing to a Cluster When installing a SQL Server 2012 cluster, you must fi rst install
and confi gure the Windows Clustering Service. All nodes in the cluster must have access to
shared storage.

Installing Extra Features Extra features can be installed by running the installation
program again. For example, you can install Analysis Services days, weeks, or years after
the initial installation. You can also download additional components from Microsoft’s
various websites. These downloaded components are often free.

Upgrading from Previous Versions When upgrading from a previous version of SQL
Server, it is important that you look for deprecated features. Deprecated features come in
two forms: those that will be deprecated in some future version and those that will not
exist in the next version. You can also migrate databases from any previous version of SQL
Server as long as you have the right versions of SQL Server to install for the detach, attach
processes.

Validating an Installation When validating an installation of SQL Server, simply connect
to the server and ensure that all required capabilities are present and working. For
example, run a query against a database on the server to ensure that the database engine is
responding.

Removing an Installation When removing an installation of SQL Server, perform a
backup, make sure you remove the right instance, and verify that the remaining instances
are functioning properly after the removal completes.

Chapter

3
Working with the
Administration Tools

TOPICS COVERED IN THIS CHAPTER:

 ✓ SQL Server Configuration Manager

 ✓ SQL Server Management Studio

 ✓ SQL Server Data Tools

 ✓ SQL Server Profiler

 ✓ Books Online

 ✓ Windows Server Administration for the DBA

One of Microsoft’s strengths, when compared to many other
software vendors, is in the area of GUI-based administration
tool development. For example, the SQL Server tools have been

among the best built-in tools available with any database system for many years. The SQL
Server 2012 graphical user interface (GUI) administrative tools have been enhanced since
the release of SQL Server 2008 with several very important improvements. This chapter
focuses on the GUI tools provided with SQL Server 2012 and the Windows Server operat-
ing system. As a DBA, you must learn to navigate through and use these tools as effi ciently
as possible.

Database administration is more complex today than it used to be. The DBA must be
able to administer the database management system (DBMS), the databases, and the server
on which the DBMS runs. In the early days of computerized databases, the operating sys-
tem on which the DBMS ran had a very small footprint. Today, even Linux-based DBMS
packages are 10 times more complex to manage than the DBMSs of old, when managing
databases with the MS-DOS system required less than 1MB of hard drive space for a mini-
mal install. For that matter, I remember typing in the code for a database system on my
Commodore 64 that fi t on a single fl oppy (and, yes, I do mean fl oppy) disk.

Because DBMS solutions have become so complex, this chapter will cover two categories
of tools. First, it will present the SQL Server administration tools, such as the SQL Server
Management Studio and the SQL Server Profi ler. Second, it will cover some of the basic
administration tasks you’ll need to understand from a Windows Server perspective. These
tasks will include user account management, fi le system management, and network con-
fi guration management.

SQL Server Configuration Manager
The SQL Server Confi guration Manager (SSCM) is your one-stop shop for the many
options you have when confi guring the SQL Server services and protocols. If you need to
change the logon account used by a service, this is the place to do it. If you need to disable
or enable a protocol for use by a service, this is the place to do that, too. In fact, you can
perform any of the following tasks from the SSCM:

■ Stop and start the SQL Server services

■ Change service login information

■ Enable or disable network protocols

SQL Server Configuration Manager 85

■ Confi gure aliases on client computers

■ Enable or disable protocol encryption for client connections

■ Enable or disable fi lestream support for a SQL Server instance

This section will cover the basic tasks you can perform in the SSCM and then walk you
through the most common of these tasks.

Overview of the SSCM
It is very important that you perform account maintenance tasks from within SSCM. If you
use the Services node in Computer Management, which is built into all Windows Servers
starting with Windows Server 2003, you risk disrupting service functionality. Of course,
SQL Server 2012 can be installed only on Windows Server 2008 and newer versions. When
you change a service account from within SSCM, the process ensures that all permissions
are granted to the newly assigned account that are needed for a default install of SQL
Server and for most SQL Server–based applications. If you change the account settings
from within the Services node in Computer Management, you get no such benefi t. The ser-
vice will usually fail to start when you change the account from within Computer Manage-
ment. The only exception to this would be when you assign an Administrator account to
the service, and this practice is certainly not recommended.

In addition to account maintenance tasks, you’ll use SSCM to confi gure supported pro-
tocols. Several protocols are supported, including the following:

■ TCP/IP

■ Shared Memory

■ Named Pipes

TCP/IP Most SQL Servers that are implemented as servers will use TCP/IP. The TCP/
IP protocol suite is, without question, the most widely supported protocol solution in use
today. The default instance of SQL Server runs on TCP port 1433, if you’ve accepted the
default settings during installation and have not reconfi gured these settings after the instal-
lation. You must know the port on which SQL Server is listening in order to confi gure
fi rewalls to allow for communications with the SQL Server. This issue is discussed in more
depth later in the section, “Network Confi guration Administration.”

Shared Memory In the preceding TCP/IP defi nition, saying that “most SQL Servers that
are implemented as servers will use TCP/IP” may have seemed odd to you. After all, the
product is called SQL Server. However, many developers use SQL Server Express edition as
a local database for their applications. In these cases, the Shared Memory protocol is most
often used. Shared Memory is a very simple protocol that requires no confi guration because
all communications happen within the memory of the local machine. The Shared Memory
protocol may also be used on test servers for development and other testing purposes.

Named Pipes Named Pipes is an older protocol that is being used less and less in SQL
Server implementations. This transition is mostly due to the excessive overhead incurred

86 Chapter 3 ■ Working with the Administration Tools

when using Named Pipes for communications. Even though TCP/IP has management over-
head, that overhead is not as bandwidth-intensive as Named Pipes. Local Named Pipes,
functioning within the local computer only, may still serve a purpose; however, if Shared
Memory is available, this latter option is more effi cient still.

Ultimately, the vast majority of SQL Server installations will use TCP/IP. It is important
that the SQL Server clients have a route to the server and that the route provides suffi cient
bandwidth. If you provide SQL Server performance-tuning services to your clients, you
may fi nd that the network infrastructure itself is quite often the real bottleneck in the com-
munications process. If you’re using older switches and routers—even if they do support
100Mbps links—they may not have suffi cient RAM and processing speed to keep up with
intensive database communications. Many database applications communicate with the
database server several times just to display a single screen that the user may access for only
a few seconds. If several dozen users use the application at the same time…well, you get the
picture. The routers and switches between the clients and the server are suddenly very busy.

Figure 3.1 shows the interface for the SSCM utility. As you can see, it uses a traditional
Microsoft Management Console (MMC) type interface with a left pane for component or
function selection and a right pane for access to specifi c tasks and objects. The nodes in the
left pane allow you to confi gure three main components: SQL Server Services, SQL Server
Network Confi guration, and SQL Native Client Confi guration.

F I GU R E 3 .1 The SQL Server Configuration Manager interface

Performing Common SSCM Tasks
You will perform several tasks using SSCM. At times you will need to stop a service or
refresh (stop and restart) a service; the SSCM tool will provide access to all of the SQL
Server services. You may also need to reconfi gure a service. For example, you may need to
change the account a service uses to log on, or you may need to change a service start-up
mode so that it starts automatically. In addition, you may need to enable or disable
protocols.

SQL Server Configuration Manager 87

Starting and Stopping Services
Starting and stopping SQL Server services is a simple task from within the SSCM tool.
Exercise 3.1 steps you through the process of starting and stopping services.

E X E R C I S E 3 .1

 Starting and Stopping Services

In this exercise, you will stop and start a SQL Server service using the Confi guration
Manager:

1. Click Start ➢ Programs (or All Programs) ➢ Microsoft SQL Server 2012 ➢ Confi guration
Tools ➢ SQL Server Confi guration Manager.

2. Click the SQL Server Services node in the left pane, as shown here.

3. Right-click the SQL Server (MSSQLSERVER) service in the right pane, and select Stop,
as shown here.

4. If the SQL Server Agent service is running, you will be prompted to allow that service to
be stopped as well. Click Yes. Once the service is stopped, its icon in the right pane will
change. Note the difference between the icon shown here versus the one following
step 2.

88 Chapter 3 ■ Working with the Administration Tools

5. To start a service, you will simply right-click the service and select Start.

Configuring Services
If starting and stopping services were the only tasks you could perform in SSCM, it
wouldn’t be of much use; you can perform these tasks from the Services node within
Computer Management. Indeed, you can do much more. One key task you will perform
in SSCM is service confi guration. Parameters you choose to confi gure may include the
following:
■ The service account that is used by the service to log on

■ The start mode for the service (Automatic, Manual, or Disabled)

■ Filestream support (you knew you could confi gure this somewhere after installation,
didn’t you?)

■ Advanced properties, such as error reporting, star-tup parameters, and the crash dump
directory

Exercise 3.2 details the steps you need to go through to confi gure service properties.

E X E R C I S E 3 . 2

Confi guring Service Properties

In this exercise, you will confi rm that the SQL Server (MSSQLSERVER) default instance is
confi gured for automatic start-up. You will also enable error reporting:

1. Launch the SQL Server Confi guration Manager by selecting Start ➢ All Programs ➢
Microsoft SQL Server 2012 ➢ Confi guration Tools ➢ SQL Server Confi guration
Manager.

2. Click the SQL Server Services node in the left pane.

3. Right-click the SQL Server (MSSQLSERVER) item in the right pane, and select
 Properties.

4. On the Service tab, select Automatic for the Start Mode, and click the Apply button.

SQL Server Configuration Manager 89

5. On the Advanced tab, select Yes for Error Reporting, and click the Apply button, as
shown here.

6. Click OK. Note the message indicating that a restart is required in order for the Error
Reporting change to be enabled.

7. Right-click the SQL Server (MSSQLSERVER) item in the right pane, and select Restart to
refresh the service.

At this point, Error Reporting is enabled, and the service is confi gured to start automati-
cally when the operating system starts.

Configuring Protocols
SQL Server–supported protocols can be confi gured from two perspectives: on the servers or
the clients.

■ You can confi gure the server protocols used by the server service to listen for incoming
connections. If a SQL Server installation receives a connection from another machine,
it is acting as the server.

■ You can confi gure the SQL Native Client protocols for use when connecting to a SQL
Server as a client. For example, if one SQL Server connects to another SQL Server to
retrieve data, the connecting or retrieving server is acting as a client.

90 Chapter 3 ■ Working with the Administration Tools

Server protocols are confi gured in the SQL Server Network Confi guration node.
SQL Server Native Client protocols are confi gured in the SQL Server Native Client 11.0
 Confi guration node. SQL Server 2012, as a 64-bit database platform, supports network
protocol confi guration for both a 64-bit interface and a 32-bit interface. The nodes with
32bit in parentheses are for confi guring the 32-bit interfaces.

In addition, you can confi gure aliases for the SQL Server Native Client. Aliases allow
you to connect to a named instance on a server using a simple name rather than having to
connect to the server with a longer UNC path like: \\SQL1\Marketing. For example,
Figure 3.2 shows the confi guration of an alias named Mkt that points to the server instance
at: \\192.168.23.46\Marketing on TCP port 1478. Creating an alias is as simple as
expanding the SQL Server Native Client 11.0 Confi guration node and then right-clicking
the Aliases node and selecting New Alias. Exercise 3.3 provides step-by-step instructions
for protocol confi guration.

F I GU R E 3 . 2 Creating an alias

Verify Protocol Requirements

Make sure you do not need a protocol before you disable it. Always check with your
application vendor if you are unsure or use a Network Protocol analyzer to see whether
any activity is occurring that uses the protocol in question.

SQL Server Configuration Manager 91

E X E R C I S E 3 . 3

Confi guring Protocols

In this exercise, you will ensure that TCP/IP is enabled for the SQL Server Network Confi gu-
ration and that Named Pipes is disabled in the SQL Server native client. Both settings will be
confi gured for the SQL Server (MSSQLSERVER) default instance:

1. Launch the SQL Server Confi guration Manager by selecting Start ➢ All Programs ➢
Microsoft SQL Server 2012 ➢ Confi guration Tools ➢ SQL Server Confi guration Manager.

2. Click the SQL Server Network Confi guration node in the left pane. In this case, choose
the 64-bit node, which does not have 32bit in parentheses after it.

3. Double-click Protocols for MSSQLSERVER in the right pane.

4. Ensure that TCP/IP is set to Enabled. If it is not, double-click TCP/IP, and set the value for
Enabled to Yes. Note that the IP Addresses tab can be used to select which IP addresses
should be used for SQL Server on a server with multiple network interface cards (NICs)
or multiple IP addresses associated with a single NIC.

5. Click OK.

6. Click the SQL Server Native Client 11.0 Confi guration node in the left pane.

7. Double-click the Client Protocols item in the right pane.

8. If Named Pipes is Enabled, double-click it, select No for the Enabled property, and then
click OK.

The SQL Server Confi guration Manager is a very simple tool to use, but it is important
that you use it carefully. It is the tool that determines what protocols are in use and on
what IP addresses the SQL Server listens. These settings are very important.

WMI Scripting and the SSCM

Windows Management Instrumentation (WMI) is fully supported for SQL Server confi gu-
ration management. You can use it to read the confi guration settings and even confi gure
certain SQL Server settings. In most cases, this is done with VBScript scripts. To create a
VBScript script fi le, follow these general instructions:

1. Open the Notepad application.

2. Type the code into the Notepad editing window.

3. Save the fi le with a fi lename having a .vbs extension to create a VBS fi le.

92 Chapter 3 ■ Working with the Administration Tools

SQL Server Management Studio
SQL Server 2005 introduced the new SQL Server Management Studio (SSMS). When
compared with the Enterprise Manager, which was used in earlier versions of SQL Server, the
SSMS interface provides many enhancements. SQL Server 2012 takes SSMS to a whole new
level by implementing it within the Visual Studio shell. This change introduces many new and
improved capabilities, particularly related to writing Transact-SQL (T-SQL) code within query
windows. You have improved debugging support and improved code management. This sec-
tion introduces the SSMS tool, which you will use heavily throughout the rest of this book.

Overview of the SSMS
Like most Windows applications, the SSMS interface has a menu bar across the top as well
as a toolbar area, as shown in Figure 3.3. The panes, such as the Object Explorer shown on
the left, can be docked or undocked; and they can be located on the left, top, right, bottom,

As an example script, consider the following VBScript code:

strComputer = “.” ‘ Local Computer
Set objWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & strComputer & “\root\cimv2”)

Set colServices = objWMIService.ExecQuery _
 (“Select * from Win32_Service Where Name = ‘MSSQLServer’”)

If colServices.Count > 0 Then
 For Each objService in colServices
 Wscript.Echo “SQL Server is “ & objService.State & “.”
 Next
Else
 Wscript.Echo “SQL Server is not installed on this computer.”
End If

This code simply looks for a SQL Server installation based on the default instance name
of MSSQLServer. If the instance name is there, the code reports that SQL Server is
installed. Although it’s very simple, this code demonstrates how you can utilize Windows
Scripting Host (WSH) to communicate with a SQL Server still today.

Microsoft is committed to assisting overworked IT professionals with the automation of
their environments. WMI scripting is just one way in which they are doing this. As you’ll
see in the next chapter, Windows PowerShell can also be used with the SQL Server snap-
in for PowerShell.

SQL Server Management Studio 93

or middle of the screen. There’s a common joke about needing a 28-inch wide-screen LCD
for all administrators; however, it’s only a joke if your budget will not allow it. A 28-inch
screen is useful for most administrative tasks. The larger screen space (sometimes called screen
real estate) allows more information to be on the screen at the same time. You will need
to have a minimum resolution of 1024 × 768 for many dialogs to function as designed in
SSMS. Microsoft lists the minimum requirements as 800 × 600, but it is not realistic to
expect to operate with this low resolution. Figure 3.3 shows the usefulness of a wide-screen
resolution as well.

F I GU R E 3 . 3 The SSMS interface

The SSMS tool is used for the vast majority of SQL Server 2012 administrative tasks.
The major tasks include the following:

■ Confi guring database engine properties

■ Creating, altering, securing, and deleting databases, tables, views, and other database
objects

■ Creating and working with jobs, operators, and alerts

■ Performing backups with the built-in backup tool set

■ Reporting on server performance and operations

■ Monitoring server activity and managing connections

As you can see, the list is long and quite complete. With SQL Server 2012, few tasks
require you to write administrative code as a DBA. However, the writing of such code is yet
another capability within SSMS. In fact, it has been improved with new error-tracking fea-
tures and better IntelliSense support.

94 Chapter 3 ■ Working with the Administration Tools

Performing Common SSMS Tasks
The fi rst thing you’ll need to do in SSMS is confi gure it to your liking. This means adjusting
fonts, determining default window layouts, and adjusting other important global settings.

Administration: Code vs. GUI

A long-standing debate exists in the world of database administration. Are admin tasks
better done by writing SQL code or through an interface (like SSMS)? On the side of cod-
ing, you have the DBAs who insist that administration through code is the only proper
administration method or that it is the best method. On the side of GUI administration, you
have the DBAs who ask why they should spend all that time writing code for an action they
can perform in less than one minute. In my opinion, both sides have valid arguments.

First, administration through code provides several benefi ts. You can save the code and
use it as documentation for work performed. You can make small changes to the code at
a later time and reuse it to accomplish a similar task. You may gain a better understand-
ing of the inner workings of the SQL Server Database Engine. Finally, you can administer the
server from any client that can execute Transact-SQL code against the server. Clearly,
the benefi ts are many. However, two major drawbacks exist for the beginning DBA: the
learning curve is greater, and the time cost is higher.

In fact, the drawbacks of codebased administration are the primary benefi ts of GUI-based
administration. It’s also true that the benefi ts of codebased administration have been
the drawbacks of GUI administration for many years. However, SQL Server 2005 through
2008 R2 and now SQL Server 2012 have changed all that. With Microsoft’s GUI manage-
ment tools, you absolutely get the best of both worlds. You can use the GUI to perform
administrative tasks (gaining a reduced learning curve and reduced time cost) and use
the built-in Script button to save the action as a T-SQL code fi le. That’s right! You don’t
have to sacrifi ce one for the other.

In the past, with Enterprise Manager (SQL Server 2000 and earlier), you could script
objects after they were created, but you could not confi gure an object (such as a data-
base) in the GUI and generate a script to create it in the fi rst place. The benefi t of generat-
ing the script fi rst and then creating the object from the script is that you can add T-SQL
parameters that may not be easily available in the GUI.

SSMS is a real-world, powerful tool for the modern DBA. You can script all you want, and
you can use the GUI while still saving code as documentation, reusing code with slight
modifi cations, improving your understanding of the database internals, and administer-
ing the server from any client (as long as you can access your SQL code repository or
have learned coding through experience). Can you tell that I like the SSMS tool set?

SQL Server Management Studio 95

To confi gure global settings, click the Tools menu and select Options. You’ll be presented
with a dialog like the one in Figure 3.4.

F I GU R E 3 . 4 The SSMS Options dialog

As you can see, you have several confi guration options, including the following:

Environment This includes start-up window layouts, tabbed interfaces versus multiple
document interfaces (MDI), fonts and text colors, keyboard shortcut schemes, and options
for help confi guration.

Text Editor This includes fi le extensions mapped to editor confi gurations, statement com-
pletion options, editor tab settings, and status bar confi guration settings.

Query Execution Here you can confi gure the batch separator keyword (that’s right, you
could use something instead of GO), stipulate the number of rows a query is allowed to
return before the server cancels the query, and confi gure advanced execution settings such
as deadlock priorities and transaction isolation levels.

Query Results Here you can specify that query results are presented as a grid, text, or fi le,
and confi gure various parameters for the different kinds of result sets.

SQL Server Object Explorer Here you can change the top n number of records to a value
greater or less than 1,000 and confi gure options for automatic scripting of objects such as
tables or entire databases.

Designers and Source Control Here you can confi gure settings for the table designer, the
maintenance plan designer, and source control management.

SQL Server Always On Here you can confi gure settings for the AlwaysOn Dashboard,
such as automatic refresh and user-defi ned policies.

Look through these various options and make sure the environment is confi gured so that
it is optimized for the way you work. For example, you could start SSMS with the environ-
ment set to open the Object Explorer and the Activity Monitor automatically on start-up.
This is my preferred start-up mode; however, you may not like this confi guration, but that’s

96 Chapter 3 ■ Working with the Administration Tools

the beauty of the tool: you can confi gure it as you like it. Most beginning DBAs prefer an
interface similar to the one in Figure 3.5, but as you work with the tool, you may realize
that activity monitoring is a very important part of your job, and you may want the initial
screen to show the activity so that you can analyze it immediately upon opening.

F I GU R E 3 .5 SSMS start-up mode with a query window

In the following sections, you will learn to confi gure the various windows in SSMS. You
will launch a New Query window and view the error list. You will also look at reports
against the AdventureWorks database. Finally, you will learn to script a task that is confi g-
ured in the GUI interface.

If you have not already done so, you will need to download and install
the AdventureWorks database before performing this exercise. Chapter 2,
“Installing SQL Server 2012,” provides instructions for acquiring the
AdventureWorks database.

SQL Server Management Studio 97

Loading SSMS and Working with Windows
The fi rst thing you’ll need to do to confi gure SSMS is launch it from the Microsoft SQL
Server 2012 program group. Then you can confi gure and work with windows within the
application. Exercise 3.4 steps you through this process.

E X E R C I S E 3 . 4

Performing the Initial SSMS Confi guration

I have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at: www.sybex.com/go/sqlserver12admin.

1. Log on to the Windows server as an administrator.

2. Launch SQL Server Management Studio by clicking Start ➢ All Programs ➢ Microsoft
SQL Server 2012 ➢ SQL Server Management Studio.

3. You will be presented with a connection dialog like the one shown here. Select the
appropriate server (the default instance in this case), and choose Windows Authentica-
tion to allow your administrative credentials to pass through.

4. Click the Connect button when everything is confi gured appropriately in the Connect To
Server dialog box.

5. To modify the status of the Object Explorer window (also called a pane or panel), click
the Windows Position button, which looks like an arrow pointing down, in the upper-
right corner of the Object Explorer window.

6. Select Float from the list, and notice that the window is now released from the rest of
the SSMS interface, as shown here.

http://www.sybex.com/go/sqlserver12admin

98 Chapter 3 ■ Working with the Administration Tools

7. Right-click the title bar at the top of the now-fl oating Object Explorer window, and
select Dock.

8. Left-click and drag the title bar of the Object Explorer window, and notice that several
docking indicators appear.

9. Drag the Object Explorer window until your mouse hovers over the left docking indica-
tor and a blue shaded area appears, indicating that the windows will be docked there.

10. Release the mouse button to dock the window.

You can add more windows to the SSMS interface from the View menu. For example, if you
select View ➢ Other Windows ➢ Web Browser, you can open a web browser inside the
SSMS interface. If you’ve opened a web browser window in SSMS, please click the X in
the upper-right corner of the web browser tab to close it before continuing.

Query Editor Windows and Error Lists
The Error List view is an important feature of the Query Editor in SQL Server 2012, and it
is very helpful in tracking down problems. Exercise 3.5 shows how to launch a New Query
window and use the Error List view as well.

SQL Server Management Studio 99

E X E R C I S E 3 . 5

Opening a New Query Window and Viewing the Error List

1. Click the New Query button or press Ctrl+N to open a Query Editor window, as shown here.

2. Enter the following code into the Query Editor window:

USE master;

CREATE Database test;

USE test;

3. The word test in the USE test; line of code will be underlined in red on your screen,
which indicates an error.

4. Click View ➢ Error List to view the cause of the error, as shown here.

100 Chapter 3 ■ Working with the Administration Tools

5. To close the Query Editor, click the X in the upper-right corner of the SQLQuery1.sql
window, and choose No when the Save Changes dialog appears.

6. Click the X in the upper-right corner of the Error List window to close the window.

Note that if you wanted to resolve the problem in the previous code snippet, you would
insert a GO directive between the CREATE Database statement and the USE test statement.

Viewing Reports
SQL Server 2005 fi rst introduced integrated predesigned reports into the SSMS interface. SQL
Server 2012 has improved on these reports and increased the number of reports. The
method for accessing reports differs between SQL Server 2005 and SQL Server 2012, but it
is the same as it was in SQL Server 2008 and 2008 R2. To view database reports, perform
the steps in Exercise 3.6.

E X E R C I S E 3 . 6

Viewing Predesigned Reports

1. Expand the Databases node in the SSMS Object Explorer.

2. Right-click the AdventureWorks database, and select Reports ➢ Standard Reports ➢
Disk Usage.

3. View the report in the right panel, as shown here.

4. Close the report by clicking the X in the upper-right corner of the report window tab.

SQL Server Management Studio 101

You can view any report on any database by repeating the steps listed here and replacing
AdventureWorks with the intended database and replacing Disk Usage with the intended
report. You can also view server-level reports by right-clicking the root server node and
selecting Reports.

Scripting Administrative Tasks
One of my favorite features, fi rst introduced in SQL Server 2005, is the ability to generate
scripts for administrative tasks. These scripts provide documentation of the actions taken
and may be used to repeat the actions at a later time. Exercise 3.7 makes these steps simple.

E X E R C I S E 3 . 7

Generating Administrative Task Scripts

1. In the Object Explorer’s Databases node, right-click the AdventureWorks database, and
select Properties.

2. Select the Options page in the Database Properties – AdventureWorks dialog.

3. Change the Recovery model value to Full, as shown here.

102 Chapter 3 ■ Working with the Administration Tools

4. Do not click OK. Instead, click the Script button, and you may see some brief screen
fl ashing behind the Database Properties – AdventureWorks dialog. This behavior is
normal.

5. Click Cancel to close the dialog.

6. You should see a Query Editor window with code similar to the following:

USE [master]
GO
ALTER Database [AdventureWorks] SET RECOVERY FULL WITH NO_WAIT
GO

7. Execute the code by clicking the Execute button or by pressing F5 on the keyboard.

At this point, the AdventureWorks database is running in the full recovery model (don’t
worry, you’ll learn all about it in Chapter 17, “Backup and Restoration”), and you’ve
learned how to generate a script from within an administrative GUI dialog.

You may want to spend some more time exploring SSMS. As long as you are on a test
machine, you really can’t do any damage, so go ahead and explore its many features.

SQL Server Data Tools
SQL Server Data Tools (SSDT) was previously known as the SQL Server Business Intel-
ligence Development Studio (lovingly known as BIDS to reduce the mouthful). It was used
for Reporting Services, Analysis Services, and Integration Services projects in SQL Server
2005 through 2008 R2. This tool has been replaced with the SQL Server Data Tools,
which is now used to manage the same components and is actually an implementation of
the Visual Studio 2010 shell. In this book, you will focus on core administration of SQL
Server, so most of the content focusing on SSDT shell will be related to Integration Services.
However, Chapter 13, “Implementing Advanced Features,” will introduce you to Report-
ing Services and Analysis Services as well. Integration Services will be covered in detail in
Chapters 13, 14, and 22. For now, let’s look at the basic features and interface provided by
the SSDT application.

Overview of SSDT
SSDT is used to create projects of different types. SSDT is basically an implementation of
the Visual Studio 2010 shell (Microsoft’s premium software-development environment)
designed specifi cally for working with SQL Server components such as Reporting Services
and Integration Services. With a default installation, you can create any of the following
project types:

SQL Server Data Tools 103

Analysis Services Project The Analysis Services projects are used to contain and manage
the resources used for an Analysis Services database. An Analysis Services project can be
created based on an existing database or by using the Analysis Services template.

Integration Services Project An Integration Services project contains the various fi les and
objects used to manage an Integration Services package. The package may include several
steps to be taken against data sources and destinations.

Report Server Project The Report Server project contains objects for Reporting Services
reports. One or more reports may be contained within a project.

Report Server Project Wizard The Report Server Project Wizard option results in the
same Reporting Services project as the simpler Report Server Project option. The difference
is that the wizard holds your hand as you make key decisions about the report.

In addition to the concept of projects, SSDT supports solutions (as does SSMS). A solu-
tion is a collection of one or more projects. For example, you may create a solution that
includes an Analysis Services project, an Integration Services project, and a Reporting
Services project. The Analysis Services project may be used to manage and accommodate
data used by the Integration Services project to provision a data store used by the Reporting
Services project. This is the way solutions are intended to be used: projects that “solve”
a problem are grouped together.

Figure 3.6 shows the SSDT interface. As you can see, it is very similar to the SSMS interface.
It supports the fl oating or docked windows and even includes an error-tracking
interface much like the Query Editor in SSMS.

F I GU R E 3 .6 The SSDT interface

104 Chapter 3 ■ Working with the Administration Tools

Performing Common SSDT Tasks
The most common tasks a DBA performs in SSDT are managing projects and creating
Integration Services packages. For DBAs who also create and manage reports, the Report
Server projects may also be used; for DBAs who must work with data warehouses, business
intelligence, and the like, Analysis Services projects will be used. The primary focus of this
book is on the implementation and administration of the core SQL Server functionality, so
this section will walk you through working with projects and creating a basic Integration
Services package.

Working with Projects and Solutions
Solutions are a bit confusing to beginners working in SSDT. This is because the File menu
does not contain a New Solution option. However, projects exist in solutions. Because you
cannot create a new solution directly and projects are said to exist in solutions, many users
get confused. The key to clearing out the cobwebs is to notice what the New Project dialog
presents. Take a look at Figure 3.7, and notice the last fi eld, labeled Solution Name. This is
where you create a new solution.

F I GU R E 3 .7 Creating a new project and solution

Once you’ve created a single project solution, you can add new projects to it. If you open a
solution and then click File ➢ New ➢ Project, the New Project dialog changes to allow for
the creation of new projects within an existing solution. Notice the difference in
Figure 3.8.

SQL Server Data Tools 105

F I GU R E 3 . 8 Adding a project to an existing solution

When you have multiple projects in a single solution, the Solution Explorer window looks
similar to what you see in Figure 3.9. You can easily move from one project to another, and
the solution is a useful way to bring related projects together into one location for manage-
ment and utilization.

F I GU R E 3 . 9 Solution Explorer with multiple projects

106 Chapter 3 ■ Working with the Administration Tools

One of the primary tasks you’ll perform in SSDT is creating a project and one or more
solutions. Exercise 3.8 walks you through the simple steps used to perform these tasks.

E X E R C I S E 3 . 8

Creating a New Project and a New Solution

1. From within SSDT, click File ➢ New ➢ Project.

2. Select the appropriate project type.

3. Provide a name, storage location, and solution name.

4. Click OK.

Sometimes you’ll have an existing solution and need to create additional projects within
that solution. For example, you may have a solution called Engineering Database Projects.
You may need to add a Reporting Services project or an Integration Services project to this
existing solution. Exercise 3.9 provides the steps required to add a project to an existing
solution.

E X E R C I S E 3 . 9

Creating a New Project in an Existing Solution

1. From within SSDT, click File ➢ Open ➢ Project/Solution.

2. Select the solution to load.

3. After the solution loads, click File ➢ New ➢ Project.

4. Select the appropriate project type.

5. Provide a name and storage location.

6. In the Solution fi eld, choose Add To Solution.

7. Click OK.

If you need to delete a project from a solution, you’ll need to perform the steps in Exer-
cise 3.10. You may need to delete a project if the project no longer serves your needs or
if you’ve replaced it with a newer project. It’s not uncommon to create a new version of a
project before deleting the old version. This way, you can continue using the old version
until the new version is complete and fully tested.

SQL Server Data Tools 107

E X E R C I S E 3 .10

Deleting a Project from a Solution

1. From within SSDT, ensure that the Solution Explorer window is open by selecting
View ➢ Solution Explorer or pressing Ctrl+Alt+L.

2. In the Solution Explorer window, right-click the project you want to delete, and select
Remove.

3. Click OK to accept that the project will be removed.

4. Save or discard changes in the Save Changes dialog that may appear by selecting Yes to
save changes or No to discard them.

Creating Integration Services Packages
SQL Server Integration Services (SSIS) packages allow you to perform ETL tasks—among
many others. ETL stands for extract, transform, and load. You may need to extract data
from one source, transform (also called massage by some) the data in some way, and then
load it into a destination. Or you may simply read the data, transform it, and then write
it back into the source. Whatever the ETL needs, SSIS is the solution in SQL Server. SSIS
allows you to create packages that perform hundreds of potential data-related tasks. SSDT
is used to create these SSIS packages.

In fact, SSIS is so powerful that many organizations have purchased SQL Server Stan-
dard edition just to get the SSIS component for their other database servers, such as MySQL
or Oracle. There’s no question that SSIS is powerful; however, this power does come at a
cost, and that cost is in the area of complexity. SSIS is so complex that very large books are
devoted to covering the topic. For now, you will just learn to export some data from a data-
base. In Chapter 13, you’ll dive a little deeper into what SSIS can do.

You have two basic options for creating an SSIS package. You can either run a wizard
that creates the package for you, or you can manually create the package step-by-step using
SSDT. Of course, wizards are easier to use, but they are also less powerful. However,
you’ll start with the easy task of creating an export package by using a wizard. Exercise 3.11
steps you through the process of using the Import and Export Wizard.

E X E R C I S E 3 .11

Using the Import and Export Wizard

1. W ith an Integration Services project open, launch the Import and Export Wizard by
clicking Project ➢ SSIS Import And Export Wizard. When you do this, a Welcome dia-
log box appears. Just click Next to move on from the Welcome dialog, and you’ll see a
screen like the one shown here.

108 Chapter 3 ■ Working with the Administration Tools

2. On this screen, the defaults were accepted with the exception of the database, where
AdventureWorks2012 was chosen. You could also choose a remote server or a different
client. For example, clients are provided for Oracle, Microsoft Access, Microsoft Excel, and
many other data sources. With the AdventureWorks2012 database selected, click Next.

3. The following image shows how to confi gure the Choose A Destination screen. The data
is being exported to a fl at fi le named C:\ DataExport\salesinfo.csv. A column delim-
iter was chosen, which means that the delimiting character can be selected later in the
wizard. The Column Names in the First Data Row option is also selected, which will pro-
vide a quality data source for importing into other systems. With these settings in place,
you can click Next to move on from the Choose A Destination screen.

SQL Server Data Tools 109

4. In the Specify Table Copy or Query dialog, choose Write A Query To Specify The Data
To Transfer. This will allow you to easily pull just the data you need. With this option
selected, click Next. The next screen asks you to provide a source query. You can load
one from a fi le or type the query manually. Enter the following query:

SELECT
 Sales.SalesOrderHeader.SalesOrderID,
 Sales.SalesOrderHeader.OrderDate,
 Sales.SalesOrderHeader.DueDate,
 Sales.SalesOrderHeader.Status,
 Sales.SalesOrderHeader.AccountNumber,
 Production.Product.ProductID,
 Production.Product.Name AS ProductName,
 Production.Product.ListPrice,
 Sales.SalesOrderDetail.OrderQty,
 Sales.SalesOrderDetail.UnitPrice,
 Sales.SalesOrderDetail.UnitPriceDiscount
FROM Sales.SalesOrderHeader
 INNER JOIN Sales.SalesOrderDetail
 ON Sales.SalesOrderHeader.SalesOrderID = Sales.SalesOrderDetail.SalesOrderID
 INNER JOIN Production.Product
 ON Sales.SalesOrderDetail.ProductID = Production.Product.ProductID;

5. Don’t worry too much about the T-SQL code for now. Just know that you are pulling
data from several tables and aggregating it together for your users. The code you use in
real-world scenarios would be very different, because you would be dealing with your
specifi c databases and the data you need to export. This query is one of the most
complicated areas in the wizard. You could use the GUI Query Designer to write
the query and then copy and paste it here. To use the GUI Query Designer, open a New
Query window, right-click in the window, and select Design Query In Editor. The following
image shows the wizard dialog with the query in place. You can click the Parse button to
ensure that the code is correct and without syntax errors. Once you are sure the query
is correct, click Next.

110 Chapter 3 ■ Working with the Administration Tools

6. The Confi gure Flat File Destination screen allows you to change the column delimiter,
but you will accept the default of a comma. Commas are supported by most data appli-
cations that can import a delimited fi le. In fact, most delimited fi les are known as either
comma-delimited or tab-delimited fi les. For example, Microsoft Excel supports auto-
matic importing of comma-delimited data stored in CSV fi les. This screen also allows
you to edit mappings so that you can exclude some columns or rename the destination
if desired. You can even preview the data to make sure it looks the way it should. Leave
the options at their defaults, as shown in the preceding image, and click Next.

SQL Server Data Tools 111

7. The fi nal screen is a summary screen that indicates the choices you’ve made. It gives
you a fi nal chance to go back and make changes. Because everything is confi gured the
way you need it, click Finish. Ideally, the report will indicate that the export function was
created successfully. If it does, you can click Close to exit the wizard.

Once the wizard completes, you’ll notice a new package resting in your project. The
package is usually named something useless like Package 1 or Package 2 or something like
that. You may want to right-click it and select Rename to give it a more meaningful name.
The example was renamed ExportCSVSales, and you can see the result in Figure 3.10.

F I GU R E 3 .10 Viewing the package created by the wizard

112 Chapter 3 ■ Working with the Administration Tools

Notice that the Data Flow tab was selected in Figure 3.10 so you can see the items that
are used by the wizard. That seemingly lengthy wizard used only two data fl ow items: a
data source and a data destination. The data source is the T-SQL query, and the data des-
tination is the fl at fi le. What was the transformation in this case? It was the aggregation of
data from multiple underlying tables. They’ve been combined into one fl at data source.

If you want to test the package, you can click the Debug menu and select Start Debug-
ging or press the F5 key on your keyboard. This package can consume more than 12MB
of disk space upon execution because it exports all of the data. Ensure you have suffi cient
free space if you plan to run it. The debugging results are shown in Figure 3.11. When you
debug a package, you hope to see all green boxes in the end. If you do, you can click the
Debug menu and select Stop Debugging or press Shift+F5.

F I GU R E 3 .11 Debugging the package

The last step is to look at the package output from the debugging session. If you fol-
lowed along on a test server, you should have a fi le named salesinfo.csv in the C:\
ExportData folder. When you navigate to that folder, you can open the fi le to view the con-
tents. The data is shown in Figure 3.12 as it appears in Notepad.

SQL Server Profiler 113

F I GU R E 3 .12 Viewing the CSV data

SQL Server Profiler
The SQL Server Profi ler (from here on simply called Profi ler) is like a network packet ana-
lyzer for all things SQL Server. A network packet analyzer is a software program that reads
packets off the network wire for low-level analysis. In reality, the SQL Server Profi ler is
even better than a network packet analyzer. It not only captures the activity that transpires
based on network requests, but it also captures everything else. You can monitor for gen-
eral activity, such as T-SQL statement execution, or more advanced activity, such as dead-
lock occurrences and deprecated features. The interface can be a bit overwhelming to some
people because it is a blank slate when you fi rst launch it. But don’t let this intimidate you.
As you’ll see in later chapters, the Profi ler will become your best friend for troubleshooting,
analyzing, and optimizing your SQL Server installations.

When you fi rst launch the Profi ler, you’ll see a screen like the one in Figure 3.13. Looking
at this screen, you can see why so many beginning SQL Server DBAs simply click the X in
the upper-right corner and never look back; however, this is a big mistake. The Profi ler
is the key tool for SQL Server monitoring and analysis. It is perfect for performance tuning,
application troubleshooting, and simply learning more about the inner workings of SQL
Server.

114 Chapter 3 ■ Working with the Administration Tools

F I GU R E 3 .13 The SQL Server Profiler default interface

To make something happen in the Profi ler, you need to create a trace—a collection of
logged information stored in a fi le or a database table. The information logged will depend
on the choices you make when you create the trace.

When you select File ➢ New Trace, the server and service to which you want to connect
must be provided. Once the connection is established, you may confi gure the trace proper-
ties; these include the trace name, the template used or a blank template, the fi le or table
name in which to save the trace, and the trace stop time for when you want the trace to stop
automatically. Figure 3.14 shows these basic settings. You can also create a trace without
specifying a fi le or table name to indicate that you only want to retain the trace in the serv-
er’s memory. This is useful for quick analysis when you do not need to save the trace log.

F I GU R E 3 .14 Basic Profiler trace settings

SQL Server Profiler 115

In addition to the basic settings, you may also choose to customize the events you want
to log. If you want to do this, you will need to click the Event Selection tab. You will be pre-
sented with a screen similar to the one in Figure 3.15 assuming you’ve chosen the Standard
(default) template on the General tab. Notice the Show All Events and Show All columns
check boxes in the lower-right corner. If you check one or both of these check boxes, you
will be amazed at the amount of information that can be logged or traced by the Profi ler.

F I GU R E 3 .15 Event selection in a Profiler trace

Because so many events and columns exist, it’s good to know that you can also fi lter on the
Event Selection tab. Clicking the Column Filters button will bring up the dialog shown in
Figure 3.16. From here, you can fi lter on any column value, and you can look for either matches
(“like”) or mismatches (“not like”). This feature can be used to monitor only events triggered
from a specifi c application, a specifi c user, a specifi c computer (by host name), and more.

F I GU R E 3 .16 Event filtering in a Profiler trace

116 Chapter 3 ■ Working with the Administration Tools

Once you have created the trace settings, you can click the Run button, and the trace
will begin to run immediately. Figure 3.17 shows a trace running, which uses the Standard
(default) template and no custom event selections of fi lters. The SSMS was launched after
the trace started, and all of the captured events shown in Figure 3.17 were generated. While
this is a simple example, it does reveal the power of the tool. Additionally, you can see the
options available while a trace is running.

F I GU R E 3 .17 Capturing SSMS start-up events

Here’s the good news. If you create a trace but forget to specify the fi le or table name, you
can save the trace anyway. Just stop the trace once you’ve captured everything you need to
capture and then select File ➢ Save As to choose among tables, trace fi les, or XML trace fi les.

You’ll revisit the Profi ler in Chapter 15, “Performance Monitoring and Tuning.” In that
chapter, you will learn how to trace deadlocks, capture performance traces, and correlate
performance logs to Profi ler traces.

Books Online
SQL Server has shipped with the most exhaustive online help system of any Microsoft
product for several versions now. The online help is called Books Online and is now avail-
able as an add-on to the Microsoft Help Viewer, and it can be installed from the distribu-
tion media (CD or DVD) or downloaded and installed separately. If you search for SQL
Server 2012 Books Online download at Google.com, the fi rst search result link is usually
the newest version waiting for download.

http://Google.com

Books Online 117

Make sure you download the latest version. Books Online may be updated several times
during the life of a given version. For example, at the time of this writing, the most recent
version of the SQL Server 2005 Books Online was November 2008, and the SQL Server
2000 Books Online had been updated as recently as June 2007. Clearly, Microsoft corrects
errors, adds information, and changes support policies stated in the documentation, so you
want to use the most recent copy available.

You may be wondering why a book about SQL Server database administration would
bother to cover Books Online. The answer is simple: Books Online is your immediate refer-
ence that is always with you on your laptop or desktop computer. You can use it to quickly
locate information such as data type descriptions, sample code, and high-level overviews of
how various technologies work. The major difference between Books Online and this book
is that this book provides you with real-world experience, while Books Online supplies only
the cold hard facts. This is as online help should be, but please note that Books Online’s
examples are usually limited at best.

You should also note that Books Online has some extremely helpful features that most
people don’t even use. For example, favorites are extremely useful. You can create direct
links to pages you’ll need again and again, such as the Data Types (Transact-SQL) page or
the massive Glossary page. Once you’ve added a page to your favorites, you can navigate to
that page again without having to search for it.

Additionally, you can integrate online searching with Books Online. This way, you
retrieve the Books Online information plus information at Microsoft TechNet and MSDN.
The odds of fi nding helpful information increase dramatically when integrating with online
content; however, you can also easily disable this when working in an area without online
access. Simply click the Tools menu and select Options. From here, select the Online child
node within the Help node and choose Try Local Only, Not Online. Figure 3.18 shows the
Books Online content within the Microsoft Help Viewer.

F I GU R E 3 .18 Books Online content in the Microsoft Help viewer

118 Chapter 3 ■ Working with the Administration Tools

While the Books Online feature has been renamed simply SQL Server 2010
Product Documentation, it contains updated versions of the same content in
previous editions of Books Online. Within the Product Documentation, it is still
called Books Online when you download it into the Microsoft Help Viewer.

Windows Server Administration
for the DBA
To confi gure a SQL Server properly, you will need to understand the basics of Windows
Server account management. Each service should run in the context of either a local Win-
dows account or a Windows domain (Active Directory) account. If you are not a Windows
administrator (in that you do not belong to the local Administrators group or the Domain
Admins group), you may need to solicit the help of someone who has the appropriate privi-
leges. Either way, you’ll need to know the appropriate settings for the user accounts used by
the SQL Server services.

Next, you’ll need to understand the basics of fi le management. At least two important
skills must be acquired: folder management and permission management. You’ll need to
know how to create folders for data storage and backups. You’ll also need to know how to
confi gure permissions so that the data stored in the folders is properly secured.

Finally, you must understand the basics of network confi guration within a Windows
environment. This is basically the same regardless of whether it’s a Windows server or a
Windows client that you are confi guring. You’ll need to know how to confi gure and verify
the TCP/IP protocol suite including DNS settings and network communications. Newer
distributions of Windows also ship with a built-in fi rewall. You must understand how to
confi gure the Windows Firewall to allow for communications with SQL Server. In fact, the
SQL Server installation process warns you about the Windows Firewall, if it is not confi g-
ured to allow such communications.

User Account Management
SQL Server 2012 can run on several versions of Windows Server. These versions include
Windows Server 2008 and Windows Server 2008 R2 and will eventually include Win-
dows Server 2012. In addition, it will likely run on additional future versions of Windows
Server. For this reason, it is diffi cult to provide the exact steps for use administration;
however, as a SQL Server 2012 DBA, you may be called on to perform such administra-
tion. The following items should be considered when creating user accounts for SQL
Server services and users:

Use separate accounts for each service. By using a unique account for each service, you
allow for the application of least privilege. No SQL Server service will have more power

Windows Server Administration for the DBA 119

than it needs. If a service is exploited through some vulnerability, the power of the attacker
is reduced.

Implement strong password policies for users. This is more of a Group Policy setting,
but you should ensure that the users accessing your sensitive data have strong passwords.
You should use at least six characters for the length and have multiple character types (i.e.,
uppercase, lowercase, and numbers). Of course, longer passwords are even more secure, but
you will rarely need passwords longer than 10 characters. If you think you do, you might
actually need a different authentication solution such as biometrics or smartcards.

Use the same user account for domain login and SQL Server login. Security topics are
addressed in full in Chapters 18 through 20, but it is important that you use as few SQL
logins as possible. If the user logs into the Windows domain but uses another login for
access to the SQL Server that is a SQL login, you may be unnecessarily exposing yourself to
the risk of password hacks.

Use groups for simplified management. You can add a Windows group as a SQL Server
principal. A principal is simply an entity that can be given access to resources. For example,
both users and groups are principals. When you add a group as a security principal, you
automatically provide all members of that group with access to the SQL Server.

File System Management
Another important Windows-level administration task is fi le system management. This
includes the confi guration of drives and storage locations as well as the management of
permissions. For SQL Server, you will need to provide reliable and effi cient storage for the
database fi les and the log fi les. The database fi les should be stored on a suffi ciently large
drive that can grow as needed. The defi nition of suffi ciently large will vary for every data-
base. Some databases are only a few megabytes in size, while others are several terabytes.
The log fi les should be stored on drives with write-caching disabled as much as possible.
This ensures that the transactions are really written to the log when the SQL Server Data-
base Engine thinks they are.

Permissions are also important. You do not want your SQL Server database fi les and
logs located in a folder with Read permissions granted to Everyone. (In Windows sys-
tems, Everyone is a literal internal group that includes even those who have not logged
on.) Remember, the only accounts that need access to the database fi les and logs are the
accounts used by the SQL Server services and accounts used by administrative personnel.
Consider confi guring permissions so that the service accounts have the needed access and
all domain admins have full control access to the folder. Domain Admins is also a group
that exists in all Windows domains. Domain Admins members are automatically members
of the local Administrators group on every machine in the domain. Chapter 20, “Security
Best Practices,” covers permissions as they relate to SQL Server 2012 in depth.

You can perform fi le administration tasks from either the GUI interface or the command
line. In the GUI interface, it’s as simple as right-clicking the fi le or folder and selecting

120 Chapter 3 ■ Working with the Administration Tools

Properties. In the Properties dialog, you should click the Security tab. Figure 3.19 shows an
example of this interface in Windows Server 2008 R2. From here you can add or remove
users or groups and grant or deny the appropriate permissions.

F I GU R E 3 .19 Working with permissions

From the command line, you can use the ICACLS command. This command supports
adding and removing permissions and even supports directory recursion. Command-line
tools are useful because they can be scripted to automate routine tasks.

Network Configuration Administration
The fi nal Windows-level administration task set this chapter will cover is network confi gu-
ration. If the network settings are confi gured improperly, it doesn’t matter how well your
SQL Server is running. No one will be able to access it. Five main tasks are important for
network confi guration:

■ Confi guring TCP/IP

■ Verifying TCP/IP

■ Verifying DNS

■ Verifying TCP/IP communications

■ Confi guring the Windows Firewall

Windows Server Administration for the DBA 121

Configuring TCP/IP
In most cases, you will use the GUI interface to confi gure TCP/IP settings; however, the
NETSH command can be used from the command line as well. On a Windows Server 2008
or 2008 R2 server, you access the IP address settings in the GUI by following the procedure
in Exercise 3.12.

E X E R C I S E 3 .12

Confi guring IP Settings in the GUI

1. Click the Start menu.

2. Right-click the Network item, and select Properties.

3. In the left Task list, select Manage Network Connections or Change Adapter Settings
depending on your OS.

4. Right-click the network connection or adapter you want to confi gure, and select
Properties.

5. Double-click the Internet Protocol version 4 item to access the settings.

Once you’ve accessed the IP settings reached by performing the steps in Exercise 3.12,
you can confi gure a static IP address, which all servers should use, as well as other settings
such as the default gateway, subnet mask, and DNS servers. Figure 3.20 shows this dialog.

F I GU R E 3 . 20 The TCP/IP configuration

122 Chapter 3 ■ Working with the Administration Tools

Verifying TCP/IP
The simplest way to verify TCP/IP settings in any Windows system is to visit the command
prompt. To get to the command prompt, follow the steps in Exercise 3.13.

E X E R C I S E 3 .13

Opening the Windows Command Prompt

1. Click the Start menu, and select Run.

2. Type cmd into the Open fi eld, and click OK or press Enter.

3. At the newly opened command prompt, type COLOR /?.

That last step is a little bonus. You can use the COLOR command any time to change your
background and foreground colors in a command prompt. For example, you might like to
capture command prompt screens with a white background and a black foreground, so you
will issue the COLOR f0 command.

To view the TCP/IP confi guration and ensure that everything is confi gured appropri-
ately, use the IPCONFIG command. If you type IPCONFIG and press Enter, you will receive
basic information about the IP confi guration for your network connections, as shown in
Figure 3.21.

F I GU R E 3 . 21 Basic IPConfig output

You may have noticed that the basic output does not include DNS settings. DNS
settings are extremely important in modern networks. To see this information, plus a lot
more, use the IPCONFIG /ALL command. You’ll see much more detailed output, like that in
Figure 3.22.

Windows Server Administration for the DBA 123

F I GU R E 3 . 22 Detailed IPConfig output

In addition to IPCONFIG, you can use the NETSH command to view IP confi guration
information. Type NETSH INTERFACE IP SHOW CONFIG and press Enter. You’ll receive
similar information to that revealed by IPCONFIG. NETSH is, however, more powerful in that
it can be used to actually reconfi gure IP settings as well.

Verifying DNS
As stated previously, DNS is extremely important in today’s networks. This importance
is not just related to the Internet, although that is important in and of itself; however, it is
also related to internal services. For example, Microsoft’s Active Directory Domain Services
(ADDS) depends heavily on DNS. Clients use DNS to locate domain controllers. Servers use
DNS to fi nd domain controllers confi gured for specifi c tasks and more. Clearly, DNS must
be working properly.

The simplest test you can perform is to open your browser and attempt to connect to a
website based on the domain name. For example, if you can connect to www.SysEdCo.com,
it means you were able to resolve the domain name to the IP address, and DNS resolution is
working for the Internet.

You may also use the command-prompt tool, NSLOOKUP. NSLOOKUP allows you to perform
queries against DNS servers in order to ensure that DNS is operating appropriately. If you

http://www.SysEdCo.com

124 Chapter 3 ■ Working with the Administration Tools

simply type NSLOOKUP and press Enter, you will be placed in a special command-line inter-
face where you can type either IP addresses or host names to perform lookups. Figure 3.23
shows the results from simply typing www.sysedco.com into this special interface.

F I GU R E 3 . 23 Verifying DNS with NSLOOKUP

Verifying TCP/IP Communications
If you know you have the confi guration right and DNS is confi gured appropriately, you can
perform tests that will verify the proper functionality of TCP/IP communications across
your network. Three primary command-line tools can be used for this:

■ PING

■ TraceRT

■ PathPING

PING

PING is the most commonly used of the three. It provides a simple interface that is used to
check whether a remote host is live on the network. For PING to work, the remote host must
allow incoming ICMP requests. Many machines are confi gured with fi rewalls today, which
do not allow pinging by default. If ICMP is supported, you can ping the remote machine
with this simple command:

PING ip address or hostname

For example, if you want to test the IP address 10.10.47.17, you would type the
following:

PING 10.10.47.17

If you know the host name but not the IP address and if host name resolution is working
properly on your machine, you can type something like this:

http://www.sysedco.com

Windows Server Administration for the DBA 125

PING server13

The hostname of server13 will be resolved to the IP address, and then the IP address will
be tested for a response. PING is very useful for quick and basic testing, but what do you
do if the PING command fails and you know that the remote machine does allow incoming
ICMP requests? Then you may need to move on to the TraceRT tool.

TraceRT

TraceRT is used to test each connection along the path to a destination. For example, you
may be communicating with a server that is three network routers away from you and the
communications suddenly stop working. You ping the server, but get no response. This,
alone, does not verify that the server is the problem. It could be some device in the path.
If you execute TraceRT IP address from a command prompt, you can fi nd the router that is
down. You may also fi nd that all routers are working fi ne, which indicates that the server
itself is really down.

PathPING

PathPING is PING’s and TraceRT’s newest sibling. This command not only tests the devices
along the path, but it generates reports to help you determine network communications
problems such as latency and intermittent problems. Figure 3.24 shows a PathPING opera-
tion against www.sysedco.com. To use PathPING, simply execute pathping IP address.

F I GU R E 3 . 2 4 PathPING in action

http://www.sysedco.com

126 Chapter 3 ■ Working with the Administration Tools

Configuring the Windows Firewall
When you install SQL Server 2012, you may receive warnings that the fi rewall is not
properly confi gured to support the services. Indeed, the Windows Firewall does not allow
incoming connections on TCP port 1433 by default, and this is the port that a default
instance of SQL Server uses. You may be required to open up the appropriate fi rewall ports
for SQL Server to function properly. The steps vary from one version of Windows Server to
another, but the steps in Exercise 3.14 will work in Windows Server 2008 R2.

E X E R C I S E 3 .14

Confi guring the Windows Firewall

1. Click Start, and select Control Panel.

2. If necessary, view by Small Icons and then open the Windows Firewall applet.

3. Click Advanced Settings.

4. Click the Inbound Rules node.

5. Select New Rule in the Actions pane; then select a port rule in the New Inbound Rule
Wizard and click Next. Specify Port 1433 as shown here and then click Next.

6. Choose to Allow The Connection and then click Next. Apply it to all profi les (Domain,
Private and Public) and then click Next. Name the rule SQL Server Incoming, and click
Finish to create the rule.

Chapter Essentials 127

While these steps allow communications into the default instance of the SQL Server
Database Engine, they do not accommodate named instances. You will need to use the
SSCM (covered earlier in this chapter) to locate the dynamic port and then allow that port
through the fi rewall. However, the basic process is the same once you know the port that
should be allowed.

Summary
In this chapter, you toured the various GUI administration tools provided with SQL Server
2012. You began by looking at the SQL Server Confi guration Manager (SSCM) and using
it to manage services, service accounts, and protocols. Next, you used SQL Server Man-
agement Studio (SSMS), the primary administration tool for SQL Server. You learned to
confi gure the SSMS interface and use the scripting options so that you can document and
automate administrative tasks.

The SQL Server SQL Server Data Tools (SSDT) was explored next. You learned about
solutions and projects and how to create, manage, and delete them. Next, the SQL Server
Profi ler was introduced. You learned to create a trace of SQL Server activity using this tool.
You next saw Books Online and some of its little-used features. Finally, Windows adminis-
tration was covered from the perspective of the DBA.

Chapter Essentials

Using SQL Server Configuration Manager The SSCM is the utility of choice for service
management in SQL Server. Use it to change service accounts, modify start-up parameters,
and stop or start a SQL Server service.

Using SQL Server Management Studio SSMS is the core administration tool for the SQL
Server environment. You can perform tasks from creating databases to building stored
procedures right inside this tool. Additionally, you can script out administrative tasks so
you can both learn the scripting code and automate it with jobs and other automation
techniques.

Using SQL Server Data Tools SSDT is used for Integration Services, Analysis Services,
and Reporting Services. The most common use for a core DBA is to create Integration Ser-
vices packages for ETL procedures. However, the tool is fl exible enough to serve the needs
of business intelligence authors and report managers as well.

Using SQL Server Profiler The Profi ler is the cool under-the-hood tool for SQL Server
DBAs. If you want to know what’s happening, this is the tool to use. You can capture dead-
locks, SQL statements, and more with this powerful tool.

128 Chapter 3 ■ Working with the Administration Tools

Using Books Online Books Online is just what it sounds like: a bunch of books on your
computer. The content is massive, but thankfully a search engine is provided.

Performing Windows Server Administration for the DBA As a SQL Server DBA, you may
be expected to perform Windows administration tasks. These tasks will likely include user
account management, fi le and folder management, and network confi guration. You should
know about the tools and techniques related to each of these three administrative task sets.

SQL Server
Command-Line
Administration

TOPICS COVERED IN THIS CHAPTER:

 ✓ Introducing the Command Prompt

 ✓ General Commands

 ✓ Batch Files

 ✓ Mastering SQLCMD

 ✓ Introducing Windows PowerShell

 ✓ Using SQL Server PowerShell Extensions

Chapter

4

Why would anyone want to use the command line to
administer SQL Server when Microsoft’s GUI tools are so
convenient? This question comes up quite frequently when

DBAs and other IT professionals are being coached on automation concepts in a Microsoft
environment. This chapter is focused on answering that question through demonstration,
but for now consider that the command line provides an interactive environment where you
can enter many different commands and redirect output to any location (fi le, printer, or
screen) that you desire. In addition, you can automate most command-line commands using
batch fi les.

This chapter will begin by discussing commands, starting with the built-in command
line (also called the command prompt) and the different ways you can customize and use
it. Then it will discuss the general commands that are common to all command-prompt
operations. These commands allow you to navigate the drive systems, communicate with
the operating system, and analyze the network. Finally, it will cover the topic of batch fi les,
which are convenient when you have a sequence of command-line steps to automate.

Once you’ve mastered the general command-line topics, you’ll move on to the SQL
Server-specifi c tools. You’ll see a demonstration of the SQLCMD tool and also a special
tool specifi cally designed for SQL Server Express edition. After I’ve covered the normal
command-line tools, you’ll dive into the Windows PowerShell interface. You’ll learn the
basics of working with Windows PowerShell and then the specifi cs of the SQL Server
extensions. Finally, you’ll get a brief introduction to script-writing for SQL Server using
Windows Scripting Host.

Are you ready to experience the coolest Windows and SQL Server administration
methods on the planet? If so, read on. If you are an expert at the Windows command line,
you may want to skim much of the chapter, but be sure to read the “Batch Files” section
if you are not familiar with the use of batch fi les. If you are also an expert in batch fi le
programming, you may want to just focus on the “Mastering SQLCMD” section, although
it’s defi nitely a good idea to scan the other material as a refresher, and you may even learn
a new tip or two that can make you a more effi cient server and database administrator.

Introducing the Command Prompt
The Windows command prompt is not what many people think it is. It is not DOS running
on top of Windows. In early versions of Windows, it was indeed the same COMMAND
.COM that provided the interface at the DOS command prompt; however, Windows NT
changed the way you interact with the command-prompt interface by providing CMD.EXE
as an alternative to COMMAND.COM. The CMD.EXE shell interface has several advantages over
COMMAND.COM:

http://COMMAND.COM
http://COMMAND.COM
http://COMMAND.COM
http://COMMAND.COM

Introducing the Command Prompt 131

■ CMD.EXE runs as a true 32-bit interface to the Windows NT through Windows Server
2008 R2 operating systems or a 64-bit interface on 64-bit editions. COMMAND.COM is still
there on 32-bit editions, but it should never be used unless you must support a very old
16-bit DOS application that requires it.

■ You have full support for long fi lenames. COMMAND.COM still uses the older 8.3 fi le-nam-
ing convention with the exception of SQL Server 2008 and newer, where it emulates
long fi lenames for the 16-bit interpreter.

■ COMMAND.COM is more memory and processor intensive because it requires NTVDM.EXE
(NT Virtual DOS Machine) to be loaded.

The good news is that CMD.EXE supports practically every one of the internal command-
interpreter commands that COMMAND.COM supported. Internal commands are those
commands that do not require an external executable. For example, DIR is a directory
listing command that is embedded in the CMD.EXE and COMMAND.COM interpreters. However,
commands like XCOPY and TREE are external commands that can be executed from the
command prompt. Figure 4.1 shows the CMD.EXE command prompt with the background
color set to white and the foreground color set to black.

F I GU R E 4 .1 The Windows command prompt

You can launch the command prompt in one of several ways:

■ Click Start ➢ All Programs ➢ Accessories ➢ Command Prompt.

■ Click Start ➢ Run, type CMD, and press Enter.

■ Assign a shortcut key to the Command Prompt shortcut on the Start menu. To do this,
follow these steps:

1. Click Start ➢ All Programs ➢ Accessories.

2. Right-click the Command Prompt item and select Properties.

3. On the Shortcut tab, enter the desired shortcut key (Ctrl+Alt +̀ [this is the backtick key]
is a good one because it is not commonly used by other applications).

4. Click OK.

http://COMMAND.COM
http://COMMAND.COM
http://COMMAND.COM
http://COMMAND.COM
http://COMMAND.COM

132 Chapter 4 ■ SQL Server Command-Line Administration

Once you’ve entered the desired shortcut key, you have a fast way of getting to the
command prompt. You may have been pressing Ctrl+Esc and then pressing R (for run),
typing CMD, and pressing Enter for years. Now, you can just press Ctrl+Alt +̀ and you’re there.

The command prompt can be customized in several ways. To see the options, click the
icon in the upper-left corner of the Command Prompt window and select Properties. From
there, you can confi gure four sets of parameters: general options, fonts, screen layout,
and colors.

If you right-click the title bar and select Defaults instead of Properties, you
will be able to configure the properties for all CMD sessions you initiate.
The Properties menu item is used to configure settings for the current
windows, and the Defaults item is used to configure defaults for all CMD
sessions.

General Command-Prompt Options
In Windows Server 2008 and 2008 R2, the Options tab provides several general
confi guration options for the command prompt, as shown in Figure 4.2, which shows the
Windows Server 2008 Options tab, having all the features referenced in this section. The
Cursor Size section of the dialog box allows you to do exactly what it says: change the
cursor size. When typing longer commands, some people fi nd the default small cursor to be
diffi cult to locate on the screen. You can use a medium or large cursor to resolve this issue.

F I GU R E 4 . 2 The command prompt's general options

Introducing the Command Prompt 133

The next section on the Options tab is Display Options. Here you can control whether
the command prompt runs in a windowed interface or full screen. You may want to set
this to Window and then use the Alt+Enter shortcut to jump to Full Screen when desired.
If you’ve never tried this, go ahead and launch a command prompt (CMD.EXE) on any
Windows Server version from 2000 to 2008 or newer system and press Alt+Enter. You
will be taken to a full-screen display. Press Alt+Enter again, and you’ll be taken back to
the Window display. With the proper setup, you can press Ctrl+Alt+̀ and then immediately
press Alt+Enter, and you’ll be sitting at a full-screen command-prompt interface. That’s
living. However, you can’t do this on Windows Server 2008 R2 anymore because it no
longer supports a full-screen instance of CMD.EXE.

You can also confi gure the Command History buffer from the Options tab. When you
allow for larger buffer sizes and more buffers, you enable the ability to scroll back through
more historic commands with the up and down arrow keys. Leaving this at 50 is a good
setting if you seldom need to go back in your previous command list any further than that.
The number of buffers values determines how many processes can have their own buffer
memories.

This last option is hard to understand without further explanation. If you run a CMD
session and then type CMD and press Enter from within that session, you launch another
CMD process within the fi rst. You can then type CMD and press Enter again to launch a
third process. If you allow for only two buffers, you will notice that the third instance of
CMD does not support the up and down arrow keys. If you rarely launch more than a
second instance inside a CMD window, you can just leave this at its default of 4.

The last setting you can confi gure in the Command History section is the Discard Old
Duplicates option. If you check this box, the Command History buffer will retain only one
copy of an executed command. For example, if you type CLS to clear the screen and you
type it fi ve times, it will exist in the history only once. The box is not checked by default.

The fi nal section of the Options tab is the Edit Options section. If you enable the
Quick Edit feature, you will be able to copy from the command prompt and paste into it.
More importantly, it enables copy-and-paste functions using the mouse. It works a little
oddly for most people, but you will simply highlight the text that you want to copy from
the command-prompt screen and then right-click. Immediately, the text is copied to the
Clipboard. Now you can paste it where you need it—either in the command prompt or in
another Windows application.

Font Settings
The font settings are important for readability. Figure 4.3 shows that you have two basic
choices. You can use raster fonts in an n × n resolution, or you can use the Lucida Console
font and then choose the font size. The latter option is most useful on high-resolution
displays. You can make the font size much larger so that it is very easy to work with
and read. The Bold Fonts option is not available in Figure 4.3 because the Raster Fonts
option is selected. Bold fonts are available only when you choose the Lucida Console font.
The Selected Font: Terminal section simply shows a sample of what the command line
(terminal) would look like with the chosen options on the tab.

134 Chapter 4 ■ SQL Server Command-Line Administration

Screen Layout
The Screen Layout tab is very important. You may run commands that scroll on and on for
hundreds or even thousands of lines. If you want to scroll back through that information,
you will need to increase the screen buffer size. This option is found on the Screen Layout tab
shown in Figure 4.4. You can also change the screen width in both characters and display. The
maximum screen buffer size is 9,999 lines. If you run a command with more output than this,
you will have to redirect the output to a fi le for later viewing. You’ll see how to do that in the
subsection titled, “Redirecting Output” in the “General Commands” section later in this chapter.

F I GU R E 4 . 3 Command-prompt font settings

F I GU R E 4 . 4 Command-prompt screen layout

General Commands 135

Color Choices
Finally, there is the fun customization option: the Color tab. In addition to being fun, color
settings can be very practical. For example, all of the command-prompt captures for this
book use a white background so that you can read them better. However, many people set
the colors to match their favorite team, to match a traditional console they’re used to (green
on black is wildly popular), or to simply ease their eyestrain. Whatever your motivation,
you can set the colors on the Colors tab, as shown in Figure 4.5.

F I GU R E 4 .5 The command prompt’s Colors tab

General Commands
Now that you have the command prompt confi gured for your purposes, you can begin
working with it. Several general commands must be understood for basic navigation and
operation. These commands fall into the following categories and will be discussed in
depth in this section:

■ Directory and folder navigation

■ Directory and folder listing

■ Screen management

■ Displaying information

■ Redirecting output

■ Administrative commands

136 Chapter 4 ■ SQL Server Command-Line Administration

Directory and Folder Navigation
One of the fi rst skill sets you need to master for command-prompt utilization is directory
or folder navigation. The debate over whether folders are directories or directories are
folders will be avoided here, but the term directory will be used because you are working
with the command prompt.

At the command prompt, you use the CD or ChDir command to change directories. CD
is short for change directory, as is ChDir. Both commands work the same way, so you will
most likely use the CD command instead of ChDir. Figure 4.6 shows the output of the CD /?
command, which lists the help for the command.

F I GU R E 4 .6 CD command help

The CD command is very easy to use in simple situations. For example, if you are in
the C:\Program\Files\Microsoft SQL Server directory and you want to change to the
C:\Windows\System32 directory, you would enter the following command (note that
{Enter} indicates that you should press the Enter key):

CD\Windows\System32 {Enter}

However, if you need to change the directory on another drive, you would need to issue
a more complex command, but it’s still easy to use. Assuming you are in a directory on the
C: drive and you want to change to the D:\x86 directory on the SQL Server 2012 DVD, you
would enter the following command:

CD /D D:\x86

General Commands 137

If you want to change back to the C: drive, you would simply enter this command:

C:

While these commands allow for basic directory and drive navigation, here are some
power tips that will help you get around faster:

Moving Up Through the Directory Tree You can easily move up one directory level. If
you are in the C:\Windows\System32 directory and you want to navigate to the C:\Windows
directory, simply type CD .. and press Enter. Now, change back to the System32 directory
by typing CD System32. Go to the root of the C: drive by using CD ..\.. and then pressing
Enter. Notice that your prompt now indicates you are in the root of the drive. Please note
that you can always jump to the root of the current drive by typing CD\ and pressing Enter.

Changing Directories on the Short The bane of long directory names is that you have to
type those long names to get around at the command prompt; but you can use a wildcard
character to change directories. For example, if you type CD \Prog*\Microsoft SQ* and press
Enter with a default installation of SQL Server, you will be taken to the C:\Program Files\
Microsoft SQL Server directory. Try it, you might like it. You do have to type enough
information so that the request gets the folder you want. For example, if you type
CD \Prog*\Microsoft S* and press Enter, you may end up in C:\Program Files\Microsoft
SDKs instead.

All of the concepts presented in this section relating to directory and folder navigation
are demonstrated in Figure 4.7.

F I GU R E 4 .7 Directory navigation commands

Directory and Folder Listing
If you could only move around at the command prompt and do nothing else, it would be
rather pointless. So, let’s take this to the next level and begin looking at how you view the
information stored in these directories or folders that you can access with the CD command.

138 Chapter 4 ■ SQL Server Command-Line Administration

When you want to view the directory structure of your hard drives, the best command
to use is the TREE command. When you want to view the fi les on your drives, the best
command available out of the box is the DIR command. Both the TREE command and the
DIR command can list directories without fi les. The TREE command defaults to listing
directories only; the DIR command defaults to listing directories and fi les. Both the TREE
and DIR commands will be discussed in the following sections.

The TREE Command
The TREE command presents the directories in a tree form that makes it very readable.
For example, execute (which means type it and press Enter) the following command at a
command prompt:

TREE /A “C:\Program Files\Microsoft SQL Server”

Your output will look something like the listing in Figure 4.8, assuming you’ve installed
the operating system and SQL Server 2012 to the C: drive with default installation
locations. The /A switch told the TREE command to use ASCII characters. The ASCII
characters are more readable by most text editors. When you redirect the TREE command
output to a text fi le, it makes it easier to read. You’ll see how to redirect output in the
section, “Redirecting Output,” later in this chapter.

F I GU R E 4 . 8 Using the TREE command

General Commands 139

If you want to force the TREE command to list fi les as well, simply use the /F switch with
the command. Remember, you can always execute the TREE /? command to get help. Figure 4.9
shows the beginning of the output from the TREE command when using the /F switch.

F I GU R E 4 . 9 Listing files with the TREE command

The DIR Command
The DIR command is more commonly used than the TREE command. It provides many more
options for fi le and directory selection and also includes sorting parameters and display options.
Figure 4.10 shows just how fl exible the command is with the many switches it supports.

F I GU R E 4 .10 DIR command options

140 Chapter 4 ■ SQL Server Command-Line Administration

As you can see in Figure 4.10, you can customize and select the output in several ways.
For example, if you want to list fi les by size, you can use the /O:S switch. When you want
to list only fi les and not directories, you can use the /A:-D switch. If you execute the
following command, you can see the results:

DIR /O:S /A:-D C:\Windows

The result is that larger fi les are listed at the end of the listing and directories are not
listed. Always remember that, with the /A switch, using a hyphen before the parameter
means you do not want that option. For example, /A:-H would not show hidden fi les. This
hyphen also changed the behavior of the /O switch. In this case, it reverses the sort order
that the /O switch specifi es. Run the following command and notice the difference:

DIR /O:-S /A:-D C:\Windows

As you can see, things now look a little different. If you ran the command as listed, the
largest fi les now appear fi rst in the list.

Another important DIR command switch is the /S option. With this switch, you can
list all of the fi les and directories (or just the fi les or just the directories) under a starting
location. For example, the following command will dump a directory listing of the entire
hard drive:

DIR C:\ /S

You should play around with this DIR command in order to become comfortable with it.
You will be using it frequently as you work with the command prompt.

Making a Switch the Default Behavior of the DIR Command

If you want a particular switch to become the default behavior of the DIR command, sim-
ply set the DIRCMD variable to contain that switch. For example, if you want the DIR com-
mand to use the bare listing format (/B), which is more like the default listing of the LS
command in Linux, you can execute the following command: SET DIRCMD=/B.

However, this will not be remembered automatically between sessions. You’ll need to set
the system variable in Windows to make that happen. To access the area for confi guring
system variables, follow these steps:

1. Right-click My Computer.

2. Select Properties.

3. Click Advanced System Settings and the Environment Variables.

General Commands 141

Screen Management
Command-prompt screen management includes color management and clearing the screen.
You’ll look at the latter fi rst.

Clearing the Screen
Clearing the screen is accomplished with the CLS command. CLS does not support any
switches or parameters. When you execute the CLS command, the prompt moves to the
upper left of the screen and all content is removed. It’s important to remember that CLS
clears the screen buffer and not just what is displayed on the screen. Once you execute a
CLS command, you can no longer get back to the previously displayed information. The CLS
command does not remove the Command History buffer.

Color Management
Color management can be performed in three ways:

■ You can confi gure it in the command prompt’s properties as you learned previously in
this chapter.

■ You can launch the CMD.EXE shell with a special switch to set the colors.

■ You can use the COLOR command.

Since you looked at the color options in properties earlier, you do not need to revisit
them now. Instead, consider the following steps that can be used to launch a command
prompt in the color scheme of your choosing:

1. Click Start and select Run.

2. Type CMD /T:1f and press Enter.

When you run this command, you should see a command prompt with a dark blue
background and a white foreground. The command syntax is simple:

CMD /T:{background color code}{foreground color code}

Table 4.1 shows the valid color codes. For example, to set the background color to dark
green and the foreground color to yellow, you would type CMD /T:2E. This combination
is not very pleasant for some, but other people in a northern state seem to be fond of it
because it is very close to the Green Bay Packers’ team colors.

The COLOR command works in much the same way as the /T switch with the CMD
shell. Execute COLOR {background color code}{foreground color code} by typing these
commands at the command prompt. For example, the command COLOR 17 sets the color
scheme to one that is very reminiscent of the good old Commodore 64 days.

142 Chapter 4 ■ SQL Server Command-Line Administration

TA B LE 4 .1 Command Prompt Color Codes

Color Code

Black 0

Blue 1

Green 2

Aqua 3

Red 4

Purple 5

Yellow 6

White 7

Grey 8

Light Blue 9

Light Green A

Light Aqua B

Light Red C

Light Purple D

Light Yellow E

Bright White F

Displaying Information
Most command-prompt commands show information as output; however, some commands
are designed specifi cally for showing information. These commands are TYPE, ECHO, and
SET. As you move closer to writing batch fi les for SQL Server administration, it’s important
that you understand these commands.

The TYPE Command
The TYPE command, as you may have guessed, is used to TYPE the contents of a fi le onto the
screen. It is mostly used with simple text documents. As an example, if you want to see the
contents of the Autoexec.bat fi le in the root of the C: drive on a default Windows Server
2008 installation, execute the following command:

TYPE C:\autoexec.bat

You will see one line of text typed to the screen, which reads “REM Dummy fi le for
NTVD.” The fi le exists only to make NTVDM feel at home because it emulates DOS for

General Commands 143

16-bit DOS and Windows 3.1 applications. (Because Windows Server 2008 R2 is 64-bit-
only and no longer supports 16-bit DOS or Windows applications, the archaic Autoexec.bat
fi le is fi nally gone.) Like CLS, the TYPE command has no switches. The only command-line
parameter passed to the TYPE command is the fi le you want to display on the screen.

Even though the TYPE command does not support any switches, you should know about
a method that will allow you to deal with long text fi les that scroll off the screen when
listed by the command. For example, if you’ve installed SQL Server to the default locations
as a default instance, execute the following commands at a command prompt:

CD \Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL
TYPE Log\ErrorLog

If you are using a default size command-prompt window, some of the text will scroll
right off the top of the screen. Of course, you can use the scroll bar to scroll backward,
but you can also do the following. Still in the C:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL directory, execute the following command:

TYPE Log\ErrorLog | more

That vertical line is the piping symbol (Shift+\ on most keyboards). You are telling
the command prompt to feed the results of the TYPE command into the MORE command. The
MORE command simply takes any amount of input and displays it one screen or one line at
a time. When you are viewing output with the MORE command, you can proceed one line
at a time by pressing Enter or one screen at a time by pressing the spacebar.

The ECHO Command
When you want to output text to the screen or a fi le, you can use the ECHO command. In
most cases, it is used to display information on the screen from within batch fi les (as you’ll
see later in the “Batch Files” section), but it can also be used to dump information to a text
fi le. The syntax is simple:

ECHO {message}

As you can see, message is the text you want to output. For example, if you want to
display the classic “Hello World!” to the screen, you would execute the following:

ECHO Hello World!

If you want to output a blank line (carriage return), you would execute the following:

ECHO.

Notice that there is no space between the keyword ECHO and the period. If you put a
space between them, a period will be echoed to the output.

You can also display the contents of a variable. Several system variables exist by default
on Windows servers and clients, such as ComputerName, UserName, and UserDomain. To ECHO

144 Chapter 4 ■ SQL Server Command-Line Administration

the contents of a variable to the output, surround the variable name with percent signs (%).
Here’s an example that includes hard-coded text with system variables:

ECHO The computer name is %ComputerName% and the user is %UserDomain%\%UserName%.
The current time is %Time% and the current date is %Date%.

This rather long command results in the following output on my Windows Server 2008
machine:

The computer name is 2k8SRV1 and the user is TRAINING\administrator. The current
time is 10:29:02.28 and the current date is Mon 08/27/2012.

When you want to place text into a fi le, you will use the ECHO command with the
redirection capabilities of the command prompt. The redirection capabilities allow you to
redefi ne the output. Instead of going to the screen, it can be output to a fi le, for example.

The ECHO commands covered so far are represented in Figure 4.11.

The previous code line should be typed as one line, although it will wrap in
your command-prompt display.

F I GU R E 4 .11 ECHO commands

The SET Command
The SET command is used to show the contents of variables and also to confi gure or set
the contents. You can create new variables or change the contents of existing variables. To
display all of the current variables for the session, execute the one-word command SET. You
will see a listing similar to the following:

General Commands 145

ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\administrator.SYSEDCO\AppData\Roaming
CommonProgramFiles=C:\Program Files\Common Files
COMPUTERNAME=2K8SRV1
ComSpec=C:\Windows\system32\cmd.exe
FP_NO_HOST_CHECK=NO
HOMEDRIVE=C:
HOMEPATH=\Users\administrator.SYSEDCO
LOCALAPPDATA=C:\Users\administrator.SYSEDCO\AppData\Local
LOGONSERVER=\\DC1
NUMBER_OF_PROCESSORS=2
OS=Windows_NT
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC
PROCESSOR_ARCHITECTURE=x86
PROCESSOR_IDENTIFIER=x86 Family 6 Model 23 Stepping 7, GenuineIntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=1707
ProgramData=C:\ProgramData
ProgramFiles=C:\Program Files
PROMPT=PG
PUBLIC=C:\Users\Public
SESSIONNAME=Console
SqlSamplesDatabasePath=C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
SqlSamplesSourceDataPath=C:\Program Files\Microsoft SQL Server\110\Tools\Samples\
SystemDrive=C:
SystemRoot=C:\Windows
TEMP=C:\Users\ADMINI~1.SYS\AppData\Local\Temp
TMP=C:\Users\ADMINI~1.SYS\AppData\Local\Temp
USERDNSDOMAIN=SYSEDCO.LOCAL
USERDOMAIN=SYSEDCO
USERNAME=administrator
USERPROFILE=C:\Users\administrator.SYSEDCO
windir=C:\Windows

The PATH variable was removed from this listing to save space, but this is an otherwise
typical listing of default variables on a Windows system. You can display any of these
variables using the ECHO command or the SET command. You learned to use the ECHO
command earlier in this chapter. With the SET command, you type SET and then the
variable name to display the contents. To demonstrate, if you execute SET SystemRoot, you
will see the following output on a standard install to the C: drive:

Systemroot=C:\Windows

146 Chapter 4 ■ SQL Server Command-Line Administration

You can also create your own variables. User variables are mostly used with batch fi les.
To create a variable, use the following syntax:

SET {unique name}={value}

In this instance, unique name is equal to a variable name that is not in use, and value
is equal to the value you want to store. As an example, if you want to store the value
AdventureWorks in the variable DBname, you would execute the following:

SET DBname=AdventureWorks

Now you can use the DBname variable with command-prompt commands and in batch
fi les. Variable names are not case-sensitive, so the command ECHO %dbname% will work
exactly like the command ECHO %DBname%.

When you create variables like this, they will remain in scope (be available for use)
only during the current command-line session. When you close the session, all variables
created during the session are lost because they are stored in the memory of that session.
These temporary variables are most useful within batch fi les.

Redirecting Output
Up to this point, you have explored several commands and methods of interacting with the
operating system at the command prompt. Now, you need to move to the next step, which
explores changing the default output to a fi le or even another application.

Three redirectors exist at the Windows command line:

■ The piping symbol (|)

■ The greater-than sign (>)

■ Two greater-than signs (>>)

Each works differently, and you must understand their use to ensure proper
functionality in your commands or batch fi les.

Redirecting to Another Application Using the Piping Symbol (|)
The piping symbol is the key to application redirection. You read about this earlier
when you piped the output of the TYPE command through the MORE command. You can
accomplish other creative things with the piping symbol as well. To demonstrate this,
perform the following steps on a machine running the SQL Server services:

1. Start the command prompt.

2. Execute TASKLIST /SVC.

3. Scroll through the list, and notice the lines that reference MSSQL.

4. To list only the lines with MSSQL, execute TASKLIST /SVC | FIND /I “mssql”.

General Commands 147

You should see output for the command suggested in step 4 that resembles Figure 4.12.
The purpose here is not to master the TASKLIST or FIND commands but to see the way you
can feed the output of the TASKLIST command into the FIND command to fi lter your results.

F I GU R E 4 .12 Piping output from one command into another

Redirecting to an Output File Using the Greater-Than Sign (>)
Sometimes you just need to save the output of a command into a fi le. You may do this to
create logs or to more easily view the output in a text editor. When you want to create a
new fi le or overwrite an existing fi le, use one greater-than sign as the redirector. Execute
the following command to see how this works:

IPCONFIG /ALL > C:\IPSETUP.TXT

Now, you can open the fi le C:\IPSETUP.TXT in any text editor (Notepad would work)
and view the output. Remember, if the fi le exists, a single greater-than sign will overwrite
it. If the fi le does not exist, it will be created.

Appending to an Output File Using Two Greater-Than Signs (>>)
Sometimes you want to create a running log. To do this, you will need to append to an
existing fi le or create a new one if you’re just starting the log. Using two greater-than signs
will do the trick. Execute the following three statements to see it in action:

ECHO This is the first line in the log. >> c:\echolog.txt
ECHO This is the second line. >> c:\echolog.txt
ECHO This is the third and final line. >> c:\echolog.txt

Now, open the fi le C:\echolog.txt in a text editor. You will see three lines in the fi le,
assuming it did not exist before you executed these three commands. If you have used a
single greater-than sign in each of the three statements, you would only see the text, “This
is the third and fi nal line.” Be very careful with the output redirector. A common mistake is
the overwriting of existing fi les instead of appending to them when creating running logs.

All of the information presented so far in this chapter has been foundational to SQL
Server administration at the command line. The good news is that this information is
benefi cial for all Windows administration and not just SQL Server. When you read the
“Batch Files” section in just a few pages, you will see clearly how all of this fi ts into SQL

148 Chapter 4 ■ SQL Server Command-Line Administration

Server administration. For now, move on from the internal operations of the command
prompt to look at a few administrative commands you’ll need to understand.

Administrative Commands
Windows systems provide several commands that are specifi c to administration tasks.
These commands allow you to perform tasks that may also be performed in the GUI,
but they often provide more features and simpler interfaces. Several command-prompt
commands can be used to perform tasks such as starting and stopping SQL Server services,
defragmenting single data fi les, viewing network statistics, and copying data. While these
are not the only four tasks you can perform, they are common tasks performed on SQL
Servers. All four will be covered in the next few sections.

Starting and Stopping SQL Server Services
The NET command provides an interface to the Windows services. You can use this tool
to stop and start services. For example, if you have a default installation of the default
instance of SQL Server, you can stop the SQL Server Database Engine with the following
command:

NET STOP MSSQLSERVER

To stop a named instance, you will execute NET STOP service_name. The service ID
for an instance can be seen in the SQL Server Confi guration Manager. However, you are
working with the command prompt, and you want to do everything from the command
prompt. On a Windows Server 2008 server running SQL Server, execute the following
command:

TASKLIST /SVC |FIND /I “sql”

The results of the preceding command will show all the services for all instances of the
SQL Server Database Engine service and the SQL Server Agent service, as well as a few
other SQL Server services. Figure 4.13 shows the output of the command. Notice that two
instances of SQLSERVR.EXE are running. SQLSERVR.EXE is the database engine service. The
fi rst listed instance is named MSSQL$SALES, and it is a named instance. The second listed
instance is named MSSQLSERVER, and it is the default instance.

F I GU R E 4 .13 SQL Server service list at the command prompt

General Commands 149

It is important to note that two instances of the SQL Server Agent are also running. The
SQL Server Agent depends on the database engine. If you execute the command provided
previously, NET STOP MSSQLSERVER, while the SQL Server Agent is running, the following
prompt will result:

The following services are dependent on the SQL Server (MSSQLSERVER) service.
Stopping the SQL Server (MSSQLSERVER) service will also stop these services.

SQL Server Agent (MSSQLSERVER)

Do you want to continue this operation? (Y/N) [N]:

If you are attempting to automate the service closure, this prompt could be problematic.
You have two basic options for dealing with the prompt. First, you could stop the SQL
Server Agent for the instance before stopping the database engine for the instance. Second,
you could use an old trick to answer the question automatically. Execute the following
command, and the SQL Server Database Engine and Agent for the MSSQLSERVER
instance will be stopped:

NET STOP MSSQLSERVER /Y

You can see the results of this command in Figure 4.14. The command simply answers the
prompt with a Y for yes. The result is that the SQL Server Agent service is stopped fi rst, and
then the database engine service is stopped. Some commands do not allow you to answer
the prompt with a /Y option, but the NET commands do, and that is very helpful in cases
such as this.

F I GU R E 4 .14 Automatically responding to a NET STOP prompt

150 Chapter 4 ■ SQL Server Command-Line Administration

Of course, you can also start services with the command prompt. The following
statements will restart the previously stopped services:

NET START MSSQLSERVER
NET START SQLSERVERAGENT

Notice that you fi rst start the SQL Server Database Engine and then the Agent service.
This order is important because the Agent depends on the database engine.

Defragmenting Single Files
Windows servers have built-in volume defragmentation abilities. They do not have a single
fi le defragmenter. The SysInternals tool set provides an excellent solution to this missing
feature. The program is called Contig, and since Microsoft purchased SysInternals, it is
available for download from the Microsoft website. To download any of the SysInternals
tools, navigate to: http://TechNet.Microsoft.com/en-us/SysInternals.

Once you’ve arrived at the SysInternals TechNet site, click the File And Disk Utilities
link and then the link for the Contig page. Here you can read about the utility and its
command-line switches. You can also download the free utility from this page.

If you extract the Contig.zip file into the C:\Windows folder (or your
system folder location), it will be located in the system path. This will give
you the ability to run the Contig program from any directory at the
command line.

SQL Server databases may become fragmented at the storage level. This fragmentation
should not be confused with internal index fragmentation. In this case, the physical
storage on the drive sectors is being referred to; if the physical fi les become fragmented,
the performance of the database will be diminished. You can use Contig to check for
fragmentation with the following command:

CONTIG -A {database filename}

Note that database filename represents the *.mdf fi le that is used for physical storage
of the database. Some databases have both *.mdf and *.ndf fi les, and all fi les should be
checked for fragmentation. Figure 4.15 shows the output of the Contig command when
run against the AdventureWorks physical data fi le on an example test server running SQL
Server 2008. The same operation works on any version of SQL Server. In this case, the data
fi le is stored in one fragment and does not require defragmenting.

http://TechNet.Microsoft.com/en-us/SysInternals

General Commands 151

To defragment a fi le, execute the following command:

CONTIG {filename}

In this case, filename is the name of the fi le to be defragmented. You can also use
wildcards like this:

CONTIG *.mdf

The latter command would defragment all *.mdf fi les in the current folder.
Before you can defragment a database fi le, the fi le must be unlocked. The SQL Server

service locks the data fi les for all active databases. You can either detach the database from
the SQL Server service or stop the SQL Server service to defragment the physical database.
In most cases, physical defragmentation is needed only with direct attached storage (DAS)
and, even then, only once or twice per year. Of course, this defragmentation interval
depends on the database usage and the storage location. If a single volume (whether a true
single drive or RAID) is completely dedicated to a single database, physical fragmentation
may not be an issue.

Viewing Network Statistics
At times, you will want a quick way to view the current network utilization and various
statistics related to network communications. You can use advanced third-party GUI
tools to accomplish this, but basic network statistics are available via the command line’s
NETSTAT command. The NETSTAT command syntax is as follows:

netstat[-a] [-e] [-n] [-o] [-pProtocol] [-r] [-s] [Interval]

Table 4.2 lists the command-line switches.

F I GU R E 4 .15 Analyzing fragmentation with Contig

152 Chapter 4 ■ SQL Server Command-Line Administration

TA B LE 4 . 2 The Command-Line Switches

Switch Action

-a Displays the active TCP connections and TCP or UDP ports on which the
computer is listening.

-e Shows statistics for the Ethernet (OSI Layer 2) protocol.

-n Displays active TCP connections without name resolution (this switch is
faster than -a).

-o Displays the process ID (PID) that requested each open connection.

-pProtocol Filters to the selected protocol. Options include TCP, IP, UDP, and ICMP.

-r Shows the current IP routing table.

-s Generates statistics for the connections, such as packets sent and received.

Interval Places NETSTAT in autorepeat mode. The statistics will be regenerated and
display every n seconds according to the value entered.

NETSTAT may be used for several purposes. For example, if you want to see which
processes have open connections, you can execute the following:

netstat -n -o

Assuming an active connection is in place, you will receive output similar to that in
Figure 4.16. Notice that the PID is 2424. Now, to identify the process, you can use the
previously covered TASKLIST command like this:

tasklist /FI “PID eq 2424”

The /FI switch indicates that a fi lter follows. The fi lter of PID eq 2424 indicates that
you want to display only those tasks with a PID of 2424. Figure 4.17 shows the results of
this command.

F I GU R E 4 .16 Finding PIDs for active connections

General Commands 153

In addition to process location, you can simply view the statistics for networking in
general or for a specifi c protocol. You should become familiar with this command because
it can provide fast information for troubleshooting connections on your SQL Server.
For example, you may want to check a PID for the server to determine whether it is active
within the network stack. To do this, fi rst locate the SQL Server Database Engine process
ID with this command:

tasklist /fi “imagename eq sqlservr.exe” /svc

This command fi lters for processes based on the sqlservr.exe fi le and displays the
service name. The output should be similar to the following:

Image Name PID Services
sqlservr.exe 1724 MSSQL$SALES
sqlservr.exe 2156 MSSQLSERVER

Now that you know the default instance (MSSQLSERVER) is PID 2156, you can
check for connections to that PID. The NETSTAT command can be used to look for such
connections. By executing netstat -o -n, you will display the connections, and this
display includes the PID for each connection. If PID 2156 shows up in the list, someone
is connected to the SQL Server instance from a remote location. If it does not, no current
connections exist.

Copying Data
In many cases, you’ll need to perform simple fi le copy operations. For such scenarios,
the traditional COPY command works fi ne. However, you may need more advanced copy
features, which will drive you to use ROBOCOPY. Both commands are built into all Windows
Server 2003 servers and newer versions and can be used to transfer database fi les, data
export fi les, and any other data fi les from one drive to another or from one server to
another.

F I GU R E 4 .17 Matching PIDs with process names

154 Chapter 4 ■ SQL Server Command-Line Administration

The COPY command is very simple. For example, to copy a fi le named data.csv from a
directory on the local server to a share on a remote server named \\DC1\DataShare with
verifi cation, execute the following command:

copy c:\data\data.csv \\dc1\datashare /v

You can use wildcards with the COPY command as well. However, when copying more
than one fi le, it is probably best to use the ROBOCOPY command. ROBOCOPY is a robust
copy utility for Windows-based systems. ROBOCOPY is available only from the resource kit
tools previous to Vista and Server 2008. Now, Vista, Windows 7, and Server 2008 and
R2 include ROBOCOPY right out of the box. To discover the many switches and features of
ROBOCOPY, at the Windows Server command prompt, type ROBOCOPY /? and press Enter.

As an example, to copy the same data.csv fi le to the same share that was used with the
COPY command previously, while logging the copy process information to copylog.txt,
execute the following:

robocopy c:\data \\dc1\datashare data.csv /log:c:\copylog.txt

You can see the output of this command in Figure 4.18. As you can see from this
example, the ROBOCOPY command is certainly more complex than the COPY command.
You must specify the source directory, then the destination directory, and then any fi les
you want to copy, if you do not want to copy everything in the directory. However, this
increased complexity brings with it much more power.

F I GU R E 4 .18 ROBOCOPY output and log

Batch Files 155

Batch Files
At this point, either you have gained a fundamental understanding of how to work with the
command prompt from the preceding pages of this chapter or you came to this chapter with
basic command-prompt skills already. Either way, it’s time to put these skills to use with batch
fi les. A batch fi le is exactly what it sounds like: a fi le that contains a batch (or collection)
of command-prompt commands. You simply type the batch fi les in a text editor (like the
infamous Notepad) and then save them with a .bat extension. Exercise 4.1 will walk you
through creating a batch fi le, but fi rst, you should understand some basic commands that
are useful within batch fi les.

Batch fi les are best for simple operations that should be modifi ed. These include things
such as copying fi les, deleting fi les, formatting removable disks, performing network
transfers, and such tasks. PowerShell is far more powerful from a scripting perspective.
When you need to automate advanced operations that must maintain variables during
processing and access the inner workings of the operating system, use PowerShell instead.

Using Logic (IF and GOTO)
One of the most important tasks you will need to perform in batch fi les is decision making.
The IF statement is the most commonly used. The following syntax is provided for IF
statements at the command prompt:

if [not] errorlevel number command [else expression]
if [not] string1==string2 command [else expression]
if [not] exist FileName command [else expression]

As you can see, several methods of execution are available. You can check for the
existence of a fi le, an error value, and the contents of a string. For example, you may want
to execute a particular command only if the server is running Windows Server 2008, which
is actually Windows version 6.0. Consider the code in Listing 4.1 (you can type this into
your favorite code editor or Notepad and save it as verbat.bat if you desire).

Listing 4.1: The verbat.bat File, Which Checks for Windows Version 6.0

@ECHO OFF
VER > version.txt
FIND “Version 6.0” version.txt >NUL
IF ERRORLEVEL 1 GOTO WrongV
ECHO Right version. This system is using the following version:
VER
ECHO.
GOTO CLEANUP

:WrongV

156 Chapter 4 ■ SQL Server Command-Line Administration

ECHO Wrong version. This system is using the following version:
VER
ECHO.
GOTO CLEANUP

:CLEANUP
DEL version.txt
:END

The fi rst line, @echo off, cleans up the output of the batch fi le so that the executed
command displays results, but not the command itself. The second line redirects the output
of the ver command to a fi le named version.txt. Next, the find command looks for the
string Version 6.0 in the fi le. If the string is not found, the ERRORLEVEL value will be 1. If
the string is found, the IF statement will do nothing, and the batch fi le will continue
from there.

Assuming it is Windows Server 2008, the batch fi le simply outputs the fact that it is the
right version and executes the ver command again, but this time it allows the output of the
ver command to show. The ECHO. line simply displays a blank line before returning to the
command prompt.

If the operating system is not Windows Server 2008, the IF statement forces batch-
processing to jump to the :WrongV position. From here, the user is informed that it is
the wrong version, and the actual version is displayed. Both the right version and wrong
version routines rely on the :CLEANUP section to delete the version.txt fi le when all
processing is done.

As a side note, notice that the output of the FIND command in the third line of the batch
fi le is thrown out. This is a great trick. The output is redirected to NULL. The command still
runs and the ERRORLEVEL value is set appropriately, but the user does not see it.

This batch fi le represents just one way to perform different actions depending on the
operating system version. The main focus here is on understanding the IF statement.

Passing Data
Batch fi les are very useful for repeating static commands that you must perform again and
again. But they can also be useful as dynamic tools. To use batch fi les in a more dynamic
way, you’ll have to understand how to pass command-line parameters to the batch fi le and
how to read them within the batch fi le.

As with any other program you execute at the command line, parameters are passed to
batch fi les by placing the parameters after the batch fi lename. For example, you can extend
the previous batch fi le used to check for a specifi c version so that it accepts input like this:

verbat.bat “Version 6.0”

The string Version 6.0 will become parameter 1 and is referenced in the batch fi le as
%1. You can use more than one command-line parameter, and they are referenced as %1,
%2, %3, and so on. Consider Listing 4.2, which is the updated version of the verbat.bat fi le
that supports command-line parameters.

Batch Files 157

Listing 4.2: Updated verbat.bat with Support for Command-Line Parameters

@ECHO OFF
VER > version.txt
FIND %1 version.txt >NUL
IF ERRORLEVEL 1 GOTO WrongV
ECHO Right version. This system is using the following version:
VER
ECHO.
GOTO CLEANUP

:WrongV
ECHO Wrong version. This system is using the following version:
VER
ECHO.
GOTO CLEANUP

:CLEANUP
DEL version.txt
:END

Notice that the only change is in line 3. The %1 variable is placed after the FIND
command instead of the hard-coded “Version 6.0” information. The batch fi le still runs,
but you could also check for version 6.1 or 5.1 or any other version you desire.

In the same way that you use command-line parameter variables, you can access system
variables. You can access variables created before the batch fi le was launched, and you can
also create variables for use within the batch fi le. This functionality is achieved using the
SET command discussed previously in this chapter.

Including Comments
Once you begin creating batch fi les, you are likely to create dozens or even hundreds of
them. You may need to modify a batch fi le months or years later. Another administrator
may need to modify a batch fi le. In both cases, including comments in your fi les can greatly
improve manageability.

The following two lines of code do not cause any actions to take place, but they are
stored as comments if placed in a batch fi le:

REM Batch file created by Tom Carpenter: carpenter@sysedco.com
REM Purpose: To export data and copy it to three different locations.

The REM statement, short for remark, is simple and takes only one parameter: the
comment to be stored in the fi le. If you type the two REM statements shown and execute

mailto:carpenter@sysedco.com

158 Chapter 4 ■ SQL Server Command-Line Administration

them, nothing will happen. That is the intended design. Be sure to use REM statements in
your batch fi les to make updates easier down the road.

Now that you understand the basic building blocks of a batch fi le, you are ready to
create a batch fi le from scratch. Exercises 4.1, 4.2, and 4.3 will walk you through the
process. Exercise 4.1 provides the steps needed to prepare your system for the batch fi le
to work.

E X E R C I S E 4 .1

Preparing Your System for the Batch File

In this exercise, you will create the ExportDir, BackupDir, and BatchDir folders, which are
the folders used by the Export.bat batch fi le you’ll create in Exercise 4.2:

1. Launch the command prompt.

2. Type CD\, and press Enter to return to the root of the C: drive.

3. Execute the following three commands:

MD ExportDir
MD BackupDir
MD BatchDir

These commands create the directories (folders) needed for Exercises 4.2 and 4.3.

4. Change to the BatchDir folder by executing CD BatchDir.

In Exercise 4.2, you will create the actual batch fi le used to export data from the SQL
Server AdventureWorks database. You will use the Edit command mode application, just to
spice things up a bit. You could alternatively use Notepad or your favorite code editor
as well.

E X E R C I S E 4 . 2

Creating the Batch File

1. Type NOTEPAD Export.bat, and press Enter. Create the fi le when prompted.

2. Enter the following batch fi le code into the Notepad window:

@echo off
REM This batch file will export data to the C:\ExportDir directory.
REM You must specify the backup file name when you run the batch file.
REM
REM For example: export.bat backup1.dat
REM

Batch Files 159

IF “%1”==”“ GOTO NoName

ECHO.
ECHO Export.bat version 1.0
ECHO.
ECHO Exporting data...
SQLCMD -d AdventureWorks -Q “SELECT * FROM Sales.SalesOrderDetail” -o c:\
ExportDir\export.csv
ECHO.
ECHO Copying data...
copy c:\ExportDir\export.csv c:\BackupDir\%1 /v /y >null
IF NOT ERRORLEVEL 1 GOTO ENDGOOD
GOTO ENDBAD
:NoName
ECHO.
ECHO Export.bat version 1.0
ECHO.
ECHO You must provide a file name for the backup at the command line.
ECHO For example:
ECHO.
ECHO export.bat backup1.dat
ECHO.
ECHO.
GOTO END

:ENDBAD
ECHO.
ECHO An error occurred!
ECHO.
GOTO END

:ENDGOOD
ECHO.
ECHO The process completed without error on %DATE% at %TIME%.
ECHO.
:END

3. Save the fi le by pressing Alt+S.

4. Before you exit the editor, take some time to inspect the code. Can you predict how it
will run and what features it will offer?

5. Exit the Edit program by pressing Alt+X.

160 Chapter 4 ■ SQL Server Command-Line Administration

Now that you’ve created the batch fi le, you’re ready to run it and see it in action. Exercise
4.3 steps you through this process.

E X E R C I S E 4 . 3

Running the Batch File

1. To see the built-in help routine, run Export.bat without any parameters, like this:

C:\BatchDir\Export.bat

Note the help that is displayed.

2. Now run the batch fi le with the parameter backup1.dat like this:

C:\BatchDir\Export.bat backup1.dat

3. You should see results similar to those shown here.

4. Now look at the contents of the ExportDir directory by executing the following com-
mand:

DIR C:\ExportDir

5. You should see a fi le named export.csv. Look at the contents of the BackupDir direc-
tory by executing the following command:

DIR C:\BackupDir

6. You should see a fi le named backup1.dat.

These exercises walked you through creating a simple batch fi le. This batch fi le could be
extended in many ways, including the following:

Mastering SQLCMD 161

■ Adding a command-line option for the export fi lename

■ Adding code to check for the existence of the backup fi le

■ Cleaning up the ExportDir fi le after the backup is complete

These ideas represent just a few of the options. The power of batch fi les is limited only
by the tools at your disposal and your creativity.

For detailed explanations of each Windows command-prompt command,
see my website at: www.WindowsCommandLine.com.

Mastering SQLCMD
In Exercises 4.1, 4.2, and 4.3, you were introduced to the SQLCMD utility. This command-
prompt utility is used to interact with the SQL Server. SQLCMD supports dozens of switches,
as shown in Figure 4.19. Pay close attention to these switches because they are case-
sensitive. For example, the -S switch specifi es the server to which you want to connect, but
the -s switch specifi es the column separator for output. As another example, the -Q switch
is used to run the specifi ed query and exit, while the -q switch runs the query and remains
in the SQLCMD interactive mode prompt.

F I GU R E 4 .19 SQLCMD switches

http://www.WindowsCommandLine.com

162 Chapter 4 ■ SQL Server Command-Line Administration

The simplest way to use SQLCMD is to sit at the SQL Server console and log on as an
administrator. From there, you launch a command prompt, type SQLCMD, and press Enter.
You will see an interactive prompt like the one shown in Figure 4.20. A USE command was
entered to switch to the AdventureWorks database, and then a DBCC CHECKTABLE command
was used to analyze the Production.Product table. Interactive mode allows you to perform
the same administrative tasks you would usually do from the query windows inside of
SSMS, but you don’t have the extra bloat of the GUI engine slowing you down.

F I GU R E 4 . 20 SQLCMD in interactive mode

Interactive mode can be used with the local server by simply typing SQLCMD and pressing
Enter, but it can also be used with remote servers. For example, if you wanted to administer
the default instance on a server named SQL1, you would execute the following command to
enter interactive mode on that server:

SQLCMD -S SQL1

This command assumes you are logged on with an account that has administrative
privileges on the SQL1 server. If you are not logged on with such an account and the sa
account is available on SQL1, you could use a command like this:

SQLCMD -S SQL1 -U sa -P sapassword

Of course, you would replace sapassword with the actual password of the sa account.
SQLCMD can also be used in a scripted noninteractive mode. You can do this in one of

two ways:

■ Inline queries

■ Input fi le-based queries

Mastering SQLCMD 163

For inline queries, you use the -Q switch. For input fi le-based queries, you use the -i
switch. For example, to run a DBCC CHECKDB command against AdventureWorks on the
local server, you can execute the following statement:

SQLCMD -Q “DBCC CHECKDB (AdventureWorks2012)”

The results of the database check will be displayed on the screen, and you will be taken
back to a standard command prompt. You can redirect the output to a text fi le with the
following modifi ed statement:

SQLCMD -Q “DBCC CHECKDB (AdventureWorks2012)” -o C:\dbcc.log

Now, change to the root of your drive, and type dbcc.log to open the log fi le in the
default viewer. On most systems, the log fi le will open in Notepad, as shown in Figure 4.21.
The point here is simple: you can perform practically any administrative task from the
command prompt that you can from the SSMS GUI. This power comes from the fact that
most administrative tasks performed in SSMS actually launch T-SQL code. Take the power
of SQLCMD and couple it with the general command-prompt knowledge you’ve gained in this
chapter, and you have a powerful set of automation and administration tools.

F I GU R E 4 . 21 Viewing the SQLCMD output log

164 Chapter 4 ■ SQL Server Command-Line Administration

Introducing Windows PowerShell
Up to this point, you have focused on the standard built-in command prompt provided
by CMD.EXE. In recent years, Microsoft began shifting its focus to a new command-line
interface called PowerShell or Windows PowerShell in its full-name glory. They are
certainly still committed to traditional command-prompt utilities as is evidenced by
the new utilities in Windows 7, Windows 8, and Windows Server 2008 R2; however, the
PowerShell engine is the secret behind many new administration tools. For example,
the System Center Virtual Machine Manager makes calls to PowerShell to get its work
done. So does the Exchange 2010 administration tool. There is sure to be more of this as
Microsoft continues to evolve PowerShell.

Command Prompt Automation

I once worked on a project for a company located in the Midwestern United States. As a
parts-supplier for thousands of clients, they provided an online interface for their custom-
ers to track and place orders. Several of the managers wanted to have data waiting for
them in their email inboxes every morning. Thankfully, they all needed the same data set.

While I could have used SQL Server Integration Services (SSIS) to create a complex pack-
age for this purpose, I took the easier route but—more importantly—the route that the
internal support staff could manage. No one on the internal staff knew how to work with
SSIS or had the time to learn it. This is why, for years now, I’ve spoken often of my plea-
sure at the fl exibility SQL Server provides for automation. You can do it with batch fi les,
WSH scripts, SSIS packages, and jobs.

In the end, I created a simple batch fi le that called SQLCMD to dump the data in a comma-
separated format (using the –s switch). The next step in the batch fi le was a call to Blat
(an excellent freeware command-line emailing tool). Blat sent the emails to the managers
automatically. Because the format was CSV, the managers could easily open the data in
Excel and manipulate it to their hearts’ desire. This batch fi le was then scheduled to run
every morning at 6 a.m. on the server.

Here’s the best part: about a year after the batch fi le was created, the managers called the
internal support staff to indicate that they needed another column in the output fi le. No
problem. The support professional simply opened the batch fi le, modifi ed the query in
the line that invoked SQLCMD, and saved the fi le. No SSIS knowledge was required,
and the edit was done in less than 60 seconds. Flexibility. I love fl exibility

Using SQL Server PowerShell Extensions 165

Windows PowerShell is a command-line interface that is focused on scripting and the
power to accomplish administrative tasks with consistency. Command-prompt commands
may use dashes for switches, or they may use forward slashes and even double dashes.
This inconsistency can make it more diffi cult to master. Windows PowerShell is focused on
providing a consistent interface across all utilities and administration tasks.

On most servers, you will need to download and install Windows PowerShell because it
is not installed by default. To download PowerShell, go to www.Microsoft.com and search
for PowerShell download. This will change with Windows 7 and Windows Server 2008
R2, but for those using older systems, a download is still required. You can either search
for Windows PowerShell at Microsoft’s website or download it through Windows Updates.
Once you’ve installed it, you can launch the Windows PowerShell from the Start menu. It
will look something like the screen in Figure 4.22.

F I GU R E 4 . 22 The Windows PowerShell interface

Using SQL Server PowerShell
Extensions
To take advantage of PowerShell for SQL Server administration, you needed to download
the Microsoft Windows PowerShell Extensions for SQL Server in previous editions. The
extensions added a PowerShell provider that allowed navigation through a SQL Server
instance much like browsing through a directory structure. Additionally, they installed
several cmdlets (“command-lets”—something like applets in the Control Panel) that allow
for tasks such as converting data from one structure to another and invoking commands
against the SQL Server. Now, the PowerShell Extensions for SQL Server are installed by
default in SQL Server 2012.

http://www.Microsoft.com

166 Chapter 4 ■ SQL Server Command-Line Administration

To access the SQL Server extensions, you will need to execute a special command to
open a SQL Server–ready PowerShell window. The command to execute is sqlps.
You should run it from the Start ➢ Run option, but you can also execute it from a
command prompt, if you have one open continually. In fact, when you execute sqlps from
a Command Prompt window, PowerShell runs in the same window. This integration is
excellent. When you’re done with the PowerShell work, you can simply type EXIT and press
Enter to return to your previous command-prompt session.

One of the coolest features of the SQL Server extensions for PowerShell is the ability
to navigate the SQL Server services as if they were a directory structure. Figure 4.23
shows this in action. Notice that the Default instance and the Sales instance show up with
directory listings invoked by the DIR command.

F I GU R E 4 . 23 Navigating SQL Server in PowerShell

Of course, simply browsing around in the database doesn’t provide a lot of power alone.
The Invoke-SQLCMD cmdlet is where the real power is. With this cmdlet, you can do the
same tasks that you perform in SQLCMD at the regular command prompt. Figure 4.24 shows
the execution of a simple query against the AdventureWorks database, and Figure 4.25
shows the results of running a DBCC CHECKTABLE command against the Production.Product
table. Notice the use of the -verbose switch when running DBCC. This switch is required to
see the results of the DBCC command.

Using SQL Server PowerShell Extensions 167

F I GU R E 4 . 2 4 Executing queries with Invoke-SQLCMD

F I GU R E 4 . 25 Running DBCC CHECKTABLE with Invoke-SQLCMD

168 Chapter 4 ■ SQL Server Command-Line Administration

SQL Server 2012 includes the following cmdlets for use in the sqlps instance of
PowerShell:

■ Add-SqlAvailabilityDatabase

■ Add-SqlAvailabilityGroupListenerStaticIp

■ Backup-SqlDatabase

■ Decode-SqlName

■ Disable-SqlAlwaysOn

■ Enable-SqlAlwaysOn

■ Encode-SqlName

■ Invoke-Sqlcmd

■ Join-SqlAvailabilityGroup

■ New-SqlAvailabilityGroup

■ New-SqlAvailabilityGroupListener

■ New-SqlAvailabilityReplica

■ New-SqlHADREndpoint

■ Remove-SqlAvailabilityDatabase

■ Remove-SqlAvailabilityGroup

■ Remove-SqlAvailabilityReplica

■ Restore-SqlDatabase

■ Resume-SqlAvailabilityDatabase

■ Set-SqlAvailabilityGroup

■ Set-SqlAvailabilityGroupListener

■ Set-SqlAvailabilityReplica

■ Set-SqlHADREndpoint

■ SQLSERVER:

■ Suspend-SqlAvailabilityDatabase

■ Switch-SqlAvailabilityGroup

■ Test-SqlAvailabilityGroup

■ Test-SqlAvailabilityReplica

■ Test-SqlDatabaseReplicaState

For more information on the Windows PowerShell and the SQL Server Extensions for
PowerShell, visit: http://msdn.microsoft.com/en-us/library/hh245198.aspx.

http://msdn.microsoft.com/en-us/library/hh245198.aspx

Chapter Essentials 169

Summary
In this chapter, you were introduced to the many ways in which the command line and
scripts can be used to manage and administer your SQL Servers. You learned to launch
and customize the command line (CMD.EXE), and you learned to navigate at the command-
prompt interface. Next, you learned several administration commands that are essential for
managing SQL Servers. After this, batch fi les were introduced, and you created a batch fi le
that can export data from a SQL Server database. Finally, you were introduced to the new
PowerShell and its SQL Server extensions.

Chapter Essentials

Introducing the Command Prompt The Windows command prompt is a valuable
tool for administration, troubleshooting, and automation. The most effi cient Windows
administrators know the command-prompt interface well.

Understanding General Commands To use the command prompt, you must have several
commands memorized and mastered. These commands include DIR, CD, COPY, ROBOCOPY,
CLS, ECHO, and TYPE, among others.

Using Batch Files When you want to automate mundane or routing tasks, batch fi les
are frequently an excellent solution. With batch fi les, you can make decisions, execute
dozens or hundreds of commands, and quickly modify them without any requirements for
compilation.

Mastering SQLCMD With the command prompt’s fundamentals under your belt, you moved
on to the SQLCMD utility. This is the primary utility for communicating with the SQL Server
in editions from SQL Server 2005 to 2012. You can communicate with SQL Server 2000
servers as well.

Introducing Windows PowerShell Windows PowerShell is Microsoft’s new command-
line interface with more powerful scripting and greater consistency. The SQL Server 2012
PowerShell Extensions enhance PowerShell to provide better support for SQL Server
administration.

Using SQL Server PowerShell Extensions When using the SQL Server PowerShell
Extensions, you gain two core benefi ts. First, you have the ability to navigate the SQL
Server objects as a directory structure. Second, you are provided with several cmdlets—
Invoke-SQLCMD being one of the most important—for SQL Server administration.

Querying SQL Server

TOPICS COVERED IN THIS CHAPTER:

 ✓ Understanding the SQL Language

 ✓ SQL Statement Types

 ✓ SQL Syntactical Elements

 ✓ Coding Recommendations

 ✓ Using SELECT Statements

 ✓ Advanced Query Techniques

 ✓ Using DDL Statements

 ✓ Using DCL Statements

 ✓ Modifying Data

 ✓ Tuning and Optimizing Queries

Chapter

5

This chapter presents the SQL language as it applies to the
management and control of, and access to, data stored in SQL
Server 2012 databases. SQL is a big topic that is covered in

whole books and even series of books, but this chapter will provide you with suffi cient
knowledge to understand the SQL code in the remaining chapters and to assist your
users and developers in writing the SQL statements required for their reports and applications.

Understanding the SQL Language
SQL (originally an acronym for Structured Query Language) is a language used by many
different database systems for data defi nition, manipulation, and control. The SQL lan-
guage is defi ned and standardized by the American National Standards Institute (ANSI)
and the International Standards Organization (ISO). The version of SQL implemented in
SQL Server is Transact-SQL, hereafter known as T-SQL, which is based on, and extends,
the minimal (“entry-level implementation”) defi nition of the standard known as ANSI SQL-
92 (so-called because it was published in 1992). The newest version of T-SQL also supports
some of the newer specifi cations put forth by ANSI and the ISO.

In addition to the entry-level standard SQL support, T-SQL contains many extensions
that provide increased functionality specifi c to SQL Server. This is nothing unique to SQL
Server, because most database systems include extensions for the management and control
of the specifi c relational database management system (RDBMS) in use.

In this section, you will learn about queries and the features of the T-SQL language that
are important to the DBA:

■ A short learning curve

■ Varied query modes

■ Standardization

■ Added logical capabilities of T-SQL

Queries
Since the SQL language is used to issue queries, among other directives, it is important that
you understand what a query is. A query is a question you need answered by the database.
For example, you may want to know all the customers who have an address in the city
of Nashville, Tennessee. Your question is, “Which customers have an address in the city of

Understanding the SQL Language 173

Nashville, Tennessee?” This English question must be converted to a properly formatted
query for use by the SQL Server query processor. It might look something like this:

SELECT * FROM dbo.customers
WHERE City = ‘Nashville’ AND State = ‘TN’;

You’ll learn the details of how this structured query works in the section titled, “Using
SELECT Statements,” later in this chapter. The important thing to remember is that it
really is just a language with a specifi c syntax that you use to issue requests or directives
to the SQL Server. Now let’s look at the features and advantages the T-SQL environment
brings the DBA.

Short Learning Curve
One of the beauties of SQL is that you can learn how to create very basic commands and
get started immediately. Then you can grow your knowledge of the language as your needs
demand. For example, the simplest query would be one that requests everything from a
table. While you will seldom want to use this kind of query in an application, it’s like the
fi rst baby step to learning SQL.

Not only are the most basic commands very simple, but the more advanced commands
are logical. Here is a question in English: “Can you tell me all the products we have where
the color is blue?” Now look at the same question in SQL:

SELECT * FROM Products
WHERE color = ‘blue’;

Do you see the similarities? One of the easiest ways to learn a new language is to learn
how to say things you already say in your existing language. In the previous example, the
portion of the question that reads “Can you tell me all the products we have” is translated
to SELECT * FROM Products. Then, the portion of the question that reads “where the color
is blue?” is translated to WHERE color = ‘blue’. The good news is that it really is that
simple. You just have to learn the keywords that give you the options you need.

Varied Query Modes
SQL code can be embedded within applications, and this is usually the method used by
developers. You may have a database that stores customer information, and the customer
service department may need to use this information in a specifi c way. Instead of requiring
all the customer service professionals to learn SQL, you can provide them with an applica-
tion that allows them access to the data through an interface, without needing to write or
see the actual SQL code. This application can provide the users with a series of buttons or
dialogs that, based on the input received, result in dynamically generated SQL code for the
users’ specifi c needs.

174 Chapter 5 ■ Querying SQL Server

Interactive SQL code is entered using a SQL querying tool. Microsoft ships such tools
with SQL Server, and it provides SQLCMD for the command prompt and the query
 windows in SQL Server Management Studio (SSMS). SQLCMD provides many command-
line switches that can be used to customize its operation. One of the more useful functions
of SQLCMD is the ability to run a SQL script from the command line. These scripts can be
executed directly at the command line or from batch fi les or shelled to from other applica-
tions. Figure 5.1 shows the SSMS with a query window.

F I GU R E 5 .1 SSMS as a color-coded editor

When you want to administer the SQL Server or test the data load in a database, you
are likely to use the query windows in SSMS. From here you have many features that make
your SQL coding easier. One of the most useful is syntactical highlighting. This feature
results in a color-coded display of your SQL code; although colors aren’t shown in this
book, in this example keywords such as USE, SELECT, and FROM are in blue, and comments
are in green. The keywords will be one color and string literals another. This makes it eas-
ier to read the code and understand the purpose and functionality of each element.

Understanding the SQL Language 175

Standardization
Originally, the ANSI organization released a standard for SQL in 1986. This standard was
adopted by the ISO in 1987 and was updated in both 1989 and 1992. The most commonly
implemented standard base is still the 1992 standard, which is usually called SQL-92. The
next full revision was completed in 1999 followed by an update in 2003, another in 2008,
and the most recent revision fi nalized in December 2011.

SQL Server 2012 is compliant with the entry level of the SQL-92 standard and also sup-
ports some of the features of SQL:1999. While a database system may comply with other
levels of SQL standard specifi cation, this level of compliance is common across all database
systems in common use today. In addition to this support for the ANSI/ISO standards,
Microsoft has well-documented extensions to the language for use with its specifi c data-
base server. These extensions include commands related to security, data manipulation, and
database architecture defi nition.

In addition to the terms I’ve used in the preceding description, the SQL standards are
often referenced using the following terminology:

■ SQL-86 (ANSI) or SQL-87 (ISO)

■ SQL-89 or SQL1

■ SQL-92 or SQL2

■ SQL:1999 or SQL3

■ SQL:2003 or revision 5

■ SQL:2008 or revision 6

■ SQL:2011 or revision 7

The query window offers some options that can make your work much
easier. For example, you can change the fonts and color-coding used
for syntactical highlighting in the Tools ➢ Options menu. There are also
features on the Edit menu for outlining code and removing outlines from
code. Don’t just use a tool; look around at the features and capabilities
you have when you’re actively in a query window. You’ll be pleasantly sur-
prised at some of the new capabilities.

The first version of SQL was released by ANSI in 1986 and by the ISO in
1987, which is the reason for the different names. SQL-86 had no such
naming as SQL1 or SQL2, which threw off the revision numbers. Newer
revisions simply go by the proper name, such as SQL:2011.

176 Chapter 5 ■ Querying SQL Server

Added Logical Capabilities of T-SQL
Unlike the SQL standards, T-SQL supports logical constructs, which are very benefi cial in
stored procedures as well as in embedded code. Logical constructs allow you to perform
specifi c actions only if certain conditions are true or false. For example, you may want to
present the price of a certain item as 10 percent more than what is stored if the current tax
rate is greater than 6 percent. The logic is shown in the following example code:

IF @taxrate > .06
 SELECT (price + (price * .1)) as thePrice, prodid, prodname
FROM dbo.products
ELSE
 SELECT price as thePrice, prodid, prodname FROM dbo.products

This code evaluates the contents of the variable @taxrate to determine whether it is
greater than 6 percent. If it is greater, a SELECT statement is issued that calculates the new
price as an increase of 10 percent. If it is not greater, a SELECT statement is issued that
accepts the stored price. If you are familiar with other languages, such as BASIC, you’ll
immediately notice the lack of an END IF statement. Remember that T-SQL is largely a non-
procedural language, and when it does implement logical constructs, the logical constructs
are often implemented loosely.

If you’re not already familiar with variables and other code elements, you’ll
learn more about them in the section “SQL Syntactical Elements” later in
this chapter.

SQL Statement Types
The SQL language supports three types of statements: Data Manipulation Language state-
ments, Data Defi nition Language statements, and Data Control Language statements. Each
statement category includes keywords and parameters that are used to defi ne the action
requested by the statement, and many of these keywords and parameters are defi ned in
later sections of this chapter.

Data Manipulation Language
The Data Manipulation Language (DML) statements are used to query, create, update and
delete data stored in SQL-compatible databases. The most commonly used DML state-
ments are as follows:
■ SELECT

■ INSERT

■ UPDATE

■ DELETE

SQL Syntactical Elements 177

Data Definition Language
Data Defi nition Language (DDL) statements are those used to defi ne the database and data-
base objects. Using SQL keywords like CREATE, ALTER, and DROP, you can create objects,
modify objects, and delete objects.

You will need the appropriate permissions to issue DDL statements. In SQL Server, the
members of the sysadmin, dbcreator, db_owner, and db_ddladmin roles have the permis-
sions to execute DDL statements.

Data Control Language
The fi nal SQL statement type is the Data Control Language (DCL). The DCL statements
are used to manage control or permissions to database objects. SQL Server supports the
standard GRANT and REVOKE statements as well as the T-SQL DENY statement.

The DML, DDL, and DCL languages are covered in more detail throughout the rest of
this chapter.

SQL Syntactical Elements
In the next section, I’ll offer some recommendations for making the SQL code you will
write as readable as possible. Before I can do that, I need to clarify some terminology for
you. The terms I’ll explain in this section defi ne the component parts of the SQL syntax.
You can think of them like the parts of speech in English grammar. We have verbs
in English grammar, and we have command words, which can be thought of as verbs, in
SQL Server. Command words are part of the complete collection of keywords used
in the SQL syntax. This section covers the different terms you’ll need to know to understand
SQL coding and the suggestions I’ll make later related to coding practices.

Keywords
In SQL, keywords are words that are reserved because they act as commands or parameters
for SQL statements. They are called reserved because they can’t be used for any other pur-
pose. An error will occur when a keyword is used improperly or out of its intended context,
for example, as an object name. You can use reserved words for database objects as long as
they are delimited in the SQL statement, but it is not considered good programming prac-
tice. However, as a programmer, you may not always have the ability to dictate the naming
conventions used when the database objects are created. In these scenarios, you can use
code like the following to gain access to the table. The fi rst line would generate an error
when attempting to access a table named where, while the second would work properly:

SELECT * FROM where;
SELECT * FROM [where];

178 Chapter 5 ■ Querying SQL Server

The fi rst line of code would generate the following error message in a query window
in SSMS:

Msg 156, Level 15, State 1, Line 1
Incorrect syntax near the keyword ‘where’.

The SQL Server engine sees this statement as an errant use of the keyword where rather
than looking for the named object. By delimiting the keyword with brackets, you force the
SQL Server engine to process the word where as the table name from which to select every-
thing. An exhaustive list of all available keywords and statements is beyond the scope of
this book. For a complete list, see the SQL Server 2012 Books Online.

Comments
Comments can be placed in SQL code in order to provide more information about the pur-
pose or functionality of the code. This can be useful to future programmers who inspect
the code and even for you when you need to work with the code again weeks, months, or
years later.

Two primary types of comments are available to you: in-line and block comments. In-
line comments are placed on the same line as the SQL code, and block comments surround
multiple lines of comments or code. All text between the comment characters, when using
block comments, is treated as a comment and not as SQL statements. This can be useful in
developing and troubleshooting, because you can “block out” or “comment out” specifi c
sections of code when you want to run a SQL script without those specifi c sections. The
in-line comment character is two hyphens (--), and the block comment characters include
the forward slash and the asterisk (/*) for the start-of-comment characters and the asterisk
and the forward slash (*/) for the end-of-comment characters. The following code sample
includes both types of comments:

/* The following code will create the database.
 The database will be created with default settings. */
CREATE DATABASE myDB; -- the database name is myDB

Batch Directives
When you create a SQL script, you sometimes need to direct the database server to execute
certain portions of the script as separate SQL batches. By default, without batch directives,
SQL Server will execute the entire script as a single SQL batch. By using the batch directive
GO, you can specify that sections of SQL code should be run as a distinct SQL batch from
within the SQL script. This is sometimes required for the logical completion of a sequence
of actions, such as when an object must be created fi rst and then acted upon in the
same script.

You will see the word GO in many different SQL scripts that you download from the
Internet or fi nd in books like this one. It is important to know that the GO directive is not

SQL Syntactical Elements 179

an actual SQL keyword. It is a batch directive understood by the tools that ship with SQL
Server and some other tools that understand SQL Server batch directives. When the query
window or SQLCMD encounters a GO statement in a script, these tools know to submit all
the lines of SQL code since the last GO statement and preceding the current GO statement.
Here are the rules that apply to the GO batch directive:

■ The current SQL batch will include all the statements entered since that last GO or since
the start of the script if this is the fi rst GO.

■ You cannot place a T-SQL statement on the same line as a GO statement.

In addition to these rules, you should know that GO statements must be used in certain
scenarios. For example, consider the following code:

USE master;
CREATE DATABASE tester;
CREATE TABLE tester.dbo.testtable (dataid int);

If you run this code from within a query window, while selecting AdventureWorks as the
database context from the drop-down menu, you’ll receive an error as follows:

Msg 2702, Level 16, State 2, Line 3
Database ‘tester’ does not exist.

Why does this happen? The answer is that you should place a GO directive after the USE
master; SQL statement. In addition, you’ll also need a GO statement after the CREATE DATA-
BASE tester; command. Here is the code that will actually create the database and then
the table without errors:

USE master;
GO
CREATE DATABASE tester;
GO
CREATE TABLE tester.dbo.testtable (dataid int);

Notice that there is no GO statement after the CREATE TABLE command. This is because
it is the last statement in the script and will be executed as an independent batch separately
from the other two batches in the script. In the end, this simple fi ve-line script includes
three SQL batches because of the demand for the two GO directives.

The other batch directive is the EXEC command. EXEC is used to execute a user-defi ned
function, stored procedure, or character string within a T-SQL batch. For example, you can
issue the following command, from within a script, to force the single statement to execute
as an independent batch:

EXEC (‘SELECT * FROM AdventureWorks.Person.Contact;’)

180 Chapter 5 ■ Querying SQL Server

Now that you’ve seen the EXEC directive used with character strings, here’s another way
to execute the previous SQL batch that demanded the use of two GO directives:

EXEC (‘USE master;’)
EXEC (‘CREATE DATABASE tester;’)
EXEC (‘CREATE TABLE tester.dbo.testtable (dataid int);’)

Because each T-SQL statement is encapsulated inside an EXEC directive, each is executed
as an individual batch within the script. You can see more examples of batch directive
usage in SQL Server 2012 Books Online.

SQL Statements
I’ve used the term SQL statement a few times already in this chapter, and you’ve probably
discovered the defi nition without my explicit declaration. However, just to be sure you
understand all the important terms surrounding SQL syntax, a SQL statement is a collec-
tion of SQL keywords, identifi ers, variables, and parameters (as well as other tokens) that,
together, form a command that can perform some action when issued against the SQL
Server. A token is a keyword, identifi er, variable, literal, operator, or statement terminator
used to create a SQL statement.

Clauses
SQL statements have at least one clause. A clause is a portion of a SQL statement that
begins with a keyword and is either required or optional. In the following example, SELECT,
FROM, and WHERE introduce the three clauses that make up this single SQL statement:

SELECT prodid, prodname, prodprice
FROM dbo.products
WHERE prodprice > $50;

Identifiers
When databases, tables, columns, and other database objects are created, they are given
names. These names are known as identifi ers in SQL syntax. For example, the following
statement includes four identifi ers, namely, the three column names and the table name:

SELECT tx_rate, city, state
FROM tbl_txrates;

It is important to use well-conceived names for identifi ers. They must begin with a letter
as defi ned by Unicode Standard 3.2. In the English language, this means the Latin charac-
ters a–z and A–Z. If the identifi er names do not begin with these letters, they must begin
with specifi c characters that defi ne them as local variables or parameters (the @ character),

SQL Syntactical Elements 181

temporary tables or procedures (the # character), or global temporary objects (the ## char-
acter combination). In addition to these guidelines, identifi ers cannot be greater than 128
characters.

You also have the option of using delimited identifi ers. These are identifi ers surrounded
by brackets or double quotation marks. Delimited identifi ers must be used when the identi-
fi er name contains spaces or when the identifi er name is the same as a keyword. The fol-
lowing code sample shows delimited identifi ers:

SELECT [tx_rate], [city], [state]
FROM [tbl_txrates];

Technically, identifi ers consist of four parts. These four-part names are structured in
a hierarchy beginning with the server name and ending with the specifi c object name you
want to reference. For example, if you want to reference the table named Customer, in the
schema named Sales, in the database named AdventureWorks, on a server named SQL1
using the four-part name, you would use the following naming structure:

SQL1.AdventureWorks.Sales.Customer

Notice that the four-part naming structure works in the same hierarchy as the real-
world implementation of the object. The object is named Customer and is in the Sales
schema of the AdventureWorks database on the SQL1 server. Remember this structure:

<server name>.<database name>.<schema name>.<table name>

You may be wondering why you don’t have to use the four-part naming scheme
every time. The answer lies in the concept of context. If you access an identifi er like
Sales.Customer while in the context of the AdventureWorks database on the SQL1 server,
you do not have to specify the server and the database portions of the name. Since you are
in the context of that database, these portions of the name are assumed automatically and
implicitly. Therefore, the following code samples both result in the same output:

-- This first sample uses the USE keyword to change
-- the context to the needed database.
USE AdventureWorks;
SELECT * FROM Sales.Customer;
-- This second example uses the four part name
-- to avoid changing context.
SELECT * FROM SQL1.AdventureWorks.Sales.Customer;
-- In either case, you must have the permissions required
-- in the AdventureWorks database

Variables
Variables are placeholders for specifi c data items that are used programmatically within
T-SQL scripts. Local variables like this are created using DECLARE statements with values
assigned using SET or SELECT statements. Variables are very useful when creating scripts to

182 Chapter 5 ■ Querying SQL Server

be run with SQLCMD. You can create variables within the script and then fi ll those variables
with command-line switches when the script is run with SQLCMD. To see how variables can
be used, execute the following code in a query window:

DECLARE @taxrate DECIMAL(12,2)
SET @taxrate = .06
SELECT (4.97 + (4.97 * @taxrate)) AS Price

In this code, the variable @taxrate is created in the fi rst line and is set to equal 6 per-
cent in the second line. Notice how the tax rate variable is used in the SELECT statement to
generate the price of an item as price plus tax. Similarly, you could perform a calculation
against the results of a table column. Consider this example:

USE AdventureWorks
GO
DECLARE @taxrate DECIMAL(12,2)
SET @taxrate = .06
SELECT (ListPrice + (ListPrice * @taxrate)) AS Price
FROM Production.Product

Data Types
Data types are used to constrain the types of data that can be placed in columns or vari-
ables when using T-SQL. All the data types documented in Chapter 10 are supported for
use within the T-SQL language.

System Functions
Functions are used to perform mathematical and other logical operations within SQL state-
ments. There are many system functions, and you can see a listing of them by searching for
system functions in Books Online. You will see that the functions are divided into system
functions, scalar functions, and others. The following code uses the AVG function to return
the average list price from the AdventureWorks Production.Product table:

USE AdventureWorks
GO
SELECT AVG(ListPrice) AS AveragePrice FROM Production.Product;

Operators and Expressions
Operators are symbols used to perform mathematical operations, string manipulation, and
comparisons between column values, constant values, or variables. T-SQL supports the
following operator types:

SQL Syntactical Elements 183

Arithmetic Used to perform mathematical operations against columns, constants, or vari-
ables. Includes the following operators: multiplication (*), division (/), modulo (%), addition
(+), and subtraction (–).

Comparison Used to compare two expressions. Includes the following operators: equal to
(=), greater than (>), less than (<), greater than or equal to (>=), less than or equal to (<=),
and not equal to (<>).

String Concatenation Used to combine multiple strings. Includes the concatenation
operator (+).

Logical Used to connect search conditions in WHERE clauses. Includes AND, OR, and NOT.
In addition to the existence of these operators, the SQL programmer must be aware of

operator precedence. SQL Server uses the operator precedence structure represented in
Table 5.1. The operators are listed in order of precedence from highest to lowest.

TA B LE 5 .1 Operator Precedence

Type Operator Symbols

Grouping Primary grouping ()

Arithmetic Multiplicative * / %

Arithmetic Additive - +

Other String concatenation +

Logical NOT NOT

Logical AND AND

Logical OR OR

For example, the following statement results in the value of 12. This is because of the
operator precedence rules forcing multiplication before division:

SELECT 4 + 2 * 3 + 4 / 2 AS theResult;

The multiplication and division operators are processed fi rst from left to right, and then
the addition operators are processed from left to right. The results can be changed by using
parentheses. Consider the following example, where the result is equal to 21:

SELECT (4 + 2) * (3 + 4) / 2 AS theResult;

Expressions are a combination of symbols and operators that evaluate to a single data
value. Expressions may be as simple as variables or constants or as complex as combined
columns, variables, and constants using operators.

184 Chapter 5 ■ Querying SQL Server

Statement Terminator
The standard statement terminator used in SQL code is the semicolon (;). While the state-
ment terminator is optional in most situations from within the SQL Server 2012 tools, it is
a best practice to include the statement terminator. These are used to defi ne the end of an
interactive statement. You will encounter some commands that will not work without the
use of the semicolon.

Coding Recommendations
Now that you’ve seen the primary elements of SQL syntax, you’ll be better able to read and
understand SQL code as well as to write better SQL statements yourself. This section offers
some suggestions for writing readable SQL code.

Capitalize Keywords
The fi rst recommendation for coding practices, and the one most commonly given, is to
capitalize keywords in your SQL code. This has been a common practice of programmers
for years in many different languages. The benefi t is that it makes your code more readable,
particularly when you are viewing the code in an editor that doesn’t use color-coding. To
see this, look at the following two code snippets:

-- This first block of code does not use the capitalization
-- of keywords recommendation.
select * from products
where listprice > $4.29;
select listprice, taxrate, (listprice + (listprice * taxrate)) as taxedprice
from production.product where listprice > $12.50;

-- Now the same code with the capitalization
-- of keywords recommendation applied.
SELECT * FROM products
WHERE listprice > $4.29;
SELECT listprice, taxrate, (listprice + (listprice * taxrate)) AS taxedprice
FROM production.product WHERE listprice > $12.50;

Notice how, in the second instance of code, the keywords stand out to you. They are
easier to read, and it is much easier to fi nd the logic within the statement.

Using SELECT Statements 185

Use Standard SQL
This is a good point to mention the benefi ts of using standard SQL as often as possible.
Without a doubt, there will be times you need to perform actions that are specifi c to
the database system with which you are working—in this case, Microsoft SQL Server.
However, in all other situations, when you can write code using either T-SQL–specifi c
commands or standard SQL commands, you should choose to use the standard SQL com-
mands. There are many benefi ts to this behavior, including the following:

■ Portability of the code

■ Easier maintenance of the code by other DBAs and developers

■ Endurance of the code through multiple versions of SQL Server

Do Not Use Keywords as Identifiers
The fi nal suggestion I will make regarding SQL coding is to avoid the usage of keywords
as identifi er names. Although you can use delimiters to access these identifi ers from within
your SQL code, it is not considered good programming practice. You may fi nd third-party
tools that will not execute SQL code that contains keywords as identifi ers. In addition, it
makes your code more diffi cult to read.

If you are interested in learning more details about SQL-coding best prac-
tices, I highly recommend the book, Joe Celko’s SQL Programming Style
(Morgan Kaufmann, 2005).

Using SELECT Statements
Without question, the most commonly used SQL keyword is SELECT. It is used to create
statements that retrieve data from SQL Server databases and, in some cases, copy data from
one source into another destination. SELECT statements can be very complex or very simple
depending on the task demands. The SELECT statement is the fundamental building block of
all database applications.

Because it is the most used statement, I spend more time covering it in this chapter than
any of the other SQL statements in any of the categories (DML, DDL, and DCL). In this
section, I will teach you to create basic SELECT statements as well as more advanced state-
ments that allow for fi ltering, formatting, and sorting the data that is returned by the
SELECT statement. All code examples, in this section, will use the AdventureWorks database
that can be added to a SQL Server 2012 installation.

186 Chapter 5 ■ Querying SQL Server

Basic SELECT Statements
The simplest SELECT statement returns a literal value. For example, the statement SELECT
47 will return the value 47 without a column name. If you’re familiar with BASIC program-
ming languages, you should remember the PRINT command. In this usage, the SELECT state-
ment behaves much like the traditional BASIC PRINT command. However, this very basic
form of the statement is seldom used. More often, you will see the SQL statement,

SELECT * FROM table_name

as the most basic SELECT statement actually used. This command returns every column
and every row from the table referenced. For example, issue the following SQL code from
within a query window in SSMS with AdventureWorks as the database context:

SELECT * FROM Production.Product;

You should see a listing of all the columns and all the rows from the table named Prod-
ucts in the Production schema. The asterisk wildcard, in this case, represents everything in
the table. This example SELECT statement has two clauses: the SELECT clause and the FROM
clause. The SELECT clause is the minimum required to form a SELECT statement, but a state-
ment that pulls data from a database will always have a FROM clause as well. Additional
clauses, such as WHERE and ORDER BY, will be covered in the sections “Filtered SELECT
Statements” and “Sorted SELECT Statements” later in this chapter.

In addition to specifying the table from which the data should be returned, you can also
specify that only certain columns should be returned, you can name the returned columns
differently than the stored names, you can calculate columns, and you can use the TOP and
DISTINCT keywords. These options will all be covered, with examples, in the following
sections.

Returning Specific Columns
Returning specifi c columns in a SQL query is a very simple task. Instead of using the aster-
isk to specify that all columns should be returned, you will use the specifi c column names
you want to return. The structure of a column-specifi c SQL SELECT statement is as follows:

SELECT <first column name>, <second column name>, … FROM <table_name>;

As you can see from this syntax defi nition, you can specify multiple column names, and
you must separate them with commas. The following code returns the ListPrice, Name,
ProductID, and ProductNumber columns from the Production.Product table:

SELECT ListPrice, Name, ProductID, ProductNumber FROM Production.Product;

This statement is like asking the question, “What are the values of ListPrice, Name,
ProductID, and ProductNumber for all the records in the Production.Product table?”

Using SELECT Statements 187

Using Named Columns
A named column is one that you select from a table and want to have displayed with a
different name than that stored in the table defi nition. The actual column name may not
be descriptive enough for your result set, and a different name might better describe the
data. For example, the HumanResources.Employee table in the AdventureWorks database
includes a column named CurrentFlag. This column identifi es whether the employee is a
current or past employee. Imagine you want to return this column along with the Salaried-
Flag, EmployeeID and ManagerID columns, but you want the CurrentFlag column to be
named Still Employed instead. You could write a SELECT statement like the following:

SELECT CurrentFlag AS [Still Employed], SalariedFlag, LoginID, JobTitle
FROM HumanResources.Employee;

Notice the delimiters around the name Still Employed; they are needed here because
there is a space within the name. You could also use double quotation marks as delimiters,
but the brackets are preferred. The AS keyword enables you to specify an alternate name.
Additionally, you can leave out the AS keyword and get the same results, as in the
following code:

SELECT CurrentFlag [Still Employed], SalariedFlag, LoginID, JobTitle
FROM HumanResources.Employee;

Using Calculated Columns
A calculated column is a column in the return set that is not actually stored in the table.
The column may include calculated results based on actual table data, or it may contain
calculated results that are based on data external to the table. For example, the following code
creates a variable named @taxrate, places the value of 0.06 in the variable, and then cal-
culates the actual price of each item in the Production.Product table based on the ListPrice
column. The results are stored in a column named ActualPrice:

DECLARE @taxrate DECIMAL (3, 2);
SET @taxrate = 0.06;
SELECT ListPrice, ListPrice + (ListPrice * @taxrate) AS ActualPrice
FROM Production.Product;

You may have noticed, based on the examples in this chapter and oth-
ers, that SQL ignores whitespace. This allows you great flexibility in the
formatting of your SQL code. You can write portions of your statements
on separate lines to make the code more readable. However, keep in mind
that although whitespace is generally ignored, certain commands must be
placed on separate lines from SQL code. An example of this would be the
GO directive.

188 Chapter 5 ■ Querying SQL Server

The calculated column is generated from the expression ListPrice + (ListPrice *
@taxrate).

Calculated columns can be created either at the server or in the client application. There
are benefi ts to both approaches. If the calculated column is created based on a stored
procedure at the server, things like tax rates can be changed in one place and impact all the
applications that use the stored procedure. However, the downside of creating the calcu-
lated column at the server is that the server’s processor is used to perform the calculation.
When the calculated column is created in the client application, the local system’s proces-
sor does the work of the calculation; however, all the client applications would need to be
updated in some manner if things like a tax rate are hard-coded into the applications. This
can be avoided using other means, such as storing the updatable variables in a table and
querying this table to perform the calculations at the client, but it is important that you
consider these issues when creating SQL queries. Simpler calculated fi elds may use
functions like: AVG, MIN, MAX, and others. The following code shows the use of each of
these functions:

SELECT AVG(ListPrice) AS [Average Price],
MIN(ListPrice) AS [Lowest Price],
MAX(ListPrice) AS [Highest Price]
FROM Production.Product;

If you run this query against an unmodifi ed AdventureWorks database, you should get
results that equal the following (based on the 2012 version of the database):

■ Average Price = 438.6662

■ Lowest Price = 0.00

■ Highest Price = 3578.27

In the section “Converting Data in Results Sets” later in this chapter, you will see how
to format results like the Average Price shown here to just two decimal places.

Using the TOP Keyword
The TOP keyword returns a specifi ed number or percentage of rows from a table. This
allows you to easily see the highest-priced items, the most-sold items, the highest-paid
employees, and the like. You can also view the lowest items by reversing the sort order of
the SQL statement. You can issue simple TOP statements, sorted TOP statements, percentage-
based TOP statements, and inclusive percentage-based TOP statements. I’ll show how to cre-
ate all four statement types in this section.

First, let’s look at a simple SELECT statement that uses the TOP keyword. The following
statement will simply return the fi rst 50 rows of data from the Production.Product table in
the AdventureWorks database:

SELECT TOP(50) *
FROM Production.Product;

Using SELECT Statements 189

This example allows for a detailed explanation of how the TOP keyword actually works.
When you specify the TOP(n) parameter, SQL Server returns the fi rst n rows from the speci-
fi ed table. How does it know which rows are the fi rst rows? The answer is that it is based
either on the order in which the data was entered or on the clustered index on the table.
The clustered index is both the way the data is ordered in the table and a way of locating
information quickly. If there is no clustered index, the data is stored in a heap, and the fi rst
rows will simply be the fi rst rows that were entered. If there is a clustered index, the data
will be ordered by the clustered index column, and this column will dictate the fi rst rows.
You will see that the ProductID column contains numbers from 1 to 371 in the result set
from the previous query. Now, issue the following statement to see how many records con-
tain a ProductID between 1 and 371:

SELECT *
FROM Production.Product
WHERE ProductID BETWEEN 1 AND 371;

You will get a result set that consists of 50 rows. This is because the ProductID col-
umn is the clustered index column and there are 50 ProductID values that exist within
this range. When you couple this knowledge with the result set that was generated from
the TOP(50) statement earlier, you can see how the clustered index impacts the results of a
statement that uses the TOP keyword.

Sometimes you want to sort the resulting TOP rows by a different column. In addition,
you may want to specify that a column other than the clustered index be the column from
which the top rows are selected. Both of these are accomplished with the ORDER BY clause.
The ORDER BY clause is discussed in more detail in the “Sorted SELECT Statements” sec-
tion later in this chapter. For now, issue the following statement, and notice that you are
now selecting the top 50 rows based on the values in the ListPrice column and sorting by
that column as well:

SELECT TOP(50) *
FROM Production.Product
ORDER BY ListPrice DESC;

Take special note of the ProductID column in the result set after issuing this statement.
You will immediately notice that the ProductID column values are defi nitely not the same
as they were without the ORDER BY clause. You are clearly getting a different result set,
and this is because you are now selecting the 50 most expensive products by the ListPrice
column.

To retrieve the top 5 percent of rows based on the ListPrice column, issue the following
statement:

SELECT TOP(5) PERCENT *
FROM Production.Product
ORDER BY ListPrice DESC;

190 Chapter 5 ■ Querying SQL Server

Note that this query returns 26 rows. Scroll to the end of the result set, and notice that
there are fi ve items at the end of the list that have a ListPrice value of 2384.07. Now, issue
the following statement and then evaluate the result set:

SELECT TOP(5) PERCENT WITH TIES *
FROM Production.Product
ORDER BY ListPrice DESC;

Did you notice a difference? First, there are now 29 rows in the result set. Second, scroll
to the end of the result set, and notice that there are now eight items with a ListPrice value
of 2384.07. The WITH TIES command tells SQL Server to return the percentage amount
specifi ed, but if there are more rows with the same value as the last row in the percentage-
based result set, return the extra rows that are equal to the last row as well. This is a very
useful feature when you want to be sure you get all the products in the top 5 percent price
range and not just the products that are in the top price range and make up exactly 5 per-
cent of the total number of products. Of course, WITH TIES can be used on other data sets
than products as well. This feature is what I describe as inclusive percentage-based TOP
statements.

Using the DISTINCT Keyword
The DISTINCT keyword allows you to specify that you want only unique items to be
returned. While the DISTINCT keyword is usually applied to one column in a table, you
can use it to specify uniqueness based on a combination of columns. For example, you can
say that you want to see all the rows that have a unique combination of City and State in a
table. This would give you a different result than just asking for the unique entries based on
the City column. For instance, you’d fi nd a Belleville, West Virginia, as well as a Belleville,
New York. The following code illustrates this by selecting distinct City and State combina-
tions from the Person.Address table:

SELECT DISTINCT city, stateprovinceid
FROM Person.Address
ORDER BY city;

Notice that there is an Albany in the result set with a StateProvinceID of 54 and
another with a StateProvinceID of 58. Also note that there are 613 rows in the result set.
Now issue the following simpler DISTINCT statement:

SELECT DISTINCT city
FROM person.address;

You should see that there are now only 575 rows in the result set. This is because you
have asked for unique cities alone and not unique combinations of cities and states. Keep in
mind that the DISTINCT clause sorts the results in a random order unless you have included
a specifi c ORDER BY clause.

Using SELECT Statements 191

Filtered SELECT Statements
Now that you know how to write basic SELECT statements, it’s time to begin learning how
to narrow down the result sets to the specifi c data you need. This is done with the WHERE
clause within the SELECT statement. In this section, I’ll show you how to use fi lters so you
can select the specifi c data you need. In the process, you will learn about the following fi lter
types used with the WHERE clause:

■ Comparison operators

■ String comparison

■ Logical operators

■ Range of values

■ Lists of values

Another form of filtering and data manipulation is working with NULLs.
I’ll address NULLs in a later section of this chapter titled, “Handling NULL
Data.”

Comparison Operators
Comparison operators are those special symbols you learned to use in school when work-
ing with fractions and whole numbers. These operators, as explained earlier, include =, >,
<, >=, <=, and <>. The simplest of these is the equal sign (=) because it is used to fi lter to an
exact value for a column or calculated column. For example, let’s say you want to retrieve
the record for ProductID 371. You could execute the following statement to retrieve just
that record from the Production.Product table:

SELECT *
FROM Production.Product
WHERE ProductID = 371;

You should fi nd that the name of this product is Thin-Jam Hex Nut 7. Notice that you
retrieved only one record. That’s because ProductID is a unique column. This means there
are no duplicates in this column, so an exact WHERE clause will always return one record or
no record if there is no match to the specifi ed criteria.

Here’s another example. This time you’ll query the Sales.SalesOrderHeader table for all
the records with an OrderDate after January 1, 2004:

SELECT *
FROM Sales.SalesOrderHeader
WHERE OrderDate >= ‘January 1, 2004’;

192 Chapter 5 ■ Querying SQL Server

Do you see how the operators can be used against dates? The greater-than or equal-to
operator (>=), when used against a date, specifi es that the returned records should have
OrderDate values starting with the specifi ed date.

String Comparison
When you need to fi nd strings that are similar to a certain pattern or specifi cation, you will
need to use the LIKE clause in conjunction with the WHERE clause. The format of the SELECT
statement with a LIKE clause looks like this:

SELECT <columns> FROM <table> WHERE <column name> LIKE <string definition>

The string defi nition can include wildcard characters as well as explicit characters. For
example, you can specify that you want to fi nd any values with the string OHI in the begin-
ning with this string defi nition: OHI%. This would fi nd OHIO, OHIO STATE, and even OHIO
STATE BUCKEYES. All of which would be valuable strings to have in a database.

Use Table 5.2 as a reference for how the string defi nitions can be structured. As you can
see, this feature can be very powerful and very granular. It can utilize wildcards, such as
the % symbol for any number of characters or the _ symbol for specifi c numbers of charac-
ters. For example, the string ‘C__’ would return Cat or Cow, but not Calf.

TA B LE 5 . 2 String Definition Examples

Expression Returns

LIKE ‘HO%’ Every value beginning with HO and having any number of
characters after HO.

LIKE ‘%ing’ Every value ending with ing and having any number of charac-
ters before ing.

LIKE ‘[ABCDEFG]%’ Every value beginning with the single letters A–G and ending
with any characters.

LIKE ‘[A-G]%’ Every value beginning with the single letters A–G and ending
with any characters.

LIKE ‘T_m’ Every value that begins with T and ends with m and has one
character in between, like Tom.

LIKE ‘[^A-Z]%’ Every value that begins with something that is not the letters
A–Z and then has any number of any characters after the
first letter.

The following SELECT statement, when executed against the AdventureWorks database,
demonstrates the usage of the LIKE clause:

SELECT *
FROM Person.Address
WHERE City LIKE ‘Bell%’;

Using SELECT Statements 193

In this case, you are asking for all the rows with a City value that begins with Bell. The
result set should contain Bellevue, Bellingham, and more.

Logical Operators
Logical operators allow you to combine a series of expressions. For example, you can spec-
ify that you want all the rows with a City value of LIKE ‘Bell%’ and a StateProvinceID
value of 79. This gives you the ability to more fi nely tune the query and thus the results you
receive.

The following guidelines apply to your use of logical operators:

■ When you want to retrieve rows that meet all the search criteria, use the AND operator.

■ When you want to retrieve rows that match any of the search criteria, use the OR
operator.

■ When you want to negate, or rule out, certain rows, use the NOT operator.

■ Understand logical operator precedence. SQL Server processes the NOT operator fi rst,
then the AND operator, and fi nally the OR operator, and it processes each pass from left
to right.

■ When the operators are the same (all AND or all OR), SQL Server processes from left to
right.

■ You can use parentheses, just as with mathematical operators, to force your needed
precedence.

Of the guidelines listed, the issue of operator precedence has caused more problems than
any others I’ve seen. Consider the following code sample:

SELECT *
FROM Sales.SalesOrderHeader
WHERE SalesOrderID > 45000 OR OrderDate > 01/01/2003
AND CustomerID LIKE ‘28%’;

The result set of this query includes more than 30,000 rows. Why? The answer is found
in operator precedence. This query is actually saying, “Give me all the rows with a SalesOr-
derID value of greater than 45,000 as well as all the rows with an OrderDate of later than
01/01 / 2003 and a CustomerID that begins with 28.” This is because the AND operator is
processed fi rst and then the OR operator. Without fi rst running the following code, do you
think it will return fewer rows or the same number as the previous query?

SELECT *
FROM Sales.SalesOrderHeader
WHERE (SalesOrderID > 45000 OR OrderDate > 01/01/2003)
AND (CustomerID LIKE ‘28%’);

It looks much like the previous code sample with the exception of the parentheses. Just
as they do with mathematical operators, the parentheses override the normal precedence

194 Chapter 5 ■ Querying SQL Server

structure. In this example, they completely change the logical operator processing and
result in a much smaller number of returned rows: 1,153. Just to be clear, the parentheses
around the last expression, CustomerID LIKE ‘28%’, are for readability only. Since there
is only one expression within the last set of parentheses, the order of processing is not
affected by them.

Range of Values
At times, your data consumers will need to retrieve a range of values instead of values that
meet criteria that can be selected with the LIKE clause. In these situations, you could write
code like the following:

SELECT *
FROM Sales.SalesOrderHeader
WHERE SalesOrderID >= 45000 AND SalesOrderID <= 50000;

In this case, the result set will include 5,001 rows. However, a simpler way to write this
query would be to use the BETWEEN clause. It works like this:

SELECT *
FROM Sales.SalesOrderHeader
WHERE SalesOrderID BETWEEN 45000 AND 50000;

When you execute this statement, you will get the same result set as the previous state-
ment, but it is easier to read. It is important to note that the BETWEEN clause includes the
starting and ending numbers (or dates) as well as those in between them. Interestingly, SQL
Server actually processes a BETWEEN clause in the same way as the fi rst range example in this
section. To see this, type the following code that uses the BETWEEN clause into a New Query
window. When you have fi nished typing the code, press Ctrl+L to show the estimated query
execution plan. You will see a plan similar to that in Figure 5.2. To see the seek predicate
that is shown in Figure 5.2, just hover your mouse over the clustered index seek-icon in the
lower-right corner:

SELECT *
FROM Sales.SalesOrderHeader
WHERE SalesOrderID BETWEEN 45000 AND 50000;

F I GU R E 5 . 2 Processing a BETWEEN clause

Using SELECT Statements 195

Notice that the seek predicate is actually using the >= and <= symbols instead of the
BETWEEN clause. This is how SQL Server processes a BETWEEN clause. It converts the clause to
a symbol-based operator expression and then performs the database seek or scan.

Lists of Values
The fi nal WHERE fi lter to cover is the IN clause, which provides the ability to fi lter to a list of
values. The IN clause is a simplifi ed way, similar to the BETWEEN clause, of writing a fi lter for
a series of comparison expressions connected by the OR operator. For example, both of the
following statements will return the same result set:

SELECT *
FROM Sales.SalesOrderHeader
WHERE TerritoryID IN (5, 4, 1);

SELECT *
FROM Sales.SalesOrderHeader
WHERE TerritoryID = 5
OR TerritoryID = 4
OR TerritoryID = 1;

Clearly, the IN clause is a shorter form of the command. However, keep in mind that
SQL Server will actually process the fi rst statement in the same manner as the second. You
can see this by executing the fi rst statement while including the actual execution plan. To
do that, right-click in the code area and select Include Actual Execution Plan before execut-
ing the statement. Once you’ve done this, click the Filter icon on the Execution Plan tab.
Notice that it is actually using a series of OR operators, as shown in Figure 5.3.

F I GU R E 5 . 3 The processing of an IN clause

196 Chapter 5 ■ Querying SQL Server

Sorted SELECT Statements
The results that are returned from a SELECT statement will be ordered either randomly or
by the clustered index by default. This may not be the sort order you need, and, in such
cases, you can use the ORDER BY clause to specify the needed sort order. The ORDER BY
clause supports both ascending and descending sort orders and can sort on multiple col-
umns. For example, if you have a table with a Category column and a Price column, you
can return the rows and then sort by the category fi rst and then by price. The following
SELECT statement would work:

SELECT *
FROM theTable ORDER BY category, price;

Let’s look at a real example using the AdventureWorks database. In this case, you will
select all the rows from the Production.Product table, but you will display only the Produc-
tID, ProductSubCategoryID, and ListPrice columns. You will sort the results fi rst by the
ProductSubCategoryID and then by the ListPrice. To illustrate the fl exibility available to
you, you will sort the fi rst ORDER BY column ascending and the second descending. Here’s
the code:

SELECT ProductID, ProductSubCategoryID, ListPrice
FROM Production.Product
ORDER BY ProductSubCategoryID ASC, ListPrice DESC;

You will notice that I included the ASC option for the ProductSubCategoryID even
though it is not specifi cally required at this time because it is the default. I have a practice
of doing this for readability and recommend it to you because it serves as a reminder when
looking at older code you’ve written. The result set, as you can see in Figure 5.4, shows the
“lowest” values fi rst in the ProductSubCategoryID column and then the “highest” values
fi rst in each subcategory for the ListPrice column.

F I GU R E 5 . 4 The sorted results with ORDER BY

Using SELECT Statements 197

Handling NULL Data
If you executed the code in the previous section, you probably noticed all the NULL values in
the ProductSubCategoryID column of the result set, as shown in Figure 5.4. NULL values are
simply values that represent no input. It is not a 0, which is a value, but rather it is simply
nothing. It is not uncommon to have NULL data in your databases, and knowing how to
handle this type of data is very important. For example, you may want to display something
other than NULL in the result set for NULL data, or you may desire to update all the rows
with NULL data to use some default value instead of NULL. In any case like this, you can use
the IS NULL, IS NOT NULL, NULLIF, and COALESCE functions to deal with the
NULL values.

IS NULL and IS NOT NULL
The IS NULL and IS NOT NULL expressions allow you to select data that is NULL or is not
NULL. Consider the following SELECT statement, which retrieves only the rows with a NULL
value in the ProductSubCategoryID column:

SELECT ProductID, ProductSubCategoryID, ListPrice
FROM Production.Product
WHERE ProductSubCategoryID IS NULL
ORDER BY ProductSubCategoryID ASC, ListPrice DESC;

The following statement does the opposite; it returns all the rows where the Product-
SubCategoryID is not NULL:

SELECT ProductID, ProductSubCategoryID, ListPrice
FROM Production.Product
WHERE ProductSubCategoryID IS NOT NULL
ORDER BY ProductSubCategoryID ASC, ListPrice DESC;

NULLIF
NULLIF is a special function that is used to evaluate two expressions and return NULL as the
value if they are equivalent and return the fi rst expression if they are not equivalent. Imag-
ine you have a table that is used to track the marketing budget for an organization, with
a different budget set for each product. Imagine that the table is structured like the one in
Table 5.3. If the current budget is the same as the previous year’s, the CurBudget column is
supposed to be set to NULL. However, there are no triggers in place to enforce this, so data
was entered as shown in Table 5.3. Note the product named Acme 48.

198 Chapter 5 ■ Querying SQL Server

TA B LE 5 . 3 Sample Table for the NULLIF Function

Product PrevBudget CurBudget

Acme 49 $25,000 NULL

Acme 07 $17,000 $21,000

Acme 19 NULL $6500

Acme 35 $0 $12,000

Acme 48 $36,000 $36,000

Now, consider this code used against Table 5.3, assuming it is named mktBudgets:

SELECT Product, NULLIF(CurBudget, PrevBudget) AS CurrentBudget
FROM mktBudgets;

Figure 5.5 shows the result set from this statement. You can immediately see a prob-
lem when using NULLIF by itself. The product, Acme 48, returned a NULL value instead of
$36,000. Also notice that the product named Acme 49 returned NULL, which is the nor-
mal behavior for the NULLIF command, but it is not the behavior you desire. This can be
resolved by using the COALESCE function with the NULLIF function, as described in the next
section.

F I GU R E 5 .5 NULLIF result set

COALESCE
The COALESCE function is used to return the fi rst non-NULL value in a series of expressions.
For example, the following SELECT statement would return the value 47:

SELECT COALESCE(NULL, NULL, 47, NULL, 13, NULL);

Using SELECT Statements 199

You may already see how this function can resolve the NULLIF problem from the previ-
ous section. Here is the same code shown there, with the COALESCE function added so that
you truly get the current budget assigned to each product in the mktBudgets table. You
can see the results of the command in Figure 5.6; they show that the current budget is now
what is shown. For the product named Acme 49, notice how the statement now uses the
PrevBudget column value since the CurBudget column value for that row is NULL:

SELECT Product, NULLIF(COALESCE(CurBudget, PrevBudget), $0.00) AS CurrentBudget
FROM mktBudgets;

F I GU R E 5 .6 Better NULLIF results using COALESCE

Converting Data in Result Sets
Sometimes the data that is returned from the server is not formatted in the way you desire,
or it may be returned as an incorrect data type for your current needs. In these situations,
you can use the CONVERT or CAST function on the data.

You may remember the example in the earlier section “Using Calculated Columns,”
where the data results included a price column with more than two decimal places. Now
let’s see how to convert this to two decimal places using CONVERT or CAST. Here is the code
from the earlier section:

SELECT AVG(ListPrice) AS [Average Price],
MIN(ListPrice) AS [Lowest Price],
MAX(ListPrice) AS [Highest Price]
FROM Production.Product;

If you run this statement in SSMS, you will see that the resulting Average Price column
has more than two decimal places. The following examples show how the CONVERT and
CAST functions can be used to resolve this issue:

--This statement uses the CONVERT function
SELECT CONVERT(DECIMAL(20,2), AVG(ListPrice)) AS [Average Price],
MIN(ListPrice) AS [Lowest Price],

200 Chapter 5 ■ Querying SQL Server

MAX(ListPrice) AS [Highest Price]
FROM Production.Product;
--This statement uses the CAST function
SELECT CAST(AVG(ListPrice) AS DECIMAL(20,2)) AS [Average Price],
MIN(ListPrice) AS [Lowest Price],
MAX(ListPrice) AS [Highest Price]
FROM Production.Product;

In Figure 5.7, you can see the results of the CAST function used here. The difference
between the two functions is mostly in how the statements are structured. The CONVERT
function requires the data type to be listed fi rst, and then the expression to be converted.
The CAST function requires the expression to be listed fi rst and then the data type to be
indicated with an AS clause. The only exception to this would be when working with dates.
The CONVERT function allows you to specify a style when converting to a date data type.
Execute the following example, and note the different ways the dates are represented:

SELECT CONVERT(varchar, getdate(),101) AS Date101,
CONVERT(varchar, getdate(), 102) AS Date102,
CONVERT(varchar, getdate(), 103) AS Date103,
CONVERT(varchar, getdate(), 104) AS Date104,
CONVERT(varchar, getdate(), 105) AS Date105,
CONVERT(varchar, getdate(), 106) AS Date106,
CONVERT(varchar, getdate(), 107) AS Date107,
CONVERT(varchar, getdate(), 108) AS Date108;

F I GU R E 5 .7 Using the CONVERT and CAST functions

Using SELECT Statements 201

Identifying Collation Details
Collations are used by SQL Server to display and store different character sets based on
business demands. One of the features of SQL Server is the ability to retrieve data in a dif-
ferent collation type than that in which it was originally stored. To do this, you use the
T-SQL COLLATE clause. The COLLATE clause can be used during database creation, table
 creation, or data retrieval with SELECT statements. The following example shows how the
COLLATE clause can be used to convert data to a different collation during retrieval:

SELECT Name COLLATE Arabic_CI_AI
FROM Production.Product;

When the COLLATE clause is used, the output may not change in any way. The collation
determines the character set used, and it typically results in the same display of data that
you would normally expect; however, in some rare application instances, you may desire or
require changing the collation on the fl y in this manner.

Using Data from Multiple Tables
When all the data you need to retrieve exists in one table, you can use SQL statements like
the ones you’ve seen so far in this chapter. However, sometimes you need to retrieve data
from multiple tables and then aggregate that data into a single virtual data set based on
some similar factor. In these situations, you will need to create joins in your SQL state-
ments. Joins allow you to combine data from multiple tables based on related columns. For
example, each table may have an employeeID column, and this column can be used to join
the tables in a SELECT statement.

There are two categories of joins that can be created using T-SQL: inner joins and outer
joins. An inner join is a join that combines the data in two tables based on a shared-value
column and returns only those records that match the conditions of the join. For example,
if you ask for all the records in a table named employees and another named hourswkd
that share the same value in the employeeID column, only the records that have a match in
both tables will be returned. Any records in the employees table that do not have matching
records in the hourswkd table will not be returned.

The following example returns all rows from both the Sales.SalesTerritory table and the
Sales.Customer table where the TerritoryID column matches in both:

SELECT *
FROM Sales.SalesTerritory AS ST
INNER JOIN Sales.Customer AS C ON
ST.TerritoryID = C.TerritoryID;

You can also use multiple inner joins to aggregate data from more than two source
tables. The following code gives a complete picture of customers in territories by combin-
ing data from the Sales.SalesOrderHeader, Sales.SalesOrderDetail, and Production.Product

202 Chapter 5 ■ Querying SQL Server

tables. Notice, in both the following and previous examples, my use of named or
aliased tables. This makes writing the queries easier, but it can make it more diffi cult to
read because you have to refer to where the alias name was created as you evaluate the list
of columns retrieved:

SELECT OH.SalesOrderID,
 OH.OrderDate,
 OD.ProductID,
 OD.OrderQty,
 OD.UnitPrice,
 P.Name
FROM Sales.SalesOrderHeader AS OH
INNER JOIN Sales.SalesOrderDetail AS OD
 ON OH.SalesOrderID = OD.SalesOrderID
INNER JOIN Production.Product AS P
 ON OD.ProductID = P.ProductID;

While this code seems very complex, it is really a simple series of INNER JOIN clauses
that allow you to select data from the four tables for display and have that data brought
together according to the thing they all have in common. In this case, it’s the customer.
Figure 5.8 shows the results of this more advanced INNER JOIN statement.

F I GU R E 5 . 8 Complex INNER JOIN results

Using SELECT Statements 203

Outer joins return rows that have matching data in addition to rows with nonmatching
data. Three types of outer joins are available in SQL Server:

■ Left outer joins

■ Right outer joins

■ Full outer joins

The LEFT OUTER JOIN (usually shortened to LEFT JOIN in code) results in all records
from the left side of the condition regardless of whether the records have a matching result in
the right side of the condition. The RIGHT OUTER JOIN (usually shortened to RIGHT JOIN
in code) is exactly the opposite. The FULL OUTER JOIN (usually shortened to FULL JOIN in
code) returns all records from both sides of the condition. To help you understand this,
consider the following condition expression:

Production.Product.ProductID = Production.ProductCostHistory.ProductID

A LEFT JOIN would return all rows from the Production.Product table, and a RIGHT
JOIN would return all rows from the Production.ProductCostHistory table. A FULL JOIN
would return all rows from both sides of the condition. When one side of the join does not
contain data, the result set will simply include NULL data in the joined rows. When you run
the following code, you will see that the number of records varies based on the outer join
type being used:

SELECT COUNT(*) AS [Total Records]
FROM Production.Product
FULL JOIN Production.ProductCostHistory ON
Production.Product.ProductID = Production.ProductCostHistory.ProductID;

SELECT COUNT(*) AS [Total Records]
FROM Production.Product
LEFT JOIN Production.ProductCostHistory ON
Production.Product.ProductID = Production.ProductCostHistory.ProductID;

SELECT COUNT(*) AS [Total Records]
FROM Production.Product
RIGHT JOIN Production.ProductCostHistory ON
Production.Product.ProductID = Production.ProductCostHistory.ProductID;

Figure 5.9 shows the results of this code. You can see that the RIGHT JOIN returns the
smallest number of rows, and this would indicate that there are more records in the Produc-
tion.Product table than there are in the Production.ProductCostHistory table.

204 Chapter 5 ■ Querying SQL Server

Advanced Query Techniques
You should understand two additional query techniques, called subqueries and aggregate
queries. The reality is that queries cannot always be written as single statements against
just a few tables with selective columns. Sometimes you must use values from one table to
select rows in another table. This is where subqueries become very valuable.

Aggregate functions assist in the process of creating aggregate queries. They also involve
spatial functions and grouping sets. You’ll also learn about these items in this section.

Subqueries
A subquery is simply a query nested within another statement. For example, it may be
nested in a SELECT, INSERT, UPDATE, or DELETE statement. Subqueries are often used to
provide criteria for WHERE clause fi lters. However, they can also be used in the column list
section of a statement to build a more complex column value. Try the following example,
which should be executed against the AdventureWorks database:

SELECT Ord.SalesOrderID, Ord.OrderDate,
 (SELECT MAX(OrdDet.UnitPrice)
 FROM Sales.SalesOrderDetail AS OrdDet
 WHERE Ord.SalesOrderID = OrdDet.SalesOrderID) AS MaxUnitPrice
FROM Sales.SalesOrderHeader AS Ord;

F I GU R E 5 . 9 OUTER JOIN result examples

Advanced Query Techniques 205

Subqueries are also called inner queries, because they are actually queries within a
query. They are also called inner selects. A subquery often performs the same operations as
a JOIN statement, but it may perform better in some scenarios and worse in others. Here is
an example of exactly the same results produced from a JOIN fi rst and a subquery second:

/* SELECT statement built using a join that returns
 the same result set. */
SELECT Prd1. Name
FROM Production.Product AS Prd1
 JOIN Production.Product AS Prd2
 ON (Prd1.ListPrice = Prd2.ListPrice)
 WHERE Prd2. Name = ‘Chainring Bolts’;

/* SELECT statement built using a subquery. */
SELECT Name
FROM Production.Product
WHERE ListPrice =
 (SELECT ListPrice
 FROM Production.Product
 WHERE Name = ‘Chainring Bolts’);

Subqueries may be converted to common table expressions (CTEs) instead of subque-
ries. CTEs use a WITH statement to implement the same results as a subquery. The syntax of
a CTE is as follows:

WITH <expression_name> [(<column_name> [,...n])]
AS
(<CTE_query_definition>)

After you’ve defi ned the CTE in this way, you query it as you would a standard table.
For example, consider the following code, provided in Microsoft TechNet:

-- Define the CTE expression name and column list.
WITH Sales_CTE (SalesPersonID, SalesOrderID, SalesYear)
AS
-- Define the CTE query.
(
 SELECT SalesPersonID, SalesOrderID, YEAR(OrderDate) AS SalesYear
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL
)
-- Define the outer query referencing the CTE name.
SELECT SalesPersonID, COUNT(SalesOrderID) AS TotalSales, SalesYear

206 Chapter 5 ■ Querying SQL Server

FROM Sales_CTE
GROUP BY SalesYear, SalesPersonID
ORDER BY SalesPersonID, SalesYear;
GO

The fi rst portion of this code defi nes the common table. The second portion queries the
common table as if it were any other table. The benefi t of CTEs is that they simplify code
(readability) and can be reused in much the same way as views, only as temporary objects.

Aggregate Queries
Many times you want to display data exactly as it exists in stored tables within the data-
base. At other times, you want to display data based on calculations. Aggregate queries use
functions and formulas either to combine data values from multiple sources or to generate
new values based on mathematical or text functions. Many functions are specifi cally called
aggregate functions, and they include the following:

AVG

CHECKSUM_AGG

COUNT

COUNT_BIG

GROUPING

GROUPING_ID

MAX

MIN

SUM

STDEV

STDEVP

VAR

VARP

The following statement demonstrates an aggregate query using the SUM and AVG
functions:

SELECT AVG(VacationHours)AS ‘Average vacation hours’,
 SUM(SickLeaveHours) AS ‘Total sick leave hours’
FROM HumanResources.Employee
WHERE JobTitle LIKE ‘Vice President%’;

The AVG function is used to calculate the average vacation hours for employees, and
the SUM function is used to determine the total sick-leave hours. In this case, because I’ve
used the WHERE clause, the results are only for the employees with a JobTitle value of
Vice President.

Using DDL Statements 207

Using DDL Statements
Data Defi nition Language (DDL) statements are used to defi ne objects within a SQL Server
database or to defi ne the database itself. They are used to create, modify (alter), or delete
(drop) these objects. Examples of such statements are provided in this section.

Creating Objects
The CREATE statement is used to create new databases and database objects. It can be used
against any of the following objects:

AGGREGATE

APPLICATION ROLE

ASSEMBLY

ASYMMETRIC KEY

AVAILABILITY GROUP

BROKER PRIORITY

CERTIFICATE

COLUMNSTORE INDEX

CONTRACT

CREDENTIAL

CRYPTOGRAPHIC PROVIDER

DATABASE

DATABASE AUDIT SPECIFICATION

DATABASE ENCRYPTION KEY

DEFAULT

ENDPOINT

EVENT NOTIFICATION

EVENT SESSION

FULLTEXT CATALOG

FULLTEXT INDEX

FULLTEXT STOPLIST

The details of each aggregate function, as well as the more than 100 func-
tions defined in T-SQL, are available in SQL Server 2012 Books Online.

208 Chapter 5 ■ Querying SQL Server

FUNCTION

INDEX

LOGIN

MASTER KEY

MESSAGE TYPE

PARTITION FUNCTION

PARTITION SCHEME

PROCEDURE

QUEUE

REMOTE SERVICE BINDING

RESOURCE POOL

ROLE

ROUTE

RULE

SCHEMA

SEARCH PROPERTY LIST

SEQUENCE

SERVER AUDIT

SERVER AUDIT SPECIFICATION

SERVER ROLE

SERVICE

SPATIAL INDEX

STATISTICS

SYMMETRIC KEY

SYNONYM

TABLE

TRIGGER

TYPE

USER

VIEW

WORKLOAD GROUP

XML INDEX

XML SCHEMA COLLECTION

Using DDL Statements 209

The CREATE statement is coupled with an object type and then the appropriate param-
eters for a CREATE statement against that object. For example, you can create a SQL login
object that is either a login within SQL Server only or a login mapped to a Windows user
account using the CREATE LOGIN statement. The following statement creates a SQL login for
user Barney that is not mapped to a Windows domain account:

CREATE LOGIN Barney WITH PASSWORD=’Str0ngP4$$’;

The following statement creates a login mapped to a Windows domain account named
Tom:

CREATE LOGIN \Training\Tom FROM Windows;

Altering Objects
Existing objects can be modifi ed with the ALTER statement. This statement can be used
against the following objects:

APPLICATION ROLE

ASSEMBLY

ASYMMETRIC KEY

AUTHORIZATION

AVAILABILITY GROUP

BROKER PRIORITY

CERTIFICATE

CREDENTIAL

CRYPTOGRAPHIC PROVIDER

DATABASE

DATABASE AUDIT SPECIFICATION

DATABASE ENCRYPTION KEY

ENDPOINT

EVENT SESSION

FULLTEXT CATALOG

FULLTEXT INDEX

FULLTEXT STOPLIST

FUNCTION

INDEX

LOGIN

MASTER KEY

210 Chapter 5 ■ Querying SQL Server

MESSAGE TYPE

PARTITION FUNCTION

PARTITION SCHEME

PROCEDURE

QUEUE

REMOTE SERVICE BINDING

RESOURCE GOVERNOR

RESOURCE POOL

ROLE

ROUTE

SCHEMA

SEARCH PROPERTY LIST

SEQUENCE

SERVER AUDIT

SERVER AUDIT SPECIFICATION

SERVER CONFIGURATION

SERVER ROLE

SERVICE

SERVICE MASTER KEY

SYMMETRIC KEY

TABLE

TRIGGER

USER

VIEW

WORKLOAD GROUP

XML SCHEMA COLLECTION

For example, to change the password for the SQL login named Barney created in the
preceding section, use the following statement:

ALTER LOGIN Barney WITH PASSWORD=’N3wP4$$’;

Deleting Objects
The T-SQL statement used to delete objects is the DROP statement. It can be used against
any of the following objects:

Using DDL Statements 211

AGGREGATE

APPLICATION ROLE

ASSEMBLY

ASYMMETRIC KEY

AVAILABILITY GROUP

BROKER PRIORITY

CERTIFICATE

CONTRACT

CREDENTIAL

CRYPTOGRAPHIC PROVIDER

DATABASE

DATABASE AUDIT SPECIFICATION

DATABASE ENCRYPTION KEY

DEFAULT

ENDPOINT

EVENT NOTIFICATION

EVENT SESSION

FULLTEXT CATALOG

FULLTEXT INDEX

FULLTEXT STOPLIST

FUNCTION

INDEX

LOGIN

MASTER KEY

MESSAGE TYPE

PARTITION FUNCTION

PARTITION SCHEME

PROCEDURE

QUEUE

REMOTE SERVICE BINDING

RESOURCE POOL

ROLE

ROUTE

RULE

212 Chapter 5 ■ Querying SQL Server

SCHEMA

SEARCH PROPERTY LIST

SEQUENCE

SERVER AUDIT

SERVER AUDIT SPECIFICATION

SERVER ROLE

SERVICE

SIGNATURE

STATISTICS

SYMMETRIC KEY

SYNONYM

TABLE

TRIGGER

TYPE

USER

VIEW

WORKLOAD GROUP

XML SCHEMA COLLECTION

For example, to delete the SQL login named Barney, execute the following statement:

DROP LOGIN Barney;

Using DCL Statements
Data Control Language (DCL) statements are used to manage permissions. You can
give permissions (GRANT), explicitly disallow permissions (DENY), or remove previously
executed permission statements (REVOKE). All three operations are addressed in this section
with examples.

Granting Access
The GRANT statement is used to assign permissions to a principal in SQL Server 2012. Secur-
ables are the objects to which permissions may be given. The GRANT statement uses the fol-
lowing syntax:

GRANT [permission] ON [securable] TO [principal];

Using DCL Statements 213

For example, to give the user Fred (the principal) SELECT permissions (the permission)
on the Marketing table (the securable), execute the following statement within the database
containing the Marketing table:

GRANT SELECT ON Marketing TO Fred;

You may also add a clause to the end, which reads WITH GRANT OPTION. This clause indi-
cates that the principal not only receives the permission but also receives the ability to give
the permission to others, as in the following example:

GRANT SELECT ON Marketing TO Fred WITH GRANT OPTION;

For more information on security and the permissions that may be given,
see Chapters 18, 19, and 20.

Denying Access
The DENY statement is used to explicitly deny access for a specifi c principal on a given secur-
able for a permission. This explicit denial overrides any permissions granted to the princi-
pal, so it should be used with great caution. The following syntax is used:

DENY [permission] ON [securable] TO [principal];

For example, to prevent Fred from executing UPDATE statements against the Marketing
table, execute the following statement:

DENY UPDATE ON Marketing TO Fred;

Revoking Permissions
Finally, you can undo a permission assignment with the REVOKE statement. This should not
be understood as preventing permission assignment, which the DENY statement does. The
REVOKE statement simply removes a permission from a principal, and that principal may still
receive the permission through some other means, such as a role.

The REVOKE statement uses the following syntax:

REVOKE [permission] ON [securable] FROM [principal];

For example, to remove a previously granted permission of SELECT from the SQL login
named Fred for the Marketing table, execute the following statement:

REVOKE SELECT ON Marketing FROM Fred;

214 Chapter 5 ■ Querying SQL Server

Modifying Data
When using SQL, data is created with the INSERT statement, modifi ed or updated with the
UPDATE statement, and deleted with the DELETE statement. These statements are often called
action queries because they perform an action against the data instead of simply selecting or
retrieving the data. This section covers these three statements with examples. All the exam-
ples in this section will use a fi ctitious Music database. This will keep the AdventureWorks
database in its default state for your practice and other work performed later in this book.

The INSERT Statement
The INSERT command is used to add new rows to a table or updateable view in SQL Server.
The syntax of the INSERT command is as follows:

INSERT INTO <table_name> (<column_list>) VALUES(<column_values>);

The INTO keyword is actually optional, but it can help enhance readability. The column
list is also optional if you specify the values in the order of the columns in the table. If you
are unsure of the column names, data types, or order of the columns, you can issue the fol-
lowing code to discover this information for a table named artists:

SELECT COLUMN_NAME,
 ORDINAL_POSITION,
 IS_NULLABLE,
 DATA_TYPE
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = ‘artists’;

Of course, the same information can be seen by right-clicking the table and selecting
Modify Table as well, but this snippet of code can be saved and reused again by simply
changing the table name and database name each time.

The columns in the artists table are artistid, artist_name, and genre. If one of the col-
umns is an identity column, which is a column that receives a numeric value automatically
when a new record is created, and you want to omit the column names section, you should
also omit the identity column from the values section. To determine whether the table has
an identity column, issue the following DBCC command:

DBCC CHECKIDENT (‘artists’, NORESEED)

This command will return an error stating that there is no identity column, if one does
not exist. If an identity column does exist, the command will return its current value, and
you will know that there is one in the table. At this point, you should look at the table
defi nition to see which column is the identity column. If you think you know which column
is the identity column, you can test with this command:

SELECT ColumnProperty(Object_id(‘artists’), ‘artistid’, ‘IsIdentity’);

Modifying Data 215

This command will return a value of 1 if the artistid column is the identity column
and a 0 if it is not. The following commands will all insert rows into the artists table
effectively:

INSERT INTO artists (artist_name, genre) VALUES(‘Kenny Rogers’, ‘ctry’);
INSERT artists VALUES(‘Britney Spears’,’pop’);
INSERT artists (genre, artist_name) VALUES(‘rock’, ‘AC/DC’);

Notice that the third command changes the order of the columns. That’s just fi ne as long
as the order of the values section matches the order of the column names section.

The UPDATE Statement
Where the INSERT statement is used to create new rows in tables, the UPDATE statement is
used to update single rows or massive numbers of rows. You’ll look at both updating a sin-
gle row and multiple rows in this section. The syntax of the UPDATE statement is as follows:

UPDATE <table_name> SET <column_names = value>
WHERE <columname = value>

The WHERE clause is optional, but it allows you to update a specifi c row or specifi c rows.
You can use the SET clause and include multiple column names to update separated by
columns. The following code sample will change the genre column to a value of coun every-
where it is currently ctry:

UPDATE artists
SET genre = ‘coun’
WHERE genre = ‘ctry’;
SELECT * FROM artists;

The result of running this code will be to display the records in the artists table with the
updates in place.

Sometimes you don’t want to update the values; you just want to change the formatting
with which they are stored. For example, the following code will update the genre column
values so they are all stored in uppercase format:

UPDATE artists
SET genre = UPPER(genre);
SELECT * FROM artists;

The resulting modifi ed table will have all the genre column values.
The following code demonstrates the UPDATE statement used to update one record. In

this case, the record for albumid 3 will be updated with a new alb_name of Best of John
Carpenter and a new copyright of July 12, 2005:

UPDATE albums
SET alb_name = ‘Best of John Carpenter’, copyright = ‘Jul 12, 2005’
WHERE albumid = 3;

216 Chapter 5 ■ Querying SQL Server

The DELETE Statement
The DELETE statement is very simple to use and should be used with caution. Once deleted,
you would have to restore from backup to get the data back. Even then, if you have the
recovery mode for the database set to simple, you will not be able to recover more recent
data. In the end, just be careful with the DELETE statement.

To delete rows from a table, you can also use the TRUNCATE TABLE state-
ment. For example, to remove all records from a table named nomoredata,
issue the command TRUNCATE TABLE nomoredata. Because TRUNCATE
TABLE is so simple to use, you should be very cautious with it.

The following statement will delete the row from the artists table that has an artistid of 4:

DELETE FROM artists WHERE artistid = 4;

You could also delete a large number of columns using WHERE fi lters you learned about
earlier in this chapter. For example, the following statement will delete all rows with an
artistid greater than 1:

DELETE FROM artists WHERE artistid > 1;

Tuning and Optimizing Queries
All of the INSERT, UPDATE, and DELETE statements you have seen up to this point in this
chapter have been implicit transactions. This is because you did not actually tell SQL Server
to begin a transaction. In these cases, SQL Server implicitly treats the SQL commands as
transactions and automatically commits them to the database. Chapter 15 addresses blocks,
locks, and deadlocks, which are related to explicit versus implicit transactions, and you will
learn more about their impact there. An explicit transaction must begin with a BEGIN TRAN
or BEGIN TRANSACTION statement and then end with a COMMIT TRAN or COMMIT TRANSACTION
statement. In the event of an error, you may choose to issue a ROLLBACK TRAN or ROLLBACK
TRANSACTION statement. You can control or tune the processing of your queries through the
use of TRANSACTION statements.

Transaction Processing
The following code, assuming AdventureWorks is again the current database context, pro-
vides an excellent demonstration of how transactions work. Enter and execute the code and
then read on to learn what it means and why it’s important to your understanding of SQL
transactions:

Tuning and Optimizing Queries 217

SELECT COUNT(*) AS [Count Qualified Before Update]
FROM Production.Product
WHERE ListPrice BETWEEN $2000 AND $3000;

BEGIN TRAN
 UPDATE Production.Product SET ListPrice = $3079
 WHERE ListPrice BETWEEN $2000 AND $3000;

 SELECT COUNT(*) AS [Count $3079 Updated But Not Committed]
 FROM Production.Product
 WHERE ListPrice = $3079;
ROLLBACK TRAN

SELECT COUNT(*) AS [Count $3079 After Rollback]
FROM Production.Product
WHERE ListPrice = $3079;

First, there is a SELECT statement that allows you to see how many rows have a ListPrice
value that is between $2,000 and $3,000 before the transaction begins. Since the transac-
tion will be updating these records, it is important to note that there are 22. This can be
seen in the fi rst result set represented in Figure 5.10 with a column name of Count Quali-
fi ed Before Update.

F I GU R E 5 .10 Results before, during, and after transaction processing and rollback

218 Chapter 5 ■ Querying SQL Server

Next is a BEGIN TRAN statement. (This could also read BEGIN TRANSACTION and would
work just the same.) This command tells SQL Server to process everything it runs into after
BEGIN TRAN as a transaction until it encounters an error or a COMMIT TRAN statement. Fol-
lowing this is the UPDATE statement that changes the ListPrice value to $3,079 for all rows
with a ListPrice value between $2,000 and $3,000. To verify that this update has changed
22 rows, a SELECT statement is then issued within the transaction. Indeed, as Figure 5.10
shows, 22 rows are counted and refl ected in the column named Count $3079 Updated But
Not Committed in the second result set.

Finally, instead of a COMMIT TRAN statement, I instructed you to enter a ROLLBACK TRAN
statement. This statement is usually used in error handling, and I’ll talk about that next,
but for now know that it should make it so that a query looking for ListPrice values of
$3,079 returns 0. That’s exactly what you see in the third result set under the column
named Count $3079 After Rollback. This example should provide you with a clear under-
standing of how the code within BEGIN TRAN and COMMIT TRAN (or ROLLBACK TRAN) state-
ments is processed and that, with error handling, there is an opportunity to undo any
changes made up to the point of error by the transaction.

As a side benefi t, BEGIN TRAN and ROLLBACK TRAN, which together make up a transaction
block, provide you with a great tool for the learning process. You can simply surround all
your UPDATE, INSERT, and DELETE statements with a BEGIN TRAN and ROLLBACK TRAN pair
and then issue SELECT statements before and after the ROLLBACK TRAN to see what effect the
code you’ve entered has on the database.

Error Handling
To perform error handling for your transactions, you can now use TRY blocks and CATCH
blocks with them. For example, the following code will generate a divide-by-zero error;
notice that the SELECT statement in the CATCH block is processed because of this error:

DECLARE @firstnum AS int
DECLARE @secondnum AS int
SET @firstnum = 17
SET @secondnum = 0
BEGIN TRY
 BEGIN TRAN
 SELECT (@firstnum / @secondnum) AS Result;
 COMMIT TRAN
END TRY
BEGIN CATCH
 ROLLBACK TRAN
 SELECT ‘There was an error!’ AS Result;
END CATCH

When you execute this code, you will see the results shown in Figure 5.11. Now, change
the line that reads SET @secondnum = 0 to read SET @secondnum = 2. Execute the script

Tuning and Optimizing Queries 219

again, and what are the results? You no longer see the error code, because the divide-by-
zero problem has been resolved. This is transaction processing and error handling.

F I GU R E 5 .11 Error handling with transaction processing

You can also create an error situation using the RAISERROR function. With severity levels
of 11 to 19, processing is transferred to the CATCH block that immediately follows the TRY
block. This is useful for testing and for when you detect errors in your code that are not
detected automatically by SQL Server (such as business rules or data integrity issues). The
basic syntax for the RAISERROR function is as follows:

RAISERROR (<error text>, <severity(11-19) to transfer to CATCH>,<state>)

All other parameters are optional, and you can fi nd them in Books Online. The fol-
lowing example raises an error intentionally. Run the code as is fi rst; then select the entire
RAISERROR line in the BEGIN TRY block, click the Edit menu, select Advanced and Comment
Selection, and then run the code again:

BEGIN TRY
 RAISERROR(‘Error 5124’,16,1);
 SELECT ‘No errors’ AS Results;
END TRY
BEGIN CATCH
 SELECT ‘There was an error.’ AS Results
END CATCH

220 Chapter 5 ■ Querying SQL Server

The preceding code would generate an error every time because it does not contain a sce-
nario that results in an error. Instead, it generates an error intentionally. This allows you to
see how SQL Server responds when a true error is generated.

Error trapping and processing can be crucial in modern applications. As a DBA, you
may not be required to create millions of lines of code, but you may have to troubleshoot
code, and understanding these error blocks when you see them is essential.

Summary
In this chapter, you were introduced to the SQL language used to interact with Microsoft
SQL Server 2012. You learned that SQL is a vendor-neutral language that is enhanced by
many database vendors. Microsoft’s implementation is called Transact-SQL, or T-SQL for
short. You also learned what an SQL statement looks like and some recommendations
for writing them.

Next, the chapter explored the details of writing SELECT statements. You learned to
create basic SELECT statements and those using WHERE clause fi lters. You also learned about
subqueries and aggregate queries. Then you explored the basics of creating DDL and DCL
statements.

Finally, you learned to modify data using SQL. This involves using INSERT, UPDATE, and
DELETE statements. You also learned the importance of tuning and optimizing queries with
the use of error processing and transaction processing.

Chapter Essentials

Understanding the SQL Language The SQL language is a standard language created and
approved by the ANSI and ISO organizations. It has evolved through several versions, and
the T-SQL language implemented in SQL Server is based upon it.

Using SQL Statements SQL statements are commands constructed according to the SQL
and T-SQL standards. They are used to create, manipulate, and secure data within SQL
databases.

Following Good Coding Recommendations The best SQL coders have guidelines by
which they operate. They tend to include things such as consistently structured code and
using quality tools for code development.

Using SELECT Statements SELECT statements are used to query data within SQL Server
databases. They can be simple queries that retrieve all data from a specifi ed table, or they
can be fi lters with WHERE clauses and structured with ORDER BY clauses.

Chapter Essentials 221

Using Advanced Query Techniques Advanced queries include subqueries and aggregate
queries. Subqueries use embedded SELECT statements as fi lters or as value generators for
columns in a result set. Aggregate queries are based on functions used to create calculated
columns.

Using DDL Statements The DDL language subset of SQL is used to defi ne the objects
within databases and to create databases. It includes the popular CREATE, ALTER, and DROP
statements.

Using DCL Statements The DCL language subset of SQL is used to assign and remove
permissions for users within the database management system (DBMS). It includes the
GRANT, REVOKE, and DENY statements.

Modifying Data SQL is used to query data within databases, but it is also used to create,
modify, and destroy data. The primary modifi cations statements are INSERT, UPDATE, and
DELETE.

Tuning and Optimizing Queries It is important to know how to capture and process
errors in SQL code. This is a key component of tuning and optimizing queries. Addition-
ally, transactions are used to group logical blocks of SQL together that should be processed
together.

Designing
Database
Solutions

PART

II
CHAPTER 6 ■ Database Concepts and

Terminology

CHAPTER 7 ■ ERD and Capacity Planning

CHAPTER 8 ■ Normalization and Other
Design Issues

Database Concepts
and Terminology

TOPICS COVERED IN THIS CHAPTER:

 ✓ Relational Database Theory

 ✓ Database Design Processes

 ✓ Project Management for the DBA

Chapter

6

Now that your SQL Server is up and running and you’ve
learned the ins and outs of querying the server, you need to
make sure you fully understand the database concepts and ter-

minology introduced in Chapter 1, “Understanding SQL Server’s Role,” before you create
your databases. If you create databases without understanding the fundamental database
concepts covered in this chapter, you risk needing to make changes later, which is often
time-consuming and frustrating. It is much easier to create a database correctly in the fi rst
place than it is to restructure it later. For this reason, this chapter and the next two will
focus on database design concepts as they relate to SQL Server 2012.

To successfully build a database and communicate the functionality of that database
to others, it is important to have a shared language. This chapter begins by explaining the
differences between data and information. Once this foundation is built, you’ll move on to
explore additional terms used in relational database design. This information will help you
understand the process and create databases that perform well. Next, you’ll be introduced
to the database design model called the BUM process. Don’t worry; you’ll see why it’s
called BUM as you read on. It is not a negative spin on database design but a simplifi ed
model for ensuring good design. The three-phase design model is simple to remember but
ensures that the proper steps are taken as you lead up to the actual database build process.
After stepping through the three-phase design process, I’ll explain the project management
methodology used at the Systems Education Company. The methodology is mature, proven,
and simple. Best of all, you can use it for your projects without buying anything. It’s a
concept, not a tool.

It’s time to dive right in.

Relational Database Theory
You do not have to be a relational database design guru to administer and implement SQL
Server 2012 servers and databases, but having a solid foundational understanding of relational
database theory will help you make better decisions when creating databases. In this section,
you will delve deeper into the concepts of data, information, tables, and table components.
You’ll also explore the common relationship types that exist between database tables.

Data
Data should not be confused with information. For example, the following list represents
data:

Relational Database Theory 227

■ 45908

■ Thomas

■ 43.27

When you look at this list, you cannot be certain what each represents. Is 43.27 a
price, a percentage, or simply a precise value? Is the value 45908 a zip code or a number
representing some other piece of information?

Data is meaningless until it is organized into information. The goal of a database
system is to store data so that users can retrieve information. In fact, the data is often
stored by several different users or processes that, individually, have no idea how the fi nal
information set will be presented. Data becomes meaningful information when it is placed
in context.

Information
Information is one of the most valuable assets of organizations today. As a DBA,
your goal is to securely store data that can be presented to users and systems as
meaningful information. An information technology (IT) professional is one who ensures
that information is stored, maintained, retrieved, and potentially destroyed properly. IT
professionals must deal with the information all along its chain from the database to the
end user. This is the main reason that DBAs must have a much broader knowledge base
today than they did in the past. Of course, they must know the database system extremely
well. But they must also understand the fundamentals of the network infrastructure
technologies and the endpoint (user-accessed computing devices) systems as well.

Consider Table 6.1, which lists the data shown in the preceding section in its
information context. Notice that 45908 is the Customer ID, Thomas is the LastName, and
43.27 is the AvgOrdQty (average order quantity). If you guessed these domains for the data
values shown earlier, that’s great; however, you can clearly see that data without context is
not information. If the data set does not inform, it’s not information.

TA B LE 6 .1 Data in context

Customer ID FirstName LastName eMail AvgOrdQty

45908 Dale Thomas Dale.Thomas@company.internal 43.27

Tables
Information must be stored in a manner that maintains the data and the data context. You
must be able to store the data so that it can be retrieved as information. Database tables
provide this functionality. Table 6.1 shows a portion of a database table. Because the table
stores the data in named columns (context), you can retrieve the data and understand
its intended meaning. You can be informed by the data set; therefore, the data set is
information.

mailto:Dale.Thomas@company.internal

228 Chapter 6 ■ Database Concepts and Terminology

As indicated previously, the people who actually enter the data may not see the big
picture. If a customer calls a company and indicates that she wants to update her profi le
with a new email address, the customer service representative may launch a form that asks
for a Customer ID and the new email address like the one in Figure 6.1. This customer
service representative is dealing with a very small information set: the Customer ID and its
associated email address. A user with the ability to retrieve the entire customer record can
see the full context. Not only does the email address belong to the Customer ID, but it also
belongs to the named individual who is associated with that Customer ID.

F I GU R E 6 .1 Simple data entry form

Table Components
Database tables are storage containers for data values that represent an entity. An entity is
sort of like a noun: it can be defi ned as a person, place, thing, or idea. The following are
examples of entities that might be represented in a table:

■ Customers

■ Device status

■ Products

■ Orders

■ Stock values

■ Company cars

■ Servers

■ Clients

■ Employees

As you can see, many objects and actions can be defi ned as entities. These entities are
defi ned by their properties or attributes. The Device Status table may store information
about a piece of manufacturing equipment. The equipment may report health and
production values to a database system for tracking and reporting. Attributes of the Device
Status entity may include internal temperature, parts per minute, uptime, active state, and
last maintenance time, among others. Figure 6.2 shows how this table might look with
additional columns.

Relational Database Theory 229

When you create a database table, you begin by defi ning the attributes of the entity that
the table represents. If the table is to store customer records, typical attributes might be
chosen from the following:

■ Customer ID

■ First name

■ Last name

■ Address

■ City

■ State

■ Zip

■ Work phone

■ Mobile phone

■ Home phone

■ Email

■ Status

These attributes are examples, and your scenario may demand additional attributes. You
will discover both the entities and the attributes of those entities during the design process.
The entities and attributes will be determined based on business requirements and user
needs.

In SQL Server, the entity is the table, and the attributes are the columns. If you access
the table designer in SSMS, you will see this clearly. Figure 6.3 shows the table design
window for an existing table (Production.Product) in the AdventureWorks sample database.
You can see the column names and the data types selected in the center of the screen.
Below that are the column properties. Each attribute (column) has its own set of attributes
(properties). However, the column properties defi ne the integrity and domain requirements
for the data values where the columns themselves defi ne the attributes of the entire object
or entity.

F I GU R E 6 . 2 Device Status sample table

ID

1

2

3

4

Time

10:01

10:02

10:03

10:04

Temp

32

31.3

32.4

32.2

PPM

7

5

8

7

Uptime

2:34

2:35

2:36

2:37

Active

1

1

1

1

LatMaint

2/2/2009

2/2/2009

2/2/2009

2/2/2009

230 Chapter 6 ■ Database Concepts and Terminology

In addition to the table itself, it is important to understand special table containers and
properties. The table containers, which give a logical structure to your tables, are called
schemas. The table properties are identity columns and keys. The following sections
explain all three.

Schemas
If you look to the right in Figure 6.3, you’ll see the Properties window. The table properties
are shown in this window. One of the table properties you’ll need to understand is the
schema. In SQL Server, a schema is defi ned as a container that provides a logical security
boundary for database objects. In versions of SQL Server prior to 2005, the schema was
intertwined with the user objects. If a user owned a table, the table was in the user’s
schema. This behavior resulted in odd scenarios like having a table named Fred.Sales or
Amy.Customers. With the release of SQL Server 2005, schemas were separated from users.
Now, Amy can own the Customers table, and it can stay in the dbo schema or be placed in
another schema. Most DBAs still use the dbo schema for all objects, which is the default;
however, larger databases and specifi c security requirements may justify the use of more
complex schema structures.

Identity Columns
Another specifi c table property is the identity column. An identity column is a special
attribute that is automatically calculated for the table. It is meant to act as a record identifi er

F I GU R E 6 . 3 SSMS table designer

Relational Database Theory 231

that does not require user input. The table represented in Figure 6.2 is a perfect table for an
identity column. The ID attribute serves one purpose: to identify the unique record. Notice
that it simply increments by one for each new record. Rather than requiring the application
to calculate this, you can ask the database server to do it for you. Without the identity
column, developers would insert data into the table represented in Figure 6.2 like this:

INSERT INTO dbo.DeviceStatus (
ID, Time, Temp, PPM, Uptime, Active, LastMaint
)
VALUES (5, 10:05, 32.1, 7, 2:38, 2/2/2009);

With the identity column, the ID column would be dropped from the column list, and
the ID value of 5 would be removed from the values, resulting in the following code:

INSERT INTO dbo.DeviceStatus (
Time, Temp, PPM, Uptime, Active, LastMaint
)
VALUES (10:05, 32.1, 7, 2:38, 2/2/2009);

The benefi t of the latter over the former is that the developers do not have to determine
the next available ID value. The value is calculated automatically.

Keys
One fi nal table component that must be understood is the key. A key is a unique identifi er
for a record. A key may be an identity column, which generates the keys automatically,
or it may be a standard column requiring user or system input. Two key types are most
commonly used: primary and foreign.

A primary key is the unique identifi er for records in the current table. The primary key
may be defi ned as a single column or the combination of multiple columns. Multicolumn
primary keys usually result in decreased database performance. When retrieving a single
record from a table, the primary key is usually used as the fi lter. Consider the following
T-SQL statement that could be executed against the table represented in Figure 6.2:

SELECT ID, Temp, PPM FROM dbo.DeviceStatus WHERE ID = 3;

This statement would retrieve one record and one record only. The WHERE clause of the
SELECT statement fi lters to the ID column value of 3. The ID column is the primary key,
which means that the value in each record is unique, and only one or zero records will
match a given single value.

In most cases, the primary key column will also be the clustered index column. The
clustered index dictates the ordering of the data and that the data should be stored in
a branching tree index structure. The result is faster retrieval of records fi ltered on the
primary key column.

232 Chapter 6 ■ Database Concepts and Terminology

The foreign key is really a primary key from one table referenced in another table. Stated
differently, if a table references the primary key of another table, it is called a foreign key
in the referencing table. If Table_A has a primary key named ProductID and Table_B
references the ProductID value of Table_A, ProductID is a foreign key in Table_B.

Foreign keys are used to build relationships. When two tables are related to each other,
they are said to have a relationship. Several relationship types exist and will be covered in
the next section, but it is important to remember that, in most cases, the foreign key is the
building block for these relationships.

Relationship Types
Tables may be related to one another in three primary ways:

■ One-to-one

■ One-to-many

■ Many-to-many

The following sections describe each relationship type.

One-to-One
In a one-to-one relationship, one record in one table matches one and only one record in
another table. Figure 6.4 shows an example of a one-to-one relationship. Notice that the
Employees table and the Compensation table both have the same primary key column,
which is the EmployeeID column. For each record in Employees, exactly one record exists
in Compensation. The relationship is built on the shared EmployeeID value.

Indexes are a very important factor in database performance. For this rea-
son, they are covered in detail in Chapter 11, “ Indexes and Views.”

F I GU R E 6 . 4 One-to-one diagram

Employees*

EmployeeID

FirstName

LastName

Department

Title

Compensation*

EmployeeID

PayRate

BonusThreshold

BonusPercent

Relational Database Theory 233

You can query the joined results with the following statement:

SELECT Employees.EmployeeID,
 Employees.FirstName,
 Employees.LastName,
 Employees.Department,
 Employees.Title,
 Compensation.PayRate,
 Compensation.BonusThreshold,
 Compensation.BonusPercent
FROM Employees
INNER JOIN Compensation ON Employees.EmployeeID = Compensation.EmployeeID;

The reasons for creating a one-to-one relationship usually fall into one of three
categories:

■ Database system constraints

■ Improved security

■ Improved performance

SQL Server limits row or record sizes to 8,060 bytes for tables that contain standard
data types only. Exceptions exist for large objects (Image and Text data types, for example)
and variable-length columns (nVarChar and VarBinary, for example), but all other data
types are constrained by this size limit. While the example presented in Figure 6.4 would
not be forced by this constraint, tables containing dozens of columns can certainly reach
the limit. In such cases, you may have no choice but to vertically partition the table by
splitting it into two tables that can then be joined together at query time.

Security may be improved if the data in one of the tables is more sensitive. In our
example, the Compensation table data is probably more sensitive than the data that is in
the Employees table. You can implement security at the column level, but it is often easier
to partition the data into separate tables and then apply the appropriate permissions at the
table level.

Finally, performance is a common motivator. Imagine that 5,000 queries are run each
day against the Employees table. Further, imagine that only 230 queries are run against the
Compensation table. If the two tables were stored as one, the 5,000 queries would probably
suffer a performance hit. Some DBAs will vertically partition tables like this simply to gain
a performance advantage. Chapter 10, “Data Types and Table Types,” will explain why, in
most instances, fewer columns equal better performance.

One-to-Many
The one-to-many relationship is probably the most common relationship type. Figure 6.5
shows a one-to-many relationship between the Sales.Customer table and the Sales
.SalesOrderHeader table in the AdventureWorks database. Notice the lazy eight (that’s
just a nickname for it; it’s really an infi nity symbol) on the right side of the line joining the

234 Chapter 6 ■ Database Concepts and Terminology

tables. This identifi er means that the table on that side of the relationship is the “many”
table, and the table on the other side (the side with the key indicator) is the “one” table.

One-to-many relationships are heavily used in modern databases. They allow you to
enter a multiple action entity once and reuse it again and again. A customer may buy from
you one time or may make hundreds of purchases. You can see all of the orders placed by a
given customer by executing a query based on the following construct:

SELECT desired_columns
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID WHERE CustomerID = id_value;

F I GU R E 6 .5 One-to-many diagram

Customer (Sales)
CustomerID
TerritoryID
AccountNumber

SalesOrderHeader (Sales)
SalesOrderID
RevisionNumber
OrderDate

ShipDate
DueDate

Status
OnlineOrderFlag
SalesOrderNumber
PurchaseOrderNumber
AccountNumber
CustomerID
ContactID
SalesPersonID
TerritoryID
BillToAddressID
ShipToAddressID
ShipMethodID
CreditCardID
CreditCardApprovalCode
CurrencyRateID
SubTotal
TaxAmt
Freight
TotalDue
Comment
rowguid
ModifiedDate

CustomerType
rowguid
ModifiedDate

Relational Database Theory 235

The following is an actual SELECT statement against the diagrammed tables in Figure 6.5:

SELECT Sales.Customer.CustomerID,
 Sales.Customer.AccountNumber,
 Sales.SalesOrderHeader.SalesOrderID,
 Sales.SalesOrderHeader.OrderDate
FROM Sales.Customer
INNER JOIN Sales.SalesOrderHeader
ON Sales.Customer.CustomerID = Sales.SalesOrderHeader.CustomerID
WHERE Sales.Customer.CustomerID = 29672;

Figure 6.6 shows the results of this query in the SSMS query window. Notice that the
only orders shown are those for CustomerID 29672; the CustomerID and AccountNumber
values are being pulled from the Sales.Customer table, while all other values are retrieved,
using the one-to-many relationship, from the Sales.SalesOrderHeader table.

F I GU R E 6 .6 Querying data in a one-to-many scenario

Many-to-Many
The fi nal relationship type is the many-to-many relationship. Technically, the many-to-
many relationship is really two coordinated one-to-many relationships combined into
a centralized linking table. This fi nal relationship type is used least often, but it serves

236 Chapter 6 ■ Database Concepts and Terminology

tremendous value when it is needed. If you have two groups called GroupA and GroupB
and several of the entities in GroupA are related to several of the entities in GroupB while
the same is true in reverse, such that several of the entities in GroupB are related to several
of the entities in GroupA, you need a many-to-many relationship.

Here are a couple of examples of where a many-to-many relationship could be useful:

Authors to Books Several authors can contribute to a single book, and multiple books can
be authored by a single author.

Students to Classrooms Several students are likely to be in one class, and several classes
are likely to have the same students.

To create many-to-many relationships, you need a special table called a linking table or
a junction table. The linking table serves the sole purpose of bringing the other two tables
together. Figure 6.7 shows an example of a many-to-many relationship scenario. Notice
that Tom Carpenter is the author of a CWSP book, but so is Richard Dreger. Tom is the
author of two books, and the CWSP book is authored by two authors. So in database
theory, Tom has authored many books, and the CWSP book has many authors. The result
is a many-to-many relationship.

F I GU R E 6 .7 Many-to-many relationship

AuthorID

1

2

3

FirstName LastName

Tom

Mark

Richard

Carpenter

Minasi

Dreger AuthorID BookID

1

1

2

3

1

3

2

1 BookID Title

1

2

3

CWSP Study Guide

Mastering Windows NT Server

SWNA Study Guide

Database Design Processes
With the nuts and bolts of relational database theory covered in the fi rst few pages of this
chapter and in Chapter 1, it’s time to move on to the database design process. Several
database design processes exist, and some methods are more generic than others. For
example, many DBAs will use the Systems or Software Development Life Cycle (SDLC) as
the foundation for their database design process. Others use a simple two-phase model of
requirements analysis and then logical design. This section will review some of the common

Database Design Processes 237

design processes available to you and then share a successful process used after years of
consulting work and practical design challenges related to SQL Server databases.

Of the many design models available, the most commonly used ones and the one used at
the Systems Education Company are as follows:

■ Systems Development Life Cycle

■ Database Life Cycle

■ Business, Users, Model

Systems Development Life Cycle
The Systems Development Life Cycle (SDLC) is a systems design and implementation model
that usually passes through several sequential phases:

1. Planning

2. Requirements gathering

3. Conceptual and logical design

4. Physical design

5. Construction and testing

6. Implementation and deployment

7. Maintenance/ongoing support

If you consider the responsibilities of the DBA at each of these phases, they would map
out something like this:

1. Select a database system and assign database designers and administrators.

2. Determine the needed user data screens (views) and identify entities.

3. Develop the conceptual and logical data models (usually use ERD tools).

4. Determine physical database model based on the database system selected.

5. Create a test lab and implement the database.

6. Create production databases and import or convert existing data.

7. Tune, tweak, and maintain the database system.

Clearly, the SDLC model can be used as a database design fl ow model. In many cases,
the DBA will be working alongside network engineers, server administrators, and project
managers and will need to perform specifi c operations during different phases of a project.
It is not uncommon for a project manager to use the SDLC model for her project, and it is
helpful for you to understand it for that reason. For more free information related to the
SDLC, refer to the Department of Justice SDLC Guidance document at: www.usdoj.gov/
jmd/irm/LifeCycle/table.htm.

http://www.usdoj.gov/jmd/irm/LifeCycle/table.htm
http://www.usdoj.gov/jmd/irm/LifeCycle/table.htm

238 Chapter 6 ■ Database Concepts and Terminology

Database Life Cycle
The Database Life Cycle (DBLC) model is usually broken into six phases that occur in
sequential order. They can be used by a DBA working as a task manager in a larger project
or even as the sole project methodology for implementing a database solution. The six
phases are as follows:

1. Initiation

2. Design

3. Build and load

4. Test

5. Implementation

6. Operations

Here is a brief description of each phase so you’ll understand them more fully:

Initiation During the Initiation phase, the DBA evaluates the organization’s position and
the requirements for the specifi c database in question. This phase may take a few hours
or a few weeks depending on the size of the project and the cooperation of the stakehold-
ers. Sometimes it can be diffi cult to get a return phone call or email from some important
stakeholders. The result of the Initiation phase should be a document or set of documents
clearly defi ning the scope of the project and the key stakeholders.

Design In the Design phase, the conceptual, logical, and physical database designs are
created. The conceptual design includes screens, forms, and user interface elements. These
elements may or may not be the responsibility of the DBA. The logical and physical design
will most likely be the responsibility of the DBA. During the logical design tasks, the
DBA will use either formal entity relational modeling/design (ERD) tools or simple modeling
concepts, but the concern is not with actual implementation constructs for a real database
system. With the logical design complete, the DBA begins to evaluate how to implement the
logical design in the physical system. In this case, this means a SQL Server database. The
result of the Design phase is the documentation for exactly how the database will be imple-
mented in SQL Server.

Build and Load During this third phase, you build the database in a test environment and
load it with real or test data. This can take from a few minutes to a few days depending
on the size of the database and the tools you have for data generation. If you work on
projects that require the development of custom script for data generation, you might like
to use the EMS Data Generator for SQL Server at: www.sqlmanager.net. With this tool,
you can generate millions of records with excellent variability in a short amount of time.
The result of the Build and Load phase is a test environment that can be used for the activi-
ties of the fourth phase.

Test The Test phase is very straightforward. The database is tested for usability, perfor-
mance, security, and expandability. You must ensure that the proper data is provided and
that it is provided in a timely manner. Of course, it must be secured, and you want to make

http://www.sqlmanager.net

Database Design Processes 239

sure you can expand the database in the future. You don’t necessarily need to plan for add-
ing new columns or tables, but you must plan for the ultimate size of the database after
months or years of utilization. The result of the Test phase will be either the fi nalization
of the original database design that entered into the phase or the fi nalization of a modifi ed
design based on problems detected in the phase.

Implementation The fi fth phase, which is truly part of the design process, is the Imple-
mentation phase. In this phase, you implement the production server and database and
allow importing of existing data or the generation of data required. The result of this phase
is an active database solution used by production users.

Operations The sixth phase of the DBLC model is not really a phase of the design process
but rather the results of the design process. The term operations refers to the day-to-day
process of administering the database solution. Traditional tasks include database backup,
indexing, re-indexing, managing security, implementing jobs, and upgrading servers and
services.

Business, Users, Model
After years of experience, you’ll probably become a believer in simplifi cation without
sacrifi ce. Simplifi cation reduces cost, increases effi ciency, and lowers the learning curve.
You never want to oversimplify, but you always want to simplify. Based on this thinking,
the BUM database design process was developed. BUM stands for Business, Users, and
Model. It is a simple three-phase process that results in a database system that meets the
business and user needs.

I started the Systems Education and Consulting Company (SysEdCo) in
1997, and it became quickly apparent that standardized processes would
help us better serve our clients. We developed the BUM design process
to make certain that all the bases were covered when developing a new
database solution. This section briefly explains the model so that you can
understand what one may look like in your organization or so that you
can build on this model. Either way, I’m glad to provide you with this
information, which has helped us improve our database design processes
over the years.

Here’s a summary of the three phases:

Business In the Business phase, you determine the purpose and requirements of the
database.

Users During the Users phase, you investigate performance requirements and usability
issues.

240 Chapter 6 ■ Database Concepts and Terminology

Modeling Finally, the Modeling phase is where you document the logical and physical
database implementation plan as one.

Some hard-core DBAs were probably just shocked by the indication that the logical and
physical models are developed as one process or task. Don’t worry. If you want to do them
separately, you can. If you know the database system in which you will be implementing
the database, you can go right into the physical database design at the same time. If you
need to generate a higher-level logical design from that physical design at some point in the
future, you can.

BUM is a database design model, so after the design is complete, you’ll enter a testing
phase where the design is implemented in a lab and users work with the system. They
can be observed to improve the database design during this testing phase before fi nal
implementation.

Business: Purpose and Requirements
In the Business phase of the database design model, you are focused on determining the
purpose of the database and the business-level requirements. Some groups choose to create
a mission statement or a purpose statement at this point. The following template was
created for a purpose statement when creating a database:

You will create a database that serves the list group or groups here and allows them to
list business processes here, which results in list benefi ts here.

This template may not work for every scenario, but it should fi t well in most situations.
With the purpose defi ned, you need to gather business requirements. The following list
provides some samples of these requirements:

■ Order fulfi llment must take place within a single database solution.

■ All sales information must be tracked in this database.

■ The database must provide separation of data so that an unauthorized user is never
granted access to a table that contains data the user is not authorized to view.

■ Customer records must exist only for contacts that purchased at least one item. All oth-
ers should be stored as contacts.

■ All orders must be linked to a customer and a salesperson.

■ The database system must be available 24/7.

■ The database must be recoverable within a 30-minute window should an unexpected
failure occur.

You may generate a much longer list during your database design process, but the point
is to ensure that the resulting database meets the high-level business demands. This sample
list also shows that, in the real world, database design is about more than entity discovery
and relationship diagramming. The DBA must consider issues such as high availability,
backup and restore, and security.

The outputs of the Business phase will include the following:

Database Design Processes 241

Database Design Plan A high-level document listing the purpose of the database, the
DBAs and key stakeholders, and the business objectives. This document will usually
be from three to fi ve pages in length. It is not a plan; it is a guide from which a plan will be
developed.

Other Documents Several other documents may be developed during this fi rst phase,
including a responsibility matrix (who is responsible for what), a business objective link
document (how this database helps achieve current major objectives), and others.

Users: Performance and Usability
As you enter the Users phase of the BUM model, you will begin to evaluate how the users
will use the database and their performance needs. Consider asking the following questions
of the eventual database users:

■ Will you be running ad hoc queries (queries that you build on the fl y), or will you per-
form only those actions provided by an application? If they don’t know the answer to
this question, ask if they will be generating custom reports against the data in the
database.

■ How many transactions will you be making in a day? If they don’t understand this,
ask them what their job is in relation to this data and what processes they go through.
Then ask how many times they go through each process daily.

■ From where will you be accessing the database? If the users will access the database
from remote locations, special security considerations must be made. Additionally,
careful attention should be given to the size of result sets.

■ During what hours will you be accessing it? The hours of access will often dictate your
backup and maintenance windows. If you know that the database will be unused from
10 p.m. to 6 a.m. on most days, you can schedule automated maintenance for this win-
dow of time.

■ How many total users will need access to the database? This question may have been
answered already in the Business phase, but it will be helpful in making design deci-
sions (such as what indexes to create) and hardware selection.

These questions are a sampling of the kind of questions you’ll need to ask the users.
The answers will reveal the way in which the users will use the database or, at least, the
way they think they’ll use it. During the testing of the database design, you may discover
changes that must be made. People are seldom aware of every step they’ll take to complete a
task, which is why observing the users during testing is essential.

In addition to ensuring usability factors, it is also important that the database perform
well. Determining how many users access the database concurrently and from where will
be a starting point; however, it’s also important to remember the answer to some of the
other questions. For example, if you asked the users how many times they go through

242 Chapter 6 ■ Database Concepts and Terminology

a process in a day and they answered 100 to 120 times, you must ensure that the system
will allow them to do this. If the database is unresponsive and it delays the process by one
minute during an iteration, it will cost the employees two hours of time each day. You
may decide to partition the data, implement multiple servers with replication, or simply
purchase more powerful servers, but you must meet the performance needs as well as the
usability needs.

The result of the Users phase will be an updated set of documents from the Business
phase and, likely in the real world, a whole new set of meetings with management to talk
about the users’ needs and how they will be implemented.

Modeling: Simple and Logical
With the business and user objectives and requirements defi ned, you’re ready to begin
modeling a solution. You can use formal relational diagramming techniques, or you can use
any number of solutions that work for you. The following is a list of common tools used in
database modeling:

■ Visio diagrams

■ ER/Studio from Embarcadero

■ ConceptDraw Pro

■ Toad Data Modeler

■ xCase

■ Open System Architect

Open System Architect is an open source ERD tool set that will be explored in Chapter 7,
“ERD and Capacity Planning.” This product is covered in more depth simply because it is
readily available to anyone who wants to use it. The product is open source, so the price
is free. You can use it at home or at work to learn database modeling or to perform full
database modeling tasks on a day-to-day basis.

Although the common argument for fi rst designing the logical model of a database and
then implementing the physical model is fully understandable, based on the modern tools
available, the value of doing so is not great. In the past, you could reuse the logical model to
implement the database on any database system. Today, these tools can read in a database
from an existing physical implementation and create a logical model. Then, you can apply
the logical model to a different physical database system. For this reason, designing for the
database system you are using immediately (physical design) and then generating a logical
design from this implementation is encouraged at the Systems Education Company. It’s
faster, and you still end up with the logical design for portability to other platforms.

The result of the Modeling phase is a logical and physical design for database
implementation. With the modern tools available to use, you can implement the physical
design with the click of a button. In the next chapter, you’ll walk through modeling a small
database using Open System Architect. You will see how the logical and physical designs
are accomplished in one process instead of two.

Project Management for the DBA 243

Project Management for the DBA
Project management is an important skill set for the DBA to possess. The task management
and time management components are essential to timely operations. The average DBA
does not require a Project Management Professional (PMP) certifi cation or an MBA in
project management; however, basic project management skills will help you ensure you
deliver what the users need when they need it.

The Systems Education Company uses a project management methodology developed
specifi cally for IT projects. It is named Method4D. The methodology breaks IT
implementation projects into four distinct phases:

■ Defi ne

■ Design

■ Deliver

■ Determine

Each of these phases involves inputs, processes, and outputs. The utilization of the
methodology helps to ensure that the projects are implemented and managed effectively
so that they come in on time and within budget as often as possible (risk always exists).
To illustrate the fundamentals of effective project management, a high-level overview
of this methodology will be presented. If you would like to learn more about it, you can

Automatic Logical Design

I was working on a project in early 2009 that required moving several databases from
Microsoft Access into SQL Server 2005. The organization wanted to perform some
remodeling tasks on the databases as they were moved to the new system. To accom-
plish this, I created ODBC data sources for connection to each Access database. Then I
automatically generated a physical model from the existing databases with Open System
Architect.

With the physical models created, it was a simple process to generate logical models
from them. At this point, I remodeled the databases at the logical level and then gener-
ated new physical models, still using the open source Open System Architect program.

With the new physical designs in place, I created the databases on a test SQL Server with
a few simple clicks in the menus. Don’t misunderstand; it takes a while to become com-
fortable with any program, but the point is clear: modern applications make logical and
physical modeling much easier, and in many cases they make it automatic.

244 Chapter 6 ■ Database Concepts and Terminology

visit the company website at: www.SysEdCo.com. The methodology is freely available and
documented at the website. The following sections discuss the phases in greater detail than
the simple list provided previously.

The Define Phase
The Defi ne phase is the fi rst of the four phases. In this phase, the project is clearly and
concisely defi ned. The goal here is not to develop a detailed project plan with all the tasks
included but rather to develop a concise project defi nition and provide a project charter to
the sponsor or decision maker for approval and guidance throughout the remaining phases.

The inputs to phase 1 are minimal:

■ A project idea

■ A project proposal

Sadly, many projects are launched without much forethought. In some cases, you are
fortunate enough to have a well-designed project proposal at the beginning. The project
proposal will include the major goals of the project and possibly a rough defi nition. It is
far more common to start the Defi ne phase with a basic idea from the mind of a manager
instead of this nice proposal document. As an example, you may be approached by the
company president with the following statement, “Could you implement a database for
us?” This kind of request is usually all that you have as the input to the Defi ne phase.

The good news is that this is exactly why the Defi ne phase exists. Taking the input of
a simple idea, you can execute selected processes that result in a well-defi ned project. The
processes used in the Defi ne phase include the following:

■ Defi ne the project.

■ Evaluate the project.

Defi ning the project involves user and manager interviews that result in a better
understanding of what is required. This process takes you from, “Can you implement a
database for us?” to, “We will implement a database that provides transaction processing
and reporting services for the new process management initiative.” Do you see the
difference? The fi rst question is a simple idea. The second statement is a concisely detailed
project defi nition. The project defi nition states the following requirements for the database
implementation:

■ Transaction processing is required. The database is not read-only.

■ Reporting services will be needed.

Does this defi nition state the specifi c technologies to be used or the tables required? No.
You will not usually want to constrain yourself to a specifi c technology or design at this
point. Such details will be provided in the Design phase.

Creating a Project Definition
This defi nition is the result of the fi rst process used in the Defi ne phase. To be clear, the
project defi nition is to implement a database that provides transaction processing and
reporting services for the new process management initiative.

http://www.SysEdCo.com

Project Management for the DBA 245

A good project defi nition accomplishes three tasks:

■ It will clearly defi ne what your project is about.

■ It will be easily understood by anyone involved in the project.

■ It will act as a baseline for decisions.

When a stakeholder comes to you asking for a change to the project, you can go back
to the defi nition and ask your project team how the requested change fi ts within the
defi nition.

Making a Project Evaluation
The second process used in the Defi ne phase is project evaluation. This process includes
cost evaluations, existing database reviews, and possibly requirements analysis. The goal of
this process is to ensure that the project is feasible. If the project doesn’t make sense for the
organization, it is far better to abandon the project in the Defi ne phase than in the Design
or Deliver phase.

Understanding a Project Charter
The output of the Defi ne phase is a project charter. Project charters include several pieces
of information and usually fi t on one to three printed pages. The sponsor is often asked to
sign the charter as a method of green-lighting the project. Project charters may include the
following information:

■ Project name

■ Potential start date

■ Rough order estimate of duration

■ Rough order estimate of cost

■ Project manager name

■ Project sponsor name

■ Key project team members

■ Project defi nition

■ Major project deliverables

■ Roles and responsibilities

Using Rough Order Estimates
The rough order estimates (sometimes called rough order of magnitude estimates) are very
simple estimates that can be off by 50 percent or more. You should be sure to make this
clear to the project sponsor and let her or him know that more accurate estimates will be
provided after project planning within the Design phase. With many databases, the project
will be small enough that the sponsor will not require a budget estimate. The last process in
the Defi ne phase is usually the creation of rough order estimates. In the Design phase, you
will create more accurate estimates for the work tasks.

246 Chapter 6 ■ Database Concepts and Terminology

The Design Phase
The Design phase is where the detailed project plan is born. Without a thorough project
plan and scope document, the project is almost certain to fail or at least not meet
expectations. You’ve heard the wise saying, “If you fail to plan, you plan to fail.” The
inputs to the Design phase include the following:

■ Project charter

■ Past projects

■ Group knowledge

The most important input to the Design phase is the project charter. This document will
help the team focus on the actual desired outcomes during project planning. Past projects
also provide valuable insights. These projects may reveal costs, procedures, and potential
problems that your project plan will need to address. Finally, group knowledge will be
provided by the project team and key stakeholders. This knowledge includes technical
knowledge, but it also includes knowledge of business processes.

The project management processes used in the Design phase include these:

■ Task discovery

■ Resource selection

■ Time estimation

■ Schedule creation

■ Budget development

■ Risk analysis

After performing these processes, you will generate the key output of the Design phase:
a project plan. The project plan will consist of the following common elements. Please
note that all project charter information is updated according to the Design phase process
results:

■ Work breakdown structure (WBS)

■ Budget

■ Schedule

■ Resource assignments

■ Hardware acquisition plan

■ Risk response plan

Your project plan may have more or less information, but this is a rough guideline to the
items that should be included in the plan.

The Deliver Phase
The Deliver phase is where the work gets done. The input to this phase is the project plan,
and the processes include execution and control.

Summary 247

Of course, execution can be considered from two perspectives. The fi rst perspective
is that of the task worker, who sees execution as doing the work. The second perspective
is that of the project manager, who sees execution as monitoring the work. In smaller
organizations, it is very common for the project manager to also be the task worker.

Control implies that the project should be constrained within the boundaries of the plan
as much as possible. This activity includes monitoring the budget, the schedule, and the
scope. The scope is defi ned as the promised deliverables of the project.

The desired output of the Deliver phase is the accomplishment of the defi nition provided
all the way back in the Defi ne phase. In addition, actual project schedules, budgets, and
deliverables should be documented.

The Determine Phase
You will know when it’s time to move to the Determine phase because it happens only
when all of the technical work is done. Now that your database exists, the Determine phase
takes the original schedule, budget, and scope and compares them to the actual schedule,
budget, and scope. The primary goal of the Determine phase is to evaluate the project with
two major objectives in mind:

■ Ensure that the project charter has been fulfi lled.

■ Learn lessons for future projects.

The greatest long-term value usually comes from creating a lessons-learned analysis.
These lessons will benefi t future projects, and, over time, your project management skills
and methodologies will mature, resulting in greater project success rates.

It is very tempting to skip the Define and Design phases of a project. It is
also tempting to avoid the Determine phase. However, it is in these three
phases that project management succeeds or fails in the big picture. If
you always jump right into the work or quickly move on to the next project
without considering the lessons learned in the current one, you are not
truly utilizing project management.

Summary
The database design process you select will be used to keep you focused during the defi ning
and planning phases of your database development project. You can use common industry
models, such as the SDLS and DBLC, or you can use the BUM model referenced in this
chapter. Whatever model you choose, the main point is to have a structured process set that
can mature over time.

As a DBA, you may work under the umbrella of a larger project, and the entire project
management methodology may not apply to you. For example, you may be given the
specifi cations for a database and be asked to implement it without any involvement in

248 Chapter 6 ■ Database Concepts and Terminology

the design of those specifi cations. While this may not be the best use of your expertise,
it is reality. However, if you fi nd yourself installing a new SQL Server for one or more
databases, it’s time to pull out a good project management methodology and start to work.

As a fi nal note on project management as a DBA, consider that the database design
process (whether it be SDLC, DBLC, or BUM) is not equal to the project management
methodology. The project management methodology sits as an umbrella over the database
design and implementation. In fact, the database design process will likely begin toward
the end of the Defi ne phase or very early in the Design phase. It will usually be completed
before the Determine phase. The point is that database design fi ts into project management
and is not a competing concept or process.

Chapter Essentials

Understanding Relational Database Theory Tables are the building blocks of relational
databases. The tables may be related to each other in one of several relationship types,
including one-to-one, one-to-many, and many-to-many. Primary and foreign keys are usu-
ally used to establish relationships.

Understanding Database Design Processes Several database design processes exist. The
SDLC and DBLC models are popular. The BUM model is used at the Systems Education
Company. You may decide to develop your own model as well. The key is to have a model
that can be matured (changed and corrected over time as needs change) as you employ it
during different projects.

Understanding Business: Purpose and Requirements Defi ning the purpose for your data-
base helps you to maintain focus throughout the design and implementation process. Estab-
lishing business requirements early ensures that the database satisfi es the demands of the
organization.

Understanding Users: Performance and Usability Involving the users in the design process
helps reduce resistance to the database solution at implementation. It ensures that the users
receive a system that performs well and meets their needs.

Understanding Modeling: Simple and Logical By modeling the logical and physical design
of the database together, you reduce design time without sacrifi cing quality. The end result
is an earlier implementation date and happier users and managers.

Understanding Project Management for the DBA Project management is about answering
four key questions in sequence. Should you do it? How will you do it? How are you doing?
How did you do it? The Method4D methodology is just one of many project management
methodologies that can be used to manage a database implementation—or any other IT
project, for that matter.

ERD and Capacity
Planning

TOPICS COVERED IN THIS CHAPTER:

 ✓ Planning a Database

 ✓ Understanding Entity Relationship Diagramming

 ✓ Building an ERD

 ✓ Capacity Planning

Chapter

7

In the preceding chapter, you explored the basic components
of the database design process. In this chapter, you will learn
about the specifi c steps involved in planning a database. First,

you’ll learn about the steps that lead up to the logical design. These steps include con-
ducting user surveys, evaluating business processes, and developing use cases or activity
descriptions.

Next, the chapter provides an overview of the entity relationship-diagramming tool set.
The icons and connectors will be presented with their features and attributes. Then you’ll
move on to creating an actual entity relationship diagram. You’ll walk through the process
of creating a diagram in Visio, and then you’ll work through an exercise creating the same
diagram in the Open System Architect open source application.

The fi nal topic in this chapter is an overview of the capacity planning process. Here, the
coverage will be specifi c to SQL Server, but the concepts can be applied to any database.

Planning a Database
Although the primary focus of this chapter is on diagramming your database, you can-
not create a diagram until you know what you’re trying to accomplish. These are the three
important database-planning tasks you’ll need to perform:

■ Conducting user surveys

■ Evaluating business processes

■ Developing use cases

These tasks take place in the Business and Users phases of the BUM model covered in
the previous chapter.

To simplify the learning process, you will build a basic database used to track books for
the example book collection. The business processes will be very simple. This database will
be planned and modeled throughout this chapter.

User Surveys
User surveys can be performed in order to determine how users will utilize the database
and what data they will need to store in the database. For example, suppose you are creat-
ing a database to catalog some personal books, and the user will enter book names into the
Book Collection Database you’ll create later in this chapter. In this type of situation, you
need to consider the following questions:

Planning a Database 251

How many books do you have in your collection?

Answer: Approximately 2,300.

What information do you plan to store related to each book?

Answer: Title, author, copyright, binding, condition, publisher, category, estimated
value, and location.

Do you want to store images of the books?

Answer: No.

How often will you be adding new books?

Answer: Weekly.

How often will you be removing books?

Answer: Weekly.

How many adds or removes do you plan to make?

Answer: About 10.

Will any other users access the database?

Answer: Three users in total.

What kind of reports will you need?

Answer: Books by category, books by copyright year, books by value, and books
by author.

Can you think of anything else?

Answer: No.

Because this is a simple database, the process is not complicated. Table 7.1 represents
the information collected from the user. You can use this information later as you model the
database.

TA B LE 7.1 Book collection database information

Input Value

Database purpose To track books in a collection

Largest table 2,300 records

Domains or columns required Title, Author, Copyright, Binding, Condition, Publisher,
Category, Estimated value, Location

Images required No

252 Chapter 7 ■ ERD and Capacity Planning

Input Value

Add/remove rate Weekly

Add/remove number 10

Total users 3

Report types Books by category, Books by copyright year, Books by
author, Books by value

With large databases, the user survey process can take weeks or months. You may have
to perform intranet-based surveys, email-based surveys, and focus group surveys. It’s not
uncommon to gather hundreds of columns and dozens of inputs that you will need to con-
sider as you model a database.

Evaluating Business Processes
Business processes are the end-to-end activities that result in service or product delivery.
When planning a database, you should consider the business processes that will touch the
database. For example, if you are creating a database to track sales activity, you may need
to address the following business processes:

■ Adding and fulfi lling a new sale

■ Providing a refund for an old sale

■ Modifying a sale in the fulfi llment process

How do these processes interact with the database, and what information do they need?
Business process mapping is beyond the scope of this book, but it is a valuable skill set for
the modern DBA to possess. Business process mapping (BPM) is the process of gathering
business process information and steps and then documenting this collected data in a visual
or logical manner. Many different tools and techniques are available for BPM, and you may
fi nd them very useful. Business Process Mapping: Improving Customer Satisfaction, 2nd
Edition, by J. Mike Jacka and Paulette J. Keller (Wiley, 2009), is an excellent resource on
this topic.

TA B LE 7.1 Book collection database information (continued)

Planning a Database 253

Business Process Mapping for the Books Database

I was once involved in a database project that you might call the “Books Database from
Hell.” It was, indeed, a books database project but on a very grand scale for a local library
system. The goal was to create a database that tracked the life of every book. The data-
base was intended to answer questions such as who checked a certain book out, how
long they had it, and so on. The problem was that process mapping was not performed,
and much of the necessary data was not accounted for in the database design plans. We
had missed some things, such as, that multiple books were often checked out during one
transaction (of course) and that the collection of books a customer checks out can tell a
story about what that customer is trying to learn or achieve. I wish I had known then what
I know now about developing requirements through business process mapping.

My experiences creating that library database taught me how real-world database
requirements are revealed only by investigating the business processes. While we are
using the Books database being developed in this chapter and the next, it is important to
consider the required processes.

At minimum, the following processes would be performed on the example database:

■ Adding new books

■ Updating existing books

■ Removing books

Now, you need to ask yourself a couple of questions:

■ What do these actions look like?

■ What is involved in completing them?

Let’s explore the fi rst action, adding a new book.

When adding a new book, the fi rst step is to gather the information about the book. This
information includes the book’s title, author, copyright, type of binding, page count, and
more.

For each of these elements, a column would need to exist in our database; otherwise, we
could not complete the business process.

Imagine that we also wanted to store pictures of the books. In this scenario, we would
need to scan the book cover or take a digital picture and then transfer the image to the
computer. Now we have to consider the impact on the database. How will we store the
images? Should they be stored as binary large objects in the database fi les, or should
they be stored externally using the fi le system?

254 Chapter 7 ■ ERD and Capacity Planning

Are you beginning to see how an investigation of the business processes reveals the
requirements of the database? In addition to gaining a better understanding of the data-
base requirements, business process analysis can also result in process improvements.
As you map the fl ow of the process, you will often see redundant steps, unneeded steps,
or missing steps. These problems can be addressed, and the business will be better for it.

Developing Use Cases
A use case is the description of a system’s actions based on requests or inputs from outside
the system. For example, adding a new book to the database may be a use case. Use-cases
can be complicated and detailed, or they can be simple two- or three-sentence descriptions.
Because this book is primarily focused on SQL Server 2012 administration, the simple ver-
sion will be used here. The following is an example use case for the simple database you’re
building in this chapter:

1.1 - Add Book
Actor: DB Data Writer
Description: A new book is added to the database.
Basic flow: If the publisher is new, update the publisher table;
 if the author is new, update the author table;
 add the book to the books table; response to the user with
 a successful outcome.

Notice that the use-case has an ID, name, actor (the person or system taking the action),
description, and basic fl ow. If these elements are included for each planned use case, they
will provide the basic information needed to model and build the database. More advanced
use-cases may also factor in error-processing and alternative paths based on different out-
comes at each step in the fl ow process. For example, if when you enter the new book infor-
mation the author is new, you would update the author table with all the fi elds that table
holds for an author, but what if the book category is new? You would also need to update
the category table. Advanced use-case solutions may include these branching options in the
use case or simply refer to other use cases. As an example, in the use case for adding
a book, you may simply say if the author is new, execute the add author use case.

According to CaseComplete.com, the website of Serlio Software, publisher of the
 CaseComplete software, the primary benefi t of use-cases is that they ensure you build the
right thing. Without them, you build what you think will be useful for the users, but it
may not meet their true needs. BPM and use-case modeling, together, allow you to identify
requirements much better as you move into the actual design and development of an appli-
cation or database solution.

http://CaseComplete.com

Understanding Entity Relationship Diagramming 255

Understanding Entity Relationship
Diagramming
With the early stage of business analysis complete, you’re ready to move on to the actual
modeling of the database. An entity relationship diagram (ERD) is a logical representation
of your database that presents just such a model. An ERD is a logical model and may also
be a physical model. A logical model is not system-specifi c; it is not unique to any specifi c
database system, such as SQL Server or Oracle. The physical model specifi es exactly how a
logical model would be implemented within a specifi c system. You would need a different
physical model for SQL Server than you would for Oracle.

You cannot store data in an ERD, nor can you retrieve data from an ERD. However, the
ERD will provide you with a tool you can use in several benefi cial ways:

■ Use the ERD for team discussions to ensure that all needed data is included in the data-
base model.

■ Use the ERD as you work with users to ensure that you have mapped their needs to
your database plan.

■ Use the ERD to automatically generate a physical model for your target database sys-
tem, if the ERD tool in use supports this feature.

■ Use the ERD to understand the system in the future during system change processes.

The Open System Architect tool is used in Exercise 7.4 later in this chapter. This open
source tool will work for all four of these benefi ts. You can create the logical design for
planning and discussions and then automatically generate the physical design for an Oracle,
ODBC, MySQL, or SQL Server implementation. Then you can actually create the database
automatically.

The simplest way to understand an ERD is to look at one. Figure 7.1 shows a basic ERD
for the Book Collection Database you are building in this chapter. In the next section,
“Building an ERD,” you will walk through the process to create the ERD in Exercises 7.1
through 7.3 using Microsoft Visio. You will then create the same ERD using Open System
Architect in Exercises 7.4 through 7.6.

Tables are used in databases, and entities represent those tables in an ERD drawing. In
Figure 7.1, each large square fi lled with column names is an entity. You should also note the
lines connecting the entities. One end of each line looks like a crow’s foot, and the other
end has a straight line through it. The crow’s foot represents a many connection, and the
straight line represents a one connection. This means that the straight line end is the one
end and the crow’s foot end is the many-end of a one-to-many relationship.

256 Chapter 7 ■ ERD and Capacity Planning

The O at each end represents zero or x. On the many-side of the relationship, the O
means zero or more. On the one side of the relationship, the O means zero or one. These
options can be adjusted per your needs. For example, ERD drawings can use symbols to
represent one or more, zero or more, zero or one, exactly one, and so on.

Because this ERD represents a simple database (although you might have been surprised
by the number of tables required for this basic database), you do not see any examples of
one-to-one relationships. However, if you look closely at Figure 7.1, you’ll see a many-
to-many relationship. (As a hint, look at the AuthorsBooks entity.) The AuthorsBooks
entity is actually used to link the Authors table with the Books table in a many-to-many
relationship.

F I GU R E 7.1 ERD for the Book Collection Database

Building an ERD 257

To be clear, this is cheating. In the ERD drawing, you would normally just show the
many-to-many relationship as it is shown in Figure 7.2. However, when you use Visio, you
can add the linking table because it cannot generate the physical model (and therefore the
linking table).

F I GU R E 7. 2 Many-to-many relationship in an ERD

The ERD model, or logical database modeling in general, uses icons, boxes, lines, and
indicators to represent the logical parts and pieces that comprise a database, such as the
following:

■ The entities usually map to tables.

■ The relational connectors map to relationships.

■ The attributes map to columns, and so on.

For more information about ERD concepts and tools, refer to Beginning Database
Design Solutions (Wrox, 2008) by Rod Stephens. Although that book utilizes the Chen
notation instead of the Barker notation used here (because Visio and Open System Archi-
tect use the Barker, or crow’s feet, notation), the concepts are the same.

Building an ERD
Now that you have the basics of ERD modeling down, you can begin creating ERD models.
You’ll create the model shown in Figure 7.1 using fi rst Microsoft Visio and then Open Sys-
tem Architect in the next few pages.

258 Chapter 7 ■ ERD and Capacity Planning

You can approach the creation of a logical ER diagram from two angles. First, you can
document the primary entities and then the supporting entities. In the example database,
you would create the Books entity fi rst and then the Authors, Publishers, Bindings, Loca-
tions, and Categories entities. Alternatively, you can create the supporting entities fi rst and
then the primary entities. The approach is preferential, but you should follow any best prac-
tices specifi ed in the software documentation. The example uses the primary entities fi rst
approach.

Creating an ERD in Visio
Microsoft Visio (Visio for short) supports creating ER diagrams, but you have to set every-
thing up just right to get the results you see in Figure 7.1. The exercises in this section will
work with Visio 2007 or 2010 as they are. In Visio 2013, slight changes are required not
that the interface has changed. Exercise 7.1 will prepare the Visio drawing environment to
create the ER diagram for the Book Collection Database.

E X E R C I S E 7.1

Preparing the Visio Environment for Entity Relationship Diagramming

1. Launch Visio.

2. Choose the Database Model Diagram template from the Software and Database cat-
egory.

3. Select either US or Metric units (the example uses US), and click Create, as shown here.

If you do not have a license for Visio or another ER diagramming tool, you
may want to consider using Open System Architect (OSA), which will be
discussed later in the chapter.

Building an ERD 259

4. To implement crow’s feet notation (Barker notation), select Database ➢ Options ➢ Doc-
ument.

5. Click the Relationship tab, as shown here.

6. Ensure that the Crow’s Feet check box is checked, and click OK.

7. Developer mode must be enabled. Select Tools ➢ Options.

8. Click the Advanced tab.

9. Ensure that Run In Developer mode is checked, and click OK.

With these steps taken, you are ready to begin creating the ER diagram. The fi rst entity
you will create is the Books entity. It will require the following attributes or columns:

■ BookID

■ Title

■ Copyright

■ EstimatedValue

At this point, you will not create the foreign keys for the other entities. They will be
added to the Books entity automatically when you create the relationships. This behavior is
important to remember when working in Visio, but it may not be the way your chosen ER
diagramming software works.

To create the Books entity, perform the steps in Exercise 7.2.

260 Chapter 7 ■ ERD and Capacity Planning

E X E R C I S E 7. 2

Creating the Visio Entity Relationship Diagram

I have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at: www.sybex.com/go/sqlserver12admin.

1. From the Entity Relationships shapes container, drag the Entity object onto the drawing
canvas. A Database Properties window will appear below the drawing canvas.

2. In the Database Properties window, select the Defi nition category.

3. Enter Books as the physical name, and accept the default Conceptual name value. The
results should be similar to those shown here:

6. Click the drawing canvas to deselect the Books entity. The drawing canvas should be
similar to the image shown here:

4. Click the Columns category to add the necessary attributes.

5. Add the attributes so that they look similar to the following image. Notice that BookID is
set as the primary key:

http://www.sybex.com/go/sqlserver12admin

Building an ERD 261

Once Exercise 7.2 is completed, the Books entity is created within the Visio drawing.
You can add each of the other entities using the same process. The simplifi ed steps for
adding an entity are as follows:

1. Drag an entity object onto the drawing canvas.

2. Enter the physical name in the Defi nition category screen.

3. Enter the attributes (columns) in the Columns category screen.

You can add entity objects for the remaining entities using the parameters in Table 7.2.
Once completed, the resulting ER diagram would look like Figure 7.3.

F I GU R E 7. 3 All entities created without relationships

262 Chapter 7 ■ ERD and Capacity Planning

TA B LE 7. 2 Entity parameters

Entity physical name Columns/attributes

Authors AuthorID, FirstName, LastName

Publishers PublisherID, PublisherName

Categories CategoryID, CategoryName

Locations LocationID, LocationDesc

Bindings BindingID, BindingDesc

AuthorsBooks AuthorID, BookID

The next step is to create the relationships between the entities, as shown in Exercise 7.3.

E X E R C I S E 7. 3

Creating Relationships Between Entities

Begin this exercise by relating the Publishers entity to the Books entity. To create the rela-
tionship, follow these steps:

1. Drag a Relationships object onto the drawing canvas. The Relationships object looks like
the lines shown here.

2. Drag the end without the circle to the center of the Publishers entity and release it when
the Publishers entity is outlined in red. The result should look something like this.

Building an ERD 263

3. Drag the other end of the relationship (the end with the circle) to the center of the Books
entity and release it when the Books entity is outlined in red. The results should look
something like this.

4. Note that the PublisherID has been added automatically as a foreign key in the Books
entity.

At this point, the relationship has been created, and the exercise is complete.

In the steps in Exercise 7.3, the end of the relationship with the circle is the many-end,
and the end with the two lines is the one end in a one-to-many relationship. Now you need
to create one-to-many relationships between the following entities:

■ Categories (one) to Books (many)

■ Locations (one) to Books (many)

■ Bindings (one) to Books (many)

■ Books (one) to AuthorsBooks (many)

■ Authors (one) to AuthorsBooks (many)

Regarding the last two bullet points, remember that you are building the linking table
into your ER diagram. You could alternatively create a many-to-many relationship link
directly between the Books and Authors entities. The inclusion of the linking table is purely
based on preference. By following the same steps used to create the relationship between
Publishers and Books, you’ve created the remaining relationships outlined in these bullet
points. The simple steps for creating a relationship in Visio ER diagrams are as follows:

1. Drag a relationship object onto the drawing canvas.

2. Drag the appropriate ends of the relationship over the appropriate entities and release
when the entities are outlined in red.

264 Chapter 7 ■ ERD and Capacity Planning

With all of the relationships created, you have the original ER diagram represented in
Figure 7.1. Figure 7.4 shows the diagram within the context of the Visio application. The
most important thing to remember about this process is that the foreign keys (FKs) in the
Books entity were added automatically during the creation of the relationships. This Visio
behavior makes the process much easier.

F I GU R E 7. 4 The Book Collection ERD in Visio

Creating an ERD in OSA
If you do not have a license for Visio or another ER diagramming tool, you may want to
consider using Open System Architect (OSA). It is a new ER diagramming application that
runs on Windows and Linux. The help system is not thorough, but you can usually fi nd out
how to get the job done within the GUI interface. Exercise 7.4 will now step you through
creating the same ER diagram using OSA that you just built in Visio. First you’ll see how to
download and install the application.

Downloading and Installing OSA
Before you can perform the exercises related to OSA, you will need to download and install
OSA on your machine. You will fi nd the download pages at: www.codebydesign.com. When
you download, install, and run it, you will see a screen like the one in Figure 7.5.

http://www.codebydesign.com

Building an ERD 265

To install OSA, follow these steps:

1. Simply unzip the fi le to a folder of your choice. This open source application does not
come with an installer program at the time of this writing.

2. Once you’ve unzipped the fi le into a folder, you can launch OSA by double-clicking the
OpenSystemArchitect.exe fi le, or you can create a shortcut to make it easier to launch
in the future.

3. To create a shortcut, right-click your desktop and select New ➢ Shortcut.

4. Follow the prompts to add a shortcut to the OpenSystemArchitect.exe fi le in the folder
into which you unzipped it.

If you receive errors about missing msvcr71.dll or msvcp71.dll fi les, you may need to
either install the Microsoft .NET Framework 1.1 Redistributable Package or download the
individual fi les from: www.dll-files.com.

Creating an ER Diagram in OSA
In this section, you will use the Open System Architect open source application to create
the ER diagram for the Book Collection Database. You will start by creating an ERD fi le in
Exercise 7.4.

F I GU R E 7.5 Open System Architect

http://www.dll-files.com

266 Chapter 7 ■ ERD and Capacity Planning

E X E R C I S E 7. 4

Creating an ERD File

I have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at www.sybex.com/go/sqlserver12admin.

1. Launch the OSA application from a shortcut you’ve created or by double-clicking the
executable fi le.

2. Select File ➢ New.

3. Select Logical Model in the New dialog, and click OK.

4. Fill out the Logical Model properties dialog, similar to the one shown here.

5. Click OK.

6. Select File ➢ Save.

7. Enter a fi lename, such as BookCol, and click Save.

You now have an empty model fi le and a drawing canvas you can use to add entities.
OSA is different from Visio, however, so you will have to manually add both the internal
attributes/columns and the foreign keys. Exercise 7.5 leads you through this process.

E X E R C I S E 7. 5

Creating the Entities

1. Select Tools ➢ Entity.

2. Click and drag to draw an entity on the drawing canvas.

3. Double-click the entity you’ve drawn to edit the properties. Please note that you can
move the mouse to the edges of the various dialogs in OSA to resize them. They usually

http://www.sybex.com/go/sqlserver12admin

Building an ERD 267

display in a low resolution by default, and you will have to resize them to view the infor-
mation you need.

4. Use the value Books in both the Name and Code fi elds on the General tab, as shown
here.

5. Click the Identifi ers tab, and click the New button (the fi rst button on the left side of the
dialog toolbar).

6. Enter BookID as the value for both the Name and Code fi elds. Check the Primary check
box, and click OK.

7. Add three more new identifi ers, using the procedures in steps 5 and 6, with the Name
and Code fi elds equal to LocationID, CategoryID, PublisherID, and BindingID. Do
not check the Primary check box for these four IDs because they represent foreign keys.
When complete, the Identifi ers tab should look similar to what’s shown here.

268 Chapter 7 ■ ERD and Capacity Planning

8. Click the Attributes tab.

9. Click the New Data Item button (the last or rightmost button on the dialog toolbar).

10. Enter Name and Code values of Title on the General tab.

11. Click the Data Type tab.

12. Choose VARCHAR(n) as the data type, and enter the value of 100 in the arguments fi eld,
as shown here.

13. Click OK.

14. Using the basic steps 9 through 13, add two more attributes with Name/Code values of
Copyright and EstimatedValue. Choose the data type of INTEGER for both attributes.
When complete, the Attributes tab should look similar to what’s shown here.

15. Select the Fill tab, and choose White for the fi ll color.

16. Click OK to save the entity.

Your drawing canvas should now look something like Figure 7.6. If the entity box does
not display all of the attributes or identities, simply move the cursor over one of the corners
and click and drag to resize the box.

Building an ERD 269

Now you will need to create the remaining entities using the same basic steps taken to
create the Books entity. Use Table 7.3 as your guide. If the identity is referenced as Primary,
you must remember to check the Primary check box when creating the identity.

TA B LE 7. 3 Entities

Entity name/code Identities Attributes

Publishers PublisherID (Primary) PublisherName (VARCHAR(50))

Authors AuthorID (Primary) FirstName (VARCHAR(30)),
LastName (VARCHAR(50))

Categories CategoryID (Primary) CategoryName (VARCHAR(30))

Locations LocationID (Primary) LocationDesc (VARCHAR(25))

Bindings BindingID (Primary) BindingDesc (VARCHAR(20))

AuthorsBooks AuthorID (Foreign), BookID (Foreign)

After you’ve created all of the required entities, the diagram should look like Figure 7.7.

F I GU R E 7.6 The Books entity shown in OSA

270 Chapter 7 ■ ERD and Capacity Planning

Now that the entities have been created, the only remaining task is to connect them
using relationships. To relate the entities to one another properly, follow the steps in
Exercise 7.6.

E X E R C I S E 7. 6

Creating Relationships

1. Select Tools ➢ Relationship.

2. Move your mouse over the Books entity, and notice that it becomes outlined in purple.
Click and drag over the Publishers entity until the Publishers entity is outlined in purple
and then release. A relationship will be created between the two entities.

3. Do the same thing from AuthorsBooks to Books. Click Tools ➢ Relationship, hover over
AuthorsBooks, and then click and drag over Books and release.

4. Do the same thing from AuthorsBooks to Authors.

5. Create the relationship from Books to Categories, then from Books to Locations, and
fi nally from Books to Bindings.

After completing these steps, your ER diagram should look similar to what’s shown here:

F I GU R E 7.7 All entities created in OSA

Capacity Planning 271

Here are a few tips to “beautify” the results:

■ To change the location of the text labels (for example, the values 0, 1, or 0, n), click
the relationship line and then look for the small green square near the label. Click that
square and drag it to the location you desire for the label.

■ To align entities with other entities, use the Ctrl key to select multiple entities and then
use the alignment buttons.

■ Be consistent with your color choices.

As one fi nal tip related to OSA, you can quickly generate a SQL Server–compatible phys-
ical model. To do this, follow these steps:

1. Save the ER diagram you’ve created in this exercise by clicking File ➢ Save.

2. Select Model ➢ Create Physical Model.

3. Choose Physical Model (MS SQL) in the New dialog, and click OK.

Just like that, you’ve created a model that is compatible with SQL Server capabilities.

Capacity Planning
After you’ve created the logical model and, potentially, the physical model, you’ll need to
ensure that you have a server that can support the resulting database. This demand forces
the sometimes-arduous task of capacity planning and analysis. However, the task doesn’t
have to be diffi cult, although it is repetitive when done manually. To perform capacity
planning, you must estimate the size of every table and index in your database. The process
for table size estimation varies slightly depending on whether you are estimating the size of
a table without a clustered index (known as a heap) or a table with a clustered index.

272 Chapter 7 ■ ERD and Capacity Planning

To perform capacity planning, you will need to know the following facts about your
tables and indexes:

■ How many columns are in the table, and what data types are used?

■ Is the table a heap or a clustered index?

■ On what columns are nonclustered indexes created, and what columns are included in
the nonclustered indexes?

■ How many rows will exist in the table?

Once you’ve collected this information for each table and index in your planned data-
base, you can begin capacity planning. Exercise 7.7 provides steps for estimating the size of
a table stored as a clustered index.

E X E R C I S E 7. 7

Estimating the Size of a Clustered Index

Remember that a table with a clustered index column is actually stored as a clustered index
instead of a heap. To estimate the size of a clustered index, you must fi rst calculate the space
required for the leaf level (the data location). To do this, follow these steps:

1. Calculate the space required for fi xed-length columns (int, char, bigint, money, and so
on), which you’ll call fixed_length_space. This calculation is performed by calculating
the space required for each fi xed-length column and then adding them all together. For
example, three char(10) columns would require 30 bytes of space.

2. Calculate the space required for variable-length columns (varchar, nvarchar, etc.),
which you’ll call variable_length_space. This calculation is performed with the fol-
lowing formula: total_variable_size_per_row = 2 + (number_of_variable _columns × 2) +
maximum_variable_columns_size + 4. For example, with a row containing three variable
columns and the largest variable column being 50 bytes, the calculation is 2 + (3 × 2) +
50 + 4 = 62 bytes.

3. Calculate the size of the null bitmap (an internal tracking mechanism used in SQL
Server), which you’ll call null_bitmap_space. The null bitmap is calculated with the
following formula: null_bitmap = 2 + ((number_of_columns + 7) / 8). For example, with
a row containing 17 columns, the null bitmap calculation would be 2 + ((17 + 7) / 8) = 5
bytes. If the result of the formula is not a whole number, discard any remainder rather
than rounding up.

4. Calculate the total row size, which you’ll call row_space. This calculation is performed
by using the following formula: fi xed_length_space + variable_length_space + null_bit-
map_space + 4. Four bytes are used for the row overhead for each row.

5. Determine the number of rows that can fi t in a data page, which you’ll call rows_per_
page. The formula is 8,096 / (row_space + 2). The two extra bytes are used for the row
entry in the page slot array (tracking of the row in the page header).

Capacity Planning 273

6. Calculate the number of pages required to store all rows, which you’ll call pages_
required. The formula is pages_required = total_estimated_num_rows / rows_per_page.
The results should be rounded up to the next whole number.

7. To determine the drive space required for this clustered index leaf-level data, multiply
the number of pages times 8 kilobytes. If, for example, the number of pages is 10,000,
you would need 80,000 kilobytes or just under 80 megabytes to store the leaf-level data
for the table.

At this point, you know how much space is required for the leaf-level data, but you are
not yet fi nished. You must now estimate the space required for the index information.
To calculate the space required for the index information, take the following steps:

1. Calculate the index row size. The formula is fi xed_length_space + variable_length_space
+ null_bitmap_space + 1 + 6. The extra 1 byte is for the row overhead space and the
extra 6 bytes are for the pointer to the leaf-level page where the referenced row is
stored. The fixed_length_space, variable_length_space, and null_bitmap_space
will be calculated using the formulas used in steps 1, 2, and 3 of this exercise.

2. Calculate the number of index rows per page. The formula is the same as that used in
step 6.

3. Calculate the total number of pages required. An easy formula to use is
(total_estimated_num_rows / rows_per_page) + 50 × (total_estimated_num_rows /
1,000). This formula avoids complex logarithmic functions but will be accurate to within
a few megabytes even for a multigigabyte table.

4. To determine the drive space required by the index pages, multiple the total number of
required pages by 8KB.

At this point, you can estimate the space required for the clustered index. Simply add the
space required for the leaf-level pages to the space required for the index pages, and you
have your total.

To estimate the size of a heap, you would perform only steps 1 through 7 in Exercise 7.7.
To make sure you understand the process, walk through the calculations for a simple table
stored as a clustered index in Exercise 7.8.

E X E R C I S E 7. 8

Estimating the Size of a Clustered Index Table

In this exercise, you will estimate the size of a clustered index table. Assume the table has
the following data columns:

■ CustomerID, int

■ FirstName, varchar(30)

■ LastName, varchar(40)

■ Phone, char(10)

274 Chapter 7 ■ ERD and Capacity Planning

E X E R C I S E 7. 8 (c ont inue d)

In addition, assume that the CustomerID column is the primary key and the clustered index
for the table. Estimate that the table will contain 10,000 rows. To estimate the size, follow
these steps:

1. Based on the process in Exercise 7.7, the fi rst step is to calculate the fi xed-length column
space, which could include the CustomerID and the phone columns. Because the Cus-
tomerID is an int data type, the size is 4 bytes per row. The char(10) data type used
for the phone column is 10 bytes per row. The total space required for the fi xed-length
columns is 14 bytes per row.

2. The next step is to calculate the size of the variable-length columns. There are two vari-
able-length columns with a maximum length of 40 bytes for the LastName column. The
formula to calculate the variable-length space for this small table is as follows:

2 + (2 × 2) + 40 + 4 = 50

3. Now that you know that the variable-length columns will require an average of 50 bytes
per row, you’re ready to calculate the null bitmap space. Because the table has four col-
umns, the formula is as follows:

2 + ((4 + 7) / 8) = 3

Remember to discard the remainder so the null bitmap is 3 bytes.

4. Now, you can calculate the row size as follows:

14 + 50 + 3 + 4 = 71 bytes per row

5. The row size will average 71 bytes. Now you can calculate the number of rows per page
by dividing 8,096 by 73 (71 + 2 bytes for row tracking) to get 111 (remember to round
up for this calculation). Because you have 10,000 rows, you can calculate the number
of required 8-kilobyte pages by dividing the number of rows per page into 10,000 and
rounding up again for a total of 91 pages totaling 728 kilobytes of storage space.

The 728 kilobytes accounts for the leaf-level pages of the clustered index table. Next,
you must calculate the size of the index pages (the nonleaf pages). This process was
explained in steps 8 through 11 of Exercise 7.7.

6. You have a single-column clustered index on the CustomerID column. Therefore, no
variable-length columns factor into the index page requirements, which means you
must calculate only the null bitmap space to process the row size estimation formula.
The null bitmap for the index pages will be calculated with the following formula:

2 + ((1 + 7) / 8) = 3

7. To calculate the row size, add the null bitmap to the 4 bytes for the integer data type
used by the CustomerID column. You also add in the row overhead (1 byte) and the
pointer to the leaf-data page (6 bytes). The following formula is used:

4 + 3 + 1 + 6 = 14 bytes

Capacity Planning 275

8. Now that you know each row requires 14 bytes, the next step is to determine how many
rows can fi t on a page. To determine this, use the following formula:

8,096 / (14 + 2) = 506

9. Finally, using the noncomplicated, no-need-for-logarithms, easier-than-Microsoft’s-
method formula, you can estimate the space consumed by the index with the following
formula:

(10,000 / 506) + 50 (10,000 / 1000) = 69

10. If you need 69 pages for the index information, the result is a total space consumption
of 69 times 8 kilobytes or 552 kilobytes for the index information. The last calculation
is simple: add the space for the leaf pages to the space for the index information, and
you’ll get your total. Add 728 kilobytes and 552 kilobytes to reach a total space require-
ment of 1,280 kilobytes, or approximately 1.2 megabytes.

If you want to perform capacity analysis for several dozen tables and indexes, you will
be busy for quite some time. For this reason, you should consider using either third-party
tools that can perform the estimations for you or the Microsoft DataSizer tool that will be
covered next. One such third-party tool is ER/Studio, available for demo: at www.embar-
cadero.com.

In addition to the manual and possibly time-consuming process, Microsoft provides a
great little spreadsheet template known as the DataSizer. If you search Microsoft’s website
for SQL Server DataSizer Tool, you should fi nd it available for download. The URL is
rather long and sometimes prone to change, so using the search feature is the best way to
fi nd it. To use the Excel spreadsheet, you will need to know the space consumed by differ-
ent data types. Because this is beyond the scope of this book, you should review the infor-
mation in Books Online. Please, don’t do this manually, however. Download the DataSizer,
and you can copy the existing Heap or Clustered worksheets for each table your database
contains. Then fi ll in the data, and you’re done.

Although the SQL Server DataSizer tool was originally designed for SQL
Server 7, as long as your tables are using common data types such as int,
varchar, and char, it should work fine for common day-to-day usage.

Figure 7.8 shows the DataSizer tool with the information plugged in for the Books table
in the database designed in this chapter. You can see that the table will consume approxi-
mately 330 kilobytes, or one-third of a megabyte.

http://www.embar-cadero.com
http://www.embar-cadero.com

276 Chapter 7 ■ ERD and Capacity Planning

Summary
In this chapter, you learned the important steps required to plan a database. You began by
looking at business requirements analysis. Business process mapping can be used to deter-
mine the requirements of a database because it results in step-by-step procedures required
to fulfi ll a business-related action.

Entity relationship diagramming was explained to help you understand logical and phys-
ical database models. Logical database models are not system specifi c, and physical models
are specifi c to a selected database solution, such as SQL Server or MySQL.

Next, you explored using ERD tools. The fi rst tool used was Microsoft’s commercial
diagramming tool, Visio. With Visio you can create graphically compelling ER diagrams,
and help is readily available. The second tool used was the OSA tool. Because OSA is open
source, you can download it and use it without any licensing fees; however, the downsides
are that it lacks complete documentation and the user community is not as robust as some
open source applications.

F I GU R E 7. 8 Using the DataSizer tool

Chapter Essentials 277

Finally, you learned the basics of capacity planning. Capacity planning is all about size
estimation. Estimating table sizes, index sizes, and heap sizes is important. Without these
estimations, you’ll have no way to predict future growth and the need for increased live
storage or backup storage space.

Chapter Essentials

Planning a Database It is important to gather information from the users of the database.
If you try to plan the database on your own, you will perform a lot of refactoring and table
modifi cations late in the project.

Understanding Entity Relationship Diagramming ER diagramming is used to logically
represent a database. The model can be used to discuss the database and to look for miss-
ing information before you create the database and other valuable tasks. ER diagrams can
use several different notation schemes.

Building an ERD An ERD can be built using Visio and many other tools. In this chapter,
you looked at creating an ERD with both Visio and an open source tool called Open Sys-
tem Architect.

Performing Capacity Planning Once the database model is completed, you can then per-
form capacity planning. Capacity planning involves estimating the size of the end database.

Normalization and
Other Design Issues

TOPICS COVERED IN THIS CHAPTER:

 ✓ Designing for Normalization

 ✓ Designing for Performance

 ✓ Designing for Availability

 ✓ Designing for Security

Chapter

8

This chapter concludes the discussion of database theory.
Understanding the topics covered here will give you the foun-
dation to design the proper database for your specifi c situa-

tion. If you need a database that supports fast read operations, you’ll learn the best levels
of normalization for such a database. If you need a database that allows for faster add and
modify operations, you’ll learn to apply normalization for this purpose as well.

Normalization is addressed fi rst and at greatest length in this chapter because it is
one of the most important concepts in database design. You will learn the defi nition
of normalization and then move on to understanding the normal forms, normalizing a
database by example, and denormalizing a database.

Then we’ll take a quick look at the design aspects of three major topics that are each
covered extensively in subsequent chapters:

Performance We’ll look quickly at the performance factors related to database design.
Many databases perform poorly because they are designed poorly. Understanding good
design will, almost by itself, cause your databases to perform better because you will
 automatically make decisions that improve the operation of your database. Chapter 15,
“Performance Monitoring and Tuning,” covers performance tuning and monitoring.

Availability Availability is the subject of “Part VI: Implementing High Availability and
Data Distribution.” You will see how availability does not always equal performance and
how you will often have to choose between the two.

Security The topic of “Part V: Securing SQL Server 2012,” is briefl y discussed from a
design perspective so you will be well prepared to deal with security questions and issues
that may come up during the design phase of a database project.

Designing for Normalization
Normalization is the process used to ensure that a database is properly designed according
to relational database principles. The term is best understood by considering what you
are attempting to avoid as a database designer or administrator. Common database
problems can be all but eradicated through the process of normalization. Problems that
present themselves in poorly designed relational databases include duplicating data,
creating improper data relationships, and constraining data entry. They must be addressed
either during the design process or through repairs after the database is in production.
Needless to say, it is much easier to deal with the problems before the database is actually

Designing for Normalization 281

implemented. You can think of these problems as abnormalities or as anomalies. Just a few
of these problems are outlined in the following list:

Duplicate Data Duplicate or redundant data results in poor database performance for
many databases. For example, if a database is used to store sales information and the entire
customer information set is stored in each record for each sale, the result is a much larger
database. Not only is the database larger, but each record is larger than necessary, too. This
increased record size causes slower writes in every situation, and it may cause slower reads
as well.

Improper Data Relationships When unrelated data is stored in a record, managing
the data becomes diffi cult. If you want to delete the customer record but not the sales
information referenced in the preceding paragraph, you would need to manually process
each and every record to delete all instances of a given customer. This work is not only
time-consuming but introduces an increased likelihood for error. The problem is born of
improper data relationships. The customer is not the sale, and the sale is not the customer.
They should be stored separately in an online transaction-processing (OLTP) database
because such databases are usually more normalized so that writes and changes are
optimized.

Data Entry May Be Constrained One common mistake in relational database design is
the implementation of table structures that include columns such as Item1, Item2, Item3,
and so on. What happens when the data entry employee needs to enter a fourth item into
a table that stops at Item3? The situation cannot be accommodated unless the data entry
employee enters multiple items in a single column, which results in the loss of data integrity.

These problems, and others not listed, can be categorized as three potential anomaly
types.

Insert Anomalies An insert anomaly usually occurs when improper data relationships
are designed within a single table. An example would be a sales table that contains the
customer ID, customer name, and customer address information, while no separate
customers table exists. You cannot add a new customer to this database without entering a
sale into the sales table. This is an insert anomaly.

Delete Anomalies Delete anomalies are the mirror of insert anomalies. Continuing with
the preceding example, if the last sale for a given customer is deleted, all information about
that customer is also deleted. You could delete the information about the sale only if you
specifi cally deleted the sales column values while leaving the customer column values.
Because the table is a sales table, the result would be an orphaned sales ID value used only
to locate the customer information.

Update Anomalies Update anomalies are another result of redundant information entry.
If a customer calls and informs the data entry employee that a new address should be
associated with the company, every sales record must be updated. If only one sales record is
updated, future sales could be shipped to the wrong address.

These problems and anomalies are possible because the data is not stored in the most
effective way. To help database designers implement better tables, Dr. E. F. Codd, a systems

282 Chapter 8 ■ Normalization and Other Design Issues

engineer and scientist heavily involved in database system solutions during the 1960s
and 1970s, defi ned three normal forms: fi rst normal form, second normal form, and third
normal form. Over the years, several other normal forms have been developed as well, and
the most commonly accepted normal forms are defi ned in the later section of this chapter
titled, “Really, Really Normal Forms.” However, most database designers target the third
normal form, which is covered in a later section of this chapter titled, “Third Normal
Form,” and then implement other normal forms only as they are needed.

Based on this information, you can see that normalization is the process used to create
a good database design that removes the potential for anomalies or problems. To make
something normal is to make it standard. The normalization process is about designing
databases according to standards that improve database operations and remove or reduce
the potential for anomalies.

In some cases, less normalization is better. This is mostly true when you
require simplicity of data access for less technical users or when you
require mostly read access to the data.

Normal Forms
As just discussed, several levels of normalization exist. Each of these levels of normalization
is known as a normal form. Most databases will perform well if the designer ensures that
they meet the third normal form. For this reason, the fi rst, second, and third normal forms
will be discussed in detail. Other normal forms, including Boyce-Codd, fi fth, and domain-
key, will also be briefl y defi ned.

First Normal Form
The entry level of normalization is called fi rst normal form (1NF). A database that does not
meet 1NF cannot be called normalized. A database that does meet the requirements of 1NF
is normalized, but it is said to be in the fi rst normal form or state. The primary requirement
of 1NF is that all tables contain unique records. Stated differently, no table can contain
duplicate records.

While different authorities have suggested slightly different formal defi nitions of 1NF,
the following defi nition should suffi ce for most databases:

An entity or table is in the fi rst normal form if it contains no repeating groups or
columns and each group or column contains only a single value, which may be nothing
or NULL.

From this defi nition, you can summarize the requirements of 1NF as follows:

■ No two rows in a table can be identical.

■ No row can contain repeating columns.

■ No column in a row can contain multiple values.

Designing for Normalization 283

Some 1NF defi nitions require the following additional characteristics:

■ Each column must be uniquely named.

■ Each column must have only one data type.

■ The order of the rows and columns must not be constrained.

However, SQL Server automatically provides these last three characteristics. You cannot
create a table with two columns using the same name. Each column can have only one data
type, and the order of the columns does not matter. Because SQL Server takes care of the
latter three for you automatically, you have to be concerned only about the fi rst three: no
identical rows, no repeating columns, and no multivalued columns.

One of the best ways to understand normalization is to look at the problems corrected
by its utilization. Table 8.1 shows a potential data table for a database. Notice that it allows
duplicate records, uses multiple values in the Categories column, and also uses repeating
columns (Category1, Category2, Category3).

TA B LE 8 .1 The Books table without normalization

Title Authors Publisher Category1 Category2 Category3

CWSP Study
Guide

Tom Carpenter,
Richard Dreger,
Grant Moerschel

McGraw-
Hill

Security Wireless Networking

CWNA Study
Guide

David Coleman,
David Westcott

Sybex Wireless Networking Certification

CCNA Study
Guide

Todd Lammle Sybex Cisco Networking Certification

CWNA Study
Guide

David Coleman,
David Westcott

Sybex Cisco Networking Certification

Let’s look at the problems with the structure in Table 8.1. First, it has duplicate
records—that is, the second and fourth rows are identical. To resolve this problem,
you need to know why the table exists. In this case, assume the table exists to track an
inventory of books and their locations. Furthermore, assume that the second row references
a book stored in a location called storage and the fourth row references the same book
stored in a location called library. In addition, assume that the second row references a
hardcover copy of the book and the fourth row references a softcover copy. In the end,
there are several ways to resolve the issue.

284 Chapter 8 ■ Normalization and Other Design Issues

Add a new column to track the bookbinding. This would solve the problem shown in
Table 8.1; however, you need to think about the future. What if another hardcover
book is added to your inventory? You would be right back in the situation you’re in now:
duplicate rows.

Add a new column to track the bookbinding and a column to track quantity. This
solution is better because it allows you to increment the quantity without adding a new
record. Indeed, it would accomplish 1NF from the perspective of removing duplicates.

Add a unique key column. This is the most common solution to duplicate records. If
every record has a unique key (also known as a primary key), it is impossible to have
duplicate records; however, if the unique key is the only unique value in two or more
existing records, you may still experience problems. Therefore, it’s best to combine the
unique key for a book with other solutions.

For now, let’s solve the unique record dilemma with the new table structure presented
in Table 8.2. Notice that a BookID column exists and serves as the primary key column
and that the Binding and Location columns have also been added to provide extra unique
information.

TA B LE 8 . 2 Duplicate records problem solved

BookID Title Authors Binding Publisher Location Category1 Category2 Category3

1 CWSP
Study
Guide

Tom Car-
penter,
Richard
Dreger,
Grant
Moerschel

Soft-
cover

McGraw-
Hill

Storage Security Wireless Network-
ing

2 CWNA
Study
Guide

David
Coleman,
David
Westcott

Hard-
cover

Sybex Storage Wireless Network-
ing

Certifica-
tion

3 CCNA
Study
Guide

Todd Lam-
mle

Soft-
cover

Sybex Library Cisco Network-
ing

Certifica-
tion

4 CWNA
Study
Guide

David
Coleman,
David
Westcott

Soft-
cover

Sybex Library Wireless Network-
ing

Certifica-
tion

Designing for Normalization 285

Yet even after you change the table, you have another problem with your Books table in
the multivalued column named Authors. 1NF does not allow columns with more than one
value equating to the domain. Stated differently, you can’t list multiple objects (in this case,
authors) in one entry. To be in 1NF, you must solve this problem. The only solution that
will meet the requirements is the creation of a new table. By creating a table named Authors
and linking it to the Books table, you can move closer to 1NF.

An additional dilemma is presented as soon as you create the Authors table, however.
To see this problem, consider the Authors table shown in Table 8.3. While this table tracks
the authors perfectly, how will you link them to the books? You cannot create an AuthorID
column and add multiple IDs for multiauthor books. This action would result in the same
problem you started out trying to solve.

TA B L E 8 . 3 The Authors table

AuthorID FirstName LastName

1 Tom Carpenter

2 Rich Dreger

3 Grant Moerschel

4 David Coleman

5 David Westcott

6 Todd Lammle

The solution is to create a many-to-many relationship using a linking or junction table.
Table 8.4 shows the linking table named AuthorsBooks. The fi nal step is to simply remove
the Authors column from the Books table. Users can then build a list of books by author
(for Tom Carpenter, as an example) using a SELECT statement like the following:

SELECT * FROM Books WHERE BookID IN(SELECT BookID FROM AuthorsBooks WHERE
AuthorID = 1);

You can also use more complicated SELECT statements based on joins. Joined statements
can pull information from both the Authors table and the Books table. The same SELECT
statement provided here only pulls actual displayed data from the Books table.

286 Chapter 8 ■ Normalization and Other Design Issues

TA B LE 8 . 4 AuthorsBooks linking table

AuthorID BookID

1 1

2 1

3 1

4 2

4 4

5 2

5 4

6 3

The Books table, however, is still not normalized to 1NF. The next problem is
the repeating Category column. You must fi nd a way to prevent this column from
repeating. Can you guess the solution? That’s right. You need to create another many-
to-many relationship. A Categories table will be linked with the Books table using a
BooksCategories linking table. Finally, the Category1, Category2, and Category3 columns
will be removed from the Books table.

This example would be much simpler if you knew that you had only one copy of each
book in inventory; however, because multiple books could exist (softcover, hardcover, staple
binding, etc.), you must build these many-to-many relationships. If you had multiple copies
of each binding type, you would also need to add a Quantity column to the Books table.

Remember, to ensure that your tables are in 1NF, they must not allow duplicate records,
multivalued columns, or repeated columns. If these requirements are met with a SQL Server
table, it will be in 1NF.

Second Normal Form
Second normal form (2NF) builds on the foundation of 1NF. Therefore, a table that is not
in 1NF cannot be in 2NF. In addition to this requirement, all of the non-key columns must
depend on the key columns. Stated differently, all nonprimary key columns must depend
on the primary key in a SQL Server table (a primary key can be comprised of multiple
columns). The requirements of 2NF can be summarized as follows:

■ The requirements of 1NF must be met.

■ All columns must depend on the complete primary key.

Designing for Normalization 287

We cannot use the Books table to consider 2NF because it has a single-column primary
key. A table with a single-column primary key is automatically in 2NF. To help you
understand 2NF, consider Table 8.5.

TA B LE 8 .5 The AuthorTopics table

Author Topic CityState

Tom Windows Server Marysville, OH

Tom Wireless Marysville, OH

Tom SQL Server Marysville, OH

Tom VoIP Marysville, OH

Rich Wireless Washington, DC

Jim Wireless Xenia, OH

When you analyze the AuthorTopics table, you can see that Author cannot act as the
primary key because it appears more than once. Also, Topic cannot act as the primary key
because duplication exists in this column as well. The only option is to use a joined primary
key of Author and Topic. Indeed, Tom/Wireless is a unique combination in the table. However,
this table is not in 2NF even though it is in 1NF. Why? The table is not in 2NF because the
CityState column depends on only part of the primary key, the Author column value.

To prevent update anomalies, such as changing Marysville, OH, to some other city
and state combination should Tom relocate for just one record, the table must be placed
in second normal form. To do this, simply split the data into two tables. One table will
contain the Author and Topic columns, and the other table will contain the Author and
CityState columns. Update anomalies will be reduced, and a simple query like the following
can be used to join the data when needed:

SELECT AuthorTopic.Author,
 AuthorTopic.Topic,
 AuthorLocation.CityState
FROM AuthorTopic
INNER JOIN AuthorLocation
ON AuthorTopic.Author = AuthorLocation.Author;

Of course, this example assumes that no two authors would ever have the same name.
A better and more enduring solution would be to add an Authors table to track the
author-specifi c information (location, birth date, deceased date, and so on) and a separate
AuthorTopics table to track the topics about which each author writes.

288 Chapter 8 ■ Normalization and Other Design Issues

Remember, a table with a single-column primary key that is in 1NF is automatically in
2NF. A table with a multicolumn primary key should be further evaluated to ensure that all
non-key columns depend on the entire primary key and not just part of it.

Third Normal Form
Third normal form (3NF) requires that a table be in 2NF and that all non-key columns in
the table depend on the primary key directly. The non-key columns cannot have transitive
dependence upon the primary key. Transitive dependence indicates that a non-key column
(column A) depends on another non-key column (column B) that depends on the primary
key, but column A does not depend directly on the primary key. Based on this information,
a table must meet the following requirements to be in 3NF:

■ The table must meet 2NF requirements.

■ All non-key columns must be directly dependent on the primary key.

To help you understand the application of 3NF, consider the Books table from the earlier
discussion of 1NF as represented in Table 8.6. Notice the addition of a PublisherID column.
The table is currently normalized to 2NF, but it is not in 3NF. Can you fi nd the reason why
the table is not in the third normal form?

TA B LE 8 .6 Books table in 2NF, but not 3NF

BookID Title Binding PublisherID PublisherName Location

1 CWSP Study Guide Softcover 2 McGraw-Hill Storage

2 CWNA Study Guide Softcover 1 Sybex Storage

3 CCNA Study Guide Hardcover 1 Sybex Library

4 CWNA Study Guide Hardcover 1 Sybex Library

If you said that the PublisherName column is transitively dependent on the BookID
via the PublisherID, you are correct. To place this table in the third normal form, the
PublisherName column must be separated into another table. In that table, you could track
the PublisherID, PublisherName, and any other values related to a single publisher entity.
The PublisherID values can remain in the Books table without losing 3NF because that
column is a key column (however, it is a foreign key column in the Books table).

The Books table should look like the representation in Table 8.7, assuming you need
to track the items listed so far in this chapter. A separate table would be used to track
the Bindings, Publishers, and Locations (as well as the earlier extracted Authors and
Categories tables). Notice that the only non-key column in the table is the Title column.

Designing for Normalization 289

Title is directly dependent on BookID—the primary key—and if you design the other tables
properly, you’ll have a database in 3NF.

TA B LE 8 .7 Recommended Books table structure

BookID Title BindingID PublisherID LocationID

1 CWSP Study Guide 1 2 2

2 CWNA Study Guide 1 1 2

3 CCNA Study Guide 2 1 1

4 CWNA Study Guide 2 1 1

Really, Really Normal Forms
You may decide that, for some databases, 3NF is not enough. In such cases, you can take
the database to more rigid normal forms. The remaining commonly used normal forms are
fourth normal form (4NF) and Boyce-Codd form (BCNF). Just in case you are wondering,
Boyce and Codd are the systems engineers who developed BCNF.

A table must meet the following requirements to be in Boyce-Codd form (BCNF):

■ The table must meet 3NF requirements.

■ The table must not have multiple overlapping candidate keys.

A candidate key is one or more columns that, when combined, form a
unique identifier for the rows or records in the table. You could say that the
column is in the running for the office of primary key. It’s a candidate, but
it’s up to the database designer whether it is used as the unique identifier.

A table must meet the following requirements to be in fourth normal form (4NF):

■ The table must meet BCNF requirements.

■ The table must not contain an unrelated multivalued dependency.

These normal forms strengthen the normalization provided by 3NF; however, most
databases in 3NF will also meet Boyce-Codd and fourth normal forms. The reason for this
is simple: the steps taken to implement fi rst, second, and third normal forms usually result
in the eradication of design errors that would prevent Boyce-Codd or fourth normal form.
To understand this, consider the entity represented in Table 8.8.

290 Chapter 8 ■ Normalization and Other Design Issues

TA B L E 8 . 8 3NF table without Boyce-Codd (BCNF)

Customer ProductCategory SalesRepresentative

ABC Enterprises Widgets J. Cline

XYZ Limited Fridgets L. Vasquez

GHI Unlimited Gidgets S. Barnet

ABC Enterprises Fridgets L. Vasquez

GHI Unlimited Widgets J. Cline

In this table, the customer purchases from multiple categories, but each category
is sold by a single sales representative. Therefore, the Customer column and the
ProductCategory column are used together to form the primary key. However, the
SalesRepresentative column also limits the valid values in the ProductCategory column,
and the SalesRepresentative determines ProductCategory. This makes ProductCategory
a determinant column, but it is not a key, and that means the table is not in BCNF even
though it is in 3NF.

So, how do you implement the data in Table 8.8 while ensuring a database meets BCNF?
Easy, you split it into two tables. One table will track the customer-to-product category
relation, and another will track the sales representative-to-product category relation.
However, most DBAs would have created this structure long ago when analyzing normal
forms 1 through 3. It is still important that you analyze the database after 3NF to ensure
that you are not implementing tables that are not compliant with BCNF or 4NF.

A table is in fourth normal form if it is in BCNF and does not contain an unrelated
multivalued dependency. Consider Table 8.9 to help you understand 4NF.

TA B L E 8 . 9 BCNF table without 4NF

Musician Instrument Show

Tom Carpenter Piano Over the Rainbow

Dale Thomas Electric Guitar Singin’ in the Rain

Tracy Dee Piano Singin’ in the Rain

Rachel Thomas Drums Over the Rainbow

Tom Carpenter Bass Guitar Singin’ in the Rain

Tom Carpenter Acoustic Guitar Over the Rainbow

Designing for Normalization 291

Notice that all three columns must be used to form a primary key (it’s the only way to
ensure uniqueness). Is this table in 1NF? Yes, there are no duplicate rows, and columns
are not repeated. Also, no column contains multiple values. Is it in 2NF? Yes, because the
entire row is the primary key; therefore, all non-key columns are dependent on the key—
because there are no non-key columns. Is it in 3NF? Yes, it is. For the same reason it is
in 2NF—there are no non-key columns. It is in BCNF because Show does not determine
Instrument, but Musician does determine Instrument, and Musician does determine Show.

So, where is the problem in Table 8.9 that keeps it from meeting the requirements of
4NF? The concept of a musician playing in a show is a separate concept from a musician
playing an instrument. It assumes there is a relationship between the instrument and the
show when, in fact, there is not. Tom Carpenter plays the piano, bass guitar, acoustic
guitar, and a few other instruments; and he is only attending the show Over the Rainbow.
What’s the solution? Place the information in appropriately separate tables. You can create
a Musician-to-Instrument table and another Musician-to-Show table.

Normalizing a Database
To ensure that you understand the concept of normalization, you’re going to work through
the process from start to fi nish. In this case, assume that a user has a spreadsheet with
several data columns on a single worksheet and she wants it converted to a SQL Server
database. Because the data has been tracked in Excel for years, it is fl at and doesn’t even
meet the requirements of 1NF. To accomplish 3NF for this database, fi rst establish 1NF
and then ensure 2NF and 3NF.

The columns included in the worksheet are as follows:

■ CustomerID

■ FirstName

■ LastName

■ Address

■ City

■ State

■ Zip

■ Phone

■ Email

■ ProductID

■ ProductName

■ ListPrice

■ Quantity

■ UnitPrice

■ SalesRepID

■ SalesRepName

■ SalesRepCommission

292 Chapter 8 ■ Normalization and Other Design Issues

As you might have guessed, the Excel worksheet has acted as a rudimentary tool
for tracking sales by customer and sales representative. The worksheet is growing
unmanageable in its current Excel storage format. Every time the user needs to modify a
phone number or an address for a customer, she has to update dozens or hundreds of rows.
The goal of this exercise is to implement a database that is in at least 3NF and can track the
same information.

Building a 1NF Table from the Excel Worksheet
Because this data is stored in a single Excel worksheet, you can think of it as a single table.
Currently, this table includes 17 columns. The fi rst goal is to reach 1NF. To do this simply,
look for separate entities represented in the data. When you look at the list of 17 columns
in the current Excel worksheet, you come up with the following entities:

■ Customers

■ Products

■ SalesReps

■ Orders

If you accept these entities, the 17 columns of data need to be divided among them.
Table 8.10 provides a starting point.

TA B LE 8 .10 Columns assigned to entities

Entity Columns

Customers CustomerID, FirstName, LastName, Address, City, State, Zip, Phone, Email

Products ProductID, ProductName, ListPrice

SalesReps SalesRepID, SalesRepName

Orders Quantity, UnitPrice

Now that you’ve assigned the columns to tables, it’s time to create primary keys. To
achieve 1NF, each row in each table must have a primary key. The Customers entity already
has a primary key of CustomerID. In addition, the Products entity can use ProductID as the
primary key, and the SalesReps entity can use the SalesRepID. For the Orders entity, you
must create one. The most obvious name is OrderID.

To know what a customer has ordered, you must also add some information to the
Orders entity or table. You need to add a ProductID, which will be a foreign key pointing
to the Products table. Additionally, you need to add a CustomerID and a SalesRepID (to
bring everything together). With this complete, you have the table descriptions shown in
Table 8.11. The table is in 1NF at this point, assuming it is acceptable to say that the full
name of a sales representative is a single value (in reference to the SalesRepName column).

Designing for Normalization 293

TA B LE 8 .11 Table descriptions in 1NF

Table name Columns

Customers CustomerID, FirstName, LastName, Address, City, State, Zip, Phone,
Email

Products ProductID, ProductName, ListPrice

SalesReps SalesRepID, SalesRepName

Orders OrderID, CustomerID, SalesRepID, ProductID, Quantity, UnitPrice

Ensuring Data Is in 2NF and 3NF
In this case, 2NF is easy. All tables have a single-column primary key (CustomerID,
ProductID, SalesRepID, and OrderID), and the tables are in 1NF; therefore, the tables
are in 2NF. However, the tables are not all in 3NF. Look closely at the Orders table.
CustomerID is dependent on the OrderID (the customer placed the order), and SalesRepID
is dependent on the OrderID (the sales representative made the sale). The ProductID may or
may not be dependent on the OrderID directly. It really depends on whether a single order
can be made for multiple products. If you assume that it can, you must change the tables.

Assuming that multiple products can be purchased on a single order, you can leave the
Customers, Products, and SalesReps tables as they are. However, you must extract the
product data out of the Orders table and place it in another table. When you do this, you
end up with something like the table descriptions in Table 8.12.

TA B LE 8 .12 The final table descriptions in 3NF

Table name Columns

Customers CustomerID, FirstName, LastName, Address, City, State, Zip, Phone, Email

Products ProductID, ProductName, ListPrice

SalesReps SalesRepID, SalesRepName

Orders OrderID, CustomerID, SalesRepID

OrderItems OrderID, OrderItemID, ProductID, Quantity, UnitPrice

Now the database is in 3NF (it’s actually in 4NF, but that’s because of the data structure
and not because of anything you’ve done in particular). This database can be created and
should work very well for OLTP operations.

294 Chapter 8 ■ Normalization and Other Design Issues

Denormalizing a Database
After a dozen pages or so explaining how and why to normalize your databases, it
may seem odd to begin discussing denormalization. After all, why would you want to
intentionally structure a database that could be susceptible to anomalies? If you think
back to the anomalies that were discussed, they all had to do with data modifi cations
(inserts, updates, and deletes). Read anomalies or unexpected results rarely occur. You
usually just get the data you ask for when querying a database. What is sometimes called
a read anomaly is more often a programming error in the application code. When users—
particularly decision support staff—must perform ad hoc queries (custom queries built
on the fl y) against your data, working with denormalized data can be much easier.

Think about the tables built in the preceding section. You ended up converting a single
Excel worksheet into fi ve separate tables. If you wanted to query the data in the database
and have it look like the old Excel worksheet, you would need a query like the following:

SELECT Customers.CustomerID, Customers.FirstName,
 Customers.LastName, Customers.Address,
 Customers.City, Customers.State, Customers.Zip,
 Customers.Phone, Customers.email, Orders.OrderID,
 OrderItems.OrderItemID, OrderItems.ProductID,
 Products.ProductName, Products.ListPrice,
 OrderItems.Quantity, OrderItems.UnitPrice,
 SalesReps.SalesRepID, SalesReps.SalesRepName
FROM SalesReps
INNER JOIN Customers
INNER JOIN Orders
 ON Customers.CustomerID = Orders.CustomerID
 ON SalesReps.SalesRepID = Orders.SalesRepID
CROSS JOIN Products
INNER JOIN OrderItems
 ON Products.ProductID = OrderItems.ProductID;

You could take some coding shortcuts (such as using aliases for the table names), but this
query is still required. However, if the data were denormalized for reporting and analysis
purposes, the same data could be placed in a single table again. Then the user could query
the data with something like this:

SELECT * FROM flat_orders;

Yes, it is really that big a difference. In most cases, data is denormalized in order
to simplify access for users, and, in some scenarios, it may also improve performance.
However, you must be very careful about denormalizing databases that are used to perform
data modifi cations. The introduction of insert, update, and delete anomalies may be too
great to tolerate.

Designing for Availability 295

Designing for Performance
As you design a database, it is important to keep performance issues in mind. Two major
problems occur when a database performs poorly. First, users are less productive because
they wait on the database during heavy processing times. Second, some users just stop
using the database—particularly if the data entered in the database is also written on
printed forms. They may just decide to fi le it and forget it. To ensure proper design for
performance, make sure you consider the following factors at a minimum:

Utilization Consider how the data will be used. Will it be used for mostly reads or mostly
writes? If the use will be entirely reads, you may tolerate 1NF or even ignore many rules of
1NF. If the use will be partly or mostly reads, normalization will become more important
and have a signifi cant impact on performance.

Capacity It’s also important to consider how large the data set will become. For fl at data,
the larger the database becomes, the slower it gets. This is also true for relational data
(normalized data), but it can usually handle larger databases better because the data is
stored with less redundancy.

Constraints You have to remember that any database system, such as SQL Server 2012,
still has limits. For example, if you create a table with 100 columns and each column
contains a fi xed-length data type, you may run into a constraint of SQL Server. The
maximum size of a record with all fi xed-length standard data types (nonlarge objects) is
8,060 bytes. You must remember this when designing your databases.

In addition to the constraints imposed by the database management system, you may
choose to impose constraints for performance benefi ts. If you vertically partition a table
(split it into two tables) for performance reasons, you are not doing so to comply with some
level of normalization. Instead, you’re partitioning the table to separate frequently used
data from infrequently used data. It may be better to purchase more powerful hardware,
but sometimes that’s just not in the budget.

Performance tuning and optimization will be covered in Chapter 15.

Designing for Availability
Performance is not the only factor that the DBA must consider. The database should
perform well—but, with a limited budget, performance must be balanced with availability.
Availability means that the database and, therefore, the data is there when you need it.
Performance means that you can get the data fast.

Here’s a great tip. Reports are usually very read-intensive and very
write-light. For this reason, it’s often helpful to create a dedicated report-
ing database and to denormalize the data as it is loaded into the reporting
database. You get the best of both worlds: improved performance and
simpler access for your users.

296 Chapter 8 ■ Normalization and Other Design Issues

But which is more important, performance or availability? The answer is unique to each
scenario. If you are given a limited budget and told that the database should be available
99.99 percent of the time between 8 a.m. and 6 p.m., you can’t throw all your money
into one really fast server. You will have to ensure availability through features such as
replication, database mirroring, log shipping, and failover clustering. This scenario may
mean that performance is sacrifi ced to some extent. Chapters 21 through 24 will provide
more information on availability.

However, it is important to realize that frequently you can improve the performance of a
SQL Server database without purchasing new hardware. In Chapter 15, you’ll see that you
have many options for improving the performance of your databases by telling SQL Server
how to better access the data.

Balancing Performance and Availability

I was once working on a project for a government agency that involved SQL Server serv-
ers. The project budget had been established by, of course, a nontechnical individual
who didn’t understand what it would take to get the system up and running. I was asked
to provide a recommendation document for the SQL Server portion of the project. I was
given $25,000 for licensing.

At fi rst, $25,000 may seem like a lot of money, but when you start factoring in client
licenses, it gets eaten up really fast. In addition, the hardware for the solution had to
come out of the same budget. In fact, depending on the licensing, the costs for SQL
Server could consume the $25,000 budgeted in the fi rst 60 seconds of planning.

Here’s the biggest problem: one week into the project, I had the proposal nearly com-
plete only to receive an email from the project manager. He had forgotten to mention
that we needed to implement two servers for high availability. I was planning to buy a
dual-socket server (two physical processors) with 8GB of RAM that was going to cost
about $6,500. Now, my SQL Server licensing for the two servers would have been around
$20,000 alone (two servers multiplied by two sockets). In the end, we had to settle for less
powerful servers that would meet today’s needs but leave a lot of uncertainty about 12
months into the future.

Of course, today, we are more than 12 months into the future, and you’ll never guess
what happened—or maybe you will. I received a phone call from the client indicating
that the servers aren’t performing up to their needs. They wanted me to come in and see
whether I could tweak them to get any more performance out of them. I did my best, but
I sure was glad that I had indicated in the recommendation for their project that the serv-
ers would not provide acceptable performance beyond six to ten months. The call came
right on schedule.

Don’t worry—this kind of thing won’t happen to you.

Chapter Essentials 297

Designing for Security
The third and fi nal design factor is security. As the DBA, you must ensure that your data is
safe from theft, damage, and destruction. This can be accomplished in several ways.

First, you can control who has access to your database server. This is accomplished by
granting access only to users who need it. While that may sound obvious, it’s surprisingly
common to see DBAs adding the Domain Users group or the Everyone group in an
attempt to “ease the burden” of SQL Server administration. Of course, this behavior is not
recommended.

Second, you can control what the users have access to once they have entered the
database server. This is accomplished at the database level. You may choose to give some
users write access and others read-only access. You can even control access at the column
level. For example, you can allow the users in the HR department to see employee pay
information from the Employees table, while allowing other employees to see only contact
information from the same table.

Chapters 18 through 20 will give you all the information you need to design and
implement secure SQL Server 2012 databases.

Summary
In this chapter, you learned about the fi nal and certainly very important database-
design concept of normalization. In the end, normalization is mostly about eradicating
redundancies; however, the principles used to get there are actually focused on removing
the likelihood of write anomalies. Write anomalies usually result in bad or missing data,
and that’s never good for any database.

You learned about the different levels of normalization that are commonly defi ned in
the database design knowledge domain. With each level, you explored how to achieve it
in a given database. To make the process as easy for you as possible, you stepped through
converting a fl at, denormalized Excel worksheet into a normalized database table.

Finally, you explored the three key areas of design: performance, availability, and
security. Regardless of the entity relationship diagramming methodology or database
design system you choose to utilize, you must remain focused on providing the levels of
performance, availability, and security required of the project.

Chapter Essentials

Understanding Normalization Normalization is the process used to optimize the
structure of a database in order to minimize data anomalies. Once you’ve designed and
normalized a few databases, you’ll usually fi nd that you normalize as you design.

298 Chapter 8 ■ Normalization and Other Design Issues

Understanding Normal Forms Several normal forms exist, but most DBAs agree that
third normal form (3NF) is the minimum requirement for standard OLTP databases. You
may be able to tolerate or even desire to go beyond 3NF, but it is not usually needed.

Normalizing a Database The process of normalizing a database to 3NF involves three
simple and obvious steps: move to 1NF, ensure 2NF, and move to 3NF if necessary. Many
times a database in 1NF is automatically in 2NF and 3NF simply because it does not
contain complex data structures.

Denormalizing a Database DBAs often denormalize data in order to make it easier for
users to access that data. You can help the users by requiring fewer tables to gather the
needed results. In some scenarios, denormalization even results in improved performance.

Designing for Performance When designing for performance, you must consider
utilization, capacity, and constraints. How will the users use the database? How big will
the database become? What limits are imposed by the database management system?

Designing for Availability At times, you must decide between performance and
availability. You can have both, but it is often more expensive. If you require availability
more than instant response times, you may purchase two less powerful servers and
confi gure them in a cluster. Performance and availability are not the same thing.

Designing for Security Security is important for databases. Information is one of the most
valuable assets in modern organizations. You must protect your data from theft, damage,
and destruction.

Implementing
Database
Solutions

PART

III
CHAPTER 9 ■ Creating SQL Server

Databases

CHAPTER 10 ■ Creating Tables

CHAPTER 11 ■ Indexes and Views

CHAPTER 12 ■ Triggers and Stored
Procedures

CHAPTER 13 ■ Implementing Advanced
Features

Creating SQL Server
Databases

TOPICS COVERED IN THIS CHAPTER:

 ✓ SQL Server Databases

 ✓ Database Storage

 ✓ Database Options and Properties

 ✓ Creating Databases in the GUI

 ✓ Creating Databases with T-SQL

 ✓ Creating Databases with PowerShell

 ✓ Attaching and Detaching Databases

 ✓ Database Snapshots

Chapter

9

The ultimate purpose of any SQL Server 2012 system is to
provide data services. The services provided may be more
advanced than simple database provisioning, but all SQL

Server functions relate to data in one of several ways, including the following:
Direct data access
Data replication
Reporting against data
Analyzing data
Data monitoring
Creating data
Providing data redundancy
What do all of these functions have in common? They all contain the word data, of

course. Because the database is the core of all SQL Server 2012 functionality, this chapter
will cover the details of creating databases. First, you’ll learn about the SQL Server
databases known as system databases and the way in which data is stored. Then you’ll
explore the options and properties available for databases.

With the foundations covered, you’ll move on to create databases in several ways. First,
you’ll master the GUI database creation tools. Second, you will use T-SQL (the SQL Server
variant of the SQL language) to create a database. Finally, you’ll create a database with the
new Windows PowerShell interface in SQL Server 2012.

Having created some databases, you’ll learn two advanced techniques related to the
databases: attaching and detaching a database. These techniques are very useful when
moving or copying databases from one SQL Server instance to another. The last topic
of the chapter is database snapshots. Snapshots were fi rst introduced in SQL Server
2005, and they provide an excellent solution to common problems in data reporting and
recoverability.

SQL Server Databases
SQL Server is a database management system, so it’s essential that the DBA understand
the types of databases it supports. Two broad categories exist. First, you have the system
databases, which are used by SQL Server and the SQL Server services and functions.
Second, you have the user databases, which are used to store the intentional data—the data
for which you’ve implemented SQL Server in the fi rst place. This section discusses both.

SQL Server Databases 303

System Databases
Four system databases exist in SQL Server 2012, and this is unchanged from previous
versions. The system databases contain confi guration information about the SQL Server
services and the various user databases, which are attached to the database server. The
system databases should be understood from at least three perspectives:

■ Functionality

■ Storage

■ Backup

The four system databases are the master, MSDB, model, and tempdb databases. As
each of these is described in this section, you’ll be offered recommendations for storage and
backup.

Master Database
The master database, as its name implies, is the primary confi guration database for
SQL Server. The SQL Server service uses the master database. The tables in the system
databases, including the master database, are called system tables. The system tables are
used to track the server parameters and information about every user and every database
within the system.

The master database is stored in the master.mdf fi le, and the transaction log is stored in
masterlog.ldf. It is standard practice to leave the master database in the default storage
location, which is C:\Program Files\Microsoft SQL Server\InstanceName\MSSQL\Data.
Because the database is small, sharing the drive with the SQL Server instance and the
operating system is not usually a performance issue.

If the master database is corrupted, you will not be able to start the database system
with your user databases attached. You would fi rst have to restore the database from a
backup and then restart the system. You’ll walk through the steps required to back up and
restore the master database in Chapter 17, “Backup and Restoration.” Clearly, it is essential
that you perform regular backups of the master database. You should back it up nightly
because the database fi les are small (usually less than 20MB) and the backup happens very
quickly.

You will learn how to create backup jobs in Chapter 14, “Creating Jobs,
Operators, and Alerts,” These jobs are used to automate the backup
procedures so that you do not have to hold the server’s hand through the
backup process.

304 Chapter 9 ■ Creating SQL Server Databases

The MSDB Database
While the master database is used by the SQL Server service, the MSDB database is used
by the SQL Server Agent service. Of course, all data access goes through the database
engine and, therefore, through the SQL Server service; however, the data stored in the
MSDB database is stored for the SQL Server Agent service. The data in the MSDB database
includes the following:

■ Scheduled jobs

■ Job parameters including steps and alerts

■ Alerts

■ Operators

The MSDB database is stored in the same directory as the master database. The fi lename
for the data fi le is MSDBData.mdf, and the fi lename for the log fi le is MSDBLog.ldf, as
you can see in Figure 9.1. The best practice is to leave the MSDB database in the default
location.

F I GU R E 9 .1 The default data store including the system databases

The MSDB database should also be backed up nightly (or once each day). Jobs, alerts,
and operators are managed on a continual basis. If you do not back up the MSDB database,
you’ll lose these changes. A typical MSDB database is between 10MB and 25MB, even

SQL Server Databases 305

with dozens of jobs. This small size results in a short backup window, so daily backups are
not a major problem. In fact, the backup process for both the master and MSDB databases
usually takes less than one minute.

Model Database
The model database is a database that wears weird clothes and walks funny. (That joke
goes over much better in a live training class.) Anyway, the model database—like the
master database—is just what it sounds like. It is a model for new databases. If you
want all new databases to have a particular property set to a specifi c value, set that value
in the model database. For example, later in this chapter you will learn to use
the CREATE DATABASE statement in T-SQL. If you type a simple statement, such as,
CREATE DATABASE mydb and execute it, a new database named mydb will be created. How
does SQL Server know the many settings for this new database that were not specifi ed?
It gets them from the model database.

The model database is stored in the same location as the master and MSDB. It should
remain in that storage location in most cases.

The model database will not require daily backups for most installations, because it
is not modifi ed as frequently as the master and MSDB databases. However, the model
database is usually very small (less than 10MB), and it may be easier for you to simply
back it up in the same job you use to back up the master and MSDB databases. Adding the
model database to the backup may add 15 to 20 seconds to the backup window.

Tempdb Database
The tempdb database is the fourth and fi nal managed system database. Think of tempdb
as a scratch pad or a temporary holding place for data processing. The tempdb database
is used automatically by the SQL Server database engine to process large queries and
data modifi cations that cannot be handled entirely in memory. It may also be used by
programmers. For example, a programmer could execute the following code to utilize the
tempdb database:

SELECT * INTO #tmp_table
FROM Production.Product;

This statement would copy all of the data in the Production.Product table into a
temporary table named #tmp_table. The temporary table could then be queried with code
like the following:

SELECT *
FROM #tmp_table;

306 Chapter 9 ■ Creating SQL Server Databases

F I GU R E 9 . 2 Using the tempdb database in code

Notice that the database didn’t have to be specifi ed. SQL Server sees that the table
name begins with a pound sign (#) and automatically knows to look for it in the tempdb
database. If you create a table and start the name with a pound sign, it will always be
stored in the tempdb database. Figure 9.2 shows the code samples combined and running
in SSMS.

The tempdb database is stored in the same location as the other system databases by
default. You may leave it there, if your system is performing well. If your system uses the
tempdb database excessively and performance is suffering, you may consider moving it to
another location. To check the size of the tempdb database, execute the following code:

USE tempdb
exec sp_helpfile

You should see results similar to those shown in Figure 9.3. Note the size of the
tempdb.mdf and tempdb.ldf fi les. In Figure 9.3, these fi les are roughly 99MB and 6.5MB,
respectively. If you decide to move the tempdb database to another drive, you will need
to execute code similar to that in Listing 9.1. In this case, the code is moving the tempdb
database fi le and log fi le to the G: drive and placing them in the tempdata folder.

SQL Server Databases 307

Listing 9.1: Moving the tempdb database to a different drive and folder

USE master
GO
ALTER DATABASE tempdb MODIFY FILE(NAME = tempdev,
 FILENAME = ‘G:\tempdata\tempdb.mdf’);
GO
ALTER DATABASE tempdb MODIFY FILE (NAME = templog,
 FILENAME = ‘G:\tempdata\templog.ldf’);
GO

As for backing up the tempdb, it’s simply not necessary. The tempdb database is
re-created every time the SQL Server service starts. Any data placed in the tempdb database
should be considered volatile. It will not be retained during system reboots or service
restarts.

The tempdb database is created based on the model database. If you want to have a
particular object exist in the tempdb database at all times, you have two options:

■ Create the object in the master database. This action results in the object being placed
in the tempdb database automatically. It is not recommended, however, because the
model is also used to create all other databases.

■ Create the object using a start-up stored procedure. Start-up stored procedures run
automatically every time the SQL Server service starts. This action is recommended.

F I GU R E 9 . 3 Viewing the size of the tempdb database and log file

308 Chapter 9 ■ Creating SQL Server Databases

User Databases
The user databases are defi ned as databases used by users. The databases may be used
directly or indirectly. For example, a user may access one database, but in order for that
database to respond properly to the user, the directly accessed database must retrieve
information from yet another database. Whether accessed directly or indirectly, both
databases are still used by the user.

As an example of a user database, think about the typical customer databases used
in many organizations. The database would contain tables for customers, organizations,
possibly salespeople, and other information related to the customers. The point is that a
user database is not a system database. A user database is used by users to store business
or personal data, and a system database is used to store information about the SQL Server
database system.

You cannot create a system database—not really. You can create a database that stores
“system information” for your application, but that doesn’t really qualify it as a system
database. By contrast, you can create as many user databases as you need. Your only limits
with SQL Server 2012 Standard edition and higher are drive space and the ability of the
server to keep up with all the databases.

Database Storage
SQL Server databases are stored in fi les. That much is obvious. However, what may not be
immediately apparent is that you can use more than one fi le with a database. Additionally,
you can use fi legroups to organize these fi les. This section will cover the concepts of fi les
and fi legroups so that you can make good decisions for the storage of your databases.
Additionally, it will address transaction logs and make some recommendations for the
storage of the logs and the default sizes you should implement.

Database Data Files
The default extension for the single data fi le used with a small database is .mdf. MDF
stands for master data fi le. Every database has one and only one MDF. This fi le contains
the database schema information (the structure of the database) and the properties
confi gured for that database. Of course, it also contains data.

If you want to create more than one fi le for data storage, the additional fi les will use the
.ndf extension. For example, if your master data fi le is named data1.mdf, you may choose
to name a second fi le data2.ndf.

I have no idea what the n stands for in NDF. While teaching a class on SQL
Server 2000 several years ago, an attendee who was aware that I grew up
in West Virginia said that it might stand for ’nuther data file. Maybe he’s
correct. Microsoft hasn’t told us. My best guess is that n was simply the
next letter in the alphabet after m.

Database Storage 309

Why create multiple data fi les? Two primary reasons exist. First, you can back up a
single data fi le. This is not usually recommended, because it becomes more diffi cult to
keep the entire database synchronized during recovery, but it is possible. Second, and more
commonly used, you can create multiple data fi les in order to improve performance.

While you can create multiple files and place them on multiple physical
disks to improve performance, I don’t recommend it as the optimal perfor-
mance enhancement procedure. In most cases, you’re better off placing a
single file on a RAID 5 array than you are spreading the files across single
disks. Of course, exceptions exist, but hardware-based RAID is usually best.

If you create multiple data fi les in the same fi legroup, SQL Server will stripe the data
across those fi les proportionally. Proportionally simply means that SQL Server will stripe
an amount of data onto each fi le based on the free space left in the fi le so that both fi les
reach the full state at the same time. For example, if one fi le has 100MB of free space and
the other has 50MB of free space, the 100MB fi le will receive twice as much data on every
write. Figure 9.4 illustrates the use of multiple fi les in a single fi legroup.

F I GU R E 9 . 4 Using more than one file in a single filegroup

Table1

PRIMARY Filegroup

data2.ndf

data1.mdf

Table2

Table3

Notice in Figure 9.4 that all of the tables are stored in the same fi legroup even though
multiple fi les exist. Stated differently, tables (and other objects) are stored in fi legroups by
assignment. You cannot assign an object to be stored in a specifi c fi le. If multiple fi les exist
in a fi legroup, the tables assigned to that fi legroup will be striped across the fi les rather
than stored in a single fi le.

Database Filegroups
Filegroups provide you with control over object placement. For example, if you want a
customers table to be stored on the E: drive and an orders table to be stored on the F:
drive, you accomplish this using fi legroups, as shown in Exercise 9.1.

310 Chapter 9 ■ Creating SQL Server Databases

E X E R C I S E 9 .1

Creating Multiple Filegroups

I have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at: www.sybex.com/go/sqlserver12admin.

1. Create a fi legroup for the customers table, and assign one or more fi les located on the
E: drive to that fi legroup.

2. Create the customers table, and place it in the fi legroup on the E: drive. You can also
move a table to a different fi legroup at a later time.

3. Create another fi legroup, and assign one or more fi les located on the F: drive to the sec-
ond fi legroup.

4. Create or move the orders table into the second fi legroup.

The results of these steps are that the customers table is on the E: drive and the orders table
is on the F: drive. This is the power of fi legroups.

By default, the Primary fi legroup exists for all databases. If you want only one fi legroup,
use the Primary fi legroup for everything. You can create additional fi legroups according
to your needs. Most DBAs choose to name a second fi legroup Secondary, but this is not a
requirement. You may decide to place all your tables in the Primary fi legroup and place all
indexes in a separate fi legroup that uses fi le storage on a separate disk. In such a case, it
may be better to name the fi legroup something like Indexes. This name makes it clear that
the fi legroup is used for the storage of indexes.

If you are building a very large database (VLDB), you are more likely to take advantage
of multiple fi les and multiple fi legroups. VLDBs vary in size within an organization,
but they are usually at least 1GB or larger. Several motivators may drive you to use this
dispersed storage structure with a VLDB, including the following:

Smaller Backup Sizes If you design the database right, you can keep all synchronized data
in single fi legroups while having multiple fi legroups. For example, you can store the Orders
table and the OrderDetails table in a single fi legroup. You may be able to store the Sales-
Reps and CustomerServiceReps tables in a separate fi legroup. This confi guration (taken to
more complex levels) allows you to back up part of the database (one of the fi legroups) dur-
ing one backup window and another part during another backup window. Such implemen-
tations can be useful with VLDBs because the backups can take hours.

Improved Performance Imagine that you’ve created a database with three fi legroups. The
fi les in each fi legroup are stored on a separate and dedicated RAID 5 array. You have three
RAID 5 arrays for the storage of your data. This confi guration will result in exceptional
drive performance—even for a VLDB.

An additional important point about fi legroups is related to backups. If you store table
data in one fi legroup and the indexes for that table in another fi legroup, you can no longer
back up the fi legroups separately. The reason is simple: if you back up such a structure

http://www.sybex.com/go/sqlserver12admin

Database Storage 311

separately, you cannot restore a synchronized data set (both the tables and the indexes).
This is an important fact to keep in mind if you’re optimizing a database by spreading
the data around in multiple fi legroups. Placing the data in one fi legroup and the indexes
in another is a common performance trick, but you should be aware of the limitations it
imposes on backups.

Transaction Logs
While data fi les use .mdf and .ndf extensions, transaction logs use the .ldf extension. You
can create multiple transaction log fi les for a database, but they are not used like multiple
data fi les. The transactions are not striped across the multiple log fi les in any way. Instead,
the transactions are written to the fi rst log fi le until it is full. When the fi rst log fi le is
full, the transactions will begin to overfl ow into the second log fi le, and so on. For heavily
used databases (thousands of transactions per hour), you may decide to implement a
second log fi le just to make sure the database does not run out of transaction storage space
between backups.

Transaction logs should be stored on separate physical disks from the data fi les.
By default, the transaction log will be stored with the data fi les. You must change this
confi guration manually during the creation of the database. Exercise 9.2, later in this
chapter, provides the steps required for creating a database. During these steps, you
would indicate that the transaction log should be stored in a separate location from the
database fi les. The only time you should store the transaction log on the same drive as
the data fi les is when you are implementing a read-only database. In a read-only database
implementation, the transaction log doesn’t matter. In all other implementations, it is
essential that the transaction log be stored on a separate physical disk. There is a reason I
have repeated this point, as you will soon see.

If the data fi les and the transaction log are stored on the same physical disk and the disk
fails, you can recover only to your most recent backup. Assume you have a database that
you back up nightly at 12 a.m. and the data fi les and log fi le are stored on the same physical
disk. Further assume that 2,500 transactions are performed against that database in a
typical workday. Now, the data storage drive fails at 4:50 p.m.—just 10 minutes before the
end of the workday. In this scenario, about 2,500 transactions will be unrecoverable. Why?
Because you lost the data and the transaction log.

If the transaction log were stored on a separate physical disk from the data fi les, you
could fi rst back up the tail log (the transactions in the transaction log since the nightly
backup) and then restore from the nightly backup and fi nally restore from the tail log backup.
This procedure would take you right back to the point of failure. You would lose no
transactions, and your job would be secure.

Notice that I’ve used the phrase “separate physical disk” repeatedly
throughout this section. You should not store the transaction log on a
separate volume on the same physical disk. Make sure the log is stored on
a truly separate physical disk—preferably a RAID 5 array.

312 Chapter 9 ■ Creating SQL Server Databases

In addition to the fault tolerance provided, storing the transaction log on a separate
physical disk can also improve the performance of the database. The data fi les can be read
from one disk at the same time the log fi le is being written on another disk. When you
spread activity across multiple physical disks, you nearly always improve performance.

Database Options and Properties
SQL Server databases have dozens of properties that can be confi gured. These properties
control the functionality and features of the database. If you are implementing a database
for a vendor-provided application, you will usually be given specifi c instructions for the
confi guration of the database. When you have these instructions, you won’t have to decide
what setting to use for a given option. However, you may also need to create databases for
internal use by applications that are also developed internally. With internal applications,
you’ll need to understand the options and properties and how they impact the database.

Five database properties are the most commonly confi gured. Most of the other
properties are simply left at their default settings. In this section, you’ll review the fi ve
properties most frequently altered:

■ Autogrowth

■ Recovery model

■ Compatibility level

■ Auto shrink

■ Restrict access

A table will describe many more properties. Of course, deciding which fi les the database
is stored in is essential when you are creating a database. Because the fi les and fi legroups
were covered in the preceding section, you will not revisit them here. You can consider the
fi les and fi legroups essential items—they must always be confi gured. The preceding top-fi ve
list should be considered the top-fi ve optionally confi gured properties.

Autogrowth
The autogrowth property allows you to confi gure the database so that it will grow
automatically as needed. The autogrowth feature supports both percentage-based growth
and fi xed-size growth. If you confi gure the database to grow by 10 percent, for example,
it will grow by 10 percent of its size at each growth point. If you confi gure the database to
grow by a fi xed amount, it will grow the same amount each time.

You can also confi gure a maximum fi le size. If you set a maximum fi le size and the
database reaches that size, it will automatically go into read-only mode. For this reason,
leaving the maximum fi le size as unrestricted is recommended. This recommendation does
not mean you’re leaving the server to run out of drive space. Instead, confi gure an alert to
watch for a free-space threshold on the data storage drive. If the free space falls below the

Database Options and Properties 313

defi ned threshold, an email is sent to the administrator so that action may be taken. This
recommendation is most useful on a database server with multiple databases. It can be very
diffi cult to determine the appropriate maximum fi le sizes for several databases so that they
all reach their maximum at approximately the same time. By watching for low free space,
you solve the problem. Chapter 14 provides the steps for creating a drive space alert.

A full database (one that has reached the maximum size) will usually generate an event
with the event ID of 3758. If you see this event in your Event Viewer log fi les on the server,
check the mentioned database. You have several options when a database is full:

■ Add additional fi les to the database. This can be useful when you are adding new drive
storage and want to span the data across the new drive.

■ Archive old data in the database. If you cannot add new drive space, this is an option,
assuming you can remove older data from the system without preventing users from
accomplishing their objectives.

■ Free space on the storage drive by deleting other information and then extend the
allowed size of the database fi les. If you cannot archive old data or add new storage,
you may have to free space from the drive by deleting non-database-related fi les that
happen to be stored on the same drive.

Recovery Model
The recovery model determines how the transaction log is used. Because the transaction
log is the key to recovering to the point of failure, this setting is one of the most important
settings for any database. Three choices are available:

■ Simple

■ Bulk-logged

■ Full

Simple Recovery Model
The fi rst choice, the simple recovery model, means that the transaction log is used for data
changes, but the transactions are lost at each checkpoint. As changes are made to the
data, the changes take place in buffer memory. Once the change is made in buffer memory,
the transaction is written to the transaction log. Every so often, a checkpoint occurs.
When the checkpoint occurs, the dirty pages are written from buffer memory to the
data fi le, and the transaction log is truncated. The term truncated means that the data is
removed from the log, but the log size is not reduced.

There is a common myth about SQL Server and the simple recovery model; it is often
said that the simple recovery model does not use the transaction log, but as you’ve seen in
the preceding paragraph, that statement is false. The transaction log is still used (it helps
to recover from a power failure or any other sudden system crash), but it is not retained
for backups. You do not—and cannot—back up the transaction log for a database in the
simple recovery model.

314 Chapter 9 ■ Creating SQL Server Databases

The simple recovery model is useful for test databases, lab environments, development
databases, and even production databases that are read-only. Additionally, if the only
changes that are ever made to the database are done using bulk scripts once each day or
once each week, you may consider using the simple recovery model on these databases.
Because all of the changes are made using scripts, the imported data should still be
available. In other words, you can restore the database from a backup and then rerun the
scripts in sequence.

The recommendation to use the simple recovery model for a production
read-only database or a database that is updated only through bulk scripts
assumes that the database is never updated by individual users. If the
database is updated by individual users, you will not be able to resynchro-
nize the data after a restore when using the simple recovery model.

Bulk-Logged Recovery Model
The bulk-logged recovery model is the in-between model. It’s not as basic as the simple
recovery model, and it doesn’t provide the complete transaction logging of the full recovery
model. Like the simple recovery model, the bulk-logged recovery model is sometimes
misunderstood in its functionality. At conferences and in books and articles you may
encounter an incorrect statement something like this: “If you use the bulk-logged recovery
model, you cannot recover to a point in time anymore.” As you’ll see, that statement is not
necessarily true.

When in the bulk-logged recovery model, the transaction log is still used; however,
for certain types of actions—bulk actions—minimal logging is performed. These actions
include several things as represented by the following list:

■ SELECT INTO statements

■ Some INSERT INTO statements that use a SELECT statement to provide the data values:

■ When the OPENROWSET(BULK…) function is used

■ When data totaling more than an extent (64KB) is inserted and the TABLOCK hint is
used

■ BULK INSERT operations

■ Write actions performed by the BCP command-line program

■ When using the WRITE clause with an UPDATE statement

■ Index creation (CREATE INDEX), modifi cation (ALTER INDEX), or deletion (DROP INDEX)

Now, when a bulk action occurs, the action is logged to the transaction log. It is noted
that it occurred, and in the database, for each extent that was modifi ed by the bulk action,
the Bulk Changed Page (BCP) bit for that extent is set to 1. All extents have a bit value of 0
on the BCP if a bulk action has not modifi ed their data.

Database Options and Properties 315

Here’s the interesting part. When you back up the transaction log for a database that
is in the bulk-logged recovery model, the transaction log is not backed up alone. Instead,
every extent with a BCP bit of 1 is also backed up with the log. By performing this extra
action, an administrator can use the SQL Server backup tools to restore the database,
including the bulk transactions.

What about the point-in-time recoveries? If the database is in the bulk-logged recovery
model and no bulk actions have occurred since the last full backup, the database can be
restored to any point in time. If, however, a bulk action has occurred and you desire to
restore data as it existed during the bulk action, you will run into problems. You must
create a new backup of the transaction log to enable more restore points. Even with a bulk
action, you may restore to any point in time before the bulk action or any point in time
after the bulk action as long as additional transaction log backups have been created.

Full Recovery Model
The fi nal option in the recovery model is the full recovery model. The full recovery model
logs every single transaction to the log. A transaction is a change. Any time a change
occurs on a database in the full recovery model, an entry is added to the transaction log. If
a read operation occurs, nothing is entered in the transaction log, because no change has
occurred. The vast majority of production databases operate in the full recovery model
during normal operations.

Strategic Use of the Bulk-Logged Recovery Model

Although most databases do run in the full recovery model, this does not mean you can-
not take advantage of the bulk-logged recovery model. Some databases should simply
operate in this model. It really depends on the recoverability needed for the database.

In addition to the databases that should run in bulk-logged mode all the time, you may
want to take strategic advantage of this mode for certain operations. For example, I was
consulting with a company that had a 65GB database. Every night, they ran a batch job
that imported more than 3GB of data into the existing database and then archived from
2GB to 3GB of data. After the data import and archive, a full backup was performed. The
batch process was taking close to two hours, and they needed to reduce the window of
operation so that more time could be made available for additional automated jobs.

I confi gured the job to fi rst switch the database to the bulk-logged recovery model and
then perform the bulk import of the data. In this case, the time to import the data was
reduced by about 35 percent, which took the entire operation window down to about 80
minutes. If you decide to use a similar procedure, be sure to verify that you’ve accom-
plished a performance gain. In rare scenarios, it may take longer to import the data in
bulk-logged mode. Also, make sure you switch back to the full recovery model right
before doing the full backup.

316 Chapter 9 ■ Creating SQL Server Databases

Compatibility Level
The compatibility level setting has become more important in the last few versions of SQL
Server. This setting allows you to make the database a little more compatible with older
applications. It is not guaranteed to make an older application work with a newer version
of SQL Server, but it may just do the trick.

The compatibility level can be set to one of three levels in SQL Server 2012:

110 SQL Server 2012 compatibility level

100 SQL Server 2008 and 2008 R2 compatibility level

90 SQL Server 2005 compatibility level

For the most part, the compatibility level setting really just disables new keywords and
also allows some older T-SQL syntax that is no longer supported. For example, a database
with a compatibility level of 90 will allow the creation of tables or columns named
MERGE, CUBE, or ROLLUP without the use of special delimiters. These names are not
allowed in compatibility level 100 or higher because they are now reserved words.

If you attach a database from an earlier version (SQL Server 2005 and 2008 databases
can be attached to SQL Server 2012 servers), the compatibility level is automatically set to
the required value for that version. A SQL Server 2005 database would be set to 90, and
a SQL Server 2008 database would be set to 110. The same is true if you upgrade to SQL
Server 2012 from one of these earlier versions.

The compatibility level setting should be used only as an interim solution. Eventually,
Microsoft will stop supporting level 90 and then level 100, and so on. Ultimately, the
applications must be updated to support the newer functionality in SQL Server 2012 and
newer editions. In fact, Microsoft states that it supports only two previous versions in
compatibility levels, which is the reason for the limited support of levels 90 through 110
only in SQL Server 2012.

Auto Shrink
Auto shrink is used a lot, so it is mentioned here; however, it shouldn’t be used—at least
in a production situation. Auto shrink will shrink the data and transaction log fi les when
space becomes available within the fi le. The problem with this is that shrinking the fi les
is an intensive process. The way auto shrink works is simple, but it is very processor-
intensive. When free space is provided, auto shrink will automatically shrink the database
fi les by removing data. The problem is that the database fi les must grow again when new
data is added. Then when more data is removed, the fi les shrink, only to grow again when
more data is added. Do you see the cycle and why it is so performance hindering? The best
practice is to perform all shrinking operations manually. Microsoft discourages the use of
auto shrink on production databases.

When you are optimizing a SQL Server, one of the fi rst things to look for is auto shrink.
By turning it off, you will usually get an immediate overall performance boost. To see the
boost, you would normally need to compare an entire day’s performance to another entire
day’s performance before the auto shrink feature is disabled.

Database Options and Properties 317

If this option causes so many problems, why do people enable it? This is more easily
answered by describing a scenario than with a detailed explanation. At some point, a
well-meaning DBA goes to a server and notices that the database fi le has grown very large.
He realizes that he has not archived any data in a long time, so he archives about half the
data into a completely separate server. Afterward, he notices that the fi le size has not been
reduced. He remembers the auto shrink feature and turns it on. A little later, the database
fi le is smaller, and he has accomplished his goal. To prevent this from happening again, he
simply leaves the auto shrink feature enabled. The end result of this action is a continued
decrease in performance for that database.

Third-party vendor support personnel also seem to like to tell customers to turn
auto shrink on as a solution to various problems. Remember this when making your
help calls. Realize that the support staff is telling you to confi gure the system in a way
that is easier to support and that removes problems without considering the impact on
performance. However it becomes enabled, it should really be disabled in the vast majority
of deployments. If a vendor tells you to turn on auto shrink, you can simply turn it back
off after the support call, and everything will work fi ne. Some other action the vendor
requested is usually the true solution for the problem. To learn how to shrink a fi le
manually (or in an automated job), search for: DBCC SHRINKFILE in Books Online.
Alternatively, you can search for: DBCC SHRINKDATABASE.

It is always important to consider vendor support. If the vendor indicates
that it will not support its application with auto shrink turned off, you will
have to leave it on and find some other way to enhance the overall perfor-
mance of your system. You may be able to counter the performance loss
incurred with auto shrink by storing the database files on a very fast RAID
array. Because the full details of using auto shrink are beyond the scope of
this chapter, please search for, DBCC SHRINKFILE and auto shrink in Books
Online to learn more.

Restrict Access
The fi nal option is one you might fi nd yourself using a lot. Restrict access allows you to
control who has rights to a database at any given time, from allowing only one person into
the database to granting only administrative personnel access or opening it up to everyone.
This option is wildly helpful when you need to gain exclusive access to the database
for administrative purposes. To confi gure the restrict access option, set it to one of the
following:

MULTI_USER This setting is the default. In this mode, any valid user may connect to
and use the database.

SINGLE_USER In this mode, any single user can connect to and use the database.

RESTRICTED_USER In this mode, only administrative personnel and the database
owner may connect to and use the database.

318 Chapter 9 ■ Creating SQL Server Databases

If you attempt to change a database to SINGLE_USER or RESTRICTED_USER mode while
users who would be considered invalid users in these modes are connected, by default the
command will wait for infi nity to pass or for all users to get out of the database, whichever
happens fi rst. However, you can force everyone off the SQL Server so that you can work on
it alone. The following T-SQL statement allows you to do this:

ALTER DATABASE Sales
 SET SINGLE_USER
 WITH ROLLBACK AFTER 360

This command tells the SQL Server to set the database to SINGLE_USER mode but to
allow the current transactions 360 seconds to complete. Any transactions that are not
committed after 360 seconds will be rolled back. After 360 seconds (and maybe a few more
seconds to perform the changeover), the Sales database will be in SINGLE_USER mode, and
the user who executed the command will be the single user allowed in the database.

More Database Properties
The top-fi ve properties represent common attributes you must confi gure. However, it is
important for you to have a basic understanding of the remaining properties so that you
can choose the right options when required. Table 9.1 lists the properties not yet covered
that are available when creating databases from the GUI interface.

TA B LE 9 .1 Database properties defined

Property/option Definition Recommendations

Auto Close If this option is set to TRUE or ON, the
database will be closed and unavailable
when the last user exits the database.

Useful for various exclusive
administrative tasks.

Auto Create
Statistics

If this option is set to the default of
TRUE or ON, the SQL Server Query Opti-
mizer ensures that statistics are cre-
ated for columns referenced in WHERE
clauses.

Used to improve query perfor-
mance.

Auto Update Sta-
tistics

Statistics are updated automatically
when the table data changes. The
default is ON.

Helps maintain performance
by keeping statistics up-to-
date.

Auto Update Sta-
tistics Asynchro-
nously

When set to TRUE or ON, queries that
trigger an automatic update of statis-
tics do not wait for the statistics to be
updated before running.

Value is FALSE or OFF by
default, but in some sce-
narios query response may
be improved by setting this to
TRUE or ON.

Database Options and Properties 319

Property/option Definition Recommendations

Close Cursor on
Commit Enabled

When set to TRUE or ON, any cursors
used within transactions are closed
when the transaction completes.

The default of FALSE or OFF
usually allows for better per-
formance, particularly when
Default Cursor is set to Global.

Default Cursor Optional values include LOCAL or
GLOBAL. When set to LOCAL, cursors
are available only to the calling rou-
tine. When set to GLOBAL, any routing
from within the calling connection can
access the cursor.

The best setting is determined
by the application. Set this
according to vendor or devel-
oper specifications.

ANSI NULL
Default

Determines whether NULL values are
allowed in columns by default.

To comply with ANSI SQL-92,
this should be set to TRUE or
ON; however, you should check
with your application vendor
or developer.

ANSI NULLS
Enabled

Specifies that comparisons with NULL
values result in UNKNOWN—the ANSI
SQL-92 standard response.

When set to OFF or FALSE, two
compared NULL values result to
TRUE instead of UNKNOWN.

ANSI Padding
Enabled

When set to ON (TRUE), strings are pad-
ded to be of equal length when com-
pared. When set to OFF (FALSE), they
are not.

Set this according to vendor or
developer specifications.

ANSI Warnings
Enabled

When set to ON (TRUE), warnings are
issued when divide-by-zero errors
occur.

Usually set to FALSE. Check
with your vendor or developer.

Arithmetic Abort
Enabled

When set to ON (TRUE), queries abort
if an arithmetic overflow or divide-by-
zero error occurs.

Set this according to vendor or
developer specifications.

Concatenate
NULL Yields
NULL

When set to ON (TRUE), concatenating
two strings results in NULL if either
string is NULL. When set to OFF (FALSE),
a NULL string is treated as an empty
string.

Set this according to vendor or
developer specifications.

Cross-database
Ownership
Chaining
Enabled

When set to ON (TRUE), the database
can be either the source or the target
of a cross-database ownership chain.

Set this according to vendor or
developer specifications.

Date Correlation
Optimization
Enabled

When set to ON (TRUE), SQL Server
maintains correlation statistics
between related tables that have date-
time columns.

Set this according to vendor or
developer specifications.

320 Chapter 9 ■ Creating SQL Server Databases

Property/option Definition Recommendations

Numeric Round
Abort

When set to ON (TRUE), an error is gen-
erated if precision is lost when calcu-
lating an expression.

Set this according to vendor or
developer specifications.

Parameterization When set to SIMPLE (the default), SQL
Server attempts to parameterize sim-
ple query parameters in WHERE clauses.
When set to FORCED, most literals are
parameterized.

Leave this setting at SIMPLE for
databases that are performing
well. For poorly performing
databases, change the setting
to FORCED and monitor perfor-
mance over time.

Quoted Identi-
fiers Enabled

When set to ON (TRUE), identifiers for
objects like tables and columns may
be surrounded by quotation marks.
Literals must be surrounded by single
quotes, if set to ON.

Set this according to vendor or
developer specifications.

Recursive Trig-
gers Enabled

When set to ON (TRUE), triggers can
call themselves. Default setting is OFF
(FALSE).

Set this according to vendor or
developer specifications.

Trustworthy When set to ON (TRUE), allows the
EXECUTE AS statement to be used
for impersonation while accessing
resources outside the database.

The best practice is to set
Trustworthy to OFF (FALSE)
and use certificates or digital
signatures for external authen-
tication. Enabling Trustworthy
could introduce a vulnerability
within your database.

Page Verify Detects page problems caused by I/O
errors, which can result in a corrupt
database. Values include CHECKSUM,
TORN_PAGE_DETECTION, and NONE.

Configure this to either CHECK-
SUM or TORN PAGE DETECTION
for most databases; otherwise,
set this according to vendor or
developer specifications.

Broker Enabled Enables or disables the Service Broker
for the database.

Leave the setting at FALSE
unless you need to use the
Service Broker in the specific
database.

Database Read
Only

Places the database in read-only
mode. The value cannot be changed if
any users are in the database.

Normally set to FALSE.

Encryption
Enabled

When set to ON (TRUE), the database
allows transparent data encryption.

Set this according to vendor or
developer specifications.

TA B LE 9 .1 Database properties defined (continued)

Creating Databases in the GUI 321

You will notice that many defi nitions in Table 9.1 indicate that an option can be set to
ON or TRUE or OFF or FALSE. The reason for this is simple. In the GUI, you set the option
to TRUE or FALSE. In T-SQL code, you set the option to ON or OFF. You’ll have to ask
Microsoft why.

Creating Databases in the GUI
With the database options and storage structures covered, you’re ready to create a database.
In this chapter and the next two, you’ll be creating and working with the Books database—
the database you designed in Chapter 7, “ERD and Capacity Planning.” In Exercise 9.2, you’ll
create the database that you’ll use again in Chapter 10, “Creating Tables,” for table creation
and in Chapter 11, “Indexes and Views,” for index creation. To ensure that the exercises in
Chapters 10 and 11 work, make sure you follow the instructions in Exercise 9.2 exactly.

Creating a database in the graphical user interface (GUI) is a simple process. You can get
to the GUI interface by right-clicking either the Databases node or an existing database and
selecting New Database. You’ll be presented with a screen similar to the one in Figure 9.5.

In Exercise 9.2, you’ll be creating a database named Books that is stored in a single data
fi le with a single transaction log fi le.

F I GU R E 9 .5 The New Database window used to create databases from the GUI

322 Chapter 9 ■ Creating SQL Server Databases

E X E R C I S E 9 . 2

Creating the Books Database in the GUI

This exercise walks you through the process of creating a database named Books using the
GUI interface. You will create a database that is stored in a single fi le. The database will be
set to the simple recovery model so you can see where to confi gure this option.

Begin by launching the New Database dialog and following these steps:

1. Launch SSMS, and connect to your SQL Server default instance.

2. Right-click the Databases container in the Object Explorer, and click New Database.

3. In the dialog that appears, enter the database name value of Books.

4. Set the initial size for the Books data fi le to 5MB, as shown here.

5. To select the Options page in the left corner of the window, click it.

6. Set the Recovery Model value to Simple, as shown here.

7. Click the Filegroups page to select it. Notice that one fi legroup named Primary exists.
Make no changes.

8. Click OK to create the database.

Creating Databases with T-SQL 323

F I GU R E 9 .6 The Script button’s options used to generate T-SQL scripts

At this point, the New Database window will briefl y display the text “Executing” in the
lower-left corner and then close. If you open the Databases container, you’ll now see a data-
base named Books similar to that shown here.

Creating Databases with T-SQL
Creating databases with Transact-SQL (T-SQL) is a bit more complicated. You will need
to understand the syntax of the CREATE DATABASE statement before you begin. However,
you can learn the syntax easily by using the GUI New Database interface that you used
in Exercise 9.2 to set up the new database. Then, instead of clicking OK to create the
database, as you did in step 8, you can click the Script button to generate a T-SQL script
that would create the database for you. Figure 9.6 shows the Script button’s options, and
Figure 9.7 shows the very script that would be created for the Books database created in
Exercise 9.2.

324 Chapter 9 ■ Creating SQL Server Databases

Don’t let the script in Figure 9.7 scare you if you’re unfamiliar with T-SQL. It’s really
not as complicated as it looks. The CREATE DATABASE command uses the following syntax:

CREATE DATABASE database_name
 [ON
 [PRIMARY] [<filespec> [,...n]
 [, <filegroup> [,...n]]
 [LOG ON {<filespec> [,...n]}]
]
 [COLLATE <collation_name>]
 [WITH <external_access_option>]
]
[;]

Even this syntax may seem overwhelming at fi rst, but with a little explanation it will
become clear. To provide a very simple example, start with the following code:

CREATE DATABASE Books;

This command will create a database that is basically a duplicate of the model, but it
will be named Books. Because the command does not specify any options for the database,
all of the default options and those specifi ed in the model database are used.

Now, consider the following code that is just a bit more complex:

F I GU R E 9 .7 The automatic script generated from the Script button

Creating Databases with T-SQL 325

CREATE DATABASE Books
ON PRIMARY(
 NAME = ‘Books’,
 FILENAME = ‘D:\DataStore\Books.mdf’,
 SIZE = 5120KB, FILEGROWTH = 1024KB
)
LOG ON(
 NAME = N’Books_log’,
 FILENAME = E:\LogStore\Books_log.ldf’,
 SIZE = 1024KB,
 FILEGROWTH = 10%
);

OK, so it was more than just a bit more complex, but it is easier to understand than
you might imagine. You still have the CREATE DATABASE Books portion of the statement,
but what do the other portions do? The clause ON PRIMARY indicates that the subsequent
fi lename should be assigned to the PRIMARY fi legroup. The logical name of the fi le is Books,
and the literal name is Books.mdf located in the D:\DataStore folder.

Next, the transaction log is specifi ed with the LOG ON clause. The transaction log is never
part of a fi legroup, so you do not specify one. The logical name of the log is Books_log, and
the literal name is Books_log.ldf located in the E:\LogStore folder. The size of the data
fi le is 5MB, and the size of the log fi le is 1MB. The data fi le will grow by increments of
1MB, and the log fi le will grow by increments of 10 percent.

You may also desire to change a database option after it has been created. For example,
you may want to switch from the simple recovery model to the bulk-logged recovery model.
The following T-SQL statement would switch to the bulk-logged recovery model:

ALTER DATABASE Books
SET RECOVERY BULK_LOGGED
WITH NO WAIT;

To change back to simple, execute the following statement:

ALTER DATABASE Books
SET RECOVERY SIMPLE
WITH NO WAIT;

You may have noticed that this code snippet seems to be three statements. Well, in SQL,
spaces and carriage returns entered between keywords do not matter. The code is listed this
way to make it easier to read. The following statement will work in the same way as the
preceding one:

ALTER DATABASE Books SET RECOVERY SIMPLE WITH NO WAIT;

The ALTER DATABASE command is used anytime you want to change a database setting. The
ALTER DATABASE clause is always followed by the name of the database you want to modify.

326 Chapter 9 ■ Creating SQL Server Databases

In most cases, you use the SET keyword to indicate the option (in this case RECOVERY) that
you want to confi gure. The WITH keyword is sometimes used to provide extra options
for the statement. As an example, the preceding code uses the WITH NO WAIT clause to
indicate that the database server should not wait until users are disconnected from the
database to take the action.

Creating Databases: GUI vs. T-SQL

Even though you may decide to create most of your databases in the GUI (because it is
faster), you may still want to generate the T-SQL code. The code provides you with docu-
mentation of exactly how that database was created. If you ever need to re-create it, you
can do it easily by executing the saved code.

Additionally, if you make permanent changes to the database options, you should also
generate code for these changes. Save the code in the same folder with the original
database-creation script, and then you can run the scripts in sequence to create a new
database that perfectly mirrors the production database.

I was working with one company that wanted to have a documentation system for their
DBAs. At fi rst, they planned to have an elaborate documentation method where the DBAs
would fi ll out forms in order to indicate every option they chose when creating or altering
a database. Thankfully, I was able to encourage them to use a simple code-management
tool and store the T-SQL script in this tool. Now, when anyone wants to know what
changes have been made to the database, they can simply look in the code repository.

The bad news is that this solution, like any other documentation solution, still depends
on the users. If the DBAs do not generate the scripts and upload them to the repository,
it’s all for naught. The good news is that, at last check, the company that implemented
this solution was still keeping up with its documentation. I can’t emphasize enough how
important that is.

Creating Databases with PowerShell
One of the great features that fi rst appeared in SQL Server 2008 is the PowerShell
extension that interacts with the SQL Server. To create a database in PowerShell, you’ll fi rst
need to create a PowerShell script that you can call. Listing 9.2 provides just such a script
for you.

Creating Databases with PowerShell 327

Listing 9.2: The CreateDB.ps1 script code

Get the command line options passed to the script
Param($dbInstance, $dbName)

[System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.Smo”)
$dbServer = new-object Microsoft.SqlServer.Management.Smo.Server ($dbInstance)
$db = new-object Microsoft.SqlServer.Management.Smo.Database

“Now creating database $dbName...”
$db = new-object Microsoft.SqlServer.Management.Smo.Database ($dbServer, $dbName)
db.Create()

If you place the code in Listing 9.2 in a Notepad document or the Windows PowerShell
ISE and save it as CreateDB.ps1 in the C:\Windows\system32 folder, you’ll be able to run it
from the PowerShell command prompt using this command:

CreateDB.ps1 -dbName Books2

This command executes and creates a database named Books2 in the default instance on
the local server. Figure 9.8 shows the command running in Windows PowerShell. Note that
while the script can work with a parameter named dbInstance, it is not required if you are
creating a database in the default instance.

F I GU R E 9 . 8 Running the CreateDB.ps1 script

To use SQL Server Management Objects (SMO), as in the preceding script
example, you must install Shared Management Objects (part of the SQL
Server 2012 Feature Pack) if you did not install the Client Tools SDK during
the installation of SQL Server 2012.

328 Chapter 9 ■ Creating SQL Server Databases

On some systems, the PowerShell scripting may need to be confi gured to allow an
unsigned script such as the one in Listing 9.2 to run. Execute the following command at
the PowerShell prompt to let unsigned scripts run on your machine (be sure that you have
properly secured your environment before allowing unsigned scripts to run):

Set-ExecutionPolicy Unrestricted

Instead of allowing unrestricted scripting, you could also implement certifi cates. To
learn more, run the following command at the PowerShell prompt:

get-help about_signing

Attaching and Detaching Databases
Sometimes you want to attach a database that was previously created on one server to
another SQL Server. This task is an easy process, but you should be aware of a few facts
before you attempt to do this:

■ If you attach a SQL Server 2005 or 2008 database to a SQL Server 2012 server, you
can no longer attach that database to the previous versions. Always make a copy of the
database fi le before attaching it to the newer version server.

■ When you detach a database from a server, it will no longer be available to users. This
fact just makes sense, but it’s important to remember.

■ Attaching a database to a new server does not automatically give access to all previous
users from the old server. These users may need to be added to the new server.

With these important facts in mind, Exercise 9.3 walks you through detaching the
Books database created in Exercise 9.2.

E X E R C I S E 9 . 3

Detaching the Books Database in the GUI

This exercise walks you through the process of detaching databases. You will fi rst detach the
Books database from the SQL Server and then attach it again in Exercise 9.4. The process is
the same in the real world, but with the additional step of copying the MDF fi le (and possible
NDF fi les) from the old server to the new server.

Perform the following steps to detach the Books database:

1. Launch the SSMS and connect to your SQL Server default instance where you created
the Books database in Exercise 9.2.

2. Expand the Databases container in Object Explorer so you can see the Books database,
as shown here.

Attaching and Detaching Databases 329

3. Right-click the Books database, and select Tasks ➢ Detach.

4. In the Detach Database dialog, select Drop Connections and Update Statistics; then
click OK.

5. The database should be gone from your Databases container.

Now that the database has been removed, you can navigate to the data storage location
and see that the database fi les are still there. The detach process does not delete the
database.

Exercise 9.4 walks you through the process of attaching the Books database again. You
can also attach the Books database to a different server by fi rst copying the MDF database
fi le to another server and then performing the actions in Exercise 9.4.

330 Chapter 9 ■ Creating SQL Server Databases

E X E R C I S E 9 . 4

Attaching the Books Database in the GUI

Perform the following steps to attach the Books database:

1. Right-click the Databases container, and select Attach.

2. In the Attach Database dialog, click the Add button to add the Books.mdf fi le.

3. In the Locate Database Files dialog, select the Books.mdf fi le, as shown here, and
click OK.

4. Notice that you can change the storage location in the lower portion of the Attach Data-
base dialog, as shown here. Change nothing; simply click OK to attach the Books data-
base to the SQL Server instance again.

Database Snapshots 331

At this point, you should see the Books database back in the Databases list. Remember,
it’s really not any more diffi cult to attach a database from a different server. You simply
copy the database fi les to the new server and then attach the fi les.

Database Snapshots
Database snapshots were fi rst introduced with the release of SQL Server 2005. The
snapshots allow you to save the state of your data at the point in time when the snapshot
was taken. Snapshots are created with the CREATE DATABASE T-SQL command. Microsoft
has not released a GUI interface for the creation of snapshots, for one simple reason: the
vast majority of database snapshots will be taken using automated scripts. Most DBAs
want snapshots of their data at various points in time throughout the day. The best way to
accomplish this is through T-SQL scripts.

In the following sections, you’ll see the T-SQL commands used to create database
snapshots. You’ll also look at the command used to drop a snapshot and the command used
to revert to a snapshot. All of these examples will be based on the AdventureWorks sample
database.

332 Chapter 9 ■ Creating SQL Server Databases

Creating Snapshots
Create snapshots using the CREATE DATABASE … AS SNAPSHOT command. The syntax is as
follows:

CREATE DATABASE database_snapshot_name
 ON
 (
 NAME = logical_file_name,
 FILENAME = ‘os_file_name’
) [,...n]
 AS SNAPSHOT OF source_database_name
[;]

You should understand two important things. First, the NAME value should be equal to
the logical name of the database fi le and not the snapshot fi le. Second, the FILENAME value
should be equal to the actual physical path and fi lename of the snapshot fi le—most DBAs
use an .ss extension, as in AdventureWorks.ss. If the database has multiple fi les, you’ll
need to list each fi le in parentheses individually. The following code provides an example of
a database snapshot for a database with multiple fi les:

CREATE DATABASE DataBaseSS
 ON
 (
 NAME = DataFile1,
 FILENAME = ‘C:\Snapshots\Data1.ss’
),
 (
 NAME = DataFile1,
 FILENAME= ‘C:\Snapshots\Data2.ss’)
AS SNAPSHOT OF DatabaseName;

Now, to make this real, let’s create a snapshot of the AdventureWorks sample database.
If you execute the following code in a query window in SSMS, a snapshot will be created
immediately:

CREATE DATABASE AWSS

 ON
 (
 NAME = AdventureWorks2012_Data,
 FILENAME = ‘C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\DATA\AdventureWorks_data_1800.ss’
)
AS SNAPSHOT OF AdventureWorks2012;

Database Snapshots 333

After the code executes, you can refresh the Database Snapshots container, and the new
AWSS snapshot should be displayed as in Figure 9.9.

F I GU R E 9 . 9 The AWSS snapshot displayed after creating it with the T-SQL code

Now that the snapshot has been created, you can query it just as you would any other
database. For example, the following code changes to the AWSS snapshot context and then
queries the Production.Product table:

USE AWSS;
GO
SELECT *
FROM Production.Product;

If you execute this code in a query window, you will see results as if you were querying a
database.

You should keep a few points in mind related to snapshots.

■ Snapshots do not take long to create and are not resource-intensive at the point of cre-
ation. Sparse data fi les are used, so the snapshot is created quickly.

■ After the snapshot is created, any pages that are about to be modifi ed in the database
will be copied into the snapshot just before they are modifi ed. This is how the snapshot
system works.

■ You can create multiple snapshots on the same database at the same time.

334 Chapter 9 ■ Creating SQL Server Databases

To demonstrate that you can create multiple snapshots on the same database at the same
time, execute the following code while noting that the snapshot database name and the
physical fi lename are different from the previous execution:

CREATE DATABASE AWSS
 ON
 (
 NAME = AdventureWorks2012_Data,
 FILENAME = ‘C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\DATA\AdventureWorks_data_1801.ss’
)
AS SNAPSHOT OF AdventureWorks2012;

After executing this code, refresh your Database Snapshots container, and you’ll notice
the new snapshot named AWSS.

Reverting to Snapshots
One of the most benefi cial uses of snapshots is data protection. Have you ever had a user
accidentally delete all of the customers in his or her district? Have you ever accidentally
deleted a lot of data? A lot of DBAs have. If you have jobs scheduled to create snapshots
every 30 minutes or every 60 minutes, you will always be able to revert the database to a
recent state very quickly.

Before you jump in and start reverting to snapshots, know this: you must drop all
snapshots except the one to which you want to revert before the reversion process can be a
success. This means that if you want to revert to the AWSS snapshot, you must fi rst drop
the AWSS1 snapshots. The following simple code will do the trick:

DROP DATABASE AWSS1;

If you execute this single line of code and then refresh your Database Snapshots
container, you should notice that you’re back down to one snapshot. Now, you can revert to
that snapshot. To revert to a snapshot, you use the RESTORE DATABASE command as follows:

RESTORE DATABASE AdventureWorks2012
FROM Database_Snapshot = ‘AWSS’;

Notice that the logical name of the snapshot is used. It’s really that simple. The most
important thing to remember about reverting to snapshots is that you must fi rst drop all
other snapshots that are based on the same database.

Chapter Essentials 335

Summary
In this chapter, you learned about the system and user databases that exist in a SQL Server
system. You learned about fi les and fi legroups and how they can be used to enhance the
performance of SQL Server databases. You also learned about the system databases and
how they should be stored and backed up periodically. Next, you explored the many
confi guration options available for databases through the use of properties and some of the
more important ones you should be aware of.

After exploring the fundamental concepts of database creation in SQL Server, you then
created databases using the GUI, T-SQL, and the Windows PowerShell command prompt.
You next learned to detach and attach databases. Finally, you learned about database
snapshots and how to create them and revert to them in the event of a problem.

Chapter Essentials

Understanding the SQL Server Databases SQL Server supports system and user data-
bases. The system databases are master, MSDB, model, and tempdb. The two most impor-
tant system databases are master and MSDB.

Understanding Database Storage Databases are stored in fi les that are assigned to fi le-
groups. Multiple fi les in a single fi legroup are used to enhance performance through
data striping. The striping provided through the use of multiple fi les is not as effi cient as
hardware-based RAID 0 or RAID 5 striping. Multiple fi legroups are used to give the DBA
control over “what goes where.” In addition to the data storage fi les, the transactions are
stored in transaction log fi les for recoverability. The transaction logs can be used to recover
from a server outage or to restore data when the data fi le storage fails. The transaction logs
should always be stored on separate physical drives from the data fi les in order to ensure
complete recoverability.

Understanding Database Options and Properties SQL Server databases have dozens of
options. Several options, including the auto shrink option, have caused problems for many
DBAs. This option should always be set to OFF or FALSE for production databases. If auto
shrink is enabled, it can greatly reduce the performance of some databases. Five additional
properties are valuable as well. These include autogrowth, the recovery model, the compat-
ibility level, auto shrink, and the option to restrict access.

Creating Databases in the GUI In the GUI, creating a database is as simple as providing
a name and choosing the options. You do not have to know T-SQL syntax or write fancy
PowerShell scripts. However, you can use the Script button to generate scripts that will
create your database. The Script button is both an excellent learning aid and an excellent
method for documenting your work.

336 Chapter 9 ■ Creating SQL Server Databases

Creating Databases with T-SQL In T-SQL, you use the CREATE DATABASE statement to
create a database. The simplest statement is CREATE DATABASE db_name. When it is exe-
cuted, SQL Server will create a database exactly like the model database with the name you
specify. However, you can also confi gure any database parameter with T-SQL, including
fi les, fi legroups, and database options.

Creating Databases with PowerShell To create databases with PowerShell, you fi rst need
to create a script that takes advantage of the SQL Server Management Objects. Then you
can call the script any time you need it. You may have to implement script signing or set
scripts to Unrestricted in order to run the scripts.

Attaching and Detaching Databases Attaching and detaching databases is an excellent
method you can use to move a database around among your servers. You can detach a
database from one server, copy the database fi les to another server, and then attach the fi les
to the new server. If you’ve implemented a storage area network, you may be able to detach
databases from one server and attach them to another server without the middle copying
process.

Using Database Snapshots Database snapshots are used to take a picture of your database
at a point in time. The snapshots are created very quickly as NTFS sparse fi les are used.
When the actual database pages are about to be changed, SQL Server fi rst copies the
pages out to the snapshot so that the original data can be retrieved from the snapshot.
The entire database can be reverted to the snapshot state if you must recover the data from
a past point. Snapshots are created with the CREATE DATABASE … AS SNAPSHOT command.
Databases are reverted to the state in a snapshot with the RESTORE DATABASE … FROM
Database_Snapshot command.

Creating Tables

TOPICS COVERED IN THIS CHAPTER:

 ✓ Data Types

 ✓ Collations

 ✓ Table Creation Process

 ✓ Data Partitioning

Chapter

10

The fi rst step to implementing a working SQL Server database
is to create the actual database fi les, as you learned in Chapter 9,
“Creating SQL Server Databases.” The second step, creating

the tables within the database, is equally important. Without the tables, the database would
have no containers for data and would serve no purpose.

In this chapter, you will learn how to create tables in your SQL Server databases. You’ll
begin by learning about the different data types that can be used in tables and how to
choose the right data types for your needs. Then you’ll learn about collations and what they
offer to your databases and applications. With these foundational concepts covered, you’ll
then go through the process of creating a table using the GUI tools and then another table
using the T-SQL CREATE TABLE statement.

The fi nal topic of this chapter will be data partitioning. This needs to be covered as well
because sometimes you have too much data to be placed in a single container even though
it makes logical sense to do so. Performance may suffer if all the data is located in a single
container. Partitioning provides one solution to this issue, and you’ll learn what it is and
how to use it in the fi nal section of this chapter.

Data Types
Choosing the right data type is an important step in creating effi cient tables. If you choose
the wrong data type for a column, your data integrity and system performance may suffer.
The beginning of data integrity is the use of proper data types. Exceptional system perfor-
mance depends on the right data types. A data type defi nes the characteristics of the data
intended for storage in a column. For example, it may be numeric data or string (character)
data. SQL Server offers data types for nearly any kind of information that you can enter
into a computer.

Consider a table used to track customer records for U.S.-based customers. Imagine that
the DBA set the data type for the zip code column to char(50), which indicates that it is a
string data type for textual characters and is constrained to 50 characters in length. Two
major problems will arise because of this action. First, every record will consume 50 bytes
for the zip code column alone (each record would consume 100 bytes if the nchar(50) data
type were used). If the table has 200,000 records in it, the DBA has wasted a lot of stor-
age space. Just multiply 50 times 200,000, and you’ll see that the records are consuming
10,000,000 bytes (just under 10MB) for the zip code column by itself.

Data Types 339

If the DBA had used the integer data type, four bytes would be consumed for each
record’s zip code column. The result would be the consumption of less than one-tenth of
the space that the char(50) data type would use. Now, an integer data type can hold any
number ranging from –2^31 (–2,147,483,648) to 2^31–1 (2,147,483,647). Clearly, this data
type can hold the traditional U.S. fi ve-digit zip codes as well as the new +4 zip codes. The
integer data type is a much better decision from a storage perspective. At the same time,
you must consider presentation. If you use the integer data type, you will now have to
interpret this stored data in application logic so that it is presented to a user in the tradi-
tional zip+4 format.

The second problem is that from an integrity perspective, the char(50) data type fails
miserably. What do all zip codes have in common? The answer is simple: they are com-
prised of numbers only—no letters are used in the United States. This fact means that the
char(50) data type will allow values that could not possibly be U.S. zip codes. For exam-
ple, a data entry operator could enter the value 67gh87-ghyt and, without additional checks
in place such as triggers or constraints, the database system would allow it. If the integer
data type were used, numbers would be the only characters allowed. The data type is the
beginning of data integrity.

Additionally, the right data type can allow for expansion. For example, if you choose an
integer data type for a column that contains numbers up to 1,000,000, the column can
expand to contain values of more than 2,000,000 if needed. Expansion must be carefully
considered. You do not want to confi gure every column based on expansion alone. If you
do, you’ll end up with columns requiring twice the database space needed for the
actual data.

The zip code column is just one column that could be used in a customer-tracking table.
If every column were confi gured whimsically, you could end up wasting hundreds of mega-
bytes of storage space and diminishing the performance potential of the system drastically.
To prevent this, you must understand the different data types from several perspectives:

■ Data type categories

■ Data types

■ Deprecated data types

The following section, “Data Type Categories,” will cover these perspectives so that you
can make effective decisions when building tables in SQL Server 2012.

If you have to change the data type after you’ve created a table and
entered data into it, you may have to delete or change the existing data.
The data in the column must meet the new data type’s requirements, or
the column cannot be set to that data type. For this reason, data types
should be carefully selected during the design and implementation phases.

340 Chapter 10 ■ Creating Tables

Data Type Categories
Data types can be grouped into several categories or types of types:

■ Numerics

■ Date and time

■ Character and Unicode character strings

■ Binary strings

■ Special data types

Numerics
The numerics category includes both exact numbers and approximate numbers. The
approximate numeric data types include floating point or float and real. Approximate
numeric data types are not as accurate as exact numerics, but they are useful in specifi c
computational functions. Check your vendor literature for your application before using the
float or real data types. Table 10.1 provides information about numeric data types.

TA B LE 10 .1 Numeric data types

Data type Value range Storage size

Tinyint 0 to 255 1 byte

Smallint –32,768 to 32,767 2 bytes

Int –2,147,483,648 to 2,147,483,647 4 bytes

Bigint –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

8 bytes

Bit 0 or 1 With 8 or fewer bits in a table, 1 byte;
from 9 to 16 bits, 2 bytes; and so on

Decimal –1038 + 1 to 1038 – 1 Depends on precision; also called
numeric; from 5 to 17 bytes; see
Books Online for more information

Smallmoney –214,748.3648 to 214,748.3647 4 bytes

Money –922,337,203,685,477.5808 to
922,337,203,685,477.5807

8 bytes

Float –1.79E+308 to –2.23E–308, 0 and
2.23E–308 to 1.79E+308

Depends on the value of the man-
tissa used to store the float number

Real –3.40E + 38 to –1.18E - 38, 0 and
1.18E – 38 to 3.40E + 38

4 bytes

Data Types 341

Date and Time
The date and time category contains data types for storing time-specifi c information. SQL
Server 2008 introduced the date data type, also found in SQL Server 2012, which includes
only the date and not the time. Additionally, SQL Server still supports the time, datetime,
and datetimeoffset data types.

Table 10.2 lists the date and time data types, with each one’s formatting structures,
value range, and storage size.

TA B LE 10 . 2 Date and time data types

Data type Format Value range Storage size

Time hh:mm:ss[.nnnnnnn] 00:00:00.0000000 to
23:59:59.9999999

3 to 5 bytes

Date YYYY-MM-DD 0001-01-01 to 9999-12-31 3 bytes

Datetime YYYY-MM-DD
hh:mm:ss[.nnn]

1753-01-01 to 9999-12-31 8 bytes

Datetime2 YYYY-MM-DD
hh:mm:ss[.nnnnnnn]

0001-01-01
00:00:00.0000000 to 9999-
12-31 23:59:59.9999999

6 to 8 bytes

Smalldatetime YYYY-MM-DD hh:mm:ss 1900-01-01 to 2079-06-06 4 bytes

Datetimeoffset YYYY-MM-DD
hh:mm:ss[.nnnnnnn]
[+|-]hh:mm

0001-01-01
00:00:00.0000000 to 9999-
12-31 23:59:59.9999999 (in
UTC or Coordinated Uni-
versal Time)

8 to 10 bytes

Character and Unicode Character Strings
The character strings and Unicode character strings are used to store exactly what they
sound like they would store: character data. The difference between the two categories is
that the Unicode character strings include character set information with each entry, and
the character strings do not. The result is that Unicode character strings consume twice as
much space as character strings; however, Microsoft still recommends the use of unicode
data types because they are more transferable to different character sets. Both variable and
fi xed-length character data types are available. You will fi nd the character data types listed
in Table 10.3.

342 Chapter 10 ■ Creating Tables

TA B LE 10 . 3 Character data types

Data type Value range Storage size

Char 0 to 8,000 characters 1 byte per character (fixed)

Varchar 0 to 8,000 characters Data length + 2 bytes

nChar 0 to 4,000 characters 2 bytes per character (fixed)

nVarchar 0 to 4,000 characters Data length × 2 + 2 bytes

Text (to be removed; use
Varchar(max) instead)

0 to 2 billion characters Up to 2GB (1 byte per char-
acter)

nText (to be removed; use
nVarchar(max) instead)

0 to 1 billion characters Up to 2GB (2 bytes per char-
acter)

Varchar(max) 0 to 2 billion characters Data length + 2 bytes

nVarchar(max) 0 to 1 billion characters Data length + 2 bytes

Binary String
Binary string data types can be used to store binary data such as images, executables, or
any data that is not simply a number, date, or text value. Binary data can be up to 2GB
in size and includes text as well as nontextual data. Technically, the text and ntext data
types, though listed in the character strings and Unicode character strings category in
Books Online, are binary data types. The image data type allows for the largest amount of
binary data not intended for text storage. Binary data types are described in Table 10.4.

TA B LE 10 . 4 Binary data types

Data type Value range Storage size

Binary 0 to 8,000 bytes 1 byte per binary byte (fixed)

Varbinary 0 to 8,000 bytes 1 byte per binary byte + 2 bytes

Varbinary (max) 0 to 2 billion bytes 1 byte per binary byte + 2 bytes

Image (to be removed; use
Varbinary(max) instead)

0 to 2 billion bytes 1 byte per binary byte

Data Types 343

Special Data Types
The special data types (or what Books Online calls other data types) category includes
unique identifi ers, timestamps, and cursors—among other data types. With the exceptions
of sql_variant and XML, the special data types are not used to store user information. The
sql_variant data type can contain data of any other data type. It is not recommended for
production use, for both performance and integrity reasons. The XML data type is used to
store XML content. Table 10.5 provides a reference of the special data types.

TA B LE 10 .5 Special data types

Data type Use Storage

Cursor Stored procedure and application
development; not used as a column
data type

No storage required

HierarchyID Used to represent a position in a
hierarchy

Storage varies depending
on the hierarchy tree size and
the number of child nodes

SQL_Variant Used when a programmer is lost
and doesn’t know how to select the
best data type

Varies depending on the
actual data entered

Table Stored procedure and application
development; not used as a column
data type

No storage required

Timestamp Used for automatic timestamp gen-
eration in a database

8 bytes

Uniqueidentifier A globally unique identifier (GUID)
that may be generated or manually
created

16 bytes

XML For storage of XML data up to 2GB
in size

From 0 bytes to 2GB depend-
ing on stored data

When choosing an integer data type (int, smallint, tinyint, or bigint),
remember to plan for the future. If you choose tinyint today, make sure it
will handle the data requirements a year from now. You can easily change
the data type from a smaller integer to a larger integer because the data
will still be accurate for that data type; however, you usually learn of the
need for the change only after users begin experiencing data entry errors.

344 Chapter 10 ■ Creating Tables

Deprecated Data Types
If you are creating a new table today and do not have specifi c requirements imposed by an
application, you should avoid using deprecated data types. The following data types were
fi rst deprecated in SQL Server 2008 and will be removed in some future version, though
they remain in SQL Server 2012:

text Use VarChar(max) instead. VarChar(max) provides the same 2GB of storage as the
traditional text data type.

ntext Use nVarChar(max) instead. nVarChar(max) provides up to 1GB of storage, because
2 bytes are required for each character.

image Use VarBinary(max) instead. VarBinary(max) provides the same 2GB of binary
storage as the image data type.

Avoid using these three data types going forward. If you use them in a newly developed
system, you risk that system’s compatibility with future versions of SQL Server.

Collations
Data collations defi ne the rules by which data is compared, sorted, and presented. Most
English-speaking people know that the letter B comes before the letter F in the English
alphabet and that the letter X comes after the letter M, but most English-speaking people
do not know the order of the letters (characters) used in the Hebrew alphabet. SQL Server
must be able to sort data in any language that it supports. Collations allow it to perform
this action.

Additionally, the collations allow the server to determine how best to display informa-
tion in cooperation with the client application. The character set defi nes the presentation.
The character set on the database server should match that used by the client applications. The
database server will store a code representing the character. The code is matched with
the collation to determine what is actually displayed. If the collation (think language or
regional settings) is different on the server than it is on the client, display problems can
result.

Collations also determine sort order preferences. For example, the words bat and Bat
may appear to be the same word—with the exception of the capital letter B on the
latter—but they may be treated differently depending on the collation’s sort order
preference. When an uppercase preference is used, Bat always sorts before bat. When
no preference is used, the results will be random. Your application may demand a sort
order preference, and you should be careful to select the proper collation.

An additional functional factor related to collations is the way in which SQL Server dis-
plays dates. If you use a collation aimed at the U.S. database market, you’ll see dates in the
year/day/month format. The date format is important because users expect to see dates in
the way they are used to seeing them.

Collations 345

Finally, collations determine case sensitivity during comparisons. For example, using the
LIKE and NOT LIKE operators in a SELECT statement depends on the collation. If the colla-
tion is case sensitive, the following code would not return records with the value of ‘ALL’
in the number column:

SELECT *
FROM Product
WHERE Number LIKE ‘all’;

The collation can be confi gured at three levels in a SQL Server 2012 DBMS:

■ Confi gure the collation at the server instance to specify a collation to be used by
default for all databases and columns.

■ Confi gure the collation at the database level to override the default server instance col-
lation.

■ Confi gure the collation at the column level to override the default database level or
server instance collations.

As this list demonstrates, you have fl exibility in confi guring the collation. However,
a DBA should exercise caution in applying collations at ever more granular levels. A database
with several different collations on different columns becomes more diffi cult to manage,
and application developers may also fi nd it more diffi cult to develop applications. Always
let the business needs drive the decision, but attempts should be made to minimize the
number of different collations used in a single-server instance.

Configuring Server Instance Collations
The server instance collation is confi gured during the installation of SQL Server. It is best
to know the proper collation before installation and confi gure it properly during the
installation. With that said, circumstances in the real world are not always ideal, and
things change. If you must change the server instance collation, you can do it by rebuilding
the master database. For safety reasons, always back up the master database before
rebuilding it. The following command can be used to rebuild the master database and
specify a collation:

setup.exe /QUIET /ACTION=REBUILDDATABASE /INSTANCENAME=<instance>
/SQLSYSADMINACCOUNTS=<admin_account> /SAPWD=<password> /SQLCOLLATION=<new_
collation>

The rebuild setup command should be run from the installation media at a command
prompt. The SQLCOLLATION option is the key to changing the collation. Detailing a full list
of the valid collation names (for use in place of new_collation) is beyond the scope of this
book, but if you would like to see that information, just search for Windows Collation
Name in SQL Server 2012 Books Online.

346 Chapter 10 ■ Creating Tables

Configuring Database Collations
Like the server instance collation, the database collation is usually confi gured during the
creation of the database. In fact, the server instance collation is usually just accepted as the
default collation for the database. However, you can change the database collation at a later
time by performing a somewhat tedious procedure.

First, you can change the database collation for all future additions by using the ALTER
DATABASE command, as in the following code example:

ALTER DATABASE Sales COLLATE SQL_Latin1_General_CP1_CI_AS

However, this command will not modify the collation of existing entries in the table.
From here, you have two basic options to complete the conversion of the collation: export
and import the data or manually change the collation of every column in every table. If you
export the data, delete it from the table, and then import it again, the newly imported ver-
sion of the old data will have the new collation. However, this can break timestamp values
on some tables, so be careful. The more time-consuming option is to manually change the
collation of each character column in each table in the database. You could also write a
script to perform this action if you have in-depth T-SQL scripting experience.

The moral of the story is simple: make sure you know what you want the collation to be
when you create the database. However, if you fi nd yourself in a situation where you must
copy or move a database from one server to another and change the collation in the pro-
cess, you now know that it is possible.

Configuring Column Collations
The fi nal say in collations is the column level. The column-level collation can override both
the database and server instance collations. Thankfully, column-level collations can be
changed at any time, and the change impacts existing and future data values. Column col-
lations may be confi gured using the COLLATE clause of the CREATE TABLE or ALTER TABLE
statement. Additionally, the column collation may be confi gured in the GUI table provided
by SSMS. Exercise 10.1 steps you through the process of column-collation confi guration.

E X E R C I S E 10 .1

Assigning Collations at the Column Level

In this exercise, you will create a simple table using the Table Designer and confi gure a colla-
tion different from the default for one column:

1. Launch SQL Server Management Studio.

2. Expand the database named Books, which was created in Exercise 9.1.

3. Expand the Tables container in the Books database.

4. Right-click the Tables container and select New Table.

Collations 347

5. In the Table Design window, enter column information, as shown here.

6. Click the CollectionNameOther column to select it. The Column Properties window
should look similar to what’s shown here.

7. In the Column Properties window, click the button for the Collation property. The Colla-
tion dialog should appear.

8. Select Japanese in the Windows Collation drop-down, and check Case Sensitive under
the Dictionary Sort order option, as shown here.

348 Chapter 10 ■ Creating Tables

9. Click OK to save the changes to the collation for the column.

10. Select File ➢ Save Table.

11. Save the table as Collections by entering the table name and clicking OK.

12. Select File ➢ Close to close the Table Designer.

At this point, you have created a table named Collections with a unique collation for one col-
umn. Using the Table Designer is a simple method for completing this task.

Exercise 10.1 showed the simple process used to assign column-level collations with the
Table Designer. To assign collations during table creation using T-SQL, use code like the
following:

CREATE TABLE dbo.Collections(
 BookCollectionID int,
 CollectionName varchar(50),
 CollectionNameOther varchar(50) COLLATE Japanese_CS_AI
);

Notice the simple addition of the COLLATE Japanese_CS_AI clause to the
CollectionNameOther column specifi cation. The COLLATE clause is all that’s required to
generate a column-specifi c collation during table creation. It is also used to modify an
existing column. For example, to assign an alternative collation to an existing column in
an existing table, use the following code:

ALTER TABLE dbo.Collections2
ALTER COLUMN CollectionName varchar(50) COLLATE Japanese_CS_AI;

The complete syntax for table creation will be covered in the following section,
“Creating Tables.”

You can easily discover the name for collations without searching Books
Online by creating a table with any name you desire. To do this, just apply
a column-level collation to the table that meets your needs. Save the table.
Right-click the table and select Design. Click the column with a custom
collation, and you can see the name to use in T-SQL code for that collation.

Table Creation Process 349

Table Creation Process
Tables can be created in SQL Server using a graphical interface or the T-SQL language. The
graphical interface can be faster for complex tables, but it does not offer the fl exibility of
T-SQL. T-SQL is more fl exible, but it does not offer the simplicity of the graphical inter-
face. You must choose between the two methods for each table you create. When you’re
creating simple tables (tables containing two to fi ve columns with no special constraint
requirements), you may fi nd it convenient to usually use T-SQL. When the table is more
complicated, you may want to use the Table Designer and then export the table to a script
fi le so that you have the T-SQL code for documentation. In general, if the table is very
small, you will be more likely to use code directly; however, when the table is large or
demands complex constraints or other features, you will use the Table Designer.

The following sections will present both methods. You’ll fi rst learn to create tables using
the Table Designer. An exercise is provided that allows you the opportunity to create a
table in the graphical interface. Next, you will learn to create tables using T-SQL.

Creating Tables with the Table Designer
If you are uncomfortable with T-SQL or simply want a quick way to create tables, the Table
Designer is there to help you. With the Table Designer, you have an interface very similar to the
one that many professionals have used in Microsoft Access for many years. You can specify
the columns, data types, nullability, and dozens of other parameters, as shown in Figure 10.1.

F I GU R E 10 .1 Using the Table Designer to create tables

350 Chapter 10 ■ Creating Tables

The exercises in this section walk you through the process of creating a table with the
Table Designer. If you’ve created tables in Microsoft Access or the Table Designer in earlier
versions of SQL Server, you will fi nd the tool very similar to them. It’s easy to use and
simple to learn. Just don’t forget that you can control even more information if you select
View ➢ Properties while in the Table Designer. Figure 10.2 shows this new view.

F I GU R E 10 . 2 Displaying the Properties window in the Table Designer view

Notice that you can confi gure the table name, description, and storage location (such as
fi legroups or partition schemes) from within the Properties window. For convenience, you
might want to keep the Properties window open at all times while creating tables. (This
confi guration allows for easy access and helps justify your 28-inch wide-screen monitor.)

In the following exercises, you will create a table in the Books database. The table will
be the primary table for the database—the Books table. Along the way, you will defi ne
data types, defi ne nullability, and provide identity column information. Identity columns
are used to automatically generate a sequential number value for unique identifi cation pur-
poses. Exercise 10.2 will launch the Table Designer.

Table Creation Process 351

E X E R C I S E 10 . 2

Launching the Table Designer

The Table Designer is launched from within SQL Server Management Studio, so the process
begins there. I have included a video of this exercise on the companion website. You can
download all the videos and additional study tools at: www.sybex.com/go/sqlserver12admin.

1. Launch SQL Server Management Studio.

2. Expand the database named Books, which was created in Exercise 9.1.

3. Expand the Tables container in the Books database.

4. Right-click the Tables container and select New Table.

Now that you have a table, it’s time to create the columns. Use the specifi cations detailed
in Table 10.6.

TA B LE 10 .6 Column specifications

Column name Data type NULL setting

BookID int not NULL

Title varchar(100) not NULL

PublisherID int NULL

LocationID int NULL

BindingID int not NULL

CategoryID int not NULL

Copyright date NULL

EstimatedValue smallmoney NULL

You will have to repeat the following steps for each column, as shown in Exercise 10.3.

http://www.sybex.com/go/sqlserver12admin

352 Chapter 10 ■ Creating Tables

E X E R C I S E 10 . 3

Creating Columns

1. In the Table Designer, enter the column name (such as BookID) in the Column Name
fi eld.

2. Enter the data type (such as int) in the Data Type fi eld.

3. If NULL values are not allowed, deselect the check box in the Allow Nulls column.

4. Repeat this process in a new row for each column required in the table. The results
should look similar to what’s shown here.

One of the most important attributes of any table is the primary key. The primary key
defi nes the unique identifi er for rows in the table. For the Books table, you will use the
BookID column as the primary key, as shown in Exercise 10.4. You will also set the table
name and save it in Exercise 10.5.

E X E R C I S E 10 . 4

Selecting a Primary Key

Follow these steps to make the BookID column the primary key:

1. Click the row selector (the gray square) to the left of the BookID row, which is the row
that identifi es the BookID column for the table. This action selects the row. You’ll see an
arrow on the row selector to indicate that the row is selected.

Table Creation Process 353

2. Select Table Designer ➢ Set Primary Key. You should see that the Row Selector icon
changes to an arrow and a yellow key.

Specifying Column Properties

The Books table uses the BookID column as the primary key, and you do not want to gener-
ate book IDs manually. The following steps can be used to set up an identity confi guration
for the BookID column. The identity state will cause BookID values to be generated auto-
matically:

1. Select the BookID column by clicking the Row Selector icon to the left of the row for the
BookID entry.

2. In the Column Properties pane, scroll down until you see Identity Specifi cation, as
shown here.

354 Chapter 10 ■ Creating Tables

E X E R C I S E 10 . 4 (c ont inue d)

3. Expand the Identity Specifi cation section by clicking the plus sign.

4. Set the Is Identity value to Yes.

5. Set the Identity Seed value to 100000 so that the fi rst BookID will be 100000, and leave
the Identity Increment value at 1 so that BookID values will increment by 1.

E X E R C I S E 10 . 5

Specifying Table Properties and Saving the Table

The next parameters that should be confi gured are the table properties. The table name and
description are confi gured using the following steps:

1. Select View ➢ Properties or press F4 to display the Properties window.

2. In the Properties window, enter the table name value of Books and the Description
value of Book information table. Notice that you can also specify the fi legroup, partition
scheme, and schema in the Properties window.

Table Creation Process 355

3. To save the table, select File ➢ Save or press Ctrl+S.

If you complete the steps in Exercise 10.5, the table is saved. You did not have to provide
a table name, because the Properties window was used to defi ne it. In Exercise 10.6, you
will generate a script to document the table.

E X E R C I S E 10 . 6

Scripting the Table for Documentation

One fi nal step remains. If you generate a script that can be used to re-create the table, you
also provide documentation for the table. The following steps can be used to create a script
for the Books table:

1. If the table is still open, select File ➢ Close to close the table.

356 Chapter 10 ■ Creating Tables

E X E R C I S E 10 . 6 (c ont inue d)

3. For this exercise, navigate to the desktop, and save the fi le as Books_Table.sql.

4. To view the code, select File ➢ Open ➢ File or press Ctrl+O.

5. Navigate to the desktop, and open Books_Table.sql. You should see code similar to
what’s shown here.

2. Right-click the Books table in the Tables container, and select Script Table As ➢ Create
To ➢ File.

Table Creation Process 357

In this exercise, you created a table from scratch using the Table Designer. You also gener-
ated T-SQL code that can be used for documentation or for the re-creation of the Books table
should the need ever arise.

Creating Tables with T-SQL
In Exercise 10.6, you saw how to generate T-SQL code for an existing table. The code is
fairly straightforward when you understand the different properties that can be confi gured
for tables and columns. The CREATE TABLE statement uses the following syntax:

CREATE TABLE [<database_name>.[<schema_name>]. | schema_name.]table_name
 ({ <column_definition> | <computed_column_definition>
 | <column_set_definition> }
 [<table_constraint>] [,...n])
 [ON { <partition_scheme_name> (<partition_column_name>) | filegroup
 | “default” }]
 [{ TEXTIMAGE_ON { <filegroup> | “default” }]
 [FILESTREAM_ON { <partition_scheme_name> | <filegroup>
 | “default” }]
 [WITH (<table_option> [,...n])]
[;]

358 Chapter 10 ■ Creating Tables

As usual, the syntax listing looks far more complex than most CREATE TABLE commands.
As an example, consider the following code, which creates the Publishers table in the Books
database:

CREATE TABLE dbo.Publishers(
 PublisherID int IDENTITY(1,1) NOT NULL,
 PublisherName varchar(50) NOT NULL,
 CONSTRAINT PK_Publishers PRIMARY KEY CLUSTERED(
 PublisherID ASC
)
 WITH(
 PAD_INDEX = OFF,
 STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF,
 ALLOW_ROW_LOCKS = ON,
 ALLOW_PAGE_LOCKS = ON
) ON [PRIMARY]
) ON [PRIMARY];

The easiest way to learn about a T-SQL command, such as CREATE TABLE, is to generate
the script using SSMS. Create the object in the GUI and then generate the script. I’ve now
covered the basics of the CREATE TABLE command. If you’d like more information on this
topic, search for CREATE TABLE in Books Online.

In addition to scripting a table, you can script an entire database including
the tables. This technique can be helpful in analyzing a database that you
did not create. Right-click the database to be scripted, select Tasks, and
then select Generate Scripts. From there, you can generate detailed scripts
for every element of the database.

Data Partitioning
The performance of very large tables can suffer even on the most powerful of servers.
Let’s defi ne a very large table as any table that is too large to be handled effi ciently by the
server on which it operates. The example table could have an arbitrary number of rows, say
2,000,000, but that’s all it would be—an arbitrary number. An eight-socket dual-core
server with each core running at more than 2GHz while providing 32GB of RAM might
handle multiple tables of 2,000,000 rows just fi ne. However, a single-socket dual-core
server running at more than 2GHz while providing 4GB of RAM could perform very
poorly with such large tables.

Data Partitioning 359

Whatever the size of any given table, if it is causing poor performance, you have two
options when it comes to partitioning:

■ You may choose to vertically or horizontally partition the table through manual or
scripted operations.

■ You may choose to use the table-partitioning feature of SQL Server (which uses parti-
tion functions and schemes) to perform the partitioning.

The following sections discuss both options and the performance improvements you can
expect from them.

Vertical and Horizontal Partitioning
Vertical partitioning involves spreading data columns across two or more tables even
though they could be stored in a single table. SQL Server 2012 does not directly support
vertical partitioning as a feature, but vertical partitioning can be implemented using one-
to-one relationships. Vertical partitioning provides several benefi ts:

■ You can separate seldom-used data into a different table from the frequently used data.

■ More sensitive data can be separated from less sensitive data.

■ Commonly grouped columns can be placed together, and less commonly grouped col-
umns can be provided to the users through the use of views.

Separating seldom-used data provides a performance boost. If 30 columns exist in a
table and only 12 columns are frequently queried, the performance of the 12-column que-
ries can be greatly improved by separating the remaining 18 columns into their own table.
When the data in the 18-column table is needed, it can be aggregated with the 12-column
table using simple INNER JOIN queries or predesigned views.

Separating sensitive data from less sensitive data can also provide a security benefi t.
Permissions can be set at the column level, but it is often easier to separate the columns out
into their own table. An example of this might be an Employees table that also tracks pay
rates. The pay rate information could be placed in a separate table so that permission man-
agement is easier and mistakes in permission management are less likely.

Placing commonly grouped columns together is a performance strategy. When you can-
not separate the columns into two simple groups—frequently used and seldom used—you
may choose to place the columns into several groups based on how they are used together.
With this strategy, you may have some redundancy in the database, but it may help to
improve performance.

If you choose to implement vertical partitioning, your application will have to rejoin the
data. The application will simply pull a portion of the data from one table and the other
portion from another table. The steps for creating vertically partitioned tables are no dif-
ferent than for any other tables. You must plan for the vertical partitioning and then code
your data access applications to work with it using INNER JOIN statements and other such
SQL requests.

360 Chapter 10 ■ Creating Tables

Horizontal partitioning is different. In this case, the data is separated based on the value
or values of a column or columns. For example, you may choose to separate the data based
on date ranges, price ranges, integer ranges, or specifi c character-based values. The point
is that rows matching specifi c criteria are placed in one table, while rows not matching the
criteria are placed in a different table. The most common example of horizontal partitioning
is the removal of historic data from an active table while keeping it online in an archive
table.

Neither vertical partitioning nor horizontal partitioning is automated in SQL Server
2012. Granted, you can automate the techniques by writing your own script or application,
but SQL Server does not provide functions for such partitioning. If you want to automate
the partitioning of your tables, you need to leave manual table creation behind and look
at partitioning with functions and schemes. As with vertical partitioning, if you choose to
implement horizontal partitioning, you will need to code your data-access application so
that it understands how and where to access the data. For example, the application may
need to access data from the year 2008 in one table and data from the year 2010 in another
table. The client understands the data partitioning, and SQL Server 2012 treats the tables
as normal unpartitioned tables.

Data Partitioning with Functions and Schemes
Automated table partitioning is based on SQL Server 2012 features called partition func-
tions and partition schemes. The partition function and scheme must exist before the table
can be created as a partitioned table. Figure 10.3 shows the hierarchy of these objects.

F I GU R E 10 . 3 The partitioning object hierarchy

Partitioned Table

Partition
Function

Partition
Scheme Table

As you can see in Figure 10.3, the fi rst object that must be created is the partition func-
tion. The scheme depends on the function, and the table depends on the scheme. The parti-
tion function is created using the CREATE PARTITION FUNCTION command. The following is
an example of a PARTITION FUNCTION command:

CREATE PARTITION FUNCTION PF100 (int)
AS RANGE LEFT FOR VALUES (100);

Summary 361

In this CREATE PARTITION FUNCTION command, the partition function is named PF100,
and the function will specify two partitions. The fi rst partition will contain those rows
containing values of 100 or less. The second partition will contain those rows containing
values of more than 100. The RANGE LEFT clause determines that the value 100 belongs to
the fi rst partition. Had RANGE RIGHT been used, the value 100 would have belonged to the
second partition. Remember, this is the partition function. The scheme will associate
the partition function with a set of fi legroups.

The CREATE PARTITION SCHEME command is used to create the partition scheme. The fol-
lowing example code would use the partition function created previously:

CREATE PARTITION SCHEME PS100
AS PARTITION PF100
TO (FilegroupA, FilegroupB);

Notice that the AS PARTITION clause uses the partition function name. Because there are
two partitions, two fi legroups are needed. You must create the fi legroups before you can
run the CREATE PARTITION SCHEME command.

The beauty of automated partitioning is that SQL Server does all of the data assignments
for you. When you place a table on the PS100 partition scheme, SQL Server uses the PF100
partition function to determine into which fi legroup a row of data should be placed.

At this point, you’re probably wondering how SQL Server knows which column should
be evaluated for partition placement. The secret is in the table-creation process. You can
do this partition scheme assignment from the Table Designer, but it’s easier to understand
when you look at the CREATE TABLE command. Consider the following code:

CREATE TABLE PartTable (
 PartColumn int NOT NULL,
 TextData varchar(25)
) ON PS100(PartColumn);

Do you see the secret revealed? When you create the table, you place it on the partition
scheme—in this case, PS100. Part of the ON clause is the column identity of the partitioning
column. It’s really that easy. It’s important to know that this partitioning is available only
on the Enterprise Edition of SQL Server.

Summary
In this chapter, you learned about database tables. First, the data types were covered.
Selecting the right data type is essential to a well-performing database. The information
provided in this chapter will be a helpful reference when selecting data types. The key is to
select the data types that will provide integrity, performance, and expansion.

Next, collations were explored in detail. You learned more about what collations are
and the impact they have on the database. You also learned to create the collation confi gu-
rations for the server instance, database level, and column level.

362 Chapter 10 ■ Creating Tables

After collation, you explored table creation through both the Table Designer and the
CREATE TABLE T-SQL command. The Table Designer was used to create the Books table and
confi gure important settings such as the primary key, identity columns, and data types.

Finally, you learned about table partitioning. Manual partitioning was covered fi rst and
then automated partitioning. The three automated partitioning components—partition
functions, partition schemes, and partitioned tables—were introduced along with the com-
mands used to confi gure each.

Chapter Essentials

Understanding Data Types SQL Server supports many data types, and Microsoft has
categorized the data types to make them easier to understand and document. Choosing the
right data type is an essential step in creating well-performing databases and tables. If you
choose the wrong data type, storage space may be wasted, and data integrity may suffer.

Understanding Collations Collations defi ne the character set used for data presentation.
They also defi ne the sort order and case sensitivity of data. Collations are usually set at the
server instance level but may also be set at the database level or the column level. Column-
level collations should be avoided where possible because they add complexity to database
management. When no collation is specifi ed at the column level, the database default colla-
tion is used. When no collation is specifi ed at the database level, the server instance default
collation is used.

Table Creation Process Tables can be created using the GUI with the Table Designer. The
Table Designer exposes most of the parameters that can be confi gured through T-SQL code
and can be a faster method for table creation. The T-SQL command for table creation is
CREATE TABLE. The ALTER TABLE and DROP TABLE commands can be used to modify exist-
ing tables and delete tables, respectively. You can generate T-SQL code for an existing table,
which is an excellent learning tool and a documentation tool as well.

Data Partitioning Data partitioning can be performed using manual partitioning methods
such as horizontal partitioning and vertical partitioning. Automated partitioning involves
the creation of partition functions, partition schemes, and partitioned tables. The function
must be created fi rst, then the scheme, and fi nally the table. The partitioning column is
defi ned during table creation. The partition scheme associates a function with fi legroups.

Chapter

11
Indexes and Views

TOPICS COVERED IN THIS CHAPTER:

 ✓ Understanding Indexes

 ✓ Creating Basic Indexes

 ✓ Creating Advanced Indexes

 ✓ Managing Indexes

 ✓ Understanding Views

 ✓ Creating Views

In the preceding two chapters, you went through the process
required to create a database and create tables in the database.
This chapter takes you to the next steps: creating indexes and

understanding views for accessing and presenting the information in the database tables.
Although indexes and views are two very different things, they do share one common
feature: both objects are created as subsets or dependent objects that rely on underlying
tables. For example, an index cannot be created by itself; it must be created on a table. In
the same way, a view cannot be created by itself; it must be created on another view or
a table. Ultimately, all indexes and views are dependent objects in that they depend on the
existence of underlying tables.

Indexes can make the difference between a database that performs well and a database
that’s so slow it performs like it’s still in the 1980s running on a Commodore 64. In this
chapter, you will learn what indexes really are and how they work to optimize the perfor-
mance of your databases. Next, you’ll learn to create these indexes using both the SSMS
GUI interface and the T-SQL CREATE INDEX command. With indexes covered, you’ll move
on to learn about views. Views are usually used to enhance usability, rather than perfor-
mance. However, certain types of views may indeed improve performance. This chapter
will present the different types of views and explore the methods by which views can be
created.

Understanding Indexes
Indexes have been enhanced again in SQL Server 2012. SQL Server 2005 fi rst introduced
a new feature called online indexing, and SQL Server 2008 took indexes to another level
with spatial indexes, hierarchical indexes, and fi ltered indexes. SQL Server 2012 introduces
a new index type, the columnstore index, which you’ll encounter shortly. Online indexing
was a big leap forward because it allowed you to update indexes while users were utilizing
those same indexes and the tables on which they were created. Before SQL Server 2005,
indexes had to be taken offl ine in order to be updated. But what are all these indexes any-
way? That question will be answered in this section.

This section will fi rst explain the basic concepts of indexes and how they improve data-
base performance. It will then explore each of the index types provided in SQL Server 2012
and when you would use each type. When you’ve mastered these topics, you will have the
ability to optimize the performance and usability of your databases.

Understanding Indexes 365

Indexes Defined
Database indexes have a lot in common with items you fi nd in the real world. Think of
them as the tabs on a fi le folder in your fi ling cabinet, the table of contents in a book, or
even the index at the back of a book. A database index is like all of these things, yet it’s
also different. Like all of the items listed, database indexes help you fi nd the actual thing
you are seeking.

These analogies can help you understand the concept of an index. Too many DBAs
defi ne an index as something that improves the performance of a database. This defi nition
is not necessarily accurate. Creating an index where one is not needed actually results in
decreased performance of a database. Consider the fi le folders in a fi ling cabinet. If every
single fi le were placed in a separate folder with its own tab, the benefi t of the tabs would be
diminished. The point of the tabs is to help you locate a subset of the fi les more quickly so
that you can locate a specifi c fi le in that subset. Database indexes are similar. For this rea-
son, you must understand the way indexes are used by the database management system in
question.

Most SQL Server database indexes are either clustered or nonclustered (although as
you’ll see shortly there are other types), and the creation of the indexes is very simple.
Choosing the proper columns to index, however, is not always so simple. You must under-
stand what an index is and how indexes are used so that you can make good choices about
index creation.

What Is an Index?
A typical nonclustered index is, effectively, a separately stored copy of a database table with
a limited number of table columns included. You will not read this defi nition in Micro-
soft’s documentation, but it is an accurate description nonetheless. The object is techni-
cally called an index, but it can contain multiple columns just like a table, and it is stored
on 8KB data pages just like a table. The only real difference is that you cannot specify an
index as the direct target of a FROM clause in a SELECT statement. In fact, a clustered index is
the way in which the table is stored. Stated differently, when you create a clustered index on
a table, you are changing the way in which the table itself is stored; you are not creating a
separately stored object from the table.

Microsoft actually acknowledges this concept in the following statement: “A table is
contained in one or more partitions and each partition contains data rows in either a heap
or a clustered index structure.” This quote comes from the SQL Server 2008 Books Online
(July 2009) article titled, “Table and Index Organization.” The statement still holds true
for the newest storage engine in SQL Server 2012. It clearly states that a table contains
either a heap or a clustered index structure. The table concept or object, therefore, can be
stored as either a heap or a clustered index. For this reason, it is perfectly accurate to say
that an index is a table. By thinking of it this way, you should more quickly understand the
concept of the index and the benefi ts it brings. These benefi ts will become clear in the next
section, “How Are Indexes Used?” For now, however, it is important to keep in mind that
the index is based on a separate table in all cases except the clustered index.

366 Chapter 11 ■ Indexes and Views

At this point you may be wondering, what is a heap, and what does it have to do with
indexes? A heap is a table without a clustered index. Think of it as a pile of unsorted
clothes in the laundry room. You might hear someone say, “Look at that heap of clothes in
there!” The term heap, in this context, means a disorganized pile, and that’s what a table
is without a clustered index. Heaps are stored without any assigned structure for the rows.
Tables stored as clustered indexes are organized according to the clustered index column. It
is important that you understand the difference between a heap and a clustered index.

So, a table may be stored as an index, and a nonclustered index is really like a separate
table with a subset of the columns represented in the base table. In addition, indexes are
stored differently than heaps. Heaps use two primary page types: index allocation map
(IAM) pages and data pages. IAM pages indicate which data pages are used by the heap.
The data is then stored in those data pages. Indexes use a completely different structure.

If you have training in programming or have a computer science degree, it
is very likely that you’re used to thinking of a heap as a memory allocation
concept; however, Microsoft has chosen the word heap to refer to a table
without a clustered index, and so I use it here.

Indexes are stored in a B-tree structure. Many people mistakenly assume that the B in
B-tree stands for binary, but it does not. If indexes were stored in a binary-tree structure,
each branch would result in—at most—two more branches; however, a SQL Server index will
start with a root node, which may branch out to three or more branches. Therefore, the SQL
Server index structure should be thought of more like a branching tree—although Microsoft
suggests that the B stands for balanced, and this is the more common industry term.

The index pages are called nodes in the B-tree structure. One root node page always
exists. Between the root node and the leaf nodes, several layers or branching decisions
may exist. These intermediate layers are called intermediate levels in SQL Server terminology.
The end nodes are the leaf nodes, and the leaf nodes contain the actual data for clustered
indexes or pointers to the data for single-column nonclustered indexes. In some Microsoft
documents, the leaf level is also called index level 0. Figure 11.1 represents this B-tree
structure.

F I GU R E 11.1 The SQL Server B-tree index structure

Root level

Intermediate
nodeIntermediate level

Leaf page

Rootnode

Leaf page

Intermediate
node

Leaf page Leaf pageLeaf level

Understanding Indexes 367

How Are Indexes Used?
Now that you understand the basic structure of an index and what it really is, let’s explore
how it is used. Imagine you have a data table similar to the one in Table 11.1.

TA B LE 11.1 Sample customer data table

CustomerID FirstName LastName

1 Tom Carpenter

2 Tracy Mathys

3 Cathy Moyer

4 Brian Wright

5 Jay Galland

6 Amy Freeman

… … …

Further assume that the table has 500,000 records sequentially continuing up to Cus-
tomerID 500,000 and that the table has more columns that are not shown, such as Phone,
eMail, Address, City, State, and so on. Let’s discuss how this table would normally be
accessed if it were stored as a heap—without any indexes.

Consider the following SELECT statement executed against the dbo.Customers table rep-
resented in Table 11.1:

SELECT * FROM Customers WHERE CustomerID = 34689;

This code introduces an important question that must be asked: by default, how many
rows will SQL Server have to process in order to locate the row with a CustomerID value
of 34689? If you answered 500,000, you are correct. Remember, this table is stored as a
heap, and the data order is not guaranteed in the table—even if the rows were entered in
the order of the CustomerID. In addition, the SELECT statement did not use any tricks to
indicate that it should stop looking after locating a single match. With the SELECT statement
as it is, SQL Server will have to process each one of the 500,000 rows and answer the ques-
tion, “Is the CustomerID column equal to 34689 in this row?” Clearly, this row-by-row
evaluation will take a very long time.

If you know that every row has a unique CustomerID value, you can get by with the fol-
lowing SELECT statement:

SELECT TOP 1 * FROM Customers WHERE CustomerID = 34689;

368 Chapter 11 ■ Indexes and Views

On average, this query would need to process 250,000 records to retrieve the proper
row. That’s not a shabby improvement, but it’s still not as good as what you can achieve
with an index.

To see the power of indexes, consider the B-tree structure in Figure 11.2. Assume that
the index is a clustered index based on the CustomerID column. Figure 11.2 is not intended
to represent the actual way in which this Customers table would be stored, but it does rep-
resent a typical storage structure and helps you understand the performance gain provided
by a clustered index.

F I GU R E 11. 2 The B-tree index structure for a clustered index on the Customers table

DataDataDataDataDataLeaf

36,001 –
55,000

18,001 –
36,000

1 –
18,000Intermediate

110,001 –
165,000

55,001 –
110,000

1 –
55,000Intermediate

330,001 –
500,000

165,001 –
330,000

1 –
165,000Intermediate

1–
500,000Root

As you walk through the process of accessing CustomerID number 34689 in the B-tree
structure, it becomes clear that you will not require nearly as many steps as a manual scan
of the heap table requires. Notice that, after one decision, the number of potential rows has
been narrowed down to 165,000. After one more decision, the pool is narrowed to 55,000
rows. In just three decisions, you’re down to approximately 18,000 rows remaining. Even
if you have to scan all 18,000 rows from this point—which you don’t—you can say that
you’ve reduced the number of decisions from 250,000 (using the TOP 1 trick in the SELECT
statement) to just 18,003 decisions without any SELECT statement tricks.

The real picture is even better. You can jump directly to the data page that has the
record and read that page into memory. There is no need to scan the entire page. This result
is the reason why database gurus often tell you that you can increase the performance of a
table by orders of magnitude when you create effective indexes.

In this example, you looked at the benefi t of a clustered index when locating a single row
based on the clustered index column. Locating multiple CustomerID values with a SELECT
statement like the following also benefi ts from the clustered index:

Understanding Indexes 369

SELECT * FROM Customers
WHERE CustomerID IN (123, 456, 789, 012, 4574, 8907, 4807, 897843);

In this case, you’re looking for eight different customer records; however, you can still
retrieve them using the B-tree index, and it will be much faster than a manual table scan
(reading every row).

The next section will explain how nonclustered indexes improve performance.

Although indexes can be extremely helpful, it is important to note that
you can create too many indexes. When a DBA first learns that indexes
improve performance, he will often assume that an index should be
 created on every column. However, if the column is not used in a filter
(a WHERE clause), it will rarely improve performance.

Index Types
The types of indexes supported by SQL Server continue to grow with each new edition.
SQL Server 2012 supports the following indexes for storage within the database:

■ Clustered

■ Nonclustered

■ Spatial

■ Partitioned

■ XML

■ Filtered

■ Columnstore

These index types are defi ned and explained in the following sections.

Clustered Indexes
Clustered indexes are the most important type of index for most tables. As explained in
the previous section, a clustered index can reduce the decisions required to locate a specifi c
record by a factor of many thousands. The only tables that should not have a clustered
index are very small tables (those with fewer than a few hundred records). If all of the
records will fi t in one data page, there is certainly no use in having a clustered index on that
table. However, most production tables grow to hundreds if not millions of rows, and the
clustered index will greatly improve the performance of these larger tables.

When you create a clustered index on a table, the indexed column is used to structure or
sort the table. The table will be ordered based on the clustered index. In the vast majority
of tables, the clustered index column will be a single column, and that column will usually
be the record ID. For example, a customer ID or a product ID makes for a great clustered
index candidate.

370 Chapter 11 ■ Indexes and Views

In most cases, the clustered index will be created on a single column. SQL Server 2012
does support creating multiple-column clustered indexes. For example, you may want to
create a clustered index for a table used to track manufacturing equipment operations by
combining a Time column and a Date column similar to those in Table 11.2. In this table,
both the Time values and the Date values repeat; however, the combination of a time on a
date will never repeat. These columns make for good clustered index candidates, and the
need for an extra ID column is removed, which reduces the size of the table.

TA B LE 11. 2 Multicolumn clustered index table

Time Date Temperature PPM_Rate Uptime

09:12:30 1/1/2009 30 4 12

09:12:45 1/1/2009 31 3.5 12

… … … … …

09:12:30 1/2/2009 32 3.8 36

09:12:45 1/2/2009 31 3.6 36

When you create a primary key on a table, by default SQL Server will make that pri-
mary key the clustered index. If a clustered index is manually created before you assign the
primary key, then SQL Server will not make the primary key the clustered index. It would
be very rare to use a column other than the primary key as the clustered index, but it is an
option.

Nonclustered Indexes
Nonclustered indexes are very different from clustered indexes. A nonclustered index is a
separately stored index of a table. The indexed table may be a heap or a clustered index.
If the indexed table is a heap, the nonclustered index uses the row identifi er (RID) as the
reference to the table. If the indexed table is a clustered index, the nonclustered index uses
the clustered index key (the primary key value) as the reference to the table. You can create
as many as 999 nonclustered indexes on a single table, but in most cases you’ll create fewer
than 20 to 40 percent of n, where n is the total number of columns in the table.

Nonclustered indexes are like the index at the back of a book. For example, as you
are reading this book, you may decide that you want to locate information about non-
clustered indexes. You can turn to the index at the back of the book and look for the
keywords nonclustered or index. Once you fi nd the keyword, you will turn to the page
or pages referenced in the index. Next, you will scan the page to locate the desired
information.

Nonclustered database indexes are used in a similar way. Consider the Customers table
in Table 11.1 again. What if you wanted to retrieve all the customers with a last name of
Mathys? You might run a query like the following:

Understanding Indexes 371

SELECT * FROM Customers WHERE LastName = ‘Mathys’;

Without a nonclustered index, you’re right back to scanning every row again in order to
locate the records matching the query. If you create a nonclustered index on the LastName
column, everything changes for the better. Now, SQL Server can work its way through the
B-tree index and locate the fi rst row where the LastName value is equal to Mathys. Because
the rows are ordered by the LastName column in the nonclustered index, the database
engine can just keep reading until the row is no longer equal to Mathys.

Once a matching record is retrieved from the nonclustered index, the RID or primary
key of the indexed table is provided. This key is used to then navigate through the indexed
table to locate the actual matching record. If the indexed table is a heap, the performance
gain is not even close to the level of that achieved with a clustered index.

A special kind of nonclustered index is a covering index, which includes all of the col-
umns needed to service a query. The actual data is stored in the leaf pages of the covering
index. For example, consider the following query:

SELECT CustomerID, FirstName, LastName, eMail
FROM Customers
WHERE LastName = ‘Carpenter’;

This query needs only four columns of potentially dozens available in the table. If you
create an index that includes all four columns, the query will be much faster. Query per-
formance can be improved by more than 1,000 times by creating a covering index. You
should make sure that the query is run very frequently before creating a covering index for
it. If you create a covering index for a query that is seldom or never run, you’re just wasting
space in the database. The process for creating a covering index is provided in Exercise 11.4
later in this chapter.

Spatial Indexes
Spatial indexes are used for geometric or geographic data. To use a spatial index, you must
have spatial data. Spatial data is data that references geometric (width, height, and so on)
or geographic (longitude, latitude, and so on) information. Spatial data columns use the
geometry or geography data types. Both spatial data and spatial indexes were introduced
in SQL Server 2008 and are also supported in SQL Server 2012. For more information on
spatial data and spatial indexes, search for Spatial Indexing Overview in SQL Server 2012
Books Online.

Partitioned Indexes
Partitioned indexes, like partitioned tables, are indexes stored on partitions rather than
directly on fi legroups. Partitioned indexes are usually used with partitioned tables. If you
create an index on a table that is partitioned and do not specify otherwise, the index will
automatically be partitioned to match the underlying table. You can also create a partition
function and partition scheme that specifi es a separate set of fi legroups from the table and
then place the partitioned index on the partition scheme regardless of whether the under-
lying table is partitioned. Many DBAs are unaware that you can store indexes separately

372 Chapter 11 ■ Indexes and Views

from the table. Indeed, you can store the indexes in a separate fi legroup or on a separate
partition scheme.

XML Indexes
XML indexes are created for XML data columns. These columns contain XML data,
which is highly structured and portable data formatted according to the Extensible Markup
Language (XML) specifi cation. Two XML index types exist: primary and secondary. The
primary XML index indexes all of the XML information in the column for each row. Sec-
ondary XML indexes are used to further optimize indexing of the XML data. Secondary
XML indexes come in three types.

PATH PATH XML indexes are most useful when application queries use path
expressions.

VALUE VALUE XML indexes are most useful when application queries are value-based.
A value-based query is one that seeks XML data where the value of an XML element is
equal to some specifi ed value.

PROPERTY PROPERTY XML indexes are most useful when applications use the XML
value method of Transact-SQL.

Filtered Indexes
The next type of index, which was introduced in SQL Server 2008, is the fi ltered index.
Filtered indexes are useful for columns that contain a large percentage of NULL values
or that have well-defi ned value sets. Filtered indexes are created by adding a WHERE clause to
the CREATE INDEX statement when creating indexes in Transact-SQL. The steps required
to create a fi ltered index are provided in Exercise 11.5 later in this chapter.

Filtered indexes provide several benefi ts, including the following:

■ Statistics as well as the row data are fi ltered. This means that the statistics are actually
more accurate for a fi ltered index.

■ Filtered indexes consume less storage space because rows not matching the WHERE
clause (the fi lter) are not included in the index.

■ Maintenance of the index is reduced because the index is smaller and will be updated
less frequently than a nonclustered index created against the entire table.

As an example of a fi ltered index, consider a column that is used to store email addresses
for customers. For example, a store may ask customers for their email addresses when
they check out with their purchases. Many customers will choose not to provide the email
address. By creating a fi ltered index, which does not index records with a NULL value in the
email column, you will create a smaller index that performs better.

Creating Basic Indexes 373

Columnstore Indexes
Traditional indexes, such as clustered and nonclustered indexes, are stored by grouping
each row and then joining all rows to complete the index. Columnstore indexes work dif-
ferently. They group and store data for each column and then join all columns to complete
the index. Columnstore indexes have the following restrictions:

■ They cannot act as a primary key or a foreign key.

■ They cannot be changed with the ALTER INDEX statement. Instead, they must be dis-
abled or dropped and rebuilt.

■ They cannot be clustered.

■ They cannot be a unique index.

■ They cannot be created using the INCLUDE keyword.

■ They cannot include a sparse column or fi lestream.

■ They cannot be created on a view or indexed view.

■ They cannot have more than 1,024 columns.

■ They cannot be page-compressed or row-compressed.

■ They cannot include the ASC or DESC keyword because sorting is not allowed.

A very important fact about columnstore indexes is that they cause the table on which
they are created to be read-only. For this reason, they are used mostly in data warehouse
scenarios for performance, business analysis, and reporting purposes.

Additionally, a columnstore index does not support all data types. The following data
types are not supported:

■ Binary

■ VarBinary

■ VarChar(max)

■ SQL_Variant

Columnstore indexes are useful in data warehousing. Filtering, aggregating, and group-
ing data warehouse queries can benefi t from these indexes.

Creating Basic Indexes
Now that you understand what indexes are, how they work, and the different types of
indexes, it’s time to start creating some indexes. The following sections will step you
through creating both clustered and nonclustered indexes.

374 Chapter 11 ■ Indexes and Views

Creating a Clustered Index
You will now create a clustered index in the most common way—by creating a primary key.
To perform the steps in Exercise 11.1, you must fi rst create a table in the Books database
with the following code:

CREATE TABLE dbo.Customers (
 CustomerID int NOT NULL,
 FirstName varchar(50),
 LastName varchar(50),
 eMail varchar(60),
 Phone int,
 City varchar(40),
 State char(2),
 ZipCode int
);

You can enter and execute this code in a New Query window within SSMS. Ensure that
you are in the context of the Books database created in previous chapters of this book.
Figure 11.3 shows the execution of this code within the Books database context.

F I GU R E 11. 3 Creating the Customers table for the Books database

Creating Basic Indexes 375

Exercise 11.1 steps you through the creation of a clustered index on a table by creating a
primary key for the table.

E X E R C I S E 11 .1

Setting the Primary Key

To confi gure the primary key, you will need to fi rst open the Customers table in the Table
Designer. Follow these steps:

1. Expand the Books database node and then expand the Tables node within the Books
database by double-clicking each node.

2. Right-click the dbo.Customers table and select Design.

3. In the Table Designer, select the CustomerID column, and select the Table Designer ➢
Set Primary Key menu option from the main menus. The results should look similar to
those shown here.

4. Select File ➢ Save Customers to save the changes to the table.

5. Close the Table Designer by selecting File ➢ Close.

After you’ve confi gured the primary key, you should verify that a clustered index exists
on the table. You can do this in three ways: verify that a PK_name object exists in the
table’s indexes node, open the table in the Table Designer and verify that the CustomerID
column has a yellow key assigned, or select Table Designer ➢ Indexes and Keys to view the
primary key, as shown in Figure 11.4.

F I GU R E 11. 4 Verifying the primary key for the clustered index

Notice that Create As Clustered is set to YES and Type is set to Primary Key.

376 Chapter 11 ■ Indexes and Views

Creating a Nonclustered Index
Knowing how to create nonclustered indexes is also important. The following section steps
you through the creation of two nonclustered indexes on the Customers table, building
on the table that was created with the CREATE TABLE statement in “Creating a Clustered
Index.” The two indexes created are not directly related to one another but may well serve
different queries executed against the table. For example, if a user fi lters on the LastName
column, the fi rst index will benefi t her. If another user fi lters on the City column, the sec-
ond index will benefi t him.

To perform this exercise, make sure the Customers table exists in the Books database. In
Exercise 11.2, you will create a nonclustered index on the LastName column.

EXERCISE 11.2

Creating the LastName Nonclustered Index

To create the nonclustered index, follow these steps:

1. Expand the Books database node and then expand the Tables node within the Books
database by double-clicking each node.

2. Expand the dbo.Customers node by double-clicking it and then expand the Indexes
node within dbo.Customers.

3. Right-click the Indexes node, and select New Index ➢ Non-Clustered Index.

4. Enter the index name of ix_LastName (this naming convention is not required).

5. Click the Add button.

6. Select the LastName column by checking the check box, as shown here.

Creating Basic Indexes 377

7. Click OK.

8. Verify your settings here.

9. Click the Options page.

10. Enable the Allow Online DML Processing option by setting it to True.

11. Click the OK button to create the index.

You should now see a nonclustered index in the Indexes node, as shown here.

378 Chapter 11 ■ Indexes and Views

Exercise 11.3 provides instructions for creating a nonclustered index on the City col-
umn of the Customers database. When you are creating nonclustered indexes, consider the
queries the users will perform. You will usually want to create nonclustered indexes on col-
umns that are frequently used in the WHERE clauses of SELECT statements.

E X E R C I S E 11 . 3

Creating the City Nonclustered Index

To create the nonclustered index, while still in the same screen as the instructions in
 Exercise 11.2, follow these steps:

1. Right-click the Indexes node and select New Index ➢ Non-Clustered Index.

2. Enter the index name of ix_City.

3. Click the Add button.

4. Select the City column by checking the check box, as shown here.

5. Click OK.

6. Click the Options page.

7. Enable the Allow Online DML Processing option. This option allows users to add data to
the Customers table while the ix_City index is created.

8. Click the OK button to create the index.

You should now see a nonclustered index in the Indexes node, as shown here.

Creating Advanced Indexes 379

Creating a Transact-SQL Index
In addition to the creation of indexes in the GUI interface, you can create indexes using
Transact-SQL. The following syntax is used:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
 ON <object> (column [ASC | DESC] [,...n])
 [INCLUDE (column_name [,...n])]
 [WHERE <filter_predicate>]
 [WITH (<relational_index_option> [,...n])]
 [ON { partition_scheme_name (column_name)
 | filegroup_name
 | default
 }
]
[FILESTREAM_ON {filestream_filegroup_name | partition_scheme_name | “NULL”}];

Consider the following code, which would create the same index for the LastName col-
umn that was created in Exercise 11.2:

CREATE NONCLUSTERED INDEX ix_LastName
ON dbo.Customers(LastName ASC)
WITH (ONLINE=ON);

This simple statement creates a nonclustered index on the LastName column of the Cus-
tomers table and sorts the index ascending. The default is to sort in ascending order, so the
ASC keyword can be removed, and the code will still generate the same results.

Creating Advanced Indexes
Two of the most important index types to understand in SQL Server 2012 are covering
indexes and fi ltered indexes. Covering indexes existed in previous versions of SQL Server,
but fi ltered indexes were added in SQL Server 2008. The exercises in this section will walk
you through the process of creating each type of index.

380 Chapter 11 ■ Indexes and Views

Creating a Covering Index
In this section, you will create a covering index, which is a special multicolumn index used
to cover frequently executed queries. The Customers table must exist in the Books data-
base. To perform the steps in Exercise 11.4, you should have already performed the steps in
Exercises 11.1 through 11.3.

You may have noticed that users are performing many queries that look like the
following:

SELECT CustomerID, FirstName, eMail, City
FROM dbo.Customers
WHERE City = ‘somecity’;

You want to optimize these queries by creating a covering index that includes all of the
columns required by the query. The required columns are CustomerID, FirstName, eMail,
and City. Exercise 11.4 will step you through the process of creating an index to cover this
query.

E X E R C I S E 11 . 4

Creating the Covering Index

To create a covering index, follow these steps:

1. Open SSMS and navigate to the Indexes node within the Customers table within the
Books database.

2. Right-click the Indexes node and select New Index ➢ Non-Clustered Index.

3. Enter an index name of cov_EmailMkt.

4. Click the Add button.

5. Select the City column, as shown here (notice that the index is being structured based
on the WHERE clause column).

Creating Advanced Indexes 381

6. Click OK.

7. Click the Included Columns tab.

8. Click the Add button.

9. Select the CustomerID, FirstName, and eMail columns, as shown here.

10. Click OK.

11. Click OK again to create the index.

At this point, you should see an index named cov_EmailMkt in the Indexes node of the Cus-
tomers table.

Creating a Filtered Index
Now that you’ve explored covering indexes, Exercise 11.5 will step you through the process
of creating fi ltered indexes. Filtered indexes, as discussed earlier in this chapter, are indexes
that include only those rows that match a fi lter on the column. Filtered indexes result in
smaller indexes, but they should be used with caution. If you create a fi ltered index on a
column with few NULL values and lots of variation in entered values, much of the data may
be missing from the index. The result of such a scenario would often be an underperform-
ing index. Filtered indexes are most frequently created for columns with NULL values.

In this section, you will create a fi ltered index. The Customers table must exist in the
Books database. To perform the steps in Exercise 11.5, you should have already performed
the steps in Exercises 11.1 and 11.2.

382 Chapter 11 ■ Indexes and Views

E X E R C I S E 11 . 5

Creating the Filtered Index

In this exercise, you will create a fi ltered index. In the real world, you may have noticed that
more than 35 percent of your customers do not provide their email addresses. You have a
nonclustered index on the eMail column of the Customer table. You have dropped the index
and want to create a new index that is fi ltered so that NULL email rows are not included in the
index. To create the appropriate fi ltered index, follow these steps:

1. Open SSMS and navigate to the Indexes node within the Customers table within the
Books database.

2. Right-click the Indexes node and select New Index ➢ Non-Clustered Index.

3. Enter an index name of fi x_Email.

4. Click the Add button.

5. Select the Email column, as shown here.

6. Click OK.

7. Select the Filter page.

8. Enter eMail IS NOT NULL in the Filter Expression fi eld, as shown here.

Managing Indexes 383

9. Click OK to create the fi ltered index.

At this point, you should see an index named fi x_Email in the Indexes node of the Customers
table.

You can also create fi ltered indexes with Transact-SQL code. The key addition to the
CREATE INDEX statement is the WHERE clause. Just as the WHERE clause allows for fi ltering
with SELECT statements, it allows for fi ltering with indexes in SQL Server 2008 and SQL
Server 2012. The following code creates a fi ltered index on the Price column of a Products
table, where the NULL prices are not included in the index:

CREATE NONCLUSTERED INDEX fix_Prices
ON dbo.Products (Price)
WHERE Price IS NOT NULL;

Managing Indexes
Indexes must be managed. You cannot simply create them and then forget they exist. For
instance, you may need to delete an index if the method of data access changes. You can
also disable an index temporarily in order to test performance or functionality without it.

384 Chapter 11 ■ Indexes and Views

When testing is complete, you’ll want to enable it. Indexes can also become fragmented, and
when this happens, you’ll need to either reorganize or rebuild the indexes in order to maintain
acceptable levels of performance. All of these issues will be addressed in the following sections.

Dropping an Index
Indexes may be deleted at any time. The proper SQL term for object deletion or removal is
drop. You drop databases, tables, indexes, triggers, stored procedures, and other objects.
Data is deleted with DELETE commands, but objects are dropped with DROP commands.
However, it is common to say you want to delete an object. In fact, if you right-click an
index in SSMS, the menu indicates that you can delete the index even though the process
will call the T-SQL DROP command if you choose the menu option.

The syntax of the DROP INDEX command is as follows:

DROP INDEX index_name
ON table_name;

For example, to drop the fi x_Email index created on the dbo.Customers table earlier in
this chapter, you would execute the following command:

DROP INDEX fix_Email
ON dbo.Customers;

The most important thing to remember is that the syntax calls for an ON clause and not
a FROM clause. It may seem more natural to drop something from something, but the syntax
should be thought of as dropping something that is defi ned by its name and its location. In
the example of the fi x_Email index, the name is fi x_Email, and the named object is located
on the dbo.Customers table.

Disabling and Enabling Indexes
Sometimes you want to disable an index instead of deleting it. You may want to test the
performance of a query without the index so that you can justify the existence of the index.
At any time, you can right-click an index and select Disable In SSMS. When you do this,
you will see a screen similar to the one in Figure 11.5. This will leave the defi nition of the
index in the database, but the index will be unavailable.

Look closely at Figure 11.5. Notice the text, warning that you enable the index again by
rebuilding it. It seems logical to think that if you disable the index with a disable option,
you should be able to enable the index with an enable option. This is not the case. You must
rebuild the index to enable it. Right-click the index and select Rebuild, and you will see a
screen similar to the one in Figure 11.6.

Managing Indexes 385

F I GU R E 11.5 Disabling an index within SSMS

F I GU R E 11.6 Enabling an index with the Rebuild option

386 Chapter 11 ■ Indexes and Views

You can also disable and enable indexes using T-SQL code. The following code would
disable the ix_City index created earlier in this chapter:

ALTER INDEX ix_City
ON dbo.Customers
DISABLE;

When you want to enable the index again, use the following code:

ALTER INDEX ix_City
ON dbo.Customers
REBUILD;

Now for the bad news. In SSMS, there is no immediate indicator that an index is dis-
abled. Even if you right-click the index and select Properties, you will not see any indica-
tion that the index is disabled. How then do you determine whether an index is disabled?
You can use the INDEXPROPERTY function. This T-SQL function returns information about
indexes. Consider the following code:

ALTER INDEX ix_City
ON dbo.Customers
DISABLE;

SELECT INDEXPROPERTY
(
 OBJECT_ID(‘dbo.Customers’),
 ‘ix_City’,
 ‘IsDisabled’
)
GO

ALTER INDEX ix_City
ON dbo.Customers
REBUILD;

SELECT INDEXPROPERTY
(
 OBJECT_ID(‘dbo.Customers’),
 ‘ix_City’,
 ‘IsDisabled’
)
GO

Managing Indexes 387

The fi rst ALTER INDEX command disables the ix_City index. Then the SELECT INDEXPROPERTY
command reads the IsDisabled property of the ix_City index. Figure 11.7 shows the results
generated when this code is executed. Notice that the fi rst SELECT statement returns a value
of 1. Next, the code rebuilds the index, and then the SELECT statement returns a value of 0.
The IsDisabled property is set to 1 when the index is disabled and 0 when it is not.

F I GU R E 11.7 Viewing the IsDisabled property of the ix_City index in both the disabled
and enabled states

Understanding Index Fragmentation
You must be aware of one fi nal fact about indexes—they can become fragmented over
time. In much the same way as the fi les on your hard drive become fragmented and cause
poor performance, a fragmented index causes performance to suffer as well. You can check
the fragmentation level on an index by right-clicking the index in question and selecting
Properties. From here, click the Fragmentation page (not Total Fragmentation). Figure 11.8
shows the fragmentation level for an index in the AdventureWorks database.

388 Chapter 11 ■ Indexes and Views

F I GU R E 11. 8 Viewing the fragmentation level on an index

You can defragment an index in one of three ways:

Drop and re-create the index. Because the index is being re-created from scratch, it will
remove excess fragmentation.

Rebuild the index. The ALTER INDEX… REBUILD statement actually drops and re-creates
the index for you.

Reorganize the index. The ALTER INDEX… REORGANIZE statement attempts to do an online
reorganization and lower fragmentation through this effort.

Which of these should you use? The choice is yours when deciding whether to drop and
re-create the index or rebuild the index because the end result is the same. When choosing
between rebuilding and reorganizing, Microsoft recommends that you reorganize when
fragmentation is between 5 and 30 percent. Any index fragmented greater than 30 percent
should be rebuilt.

To rebuild or reorganize an index, right-click the index in SSMS and select Rebuild or
Reorganize. You can also right-click the Indexes node in a given table and choose Reorga-
nize All or Rebuild All to massively defragment all indexes.

In most cases, you’ll want to automate index maintenance. SQL Server jobs can be used
to automate the reorganizing or rebuilding of indexes. Jobs will be covered in detail in
Chapter 14, “Creating Jobs, Operators, or Alerts.” You can also automate index mainte-
nance through the use of maintenance plans. Maintenance plans will be covered in
Chapter 17, “Backup and Restoration.”

Understanding Views 389

Understanding Views
What is a view? A view is a beautiful sight that you sometimes see while driving along a
road or highway. They are often marked as scenic overlooks. Someone at some point deter-
mined that large numbers of people would be interested in seeing that view, so they built a
special location where cars could pull off to the side of the road and people could take in
the beauty.

Of course, this section is talking about SQL Server databases and not scenic views; yet a
view in a database can also be a beautiful thing—at least to your users. For example, imag-
ine that you have a set of customer data spread across the following tables:

■ Customers

■ Cities

■ States

■ Addresses

■ Websites

Now, to get the complete view of a customer information set, the user must join these
fi ve tables. If the user must do this each time she wants to use the tables, it will be quite
frustrating. A database view aggregates this information so that it appears to be in one
location. The view creates a unique collective perspective on the data. Technically, a view
is a stored SELECT statement. However, you can do some special things with these SELECT
statements stored as views, such as the following:

■ Create an index on the view to materialize it for improved performance

■ Set permission on the view as if it were a table

■ Include the results of functions in the view

You can do even more than this, but this short list should begin to show the benefi ts of
views.

Index fragmentation can sneak up on you. You can use a database for
years and notice no real change in performance. Then, in a period of a few
weeks, performance can be degraded drastically. This is usually caused by
massive changes to the data that happen only after years of use—archives,
imports, exports, and so on. If you do not have automatic index mainte-
nance in place, be sure to check the fragmentation levels of the indexes
periodically.

390 Chapter 11 ■ Indexes and Views

When a user queries a nonindexed view, the fi rst thing SQL Server does is run the stored
SELECT statement that is the view so that the user’s query can be run against that result set.
For this reason, the performance of the query against the view will be less impressive than
the performance of the query had it been written directly against the view’s underlying
tables. This fact must always be remembered when creating views. Querying a nonindexed
view is never as fast as querying the underlying tables directly. Do not use nonindexed views
to improve performance; use them to improve usability or to implement security
abstraction.

Indexed views are simply views on which a clustered index has been created. When you
create a unique clustered index on a view, you are basically indicating that you want a table
to be created that matches the result set of the stored SELECT statement in the view. Indexed
views perform, usually, better than direct queries against the underlying tables. This
improved performance is because the view contains only the data that is requested of the
user. If the user queried the tables directly, all of the columns of data would be there, and
the performance would be diminished.

However, you should not haphazardly implement indexed views just because they
improve the performance of the query. Indexed views always diminish the performance of
updates, inserts, and deletes. The reason for this diminished performance is simple: every
time you update, insert, or delete values in the underlying tables, the view must be updated
as well. Therefore, indexed views are useful on mostly read tables (most operations are
SELECT operations), but they can be very bad for mostly write tables (most operations are
UPDATE, INSERT, or DELETE operations).

Creating Views
Views can be created in the GUI or with T-SQL. Exercise 11.6 details how to create a view
in the GUI.

E X E R C I S E 11 . 6

Creating a View

To create a view in the GUI, follow these steps:

1. Expand the database in which you want to create the view, and you’ll see a Views node
or container.

2. Right-click the Views container and select New View. You’ll be presented with a screen
similar to the one shown here.

Creating Views 391

3. From here, you can select the tables, views, functions, or synonyms on which you want
to base your view.

4. After you’ve selected the objects, click Close. Now you are presented with a screen simi-
lar to the one shown here.

5. From here, you can select the columns you want to include in the SELECT statement that
will become the view.

392 Chapter 11 ■ Indexes and Views

6. Once the columns are selected, you can use the Criteria pane to enter fi ltering informa-
tion. If you’ve used Microsoft Access to build queries, this interface is very similar and
will feel quite natural to you. If you’re more comfortable writing the fi lters as WHERE
clauses, use the SQL pane in the bottom of the Query Designer window to manually add
the fi lters.

7. With the SELECT statement built, you’re ready to save the view. Select File ➢ Save and
provide a name for the view. Click OK, and the view will be saved.

You can also create views using T-SQL. For example, the following code results in
a view named vBooksPubs that uses the Books and Publishers tables from the Books
database:

CREATE VIEW dbo.vBooksPubs
AS
 SELECT
 dbo.Books.BookID,
 dbo.Books.Title,
 dbo.Books.PublisherID,
 dbo.Books.Copyright,
 dbo.Books.EstimatedValue
 FROM dbo.Books
 INNER JOIN dbo.Publishers
 ON dbo.Books.PublisherID = dbo.Publishers.PublisherID;

Summary
In this chapter, you learned about indexes and views. First, you explored indexes and
learned how they can help improve the performance of a database when they are properly
designed. You also learned about the different types of indexes and how to create them.
Index maintenance was addressed as you discovered how to drop, disable, enable, rebuild,
and reorganize indexes.

Next, you learned about views and the simplicity they introduce to data access for your
users. Views allow you to aggregate data together into a virtual table so that users can
more easily access that data. Additionally, views can be indexed to improve the perfor-
mance of data access.

Chapter Essentials 393

Chapter Essentials

Understanding Indexes The key to implementing an effective indexing strategy is under-
standing what indexes are and how they function. Clustered indexes dictate the way in
which a table should be stored. Nonclustered indexes are stored separately from the table.
Filtered indexes allow you to limit the rows included in the index with standard WHERE
clauses.

Creating Basic Indexes Indexes can be created using either the GUI interface or T-SQL
code. The CREATE INDEX statement is used to create indexes in T-SQL. It’s a good idea to
save the T-SQL code used to create the index in case you ever have to re-create it again.
You can generate the T-SQL code from the Script button even if you create the indexes
within the GUI.

Creating Advanced Indexes Covered indexes include all of the columns necessary to ser-
vice a given SELECT statement. Covered indexes are created using the Included Columns
page in the GUI. Filtered indexes use WHERE clauses to implement fi ltering. On the Filtered
index page, omit the WHERE keyword, but include the remainder of the WHERE clause. For
example, WHERE email = 0 becomes email = 0.

Managing Indexes At times you may need to disable an index temporarily. You can do
this with the ALTER INDEX… DISABLE construct. To enable the index again, you will need
to use the ALTER INDEX… REBUILD construct. Indexes are dropped rather than deleted in
T-SQL code, so the command is DROP INDEX. You should reorganize indexes fragmented
between 5 and 30 percent and rebuild any indexes fragmented by more than 30 percent.

Understanding Views Views are simply stored SELECT statements when they are nonin-
dexed. Indexed views store the actual result set of the SELECT statement as an object in the
database. Indexed views should not be used on tables that are heavily used for write opera-
tions. Views can be helpful in abstracting permission management (you can assign permis-
sions to the view without having to assign permissions to each underlying table) and in
simplifying data access for your users.

Creating Views Views can be created in the GUI Query Designer or in T-SQL. The
CREATE VIEW statement is used to create views with code. The Query Designer simplifi es
view creation because you do not have to write complex JOIN statements manually, and the
risk of typos is also removed from the equation.

Triggers and Stored
Procedures

TOPICS COVERED IN THIS CHAPTER:

 ✓ Triggers Defined

 ✓ Using Triggers

 ✓ Creating Triggers

 ✓ Understanding Stored Procedures

 ✓ Creating Stored Procedures

Chapter

12

Do not let the brevity of this chapter fool you. Triggers and
stored procedures are two of the most valuable tools avail-
able to the DBA. Because this book is focused on the DBA’s

role and not the application developer’s role, this chapter will focus on triggers and stored
procedures from the perspective of administrative tasks instead of application development.
Triggers are helpful because they can save the administrator from both wasted time and
problems through the automation of common monitoring and administrative tasks. Stored
procedures can be used to create administrative scripts that you will run again and again,
and they can also save time and prevent errors. This chapter will provide examples for both
triggers and stored procedures so you can see fi rsthand the value they bring. If you are
ready to see how these two SQL Server objects can be used to reduce your administrative
load, read on.

Triggers Defined
A trigger is an action or set of actions that should be carried out if another action or event
occurs. SQL Server triggers act a lot like triggers you experience in everyday life. For
example, when the alarm clock goes off, it triggers the action of waking up. When the
microwave bell sounds, you are triggered to open the door and pull out the hot food. When
the dryer buzzer sounds, you are triggered to check the clothes in the electric dryer and see
whether they are ready to be removed. Database triggers work in the same way. Triggers
can respond to the fi ring event automatically or simply notify an administrator that the
fi ring event has occurred.

For example, if you want to validate every update statement that is executed against
a specifi c table, you can create a trigger that is fi red when an update statement runs. The
trigger contains the logic (code) that should be processed for every update statement.
The trigger can be used for many purposes, including these:

■ To ensure that the new data meets business requirements

■ To prevent unauthorized users from making changes that would be diffi cult to enforce
with permissions alone

■ To make backup copies of the old data before the new data is written to the table

■ To add information to additional tables that the update statement does not specify

■ To notify an individual of the change, if the change warrants a notifi cation

Triggers Defined 397

Unlike constraints, triggers allow you more fl exibility in evaluating and controlling data
and administrative actions. You can do anything a constraint can do and also perform
actions that a constraint cannot. This makes triggers more powerful than constraints;
however, they are also more CPU intensive. For this latter reason, you should be cautious
about overusing triggers in your SQL Server solutions.

However, because this book is for the DBA and not the programmer, it is important
to focus on how triggers can be used for administrative purposes. Yet programmers will
also fi nd tremendous value in understanding the administrative side of SQL Server, so this
chapter will also be helpful for those readers. So, in what way can a DBA use triggers?
It’s all about notifi cations. You can use triggers to be notifi ed when any of the following
occurs:

■ Large-scale deletions occur

■ New users are added to the database

■ Large-scale modifi cations occur

■ Schema changes occur

Do you see a pattern? For years, triggers were used to implement auditing processes;
yet, even with the new auditing features introduced in SQL Server 2008, triggers are still
benefi cial and may be preferred thanks to their extreme fl exibility.

In addition to notifi cations, administrators can also use triggers to do the following:

■ Prevent accidental deletions of data or tables

■ Enforce naming conventions for modifi cations to tables or for additional tables, views,
or even databases

It’s true that you can enforce naming conventions with policy-based management;
however, policy-based management is really only useful in larger deployments. If you run a
smaller SQL Server installation base (fi ve or fewer servers), which is the way in which SQL
Server is run in most installations, you may still be better off using triggers. In the later
section, “Using Triggers,” you’ll see several specifi c examples of real-world triggers that are
being used in organizations.

Types of Triggers
Triggers come in two basic types:

DML The DML triggers apply to data manipulation language events.

DDL The DDL triggers apply to data defi nition language events. DML and DDL are sub-
sets of the SQL language.

DML statements include the following:

■ SELECT

■ INSERT

■ UPDATE

■ DELETE

398 Chapter 12 ■ Triggers and Stored Procedures

In most cases, SELECT statements do not make changes, and they are not used as events
to fi re DML triggers. INSERT, UPDATE, and DELETE statements do make changes, and they
are used to fi re DML triggers.

DDL statements include the following:

■ CREATE

■ ALTER

■ DROP

All three DDL statements make changes, and they are used as events to fi re DDL
triggers. The most common DDL triggers are used to intercept improper object deletions
(DROP statements), but creative uses of CREATE and ALTER triggers have also been
implemented.

Within the DML category of triggers there are three trigger subtypes. The administrator
must be careful in the selection of the trigger subtype.

AFTER These execute after the fi ring code (INSERT, UPDATE, or DELETE statement) is fi red.
AFTER triggers can be created only on tables.

INSTEAD OF These execute instead of the fi ring code, not before the fi ring code. Before
triggers do not really exist, although an INSTEAD OF trigger could be created so that it acts
as a before trigger. The DBA would simply need to code the trigger to take some actions
and then actually execute the code that fi red the trigger in the fi rst place. INSTEAD OF trig-
gers can be created on tables and views.

CLR Common Language Runtime (CLR) triggers are used when T-SQL code just can’t
quite get the job done. CLR triggers can be either DML or DDL, but they are mostly used
when heavy mathematical operations are required or processes must be executed that can-
not be executed within T-SQL code alone. CLR triggers require development using the
.NET Framework provided by Microsoft.

Recursive and Nested Triggers
Triggers can also become recursive, and it is important to consider how you will deal with
this recursion. A recursive trigger is one that is fi red by an event and ends up executing the
same or similar code equal to the original fi ring event. The result is that the trigger calls
itself. Of course, this structure can result in infi nite recursion loops. The good news is that,
by default, recursive triggers are disabled on all databases. AFTER triggers will be able to fi re
themselves only if the RECURSIVE_TRIGGERS option is turned on.

In addition to recursion, triggers can be nested. Trigger nesting simply means that one
trigger calls another. Trigger A can call trigger B, which calls trigger C, and so on. SQL
Server allows up to 32 levels of trigger nesting for DML and DDL triggers. Of course,
trigger nesting could result in indirect recursion; trigger A could call trigger B, which
calls trigger C, which calls trigger A. You can disable indirect recursion only by setting
the nested triggers option to 0 (off) with the sp_configure command. This option also
disables all nested triggers, whether they cause indirect recursion or not. Figure 12.1 shows
the T-SQL code used to disable recursive triggers and to disable nested triggers.

Using Triggers 399

Using Triggers
Now for the fun part: using triggers. How can a DBA use triggers to make her job easier?
Wouldn’t it be cost-effective if you could hire an administrative assistant that costs nothing
each hour but works around the clock? That’s exactly what you get when you use triggers.

With triggers, you can automate actions that you’ve taken manually in the past. If you
have any alerts that require your intervention, however, you should look at them closely to
determine how to proceed and answer these questions. Can the actions you would take in
response to these alerts be automated in T-SQL code? If they can be automated, is the event
a DDL or DML event? If the answer is yes to both, then you can use triggers as unpaid
assistants.

To get an idea of how you can use triggers to assist you with administrative tasks,
consider the following DML trigger uses:

Exporting Data When the New Data Volume Reaches a Particular Level Imagine a user
has asked you to export the 1,000 newest records when those records become available. A
trigger can do the trick for you. You can create a trigger that runs with each INSERT state-
ment. The trigger will keep a running count (in a table) of how many times it has executed
and the record ID for each inserted row. When the counter reaches 1,000, all inserted rows
are exported, and the counter is reset to 0.

Ensuring Data Integrity Through Complex Logic Data integrity can be enforced through
data types and constraints, but triggers expose the entire T-SQL language to be used
for data integrity enforcement. This means that DBAs can implement databases with
a much higher level of assurance in the data. One organization even used triggers to launch
an email validation process that sent an email to the entered address and then assigned an

F I GU R E 12 .1 Disabling recursive and nested triggers on the Books database

400 Chapter 12 ■ Triggers and Stored Procedures

assurance level to the email: 0 for no response, 1 for a response based on access to an image
fi le in the HTML email, and 2 for when the user actually clicked a link to validate the email.
The trigger launched the email validation process, which placed information in a temporary
table that was maintained for some time to allow for a user response. Eventually the assur-
ance column was either modifi ed or left at 0 to indicate that no response was made.

Preventing Accidental Table Truncation The term for the deletion of every row in a table
is truncation. In fact, a T-SQL command named TRUNCATE TABLE exists to perform this
very function. Be careful, however, because users may accidentally delete all of the records
in a table by using this command. You can prevent this by creating a trigger that watches
for DELETE statements against a table. If no WHERE clause exists in the DELETE statement, the
trigger can simply reject the action. More complex triggers could inspect the DELETE state-
ment and ensure that fewer than n rows will be deleted based on your predetermined limit.

Limiting the Number of Allowed Updates in a Time Window for Security Purposes The
easiest way to think about this trigger use is through a fi ctitious scenario. Suppose an orga-
nization had been attacked by a malicious cracker who intended only to do harm and not
to steal information. The cracker had modifi ed data and set various columns to apparently
random values. The suspect did this to more than 1,000 records in less than 10 minutes.
The organization determined that a normal user would not update more than fi ve values in
one minute. A trigger was added to each table that tracked (in another table) the number of
DML UPDATE statements executed by a user within a one-minute window. If the total num-
ber of updates exceeded the norm, the user’s connection was killed, and the specifi c user
account was disabled in case the account was hijacked. While this is a fi ctitious scenario,
similar situations exist in the real world, and this trigger can help to prevent severe damage.

All of these examples represent real-world solutions that companies have implemented
with triggers. Now, consider the following real-world DDL trigger uses:

Preventing Accidental or Intentional Table Deletion In earlier versions of SQL Server,
DBAs used a common trick to prevent table deletion: create a view on the table whether the
view was needed or not. It works, but now there is a cleaner solution: create a DDL trigger
that watches for a DROP TABLE command. If anyone attempts to delete a table—even if they
have the proper permissions—the trigger can prevent or delay the action according to your
needs.

Sending a Notification to the DBAs When Anyone Changes a Database Property Using
the strategic combination of Database Mail and triggers, you can watch for changes to the
database itself. When a change is made, you can have the old option value and the new
option value sent to all DBAs via email. You may also choose to log the changes in a table.
The point is that you can easily implement this structure with triggers, and it will work for
both older and newer versions of SQL Server.

Enforcing Naming Conventions in the Same Way on Both 2005 and Newer SQL
Servers The new policy-based management (PBM) feature introduced in SQL Server 2008
is very good at enforcing naming conventions for your database objects; however, you may
choose not to use it since the older 2005 servers are unaware of the technology (they can be
confi gured with the technology, but it is not inherently supported). If you have fewer than
fi ve servers, you will probably want to use triggers instead of PBM.

Creating Triggers 401

Creating Triggers
Triggers are created using the CREATE TRIGGER T-SQL command. A trigger is ultimately a
collection of one or more lines of T-SQL code, so a GUI tool for the creation of triggers is
really not practical. The good news is that the syntax used is rather simple. The following
syntax is used for trigger creation:

CREATE TRIGGER trigger_name
 ON { table | view | database | ALL SERVER}
 WITH dml_trigger_option
 { FOR | AFTER | INSTEAD OF } { event }
 AS
 Insert T-SQL code starting here;

Like most CREATE statements, CREATE TRIGGER requires that you fi rst specify a name. Next,
you should indicate the trigger level, either table, view, database, or server. If the trigger
level is a database, table, or view, you specify ON object_name. When the trigger level is the
server, you simply specify ALL SERVER.

Triggers to the Rescue

On one project, several dozen policies had to be enforced on a SQL Server database. The
policies were security-related for the most part and were driven by the organization’s
security policy documents. The policies could be implemented in the application, but this
would require updates to the application code in the clients if the policies changed. The
database in question was to be used with several hundred client computers running a
local application that accessed the database.

We decided to use triggers to enforce the policies. In the end, we created more than 30
triggers on the database. Some were database-level, others were server-level, and still
others were table-level triggers.

Here’s the interesting part. About six months after the database was implemented, the
company did a major overhaul of its security policies as part of the normal periodic
review process. The result of the security policy update was that many of the triggers
needed modifi cation. The good news is that the DBA was able to make the changes in
a single afternoon, with only two days of testing in the lab before the changes were
implemented in the production system. Had the policies been enforced through the client
application, a multiweek endeavor would have been required. Triggers, clearly, are very
valuable to the DBA.

402 Chapter 12 ■ Triggers and Stored Procedures

The WITH trigger_option clause can include two primary different options. WITH
ENCRYPTION indicates that the actual T-SQL code that is the trigger should be obfuscated or
encrypted. If you use WITH ENCRYPTION, you cannot replicate the trigger. WITH EXECUTE AS
‘identity_name’ specifi es an alternative context in which the trigger should execute.

The next option specifi es the type of trigger. DDL triggers are specifi ed as FOR or AFTER
triggers, and DML triggers are specifi ed as FOR, AFTER, or INSTEAD OF triggers. FOR is a
synonym for AFTER. You can specify FOR AFTER, FOR, or AFTER, and they all mean the same
thing. Note that DDL triggers are always AFTER triggers, but the ROLLBACK option can be
used to undo the changes before they are committed to the database.

The event that fi res the trigger can be any of dozens of events. The event can be a list
of events, as in AFTER UPDATE, INSERT, which would fi re the trigger on either an UPDATE
statement or an INSERT statement.

When deciding between AFTER and INSTEAD OF triggers for DML events, keep the
following guidelines in mind:

■ When you know you will rarely undo the changes, use the AFTER trigger.

■ When you know you will most frequently change or disallow the action, use the
INSTEAD OF trigger.

The following are examples of AFTER triggers:

■ Logging the identity of the calling user, machine, or application

■ Archiving the old data values in a separate table

■ Adding the data to additional tables

The following are examples of INSTEAD OF triggers:

■ Disallowing the deletion of objects such as tables and views.

■ Disallowing the update of records by most users with write access through stan-
dard UPDATE statements. In these cases, a stored procedure is usually provided as the
“proper” way to update records.

The following two examples stick with the theme of using triggers for administrative
purposes. The fi rst example is a DML trigger that disallows the execution of a DELETE
command that deletes more than one record. Exercise 12.1 steps you through the creation
of this trigger. The second example is a DDL trigger that disallows dropping a table.
Exercise 12.2 steps you through the creation of the DDL trigger.

E X E R C I S E 12 .1

Creating a DML Trigger

In this exercise, you will create a DML trigger. The trigger will not allow a DELETE statement
to execute if a WHERE clause is not specifi ed. The trigger will be created on the Customers
table in the Books database. This table was created in Chapter 11, “Indexes and Views.” I
have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at: www.sybex.com/go/sqlserver12admin.

http://www.sybex.com/go/sqlserver12admin

Creating Triggers 403

To begin the process of creating the trigger, you must fi rst launch SSMS and open a New
Query window within the context of the Books database.

1. Launch SSMS.

2. Double-click the Books database within the Databases container.

3. Click the New Query button to open a query window.

4. In the New Query window, enter the following code:

CREATE TRIGGER no_unfiltered_delete
ON dbo.Customers
AFTER DELETE
AS
—Begin SQL code of trigger here
IF (SELECT COUNT(*) FROM DELETED) > 1
BEGIN
 PRINT ‘You cannot delete more than one record in a single action.’;
 ROLLBACK TRANSACTION;
END;

5. Execute the code entered in step 4 to create the trigger.

6. If you have not entered any records, add at least two new customer records. You can
execute the following code to do this:

INSERT INTO dbo.Customers
VALUES (
 100,
 ‘Joe’,
 ‘Jackson’,
 ‘jj@jj100jj.net’,
 5551031,
 ‘Some City’,
 ‘FL’,
 78687
);

INSERT INTO dbo.Customers
VALUES (
 101,
 ‘Tina’,

mailto:jj@jj100jj.net

404 Chapter 12 ■ Triggers and Stored Procedures

E X E R C I S E 12 .1 (c ont inue d)

 ‘Abushala’,
 ‘ta@ta101ta.net’,
 5558970,
 ‘Some City’,
 ‘FL’,
 78687
);

7. Now attempt to execute the following code against the Customers table:

DELETE FROM CUSTOMERS;

8. The command should fail, and you should see results similar to those shown here.

As Exercise 12.1 demonstrates, creating triggers can be simple. However, the benefi ts
they provide are ongoing and automatic. If you want to delete the trigger, you would simply
execute the statement DROP TRIGGER no_unfiltered_delete.

Exercise 12.1 shows the power of a trigger to prevent accidental deletions on a specifi c
table at the record level. Exercise 12.2 takes this to the object level and prevents the
deletion of entire tables.

E X E R C I S E 12 . 2

Creating a DDL Trigger

In this exercise, you will create a DDL trigger. The trigger will not allow a DROP statement
to be executed against any table in the Books database. The trigger will be created on the
Books database. The Books database must exist in order for this exercise to work properly. I
have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at: www.sybex.com/go/sqlserver12admin.

http://www.sybex.com/go/sqlserver12admin
mailto:ta@ta101ta.net

Creating Triggers 405

To begin the process of creating the trigger, you must fi rst launch SSMS and open a New
Query window within the context of the Books database, as shown here:

1. Launch SSMS.

2. Double-click the Books database within the Databases container.

3. Click the New Query button to open a query window.

4. In the New Query window, enter the following code:

CREATE TRIGGER no_table_drops
ON DATABASE
FOR DROP_TABLE
AS
—Begin SQL code of trigger here
PRINT
 ‘You cannot delete an entire table.
 In order to drop a table,
 the no_table_drops trigger must
 first be disabled.’;
ROLLBACK;

5. Execute the code entered in step 4 to create the trigger.

6. Now attempt to execute the following code against the Customers table:

DROP TABLE Customers;

7. The command should have failed, and you should see results similar to those shown
here.

If you want to delete the trigger, simply execute the following statement:

DROP TRIGGER no_table_drops ON DATABASE

406 Chapter 12 ■ Triggers and Stored Procedures

If you have triggers that must be disabled in order to perform administrative tasks, you
have two options:

■ You can use the DISABLE TRIGGER command.

■ You can use the ALTER TRIGGER command.

The following code demonstrates disabling the no_unfiltered_delete trigger with
the DISABLE trigger command and disabling the no_table_drops trigger with the ALTER
TRIGGER command:

ALTER TABLE dbo.Customers
DISABLE TRIGGER no_unfiltered_delete;
GO
DISABLE TRIGGER no_table_drops
ON DATABASE;
GO

The following code enables both triggers again:

ALTER TABLE dbo.Customers
ENABLE TRIGGER no_unfiltered_delete;
GO
ENABLE TRIGGER no_table_drops
ON DATABASE;
GO

You can use either method (ALTER TABLE or DISABLE/ENABLE TRIGGER) with either
trigger. It’s really just about preference. However, if you right-click a trigger and select
Disable, SSMS uses the ALTER TABLE method behind the scenes.

Understanding Stored Procedures
Now that you have a clear understanding of triggers, let’s move on to stored procedures.
Microsoft often defi nes triggers as stored procedures that fi re automatically. Of course, a
stored procedure is a collection of T-SQL code that can be called upon by an application or
by a user. Stored procedures provide several benefi ts for the developer and the DBA.

Security Abstraction Stored procedures, like triggers, support the EXECUTE AS clause so
that the stored procedure can be called by one user but run in the context of another user.
This feature allows you to abstract security. For example, you could create a stored proce-
dure used to update records. The assigned users can call the stored procedure even though
they may not have UPDATE access to the target tables.

This technique forces the users to update the data according to business rules, but it also
allows for simpler security management. If the users have permissions to execute the stored
procedure, they have the ability to update the data.

Creating Stored Procedures 407

Centralization of Business Logic One of the most useful benefi ts of stored procedures
is the centralization of business logic. For example, assume that a user is not allowed to
increase the price of a product by more than 3 percent in the Products table. A stored
procedure could be created that is used for all price updates. The logic that enforces the
3 percent rule is in the stored procedure. Coupling this with the security abstraction benefi t,
the user would not have UPDATE access to the Price column in the Products table; however, the
user would have EXECUTE permissions on the stored procedure.

If this business logic existed in the client application, all installations of the client would
have to be updated whenever the rule changed. As an example, what if the sales manager
decides to restrict the rule further so that only 2 percent price adjustments are allowed to
the price managers? Now, every client must be updated to support the new rule. If a stored
procedure is used instead, one change in the stored procedure enforces the new rule in less
than 60 to 90 seconds.

Improved Performance Stored procedures can also improve performance. Ad hoc T-SQL
statements are compiled each time they are executed. By default, stored procedures are not.
The execution plan is cached and reused for each successive execution of the stored proce-
dure. This variance in operation can result in a savings of from 10 to 50 milliseconds for
each iteration of the procedure. Performance benefi ts are usually more apparent for SQL
code that is executed dozens or even hundreds of times every few minutes.

Because this book is focused on administration, consider the following potential uses
of stored procedures for the DBA (all of these examples are based on real-world stored
procedures created for clients over the years):

■ Standardizing SQL Server login creations by using a custom stored procedure for all
user creations

■ Exporting data for users without the need to learn Integration Services

■ Disabling and enabling logins quickly

■ Archiving data selectively or in mass quantities

■ Creating internally standardized objects (such as triggers, tables, views, and so on) in
any new database without relying on the model database

Creating Stored Procedures
Stored procedures are created with the CREATE PROCEDURE statement. The syntax used is as
follows:

CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [OUT | OUTPUT] [READONLY]
] [,...n]

408 Chapter 12 ■ Triggers and Stored Procedures

[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { <sql_statement> [;][...n] | <method_specifier> }
[;]

The following example creates a stored procedure named disable_login that can be
used to disable a SQL Login account and log a timestamp to the Admin_actions table in
the master database:

CREATE PROCEDURE dbo.disableuser
 @DenyLoginName varchar(50)
AS
 DECLARE @tempstr varchar (1024)
 SET @tempstr = ‘DENY CONNECT SQL TO ‘ + @DenyLoginName
 PRINT @tempstr
 EXEC (@tempstr)
 INSERT INTO master.dbo.admin_actions
 VALUES(
 GETDATE(),
 ‘User disabled: ‘ + @DenyLoginName
)
GO

If you want to test this stored procedure, create a table in the master database named
admin_actions with the following columns:

■ actionID int NOT NULL IDENTITY (1, 1)

■ actionTime datetime NULL

■ actionDesc nvarchar(100) NULL

Run the stored procedure with a command like the following:

disable_login fred

This command assumes that a SQL login named fred exists on the server. The following
code could be used to create an enable_login stored procedure:

CREATE PROCEDURE dbo.enableuser
 @DenyLoginName varchar(50)
AS
 DECLARE @tempstr varchar (1024)
 SET @tempstr = ‘GRANT CONNECT SQL TO ‘ + @DenyLoginName
 PRINT @tempstr
 EXEC (@tempstr)
 INSERT INTO master.dbo.admin_actions

Chapter Essentials 409

 VALUES(
 GETDATE(),
 ‘User enabled: ‘ + @DenyLoginName
)
GO

How Triggers Differ from Stored Procedures
Triggers and stored procedures are very similar, once you get past the initial CREATE TRIG-
GER construction. Just like stored procedures, triggers can use variables and logical con-
structs, and they can also access databases. However, triggers have two things that stored
procedures do not:

■ Triggers can be launched by an event without any special development requirements.
The engine used to watch for the event is already there, and the DBA need only create
the trigger.

■ Triggers have access to virtual tables that are essential to their intended operations.
One virtual table is named “inserted” and the other is named “deleted.” The
inserted table contains the new values, and the deleted table contains the old values.
These tables are available for any INSERT, UPDATE, or DELETE trigger and are called
memory-resident tables because they do not exist on disk.

Summary
In this chapter, you learned about two important administrative tools: triggers and stored
procedures. You started with triggers, fi rst seeing how they work and then seeing the differ-
ent uses they have for administrative automation. You learned how to actually create trig-
gers. Then you moved on to stored procedures and learned the benefi ts they provide for the
developer and the DBA. You learned how to create stored procedures and saw an example
of how they can be used for administrative purposes as well.

Chapter Essentials

Understanding Triggers Triggers are stored procedures that are launched based on events.
Triggers can be DML or DDL driven. Both INSTEAD OF and AFTER triggers are available for
DML triggers, but DDL triggers can work only as AFTER triggers. However, ROLLBACK can
be used to undo changes even though DDL triggers are AFTER triggers.

410 Chapter 12 ■ Triggers and Stored Procedures

Using Triggers Triggers can be used as automation assistants. They can be used to prevent
accidental data destruction or loss. Triggers can be used by both developers and DBAs for
sometimes different purposes and sometimes shared purposes.

Creating Triggers Triggers are created with the CREATE TRIGGER statement. Triggers can
be created at three levels. The fi rst level is the server level, and these are mostly DDL trig-
gers. The second level is the database level, and these, too, are mostly DDL triggers. The
fi nal level is the object level (view, table, and so on), and these are mostly DML triggers,
although DDL triggers may also be created at this level.

Understanding Stored Procedures A stored procedure is a collection of T-SQL code stored
in the database for use by users and applications. Stored procedures can help abstract secu-
rity by using the EXECUTE AS clause. They can be used to improve performance because
they do not require recompilation by default. They can also be used to centralize business
rules for simple creation, enforcement, and maintenance of those rules.

Creating Stored Procedures Stored procedures are created with the CREATE PROCEDURE
statement. Stored procedures can use variables and logical constructions.

Implementing
Advanced Features

TOPICS COVERED IN THIS CHAPTER:

 ✓ Understanding and Installing Analysis Services

 ✓ Understanding Integration Services

 ✓ Understanding and Installing Reporting Services

 ✓ Implementing Database Mail

 ✓ Configuring Full-Text Indexing

 ✓ Implementing Transparent Data Encryption

 ✓ Data Compression

Chapter

13

Business intelligence (BI) is a primary function of IT in large
enterprises. Even small organizations benefi t from BI processes
and their output. BI can be defi ned as the information used to

better understand an organization’s position in the marketplace. BI can also be defi ned as
the tools, technologies, and processes used to manage and manipulate an organization’s
information so that the market position is better understood. BI is used to understand
where an organization is today and how to move in the desired direction. BI is often used as
a synonym for decision support; however, decision support is better described as a feature
of BI systems than as the equivalent of a BI system.

A BI system includes multiple components. An information base must exist. The
information base is used as the source of data for business decision support. In most
implementations, the information base will be an aggregated data set pulled from one or
more other data sources. SQL Server 2012 provides the Analysis Services component for
managing this information base. This chapter will provide the fundamental steps required
to install and initially confi gure Analysis Services.

Once the information base is in place, users must have a way to generate reports from it.
SQL Server 2012 provides the Reporting Services component for this purpose. Reporting
Services may be installed on the same server as Analysis Services or on a different server.
Additionally, you may install Reporting Services and run reports against a traditional
Online Transaction Processing (OLTP) database rather than an Analysis Services database.
You will install and confi gure Reporting Services in this chapter.

With the information base implemented and the reporting infrastructure provided, a
tool set is required to maintain the BI information base. Extraction, transformation, and
loading (ETL) make up the most common type of tool set used. SQL Server provides the
Integration Services component for this operation. In this chapter, you will install and
confi gure Integration Services and create a basic Integration Services package.

In addition to the direct BI services, this chapter provides instructions for the use of
Database Mail and full-text indexing. Database Mail is used to send email from SQL
Servers to administrators, users, or other computer systems. Full-text indexing allows for
faster searching based on words in data columns. Both of these components can be useful
for a BI system or a traditional OLTP database solution.

Understanding and Installing Analysis Services 413

Understanding and Installing
Analysis Services
SQL Server Analysis Services (SSAS) is a core BI component within the SQL Server sys-
tem. SSAS provides the DBA with the ability to create multidimensional data structures.
If you’re familiar with pivot tables in Microsoft Excel, think of the multidimensional data
structures as 3D pivot tables. Much as you use pivot tables to analyze large amounts of
data, SSAS provides fast analysis of extremely large amounts of data. For example, analyz-
ing millions of rows in several joined OLTP tables can take several minutes compared to a
few seconds with an SSAS data source.

SSAS can work with data warehouses, data marts, or production operational databases.

Data Warehouses A data warehouse is usually defi ned as a repository for an organi-
zation’s information and is usually very large and often fl at when compared to OLTP
databases.

Data Marts A data mart is a subset of the organization’s data—usually provided for a
department or specifi c decision support purpose. You can think of a data mart as one crate
of content taken from the data warehouse to fulfi ll a specifi c order.

Production Operational Databases Production operational databases are the databases
used for transaction processing—also known as OLTP databases.

SSAS can work with an OLTP database directly, but it performs best when working
against an optimized OLAP database designed specifi cally for information analysis. OLTP
databases are designed to support optimized data processing, which includes read and
write operations and assumes that many write operations will transpire. OLAP databases
are designed to handle primarily read operations. In most large SSAS implementations, the
databases directly used by SSAS will be OLAP databases.

SSAS is covered in greater depth in Chapter 25, “Data Warehousing,”
which explores data warehouses, data marts, dimensions, and cubes in
detail.

Analysis Services Tools
To work with data in Analysis Services, you must create OLAP cubes or data mining mod-
els. An OLAP cube is a specially designed data structure that allows fast analysis of the
data. Figure 13.1 illustrates the concepts of the data cube or multidimensional data. Think
of the cube as a collection of data with multiple views provided based on the dimensions of
the data. Figure 13.1 shows views by product, customer, and region.

414 Chapter 13 ■ Implementing Advanced Features

The cubed nature of the database allows for faster analysis of that data. Data mining
models are used to sort data and to fi nd patterns and relationships in that data. Both data
cubes and data mining models are created in SQL Server Data Tools (SSDT); this tool is
shown in Figure 13.2.

F I GU R E 13 .1 OLAP cubes represented as views of data

F I GU R E 13 . 2 SSDT used to create data cubes

Understanding and Installing Analysis Services 415

When you want to work with the data cubes and mining models, you will use SQL
Server Management Studio (SSMS). Additionally, third-party tools and custom-developed
applications may communicate with Analysis Services and, therefore, with the data cubes
and mining models. In fact, SSDT and SSMS will be used only by administrators in most
production environments. Custom applications will be used by the system users most of
the time. As a DBA, you will not be required to understand the details involved in building
a custom application, but you will need to provide the data platform. This requirement
means you must understand how to install and confi gure Analysis Services.

Analysis Services Optional Components
Analysis Services is installed using the normal SQL Server installation engine. It may be
installed as the default instance or as a named instance. Analysis Services can be installed
in an instance alongside other services (Integration Services, Reporting Services, and so on),
or it can be installed in a dedicated instance. Before you begin installing Analysis Services,
you should understand the optional components that may impact your use of the product.
The following components must be considered:

Management Tools The management tools include SSMS and command-line tools such
as SQLCMD. These tools will be used primarily by the DBA and may be installed on a
separate machine. In some situations, the developers may also use these tools and may have
direct access to the server’s desktop for some administration purposes related to their devel-
opment processes.

SSDT SSDT is used primarily by developers but may also be used by the DBA during
the initial setup and confi guration of Analysis Services. In some organizations, the DBA is
responsible for provisioning all data sources. In others, the DBA simply provides the plat-
form, and the developers build the data sources on an as-needed basis.

Software Development Kit The SQL Server Software Development Kit (SDK) is used by
developers to customize SQL Server operations or to develop custom client applications.
The DBA rarely uses the SDK.

Reporting Services Reporting Services is used to generate reports against data in produc-
tion databases as well as Analysis Services databases. Many organizations set up an entirely
separate server just for reporting purposes. Additionally, many organizations use third-
party reporting tools, such as Crystal Reports, and have no need for Reporting Services.

Connectivity Components The connectivity components will almost always be installed.
These components allow for connectivity between client computers and the server. The
components include OLEDB, ODBC, and DB-Library connectivity.

SQL Server Integration Services SQL Server Integration Services (SSIS) is used to extract
data from OLTP data sources, manipulate or transform that data in any way necessary, and
then load the data into the Analysis Services data store. SSIS can run in the same instance
as Analysis Services, or you can choose to run it in a separate instance or even on a sepa-
rate server.

416 Chapter 13 ■ Implementing Advanced Features

Installing and Configuring Analysis Services
Exercise 13.1 steps you through the process of installing SQL Server Analysis Services in a
named instance. The instance will be named ASvc and will include Integration Services and
management components, including SSDT.

E X E R C I S E 13 .1

 Installing Analysis Services

To begin the process of installing Analysis Services, perform these steps (you must be
logged in as an administrator):

1. Insert the SQL Server 2012 installation media into the server’s CD or DVD drive.

2. When the AutoPlay feature activates, you should see a screen similar to what’s
shown here.

3. Click Run SETUP.EXE to begin the installation. Be patient. It can take a few minutes
before you see the actual installation interface.

4. In the SQL Server Installation Center screen, choose Installation.

Understanding and Installing Analysis Services 417

5. Select New SQL Server Stand-Alone Installation Or Add Features To An Existing Instal-
lation. Again, be patient because it can take a while to bring up the next screen.

6. If the setup support rules complete without error, click OK. Otherwise, click Show
Details and evaluate the problem before proceeding.

7. If product updates are available, install them if desired. When the Setup Support Files
screen is displayed and the button is available, click Install. If no setup support fi les are
required, the installation will proceed on its own.

8. Once the support fi les are installed, you will see another Setup Support Rules process-
ing screen. Click Next to begin the actual installation of Analysis Services.

9. On the Installation Type screen, choose perform a New installation of SQL Server 2012,
as shown here, and click Next.

10. Enter a valid product key or choose Evaluation Mode, and click Next.

11. Read the license agreement, check the acceptance box, and click Next. Then, on the
Setup Role screen, choose SQL Server Feature Installation, and click Next.

12. On the Feature selection screen, check Database Engine Services and Analysis Services.
Additionally, if this is the fi rst installation on the target server, check any shared features
desired. Your screen should look similar to what’s shown here if you are installing SQL
Server Analysis Services on a server that already contains a default instance.

13. Click Next once you’ve chosen the features shown in the preceding image. If the Instal-
lation Rules screen appears, click Next to continue.

14. On the Instance Confi guration screen, provide a named instance name of ASvc, accept
all other defaults as shown here, and click Next.

418 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 .1 (c ont inue d)

15. Click Next on the Disk Space Requirements screen.

16. On the Server Confi guration screen, ensure that the SQL Server Agent, SQL Server
Database Engine, and SQL Server Analysis Services services are all set to start Auto-
matically. Because this is a lab installation, accept the default account names for all ser-
vices, as shown here, and click Next.

17. On the Database Engine Confi guration screen, click Add Current User to add the current
administrative account to the instance logins. Accept all other defaults on the Database
Engine Confi guration screen, and click Next.

18. On the Analysis Services Confi guration screen, click Add Current User, and
click Next.

19. Accept the defaults on the Error And Usage Reporting screen, and click Next.

20. If no errors are shown on the Installation Rules screen, click Next.

21. Review the Ready To Install screen, and if you’re sure you’ve confi gured the installation
correctly, click Install.

The installation can take several minutes. When it is complete, you must click Next and
then Close to exit the installation interface. You may want to restart the server, even
though it is not required. This action will refresh the server before you begin using Analysis
Services.

Understanding Integration Services 419

Understanding Integration Services
SQL Server Integration Services is the ETL tool provided with SQL Server 2012. ETL
 operations include the following:

■ Copying data from one server to another

■ Merging data from multiple sources into a single data location

■ Extracting information, modifying it, and then returning it to its original location

■ Exporting data into different formats such as Excel, comma-separated values (CSV),
and Oracle databases

■ Importing data while transforming it in several possible ways

This list represents just a few possible ways in which SSIS may be used.
If you’ve used Data Transformation Services (DTS) in SQL Server 2000, SSIS is like the

big brother of DTS. SSIS offers far more processing options and includes all of the basic
features of DTS as well. However, with great power often comes great complexity, and SSIS
can be overwhelming to a beginning DBA. Later in this chapter, in the section “Creating a
Basic Integration Services Package,” you’ll walk through the process of creating a data export
package that will, ideally, simplify the interface for you and help you prepare to use the tool.

SSIS is the topic of Chapter 26, “SQL Server Integration Services,” which
covers the details of package deployment as well as troubleshooting pack-
age execution and understanding the different actions performed within a
package.

Installing and Configuring Integration Services
Exercise 13.2 steps you through the installation of Integration Services in a named
instance. You can install Integration Services as a component within an existing instance
as well. If you notice that Exercise 13.2 is very similar to Exercise 13.1, it’s because you
use the same installation process to install an SSIS named instance as you do for an SSAS
named instance. The only difference is in the features you select.

E X E R C I S E 13 . 2

 Installing Integration Services

In this exercise, you will install SQL Server Integration Services as a named instance. The
instance will be named ISvc and will include the Database Engine and management
components.

To begin the installation process, follow these steps (you must be logged in as an
administrator):

420 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 2 (c ont inue d)

1. Insert the SQL Server 2012 installation media into the server’s CD or DVD drive.

2. When the AutoPlay feature activates, click Run SETUP.EXE to begin the installation. Be
patient. It can take a few minutes before you see the actual installation interface.

3. In the SQL Server Installation Center, choose the Installation page.

4. Select New SQL Server Stand-Alone Installation or Add Features To An Existing Installa-
tion. Again, be patient because it can take a while to bring up the next screen.

5. If the setup support rules complete without error, click OK. Otherwise, click Show
Details and evaluate the problem before proceeding.

6. When the Setup Support Files screen is displayed, click Install.

7. Once the support fi les are installed, you will see another Setup Support Rules process-
ing screen. Click Next to begin the actual installation of Integration Services.

8. On the Installation Type screen, choose Perform A New Installation Of SQL Server 2012,
and click Next.

9. Enter a valid product key or choose Evaluation Mode, and click Next.

10. Read the license agreement, check the acceptance box, and click Next.

11. On the Feature Selection screen, check Database Engine Services and Integration Ser-
vices. Additionally, check any shared features desired if this is the fi rst installation on
the target server. If this is an additional installation on an existing SQL Server, any previ-
ously installed shared services will be grayed out.

12. Click Next once you’ve chosen the Database Engine Services and Integration Services.

13. On the Instance Confi guration screen, provide a named instance name of ISvc, accept
all other defaults, and click Next.

14. Click Next on the Disk Space Requirements screen.

15. On the Server Confi guration screen, ensure that the SQL Server Agent and SQL Server
Database Engine services are both set to start automatically. Because this is a lab instal-
lation, confi gure the account name to System for both services, and click Next.

16. On the Database Engine Confi guration screen, click Add Current User to add the current
administrative account to the instance logins. Accept all other defaults on the Database
Engine Confi guration screen, and click Next.

17. Accept the defaults on the Error And Usage Reporting screen, and click Next.

18. If no errors are shown on the Installation Rules screen, click Next. If errors are shown,
click the error line for more information and resolve any discovered issues. Most errors
are related to noninstalled items that are required for the installation to proceed.

19. Review the Ready To Install screen, and if you’re sure you’ve confi gured the installation
correctly, click Install.

Understanding Integration Services 421

The installation can take several minutes. When it is complete, you must click Next and
then Close to exit the installation interface. Even though it is not required, you might want to
restart the server. This action will refresh the server before you begin using Integration
Services.

In many environments, Integration Services is installed with all installations of SQL
Server regardless of the instance purpose. Integration Services is widely used to automate
administrative actions, so it is benefi cial to have it installed with every instance.

Database maintenance plans require SQL Server Integration Services. If
Integration Services is not installed in the instance, you’ll receive errors
when attempting to create a database maintenance plan.

Creating a Basic Integration Services Package
Like Analysis Services for creating analytical tools, the SSDT application is the most com-
monly used method for creating SQL Server Integration Services projects and packages.
When you run the Database Maintenance Plan Wizard, in SSMS, it also creates an SSIS
package. Figure 13.3 shows the SSDT application being used to create an SSIS package. On
the left side you see the Toolbox, which contains dozens of actions that can be performed
within an SSIS package. In the center Design area, you place the tools from the Toolbox
and confi gure them to perform as needed. Tools are placed in the Design area by
dragging and dropping them onto the Design area surfaces.

F I GU R E 13 . 3 Creating an SSIS package in SSDT

422 Chapter 13 ■ Implementing Advanced Features

In Exercise 13.3, you will export data from the AdventureWorks database into an
Excel spreadsheet. The point of the exercise is to help beginning DBAs move beyond any
fear of the interface. When you’re building SSIS packages, the SSDT interface can be a
bit overwhelming, but the process of creating a package is really quite simple. It has four
primary steps.

1. You must defi ne the connection managers. The connection managers are simply
 connections to the data sources and destinations used in the SSIS package.

2. You defi ne the data fl ow data pumps and transformations. The data pumps are either
data fl ow sources or data fl ow destinations. The transformations defi ne what should be
done to the data (for example, copy it from a source to a destination).

3. You should test the package to ensure proper operations. This action can be accom-
plished with the internal debugging tools.

4. Finally, you will save the package and potentially schedule it to run on a regular basis
if needed.

That’s really all there is to creating an SSIS package. In Exercise 13.3 you will create the
SSIS package.

E X E R C I S E 13 . 3

Creating a Basic Integration Services Package

In this exercise, you will use SSDT to create a package that exports the Production.Product
table from the AdventureWorks database into an Excel spreadsheet. This package could be
created with the Export Data Wizard in SSMS; however, stepping through the process manu-
ally helps to reveal the basic components used in SSIS packages. To perform this exercise,
you must have the default instance installed and the AdventureWorks database added to
the default instance. These actions were covered in Chapter 2, “Installing SQL Server 2012,”
in the section, “Installing a Default Instance.” I have included a video of this exercise on the
companion website. You can download all the videos and additional study tools at,
www.sybex.com/go/sqlserver12admin.

To begin creating the package, log in as an administrator, and follow these steps:

1. Launch SSDT by selecting Start ➢ All Programs ➢ Microsoft SQL Server 2012 ➢ SQL
Server Data Tools.

2. In SSDT, select File ➢ New ➢ Project.

3. Choose an Integration Services Project, as shown here.

http://www.sybex.com/go/sqlserver12admin

Understanding Integration Services 423

4. Name the project Export Products to Excel, and click OK.

5. To add a new connection, right-click the Connection Managers section, and select New
File Connection.

6. Select the OLE DB connection type, and click Add.

7. In the Confi gure OLE DB Connection Manager dialog, click New.

8. Accept the default provider of SQL Server Native Client 11.0, and choose the local
default instance for the Server Name fi eld. If the local default instance is not displayed,
enter either (local) or a period to indicate the default instance. Use Windows
 Authentication, and choose the AdventureWorks2012 database, as shown here.

424 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 3 (c ont inue d)

9. Click OK.

10. In the Confi gure OLE DB Connection Manager dialog, click OK again to save the connec-
tion manager for the SQL Server database.

11. Now you must create a connection to the output Excel fi le. Right-click the Connection
Managers section again, and select New Connection.

12. Select the Excel connection types, and click Add.

13. Select the location and name for the Excel fi le, accept the default Excel version, and
check the First Row Has Column Names option, as shown here.

Understanding Integration Services 425

14. Click OK to save the Excel Connection Manager.

You are now ready to begin creating the actual work portion of the package. This work
portion is the data fl ow portion. It tells SSIS to copy the data from the SQL Server table
to the Excel spreadsheet. To begin, start by adding a Data Flow task to your Control
Flow workspace.

15. Ensure that the workspace is on the Control Flow tab and then click, drag, and drop the
Data Flow task from the Toolbox to the Control Flow workspace. The workspace should
look similar to the one shown here.

16. Double-click the new Data Flow Task box to begin implementing the work of the
package. The context of the workspace will change to the Data Flow tab. The Toolbox
will change to show Favorites, Common, Other Transforms, Other Sources, and Other
Destinations.

17. Drag an OLE DB source object from the Other Sources node to the Data Flow
workspace.

18. Drag an Excel destination object from the Other Destinations node to the Data Flow
workspace. Your workspace should look similar to what’s shown here.

426 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 3 (c ont inue d)

19. From the Other Transforms node, drag a Copy Column task onto the workspace. You
should now have the three objects you need to complete the simple export task.

20. Right-click the OLE DB Source object, and select Edit.

21. Choose the Production.Product table as the table name, as shown here, and then click
OK (not shown).

22. Click the blue arrow protruding from the OLE DB Source object (the object must be
selected in order to see and click the blue or red arrows); then hover over the Copy
Column object, and click again to connect the two objects, as shown here.

23. Now, click the blue arrow protruding from the Copy Column objects; then hover over the
Excel Destination object, and click again to connect these two objects, as shown here.

24. Right-click the Excel Destination object, and select Edit.

25. To confi gure the name of the Excel Sheet property, click the New button depicted here.

Understanding Integration Services 427

26. In the Create Table dialog that appears, change the code so that the table name is Prod-
ucts, and accept all other defaults, as shown here; then click OK.

27. You’ll be prompted to select the new table; click OK.

28. Click the drop-down list selector, and choose Products$ from the list, as shown here.

29. Click the Mappings page to have mappings generated for you automatically, and then
click OK to save the confi guration.

30. Click File ➢ Save Selected Items to save the package in its current state.

You now have a package that can export the data from the SQL Server table into an Excel
spreadsheet. This package is a simple package, but it demonstrates the fundamental build-
ing blocks of an SSIS package: connection managers and data fl ows.

Troubleshooting and Debugging an SSIS Package
It’s not really enough to create a package and trust that it will work. You’ll also need to
troubleshoot packages. The debug tool set within SSDT allows you to do this. Exercise 13.4
steps you through using the internal debug tools to verify the operations of the package cre-
ated in Exercise 13.3.

428 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 4

Troubleshooting an SSIS Package with Debug

In this exercise, you will use SSDT to verify the proper operations of the data export pack-
age created in Exercise 13.3. You will do this using the internal debug tools. To begin, open
SSDT, and open the Export Products to Excel project created in Exercise 13.3. If you have not
closed the project since creating it, it should still be open in the SSDT environment.

To debug the package, follow these steps:

1. Click Debug ➢ Start Debugging. Notice that you can also press F5.

2. You hope to see results showing nothing but green boxes. If any boxes are red, you
have a problem in your package and need to troubleshoot it. This image shows the
results when everything works well.

3. If you navigate to the location that you specifi ed for the Excel destination in step 13 of
Exercise 13.3, you should now see an Excel fi le there. Open the fi le, and verify that the
Product table data has been exported to the fi le.

4. In SSDT, chose Debug ➢ Stop Debugging to exit debug mode.

A common error when using Excel data sources or destinations is related to 32-bit vs.
64-bit code. The driver for Excel access is a 32-bit driver, and you must confi gure projects
to run in 32-bit mode when they use the Excel driver. To do this, right-click the project in
Solution Explorer, and select Properties. In the Properties dialog, go to the Confi guration
Properties ➢ Debugging node, and confi gure the Run64BitRuntime option as False.

Understanding Integration Services 429

Scheduling Your Package to Run Automatically
Now that you know your package is working, you can schedule it to run automatically.
This scheduling can be accomplished by saving the package on a SQL Server instance and
then using the SQL Server Agent within that instance to run the package. Packages can
be saved into multiple instances using the Integration Services Deployment Wizard option
within SSDT.

Exercise 13.5 steps you through the process of saving the package on an instance of SQL
Server and then scheduling the package to run automatically. As you perform this exercise,
you’ll also see how you can encrypt the data for secure package access.

E X E R C I S E 13 . 5

Saving and Scheduling Packages

In this exercise, you will use SSDT to save the Product table export package into the SQL
Server default instance on the same server. To save the package into a different instance,
you would simply specify the server name in step 3.

To begin, open SSDT and the Export Products to Excel project and then take the following
steps:

1. Select Project ➢ Deploy.

2. On the Introduction page, read the provided information, and click Next.

3. Set the server name to the local default instance by using the Browse button.

4. Set the path to the desired path using the Browse button. If an SSIS catalog does not
exist, you must create one in SSMS; follow the instructions provided in an error mes-
sage that is displayed when you click the Browse button. Once the server name and
path are confi gured, click Next.

5. On the Review page, ensure that you’ve chosen the desired options, and click Deploy
once you are ready.

6. Review the results on the Results page, and ensure that all actions have passed. Click
Save Report if you desire to save a copy of the deployment report.

7. Click Close to end the Integration Services Deployment Wizard.

430 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 5 (c ont inue d)

At this point, the package has been saved in the default instance of SQL Server 2012.
Next, you need to schedule the package in SSMS. You can close SSDT if you need to
lower memory consumption on the server for the next step. SSDT is not needed for the
remainder of this exercise.

8. Launch SSMS, connect to the local default instance, and expand the SQL Server Agent node.

9. Right-click the Jobs container, and select New Job.

10. Name the job Export Product Data to Excel, and then select the Steps page.

11. Click the New button to add a new step.

12. Enter the step name Run SSIS Export Package.

13. For the type, choose SQL Server Integration Services Package.

14. On the Package tab, choose the local default instance for the server.

15. For the package name, browse for and select the package deployed from SSDT with a
name similar to that shown here.

16. Click OK to add the step.

17. Select the Schedules page.

18. Click New to add a new schedule.

19. Name the schedule 6 AM Run, and set the type to Recurring.

20. Set the frequency to Daily and the time to 6:00:00 AM, as shown here.

21. Click OK to save the schedule.

22. Click OK again to save the job.

Understanding Integration Services 431

Security Protection Levels
It is important to understand the protection levels that can be confi gured for packages
when they are saved. SSIS packages contain both sensitive and nonsensitive data. You can
protect only the sensitive data, all of the data, or none of the data, or you can leave it up to
the target instance to determine how data is protected. The following list reviews the secu-
rity protection levels and describes their applications:

Do Not Save Sensitive This does not save sensitive data with the package. When a user
other than the creator opens the package, sensitive values contain blanks.

Encrypt All Data with Password All data in the package is encrypted using the provided
password.

Encrypt Sensitive Data with Password Only sensitive data is encrypted using the provided
password.

Encrypt All Data with User Key This uses the current user’s key to encrypt the entire
package. The result is that only the current user can edit the package.

Encrypt Sensitive Data with User Key This uses the current user’s key to encrypt the sen-
sitive data in the package. The result is that only the current user can edit the sensitive data.
Any user with access can open the package but will have to manually enter the sensitive
information needed to run the package.

Rely on Server Storage The protection of sensitive and nonsensitive data is left to the tar-
get server in which the package is saved.

The Rely on Server Storage protection level is available only when saving
packages in a SQL Server. The package is saved in the MSDB database. All
protection levels are available when saving in a SQL Server, but the Rely
on Server Storage protection level is not available when saving in a file.

Using SSIS Packages to Make Users Happy

Over the years, I’ve used SSIS and DTS packages to solve many problems; however, one
of the most useful tasks I’ve found is very simple and makes users wonderfully happy.
I’ve had users ask for data from large SQL Server databases (as well as other database
server types) in many formats. Some want Excel, others want Access, and still others
want CSV fi les or some cryptic format.

Using SSIS packages, you can export the data into a large variety of formats. When the
users want some weird format that’s really just a text fi le, you can usually accomplish this
by creating some ActiveX scripting in the job that runs the SSIS package or as a package
step. I’ve exported data from Oracle, MySQL, SQL Server, and—yes, I have to admit—
even Access into other formats.

432 Chapter 13 ■ Implementing Advanced Features

Understanding and Installing Reporting
Services
SQL Server Reporting Services (SSRS) is used to centrally create, manage, and distribute
the reports needed within your organization. Many companies install a dedicated SQL
Server just for SSRS, and others include SSRS as part of another database server installa-
tion. As long as the performance is acceptable, both methods will work well. SSRS solves
the problem of reporting without requiring third-party components; however, SSRS is not
as mature as third-party products such as Crystal Reports, so DBAs should consider their
options carefully.

SSRS provides support for several types of reporting solutions including the following:

Ad Hoc Reporting In many organizations or departments within organizations, users
need to generate custom reports frequently. Ad hoc reporting provides for this busi-
ness requirement. The Report Builder application is usually used by the end users in this
scenario.

Managed/Controlled Reporting Managed or controlled reporting provides prebuilt
reports that users can simply run to get the information they need. If little variance exists
in the reports that users require from week to week, managed reporting may work well for
you. Managed reports are created with both the Report Builder (for basic reports) and the
Report Designer (for more advanced reports).

In one recent scenario, a single user built and managed an Access database over a period
of more than eight years. He was very good at working with Access and had built a rather
fi ne database in it; however, several other users needed access to the data in that data-
base—and sharing an Access database with more than fi ve or six users is just asking for
trouble. At the same time, the owner of the database didn’t want to re-create everything
based on a SQL Server backend, even though the company did have a licensed SQL
Server available. So, how did we solve this problem?

We created an SSIS package that pulled the data into a SQL Server database from his
Access database every night and every day during lunch. We added a macro to the Access
database that closed it, if it was open at 12:15 p.m. This way, the owner didn’t have to
remember to get out of the database so that the SSIS package could get full control to
work its magic. Of course, the macro prompted him—just in case he was still working at
12:15 p.m.

The result was suffi cient because the other users needed only read access to the data and
three to fi ve hours was an acceptable tolerance level for updates. This is just one example
of how you can make users really happy using SSIS packages and SQL Server jobs.

Understanding and Installing Reporting Services 433

Integrated Reporting Integrated reporting allows the reports to run within business
 applications. Reports can execute within SharePoint servers or customized applications.
Integrated reporting is also called embedded reporting.

SQL Server 2008 and 2012 no longer require IIS to be installed on the
Windows server in order to install and use Reporting Services. This saves
space and resources on the server.

SSRS is installed in the same way as SSIS and SSAS—using the standard installation pro-
gram from the CD or DVD media. Exercise 13.6 steps you through the process of installing
a dedicated SSRS instance.

E X E R C I S E 13 . 6

Installing and Confi guring Reporting Services

In this exercise, you will install SSRS in an instance named RSvc. The steps will look similar
to those used to install the ASvc and ISvc instances in Exercises 13.1 and 13.2 earlier in this
chapter, because the same installation engine is used.

To perform the SSRS installation, follow these steps:

1. Insert the SQL Server 2012 installation media into the server’s CD or DVD drive.

2. When the AutoPlay feature activates, click Run SETUP.EXE to begin the installation.
Be patient, because it can take a few minutes before you see the actual installation
interface.

3. In the SQL Server Installation Center, choose the Installation page.

4. Select New SQL Server Stand-Alone Installation Or Add Features To An Existing Instal-
lation. Again, be patient. It can take a while to bring up the next screen.

5. If the setup support rules complete without error, click OK. Otherwise, click Show
Details and evaluate the problem before proceeding.

6. When the Setup Support Files screen is displayed, click Install.

7. Once the support fi les are installed, you will see another Setup Support Rules process-
ing screen. Click Next to begin the actual installation of Reporting Services.

8. On the Installation Type screen, choose Perform A New Installation Of SQL Server 2012,
and click Next.

9. Enter a valid product key or choose Evaluation Mode, and click Next.

10. Read the license agreement, check the acceptance box, and click Next.

434 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 6 (c ont inue d)

11. On the Feature Selection screen, check Database Engine Services And Reporting Services –
Native. Additionally, check any shared features desired; if this is the fi rst installation on
the target server, such shared features may include the Reporting Services – SharePoint
component. Your screen should look similar to what’s shown here, if you are installing
SQL Server Reporting Services on a server that already contains a default instance.

12. Click Next once you’ve chosen the Database Engine Services and Reporting Services.
If the shared features are grayed out, it simply means they are already installed. On the
Installation Rules page, click Next.

13. On the Instance Confi guration screen, provide a named instance name of RSvc, accept
all other defaults as shown here, and click Next.

14. Click Next on the Disk Space Requirements screen.

15. On the Server Confi guration screen, ensure that the SQL Server Agent, SQL Server
Database Engine, and SQL Server Reporting Services services are set to start Automati-
cally. Because this is a lab installation, confi gure the account name to the default set-
tings for the services, and click Next.

16. On the Database Engine Confi guration screen, click Add Current User to add the current
administrative account to the instance logins. Accept all other defaults on the Database
Engine Confi guration screen, and click Next.

17. On the Reporting Services Confi guration screen, choose Install Only, as shown here.

Understanding and Installing Reporting Services 435

18. Accept the defaults on the Error And Usage Reporting screen, and click Next.

19. If no errors are shown on the Installation Rules screen, click Next.

20. Review the Ready To Install screen, and if you’re sure you’ve confi gured the installation
correctly, click Install.

The installation can take several minutes. When it is complete, you must click Next and
then Close to exit the installation interface.

Now that SSRS is installed, you can confi gure the basic settings it requires. To begin
using SSRS, perform the following steps:

a. Select Start ➢ All Programs ➢ Microsoft SQL Server 2012 ➢ Confi guration Tools
➢ Reporting Services Confi guration Manager.

b. You’ll be asked to connect to an SSRS server. Provide the named instance of RSvc,
and click Connect.

c. The initial screen shows the status of the SSRS service and allows you to stop and
start the service.

d. Select the Web Service URL page.

e. Note the link to the web page used to view the default SSRS homepage. Click the
Apply button to save the settings. You can browse to the URL now, if desired.
Because you have not created any reports, the page will be very basic.

f. If it’s open, close the web browser to return to the Reporting Services Confi guration
Manager.

g. Select the Report Manager URL page.

h. Click the Apply buttons to save the default settings, and then click the link to the
web page to view the Report Manager homepage, if desired. You’ll see a richer
homepage (if you want to install the Report Builder, click the link on the Report
Manager homepage to launch the installation).

i. If it’s open, close the web browser.

436 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 6 (c ont inue d)

j. Select the Email Settings page to confi gure email options. Confi gure the email
options for your SMTP server. They should look similar to what’s shown here.

k. Click Exit to leave the Reporting Services Confi guration Manager.

The Reporting Services Confi guration Manager can also be used to scale out the SSRS
implementation. Scaling out involves the use of multiple SSRS servers using a central data
store or a distributed data store. You can learn more about SSRS by visiting, http://msdn
.Microsoft.com and searching for SQL Server 2012 Reporting Services.

Implementing Database Mail
Database Mail is used to send email from the SQL Server services. SQL Server 2005 fi rst
introduced Database Mail. Before that, DBAs were forced to use SQL Mail or come up
with their own solution. SQL Mail required the installation of Outlook on the servers, but
Database Mail does not. This fact alone makes Database Mail far more useful than the
older SQL Mail; however, Database Mail also supports redundancy through the use of
multiple mail profi les and gives the DBA complete control over the allowed email features
(attachments, retry attempts, and so on).

Database Mail can be used for many purposes, including these:

■ Notifying administrators of alerts or problems on the server

■ Notifying administrators that a job has completed with success, failure, or both

■ Providing notice to users when data is modifi ed

http://msdn.Microsoft.com
http://msdn.Microsoft.com

Implementing Database Mail 437

■ Sending security alerts to administrators when new accounts are created, older
accounts are changed or modifi ed, or any other security parameter is adjusted

And these uses are just the beginning. The uses for Database Mail will vary greatly
depending on the organization and the DBA, but the confi guration of Database Mail is
mostly the same.

In Exercise 13.7, you will perform the actions required to enable Database Mail on a
SQL Server instance.

E X E R C I S E 13 . 7

Confi guring Database Mail

In this exercise, you will confi gure Database Mail. You will create a single profi le for sending
email from the SQL Server instance. Additionally, you will limit the attachment size to 1MB.

To enable and confi gure Database Mail, follow these steps:

1. Launch SSMS, and expand the Management node.

2. Right-click the Database Mail node, and select Confi gure Database Mail. If you are asked
to enable Database Mail, click Yes.

3. Click Next to begin using the Database Mail Confi guration Wizard.

You need to choose the Set Up Database Mail option by performing the following tasks:

a. Enter a mail profi le name such as Default Mail Profi le and a description if you
desire.

b. Click the Add button to add an SMTP account.

c. Enter the desired account name and description.

d. Confi gure the mail accounts similar to the settings shown here (replace the settings
with valid settings for your SMTP account and server).

438 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 7 (c ont inue d)

e. Click OK. The New Profi le dialog should look similar to what’s shown here.

f. Click Next.

g. Enable Public and Private Default Mail Profi le for the profi le, and click Next.

h. Set the Maximum fi le size to 1,024,000 so that attachments are limited to 1MB, and
click Next.

i. Review the summary and then click Finish to complete the confi guration of Database
Mail.

j. Test the Database Mail confi guration. Right-click the Database Mail node and select
Send Test Email.

k. Enter the appropriate To address, and click Send Test Email. Click OK when complete.

With these confi guration steps complete, you can use Database Mail to confi gure jobs and
alerts so that operators are notifi ed appropriately.

Configuring Full-Text Indexing 439

Configuring Full-Text Indexing
SQL Server’s full-text indexing feature is what you might call an “aware” indexing option.
Normal clustered and nonclustered indexes are based on exact matches. Stated differently,
you can only fi nd data values that match your fi lter exactly. This is true even with the LIKE
SQL operator. For example, a fi lter with the clause WHERE Col1 LIKE ‘run%’ would fi nd
values equal to run and running but not ran. Full-text searches can also locate variant
forms such as ran for run.

In-depth information about full-text indexing, the details of which are
beyond the scope of this book, can be found at, http://technet.microsoft
.com/en-us/library/ms142571(v=sql.110).aspx.

Additionally, full-text indexes allow for searches based on proximity, which means
words that are close to each other. You can also search for words based on weights with
higher-weighted words appearing fi rst in the results.

In SQL Server 2008 and SQL Server 2012, full-text indexes are now stored internally
within the SQL Server database. In previous versions, an external full-text catalog was
created to house the full-text indexes. In addition, the full-text engine itself runs within the
SQL Server memory space instead of running as a separate service.

A table can have only one full-text index, and the table must have a unique identifying
column in order to create the index. Full-text index searches are performed with the
CONTAINS and FREETEXT operators. For example, WHERE CONTAINS(ProdName, ‘”horse*”’
NEAR bridle’) would fi nd values such as horse racing bridle or horses’ bridles.

Exercise 13.8 walks you through creating a full-text index on the Books table in the
Books database created in preceding chapters.

E X E R C I S E 13 . 8

Creating a Full-Text Index

In this exercise, you will create a full-text index on the Books table in the Books database.
You will create the full-text index using the GUI Table Designer interface.

To create the full-text index, follow these steps:

1. Launch SSMS, and expand the Databases ➢ Books ➢ Storage node.

2. Right-click Full Text Catalogs and select New Full-Text Catalog.

3. Enter the full-text catalog name of BooksFT.

4. Set the owner to dbo.

http://technet.microsoft.com/en-us/library/ms142571(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/ms142571(v=sql.110).aspx

440 Chapter 13 ■ Implementing Advanced Features

E X E R C I S E 13 . 8 (c ont inue d)

5. Enable the Set As Default Catalog option, and click OK.

6. Expand Databases ➢ Books ➢ Tables.

7. Right-click the dbo.Books table, and select Design.

8. Right-click the Title column row selector, and choose Fulltext Index from the pop-up
menu like the one displayed here.

9. Click the Add button.

10. Click in the Columns fi eld, and then click the Build button to the right of the fi eld.

11. Choose the Title column and the English (United States) language, as shown here.

12. Click OK.

13. Click Close to complete the confi guration of the full-text index and save the table
changes.

Implementing Transparent Data Encryption 441

After creating the full-text index in Exercise 13.8, execute the following code to add
some records to the dbo.Books table (ensure that your query window is in the Books
database context):

INSERT INTO dbo.BOOKS
 VALUES (‘Real World SQL Server 2008 Database Administration’,
 1, 1, 1, 1, ‘2009-12-01’, 55.47);
INSERT INTO dbo.BOOKS
 VALUES (‘CWNA/CWSP All-in-one Guide’,
 1, 1, 1, 1, ‘2010-03-01’, 67.97);
INSERT INTO dbo.BOOKS
 VALUES (‘Managing at the Speed of Change’,
 43, 2, 2, 12, ‘1994-01-01’, 12.95);

Now, you can run a statement like the following:

SELECT *
FROM dbo.Books
WHERE CONTAINS(Title, ‘guide’);

If you want to see varied results, simply add more sample data to the dbo.Books table.

Implementing Transparent Data
Encryption
Transparent data encryption (TDE) is used to encrypt data in SQL Server tables without
requiring changes to application code. It was fi rst introduced in SQL Server 2008 and is
still available in SQL Server 2012. It is a real-time I/O encryption system that encrypts both
data and log fi les. The encryption requires a database encryption key (DEK). The DEK is
stored in the database so that it can be used while recovering from a database server crash.
This section provides an overview of the TDE architecture.

TDE Architecture
The TDE solution uses an encryption key hierarchy within its architecture. At the top is a
service master key (SMK). The SMK is used to encrypt the database master key (DMK).
It is very important that the SMK be backed up so that DMKs can be recovered. The DMK
is not used to encrypt actual data, but it is used to encrypt the DEK, which in turn is used
to encrypt the data. In the end, the SMK encrypts the DMK, which encrypts the DEK.
This allows for security across the database system but different encryption keys for each
database.

442 Chapter 13 ■ Implementing Advanced Features

When TDE is used, all fi les and fi legroups in the database are encrypted. It is a
database encryption solution and not a column, record, or table encryption solution.
This must be considered from a performance perspective. If only limited columns require
encryption, application-level encryption will likely perform much better than TDE.
However, when application modifi cations are not an option, TDE can provide the desired
encryption.

When either database mirroring or log shipping is used, both databases will be
encrypted. The primary and the mirror or the shipper and the receiver will be encrypted
to maintain consistent security. Additionally, when new full-text indexes are created on an
encrypted database, they are encrypted as well. However, when full-text indexing is used,
table data may be written onto the disk as plaintext during a full-text indexing scan. For
this reason, Microsoft does not recommend using full-text indexing on sensitive databases.

When TDE is used on a database, the following actions cannot be performed during
initial data encryption, key change processes, or database encryption:

■ Dropping a fi le from a fi legroup in the database

■ Taking the database offl ine

■ Dropping the database

■ Transitioning the database into read-only state

■ Detaching the database

TDE Implementation Process
The process for implementing TDE is simple, though it does require using T-SQL code. The
high-level steps are as follows:

1. Create a master key.

2. Create or obtain a certifi cate protected by the master key.

3. Create a database encryption key and protect it with the certifi cate.

4. Set the database to use encryption.

The following example code can be used to implement TDE on a database:

USE master;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘<UseStrongPasswordHere>’;
go
CREATE CERTIFICATE MyServerCert WITH SUBJECT = ‘My DEK Certificate’;
go
USE AdventureWorks2012;
GO
CREATE DATABASE ENCRYPTION KEY

Data Compression 443

WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE MyServerCert;
GO
ALTER DATABASE AdventureWorks2012
SET ENCRYPTION ON;
GO

Data Compression
Row and page compression can be used for tables and indexes to save space in the database
and on drive storage. Compression was fi rst introduced in SQL Server 2008 and continues
in SQL Server 2012. Compression will save storage space, but it also requires more CPU
cycles. From the perspective of time, the reduced reads from the drive often make up for
the increased CPU cycles, but on a heavily used system, compression can have a signifi cant
impact on performance.

Compression is available for any of the following database objects:

■ Tables stored as a heap

■ Tables stored as a clustered index

■ Nonclustered indexes

■ Indexed views

■ Partitioned tables and indexes

SQL Server provides the sp_estimate_data_compression system procedure to evaluate
the benefi ts of compression on a given object. The ALTER TABLE statement can be used to
enable row or page compression with the WITH (DATA_COMPRESSION) statement, as shown in
the following code sample:

USE AdventureWorks2012;
GO
EXEC sp_estimate_data_compression_savings ‘Production’, ‘TransactionHistory’,
NULL, NULL, ‘ROW’ ;

ALTER TABLE Production.TransactionHistory REBUILD PARTITION = ALL
WITH (DATA_COMPRESSION = ROW);
GO

444 Chapter 13 ■ Implementing Advanced Features

Summary
In this chapter, you reviewed several advanced components provided with SQL Server
2012. You installed and confi gured Analysis Services, Integration Services, and Reporting
Services. Each installation was similar and used the same installation engine. The key was
to select the appropriate options during installation. Once you installed SQL Server Inte-
gration Services, you created your fi rst package for data export. Additionally, you worked
with both Database Mail and full-text indexes. You learned that Reporting Services no lon-
ger requires IIS to be installed on the SQL Server as it did before SQL Server 2008 and that
Database Mail has not required Outlook on the server since SQL Server 2005 was released.
You also learned that full-text indexing no longer requires external full-text catalogs start-
ing with the release of SQL Server 2008; however, you must still create a full-text catalog
within the database requiring full-text indexes. Finally, you learned how to implement
transparent data encryption and data compression.

Chapter Essentials

Understanding and Implementing Analysis Services Analysis Services provides rapid
data analysis of complex and large data systems. Analysis Services is the primary BI and
decision-support component in SQL Server. It may be installed as a default or named
instance, and the instance may include other SQL Server components as well. SSMS is used
to manage and work with data cubes and data models, and SSDT is used to create them.

Understanding and Implementing Integration Services SQL Server Integration Services
is used to perform ETL tasks in SQL Server environments. Integration Services was fi rst
introduced with SQL Server 2005. Before this, it was known as Data Transformation Ser-
vices. You install Integration Services as part of the normal SQL Server 2008 installation
process.

Creating a Basic Integration Services Package SSIS packages are created in the SSDT
application. When you create a package, you defi ne the connection managers, perform
tasks, and debug the package to ensure proper operations. Packages can be saved as fi les or
as objects in the SQL Server MSDB database. Running packages from a job is a great way
to schedule automatic data-processing tasks.

Understanding and Installing Reporting Services SSRS is used to generate and distribute
reports for decision support professionals and other employees needing data summaries and
surveys. SSRS is installed as part of an instance of SQL Server 2012 since SQL Server 2008
no longer requires IIS to be installed on the Windows server. Reports can be created with
the Report Designer (advanced reports) or Report Builder (basic reports).

Implementing Database Mail Starting with SQL Server 2005, you no longer have to
install Outlook on the server to send email from the SQL Server service. Database Mail

Chapter Essentials 445

simply uses an SMTP server to send email messages. It takes advantage of the Service
Broker component of SQL Server to queue the email messages so that they can be delivered
without adversely impacting the performance of the SQL Server. Redundant mail profi les
ensure that emails will be delivered to administrative and other personnel.

Configuring Full-Text Indexing Full-text indexing allows for fi ltering based on words
and variations of words. SQL Server 2008 introduced internally stored full-text indexes.
External catalogs are no longer required.

Implementing Transparent Data Encryption Transparent data encryption (TDE) is used
to encrypt entire databases. It required the service master key for decrypting the keys used
in the TDE processes. For this reason, the most important takeaway is to back up the SMK
for any servers using TDE.

Compressing Data Data compression is a row-level or page-level solution for space savings
in SQL Server 2012. It can be implemented in the GUI or using the ALTER TABLE statement.

Administering
and Maintaining
SQL Server 2012

PART

IV
CHAPTER 14 ■ Creating Jobs, Operators,

and Alerts

CHAPTER 15 ■ Performance Monitoring
and Tuning

CHAPTER 16 ■ Policy-Based Management

CHAPTER 17 ■ Backup and Restoration

Chapter

14
Creating Jobs,
Operators, and Alerts

TOPICS COVERED IN THIS CHAPTER:

 ✓ Standardize, Automate, and Update

 ✓ Understanding SQL Server Jobs

 ✓ Creating T-SQL Jobs

 ✓ Creating SSIS Jobs

 ✓ Creating Windows Command Jobs

 ✓ Creating and Using Operators

 ✓ Creating and Using Alerts

 ✓ Using WSUS for SQL Server 2012

Administration and maintenance of your SQL Servers are
among the most important tasks you will perform in your
job as a DBA. Administration involves adding and removing

objects as they are needed by the users and applications you support. It also includes con-
fi guring settings to match new and current needs throughout the life cycle of the database
server. Maintenance involves backing up databases and objects, performance tuning, and
patching or updating the system. Both administration and maintenance tasks should be
standardized and automated as much as possible.

In this chapter, you will fi rst learn about the technology implementation methodology
used at my company, SysEdCo. The implementation methodology is called SAU, which
stands for Standardize, Automate, and Update. It is a simple thinking tool that ensures you
consider the primary aspects of technology implementation: standardization, automation,
and maintenance.

Next, you’ll learn to implement jobs based on T-SQL, SSIS packages, and Windows
commands. You will learn to schedule jobs and plan the appropriate step types depending
on your needs.

The discussion of jobs, which can notify operators and fi le alerts, will lead directly
into the topic of operators and alerts. In this section, you will learn how to create and use
operators so that the right person or process can be notifi ed of job results, alerts, and other
important events. You will also learn to create basic alerts in the SQL Server 2012 SSMS
administration tool and in the Performance Monitor of Windows.

The fi nal topic of the chapter, Windows Server Update Services (WSUS), will introduce
you to the need to update your SQL Servers from an operating system perspective. The
update process includes the Windows server itself and the SQL Server services running on
it. You’ll be introduced to the gotchas related to automatic updates and the Windows Server
Update Services solution for enterprise or large-scale deployments.

Standardize, Automate, and Update
Over the years Systems Education and Consulting (SysEdCo) has developed Standardize,
Automate, and Update (SAU), a simple methodology for implementing new technologies,
such as database systems and even infrastructure solutions. The methodology is nonspecifi c
and can be applied to any technology category. With SAU, each time a new technology is
implemented, you will go through each phase of the methodology. For simpler technologies
(such as the fi rst USB memory stick), each phase may take less than a few minutes or hours.

Standardize, Automate, and Update 451

For more complex technologies (such as the very fi rst SQL Server in an environment), the
fi rst two phases (standardize and automate) can take a week or more, and the last phase
(update) will likely take one or two days.

This methodology will be referred to throughout this chapter and the next three chap-
ters as well. Right now, however, you will see how the automation and performance man-
agement features of SQL Server 2012 and Windows Server 2008 R2 fi t within the SAU
methodology.

The following summary provides an overview of the three SAU phases:

Standardize During the standardize phase, you determine the best way to confi gure and
implement the technology. For SQL Server 2012, this might include establishing naming
conventions for objects, determining security guidelines, creating templates for database
creation, and coding standards for stored procedures and functions, among other things.
The individual responsible for the standardize phase must be very familiar with the tech-
nology. If your organization lacks the expertise on staff, consultants may be hired or key
employees can be trained on the technology so that the proper decisions can be made.

When a technology has few confi guration options and operational variables, the
standardize phase takes very little time. Technologies with many confi guration options
and operational variables can require a much greater time commitment. You may have
already guessed where SQL Server 2012 fi ts in. It has many confi guration options and
operational variables, and you should expect to spend a greater amount of time standard-
izing your confi gurations and operations. The benefi t of this time cost is found in the
most consistent production environment because consistent environments are easier to
automate—hands down.

Automate Once you have standards documented for the technology, you will want to
discover management automation methods. Some technologies, such as SQL Server 2012,
are easier to automate than others, and some technologies simply cannot be automated. Of
course, if the management of a technology cannot be automated in any way, the automate
phase ends quickly. When the management of a technology can be automated in several ways,
the automate phase usually takes much longer; however, this time expenditure comes with
great reward because less time is spent managing the technology throughout its life cycle.

SQL Server 2012 is one of those technologies that can be automated in several ways.
You can create jobs and alerts within SQL Server and then create triggers on databases and
objects to automate many actions. SQL Server Integration Services can be used to auto-
mate many data management tasks. The new Policy-Based Management feature of SQL
Server 2012 can be used to enforce confi guration standards on one or 100 servers or more.
Clearly, a lot of time can be spent developing management automation plans for SQL Server
solutions. That’s why a large part of this book, comprising this and the next three chapters,
is dedicated to the topic of administration and maintenance.

Update The third and fi nal phase of the SAU methodology is the update phase. In this
phase, you are focused on planning the durability of the technology in question. With SQL
Server 2012, this may mean implementing technologies such as Windows Server Update

452 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Services (WSUS) or implementing manual update policies. Because this chapter focuses the
most on automation, WSUS will be covered in the last section of the chapter.

The results of the SAU process should be a single document or collection of documents
that provide the following information:

■ Confi guration and operational standards

■ Automation methods

■ Update or maintenance methods

When starting the SAU process, usually you should create three documents:

■ A confi guration standards document for the technology

■ An operational standards and automation methods document, which lists both the
expected manual administration tasks (operational—as an operator must do some-
thing) and the tasks that can be automated

■ A maintenance plan document, which indicates the most effi cient and cost-tolerable
method for updating the solution

For a typical SQL Server 2012 implementation, including the Database Engine,
 Integration Services, and possibly one other service (such as Reporting Services or Analysis
Services), the documentation will usually span 25 to 40 pages; however, this is performed
only for the fi rst SQL Server installation. All other installations are based on the same
 documentation, and the documentation may evolve based on experiences learned with
newer implementations.

With this methodology in mind, you’re ready to begin exploring the tools in SQL Server
that allow for the automation of administration procedures. The fi rst tool you’ll explore is
the SQL Server job.

Understanding SQL Server Jobs
SQL Server jobs provide a primary tool for the automation of maintenance and data-related
tasks. It is important that you understand the steps that a job can take and the properties
used to confi gure jobs, all of which will be covered in this section. The section also will
address common job types that you will create and standardize for your SQL Servers.

Job Steps
A SQL Server job is a collection of one or more steps. A step is a task or group of tasks that
should be carried out by the job. The steps can be of any of the following types with a stan-
dard database engine implementation:

ActiveX Script Remember the Windows Scripting Host (WSH) introduced in Chapter
4, “SQL Server Command-Line Administration”? Using ActiveX Scripting allows you to

Understanding SQL Server Jobs 453

take advantage of WSH to perform a nearly unlimited number of tasks. Using this step
type, you can access the Windows APIs and even WMI for lower-level monitoring and
confi guration.

Operating System If you are familiar with MS-DOS or the Windows command prompt,
which was covered in Chapter 4, you will likely use this type of step frequently—at least
until you become more familiar with PowerShell. You can run batch fi les and other com-
mand-prompt commands using this step type.

PowerShell The newest type of job step in SQL Server 2012 is the PowerShell job step.
You can call on any PowerShell scripts using this method. If you are familiar with Power-
Shell, this step type is preferred over the Operating System type; it is more secure and pro-
vides more scripting power.

Replication The replication steps include Replication Distributor, Replication Merge,
Replication Queue Reader, Replication Snapshot, and Replication Transaction-Log Reader.
All fi ve steps are used to perform actions related to SQL Server 2012 replication. Replica-
tion is covered in detail in Chapter 24, “Replication.”

SQL Server Analysis Services The SSAS steps include SSAS Command and SSAS Query.
Both actions are used to interact with an SSAS server. SSAS was introduced in Chapter 13,
“Implementing Advanced Features.”

SQL Server Integration Services Package The SSIS step, SQL Server Integration Services
Package, is used to run a previously built SSIS package. The package should be saved in
a SQL Server, and the SQL Server Agent Service account will usually need access to the
server in which the package is saved. The creation of a job step for an SSIS package is
described in, “Creating SSIS Jobs,” later in this chapter.

T-SQL Commands Any valid T-SQL code can run in a T-SQL step. These steps are
used to perform many different kinds of maintenance and administration tasks, such as
integrity checks, data archiving, data moves, database backups, creation of snapshots,
and more. The creation of a T-SQL job step is described later in this chapter in, “Creating
T-SQL Jobs.”

Using these step types, you create SQL Server jobs within SQL Server Management
Studio and store them in the MSDB database. The jobs are scheduled, processed, and
monitored by the SQL Server Agent service. This is an important bit of knowledge.
Should you need to create a job that communicates with remote servers, the SQL Server
Agent service must be able to communicate with those servers. You must ensure that the
account context in which the SQL Server Agent runs has the ability to access the remote
servers.

It is important to note that jobs can both succeed or fail entirely. For that matter, the
steps in a job can also succeed or fail individually. Although you can be notifi ed of these
success and failure events, in order to be notifi ed, you will need to create some operators.
Operators are covered later in this chapter in, “Creating and Using Operators.”

454 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Job Configuration Properties
SQL Server jobs have six property categories that can be confi gured through the GUI
interface. Figure 14.1 shows the default screen you see when you begin to create a new
job. This screen is accessed by right-clicking Jobs and selecting New Job in the Object
Explorer of SSMS. The six property categories you can confi gure are listed in the upper-
left side of the image:

■ General

■ Steps

■ Schedules

■ Alerts

■ Notifi cations

■ Targets

F I GU R E 14 .1 Creating a new job in SSMS with the GUI interface

Now we’ll discuss each of these in detail.

Understanding SQL Server Jobs 455

General Page
The General page, shown in Figure 14.1, provides access to the basic confi guration param-
eters for the job as an object. These parameters include the job name, owner, category,
description, and status (enabled or disabled). The job name should be descriptive of the
job’s function. For example, the backup job for the Marketing database should be named
something like Marketing Database Backup.

The job category can be used to group jobs together so that they can be fi ltered in job
history views within the Job Activity Monitor. The description provides space for more
detailed information about the job and is not required; however, you may choose to use the
description for several potential uses, such as listing the following:

■ Information about the job author or creator

■ Time and date the job was created

■ Purpose of the job with more details than the job name can provide

■ Permissions required to execute the job

■ Objects utilized by the job

During the standard SAU phase, you should standardize the use of the job description
fi eld. With such a standard, all jobs look similar and provide valuable information to future
administrators.

Filling in the job owner property demands further explanation. By default, the dbo will
own every job created. Of course, the dbo is a member of the db_owner role within the
SQL Server instance. The owner can manage the job much as the owner of a fi le on an
NTFS fi le system can change permissions on that fi le. The only time you would want to
change job ownership is when a user—who is not a member of the sysadmin role—needs to
have management access to the job. While this need is very rare, it certainly does occur. If
the new owner is not a member of sysadmin, be sure to give the owner access to any prox-
ies that are utilized by the job steps.

Proxies, as used in SQL Server Agent jobs, are covered in Chapter 20,
“Security Best Practices.” For now, just know that they provide alternative,
less-powerful credentials for sensitive job steps that could be hijacked in
order to penetrate a server or network system. The job owner must have
access to these proxy accounts, which are simply called proxies in SQL
Server.

Steps Page
The Steps page is used to create the actual job steps. These job steps determine the actions
that the job will take. The different step types were described earlier. Figure 14.2 shows the
Steps page, which is used to add or insert new job steps, delete existing steps, or reorganize
steps. When you click the New button to create a new step, you will be presented with a
dialog similar to that in Figure 14.3.

456 Chapter 14 ■ Creating Jobs, Operators, and Alerts

F I GU R E 14 . 3 Creating a new step in a job

F I GU R E 14 . 2 The job steps page in the New Job dialog

Understanding SQL Server Jobs 457

The General page of the Job Step dialog is used to confi gure the required settings for
the step. Like the job itself, every step in the job has a name. You must also specify the step
type, which can drastically alter the look of the job step dialog, as shown in Figure 14.4.
When you select the SSIS step type, for example, many new options—such as data sources,
logging options, and the actual package selection interface—become available. In general,
when you select a specifi c step type, the dialog will change to refl ect the properties required
to confi gure and execute that selected step type.

F I GU R E 14 . 4 A job step of type SSIS changes the interface.

Additionally, for many step types you can specify the execution context, which is set
using the Run As fi eld. Normally, steps requiring an execution context run as the SQL
Server Agent service account; however, you can change this default. To run the step in a
different context, you must fi rst create a proxy account, which is fully covered in
Chapter 20. For now, however, it is important to note that for every step type except the
Transact-SQL type, you can set a proxy.

If you must run a Transact-SQL step as a different user, you will have to use the EXECUTE
AS clause within the step code itself. You would fi rst create a stored procedure that per-
forms the action required in the step. The stored procedure would be set to execute as a

458 Chapter 14 ■ Creating Jobs, Operators, and Alerts

 different user than the calling user. Finally, you simply need to call the stored procedure in
the job step. Alternatively, if you do not want to develop a stored procedure, you can use
the Advanced page on a Transact-SQL step to specify the user context.

The Job Step dialog also includes an Advanced page, as shown in Figure 14.5.

F I GU R E 14 .5 Configuring advanced settings for a job step

From the Advanced page, you can do the following:

■ Choose the action to perform if the step is successful. A successful step returns no
errors to the calling process or an error level of 0. Three choices are available:

■ Go to next step

■ Quit the job reporting success

■ Quit the job reporting failure

Understanding SQL Server Jobs 459

A step that runs a command reporting success when the state does not equal what you
desire would report failure on success. For example, if you run a command-prompt
command that reports success (no errors) when a particular service is running and you
don’t want the service to be running if your job runs, you could quit the job reporting
failure even though the step was a success.

■ Determine the retry attempts. If the job step fails, you can retry multiple times before
giving up entirely. By default, this parameter is set to 0 retries.

■ Determine the retry interval. The retry interval determines how long to wait, in min-
utes, between retries. The default is 0. If you choose to enable retries, you may want to
set the retry interval to 1 minute or more.

■ Choose the action to perform if the step fails. A failed step returns errors or an error
level of greater than 0 in most cases. The same choices exist for failed steps as for suc-
cessful steps.

■ Set Transact-SQL step parameters. The values in the Transact-SQL script (T-SQL) sec-
tion of Figure 14.5 apply only to T-SQL steps. If the step type were PowerShell, you
would see a PowerShell section instead. The options in this section vary depending on
the step type.

The following are the different options available on the Advanced page for the most
common step types of Transact-SQL, PowerShell, Operating System, ActiveX, and SSIS.

Transact-SQL This specifi es the output fi le to save any output of the T-SQL script; deter-
mines a logging table, if you want to log to a database table; indicates that the output of the
script should be stored in the job history; and specifi es the Run As context, if desired.

PowerShell This specifi es the output fi le to save any output of the PowerShell command(s);
determine a logging table, if you want to log to a database table; and also indicates that the
output of the commands should be stored in the job history.

Operating System This specifi es the output fi le to save any output of the operating system
command(s); determines a logging table, if you want to log to a database table; and indi-
cates that the output of the commands should be stored in the job history.

ActiveX No advanced options specifi c to ActiveX scripts exist. Only the shared options
available for all step types exist on the Advanced page.

SSIS SSIS specifi es the output fi le to save any output of the SSIS package; determines a
logging table, if you want to log to a database table; and indicates that the output of the
package should be stored in the job history.

Schedules Page
The Schedules page is used to create either a data-based or a time-based schedule for the
job to run. Figure 14.6 shows the Schedules page with a CPU idle schedule-run confi gured.
The schedule can be a one-time event, a recurring event, a start-up event, or an idle event.

If you click the Edit button, as shown in the lower part of the screen in Figure 14.6, you
can alter the schedule type. The schedule types you can choose are as follows:

460 Chapter 14 ■ Creating Jobs, Operators, and Alerts

One Time Scheduled Jobs One-time event jobs run once and then never run again on a
schedule. The one-time job is not deleted by default; however, you can confi gure it to be
deleted after a successful run on the Notifi cations page. The one-time job can be run manu-
ally or rescheduled at a future time.

Recurring Scheduled Jobs Recurring jobs run on a regular schedule. The jobs can be
confi gured to run daily, weekly, or monthly. Weekly jobs can be scheduled to run multiple
times during the week. Daily jobs can be scheduled to run multiple times during the day.
Monthly jobs can be scheduled to run on a specifi c date of each month or on the fi rst of a
given day of each month. Additionally, monthly jobs can be scheduled to run multiple times
during the month.

Startup Scheduled Jobs Jobs scheduled to run on start-up run every time the SQL Server
Agent service starts. This fact is very important to remember. You may think a start-up job
runs when the SQL Server service starts, but this is not the case.

Idle Scheduled Jobs A job scheduled for an idle run waits for the CPU to become idle
and then it launches. This type of schedule is very useful for jobs that you want to run
very often for maintenance tasks. Examples include advanced data monitoring, process
monitoring, user monitoring, log monitoring, or any other such task that does not require
fi xed intervals of operation but should run as often as possible without hurting system
performance.

F I GU R E 14 .6 The Schedules page with a CPU idle schedule

Understanding SQL Server Jobs 461

Alerts Page
The Alerts page is used to create and manage alerts for a job. Alerts can monitor for SQL
Server events, performance conditions, or WMI events that occur during the time window
in which the job is running. You can confi gure alerts that monitor the server continually,
using independent alert objects, as discussed later in the section, “Creating and Using
Alerts.” The alerts created on the job Alerts page will be monitored only while the job is
running; however, the alerts are created and confi gured in the same way as independent
alert objects, so the alert creation process will not be covered in detail here.

Notifications Page
The Notifi cations page determines who or what is notifi ed and in what scenarios notifi ca-
tions should take place. Figure 14.7 shows the Notifi cations page.

F I GU R E 14 .7 Configuring notifications for a job

Notifi cations can be made for operators, which are covered later in, “Creating and Using
Operators.” Operators can be notifi ed when the job succeeds, when the job fails, or simply
when the job completes regardless of success or failure.

462 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Notifi cations can take place by email, pager, or net send. The net send option is least
useful for production notifi cations because the notifi cation will be lost if the operator is not
currently logged into the network. The net send option uses the NET SEND command that is
available at the command prompt of Microsoft Windows systems going all the way back to
Windows 3.x in the early 1990s. It relies on two factors for success. First, the target user
must be logged into the network. Second, the machine on which the user is logged in must
be running the proper service. On Windows XP and older clients, this was the Messenger
service. Windows Vista and newer clients no longer support the Messenger service, and it
is best to avoid sending NET SEND messages to these newer clients. In the end, the net send
option is useful for initial testing at best. It should also be avoided in most live production
implementations.

In addition to the operator notifi cations, you can send information to the Windows
event logs. The event log entries will be stored in the application log and can be viewed in
the Event Viewer.

Finally, you can specify that the job should be deleted. The option to delete the job can
be performed when the job completes, when it is successful, or when it fails—just like
notifi cations.

Targets Page
On the Targets page, you can confi gure the job to run against or on multiple servers instead
of just the local server. For example, you can create a job that backs up the master database
and then confi gure this job to run against each SQL Server instance on your network. This
way, you do not have to create the job again on each server individually. To target multiple
servers, you must have a central management server confi gured. Central management is
covered in Chapter 16, “Policy-Based Management.”

Consider standardizing the format for basic job configuration settings.
These settings include the job name, owner, and descriptions—as well as
job step names. By developing standards for these objects and enforcing
these standards, you create a more consistent environment that is easier
to maintain and troubleshoot.

Typical Jobs
There is no better way to illustrate the value of SQL Server jobs than to provide some
examples of typical jobs that have been implemented over the years of supporting SQL
Servers. Most jobs fall into two categories.

Data-Processing Jobs The data-processing jobs perform tasks such as data exports,
imports, moves, deletions, archiving, and the like.

Understanding SQL Server Jobs 463

Maintenance Jobs The maintenance jobs perform tasks such as index defragmentation
(reorganizing and rebuilding), database backups, schedule administration (for example, cre-
ating new databases and database objects), and similar tasks.

The following are a few real-world jobs:

■ A parts distributor had a customer order database that needed to have new data
imported hourly. A job was created to run an SSIS package, and that did the trick.

■ A government client needed to have specifi c non-IT employees notifi ed when particular
data values changed within their SQL Server 2005 database. A job was created that ran
on a CPU idle schedule to watch for the changes and then email the notifi cations with
the sp_send_dbmail stored procedure, which is built into SQL Server.

■ A client with a web-based application wanted to run a job every hour to ensure that
no new user accounts had been added to the application database for security reasons.
A job was created that compared the dbo.AppUsers table with a list of valid users. If
invalid users were found, they were removed, and the admin was notifi ed.

■ A manufacturing client used a machine monitoring application that checked the tem-
perature and parts per minute (PPM) for several machines in the factory. They wanted
to be notifi ed if a machine produced lower than a specifi c PPM rate based on values
in a table that indicated minimum PPM rates for different times of the day, and the
 monitoring application did not have a built-in alert engine. A job was implemented
to monitor the tracking tables and send the alerts.

■ A SQL Server database was used to track projects with a custom-built project man-
agement application at Systems Education and Consulting. They wanted to perform
four tasks: back up the database, rebuild the indexes, create a snapshot, and export
several Excel reports. A single job was created that performed the backup and created
the snapshot. Another job rebuilt all indexes; it ran after the backup and snapshot job.
Finally, the third job exported the Excel reports and even emailed them to the inboxes
of the appropriate project managers.

These fi ve examples—a drop in the bucket compared to the jobs that can be created—
provide food for thought for the types of jobs you can create with SQL Server. As you
work with SQL Server yourself, you will likely discover new uses of the job engine that the
SQL Server Agent service provides. To help you get started, the following three sections
(“Creating T-SQL Jobs,” “Creating SSIS Jobs,” and, “Creating Windows Command Jobs”)
present example jobs based on real-world needs and provide step-by-step instructions for
creating them.

Remember this important fact: your jobs will be easier to manage if you fi rst develop
standards for what all jobs must include. These included items may be job-naming conven-
tions, description requirements, and ownership defaults. When you have standardized the
process, you’re more likely to have a consistent environment that is easier to manage. For
example, when you troubleshoot problems, it is much easier without the stress of fi rst hav-
ing to fi gure out what actions a job performs. Standardization means reduced costs and
frustrations for everyone on the support staff.

464 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Parts Supplier Automates with Standards

A parts supplier located in Ohio was implementing several new SQL Servers for three
different projects. The fi rst project was a new, wireless inventory management system
for their warehouses. The second project was a new customer website for order tracking.
The fi nal project was a new enterprise resource planning (ERP) application. All three were
designed to use SQL Server and worked well on SQL Server 2005 or 2008. The organiza-
tion chose to implement SQL Server 2008.

After installing and confi guring the fi rst database server, they began to create several
jobs for backups and other maintenance tasks. Four different DBAs were working with
the server at different times. One DBA was an independent consultant, and another was
from our consulting practice at SysEdCo. The other two were internal employees of the
parts supplier. Each DBA was building jobs—and other objects for that matter—using his
or her own opinion of how things should be done. The result, with only one server, was
utter chaos.

Some tables were named with a convention of tbl_tablename, and others were named
with a convention of data_tablename. Still other tables were named with seeming ran-
domness. In many cases, jobs lacked descriptions, and job steps were poorly named. A
standardization solution was desperately needed.

I’m happy to say that our consultant spearheaded the project to develop naming conven-
tions, standards for jobs, and other objects and maintenance procedures. By the time the
second and third database servers were installed and confi gured, the standards had been
documented, and the fi rst server had been restructured to comply with the standards. To
this day, the standards are being followed, and working in the SQL Server environment is
much easier.

Just recently, I worked on one of the SQL Servers in this organization, and it was quite
easy to understand the jobs and objects within the server. I have never seen the standard-
ization documents for that specifi c SQL Server installation, and I wasn’t directly involved
in that project. Yet when I access the servers, I can clearly see the naming conventions
used and the standards for descriptions and ownership of objects. Interestingly, I can
continue to support those standards without reading them because they are clear in the
objects that exist. This simplicity is a key factor you should keep in mind when develop-
ing your own standards.

When it comes to standards for object names and descriptions and the like, our motto
is clear: keep it simple, but make it work. Keeping it simple allows for inferential under-
standing of the standard without even reading it, in most cases. Making it work means
that we must implement enough complexity to meet the needs of the situation. By com-
bining simplicity and functionality, you achieve minimum complexity.

Creating T-SQL Jobs 465

Creating T-SQL Jobs
T-SQL jobs can perform just about any SQL Server–related task you desire. Most adminis-
trative actions can be performed using T-SQL commands.

If you do not know the command but you know how to do it in the GUI
interface of SSMS, begin the process within the GUI and use the Script
button to learn the T-SQL code. Then, you can take that T-SQL code and
schedule the action as a job.

To provide an example of a common T-SQL job, Exercise 14.1 steps you through the
process of creating a job that will perform a backup of the AdventureWorks database and
then create a snapshot of the same database. The job will include two steps: one for the
backup and one for the snapshot. Do not worry about the concept of a snapshot at this
time. Chapter 17, “Backup and Restoration,” will cover snapshots in more detail.

E X E R C I S E 14 .1

Creating a T-SQL Job

In this exercise, you will create one of the most common job types: a backup job. The job
creates a backup of the AdventureWorks database using standard T-SQL commands. The
backup is performed in the fi rst step of the job. The second step uses a T-SQL command to
create a snapshot of the AdventureWorks database as it looks just after the backup com-
pletes.

To create the T-SQL–based job and job steps, perform the following steps:

1. Open SSMS, and expand the SQL Server Agent node.

2. Right-click the Jobs node, and select New Job.

3. Enter a job name of Backup and Snapshot for AdventureWorks, as shown here.

4. Accept all other defaults on the General page, and click the Steps page to select it.

5. Click New to add a new step.

466 Chapter 14 ■ Creating Jobs, Operators, and Alerts

E X E R C I S E 14 .1 (c ont inue d)

6. On the General page for the new step, enter the name of Backup AdventureWorks. Note
that the default step type is Transact-SQL, and then enter the following code in the Com-
mand window:

BACKUP DATABASE AdventureWorks2012
TO DISK= ‘C:\Program Files\Microsoft SQL Server\
MSSQL10.MSSQLSERVER\MSSQL\Backup\backupaw.bak’
GO

7. Click the Parse button to validate the code. In the Command window, the DISK parame-
ter path should be typed without a line break. You should receive a message that reads,
“The command was successfully parsed.” If not, check the code for accuracy. The Gen-
eral page should look similar to what’s shown here.

8. Click the OK button to save the step and accept all defaults for the Advanced page.

9. Click the New button to add the second step for the snapshot creation.

10. On the General page for the new step, enter the name of CreateAdventureWorks
Snapshot and then enter the following code in the Command window; note that the
FILENAME parameter path should be typed without a line break:

IF EXISTS (SELECT name FROM sys.databases WHERE name = N’AdventureWorks_ss’)
BEGIN
 DROP DATABASE AdventureWorks_ss
END

Creating T-SQL Jobs 467

GO
CREATE DATABASE AdventureWorks_ss ON
(NAME = AdventureWorks_Data, FILENAME =
‘C:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL\Data\AdventureWorks.ss’)
AS SNAPSHOT OF AdventureWorks;
GO

11. Click the Parse button to ensure you entered the code accurately.

12. If the code parses correctly, the General page should look similar to what’s shown here;
if so, click OK to save the job step.

13. Select the Schedules page to confi gure a schedule for the Backup and Snapshot for the
AdventureWorks job.

14. Click the New button to create a new schedule.

15. Enter the schedule name of Nightly-4-AM.

16. Accept the default schedule type of Recurring.

17. For Frequency, choose Daily, and then specify Occurs Once At: 4:00:00 AM. Your New
Schedule screen should look similar to what’s shown here. If so, click OK.

468 Chapter 14 ■ Creating Jobs, Operators, and Alerts

E X E R C I S E 14 .1 (c ont inue d)

18. Click OK again to create the job.

In a production environment, you would create the operators before creating a job like
the one in Exercise 14.1. You would take the extra steps to notify one or more operators for
an important job like the backup of a database. If you want to run the job in order to verify
that it works, follow these steps:

1. Right-click the job, and select Start Job At Step in SSMS.

2. Choose step 1, and click Start.

If everything goes well, you should see results similar to those in Figure 14.8.

F I GU R E 14 . 8 Manually running the Backup and Snapshot for the AdventureWorks job

Creating T-SQL Jobs 469

You can also navigate to the storage folders used in the job to verify that the fi les are
there. A fi le named AdventureWorks.ss should be in the C:\Program Files\Microsoft SQL
Server\MSSQL11.MSSQLSERVER\MSSQL\Data folder. Another fi le named backup.bak should
be in the C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\Backup
folder.

Congratulations. You’ve successfully created your fi rst and one of the most important
job types you can create—a backup job. You’ll learn much more about backups, including
snapshots, in Chapter 16.

Once a job is created, however, it isn’t set in stone. Jobs can be modifi ed and monitored
after you create them using SSMS and the Jobs node. For example, you may want to con-
fi gure operators to be notifi ed in relation to a job, or you may need to change the steps in a
job. You can modify a job easily by double-clicking it at any time. Here are a few quick and
easy modifi cations:

■ You can delete jobs by right-clicking the job and selecting Delete.

■ If you want to prevent the job from automatically running—assuming it has been
scheduled—without deleting it, you can prevent job execution by right-clicking the job
and selecting Disable.

■ Later, when you want the job to run again, just right-click the job and select Enable.

■ You can also view the activity related to a job. For example, you can see whether a job
has run and, if so, whether it was a success or failure. To view job activity, right-click
the Job Activity Monitor in the SQL Server Agent node and select View Job Activity.
You will see a screen similar to that in Figure 14.9.

F I GU R E 14 . 9 Viewing job activity in the Job Activity Monitor

470 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Creating SSIS Jobs
SSIS is very good at exporting and importing data. For this reason, you’ll use the example
of a data export job as the SSIS job. Exercise 14.2 steps you through the process of creating
the SSIS export package with the Export Wizard.

E X E R C I S E 14 . 2

Creating the SSIS Export Package

In this exercise, you will use the Data Export Wizard in SSMS to generate an SSIS package
that you can run as a job step. The package will export data in Excel format and store it in
a fi le on the desktop of the server. The exported data will come from the Sales.SalesOrder-
Header and Sales.SalesOrderDetail tables in the AdventureWorks database.

To create the SSIS Export package, follow these steps:

1. Launch the SSMS application, and expand the Databases node.

2. Right-click the database from which you want to export the data and right-click the
AdventureWorks database.

3. Choose Tasks ➢ Export Data from the right-click menu. The SQL Server Import And
Export Wizard appears. If you see the Welcome screen because you have never checked
the Do Not Show This Screen In The Future box, click Next.

4. On the Choose A Data Source screen, ensure that the AdventureWorks2012 database is
selected, as shown here, and click Next.

5. On the Choose A Destination screen, select the Microsoft Excel destination.

6. For the Excel fi le path, enter C:\ExportData\Sales.xls. (The C:\ExportData folder must
exist. If it does not, launch a command prompt and execute md C:\ExportData to create it.)

Creating SSIS Jobs 471

7. Check the First Row Has Column Names option, as shown here, and click Next.

8. On the Specify Table Copy Or Query screen, choose Copy Data From One Or More
Tables Or Views, and click Next.

9. On the Select Source Tables And Views screen, scroll down and select (by checking the
check box) the Sales.SalesOrderDetail and Sales.SalesOrderHeader tables, as shown
here, and then click Next.

10. On the Review Data Type Mapping screen, review the settings, accept the defaults, and
click Next. (Do not be alarmed if you see a warning on the Review Data Type Mapping
screen. The warnings should not cause any problems for our purposes. They are usually
related to data type conversion issues and should not corrupt data.)

11. On the Save And Run Package screen, select Save SSIS Package, and save the package
in the SQL Server. For Package Protection Level, choose Rely On Server Storage And
Roles For Access Control. Deselect Run Immediately, as shown here, and then click
Next.

472 Chapter 14 ■ Creating Jobs, Operators, and Alerts

E X E R C I S E 14 . 2 (c ont inue d)

12. On the Save SSIS Package screen, enter the following parameters:

a. In the Name fi eld, enter Export Sales Data.

b. In the Description fi eld, enter Export the Sales.SalesOrderDetail and Sales.SalesOr-
derHeader tables to an Excel spreadsheet named Sales.xls.

c. In the Server name fi eld, select the name of your local server on which you are cre-
ating the package.

d. For authentication security, choose Windows Authentication.

13. Once your Save SSIS Package screen looks similar to the following, click Next.

14. Review the chosen options on the Complete The Wizard screen, and then click Finish to
create the package. You should see results listing the value Success for each step, simi-
lar to what’s shown here.

Creating SSIS Jobs 473

15. Click Close to close the Import And Export Wizard.

The Import And Export Wizard used in Exercise 14.2 is an important feature to remem-
ber because it provides an excellent way to import and export data from your SQL Servers
dynamically as well as through an SSIS package.

In Exercise 14.3, you will create the actual job that calls on the SSIS package. The job
creation process is very simple now that the SSIS package is doing all the work.

E X E R C I S E 14 . 3

Creating an SSIS Job

In this exercise, you will create the job to run the SSIS package generated in Exercise 14.2. If
you have not performed Exercise 14.2, you will not be able to complete this exercise.

To create the SSIS-based job, follow these steps:

1. Launch the SSMS, and expand the SQL Server Agent node.

2. Right-click the Jobs node, and select New Job.

3. Enter a job name of Export Sales Data Nightly to indicate that the job is used to export
sales data every night.

474 Chapter 14 ■ Creating Jobs, Operators, and Alerts

E X E R C I S E 14 . 3 (c ont inue d)

4. Accept the default for job ownership, and enter any description you desire.

5. Ensure that the Enabled option is checked.

6. Accept the default value for the Category fi eld. You can use the category to fi lter reports
on the job history in production environments, but you’ll leave it unassigned here.

7. Once your General page looks similar to what’s shown here, click the Steps page.

8. Click New to add a new job step.

9. Enter the step name of Run the Export SSIS Package.

10. Choose the step type of SQL Server Integration Services Package.

11. On the General tab, choose the server you specifi ed in step 12 of Exercise 14.2, and
choose the package source of SQL Server as well.

12. Again, on the General tab, click the Build button (…), choose the Export Sales Data SSIS
package, and click OK.

13. Once you have entered the information described and shown here, click OK to create the
step.

Creating SSIS Jobs 475

14. Select the Schedules page.

15. Click New to add a new schedule.

16. Enter a name of Nightly at 1:00 AM, choose the schedule type of Recurring, set the fre-
quency to Daily, and choose Occurs Once At: 1:00:00 AM for the time. Once your New
Job Schedule dialog looks similar to what’s shown here, click OK to create the schedule.

17. Click OK again to save the job.

476 Chapter 14 ■ Creating Jobs, Operators, and Alerts

As Exercise 14.3 shows, creating an SSIS job is very similar to creating a T-SQL job. If
you want to delete the SSIS job that was created in Exercise 14.3, right-click the job and
select Delete. You may want to do this for all of the jobs you create in this chapter so that
they do not run on a scheduled basis on your lab server.

Creating Windows Command Jobs
In this fi nal job example, you will learn how to create a job that calls on a Windows com-
mand. A Windows command can be any CMD.exe command or command-prompt command
that you desire to run. This allows for tasks ranging from network administration to SQL
Server service management and much more. The purpose of this job will be to send a
server status report to the DBA from the SQL Server. You will fi rst create a batch fi le in
Exercise 14.4. The batch fi le will execute several commands in order to gather information
about the state of the server.

E X E R C I S E 14 . 4

Creating a Batch File for Information Gathering

In this exercise, you will create a batch fi le that you will then launch from a job in Exercise
14.5. This batch fi le will run command-line commands to store the server name, IP confi gu-
ration, network statistics, and more information in a log fi le named C:\Logs\%date%-sys-
info.log. For the batch fi le to work properly, the folder must exist. For this reason, the batch
fi le fi rst checks for the existence of the folder and creates it if it is missing. Next, several
commands are executed to export information to the log fi le.

To create the batch fi le, follow these steps:

1. Launch the Notepad text editor by selecting Start ➢ All Programs (or Programs) ➢
Accessories ➢ Notepad.

2. Enter the following batch fi le code into the Notepad text editor window:

IF EXIST C:\Logs\. GOTO CREATELOG
MD C:\Logs
:CREATELOG
ECHO —————————————————————————— >> c:\Logs\sysinfo.log
ECHO Log Date: %DATE% >> c:\Logs\sysinfo.log
ECHO Log Time: %TIME% >> c:\Logs\sysinfo.log
ECHO Server Name: %COMPUTERNAME% >> c:\Logs\sysinfo.log
ECHO.

Creating Windows Command Jobs 477

ECHO IP Configuration >> c:\Logs\sysinfo.log
IPCONFIG >> c:\Logs\sysinfo.log
ECHO.
ECHO Running Tasks >> c:\Logs\sysinfo.log
TASKLIST /v >> c:\Logs\sysinfo.log
ECHO.
ECHO Network Stats >> c:\Logs\sysinfo.log
netstat -s >> c:\Logs\sysinfo.log

3. Click File ➢ Save to save the batch fi le.

4. Navigate to the C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\JOBS folder, and save the fi le as GatherSysInfo.bat.

5. Click File ➢ Exit to exit Notepad.

You may want to run the batch fi le manually to verify that it works correctly on your
server before proceeding to Exercise 14.5.

Now that the batch fi le is ready, it’s time to start building the job. In Exercise 14.5, you
will create a job that calls the batch fi le in the fi rst step. Next, you will execute another
step that sends the results of the batch fi le to the DBA as an email attachment. The exercise
assumes that the DBA’s email address is DBA@company.com. If you have not previously con-
fi gured Database Mail, the job will not be able to send the email, but you can still create
the job.

E X E R C I S E 14 . 5

Creating a Windows Command Job

In this exercise, you will create the job that runs the batch fi le created in Exercise 14.4. To
create the Windows command job, follow these steps:

1. Launch SSMS, and expand the SQL Server Agent node.

2. Right-click the Jobs node, and select New Job.

3. Enter a job name of Generate System Information Log to indicate that the job is used to
export sales data every night.

4. Accept the default for job ownership, and enter any description you desire.

5. Ensure that the Enabled option is checked.

6. Once your General page looks similar to what’s shown here, click the Steps page.

mailto:DBA@company.com

478 Chapter 14 ■ Creating Jobs, Operators, and Alerts

E X E R C I S E 14 . 5 (c ont inue d)

7. Click New to add a new job step.

8. Enter a name of Run GatherSysInfo.bat.

9. Choose the step type of Operating System (CmdExec).

10. In the command window, enter the following text all on one line:

“C:\Program Files\Microsoft SQL Server\
MSSQL10.MSSQLSERVER\MSSQL\Jobs\GatherSysInfo.bat”

Creating Windows Command Jobs 479

11. Click OK to save the job step.

12. Select the Schedules page.

13. Click New to add a new schedule.

14. Name the schedule CPU IDLE, and choose the schedule type of Start Whenever The
CPUs Become Idle, as shown here.

15. Click OK to save the new schedule.

16. Click OK to create the job.

After some time has passed and the CPUs have been idle, you should see a new folder
named Logs in the root of your C: drive. In this folder will be an ever-growing log named
syslog.log. To see whether the Generate System Information Log job has executed, right-
click the job and choose View History. From here, you can see any execution instances, as
represented in Figure 14.10.

F I GU R E 14 .10 Viewing the history of the Generate System Information Log job

480 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Creating and Using Operators
SQL Server operators are collections of contact information and contact time windows
for individuals, groups, or systems. These individuals, groups, or systems can be referred
to as points of contact. Operators are created to provide notifi cations to these points
of contact. In most cases, jobs and alerts send the notifi cations. You create operators in
SSMS by expanding the SQL Server Agent container in Object Explorer and then select-
ing the Operators container. From here you can create and manage operators. Exercise
14.6 steps you through the process of creating a fi ctitious operator named Fred
Barney.

E X E R C I S E 14 . 6

Creating an Operator

In this exercise, you will create an operator for a fi ctitious individual named Fred Barney.
Fred’s fake email address will be confi gured as fredb@sqlserverdbabook.net. He will be
available for NET SEND messages at the NetBIOS name of fredb for testing the initial
configuration. In this case, the pager duty will not be applicable.

To create the operator, follow these steps:

1. Launch SSMS, and expand the SQL Server Agent node.

2. Right-click the Operators node and select New Operator.

3. Enter the name of Fred Barney.

4. Enter the email address of fredb@sqlserverdbabook.net.

5. Enter the net send address of fredb.

6. Once the operator confi guration looks like the image shown here, click OK to create the
operator.

When you use a job schedule based on CPU idle time, you can adjust what
is considered an idle CPU. Right-click the SQL Server Agent node and
select Properties. From here, choose the Advanced page, and set the CPU
idle parameters as desired. You must restart the SQL Server Agent service
for the CPU idle changes to work.

mailto:fredb@sqlserverdbabook.net
mailto:fredb@sqlserverdbabook.net

Creating and Using Operators 481

Note that you have created an operator, which means you can add the operator to any
job for notifi cation. To add an operator to a job, simply double-click the job and select
the Notifi cations page. Choose the notifi cation method and the appropriate operator.
Figure 14.11 shows an example of this confi guration.

F I GU R E 14 .11 Configuring an operator for notification within a SQL Server Agent job

482 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Creating and Using Alerts
SQL Server alert objects are used to notify operators or launch jobs when events occur. You
create alert objects in the SQL Server Agent node by right-clicking the Alerts container and
selecting New Alert. SQL Server alert objects fall into three primary categories:

SQL Server Event Alerts SQL Server event alerts monitor for errors within the SQL
Server. You can monitor for severity levels or for explicit error numbers. You can also raise
an alert when a message contains specifi c text. This latter option is most useful when you
want to fi re an alert if it mentions a particular object, such as a table or a database.

SQL Server Performance Condition Alerts You can also indicate that an alert should fi re
based on a specifi c performance condition. You fi rst specify the performance counter to
monitor. Next, you set a threshold for the alert. Finally, you confi gure the behavior that the
counter must show if the alert is to occur.

Windows Management Instrumentation Alerts Windows Management Instrumentation
(WMI) alerts monitor for WMI events. The WMI Query Language (WQL) is used to defi ne
the event that is monitored. WMI grants you access to internal systems and events within
the SQL Server and the Windows server on which it runs.

Exercise 14.7 steps you through the process of creating an alert within SSMS. The alert
monitors for errors in relation to the Production.Product table only.

E X E R C I S E 14 . 7

Creating a SQL Server Alert in SSMS

In this exercise, you will create an alert using the SSMS GUI interface. The alert will watch
for errors related to the Production.Product table in the AdventureWorks database and will
notify the operator Fred Barney if an error occurs.

To create the alert, follow these steps:

1. Launch SSMS, and expand the SQL Server Agent node.

2. Right-click the Alerts node and select New Alert.

3. Enter the name of Production.Product Table Problem.

4. Choose the Severity level of 007, which means anything at the level of a notifi cation or
higher.

You may create an operator so that the SQL Server can send notifications
to another system. If the remote system monitors an email account or lis-
tens for incoming net send messages, it can receive notifications and take
appropriate actions.

Creating and Using Alerts 483

5. Check the Raise Alert When Message Contains option, and enter the text Production
.Product into the text fi eld.

6. Once your General page looks similar to the one shown here, click the Response page.

7. Select the Notify Operators option, and check the email notifi cation for Fred Barney, as
shown here.

8. Click OK to create the new alert.

484 Chapter 14 ■ Creating Jobs, Operators, and Alerts

In addition to the alerts you create within SSMS, you can create alerts in the Perfor-
mance Monitor (also known as the System Monitor). The Performance Monitor is part of
the Windows Server operating system, and in Windows Server 2008 and 2008 R2, it is part
of the Reliability and Performance Monitor. Exercise 14.8 provides instructions for creating
an alert within the Performance Monitor.

E X E R C I S E 14 . 8

Creating a Free Drive Space Alert

In this exercise, you will create a Performance Monitor alert using the Reliability and Perfor-
mance Monitor in Windows Server 2008 or 2008 R2. You will fi rst create a user-defi ned data
collector set, which specifi es the performance counter to monitor. Then, you will specify the
threshold and action to take should the alert fi re.

To create the counter-based alert, follow these steps:

1. Select Start ➢ All Programs ➢ Administrative Tools ➢ Reliability And Performance
Monitor (or Performance Monitor).

2. Expand the Data Collector Sets node.

3. Right-click the User Defi ned node and select New ➢ Data Collector Set.

4. Enter the name of Free Drive Space on C; select Create Manually (Advanced), as shown
in the following image, and then click Next.

5. Select Performance Counter Alert, which is not the default, and then click Next.

6. Click Add to add the Logical Disk counter for drive C:.

Creating and Using Alerts 485

7. Scroll through the list of available counters, and expand Logical Disk.

8. Click Free Megabytes within the Logical Disk object, and choose C: in the instances of
selected object section, as shown here.

9. Click the Add button to add the counter, and then click OK.

10. In the Create New Data Collector Set dialog, set the Alert When value to Below and the
Limit value to 2000 so that the alert will fi re when the drive is below 2000MB of free
space. When your dialog looks similar to the one shown here, click Next.

486 Chapter 14 ■ Creating Jobs, Operators, and Alerts

E X E R C I S E 14 . 8 (c ont inue d)

11. Click Finish to create the data collector set.

At this point, the data collector set named Free Drive Space on C exists; however, no actions
are confi gured for when the alert fi res. To confi gure these actions, follow these steps:

a. Expand the User Defi ned node within the Data Collector Sets node.

b. Click the Free Drive Space On C set in the left pane.

c. Double-click the DataCollector01 alert in the right pane.

d. Select the Alert Action tab, and enable the Log An Entry In The Application Event
Log option.

e. Notice that you can start a performance log data collector set from the Alert Action
tab as well and then click the Alert Task tab.

f. Notice that you can run programs in response to the fi ring of the alert from the
Alert Task tab. Change nothing else, and click OK to save the event log notifi cation
change that you made in step 15.

Now, the alert is confi gured to log to the event log, but it is still not going to work
until you start the data collector set.

g. Right-click the Free Drive Space On C set in the left pane, and select Start.

You have now worked through the process of creating an alert in Windows Server
2008 or 2008 R2 with the Reliability and Performance Monitor or Performance Monitor
for a very simple reason: it’s much more complicated than it used to be in earlier versions
of Windows Server. However, it’s also more powerful and consistent. This new model is
also used in Windows Vista and Windows 7, so it’s very important that you get used to
using it.

It’s just a preference, but I prefer to create alerts outside of SQL Server
when they are available in the Performance Monitor. The reason is simple:
when I create alerts in the Performance Monitor, I’m using a consistent
interface that also works on my Exchange Servers, my IIS web serv-
ers, and any other Windows Server. It goes right back to the principle of
standardization.

Using WSUS for SQL Server 2012 487

Using WSUS for SQL Server 2012
It would be nice if SQL Server 2012 were so fl awless that Microsoft never needed to release
an update for the product. However, Microsoft releases service packs (SPs) and updates on
a regular basis. An SP includes fi xes for bugs in the application code and may introduce
new features.

In addition to SPs, hotfi xes are also released. Hotfi xes repair, in most cases, individual
problems. SPs repair the collected problems that may or may not have previously been fi xed
in hotfi xes. You could choose to manually update all of your SQL Server 2012 installa-
tions, and if you have only a few, that may be the best choice. However, if you have dozens
of SQL Server instances, you may need to implement a large-scale update infrastructure.
That’s where tools like Windows Server Update Services (WSUS) come into play. While
many SQL Server patches must be applied manually or in a scripted manner, the server OS
must be updated as well.

WSUS is a free add-on to Windows servers. It allows you to confi gure an internal server
for downloading updates from Microsoft. These updates include updates for Windows
Server 2008, 2008 R2, and so on. SQL Server installations used as business database serv-
ers are typically installed on Windows Servers, and these servers as well as the SQL Server
installations on them must be updated. The internal clients and servers on your network
receive updates from the WSUS server. There are several benefi ts, but the following three
are the most important:

Reduced Internet Bandwidth Consumption Because the internal clients and servers pull
the updates from the WSUS server on your network, Internet bandwidth is utilized more
effi ciently. An update can be downloaded from the Microsoft Update website to the inter-
nal WSUS server once. This update can then be downloaded to any number of internal
machines. The result is better Internet bandwidth utilization.

Redundancy Provides for Higher Update Uptime In addition to the improved bandwidth
utilization, updates are more likely to be available when you need them. When you rely on
Microsoft Update, two things must always be available: your Internet connection and the
Microsoft Update website. While both of these resources have very high uptime rates, you
can install multiple internal WSUS servers that operate in a hierarchy, resulting in even bet-
ter uptime for new installs. Now, when a new server is installed, it can pull the updates or
service packs from any of several internal update servers.

Selective Update Application Other than Internet bandwidth savings, selective update
application is probably my favorite benefi t of WSUS. With selective update applications,
you can choose which updates you want to install on your internal machines. If you rely
on Automatic Updates through the Microsoft Update website, you can specify the type
of updates to be applied automatically, but you have no way to massively select dozens or
hundreds of updates while rejecting dozens or hundreds of others. WSUS gives you this
capability.

488 Chapter 14 ■ Creating Jobs, Operators, and Alerts

Installing WSUS in a large-scale deployment is a very involved process. You must select
the deployment model (hierarchical or fl at) and the number of WSUS servers needed. You
must then install the WSUS servers and confi gure them for their appropriate operations. In
a large organization, this project can take weeks or even months. You can download WSUS
from the Microsoft website at: http://technet.microsoft.com/en-us/wsus.

Summary
In this chapter, you learned about the SAU methodology for technology deployment:
 standardize confi guration settings and implementation procedures. Automate as much
administration and maintenance as possible. Update the solution for durability and
 security. Standardize, automate, and update is SAU.

Next, you learned about several SQL Server features that can help you with the auto-
mation process. You learned about jobs and how to create T-SQL, SSIS, and Windows
command-based jobs. Then you learned about operators and how to create and use them.
Finally, you learned how alerts work and how to create them in both SSMS and the Per-
formance Monitor. These skills will help you develop a fully standardized, automated,
and updateable environment. Such an environment will cost less to support and result in
reduced disruptions of service. In the next chapter, you will learn to use the performance
monitoring and tuning tools to take your stable environment to greater levels of perfor-
mance as well.

Chapter Essentials

Understanding the Standardize, Automate, and Update Methodology The SAU methodol-
ogy provides a logical thinking structure for implementing any new technology. It begins
with the standardization of confi gurations and operational procedures. Next, you auto-
mate as much of the management and maintenance of the technology as possible. Finally,
you plan and implement update procedures so that the durability of the technology is
acceptable.

Understanding SQL Server Jobs SQL Server jobs consist of one or more steps, schedules,
alerts, and notifi cations. Jobs can be used to automate administrative and maintenance
tasks. Standardization of generic job parameters, such as the job name, owner, and descrip-
tion, is very important.

Creating T-SQL Jobs T-SQL job steps are used to run T-SQL commands within a job. A
job does not have to be entirely one step type or another, but it is common to implement a
job completely within the boundaries of a given step type when possible. Sticking with a
single step type within a job can make it easier to understand and manage the job.

http://technet.microsoft.com/en-us/wsus

Chapter Essentials 489

Creating SSIS Jobs SSIS jobs run SSIS packages. The package is created using either wiz-
ards in SSMS or the Business Intelligence Development Studio (BIDS). Once the package is
created, it can be executed as a job step in a SQL Server job. A job may run more than one
package.

Creating Windows Command Jobs Windows command or operating system com-
mand jobs run mostly Windows command-line commands and batch fi les. If you have a
 command-line utility that performs the work you need performed, this job step type is most
useful. In this chapter, you learned to create a system information batch fi le and run it as a
job step.

Creating and Using Operators A SQL Server operator object is a collection of contact
information for a person, group, or system that should be notifi ed of specifi ed events,
alerts, or job results. Operators can also be confi gured for availability so that they will be
notifi ed only at proper times.

Creating Alerts SQL Server alert objects are used to monitor for errors, events, or perfor-
mance measurements and take action should they occur. Alerts can execute jobs when they
fi re. Alerts can also notify operators. In addition to the SQL Server alert objects, you can
create alerts in the Performance Monitor within Windows Server.

Using WSUS for SQL Server 2012 Windows Server Update Services (WSUS) can be used
to implement an update infrastructure within your organization. With WSUS, you have
greater control over the updates that are automatically installed on your servers. SQL Serv-
ers may also be updated through WSUS, though the administrator should use great caution
since an update could potentially prevent a mission-critical application from functioning
properly.

Chapter

15
Performance
Monitoring and
Tuning

TOPICS COVERED IN THIS CHAPTER:

 ✓ Performance Tuning Principles

 ✓ Performance and Troubleshooting Tools

 ✓ Blocks, Locks, and Deadlocks

 ✓ SQL Server Profiler

 ✓ Database Engine Tuning Advisor

 ✓ Performance Monitoring with System Monitor

 ✓ Using the Resource Governor

 ✓ Performance Studio

 ✓ Advanced Monitoring Tools

SQL Server database servers can be optimized to improve per-
formance without requiring hardware upgrades; however, you
must understand the tools used to analyze the performance

of the server before you can decide whether a hardware upgrade is needed. In this chap-
ter, you will learn about the performance monitoring tools available in SQL Server 2012
and Windows Server, and you will learn to use these tools for performance analysis and
troubleshooting.

So that you can understand the proper application of the tools covered in this chapter,
I will fi rst review the principles of performance tuning.

Performance Tuning Principles
This section will address two primary topics. First, you’ll take a look at why performance
tuning matters. What benefi ts can you gain through server performance analysis? Second,
you’ll look at some common myths related to performance tuning so you can both avoid
them and understand how administrators often fall into their snares.

Why Performance Tuning Matters
Anyone can throw more hardware at a performance problem, but the most valuable DBAs
can use performance tuning processes to save their organizations money, increase effi -
ciency, and decrease frustration for database users. The following sections address each of
these benefi ts.

Cost Savings
If the only solution you have for performance problems is a hardware upgrade, the per-
formance enhancements you implement will be very costly. For example, if you have a
database server that is performing poorly and you just assume you have to upgrade to a
new server, it may cost you thousands of dollars. By the same token, if you upgrade RAM
in a server, it may cost you hundreds of dollars, and you might have been able to achieve
the needed performance gain by tweaking a few database queries or archiving some old
data. The point is that by understanding the factors that impact the performance of a data-
base, you can instead optimize existing software on existing hardware in order to improve
performance.

Performance Tuning Principles 493

Increased Efficiency
Not only will performance improvements initially save you money on hardware
 investments, they will also allow you to save in other ways. Your users will get their jobs
done faster, and this effi ciency improvement means they will have more time for other
responsibilities. However, increased effi ciency is not just about saving money; it’s also
about improving employee morale. The last thing you want as the DBA is a large group of
frustrated users. Their increased effi ciency results in your increased peace. The company’s
productivity will also increase, which can increase the profi tability of the organization.
Everyone looks better when this happens.

ABC, Inc., Discovers Low-Cost Performance Enhancements

ABC, Inc., had a database server that had been in production for two years. The server
provided exceptional performance for the fi rst 18 months, but over the most recent 6
months users began to complain about delays in the system. When the DBA priced serv-
ers that were 50 percent more powerful than the existing machine, the price average was
$6,700. She was sure that the hardware upgrade would resolve the performance prob-
lems, but the IT director asked her to investigate other solutions fi rst.

After attending a SQL Server class, she realized she would be able to improve the per-
formance of the database in several ways without hardware expenditures. First, because
the database performed well for the fi rst 18 months, the current problems appeared to be
related to either data volume or transaction volume. The DBA analyzed the transactions
per second and saw that they were not any higher than they were three months after
implementation. However, the database had grown to more than 12GB after starting as a
500MB database.

Furthermore, she realized that no index maintenance procedures had been implemented.
When she inspected the fragmentation level of the indexes, many showed fragmentation
levels greater than 40 percent.

Based on this information, she implemented a new maintenance plan. First, she created a
job that ran every six months and archived data that was more than one year old. Second,
she created a job that defragmented the indexes once each week and reorganized them
once each month with a rebuild. After performing these operations and implementing the
automated maintenance, she found that the database began to perform well again and no
further cost investments were required.

The preceding scenario is based on a real-world situation. Only the company name was
changed. The most important lesson to learn is that you can often improve the perfor-
mance of your servers without costly expenditures.

494 Chapter 15 ■ Performance Monitoring and Tuning

Decreased Frustration
As the preceding section notes, once effi ciency is increased, the logical result is that frus-
tration is decreased. Users are less frustrated because their tasks are completed in a timely
manner. The DBA is less frustrated because she can spend her time dealing with issues
other than user complaints related to performance. In the end, performance improvements
provide value to everyone involved: the users, the organization, and the support staff.

Common Performance Tuning Myths
Before you investigate the specifi c tools used for performance monitoring and analysis, it’s
important to understand the realities of performance testing and achieving a well-perform-
ing database implementation. To do this, you need to avoid falling into some of the myths
that surround performance analysis and improvement. Table 15.1 lists the most common
myths that seem to continually propagate through the systems administration and DBA
world, along with the corresponding truths.

TA B LE 15 .1 Common performance tuning myths

Myth Truth

If processor utilization is high, a faster pro-
cessor is needed.

One thing is seldom the culprit.

80 percent of the performance is determined
by the application code.

Better code is better, but better design is best.

An optimized server is the only key to data-
base performance.

It still has to travel the network.

The following sections cover the origins of the myths and the reasons the truths are
more often the realities. These truths represent the common realities of performance
tuning. That said, you should know that rare scenarios certainly exist where the myths are
actually true, but these are the exception and not the rule.

One Thing Is Seldom the Culprit
When Microsoft introduced Windows 2000 Server, it made an adjustment to the System
Monitor (which was called the Performance Monitor in Windows NT) so that it started
with three default counters:

■ % Processor Utilization

■ Avg. Disk Queue Length

■ Pages/sec

Performance Tuning Principles 495

This change has been a tremendous help in overcoming the myth of the faster processor,
but it does still lurk in the shadows. Sadly, Windows 7 has gone back to showing only the
% Processor Utilization counter; I hope most administrators know that they must monitor
more than this one counter. It’s no question that scenarios exist where a faster processor is
needed. However, it’s also no question that a faster processor is usually not the thing that
will provide the greatest performance gain. In fact, the culprit is seldom one thing but is
usually two or more things that need to be addressed.

Here’s an example to help you better understand this. Assume you have monitored the
CPU utilization on your SQL Server, the virtual memory pages per second, and the length
of the hard drive queue. Additionally, assume that CPU utilization is at an average of 82
percent. This reading would be rather high as an average, although not necessarily high as
a single reading. You may decide to double the processor speed and notice that the average
utilization only reduced to 80 percent. How could this happen? It could happen if the pages
per second were really high. Such a pages-per-second reading would indicate that you do
not have suffi cient physical memory in the server.

In a scenario like this, you may be able to cut CPU utilization as much as 20 to 40
percent by simply doubling the memory. If pages per second are very high, memory
is the likely culprit. If the hard drive queue length is high, then you could also look at
getting faster hard drives or using a RAID 0 array to store the virtual memory fi le. This
confi guration change would allow for faster reads and writes to virtual memory and may
also reduce CPU utilization.

As this example shows, if you look at one counter and make your performance judgment
based on that single counter alone, you may well make an erroneous decision. It is usually
best to monitor multiple counters and then consider them as an integrated whole to make
your performance improvement decisions.

Better Code Is Better, but Better Design Is Best
It is very true that poorly written SQL statements and other code modules can reduce the
performance of any database solution. However, the common thinking that 80 percent of
a database system’s performance comes from the code, which accesses the database, is
frequently untrue. You can have the best-written code in history and still have a poorly
performing database if the physical and logical design is poorly implemented or created.

By improving the physical design, you can often double or triple the performance of
a database system that already has perfectly coded modules and queries. For example,
placing the physical data fi les on a stripe set RAID array can improve physical writes and
reads. Database tables can be partitioned onto separate fi legroups to control which data
ends up on the different drives in your server. The point is that many things can be done in
the physical design of a database system to improve its performance.

Additionally, the logical design—table structures, views, index choices, and data types—
can greatly impact performance. As an example, consider a table where you’ve used the
char(70) data type for a column that has variable-length data ranging from 10 characters
to 70 characters. This data type choice may unnecessarily increase the database size and,
therefore, reduce query performance regardless of how well the queries are written. Using

496 Chapter 15 ■ Performance Monitoring and Tuning

the varchar(75) data type may improve performance in this scenario because the record
sizes can vary based on the actual content of the data column. As you can see, there are
many factors other than coding that affect the performance of a database system, and they
usually add up to an impact equal to—if not greater than—that of the code.

It Still Has to Travel the Network
Finally, you can do everything to optimize the server, code, and design and still have a
poorly performing database system if the network between the server and the clients is
overloaded. Performance is both a measurable fact and a perceived reality. Stated dif-
ferently, you can measure the server’s potential and ensure that it is fast enough but still
receive communications from users who feel that “the server is slow” because the network
cannot handle the bandwidth demanded. Even with a well-performing server, the data still
has to travel across the network. Therefore, you will need to ensure that the network band-
width is suffi cient for your purposes. If you do not have control of the physical network,
be sure to check with your infrastructure network administrators before you implement a
database solution that is bandwidth-intensive.

Performance and Troubleshooting Tools
Several tools are available for performance analysis and troubleshooting. Some of them are
Windows tools, meaning that they are part of the Windows operating system. Others are
SQL Server tools and come with the SQL Server product. The following key tools should be
considered for performance analysis:

Activity Monitor The Activity Monitor is a SQL Server tool accessed from within the
SQL Server Management Studio. With the Activity Monitor, you can view the processes
used for connections to the SQL Server. Blocking can be monitored and locks can be
viewed. The wait time can also be seen. The most common administrative task per-
formed in the Activity Monitor is the killing of a stubborn connection that will not release
resources. Thankfully, the Activity Monitor is very easy to use and is demonstrated in Exer-
cise 15.1 later in this chapter.

Task Manager The Task Manager is a process manager that ships with Windows operat-
ing systems. You can kill processes, set temporary process priorities, view performance
information, and, on newer Windows systems, launch the Resource Monitor for enhanced
process and activity analysis. The Task Manager can be accessed by pressing Ctrl+Shift+Esc
on any Windows system. Once in the Task Manager, you can see the processes and the
overall performance of the system easily.

System Monitor The System Monitor is known by many names based on the interfaces
through which it is provided. It is technically an ActiveX control that can be loaded into
any Microsoft Management Console (MMC), but it is loaded by default in the Performance
console or the Reliability and Performance Monitor depending on the version of Windows

Blocks, Locks, and Deadlocks 497

utilized. The System Monitor is covered in detail in the later “Performance Monitoring
with System Monitor” section.

SQL Server Profiler The SQL Server Profi ler is like a network protocol analyzer for SQL
Server. It allows you to capture the events and requests related to SQL Server. You can use
it to capture the actual SQL code executed against a database or to monitor for deadlocks
and other negative events. It is covered in detail in the later “SQL Server Profi ler” section.

Database Engine Tuning Advisor The Database Engine Tuning Advisor (DTA) is a tool
used to analyze the physical implementation of a database and recommend changes for
performance improvement. A workload fi le is passed to the DTA tool in order to locate
potential changes that will create a performance advantage. The tool is covered in the later
“Database Engine Tuning Advisor” section.

DBCC The DBCC Transact-SQL command is used to perform consistency checks against
tables and databases. It is also used to perform management operations such as fi le shrink-
ing and index defragmentation. The DBCC command is covered in more detail in the later
“Advanced Monitoring Tools” section.

Event Logs and Error Logs Finally, the event logs and error logs provide a useful source
of information when analyzing both performance and functional problems. The event logs
are found in the Event Viewer application, and the error logs are stored in the SQL Server
instance’s Logs subfolder. The logs can reveal problems that would result in the inability
of the SQL Server services to start and errors that occur over time. If a SQL Server system
experiences sporadic problems, check the Event Viewer logs and the SQL Server error logs
to locate the problem. Chapter 16, “Policy-Based Management,” provides more informa-
tion on viewing and managing the Event Viewer log fi les.

Many of these tools are covered in greater detail throughout the remaining pages of this
chapter. However, before you look too closely at the tools, you must fi rst understand the
basic concept of resource access in SQL Server databases. To avoid potential confl icts as
multiple users need access to the same database resources, SQL Server controls resource
access using blocks, locks, and deadlocks.

Blocks, Locks, and Deadlocks
Concurrency, in database systems, is defi ned as the condition where multiple users or
 processes are accessing the same database at the same time. Because this condition will
result in confl icts over resource access, some mechanism must be in place to address these
confl icts. Confl icts will occur if two processes attempt to modify, or even access, the
same data at the same time. Because two or more processes cannot possibly modify
the same data at the same time, something must exist that provides the illusion of complete
concurrency to the client applications while truly providing individual access to the data. In
SQL Server, this illusion is created using locks. Locks result in blocks and may even create
deadlocks in the right scenario.

498 Chapter 15 ■ Performance Monitoring and Tuning

Understanding Locks
To prevent data corruption or system errors, SQL Server uses locks. A lock is a mechanism
used to disallow reads or modifi cations or both to a data object by other connections while
the connection granted the lock reads or modifi es the data. Depending on the locking model,
processes may be prohibited from reading or writing to the data object until the locking
process is fi nished (the lock is released), or they may be prohibited only from writing to the
locked object. The locked object can be a row, page, or table depending on the locking level.

Versions of SQL Server preceding SQL Server 2005 supported only pessimistic locking
inside the server, and optimistic locking had to be handled in the application code. SQL
Server 2005 added support for optimistic locking inside the server using the new row
versioning feature.

Pessimistic Concurrency Model In a pessimistic concurrency model, readers block writ-
ers, and writers block readers and writers. Readers do not block other readers as shared
locks can be acquired. Because row versioning is not used, writers block both readers and
other writers.

Optimistic Concurrency Model In an optimistic concurrency model, writers do not
block readers, because the readers can read the version of the row before the writer began
modifying it. This latter capability requires the row versioning feature that was introduced
in SQL Server 2005, and, therefore, optimistic concurrency was a new capability in SQL
Server 2005 that remains in SQL Server 2012.

Lock Types
Two types of locks exist that you need to be aware of for the Microsoft exams and to be
able to administer SQL Server effectively. They are:

■ Shared

■ Exclusive

Shared locks are created when a read request is made against an object. Multiple shared
locks can be issued for a single object so that more than one process can read the data.
Shared locks are usually released as soon as the read operation is completed and do not
need to be held until the entire transaction, within which the read statement was executed,
is completed. However, if the transaction isolation level is set to Repeatable Read or higher,
the shared lock will remain until the transaction is completed.

An exclusive lock will lock the object so that it can be modifi ed and will block all other
readers and writers by default. The exception to this is when an isolation level of read-
uncommitted is used.

Granularity of Locks
Locks can occur at the row level, the data page level, and the table level. When a row is
locked, other rows in the same table are unlocked. When a data page is locked, other pages
are unlocked. Of course, when the table is locked, all data in that table is locked according
to the lock type selected.

Blocks, Locks, and Deadlocks 499

Locks can be escalated after they are instantiated. A page-level lock does not have
to remain a page-level lock if a larger scope must be locked to meet the requirements
of a transaction. Locks can escalate from page to table or from row to table. They do
not escalate from row to page and then to table. This granularity of locking allows
multiple rows to be locked by different processes at the same time; table-only locks
would allow only one process to acquire a lock on the entire table at a time. SQL Server
2012 uses internal algorithms, which you will not need to know for the exams or basic
administration, to determine the granularity of the locks.

Lock Isolation Levels
As you’ve seen in the previous discussion, the isolation level selected will help determine the
behavior of the various locks. SQL Server supports fi ve isolation levels, defi ned here:

Read Uncommitted Connections can read data that has not been committed.

Read Committed Connections can read only committed data, and they cannot read data
that is being modifi ed.

Repeatable Read Connections cannot read data that has already been read by other con-
nections that have not completed the transactions from within which the read occurred.

Snapshot Uses row versioning to read data as it existed prior to any ongoing modifi ca-
tion operations. Also referenced as “writers don’t block readers, and readers don’t block
writers.”

Serializable Works like repeatable-read and adds the limitation of row inserts. Rows can-
not be inserted within the keyset range locked by the locking transaction.

Blocks and Deadlocks
A block occurs when a process has a lock on a resource that will not allow other processes
to use the resource, and another process attempts to use it. This behavior is a normal part
of database operations and will impact the number of users that you can support concur-
rently. When blocking is minimized and server resources are suffi cient to have a larger
number of users connected and functioning, this is called high concurrency. When a high
level of blocking occurs or server resources are insuffi cient so that you can support very few
users, this is called low concurrency.

Your goal will be to have short block durations. A threshold often specifi ed is one
second. If your blocks last for more than one second, you will increase contention and
lower concurrency. Users will think that the system is sluggish or unresponsive. You can
analyze blocking in your server with the sys.dm_exec_requests DMV by following
these steps:

1. Look at the blocking_session_id column and seek for values greater than 0.

2. When you fi nd a row that meets this fi lter, the value in the blocking_session_id
column is the SPID of the blocking process.

500 Chapter 15 ■ Performance Monitoring and Tuning

3. At this point, if the process is very problematic, you can stop the process with the KILL
SPID Transact-SQL command, where SPID is replaced with the numeric SPID value
shown in the query results.

You can see the results of querying sys.dm_exec_requests in Figure 15.1, where the
SPID of 57 is being blocked by 56.

F I GU R E 15 .1 Viewing the blocking processes in sys.dm_exec_requests

You can also use the Activity Monitor to stop a blocking process. To do this, follow
these steps:

1. Right-click the server instance you want to view, and select Activity Monitor in the
Object Explorer in SSMS.

2. Find the process you want to stop, right-click it, and select Kill Process.

3. You can also right-click a connection and select Details to see the actual code being
executed, as shown in Figure 15.2.

Blocks, Locks, and Deadlocks 501

Unlike the blocks, which will go away eventually when the blocking process fi nishes
with the tasks it is performing, deadlocks must be resolved by force—either random force
or structured force. A deadlock occurs when process 1 has an exclusive lock on resource 1
and process 2 has an exclusive lock on resource 2. Then process 1 tries to access resource
2 during the execution of the transaction that has resource 1 locked, and process 2 tries
to access resource 1 during the execution of the transaction that has resource 2 locked.
Do you see the picture? This could be called an infi nite lock, but SQL Server will kill
the process it determines has the lowest priority (random force). You can also specify the
priority of a process so that SQL Server will give preference to it in a deadlock scenario
(structured force). You use the SET DEADLOCK_PRIORITY statement to do this. Exercise
15.1 walks you through the process of creating a deadlock so you can see how they are
automatically resolved by SQL Server.

F I GU R E 15 . 2 Viewing the code executed by a connection or process in the Activity
Monitor

502 Chapter 15 ■ Performance Monitoring and Tuning

E X E R C I S E 15 .1

Generating a Deadlock Scenario

I have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at www.sybex.com/go/sqlserver12admin.

In this exercise, you will intentionally create a deadlock scenario to see the results:

1. Click Start, and select All Programs ➢ Microsoft SQL Server 2012 ➢ SQL Server
 Management Studio.

2. Connect to your SQL Server instance.

3. Click the New Query window button.

4. Enter and execute the following code in the query window created in step 3:

Use AdventureWorks2012;
BEGIN TRANSACTION
UPDATE Person.Person SET FirstName =’Gus’
WHERE BusinessEntityID = 1;

5. Click the New Query window button again to create another new window.

6. Enter and execute the following code in the query window created in step 5:

USE AdventureWorks2012
BEGIN TRANSACTION
UPDATE Production.Product
Set ProductNumber =’AR-5381B’
WHERE ProductID = 1;
UPDATE Person.Contact
SET LastName = ‘AchongGus’
WHERE ContactID=1;

7. Notice that the query seems to execute without end. You are now in a state of blocking,
but it is not a deadlock. For this reason, SQL Server will not automatically kill either of
these processes.

8. Right-click your server instance in the Object Explorer, and click the Activity Monitor. In
the Processes section, notice that one of the processes is suspended and has an hour-
glass icon. If you do not see an hourglass icon for the entry, simply press F5 to refresh.
Do not kill the process.

9. Return to the fi rst query window you created in step 3. Add and execute the following
new code. Execute only this new code by selecting it before clicking the Execute button:

UPDATE Production.Product Set Name =’Adjustable Brace’
WHERE ProductID = 1;

http://www.sybex.com/go/sqlserver12admin

SQL Server Profiler 503

10. One of the query windows will receive an error message similar to the following:

Msg 1205, Level 13, State 51, Line 7
Transaction (Process ID 57) was deadlocked on lock resources
with another process and has been chosen as the deadlock
victim. Rerun the transaction.

11. You can close the query windows. If asked to commit the transactions, select No.

The steps in Exercise 15.1 showed a deadlock scenario; however, you do not create them
intentionally in the real world. They do still happen, but the following tips can help reduce
them or mitigate their impact:

■ Keep transactions as small as possible. Smaller transactions fi nish faster and cause
fewer blocks and deadlocks.

■ Limit the number of concurrent users on a single server. By distributing an application
across multiple replicated databases, you can often all but eradicate deadlocks.

■ Use the DEADLOCK_PRIORITY option to ensure that the more important transactions win
in deadlock scenarios.

■ Handle the 1205 errors that are returned when a process is killed by SQL Server to
resolve a deadlock. This means writing your application code so that it can retry a
transaction when it receives a 1205 error.

SQL Server Profiler
The SQL Server Profi ler is a tool that is used to monitor database and server activity in
a SQL Server environment. The DBA can use it to capture all the queries being executed
against a database or just to capture the logins to the server or any number of other tasks.
Hundreds of columns (properties) and events (actions) can be traced to determine where
problems or performance issues reside.

As an example, imagine you are the DBA for an outsourced application and you do
not have the source code for the client application or the design plans for the database
structure. In such a scenario, you have no knowledge of what exact queries are being
executed against the database. However, you can discover these queries—and this is where
the SQL Server Profi ler really shines.

The SQL Server Profi ler allows you to run a trace while the users are using the
application. Though you were not involved in the programming of the application, you will
now be able to see the exact SQL queries it executes against the database. The information
can be used to add indexes or hardware where benefi cial. Without this knowledge, you
have no real way of knowing where to begin making performance improvements.

504 Chapter 15 ■ Performance Monitoring and Tuning

In addition to application monitoring, the SQL Server Profi ler can be used to
troubleshoot problems. For example, you can capture and view deadlocks, and you can
fi lter to a specifi c application, host, or user so that you can troubleshoot problems based on
specifi c user complaints.

Exercise 15.2 steps you through the process of creating a trace with the SQL Server
Profi ler.

E X E R C I S E 15 . 2

Creating a Trace with SQL Server Profi ler

In this exercise, you will create a basic trace fi le using the SQL Server Profi ler. You will look
at the events that are available and the fi ltering options:

1. Select Start ➢ All Programs ➢ Microsoft SQL Server 2012 ➢ Performance Tools ➢ SQL
Server Profi ler to launch the SQL Server Profi ler. You will see a screen similar to the
following:

2. Click File ➢ New Trace.

3. Connect to the Database Engine on your SQL Server.

4. In the Trace Properties dialog, enter the trace name of Trace1. (You can enter any name
you like when creating a trace.)

5. Select the Standard template, check the Save To File box, and provide a fi lename (Trace1
will be the default fi lename). If the Enable File Rollover check box is selected, deselect it
and click Save.

SQL Server Profiler 505

6. Accept all other defaults on the General tab, and click the Events Selection tab to view
the available events.

7. Click the Show All Events check box in order to display all events.

8. Scroll through and browse the additional available events, but do not select any
additional events.

9. Click the Column Filters button to view the available fi ltering options.

10. Notice that columns can be fi ltered based on values being like or not like specifi ed
criteria.

11. Click Cancel to avoid changing the fi lters in this case.

12. Click the Run button to begin capturing the trace fi le.

13. If you want to see SQL activity, run SSMS and then perform a query against a database.

14. Back in the SQL Server Profi ler window, select File ➢ Stop Trace to stop the capture.

15. Scroll through the trace and view the results.

While Exercise 15.2 specifi ed the use of the Standard template, several other templates
are also provided in the SQL Server Profi ler. Additionally, you can create your own
templates by selecting File ➢ Templates ➢ New Template from within the SQL Server
Profi ler. By creating your own custom templates, you can reduce your work over time,

506 Chapter 15 ■ Performance Monitoring and Tuning

if you fi nd that you frequently customize the Standard template within the tool. The
Standard template does not provide the individual T-SQL statements with their execution
durations. You may want to create your own template, based on the Standard template, and
add the individual events SQL:StmtStarting and SQL:StmtCompleted.

Database Engine Tuning Advisor
Another great tool provided with SQL Server is the Database Engine Tuning Advisor
(DTA). The DTA will evaluate a workload fi le, which records the results of a trace that can
be generated either by a T-SQL script or by a tool like Profi ler, in order to generate recom-
mendations for indexes and database structures that will improve the performance of the
database. You must give the DTA what it needs to produce the best results. For instance, if
you give it a workload fi le that does not represent real-world activity, you will not get rec-
ommendations that give improvements in your real-world database. The DTA tool is used
by creating a workload fi le, running an analysis, and then either applying the recommenda-
tions it provides, saving them, or both.

Creating a DTA Workload File
Using the DTA tool is a multi-step process. First, you will need to create a workload fi le on
an active SQL Server. Second, you will need to analyze the workload with the DTA tool in
order to locate performance improvement options. Finally, you can apply the performance
recommendations made by the DTA tool. Exercises 15.3 through 15.5 walk you through
these three steps.

E X E R C I S E 15 . 3

Creating a DTA Workload File in SQL Server Profi ler

In this fi rst step to utilizing DTA, you will create a workload fi le for DTA to analyze by running
SQL Server’s Profi ler tool to trace activity. To get the best results, the workload fi le should
be created on a production server. To create the workload fi le, follow these steps:

1. Select Start ➢ All Programs ➢ Microsoft SQL Server 2012 ➢ Performance Tools ➢ SQL
Server Profi ler.

2. Select File ➢ New Trace.

3. Connect to the target SQL Server for which you want to gain performance improvement
recommendations in the DTA.

4. Name the new trace DTAFILE or any other name that will help you remember that it is a
DTA workload fi le.

Database Engine Tuning Advisor 507

5. Select the Tuning template instead of the Standard template. The Tuning template cap-
tures the events needed by the DTA tool.

6. Check the Save To File option, provide a fi lename for the fi le or accept the default fi le-
name (DTAFILE), and click Save.

7. Click Run to begin the trace capture.

8. Allow the capture to run for several minutes to several hours of operation, depending on
the scenario.

9. When the capture has run during a suffi cient window of operation (determined by the
way users use the system), select File ➢ Stop Trace to end the capture.

10. Close the SQL Server Profi ler.

After completing Exercise 15.3, you will have a workload fi le that can be used to
perform analysis in the DTA tool. But how do you determine for how long the workload
fi le should capture activity? The answer will depend on the scenario. If you have a database
system with very similar activity from hour to hour, capturing a single hour’s activity
should be suffi cient. However, if the database is used very differently in the morning than it
is in the afternoon, you must be careful to capture both types of activity. Otherwise, if you
capture only the morning’s activity, the DTA tool may recommend performance changes
that, while they help the morning performance, will hurt the afternoon performance.

In most cases, capturing an entire day’s activity will be suffi cient. Still, some
scenarios may demand a greater time window or different plans. For example, consider
an accounting database that is used mostly in the same ways from Monday through
Wednesday and including Friday; however, on Thursday, massive reports are run for
paycheck processing and accounts receivable. If these reports run against the same
production database used every other day of the week and the database workload is
captured on a day other than Thursday, you could receive recommendations from the
DTA tool that will cause the reports to be delayed drastically. Realize that the DTA will
provide one set of recommendations, which will be based on tuning settings for the specifi c
workload analyzed. If the workload does not refl ect the real-world use for that database,
the recommendations will actually hurt the performance of the database in many cases.
Now, you can see why you usually need to capture a full day of activity.

In the end, the DTA tool is an excellent assistant, but your expertise as the DBA must
be the deciding factor. This will be most true when it’s time to apply the recommendations.
But fi rst you need to analyze the workload data you’ve just captured.

Analyzing Your Workload File
The next step, after capturing the workload, is to analyze it with the DTA tool. Exercise 15.4
steps you through this process.

508 Chapter 15 ■ Performance Monitoring and Tuning

E X E R C I S E 15 . 4

Analyzing the Workload File with the DTA Tool

In this exercise, you will analyze the workload captured in Exercise 15.3. To analyze the
workload, follow these steps:

1. Select Start ➢ All Programs ➢ Microsoft SQL Server 2012 ➢ Performance Tools ➢
Database Engine Tuning Advisor.

2. Connect to the same server that you used for the workload capture in Exercise 15.3.

3. On the General tab, select the workload fi le you created in Exercise 15.3.

4. In the lower half of the General tab, select the target database or databases to tune.

5. Select the Tuning Options tab.

6. If desired, set a tuning time limit. The analysis will stop when the time limit expires,
whether the analysis is complete or not.

7. Choose the recommendations you want the DTA tool to give.

8. Click the Start Analysis button on the toolbar.

9. When the analysis is complete, select Actions ➢ Save Recommendations, provide a fi le-
name, and click Save.

You may attempt an analysis with the DTA tool at times and receive an error indicating
that too little storage space was available for processing the analysis. In this case, before
step 8 in Exercise 15.4, you would click the Advanced Options button and increase the
space for recommendations. You might want to just set this value to 1,024MB to ensure
that the process can complete.

Database Engine Tuning Advisor 509

The reason step 9 of Exercise 15.4 indicates that you should save the recommendation
instead of applying it is simple. If you apply the recommendation blindly, you risk hurting
the performance of your system. Even when you apply the recommendation, you can still
save it; however, you should save the DTA recommendations and then open the T-SQL
fi le in SSMS and analyze it for yourself. This latter method provides you with at least the
following three benefi ts:

■ You can review the changes recommended and apply only those with which you agree
based on your expertise.

■ You can save the T-SQL fi le for documentation purposes so that you will not forget the
changes made by the DTA tool.

■ You can rename the objects recommended by the DTA tool.

Why would you want to rename the objects? The answer is really simple: the names
given by the DTA tool are horrible. They look like the odd cryptic names you’d expect a
computer to come up with. Instead of names like _dta_index_SalesOrder_5_642101328―
K7_K1_2_3_4 (yes, that’s really an example of an automatically generated index name from
the DTA tool), wouldn’t ix_SalesOrder make more sense? That’s why renaming the objects
in the saved recommendation script before you run the script is a good practice. Of course,
you can always apply the recommendations exactly as they come out of the DTA tool.

Applying DTA Recommendations
If you save the DTA recommendations to a fi le, which most experts will recommend, you
can apply the recommendations using SSMS. Although the recommendations could also
be applied using SQLCMD at the command prompt, most DBAs will use the SSMS GUI
interface. If you want to use SQLCMD, refer to Chapter 4, “SQL Server Command-Line
Administration.” Exercise 15.5 steps you through the process of applying the recommenda-
tions saved in Exercise 15.4.

E X E R C I S E 15 . 5

Applying the Saved DTA Recommendations

In this exercise, you will apply the recommendations saved in Exercise 15.4. In the real
world, you may want to rename the objects in the CREATE statements before performing
these steps:

1. Launch SSMS.

2. Connect to the target server.

3. Click File ➢ Open File, and browse to and open the recommendations fi le saved in step
9 of Exercise 15.4.

4. Click the Execute button to execute the script and create the recommended changes.

510 Chapter 15 ■ Performance Monitoring and Tuning

Recommendations for Using DTA

With all this talk of recommendations, I have a few important ones to make as well about
DTA. After using this tool on dozens, if not hundreds, of databases, I’ve found a few key
best practices.

First, when using the DTA tool, always capture the workload fi le on the production data-
base; however, you should always apply the recommended changes on a test server fi rst.
I learned this recommendation the hard way when using the tool for a company several
years ago. I ran the recommendations on their production database and, while it did ini-
tially improve performance, a user ran a report (which he ran every few weeks) and the
report took more than an hour to run. The report normally completed in less than fi ve
minutes. What had happened? The recommendation from DTA removed some key indexes
the report needed because the report action was not included in my workload fi le.

Second, rename those pesky recommended objects. The names that the DTA tool sug-
gests are necessarily ridiculous. The DTA tool has to ensure uniqueness of the object
names so it uses really odd names for indexes and other objects. Just save the recom-
mendation to a fi le and then rename the object to something that is more meaningful to
you before applying the recommendation.

Finally, here’s the basic process I use with the DTA tool:

1. Capture the workload fi le on the production server during normal operational hours.

2. Run the DTA tool analysis against the workload fi le on the production server and
save the recommendations.

3. Ensure that a recent copy of the production database is on a test server. You can do
this by restoring from a recent full backup.

4. Inspect the recommendations fi le saved from the DTA analysis to locate tables tar-
geted for performance gains.

5. Run some queries against those tables while capturing statistics and execution plans.

6. Rename the recommended objects and apply the recommendations (still on the test
server).

7. Rerun the queries while capturing statistics and execution plans.

After going through this process, I can determine whether the recommendations will
provide value to my production system or not. If they will provide value, I can apply the
recommendations and monitor to ensure that stability has not been diminished and that
performance has improved.

Please, learn from my failures and successes and use these recommendations. You’ll be
glad you did.

Performance Monitoring with System Monitor 511

Performance Monitoring
with System Monitor
The System Monitor provides a tool that is used to analyze live performance data, log per-
formance data over time, log performance data when events occur, and fi re alerts when
performance counters report outside of specifi ed thresholds. Over the years, Microsoft has
changed the name used to refer to the System Monitor shortcut. For example, in Windows
NT it was known as the Performance Monitor and was a standalone application. In Win-
dows 2000 and Server 2003, it was simply called Performance, and the shortcut named
Performance was actually a link to a Microsoft Management Console (MMC) that loaded
the System Monitor ActiveX control among other snap-ins. In Windows Server 2008, it
was called the Reliability and Performance Monitor, and the System Monitor was a very
small subset of the default snap-ins in the console. Now, in Windows Server 2008 R2, it is
known as Performance Monitor once again, so it has gone full circle. Isn’t life with Micro-
soft wonderful?

The System Monitor is actually an ActiveX control that ships with Windows servers and
clients. The control can be used from within applications as well as the MMC that exists by
default after installation. Additionally, you can snap it into a custom console that you use
with other snap-ins to build a performance and troubleshooting environment that meets
your needs.

Confi guring the System Monitor will vary depending on your objectives. When you
want to monitor live activity, you will use it in one way, and when you want to log activity
to be analyzed at a later time, you will use it in another way. Newer Windows systems use
data collector sets instead of individual performance logs, but the old performance logs
are still buried in there. You’ll see how to get to them in the section “Data Collection in
Windows Server 2012” later in this chapter.

When you want to include the System Monitor in a customized MMC, you will add it
as a snap-in. The process is not as intuitive as you might fi rst think, but it becomes clearer
when you remember that the System Monitor is really just an ActiveX control.

Installing the System Monitor
To install the System Monitor into your custom MMC, follow the steps in Exercise 15.6.

E X E R C I S E 15 . 6

Installing the System Monitor in a Custom MMC

1. Open an existing MMC or create a new one by either double-clicking the existing MMC
or clicking Start ➢ Run and then running MMC.EXE from the Run dialog.

2. Select File ➢ Add/Remove Snap-in.

512 Chapter 15 ■ Performance Monitoring and Tuning

E X E R C I S E 15 . 6 (c ont inue d)

3. Click the Add button.

4. Select ActiveX Control in the Available Stand-Alone Snap-ins area, and click the Add
button.

5. Click Next in the Insert ActiveX Control Wizard.

6. In the Control Type area, scroll down to and select the System Monitor Control; then
click the Next button.

7. Type a name for the System Monitor or accept the default of System Monitor Control;
click Finish.

8. Click Close in the Add Stand-Alone Snap-In dialog.

9. Click OK in the Add/Remove Snap-in dialog.

After completing the steps in Exercise 15.6, you can click the System Monitor control
in the left pane and then use it in the right pane. You will need to add the performance
counters you want to view. In this mode, you cannot log data; you can only view live
results. The following section will cover more about viewing live results and when it would
be benefi cial.

In keeping with the SAU (Standardize, Automate, and Update) model introduced in
Chapter 14, “Creating Jobs, Operators, and Alerts,” you should standardize on an MMC
confi guration that you will make available on all Windows servers. Microsoft has made
this a little more diffi cult with the changes in Windows Server 2008 and then again in
Windows Server 2008 R2, but one thing is consistent: you can load the System Monitor
into a custom MMC on any of these systems.

Viewing Live Performance Data
When you want to view live performance counter data with Windows Server 2003 or Win-
dows Server 2008 systems and you want to use the built-in tools without creating a custom
console, you actually have two different procedures to follow. Exercise 15.7 steps you
through the process on a Windows Server 2003 server. Windows Server 2003 is still very
popular in organizations with existing older databases or with application servers running
this edition of Windows Server while accessing newer SQL Servers. For this reason, it is
still covered in this book.

E X E R C I S E 15 . 7

Viewing Live Performance Data on Windows Server 2003

In this exercise, you will view live performance data on Windows Server 2003. To view the
live performance data with the Performance console, follow these steps:

Performance Monitoring with System Monitor 513

1. Select Start ➢ Programs ➢ Administrative Tools ➢ Performance.

2. Click the Add counter button or press Ctrl+I to add a new counter.

3. Choose the desired counter, and click Add.

4. Click Close to view live information about the selected counters.

Exercise 15.8 steps you through the process of monitoring live performance data on
a Windows Server 2008 R2 server. As you will see, the process has changed a bit since
Windows Server 2003. Because many databases may access and use resources on
older Windows servers and Windows Server 2008 and 2008 R2 servers, you will need to
understand the processes for both server platforms.

E X E R C I S E 15 . 8

Viewing Live Performance Data on Windows Server 2008 R2

In this exercise, you will view live performance data on Windows Server 2008 R2. To view
the live data with the Reliability and Performance Monitor console, follow these steps:

1. Select Start ➢ All Programs ➢ Administrative Tools ➢ Performance Monitor.

2. In the Monitoring Tools node, select the Performance Monitor child node.

3. Click the Add counter button or press Ctrl+I to add a new counter.

4. Choose the desired counter in the left half of the Add Counters dialog, and click Add to
add the counter. Repeat until all desired counters have been added.

5. Click OK to view the live data for the selected counters.

514 Chapter 15 ■ Performance Monitoring and Tuning

Logging Counters in Windows Server 2003
Just as the viewing of live performance data is different in Windows Server 2003 than it is
in Windows Server 2008, the logging of performance data differs too. In Windows Server
2003, you create counter logs. In Windows Server 2008, you create data collector sets. In
Exercise 15.9, you will create a performance counter log in Windows Server 2003.

E X E R C I S E 15 . 9

Creating a Performance Counter Log in Windows Server 2003

In this exercise, you will use the Performance console to create a counter log in Windows
Server 2003:

1. Select Start ➢ Programs ➢ Administrative Tools ➢ Performance.

2. Expand the Performance Logs And Alerts node in the left pane.

3. Right-click Counter Logs, and select New Log Settings.

4. Enter a name for the log such as Baseline 1.

5. Click the Add Counters button on the General tab, and add the counters you want to log.

6. After adding the counters, select the Log Files tab, and select the log fi le format you
desire (I prefer the comma-delimited text fi le so that I can analyze the data easily in
Excel).

7. On the Schedule tab, either schedule a start and stop time for the log or set it to start
manually. Note that you can run a command after the log is created.

8. Click OK.

9. If prompted to create the log directory, click Yes.

One of the benefi ts of saving the counter logs as CSV fi les is the simplicity that format
provides for use within Excel and other data analysis tools. You can simply double-click the
CSV fi le to open it in Excel and then create charts and line graphs to show the performance
of the server. Line graphs are excellent tools for displaying up or downward trends for
management. For example, if you can show that the free memory on a given server was
17MB six months ago and it was 14MB three months ago and it is 11MB today, what is the
trend? The answer is that the trend is a loss of 3MB of free memory every three months.
At this rate, you may be experiencing memory problems on the server in another 9 to 12
months. This kind of trend analysis can be very helpful in predicting when new upgrades or
scale-outs may be required.

Another important feature that was fi rst introduced in SQL Server 2005 is performance
log correlation. This feature allows you to take the performance logs you create and view
them alongside SQL Server Profi ler traces created during the same window of time. To use

Performance Monitoring with System Monitor 515

this feature, you must start a performance log capture fi rst and then start a SQL Server
Profi ler trace. When you’ve monitored everything you want to analyze, stop the trace fi rst
and then stop the performance log. Now you can load the performance log into the SQL
Server Profi ler and view them side by side. This may seem trivial at fi rst, but it is very
valuable and time-saving to the performance tuning process.

An interesting quirk exists in SQL Server Profiler. When attempting to cor-
relate performance log data with a trace file, you will sometimes have to
close and reopen the trace file before the Import Performance Data option
becomes available on the File menu. I’ll call this a Microsoft feature.

Data Collection in Windows Server 2008
Data collection in Windows Server 2008 and 2008 R2 is used to provide benefi ts similar
to those of counter logs in Windows Server 2003. However, in addition to the counter logs,
you can gather more information about the system, such as trace events and confi gura-
tion parameters. The performance counters, trace events, and confi guration parameters
are gathered together into what is called a data collector set. The data collector set can be
executed in order to generate a report. Figure 15.3 shows a partial representation of the
built-in System Diagnostics data collector set.

F I GU R E 15 . 3 Viewing the default System Diagnostics data collector set

516 Chapter 15 ■ Performance Monitoring and Tuning

When you right-click a data collector set, you can select to start the data collection. The
result of the data collection run will be a report in the Reports section of the Reliability
and Performance Monitor. Figure 15.4 shows an example of the report from the System
Diagnostics data collector set.

F I GU R E 15 . 4 Viewing a report in the Reliability and Performance Monitor

Exercise 15.10 steps you through the process of creating a basic data collector set for a
typical SQL Server 2012 analysis.

E X E R C I S E 15 .10

Creating a Data Collector Set in Windows Server 2008 R2

In this exercise, you will create a data collector set in Windows Server 2008 R2 that can be
used to gather important performance information for a SQL Server 2012 installation. To cre-
ate the collector set, follow these steps:

1. Select Start ➢ All Programs ➢ Administrative Tools ➢ Performance Monitor.

2. Double-click the Data Collector Sets node in the left pane to expand it.

Performance Monitoring with System Monitor 517

3. Double-click the User Defi ned node to expand it.

4. Right-click the User Defi ned node and select New ➢ Data Collector Set.

5. Name the new set SQL Server Analysis, select Create From A Template, and click Next.

6. Choose the System Performance template, and click Next.

7. Accept the default location for saving the data, and click Next.

8. Click Finish to create the data collector set.

While the default System Performance template used in Exercise 15.10 includes valuable
performance counters, it does not include any SQL Server–specifi c counters. In Exercise
15.11, you will add counters to the SQL Server Analysis data collector set so that it is more
useful for SQL Servers.

E X E R C I S E 15 .11

Adding SQL Server Counters to a Data Collector Set

In this exercise, you will add the SQL Server connections and buffer cache-hit ratio counters in
order to make the SQL Server Analysis data collector set more useful for SQL Server analysis.
I have included a video of this exercise on the companion website. You can download all the
videos and additional study tools at www.sybex.com/go/sqlserver12admin. To add the
counters, follow these steps:

1. In the Performance Monitor, expand the Data Collector Sets ➢ User Defi ned nodes,
if they are not already expanded.

2. Select the SQL Server Analysis data collector set in the left pane.

3. Double-click the Performance Counter object in the right pane to open its properties
dialog.

4. Click the Add button to add new counters.

5. In the left half of the Add Counters dialog, scroll to and double-click the SQL
Server:Buffer Manager object.

6. Scroll further down in the list, click the Buffer Cache Hit Ratio counter, and then click
the Add button. The counter should be added to the right half of the dialog in the Added
Counters pane.

7. Scroll further down in the list and expand SQL Server:General Statistics.

8. From within SQL Server:General Statistics, click User Connections, and click the Add
button. Your Add Counters dialog should look similar to the following:

http://www.sybex.com/go/sqlserver12admin

518 Chapter 15 ■ Performance Monitoring and Tuning

9. Click OK to save the changes.

10. In the Performance Counters properties dialog, change the Log format to Comma Sepa-
rated so that you can use the data outside of the Performance Monitor as well.

11. Click OK to save the changes.

You now have a data collector set that you can use for SQL Server performance analysis
anytime you like. Simply right-click the data collector set and select Start. By default, it
will run for one minute. You can change this default by right-clicking the data collector set,
selecting Properties, and then clicking the Stop Condition tab. From here, you can set the
run time as in Figure 15.5.

E X E R C I S E 15 .11 (c ont inue d)

Using the Resource Governor 519

Using the Resource Governor
The Resource Governor, introduced in SQL Server 2008, provides an internal mechanism
for the control and management of resource consumption by connections and processes. In
earlier SQL Server versions, you had to use the external Windows System Resource Man-
ager (WSRM) to get any reasonable amount of control over resource management. Now,
with the Resource Governor, most resource management tasks can be handled within SQL
Server itself. SQL Server 2012 continues to provide support for the Resource Governor.

The Resource Governor consists of resource pools, workload groups, and classifi cations.
Resource pools collect the physical resources of the server and allow them to be used for
assignment to workload groups. Microsoft suggests that a resource pool can be thought
of as a virtual SQL Server inside the real SQL Server instance. The workload groups are
collections of connections based on classifi cation. When a user connects to a SQL Server
instance that is using the Resource Governor, the connection is classifi ed, and based on that
classifi cation, it is placed in a single workload group. The workload group belongs to one
and only one resource pool. The resource pool has limits on the consumption of physical
resources that it can perform. The end result is fi ne control over the level of impact that a
given user connection can have on the server.

To get a better idea of how the Resource Governor can really shine, think back to a time
when you experienced a situation with SQL Server, or any other database system for that
matter, where a single user ran a report and brought the rest of the users practically to a
halt. With Resource Governor, you can classify that report-user so that the report will not
overutilize the server to the detriment of other users.

F I GU R E 15 .5 Configuring the stop condition for a data collector set

520 Chapter 15 ■ Performance Monitoring and Tuning

Implementing the Resource Governor is a three-step process:

1. Enable the Resource Governor. Thankfully, this step is very easy. You simply right-
click the Resource Governor in the Management node of SSMS and select Enable.
When you enable the Resource Governor, two default workload groups and two
default resource pools are created.

2. Use these workload groups to set up the properties for members of the groups. The fi rst
workload group is called the Internal group, and it is assigned to the Internal resource
pool. The Internal pool and workload group is for the SQL Server process itself. It uses
this pool for its own allocation of physical resources. It is allowed to consume from 0
to 100 percent of the CPU by default. The second workload group is called Default,
and it is assigned to the Default resource pool.

3. Work with your resource pools. The Default resource pool is confi gured in the same
manner as the Internal pool so that resources are basically balanced between the two.
While you cannot delete or move the Default workload group, you can adjust it if you
desire. If you want to use the Resource Governor in the simplest manner, you will sim-
ply enable it and then make adjustments to the Default resource pool.

It’s important to know that the Resource Governor works only with the SQL
Server Database Engine. It does not provide support for Integration Ser-
vices, Analysis Services, or Reporting Services processes.

Performance Studio
Earlier in this chapter, you looked at the Reliability and Performance Monitor as it exists
in Windows Server 2008 and the Performance Monitor in Windows Server 2008 R2. The
Reliability and Performance Monitor is there whether SQL Server 2012 is installed on
the system or not. However, SQL Server 2012 introduces its own performance tool set that
Microsoft has referenced as the Performance Studio in their various exam objectives. The
Performance Studio is really just a hook into this underlying performance-gathering tech-
nology in Windows Server, and the implementation of a storage mechanism known as the
Management Data Warehouse (MDW). The good news is that you can set it all up in just
a few minutes.

SSIS is required for Performance Studio to work. The SQL Server Agent ser-
vice must be running to upload the data to the MDW, and the SSIS service
must be installed because it is used for the ETL work of the Performance
Studio’s data collection processes. If you did not install SSIS during the
installation of SQL Server 2012, simply rerun the installation and add
the Integration Services component.

Performance Studio 521

In Exercise 15.12, you will enable the Performance Studio by creating the MDW. Once it
is enabled, you can begin using it for ongoing performance analysis and troubleshooting.

E X E R C I S E 15 .12

Creating the MDW for Performance Studio

In this exercise, you will use the wizard in the SQL Server Management Studio to generate
the MDW required for the Performance Studio functions. To create the MDW, follow these
steps:

1. Launch SSMS.

2. In the Object Explorer, expand the Management node.

3. Right-click the Data Collection node, and select Confi gure Management Data Ware-
house.

4. Click Next to begin working through the Confi gure Management Data Warehouse Wiz-
ard.

5. On the Select Confi guration Task screen, choose to Create Or Upgrade A Management
Data Warehouse, and click Next.

6. On the Confi gure Management Data Warehouse Storage screen, click the New button to
create a new database.

7. Name the database MDW, and click OK to create it.

8. Back in the wizard, click Next to continue the confi guration process.

9. On the Map Logins And Users screen, accept the default, and click Next.

10. Click Finish to generate the MDW database.

11. Click Close to close the wizard.

Once you’ve performed the actions in Exercise 15.12, you’re ready to confi gure how the
data collection will transpire. Exercise 15.13 then steps you through the process of setting
up the data collection options.

E X E R C I S E 15 .13

Setting Up Data Collection Options

In this exercise, you will rerun the Confi gure Management Data Warehouse Wizard in order
to set up data collection options. To confi gure data collection, follow these steps:

1. Right-click Data Collection, and select Confi gure Management Data Warehouse.

2. Click Next if the Welcome screen is displayed.

522 Chapter 15 ■ Performance Monitoring and Tuning

3. Select Set Up Data Collection, and click Next.

4. Click the Build button (the button with the ellipsis), and select to connect to the same
server instance on which you created the MDW database in Exercise 15.12.

5. Select the MDW database from the drop-down list, and click Next.

6. Click Finish to enable the data collection confi guration you’ve selected.

7. Click Close to close the wizard.

Now that you have enabled the data collection, you can view reports at any time. Three
sets of statistics are gathered by default: disk usage, query statistics, and server activity.
A fourth, Utility Information, is created but is not started by default. It is used only with
the SQL Server Utility, which is used to implement a utility control point (UCP) that
collects health information from multiple SQL Servers into a single analysis and reporting
location. The disk usage statistics are gathered and uploaded to the MDW every 6 hours
by default. The query statistics and server activity information are cached during normal
operations and uploaded to the MDW every 15 minutes. You can change these settings
by right-clicking the desired system data collection set and selecting Properties. You’ll
see a screen similar to the one in Figure 15.6, and you can reconfi gure the data collection
from there.

F I GU R E 15 .6 Viewing the properties for the Query Statistics system data collector set

E X E R C I S E 15 .13 (c ont inue d)

Advanced Monitoring Tools 523

To view a report provided by the Performance Studio, follow the steps in Exercise 15.14.

E X E R C I S E 15 .14

Viewing Performance Studio Reports

To view the reports in SSMS, follow these steps:

1. Right-click the Data Collection node, and select Reports ➢ Management Data Ware-
house ➢ Disk Usage Summary (to view the other two reports, you select them in the
same way).

2. Scroll through the report as desired.

3. Click a specifi c database name to view detailed report information about that database.

If you ever decide that the data collection is no longer needed, simply right-click the
Data Collection node and select Disable Data Collection.

I recommend that you standardize the configuration for the Performance
Studio and the Resource Governor as much as possible. Working with a
standardized environment is always much easier because you know what
to expect when you’re troubleshooting a problem.

Advanced Monitoring Tools
In addition to the standard monitoring tools you’ve explored so far in this chapter, several
tools and features of SQL Server and the Windows operating system may prove benefi cial
in performance analysis and general troubleshooting. These tools include the following:

■ Dynamic management views (DMVs)

■ DBCC

■ Resource Monitor

The following sections will cover each of these topics fully.

Dynamic Management Views
Dynamic management views (DMVs) provide server state information for health and per-
formance monitoring. DMVs are queried like SQL Server tables, making them easy to use
for both beginning and experienced DBAs. For example, you can query the sys.dm_exec_
connections DMV to view the current connections. Figure 15.7 shows the results of a
query run against the sys.dm_exec_connections DMV.

524 Chapter 15 ■ Performance Monitoring and Tuning

More than 140 total DMVs exist in SQL Server 2008. The best way to fi nd the DMV
with the information you’re looking for would be to either look in the SQL Server 2008
Books Online for dynamic management views and functions or simply enter a SELECT
statement into a query window in SSMS and let the autocomplete feature show you a list of
available DMVs. Books Online categorizes the DMVs and provides examples for accessing
them. In addition to sys.dm_exec_connections, here are a few you might want to take a
look at:

sys.dm_exec_cached_plans This shows a list of the execution plans cached in the SQL
Server memory for faster query execution times.

sys.dm_exex_query_stats Pay close attention to the execution_count column because it
reveals how many times the query has been executed.

sys.dm_os_loaded_modules This shows a list of the various DLLs and system modules
loaded with the version numbers.

sys.dm_os_performance_counters This shows the SQL Server–related performance coun-
ters and their values at the time of the query.

F I GU R E 15 .7 Querying the sys.dm_exec_connections DMV

Advanced Monitoring Tools 525

To illustrate the benefi t of the DMVs, consider the following code:

SELECT TOP 5 total_worker_time/execution_count AS [Avg CPU Time],
 SUBSTRING(st.text, (qs.statement_start_offset/2)+1,
 ((CASE qs.statement_end_offset
 WHEN -1 THEN DATALENGTH(st.text)
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS statement_text
FROM sys.dm_exec_query_stats AS qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st
ORDER BY total_worker_time/execution_count DESC;

If you execute this code in SSMS, you will see that it shows the top fi ve queries
(including the actual SQL statements) with the average CPU time consumed. The result is
a prime target list of queries for optimization analysis. If you can improve the performance
of these queries, you know that you are likely to improve the performance of the database
overall.

As with all other management features of SQL Server, I recommend the
application of the SAU methodology. Standardize the DMV information you
want to gather on your SQL Servers. Automate the information-gathering
with jobs. Update the standard as needed when the environment demands
a change.

DBCC
The DBCC command has been in SQL Server since the original Sybase days before Microsoft
parted ways with that company. DBCC is the database consistency checker, and it can be
used for several performance and troubleshooting tasks, including:

■ Analyzing the consistency of databases, tables, and indexes

■ Shrinking fi les that have grown out of control

■ Defragmenting indexes

■ Showing information, such as statistics and index fragmentation

While DBCC commands such as DBCC CHECKDB and DBCC CHECKTABLE are well known,
valuable commands such as DBCC SHOWCONTIG are less well known. Figure 15.8 shows the
output of the DBCC SHOWCONTIG command run against the Production.Product table in
the AdventureWorks database.

526 Chapter 15 ■ Performance Monitoring and Tuning

From Figure 15.8 you can see the value of this uncommonly referenced DBCC command.
You can see the average free bytes per page, the fragmentation of the clustered index data
(index ID 1), and more valuable information you can use to determine whether an index
rebuild is in order. To view the fragmentation information for a specifi c index on a table,
execute a command like the following:

DBCC SHOWCONTIG (‘Production.Product’,AK_Product_Name)

The preceding DBCC command would show fragmentation information about the
AK_Product_Name index on the Production.Product table.

Table 15.2 lists several of the important DBCC commands and what they offer. Use this
table as a reference when you need to determine the right DBCC command for the job.

TA B LE 15 . 2 DBCC commands with examples

DBCC Command Description Example

DBCC CHECKDB Used to validate the consistency
and integrity of a database.

DBCC CHECKDB (AdventureWorks);

DBCC CHECKTABLE Used to validate the consistency
and integrity of a specific table.

DBCC CHECKTABLE
(‘Production.Product’);

F I GU R E 15 . 8 Running DBCC SHOWCONTIG against the Production.Product table

Advanced Monitoring Tools 527

DBCC SHOWCONTIG Used to determine the frag-
mentation level of a table or
index. This will be replaced
with the sys.dm_db_index_
physical_stats in a future
SQL Server version.

DBCC SHOWCONTIG
(‘Production.Product’);

DBCC SHINKFILE Used to shrink a file, such as a
transaction log file, after data is
removed.

DBCC SHRINKFILE (Data-
File1, 7);

DBCC SHOW_STATIS-
TICS

Used to view information about
statistics for a table or indexed
view.

DBCC SHOW_STATISTICS
(‘Person.Address’,
AK_Address_rowguid);

DBCC HELP Used to get help with the speci-
fied DBCC subcommand.

DBCC HELP (‘CHECKDB’);

Resource Monitor
The Resource Monitor was new to Windows Server 2008 and still exists in Windows
Server 2008 R2. In both systems, you access the Resource Monitor from within the Task
Manager. The Resource Monitor is the Task Manager all grown up. This metaphor sim-
ply means that it is more powerful and provides more valuable information than the Task
Manager ever has.

To access the Resource Monitor, you have two basic options. The fi rst is to launch the
Task Manager, click the Performance tab, and then click the Resource Monitor button.
While this option works just fi ne, you may prefer the start-and-type method for launching
applications. This method is simply the process of bringing up the Start menu (with the
Windows key on the keyboard) and then typing the command you want. To try this
method, perform Exercise 15.15.

E X E R C I S E 15 .15

Launching the Resource Monitor Directly

In this exercise, you will learn to launch the Resource Monitor without having to fi rst launch
the Task Manager. To quickly launch the Resource Monitor, follow these steps:

1. Press the Windows key on your keyboard (if you do not have a keyboard with the
Windows key, press Ctrl+Esc to get the same results).

2. You will default to the Search fi eld on the Start menu.

3. Type the following command: perfmon /res.

4. Press Enter.

528 Chapter 15 ■ Performance Monitoring and Tuning

After completing Exercise 15.15, you should see a screen similar to the one in Figure 15.9.

F I GU R E 15 . 9 Viewing the Resource Monitor

Now, for some really great news. The steps in Exercise 15.15 work in Windows Vista,
Windows 7, Windows Server 2008, and Windows Server 2008 R2. The Resource Monitor
has been greatly enhanced in Windows 7 and Windows Server 2008 R2, but it still
supports this same command-line parameter. These basic steps work in Windows 8 and
Server 2012 as well.

To see another interesting feature of the Resource Monitor, execute the following
command:

perfmon /report

You’ll see a screen indicating that the performance analysis will run for approximately 60
seconds. When the analysis is complete, you will see a report like the one in Figure 15.10. Does
this report look familiar? For that matter, does the Resource Monitor itself look familiar?
Well, if you worked through the exercises earlier in this chapter related to the Reliability
and Performance Monitor, it should. The Resource Monitor is one of the components of the
Reliability and Performance Monitor. Now you know how to access it directly.

Summary 529

You can also view the reliability report for a Windows Vista, Windows 7, or Windows
Server 2008, and 2008 R2 machine with the following command:

perfmon /report

Notice that it is the same on all supporting operating systems. This is most useful
because the reliability report was obvious and easy to fi nd in Windows Vista, but it’s a
bit more buried in Windows 7 and Windows Server 2008 R2 and newer operating system
versions.

Summary
In this chapter, you learned about the different performance tools that are available in SQL
Server 2012 and Windows Server systems. You began by reviewing important performance
tuning principles, and then you explored the concurrency mechanisms of SQL Server. Next,
you looked at the SQL Server Profi ler and learned to create trace fi les with this powerful

F I GU R E 15 .10 Viewing the Resource Monitor report

530 Chapter 15 ■ Performance Monitoring and Tuning

tool. Then the Database Engine Tuning Advisor was explained and demonstrated. With
this tool, you can get recommendations to help improve the performance of your existing
databases. You moved on from there to the System Monitor in its many implementations
in the different Windows Server systems. Finally, you explored some newer tools in SQL
Server 2012, including the Resource Governor and Performance Studio.

Chapter Essentials

Understanding Performance Tuning Principles Performance tuning is not as simple as
throwing more hardware at a performance problem. You must use systems thinking and
avoid the common performance tuning myths.

Exploring Performance and Troubleshooting Tools If you’re going to do much perfor-
mance analysis and enhancement, you’ll have to understand the available tools. Windows
provides several tools, including the Task Manager, System Monitor, and Event Viewer log
fi les. SQL Server 2012 also provides tools including the Activity Monitor, SQL Server
Profi ler, Database Engine Tuning Advisor, and DBCC.

Using Blocks, Locks, and Deadlocks Locks are normal in a multiuser database system
and will result in blocking. Blocking occurs when one connection has a resource locked
that is requested by another resource. Eventually, the lock should be released and the
blocked connection should gain access. Deadlocks occur when two processes have locks
and want to access the resource locked by each other. Deadlocks occur in most systems, but
high numbers should be avoided.

Using SQL Server Profiler The SQL Server Profi ler is like a network protocol analyzer
specifi cally tuned and adjusted to capture only SQL Server events and actions. The SQL
Server Profi ler can be used to discover the T-SQL code being executed by many applica-
tions. It is used to build the workload for the Database Engine Tuning Advisor as well.

Using the Database Engine Tuning Advisor The Database Engine Tuning Advisor (DTA)
is a simple program that can provide recommendations for performance tuning within your
SQL Server databases. Caution should be taken with the recommendations because the
DTA is not a human DBA and it can make mistakes.

Performance Monitoring with System Monitor The System Monitor is actually an
ActiveX control that can be added to custom MMCs and utilized within custom developed
applications. The Performance tool and the Reliability and Performance Monitor provide
access to the System Monitor in Windows Server 2003 and Windows Server 2008/R2,
respectively. In Windows Server 2003, you create performance counter logs, and in
Windows Server 2008/R2, you create data collector sets.

Chapter Essentials 531

Using the Resource Governor The Resource Governor is like having a set of virtual SQL
Servers inside your SQL Server instances. The Resource Governor can classify connections
and place them in workload groups (also known as resource groups). The workload groups
are assigned to resource pools, and the resource pools limit the consumption of the physical
resources.

Using Performance Studio The Performance Studio consists of a Management Data Ware-
house (MDW) and a set of reports that can be viewed against the MDW. The MDW is a
SQL Server 2008 database. Wizards are available for assistance in creating and confi guring
the MDW.

Using Advanced Monitoring Tools In addition to the traditional tools used to monitor
SQL Server, you should be aware of the dynamic management views (DMVs), the powerful
DBCC commands, and the Resource Monitor.

Chapter

16
Policy-Based
Management

TOPICS COVERED IN THIS CHAPTER:

 ✓ Policy-Based Management

 ✓ Centralized Server Management

 ✓ Standardizing with PBM and CMS

Microsoft fi rst introduced management by policy in Windows
95, all the way back in 1995. Back then, they were called sys-
tem policies. The system policies in Windows 95 systems were

simply stored in a network share and pulled down to the Windows 95 clients automatically.
The policies were all contained in a single fi le, and no real hierarchy existed. Eventually,
these policies evolved into group policies with the release of Windows 2000, and group pol-
icies are still heavily used to centrally manage and administer Microsoft operating systems.
Group policies added a new hierarchical structure so that you could apply them locally,
through an Active Directory site, through the Active Directory domain, or through an
organizational unit within the domain. SQL Server 2008 fi nally introduced Policy-Based
Management, which allowed for the enforcement of confi guration standards and naming
conventions—among other things—in an automated and centralized manner. Like group
policies, this feature provided a hierarchy of application and great fl exibility. SQL Server
2012 maintains this capability.

This chapter will introduce you to Policy-Based Management and the components that
comprise a PBM solution in the latest version of SQL Server. Next, it will step you through
the process of creating a policy from start to fi nish. After you’ve created a policy or two,
you will see how to centralize the management of policies using a central management
server. Finally, you’ll learn about some recommendations for standardizing, automating,
and updating your PBM environment.

Policy-Based Management
Policy-Based Management (PBM) was also known as the Declarative Management Frame-
work (DMF) when Microsoft fi rst released it. You might say that PBM is implemented
through the DMF. The process of working with DMF may include, but is not limited to,
the following:

■ Creating a policy

■ Verifying a policy

■ Scheduling a policy compliance check

■ Enforcing a policy

■ Creating a condition

Although Microsoft seems to treat the two different phrases (DMF and PBM) as one,
the rest of this chapter will use only PBM. Just remember that PBM and DMF are one and
the same.

Policy-Based Management 535

PBM brings several advantages to the SQL Server DBA. Examples include the following:

Automatic Evaluation The policies can be evaluated using automation. You can schedule
the policies for evaluation using the same scheduling engine that you use for SQL Server
jobs. By automating the evaluation, you ensure that you are in compliance with the policies
and remove the human component called forgetfulness. (Exercise 16.9, later in this chapter,
provides instructions for creating an example of automatic evaluation policy.)

Policy Reuse Even if you are not using a central management server, you can still reuse
policies. A policy can be exported as an XML data fi le and then imported into one or more
other servers. Once a policy is imported, it can be scheduled for evaluation on the server.

Automatic Enforcement Many policies can be enforced automatically. Some policies
can be confi gured to disallow an action that would breach the policy. For example, you
can reject a new login if it doesn’t meet a policy’s requirements. This enforcement is actu-
ally accomplished with DDL triggers, but the triggers are created for you automatically
during the policy creation process. (Exercise 16.9 also provides an example of automatic
enforcement.)

Surface Area Configuration Many DBAs have asked why Microsoft removed the Surface
Area Confi guration tool that was introduced in SQL Server 2005 from SQL Server 2008
and SQL Server 2012. The answer is that PBM is intended to provide Surface Area
Confi guration features now. You can use sp_configure directly, or you can confi gure
the surface area through PBM. (Exercise 16.7 provides an example of surface area
 confi guration through PBM.)

Centralized Policy Management When you use one or more central management serv-
ers, you can centralize the management of policies. The policies can be confi gured to apply
automatically to a single server or to a server group. By placing servers in server groups,
you make it much easier to manage similar servers. The later section, “Central Server Man-
agement” provides details on how to implement and confi gure central management servers.

As you can see from this brief list of advantages, PBM has a lot to offer to a SQL Server
DBA. When you must implement and administer hundreds of SQL Servers, PBM will make
your life much easier.

One of the most exciting things about PBM is that it is really not that hard to learn and
use. You must understand the components that make up the PBM architecture, but once
you’ve mastered these components, implementation is very straightforward.

To help you master PBM and implement it properly, this section will cover the following
key topics:

■ PBM components

■ Creating conditions

■ Creating policies

■ Evaluating policies

536 Chapter 16 ■ Policy-Based Management

PBM Components
PBM comprises several components including facets, conditions, policies, categories, and
targets. Figure 16.1 represents the fi rst four of these components and the hierarchy within
which they operate. You will notice that conditions operate on facets, and policies operate
on conditions. You can categorize the policies and apply an entire category of policies to a
server or server group.

Facet

Condition

Policy

Facet

Condition

Policy

Category

F I GU R E 16 .1 PBM components represented hierarchically

The following sections address each component individually.

Facets
Think of facets as confi gurable objects in SQL Servers. The Oxford American College
Dictionary defi nes a facet as a particular aspect or feature of something. In PBM, the facet
is the elemental object that contains confi guration properties. It is elemental because you
cannot really work with a more basic component than the property of a facet, but you must
access the property through the facet.

Policy-Based Management 537

SQL Server 2008 was initially released with 74 facets out-of-the box, and SQL Server
2012 ships with 84. These facets cannot be removed or modifi ed by the DBA, but they can
be checked and constrained by creating conditions within the PBM hierarchy. Microsoft
may choose to release new facets through service packs or patches.

With all the facets that exist in SQL Server 2012, it is good to know how to acquire a
list of all facets and their descriptions. The following code sample will accomplish this goal
when executed in Windows PowerShell on the SQL Server machine:

[System.Reflection.Assembly]::LoadWithPartialName(
 ‘Microsoft.SqlServer.Dmf’
) | Out-Null
[System.Reflection.Assembly]::LoadWithPartialName(
 ‘Microsoft.SQLServer.Management.Sdk.Sfc’
) | Out-Null
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection(
 “server=’localhost’;Trusted_Connection=true”
)
$PolicyStore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
$facets = [Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets
$facets | Format-Table -Auto DisplayName, Name, Description

Facets can be read-write or they may be read-only. Read-write facets can be confi gured
through PBM. Read-only facets are used to monitor the state of an object. For example,
the Database Performance facet includes a Size property. You may want to ensure that a
particular database never exceeds a specifi ed size. You can use the Size property of the
Database Performance facet to evaluate this constraint. You cannot change the size of
the database to a smaller size, however, because that would require removing data pages.
The only way you can see that the database is too large is through the evaluation of your
specifi cations. Read-only facet properties are used in this way. Exercise 16.1 steps you
through a process that reveals the read-only versus read-write properties of facets.

E X E R C I S E 16 .1 :

Determining Read-Only Properties of Facets

In this exercise, you will locate the facets for a SQL Server object and then determine which
properties of a facet are read-only. To view the read-only properties of a facet, follow these
steps:

1. Launch SSMS.

2. In the Object Explorer, right-click a server instance root node, and select Facets.

3. In the Facets selection box, choose the facet you want to view.

4. In the Facet properties list, note that the read-only properties are gray and the read-
write properties are black, as shown here.

538 Chapter 16 ■ Policy-Based Management

E X E R C I S E 16 .1 (c ont inue d)

5. Click OK to close the View Facets window.

6. Expand the Databases container, right-click the AdventureWorks2012 database, and
select Facets.

7. In the Facets selection box, choose the facet you want to view.

8. In the Facet properties list, note that the read-only properties are again gray and the
read-write properties are again black.

The steps used in Exercise 16.1 to view the facet properties can be used with any valid
PBM target. A PBM target is the item to be evaluated by a policy. PBM targets include the
following:

■ Server instances

■ Databases

■ Tables

■ Indexes

■ Logins and database users

■ Audit objects

Policy-Based Management 539

■ Linked servers

■ Triggers

■ Resource Governor and its objects

■ Schemas

With most of these targets, you can right-click the target in SSMS and select Facets to
view the list of facets and facet properties available. Remember, if the property is gray, it is
read-only. If the property is black, it is read-write.

You can view a list of available facets by expanding the Management node in Object
Explorer and then expanding the Policy Management and Facets nodes to see a list similar
to the one in Figure 16.2.

F I GU R E 16 . 2 Viewing the list of available facets in Object Explorer

Conditions
You’ve undoubtedly heard questions like the following:

■ What are the weather conditions like today?

■ In what condition is that used automobile?

■ Under what conditions should the machine work?

As you’ve probably noticed, all of these questions have something in common: they are
all seeking information about conditions. A condition is defi ned as the state of something.
The three questions listed previously ask about the state of the weather, the automobile,

540 Chapter 16 ■ Policy-Based Management

and the environment. In a PBM implementation, conditions defi ne the desired state of a
single facet property.

A SQL Server condition has four properties, all of which are listed here along with their
descriptions:

Name The Name property is what you would expect: the name for the condition.

Facet The Facet property defi nes the actual facet evaluated in the condition.

Expression The Expression property defi nes the property of the facet and the
evaluated state.

Description The Description property is used to describe the condition.

A large text box is provided in the GUI interface for entering the Description property
data. You should use this area to provide information for management purposes. It’s a
good idea to standardize (remember, the SAU method from Chapter 13, Implementing
Advanced Features) on the contents of the Description property and the convention for the
Name property. It will make life much easier. Figure 16.3 shows the Create New Condition
dialog’s General page, and Figure 16.4 shows an example Description page.

F I GU R E 16 . 3 The General page of the Create New Condition dialog box

Policy-Based Management 541

Policies
Policies are used to test for conditions. Remember, you start with a prebuilt facet. The facet
is then linked with a desired or undesired state in a condition. The policy goes to the next
step and checks to see whether the condition is True or False and acts according to the
evaluation mode specifi cation. A policy includes the following properties:

■ Name

■ Enabled

■ Check condition

■ Targets

■ Evaluation mode

■ Server restriction

■ Category

■ Description

■ Additional help hyperlink

The fi rst six of these properties will be located on the General page of the Create New
Policy dialog, as shown in Figure 16.5.

F I GU R E 16 . 4 The Description page of the Create New Condition dialog box

542 Chapter 16 ■ Policy-Based Management

Let’s discuss each of these in depth.

Name

As with the conditions, the Name property is simply the name of the policy. Again, creating
a naming convention for these objects is a good idea. For example, you could require that
all policy names begin with the pol prefi x, followed by the condition name without the pre-
fi x (con), and then the way in which the policy should be evaluated.

To illustrate this, imagine you’re creating a policy that checks the conDatabaseSize
condition. You will evaluate this policy on a schedule. So, the name might be
polDatabaseSizeScheduled. Do you see how the name alone tells us much about the
policy? One of the driving benefi ts behind naming conventions is that the names mean
something to us.

Enabled

The Enabled property determines whether the policy is on or off. If the Enabled check box
is checked, the policy is on and will be evaluated at the scheduled time or when a change
event occurs (for facets that support the On Change evaluation modes). The Enabled check
box will not be available with policies confi gured for the On Demand evaluation mode.

Check Condition

The Check Condition property determines the condition that is evaluated by the policy. In
Figure 16.5, the conDatabaseSize condition is evaluated. Once the Check Condition

F I GU R E 16 .5 The General page of the Create New Policy dialog

Policy-Based Management 543

property is set, you can then determine the confi guration for the Targets property. In
Figure 16.5, the target is Every database, which means that the policy can be evaluated
against a server and every database on that server will be tested for compliance with the
conDatabaseSize condition specifi cations.

Evaluation

The Evaluation Mode property can be set to one of four possible values. The values and
their descriptions are summarized here:

On Demand Used for testing or for rarely evaluated policies. The DBA must initiate the
evaluation with the On Demand evaluation mode.

On Schedule Used to evaluate a policy on a specifi c schedule. Uses the scheduling engine
used for jobs. This is commonly used to evaluate read-only facet properties through PBM.

On Change: Log Only Used to log when a change is made that does not comply with
a policy.

On Change: Prevent Used to prevent a change that does not comply with a policy.

The most important thing you must do is determine which evaluation mode to use based
on the outcome you desire. Some facets allow rollback capabilities so that you can undo
actions that breach the policy. For example, if a DBA attempts to create a login that does
not comply with a condition, you can disallow the creation of the login. The DBA will
receive an error message indicating why the action was not allowed, and the message will
include the policy that restricted the action.

Only a select group of facets may be used with the two On Change evaluation modes.
The following list of facets may be used with both the On Change: Log Only and On
Change: Prevent evaluation modes:

■ Application Role

■ Asymmetric Key

■ Database Role

■ Endpoint

■ Login Options

■ Multipart Name

■ Resource Pool

■ Schema

■ Stored Procedure

■ Table Options

■ User Defi ned Function

■ User Options

■ View Options

■ Workload Group

544 Chapter 16 ■ Policy-Based Management

In addition to these facets that can be evaluated on a change for both logging and
prevention, several facets can be used only with On Change: Log Only. These logging-only
facets include the following:

■ Database Option

■ Server Confi guration

■ Surface Area

All other facets are limited to the On Demand and On Schedule evaluation modes.

Server Restriction

You can use the Server Restriction property of the policy to analyze a condition and deter-
mine, by that condition, whether the policy should apply to a given server. Sadly, the Server
Restriction property is limited to conditions that evaluate facets supporting On Change:
Prevent evaluation modes. The result is that you are very limited in the properties you can
evaluate.

Description Page Policies

The next three policy properties—Category, Description, and Additional Help Hyperlink—
are found on the Description page of the Create New Policy dialog, and they are shown in
Figure 16.6.

F I GU R E 16 .6 The Description page of the Create New Policy dialog

Policy-Based Management 545

The Category property allows you to group policies into categories. Categories are
covered in more detail next, but for now, just know that you can specify a category here
and that you can create the category by clicking the New button, if it does not already
exist.

The next property is Description. Like the condition, this should be used to specify
details about the policy that will be useful to future administrators. It may be helpful to
include the name of the policy creator, the purpose for the policy, and any other notes you
think are relevant and meaningful.

The Additional Help hyperlink includes two fi elds: the text to display and the
HTTP link to the information page. This property is useful for providing links to more
information related to this policy. The link can be to an internal intranet document that
defi nes the organization’s policies that impact this particular policy. Alternatively, you may
decide to link to a Microsoft web page that provides technical information. The choice is
yours, but you will want to ensure that the link provides useful information for the viewer
in relation to this specifi c policy. You can also use a mailto: link in this area so that the
viewer can send an email to an administrator who can assist with the policy.

Categories
If you have done any administration in a modern Windows domain-based network, you
can think of the categories in SQL Server’s PBM like the organizational units (OU) in
Active Directory. Like the OUs, you can link multiple policies with a single category. Once
you’ve placed the policies in the category, you can then assign an entire category of policies
to a target database.

No categories exist by default. If you want to use categories, you have two primary
options:

■ Import a set of categories by importing the Microsoft sample policies

■ Create your own categories with the category management features of SSMS

The sample policies provided by Microsoft can be very useful in the learning process.
Exercise 16.2 steps you through the process of loading the sample policies. Do not load the
policies into your production environment, because they will unnecessarily clutter your
SSMS interface, but they are useful in the lab for learning purposes. Additionally, you can
import them into the lab environment to locate the ones that would indeed be useful for
your production environment.

E X E R C I S E 16 . 2

Importing the Microsoft Sample Policies

In this exercise, you will import the sample policies for the database engine. To import the
policies, follow these steps:

1. Launch SSMS.

2. In Object Explorer, expand Management ➢ Policy Management ➢ Policies.

546 Chapter 16 ■ Policy-Based Management

E X E R C I S E 16 . 2 (c ont inue d)

3. Right-click the Policies node, and select Import Policy.

4. Click the build or selection button to the right of the Files To Import fi eld.

5. Navigate to the C:\Program Files\Microsoft SQL Server\110\Tools\Policies\
DatabaseEngine\1033 folder. NOTE: The actual location may vary based on installation
choices.

6. Single-click any fi le in the list, and then press Ctrl+A to select all the fi les.

7. Click the Open button to return to the Import dialog.

8. Under Options, for the Policy State option, choose Preserve Policy State on import
(don’t worry; the policies are all disabled by default).

9. Your Import dialog should look similar to the following; if it does, click OK to import the
sample policies.

10. When the import is complete, you will see a new list of policies in the Policies node.
Expand the Conditions node, and note the new conditions that match with the
new policies.

11. Right-click the Policy Management node, and select Manage Categories. You will see a
screen similar to the one shown here.

Policy-Based Management 547

Two signifi cant lessons can be learned from Exercise 16.2. First, Microsoft has provided
several sample policies from which to learn. Second, when you export a policy and then
import it into another server, if that target server does not already have a category defi ned
in the policy, the category will be created automatically. The categories added during the
processes in Exercise 16.2 were in the sample policies.

In addition to the Database Engine policies demonstrated in Exercise 16.2,
sample policies exist for Analysis Services and Reporting Services. Just
change the DatabaseEngine portion of the C:\Program Files\
Microsoft SQL Server\110\Tools\Policies\DatabaseEngine\1033
path to AnalysisServices or ReportingServices to access the additional
sample policies.

You may also create categories manually. Exercise 16.3 steps you through the process of
creating your own categories.

548 Chapter 16 ■ Policy-Based Management

E X E R C I S E 16 . 3

Creating Custom Categories for Policies

In addition to creating categories by clicking the New button from the Create New Policy
dialog, you can create categories in the Manage Policy Categories dialog. To do this, follow
these steps:

1. Right-click the Policy Management node within the Management node of Object
Explorer, and select Manage Categories.

2. In the Manage Policy Categories dialog, click the next available row, and enter a name
for the category, such as Company: Security, as shown here.

3. Check the Mandate Database Subscriptions check box if you want to require all data-
bases on the target server to adhere to this category of policies. Keep in mind that if you
mandate subscriptions, all databases must adhere to this policy.

4. Click OK to save the new category.

At this point you have created a new category. Now, you can subscribe to the
category, if it is not a mandated subscription, at the database level. If the category is a
mandated subscription, you do not have to subscribe because all databases must subscribe
automatically. A mandated subscription is a required policy. When mandated, all databases
must adhere to the policy. Exercise 16.4 provides the steps required to subscribe to a
nonmandated category in SQL Server.

Policy-Based Management 549

E X E R C I S E 16 . 4

Subscribing to a Category

In this exercise, you will subscribe the AdventureWorks2012 database to the Company:
Security category created in Exercise 16.3. To do this, follow these steps:

1. Expand the Databases node in Object Explorer.

2. Right-click the AdventureWorks2012 database, and select Policies ➢ Categories.

3. In the Categories dialog, check the Subscribed check box for the Company: Security
category, as shown here.

4. Click OK to save the changes.

 Because the Company: Security category does not contain any categories, no new
policies will be applied to the AdventureWorks2012 database. However, now that the
database is subscribed to the category, any future policies will be applied automatically.

Targets
The fi nal component of the PBM architecture is the target. The available targets are too
numerous to list in entirety, but a partial list containing many of the most important tar-
gets follows:

550 Chapter 16 ■ Policy-Based Management

■ Server

■ Database

■ Schema

■ Table

■ View

■ Logins

■ Users

■ Trigger

■ Stored procedure

■ User-defi ned function

■ Audit

■ Backup device

■ Data fi le

The most confusing part of PBM to new DBAs seems to be the matching of policies
to targets. This confusion comes from the fact that facets control or limit the targets and
not policies. A facet may be applicable to one or more targets. For example, the Multipart
Name facet may apply to multiple targets. The good news is that the vast majority of facets
apply to only one target type.

Now, let’s consider the inverse. Can a target type be evaluated based on more than
one facet? The answer is a resounding Yes. In this case, the number of many-to-one
relationships is greater. For example, the Server target type can be evaluated based on
eight different facets. If you double-click any facet in the Facets node, you can see a list of
applicable target types, as shown in Figure 16.7.

F I GU R E 16 .7 Viewing the applicable target types by facet

Creating Conditions
The fi rst step you must take to implement a policy is to create a condition. Remember, the
facets already exist, and you must create a condition that defi nes a desired or undesired
state for a facet property. In this section, you will create three different conditions. The
three conditions will demonstrate the use of the On Schedule, On Change: Log Only, and
On Change: Prevent evaluation modes, when they are used in the “Creating Policies”

Policy-Based Management 551

 section. If you do not create the three conditions as instructed in Exercises 16.5, 16.6, and
16.7, you will not be able to perform the steps in the “Creating Policies” section.

The fi rst condition you will create will work with the Database facet and the Size
property. You will defi ne a condition that expects the database to be less than 10,000MB
in size. Exercise 16.5 steps you through the process.

E X E R C I S E 16 . 5

Creating the conDatabaseSize Condition

In this exercise, you will create a condition named conDatabaseSize. The condition will use
the Database facet. The Size property of the facet will be evaluated. You will expect the value
of the Size property to be less than 10,000MB. To do this, follow these steps:

1. In the Object Explorer Management node, right-click the Conditions node within Policy
Management, and select New Condition.

2. For the Name fi eld, enter conDatabaseSize.

3. For the Facet, choose Database.

4. In the Expression builder, click in the Field column, and choose @Size from the list.

5. For the operator, choose less than or equal to (<=).

6. In the criteria fi eld, enter 10000.

7. Click the arrow button to the left of the row you’ve just added to save the expression.

8. Click OK to save the condition.

Keep in mind that you would normally want to go to the Description page and enter a stan-
dardized description value. For these exercises, you will leave the Description page blank.

The second condition you will create will use the Login Options facet and will require
that the PasswordExpirationEnabled and PasswordPolicyEnforced properties be set to
True. Exercise 16.6 steps you through the process.

E X E R C I S E 16 . 6

Creating the conPasswordRules Condition

In this exercise, you will create a condition named conPasswordRules. The condition will use
the Login Options facet. The PasswordExpirationEnabled and PasswordPolicyEnforced
properties of the facet will be evaluated. To do this, follow these steps:

1. In the Object Explorer Management node, right-click the Conditions node within Policy
Management, and select New Condition.

2. For the Name fi eld, enter conPasswordRules.

552 Chapter 16 ■ Policy-Based Management

E X E R C I S E 16 . 6 (c ont inue d)

3. For the Facet, choose Login Options.

4. In the Expression builder, click in the Field column, and choose @PasswordExpiration-
Enabled from the list.

5. For the operator, choose equal to (=).

6. In the criteria fi eld, enter True.

7. Click in the Field column for the next row, and choose @PasswordPolicyEnforced from
the list.

8. For the operator, choose equal to (=).

9. In the criteria fi eld, enter True.

10. Click the arrow button to the left of the row you’ve just added to save the expression.

11. Click OK to save the condition.

The third and fi nal condition you will create will use the Surface Area Confi guration
facet and will expect the XPCmdShellEnabled property to be False. Exercise 16.7 steps you
through the process.

E X E R C I S E 16 . 7

Creating the conSurfaceArea Condition

In this exercise, you will create a condition named conSurfaceArea. The condition will use
the Surface Area Confi guration facet. The XPCmdShellEnabled property of the facet will be
evaluated. To do this, follow these steps:

1. In the Object Explorer Management node, right-click the Conditions node within Policy
Management, and select New Condition.

2. For the Name fi eld, enter conSurfaceArea.

3. For the Facet, choose Surface Area Confi guration.

4. In the Expression builder, click in the Field column, and choose @XPCmdShellEnabled
from the list.

5. For the operator, choose equal to (=).

6. In the criteria fi eld, enter False.

7. Click the pencil button to the left of the row you’ve just added to save the expression.

8. Click OK to save the condition.

Policy-Based Management 553

Notice that you chose the criterion of False for the conSurfaceArea condition. In most
cases, you still specify the condition as what you want it to be when creating a condition
that is based on a read-only property. The reason is simple: you want the evaluation process
to indicate a problem if the condition is not the way you’ve specifi ed it. In this case, you
want to see a problem indication if the XP CMD Shell feature is enabled, so you set the
condition to look for XPCmdShellEnabled to equal False. If the property is equal to True,
the condition will not be True, and you will see a nice red circle and a white X letting you
know something is off from the intended condition.

Now that you’ve created the three conditions, you can move on to create the policies that
will evaluate these conditions.

Creating Policies
You create policies in the SSMS GUI just as you do conditions. The policies are created in
the Policies node within the Policy Management node in Object Explorer. No real limit
exists on the number of policies you can create, but the policies are stored in the master
database, so creating unnecessary policies would increase the size of the master database
without benefi t. You should only create the policies that you need. This is the reason you
were cautioned against importing the sample Microsoft policies into a production SQL
Server instance. This section will provide exercises that create the policies to match the con-
ditions created in the preceding section.

If you have not created the conditions by performing Exercises 16.5, 16.6,
and 16.7, the exercises in this section will not work.

In Exercise 16.8, you will create a policy that evaluates the conDatabaseSize condition.
The policy will be confi gured to evaluate on a schedule, every night at 4:00 a.m. The policy
will be named polDatabaseSizeScheduled.

E X E R C I S E 16 . 8

Creating the polDatabaseSizeScheduled Policy

In this exercise, you will create the polDatabaseSizeScheduled policy. To do this, follow
these steps:

1. In Management ➢ Policy Management, right-click Policies and then select New Policy.

2. Enter the policy name of polDatabaseSizeScheduled.

3. For the Check condition property, choose conDatabaseSize.

554 Chapter 16 ■ Policy-Based Management

E X E R C I S E 16 . 8 (c ont inue d)

4. Accept the default target of Every Database.

5. Set the Evaluation Mode to On Schedule.

6. Click the New button to create a new schedule.

7. Enter the schedule name of Nightly-4-AM.

8. For the Frequency, choose Occurs Daily.

9. For the Daily Frequency, choose Occurs Once At: 4:00:00 AM, as shown here.

10. Click OK to save the schedule.

11. Check the Enabled check box so that the Create New Policy screen looks like the one
shown here.

Policy-Based Management 555

12. Click OK to create the new policy.

The policy created in Exercise 16.8 will run automatically every night at 4:00 a.m. You
can view the results of a scheduled policy run by looking at the history of the policy. Simply
right-click the policy in SSMS and choose View History to see the results of the policy’s
evaluation. As long as the policy is evaluated to True (for example, the Database size was
less than 10,000MB in the case of the polDatabaseSizeScheduled policy), the history will
show only that the evaluation ran, and a green checkmark will indicate that everything
was OK.

When a scheduled evaluation does not check out (for example, the database is more
than 10,000MB in the case of the polDatabaseSizeScheduled policy), you will see a red
circle with a white X in the history. You can expand the history entry and see exactly
which target was not in compliance with the condition. In Figure 16.8, all targets were in
compliance with the condition.

556 Chapter 16 ■ Policy-Based Management

In Exercise 16.9, you will create a policy that evaluates the conPasswordRules condi-
tion. The policy will be confi gured to evaluate on a change so that it can reject new
logins that do not comply with the condition of the policy. The policy will be named
polPasswordRulesPrevent.

E X E R C I S E 16 . 9

Creating the polPasswordRulesPrevent Policy

In this exercise, you will create the polPasswordRulesPrevent policy. To do this, follow these
steps:

1. In Management ➢ Policy Management, right-click Policies and then select New Policy.

2. Enter the policy name of polPasswordRulesPrevent.

3. For the Check Condition property, choose conPasswordRules.

4. Accept the default target of Every Login.

5. Set the Evaluation mode to On Change: Prevent.

6. Check the Enabled check box.

7. Click OK to save the new policy.

In Exercise 16.10, you will create a policy that evaluates the conSurfaceArea condition.
The policy will be confi gured to evaluate on a change and log the results of the evaluation.
The policy will be named polSurfaceAreaLog.

F I GU R E 16 . 8 Viewing the history of an evaluation showing noncompliant targets

Policy-Based Management 557

E X E R C I S E 16 .10

Creating the polSurfaceAreaLog Policy

In this exercise, you will create the polSurfaceAreaLog policy. To do this, follow these steps:

1. In Management ➢ Policy Management, right-click Policies and then select New Policy.

2. Enter the policy name of polSurfaceAreaLog.

3. For the Check condition property, choose conSurfaceArea.

4. Notice that the Surface Area facet does not list a target. That’s because it is applicable
to the SQL Server installation as a whole, depending on the property evaluated.

5. Set the Evaluation mode to On Change: Log Only.

6. Check the Enabled check box.

7. Click OK to save the new policy.

Because the policy created in Exercise 16.10 is an On Change: Log Only policy, you
must check the Event Viewer logs to see whether a breach in policy has occurred. Of
course, you can also view the internal history by right-clicking the policy and selecting
View History. Figure 16.9 shows the log in the Event Viewer. The proper log to view is the
application log.

F I GU R E 16 . 9 Viewing On Change: Log Only entries in the Event Viewer application log

558 Chapter 16 ■ Policy-Based Management

Evaluating Policies
Policies can be evaluated using different evaluation modes. The available modes include On
Demand, On Schedule, On Change: Log Only, and On Change: Prevent. The modes avail-
able for a given policy will depend on the facet specifi ed in the condition evaluated by the
policy. The evaluation mode, as you saw in the preceding section, is confi gured as part of
the policy. If you open a policy and do not see one or more of the four evaluation modes,
it simply means that the facet on which the policy is based does not support the missing
evaluation modes.

When you use the On Change: Prevent Evaluation mode, a trigger is created to
process the evaluation. The trigger actually calls on a system stored procedure named
sp_syspolicy_dispatch_event that is located in the dbo schema of the MSDB database.
Because the code used for PBM is stored throughout the MSDB and master databases, it is
very important to back up these databases whenever you make changes to the policies in
your environment.

You can evaluate an On Demand policy by right-clicking the policy and selecting
Evaluate. When you evaluate an On Demand policy, you will see a report indicating
whether the object is in compliance with the policy or not. You can also do this with
On Schedule or On Change policies, but it will not be necessary in most production
implementations with On Schedule or On Change policies. You will simply allow the
policies to work on the schedule or change events on which they are intended to work.

Centralized Server Management
Now that you’ve seen how to create conditions and policies, you’re probably excited to
learn how you can centralize the management of these policies. The key to centralization is
the creation of a central management server (CMS). In this section, you’ll see how to create
a CMS and how to register subscriber servers or instances with the CMS.

Major Benefits and Requirements
Before you see the steps for creating a CMS, you should understand the benefi ts of and
requirements for having one.

The requirement is that the CMS must be a SQL Server 2008 server or newer. While
a SQL Server 2005 server can be registered with the CMS, it cannot act as the CMS. In
fact, SQL Server 2000 and newer servers can be registered as members of the server groups
managed by the CMS.

The benefi ts are several. First, you can run T-SQL statements against a server group
created in the CMS. This feature is very useful because SQL Server 2000 and 2005 do not
really support PBM. You can create a T-SQL statement to execute against a server group
that contains all of your down-level (older version) SQL Servers. As long as the statement is

Centralized Server Management 559

syntactically correct for both SQL Server 2000 and 2005, you can massively change your
down-level servers in this way.

Second, you can evaluate policies against a server group. Instead of going to each server
and manually importing and evaluating the policies, you can create the policies on the CMS
server and then evaluate them against a group of SQL Server 2008 or later servers.

Third, you can import policies into the server group. Of course, the end result is that the
policies are actually imported into each server in the group. Now, policies that evaluate on
change, for example, will all be running on each server within that server group.

Creating a Central Management Server
Creating a CMS is a simple process. Exercise 16.11 provides the instructions for creating
a CMS.

E X E R C I S E 16 .11

Creating a CMS in SSMS

In this exercise, you will create a CMS. To do this, follow these steps:

1. Launch SSMS.

2. From the top menus, select View ➪ Registered Servers.

3. In the Registered Servers window, expand the Database Engine root node.

4. Right-click Central Management Servers, and select Register Central Management
Server.

5. In the New Server Registration dialog, enter localhost into the Server name fi eld and
click the Test button.

6. Click OK on the successful test report.

7. Click Save to create the local server as a CMS.

After completing the steps in Exercise 16.11, you’ve created the CMS. This is the fi rst
step in using centralized management in SQL Server. But your work is not yet complete;
you must now register servers with the CMS, if you want to manage them centrally.
Additionally, you may want to create server groups so that the servers can be managed in
collections.

Registering Subscriber Servers
With the CMS created, the next step is to register subscriber servers. These servers are SQL
Server 2000 and newer servers that will be managed by the CMS. Remember that the PBM

560 Chapter 16 ■ Policy-Based Management

functions are intended for SQL Server 2008 and newer servers; however, if you connect to a
SQL Server 2000 or 2005 server, some manual policy evaluations can be performed.

Because you may want to create server groups, you should follow the steps in
Exercise 16.12.

E X E R C I S E 16 .12

Creating Server Groups in the CMS

In this exercise, you’ll create a server group. Just follow these steps:

1. In the Registered Servers window, right-click the CMS server, and select New Server
Group.

2. In the New Server Group dialog, enter a name and description, as shown here. (The
name High Security is used out of preference. You can name the groups to your liking.)

3. Click OK to create the new server group.

You can cycle through the three steps in Exercise 16.12 as many times as required
to create the needed server groups. Remember that you have three main motivators for
creating a server group:

■ To collect servers together that should have the same confi gurations

■ To collect servers together that do not support fully centralized PBMs

■ To collect servers together that must comply with different regulatory policies

Once you have your server groups, you can begin adding registered servers (or subscriber
servers) to the groups. Exercise 16.13 provides the steps required to register a server.

E X E R C I S E 16 .13

Registering a Server

This exercise demonstrates the steps for registering a server. To create a server group, fol-
low these steps:

Centralized Server Management 561

1. In the Registered Servers window, right-click the CMS server or the server group to
which you want to add the new server and select New Server Registration.

2. In the New Server Registration dialog, type in the name or IP address of the new server
to be registered and click the Test button.

3. Assuming the test is successful, click OK in the resulting window to indicate The Con-
nection Was Tested Successfully.

4. Click Save to create the new server registration.

After you’ve registered one or more servers with the CMS, your Registered Servers
window should look similar to that in Figure 16.10. In this state, you can right-click a
specifi c registered server or a server group and select from several options.

F I GU R E 16 .10 Viewing the registered servers in the Registered Servers window of SSMS

562 Chapter 16 ■ Policy-Based Management

In Figure 16.11, you can see the different options that you can select by right-clicking a
server group.

F I GU R E 16 .11 Viewing the options available when right-clicking a server group

Even Small Businesses Can Benefi t from PBM and CMS Servers

I was working with a small business located just outside of Dayton, Ohio. They had only
three SQL Server 2008 servers, but they were running into a repeated problem. Two
different DBAs were creating objects in the SQL Servers, and they were using different
naming constructs. One DBA seemed to randomly choose names of objects, and the other
had a nice naming convention that he always used. The result, however, was a confusing
mess of a database server.

I was asked to come into the organization and assist in the implementation of a wireless
intrusion-detection system that logged information into a SQL Server database. While I
was there, I noticed the naming inconsistencies and mentioned it to one of the DBAs. He
said that it frustrated him as well and he wanted to have a consistent naming convention.

I met with both DBAs (if you didn’t catch it, the DBA who was frustrated was the one with
the nice naming convention) and explained the benefi ts of using a naming convention.
These were some of the benefi ts I mentioned:

Standardizing with PBM and CMS 563

■ You know what you’re looking at when you see an object.

■ New administrators can more quickly learn the system.

■ Visiting consultants, such as myself, are less likely to mess things up.

After reviewing these benefi ts and a few others, the other DBA agreed that a naming con-
vention was needed. I sat down with them, and we developed a plan similar to what the
frustrated DBA had already been using.

Then I dropped the bombshell. “Have you implemented PBM?” I asked. “We haven’t even
heard of it,” they responded. Were they ever in for a treat. I connected to my lab servers
using a VPN connection and showed them the potential. After just a few minutes of the
demonstration, they agreed that PBM was very needed in their organization.

In the end, we implemented their naming convention through PBM policies so that the
convention would be enforced and not just given lip service. Today, they have a well-oiled
machine, and they use PBM for several dozen other things as well. Even if you are in a
small SQL Server shop, I encourage you to give PBM a serious look.

Standardizing with PBM and CMS
So far, in this chapter, you’ve learned the mechanics of setting up PBM and centralized
management with a CMS. You should standardize your implementations of PBM and
CMS and use them to standardize your SQL Server instances. The benefi ts of standardiza-
tion are many and include consistency, simplifi ed troubleshooting, and a general feeling of
awareness. Why this feeling of awareness? Because you know what you’re up against when
you face a problem and must come up with a solution. To help you develop standards for
PBM and CMS, this chapter will conclude by addressing the topics you’ve covered from the
perspective of the SAU model that you fi rst learned in Chapter 14, “Creating Jobs, Opera-
tors, and Alerts.” First, you’ll learn about some recommendations for the items you should
standardize in relations to both PBM and CMS servers. Next, you’ll read some tips on how
to automate things using these solutions. Finally, you’ll briefl y address considerations for
updating your standard of use for PBM and CMS servers to wrap things up.

Standardizing
After reading Chapter 14 of this book, you probably realized that standardization of infor-
mation systems and technologies is a big deal. When it comes to PBM and CMS servers,
several items should be considered for standardization because developing standards will
help you implement a more consistent and simpler environment.

564 Chapter 16 ■ Policy-Based Management

PBM Standardizations
First, here’s a list of items you should standardize for your environment with PBM
implementations:

Names Develop a standard naming convention for each of the following items: condi-
tions, policies, and categories. You may be able to borrow from existing naming conven-
tions you’ve developed for other database schema items.

Descriptions Provide a list of items that should be in the description for conditions and
policies. Items that you may decide to include would be creator name, purpose, expiration
date (if it should be later removed), and notes.

Processes What will be your process for creating a new condition/policy pair? Make it a
required practice to immediately export the policy after it is created. This action will give
you a good backup of the policy should you later need it.

CMS Standardizations
For the CMS, a few items should be considered as well:

Number of CMS Servers How many CMS servers will you require? This question might
be best answered by considering whether you want one CMS server for the enterprise or
several created based on departments, locations, security requirements, or some other
criteria.

Down-Level Support Policy Will you allow SQL Server CMS servers to manage SQL
Server 2000 and 2005 servers? If so, for what can the CMS server be used? You may
choose to allow running queries against the down-level servers but not other actions.

Dedicated CMS Servers Will you create dedicated CMS servers or will the CMS role be
employed on production servers? If the CMS role is deployed on a production server, will
you limit the production database activity on that server?

As you can see, for both the PBM infrastructure and the CMS servers, you have some
important decisions to make.

Please understand that I am in no way saying that you will be able to create
a standard that could address every possible scenario. Rules are made to
be broken, as they say, and sometimes you will have to go against your own
standards. But such scenarios should be the exception and not the rule.

Automating
Equally important to standardization is automation. When you automate your standards,
you make it more likely that they will be implemented. If you do not automate, many of the
administrators and support professionals will sneak in shortcuts that hinder your standard-
ized environment.

Standardizing with PBM and CMS 565

As you created the various policies in this chapter, you may have noticed a key problem.
Several facets allow you to log an event only when a confi guration value is changed. So,
what can you do to receive automatic notifi cation of such changes? Several answers to this
question exist, but here you’ll focus on one great feature of the Event Viewer that many
administrators do not realize it has: Task Scheduling. You can confi gure the Event Viewer
to monitor for a particular log entry and to take action should that log entry be added to
the log.

For example, in Figure 16.12 you can see an entry in the application log for the
polSurfaceAreaLog policy created in Exercise 16.10. In Exercise 16.14, you’ll see how to
create an automated monitoring solution for this entry.

F I GU R E 16 .12 Viewing the polSurfaceAreaLog entry in the application log

E X E R C I S E 16 .14

Creating an Automated Event Log Monitoring Solution

In this exercise, you will create an automated task that watches the application event log for
the polSurfaceAreaLog entry. To do this, follow these steps:

1. Click Start ➢ All Programs ➢ Administrative Tools ➢ Event Viewer.

2. Expand the Windows log and then the application log.

3. Right-click the log item for the polSurfaceAreaLog policy entry and select Attach
Task To This Event.

4. Name the task polSurfaceAreaLog Monitor, and click Next.

566 Chapter 16 ■ Policy-Based Management

E X E R C I S E 16 . 4 (c ont inue d)

5. Note that the task will monitor for the event log entry based on the ID value of the
selected entry, and then click Next.

6. Select Send An E-Mail from the list of available actions, and click Next. (Notice that you
can also run a program or simply display a message.)

7. On the Send An E-Mail screen, confi gure it so you replace values with your email
address and server information, and click Next.

8. Click Finish on the Summary screen to create the monitoring solution.

The ability to attach scheduled tasks to event entries, a long-awaited feature, was added
in Windows Server 2008 and is still available in Windows Server 2008 R2 and Windows
Server 2012. One thing to consider with this feature is the ability to run a program. You
could launch a batch fi le from the Event Viewer log entry that would send an email but
also call on the SQLCMD tool to reconfi gure the surface area with the sp_configure
command. Can you imagine the power?

Updating
As with any product, you should keep an eye out for changes that are made to the system.
Whenever a new version is implemented in your environment, you should always check for
changes. If such changes are noticed, will they impact the standards by which you manage

Chapter Essentials 567

PBM or CMS servers? If they will, you should evaluate your standards and make the appro-
priate changes.

As an example, SQL Server 2008 R2 introduced a feature called the SQL Server Utility,
which is still available for SQL Server 2012. This tool allows you to centrally monitor and
report on the health of your SQL Servers. With the introduction of this tool, several of the
methods you use today for monitoring automation may no longer be required. If so, your
standard should be updated to include the new automation techniques accordingly.

To update to a new version of SQL Server, you will have to go through the rigorous
process of testing, backing up, and upgrading your servers. However, when you are
installing a service pack, the process is much simpler. You still need to test and have a new
backup handy, but you can usually get by with much less lab testing time.

Summary
In this chapter, you learned how to implement and manage SQL Server Policy-Based
Management (PBM) and a central management server (CMS). You learned that PBM is
the new term for the Declarative Management Framework (DMF) and that it is comprised
of facets, conditions, policies, categories, and targets. You learned to create a CMS and
 register servers with the CMS. Finally, you learned how to standardize, automate, and
update a PBM and CMS environment.

Chapter Essentials

Understanding Policy-Based Management PBM is the new term for DMF, or you might
say that PBM implements the DMF. PBM is based on facets that are controlled by condi-
tions, which are evaluated by policies. Policies can use one of four evaluation modes: On
Demand, On Schedule, On Change: Log Only, and On Change: Prevent. The facet will dic-
tate which evaluation modes may or may not be utilized.

Using Centralized Server Management A CMS can be used to centrally control or man-
age multiple server instances. The CMS can manage both local instances and remote server
instances. You begin using centralized management by registering a CMS and then register-
ing servers with the CMS. You can place servers in server groups so that they may be man-
aged as a collection. You can run queries against a server group, evaluate policies against a
server group, import policies into a server group, and even launch the Object Explorer with
a view for all servers in the group.

Standardizing with PBM and CMS As you implement PBM and CMS servers, it’s impor-
tant to consider the SAU process. Standardize on implementation and operational pro-
cedures. Automate as much as you can and update your standards as required with new
releases of the product or updates to the existing release.

Backup and
Restoration

TOPICS COVERED IN THIS CHAPTER:

 ✓ Backing Up a Database

 ✓ Backing Up System Databases

 ✓ Restoring a Database

 ✓ Backing Up the Environment

Chapter

17

Why create a backup? Numerous reasons exist, and some are
obvious. First, hard drives do not last forever—even when they
are confi gured for fault tolerance. If the hard drive you’re using

to store your database fails and you do not have a backup of the database, you may lose all
the data in the database. Backing up the data regularly is one way to ensure that you can
recover in the event of a hard-drive failure. Second, data can be corrupted through server
failures or code mistakes, among other things. Additionally, someone with the proper privi-
leges can accidentally delete a few thousand records. If you don’t have a backup, you may
have no way to restore this data. What if someone accidentally (or maliciously) deletes all
of the customer records from your database? Without a backup, your job itself could be in
jeopardy. In addition to these scenarios, natural disasters do occur. Tornados, fl oods, fi res,
and more can destroy a data center and often all the data in it.

In this chapter, you’ll learn all about backup and restoration so you can avoid these grim
prospects of losing data. First, you’ll get a feel for the various backup methods provided
in SQL Server, and then you’ll learn to back up a database and restore it in the event of
hardware or software failures. You’ll then explore how to back up the system databases,
which contain the confi guration settings for the database server as well as the many server-
level objects you might have created, such as jobs, operators, alerts, triggers, and Resource
Governor confi guration objects. Finally, you’ll gain an understanding of the backup options
provided in Windows Server for backing up the environment so that the entire server can
be recovered in the worst-case scenarios.

Now that you are good and scared, read on so you can learn how to protect all that
valuable data with proper backup procedures.

Backing Up a Database
While a typical operating system backup can be performed only when major changes are
made to an installation, your databases must be backed up regularly. The more heavily the
databases are modifi ed, the more frequently they must be updated. In this section, you’ll see
why you need backup and restoration plans. You’ll also learn about recovery models, the
different backup types, and how to perform the actual backups. If you abide by the recom-
mendations in this section, your user data will be safe.

Backing Up a Database 571

Creating a Backup Plan
An effective backup plan will include what data should be backed up, how it should be
backed up, when backups should occur, and how the data will be restored in the event of
an emergency. SQL Server provides the tools you can use to perform the backups and resto-
rations, but it is up to you to determine how to best use these tools. The following key ques-
tions should be asked:

■ Which databases should be backed up?

■ How frequently should they be backed up?

■ Should the transaction logs be backed up as well?

■ Will any encryption keys need to be backed up in addition to the databases?

■ Should the backups be compressed or uncompressed?

These are all questions that only you can answer. Although it may seem like a diffi cult
task to do this, everything you need to answer these questions will be covered in the
following pages.

To get started, you need to understand the process for creating a backup plan. The
process can be summarized in the following steps:

1. Determine the business requirements.

2. Choose the recovery model.

3. Specify the backups required.

4. Identify the backup frequency.

5. Determine the security needs for backups.

Determine the Business Requirements
To determine business requirements related to a specifi c database, you will need to answer
at least two questions: what is the acceptable level of data loss, and what is the acceptable
recovery cost? When dealing with acceptable levels of data loss, you are determining your
requirements in relation to transaction recoverability. How many transactions can be lost
without causing damage to the business that is greater than the cost of preventing transac-
tion loss? For example, if you implement a system that guarantees no transactions are lost,
will it cost more than the loss of the transactions that could otherwise be lost? If it does,
the business may determine that an acceptable level of loss can be tolerated and the per-
fect system, which guarantees no loss whatsoever, is just too expensive. This decision will
impact the way you implement database recovery models and backup types and schedules.

When dealing with acceptable recovery costs, you are determining the acceptable
recovery time. For example, if the database is down for more than an hour in order to
perform a restoration from backup, is this too long? If the database is down for more than
30 minutes, is this too long? Of course, these questions must be balanced with the database
size. If the database is 300GB in size, it may not be possible to recover it in less than 20 to 30

572 Chapter 17 ■ Backup and Restoration

minutes. On the other hand, you may be able to implement special backup procedures that
allow you to recover only damaged fi les or sections of the database. This decision will also
impact the way you implement recovery models and backup types and schedules.

Choose the Recovery Model
A little later in this chapter, you’ll learn how to choose a recovery model. For now, you
should simply know that part of your database backup plan will include the selection
of the appropriate recovery model. For example, if you determine that you must recover to
the point of failure, you will have to use the full recovery model because it allows for the
backup of transaction logs, which is required in order to recover to the point of failure.
However, running a database in the simple recovery model can result in performance
improvements during heavy write operations and may be desired. You must understand
these choices and the impact they will have on your system.

Specify the Backups Required
After you’ve determined the recovery model in relation to your business requirements, you
must determine the required backups that will be implemented. Do you need full backups
only, or will you require differential and transactional log backups as well? The answer to
this question will be determined by your acceptable recovery costs and acceptable transac-
tion losses. Each organization will have its own set of required backup types.

Generally speaking, a more incremental backup solution will allow more fl exible
recovery options. If you perform a full backup every night and that’s all, you will be
limiting your recovery options. For example, in most scenarios, you will not be able to
recover to a point in time previous to the most recent full backup. However, if you back up
with a full backup every night and a transaction log backup every hour, you will be able to
recover to any point in time covered by the backup fi les you have on hand. For example, if
you have all the full backups and transaction log backups for the past two weeks, you can
recover to any point in time during that two-week window.

Identify the Backup Frequency
Some databases may require a full backup only once a week, while others will demand full
backups nightly. In addition to full backups, you may determine that you need to imple-
ment differential backups between the full backups, and you may even decide to implement
transaction log backups between the differential backups. Again, the solution will be deter-
mined by your acceptable recovery costs and acceptable transaction losses.

When the recovery cost tolerance is low (meaning that you must recover as quickly as
possible), you will need more frequent backups. You do not necessarily have to perform a
full backup on some frequent interval, but you will need to perform at least a transaction
log backup with some frequency.

The issue of recovery cost is the major reason behind SQL Server’s lack of support for
incremental backups. An incremental backup backs up only the data that has changed since
the last incremental backup. If you had a full backup from a week ago and fi ve incremental
backups since that time, you would have to restore the full backup and then each of the

Backing Up a Database 573

incremental backups in sequence in order to restore that database. Differential backups are
different (no pun intended). A differential backup, as explained later in this chapter, backs
up everything that has changed since the last full backup. Therefore, recovery is achieved
by restoring the most recent full backup and then the most recent differential backup. Only
two restoration processes are required regardless of how many differential backups have
been taken since the most recent full backup.

When choosing between full or differential backups, you will need to consider the
following factors:

Backup Time Windows You may not have a suffi cient backup time window to perform a
full backup every night. In such cases, you can perform a full backup only once each week
and then perform differential backups (which will take less time) every night.

Recovery Time Requirements If you must recover the database quickly, a single, full
backup restore with a quick restoration of the transaction logs since the full backup will be
the fastest recovery method. With differential backups, you always have to recover the most
recent full backup fi rst and then the most recent differential backup before recovering the
transaction logs.

Data Change Rate Not every database is updated every day. If your database has very
few changes from day to day, you may be much better off with a monthly full backup and
nightly differential backups. Even after several weeks, the differential backup will likely
be very small because the database changes slowly over time rather than drastically on
a daily basis.

As you can see from these example considerations, choosing the backup type is a bit
more complex than simply saying, “I prefer full backups because they’re easier to restore.”
It’s always important to meet the requirements of the business over your own preferences.

Determine Security Needs for Backups
Just as you must secure your data while it is online and being accessed by users, you must
secure the data backups you create. This effort includes security against physical damage
as well as security against theft. The backup media—whether it is tape, DVD, or
otherwise—must be handled, transported, and stored with security in mind. For the most
sensitive data, the backups should be stored on secure media located in secure offsite stor-
age sites that are accessible while maintaining high levels of security. Less sensitive data
may be stored onsite on secure media, usually in a fi reproof and waterproof container.
Generated data (data that can be regenerated from the original sources) may not need to
be backed up, or it may need to be backed up less often. The latter situation would assume
that the data is publicly available and is, therefore, not considered sensitive.

Choosing a Recovery Model
Now that you understand the decisions required to create a backup plan at a high level, it’s
time to take a deep dive into some of the most important decisions you’ll have to make. The
fi rst one is the recovery model under which the database will operate.

574 Chapter 17 ■ Backup and Restoration

The primary role of a recovery model’s confi guration is to determine how the transaction
log will be used by a database. This setting also determines the types of backups you can
perform against a database. Some backup types cannot be performed on databases that use
specifi c recovery model settings. For example, you cannot perform a transaction log backup
against a database that is confi gured for the simple recovery model. The previous section
pointed out that choosing the recovery model is part of the backup plan development
process for any database. Now, you’ll look at the three different recovery models to ensure
that you understand the implications of choosing each one. The three recovery models are:

■ Simple

■ Full

■ Bulk-logged

You will also see how to set the recovery model, in the “Setting the Recovery Model”
section.

The Simple Recovery Model
When using the simple recovery model, SQL Server minimally logs the transactions that
occur and then truncates the transaction log at each checkpoint. In other words, the trans-
action log is not maintained until it is backed up, but instead it is emptied each time the
server writes the data from buffered memory to the actual database fi les. The server then
writes to the database during a checkpoint. For this reason, the simple recovery model will
not allow transaction log backups, and a database using this model cannot be recovered to
a point in time or to the point of failure.

The simple recovery model should be used only for development databases, test
databases, read-only databases, or databases that can tolerate some potential data loss or
that are backed up frequently. It should not be used for production databases, with the
exception of the read-only databases mentioned previously. Of course, read-only databases
don’t really matter (from a backup and recovery perspective) because they are never
modifi ed. If a database using the simple recovery model is modifi ed through a bulk insert
or update, it should usually be backed up immediately after the large modifi cation occurs.
The AdventureWorks sample database uses the simple recovery model by default, but it can
be changed to another model if desired.

The MSDB, master, and tempdb databases use the simple recovery model
by default. The model database uses the full recovery model by default.
Because new databases use the model database settings as their defaults,
a new database will default to the full recovery model.

To see the recovery model for all databases, execute the following query from a query
window in SSMS:

SELECT name, recovery_model_desc FROM sys.databases;

Figure 17.1 shows the results of this command.

Backing Up a Database 575

Full Recovery Model
The full recovery model provides complete transaction logging. All transactions, bulk or
otherwise, are logged into the transaction log, and the log is never truncated during normal
operations. For this reason, you must ensure that the transaction log is large enough to
handle all the transactions that will occur between backups. The full recovery model is the
model that should be used for most online transaction processing (OLTP) databases. The
exception to this recommendation may be a temporary change during bulk operations, as
you’ll see in the following description of the bulk-logged recovery model.

If you have a database configured with the full recovery model and you do
not back up the transaction log, that log can grow to be extremely large.
I’ve seen 100MB databases with 20GB transaction logs. Make sure you are
either backing up the transaction log or truncating it during full database
backups to keep it from consuming all of your valuable drive space.

Bulk-Logged Recovery Model
The bulk-logged recovery model provides a mechanism for minimally logging informa-
tion to the transaction log during bulk operations such as BULK INSERT statements, SELECT
INTO statements, and BCP (bulk copy program) program-based inserts. (BCP is a command-
line program used to import or export data.) A database can be placed permanently in

F I GU R E 17.1 Querying the database recovery models of all databases

576 Chapter 17 ■ Backup and Restoration

bulk-logged mode; however, it is more common to use the full recovery model and switch
to bulk-logged before a bulk transaction and then switch back to the full recovery model
afterward. A database that is in bulk-logged recovery mode cannot be recovered to
a specifi c point in time if a bulk transaction has occurred.

Contrary to popular belief, you can back up the transaction log when a database is
running in the bulk-logged recovery model. However, when you back up the transaction
log, it will be much more resource-consuming (processor, memory, and disk resources) and,
therefore, more time-consuming. Why does it take longer to back up the transaction log
in the bulk-logged recovery model? Because SQL Server tracks the pages that are changed
by bulk operations. When the transaction log backup occurs, SQL Server encounters the
bulk-logged action in the log (bulk transactions are minimally logged) and knows to look
at the bulk changed map (BCM) to locate any pages modifi ed with a bulk operation. When
it backs up those BCM-identifi ed pages, it has no idea what specifi c data changed on those
pages, so each entire page must be backed up with the transaction log. For this reason,
DBAs usually choose not to back up the transaction log for a database in the bulk-logged
recovery model—but, again, the bulk-logged recovery model is usually used only as a
temporary performance booster for bulk operations.

Selecting the Right Recovery Model

After years of working with SQL Server, I’ve found that many DBAs still have an improper
understanding of the recovery models. Recently, while working with another DBA, I was
reminded of this fact when he told me, “Tom, we aren’t using the transaction log for this
database because it’s in the simple recovery model.” This remark only reminded me that
misinformation is common in the industry, and the process of learning how things really
work can often be very diffi cult.

I informed the DBA that, fi rst, the transaction log is still used in the simple recovery model.
It is used during the normal processing of the database. However, it is not retained for very
long. As soon as a checkpoint occurs, the changed data pages that are stored in the buffer
memory are copied into the data fi le, and the transactions that created those changes are
truncated from the transaction log. For this reason, you cannot back up the transaction log
when in the simple recovery model, and you cannot restore to a point in time.

Next, I let the DBA know that the recovery model has absolutely no impact on how the
data is stored in the database or the atomicity of the data or the recoverability of the
system, should it lose power or otherwise crash during normal operations. Remember,
regardless of the recovery model used, during normal non-bulk-logged transactions, the
transaction log is used for crash recoverability and to enforce atomicity of the data.

Finally, I told him that the recovery model does impact how you can restore your
database. For example, with the simple recovery model, you can restore only to a full

Backing Up a Database 577

Setting the Recovery Model
Now that you understand your three recovery model choices, it’s time to learn how to actu-
ally set the recovery model. You can set the recovery model for the model or any user data-
base in one of three ways:

■ Using the ALTER DATABASE command

■ Using the sp_dboption system stored procedure

■ Using the GUI interface in SSMS

If you want to use the direct T-SQL command method, you will need to use the ALTER
DATABASE command. For example, the following T-SQL statement would set the recovery
model of the AdventureWorks database to FULL:

ALTER DATABASE AdventureWorks SET RECOVERY Full;

To set the recovery model to bulk-logged, you would change the FULL keyword to
BULK_LOGGED. To set the recovery model to simple, you would change the FULL keyword to
SIMPLE.

If you want to use the sp_dboption system stored procedure to set the recovery model,
you would need to confi gure one of the following database options:

■ select into/bulkcopy

■ trunc log on chkpt

The sp_dboption method goes all the way back to SQL Server 7.0 and earlier. With SQL
Server 2000, Microsoft released support for the easier recovery model selection methods
used today. However, if you set the select into/bulkcopy database option to True,
the recovery model will be changed to bulk-logged. If you set the trunc log on chkpt
database option to True, the recovery model will be changed to simple.

It’s best to use the ALTER DATABASE method or the GUI to change the recovery model. You
saw how to use the ALTER DATABASE method in the preceding paragraphs. In Exercise 17.1,
you’ll step through setting the database recovery model using the GUI interface in SSMS.

or differential backup point. With the bulk-logged recovery model, you can recover to
a point in time only if you have not performed any bulk operations since that last full
backup; however, the bulk-logged recovery model can improve the performance of bulk
operations. Finally, with the full recovery model, you can recover to any point in time
(as long as you are regularly backing up your transaction logs) regardless of the type of
operations performed against the database.

The next time you hear someone say that the transaction logs are not used when the
simple recovery model is selected, please let that person know how SQL Server really
handles such a confi guration. If you can clear up the confusion on this matter, you can do
a better job of selecting the appropriate recovery model for the right reasons.

578 Chapter 17 ■ Backup and Restoration

E X E R C I S E 17.1

Setting the Recovery Model in SSMS

In this exercise, you will set the recovery model for the AdventureWorks database to Full. To
do this, follow these steps:

1. Open the SQL Server Management Studio.

2. Expand the Databases node.

3. Right-click the AdventureWorks2012 database and select Properties.

4. Select the Options page from the list on the left.

5. Set the Recovery Model setting to Full. Notice that you can also set it to Bulk Logged or
Simple in the same location.

6. Click OK to apply the change.

Using the Different Backup Types
With the appropriate recovery model confi gured for your database, you can begin perform-
ing backups. Yet before you begin, it is important that you understand the different backup
types that are available. The three major types are full, differential, and transactional log
backups, and they are covered in this section. Remember that these backup types can be

Backing Up a Database 579

considered internal backups because they back up the data within the database fi les, but
they do not back up the database fi les. This backup methodology keeps you from having to
take the database offl ine before you can actually perform the backups. What you might call
an external backup can be performed by taking the database offl ine or stopping the entire
database server service and then backing up the physical fi les.

Full Backups
A full backup extracts all the data pages from the physical database fi les and stores them
on the backup media. Note that the backup does not include unused or empty pages within
the database fi les. To see how much space is consumed in a database, follow these steps:

1. Launch a new query window.

2. Change the context to the database you want to analyze.

3. Once you have the proper context, execute the following statement in the query window:

EXECUTE sp_spaceused;

The results will include the reserved space, the data space, the index size, and the
unused space, as shown in Figure 17.2. To determine the consumed space that must
be backed up, subtract the unused space from the reserved space. While some extra
information may be stored with the backup, the result of this formula will be very close to
the backup space required.

F I GU R E 17. 2 Viewing the approximate consumed space in a database

580 Chapter 17 ■ Backup and Restoration

A full backup can be performed with a T-SQL command, such as the following:

BACKUP DATABASE <database_name> TO <device_name>;

This command is used to back up a database to a device, and you can alternatively
specify a fi le path instead of a device. The command to back up to a fi le looks like this:

BACKUP DATABASE <database_name> TO DISK=’c:\folder\file.bak’;

c:\folder should be replaced with the drive and folder into which you want to place the
backup, and file.bak should be replaced with the desired backup fi lename.

You may also back up databases in the SSMS by right-clicking the database and selecting
Tasks and then Back Up. From the graphical Backup dialog, you can confi gure the backup
and then choose to script the backup confi guration to a new job so that it can be scheduled
to run as needed.

A full backup is the foundation of your backup plans. Differential backups provide no
value without the full backup on which they are based. In addition, transaction log backups
can be used—when a database fails—only in conjunction with a full backup or a full and
differential backup combination. Some databases may need only a weekly full backup,
and others may need a full backup every night. It really depends on the size of the
database and the backup window you have available on a nightly basis. Many variables are
involved in this decision, but you must remember that a full backup must exist in order to
benefi t from the other backup types. The earlier “Identify the Backup Frequency” section
outlined the considerations you must review when choosing the backup type.

Exercise 17.2 provides step-by-step instructions for creating a full backup of the
AdventureWorks2012 database. You can use these same steps for any database you want to
back up.

E X E R C I S E 17. 2

Creating a Full Backup of the Database

In this exercise, you will perform a full backup of the AdventureWorks2012 database. You
will back up the database to the default directory for backups, and you will back up to a fi le.
Before you perform the backup, you will ensure that the recovery model for the Adventure-
Works2012 database is set to Full.

1. Launch SQL Server Management Studio.

2. Expand the Databases container in Object Explorer.

3. Right-click the AdventureWorks2012 database and select Properties.

4. On the Options page, change the Recovery Model to Full if it is not already confi gured as
such.

5. Click OK to save this change.

Backing Up a Database 581

6. Right-click the AdventureWorks2012 database, and select Tasks and then Backup.

7. In the Backup Database dialog, ensure that Backup Type is set to Full, and accept the
default Database of AdventureWorks2012, the default Backup Type of Full, and the
default Backup Component of Database.

8. Under Destination, accept the default location, but notice that it will back up the data-
base to a disk fi le.

9. Select the Options page, and browse the optional parameters available there. Note that
you can verify the backup after it completes in the Reliability section of the Options
page. This is a good idea for production backup jobs because it verifi es that the data is
on the backup media after the backup. Without this, the backup is simply assumed to
have taken place.

582 Chapter 17 ■ Backup and Restoration

10. Without making any other changes, click the OK button to perform the full backup.

Remember that you can schedule a configured backup by clicking the
Script button and selecting Script Action To Job. Using this method, you
will not have to remember all of the required syntax for the BACKUP
DATABASE or BACKUP LOG command.

Differential Backups
When a full backup is performed, all the data pages are marked as having been backed
up. When these pages are then modifi ed with either new inserts or updates, the mark is
changed to modifi ed. A differential backup backs up these pages (actually, it backs up the
extents that contain the pages) and does not mark them as having been backed up. For this
reason, each differential backup is a backup of everything that has been changed since the
last full backup.

If you do a full backup on Sunday and differential backups on Monday and Tuesday,
Tuesday’s backup will contain the same data pages as Monday’s backup plus any new data
pages that have been modifi ed or created since Monday’s backup. This functionality allows
you to restore a database by restoring the full backup and then the most recent differential
backup. You will not have to restore differential backups in sequence.

Backing Up a Database 583

A differential backup is performed in the same way as a full backup from within
SSMS with the exception of setting Backup Type to Differential. You can also perform
a differential backup with the BACKUP DATABASE statement, as the following command
illustrates (the C:\backups folder must exist):

BACKUP DATABASE AdventureWorks2012 TO Disk=’C:\backups\AWorksDiff.bak’
WITH DIFFERENTIAL;

Transaction Log Backups
When you back up the transaction log, the log is truncated by default. The space that has
been consumed by transactions is freed once those transactions are backed up. Backing
up the transaction log of a database throughout the day allows you to recover to the point
of failure or to any point in time. In addition, because databases set to full or bulked-log
recovery models do not truncate the transaction log during full or differential backups, it
may be essential to back up the transaction log periodically just to truncate the log.

If you allow the transaction log of a database to become completely fi lled, users will be
denied write access to the database until you clear the transaction log. Scheduling regular
backups of the transaction log can prevent this from happening. When the log is full, users
may still execute read-only SELECT statements against the database. You can also prevent
the transaction log from fi lling up by enabling autogrowth on the transaction log.

Just as you can back up the database with a full or differential backup type using SSMS,
you can back up a transaction log in the graphical interface. Just be sure to select a Backup
Type value of Transaction Log. The T-SQL command for backing up the transaction log for
the AdventureWorks2012 database is as follows:

BACKUP LOG AdventureWorks2012 TO DISK=’C:\BACKUPS\AWorksTlog.bak’;

The BACKUP T-SQL command is a key command used to back up databases and transaction
logs. The complete syntax of the command is as follows:

BACKUP DATABASE { database_name | @database_name_var }
 TO <backup_device>
 [<MIRROR TO clause>]
 [WITH { DIFFERENTIAL | <general_WITH_options> [,...n] }]
[;]

The BACKUP DATABASE command shown is used to back up an entire database or a
specifi c fi le or fi legroup in the database. The database_name parameter is simply the
name of the database. If a database is named Marketing, you would type BACKUP DATABASE
Marketing to begin the BACKUP command.

The backup_device will be either the name of a backup device or the path to a backup
fi le. When a backup device is used, the name of the device is listed. For example, if a
backup device named MktBackup exists, the BACKUP statement will look like this:

BACKUP DATABASE Marketing TO MktBackup;

584 Chapter 17 ■ Backup and Restoration

If a backup device is not used and a fi le is used instead, the DISK keyword must be
specifi ed, like this:

BACKUP DATABASE Marketing TO DISK=’path_name’;

The path_name variable should be equal to the folder path and fi lename used for the
backup. For example, if you want to store the backup in a fi le named MktBackup.bak that is
located in the C:\Backups folder, you would execute the following statement:

BACKUP DATABASE Marketing TO DISK=’C:\Backups\MktBackup.bak’;

The MIRROR TO clause is used to make duplicate copies of the backup during the process.
For example, to store a backup in the MktBackup.bak fi le in the C:\Backups folder and also
store a backup in the MktBackupM.bak fi le in the E:\Backups folder, you would execute the
following command:

BACKUP DATABASE Marketing TO DISK=’C:\Backups\MktBackup.bak’
MIRROR TO DISK=’E:\Backups\MktBackupM.bak’
WITH FORMAT;

The benefi t of the MIRROR TO command is that a single backup process can create
duplicate copies of the backup automatically. You can mirror to as many as three separate
backup devices or destinations in addition to the initially specifi ed backup location.
Stated differently, three MIRROR TO clauses can be used to achieve a total of four backup
locations. The WITH FORMAT clause is required only if the mirror set (comprising the two
*.bak fi les) has not been previously formatted. On all succeeding backups, you can leave
the WITH FORMAT clause off and the command will run fi ne. For this reason, when using
mirror backups, you will usually create the fi rst backup manually and then allow successive
backups to be scheduled.

Working with Backup Devices and Files
The commands in the previous section show the T-SQL backup commands that are used
to back up to disk. You can back up to disk fi les directly, but you can also create a device
and then back up to that device. These devices should not be confused with physical
backup devices, such as tape drives. These devices are really nothing more than logical
names used to reference fi les on the disk drive. For example, it is easier to reference a device
named MyDevice than it is to reference C:\BackupFolder\Database1\MyFullBackups.bak.
Additionally, you can remap logical names to differenct devices or fi les at a later time, if
required. The good news is that you can confi gure the device named MyDevice to reference
the fi le C:\BackupFolder\Database1\MyFullBackups.bak.

Because you can use fi les and devices that reference fi les for backups, it is important that
you keep a few guidelines in mind when backing up to these fi les:

■ The backup fi les should not be stored on the same physical hard drive as the actual
database.

■ The fi les should be stored on a secure media, such as a hard drive that uses the NTFS
fi le system.

Backing Up a Database 585

■ You may consider performing the backup with a password required to restore it and
then encrypting the backup fi le itself.

■ You could encrypt the backup fi le with the Windows Encrypting File System (EFS) or
use a third-party encryption solution.

The following code shows how to back up the AdventureWorks database to a fi le while
using a password for security:
BACKUP DATABASE AdventureWorks2012 TO DISK=’C:\backups\AdvFullBack.bak’

WITH PASSWORD = ‘fghytZ123’;

Backup devices can be created with the SSMS or T-SQL commands. Exercise 17.3 covers
the latter.

E X E R C I S E 17. 3

Creating a Backup Device That Points to a File

To create a backup device in SSMS, follow these steps:

1. Launch SQL Server Management Studio.

2. Expand the Server Objects container.

3. Right-click the Backup Devices container and select New Backup Device.

4. Enter the backup device name of your choice.

5. Add the path to the actual backup fi le you want to have the backup device represent,
and click OK to create the device.

586 Chapter 17 ■ Backup and Restoration

When you want to create a backup device with T-SQL code, you will use the following
syntax:

USE master;
GO
EXEC master.dbo.sp_addumpdevice @devtype = ‘disk’,
@logicalname = ‘MyBackupDevice’,
@physicalname = ‘C:\backups\MyBackupDevice.bak’;

This code will create a backup device similar to the one you created using the graphical
interface in Exercise 17.3. Notice that a stored procedure named sp_addumpdevice is
actually doing the work of adding the device.

Once you’ve created a device, even if it is a DISK device such as the one created here, you
can treat it like a tape drive. This means you can format the media, append to the media,
and even overwrite the media. The following code samples show how to do all three:

—The following statement formats the device before creating the backup:
BACKUP DATABASE AdventureWorks2012 TO MyBackupDevice
WITH FORMAT;

—The following statement appends to an existing backup device:
BACKUP DATABASE AdventureWorks2012 TO MyBackupDevice
WITH NOINIT; –-this is an optional clause since NOINIT is the default

—The following statement overwrites an existing backup device:
BACKUP DATABASE AdventureWorks2012 TO MyBackupDevice
WITH INIT;

In effect, both the WITH FORMAT and WITH INIT clauses will overwrite the
existing backups within a device. The benefi t of these features is that you can create
scheduled backup procedures that reuse existing backup fi les or devices. For example, you
may choose to create a structure similar to that in Table 17.1.

TA B LE 17.1 Backup device rotation structure

Device name Purpose Rotation group

BackDev1 Full backups 1

BackDev2 Differential backups 1

BackDev3 Transaction log backups 1

BackDev4 Full backups 2

BackDev5 Differential backups 2

BackDev6 Transaction log backups 2

Backing Up a Database 587

With a structure like that in Table 17.1, you could perform all backups from one week
using the rotation group 1 devices and then perform all backups from the next week using
the rotation group 2 devices. These devices could be stored on different physical drives,
and this will provide you with extra levels of redundancy and recoverability. If the database
drive fails and the drive on which rotation group 1 is stored happens to fail at the same
time, you can still recover using rotation group 2. You may lose some data, but you’ll have
something to recover. If this system were used in conjunction with storing the transaction
logs separately, you could achieve an even higher likelihood of being able to restore your
data in a disaster scenario.

SQL Server also supports copy-only backups. A copy-only backup is one
that does not interrupt your backup cycles. You can create a copy-only
backup of the transaction log, and it will not truncate the transaction log.
You can create a copy-only backup of the database, and it will not show
in the backup history. The copy-only backup is used to make a copy of the
database for another server without interrupting the backup cycles.

Compressing Backups
SQL Server also supports compressed backups. Compressed backups require less
storage space, but they will increase CPU utilization. You will have to decide whether
the reduction in storage space is worth the cost in CPU time. SQL Server Enterprise
edition can create and read compressed backups. Other editions of SQL Server can only
read compressed backups.

Compressed backups do have some constraints, however, so familiarize yourself with
them before you make any decisions:

■ You cannot store both compressed and uncompressed backups on the same media or in
the same backup fi le. This limit is imposed because compressed backups use a different
storage format.

■ Backups created by NT Backup (the backup software built into Windows servers from
Windows NT 4.0 through Windows Server 2003) cannot exist on the same media as
SQL Server compressed backups.

■ SQL Server compressed backups cannot be read by versions of SQL Server previous
to SQL Server 2008.

You can set up a SQL Server Enterprise edition instance to default to compressing all
backups. The following command will confi gure this as an instance-level default:

EXEC sp_configure ‘backup compression default’, ‘1’;

Setting the value to 0, at any time, will revert to the default, which is that backups are
not compressed.

588 Chapter 17 ■ Backup and Restoration

If you prefer to specify compression during backups, you can do so with the WITH
COMPRESSION clause of the BACKUP DATABASE or BACKUP LOG statement. If the default has
been changed so that compressed backups are now the default behavior, you can override
this with the WITH NO_COMPRESSION clause.

Performing File and Filegroup Backups
In addition to backing up the entire database, you can back up just a fi le or fi legroup within
a database. This is useful with very large databases. For example, you may have a database
that is more than 500GB in size. With a large database like this, it may be helpful to split
the tables across multiple fi legroups and then back up one of the fi legroups on one night
and another on another night, and so forth. This backup type is still performed with the
BACKUP DATABASE statement, and the syntax is as follows:

BACKUP DATABASE database_name
FILEGROUP=filegroup_name
TO device_name | disk_file_path;

As you can see, three parts are needed—at a minimum—to perform a fi legroup backup.
You need to know the database name, the fi legroup name, and the backup destination.
For example, the following code would back up the SECONDARY fi legroup in the Marketing
database to the disk fi le named Marketing_Secondary.bak in the C:\backups directory:

BACKUP DATABASE Marketing FILEGROUP=SECONDARY
TO DISK=’C:\backups\Marketing_Secondary.bak’;

To back up a fi le instead of a fi legroup, you would simply replace the FILEGROUP
keyword with the FILE keyword. The logical name of the data fi le must be specifi ed in
place of the fi legroup name as well. If you have a data fi le that contains read-only data, you
can back up this fi le once and not include it in nightly backups. This can reduce the time
required to perform backups.

SQL Server does not allow you to back up a single file if the data in the file
is read-write data. Only read-only data files may be backed up individually
and restored individually.

Backing Up System Databases
All of the backup issues discussed in the previous section apply equally to the system
databases (master, model, and MSDB). You can back up these databases using the same
methods. However, it is more common to back up these databases with only full backups
because they usually do not become extremely large, and they are usually backed up once
each day at most. The system databases should be backed up at a few other times as well.

Restoring a Database 589

■ Back up the master database any time you change metadata. This would mean that
you’ve issued any kind of DDL statement in relation to database and database object
structures.

■ Back up the MSDB database any time you add or alter jobs, alerts, or operators.

■ Back up the model database each time you make a change to it.

■ Back up all three databases regularly. For some systems, this will mean monthly; for
others, it will mean nightly.

You will seldom need to back up the tempdb database because it is re-created each time
the SQL Server service starts and is primarily based on the model database.

Restoring a Database
The reason so much effort should be put into backing up your databases is to provide
yourself with the ability to recover using these backups in the event of failure. This section
provides the basic information you’ll need to be able to restore your databases completely
to a point in time or to the point of failure. It will also review the methods you can use to
restore the system databases should they become corrupted.

Choosing a Restore Method
You can restore databases to a specifi ed point in time, to the point of failure, or to a full
backup made at a specifi c point. Before you begin, however, it is important that you under-
stand the limitations you impose on yourself through your backup plan. Here are some
examples:

■ If your backup plan includes only performing full backups, you’ll be able to restore
only to the latest full backup.

■ If your backup plan includes performing differential backups, you’ll be able to restore
to the most recent differential backup after restoring the most recent full backup.

■ If you want to restore to a point in time, you’ll also need to be backing up your trans-
action logs.

■ Finally, if the database storage drive fails, you can restore to the point of failure as long
as the database uses the full recovery model and the transaction logs are stored on a
separate drive from the database. In this situation, when the database fails, you can
back up the transaction log, recover to the most recent full and/or differential backups,
and then recover the newly backed-up transaction log to arrive at the point of failure.

Again, what you can do in the restoration process will be limited by what you have done
in the backup process.

590 Chapter 17 ■ Backup and Restoration

Restoring to a Point in Time
To restore to a point in time, you will need a full backup and transaction log backups at a
minimum. You may also need differential backups if they are included in your backup plan
and you want the recovery process to occur more quickly. In Exercise 17.4, you will per-
form the steps required to restore to a point in time.

E X E R C I S E 17. 4

Restoring to a Point in Time

To recover to a point in time you specify, follow these steps:

1. Right-click the database you want to restore to a point in time and select Tasks ➢
Restore ➢ Database. This database is likely to be fl agged as suspect at this time
because this is often the reason for performing a restore.

2. Click the button to the right of the Point In Time fi eld.

3. Select the specifi c date and time to which you want to restore, and click OK.

4. Click OK again to begin the restoration to the specifi ed point in time.

Restoring a Database 591

If you attempt the steps in Exercise 17.4 while the database is online or while a user
is connected to it, you will receive an error. Click the Options page in the dialog shown in
Figure 17.3, and check the Overwrite Existing Database option to force the restore to
take place.

F I GU R E 17. 3 Forcing a database overwrite during a restoration

Restoring to the Point of Failure
To restore to the point of failure, you will need to back up the transaction log before begin-
ning the restoration. If you do not back up the transaction log before you begin the resto-
ration process, you will receive an error informing you that you will lose the data in the
transaction log. Of course, if the failure is because of hard-drive failure and the transaction
log is stored on the same drive as the database, you will not be able to restore to the point
of failure. This is why you should store the transaction log on a separate drive from the
database fi les.

Microsoft refers to the transaction log transactions that have not been
backed up when a failure occurs as the tail log. The name comes from the
fact that you are backing up the transactions that are at the “tail end of the
log” when you perform this backup.

Exercise 17.5 provides the steps required to back up the transaction log (tail log) for a failed
database and then restore to a new drive once it has been installed.

592 Chapter 17 ■ Backup and Restoration

E X E R C I S E 17. 5

Backing Up the Tail Log After a Database File Storage Failure

This exercise provides the steps required to both back up the tail log and restore the data-
base should the database fi le storage volume fail. The steps are generic, so they can be
applied to any database requiring recovery:

1. Back up the transaction log for the failed database with a command like the following:

BACKUP LOG database_name TO device_name WITH NO_TRUNCATE;

The NO_TRUNCATE option is required because the database is currently in a failed state.

2. Begin the restoration of the database by restoring the full backup with a command like
the following:

RESTORE DATABASE database_name FROM device_name WITH NORECOVERY;

3. Finally, you can restore the transaction log with a command like this:

RESTORE LOG database_name FROM device_name WITH RECOVERY;

Remember that your restoration process may look different from the one represented in
Exercise 17.5. The basic process outlined in Exercise 17.5 would work for a database that is
backed up using only full backups and transaction log backups. If you perform differential
backups, you may choose to restore them as well. In such a backup plan, you would usually
restore the most recent full backup fi rst and then the most recent differential backup and
then all transaction log backups in sequence up to the point of failure.

Document your restoration procedures in excruciating detail before you
need to use them. You will probably be very stressed when you do need
to recover from a database failure. Times of stress are not usually the best
times to rely on your memory alone. Additionally, the documentation could
be used by someone else if you are unavailable to perform the restoration.

Restoring System Databases
System databases are restored in a similar manner to user databases, except you cannot
restore them while the database service is running in multiuser mode. You must fi rst start
the SQL Server Database Engine service in single-user mode before you can restore the
system databases from a backup. To start the service in single-user mode, stop the service
and then start it from the command line with the –m switch. Exercise 17.6 provides the
instructions required to start SQL Server in single-user mode.

Backing Up the Environment 593

E X E R C I S E 17. 6

Starting the SQL Server Database Engine in Single-User Mode

In this exercise, you will learn to start the SQL Server Database Engine service in
single-user mode. First, you must stop the service if it is running; however, in most cases,
when you want to start the service in single-user mode, it will not be running because the
system databases have been lost or corrupted. To start the service in single-user mode,
follow these steps:

1. Launch the Windows command prompt by clicking Start ➢ Run and then entering CMD
as the command to run.

2. Change to the SQL Server directory by typing the following command:

CD\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\BINN

This command assumes a default install and that you are working with the default
instance that was installed fi rst. If this is not true, you will need to change to the appro-
priate directory for your installation.

3. Enter this command:

SQLSERVR –m

4. The server will start in single-user administration mode.

After you’ve performed the steps in Exercise 17.6, you can connect to the server with
SSMS and launch a new query window to execute RESTORE commands against the master
or MSDB databases. You could also use the SQLCMD command-line tool to execute
RESTORE DATABASE and RESTORE LOG commands. When you are fi nished restoring the SQL
Server, go back to the command prompt window where you initially launched the service
in single-user mode and press Ctrl+C to stop the single-user mode server. You can now start
the service normally.

Backing Up the Environment
Up to this point, you’ve focused on backing up the SQL Server databases. However, the
SQL Server services do not run in isolation. They run on a Windows server that has been
confi gured over time to meet the needs of the organization. In addition to the database
backups, the administrator must ensure that a recovery solution is available for the entire
server. You really have three options for these types of environment backups:

■ Built-in backup tools

■ Imaging tools

■ Third-party tools

594 Chapter 17 ■ Backup and Restoration

Built-in Backup Tools
Windows Server Backup (WSB) is the built-in tool provided in Windows Server 2008
and Windows Server 2008 R2. WSB is not installed by default. You will have to install it
using the Server Manager interface. Exercise 17.7 provides instructions for installing WSB
in Windows Server 2008.

E X E R C I S E 17. 7

Installing Windows Server Backup

In this exercise, you will install the Windows Server Backup feature of Windows Server 2008.
To install this feature, follow these steps:

1. Log on to the Windows Server 2008 server as an administrator.

2. Select Start ➢ Server Manager.

3. Select the Features node in the left pane.

4. In the right pane, select Add Features.

5. In the Add Features Wizard, scroll down the list of available features, and expand Win-
dows Server Backup Features.

6. Select Windows Server Backup and Command-Line Tools, and click Next.

7. Click Install to begin the installation of the Windows Server Backup tool set.

Backing Up the Environment 595

If you performed the steps in Exercise 17.7, you probably noticed that you were installing
both Windows Server Backup and a set of command-line tools. You can perform backups,
using WSB, with either the GUI interface or the command line. The choice is yours.

With either tool, you should back up the entire volume on which the Windows Server
operating system is installed. If the SQL Server services are installed on the same volume,
your environment backup will be complete. If the SQL Server services are installed on
a separate volume, you should back up that volume as well. WSB supports scheduling
backups.

Imaging and Third-Party Tools
Imaging tools, such as Ghost and DriveImage, can also be used to back up the environ-
ment. These tools are not usually used for incremental backups, but they provide an excel-
lent method of fast recovery. In most cases, imaging tools can be used to create a restore
point, and then WSB or some other third-party backup software will be used to create
incremental backups from the time of the restore point.

The process of backing up your server with an imaging or cloning tool is really quite
simple. First, you will need to boot the machine from a CD or DVD with the imaging
software on it. Second, run the imaging software and dump an image to another hard drive
in the computer or to a network share. It’s really that simple. These imaging solutions are
used to restore the environment within which SQL Server databases operate and not to
back up and restore the databases themselves. However, if you have an image backup of
the server and nightly backups of the databases (including the system databases), you could
recover the entire server from a massive driver failure in less than an hour in many cases
and certainly in a few hours in most cases.

Third-party backup tools should be selected with caution. For example, some tools will
allow you to back up the environment as well as the SQL Server databases, and others
will not. Check with the backup software vendor to see whether it offers a SQL Server
connector or a SQL Server module that allows for database backups while the databases
are online. If such a module is provided, the backup software can back up the environment
and the live databases on a scheduled basis.

Among the third-party backup tools for Windows systems and SQL Servers, the
following are very common:

■ Backup Exec

■ ARCServe

■ NovaBackup

■ Acronis Backup & Recovery

596 Chapter 17 ■ Backup and Restoration

Summary
Creating a backup plan and choosing a recovery model is an essential part of the DBA’s
role. You must have a plan that allows for recovery within business constraints. These
business constraints may include short recovery windows and complete recoverability, and
they will dictate the backup types you select. The recovery model is also important because
it will determine how you can recover your databases. With the right recovery model and a
solid backup plan, you can sleep peacefully at night knowing that your data is safe.

Backing up the SQL Server is one of the most important tasks the DBA must perform. In
addition to the user databases, the system databases and the environment must be backed
up. SQL Server supports three main types of backups. The fi rst backup type is the full
backup, and it is used to back up every used data page in the database. The second backup
type is the differential backup, and it is used to back up the data pages that have been
added or changed since that last full backup. The third backup type is the transaction log
backup, and it is used to back up the transaction log so that you can recover to a point in
time or the point of failure. In addition to these three main types, SQL Server also offers
fi le and fi legroup backups, as well as copy-only backups.

A feature fi rst introduced in SQL Server 2008 is compressed backups. You can enable
backup compression as an instance-level default. You can also specify that backups should
be compressed with the WITH COMPRESSION clause of the BACKUP command.

Chapter Essentials

Backing Up a Database Databases can be backed up in SQL Server using full, differen-
tial, transaction log, fi legroup, fi le, or copy-only backups. The backup types available will
depend on the recovery model used and whether the data is fl agged as read-only data or
not. User databases should be backed up on a regular basis.

Backing Up System Databases The system databases include master, model, and MSDB.
The system databases should be backed up either on a schedule or any time they are modi-
fi ed. Because the databases can be modifi ed daily through new job or object creation, the
best practice is to back up the system databases on a schedule.

Restoring a Database User databases can be restored while the SQL Server service is run-
ning in normal mode. However, system databases can be restored only if the SQL Server is
running in single-user mode. The RESTORE DATABASE command is used to restore a database.

Backing Up the Environment In addition to the SQL Server databases, you should consider
backing up the SQL Server environment. The environment includes the operating system
and services running on the same server as the SQL Server services. You can back up the
environment using the Windows Server Backup software on Windows Server or using
imaging tools or third-party backup solutions.

SQL Server
Security

PART

V
CHAPTER 18 ■ Security Threats and

Principles

CHAPTER 19 ■ Authentication and
Encryption

CHAPTER 20 ■ Security Best Practices

Chapter

18
Security Threats
and Principles

TOPICS COVERED IN THIS CHAPTER:

 ✓ Security Defined

 ✓ Security Threats

 ✓ Security Principles

Understanding the foundations of security is essential to
understanding any specifi c security solution. For this reason,
this chapter is divided into three sections that will provide a

solid foundation for understanding the specifi c security features of SQL Server covered in
Chapter 19, “Authentication and Encryption,” and Chapter 20, “Security Best Practices.”
The fi rst section is titled, “Security Defi ned.” Although it is the shortest section of the chap-
ter, it presents an important foundational concept. If you do not understand what you are
attempting to achieve, it will be very diffi cult to achieve it. You’ll begin by exploring a basic
defi nition of security, and then I’ll break this defi nition into its parts to clearly understand
what security is. Often it is easiest to understand what something is by also understanding
what it is not, so you’ll explore what security is not.

The second section of this chapter looks at security threats. Because this book focuses
on SQL Server, you will look at the threats from four perspectives related to the SQL Server
product. The fi rst perspective is the Windows Server operating system on which
SQL Server runs. After that you’ll look at the SQL Server service itself. Then you’ll analyze
the network between the SQL Server and its clients. Finally, you’ll review client security
issues as they relate to SQL Server.

The third and fi nal section of this chapter covers common security principles. These
principles help you conceptualize security solutions and understand their most benefi cial
applications. You’ll explore core security principles, such as defense-in-depth and least
privilege, in this section.

Security Defined
Security is a diffi cult concept to defi ne as it relates to computers and information systems.
This is, in part, because security may involve many disciplines. For example, to secure
a SQL Server instance, you must understand SQL Server, Windows Server, networking,
and even client operating system security. If the SQL Server is accessed through a web
application, you’ll need to understand Internet security. Are you beginning to see the
complexity? However, you should not lose hope because security can be defi ned, and this
section will do just that.

Security Defined 601

Why is the term security so hard to defi ne in relation to computer and systems security
for so many people? In part, it is probably because the term represents an impossible
dream. Consider the defi nition of security as found in The Oxford American College
Dictionary:

The state of being free from danger or threat.

Can this state of freedom really be achieved? Probably not. Even in everyday life you
cannot really be free from danger or threat. You can only manage the level of risk you
accept in relation to dangers and threats. The same is true for computer and network
security. Computer or network security should not be thought of as the state of being free
from danger or threat, because this results in an unusable system. So, let’s use the following
as our working defi nition of security in relation to SQL Server:

Mission Almost Impossible

To illustrate why security is so hard to defi ne, consider an exploratory adventure I went
on a few years ago. I pulled out two different Security+ certifi cation study guides to see
how security was defi ned in their glossaries. Each book indeed had a glossary. Each book
was designed to prepare candidates for a certifi cation that has one single word in the
title, and that word is security. Yet, neither book defi nes security in its glossary. The word
is simply missing from their lists.

I didn’t want to give up there, so I pulled out the study guide for another certifi cation
exam. This time, the certifi cation was the CCNA Security exam from Cisco Systems.
The book, again, had a glossary. Do you want to guess whether the word security was
defi ned? If you guessed that the word was missing from this glossary too, you are cor-
rect. If you knew me well, you would know that I don’t give up easily. I left the certifi ca-
tion books with the word security in the certifi cation name and decided to look at other
resources. After seeking through 11 books on the topic of security, I fi nally found one that
included the word security in the glossary. It was the Certifi ed Ethical Hacker (CEH) Prep
Guide (Wiley, 2008) by Ronald L. Krutz and Russell Dean Vines. Now, I’m sure that many
other security books on the market include the defi nition for the term in their glossaries,
but I was surprised at the effort it took to fi nd one in my library of more than 1,100 books
on computer-related topics (yes, I love books and have a library of more than 5,000 books
in total).

Just in case you’re wondering, the defi nition in the CEH Prep Guide book was, “Measures
and controls that ensure the confi dentiality, integrity, availability, and accountability of
the information processed and stored by a computer.” I agree with this specifi c com-
puter-related defi nition and have found this book exceptional in its coverage of hacking
techniques, whether you’re interested in gaining the CEH certifi cation or not.

602 Chapter 18 ■ Security Threats and Principles

SQL Server security is the state in which an acceptable level of risk is
achieved through the use of policies and procedures that can be monitored
and managed.

The phrase “acceptable level of risk” establishes a foundation that is both achievable
and measurable. You can achieve an acceptable level of risk by creating and documenting
policies, implementing procedures in compliance with those policies, and ensuring the
adherence to the policies through auditing and enforcement.

In a SQL Server environment, security is about data protection. The procedures should
result in a state that ensures the following:

■ The data can be accessed by authorized users only.

■ The data is secure in storage.

■ The data is secure in transit.

■ The data is recoverable.

Now let’s cover each of these more fully:

The data can be accessed by authorized users only. To ensure that the data can be
accessed by only authorized users, a strong authentication system must be utilized. SQL
Server provides both SQL logins and Windows authentication, which are covered in
Chapter 19. Windows authentication should be used whenever possible because it provides
better security than SQL logins.

The data is secure in storage. The data is secure in storage when the database fi les are
stored in a secure fi le system. A secure fi le system requires that a user be authenticated
before accessing any fi les. The NTFS fi le system provides such security for internal drives
and many external drive systems as well. Storage area networks (SANs) may also provide
such security using different fi le systems.

The data is secure in transit. When you want to secure data in transit, you must consider
the path between the SQL Server and the requesting client. You must also remember that
the requesting client is not always an end-user system, such as Windows XP or Windows
7. Often, the requesting client is another server. Regardless of the client used, the key to
secure transit is encryption. If the data is traversing a wired network, it may be less vulner-
able to easy interception; however, even wired communications should be encrypted for the
most sensitive information that travels across the wires. In a wireless environment, encryp-
tion is essential to data security. If you do not encrypt the data, anyone with a free copy of
WireShark and the right wireless network adapter can sniff the data right out of the air (or
at least off the RF signals). Encryption is the only way to protect this wireless data.

The data is secure in transit. Data recoverability is essential to data security. Some attack-
ers will want to steal your data. This desire can be thwarted with authentication, authori-
zation, and encryption. Other attackers will only want to prevent you from accessing the
data. For them, data destruction is suffi cient. To ensure recoverability, the data must be
backed up, and the backup storage must be secured. The procedures for backing up the

Security Defined 603

data were covered in Chapter 17, “Backup and Restoration.” Chapter 20 will review the
best practices for securing the backup storage media and location.

How to Classify Data for Security Purposes
The importance of security varies by organization. The variations exist because of the
differing values placed on information and networks within organizations. For example,
organizations involved in banking and healthcare will likely place a greater priority on
information security than organizations involved in selling greeting cards. However,
in every organization there exists a need to classify data so that it can be protected
appropriately. The greeting card company will likely place a greater value on its customer
database than it will on the log fi les for the Internet fi rewall. Each of these data fi les has
value, but one is more valuable than the other and should be classifi ed accordingly so that it
can be protected properly. This process is at the core of information security, and it can be
itemized as follows:

1. Determine the value of the information in question.

2. Apply an appropriate classifi cation based on that value.

3. Implement the proper security solutions for that classifi cation of information.

As an example, your organization may choose to classify information in three categories:
internal, public, and internal sensitive. Information classifi ed as internal may require only
appropriate authentication and authorization. Information classifi ed as public may require
neither authentication nor authorization. The internal sensitive information may require
authentication, authorization, and storage-based encryption.

From this very brief overview of information classifi cation and security measures, you
can see why different organizations have different security priorities and needs. It is also
true, however, that every organization is at risk for certain threats. Threats such as denial
of service (DoS), worms, and others are often promiscuous in nature. The attacker does not
care what networks or systems are damaged or made less effective in a promiscuous attack.
The intention of such an attack is often only to express the attacker’s ability or to serve
some other motivation for the attacker, such as curiosity or need for recognition. Because
many attacks are promiscuous in nature, it is very important that every organization place
some level of priority on security regardless of the intrinsic value of the information or
networks they employ.

Security in Theory
Why does a seemingly unprovoked attacker attack? This is an important question, but
it is very diffi cult to answer with certainty. After all, you are dealing with human nature
in these circumstances. It is very easy to understand why an employee who is terminated
decides to attack: that employee is not thinking rationally. The employee is upset and angry.
Such emotions often lead to actions that the person would never take in a more stable state

604 Chapter 18 ■ Security Threats and Principles

of mind. It is even easy to understand why a competitor might attack: to gain the upper
hand on your organization. But why does a script kiddy (one who lacks deep technical
understanding but has the ability to run scripts or follow instructions) choose to attack
your organization? Why does a skilled attacker attack your organization? The next few
paragraphs will attempt to answer those questions.

One theory says that they don’t choose your organization. Instead, the suggestion is
that the attacker is promiscuous. In the realm of network and systems security, the term
promiscuous simply means that the attacker does not care who the target is but will
attack any target that is vulnerable to a particular exploit. Attacks from script kiddies
often fall into this category. These attackers will scan hundreds or even thousands of
networks looking for any network that is vulnerable or any system that is vulnerable on
that network. When a vulnerable network or system is found, the attacker will launch
other scripts or utilities against the network to penetrate it and gain access to data and
resources. This method may also be used by skilled crackers who want only to gain control
of the network and resources so that an attack may be launched against a primary target
using these easily penetrated resources. A distributed DoS (DDoS) would be an example
of just such an attack. Script kiddies may launch a DoS attack just for fun, or they may be
unskilled crackers who want to harm your organization. The important point to remember
is that a DoS is easy to launch against an insecure server.

At the same time, the threat of script kiddies is more than a theory; it is a reality. Script
kiddies exist in the many thousands (possibly millions) and are a prime threat for any
organization. Because attacks are often promiscuous, each organization must protect its
data regardless of the likelihood of an attack intended to harm them. Remember, attackers
are very likely to use your network and system as a point of attack against another
target. Therefore, networks and servers must be protected even in smaller businesses and
organizations.

But there are threats other than the promiscuous attacker; usually these attacks
are ideological and driven by underlying motives that move the attacker against your
organization. For example, the attacker may be motivated by any of the following common
drivers, as well as hundreds of others not listed here:

■ Direct fi nancial gain

■ Opposition to your political positions

■ Opposition to your environmental impacts

■ Retaliation for some perceived self-harm

■ Devaluing your business for their own profi t

Whether the attacker’s thinking is correct or incorrect doesn’t matter. All that matters is
that the attacker perceives your organization to be a threat to something he or she values.
These values may include environmental concerns, freedom of speech concerns, freedom
from government, or any other value that the attacker holds in high esteem. If the attacker
sees your organization as a threat to the realization of these values, this perception may
be the motivation for the attack. Depending on the attacker’s value system, he or she may

Security Threats 605

attempt only to deface your website or could completely destroy all your data and systems.
Either way, you must protect against these individuals as well.

What is the difference between these two attacker types, and why does it matter? The
big difference is the answer to the question, “Why?” Why does the attacker want to attack
your network or systems? If it is promiscuous in nature, traditional protection mechanisms
will likely suffi ce. If it is targeted, the attacker will most likely be willing to spend much
more time attempting to penetrate your network, and stronger security mechanisms will
be needed. You will need to evaluate your organization’s risk of being an intentional
target based on strong motivations or a promiscuous target based on weak motivations.
Additionally, you must remember that even an attack that is promiscuous in nature may be
intended to harm another organization through the utilization of your resources.

Regardless of the primary reason behind the attack, script kiddies and
skilled crackers can be motivated by similar drives. Protecting against
the script kiddy is a little easier because you only have to protect against
known attacks, while protecting against the skilled crackers may require
advanced intrusion-monitoring solutions as well.

Security in the Real World
Every organization must deal with information, network, and systems security. If you
have a network, database system, or information, you must protect it. Protection methods
must be considered for the information. These methods will include authentication,
authorization, accounting, and encryption—and each need requires different action.

For the network systems, you will need to implement authentication and authorization
to ensure that only the assigned personnel may administer the devices. For security of the
database systems, you should ensure secure management of your application codebase
and secure programming practices, as well as secure administration. From this big-picture
perspective, you must drill down to the specifi c actions required to protect these different
attack points.

Now that you have the defi nition for security under your belt, you can move on
to look at the drivers behind security. Why is security so important? This question is
answered in the following section as you explore the four areas of threat to a SQL Server
implementation: the Windows server, the SQL Server, the network, and the client.

Security Threats
Some people call them hackers; others prefer to call them crackers or attackers. Regardless
of the name they are assigned, they are an evolving and morphing collective. This group of
technically savvy and intensely creative individuals continues to surprise us as they

606 Chapter 18 ■ Security Threats and Principles

develop new techniques for penetrating networks and systems. While you spend your days
implementing, maintaining, and troubleshooting these networks and systems, the attackers
spend their time for very different ends. They are developing new methods for mayhem and
mischief nearly every day. Database administrators and security practitioners must evolve
with them. Because such a time-investment disparity exists, it is essential that systems
professionals collaborate to share their collective protection knowledge. You may not have
the time to perform the research that leads to vulnerability discovery and protection against
those vulnerabilities, but you must make the time to learn of these vulnerabilities and
solutions through books, websites, magazines, and conferences.

To understand security threats, you’ll need to understand how a threat leads to an
exploitation. This section will help you understand this. It fi rst explains what threats,
vulnerabilities, and exploits are. It then looks at the four primary points of entry or attack
that a cracker may choose to exploit: the Windows server, the SQL Server, the network,
and the clients. Finally, you’ll see examples of cracks so that you can understand the
concepts covered from a practical perspective.

Threats, Vulnerabilities, and Exploits Defined
Understanding threats, vulnerabilities, and exploits is the beginning of network security
evaluation. You must understand how these three things connect with each other and how
a threat can take advantage of a vulnerability in order to exploit it. The following sections
step through this knowledge base.

Threats
A threat is defi ned as an individual, group, circumstance, or event with potential to cause
harm to a system. The only requirement for a person or event to be considered a threat is
the potential for harm. Certainty is not required. Threats fall into two general categories:
intentional and unintentional.

Intentional threats These include all threats that have human intelligence behind them.
Stated differently, intentional threats are those threats that are planned and executed by an
individual or a group of people.

Unintentional threats These include those events or circumstances that are often called
acts of God. Lightning strikes, hurricanes, accidents of any kind, and other similar events
are unintentional threats; however, these unintentional threats must be accounted for as
well. Additionally, human stupidity threats would fall into this category. These are the
threats that exist because we humans make mistakes.

Vulnerabilities
A vulnerability is defi ned as a weakness in a system or object. The object may be part of
a system, or it may be an independent entity. For example, a SQL Server database server
may be considered as an independent entity or as part of a larger networked system. As

Security Threats 607

an independent entity, the server must be secured to protect the data it stores; however, if
the SQL Server accesses other systems, you must consider those systems and the potential
threat they introduce to your network via the SQL Server. What if an attacker gains control
of the SQL Server? Can she gain access to the other resources accessible by the SQL Server?
New vulnerabilities, which were nonexistent in individual objects, are often discovered
when those objects are used together as a system. A given software module may have
no vulnerabilities when used alone, but when that module communicates with another
module, the communication channel may introduce a new vulnerability.

The discovery of vulnerabilities is known as vulnerability analysis. Vulnerability
analysis may be performed by a software or hardware vendor in order to test its solutions.
It may also be performed by organizations implementing the solution in order to ensure the
privacy and protection of their data. In most cases, it will be performed by both the vendor
and the implementing organization. This dual testing is needed because the implementing
organization will be deploying the solution in an environment that is foreign to the
vendor and may, therefore, introduce new vulnerabilities. Additionally, the implementing
organization will write code for its specifi c needs. In SQL Server, this means stored
procedures, user-defi ned functions, and triggers, among other things.

Exploits
An exploit is a specifi c method used to expose and take advantage of a vulnerability.
Exploits introduce threats because of vulnerabilities. An exploit may be a procedure that an
attacker must perform, or it may come in the form of source code that must be executed.

When an attacker wants to gain access to a network or systems on a network, he will go
through the following basic steps:

1. Scan for devices on the network.

2. Scan for services on those devices.

3. Discover the versions of the running services.

4. Research vulnerabilities.

5. Launch an exploit based on one or more vulnerabilities.

This step-by-step process shows that attacking a network or system is a simple
process. You just need to have the right tools. For instance, on a Windows system, you
could use nmap or Angry IP Scanner to fi nd the devices, services, and versions. These
Windows tools are free to download. Next, you can search the Internet for known
vulnerabilities, and then you can take advantage of those vulnerabilities through exploits.
In many cases, you can download free applications that are specially designed to launch
the exploit. As an illustration, AirCrack is a program designed specifi cally for cracking
WEP keys on wireless networks. If you’re using WEP to protect sensitive SQL Server data
that is transferred across wireless links, you’re relying on an insecure security solution
(scary, right?).

608 Chapter 18 ■ Security Threats and Principles

When the tools are easy to get and the instructions are easy to follow, the threat
increases. This threat increase is because script kiddies can easily launch the exploit.
For this reason, WEP cracking must be considered a valid threat to all organizations
implementing wireless networks because promiscuous attackers can use the exploit
against them. WEP cracking is used as an example here, but any other exploit that can
be acquired and executed without in-depth technical knowledge should be considered a
threat, and protection against it should be part of all security policies and procedures.
One common example in the SQL Server world is the SQL injection attack. Several
websites provide step-by-step instructions for performing injection attacks, and they
should not be taken lightly.

Attack Point 1: Windows Server
Windows servers are used to store data, provide services to users, or provide services to
other systems. Many servers are running Linux or Windows operating systems, and these
systems are heavily targeted by attackers because they are so widely used. Windows Server
is used to run SQL Server. If an attacker can penetrate or otherwise damage the Windows
server, the attacker can effectively hinder SQL Server operations.

Attack methods include the following:

■ Exploiting known vulnerabilities

■ Exploiting confi guration errors

■ Exploiting running services

Attackers can locate known vulnerabilities using search engines, discussion forums,
and many other websites. Common websites used for vulnerability discovery include the
following:

www.microsoft.com/security/

http://zone-h.org/

http://hackerwatch.org/

http://secunia.com/advisories/product/

As a database administrator, you should visit these websites regularly to keep up-to-date
your knowledge of the hardware, operating systems, and applications you are utilizing. You
should specifi cally look for issues related to SQL Server. At the Secunia.com website, for
instance, you can browse the vulnerability database and drill down by product to the SQL
Server product line. Figure 18.1 shows a vulnerability in SQL Server 2000 through 2012
that could allow cross-site scripting. This particular vulnerability is addressed in Microsoft
Knowledge Base article KB2716441, and a patch is available to fi x it. It illustrates why
SQL Server administrators must stay current on vulnerabilities and exploits related to the
product.

http://www.microsoft.com/security/
http://zone-h.org/
http://hackerwatch.org/
http://secunia.com/advisories/product/
http://Secunia.com

Security Threats 609

Confi guration error exploits can often be avoided by implementing a strong security
management process. This process would include threat and vulnerability analysis, security
policy development, and policy implementation. By implementing confi gurations based
on solid security policies, you reduce the likelihood of confi guration errors. However,
it does require a team effort because each technician must abide by the policies when
confi guring a device. An attacker requires only one improperly confi gured device to gain
entry to the network. Auditing and security assessments may also be used to ensure proper
confi guration.

Using the Microsoft Baseline Security Analyzer
Using the Microsoft Baseline Security Analyzer (MBSA) on your Windows servers that
run SQL Server is a good place to start. Exercise 18.1 steps you through the process of
downloading, installing, and running the MBSA application.

F I GU R E 18 .1 Viewing the Secunia.com SQL Server vulnerability report

http://Secunia.com

610 Chapter 18 ■ Security Threats and Principles

E X E R C I S E 18 .1

Using the MBSA Utility from Microsoft

In this exercise, you will download and install the MBSA utility from Microsoft and then run
the utility to analyze a SQL Server. To do this, follow these steps:

1. Log on to the Windows server that is running SQL Server as an administrator.

2. Launch Internet Explorer, and navigate to the following URL:

www.microsoft.com/downloads/details.aspx?familyid=B1E76BBE-71DF-41E8-
8B52-C871D012BA78&displaylang=en

3. Click the proper download link for your edition of Windows to start the download. Be
sure to choose x64 if you’re running a 64-bit version of Windows and x86 if you’re run-
ning a 32-bit version of Windows. Additionally, be sure to choose the proper language.

4. When the File Download dialog appears, choose to save the fi le. Select the desired loca-
tion for fi le saving, and click Save again.

5. Close Internet Explorer.

6. Navigate to the location where the MBSA download was saved in step 4, and execute
the downloaded fi le by double-clicking it.

7. If a security warning is displayed, click the Run button; otherwise, move on to step 8.

8. Click Next to begin the installation.

9. Agree to the license agreement, and click Next.

10. Click Next to accept the default installation location, and then click Install to begin the
installation.

11. Click OK to complete the installation.

12. On the desktop, double-click the MBSA icon to launch the utility.

13. In the MBSA utility, choose Scan A Computer.

14. Accept the default computer name, which will be the local computer, and all other
default options, and click Start Scan. The scanning process can take anywhere from
a few seconds to several minutes depending on the system speed and the number of
scanned elements.

15. View the scan results report. The image shown here is an example of the SQL Server
section of the MBSA report.

http://www.microsoft.com/downloads/details.aspx?familyid=B1E76BBE-71DF-41E8-8B52-C871D012BA78&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=B1E76BBE-71DF-41E8-8B52-C871D012BA78&displaylang=en

Security Threats 611

Many services are insecure regardless of the implementation method used. For example,
Telnet sends authentication credentials as cleartext when implemented according to the
standards. Therefore, a Telnet server does not provide a secure management interface
unless it supports SSH or some other security solution. FTP also sends the username and
password in the clear. Passwords sent as cleartext can be easily retrieved using protocol
analyzers. This is particularly true of wireless networks that do not implement encryption,
such as wireless hotspots and older networks. It is more diffi cult to sniff the data on wired
networks than on unencrypted wireless networks, thanks to the requirement of physical
access to the wired network.

Utilizing Authentication Systems
In addition to the service and confi guration problems, the authentication system used
must be considered. Chapter 19 addresses authentication in detail, but you must consider
it here from a Windows Server perspective as well. Authentication systems are used to
validate user identities and allow for authorization of the users for access to resources.
Authentication systems are based on credentials. Windows Server uses authentication, and
if it is implemented improperly, this can provide a point of attack on the Windows server.

Credentials can include any of the following three types:

Something You Know This includes passwords and personal identifi cation numbers (PINs).

Something You Have This includes keys, smartcards, and RFID chips.

Something You Are This includes biometrics such as fi ngerprint scanners, retina scanners,
and even weight measurements.

Windows Server can support any or all of the three types of credentials mentioned.

612 Chapter 18 ■ Security Threats and Principles

Authentication systems can be attacked by exploiting weak protocols, weak credential
stores, or weak credentials. Weak protocols are protocols that are implemented poorly.
The passwords may actually be sent across the network, or another vulnerability may
be inherent in the system. Weakly credentialed stores are exploited by cracking the
encryption used on the store or simply accessing the credential store when no encryption
is implemented. Weak credentials are usually weak passwords. Today, weak passwords
are those that contain fewer than eight characters and those that do not include multiple
character types. However, a password such as “thehorsejumpedoverthemoononabroom”
is very secure even though it does not contain multiple character types. The ultimate
indicators of the strength of a password, with few exceptions, are the size of the password
pool and the complexity of the password. This unusually long password is more than 30
characters long. A 30-character password with only lowercase letters is part of a password
pool that includes 254,186,582,832,900,000,000,000,000,000,000,000,000 possible
passwords. This number represents more than 254 undecillion passwords. To put it
into perspective, you could guess 100 trillion passwords each second, and it would take
more than 40 quadrillion years to guess the password on average. These numbers assume a
blind brute-force attack, but clearly even with advanced methods including rainbow tables
and intelligent algorithms, it would take far too long to make it worth the attempt.

There’s probably a cracker out there saying, “Wait a minute. I can use a dictionary
attack method against that horse-jumped mess of a password.” The cracker is correct.
However, it’s still a rather diffi cult process. Unlike simple dictionary cracking methods
that combine a single word with a number or two or three words together, cracking this
password requires putting nine words together. Let’s look at the math. The average English
word is 5.1 characters long. If the average passphrase includes just seven words, it would
give us a password length of 35 characters, rounding down. Looking at the number of
characters, it would seem to be an insurmountable passphrase, if brute force were used.
However, if dictionary cracking is used, it’s simple, right?

Let’s see. To use dictionary cracking when seven words are in the password, using a
moderate dictionary size of 100,000 words, more than 100 nonillion possible passwords
would exist. That’s the number 100 followed by 33 zeros. Yes, it’s another really big
number. If a cracking program processed 100 trillion possible passwords per minute, it
would still take many trillions of years to guess all the passwords. Divide this time in half
and add some fancy commonly used word fi lters (such as the words the and a), and you
might reduce this to a few million years. The point is that the size of the password pool has
a huge impact on the “crackability” of the password.

However, improper password storage or transmission makes all this theory null and
void. If the hashing algorithm is weak or the challenge/response mechanism is fl awed, the
password can be gained in a few moments even if it’s 100 characters long.

Still, the point with these examples is simple: if you have strong enough passwords, you
will be safe enough for most data. If you feel passwords cannot be made strong enough,
because of the human element (users writing passwords on sticky notes), you should
consider other authentication methods, such as smartcards or biometrics. Authentication
will be covered in much more detail in Chapter 19.

Security Threats 613

Encryption
In addition to the need for authentication to access data, sensitive data should be encrypted.
The encryption may take place in two places: during transit and during storage. Encryption
for transmitted data is processor-intensive and may introduce additional processing
delays in database systems; however, the trade-off may be worth it if security is of utmost
importance to your organization. In-transit encryption solutions are vulnerable to various
sniffi ng attacks. For example, WEP encrypts traffi c for WLANs, but the algorithm and
keys were improperly implemented; as a result, attackers can easily crack the WEP key and
then gain access to the transmitted data.

Storage encryption is most frequently attacked by attacking the key store. You may have
noticed that brute-force methods were mentioned with encryption. Brute force is seldom
used to crack any encryption scheme because of the time required. Even Digital Encryption
Standard (DES) at 40 bits takes too long for most attacks. For this reason, attackers will
usually look for vulnerabilities in the key store or the method used to access the key store.
An example of this is given in the “Encryption Cracks” section.

Many storage attacks are really authentication attacks. The attacker performs password
guessing, password sniffi ng, or offl ine password cracking in order to gain access to the
storage location. Once access is granted, the system treats the attacker as an authorized
user.

In addition to authentication attacks against Windows servers, an attacker may take
advantage of vulnerabilities inherent in the embedded operating system of a storage device
used on a Windows network. For example, many Network Attached Storage (NAS) devices
use embedded Linux. Because the operating system is implemented through fi rmware,
the administrator may fail to update the operating system as often as normal computers
running the same operating system. This delay can result in vulnerabilities being exposed
for longer periods of time. The moral of the story is simple: update the fi rmware on your
devices whenever a security vulnerability is patched, and the fi rmware does not introduce
problems into the system. If you cannot update the fi rmware because the vendor is no
longer updating it, consider placing the device behind a router or fi rewall that can be used
to block all traffi c that may result in the exploiting of the vulnerability.

Attack Point 2: SQL Server
The SQL Server service itself is an important attack point to consider. The Windows Server
supports Windows authentication—either local accounts or Active Directory domain
accounts. In addition to these logins, the SQL Server service supports SQL logins. SQL
logins are used for non-Windows clients that must access the SQL Server. Linux machines
and Mac OS machines may require SQL logins. Because SQL logins are password-only
logins, while Windows accounts can log in with smartcards and biometrics, they will
never be as secure as Windows authentication. Additionally, the SQL logins are considered
insecure even for password-based authentication. SQL logins and the security fl aws they
introduce will be covered in more detail in Chapter 19.

614 Chapter 18 ■ Security Threats and Principles

In addition to the SQL logins, SQL Server introduces potential vulnerabilities through
a large number of services that are included with the product. You have the SQL Server
Database Engine service, the SQL Server Agent service, the SQL Browser service, the Full-
Text Filter Daemon Launcher service, and many more. If all of these services are enabled
when they are not needed, they unnecessarily introduce potential security problems. They
may not have known vulnerabilities today, but they could have them tomorrow. A quick
perusal of Microsoft’s site shows that several security vulnerabilities are indeed discovered
each year in the SQL Server product. For examples, refer to the following security bulletins:

■ www.microsoft.com/technet/security/Bulletin/MS09-004.mspx

■ www.microsoft.com/technet/security/bulletin/ms08-040.mspx

One thing to note about these security bulletins is that the discovered problems go
all the way back to SQL Server 7.0 and all the way forward to SQL Server 2005. Such
discoveries are not uncommon in the computer industry. Many times vulnerabilities are
discovered in products many years after they were released. Vulnerabilities in network
protocols such as SSL and TCP have been discovered many years after they were put into
use. The only thing you can really do about these is to implement recommended protection
mechanisms when such vulnerabilities are discovered. In the case of SQL Server, this
usually means applying a patch to the system.

To be clear, several vulnerabilities are also discovered each year in Oracle,
MySQL, and other databases as well. While Microsoft’s security problems
tend to receive large press coverage, the truth is that every product must
be maintained to protect against newly discovered vulnerabilities.

Attack Point 3: The Network
The earliest networks were wired only; however, with the standardization of wireless
technologies in the late 1990s, wireless networks have become very popular. Therefore,
the potential vulnerabilities introduced by both wired and wireless networks must be
considered.

Why all this information about the network? Because it’s what you use to
get to the SQL Server. If the network is not secure, the clients and the serv-
ers may be more easily attacked.

Wired Networks
Wired networks may be exploited by gaining access to an unsecured port or by penetrating
the network through a secured port. If the network is connected to the Internet, the
Internet connection may also be exploited. The last method of exploit is through dial-up
connections. Dial-up connections are becoming increasingly rare, but they do still exist.

http://www.microsoft.com/technet/security/Bulletin/MS09-004.mspx
http://www.microsoft.com/technet/security/bulletin/MS09-004.mspx

Security Threats 615

An unsecured wired port is an Ethernet (or some other wired network standard) port
that is enabled and not protected with authentication. IEEE 802.1X is a standard that
defi nes mechanisms for securing such a port. Some organizations choose to implement
802.1X, while others choose to resolve the issue by disabling any unused ports until
they are needed. The latter method leaves the network vulnerable to human error or
forgetfulness. What if the network administrator fails to disable the port after the
authorized user is fi nished using it? The result is an open port available for an internal
attacker. The 802.1X solution is preferred as long as a secure extensible authentication
protocol (EAP) implementation is used.

If a port is unsecured, an attacker may connect to the port and begin scanning and
ultimately attacking the network. Prime targets include ports in conference rooms, unused
offi ces, and remote areas of warehouses or manufacturing plants. These ports should
certainly be secured or disabled any time they are not in use. The fact that these ports can
be located anywhere in the facility and will provide access to the enterprise network makes
it quickly apparent that they can be used as an attack point to gain access to SQL Server
data.

Another method used by attackers, in relation to wired ports, is the installation of a
rogue wireless access point (AP). When the rogue AP is installed, the attacker can gain
access to the network from outside the facility. One quick and undetected trip into the
building is all it takes to implement an inexpensive rogue AP. This rogue AP is not likely
to cost the attacker anything because he will simply steal the AP so that he incurs no loss
when you do eventually fi nd and confi scate it.

One of the most commonly used wired attack points is an organization’s Internet
connection. Many administrators have noted more than 1,000 attack attempts in a single
day. If you have an Internet connection (ideally with a good fi rewall) and the connection
attempts can be logged, you should enable this logging. After a few days you can look
at the log to see how many connection attempts are being made against ports that are
commonly attacked. You may be surprised by the number of attempts. You may also be
surprised at how many attempts are made to connect to TCP port 1433 (the default SQL
Server port).

One of the most basic security solutions that will help protect your SQL
Servers is to place them in a locked server room or network operations
center. Physical security is still a very important part of network security.

Wireless Networks
Wireless networks are vulnerable to penetration through Internet-facing connections just
like wired networks; however, wireless networks also introduce entirely new vulnerabilities.
Instead of focusing on ports, you must focus on connections. Wireless networks allow
client devices to connect to the network without the use of preassigned ports. For this
reason, disabling ports is not an option. MAC fi ltering has been used in the past in an
attempt to accomplish security at the same level as port management; however, MAC

616 Chapter 18 ■ Security Threats and Principles

fi ltering is very weak because an attacker may monitor the network and discover valid
MAC addresses. Once the valid addresses are known, the attacker may reconfi gure her
device to use an allowed MAC address. For this reason, you should consider MAC fi ltering
as a security myth and not as a security solution.

In fact, many myths are associated with wireless security. While the primary focus of
this book is on SQL Server, a few of those security myths related to wireless networks will
be addressed so that your SQL Servers will not be made more vulnerable to client-side
exploits due to improper wireless implementations. The wireless security myths briefl y
covered here include the following:

■ MAC fi ltering

■ SSID hiding

■ All modern equipment uses “better WEP”

■ Wireless networks can’t be secured

MAC Filtering

Vendors of wireless devices and books on wireless networking often provide a list of the
“Top 5” or “Top 10” things you should do to secure your WLAN (wireless LAN). This
list usually includes MAC fi ltering and SSID hiding or cloaking. The reality is that neither
of these provides a high level of security. MAC addresses can easily be spoofed, and valid
MAC addresses can be identifi ed in just a few moments. For example, an attacker can
eliminate the AP in an infrastructure Basic Service Set (BSS) by looking for the MAC
address that sends out Beacon frames. This will always be the AP in the BSS. With this
fi ltered out of the attacker’s protocol analyzer, he has only to fi nd other MAC addresses
that are transmitting with a destination MAC address equal to that of the AP. Assuming
the captured frames are data frames, the attacker now knows a valid MAC address.

There is no question that MAC fi ltering will make it more diffi cult for an attacker to
access your network. The attacker will have to go through the process just outlined (or a
similar process) in order to obtain a valid MAC address to spoof. However, you are adding
to your workload by implementing such MAC fi ltering and you have to ask, “Am I getting
a good return on investment for my time?” The answer is usually, “No.” Using Temporal
Key Integrity Protocol (TKIP) or Counter Mode with Cipher Block Chaining Message
Authentication Code Protocol (CCMP) with a strong EAP type for authentication (or even
preshared keys) will be so much more secure than MAC fi ltering could ever hope to be that
it makes the extra effort of MAC fi ltering of minimal value. Do not concern yourself with
MAC fi ltering in an enterprise or SMB implementation. It may be useful in a small offi ce/
home offi ce (SOHO) implementation, but even then its value is questionable.

If you rely on MAC fi ltering to protect your network and wireless clients, you’re relying
on the wrong solution. In a business environment, WPA or WPA2 should always be used
and, preferably, the enterprise edition, which uses network-based authentication instead of
preshared keys.

Security Threats 617

SSID Hiding

Hiding or cloaking the service set identifi er (SSID) of your WLAN falls into a similar
category as MAC fi ltering. Both provide very little in the way of security enhancement.
Changing the name of your SSID from the vendor defaults can be very helpful because it
will make dictionary attacks against preshared key implementations more diffi cult. This
is because the SSID is used in the process of creating the pairwise master key. Hiding the
SSID only makes it diffi cult for casual eavesdroppers to fi nd your network.

Hiding the SSID also forces your valid clients to send out probe requests in order to
connect to your WLAN, whether using the Windows Wireless Zero Confi guration (WZC)
utility or your vendor’s client software. This activity means that, when the user turns on a
laptop in a public place, the laptop is broadcasting your SSID to the world. This could be
considered a potential security threat because a rogue AP of any type can be confi gured to
the SSID that is being sent out in the probe requests. Software-based APs can respond to
random SSIDs generated by WZC, but hiding your SSID effectively makes every WLAN
client in existence vulnerable to such attacks since they will all have to send probe requests
with the SSID.

For security purposes, you should always change the SSID from the default, but never
hide it. Some people will hide the SSID for usability purposes. Turning off the SSID
broadcast in all APs’ Beacon frames will prevent client computers from “seeing” the other
networks to which they are not supposed to connect. This may reduce confusion, but SSID
hiding should not be considered a security solution.

All Modern Equipment Uses “Better WEP”

In the past, when an initial WEP vulnerability scare hit, many vendors looked for
solutions to the weak initialization vectors (IVs) used in the WEP implementations that
existed at the time. Eventually, many vendors began implementing newer WEP solutions
that attempted to avoid the weak IVs. You simply cannot trust that a vendor has actually
implemented algorithms that protect you against WEP weaknesses just because the
hardware is newer. Instead, you would need to monitor the communications with the
device in order to determine whether weak IVs are being used. It’s easier to implement
WPA or WPA2.

As early as 2003, I noticed people on the Internet saying that the newer
hardware didn’t have this problem. In fact, I have a network-attached stor-
age device that was purchased in 2005 that includes a built-in AP. This
device is running the most recent firmware from the vendor (D-Link, in this
case), and I can connect a brand-new Intel Centrino chipset laptop to the
device using WEP. While monitoring from another computer, I am able to
capture weak IVs and crack the WEP key in a matter of minutes.

618 Chapter 18 ■ Security Threats and Principles

Wireless Networks Can’t Be Secured

Don’t allow these last few ineffective security methods to keep you from implementing a
wireless LAN. Wireless LANs can be implemented in a secure fashion using IEEE 802.11i
(now clause 9 of 802.11-2007) and strong EAP types. In fact, they can be made far more
secure than many wired LANs because many wired LANs do not implement any real
authentication mechanisms at the node level. If you buy into the concept that wireless
LANs cannot be secured and you decide not to implement a wireless LAN for this reason,
you will likely open up your network to more frequent rogue AP installations from users
who want to have wireless access to the network. The simplest way to avoid or at least
diminish the occurrence of user-installed rogue APs is to implement a secure wireless
network for the users. In the end, wireless LANs can be secured, but you must be aware of
the security myths surrounding them.

Attack Point 4: The Client
The client is probably the most overlooked attack point in a database system. The
assumption is that if the server is secure and the network is secure, the database will be
secure. This assumption could not be further from the truth. Depending on the design of
your database client application, it could become the easiest point of attack for an intruder.

Here’s one way to think about this. Have you heard of the SQL injection attack? If you
have, you know that an SQL injection attack is a cracking method that is used to penetrate
or damage any SQL-based server that is accessed through a client with poorly written code.
Now, if you’ve studied SQL injection attacks, you’re probably thinking, “Wait a minute.
Don’t injection attacks take place mostly on web servers, and aren’t they, therefore, server
attacks instead of client attacks?” At fi rst glance, you would be correct, but consider the
typical architecture used for a website. The website runs a web server such as Internet
Information Services (IIS) or Apache. The database may be installed on the same server,
but it is more common for large websites to access a separate database server. In such
a confi guration, the website (an application running in a web server) is the client to the
database server.

Even if the database server is installed on the same physical server as the web server
software, the web server is still a client to the database. Regardless of the distribution or
nondistribution of services, the website is always a client to the database; therefore, a SQL
injection attack is a client attack.

But let’s take this a step further. If you have a client application written in Visual Studio
.NET 2008 and that application accesses a SQL Server from a Windows XP client, SQL
injection attacks can still occur. Remember, a SQL injection attack is simply any attack
where extra information is injected (inserted) into the SQL request strings or statements.
If someone can inject SQL code into the requests of the .NET client application before the
requests are submitted to the server, they can perform an injection attack. The question is,
“Can you inject extra code into a client application request?” The answer is, “Yes.”

You can insert extra code into a client application, which is not a website application, by
using man-in-the-middle attacks or by installing a malicious software program (malware)
onto the client machine. The malware would need to look for SQL Server requests and then

Security Threats 619

reform these requests before allowing them to be sent to the database server. In effect, this
would be a type of client proxy. Instead of acting as a web proxy, it is acting as a SQL Server
proxy. This attack method is not common, but it is possible. Just because it is not common
today, no guarantee exists that ensures it will not be sweeping across the Internet tomorrow.

In addition to injection attacks, session hijacking can be attempted. Session hijacking
simply means that the attacker takes over the session of the valid SQL Server user or at
least uses the user’s session alongside him. Through this action, the attacker is not required
to know the user’s password. This attack method is not a direct SQL Server attack but is
an attack against the standard operation of the TCP protocol. You may remember from
previous chapters that SQL Server’s default instance uses TCP port 1433 by default. Of
course, this fact means that TCP is used for communications. If the highway on which
SQL Server is communicating (TCP) can be exploited, someone may be able to exploit SQL
Server. This attack method may be better categorized as a network attack since they’re
actually going underneath SQL Server in the OSI model. However, they are hijacking a
client session, so it’s also possible to categorize this as a client attack.

Understanding all the details of a specific hack is beyond the scope of this
book; however, I encourage you to explore the concept of session hijacking
further. One of the easiest ways to counter session hijacking is to use IPSec
between the client and the SQL Server.

Of course, one of the simplest methods an attacker can use is social engineering against
a database user. Social engineering is an attack method that relies on human manipulation
to gain information that should not be given to the attacker. With social engineering, the
attacker is not required to sniff packets off the network or install malware on the user’s
machine. Instead, she can ask the valid user to perform actions that would result in the
theft or destruction of data.

Stealing Data Through Social Engineering

I’ve dealt with several security incidents where social engineering was used to penetrate
a network or database system. Social engineering is a powerful attack method. You can-
not protect against it using technical measures. Only user education can help protect
your databases from social engineering attacks. For example, consider the following tele-
phone conversation, where Amy is the target of a social engineering attack:

“Hello, this is Amy. How may I help you?” queries Amy, as she answers the telephone.

“Hi, this is Dale from the help desk. We’re having a problem with the Sales Automation
program, and I need you to perform some actions on your system to help us resolve the

620 Chapter 18 ■ Security Threats and Principles

problem,” states the attacker. He then queries, “Can you give me about fi ve minutes of
your time right now?”

Amy wants to be helpful, so she quickly replies, “Yes, what do you need?”

The attacker responds, “First, remember not to give out your password. When I ask you
to perform the steps, please do not say your password out loud, just enter it in with the
commands. That way we can maintain security. OK?”

“OK,” is Amy’s brief response.

“Now, I need you to click the Start button and then select Run. Please, let me know when
you see the Run dialog on your screen,” says the attacker.

“Just a sec. OK, it’s there. What do I do now?” asks Amy.

The attacker requests, “The next part is a little technical, so feel free to verify the com-
mand before you press the Enter key. Type in NET SEND Dale and then enter your user-
name and password to recommission the database server. I’ll know when you’ve typed it
because the server session will become active again for your login.”

Amy uncertainly responds, “I think I’ve typed it right. Did you see the recommission thing?”

The attacker, now giddy with joy over the success of his attack, responds, “Yes. It looks
like everything is OK. Thanks for your help.”

“No problem,” replies Amy, feeling that she has been both helpful and technically profi cient.

Now, in this scenario, the attacker would have to be on a computer that could be reached
with the NET SEND command, so he would be on the internal network. However, the
attacker could have also had Amy install a program on her computer and then send the
credentials using email. The victim, in this case Amy, would have likely followed these
instructions as well.

The point of this illustration is simple: you cannot protect against social engineering
attacks with technical methods. For every technical solution you can come up with to
protect against the scenario presented here, I can simply come up with another social
engineering script that gets the same data or information in a different way. End-user
training is essential.

I recommend that my clients provide user education on the topic of social engineering.
I don’t recommend that they teach them things like, “Don’t give your password to any-
one,” but instead teach them why they shouldn’t give their password to anyone.

The fi ctional scenario I’ve presented here is loosely based on real-world situations that
have occurred. Don’t be fooled into thinking that you won’t be the target of a social engi-
neering attack. Instead, provide the proper training and help protect against it.

Security Threats 621

Cracking Examples
With an awareness of the common attack points, you’re ready to investigate a few hacking
examples. You will improve your understanding of security by learning about specifi c
hacking methods. The next few pages will present various hacks that can be used against a
selection of the attack points previously discussed.

If you are using this book as a study guide for Microsoft certifications and
want to optimize your study time, you can move on to Chapter 19 at this
point. The remaining examples and topics covered in this chapter are not
likely to appear on the exam, and you can understand Chapters 19 and 20
without mastering the concepts covered in the rest of this chapter.

Network Cracks
Cracking WEP is a perfect example of a network hack. The Wired Equivalent Privacy
(WEP) protocol is used to encrypt data on wireless LANs and authenticate users to the
wireless LAN based on the fact that the user knows the WEP key. Numerous problems
exist with the WEP protocol that make it easy to crack.

An understanding of the basic WEP process will help you understand the weaknesses
that are covered next. The WEP process starts with the inputs to the process. These inputs
include the data that should be encrypted (usually called plaintext), the secret key (40-bits
or 104-bits), and the IV (24-bits). These inputs are passed through the WEP algorithms to
generate the output (the ciphertext or encrypted data).

Because WEP is a layer 2 security implementation, it doesn’t matter what type of data
is being transmitted as long as it originates above layer 2 in the OSI model. To encrypt the
data, the RC4 algorithm is used to create a pseudorandom string of bits called a keystream.
The WEP static key and the IV are used to seed the pseudorandom number generator used
by the RC4 algorithm. The resulting keystream is XORed against the plaintext to generate
the ciphertext. The ciphertext alone is transferred without the keystream; however, the
IV is sent to the receiver. The receiver uses the IV that was transmitted and the stored
static WEP key to feed the same pseudorandom number generator to regenerate the same
keystream. The XOR is reversed at the receiver to recover the original plaintext from the
ciphertext.

WEP was never intended to provide impenetrable security, only to protect against casual
eavesdropping. With the rapid increase in processor speeds, cracking WEP has become a
very short task, and it can no longer be considered for protection against any organized
attack.

In late 2000 and early 2001, the security weaknesses of WEP became clear. Since then,
many attack methods have been developed and tools have been created that make these
attack methods simple to implement for entry-level technical individuals. The weaknesses
in WEP include the following:

622 Chapter 18 ■ Security Threats and Principles

■ Brute-force attacks

■ Dictionary attacks

■ Weak IV attacks

■ Reinjection attacks

■ Storage attacks

Brute-Force Attacks The brute-force attack method is a key guessing method that
attempts every possible key in order to crack the encryption. With 104-bit WEP, this is
really not a feasible attack method; however, 40-bit WEP can usually be cracked in one
or two days with brute-force attacks using more than 20 distributed computers. The short
timeframe is accomplished using a distributed cracking tool like jc-wepcrack. jc-wepcrack
is actually two tools: the client and the server. The cracker would fi rst start the tool on the
server and confi gure it for the WEP key size he thinks the target WLAN uses and provide it
with a pcap fi le (a capture of encrypted frames) from that network. Next, he would launch
the client program and confi gure it to connect to the server. The client program will request
a portion of the keys to be guessed and will attempt to access the encrypted frames with
those keys. With the modern addition of Field Programmable Gate Arrays (FPGAs), which
are add-on boards for hardware acceleration, the time to crack can be reduced by more
than 30 times. In fairness, the 20 computers would have to be P4 3.6GHz machines or bet-
ter. If a cracker chose to go the FPGA route, he would be spending a lot of money to crack
that WEP key. Smart enterprises will no longer be using WEP, so the cracker will not likely
gain access to any information that is as valuable as his hacking network.

Dictionary Attacks The dictionary attack method relies on the fact that humans often use
words as passwords. The key is to use a dictionary cracking tool that understands the con-
version algorithm used by a hardware vendor to convert the typed password into the WEP
key. This algorithm is not part of IEEE 802.11 and is implemented differently by the differ-
ent vendors. Many vendors allow the user to type a passphrase that is then converted to the
WEP key using the Neesus Datacom or MD5 WEP key generation algorithms. The Neesus
Datacom algorithm is notoriously insecure and has resulted in what is sometimes called the
Newsham-21-bit attack because it reduces the usable WEP key pool to 21 bits instead of 40
when using a 40-bit WEP key. This smaller pool can be exhausted in about 6–7 seconds on
a P4 3.6GHz single machine using modern cracking tools against a pcap fi le. Even MD5-
based conversion algorithms are far too weak and should not be considered secure because
they are still used to implement WEP, which is insecure because of weak IVs as well.

Weak IV Attacks Weak IV attacks are based on the faulty implementation of RC4 in the
WEP protocols. The IV is prepended to the static WEP key to form the full WEP encryp-
tion key used by the RC4 algorithm. This means than an attacker already knows the fi rst
24 bits of the encryption key because the IV is sent in cleartext as part of the frame header.
Additionally, Fluhrer, Mantin, and Shamir (the original experts who identifi ed early vul-
nerabilities in WEP) identifi ed “weak” IVs in a paper released in 2001. These weak IVs
result in certain values becoming more statistically probable than others and make it easier
to crack the static WEP key. The 802.11 frames that use these weak IVs have come to be

Security Threats 623

known as interesting frames. With enough interesting frames collected, someone can crack
the WEP key in a matter of seconds. This reduces the total attack time down to less than
fi ve to six minutes on a busy WLAN.

The weak IVs discovered by Fluhrer, Mantin, and Shamir are now among a
larger pool of known weak IVs. Since 2001, another 16 classes of weak IVs
have been discovered by David Hulton (h1kari) and KoreK.

Reinjection Attacks What if the WEP-enabled network being attacked is not busy and
the attacker cannot capture enough interesting frames in a short window of time? She can
use a reinjection attack. This kind of attack usually reinjects Address Resolution Protocol
(ARP) packets onto the WLAN. The program Aireplay can detect ARP packets based on
their unique size and does not need to decrypt the packets. By reinjecting the ARP packets
back onto the WLAN, it will force the other clients to reply and cause the creation of large
amounts of WLAN traffi c very quickly. For 40-bit WEP cracking, you usually want around
300,000 total frames to get enough interesting frames, and for 104-bit WEP cracking, you
may want about 1,000,000 frames.

Storage Attacks Storage attacks are those methods used to recover WEP or WPA keys
from their storage locations. On Windows computers, for example, WEP keys have often
been stored in the Registry in an encrypted form. An older version of this attack method
was the Lucent Registry Crack, which was a tool used to read the WEP keys right out of
the Windows Registry; however, it appears that the problem has not been fully removed
from our modern networks. An application named wzcook can retrieve the stored WEP
keys used by Windows’ Wireless Zero Confi guration. This application recovers WEP or
WPA-PSK keys (since they are effectively the same; WPA just improves the way the key is
managed and implemented) and comes with the Aircrack-ng tools used for cracking these
keys. The application works only if you have administrator access to the local machine, but
in an environment with poor physical security and poor user training, it is not diffi cult to
fi nd a machine for this attack that is logged on and using the WLAN.

WEP makes up the core of pre-RSNA security in IEEE 802.11 networks. The reality that
WEP can be cracked in less than fi ve minutes should be enough to make you realize that
you shouldn’t be using it on your networks. The only exception would be an installation
where you are required to install a WLAN using older hardware and you have no other
option. This scenario has occurred in a few church network implementations. The problems
were not with the infrastructure equipment in any of the scenarios. The problems were
with the client devices that the church members wanted to use to connect to the WLAN.
These devices did not support WPA or WPA2, and they were forced to use either WEP or
no security at all. While WEP can certainly be cracked quickly, at least it has to be cracked.
Open System authentication with no WEP, WPA, or WPA2 security is just that: open.

In the end, businesses and organizations that have sensitive data to protect must take a
stand for security and against older technologies. This means you should not implement
WEP anywhere in your organization. When you have the authority of a corporation, the

624 Chapter 18 ■ Security Threats and Principles

government, or even a nonprofi t oversight board, you can usually sell them on the need for
better security with a short (fi ve minutes or less) demonstration of just how weak WEP is. If
you’re implementing Voice over WLAN, these insights will be tremendously valuable.

Password Cracks
Most computer access controls are based on passwords. Weak passwords cause one of the
most serious security threats in networking, for obvious reasons. Intruders easily guess
commonly used and known passwords, such as password, admin, drowssap, Password1, and
so on. Short words or strings of characters are often at risk from a brute-force password-
attack program, and passwords made from words found in the dictionary can be guessed
using dictionary attacks as mentioned previously in this chapter.

All of this information is common knowledge to security administrators, but what is
not commonly considered is that passwords fl ow from client to server across unsecured
networks all the time. In the past, there was a common misconception that wired networks
were secure, but wireless LANs have opened the eyes of many administrators and attackers
that networking systems using passwords passed in cleartext across any medium are
vulnerable to interception. For this reason, password encryption has become very popular
along with security mechanisms, such as Kerberos (which is used in Windows Active
Directory domains), that implement such encryption. Two auditing tools often used by
administrators and hackers alike to view cleartext passwords are Win Sniffer and ettercap.
The following sections address the following tools for password capture and cracking:

■ Win Sniffer

■ Revelation

■ ettercap

■ L0phtCrack

As you read through these sections, remember this common fact: users often use the
same passwords with multiple systems. If someone wants to get a user’s password for the
SQL Server, they can often fi nd it by sniffi ng that user’s FTP, Telnet, SMTP, or HTTP
passwords.

Win Sniffer

Win Sniffer is a password-capture utility capable of capturing FTP, HTTP, ICQ,
Telnet, SMTP, POP3, NNTP, and IMAP usernames and passwords in shared-medium
networking environments such as wireless APs or wired hubs. If you use Telnet to gain
command-line access to your SQL Servers, this tool could be used to sniff the password off
the network. Win Sniffer is installed on a Windows-based computer, usually a laptop being
used to audit wireless networks. In a switched network, Win Sniffer can capture only those
passwords that originate from either the client that sent the password or the server that sent
the client the information directly. Win Sniffer can be used to capture your own passwords
(when saved in applications) when you forget them. Figure 18.2 shows sample output from
Win Sniffer.

Security Threats 625

Consider Figure 18.3, in which the user is checking email over an unencrypted wireless
LAN segment. An attacker is scanning the wireless segment using a password sniffer and
picks up the user’s email login information and the domain from which the user is checking
the email. The attacker now has access to the user’s email account and can read all of the
user’s email.

F I GU R E 18 . 2 Using Win Sniffer to capture passwords

F I GU R E 18 . 3 Sniffing a user’s email password from a wireless network connection

Public access wireless networks (hotspots), such as those found in airports or in
metropolitan areas, are some of the most vulnerable areas for user attacks. Users who
are not familiar with how easy it is to obtain their login information through a peer-to-

626 Chapter 18 ■ Security Threats and Principles

peer attack unknowingly check their email or access their corporate network—even VoIP
systems—and end up giving access to their accounts to a hacker. Once the hacker obtains a
valid login to a corporate account, she is now well equipped to try to obtain further access
into the network to locate more sensitive information.

Revelation

On Windows systems, a tool that can be used to discover passwords is Revelation. This
program will allow you to drag a cursor over a password fi eld in any login dialog or a web
page and have the password revealed. Of course, to use this tool, the user would have to
have left his or her computer logged on, and you will need to have the ability to run the
tool. However, with users saving their passwords in web forms so frequently today,
this tool can reveal passwords for many situations. To protect against it, you can
disallow the tool from running through Windows group policies or disallow users from
saving their passwords. While neither method will provide complete protection, they both
can provide extra protection and make it more diffi cult for the attacker. For example,
the attacker would have to use a hex editor to modify the binary fi le (revelation.exe) in
order to get around the hash-based group policies in Windows Server 2003 and supported
by Windows XP clients. Revelation can be used on wired and wireless systems in order to
discover passwords.

ettercap

ettercap is one of the most powerful password capture and auditing tools available
today. ettercap supports almost every operating system platform, and it can be found
at, http://ettercap.sourceforge.net. ettercap is capable of gathering data even in a
switched environment, which far exceeds the abilities of most other audit tools. ettercap
uses a menu-style user interface, making it user friendly. Some of the features available in
ettercap include the following:

Character Injection into an Established Connection A user can inject characters into a
server (emulating commands) or into a client (emulating replies) while maintaining a live
connection.

SSH1 Support A user can analyze usernames and passwords and even the data of the
SSH1 connection. ettercap is the fi rst software capable of analyzing an SSH connection in
full-duplex mode.

HTTPS Support A user can sniff HTTP-SSL data even if the connection is made through
a proxy.

Remote Traffic Through a GRE Tunnel A user can analyze remote traffi c through a GRE
tunnel from a remote router.

PPTP Broker A user can perform man-in-the-middle attacks against PPTP tunnels.

Plug-In Support A user can create her own plug-in using ettercap’s API. Many plug-ins
are included in the base package.

http://ettercap.sourceforge.net

Security Threats 627

Password Collector This is a password collector for the following: TELNET, FTP, POP,
RLOGIN, SSH1, ICQ, SMB, MySQL, HTTP, NNTP, X11, NAPSTER, IRC, RIP, BGP,
SOCKS-5, IMAP4, VNC, LDAP, NFS, SNMP, HALF LIFE, QUAKE 3, MSN, and YMSG.

Packet Filtering/Dropping A user can confi gure a fi lter that searches for a particular
string (even hex) in the TCP or UDP payload and replace it with a new string or drop the
entire packet.

OS Fingerprinting A user can fi ngerprint the operating system of the victim host and its
network adapter.

Kill a Connection From the connections list, a user can kill all the connections he or she
chooses.

Passive Scanning of the LAN A user can retrieve information about any of the following:
hosts in the LAN, open ports, services version, host type (gateway, router, or simple host),
and estimated distance (in hops).

Check for Other Poisoners ettercap has the ability to actively or passively fi nd other poi-
soners on the LAN. These would be devices that have hacked the ARP cache to point to
improper devices, a process known as ARP poisoning.

Bind Sniffed Data to a Local Port A user can connect to a port on a client and decode
protocols or inject data.

In addition to these features, the newer versions of ettercap support internal WEP
decryption for wireless packets. When you provide the WEP key, which you must know
or have previously cracked, the packets can be decrypted on the fl y for storage and later
viewing.

ettercap requires another free add-on for Windows called WinPcap, which
allows you to capture low-level network communications. You can down-
load WinPcap from www.winpcap.org/.

L0phtCrack

In many cases, operating systems implement password authentication and encryption at
the application layer. Such is the case with Microsoft Windows fi le sharing and NetLogon
processes. The challenge/response mechanism used by Microsoft over the years (and
over several operating system and service pack upgrades) has changed from LM (weak)
to NTLM (medium) to NTLMv2 (strong). Before NTLMv2, tools such as L0phtCrack
could easily crack these hashes. It is important to properly confi gure your Windows
operating system to use NTLMv2 and not to use the weaker versions. This process must be
accomplished manually, and you can fi nd instructions at www.technet.com.

L0phtCrack was a popular password auditing and recovery tool originally created by
L0pht Heavy Industries. The tool passed through several hands, including @stake and
Symantec, before landing in the current organization, which is L0pht Holdings, LLC.

http://www.winpcap.org/
http://www.technet.com

628 Chapter 18 ■ Security Threats and Principles

The newest version, at the time of this writing, is version 6, but the functional purpose
remains the same. You can often fi nd older versions on download sites such as Download
.com and Tucows.com. L0phtCrack can capture passwords in many different ways, but
two methods that auditors frequently attempt are fi le share authentication and network
logons. L0phtCrack can capture these challenge/response conversations and derive the
password. The stronger the challenge/response mechanism used, the more diffi cult it is for
L0phtCrack to crack them. Figure 18.4 shows the output of a password recovery session
in L0phtCrack version 4 (LC4).

F I GU R E 18 . 4 Cracking passwords with L0phtCrack

Once the intruder has captured the targeted password hashes (as many as deemed
appropriate in a given audit), the hashes are imported into LC4’s engine, and a
dictionary attack automatically ensues. If the dictionary attack is unsuccessful, a brute-
force attack automatically begins thereafter. The processing power of the computer doing
the audit will determine how fast the hash can be broken. L0phtCrack has many modes
for capturing password hashes and dumping password repositories. One mode allows
for sniffi ng in a shared medium (such as wireless), while another goes directly after the
Windows Security Access Manager (SAM).

http://Download.com
http://Download.com
http://Tucows.com

Security Threats 629

Windows 2000 service pack 3 introduced a new feature called SysKey, which is short
for System Key. This feature, implemented by running the syskey.exe executable fi le,
encrypts the SAM such that L0phtCrack cannot extract passwords from it as was possible
before it was encrypted. L0phtCrack has the capability of letting the auditor know that he
or she is auditing a SAM that has been encrypted so the auditor will not waste much time
attempting to extract that password.

L0phtCrack is managed and updated by L0pht Holdings, LLC, at the time
of this writing. If the history of the tool is any indicator of its future, it may
change hands several more times. For now, you can download a trial ver-
sion at www.L0phtCrack.com.

Encryption Cracks
The Encrypting File System (EFS) in Windows 2000 and newer operating systems is an
example of storage encryption. It is also an example of potential weaknesses in encryption
systems. EFS is vulnerable to key store attacks.

In any encryption system, the most diffi cult thing to do is protect the key store. The
problem is found in the method used to access the keys. If a user needs to decrypt data
she previously encrypted, she must be able to retrieve the encryption key. With EFS, data
is encrypted with a fi le encryption key (FEK). The EFS encrypts the FEK with the user’s
public key. This process means that the user’s private key will be needed in order to decrypt
the FEK, which will be used to decrypt the fi le. The question is this: How does the user
access her private key? The answer is simple: Automatically.

By default, when the user opens a fi le that is encrypted by EFS, her private key is
automatically retrieved, and the FEK is then decrypted followed by the decryption of the
data fi le. As long as the user is logged on, it all happens automatically. This process reveals
the potential weakness, which is that the user’s authentication credentials establish the
true security of EFS (or any other encryption solution that uses automatic encryption and
decryption once the user is authenticated).

The EFS uses a solid encryption algorithm with a suffi cient key length; however, the
user’s password may be very weak, and this reality introduces an important vulnerability
into the system. If the attacker can guess the user’s password, all of the data encrypted by
that user will now be accessible to the attacker in many, if not most, scenarios. However,
this is not a unique problem with EFS. If a user implements the very popular Pretty Good
Privacy (PGP) Desktop encryption system and uses weak passphrases, the data may be
equally vulnerable.

The solution is to implement strong passwords and solid user education. Strong
passwords can be required using group policies in Windows Server domain environments.
Exercise 18.2 steps you through confi guring strong password rules for an Active Directory
domain. User education is required in order to protect against social engineering. A
password can be a very strong password, such as Byrt6uyo78H, and still be vulnerable to
social engineering. Social engineering will be discussed in more detail in the next section.

http://www.L0phtCrack.com

630 Chapter 18 ■ Security Threats and Principles

E X E R C I S E 18 . 2

Creating Strong Password Policies in Windows Domains

This exercise presents the steps to implement a strong password policy in an Active Direc-
tory domain. These steps work on a Windows Server 2008 domain controller. To implement
strong password policies, follow these steps:

1. Select Start ➢ All Programs ➢ Administrative Tools ➢ Group Policy Management.

2. Expand the forest, the domains container, and the target domain in which you want to
implement secure password policies.

3. Expand Group Policy Objects.

4. Right-click the Default Domain Policy and select Edit.

5. In the GPO Editor, expand Computer Confi guration ➢ Policies ➢ Windows Settings ➢
Security Settings ➢ Account Policies ➢ Password Policy.

6. Confi gure the password policies as desired.

Social Engineering
Social engineering is defi ned as persuading someone, through the manipulation of human
or social interactions, to give you or tell you something that they should not give you or
tell you. Successful social engineering attacks occur because the target may be ignorant of
the organization’s information security policies or intimidated by an intruder’s knowledge,
expertise, or attitude. Social engineering is one of the most dangerous and successful
methods of hacking into any IT infrastructure. If defeating SQL Server’s security directly
has stumped the cracker, she might try to trick an employee who is authorized to access
the SQL Server into giving up his authentication credentials. Once the cracker has the

Security Threats 631

credentials, she will enter them into her own computer and use the credentials to log on to
the SQL Server, just as though there was no security. For this reason, social engineering has
the potential of rendering even the most sophisticated security solution useless.

Crackers are not always as they are portrayed in movies: the cigarette-smoking, caffeine-
loaded teenager in a dark room in a basement with multiple high-speed connections to
the Internet, loud music, and plenty of spare time. Many times the most successful and
damaging network intrusion is accomplished in broad daylight through the clever efforts
of someone who walks into a business as if he owns it. In the very same manner, a hired
professional security auditor should openly attempt intrusion as one tactic of testing
security policy adherence.

There are some well-known targets for this type of attack:

■ The help desk

■ Onsite contractors

■ Employees (end users)

The Help Desk

The help desk is in place to assist those individuals who need help with some aspect of
a computer or network. It becomes quite awkward in many situations for the help desk
not to provide answers to questions when the person on the other end of the line seems to
know what they need. It is not an easy task to train help-desk personnel not to be helpful
in certain situations; nevertheless, this type of education is crucial to corporate network
security. The help desk should be trained to know exactly which pieces of information
related to the wireless network should not be given out without the proper authorization or
without following specifi c processes put in place by security policy. The following are items
that might be marked for exclusion:

■ SSID of access points

■ WEP key(s)

■ SQL Server credentials

■ Usernames and passwords for network access and services (e.g., email)

■ Passwords and SNMP strings for infrastructure devices

To test your exposure to potential social engineering attempts, auditing may be
performed. The auditor should (and the hacker will) use two particular tactics when
dealing with help-desk personnel:

■ Forceful yet professional language

■ Playing dumb

Both of these approaches have the same effect: getting the requested information. Help-
desk personnel understand that their job is to help people with their problems. They also
understand that their manager will not be happy with them if their customers are not
happy with the service they are receiving. By threatening to speak with or write a letter
to the manager, the social engineer can get the help-desk person to give over the requested

632 Chapter 18 ■ Security Threats and Principles

information just to appease and settle down the social engineer. Some people are just
naturally inept at handling personal confl ict, and some people are easily intimidated by
anyone with an authoritative voice. Both of these situations can be used to the advantage
of the social engineer. The human factor has to be overcome with training, discipline, and
repetitively following documented procedures.

Playing dumb is a favorite of many social engineers. The help-desk attendant is usually
disarmed and stops paying attention when they fi gure out that the person to whom they
are speaking knows very little. This situation is exacerbated when the “dumb” customer
is overly polite and thankful for the help. It’s important that a help-desk person be alert to
this tactic at all times. A social engineer is likely to call over and over, hoping to speak with
different representatives and taking different approaches with each.

Onsite Contractors

IT contractors are commonplace at many businesses today, and very few, if any, are put
through organizational security training. Few are given a copy of the company security
policy or required to sign privacy agreements. For this reason and because IT contractors,
like the help desk, are there to help, IT contractors can be especially good targets for
social engineers. Contractors are aware of the specifi c details about network resources
because they are often onsite to design or repair the network. In wanting to be helpful to
their customers, contractors often give out too much information to people who are not
authorized to have such information. For this reason, strong security solutions that rely on
multifactor authentication are recommended.

As an example, if you require smartcard authentication for all contractors who access
the SQL Server, it will not be possible for these contractors to give out their credentials
over the phone to an attacker. Fingerprint scanners would provide a similar benefi t. The
complete removal of all password-based authentication systems and the replacement of
these systems with smartcards and biometrics can greatly reduce the potential for a social
engineering attack. Of course, this would also be very expensive, and the cost must be
weighed against the benefi t.

Employees

Because people spend many hours each day with each other at their work location, they
often share private information—such as network login information—with one another.
It is also common to see that same login information on sticky notes under keyboards and
on monitors. Another problem is that most computer users are not computer network or
security savvy. For this reason, they might not recognize spyware, hack attempts, or social
engineering.

If your SQL Server databases are new to your environment, employees may need
to be reminded to protect the authentication information used with the SQL Server.
Employees who are not educated about network security may not realize the dangers that
unauthorized access via the network can pose to the organization and to them personally.
Specifi cally, nontechnical employees who use the network should be aware that their
computers can be attacked in a peer-to-peer fashion at work, at home, or on any public

Security Principles 633

wireless network if the device uses wireless networking. Social engineers take advantage
of all of these facts and even engineer elaborate stories that would fool almost anyone not
specifi cally trained to recognize social engineering attacks.

Similar to social engineering is shoulder surfi ng. Shoulder surfi ng is a nontechnical
way of capturing information. As its name implies, you will simply watch over the user’s
shoulder to see what information you can gather. Frequently, users enter their passwords
slowly enough that you can see what they are typing. If the attacker is watching at the right
moment, he may be able to see the user typing in her password as she accesses the SQL
Server. Once again, this can be prevented with smartcards or fi ngerprint scanners.

In the preceding section, I mentioned smartcards and fingerprint scanners
a few times. Smartcards usually require the entry of a PIN—effectively a
password—in addition to the scanning of the smartcard. This way, if the
card is stolen, the cracker will still need the PIN. Be sure to remind your
users that they should not write their PINs on their smartcards with a
marker.

Zero-Day Hacks
In the end, you must stay up-to-date on the various vulnerabilities that may pose a threat to
your network. For example, you may have noticed that most of this chapter was not specifi c
to Voice over Internet Protocol (VoIP) networks. VoIP networks are vulnerable to the same
exploits as traditional wired and wireless networks. This does make your efforts somewhat
easier if you’re already familiar with network security; however, you must remember that
the impact of security technologies can be detrimental on VoIP networks. As an example,
the implementation of encryption for VoIP calls could be just enough to take your network
latency to an unacceptable level. Balancing between security and performance is an
important issue in VoIP networks.

The phrase zero-day hacks describes the newest attack methods in use at any time. You
will need to frequent websites mentioned in this chapter in order to keep your knowledge
fresh.

Security Principles
Security principles lay the foundation of thinking on which all security solutions are based.
So far, in this chapter, you’ve looked at the dark side of security. The focus has been on
the threats and dangers that must be addressed. The next two chapters will deal with
specifi c steps you can take to improve the security of your SQL Servers, so this chapter will
leave you with a review of commonly recommended security principles and practices. The
principles covered include the following:

634 Chapter 18 ■ Security Threats and Principles

■ Start with good design

■ Trust, but monitor

■ Defense-in-depth

■ Least privilege

Start with Good Design
The principle embodied in the phrase “start with good design” simply means you should
implement systems that are secure by default. You should implement systems that must be
opened up in order to allow features and functions that are required. This is also called a
closed-to-open system. At least three areas of the network should be considered:

■ Network design and security

■ Perimeter security solutions

■ Connectivity solutions

Network Design and Security
Security should be designed into a system or network. It should not be an afterthought.
You will have a more secure network when security is designed into the implementation
from the start. Instead of thinking of specifi c attacks and specifi c countermeasures alone,
you may want to consider security as a system, or rather as a group of independent but
interrelated elements that form a whole.

A good example of the fact that security is a system is a bank vault. A bank vault is
usually thought of as a single entity that helps protect valuables, but it is actually a group
of independent and interrelated elements. The vault combination lock is combined with
procedures and policies as well as alarms and response mechanisms to form the whole of
the bank vault. Additionally, many vaults are layered: one door opens the vault, and smaller
doors may open compartments within the vault.

Security design is about building systems and implementing layers that help protect
valuable assets. When you design a security system, you are designing a unique system that
is aimed at keeping certain actions—attacks—from working. You are designing a system to
protect against intelligent, intentional, and malicious attacks. This process is very different
from safety management, where you are protecting against unintentional problems that
occur randomly. Security attacks may be intentional and occur during specially selected
times that provide the attacker with the greatest opportunity.

Two key principles assist in security design: layered security and isolation. Layered
security implies that more than one protection mechanism is used between an attack point
and a valued resource. Layered security is sometimes called defense-in-depth. Isolation
provides virtual or literal separation of one set of users or services from another set of users
or services.

Security Principles 635

Perimeter Security Solutions
A demilitarized zone (DMZ) is a concept borrowed from military operations. It defi nes
a portion of the network that is not as secure as the rest of the network. The DMZ is
usually located between the private network and the Internet or another external network.
DMZs are also known as perimeter networks because they exist at the edge of the
private network. The DMZ acts as a location for Internet service servers and as a point of
inspection and authentication for access into the internal or private network.

Most organizations will choose to place a fi rewall between the Internet and the DMZ.
An additional fi rewall will usually be placed between the DMZ and the private network.
This dual-fi rewall implementation allows for reduced restrictions at the ingress to the DMZ
from the Internet and increased restrictions at the ingress from the DMZ to the private
network.

Connectivity Solutions
Once a client is connected to the network, you can use virtual LANs (VLANs) to segment
a physical network into multiple logical networks. VLANs operate within the switches and
routers on your network, and client computers are usually unaware of their participation
in a VLAN. To the client computers, the VLANs look and operate just like a physically
segmented LAN. For this reason, VLANs can be used to provide increased security on
converged networks.

If you’ve worked with VLANs, you know that devices in one VLAN cannot
communicate with devices in another VLAN without the confi guration of some sort
of trunking protocol or routing solution. However, you should not assume that the
segregation provided is a solid security solution by itself. VLAN protocols were not
designed with security as the primary intent and can be compromised with the right
knowledge.

An additional connectivity solution, discussed earlier in this chapter, is 802.1X port-
based authentication. This security solution will disable an Ethernet port unless a user
passes approved authentication data through the port. Once the client is authenticated,
other nonauthentication data may be transferred through the port.

Trust, but Monitor
The security technologies presented in this chapter and the next two can help protect your
network from an attack; however, new attack methods are continually being developed,
and you must have a solution that allows you to monitor for both the older and newer
attacks. The technologies that assist you with this effort include:

■ Intrusion detection and intrusion prevention systems

■ Antivirus and antispyware solutions

636 Chapter 18 ■ Security Threats and Principles

Intrusion Detection and Intrusion Prevention Systems
An intrusion detection system (IDS) detects many security-related incidents and logs the
information. An IDS may notify an administrator of suspect activity. Incidents that may be
detected by an IDS include unwanted connections, high-bandwidth consumption, attacks
based on signatures, and anomalies in network activity. Signature-based detection relies on
patterns that exist within attack scenarios. Anomaly-based detection relies on comparisons
with the baseline (normal operations) of network activity.

An intrusion prevention system (IPS) goes one step further than the IDS solution.
Intrusion prevention systems may prevent an attack by disallowing connections from
suspect devices or even shutting down services that are under attack.

To see an example of an intrusion-detection or intrusion-prevention sys-
tem, check out, www.snort.org. Snort is an open source Linux and Win-
dows IDS/IPS solution.

Antivirus and Antispyware Solutions
Although virus is a global term for a software-based attack, there are really individual
types of attacks, and it’s important to understand each. Here are a few that you should
become familiar with:

Virus A computer program with the ability to regenerate itself is called a virus. A virus
may or may not harm the infected computer. Viruses may lie dormant for some period of
time before they attack the infected host machine.

Worm A worm is a self-replicating application that requires no user action for reproduc-
tion. Viruses usually require human interaction in some way whereas worms do not.

Trojan Horse Another type of malware is the Trojan horse (or simply the Trojan). Named
after the fabled gift in Homer’s, Odyssey that allowed the Greek army to conquer the Tro-
jans, the Trojan horse enters the computer under the guise of a useful program or utility.
Once in the machine, it may infect the machine with a virus or worm, or it may download
other Trojans.

Spyware and Adware Similar to the Trojan horse is the spyware or adware villain. Spy-
ware is installed on your computer and reports back to the source. Adware is installed on
your computer and causes unwanted ads to display on your screen. Additionally, spyware
and adware combinations are common.

To protect your network from these malware applications, you will need to run antivirus
and antispyware applications. There are two basic types of antimalware applications.

Ingress Applications These reside at the entry point of the data.

Host-Based Antimalware Applications These run on the host devices.

An example of an ingress antimalware application would be an email server scanner.
This software would scan email messages as they enter (and possibly exit) the email server.

http://www.snort.org

Security Principles 637

If malware is detected, the message can be rejected, fl agged as malware infected, or passed
on without attachments.

Antivirus software must be maintained. You will need to download and apply new
defi nition fi les frequently. Many antivirus applications include automatic update features so
that the defi nitions can be maintained without the need for user interaction. The defi nition
fi le includes the signatures that are used to identify known malware.

Choosing an antivirus solution is a complicated matter. Consider the following
guidelines to help you in the decision process:

■ Choose antivirus vendors that have quick response times. You don’t want to be left
without protection against a new virus for long periods of time.

■ Choose antivirus software that is compatible with your environment. Many times anti-
virus software can cause stability problems for your servers. Make sure the software
you choose does not cause system crashes.

■ Choose antivirus software that can also protect against spyware and other malware if
possible. Typically, antivirus and antispyware applications from different vendors do
not play well together.

I’ve had very good experiences with Symantec and Avast antivirus and
antispyware products. However, it’s important to test the products you
choose against your production configurations.

Defense-in-Depth
Defense-in-depth (DiD) can be summarized by simply stating that you should never rely
on one security solution alone. Do not rely only on your fi rewall for protection from
Internet attacks. Do not rely only on Active Directory domain authentication to protect
against internal attacks. Layer your security solutions to provide DiD. Layered security is a
synonym for DiD. Consider the following list:

■ User awareness

■ Client security

■ Network security

■ Server security

■ Perimeter security

Do you see the layers in this list? If the attacker gets through the perimeter security
(fi rewall), maybe the internal client, network, or server security will stop him. If the
attacker gains access to an internal client, maybe the network security will stop him. If the
network security doesn’t stop him, maybe the server security will. With DiD, the attacker
must successfully penetrate through multiple layers of security in order to gain access to
sensitive information.

638 Chapter 18 ■ Security Threats and Principles

Least Privilege
Least privilege is easily defi ned. When you abide by the principle of least privilege, you
never give a user or system more access than it needs. Implementing least privilege is not
always so easy. The SQL Server Agent is a perfect example of this. For example, assume
that the SQL Server Agent service account must be able to access the following resources in
order for your jobs to work properly:

\\Server13\DataBack—Change permissions

\\Server19\Reporting—Read permissions

\\Server19\Analysis—Change permissions

\\Server23\Eng—Change permissions

\\Acct\FY09—Read permissions

\\Acct\FY10—Change permissions

\\Server13\SShot—Change permissions

\\Server4\Mkt—Read permissions

\\Server7\Mkt—Read permissions

Now, if you don’t already have a group that has this exact permission set, it means you’ll
have to either create one just for the SQL Server Agent service account or provide these
permissions to the account directly. Either way, it means adding nine different permissions.
Imagine having to do this for a few thousand accounts for a few thousand users and
services. It’s time-consuming even if you abide by recommendations like Microsoft’s that
you assign permissions through groups as much as possible.

If you give the SQL Server Agent service account membership in the Domain Admins
group, the service will be able to do everything it needs on all of these listed servers
(assuming they are all members of the domain and default permissions are inherited and
not overridden). That would be the easy road. It would also be amazingly insecure. Now,
if an attacker does gain access to the SQL Server with the ability to create jobs, those jobs
will run as a domain administrator—shiver at the thought. When running as a domain
administrator, the attacker can do just about anything he desires.

Please, always abide by the principle of least privilege.

Summary
In this chapter, you built a foundation of fundamentals. You explored what security really
is and what it is not. You discovered the threats, vulnerabilities, and exploits that can be
used to attack your SQL Servers either directly or indirectly. Finally, you reviewed several
security principles that can act as guiding navigators through the myriad of security
technologies available today. In the next chapter, you’ll look specifi cally at authentication

Chapter Essentials 639

and encryption. The topics are covered from both a theoretical and a very practical
standpoint as related to SQL Server.

The fact that vulnerabilities may be exploited by anyone who can read and follow
instructions shows that system cracking is a science. It is a repeatable process that can
be learned. Crackers are not some special genetic mutation in the human gene pool that
have abilities others do not—as television shows and movies often portray them. Crackers
are just normal people, usually with average IQs, who have focused their learning on the
science of computing technology. Ask a cracker to plant a 400-acre farm and nurture it to
harvest, and more often than not, very little of the crop will make it to market.

The preceding paragraph is not intended to belittle crackers but to empower security
practitioners. Many network administrators, DBAs, and PC technicians look at crackers
as a mystical group with an ability they lack. The result is that they often throw up their
hands in defeat and give up on providing strong security for their systems. This seems
particularly true in smaller organizations where the IT professional is already stretched
very thin.

There is hope. By frequenting security-related websites and reading books, like the
one you’re reading now, you can stay informed and better protect your systems. If you
implement the best practices for securing SQL Server that are presented in Chapters 19
and 20, you will immediately have a much more secure environment. While this chapter
lays a solid foundation to help you understand the fundamentals of security, the next two
chapters give you the practical steps to implement secure SQL Server systems.

Chapter Essentials

Understanding Security Security is a complex topic that was briefl y introduced in this
chapter. If security is defi ned as an acceptable level of risk, rather than no risk, it may be
achieved. Security involves the systems, people, and processes working together to achieve
this acceptable level of risk.

Understanding Security Threats Security threats are many. SQL Servers may be attacked
from four major attack points. The fi rst is the Windows Server operating system on which
the SQL Server runs. The second is the SQL Server service itself. The third is the network
infrastructure that allows for communications with the SQL Server. The fi nal and fourth
attack point is the client. The client may be a desktop or laptop computer, or it may be
another server that acts as the client to the SQL Server.

Understanding Security Principles Security principles can act as guiding foundations as
you build secure networks. Important security principles include the following: start with
good design; trust, but monitor; defense-in-depth; and least privilege.

Authentication and
Encryption

TOPICS COVERED IN THIS CHAPTER:

 ✓ Understanding Authentication

 ✓ SQL Server Authentication Methods

 ✓ Logins, Users, and Roles

 ✓ Understanding Encryption

Chapter

19

Two important components of security are authentication and
confi dentiality. Confi dentiality is accomplished through the use
of encryption in data storage. Authentication helps prove the

identity of a user or system, and encryption helps protect data and prevent unauthorized
users from accessing or viewing it. This chapter will address authentication as a concept
and how it is implemented in SQL Server specifi cally. Then it will turn to encryption, fi rst
addressing the concept of encryption to ensure your understanding of the basic concepts
involved and then exploring encryption solutions and implementation methods available in
SQL Server. When you’ve fi nished this chapter, you’ll have a solid understanding of secure
authentication and secure data storage in SQL Server.

Understanding Authentication
You use authentication every day of your life. When you are at a seminar or training event
and the speaker says he is an expert on the topic of his speech, you use authentication
mechanisms to verify this information. You listen to the information he delivers and use
it to determine whether he is truly an expert. You practice authentication in casual inter-
actions too. For example, suppose someone walked up to you and said, “Hi, my name is
Susan, and I am tall.” You would look at her and compare her height with a height you
consider to be tall and authenticate whether she is truly tall. If she is not tall, by your stan-
dards, she will lose credibility with you.

Remember the word credentials? Consider other important “cred” words: credit and
credibility. Do you see how they are related? They all have to do with having proof of
something. When you have good credit, you have proof of your trustworthiness to pay
debts. When you have credibility, you have proof that you are authentic, persuasive, and
dynamic. When you have credentials, you have an object or the experience that proves your
skill or identity. Authentication results in the verifi cation of credentials.

Authentication should not be confused with authorization. Authentication can
be defi ned as proving that a person or object is who or what he or it claims to be.
Authorization is defi ned as granting access to a resource by a person or object.
Authorization assumes the identity has been authenticated. If authentication can be spoofed
or impersonated, authorization schemes fail. From this, you can see why authentication
is such an integral and important part of network and information security. When an
attacker breaks your authentication system so that he is seen as an authenticated user, the
authorization becomes irrelevant. Authentication must be strong if authorization is to serve
its purpose.

Understanding Authentication 643

One of the most important components of a security strategy is, therefore, an identity
management system (IMS). An IMS provides a storage location for identity objects,
typically called user accounts, and one or more methods for connecting to that storage
location and proving identity ownership—a process known as authentication. User
accounts are objects that identify and are owned by users. They provide properties for use
by authentication systems and network operating systems. Besides user accounts, other
tools for authentication and identity management include certifi cates, biometrics, tokens,
and other credentials.

Without a clear understanding of authentication and identity management, you will
have diffi culty installing a secure database system. Both basic and advanced authentication
systems exist, and many systems include the ability to support both. Windows Server systems
allow for advanced authentication mechanisms through the Internet Authentication Service
(Microsoft’s RADIUS implementation) and basic authentication using simple passwords
against the Active Directory database. Each method serves a valid purpose and is best for
certain scenarios. When you determine which method is right for your scenario, you have
taken the fi rst step to secure authentication. The actual selection of the core authentication
system, which is used to initially authenticate to the network, is a choice outside the scope of
the SQL Server DBA’s responsibility, but as the SQL Server DBA, you must choose how users
will authenticate to the SQL Server. Specifi c guidance for this decision is provided in the later
section of this chapter titled, “SQL Server Authentication Methods.”

Once you’ve selected the appropriate advanced or basic authentication method, you
must determine who to authenticate. Will you only authenticate known or identifi ed users,
or will you allow some level of anonymous access? In most cases, SQL Server is used only
by identifi ed users; however, the identifi ed user may actually be a middle-tier application
(such as a web application), which receives anonymous connections itself. The connection
between the web application and the SQL Server is authenticated and is limited through
authorization to only the needed data tables.

Advanced authentication systems generally utilize stronger credentials and better
protection of those credentials than basic authentication systems. The strength
and protection of the credential is determined by the effort it takes to exploit it.
A password-protected credential is usually considered weak when compared with
biometric-protected credentials. This, in some cases, is a misconception, because strength
of authentication really depends on how the authentication information (consisting of the
credential and proof of ownership) is sent across the network. If you were to implement a
biometric system, such as a thumb scanner, and the client sent the credentials and proof
of ownership (a unique number built from the identity points on the user’s thumb) to the
server in cleartext, it would be no more secure than a standard password-based system.

I am not aware of any biometric authentication system that sends the
authentication data as cleartext; however, if such a system existed, it
would certainly offset any gains achieved through biometric credentials.
Most authentication systems either use challenge mechanisms or pass
credentials in an encrypted tunnel.

644 Chapter 19 ■ Authentication and Encryption

The key element, which will provide a truly strong authentication pathway, is the
encryption or hashing of the user credentials, or at least the proof of identity information
(for example, the password). This can be accomplished with Virtual Private Networking
(VPN) technology or with well-designed authentication systems. One example of a
well-designed authentication system is 802.1X with a strong extensible authentication
protocol (EAP) type. 802.1X and EAP types are used to secure both wired and wireless
connections at the network access level.

Advanced authentication is more secure than basic authentication because advanced
mechanisms are used to protect the user’s credentials. This usually means protecting
a username and password pair, but it can also include protecting a user/certifi cate
combination, a user/machine combination, or any other user/object combination used
to identify a specifi c user. In addition to the extra protection offered by advanced
authentication systems, when 802.1X-based systems are used, you have the benefi t of
standards-based technology. This means that hardware from many different vendors
is likely to support the authentication process. Sometimes driver or fi rmware upgrades
are required, but there is often a path that can be taken to implement the authentication
mechanism.

Credentials
Many different credential solutions are available for securing your networks. It’s important
that you select the right solution for your needs. In this process, you will consider the pri-
mary features of a credential solution and whether you need a multifactor authentication
system. In addition, you should be aware of the various credential types available to you.

A credential solution should provide a means of user or computer identifi cation that is
proportional to your security needs. You do not want to select a credential solution that
places unnecessary burdens on the users and results in greater costs (of both time and
money) than the value of the information assets you are protecting. You should evaluate
whether the selected authentication solution provides for redundancy and integration
with other systems, such as Active Directory. The system should also support the needed
credential types, such as smartcards and/or biometrics. In addition, consider the following
factors when selecting a credential solution:

■ The method used to protect the credentials

■ The storage location of the credentials

■ The access method of the credential store

If an authentication system sends the credentials as cleartext, a protection method is
effectively nonexistent. Advanced authentication systems will protect the user credentials
by encrypting them or avoiding the transmission of the actual credentials in the fi rst place.
Instead of transmitting the actual credentials, many systems use a hashing process to encode
at least the password. Hashing the passwords means that the password is passed through a
one-way algorithm resulting in a fi xed-length number. This number is known as the hash of
the password or the message digest. The hash is stored in the authentication database and can
be used as an encryption key for challenge text in a challenge/response authentication system.
Traditional Windows domain authentication systems store password hashes in this way.

Understanding Authentication 645

The credentials, both username and password (or hash) or certifi cates, must be stored
in some location. This storage location should be both secure and responsive. It must
be secure to protect against brute-force attacks, and it must be responsive to service
authentication requests in a timely fashion. Certifi cates are usually stored in a centralized
certifi cate store (known as a certifi cate server) as well as on the client using the certifi cate
for authentication. Both locations must be secure, or the benefi t of using certifi cates is
diminished. In addition to the standard certifi cate store, users may choose to back up their
certifi cates to disk. These backups are usually password protected, but brute-force attacks
against the media store may reveal the certifi cate given enough time. For this reason, users
should be well-educated in this area and understand the vulnerability presented by the
existence of such backups.

Access methods vary by authentication system and storage method, but there are
standards that defi ne credential access methods. One example is Lightweight Directory
Access Protocol (LDAP). LDAP is a standard method for accessing directory service
information. This information can include many objects, but it usually includes
authentication credentials. LDAP is used by Microsoft’s Active Directory domain service,
among other network operating systems.

Choosing a Credential Solution

I was working with a warehousing service provider in western Ohio on a database project
that involved users accessing the server from Windows and Linux machines. The orga-
nization needed to implement an authentication solution that was both secure and easy
for the users to utilize. To comply with these demands, we had to implement mixed mode
authentication and support both Windows logins and SQL logins. Of course, the internal
administrators were concerned about the security of the SQL logins, so we called a meeting.

During the meeting I explained several methods that could be used to make the SQL
logins just as secure as the Windows logins. The options I recommended included the
following:

■ Creating a VPN connection to the SQL Server before authenticating to the SQL
Server

■ Requiring IPSec associations to the SQL Server before authentication begins

■ Using SQL Server through a secure web interface for the Linux clients

In the end, the organization chose to use the IPSec recommendation. IPSec is a
standards-based solution that provides secure channels across which standard commu-
nications can fl ow. Windows servers support IPSec according to the standards, and this
makes the solution an excellent one for organizations that must support Linux clients.

646 Chapter 19 ■ Authentication and Encryption

Sometimes, one type of authentication alone is not suffi cient. In these cases, multifactor
authentication can be used. This form of authentication uses more than one set of
credentials. An example of a multifactor authentication process would be the use of both
passwords and thumb scanners. Usually, the user would place her thumb on the thumb
scanner and then be prompted for a password or personal identifi cation number (PIN).
The password may be used for network authentication, or it may be used only for localized
authentication before the thumb data is used for network authentication. However, in most
cases, the password and thumb data are used to authenticate to the local machine and then
the network or just to the network alone. A common example of multifactor authentication
would be your ATM card. You have the card, and you know the PIN (something you have
and something you know).

Common Authentication Methods
Many common credential types and, therefore, authentication types exist. They include the
following:

■ Username and password

■ Certifi cates

■ Biometrics

Username and Password Username and password pairs are the most popular type of
credential. They are used by most network operating systems, including Novell Net-
Ware, Linux, Unix, and Windows. Of course, SQL Server supports password-based
 authentication—either indirectly through Windows logins or directly through SQL logins.
Because of the human factor involved in the selection of the password, they often introduce
a false sense of security. This is because the chosen password is usually too weak to
withstand dictionary attacks and, depending on the password length, brute-force attacks.
In addition, passwords are often written down or stored in plaintext fi les on the system and
then changed infrequently, resulting in a longer attack opportunity window. Passwords are
addressed in detail in Chapter 18, Security Threats and Principles.

It is not uncommon to see passwords written down on notes and then
attached to the display monitor of the user’s computer. To prevent this,
implement password use policies and educate users about the problems
caused by such actions. Additionally, teach your users to create passwords
that are easy to remember as well as strong. See the sidebar in this chapter
titled, “Creating Strong Passwords” for more information.

Certificates Certifi cates provide an alternative to username and password pairs. To use
certifi cates throughout an organization, a certifi cate authority must exist. This certifi cate
authority can be operated by the organization or an independent third party. In either case,
the need for an extra server or even a hierarchy of servers often makes the costs

Understanding Authentication 647

prohibitive to widespread use. Small and medium-sized organizations usually opt for
server-only certifi cates or no certifi cates at all because of the cost of implementation. A full
Public Key Infrastructure (PKI) would usually consist of more than one certifi cate author-
ity. Each certifi cate authority would be a single server or cluster of servers. The PKI is the
mechanism used for the generation, renewal, distribution, verifi cation, and destruction of
user and machine certifi cates.

Biometrics Yet another authentication credential is you. Biometrics-based authentication
takes advantage of the uniqueness of every human and uses this for authentication pur-
poses. For example, your thumb can be used as a unique identifi er, as can your retina. The
balancing of cost and security is important with biometric credentials. While hair analysis
could potentially be used to authenticate a user, the cost and time involved is still too high
for practical use. Today, both thumb scanners and retina scanners are becoming more pop-
ular. For example, thumb scanners or fi ngerprint scanners are included within many laptop
computers today.

Creating Strong Passwords

If you’ve been reading closely up to this point, you know that passwords can be a point of
weakness in your SQL Server security. For that matter, they can be a point of weakness
in the security of any system. If you must use passwords (and most of us must), there are
three rules to making your passwords as secure as possible.

Create Password Policies You should write password policies. Password policies
describe an acceptable password from the perspective of number of characters, com-
plexity, and length of life. Here’s an example statement: “A strong password is a complex
password (including uppercase letters, lowercase letters, and digits or special characters)
that is at least eight characters long and is changed every 30 days.” This is just one exam-
ple. For a more detailed example, see the Password Protection Policy template at: www
.sans.org/security-resources/policies/.

Enforce Your Password Policies You should enforce the password policies where pos-
sible. Windows Active Directory Domain Service (ADDS) allows you to force users to
create strong passwords. In Chapter 18, you learned how to access the password policies
in a Windows domain. If you use the SQL Server Windows authentication mode, you can
force these policies on the users for SQL Server as well. And since SQL Server 2005, you
can also force SQL logins to use these same password rules.

Teach Users to Create Memorable Passwords Although you can tell users a thousand
times to keep their passwords secure and secret, people will continue to write them on
sticky notes on monitors if they don’t think they’ll remember them. The best way to rec-
tify this problem is to teach users to create passwords that are easy to remember. By
doing this, you will reduce the number of passwords set out in the open for anyone to
see. Here’s an example of a password that is easy to remember: 9apec18C.

http://www.sans.org/security-resources/policies/
http://www.sans.org/security-resources/policies/

648 Chapter 19 ■ Authentication and Encryption

Now, you’re probably wondering how 9apec18C is a password that is easy to remem-
ber. Let me help you out. It’s my last name. Well, it’s my last name passed through an
algorithm. The algorithm is as follows. Start with a word that is at least six characters in
length. Count the number of vowels in the word and multiply the number by 3. This is the
first part of the password; when using carpenter as the input, the answer is equal to 9.
Next, take the second, fourth, fifth, and first characters in the word for the second, third,
fourth, and fifth positions of the password, which is equal to apec, in this case. The next
step is to count the total number of letters in the word and multiply by 2, which is equal
to 18 for the word carpenter. Finally, take the first letter of the starting word and capitalize
it for the final character of the password. The end result is 9apec18C.

I know you’re probably thinking that this is very time-consuming. Instead, it’s actually
very liberating. Here’s why. You can write down the word that you use as the source
of your password and never have to worry about it causing a security problem. Why?
Because you’re not going to use the exact algorithm I mentioned here. You may count
the vowels and multiply by 4. Or you may use the word for the total number of vowels. Or
you may count the vowels and divide by 2 and then multiply by 3 and then round down.
Get the point? Just this one part of the algorithm could be altered in hundreds of ways.
Trillions of possible algorithms exist.

In summary, teach users to create their own algorithm for password generation. Then, in
the best scenario, they pick a word each month that they don’t have to write down and
pass it through the algorithm to reset their password. For the fi rst week after changing
the password, they may have to think for 30 to 45 seconds to regenerate the password—
depending on the complexity of their algorithm, but they will have it memorized after that
fi rst week and will simply be able to log in. It’s a simple method but very powerful, and
it’s why I haven’t forgotten a password in the last 10 years—I haven’t memorized one. I
simply have a few algorithms that I apply to the appropriate systems.

Regulatory Compliance
When implementing authentication, as well as other components of SQL Server security,
you must consider applicable regulations. Governing bodies defi ne and enforce regula-
tions related to many different knowledge domains. Information has evolved to become an
extremely valuable resource in modern economies. With this fact in mind, many regulatory
agencies have defi ned regulations related to information management. For example, in the
United States, the government has passed health information management policies as the
HIPAA guidelines. As a database administration professional, you must understand the
basics of these regulations in order to implement SQL Server solutions that comply with
them. The PCI and HIPAA regulations demonstrate how you must be aware of regulatory
compliance issues. PCI is common in the payment-processing industry, and HIPAA is very
important in the healthcare industry.

Understanding Authentication 649

PCI Compliance
Payment Card Industry (PCI) compliance is a statement of conformity to the PCI Data
Security Standard (DSS), a worldwide information security standard. PCI DSS is a set of
standards that help to ensure that companies processing payment cards (credit cards, debit
cards, and so on) do so in a secure manner. The standards encompass payment card pro-
cessing, storage, and information transfer, but they are also a great example for how an
organization can institute good security practices.

The PCI DSS is a 73-page document (version 1.2) that outlines the process of
implementing a secure payment card–processing environment. The document covers the
following components:

■ Building and maintaining a secure network

■ Protecting cardholder data

■ Maintaining vulnerability management programs

■ Implementing strong access control measures

■ Regularly monitoring and testing networks

■ Maintaining an information security policy

After reading the security sections of this book, you’ll immediately recognize most of
these components as standard security best practices. Indeed, the only unique component
is that of protecting cardholder data, and even that can be classifi ed under the normal
heading of protecting valuable data. In the end, there is nothing new in the PCI DSS
document; however, more and more states and credit card companies are requiring
compliance with it in order to process payment cards. At this point, the U.S. government
does not require compliance with PCI DSS, but it probably will in the future. The good
news is that if you implement security best practices, you’ll have very little to change in
order to comply with PCI DSS.

The PCI DSS lists both recommended practices and required practices. The standard
lists the following requirements for secure data storage:

■ Keep cardholder data storage to a minimum. Develop a data retention and disposal
policy. Limit storage amount and retention time to that which is required for business,
legal, and/or regulatory purposes, as documented in the data retention policy.

■ Do not store sensitive authentication data after authorization (even if encrypted).

■ Do not store the full contents of any track from the magnetic stripe (located on the
back of a card, contained in a chip, or elsewhere).

You should know the basics of the PCI and HIPAA requirements for the
Microsoft certification exams. You may see a few questions based on
these regulations and the impact they have on your SQL Server database
implementations. Just remember that sensitive data must be secured and
encrypted when transferred.

650 Chapter 19 ■ Authentication and Encryption

■ Do not store the card-verifi cation code or value (three-digit or four-digit number
printed on the front or back of a payment card) used to verify card-not-present transac-
tions.

■ Do not store the personal identifi cation number or the encrypted PIN block.

■ Render primary account number (PAN), at minimum, unreadable anywhere it is stored
(including on portable digital media, backup media, and in logs) by using any of the
following approaches: one-way hashes based on strong cryptography, truncation, index
tokens and pads (pads must be securely stored), or strong cryptography with associated
key-management processes and procedures.

■ If disk encryption is used (rather than fi le- or column-level database encryption), logi-
cal access must be managed independently of native operating system access control
mechanisms (for example, by not using local user account databases). Decryption keys
must not be tied to user accounts.

■ Protect cryptographic keys used for encryption of cardholder data against both disclo-
sure and misuse. Restrict access to cryptographic keys to the fewest number of custo-
dians necessary. Store cryptographic keys securely in the fewest possible locations and
forms.

■ Fully document and implement all key-management processes and procedures for cryp-
tographic keys used for encrypting cardholder data.

As you can see, to comply with PCI DSS, a database system that stores payment card pro-
cessing must store as little information as possible about the payment card. The stored
information should be encrypted, and the encryption should be based on a network
authentication system outside of the single SQL Server (for example, Active Directory). The
key-management processes should be documented in a policy, and the policy should be fol-
lowed and audited.

If you’re interested in reviewing the PCI DSS standards more fully, you can
do so at the PCI website at: https://www.pcisecuritystandards.org/.

HIPAA Compliance
The HIPAA regulations require that healthcare organizations (including hospitals, doctors,
and any other organization that handles health information) implement policies and pro-
cedures to ensure that only authorized individuals may access patient health information.
HIPAA stands for Health Insurance Portability and Accountability Act, and it was enacted
within the United States in 2006. Organizations covered by the act and, therefore, required
to comply include the following:

■ Health plan providers

■ Healthcare clearinghouses

■ Any healthcare provider who transmits health information in electronic form

https://www.pcisecuritystandards.org/

Understanding Authentication 651

The health information protected by HIPAA includes all individually identifi able health
information. This information is identifi ed as information that is unique to an individual
and related to the health of that individual. Examples include the following:

■ Past, present, or future mental or physical health condition

■ Healthcare that has been provided to the individual

■ Healthcare payment information

Information classifi ed as de-identifi ed does not require compliance with HIPAA
regulations. De-identifi ed information is information that neither identifi es a patient nor
provides a foundational knowledge base on which a patient may be identifi ed.

The HIPAA regulations are nonspecifi c, allowing organizations of differing sizes
to implement appropriate security measures that result in the protection of health
information. The general requirements include the following:

■ Privacy policies and procedures must be documented.

■ A privacy offi cial must be designated to oversee the HIPAA regulation implementation
and maintenance.

■ All workforce members must be trained to understand and comply with the privacy
policies.

■ Mitigation efforts must be taken when privacy policies are breached.

■ Effective data safeguards must be implemented.

■ Complaint-processing procedures must be implemented.

■ Patients must not be asked to waive privacy rights, and retaliation against complaints is
not allowed.

■ Privacy policies and incident documentation must be maintained for six years.

How do these HIPAA regulations apply to a SQL Server solution? The answer is simple.
They apply to SQL Servers in the same way they apply to any database system. Regardless
of the database system used, the following fi ve security solutions should be used in order to
effectively comply with HIPAA regulations:

■ Authentication

■ Authorization

■ Confi dentiality

■ Integrity

■ Nonrepudiation

All of these requirements can be met with SQL Server. Authentication is best provided
through Windows Active Directory. Authorization is achieved through the use of roles
or direct authorizations for logins and users. Confi dentiality is accomplished through the
use of encryption in data storage. Integrity is accomplished through consistency checks
within the database. Nonrepudiation, which is the assurance of identity in that the user
cannot deny their actions, can be achieved with a combination of strong authentication

652 Chapter 19 ■ Authentication and Encryption

and database auditing. Authentication, authorization, and encryption are covered in
the remaining sections of this chapter. Integrity is an automatic part of the SQL Server
database engine, and nonrepudiation is addressed through the use of auditing in Chapter
20, “Security Best Practices.”

HIPAA regulations are among the most commonly tested regulations on
vendor exams when they mention things like “regulatory requirements.”
I’ve provided an overview of the HIPAA regulations here because you are
likely to see them mentioned in a question or two, if you choose to take the
Microsoft exams.

SQL Server Authentication Methods
SQL Server supports two authentication modes: Windows mode and mixed mode. Here’s a
defi nition of each:

Windows Authentication Mode When in Windows Authentication (or simply Windows
for short) mode, a SQL Server allows connections only by users who are authenticated
through the Windows Active Directory service or the local user account database on the
SQL Server machine.

SQL Server and Windows Authentication Mode (Mixed Mode) When in mixed mode,
Windows users can be mapped to SQL Server logins, and SQL logins can be created
directly in SQL Server. SQL logins are used, and therefore, mixed mode is required, when
non-Windows clients need access to the SQL Server. For example, if a Linux or Mac OS
client needs to access the SQL Server, SQL logins will usually be required.

SQL logins are not considered as secure as Windows logins. Windows users, for
the most part, use Kerberos authentication today. Without getting into all the details
of Kerberos authentication, let’s just say that it is a very strong authentication system
originally developed by the Massachusetts Institute of Technology (MIT) in the early
1980s, and it has evolved since that time. Kerberos uses mutual authentication to validate
clients and servers, and it is a token-based system. You receive a token when you log on and
can utilize resources based on the information within the token. All Windows clients, since
Windows 2000 Professional, may use Kerberos. If they log on to a Windows 2000 or newer
domain, they will be logging on with Kerberos authentication.

SQL logins do not use the strong authentication used by Kerberos-based Windows
clients. First, SQL logins store the login name and password (although in an encrypted
format) in the master database on the SQL Server. Second, SQL Server handles the
authentication directly. You should avoid SQL logins when you can. If you must use SQL
logins, consider using some form of lower-layer network encryption, such as IPSec. For
example, with the proper client software installed, a Linux or Mac client could create

Logins, Users, and Roles 653

an IPSec association with the SQL Server before logging into the SQL Server. The IPSec
association would secure the channel across which the SQL login authentication occurs.
Now, the authentication will be as secure as Kerberos because the authentication takes
place in a secure channel.

You can also use Secure Sockets Layer (SSL) to secure SQL Server con-
nections. SSL is less flexible, in my opinion, than IPSec from a SQL Server
perspective, but it is an option. You can enable SSL in the SQL Server Con-
figuration Manager once you’ve imported a Server Authentication certifi-
cate into the local certificate store.

Logins, Users, and Roles
You will ultimately build your authentication and authorization solution for SQL Server
through the use of logins, users, and roles. The logins will get the users into the SQL Server
system. The user objects will get the users into the databases, and the roles will defi ne what
they can do in the databases. When the rubber meets the road and you’re ready to start
confi guring authentication for SQL Server 2012, you will need to be able to perform three
basic tasks:

1. Confi gure the authentication mode.

2. Create and manage principals and roles.

3. Create and manage database users.

Before you can begin granting permission to securables in your databases, you will
need to have some principals to which you can grant the permissions. Principals are the
entities that access the resources within the SQL Server. The principals access securables.
Securables are the entities that exist in the SQL Server, such as databases, tables, and views.
You grant permissions to principals on securables. For example, you may grant the SELECT
permission to a user named Fred on the dbo.Sales table in a database. In this section, you
will learn how to confi gure the authentication mode and create SQL logins, Windows
logins, and SQL Server roles.

Configuring the Authentication Mode
To create and use SQL logins as opposed to Windows logins, you must be running SQL
Server in mixed mode. Whether the SQL Server is running in mixed mode or Windows
mode is determined by a Registry entry. You can modify this Registry entry with SQL
Server Management Studio, as you will see later in Exercise 19.1, or you can view it using
REGEDIT from the Start ➢ Run option. Figure 19.1 shows this Registry entry. The full
location on a default instance of SQL Server 2012 is as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\
MSSQL11.MSSQLServer\MSSQLServer

654 Chapter 19 ■ Authentication and Encryption

The value at this location is LoginMode. When this Registry entry is set to 1, the SQL
Server is in Windows authentication mode. When it is set to 2, it is in mixed authentication
mode and can support SQL logins.

F I GU R E 19 .1 Viewing LoginMode in REGEDIT

On Windows XP machines running SQL Server Express edition, this Registry key
path may vary slightly, but you will fi nd it in a similar location, and it will be named
LoginMode. The best thing to do in such situations is to search the Registry for the value
named LoginMode. This book assumes you are running SQL Server on Windows Server.
Remember, if you do not have full versions of these products, both the SQL Server and
Windows Server software packages are available in trial editions from Microsoft.

Because different instances of SQL Server will use a different Registry path, you can use
the following little-known stored procedure to modify the Registry entry if you must do it
through code:

EXEC xp_instance_regwrite ‘HKEY_LOCAL_MACHINE’,
‘Software\Microsoft\MSSQLServer\MSSQLServer’,
‘LoginMode’, REG_DWORD, 2

You may notice that the stored procedure is called xp_instance_regwrite. The procedure
name gives away its purpose. It is used to modify a Registry entry related to the confi gu-
ration of the currently accessed instance. This example will confi gure the authentication
mode to mixed mode. If you want to set the authentication mode to Windows only, change
the value 2 to 1 at the end of the command. You will need to stop and restart the SQL
Server service after making this change.

Logins, Users, and Roles 655

This Registry setting can also be confi gured in SSMS. Exercise 19.1 steps you through
the process of confi guring the authentication mode in the SSMS application. This is the
preferred way to modify this Registry entry because there is less risk of a mistake that
could cause a major problem on your system. If you confi gure the server to support mixed
logins, you can create SQL logins using either SSMS or SQL statements.

E X E R C I S E 19 .1

Confi guring the Authentication Mode in SSMS

In this exercise, you will confi gure the authentication mode for the SQL Server instance. You
will ensure that the authentication mode is set to mixed so that the remaining exercises in
this chapter will function properly. To do this, follow these steps:

1. Launch SSMS.

2. Right-click the SQL Server instance you want to confi gure and select Properties.

3. Select the Security page to view the authentication mode settings.

4. Ensure that the authentication mode is set to SQL Server and Windows authentication
mode, which is mixed mode.

5. Click OK to save the changes.

6. If you see a message indicating that the service must be restarted, right-click the
instance and select Restart.

Creating and Managing Principals and Roles
Principals are referenced in SQL Server 2012 in different ways depending on the level
at which they exit. You manage two general categories of principals: indivisible and
collections.

Indivisible Principals An indivisible principal is an entity that exists independently of
other entities. Examples of indivisible principals include SQL logins and Windows logins.

Collection Principals A collection principal is a principal that actually represents a col-
lection of entities that are treated as one even though each entity exists as an individual. A
Windows group is an example of a collection principal.

Three layers (levels) of security can be managed in SQL Server deployments: Windows,
SQL Server, and the databases. At each of these levels, the following principals can be
defi ned and managed.

656 Chapter 19 ■ Authentication and Encryption

■ Windows-level principals

■ Domain logins

■ Local system logins

■ SQL Server–level principals

■ SQL logins

■ Windows mapped logins

■ Database-level principals

■ Users

■ Roles

■ Application roles

It is important to keep in mind that a principal is only represented at each of these
levels. For example, if you are a user who has access to a SQL Server database, you will be
referenced—either individually or through a collection—at the SQL Server and database
levels at a minimum. You may be referenced at all three levels. If you log in to a Windows
domain (level 1), that login will be mapped to SQL Server (level 2). Once the login is
mapped to SQL Server, you will need to be given access to the database either as a user
or through a role (level 3). Of course, you exist in only one place in reality, but you are
referenced as a principal at each level.

Users can be granted access at three levels in SQL Server:

■ The Windows server

■ The SQL Server service

■ The individual database to which the user is granted access

Remember that security starts at the operating-system level. It is also important to
remember that it is possible to give a user access to one database on a SQL Server instance
and not give access to any others.

A large part of your job as a DBA or developer will be to ensure that the right users have
the right access in the right way. To do this, you will need to know about the functionality
and implementation of the following principal management objects:

■ SQL logins

■ Windows logins

■ Fixed server roles

■ Fixed database roles

■ Custom database roles

■ Application roles

You will use SQL logins for users who do not access the SQL Server from a Windows
domain client. You will use Windows logins for users who access the SQL Server from
a Windows domain client. Windows logins are more secure thanks to the improved
authentication systems employed in Windows Active Directory domains. You will need to

Logins, Users, and Roles 657

understand how to create these objects, confi gure them, and apply them to the appropriate
locations. You will fi nd details on how to do this in the sections that follow.

SQL Logins
SQL logins are created in, and only exist in, the SQL Server service. These logins are actu-
ally stored in the master system database, so you have another good reason for backing up
the database. You can query the view related to SQL logins by opening a new query win-
dow and executing the following code:

USE master;
SELECT * FROM sys.syslogins;

Figure 19.2 shows the results of this query. As you can see, the passwords are stored in
an encrypted format that cannot be viewed directly. However, you should not be fooled by
this. The password is sent across the network in a basic format that is generated by XORing
the password. An XOR algorithm simply fl ips bits at the binary level, and you don’t really
have to understand the complexities of the algorithm to understand that it is really a simple
process. Ones become zeros and zeros become ones, depending on the pattern matches.
The process is easily reversed. If you must use SQL logins, remember to use SSL or IPSec to
encrypt the channel before the login occurs.

F I GU R E 19 . 2 Viewing the sys.syslogins table that contains the logins within the
SQL Server

SQL logins are useful when you are not in a Windows domain, do not want to use a
domain, do not want to use local system logins, or need to support clients that cannot log
in with Windows accounts, as with some non-Microsoft operating systems.

658 Chapter 19 ■ Authentication and Encryption

The basic command to create a SQL login using SQL statements is:

CREATE LOGIN fred WITH PASSWORD = ‘87967fb7Hr4Z’;

This command will create a SQL login for fred with a password of 87967fb7Hr4Z. You
can also specify that the user must change his password at the fi rst login using the MUST_
CHANGE option. For the MUST_CHANGE option to work, CHECK_EXPIRATION must be set to ON.

Creating logins in the SSMS GUI is also very simple. Exercise 19.2 provides the
instructions for creating SQL logins.

E X E R C I S E 19 . 2

Creating a SQL Login

In this exercise, you will create a SQL login for a user named Monty with a password of
7Pass8now:

1. Launch SSMS.

2. Expand the Security section in Object Explorer.

3. Right-click the Logins container and select New Login.

4. Enter the word Monty in the Login Name fi eld.

5. Check the SQL Server Authentication radio button.

6. Enter 7Pass8now in both the Password and Confi rm Password fi elds.

7. Accept all other defaults, click the selector arrow next to the Script button, and choose
Script Action To New Query Window.

8. Click the OK button. (If you are running SQL Server on Windows XP, you may have to
clear the User Must Change Password At Next Login check box.)

9. Notice that the code in the new query window is similar to the following:

CREATE LOGIN [monty] WITH PASSWORD=N’7Pass8now ‘ MUST_CHANGE,
DEFAULT_DATABASE=[master], CHECK_EXPIRATION=ON, CHECK_POLICY=ON

Logins, Users, and Roles 659

As you can see, after performing the steps to create a SQL Server login in Exercise 19.2,
you can specify the default database and determine how you will use password policies. It
is important to note the Enforce Password Policy check box. If it is checked, the password
you enter must meet the requirements of the Windows password policies—even though the
login is a SQL login and not a Windows login. These policies will come from either
the domain in which the SQL Server is a member or, if it’s not in a domain, the local
password policies. Local password policies can be viewed by performing the steps in
Exercise 19.3.

E X E R C I S E 19 . 3

Viewing Local Password Policies

In this exercise, you will view the password policies on a non–domain member server that is
running SQL Server. Domain member SQL Servers receive their password policies from the
domain. Only the Domain Admins and Enterprise Admins group members can manage the
domain password policies. To view the local password policies, follow these steps:

1. Click Start ➢ Run.

2. Type gpedit.msc into the Open fi eld, and click OK.

3. In the Local Computer Policy\Computer Confi guration section, expand the Windows
Settings container.

4. Expand the Security Settings container.

5. Expand the Account Policies container.

6. Click the Password Policy container. From here, you can view and manage the local
password policies.

While Exercise 19.3 will get you to the location of the password policies, it is also
important that you know what these policies mean. Table 19.1 describes each password
policy available; these are also shown in Figure 19.3. If you need to manage domain
policies, you will have to be a Windows domain administrator. If you are, you can use the
Group Policy feature in the Windows domain to administer the policies. If you are not, you
will need to ask the Windows domain administrator to inform you of the policies.
You can also use the Windows XP command-line tool GPRESULT to generate a list of the
applied policies.

660 Chapter 19 ■ Authentication and Encryption

TA B LE 19 .1 Password policy descriptions and recommendations

Policy Description Recommendation

Enforce Password
History

Determines the number of unique new
passwords that must be associated with a
user account before an old password may
be reused. The value must be between 0
and 24 passwords.

Typically, three or more
unique passwords are
required in order to pre-
vent users from reusing
passwords too soon after
the first use.

Maximum Pass-
word Age

Determines the period of time (in days)
that a password can be used before the
system requires that it be changed. A
password can be set to expire after a
number of days between 1 and 999, or the
value can be set to 0, which indicates that
passwords do not expire.

The passwords are usually
set to expire somewhere
between 30 and 60 days.

Minimum Pass-
word Age

Determines the period of time the user
must wait before voluntarily changing the
password. This setting is used to prevent
users from quickly resetting their pass-
words the number of times required to set
it right back to what it was.

The minimum password
age is typically set to be
something more than five
days, but it must be less
than the maximum pass-
word age.

Minimum Password
Length

Determines the minimum length that
the password must be. If Password
Must Meet Complexity Requirements is
enabled, the password length must be at
least 6 characters or the value of this set-
ting, whichever is greater.

In secure environments,
this setting is typically
set to a value between 6
and 10 characters. Highly
secure environments will
usually require between 8
and 10 characters.

F I GU R E 19 . 3 Viewing the local password policies

Logins, Users, and Roles 661

Password Must
Meet Complexity
Requirements

Requires that passwords be at least 6
characters and contain three of four char-
acter types: uppercase letters, lowercase
letters, digits, and special characters ($, #,
!, etc.).

It is recommended that this
setting be enabled. Other-
wise, users can use words,
which can be cracked in
just a few minutes—even
seconds—with dictionary
cracking techniques.

Store Passwords
Using Reversible
Encryption

Determines whether the operating system
stores passwords using reversible encryp-
tion. If an application uses protocols that
require knowledge of the user’s password
for authentication purposes, this setting
must be enabled. This policy is required
when using Challenge-Handshake Authen-
tication Protocol (CHAP) authentication
through remote access or Internet Authen-
tication Services (IAS). It is also required
when using Digest Authentication in Inter-
net Information Services (IIS).

Storing passwords using
reversible encryption is
essentially the same as
storing plaintext versions
of the passwords. For this
reason, this policy should
never be enabled unless
application requirements
outweigh the need to pro-
tect password information.
SQL Server 2012 does not
require that this setting be
enabled.

Windows Logins
Windows logins take advantage of the Windows Server Active Directory Domain Services
(or simply Active Directory). Active Directory logins originating from Windows 2000 and
newer client systems use Kerberos authentication, which is a very secure authentication
solution. For this reason, Windows logins are considered more secure than SQL logins.

Windows logins are created in the local system database or the domain database and are
then mapped to SQL Server for treatment as principals. Windows logins are considered to
be more secure than SQL logins because they can use Kerberos for authentication and are
restricted by all the policies and parameters of Windows logins. Of course, if you are not
using a Windows domain and Windows clients, this becomes irrelevant very quickly.

If you plan to take the Microsoft certification exams, remember that Win-
dows logins are considered more secure than SQL logins. If you can use
Windows logins, you should always choose them over SQL logins.

Windows logins, created in SQL Server, can map to a Windows user account or a
Windows group account. When using a Windows user account, a single user is granted the
right to access the SQL Server service. When using a Windows group account, all members
of the group are granted the right to access the SQL Server service unless they are restricted
by their user accounts. In other words, a user may be mapped to the SQL Server service by
both his user account and a group to which he belongs. In this case, he can be denied access
as a user, which will override any access rights given through the group. Exercise 19.4
provides instructions for creating Windows logins in SQL Server.

662 Chapter 19 ■ Authentication and Encryption

E X E R C I S E 19 . 4

Creating Windows Logins

In this exercise, you will create a Windows login by fi rst creating a Windows user account
and then a Windows group account. Next, you will map these accounts to a Windows login
in SQL Server. To do this, follow these steps. Please note that this exercise assumes the use
of local users and groups on Windows Server 2008:

1. Right-click My Computer or Computer on your SQL Server machine’s desktop or the
Start menu and select Manage.

2. Expand the Confi guration container and then the Local Users and Groups container.

3. Right-click the Users container and select New User.

4. Enter Jeremy in the User name fi eld.

5. Enter 7Pass8now in both the Password and Confi rm Password fi elds.

6. Deselect the User Must Change Password At Next Logon check box.

7. Click the Create button to create the user account. Click the Close button to close the
dialog.

Logins, Users, and Roles 663

8. Right-click the Groups container and select New Group.

9. For the Group name fi eld, enter SQLUsers.

10. In the Description fi eld, enter Users with access to SQL Server.

11. Click the Create button to create the group.

12. Click the Close button to close the New Group dialog.

13. Close the Server Manager application.

14. Launch SQL Server Management Studio.

15. Expand the Security container in Object Explorer.

16. Right-click the Logins container and select New Login.

17. Click the Search button to fi nd the account you created for Jeremy.

18. Type Jeremy in the Enter The Object Name To Select fi eld and click the Check Names
button. The dialog will automatically enter the full name for the user, which
includes the server name and the username. A domain user would have a format like
this: domainName\userName.

664 Chapter 19 ■ Authentication and Encryption

19. Click OK.

20. In the New Login dialog, click OK again to create the mapping to the Windows user
account.

21. To create the mapping for the SQLUsers group, right-click the Logins container and
select New Login.

22. Click the Search button to search for the SQLUsers group.

23. Click the Object Types button to bring up the Object Types dialog box; then check the
Groups check box (the other check boxes will already be checked), and click OK.

24. Type SQLUsers in the Enter The Object Name To Select fi eld, and click the Check
Names button.

25. Click the OK button.

26. Click the OK button in the New Login dialog to create the group-based login.

Fixed Server Roles
Users and groups are principals that can be given rights to access the SQL Server and, even-
tually, permissions to access databases and database securables, such as tables and views.
You can also use roles to make it easier to manage security inside SQL Server. Three basic
types of roles are available: server roles, database roles, and application roles (application
roles are really just a type of database role). All server roles are fi xed roles. They exist as
soon as you’ve fi nished installing SQL Server and allow you to grant various administrative
capabilities to the users and groups that access your SQL Server instance.

Fixed server roles are permission and rights collections that apply to the entire SQL
Server instance. Fixed server roles cannot be modifi ed or deleted, but you can add new
members to the roles. The following are the fi xed server roles:

BulkAdmin Can launch the BULK INSERT statement.

DBCreator Can create and alter the user databases.

E X E R C I S E 19 . 4 (c ont inue d)

Logins, Users, and Roles 665

DiskAdmin Can manage the fi les on disk.

ProcessAdmin Can manage the processes running as part of the instance of SQL Server.

Public Provides universal roles for all logins. When no other permissions are granted, the
permissions of the public role will provide a minimum set of capabilities.

SecurityAdmin Can manage server logins.

ServerAdmin Can manage server-wide settings.

SetupAdmin Can execute the stored procedure sp_serveroption and create or remove
linked servers.

SysAdmin Can do anything in SQL Server. This role is equivalent to all other fi xed server
roles combined.

You can add a login, either SQL logins or Windows logins, to a fi xed server role using
the sp_addsrvrolemember stored procedure. For example, to add the user Jeremy to the
bulkadmin role, issue the following SQL command:

EXEC sp_addsrvrolemember [servername\Jeremy], bulkadmin;

You will need to change servername to the name of your server because Jeremy is a
Windows login.

You can also add a user to a fi xed server role by double-clicking the user and then
selecting the Server Roles page. Here you can check the role you want the user to fi ll, as
shown in Figure 19.4.

F I GU R E 19 . 4 Managing server role membership within user properties

666 Chapter 19 ■ Authentication and Encryption

Fixed Database Roles
A fi xed database role is a collection of permissions and rights that exist at the database
level. Just as the SQL Server has fi xed roles at the server level, preexisting fi xed database
roles exist in every database you create. These roles are explained in the following list:

DB_AccessAdmin Can alter any user and create schemas.

DB_BackupOperator Can back up the database or the log or force a checkpoint to occur.

DB_DataReader Can execute SELECT statements against the database.

DB_DataWriter Can execute INSERT, UPDATE, and DELETE statements against the database.

DB_DDLAdmin Can execute most CREATE and ALTER statements against the database.

DB_DenyDataReader Cannot execute SELECT statements against the database.

DB_DenyDataWriter Cannot execute INSERT, UPDATE, or DELETE statements against the
database.

DB_Owner Can perform all confi guration and maintenance activities on the database
including the DROP DATABASE command.

DB_SecurityAdmin Can ALTER application roles or custom roles and execute CREATE SCHEMA.

Public All users belong to this role, and the public role cannot perform any actions on a
newly created database by default.

The special guest user account is also a member of the public role; there-
fore, anything the public role can do, the guest user can do. By default,
there is no guest account in a newly created database.

It is important to note that members of both the db_owner and db_securityadmin roles
can manage memberships in the fi xed database roles, but the db_owner is the only role
that can add or remove members from the db_owner role. To add a user to a role, use the
sp_addrolemember stored procedure, as shown here:

EXEC sp_addrolemember db_securityadmin, ‘servername\Jeremy’;

Finally, in relation to fi xed database roles, it is essential that you understand how you
would use the db_denydatareader and db_denydatawriter roles. You may wonder why you
would need to deny access to a user by placing him in these roles, but the answer lies in the
hierarchical structure of security. Imagine that a user named Barney belongs to a group
named Redrock. Now imagine that the Redrock group has been added to the SQL Server
as a Windows login and has been granted membership in the db_datareader role for a
database. Further imagine that Barney should not have access to the data in this database.
You can add Barney to the db_denydatareader role and effectively deny him access while
easily granting all other members access to the data through the Redrock login. Deny
always wins. This is an important security standard to keep in mind throughout your
Microsoft-based systems.

Logins, Users, and Roles 667

Custom Database Roles
Sometimes the fi xed database roles are not specifi c enough for your needs. In these situa-
tions, you can create a custom database role and grant to the role only the permissions you
desire. To create a custom database role, use the simple CREATE ROLE command from a new
query window in SSMS. For example, if you want to create a new role called accountants,
just issue this command:

CREATE ROLE accountants;

This creates the role, and you would then use the same sp_addrolemember stored
procedure referenced in the fi xed database roles section earlier. Permissions are assigned to
roles in the same way that they are assigned to users and logins.

Application Roles
Application roles are useful when you want to ensure that users are using no other applica-
tion to access the SQL Server database. You fi rst create the application role and then confi g-
ure the application to use the role. In your role as the DBA, you will not have to confi gure
the application to use the role, but the client application will make a call to the sp_setapp-
role stored procedure to authenticate as the application role. Application roles simply have
a name and a password. They are then managed, as far as permissions, like any other role.
To create an application role as the DBA, use the following code as an example:

CREATE APPLICATION ROLE app_role_name WITH PASSWORD=’7Pass8now’;

So far you have focused on creating all the roles, custom and application, using SQL
code. In Exercise 19.5, you’ll see the step-by-step instructions for creating a database role
using SSMS.

E X E R C I S E 19 . 5

Creating a Database Role with SSMS

In this exercise, you will perform the simple steps required to create a database role using
SSMS. To do this, follow these steps:

1. Expand the Databases container.

2. Expand the container for the database in which you want to create a custom or applica-
tion role.

3. Expand the Security container and right-click the Roles container to select New ➢ Data-
base Role or New ➢ Application Role.

The following image shows the results of creating a new database role in SSMS called
DatabasePowerUser.

668 Chapter 19 ■ Authentication and Encryption

Creating Database Users
For users to access a database, they must have a login and a user account in the database.
The user account in the database is mapped to the login of the same name, by default, in
the server instance. You can map a user to a different login name, but the most common
action is to create a login at the instance level and then create a user with the same name at
the database level.

Database users are created using the same basic process as logins. Instead of creating
the account at the instance level, using the Security node, you will create the account at the
database level. Exercise 19.6 provides instructions for creating a database user.

E X E R C I S E 19 . 6

Creating a Database User

In this exercise, you will create a database user. You will create the user with the CREATE
USER T-SQL command. You will also create an account for a user named Fred in the data-
base named Books. To do this, follow these steps:

1. Launch SQL Server Management Studio.

2. Connect to the SQL Server instance containing the database in which you want to create
a user. Log in as an administrator.

3. Click the New Query button.

4. In the new query window, enter the following code:

USE Books;
GO
CREATE USER fred;
GO

5. Click the Execute button to run the code.

E X E R C I S E 19 . 5 (c ont inue d)

Understanding Encryption 669

Understanding Encryption
The process of converting data from its normal state to an unreadable state is known as
encryption. The unreadable state is known as ciphertext (or cipherdata), and the readable
state is plaintext (or plaindata). The normal way to encrypt something is to pass the data
through an algorithm using a key for variable results. For example, say you want to protect
the number 108. Here is an algorithm for protecting numeric data:

original data / crypto key + (3 x crypto key)

Using this algorithm to protect (encode or encrypt) the number 108 with a key of 3, you
come up with this:

108 / 3 + (3 x 3) = 45

To recover the original data, you must know both the algorithm and the key. Needless
to say, modern crypto algorithms are much more complex than this, and keys are much
longer, but this overview gives you an idea of how things work with data encryption.

Encryption is used in SQL Server to secure data in storage. You can encrypt data
through application code or you can encrypt data transparently. In addition, you can use
operating system–level encryption solutions such as BitLocker and the Encrypting File
System (EFS).

SQL Server has not always supported encryption out of the box. In fact, before SQL
Server 2005, you had to use third-party add-ons to encrypt any data at all. SQL Server
2005 introduced column-level encryption, and then SQL Server 2008 added Transparent
Data Encryption (TDE), which is still supported in SQL Server 2012.

Whatever encryption solution you choose, it is essential that the encryption key store
be protected. For this reason, many organizations choose to implement a public key
infrastructure (PKI), which is used to securely store encryption keys in certifi cates using a
hierarchy of authentication and authorization that is diffi cult to penetrate.

SQL Server Encryption Solutions
Encryption is provided at three levels in SQL Server: the Windows operating system, the
SQL Server, and the databases. In addition, SQL Server can take advantage of a Public Key
Infrastructure in your environment or use externally signed keys from third-party crypto-
graphic providers. SQL Server provides encryption in one of two ways today: column-level
encryption and Transparent Data Encryption (TDE). To understand the requirements for
encryption in SQL Server 2012, you must understand the basics of encryption hierarchies
and Public Key Infrastructures. These topics are addressed in the following two sections.

Encryption Hierarchies
Windows provides the data protection application programming interface (DPAPI) for
encryption of the SQL Server master key. The SQL Server master key, known as the
service master key, is used to encrypt and secure all database keys and certifi cates for extra

670 Chapter 19 ■ Authentication and Encryption

security. This service master key should be backed up to avoid a situation where the master
key is lost, making all other keys inaccessible. This key can be backed up using the BACKUP
SERVICE MASTER KEY command.

Each database can also have a master key known as the database master key. This key
is used to generate and secure symmetric and asymmetric keys for the actual encryption of
data. Symmetric keys are more effi cient for encryption, but asymmetric keys are considered
to be more secure. A certifi cate is a digitally signed statement that binds the value of a
public key to the identity of a person, device, or service that holds the corresponding
private key. Data encrypted with a private key can be decrypted with the complementary
public key, and the same is true in reverse. Certifi cates usually contain the following:

■ Public key

■ Identity information for the owner such as name and/or email address

■ A validity period

■ Identity and digital signature of the issuer

At the database level, functions are provided that allow for the encryption and
decryption of data using the keys generated for encryption in the database. In the end, the
service master key secures the database master keys, and the database master keys secure
the encryption keys and certifi cates used to actually encrypt the data.

As you can imagine, with this hierarchy, encryption will demand an overhead beyond
normal server operations. This means you will have to consider the impact encryption will
have on the performance of your databases. Sometimes, using a less strong encryption (DES
instead of AES), you can strike a balance between performance and security. Ultimately,
you must provide encryption strengths that comply with three demands.

Regulations If you are required to comply with HIPAA or PCI regulations, you must
implement an encryption solution that meets the minimum requirements of these regula-
tions. You may also have to comply with additional regulations not mentioned here. In the
end, you must implement hardware and software that can comply with regulation demands
and the performance you require.

Policies Many organizations have security policies. If your organization has such policies,
you must comply with the requirements they set forth. It is common for security policies to
require 128-bit encryption solutions today.

Performance You must ensure that the encryption you implement does not result in a poorly
performing system. Encryption will always degrade the performance of any system when
compared to the same system on the same hardware without encryption; therefore, you must
counter the performance impact with increased hardware capacity to compensate for it.

Public Key Infrastructures
Microsoft’s Certifi cate Services, which runs on Windows 2000, Windows 2003, and Win-
dows 2008 servers, can be used to implement a PKI. SQL Server can take advantage of such
a PKI and use the certifi cates it provides for encryption purposes. However, installation
and management of certifi cate authorities is beyond the scope of this book. For more infor-
mation, see Mastering Windows Server 2008 R2 (Wiley, 2010).

Understanding Encryption 671

Implementing Application-Level Encryption
Now that you understand the features related to encryption that are available in SQL
Server 2012, you will need to understand how to utilize them. First, you must back up
the service master key before encrypting any data. This allows you to prevent massive
reencryption of data, which can be very processor-intensive. Here’s how you do that
(the c:\data folder must exist):

USE master;
BACKUP SERVICE MASTER KEY TO FILE=’c:\data\keybak.key’
ENCRYPTION BY PASSWORD=’2013Sept01tdc’;

This code, issued in a new query window, will back up the service master key to the
fi le keybak.key in the root of the C: drive. You should probably store this fi le on a secure
media in a secure location. The fi le will be protected by the password 2013Sept01tdc. To
restore this key, use the following code in a new query window:

USE master;
RESTORE SERVICE MASTER KEY FROM FILE=’c:\data\keybak.key’
DECRYPTION BY PASSWORD=’2013Sept01tdc’;

Be sure to back up this service master key before you start using encryption. If you do
not back up this key, the data will have to be encrypted again in order to maintain security.

You can optionally encrypt data in a database using application code. The fi rst thing you
will have to do is create a master key for encryption in the database. The following code
provides an example:

USE Books;
IF NOT EXISTS
 (SELECT * FROM sys.symmetric_keys WHERE symmetric_key_id=101)
 CREATE MASTER KEY
 ENCRYPTION BY PASSWORD=’938498937#$jHJh7YUsy7jjj$#nj’;

This code results in an encryption master key that uses the string
938498937#$jHJh7YUsy7jjj$#nj to encrypt. Next, you’ll need to create a certifi cate that
will be used to encrypt the symmetric key, which is the key that will actually encrypt the
data. The following code will generate a certifi cate:

USE Books;
CREATE CERTIFICATE BookCert
WITH SUBJECT=’For encryption in Books DB’;

The certifi cate will be named BookCert and is described as providing encryption in
Books DB. You created the Books database earlier in the book. Now you can create the
symmetric key that will be used to encrypt data columns.

672 Chapter 19 ■ Authentication and Encryption

Use Books;
CREATE SYMMETRIC KEY colEncrypt
WITH ALGORITHM=AES_256
ENCRYPTION BY CERTIFICATE BookCert;

The key is named colEncrypt and uses AES encryption at 256 bits. You will store the
symmetric key with encryption using the BookCert certifi cate. At this point, the encryption
key hierarchy is in place, and data can be encrypted.

If you attempt to create a symmetric encryption key on Windows XP run-
ning SQL Server, you will have to change WITH ALGORITHM=AES_256 to
WITH ALGORITHM=DES.

For example, if you have created a table named Encryption with a column named Test
and another named Unencrypted, you encrypt the data in that column using the following
code:

USE Books;
OPEN SYMMETRIC KEY colEncrypt
DECRYPTION BY CERTIFICATE BookCert;
UPDATE dbo.Encryption
SET Test = EncryptByKey(Key_GUID(‘colEncrypt’), ‘This will be encrypted’);

The code will store the text This will be encrypted in the Test column for every row
in the table. Figure 19.5 shows the results of a query against this table once encryption is in
place. Notice the encrypted data in the Test column.

F I GU R E 19 .5 Viewing encrypted data without decrypting it

You’re probably wondering how you would access this encrypted information. The
solution is to use the DecryptByKey function as in the following code:

Understanding Encryption 673

OPEN SYMMETRIC KEY colEncryption
DECRYPTION BY CERTIFICATE BookCert;

SELECT Unencrypted,
 CONVERT(varchar, DecryptByKey(Test)) As ‘Plain Text Test’
FROM dbo.Encryption;

Figure 19.6 shows the results of running the SELECT statement with the DecryptByKey
function.

F I GU R E 19 .6 Viewing encrypted data with the DecryptByKey function

Keep in mind that every example within this section has depended on changes to the
application code in order for the encryption to work. If you want to encrypt data without
changing application code, consider the Transparent Data Encryption option covered in the
next section.

Implementing Transparent Encryption
Transparent Data Encryption (TDE) was a new feature in SQL Server 2008 that remains
in SQL Server 2012. With TDE, you can encrypt data without modifying application code.
While certifi cate and encryption key hierarchies still play important roles, because TDE is
enabled once for the database and no application changes are required, it is much simpler to
implement. For example, the following code implements TDE for the AdventureWorks2012
database:

USE master;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘<UseStrongPasswordHere>’;
GO
CREATE CERTIFICATE MyServerCert WITH SUBJECT = ‘My TDE Certificate’;

674 Chapter 19 ■ Authentication and Encryption

GO
USE AdventureWorks2012;
GO
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE MyServerCert;
GO
ALTER DATABASE AdventureWorks
SET ENCRYPTION ON;
GO

From this example code, you can see that the basic process of implementing TDE is as
follows:

1. Create a master key for the database.

2. Create a certifi cate to protect the database encryption key.

3. Create a database encryption key.

4. Set ENCRYPTION to equal ON for the database.

When you back up a database that has TDE enabled, the backup is also
encrypted. You must have access to the encryption keys in order to restore
the backup. Additionally, filestream data does not support encryption.

Summary
In this chapter, you learned about authentication and encryption in SQL Server. Ideally,
one thing you took away from this discussion was the importance of strong authentication
and information about how to provide this through SQL Server features and functions. You
also learned how to create and manage principals and roles. Integral to this discussion was
information on creating logins—both SQL logins and mapped Windows logins. You also
learned about the server and database roles and how they provide simpler security manage-
ment for SQL Servers. Finally, you explored the encryption options available in SQL Server.
These options include application-level encryption and transparent data encryption. In the
next chapter, you’ll learn how to manage permissions, secure the Windows Server itself,
implement auditing, and confi gure the surface area in SQL Server.

Chapter Essentials 675

Chapter Essentials

Understanding Authentication Authentication is the process used to validate a user or sys-
tem identity. Strong authentication systems include both secure storage of credentials and
secure validation processes. SQL Server supports strong authentication methods.

Understanding SQL Server Authentication Methods SQL Server allows both Windows
authentication and internal SQL Server authentication. SQL logins are processed by SQL
Server internally and should be processed across secure channels that use encryption. Win-
dows logins are processed by the Windows domain or the local Windows server and are
passed through the SQL Server. Windows logins are considered more secure.

Understanding Logins, Users, and Roles Logins are created using the CREATE LOGIN
T-SQL command or created with the GUI in SSMS. Roles can be fi xed, or they can be user-
created. Only database roles can be created by the database administrator. All server roles
are fi xed roles. Users must be created in the databases and mapped to a login in order for
users to have access to the database. Otherwise, only guest access can be provided.

Understanding Encryption Encryption is the process by which plaintext is converted
into ciphertext. Encryption uses a two-way process. The data can be both encrypted and
decrypted. Hashing algorithms are sometimes confused with encryption algorithms, but
technically, hashing algorithms do not provide encryption—they provide encoding as
the process is one-way. SQL Server provides encryption internally using two methods:
application-level encryption or transparent data encryption. Application-level encryption
with the EncryptByKey and DecryptByKey functions requires that the application internally
implement the encryption using code. TDE allows for data encryption without requiring
changes to the application code. Both methods are storage-only encryption. It is important
to remember that the data is decrypted before it is sent across the network. To implement
application-level encryption, you will have to alter the code of your applications. Anytime
encrypted data is accessed, the application must call the DecryptByKey function in the SQL
SELECT statements. Anytime data is encrypted, the EncryptByKey function will be called.
TDE is implemented once for the database, and no application changes are required. Once
the key hierarchy is created, database encryption can be implemented with a simple ALTER
DATABASE command.

Chapter

20
Security Best
Practices

TOPICS COVERED IN THIS CHAPTER:

 ✓ Establishing Baselines

 ✓ Implementing Least Privilege

 ✓ Auditing SQL Server Activity

 ✓ Configuring the Surface Area

 ✓ Understanding Common Criteria and C2

As you saw in Chapter 18, “Security Threats and Principles,”
and Chapter 19, “Authentication and Encryption,” securing
any technology is more complex than many people think it is.

You know that authentication and encryption are important components of SQL Server
security, but security doesn’t stop with them. The process includes more than just the
technical steps required to turn off a feature or confi gure a security solution. Security really
begins with establishing baselines, which provide a starting point from which you can
further secure a system for specifi c uses. You can think of these baselines as best practices.
In this chapter, you will learn the importance of establishing security best practices
and how to use Windows Server features to create them. Of course, each organization
establishes its own set of best practices, but the best-practice baselines you learn here will
provide a solid foundation for your security.

You will learn the methods used to implement least privilege through the internal
authorization solutions in SQL Server. Least privilege is achieved by limiting users’ access
to the lowest level of access required to achieve their work objectives. This section will
explore how to create permissions, manage ownership chains, establish credentials, and
properly confi gure service accounts.

Then you will learn about auditing, which is one of the ways in which SQL Server 2008
introduced functionality that SQL Server 2012 continues to support. In this section, you
will review the methods available to audit activity in SQL Server. These methods will
include audits, extended events, notifi cations, logon triggers, and DDL triggers.

Another key security issue involves surface area confi guration, which is different in
SQL Server 2008 and 2012 than in previous versions. In SQL Server 2005, the Surface
Area Confi guration Manager was introduced. SQL Server 2008 removed this tool and
gave preference to surface area confi guration through two means: the sp_confi gure stored
procedure and SQL Server policies. Both are still used in SQL Server 2012 and are explored
in this chapter.

Finally, you’ll need to understand how to ensure compliance with internal and external
policies and regulations. This chapter will wrap up with C2 compliance and the Common
Criteria. With everything you have to learn, you should jump right in and get started.

Establishing Baselines
Security baselines are used to establish minimum requirements for a system or a server.
It’s good to think of these minimum requirements or baselines as the enforcement of best
practices. While the phrase best practice may be taken to mean a suggested practice, secure

Establishing Baselines 679

organizations actually enforce the best practice through the use of baselines. Different
types of servers require different baselines. Database servers, for example, are accessed
using different ports and protocols than fi le and print servers. For this reason, many
organizations establish baseline security confi gurations based on the server type. Server
types requiring baselines may include the following:

■ Authentication servers

■ File and print servers

■ Email servers

■ Database servers

■ Application servers

When you create a baseline for a server type, you reduce the likelihood that minimum
security settings will be forgotten during the installation process. When you implement
automation for these baseline settings, you further reduce the likelihood that these settings
will be forgotten. Windows servers can use security templates to implement these baselines.

Security templates are simple INF fi les that contain security settings to be applied to
target machines. Once you’ve created your database server security template, you can apply
it to an organizational unit (OU) in Active Directory. If you place all the SQL Servers in
your organization in this OU, the security settings will apply automatically.

The following sections will describe how to use security templates, how to analyze
a server’s security settings, and how to use the Security Confi guration Wizard. In these
sections, you’ll review recommendations for security template settings that would work
well as a baseline for your SQL Servers.

Working with Security Templates
Security templates were fi rst introduced with the release of Windows 2000 in 1999. They
have been used to secure both clients and servers since that time. The security templates
still exist in Windows Server 2008 R2, and Microsoft has provided new ways to utilize
them over the years.

The Security Compliance Manager
One of the best tools Microsoft released was the GPO Accelerator tool. The GPO
Accelerator was a download available at Microsoft’s website, and it was not released with
a specifi c operating system release. However, Microsoft has taken this tool to another level
with the release of the Microsoft Security Compliance Manager (SCM). The SCM tool
enables you to perform many tasks related to security compliance, including these:

■ You can apply security baselines to standalone computers or groups of computers via
Active Directory.

■ You can export the local group policy of a computer to a backup fi le using the Local
Policy Tool (LPT).

■ You can add more security settings to the Group Policy management tools beyond
those available in the GPO Accelerator.

680 Chapter 20 ■ Security Best Practices

Exercise 20.1 steps you through the process of downloading and installing SCM.

E X E R C I S E 2 0 .1

Installing Microsoft SCM

In this exercise, you will download and install Microsoft SCM from the Microsoft website.
Please note that these steps assume you are running Windows Server 2008 R2 on the server.

1. Log on to the Windows server as an administrator.

2. Open your web browser, and navigate to: http://download.microsoft.com.

3. Search for Security Compliance Manager.

4. Follow the link to download the Security Compliance Manager 2.5 or newer.

5. Save the fi le to a location you can use to launch the installation.

6. When the download completes, double-click the Security_Compliance_Manager_
Setup.exe fi le to begin the installation.

7. If an Open File – Security Warning dialog appears, click Run to begin the actual
installation.

8. The Installation Prerequisites process will run. Be patient because it can take several
minutes.

9. The Microsoft Security Compliance Manager Setup window appears. Click Next to
begin the install.

10. On the License Agreement screen, accept the license, and click Next.

11. On the Installation Folder screen, accept the default location or change it to your pre-
ferred location, and click Next.

12. Interestingly, the SCM uses SQL Server to store data; so, on the SQL Instances Found
screen, you can either choose an existing instance or allow SQL Server Express to be
installed for the SCM. Then click Next.

13. On the Ready To Install screen, click Install to begin the installation.

14. When the installation is complete and you see the Installation Successful screen, click
Finish.

After you’ve completed the steps in Exercise 20.1, the SCM will launch automatically. In
the future, you can access it from Start ➢ All Programs ➢ Microsoft Security Compliance
Manager. On fi rst launch, SCM will take several minutes to import baselines. These
baselines defi ne security confi gurations for many types of different computers, applications,
and servers, including the following:

http://download.microsoft.com

Establishing Baselines 681

■ Exchange Server

■ Internet Explorer

■ Microsoft Offi ce

■ Windows XP

■ Windows Vista

■ Windows 7

■ Windows Server 2003 SP2

■ Windows Server 2008 SP2

■ Windows Server 2008 R2

Figure 20.1 shows the SCM with the Member Server Security Compliance baseline
selected. This is the baseline used for SQL Server, SharePoint Server, and other servers
not explicitly listed. In addition to using this baseline, you can create a custom baseline
for your SQL Servers. This customization allows you to specifi cally defi ne how your SQL
Servers should be confi gured from a security standpoint.

F I GU R E 20 .1 The SCM Showing the Member Server Security Compliance baseline

682 Chapter 20 ■ Security Best Practices

To create a custom baseline, simply select the existing baseline and then click Duplicate
in the Baseline section of the right panel in SCM. This action enables you to create a unique
name for the baseline and then customize it according to your needs. After creating a
baseline, you can export it for use in Active Directory GPOs or for a local Group Policy
application.

The Security Templates Snap-in of the Microsoft Management
Console
Of course, you are not required to use Microsoft’s recommended security baselines
provided through the SCM. Depending on your needs, you may implement more restrictive
or less restrictive settings. The tool you use to create your own templates, which can then
be imported into GPOs in the Active Directory domain, is the Security Templates snap-in
of the Microsoft Management Console (MMC). Figure 20.2 shows the Security Templates
snap-in with the categories displayed.

F I GU R E 20 . 2 The Security Templates snap-in showing expanded categories

The Security Templates snap-in provides access to several categories of security settings
on a Windows server that can impact the security of the SQL Server installation. These
settings include the following:

Establishing Baselines 683

Account Policies The Account Policies settings include password rules, lockout rules, and
Kerberos authentication settings. All of these settings are typically managed through the
Active Directory domain. However, if you do have standalone SQL Servers, you may want
to consider creating a security baseline template for them that imposes strict password
rules.

Local Policies The Local Policies settings include audit policies for the Windows server
(not for SQL Server itself), user rights assignments, and general security options. In this
section of the template, consider the Access This Computer From The Network policy and
the Network Access: Do Not Allow Anonymous Enumeration Of SAM Accounts And
Shares policy. The fi rst policy controls who can access this server from the network, and
it should be implemented in a domain environment as well as a standalone environment.
Through this policy, you can limit access to the server to only those who need access to the
SQL Server service (assuming the server is dedicated to running SQL Server). The second
policy allows you to restrict the viewing of user lists and shares to authenticated users. By
default, even anonymous users can see the logon names and the share names on the server.

Event Log The Event Log policies are very important for a SQL Server in an enterprise
environment. These policies allow you to confi gure the event log size and retention method.
The best practice is to implement a log size that allows for infrequent backups of the logs;
however, the most important thing is that the logs are indeed backed up for documenta-
tion purposes. It’s not really very benefi cial to log access to the server (through auditing) if
you’re not going to retain those logs.

Restricted Groups The Restricted Groups policy is used to add a group and limit the
users or groups who can have membership in the group. This is a useful policy for powerful
groups such as Administrators, Domain Admins, and Backup Operators—to name a few.

System Services The System Services portion of the template provides for automatic ser-
vice startup confi guration. If you want the SQL Server Agent to start automatically, for
example, you can enable that behavior here. Only the services installed on the machine
on which the template is created will be available for confi guration within the template
through this interface.

Registry If you have special permission requirements for Registry keys, you can confi gure
those permissions by selecting Registry. These settings can be used to provide read-only
access to certain keys, for example, so that the server may not be reconfi gured.

File System The fi nal category of the template fi le is the File System section. This category
provides the functionality required to control permissions on the fi le system. You may want
to enforce permission on the SQL Server data store (both the default data location and the
user database fi le locations) using this category.

Exercise 20.2 provides the steps required to create a security template. This security
template can then be imported into a local machine (using the Security Confi guration and
Analysis snap-in in the MMC) or into a GPO for distribution through Active Directory.

684 Chapter 20 ■ Security Best Practices

E X E R C I S E 2 0 . 2

Creating a Custom Security Template

In this exercise, you will create a custom security template. This template will ensure that
auditing is enabled for failed logons to the server and that the security event log is suf-
fi ciently large to handle the extra auditing information. This action prevents undetected
operations after the log has fi lled. To do this, follow these steps:

1. Click Start, type MMC into the search fi eld, and press the Enter key.

2. Click File ➢ Add/Remove Snap-in.

3. Scroll down in the Available snap-ins list until you see Security Templates.

4. Select Security Templates, and click the Add button.

5. Select the Security Confi guration and Analysis snap-in, and click the Add button again.
These two snap-ins are best used together.

6. Click OK to add the two snap-ins.

7. Expand the Security Templates node and then the default fi le location, as shown here.

8. Right-click the default fi le location, and select New Template.

9. Name the template SQL Server Baseline, and click OK.

Establishing Baselines 685

10. Expand the new SQL Server Baseline template.

11. Expand the Local Policies ➢ Audit Policy node.

12. Double-click the Audit logon events policy to confi gure it.

13. Select Defi ne These Policy Settings In The Template, choose both Success and Failure,
and click OK.

14. To confi gure the security event log, expand the Event logs node, and double-click the
Maximum Security Log Size policy.

15. Check the Defi ne This Policy Setting in the Template option.

16. Set the value to 200000KB, which is roughly 200MB, and click OK.

686 Chapter 20 ■ Security Best Practices

E X E R C I S E 2 0 . 2 (c ont inue d)

17. Right-click the SQL Server Baseline node, and select Save.

18. Select File ➢ Save to save the MMC console. Save it as Security Templates in the default
location, which is the Administrative Tools folder on the Start menu. You will use this
MMC again in Exercise 20.3.

If you followed the steps in Exercise 20.2, you should have a security template fi le.
You may choose additional settings for your environment, but the process for creating the
template will be the same.

Analyzing a Server’s Security Settings
The templates won’t do you much good if you create them and simply store them on a hard
drive. To benefi t from them, you can use them to analyze a computer to determine whether it is
confi gured according to the settings specifi ed in the template. For example, using the template
created in Exercise 20.2, you can verify that the server has auditing enabled for logons. Exercise
20.3 steps you through the process of analyzing security settings based on a template.

E X E R C I S E 2 0 . 3

Analyzing Security with Templates

In this exercise, you will analyze the security of the local SQL Server based on the template
created in Exercise 20.2. To do this, follow these steps:

1. Select Start ➢ All Programs ➢ Administrative Tools ➢ Security Templates (if this short-
cut does not exist, you must perform Exercise 20.2).

2. Expand the Security Confi guration And Analysis node.

3. Right-click the Security Confi guration And Analysis node, and select Open Database
(the security analysis process uses a database to analyze security settings).

4. Enter the fi lename SQL Analysis, and click Open.

5. Choose the SQL Server Baseline template, and click Open.

Establishing Baselines 687

6. Right-click the Security Confi guration And Analysis node, and select Analyze Computer
Now.

7. Accept the default error log path, and click OK.

8. When the processing is complete, expand the Security Confi guration And Analysis
node. The categories that were in the security template are now listed.

9. Expand Local Policies ➢ Audit Policy.

10. If the Audit Logon Events policy has a red circle with a white X, this indicates that the
policy is not currently enforced on the local server.

11. Expand the Event Logs node, and note whether the policy is enforced there.

If you analyze a server using a security template and determine that it does not comply
with the template, it is best to enforce the settings through Windows Group Policy, which can
be accomplished on individual machines or through Active Directory for many machines.

688 Chapter 20 ■ Security Best Practices

In addition to the security analysis operations that can be performed using the Security
Confi guration and Analysis snap-in, you can also confi gure the security of the local machine
to match that of the security template. To do this, instead of right-clicking and selecting
Analyze Computer Now, you would right-click and select Confi gure Computer Now.

Using the Security Configuration Wizard
The Security Templates and Security Confi guration and Analysis snap-ins have been with
us for more than 10 years, and they provide a valuable tool set for implementing best
practices as security baselines. The new kid on the block—and also the more powerful—is
the Security Confi guration Wizard (SCW). The SCW comes out of the box with Windows
Server 2008 and 2008 R2, and it can be used to create a security baseline based on the
security settings in your existing server. Imagine you’ve spent hours locking down your
SQL Server machine. You’ve confi gured port fi ltering in the fi rewall, fi le, and Registry
permissions, and many more settings. Now, you must do all that again on several other
SQL Servers. The SCW is there to rescue you from all that extra work.

Exercise 20.4 steps you through the process of creating a baseline from the current
confi guration of the local server.

E X E R C I S E 2 0 . 4

Creating a Baseline from Current Settings with SCW

In this exercise, you will use the SCW tool to create a baseline from the server’s current set-
tings. This exercise should be performed on a Windows Server 2008 or 2008 R2 machine. To
do this, follow these steps:

1. Select Start ➢ All Programs ➢ Administrative Tools ➢ Security Confi guration Wizard.

2. On the Welcome to the Security Confi guration Wizard screen, click Next.

3. Choose Create A New Security Policy, and click Next.

Establishing Baselines 689

4. On the Select Server screen, accept the default of the local server name, and click Next.

5. Once the processing of the confi guration database is complete, click Next (you may
want to click View Confi guration Database to explore beyond this exercise).

6. The next phase of SCW is the role confi guration. Click Next on the Role-Based Service
Confi guration introduction screen to continue.

7. On the Select Server Roles screen, the currently installed roles are displayed by default.
You may choose additional roles if the server will require them. Otherwise, click Next.

8. On the Select Client Features screen, the currently installed features are displayed by
default. Again, you may choose additional features if you plan to add them later so that
they are included in the security baseline. Otherwise, click Next.

9. The Select Administration And Other Options screen is used to confi gure services and
ports for out-of-the-box Windows services (these services do not include add-ons such
as SQL Server, Exchange Server, and so on). By default, only installed components are
selected. Select additional services if they will be needed. Otherwise, click Next.

10. On the Select Additional Services screen, you can confi gure the default settings for any
add-on services that may exist in the current machine. As shown here, you will see the
SQL Server services. Make sure you’ve selected the SQL Server services you require in
the baseline; then click Next.

11. On the Handling Unspecifi ed Services screen, choose Disable The Service to ensure
that no services are allowed to run on other servers to which this baseline is applied.
Then click Next.

12. View the selected changes on the Confi rm Service Changes screen. If everything looks
acceptable, click Next.

690 Chapter 20 ■ Security Best Practices

13. The next phase of SCW is the Network Security phase. Click Next on the Network Secu-
rity screen to begin this phase.

14. On the Network Security Rules screen, notice the fi rst fi rewall rule for SQL Server. You
can click the rule and then click the Edit button to view the parameters if you desire.
Otherwise, click Next.

15. The next phase of SCW covers the Registry settings. You’re going to accept all defaults
for this phase. So, you should check Skip This Section and click Next.

16. The next phase is the Audit Policy section. Click Next to enter this section.

17. Choose Audit Successful And Unsuccessful Activities on the System Audit Policy
screen, and click Next. When you audit such activities, you can track the results in the
Windows Event Viewer.

E X E R C I S E 2 0 . 4 (c ont inue d)

Implementing Least Privilege 691

18. On the Audit Policy Summary screen, review the audit setting, and then click Next.

19. The fi nal phase of SCW is the Save Security Policy section. Click Next to enter this sec-
tion.

20. Enter a name and description for the security policy, as shown here, and then click Next.

21. Choose Apply Later, and click Next.

22. Click Finish to exit the wizard.

If you followed the instructions in Exercise 20.4, you should now have a fi le named
SQLServerPolicy.xml in the C:\Windows\Security\msscw\Policies folder. You can
use this fi le with the SCW on other machines to automatically confi gure them according
to the security settings on the machine on which the baseline was created. This activity
can save you hours of time and dozens of mistakes when compared to manual security
confi gurations.

You can use the command line to work with security policies (baselines)
created with the SCW. You will use the SCWCMD command from the com-
mand line. To learn more about the command, type it at the command line.
You can then type SCWCMD and any of its subcommands to learn more
about the proper syntax.

Implementing Least Privilege
The principle of least privilege says simply that users and systems should have no greater
access than is required to perform their intended duties. This means users can do what they
need to do and nothing more. Other systems can access the secured system to perform their

692 Chapter 20 ■ Security Best Practices

intended operations and can do nothing more. In SQL Server, least privilege is implemented
through permissions; however, you must understand several objects and concepts in order
to ensure that least privilege is properly implemented. These topics include the following:

■ Permissions and authorization

■ Ownership chains

■ Credentials

Permissions and Authorization
Permissions are used to authorize the action of users. If a user has the permissions to
perform an action, when the user attempts the action, it will be authorized. Permissions
within a database system are different from those used in a fi le system or on a network. In a
Microsoft Windows environment, administrators are used to granting permissions such as
Read, Change, Full Control, Write, and so on. In SQL Server, you will grant the permission
to execute particular statements against specifi c securables. For example, you can grant a
user Select permissions on the Accounting table in the Balance database. The Accounting
table is the securable, and Select is the permission or capability provided to the user.

When you set permissions using T-SQL, you use the GRANT, REVOKE, and DENY statements.
You can also manage permissions using the SSMS graphical administration interface. In
fact, one of the best ways for learning how to create T-SQL permission statements is to
confi gure permissions in the GUI and then view the resulting T-SQL code using the Script
button. Exercise 20.5 shows you how to use the Script button to view the T-SQL code for
GRANT, REVOKE, and DENY statements.

E X E R C I S E 2 0 . 5

Managing Permissions in SQL Server Management Studio

In this exercise, you will practice permission management using the AdventureWorks2012
database. To do this, follow these steps:

1. Launch SQL Server Management Studio.

2. Expand the Databases container in the Object Explorer window.

3. Expand the AdventureWorks2012 database.

4. Expand Tables within AdventureWorks2012.

5. Right-click the Production.Product table, and select Properties.

6. Select the Permissions page.

7. Click the Search button to add users or roles.

Implementing Least Privilege 693

8. Click the Browse button, choose the [guest] user, click OK, and then click OK again in the
Select Users Or Roles dialog to add the user.

9. In the Permissions For Guest section, select the Control, Insert, and Select rows in the
Grant column; however, select the Delete permission in the Deny column, as shown
here.

10. Choose the down arrow next to the Script button, and select Script Action To New
Query Window.

11. Click Cancel to avoid applying the permission changes from within the GUI.

12. In the new query window, you should see code similar to the following:

use [AdventureWorks2012]
GO
GRANT CONTROL ON [Production].[Product] TO [guest]
GO
use [AdventureWorks2012]
GO
GRANT INSERT ON [Production].[Product] TO [guest]
GO
use [AdventureWorks2012]

694 Chapter 20 ■ Security Best Practices

E X E R C I S E 2 0 . 5 (c ont inue d)

GO
GRANT SELECT ON [Production].[Product] TO [guest]
GO
use [AdventureWorks2012]
GO
DENY DELETE ON [Production].[Product] TO [guest]
GO

13. If you want to apply the permissions, you can execute the code. Otherwise, close SSMS
without saving anything. The main purpose of this exercise is to see the code generated
when applying permissions.

To best manage the permissions to database securables, you will need to understand
the scope of those permissions and how they pass down through the securable hierarchies.
Additionally, you will need to differentiate between statement and object permissions
and know how to manage both permission types. Finally, it is important to grasp the
relationship between schemas and security. All of these topics are covered in the following
sections.

Permission Scopes
SQL Server groups securables at three scope levels: server, database, and schema.
Table 20.1 lists the securables that are managed at each scope level. All securables,
regardless of scope, are secured by the application of appropriate permissions. When
you assign permissions, you are enforcing least privilege—assuming that the confi gured
permissions are indeed providing only required capabilities.

TA B LE 20 .1 Securables and scope level

Securable Scope level

Server Server

Endpoint Server

Logins Server

Database Users Database

Database Roles Database

Application Roles Database

Assemblies Database

Implementing Least Privilege 695

Services Database

Service Contracts Database

Schemas Database

Tables Schema

Views Schema

Functions Schema

Procedures Schema

Queues Schema

Rules Schema

Synonyms Schema

Statement Permissions
Two major categories of permissions apply in SQL Server. The fi rst category is statement
permissions, and the second is object permissions. Statement permissions are not related
to the data but to the structure of the data. These permissions apply to statements that are
used to create or alter server, database, or schema securables. Object permissions are used
to control who can access the data in the created securables.

Examples of statement permissions include CREATE TABLE, CREATE DATABASE, CREATE
VIEW, and CREATE INDEX. The ability to execute any of these statements can be granted,
denied, or revoked. Consider the following code:

GRANT CREATE TABLE TO [Server1\Jeremy];

This statement provides the user Jeremy on the computer Server1 with the ability to
create tables in the database. The following code takes this ability away:

REVOKE CREATE TABLE TO [Server1\Jeremy];

The difference between REVOKE and DENY is that REVOKE takes away a privilege that has
been granted and DENY is used to override a privilege coming from some other area related
to the user, like a Windows group. In fact, the REVOKE statement can be used to take away a
negative permission assigned with the DENY statement.

Object Permissions
While statement permissions control the ability to create the structure of a database, object
permissions control the ability to access the data stored within the structure. This includes
the ability to read, write, and otherwise alter the data. The following are the 12 object
permissions and the abilities they provide:

696 Chapter 20 ■ Security Best Practices

Control This provides ownership-like capabilities on the assigned objects and all objects
beneath it in the hierarchy. When the Control permission is granted to a user on the data-
base, the user will, by default, have the Control permission on all database objects such as
tables and views.

Alter Interestingly, the Alter permission can grant the Create permission. This happens
when you grant the Alter permission on a scope-level object containing other objects. For
example, by granting Alter to a user on a schema, you grant Create to that user for the
objects in the schema. Alter provides the ability to alter, drop, or create objects. Alter does
not provide the ability to change ownership.

Take Ownership This gives the granted user the ability to take ownership of the object.

Impersonate This can be granted on a login to another user or role. It allows the granted
user to act as the impersonated login.

Create This allows the granted user to create objects.

View Definition This provides the granted user with the ability to see the SQL code that
was used to create the object being secured.

Select This allows the granted user to issue SELECT statements and read data from the
object.

Insert This grants the ability to create new records in a table.

Update This grants the ability to modify records in a table.

Delete This grants the ability to delete records from a table.

References This grants the ability to select data from a table that references another table
without having the Select permission granted on the referenced table.

Execute This provides the user with the ability to execute the stored procedure on which
the permission is granted.

Object permissions can be granted using SQL code similar to statement permissions.
Consider the following code:
USE music;

GRANT SELECT ON OBJECT::albums TO [Server1\Jeremy];

This will grant the Select permission to Jeremy for the albums table in the music
database.

The object you are dealing with really doesn’t matter. Tables, views, and
stored procedures, for example, all receive the same core GRANT, REVOKE,
and DENY statements. Of course, the only permissions that can be granted,
revoked, or denied are those that apply to the object. For example, a stored
procedure can be executed, but a table cannot.

Implementing Least Privilege 697

Schemas and Security
A schema is a collection of database objects grouped together under the umbrella of a
schema name. Microsoft’s offi cial defi nition is that a schema is a collection of database
entities that form a single namespace. For example, dbo.sales and dbo.salespersons
may refer to two tables—sales and salespersons—in the dbo schema. SQL Server 2005
introduced the concept of named schemas and the separation of the schema from the user.
In SQL Server 2000 and older, a schema was named for its owner. Now, in SQL Server
2005 and newer, you can create schema names, such as sales or marketing, and then assign
ownership of the schema to any user. The benefi ts of the separation of the user from the
schema include the following:

■ Several schemas can be owned by a single principal.

■ When you delete a user, you do not have to rename the objects that were part of that
user’s schema.

■ Multiple principals can own a single schema through role or Windows group member-
ships.

SQL Server 2008 and newer utilize the four-part naming convention even more than
past versions of SQL Server because of the introduction of schemas that are separate
from the users. For example, a database table named sales in a database named reports
on a schema named tracking on a server named SQL1 would be referenced as SQL1
.reports.tracking.sales. If you are in the context of the reports database (for example,
you’ve executed a USE reports statement), you can reference the same table as simply
tracking.sales. The four-part convention is Server_Name.Database_Name.Schema_Name
.Table_Name.

Understanding the role of the schema in the four-part names is impor-
tant—particularly if you plan to take Microsoft certification exams. You
may encounter questions that will stump you on the schema issue if you
fail to remember concepts such as the default schema for a user (which is
usually dbo) and the current database context.

In addition, the concept of a default schema was introduced with SQL Server 2005. This
is an important feature in light of the fact that a single database can have two tables with
the same table-level name that belong to two different schemas. For example, you can have
a table named sales.results and another named marketing.results and store them both in the
database named campaigns. You can confi gure the users who are from marketing to use the
marketing schema by default and the users from sales to default to the sales schema. Now,
an application that issues a command like SELECT * FROM results will not need to specify
the schema in order to get the right table information for the user. The following code
demonstrates how you confi gure the default schema for a user during creation and after
creation:

698 Chapter 20 ■ Security Best Practices

USE music;
CREATE USER barney WITH DEFAULT_SCHEMA = sales;
ALTER USER barney WITH DEFAULT_SCHEMA = marketing;

The fi rst command creates a user named barney while setting his default schema to
sales. The second command modifi es the user named barney and sets his default schema to
marketing. For the fi rst command to work, a login named barney must exist at the server
level.

It is also important to note that members of the sysadmin fi xed server role will have
a default schema of dbo regardless of the previous commands. Also, the default default_
schema setting is dbo for users created without an alternative schema specifi cation.
Schemas are created with the CREATE SCHEMA command.

It’s worth calling attention to the fact that schemas changed drastically in
SQL Server 2005 in that they were completely disassociated from users
and roles. Previously, a user or role owned the schema and the schema
had the same name as the owning user or role. Now, because of named
schemas, a schema can be created and then owned by any specified indi-
vidual or collective principal.

Ownership Chains
When implementing least privilege, you must consider ownership chains because they can
result in the granting of permissions that you may not intend to grant. Ownership chaining
is a simple concept to understand; however, the implications are far-reaching in your
databases, and they can make a big difference in security and whether users can access
needed resources. To understand ownership chains, you must fi rst understand ownership.

When a user owns a database, schema, or object, that user has full management
capabilities on the principal. The user can assign permissions, alter the structure of the
object, or even delete an object. Ownership is powerful.

An ownership chain exists when an object references another object that is also owned
by the same user. For example, if the dbo owns the vmarketing view, which is based on the
marketing table, and the marketing table is also owned by the dbo, an ownership chain
exists.

So, who cares about these ownership chains and why do they matter? You will care
when you understand the impact. If the ownership chain exists, it means you can grant
a permission on the vmarketing view, such as SELECT, to any user and no additional
permissions will be required on the marketing table. The authorization passes along the
chain as long as the ownership chain is not broken. This makes security management much
easier. Of course, it also means you need to make sure that only the proper people are given
access to higher-level objects—such as views or stored procedures—that utilize lower-level
objects, such as tables.

Implementing Least Privilege 699

To understand the benefi t fully, consider this example: Imagine you have a stored
procedure named usp_MarketingUpdate that reads from the vmarketing view, which is
based on the marketing table. Further, assume that each object is owned by a different user.
Because no ownership chain exists, you will need to grant additional permissions at the
view and table level to anyone requiring execute permissions on the usp_MarketingUpdate
stored procedure. If the ownership chain existed—meaning that all three objects were
owned by the same user—you would set the permission once and forget it.

In SQL Server, the primary ownership point is the schema. In other words,
you assign ownership at the schema level and this ownership is inherited
by all objects within the schema. To change the ownership of a specific
object, such as a table, you use the ALTER AUTHORIZATION command.

Credentials
User credentials are used to validate the identity of a user. The user credentials provide
the fi rst step required to implement least privilege, which is user identifi cation. When
users connecting to your SQL Server need to access resources outside of the SQL Server,
credentials may be used. A SQL Server credential object is usually just a Windows
username and password pair stored within the SQL Server. The username and password
are used to access the external resources as needed.

The most common use of credentials in SQL Server is with the SQL Server Agent proxy
objects. A proxy object must be created in order to run a job step as some user other than
the SQL Server Agent service account. To use these proxy objects, you must fi rst create a
credential object. The general process is as follows:

1. Create a credential that references a standard Windows user account.

2. Create the proper proxy object that references the credential object.

3. Create the job step and confi gure it to run as the created proxy object.

These proxy and credential objects can be very useful for providing access to resources
that would not normally be accessible to the SQL Server Agent account.

As an example, consider the following code, which creates a credential named Jeremy:

USE master;
GO
CREATE CREDENTIAL Jeremy
 WITH IDENTITY = ‘SQL1\Jeremy’,
 SECRET = ‘Password1’;
GO

In this code, notice that the Windows account is SQL1\Jeremy and the password (the
secret) is Password1. Once the credential is created, you can create the proxy. For example,
the following code would create a proxy for running operating system commands:

USE msdb;

700 Chapter 20 ■ Security Best Practices

GO
EXEC msdb.dbo.sp_add_proxy
 @proxy_name=’OSCommands’,
 @credential_name=N’Jeremy’,
 @enabled=1;
GO
EXEC msdb.dbo.sp_grant_proxy_to_subsystem
 @proxy_name=’OSCommands’,
 @subsystem_id=3;
GO

As you can see, the creation of the proxy object is a bit more complicated than for a
credential. You must call on stored procedures to create the object through code. Of course,
you can always create a proxy in the SQL Server Management Studio graphical interface, if
you prefer.

Ensuring Least Privilege with Service Accounts

The service accounts used to run SQL Server make up an important area that cannot be
overlooked. I was once in a meeting with the internal DBAs for a large United States–
based organization. We were discussing security requirements for a project they were
planning, and I was there to help with the SQL Server planning. The project involved
building an Internet-facing application. As you might have guessed, we were discussing
the need to implement least privilege.

After more than an hour of discussions related to logins, users, and permissions, I asked
them how they planned to protect the SQL Servers from the most common attack type
for Internet-servicing database servers—injection attacks. They indicated that they would
protect against such attacks with secure code. I asked, “But what about the mistakes that
will creep into the code that you don’t catch?” They said that they hadn’t really consid-
ered that issue. Of course, that’s why I was there, to remind them of just such realities.

I reminded them that the best way to protect against unknown injection attacks (those
that you miss when testing your code) is to use least privilege at the SQL Server service
account level. If their SQL Server service is running with minimal privileges, even if a
cracker does fi nd a way to inject code into the SQL Server, at least she won’t be able to do
major damage. She can only do what the SQL Server service account can do. This is why
I encouraged them to create special accounts just for the SQL Server service and the SQL
Server Agent service. I suggested they create one for each service so that each account
could provide only the privileges needed for that service. By implementing my sugges-
tion, they have helped protect themselves from unforeseen attacks that will certainly be
developed in the future.

Auditing SQL Server Activity 701

This does not mean they don’t need to keep up with the current news related to attacks
and implement the appropriate countermeasures. Indeed, they should update their server
and correct errors in their code; however, even with these efforts, they will miss some
potential entry points. Least privilege helps protect them in such cases. This particular
organization has experienced no serious security incidents on their SQL Servers since the
time of implementation.

Auditing SQL Server Activity
While the Windows servers on which SQL Server runs can implement auditing, SQL
Server also supports internal auditing. The auditing can be accomplished using traditional
methods, such as DDL triggers, or newer methods, such as audits and logon triggers.
Notifi cations can also be confi gured so that SQL trace events or DDL triggers have a
method for notifying administrative personnel. The following sections address these
various methods and the steps required to implement them.

Using Audits
In SQL Server 2008 and newer, you have the ability to set up automatic auditing without
the requirement of creating dozens of custom triggers. Of course, triggers are still there
and they can be very useful (they will be covered later in this chapter), but the ability to
implement standard and automated auditing is a big leap forward.

SQL Server Audit, a feature fi rst available in SQL Server 2008, uses extended events to
implement an audit. The audit can be a server-level audit (more specifi cally, the instance-
level) or a database-level audit. At either level, the audit is assigned a target. The target is
the storage location for the audit details. The target can be a fi le, the Windows Security log
in the Event Viewer, or the Windows application log in the Event Viewer.

When you’re ready to implement SQL Server Audit, you must perform four tasks:

1. Create the audit, which points to a target.

2. Create the server (instance) audit and specifi cation.

3. Enable the audit.

4. Monitor the log fi les or Event Viewer logs.

Creating an Audit The fi rst step is to create an audit. An audit is basically a name and a
target. The name is used to identify the audit, and the target specifi es one of three targets.
The fi rst target is the fi le system. By default, a new audit points to a fi le system fi le; how-
ever, you can change this so that it points to the application log or the security log in the

702 Chapter 20 ■ Security Best Practices

Event Viewer. For security purposes, you can point the audit to the security log so you can
monitor the logs with tasks scheduled to notify you of an audit event.

You can create multiple audits. For example, you could create an audit named File, another
named Application, and another named Security. With these named audits, you can use
them to direct captured events to the appropriate output. This naming scheme is just a sug-
gestion and not at all required. You can develop your own audit-naming structure.

A rumor is floating around on the Internet that says you can have only
one audit per instance. This is simply not the case. To prove that point, go
ahead and create more than one. SQL Server 2008 and newer will certainly
allow you to create multiple audit objects.

Creating the Server (Instance) Audit and Specification The second step is to create the
audit specifi cation. The audit specifi cation defi nes the events you want to audit. As exam-
ples, you can audit for ownership changes or for instance logins.

Enabling the Audit The third step is to enable the audit and the audit specifi cation. By
default, when audits and audit specifi cations are fi rst created, they are disabled. You will
need to enable both in order for auditing to begin.

Monitoring the Log Files or Event Viewer Logs The fourth and fi nal step is to monitor the
log fi les or Event Viewer logs. SQL Server provides no simple way to do this. Instead, you
must use third-party Event Viewer log monitoring applications or scripts that you create
yourself. You can certainly create SQL Server jobs that monitor for audit events and then
email an operator or take some other action should an audit event occur.

Interestingly, it’s not very complicated to set up auditing. Just remember that you fi rst
create an audit output defi nition that can be used by multiple audit specifi cations. Then
you create the specifi cations. Finally, you enable both objects so that auditing can begin.
Exercise 20.6 provides instructions for creating a basic auditing confi guration.

E X E R C I S E 2 0 . 6

Enabling a SQL Server Audit

In this exercise, you will create an audit object and an audit specifi cation. You will then
enable both in order to turn on the auditing feature. The audit object will be named Applica-
tion Log and will output any audit events to the application log in the Event Viewer. The audit
specifi cation will monitor the FAILED_LOGIN_GROUP audit action, which will fi re if a failed
login occurs. To do this, follow these steps:

1. Launch SSMS, and connect to the SQL Server instance on which you want to enable
auditing.

2. Expand Security ➢ Audits in the Object Explorer.

Auditing SQL Server Activity 703

3. Right-click the Audits node and select New Audit.

4. Name the new audit object Application Log to indicate that the audit target will be the
application log in the Event Viewer.

5. Select Application Log for the Audit Destination fi eld.

6. Accept all other defaults, and click OK to create the audit object.

7. Right-click the new Application Log Audit object and select Enable Audit. Click Close
upon success of the Enable Audit operation.

8. Right-click the Server Audit Specifi cations node and select New Server Audit Specifi ca-
tion.

9. Enter the name Failed Logins.

10. Choose the Application Log Audit object from the Audit drop-down list.

11. For the Audit Action Type, choose FAILED_LOGIN_GROUP.

704 Chapter 20 ■ Security Best Practices

E X E R C I S E 2 0 . 6 (c ont inue d)

12. Click OK to create the audit specifi cation.

13. Right-click the new Failed Logins audit specifi cation and choose Enable Server Audit
Specifi cation.

14. Click Close upon success of the Enable Specifi cation operation.

If you’ve performed the steps in Exercise 20.6 and want to see an audit event generated
and stored in the application log of the Event Viewer, simply open a new query window
in SSMS and then disconnect and reconnect. You’ll be prompted for logon credentials.
Intentionally enter a login name and password pair that is incorrect. Now, go to your
application log, and you’ll see the new entry in the log. You may also right-click the audit
object, in this case the one named Application Log, and select View Audit Logs. You’ll see a
screen similar to the one in Figure 20.3.

F I GU R E 20 . 3 Using the log file to view the audit logs within SSMS viewer

Auditing SQL Server Activity 705

Notifications
The Service Broker component of SQL Server was fi rst introduced in SQL Server 2005.
The Service Broker allows for asynchronous communications within the database system
through the use of queues. Messages are stored in queues and can be processed as needed
by stored procedures or .NET CLR code. Event notifi cations, fi rst introduced in SQL Server
2008, take advantage of the Service Broker.

Event notifi cations work by sending information about SQL traces or DDL trigger events
to Service Broker services. Event notifi cations are usually used to track database changes
or to perform some action in response to an event. The benefi t of event notifi cations is
that they can respond to an event asynchronously, since they use Service Broker, instead of
synchronously. The end result is that you use event notifi cations when you do not require
an instant response to the event.

Event notifi cations offer similar capabilities to both DDL triggers and SQL traces;
however, differences do exist. For example, a DDL trigger is synchronous and runs in the
resource space of the fi ring transaction; an event notifi cation is asynchronous and runs
outside the resource space of the transaction that created the event. Unlike SQL traces,
event notifi cations can respond to a SQL Trace and perform an action inside SQL Server.

SQL Trace is an internal component of SQL Server that allows applications
to initiate traces within the SQL Server Database Engine. Before SQL Trace
was introduced in SQL Server 2008, SQL traces were created using the
SQL Server Profiler and could not be easily created within T-SQL applica-
tion code. Now, stored procedures (such as sp_trace_create) can be used
to perform this action.

Event notifi cations are created with the CREATE EVENT NOTIFICATION statement. The
following code provides an example of an event notifi cation statement:

USE AdventureWorks2012;
GO

CREATE EVENT NOTIFICATION NotifyAlterTables
 ON DATABASE
 FOR ALTER_TABLE
 TO SERVICE ‘//Adventure-Works.com/ArchiveService’,
 ‘8140a771-3c4b-4479-8ac0-81008ab17984’;

The fi rst thing the code performs is a context change to the AdventureWorks2012
database. When you execute a CREATE EVENT NOTIFICATION statement, you should be in
the context of the target database. In this code sample, the event notifi cation will be named
NotifyAlterTables, and it watches for an ALTER TABLE statement within the database.
You’ll notice that the preceding code sample specifi ed ON DATABASE, but it did not specify a
database name. The //Adventure-Works.com/ArchiveService is a Service Broker service
(an endpoint address) that must exist before executing the statement.

http://Adventure-Works.com/ArchiveService
http://Adventure-Works.com/ArchiveService

706 Chapter 20 ■ Security Best Practices

DDL Triggers
Data Defi nition Language (DDL) triggers monitor for schema changes. Schema changes
are performed with CREATE, ALTER, and DROP statements. You can monitor for any of
these statements with DDL triggers and then take any desired action. From a security
perspective, DDL triggers are frequently used to log actions that users take (or attempt
to take) on the server. They can also be used to prevent specifi c actions. For example,
the following DDL trigger would prevent any tables from being deleted from the
AdventureWorks2012 database:

USE AdventureWorks2012;
GO

CREATE TRIGGER PrevTableDrop
 ON DATABASE
 FOR DROP_TABLE
 AS
 BEGIN
 PRINT ‘Table drops or deletions are not allowed’;
 ROLLBACK TRANSACTION;
 END;
GO

This code simply informs the user that table drops or deletions are not allowed and then
prevents the transaction from completing. Such DDL triggers have been common over the
years in SQL Server. They may begin to fade into the background as newer solutions, such
as event notifi cations and SQL Audit, take hold.

Logon Triggers
The fi nal audit tool addressed in this chapter is the logon trigger. Introduced in SQL Server
2008, logon triggers form a special class of trigger that can be used to monitor logins.
Microsoft defi nes logon triggers as objects that fi re stored procedures in response to logon
events. Of course, traditional triggers do the same in response to code execution events, but
they cannot track logons. To create a logon trigger, execute code similar to the following
sample found in SQL Server Books Online:

CREATE TRIGGER connection_limit_trigger
 ON ALL SERVER WITH EXECUTE AS ‘login_test’
 FOR LOGON
 AS
 BEGIN
 IF ORIGINAL_LOGIN()= ‘login_test’ AND
 (SELECT COUNT(*) FROM sys.dm_exec_sessions
 WHERE is_user_process = 1 AND

Configuring the Surface Area 707

 original_login_name = ‘login_test’) > 3
 ROLLBACK;
 END;

This creative example uses the logon trigger object to limit the number of concurrent
connections allowed for the user named login_test. This example shows that logon
triggers can be used for more than just auditing logons. You can use them for any of the
following creative uses as well:

■ Limit the number of concurrent logons for a user.

■ Automatically launch a service on the server when a specifi c user, who would require
that service for his actions, logs onto the server.

■ Email the administrator automatically if a user logs on with the administrator’s SQL
Server login.

You are sure to see even more creative uses of logon triggers over the next few years.
A new feature like this is certain to be tested and stretched to meet the needs of different
organizations.

Configuring the Surface Area
One of the primary components in SQL Server used to implement best practices is surface area
confi guration. In the world of computer security, the surface area is a reference to the attack
points exposed on the system. For example, a system with more services running and more
open network ports has a larger attack surface than a system with fewer services and
fewer open network ports. The goal of the security administrator is to reduce the attack
surface of each and every node on his network and, therefore, of the entire network. Attack
surface reduction should be performed for every SQL Server machine in your environment.

If you have created a secure baseline for your SQL Server deployments,
you will already have a reduced attack surface. Reducing the attack surface
should be part of the security baseline and not an afterthought.

In SQL Server 2008 and newer, the former Surface Area Confi guration Manager
is removed. Instead, you will use the sp_confi gure stored procedure or Policy-Based
Management (PBM) to confi gure the surface area.

SP_Configure for Surface Area Management
The sp_confi gure stored procedure is not new to SQL Server, but using it to confi gure the
surface area was new in SQL Server 2008, since the Surface Area Confi guration Manager
was available in SQL Server 2005. You can use the sp_confi gure stored procedure to
confi gure any Database Engine settings that impact the security of the system and it is still
available in SQL Server 2012. Examples include the following:

708 Chapter 20 ■ Security Best Practices

■ Turning off xp_cmdshell, which is an extended stored procedure used to run operating
system commands and can introduce a big security problem for your SQL Servers

■ Disabling cross-database ownership chaining to increase security

■ Preventing the execution of the SQL Mail extended stored procedures on the server

Exercise 20.7 provides instructions for using the sp_confi gure stored procedure to turn
off xp_cmdshell and disable all SQL Mail stored procedures.

E X E R C I S E 2 0 . 7

Using sp_confi gure to Confi gure the Surface Area

In this exercise, you will use sp_confi gure to turn off the xp_cmdshell stored procedure and
disable all SQL Mail stored procedures. To do this, follow these steps:

1. Launch SSMS, and connect to the target instance of SQL Server as an administrator.

2. Click the New Query button to open a Query Editor window.

3. Enter and execute the following code to disable xp_cmdshell:

EXEC sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO
EXEC sp_configure ‘xp_cmdshell’, 0;
GO
RECONFIGURE;
GO

4. Now that the xp_cmdshell stored procedure is disabled, enter and execute the following
code to turn off the SQL Mail stored procedures:

sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO
sp_configure ‘SQL Mail XPs’, 0;
GO
RECONFIGURE;
GO

At this point, the surface area is confi gured to disallow both the xp_cmdshell stored proce-
dure and any of the SQL Mail stored procedures.

Configuring the Surface Area 709

Policy-Based Management Surface Area Options
Chapter 16, “Policy-Based Management,” introduced you to PBM. Within PBM, the
Surface Area Confi guration facet is used to manage the surface area of the SQL Server
Database Engine service. Analysis Services’ surface area can be managed with the Surface
Area Confi guration for Analysis Services facet, and the Reporting Services’ surface area
can be managed with the Surface Area Confi guration for Reporting Services facet.

Instructions for confi guring the surface area of SQL Server using PBM are provided in
Exercise 20.8. This exercise will implement a portion of the surface area options available.
Most of the surface area management features that were available in the Surface Area
Confi guration Manager in SQL Server 2005 are available within PBM.

If you have not read Chapter 16, you may want to do so before performing
Exercise 20.8 in this section. Reading it will ensure that you understand the
steps you take in the exercise.

E X E R C I S E 2 0 . 8

Confi guring the Surface Area with PBM

In this exercise, you will disable xp_cmdshell and SQL Mail stored procedures using PBM.
You will fi rst create a condition that uses the Surface Area Confi guration facet. Next, you will
create a policy that can be used to enforce the condition. To do this, follow these steps:

1. Launch SSMS, and connect to the SQL Server as an administrator.

2. In Object Explorer, expand Management ➢ Policy Management.

3. Right-click the Conditions node and select New Condition.

710 Chapter 20 ■ Security Best Practices

E X E R C I S E 2 0 . 8 (c ont inue d)

4. Name the condition object Surface Area.

5. Choose the Surface Area Confi guration facet.

6. In the Expression area, choose @XPCmdShellEnabled, and set it to equal False.

7. Additionally, choose @SqlMailEnabled and set it to equal False, as shown here.

8. Click OK to save the condition object.

9. Right-click the Policies node and select New Policy.

10. Name the policy object Surface Area.

11. For the Check Condition, choose the Surface Area condition you just created.

12. Click OK to save the policy.

13. Right-click the Surface Area policy object and choose Evaluate.

If you performed the steps in Exercise 20.8 on a SQL Server machine confi gured with
default settings, the policy should evaluate to True because xp_cmdshell and SQL Mail
stored procedures are disabled by default. Figure 20.4 shows the results of the evaluation
on a default install of SQL Server. Figure 20.5 shows the detailed view of the evaluation
results.

Configuring the Surface Area 711

F I GU R E 20 . 4 Evaluating the surface area policy on a SQL Server 2012 default installation

F I GU R E 20 .5 Viewing the details of the evaluation

712 Chapter 20 ■ Security Best Practices

Understanding Common Criteria and C2
Information systems (IS) have become more and more complex over time. To ensure the
security of these systems, matching complexity has been introduced to the management
processes. The governance, risk management, and compliance (GRC) process is used to
govern and manage IS risk and mitigation techniques. The Common Criteria and C2
provide a foundation on which to build secure systems.

Common Criteria is the newer standard, so why bother to talk about C2 security?
C2 provides guidance to ensure that proper security solutions are used within a system.
The Common Criteria is so new that C2 compliance is still an important consideration.
Additionally, many security professionals argue that C2 is still better because it is more
specifi c than the Common Criteria.

GRC
The acronym GRC, which stands for governance, risk management, and compliance, is
often used to describe the management processes used to ensure the security of complex
and interoperating IT solutions. SQL Server may also be managed with GRC.

If you want to read additional information related to GRC, you might
be interested in the Wikipedia article, “Governance, risk manage-
ment, and compliance,” located at: http://en.wikipedia.org/wiki/
Governance,_risk_management,_and_compliance.

The G in GRC stands for governance and is a reference to the processes and tools used
to create and implement policies that will help remove or mitigate security risks (as well as
nonsecurity risks) to the system. The simplest way to remember what governance is about is
to say that governance equals policies. More specifi cally, governance equals the policies and
the management structure employed to implement, enforce, and evaluate these policies.

The R in GRC stands for risks or risk management. Risk management is the process
used to identify and address risks. From a security perspective, this means evaluating the
potential attack points and ensuring that the risk of attack through those points is either
removed, reduced, or dealt with otherwise. As you can see in the following list, fi ve primary
risk responses can be taken. The risk response you choose will depend on the scenario and,
in many cases, the budget.

Eradicate When you can eradicate a risk, it means you can completely remove the risk. In
these cases, you’ve usually identifi ed something you should already be doing. For example,
if you are not performing backups and you identify total data loss as a risk, you can eradi-
cate the possibility of total data loss by implementing backups and offsite storage.

Mitigate To mitigate a risk, you must reduce the likelihood or the impact of the risk. For
example, if you use only Windows authentication and not SQL logins, you mitigate the risk
of credential theft (though it is not completely removed).

http://en.wikipedia.org/wiki/Governance,_risk_management,_and_compliance
http://en.wikipedia.org/wiki/Governance,_risk_management,_and_compliance

Understanding Common Criteria and C2 713

Transfer Insurance is the best example of risk transference. If you have homeowner’s
insurance, you are transferring all of the risk of home damage to the insurance company
with the exception of your deductible. Of course, you carry the risk of paying for the insur-
ance with no claims over the lifetime of the policy.

Develop Contingencies If you cannot eradicate, mitigate, or transfer the risk, you may
need to develop contingency plans. A contingency plan is simply an alternative plan that
will be implemented should the risk occur.

Accept As a last resort, you may simply have to accept the risk. Sometimes you cannot do
anything to reduce the likelihood or impact of a risk, you cannot transfer it, and no alter-
native plans can be implemented. In these cases, acceptance is the only option.

This brings us to the fi nal letter in the GRC acronym. The letter C stands for
compliance. This component comprises the processes and tools used to ensure that the
policies created in order to reduce the risks identifi ed are being implemented appropriately.
Many consider compliance to be a subset of governance. Whether you agree or disagree
with this understanding of compliance, you must accept that some form of compliance
checking should exist.

C2 Compliance
So that you can better understand GRC, take C2 compliance as an example. A
C2-compliant system is one that enforces controlled access protection. C2 compliance is
defi ned in the Trusted Computing System Evaluation Criteria (TCSEC), which is sometimes
called the Orange Book because the original book was, well, orange. The standard was
published as U.S. Department of Defense (DoD) document 5200.28 in 1983. While the
TCSEC defi ned security levels above C2 (for example, B1, B2, B3, and A1), few systems
were developed to meet the requirements of these higher levels, because of cost constraints.
It is generally accepted that a C2-secure system is the baseline for security. Building on this
foundation is required in order to secure a system for a specifi c purpose.

In addition to the information presented here, you can read more about
C2 and the TCSEC in the Wikipedia article titled, “Trusted Computer Sys-
tem Evaluation Criteria,” located at: http://en.wikipedia.org/wiki/
Trusted_Computer_System_Evaluation_Criteria.

The three key levels within the TCSEC document are:

D Minimum protection or unsecured

C1 Discretionary security protection

C2 Controlled access protection

http://en.wikipedia.org/wiki/Trusted_Computer_System_Evaluation_Criteria
http://en.wikipedia.org/wiki/Trusted_Computer_System_Evaluation_Criteria

714 Chapter 20 ■ Security Best Practices

Of course, any system can comply with D-level assurance. C1-level assurance
requires that resource access authorization take place. C2-level assurance requires that
authentication also take place.

A C2-certifi ed system is different from a C2-compliant system. If a system is C2
certifi ed, it means that an independent organization has tested the system and verifi ed that
it meets C2 compliance. If a system is only C2 compliant, it simply means that actions were
taken to ensure that the system was confi gured to meet the requirements of C2 assurance.
Your organization’s policies will dictate whether you can implement a system that is simply
C2 compliant or not. For example, some government installations may require C2-certifi ed
products.

A later DoD standard, known as the Trusted Network Interpretation of the
TCSEC (TNI), was published as the Red Book in 1987. Little known to many
systems administrators and security professionals, a C2-secure system
under TCSEC (the Orange Book) was not intended to be connected to a
network. The Red Book sought to remedy this. However, most evaluations
that rate a system as C2-certified will also indicate whether it applies to a
network-connected implementation.

So, what are the basic requirements of C2 security? The specifi c language about C-level
assurance in the original 1983 Orange Book is as follows:

Classes in this division provide for discretionary (need-to-know)
protection and, through the inclusion of audit capabilities, for
accountability of subjects and the actions they initiate.

From this defi nition, you can see that discretionary access must be implemented in some
way. Additionally, you must be able to track actions taken and prove the identity of the
actor. You could summarize C2 compliance in the following simple phrase: discretionary
access with nonrepudiation. Simply put, a system that meets C2-level security must
implement the following:

Protected Authentication Protected authentication indicates that user identifi cation and
the logon process will be protected suffi ciently. For example, SQL logins, without SSL or
IPSec security, would not meet C2-level security. The SQL logins do implement authentica-
tion, but it is not protected authentication.

Discretionary Access Control Through Authorization Discretionary access control indi-
cates that authenticated users cannot access everything and anything. The authenticated
users can access only those items to which explicit access is granted. For example, in SQL
Server, this means you are not using the guest account for access to any resources.

Accountability Through Auditing Finally, C2 requires accountability through auditing.
SQL Server does provide auditing capabilities, which were covered earlier in this chapter.
The key for C2 compliance is that the auditing process must identify the specifi c user who
took the action. This requires careful thought because many jobs and stored procedures are
confi gured to run in the context of a user other than the calling user. Log chaining, which

Understanding Common Criteria and C2 715

is a simple term for the multitiered reference required to track actions back to the source
user, may be required in order to identify the acting user in such scenarios. For example,
you may identify that the account context used to run a stored procedure did indeed per-
form some action. Now, you must look at the log to see exactly what user called the stored
procedure to execute the action. Auditing achieves nonrepudiation by tracking who did
what based on successful logons.

Now that you understand the basic requirements of C2 compliance, you can explore the
implementation of it through the GRC methodology. The fi rst step is to create the policies
that will protect against the risks. The nice thing about using a baseline like C2 is that
the risk analysis portion is done and the C2 criteria defi nes the actual policies. In fact,
you could borrow the exact language from the Orange Book and use that as the language
for your SQL Server policies. Consider the following rewrite of the Orange Book’s C2
defi nitions:

2.2 CLASS (C2): SQL Server Controlled Access Protection

SQL Servers in this class enforce a more fi nely grained discretionary access control
than C1 systems, making logins individually accountable for their actions through
login procedures (using only Windows authentication), auditing of security-relevant
events (using triggers and/or audits), and resource isolation (using ownership and
authorization).

The preceding is a paraphrase of the opening paragraph in the Orange Book’s C2
section, but it could be continued to cover the entire requirement set from a SQL Server
perspective. With the policies written, the next step is to ensure compliance (remember the
C in GRC?). Thankfully, SQL Server makes this very easy with PBM (covered in detail in
Chapter 16 and briefl y discussed for surface area confi guration in this chapter). You can
create conditions and policies on those conditions to watch for noncompliance with the
C2-level policies you create for SQL Server.

Beginning with SQL Server 2005, SQL Server also supports enabling a feature called
C2 audit trace. The C2 audit trace is enabled at the instance level and can be enabled for a
single instance or for as many instances as you have installed on a single Windows Server
installation. When you enable the C2 audit trace feature, you are actually confi guring SQL
Server to create a SQL Server Profi ler trace fi le that will be stored in the instance’s default
data directory. Exercise 20.9 steps you through the process of enabling C2 audit trace.

E X E R C I S E 2 0 . 9

Enabling the C2 Audit Trace

In this exercise, you will enable the C2 audit trace for a SQL Server instance. To do this, fol-
low these steps:

1. Launch the SQL Server Management Studio.

2. Connect to the instance on which you want to enable the C2 audit trace.

3. Right-click the root of the SQL Server instance and select Properties.

716 Chapter 20 ■ Security Best Practices

E X E R C I S E 2 0 . 9 (c ont inue d)

4. Select the Security page.

5. Choose Enable C2 Audit Tracing.

6. Click OK to save the changes.

7. Click OK when informed that the changes will require a server instance restart.

8. Right-click the root of the SQL Server instance and select Restart.

When the service fi nishes restarting, the C2 auditing will be enabled.

If you enable C2 auditing, you should know two additional and very important things:

■ You can use the SQL Server Profi ler to view the audit trace. Simply open the trace fi le,
which is created in the instance’s default data directory, using SQL Server Profi ler.

■ The trace fi le will continue to grow and may grow very quickly on some systems. If the
server runs out of space on the drive where the default data store is located, the SQL
Server service will shut down. Do not allow this to happen. Make sure you create a
Windows Server alert that monitors the free drive space on this drive to ensure contin-
ued operation. (Exercise 14.8 in Chapter 14, “Creating Jobs, Operators, and Alerts,”
provides instructions for doing this.)

Common Criteria
One of the things you probably noticed while reading the preceding section was that the
C2 criteria were defi ned in 1983. What else happened in 1983? Well, the top-earning
movie of 1983 was Return of the Jedi, with Flashdance coming in at a very distant
second place. The Cabbage Patch dolls were released, and “Just Say No” became the
United States’ rallying cry against illegal drugs. Oh, and it was also the year that a lot of
people acquired Commodore 64s (what great machines). The point is simple: 1983 was
a long time ago. Since that time, a lot of things have changed related to computers and
security. While the Orange Book was updated in 1985 (let’s not get into what happened
during that year), it certainly needed an update for the new millennium. In 2005, the
Common Criteria was released as the replacement for the Orange Book and, therefore,
C2 security.

The Common Criteria (CC) is an international security standard that was created
by merging the European, Canadian, and U.S. security standards together and then
evolving them to meet current needs. The CC is far more complex than the old Orange
Book, but so are today’s modern systems and networks. Interestingly, the greater
complexity is not because of more specifi c technology requirements but rather to the
greater ambiguity in the standard. If that sentence sounded ambiguous, you should read
the CC itself.

Summary 717

If you want to download and read the CC, you can get it at: www.commoncri
teriaportal.org/thecc.html. However, the most important thing to know
in relation to SQL Server and the CC is that you should still implement the
basic security requirements of C2 security in order to meet CC EAL4+. Do
you see what I mean when I said that C2 still applies?

The CC provides for evaluation assurance levels (EALs) ranging from 1 to 4. SQL Server
2005 can meet the EAL4+ assurance level if the Common Criteria compliance feature is
enabled and the provided confi guration script available at http://go.microsoft.com/
fwlink/?LinkId=79877 is executed on the server. At the time of this writing, SQL Server
2012 meets EAL2 certifi cation according to the Microsoft website. The Common Criteria
compliance feature is enabled on the Security page of the SQL Server instance Properties
dialog box, just as the C2 auditing feature is enabled.

Summary
In this chapter, you learned about the best practices related to SQL Server security. First, I
discussed the importance of creating security baselines and the tools available for creating
them. These tools included the GPO Accelerator, the Security Templates and Security
Confi guration and Analysis snap-ins, and the Security Confi guration Wizard.

Next, you learned about the actions required to implement the best practice of least
privilege. These actions included implementing proper authorization schemes, using
credentials, and understanding ownership chains. From here, the discussion moved on
to auditing SQL Server. You learned about SQL Server Audits, event notifi cations, DDL
triggers, and logon triggers.

You also learned about surface area confi guration and the tools used to perform this
action. You learned that the Surface Area Confi guration Manager, which was introduced in
SQL Server 2005, is no longer available in SQL Server 2008 and newer. Then you explored
the sp_confi gure stored procedure and the Policy-Based Management Surface Area
Confi guration facet.

Finally, you learned about the Common Criteria (CC) and C2-level security
certifi cations. You learned that C2 has been superseded by CC and that CC is a bit
more vague than C2. Even though CC was introduced in 2005 and is therefore newer,
C2, which was fi rst created in 1983, is still very popular as a starting point for security
implementation.

http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
http://go.microsoft.com/fwlink/?LinkId=79877
http://go.microsoft.com/fwlink/?LinkId=79877

718 Chapter 20 ■ Security Best Practices

Chapter Essentials

Understanding the Importance of Establishing Baselines Security baselines provide the
minimum security confi guration settings required to implement a given system type. As a
best practice, you should create a security baseline for SQL Server servers in your environ-
ment. Once the baseline is implemented, you can then harden each SQL Server for its spe-
cifi c intent.

Implementing Least Privilege Least privilege simply says that a user or system should
never have more access than that required of the user or system to perform its intended
actions. Least privilege is implemented by using authorization schemes. SQL Server sup-
ports authorization through object and statement permissions. Object permissions are used
to protect objects such as tables, views, and stored procedures. Statement permissions are
used to prevent unauthorized users from executing statements such as CREATE TABLE and
DROP TABLE.

Auditing SQL Server Activity SQL Server includes several features for auditing. The SQL
Server Audit components allow you to enable automatic auditing without having to create
complex DDL triggers. Of course, SQL Server still supports DDL triggers. Additionally,
SQL Server supports the logon trigger so that you can automatically audit or respond to
logon events.

Configuring the Surface Area Surface area reduction is a very important part of your
security procedures. The former Surface Area Confi guration Manager from SQL Server
2005 is no longer in SQL Server 2008 and newer. Instead of using this tool, you will use
the sp_confi gure stored procedure or Policy-Based Management (PBM) for surface area
confi guration. Within PBM, you can use the Surface Area Confi guration facet to manage
most of the items available in the old Surface Area Confi guration Manager.

Understanding the Common Criteria and C2 Both C2 and the Common Criteria (CC)
provide guidelines for secure system implementation. GRC is a process that is used to man-
age the risk and security of systems. C2 was originally developed in the 1980s and is still
applicable today. CC was released in 2005 and is the current international standard for sys-
tem security evaluation.

Implementing
High Availability

and Data
Distribution

CHAPTER 21 ■ AlwaysOn and High Availability

CHAPTER 22 ■ SQL Server Failover Clustering

CHAPTER 23 ■ Database Mirroring and Snapshots

CHAPTER 24 ■ Implementing Replication

PART

VI

AlwaysOn and High
Availability

TOPICS COVERED IN THIS CHAPTER:

 ✓ Introducing AlwaysOn Technology

 ✓ Mirroring and AlwaysOn

 ✓ Failover Solutions

 ✓ Selecting Hardware for AlwaysOn

Chapter

21

High availability—the accessibility of a computer network
to its users at any time they need it—is an essential busi-
ness requirement for many networked databases today. SQL

Server 2012 introduces a new high-availability concept called AlwaysOn and the features
it provides. The chapter addresses the relationships between mirroring and AlwaysOn and
between failover clustering and AlwaysOn. Finally, you’ll learn to select proper hardware
for use with AlwaysOn solutions. This brief chapter introduces AlwaysOn and high-avail-
ability concepts that are discussed in greater detail in Chapters 22 through 24 of this book.

Introducing AlwaysOn Technology
AlwaysOn is a SQL Server solution for high availability. To understand AlwaysOn, you
fi rst need to be familiar with the basic concepts of high availability, so this section begins
there and then defi nes and explains AlwaysOn.

Understanding High Availability
High availability is often confused with high performance. While improved performance
may be a side effect of high-availability implementations, it is not the goal. High availabil-
ity can be simply defi ned as implementing a solution that is there when needed. More spe-
cifi cally, it is available to the right users at the right time in the right way.

Being there for the right users indicates that not only must it be available, but the
solution (in this case a database) must be available for its users. For SQL Server, this
means the database users must be able to access the database. Therefore, a complete
high-availability solution must account for access to the databases, the servers on which
the databases are stored, and the network to which the servers are connected. Network
path failover is beyond the scope of this book, but you should ensure that your network
administrators have provided for redundant paths in the network so that users can always
reach your servers. The point is simple: if the users who need access do not have access even
though the server is up, the availability solution is not serving its purpose.

Being there at the right time indicates that high availability may be required only
during specifi c windows of time. For example, if your users require access to the database
only during daytime working hours, you may be able to make the database completely
unavailable during off-time hours for maintenance or other operations.

Introducing AlwaysOn Technology 723

Being there in the right way indicates that the users should be able to access live data.
For example, saying that you back up the data so that it can be restored in the event of
a storage failure is not the same thing as providing high availability. High availability
indicates that the solution is available to the users in the way they expect to access it. You
can see that highly available solutions are there for the right users at the right time in the
right way.

You must also distinguish between high availability and disaster recovery. High
availability ensures that the resource is available with as little downtime as possible.
Disaster recovery ensures that downtime is as short as possible. Do you see the difference?
Another way of saying it is to say that disaster recovery helps you get things back up and
running and high availability helps you keep things running. This is also part of what I
mean when saying that highly available solutions must be there “in the right way.”

Even with high-availability solutions, such as the Windows Failover Clustering service
discussed in the next chapter, you must plan for disaster recovery. In most cases, the servers
in a cluster will be located in the same physical space, such as a server room or network
operations center. This means that a fi re or fl ood could easily take out both servers. This is
where disaster recovery kicks in. The Windows Failover Clustering service cannot help you
when the server room is full of water.

Windows Failover Clustering is discussed in greater detail in Chapter 22,
“SQL Server Failover Clustering.” There you will learn how it works and
how to install it.

It is important that you remember the following rule of high availability: your system is
only as available as its weakest link.

This means you have to look at the cluster nodes, the network between these nodes,
the shared storage, and the stability of hardware components. This is why Microsoft
recommends using the Windows Failover Clustering service only with validated hardware.
Validated hardware has been tested by Microsoft or service providers to ensure stability
and compatibility with the Windows Failover Clustering service.

Many organizations that implement failover clustering will purchase entire
solutions from vendors. The solution will include the servers, the stor-
age, and the Windows Server licenses. This ensures compatibility and can
reduce complexity during installation and management.

As an example of this “weakest link” concept, consider the Windows Vista, Windows
7, and Windows 8 feature called the Windows Experience Index (WEI), illustrated in
Figure 21.1. WEI rates various hardware components and uses these ratings to determine
the performance expectations of the system. Microsoft knew that a system with a very fast
processor but a very slow hard drive, for example, would still have performance problems.
In the same way, a system with a very fast hard drive and very fast memory but a very slow
processor would also have performance problems. For this reason, the WEI is actually
based on the weakest link, or the lowest-performing component.

724 Chapter 21 ■ AlwaysOn and High Availability

As you can see in Figure 21.1, this chapter was written on a machine with a WEI of
5.9 in Windows 8. The 5.9 rating comes from a single component. All other evaluated
components (gaming graphics, hard disk memory, and processor) are rated from 6.5 to 8.1;
however, the Windows 8 report is more realistic than the evaluation of a single component.
The same is true for your clusters. If you have expensive and stable servers but faulty
storage, the cluster will not live up to your expectations.

Ultimately, four things impact the availability of your systems: security, stability, life
expectancy, and redundancy.

Security Security must be considered as an availability issue because a security incident
can indeed make a resource unavailable. For example, a denial of service (DoS) attack
against a SQL Server can make it unavailable to users regardless of clustering or other
availability technologies utilized.

Stability Stability is a factor of hardware and software quality. Quality hardware should
not overheat and should operate effectively for long periods of uninterrupted time. Poorly
designed systems often suffer from heat problems and shut themselves off or damage hard-
ware components, resulting in downtime.

Life Expectancy Hard drives have a value called MTBF (mean time between failures),
which indicates the life expectancy of the drive. While it is important to purchase drives
that will last a long time, it is more important to know when drives are expected to fail.
Many organizations plan for drive replacements just before the MTBF is reached. In RAID

F I GU R E 21.1 The WEI on Windows 8

Introducing AlwaysOn Technology 725

systems with dynamic data regeneration, the drives can be replaced one by one with no
downtime at all. For other hardware, check with the vendor to determine life expectancy.

Redundancy The key to high availability is redundancy. This is true in every area of life.
For example, if you are designing an application, if the application is due in 30 days, and if
you are the only programmer working on the application, you carry great risk. If you are
sick and unable to work for a week, the deadline is sure to be missed; however, if you have
other programmers who can take up the work when you are unavailable, the work of the
project continues. In the same way, redundant hardware helps keep systems running and
available for user access.

Now that you understand the important factors related to high availability, you can
move on to explore the specifi c features and functionality of the AlwaysOn solutions.

AlwaysOn Defined
AlwaysOn is a general term that references two possible implementations: AlwaysOn
availability groups (AAG) and AlwaysOn failover cluster instances (AFCIs). You can use
AAG with AFCI or independently from it. You should know that AAG requires Windows
Failover Clustering (WSFC) to be installed on the Windows Server that runs SQL Server,
but the SQL Server installation does not have to be an AFCI. AFCI requires shared storage
in most cases, but AAG installations do not require this added capability. Remember the
following four facts:
■ You can use availability groups without failover cluster instances.

■ You can use failover cluster instances without availability groups.

■ You can use the two technologies together.

■ Both technologies require Windows Failover Clustering on the SQL Servers.

When implementing AlwaysOn, keep the following requirements in mind:

■ All SQL Servers participating in the SQL Server AlwaysOn solution must be in the
same Windows domain.

■ Using Kerberos requires that all SQL Servers use the same service accounts.

■ Each availability group receives its own IP address unique from the individual IP
address of any specifi c SQL Server in the group.

■ A Windows Active Directory domain controller should not be used as a SQL Server
instance server participating in an availability group.

■ The server must run Windows Server 2008 or newer.

■ Windows Failover Clustering must be installed on the server.

■ At least two nodes should exist in the Windows Failover Clustering cluster.

■ The Windows Server OS should be patched and up to date with service packs.

■ For best performance, use a dedicated network adapter for availability groups (this is
not required but is optimal).

726 Chapter 21 ■ AlwaysOn and High Availability

■ SQL Server Enterprise edition must be used to gain the AlwaysOn features.

■ Each availability group must have a unique name of up to 128 characters.

In addition to the requirements listed here for implementing availability groups, the
following requirements must be met by any database added to an availability group:

■ The database must be a user database and not a system database.

■ The database must be read-write and not read-only.

■ The database must be a multiuser database.

■ AUTO_CLOSE must be disabled.

■ The database must exist on the instance of SQL Server with the availability group con-
fi gured.

■ The database must use the full recovery model.

■ One full database backup must already exist.

■ The database cannot belong to another availability group.

■ The database cannot be confi gured for traditional database mirroring.

■ The fi lestream feature, if the database supports it, must be enabled on all instances that
participate in the availability group.

Finally, you should understand the following terms as they relate to availability groups:

■ Availability databases are databases that participate in an availability group.

■ Availability replicas are copies of the availability databases on different instances of
SQL Server participating in the availability group. The primary replica is the active
database, and the secondary replicas (up to four) are the copies.

■ Availability modes defi ne the modes of operation for the availability group replication/
mirroring. In asynchronous-commit mode, the data is committed to the secondary rep-
licas only after it is committed to the primary replica. In synchronous-commit mode,
the transactions take longer because they are committed to the primary replica log fi le
only after they are written to the secondary replicas.

■ The availability group listener is a virtual network name (a DNS host name) that cli-
ents use to connect. The listener is a combination of the host name, IP address, and
listener port designation.

■ The session time-out period is a defi ned time window within which replicas must
receive pings from one another. If a ping is not received within the session time-out
period, the connection is assumed to be closed and transactions will no longer depend
on that replica. The default value is 10 seconds and is user-confi gurable to a minimum
of 5 seconds.

■ Automatic page repair is the process used by a secondary replica, should it detect a
locally corrupted data page, to acquire a valid data page from the primary replica.
If the primary replica is also corrupted, a broadcast is sent to all replicas seeking an
uncorrupted copy of the data page, which typically resolves the error.

Mirroring and AlwaysOn 727

Mirroring and AlwaysOn
Database mirroring (an existing technology in previous versions of SQL Server covered in
Chapter 23, “Database Mirroring and Snapshots,” of this book) allows the administra-
tor to create mirrored copies of databases on remote instances of SQL Server. In this sec-
tion, the two ways mirroring can be used in relation to AlwaysOn availability groups are
discussed.

Replacing Traditional Mirroring
Microsoft’s general recommendation is to begin using AlwaysOn availability groups
anywhere you would have used mirroring in the past. Microsoft states that mirroring will
eventually be removed from the product as an individual functionality. Oddly enough,
however, SQL Server 2012 requires a component you have used with mirroring to work: a
mirroring endpoint. Each server instance participating in the availability group must have
a database mirroring endpoint confi gured. The CREATE ENDPOINT command is used to do
this, and it is covered in Chapter 23.

Because availability groups support the same basic capabilities as mirroring, it is
clear why Microsoft is recommending them instead of mirroring. However, the process
of confi guring an availability group is a bit more complex than mirroring, and, for this
reason, some administrators will continue to use mirroring for the next few years. The
basic process of setting up an availability group is as follows:

1. Ensure that the servers meet all prerequisites.

2. Create database mirroring endpoints on each server.

3. Create backups of databases intended to be primary databases.

4. Create the availability group.

5. Join secondary replicas to the availability group.

6. Prepare secondary databases by restoring from the backups of the primary databases.

7. Join the secondary databases to the availability groups.

8. Create the availability group listener.

9. Provide the DNS host name of the availability group listener to users and developers
for connections.

10. Confi gure backup job schedules on either the primary or secondary replicas as desired.

When will mirroring be removed? If history is any predictor of the future, it will be
removed within two or three versions. For example, it is not likely to be removed in the
next version after SQL Server 2012, but it could be removed in the version after that. There
is no rule that says it cannot be removed in the next version; however, Microsoft typically
gives you two versions before removal: the announcement version and the one after that.

728 Chapter 21 ■ AlwaysOn and High Availability

Using Traditional Mirroring
Is there a reason to use availability groups with traditional mirroring still used in the same
organization? It appears so. The following three situations could certainly result in an envi-
ronment that uses some servers with availability groups and others with database mirroring:

Existing Installations Many organizations will have existing SQL Server 2008 R2 and
older instances that use database mirroring. These systems may not demand an immediate
upgrade and may continue operations with the database mirroring solutions in place.
Plans should be made for end of life, which will be in the timeframe of 2014 to 2019. Main-
stream support for SQL Server 2008 R2 is scheduled to end on July 8, 2014. Extended sup-
port will end on July 9, 2019.

New Installations Requiring Older Versions Many applications require a specifi c version
of SQL Server as the backend database. If you have such an application that requires SQL
Server 2008 R2 or older and you desire a solution like AlwaysOn availability groups, data-
base mirroring will be the likely candidate.

New or Existing Installations in Transition During a transition period, such as moving
from older versions of SQL Server to SQL Server 2012, organizations will continue to use
database mirroring. As databases are tested and moved to the new platform, a technology
switch from database mirroring to AlwaysOn availability groups can be implemented.

Failover Solutions
Earlier in this chapter, I noted that AlwaysOn has two availability modes that defi ne the
modes of operation for the availability group replication/mirroring: synchronous-commit
and asynchronous-commit. In this section, I’ll explain these two modes in greater detail.
Additionally, the failover process used when the primary replica fails is discussed. The
latency incurred when a failover happens will be determined by the availability mode used.

Synchronous-Commit
When you begin operating a database in synchronous-commit mode, a secondary replica
joins the availability group and then applies all transactions necessary to catch up to the
primary replica. After performing these transactions, the secondary replica enters the syn-
chronized state. As long as the connection is maintained and synchronization continues to
occur on the fl y, the secondary replica will remain in the synchronized state. In this state,
every transaction processed on the primary database is also committed on the secondary
database.

In addition to the synchronized state of a single secondary replica, when all secondary
replicas are in the synchronized state, the synchronization-health state of the secondary
replica set is said to be healthy.

Failover Solutions 729

Synchronization may be disrupted by any of the following scenarios:

■ The network latency is too high, or the network connection fails.

■ A new primary database is added to the availability group. Until the secondary replicas
are synchronized with it, a NOT_HEALTHY state will exist for the secondary replica
set.

■ A secondary database is suspended.

■ An asynchronous-commit database is changed to synchronous-commit mode.

The following process is used to keep secondary replicas synchronized when operating
in synchronous-commit mode:

1. The primary replica receives a client transaction and writes the transaction to the local
log while also sending it to the log record on the secondary replicas.

2. The primary replica waits for confi rmation from the synchronous-commit secondary
replica.

3. The secondary replica hardens the log (writes incoming log records to disk) and sends
back the acknowledgment to the primary replica.

4. The primary replica fi nishes the commit processing and sends the confi rmation of the
process to the client.

Asynchronous-Commit
In asynchronous-commit mode, the secondary replica never exists in a fully synchronized
state with the primary replica. Because latency in data state can exist between the primary
replica and secondary replicas, when asynchronous-commit mode is used, it is mostly for
disaster recovery. However, because the primary replica may submit transactions without
waiting for acknowledgment from the secondary replica, the performance of the database
solution may be improved. Asynchronous-commit is typically used in disaster recovery sce-
narios, while synchronous-commit is used for high-availability solutions.

The Failover Process
Failover can be either automatic or manual. Automatic failover, as its name implies, keeps
the databases available as much as possible by redirecting client connections to the second-
ary replica without administrative intervention. Automatic failover saves all data because
it occurs only if the primary and secondary replicas are synchronized when the primary
replica fails.

Manual failover can occur in one of two ways: planned manual failover and forced
failover. In planned manual failover, no data is lost because the failover is performed
intentionally and with forethought so that the replicas are fi rst synchronized. In forced
failover, something has caused the primary replica to fail, and the secondary replica is
not synchronized. However, data loss may be acceptable in some scenarios, and in such

730 Chapter 21 ■ AlwaysOn and High Availability

scenarios, a forced failover can occur. Table 21.1 shows the three failover modes and the
operational modes in which they are available.

TA B LE 21.1 Availability group failover modes and operational modes

Failover mode

Operational mode

Asynchronous-
commit mode

Synchronous-commit
mode with manual
failover

Synchronous-commit
mode with automatic
failover

Automatic failover No No Yes

Planned manual
failover

No Yes Yes

Forced failover Yes Yes Yes

You can implement availability groups with both modes of operation within a single
availability group. For example, you may have a primary replica and one secondary
replica confi gured for synchronous-commit with automatic failover, while having another
secondary replica with synchronous-commit using manual failover and still another
secondary replica using asynchronous-commit with manual failover.

For existing connections, when an availability group failover occurs, the connection
must be terminated. The client will simply reconnect to the listener, which will redirect the
client to the chosen secondary replica. If a failover is in process during a client connection
attempt, the connection attempt will likely fail, and a reconnection must be attempted. This
should be implemented in application code. That is, an application should be confi gured to
attempt the connection to the SQL Server more than once. This is true whether availability
groups are used or not.

Selecting Hardware for AlwaysOn
Using the right hardware is key when implementing a highly available solution. AlwaysOn
can operate on any hardware SQL Server supports; however, it is good to select optimal
hardware for availability when a technology such as AlwaysOn is required. This section
explains the basics of hardware selection for high availability.

Highly Available Servers
The fi rst hardware selection is the server itself. When implementing servers for high avail-
ability, considering the following options:

Selecting Hardware for AlwaysOn 731

Redundant Components Many vendors offer servers with redundant components. For
example, you may be able to implement a server with redundant power supplies or cooling
fans. Additional components that may support redundancy include memory and network
adapters.

Error-Correcting Components Memory is a potential error-correcting component. You
can use error-correcting code (ECC) memory, which detects and corrects single-bit errors
and takes memory chips offl ine if double-bit errors occur.

Redundant Servers The entire server can be implemented in duplication. This is affectively
the capability offered by the Windows Failover Clustering service. The Network Load Bal-
ancing service can also be used to provide similar capabilities at the service level.

Highly Available Storage
In addition to the server, the storage should be highly available in mission-critical systems.
You have three storage options to consider.

Internal RAID Internal RAID uses controllers within the server to support multiple hard
drives working in an array to provide fault tolerance for high availability. Internal RAID
works well with AlwaysOn availability groups because they do not require shared storage
as failover clustered instances do.

External RAID External RAID, like internal RAID, provides fault tolerance but works
with a storage cabinet external to the server. The cabinet is usually connected with SCSI or
eSATA connections.

SAN A storage area network (SAN) may be used to provide highly available storage. In
this case, the storage is accessed using either TCP/IP or Fibre Channel connections. TCP/
IP uses iSCSI, and Fibre Channel is its own protocol. Within the SAN, various levels and
types of RAID may be used for fault tolerance of data storage.

Highly Available Networks
If you have highly available servers and storage but the network fails, the clients will still be
unable to connect and use the databases. A highly available network is one with redundant
routes. Network architectures are beyond the scope of this book, but consider the following
options when implementing highly available networks:

■ Always have more than one router/gateway connecting a network segment to the rest
of the network.

■ Have multiple switch trunk ports connecting switches.

■ Implement a mesh-type routing architecture so that no single router becomes a point of
failure.

732 Chapter 21 ■ AlwaysOn and High Availability

Summary
SQL Server 2012 AlwaysOn availability groups and failover clustering instances can be
used to provide high availability or disaster recovery for important databases. Availability
groups can contain up to fi ve replicas of the databases in the group, and these replicas can
operate in either synchronous-commit or asynchronous-commit mode. The commit modes
can be mixed among the replicas to meet your needs. Even though AlwaysOn provides
software-based solutions, proper hardware should be selected to provide the highest levels
of uptime.

Chapter Essentials

Introducing AlwaysOn Technology AlwaysOn is a solution that can be implemented with
failover cluster instances of SQL Server or with standard SQL Server installations that are
not installed as failover cluster instances. However, either implementation requires the
Windows Failover Clustering service be installed on the Windows Server running the SQL
Server instance.

Mirroring and AlwaysOn Database mirroring is a traditional solution for high availabil-
ity and is still available in SQL Server 2012. It can be used as you transition to availability
groups but should eventually be removed because Microsoft will discontinue support for it
at some point in the future.

Failover Solutions AlwaysOn availability groups can run in synchronous-commit mode,
asynchronous-commit mode, or a combination of both. Failover can be automatic, planned
manual, or forced manual.

Selecting Hardware for AlwaysOn Selecting hardware for AlwaysOn is just like select-
ing hardware for any other high-availability or disaster recovery solution. Select the right
server, storage, and networking solutions.

Chapter

22
SQL Server Failover
Clustering

TOPICS COVERED IN THIS CHAPTER:

 ✓ Understanding Windows Failover Clustering Service

 ✓ Implementing a Windows Cluster

 ✓ Installing SQL Server 2012 to a Cluster

 ✓ Monitoring and Managing a SQL Server Cluster

The previous chapter introduced the concept of high avail-
ability and discussed the new SQL Server 2012 AlwaysOn
technology. SQL Server also supports the Windows Failover

Clustering service for fault tolerance and high availability. SQL Server does not implement
the clustering when using an AlwaysOn FCI, but it operates on the clustering provided by
Windows Server. In this chapter, you will learn about the Windows Failover Clustering
service and the features it provides. You will also learn the steps required to implement a
cluster in Windows Server 2008 and how a cluster operates.

Once you’ve implemented Windows Failover Clustering, you’ll see how you can install
SQL Server 2012 to a cluster. The SQL Server cluster installation process is very simple and
is no more complex than a standard nonclustered installation. Finally, you’ll explore the
tools used to monitor and manage a SQL Server cluster.

Understanding Windows Failover
Clustering Service
The Windows Failover Clustering service provides server clustering for Windows-based
servers. A cluster is a collection of servers that work together to provide services to the net-
work. The unique thing about a cluster of servers, as opposed to separate servers perform-
ing independent functions, is that the collection of clustered servers is accessed as a single
server. You may have two servers in a cluster, but they appear as one to the users.

Clusters share storage. For example, if you have two physical servers that you want to
use as a cluster for SQL Server 2012, both servers must have access to shared storage. It
is this shared storage that allows both servers to access the same data and for services to
failover from one server to another rapidly. The shared storage should be a fault-tolerant
storage solution in order to prevent downtime from storage failures. Fault-tolerant storage
solutions include the following:

RAID Cabinets These are storage devices that support various implementations of RAID,
such as RAID 0 (striping), RAID 1 (mirroring), and RAID 5 (striping with parity). Only
RAID 1 and RAID 5, of the mentioned RAID levels, support fault tolerance.

Storage Area Networks (SANs) SANs may include multiple physical drive enclosures,
but they provide access to the drives in the SAN through logical mappings (usually called
LUNs). SANs are typically accessed with either Fibre Channel or iSCSI connections.

Implementing a Windows Cluster 735

Distributed Storage Distributed storage solutions provide for network-based redundancy.
In a distributed storage solution, each storage location will use RAID for fault tolerance,
but the data is distributed to multiple RAID locations. Distributed storage solutions histori-
cally preceded SANs and have been largely replaced by SANs today.

When considering a SQL Server cluster installation, you must be aware of the end goal,
which is to provide high availability. The goal of a load-balancing cluster is to provide high
availability with performance. SQL Server 2012 supports only failover clustering and not
load balancing through the use of Windows Network Load Balancing. The performance
must be achieved using separate measures such as increased hardware capacity in each
clustered server or distribution of the workload among multiple clusters. The point is that
high availability does not automatically equate to high performance. If you have a single
server that is not performing well and you add another identical server and confi gure the
two as a failover cluster, you will achieve no better performance than the single server
provided. In a failover cluster, only one server is working with the users at a time. The
backup server in the cluster becomes active only if the primary server fails. Hence, high
availability is not equal to high performance.

Implementing a Windows Cluster
Before you can jump in and start creating and working with the Windows Failover Cluster
service in Windows Server 2008, 2008 R2, or 2012, you must understand the different
components that make up a cluster. This section is divided into two parts. First, you’ll learn
about the components and terminology involved in Windows Failover Clustering. Then,
you’ll explore the steps required to install the Windows Failover Clustering service and
implement a failover cluster.

Failover Clustering Components
The Windows Failover Clustering service can be installed and confi gured using simple
wizards; however, the simple installation process belies a more complicated set of tools
and concepts that server administrators must understand. As the DBA, you are more
likely to be required to support a SQL Server 2012 instance that is installed on a cluster
than to create the initial cluster. Even with this reality, it is important for you to under-
stand what’s going on under the hood of that cluster so that you can help the server
administrators and network administrators troubleshoot problems with the server. Of
course, if you work in a smaller organization, you are most likely the DBA, the network
administrator, and anything else the company needs you to be, so you’ll certainly benefi t
from this knowledge.

The fi rst thing you should understand is the terminology related to clustering. For this,
you should understand the following terms:

736 Chapter 22 ■ SQL Server Failover Clustering

Node A cluster node is a single server that participates in the cluster. Failover clusters
must have at least two nodes. One node will be the active node, and the other will be the
passive node. Should the active node fail, the services are provided by the passive node, and
the passive node automatically becomes the active node.

Shared Storage The nodes in a cluster must have access to centralized and shared storage.
Windows Failover Clustering supports Fibre Channel (FC), Internet SCSI (iSCSI), or Serial
Attached SCSI (SAS) for the shared storage. These storage options fall into the category
of storage area networks and are the only shared storage formats supported by Windows
Failover Clustering.

Clustered Services Clustered services are cluster-aware services. Cluster-aware services
can operate on a cluster and communicate with the Failover Clustering service. SQL Server
2012 is such a cluster-aware service.

Quorum The fi nal element is the quorum. The quorum is used to decide which node
should be active at any time in the cluster. The Oxford American College Dictionary
defi nes a quorum as the minimum number of members of an assembly that must be present
to make a meeting valid. You can see how this term is borrowed for clustering. The quo-
rum is the minimum number of cluster components (storage, services, nodes) that must be
available to offer services. If the quorum is intact, the cluster is available. If it is not intact,
the cluster is unavailable.

The concept of the quorum may require further explanation. As an analogy, consider
a board of trustees. If the charter for an organization indicates that at least fi ve trustees
must exist on the board and at least four must attend a meeting for board activities to
occur, the quorum for that board is any four trustees. Decisions can be made even if one
trustee is unavailable. However, if two of the fi ve trustees are unavailable, quorum is not
met, and decisions cannot be made. With Windows clustering, the quorum works in a
similar manner. As long as the minimum components are present, the cluster can provide
services.

The quorum in Windows Server is based on votes. Nodes, shared disks, and even fi le
shares—depending on the quorum mode—get to vote. If suffi cient votes are available, the
cluster is active. If the votes are not there, the cluster is not available. The process used to
establish quorum is as follows:

1. A cluster node starts and looks for other nodes with which it may communicate.

2. The nodes agree on the cluster confi guration and determine whether suffi cient quorum
votes are available to bring the cluster online.

3. If the quorum votes are insuffi cient (too few voting resources are available), the nodes
enter a dormant state and wait for more votes to arrive.

4. If suffi cient quorum votes are available, the nodes bring the appropriate resources and
applications online (based on active and passive node confi gurations) and start moni-
toring the health of the cluster.

5. At this point, quorum is attained, and the cluster is online and functioning.

Implementing a Windows Cluster 737

Windows Failover Clustering supports four different quorum modes in Windows Server.
These modes are outlined in Table 22.1.

TA B LE 22 .1 Failover Clustering quorum modes and functionality

Mode Functionality Best use

Node
Majority

Clustered nodes have the only votes.
When half or more of the nodes are
online, quorum is achieved.

Used when an odd number of
nodes exist in the cluster.

Node
and Disk
Majority

Clustered nodes have a vote, and a
witness disk also has a vote. When
more than half the votes are online,
quorum is achieved.

Used when an even number of
nodes exist in the cluster.

Node and
File Share
Majority

Clustered nodes have a vote, and a
witness file share has a vote. When
more than half the votes are online,
quorum is achieved.

Used only when the clustered
nodes are spread over some dis-
tance. For example, one server
may exist at one WAN location
and the other exists at a separate
WAN location. In this configura-
tion, a file share is often used to
provide quorum since strict shared
storage is not used.

No Majority:
Disk Only

The shared disk has the only vote. If
the shared disk is online, quorum is
achieved.

Used when you want the cluster to
be available as long as one node
and the shared storage are online.
No Majority: Disk Only is common
for small-scale SQL Server 2012
clusters with only two nodes.

When you think of the votes in the quorum, do not think of them as actions taken by
the voting components. Instead, realize that the cluster service looks for these items, and if
they exist (are online), their vote is counted.

When implementing a two-site cluster across WAN links, one site will be
the read-write site and the other site will be a read-only site. All changes
happen to the storage at the read-write site and are replicated to the read-
only site. The replication may be synchronous or asynchronous. With
synchronous replication, changes are made at the primary site, and the
process is not considered complete until the changes are replicated to the
secondary site. Asynchronous replication allows the process to continue
as soon as the change is written at the primary site.

738 Chapter 22 ■ SQL Server Failover Clustering

In addition to the terminology used in relation to clustering, you should understand the
types of networks used. Three networks will typically exist in a failover clustering solution.

Public Network This is used by clients to access the cluster. The public network is the
same as any other network used to connect to a standard single-server installation.

Private Network This exists only between the clustered nodes. You will usually use sepa-
rate network cards for the public and private networks.

Storage Network This is used to connect with the shared storage location. A specialized
adapter (known as a host bus adapter) may be required for FC or SAS, but iSCSI may be
accessed using standard network cards. Special iSCSI adapters also exist that offl oad the
TCP/IP process from the operating system in order to improve performance when accessing
iSCSI storage devices.

Multiple network cards are not required for the public and private net-
works; however, it is recommended that you use multiple network cards
for performance enhancement.

Once the server cluster is in place, cluster resources must be managed. These resources
include shared storage, IP addresses, and network names. Clients will connect to the cluster
using network names, which are resolved to IP addresses. Only one node in the cluster can
respond to a request. The node currently confi gured to respond is the active node. For other
nodes to respond, the active node must fail—intentionally or unintentionally—and the
resources will then failover to the alternative node.

The Failover Clustering Installation Process
Installing Windows Failover Clustering can be a time-consuming process requiring much
planning. You’ll need to ensure that the hardware selected is supported by Microsoft for
clustering purposes. You’ll also need to ensure that the vendor provides quick and secure
updates for the hardware device drivers and software. The most important thing to keep
in mind during the planning process that leads up to installation is the issue of uptime or
availability. If you implement Windows Failover Clustering on a machine that is not sup-
ported by Microsoft or maintained well by the vendor, you are asking for trouble on a
machine that you need to be highly available. The following sections provide an overview
of the planning and installation process.

Meeting Requirements Before Installing
Before you can install a Windows failover cluster, you must ensure that your systems meet
the requirements of the Windows Failover Clustering service. To have support from Micro-
soft for your cluster solution, the following hardware requirements must be met:
■ The server hardware must be marked with the Certifi ed for Windows Server logo.

■ All server nodes should have the same confi guration and contain the same components
and features.

Implementing a Windows Cluster 739

■ The Validate A Confi guration Wizard must pass all tests. This wizard is executed as
part of the service installation and confi guration process.

In addition to the hardware requirements, the following network requirements must be met:

■ The network hardware must be marked with the Certifi ed for Windows Server logo.

■ The server nodes should be connected to multiple networks to provide communication
resiliency.

■ The network infrastructure must not contain single points of failure (for example, a
single router that connects a network segment to the rest of the infrastructure).

■ Network adapters must be confi gured with the same IP version, speed settings, duplex,
and fl ow control capabilities.

It doesn’t stop with the network requirements. You must also ensure that the following
storage requirements are met:

■ The cluster storage device controllers must be identical and have the same fi rmware
versions installed on each node.

■ You must use separate networks for client access and iSCSI storage, if iSCSI is utilized
instead of FC or SAS.

■ The Microsoft Storport driver model must be used in the development of the storage drivers.

■ Basic disks should be confi gured on the storage.

■ Multipath solutions must be based on Microsoft Multipath I/O (MPIO).

Next, you’ll need to ensure that your infrastructure meets the following requirements:

■ All cluster nodes must use DNS for name resolution; therefore, a DNS server must be
available.

■ All cluster nodes must be members of the same Active Directory domain.

■ Administrator rights must be granted on all cluster nodes to the user account that
creates the cluster, and this account must have Create Computer Object permissions
within the Active Directory domain.

Finally, you must consider the software requirements to implement the failover cluster.
The following software requirements must be met:

■ All nodes must run the same edition of Windows Server, and only Enterprise and Data-
Center editions support the Windows Failover Clustering service.

■ All nodes must run the same processor type (for example, 32-bit, 64-bit, and so on).

■ All nodes should be updated to the same level with service packs and updates.

It’s important to remember that Microsoft supports failover clustering only
on hardware marked with the Certified for Windows Server logo. Addition-
ally, all tests in the Validate A Configuration Wizard must pass to get sup-
port for the cluster from Microsoft. You may be able to install the Windows
Failover Clustering service without these items in place, but you will not
get support from Microsoft Support Services.

740 Chapter 22 ■ SQL Server Failover Clustering

Installing Failover Clustering
Once you’ve ensured that your hardware and software meet the requirements for the Win-
dows Failover Clustering service and the network connections and shared storage have been
installed and confi gured, you are ready to install the Windows Failover Clustering feature.
Exercise 22.1 provides the steps required to install Windows Failover Clustering.

E X E R C I S E 2 2 .1

Installing Windows Failover Clustering

In this exercise, you will install the Windows Failover Clustering service on a Windows Server
2008 node (note that in my experience, 2008 and 2008 R2 versions of Windows Server are
equivalent here). To do this, follow these steps:

1. Log on to the Windows Server 2008 machine as a domain administrator.

2. Select Start ➢ Server Manager to open the Server Manager window.

3. In the left pane, select the Features node.

4. In the Features Summary window, click the Add Features link.

5. In the list of features, choose Failover Clustering, as shown here, and click Next.

6. Click the Install button to begin the installation.

7. When the installation is complete, you may need to restart your server. If prompted,
select to restart now. If a prompt does not appear, click Close to complete the installation.

8. You may close the Server Manager window at this point.

Implementing a Windows Cluster 741

As Exercise 20.1 shows, installing the Failover Clustering service is a very simple
process.

Validating Your Configuration
Now that Failover Clustering is installed, you’ll need to validate your confi guration. The
validation is performed from the Failover Cluster Management tool found in Administra-
tive Tools on the Start menu. From here, you can run the Validate A Confi guration Wizard.
Keep in mind the following facts about this wizard:

■ The wizard verifi es that Microsoft will support the confi guration.

■ The wizard requires that the Failover Clustering feature be installed on each node to be
tested.

■ The wizard should be executed before you actually create the failover cluster; this will
tell you whether the system is suited for failover clustering or not.

■ Each test will result in one of four outcomes: pass, pass with warnings, fail, or test not run.

■ Anytime major cluster changes are made, you should run the wizard again.

■ The wizard confi rms that the cluster hardware and software is compatible with the
Failover Clustering service.

When the Validate A Confi guration Wizard runs, it performs four primary tests:
Inventory, Network, Storage, and System Confi guration. Table 22.2 describes these actions.

TA B LE 22 . 2 Validate A Configuration Wizard tests and actions

Test Description Actions

Inventory Test This ensures that the
required components exist
in order for clustering to
work.

Reports on BIOS information, environ-
ment variables, Fibre Channel HBAs,
iSCSI HBAs, SAS HBAs, memory, OS
information, plug-and-play devices,
running processes, services running,
software updates, system information,
drivers, and unsigned drivers.

Network Test This is used to make sure
the network connections are
configured appropriately.

Network configuration is verified for the
cluster network, IP settings, network
communications, and Windows Firewall
settings.

Storage Test This is used to ensure that
the nodes can all contact and
access the shared storage.

The storage test verifies disk failover,
disk access latency, file system selection,
MPIO version, SCSI-3 persistent reserva-
tion, and simultaneous failover.

742 Chapter 22 ■ SQL Server Failover Clustering

TA B LE 22 . 2 Validate A Configuration Wizard tests and actions (continued)

Test Description Actions

System
Configuration
Test

This ensures that the nodes
are all running the same
operating systems, service
packs, updates, and
components.

The system configuration analysis
includes Active Directory configuration,
all drivers are signed, operating system
versions match, required services are
installed, processor types match, service
pack levels are consistent, and software
update levels are consistent.

Exercise 22.2 provides the steps for running the Validate A Confi guration Wizard.

E X E R C I S E 2 2 . 2

Running the Validate A Confi guration Wizard

In this exercise, you will run the Validate A Confi guration Wizard and view the resulting
report. To perform these steps, you will need two Windows Server 2008 servers with the
Windows Failover Clustering feature installed as described in Exercise 22.1. To run the wiz-
ard, follow these steps:

1. Log on to one of the intended nodes as a domain administrator.

2. Select Start ➢ All Programs ➢ Administrative Tools ➢ Failover Cluster Management.

3. In the Management pane, choose Validate A Confi guration.

4. Read the information on the Before You Begin page of the wizard, and then click Next.

5. On the Select Servers Or A Cluster page, click Browse to choose the servers to be vali-
dated as functional for a cluster.

6. In the Select Computers window, click Advanced.

7. Click Find Now to list all servers available in the domain.

8. While holding down the Ctrl key, click the servers you want to become part of the clus-
ter, and then click OK.

Implementing a Windows Cluster 743

9. Click OK again to add the servers. If you receive an error indicating that Windows
Failover Clustering is not installed on one of the nodes, you must log on to that node
and install Windows Failover Clustering before proceeding. Click Next.

10. On the Testing Options page, accept the default option to Run All Tests, and click Next.

11. Click Next on the Confi rmation page to begin the actual validation process. As the pro-
cess runs, you will see a screen similar to the one shown here.

12. When the validation completes and you are taken to the Summary page, click View
Report to read the HTML report created by the wizard.

When reading the report generated by the Validate A Confi guration Wizard, look for the
items with a warning description. Click the link for any such items to fi nd out what caused the
warning. For example, Figure 22.1 shows a report with a warning for the Validate Network
Communications item. Figure 22.2 shows the detailed information for this warning.

744 Chapter 22 ■ SQL Server Failover Clustering

F I GU R E 22 .1 Viewing the warnings in a Validate A Configuration Wizard report

F I GU R E 22 . 2 Viewing the warning details in the report

Implementing a Windows Cluster 745

If you fi nd warnings in the report, you should read the warning details and then
take any necessary actions to resolve the problem. For example, the warning pictured
in Figure 22.1 is related to the fact that the servers are connected to each other using a
single network and not multiple networks. Clustering will work with a single network,
but it will not provide the higher levels of availability you may require (because the
single network is a single point of failure). If the single point of failure in the network is
acceptable to you, you can ignore the warning.

Creating the Cluster
With the Validate A Confi guration Wizard completed and assuming no signifi cant prob-
lems were encountered, you’re ready to create the cluster. You create cluster confi gurations
with the Create Cluster Wizard in the Failover Cluster Management tool. Exercise 22.3
provides the steps required to create a cluster.

E X E R C I S E 2 2 . 3

Creating a Failover Cluster

In this exercise, you will create a cluster using the Failover Cluster Management tool. To do
this, follow these steps:

1. Log on to a cluster node as a domain administrator.

2. Select Start ➢ All Programs ➢ Administrative Tools ➢ Failover Cluster Management.

3. In the Management pane, choose the Create A Cluster option to launch the Create Clus-
ter Wizard.

4. On the Before You Begin page, read the information, and then click Next to begin the
creation process.

5. Click Browse to select the Windows Server 2008 instances with the Windows Failover
Clustering service installed.

6. Click the Advanced button and then Find Now to list all available Windows servers.

7. Press Ctrl, and then click each of the servers to be included in the cluster. With the serv-
ers selected, click OK.

8. Click OK again to add the servers.

9. When you’re returned to the Select Servers page, click Next.

10. On the Access Point For Administering The Cluster page, enter the name you want to
use for the cluster and the IP address (if only one network adapter exists in each node,
the IP address option will not be displayed); then click Next.

746 Chapter 22 ■ SQL Server Failover Clustering

E X E R C I S E 2 2 . 3 (c ont inue d)

11. Click Next to create the cluster.

12. When the cluster creation is complete, you’ll see the Summary page. Click Finish to fi n-
ish the wizard.

Cluster Resources
After the cluster is created using the steps in Exercise 20.3, you can begin assigning resources
to the cluster. Several resource types can be assigned to the cluster right out of the box. The
resources include the following:

■ DHCP Service

■ Distributed File System

■ Distributed Transaction Coordinator

■ File Server

■ File Share Quorum Witness

■ Generic Application

■ Generic Script

■ Generic Service

■ IP Address

■ IPv6 Address

■ IPv6 Tunnel Address

■ iSNSClusRes

■ Network Name

■ NFS Share

■ Physical Disk

■ Print Spooler

■ Volume Shadow Copy Service Task

■ WINS Service

When you look through this list, it becomes apparent that the resources that can be
assigned to the cluster are very similar to resources that are assigned to a standalone
server. For example, just as you can have multiple IP addresses assigned to a single network
adapter in a server, you can have multiple IP addresses assigned to a cluster as well. As
another example, just as you can install and manage printers on standalone servers, you
can install the Print Spooler service and share printers through the cluster. This collection
of resources is known as a cluster resource group.

Installing SQL Server 2012 to a Cluster 747

Installing SQL Server 2012 to a Cluster
Once you have created the Windows failover cluster, you can install SQL Server 2012 to
the cluster. The installation process is not much different from the one described in Chap-
ter 2, “Installing SQL Server 2012,” where you learned to install SQL Server 2012 on a
standalone server in the sections, “Installing a Default Instance,” and, “Installing Named
Instances.” This time around during the installation process, you will choose New SQL
Server failover cluster installation to begin the installation process. Then, during the install,
in addition to the standard decisions made in a normal standalone installation, you’ll need
to make the following decisions:

■ What will you name the SQL Server failover cluster instance? This name will be used
to access the clustered SQL Servers from the network.

Clustering in a Virtual Environment

When you implement a cluster using physical hardware, the process is very straightfor-
ward. But what if you want to implement a cluster using virtualization? I was working on
a project recently that required just such a solution. The short answer to the question
is that you can do that, but the long answer is that it’s not quite as easy as having the
real physical equipment. To implement clustered virtual machines (VMs) with Windows
Server 2008, I needed four VMs.

The fi rst VM was the Active Directory domain controller, since the new Failover Clustering
service in Windows Server 2008 requires a domain. For this VM, I used 1,024MB (1GB) of
RAM. You should provide more RAM to this machine if you plan to have virtual or physical
clients connecting to the machine, but I was not allowing clients to connect in my situation.

The second VM ran the iSCSI service software. This software is needed because
 Windows Server 2008 no longer allows you to confi gure attached disks as the “shared
storage” within a virtual environment. The best solution is, therefore, iSCSI. Two excel-
lent free software-based iSCSI solutions are FreeNAS (www.FreeNAS.org) and OpenFiler
(www.OpenFiler.org). I used OpenFiler for my virtual environment because it can be
downloaded as a VMware appliance. This made the setup much easier.

Finally, the last two VMs ran Windows Server 2008 Enterprise edition and acted as the
Failover Clustering nodes. These nodes connected through iSCSI with the second VM
for shared storage. With a confi guration like this, I was able to build a clustered test
 environment for certifi cation preparation or lab testing without the expense of a hard-
ware-based SAN. The nice thing is that all the virtual machines are backed up, so I can
rebuild a virtual clustered environment within a few hours anytime I need it.

http://www.FreeNAS.org
http://www.OpenFiler.org

748 Chapter 22 ■ SQL Server Failover Clustering

■ What resource group will you use for the cluster? The resource group collects the
resources (such as names, IPs, and so on) that will be needed for the SQL Server cluster
to function.

■ What storage resource will you use for the SQL Server cluster? The storage or drive
resource must be shared among all nodes in the cluster, and the databases will be phys-
ically installed to this drive in order to be accessed from the cluster.

■ What network settings should be used for the failover cluster? These settings will
determine the IP address used to access the cluster.

With these questions answered, you will be ready to begin the installation process.
You can actually follow the standard installation instructions provided in Chapter 2, but
remember that you’ll need to provide these four items in addition to the standard set of
information.

Monitoring and Managing a
SQL Server Cluster
Once you have the SQL Server cluster installed and operational, you will have to consider
managing and monitoring the cluster. Several issues must be considered, including these:

■ Service packs and update management

■ Failover management

■ Cluster troubleshooting

You must plan for all three in order to maintain the high availability of the failover
cluster. The following sections provide an overview of these three factors.

Service Packs and Update Management
One of the most common questions DBAs have about SQL Server 2012 clusters is related to
maintenance. The question usually goes something like this: “How do I apply service packs
to the nodes in the cluster since they are all separate computers?” The answer lies in a
little-known secret related to SQL Server service packs. On SQL Server 2005, service packs
and updates were cluster-aware. This meant that they would apply to all nodes in a cluster
with a single installation act performed by the administrator. The sad news is that this was
removed in SQL Server 2008 and later due to various problems with the process. Now, you
must install service packs and updates on each node instance individually during a mainte-
nance window, which usually requires down time.

Monitoring and Managing a SQL Server Cluster 749

Failover Management
One of the key tasks you must perform as the server administrator and possibly as the DBA
is failover management. Failover management is all about deciding which server should be
active in a failover cluster. Failover clustering can be implemented in one of two ways.

Active/Passive An Active/Passive failover cluster uses one active node and one or more
passive nodes. In other words, if you have three nodes in a cluster, only one node can be
active for any service at any time. The other nodes wait in the wings for the active node to
fail, and then one of the passive nodes may become active. Of course, you can manually
failover to one of the passive nodes if you need to for maintenance purposes or any other
purpose.

Active/Active An Active/Active failover cluster allows different services to be active on
different nodes at the same time. For example, if you have a three-node cluster (Node A,
Node B, and Node C), you could run a different service actively on each node. Node A may
run a SQL Server instance. Node B may run fi le and print services, and Node C may run a
third-party service. If Node A fails, then Node B or Node C could become active for SQL
Server; however, SQL Server is running on only a single node at any given time.

In addition to needing to choose between Active/Passive and Active/Active, you should
test failover to make sure everything is working properly. You can test failover using several
methods, including these:

Move resource groups. You can use the Failover Clustering Management tool to move a
resource group from the active node to a passive node. When you do this, you provide that
the resource group can be moved to the passive server node and that failover can occur.
If the move from the active node to the passive node works, you may want to move the
resource group back again—assuming that the previously active node was indeed the one
you want to use as the primary node in the cluster.

Manually break the network. This method may seem odd, but you can force an auto-
matic failover by breaking the network connection to the public network. Just unplug the
Ethernet cable from the currently active node’s public network adapter. You will see the
resource group failover to the passive node. When you plug the network cable back into
the server, you can move the resource group back using the Failover Clustering Manage-
ment tool.

Shut down the active node. Several Internet-based resources say to turn off the active
node for this type of test, but presumably their intention is that you shut them down. If you
power off the node, you risk system corruption. If you test this by shutting down the node,
you should see that the resource group moves to the passive node automatically.

Ultimately, you can use any method that causes the active node to be removed from
the quorum. If the active node is moved from the quorum, the failover to the passive node
should occur automatically.

750 Chapter 22 ■ SQL Server Failover Clustering

Cluster Troubleshooting
If you attempt a manual failover from the active to the passive node and the failover does
not work, check for one of the following problems:

■ Is the public network connection functioning for the passive node? If the public
network is down, Windows Failover Clustering cannot fail over to that node. Get the
public network up and running on the passive node and try again.

■ Can the passive node access and use the shared storage? Windows Failover Clustering
will be unable to fail to the passive node if the passive node cannot access the needed
data. Resolve any connection problems related to the shared storage, and try the
failover again.

As another troubleshooting trick, use the Validate A Confi guration Wizard again as
covered in Exercise 20.2. This wizard can usually locate the problems that would prevent
the failover from occurring. Run the wizard, and then view the report. Does the report
show new problems that did not exist during the initial installation of the cluster? If so,
resolve these problems, and you will most likely resolve the failover issue.

Summary
In this chapter, you learned how to implement a Windows Server cluster. You fi rst learned
what clustering is and the different terms used to describe and work with clustering solu-
tions. Next, you learned how the Windows Failover Clustering service functions and how
to plan for its installation. You then installed the Failover Clustering service and ran the
Validate A Confi guration Wizard to ensure that the targeted servers could indeed operate
as a cluster. Finally, you explored the process required to install SQL Server 2012 to a clus-
ter and to maintain and support that cluster after installation.

Chapter Essentials

Understanding Windows Failover Clustering Service The Windows Failover Clustering
service provides the core functionality required for SQL Server 2012 clustering. In fact,
SQL Server 2012 installs to a Windows cluster in much the same way as it installed to a
standalone machine. The Windows Failover Clustering service provides the monitoring and
automatic failover from an active to a passive node within the cluster.

Implementing a Windows Cluster If you are required to implement a Windows cluster,
you must fi rst ensure that your hardware and software meet the minimum requirements. If
you will require Microsoft support, you should only use hardware that is marked with the
Certifi ed for Windows Server logo and completely passes all tests in the Validate A Con-
fi guration Wizard.

Chapter Essentials 751

To install a Windows cluster, you must fi rst establish the appropriate network connection
between the intended cluster nodes. The best practice is to implement one network for
the public network accessed by the clients and another network for the private network
between the cluster nodes. You will also need to confi gure the connections to the appropri-
ate shared storage devices on each node.

Once the nodes are confi gured, you should install the Windows Failover Clustering feature
on each node. With the Windows Failover Clustering feature installed, run the Validate A
Confi guration Wizard and resolve any problems detected by the wizard. Finally, you can
use the Create A Cluster Wizard to create the actual cluster across the nodes.

Installing SQL Server 2012 to a Cluster Installing SQL Server 2012 to a cluster is not
much different from installing to a standalone machine. You will need to identify a cluster
name, the IP confi guration used in the cluster, the resource group used for the cluster, and
the shared storage. Aside from these four items, the installation is the same as that of a
standalone install.

Monitoring and Managing a SQL Server Cluster Once SQL Server 2012 is installed to the
cluster, you will have to consider how you will monitor and maintain the cluster. Service
packs are cluster-aware, so they can be installed to all nodes in the cluster at once. You
should test failover using either manual resource-group copy methods or automated meth-
ods through forced failure. Regardless of the testing method you choose, always be careful
not to do permanent damage to a cluster node with actions such as powering off the node
instead of shutting it down. Remember that most problems that keep a failover from occur-
ring can be identifi ed by running the Validate A Confi guration Wizard.

Chapter

23
Database Mirroring
and Snapshots

TOPICS COVERED IN THIS CHAPTER:

 ✓ RAID-based Data Redundancy

 ✓ Using Database Mirroring

 ✓ Understanding Log Shipping

 ✓ Implementing Database Snapshots

The typical DBA must be concerned with not only administra-
tion of data in a single server but the distribution of that data
to multiple servers. This chapter will cover replication, but fi rst

it will discuss two other forms of data distribution, known as database mirroring and log
shipping. Additionally, you should understand database snapshots; although they are not
used to distribute data across different servers, they can be used to retain copies of data
as it exists at specifi c points in time. Data is distributed for two main reasons. The fi rst is
to get the data to the user in the most effi cient way possible. Replication and ETL tools
perform this function well. The second reason is to distribute the data for redundancy pur-
poses. This chapter will focus on the methods SQL Server 2012 provides for data distribu-
tion with the intent of redundancy.

Data redundancy actually begins at the hardware level with redundant storage.
Redundant storage usually means RAID, and this topic is addressed fi rst in this chapter.
Next, three of SQL Server 2012’s data redundancy solutions will be addressed:

Database Mirroring This feature allows a database to exist and be automatically main-
tained on two SQL Server 2012 instances at the same time.

Log Shipping This allows a database to be duplicated on a second instance with high lev-
els of latency (delays between updates).

Database Snapshots These do not typically involve a second instance but are created on
the local instance to provide point-in-time access to data.

All three solutions are addressed in this chapter.
Some databases require that there be very little downtime, while others can allow for much
more. If you can accept system outages of an hour or more, you may be able to use a single
server with effective backup and restoration plans using some form of redundancy in the
hardware, such as RAID controllers. This chapter will detail how to achieve downtimes of
minutes or less. You will learn about the technologies provided by SQL Server that will help
you accomplish such uptime. You will also learn the difference between hot, warm, and
cold standby servers, along with how to implement and maintain them.

RAID-based Data Redundancy
Data availability technologies are used to keep data online and available with little or no
downtime. Data redundancy is essential to recoverability. If your data exists in only one
place, it cannot be recovered should that storage location fail. Availability is provided

RAID-based Data Redundancy 755

through internal server techniques as well as through the use of multiple servers. Internal
server techniques include component-level redundancy solutions such as RAID and soft-
ware solutions. Multiple-server techniques include mirroring, log shipping, replication, and
clustering.

A redundant array of independent disks (RAID) is one such internal server or external
storage technology that may be hardware or software based. Hardware-based RAID uses
hardware drive controllers that have the RAID processing software built in. Software-based
RAID uses standard hard drive controllers and handles the RAID processing as a software
layer that is either built into the operating system or installed as an extra feature. There are
many different RAID levels, but the most commonly used RAID levels are listed here:

■ RAID 0

■ RAID 1

■ RAID 5

■ RAID 0+1

■ RAID 1+0 or RAID 10

Figure 23.1 shows the various RAID levels in a graphical representation. RAID 0 is
depicted as three physical drives acting as one virtual drive. Under the hood, data is striped
evenly across the three drives. For example, if 99KB of data is being written to the D: drive
using RAID 0, one-third would be written to Drive 1, one-third to Drive 2, and the fi nal
third to Drive 3. By itself, RAID 0 does not provide any fault tolerance. RAID 0 is used
to improve read and write performance only. Most controllers require two drives to create
a stripe set without parity or a RAID 0 array. Some will require three drives in the array.
The negatives of RAID 0 include the fact that one drive failure makes the entire array
unavailable and that the large amount of storage represented by the physical drives now
aggregates into one, possibly diffi cult-to-manage, storage location. The positives include
faster data access and storage, as well as no loss of storage space.

The next level of RAID represented is RAID level 1. At level 1, data is mirrored to
two physical drives, but the user sees only one drive at the operating system level—if the
RAID is implemented through hardware as opposed to software. Software-based RAID
levels 0, 1, and 5 are supported through the Disk Management snap-in in Windows Server.
RAID 1 provides fault tolerance by ensuring that all data is written twice. The data is
written once to the “visible” drive and once to the “invisible” drive. There is no striping
of data during writes, but some RAID controllers (hardware drive controllers that support
RAID confi gurations) will read the data from both drives. RAID 1 is used to provide fault
tolerance and quick failover. The negatives of RAID 1 include the loss of half of your
storage space and the reduced performance of writes. The positive is that RAID 1 provides
the highest level of data availability because all the data is completely written to two
separate physical devices.

RAID 5 attempts to balance RAID 0 and 1. RAID 5 arrays stripe data across the drives
in the array. However, unlike RAID 0, RAID 5 arrays also provide fault tolerance. This is
done through the generation of parity bits. For example, assume there are three physical
drives (see Figure 23.1) that make up the logical drive array. When data is written to the
array, half the data will be written to one drive, half the data will be written to another,

756 Chapter 23 ■ Database Mirroring and Snapshots

F I GU R E 23 .1 RAID levels 0, 1, and 5

RAID 0

D:

Drive
1

Drive
2

Drive
3

RAID 1

D:

Drive
1

Drive
2

RAID 5

D:

Drive
1

Drive
2

Drive
3

Data

Parity

and then parity bits will be written to the third drive. In most implementations, the parity
bits are stored evenly across the drives in the array. Now, if any single physical drive fails,
the controller or software can regenerate the data that was stored on the failed drive. This
regeneration generally occurs on the fl y with no administrative intervention. Of course,
should another drive fail at this time, the entire array will be lost.

To understand how RAID 5 functions, consider this simple analogy. Imagine you want
to store the numbers 5 and 7. If you store 5 in one notebook and 7 in another, when either
notebook is lost, you’ve lost the ability to recover all of your meaningful data. However,
imagine you have a third notebook. In this third notebook, you store the number 12 (5+7).
Now, if you lose one of the three notebooks, you will always be able to get your data back.
For example, if you lose the second notebook, you can subtract 5 (the number in notebook
1) from 12 and recover the number 7 that was in the second notebook. While RAID 5
striping and parity algorithms are more complex than this, it should help you conceptualize
how the RAID level functions. It is also important to keep in mind that when you add more
drives to your system, you increase the likelihood that one of those drives will fail on any
given day and actually increase the need for fault tolerance.

Using Database Mirroring 757

RAID 0+1 combines the stripe sets with mirroring. You would confi gure two stripe
sets fi rst and then confi gure those two stripe sets to show up as one drive that is a RAID
1 implementation. For example, you might have three drives in each stripe set and, in the
end, all six drives would show up as one virtual drive. This gives you a balance between the
performance of RAID 0 and the complete fault tolerance of RAID 1.

RAID 1+0, also known as RAID 10, is just the opposite of RAID 0+1. In this case, you
will actually implement two or three mirror sets fi rst and then stripe data across those mirror
sets. This provides fault tolerance as the foundation and performance as an added layer.

Understanding the various levels of RAID is important, and you will use this knowledge
as you make decisions related to the server hardware that you purchase. If you determine
that you will need fault tolerance at the drive level, you will want to be sure and purchase
a server that provides this feature through hardware. Although you can implement
RAID through software, the performance is not generally as high, and it will take away
processing power from the database server software.

RAID is one method of providing fault tolerance for your databases. You can also
achieve this with many of the built-in features of SQL Server. Data redundancy is provided
through database mirroring, log shipping, and replication. Data availability is enhanced
through these features as well as database snapshots. In addition, there are manual
methods that you can perform or automate through Integration Services packages or jobs
that allow bulk transfer of data for redundancy purposes or for other data distribution
needs, such as data warehousing and business analysis databases.

Using Database Mirroring
Unlike RAID mirroring, which is a drive-level concept, database mirroring is a transaction-
level concept within a SQL Server architecture. Database mirroring provides a mechanism
for duplicating databases across servers and is a low-latency solution. With this technology,
you can create a warm standby server using just two servers or a hot standby server using a
third server. A warm standby server is one that can be brought online with some effort in a
manual fashion. A hot standby server is one that is enabled automatically when the primary
server fails. You create the warm standby server with a production server, where the user
interactions occur, and another server that is receiving the transactions but is not available
for user access. You create a hot standby server by implementing a third instance of SQL
Server that monitors the previous two servers for failure and automatic failover. Regardless
of which implementation method you choose, this section will give you the information you
need to understand and implement database mirroring.

Microsoft suggests using AlwaysOn availability groups (see Chapter 21,
“AlwaysOn and High Availability”) instead of database mirroring in SQL
Server 2012 because mirroring will eventually be removed; however, you
may require it when mirroring to or from servers running previous ver-
sions or to maintain consistency in a multiversion environment.

758 Chapter 23 ■ Database Mirroring and Snapshots

Database Mirroring Components
Database mirroring is a process provided by SQL Server that maintains two copies of one
database, with each copy stored in a separate instance of SQL Server. At least two server
instances are involved in every mirroring confi guration, and up to three servers can be
used. These three servers are:

Principal The principal server instance houses the active database that is accessed by
the users. This principal instance contains the database that is modifi ed through normal
application usage and is treated much like a normal single database server instance. This
principal instance is said to be serving the database because it allows transactions to be
performed against the database.

Mirror The mirror server instance houses the second copy of the database and is not
accessed by users or applications while in the mirror role. This mirror instance contains the
database that is modifi ed only by the principal instance.

Witness The witness server instance is the optional server and, when it is provided, is used
to provide automatic failover. This witness instance does not contain a copy of the database
being mirrored, but instead it monitors the primary instance and, should it fail, switches
the mirror instance to act as the primary instance and in so doing provides automatic
failover.

The principal and mirror instances must be running either SQL Server Standard or
Enterprise edition. The witness instance, if used, can run any edition of SQL Server except
the Mobile edition. This means you could use the free edition—SQL Server Express—to
act as the witness instance for an automatic failover confi guration of database mirroring.
Database mirroring roles defi ned at the database level include the principal and mirror
roles; however, the witness role is confi gured at the instance level because there is no actual
copy of the database on the witness server.

Both copies of the database in a mirror set are exact copies. They are
synchronized with each other automatically, so either instance can play
the principal or mirror role at any time. For this reason, the principal and
mirror roles are considered transient operating states—transient meaning
temporary or not lasting. Therefore, these operating states do not have to
be considered permanent.

An interesting and useful feature of the mirror instance in the mirror set is the ability
to create a snapshot on the mirror instance. You can allow users to query this snapshot
for reporting against point-in-time data. Snapshots are covered later in this chapter.
Because you cannot actually query the mirror instance, this snapshot capability provides
an interesting benefi t when it comes to getting more use out of a server running a mirror
instance.

Using Database Mirroring 759

Understanding Mirror Operating Modes
Database mirroring supports two different operating modes. These modes determine
the way transactions are transferred between the principal and mirror databases and the
failover mechanism that will be used. The two operating modes are:

■ High safety

■ High performance

High Safety
The high safety operating mode requires all three server roles. This operating mode provides
guaranteed transaction committal on both the principal and the mirror. The guaranteed
transaction committal is provided through synchronous operations. All committed transac-
tions are committed on both partners (synchronous), which provides the guarantee of com-
mittal at both the principal and the mirror instance. In high safety mode, the transactions
are written to memory and then to the transaction log. When the transaction is written to
the transaction log, database mirroring transfers these transactions to the mirror instance.
When a commit transaction is executed, the transaction is fi rst committed on the mirror,
and then the mirror instance sends an acknowledgment of committal to the principal. At
this time, the principal commits the transactions and notifi es the application of the results.
As you can guess, this can result in performance issues, but the transactions are guaranteed
to be committed in both the principal and the mirror or not committed anywhere. When
you need to guarantee synchronicity between the principal and the mirror more than you
need to provide high performance, you will want to use the high safety operating mode.

High Performance
The high performance operating mode uses asynchronous transaction committal. When a
transaction is submitted to the principal, it is processed in the same way a standalone instance
would process the transaction. The mirroring service is also monitoring these transactions and
sending them to the mirror instance. There is no verifi cation that the transaction has been writ-
ten to the mirror database before more transactions are accepted at the principal. This may
result in a lag on the mirror instance and a risk of data loss in the event of principal database
failure; however, the performance gains can be substantial—and when you are implementing
mirroring across WAN links or other slower connections, it may be the only option you have.

Planning for Role Switching
Role switching is used to convert a mirror server to the primary server or vice versa. This
may be required to perform maintenance or because of a failure in system components. The
transient operating states (principal and mirror) can be changed in one of three ways:

■ Automatic failover

■ Manual failover

■ Forced service

760 Chapter 23 ■ Database Mirroring and Snapshots

Automatic failover requires the use of a witness server, and it also requires that you
use the high safety operating mode. The witness server monitors the partner servers in the
mirroring relationship. If the witness server detects that the principal server has failed, it
will automatically switch the mirror instance to act as the principal instance. This actually
works in a slightly more complicated fashion, as outlined next:

1. The mirroring partners (principal and mirror) continually ping each other.

2. The witness intermittently pings the partners.

3. When the principal fails, the mirror instance detects this, in that the principal is no
longer responding to the pings.

4. The mirror sends a request to the witness to be promoted to the principal.

5. The witness pings the principal and gets no response so it agrees with the mirror and
authorizes the promotion.

6. The mirror instance promotes itself to become the principal.

After this process, when the principal comes back online, it detects that the mirror has
become the principal, and it automatically demotes itself to playing the mirror role. As you
can see, the witness server is crucial to this process. If the witness server is unavailable, the
mirror instance will not promote itself. This implementation prevents split-brain problems
where you have two instances trying to act as the principal at the same time. This could
occur, without the use of a witness server, if the mirror could not reach the principal but it
was actually still functioning.

With manual failover, a witness server is not required, but high safety mode is still
required. In manual failover mode, you will have to see that the principal instance has
failed and then manually promote the mirror instance to become the principal. The forced
service failover is used when in high-performance mode. Because some transactions may
not be committed on the mirror instance, you have to force it to act as the primary and
indicate that data loss is allowed.

Implementing Database Mirroring
To implement database mirroring, you will need to perform a number of tasks and ensure
that the databases involved in the mirroring processes are confi gured correctly. It is very
important to remember that a database participating in database mirroring must use the
full recovery model. Then you’ll need to back up the database on the principal instance
and recover it to the intended mirror instance. When you recover the database to the mir-
ror instance, be sure to use the NORECOVERY option so that the database is left in the proper
state to begin mirroring operations.

In addition to the backup and restoration of the database, you should also be sure that
any system objects in existence on the principal server are also created on the mirror server.
These may include users, roles, custom error messages, Integration Services packages, SQL
Server Agent jobs, and linked servers. Remember, you need to create on the mirror instance
only those system objects that are actually used by the database being mirrored. The
principal instance may have other databases as well, and the system objects those databases
use exclusively will not need to be created on the mirror instance.

Using Database Mirroring 761

After you’ve performed these initial steps, you’ll need to do the following:

1. Create endpoints for the mirroring confi guration.

2. Confi gure the mirroring partners, which means backing up the database on the pri-
mary server and restoring it to the mirror server with NORECOVERY.

3. Confi gure a witness server, if needed, which can be done with SQL Server Express
 edition.

Confi gure operating modes according to the guidelines suggested in the earlier section,
“Understanding Mirror Operating Modes.” Each instance in the database mirroring
partnership requires a mirroring endpoint. An endpoint is an installed instance of SQL
Server that is confi gured for database mirroring. Endpoints were discussed at length
in Chapter 2, “Installing SQL Server 2012,” so there is no need to go into detail here.
However, you will need to know how to create the endpoints for the principal and
mirror servers. The endpoints can use either Windows authentication or certifi cate-based
authentication. Most implementations will choose to use Windows authentication. In
addition, only one mirroring endpoint can exist in each SQL Server instance. Because of
this limitation, you will want to ensure that no mirroring endpoints exist on your SQL
Server before actually creating an endpoint. The following code can be used to test for the
existence of a mirroring endpoint:

SELECT name, role_desc, state_descFROM sys.database_mirroring_endpoints;

If you get zero results, you are ready to execute code like that in Exercise 23.1 to create
the mirroring endpoints. If you fi nd existing endpoints, you may have to delete them using
the DROP ENDPOINT statement or create new additional endpoints specifi cally for mirroring.
You will need to execute the code that is shown in Exercise 23.1. For example, you should
run the principal code only on the principal instance.

E X E R C I S E 2 3 .1

Creating the Mirroring Endpoints

This exercise presents the code needed to create mirroring endpoints. This code may
require modifi cation in order to work on your specifi c system. To create mirroring endpoints,
follow these steps:

1. Log on to the principal server as an administrator, and connect to the SQL Server, using
SSMS, as an administrator.

2. Execute the following code in a new query window:

—Endpoint for principal server instance.
CREATE ENDPOINT mirroring
 STATE = STARTED
 AS TCP (LISTENER_PORT = 7575)
 FOR DATABASE_MIRRORING (ROLE=PARTNER);
GO

762 Chapter 23 ■ Database Mirroring and Snapshots

E X E R C I S E 2 3 .1 (c ont inue d)

3. Log on to the mirror server as an administrator. Using SSMS, connect to the SQL Server
as an administrator.

4. Execute the following code in a new query window:

—Endpoint for mirror server instance.
CREATE ENDPOINT mirroring
 STATE = STARTED
 AS TCP (LISTENER_PORT = 7575)
 FOR DATABASE_MIRRORING (ROLE=PARTNER);
GO

5. Log on to the witness server as an administrator. Using SSMS, connect to the SQL
Server as an administrator.

6. Execute the following code in a new query window:

—Endpoint for the witness server instance.
CREATE ENDPOINT mirroring
 STATE = STARTED
 AS TCP (LISTENER_PORT = 7575)
 FOR DATABASE_MIRRORING (ROLE=WITNESS);
GO

Keep in mind that you can use any available TCP port for the listener_port parameter
shown in Exercise 23.1, and you can change the name mirroring to any valid and available
name you choose. Notice that no authentication setting is specifi ed. This is because
Windows authentication is the default, and that’s exactly what you want to use.

You can also confi gure the endpoints in a more automated fashion by using the
Mirroring page of the Database Properties dialog box. To access this page, right-click the
database you want to mirror and select Properties. From here, click the Mirroring page.
You should see something similar to Figure 23.2.

The Confi gure Security button on the Mirroring page allows you to execute code that
will create the appropriate endpoints on the servers involved in the mirroring partnership.
After you set up the endpoints, using this feature, you will want to fi ll in the IP addresses
of the participating servers. You could also use the fully qualifi ed domain name (FQDN) if
you have a DNS infrastructure, which is likely in modern networks. Finally, you will need
to select the operating mode. Notice that the available operating modes change depending
on whether you specify a witness server. When everything is confi gured, click Start
Mirroring.

Using Database Mirroring 763

Should you need to manually failover a mirrored database to the mirror server from the
primary, you can do so with code like the following on the primary instance:

USE database_name;
GO
ALTER DATABASE database_name SET PARTNER FAILOVER;

If you use this code, the variable that reads database_name should be changed to the
name of your database. Remember that this code should be executed on the primary
database instance and not on the mirror. When you execute this code, users will be
automatically disconnected from the primary database instance.

Finally, SQL Server 2012 Standard and Enterprise editions provide a Database
Mirroring Monitor so that you can verify mirroring operations. The Database Mirroring
Monitor is accessed by right-clicking a mirrored database and selecting Tasks ➢ Launch
Database Mirroring Monitor.

F I GU R E 23 . 2 The Mirroring page in the Database Properties dialog

764 Chapter 23 ■ Database Mirroring and Snapshots

Understanding Log Shipping
Log shipping is used to provide high-latency redundant storage for your databases. You
could call log shipping database copying instead of database mirroring. While database
mirroring provides an automated way to keep a duplicate copy of your database and
optionally provide automatic failover, log shipping provides only the fi rst benefi t and does
not offer the same low-latency benefi ts. Database mirroring is said to have low latency
because the transactions are applied to the mirrored database very quickly. Log shipping
is usually implemented with high latency because there is a longer interval, usually mea-
sured in minutes or greater, between the time when the production database is updated
and the time when the standby database is updated. When you can accept high latency and
need a standby server without automatic failover, log shipping may be the better choice.
In fact, certain scenarios can benefi t from high latency, as you’ll see later. In this section,
you will learn about how log shipping works and the steps required to implement it in your
environment.

Inside the Log-Shipping Process
The fact that log shipping is a high-latency data redundancy technology causes some
administrators to be alarmed and deterred from using it. However, there are certain situ-
ations where high latency can be a tremendous benefi t. For example, imagine that you
enable log shipping and confi gure it so that there is a 15-minute delay between when the
log is backed up on the active server and when it is restored on the standby server. If a
user deleted a large amount of data from the database accidentally, you would have 15
minutes before the data was written to the standby server. This means you could back up
the database on the standby server and restore it to the active server, thereby reverting to
the previous state before the data was deleted. While there are other methods that could
be implemented to prevent this scenario, log shipping certainly provides an alternative
solution.

In addition, log shipping is not used by itself when the data is critical to business
continuity. In these situations, you may choose to implement redundant hard drives,
frequent transaction log backups, and even mirrored databases for low-latency data
redundancy solutions. However, you could also implement log shipping alongside these
technologies. This gives you the ability to have the database online, though representing
an older state of the data, while you work on recovering the active server in the event
of server failure or, when using mirroring, in the very unlikely event of total mirror
partnership unavailability.

Understanding Log Shipping 765

Log shipping occurs in three phases:

Phase 1 In the fi rst phase, the transaction log is backed up on the primary server.

Phase 2 The log is then copied to the secondary server in the second phase.

Phase 3 Finally, the log is restored on the secondary server.

While you could accomplish the actions implemented by log shipping through manually
created jobs, you can also confi gure log shipping using the Database Properties dialog, as
shown in Figure 23.3.

F I GU R E 23 . 3 The Transaction Log Shipping page in the Database Properties dialog

The database that is to be confi gured as the primary database in a log-shipping
confi guration must be using either the full or bulk-logged recovery model. In addition, log
shipping does not provide automatic failover from the primary to the secondary database.
You can also confi gure one SQL Server to be the secondary database server to multiple
primary servers. This allows for reduced cost while implementing a fault-tolerant solution.
However, if multiple databases exist on the primary server, you must confi gure log shipping
to ship the logs to the same secondary server—if you want to use log shipping for more
than one of the databases. Log shipping is now supported on Standard and Enterprise
editions of SQL Server.

766 Chapter 23 ■ Database Mirroring and Snapshots

Configuring Log Shipping and Monitoring
To confi gure log shipping, you will need to take three major steps:

1. Create a share on the secondary system to which the transaction logs can be shipped,
and give the SQL Server service accounts access to this share.

2. Create a share on the primary system to which the transaction logs can be backed up,
and give the SQL Server service accounts access to this share.

3. This is the step that implements the log shipping confi guration. You will use the Data-
base Properties dialog to confi gure log shipping. Once the shares are created, you simply
specify backup intervals on the Transaction Log Shipping page and the location where
the logs should be backed up. The fi nal confi guration item in the Transaction Log Ship-
ping dialog confi gures the secondary servers to which you want to ship the logs.

Log Shipping to a Remote Site

Most log-shipping implementations are used within a single site, but I had one client
who needed a remote site-creation solution for their business-critical databases. We
were able to use log shipping to create duplicate copies of the databases at the remote
site. The log shipping occurred every 15 minutes for each database. This meant that, in a
worst-case scenario, the offsite copies would be 15 minutes out-of-synch, but on average
they would be only seven or eight minutes out of sync.

The primary goal of this client was to create a warm standby location in case their pri-
mary network facility failed due to a large-scale disaster such as fi re or fl ood. The benefi t
of the log shipping solution was that a WAN connection could be used without concern
for continuous bandwidth consumption. Of course, in this scenario, only three databases
were shipped offsite. I would not recommend this solution if the data being transferred fi t
into either of the two following categories:

■ Low-latency data

■ High-change data

Low-latency data is data that must be consistent between the primary site and the
standby site. High-latency data has a greater tolerance for lost updates. High-change data
is data that is modifi ed frequently or that incurs frequently added new data. High-change
data results in large data transfers and can quickly consume WAN bandwidth needed for
other business processes.

For my client, log shipping was an excellent solution. For your situation, replication may
be a better solution. It all comes down to the type of data and database you have.

Understanding Log Shipping 767

You can also confi gure a monitoring server to use with all of your log-shipping
confi gurations. In this method, unlike mirroring, the monitoring server will not
automatically failover to the secondary server; however, it can be used to send alerts related
to the log shipping activities. To set up the monitoring server, you simply create scripts on
any Windows server that periodically check for Event Viewer log entries on the SQL Servers
involved in the log shipping and then email a report to the appropriate administrators when
problems occur.

Once the shares are created, you can follow the steps in Exercise 23.2 to implement log
shipping.

E X E R C I S E 2 3 . 2

Implementing Log Shipping

In this exercise, you will implement log shipping. To do this, follow these steps:

1. On the primary server, right-click the database on which you want to confi gure log ship-
ping, and select Properties.

2. Click the Transaction Log Shipping page.

3. Check the Enable This As A Primary Database In A Log Shipping Confi guration check
box.

4. Click the Backup Settings button to confi gure the share to which you want to send the
transaction log backups that are used in the log shipping process.

5. Confi gure the network path similar to what you see here, changing the network path
to the appropriate path for your confi guration, which includes the server name and the
share name.

6. Click OK.

7. Click the Add button to add in the secondary server.

8. In the resulting dialog, click the Connect button, and select the appropriate server to use
as the secondary server. This is the server where you confi gured the secondary share.

9. Confi gure the Initialize Database options as needed.

768 Chapter 23 ■ Database Mirroring and Snapshots

E X E R C I S E 2 3 . 2 (c ont inue d)

10. Select the Copy Files tab, and enter the network share name that you created on the sec-
ondary server in the Destination Folder fi eld.

11. Click OK.

12. Click OK to implement the log shipping confi guration.

If you initialized the database on the remote secondary server during the process
presented in Exercise 23.1, it can take some time as the database is backed up on the
primary, copied to the secondary, and then restored there. In the future, only new
transactions will be sent to the secondary server.

Once you’ve implemented log shipping, you can check the status of shipping processes
and the health of the system by generating a Log Shipping Report. Exercise 23.3 provides
instructions for generating a Log Shipping Report.

E X E R C I S E 2 3 . 3

Generating a Log Shipping Report

To generate a Log Shipping Report in SQL Server Management Studio, perform these steps:

1. Launch SSMS, and connect as an administrator to the SQL Server instance on which the
mirrored database is stored.

2. Right-click the server instance in Object Explorer and select Reports ➢ Standard Reports.

3. Click Transaction Log Shipping Status.

Implementing Database Snapshots
Database snapshots provide point-in-time data recovery and analysis. They do not provide
for standby database access in that the original database must be available, because the
data set is built partly from the snapshot fi les and partly from the original database fi les.
This behavior will become clearer as you read this section. Database snapshots are useful
for recovering from data entry or data processing errors, and they are also benefi cial for
data reporting.

Database Snapshot Functionality
Database snapshots are created almost instantaneously. This is because the snapshot of the
original database contains no data at its initial creation. Instead, SQL Server takes advan-

Implementing Database Snapshots 769

tage of a technology known as sparse fi les. Sparse fi les are fi les stored on NTFS partitions
that allow unallocated space to be made available for use very quickly. These fi les are
empty when the snapshot is fi rst created and contain real data only when modifi cations are
made to the original database. Before a data page is modifi ed in the original database, that
page is copied into the sparse fi les used by the snapshot. The interesting thing is that future
changes to the page require no actions in the snapshot, because the original page is already
preserved. This makes for a very effi cient and well-performing system.

When the snapshot is queried, SQL Server uses a list of pages known as the catalog of
changed pages to determine whether the data being requested is in the snapshot sparse
fi les or in the original database. All pages that have not been changed since the snapshot
was created will still be in the original database. All pages that have been changed will
now be in the snapshot. From these two data sources, the result set is generated for query
response.

Snapshots are read-only, and the structure of the source (original) database cannot be
changed as long as the snapshot exists. This means you cannot add new fi legroups to the
original database without fi rst dropping the snapshot or snapshots based on it. In addition,
the following restrictions apply:

■ You cannot create full-text indexes against a snapshot.

■ Backups, restores, and detachments of the original database are not supported as long
as the snapshot exists.

■ System databases do not support snapshots.

■ Snapshots prevent the dropping of the original database.

■ Snapshots must exist within the same instance of SQL Server as the original database.

■ The maximum size of the snapshot will be the size of the original database at the time
the snapshot was created, so you will need to ensure that you have at least that much
space on the drive where you create the snapshot.

You can create a snapshot of a mirror copy of a principal database. You
cannot query the mirror copy of a database mirroring partnership, but you
can create a snapshot of the mirror and then query the snapshot. While
this will give you only read-only access to the database through the mirror
instance, it at least provides some access to the mirrored data.

As you can see from these capabilities, there are many possible uses for database
snapshots. They can be used to protect against user or administrative errors. They can be
used to offl oad reporting to mirror servers in a mirroring partnership. They can be used to
maintain historical data for reporting purposes, and they can be used to implement a test
database.

770 Chapter 23 ■ Database Mirroring and Snapshots

Implementing a Snapshot
Database snapshots are created with the standard CREATE DATABASE command using a spe-
cial AS DATABASE SNAPSHOT clause. The following code will create a snapshot of the stan-
dard installation of AdventureWorks. If you have the AdventureWorks database installed
and have not added any new fi legroups, you should be able to run this code:

CREATE DATABASE AWSnapshot
ON (
 NAME = ‘AdventureWorks_Data’,
 FILENAME=’c:\data\AWSnapshot.ds’
)
AS SNAPSHOT OF AdventureWorks;

This code assumes that the directory C:\DATA exists and that the SQL Server service has
access to that directory. Note that the NAME option references the logical data fi lename of
the original database and not a new name for the snapshot. However, the FILENAME option
does defi ne the data fi le for the snapshot.

Querying a Snapshot
While you can create snapshots for the purpose of data recovery (you can revert to the data
state represented in the snapshot), you can also query the snapshot. For example, imagine
that a user wants to query the previous day’s data every morning, but she does not want
to see any of the changes made to the data so far that morning. You can create a snapshot
every night at midnight and allow her to query the snapshot, which will provide a represen-
tation of the data as it was when the snapshot was created. You query a database snapshot
in the same way you query a database. For example, the following code returns all rows
from the Sales.SalesOrderDetail table in the snapshot where the ProductID is equal to 889:

USE AWSnapshot;
GO
SELECT *
FROM Sales.SalesOrderDetail
WHERE ProductID = 889;

Reverting to a Snapshot
Reverting to a snapshot is as simple as restoring to it using the RESTORE DATABASE com-
mand. Before you can revert to a snapshot, you must drop all other database snapshots.
Here is an example command that would revert the AdventureWorks database to the previ-
ously created snapshot:

RESTORE DATABASE AdventureWorks
FROM DATABASE_SNAPSHOT=’AWSnapshot’;

Chapter Essentials 771

In addition to reverting to a snapshot, you can selectively restore data to that which is
in the snapshot. You do this by using INSERT or UPDATE statements that pull their values
from the database snapshot but insert those values into the original database. For example,
imagine that a user inadvertently deleted a few hundred rows from a table. You could
restore just those rows by applying the same fi lter the user applied to the snapshot data and
inserting the results into the original database.

Summary
In this chapter, you learned to implement several high-availability and redundancy features.
First, you learned about the importance of internal availability through the illustration
of hard drive RAID confi gurations. Next, you learned to implement database mirroring
for data redundancy. Database mirroring is considered a low-latency availability feature
because the updates to the mirror database are transactional in nature—meaning they
happen as they occur on the primary server. The next topic addressed was log shipping.
Log shipping also provides data redundancy, but it is considered high latency. Finally, you
learned to implement snapshots, which can be used to provide copies of your database at
points in time. The snapshots can be used for reporting or for data recovery.

Chapter Essentials

Understanding the Importance of Data Redundancy Data redundancy is essential to
recoverability. If your data exists in only one place, it cannot be recovered should that stor-
age location fail. Internal data redundancy is provided using hard disk RAID. RAID levels
1 and 5 provide redundancy. RAID level 0 does not. RAID level 0 provides only for perfor-
mance improvements.

Using Database Mirroring Database mirroring should not be confused with RAID
mirroring. RAID mirroring is a drive-level concept. Database mirroring is a transaction-
level concept within a SQL Server architecture. When mirroring is enabled, the mirror
database receives updates on a transaction-by-transaction basis. For this reason, database
mirroring is considered a low-latency solution. If you want to enable automatic failover,
you must implement a witness server as well. SQL Server Express edition can act as a wit-
ness server.

Understanding Log Shipping Log shipping uses transaction log backups and restorations
to keep a second copy of a database synchronized on a standby server. Log shipping is con-
sidered high latency because the time between the change on the primary database and the
application of that change on the receiving database is often more than 10 or 15 minutes.
The receiving database can have snapshots created on it to allow for reporting.

772 Chapter 23 ■ Database Mirroring and Snapshots

Implementing Database Snapshots A database snapshot provides a point-in-time view
of your database. Snapshots are created with the CREATE DATABASE statement, but the
statement employs an AS SNAPSHOT clause. You can create multiple snapshots on a single
database, but you must drop all snapshots other than the one to which you want to revert
before you can revert a database to a snapshot. Snapshots are excellent for time-based
reporting.

Chapter

24
Implementing
Replication

TOPICS COVERED IN THIS CHAPTER:

 ✓ SQL Server Replication

 ✓ Importing and Exporting Data

While Chapter 23, “Database Mirroring and Snapshots,”
covered database mirroring and log shipping, which can both
be used to perform data distribution, this chapter focuses fi rst

on the most common method used to distribute data for active use. In most cases, the mir-
ror copy of a database is used only if the primary copy fails. Also, when log shipping is
used, the receiving server is typically used to bring the database copy online only when the
sending server fails. The point is that both mirroring and log shipping are usually used to
provide backups of the data for failover purposes. SQL Server replication is used to copy
data to multiple subscribers that will actively use the data, which is quite different from the
technologies covered in Chapter 23.

Data can be imported to a SQL Server or exported from a SQL Server using several
methods. One automated method is replication. Replication can be used to automatically
export data for delivery to multiple clients. In addition to replication, data can be imported
or exported from fi les. As the DBA for your organization, you may be called upon to
implement a replication strategy. To do this, you must understand the replication
model implemented in SQL Server and the steps required to enable it. You may also need
to import data from CSV fi les (or other fi le types), and you should be aware of the methods
and tools used for this process as well. Both replication and data import and export are
addressed in this chapter.

If you are preparing for the 70-462 exam, it is important that you know how to choose
the proper replication type and implement replication for a specifi ed database. You should
also know how to import and export data from SQL Server databases.

SQL Server Replication
When you want the same data to be available in multiple physical locations or on multiple
server instances, you may choose to implement data replication. Data replication, in SQL
Server, should not be conceptualized as database replication, because you can replicate part
of the database, and you are not required to replicate the entire database. Instead, you cre-
ate publications that include articles. The articles are tables and other objects that you want
to replicate. A publication could include an entire database, but it doesn’t have to; this is
why you should think of it as data replication and not database replication. As an example,
salespeople may want to replicate just the portion of the customers table that is in their area

SQL Server Replication 775

of responsibility. In this case, the computer of the salesperson would be the subscriber. In
this section, you’ll learn about the different replication types, replication roles (such as pub-
lisher and distributor), and replication models, as well as how to implement the different
roles used to provide the replication architecture. You’ll also learn to monitor replication
and replication performance.

SQL Server Replication Roles and Concepts
Microsoft has implemented replication in SQL Server using a magazine publishing meta-
phor. Your replication infrastructure will include publishers, distributors, and subscribers.
These roles are involved in the replication of publications that include articles, and the
articles describe and contain the data to be replicated. Here are some key descriptions for
this process:

Publisher A publisher is a SQL Server instance that is confi gured to distribute data using
data replication and possibly receive and merge data from subscribers. A publisher is an
instance of SQL Server.

Subscriber A subscriber is a SQL Server instance, which can include portable editions of
SQL Server for PDAs as well as the other Server and Express editions, that receives data
from a publisher and possibly submits data for merge processing.

Distributor A distributor is a machine that is confi gured to respond to subscriber requests
for publications and distribute these publications from the publishers to the subscribers.
The same server can be both the publisher and the distributor.

Publication A publication consists of one or more articles.

Article An article is a collection of described and possibly fi ltered data that is fl agged for
replication with the publication.

Subscribers subscribe to publications and not articles. This constraint is consistent with
the magazine publishing metaphor, because you do not subscribe to articles in a traditional
magazine but rather the entire magazine. In network database terms, it would usually be
a business requirement that all information of the defi ned types be replicated to a given
subscriber.

Replication Types
SQL Server supports three main replication types:

■ Transactional

■ Snapshot

■ Merge

776 Chapter 24 ■ Implementing Replication

As the DBA, your selection of the appropriate replication type is important. If you
choose snapshot replication when you need the lowest latency levels, you’ve made a bad
decision. To choose the best replication type, you’ll need to understand the way each
replication type operates.

Transactional Replication Transactional replication starts with a snapshot of the pub-
lished (designated to be replicated) data for the initial data distribution to subscribers
and then replicates future changes as they occur or nearly so. Transactional replication is
usually implemented as one-way replication from the publisher to the subscriber. The sub-
scriber is usually considered to be read-only, although you can use transactional replication
types that replicate in both directions. Transactional replication is generally used when the
following items are true:

■ Changes should be replicated to subscribers as they happen.

■ The data source (publisher) has much activity (modifi cations, deletions, and
insertions).

■ There is a low tolerance for latency between the time of change and the time of replica-
tion (the subscriber must be as current as possible).

Snapshot Replication Snapshot replication uses point-in-time replication and does not
track changes as they occur. When it is time for a snapshot to be taken, the data to be
published is selected at that time, and the subscriber receives the full copy of the replicated
data—whether it is one change or 1,000 changes—every time. Snapshot replication is gen-
erally used when the following items are true:

■ Delays in data replication are acceptable.

■ Data is seldom modifi ed and these modifi cations are not large.

■ The data set being replicated is small.

Merge Replication Merge replication allows data to be modifi ed at either end of the rep-
lication link. The publisher and the subscribers can modify the data. Merge replication
uses triggers to make the replication happen where transactional replication is based on the
Snapshot Agent, the Log Reader Agent, and the Distribution Agent. Merge replication is
generally used when the following items are true:

■ You need to update data at both the publisher and the subscribers.

■ Each subscriber receives a different subset of the data.

■ Subscribers replicate while online and modify data while offl ine.

Table 24.1 provides a reference for these replication types. You can use it as a guide to
help you select the appropriate replication type for your needs.

SQL Server Replication 777

TA B LE 2 4 .1 Replication types and their applications

Type Definition Applications

Transactional The initial subscription pulls a snap-
shot of the publication, and then
ongoing changes are typically sent
to the subscriber as they occur.

Provides for lower latency and
faster replication of changes.
This is useful when the data
source processes a large number
of transactions.

Snapshot This publishes data exactly as it
exists at a point in time and does not
publish updates transactionally as
they occur.

Used when higher latency is
acceptable or changes happen
less frequently at the publisher.

Merge This publishes a snapshot to start
the replication partnership with a
subscriber, and then changes are
made at the publisher and sub-
scriber. These changes are merged
into the publisher.

Used when data changes should
be allowed and retained at both
the publisher and the subscriber.

Replication Latency

Latency is a very important issue to consider in database replication scenarios. Latency is
defi ned as the amount of time it takes for data to travel from source to destination. High
latency indicates that the time is longer, and low latency indicates that the time is shorter.
Lower latency is usually considered to be better.

SQL Server offers the three basic replication types referenced in this chapter, and they
provide different levels of latency. With the right hardware and confi guration, transac-
tional and merge replication can provide low latency. Snapshot replication provides high
latency. However, it is high only in comparison to some threshold—and that threshold is
the “other way of doing it.” In other words, snapshot replication has a higher latency than
transactional or merge replication.

The Replication Monitor, discussed later in this chapter, can be used to monitor tracer
tokens. These tracer tokens can be used to monitor replication latency. A tracer is basi-
cally dummy data that is written to the transaction log of the publisher so that its perfor-
mance can be traced throughout the networked system to measure latency.

778 Chapter 24 ■ Implementing Replication

Replication Models
Replication models are used to conceptualize how you will implement the various replica-
tion components (publishers, subscribers, publications, and so on). One model uses a local
distributor, and another uses a remote distributor.

Local Distributor Model When a local distributor is used, the same SQL Server instance
plays the role of the publisher and the distributor.

Remote Distributor Model When a remote distributor is used, one SQL Server instance
plays the role of publisher, and another plays the role of distributor. The remote distributor
model is useful when you have more than one publisher and you want to have all the publi-
cations from these publishers available to subscribers through a single server instance.

As an analogy for the remote distributor model, consider an online bookstore. You can
go to an online bookstore and purchase books from many different publishers. Imagine how
diffi cult it would be for you if you had to remember which publisher published each of the
various books you wanted to purchase and then you had to go to each publisher’s website to
purchase the different books. Through centralized distribution, access is simplifi ed.

An additional benefi t of the remote distributor model is that it offl oads the distribution
workload to a different server. The publisher is often the online transaction processing
(OLTP) copy of the database, and replication is used to distribute the data for analysis or
reporting purposes. To improve the performance of the OLTP server, you can perform only
the publishing functions there and offl oad the distribution to a remote server.

In addition to the models related to the publisher and distributor relationship, you have
two basic models for the subscriber and distributor relationship.

Single Subscriber In the single subscriber model, there is only one subscriber for each
publication.

Multiple Subscriber In the multiple subscriber model, there are multiple subscribers for
each publication. If you want to distribute data to multiple remote servers, you will likely
implement a multiple subscriber model.

New Features in SQL Server 2012
SQL Server 2012 introduces several new features to the replication engine, including the
following:

■ Publication databases can be part of an availability group.

■ New stored procedures provide enhanced replication support for AlwaysOn:

SQL Server Replication 779

■ sp_redirect_publisher

■ sp_get_redirected_publisher

■ sp_validate_redirected_publisher

■ sp_validate_replica_hosts_as_publishers

■ Replication supports extended events, but these events are currently available for use
by the SQL Server service only internally.

■ Replication can now support up to 15,000 partitions for tables and indexes.

Configuring a Publisher and Distributor
When confi guring a publisher and distributor, you must consider three things. First, you
will need to confi gure the publisher and distributor for replication. Second, you will need
to understand how to deal with confl icts. Third, you should understand replication security
issues. All three are addressed in this section.

Confi guring replication starts with the confi guration of the publisher and distributor
roles. Depending on whether you are implementing a local or remote distributor model, you
can confi gure both roles at the same time (local) or separately (remote). The publisher and
distributor roles are confi gured in SQL Server Management Studio (SSMS) by right-clicking
the Replication container and selecting Confi gure Distribution. Don’t let this confuse
you. Once you get into the wizard, you will see that it can be used to confi gure either only
the distribution role, both the distribution and publisher roles, or only the publisher role.
Exercise 24.1 provides the steps required to confi gure a publisher/distributor model (local)
on a single instance of SQL Server.

E X E R C I S E 2 4 .1

Confi guring the Publisher and Distributor

In this exercise, you will enable a single instance to act as a publisher and a distributor. To
do this, follow these steps:

1. Launch SSMS, and connect to the target instance as an administrator.

2. Right-click the Replication node in the Object Explorer and select Confi gure Distribution.

3. You will see the Confi gure Distribution Wizard; click Next on the Welcome screen.

4. On the Confi gure Distribution Wizard, accept the default to use the local server as its
own distributor, and click Next.

780 Chapter 24 ■ Implementing Replication

E X E R C I S E 2 4 .1 (c ont inue d)

5. Either accept the default snapshot folder (the place to store replication data to be repli-
cated) or specify a different location. The warning shown here indicates you will need to
use a network path (UNC path) if you want to support pull subscriptions from the client.
Pull subscriptions are replicated to the client (subscriber) on demand. Click Next.

6. Accept the default replication database name, as shown here, or specify a different
name and location. This is the database that will be used to store information related to
replication. Click Next.

SQL Server Replication 781

7. Select the servers that you want to allow access to this distributor server as a publisher.
Because you are confi guring a local distribution model, the local server will be in the list
by default. Click Next when you are fi nished.

8. You can generate a script that will enable distribution, or you can accept the default to
do it immediately. When you’ve made your selection, click Next.

9. Click Finish to confi gure the local server as a distributor and publisher.

10. When the process completes, click Close.

After you’ve completed this process, you can right-click the Replication container and
select Publisher Properties or Distributor Properties to manage the properties of the two
roles. The Distributor Properties dialog, shown in Figure 24.1, allows you to specify how
long transactions will be retained on the distributor and which publishers are allowed
to use the distributor. The Publisher Properties dialog allows you to confi gure which
databases are allowed to use replication and whether they are enabled for transactional
or merge replication, as shown in Figure 24.2. You can also disable replication by right-
clicking the Replication container and selecting Disable Publishing and Distribution.

After you’ve enabled the publisher and distributor role and enabled databases for
replication, you can begin creating publications. Here are some details for how to do
this. New publications are created by right-clicking the Local Publications node in the
Replication container and selecting New Publication. In the resulting wizard, you can
select the database on which the publication will be based and the publication type. Next,
you will confi gure the articles to be included in the publication by selecting the tables or
views to include. After you’ve selected the tables to include, you can employ fi lters to limit
the replicated data to only specifi c columns or rows. These fi lters are simple WHERE fi lters
like the ones you would use in standard SELECT statements. Exercise 24.2 provides the
steps required to create a basic publication with a single table being replicated from the
AdventureWorks2012 database.

782 Chapter 24 ■ Implementing Replication

F I GU R E 2 4 .1 The Distributor Properties dialog box

F I GU R E 2 4 . 2 The Publisher Properties dialog box used to select replication databases

SQL Server Replication 783

E X E R C I S E 2 4 . 2

Creating a Publication with a Single Table to Replicate the
Production.Product Table

In this exercise, you will create a publication to replicate the Production.Product table in
the AdventureWorks2012 database. To perform this exercise, you must fi rst perform
Exercise 24.1 and have the AdventureWorks2012 OLTP sample database installed.

1. Launch SSMS, and connect to the target instance as an administrator.

2. Right-click the Replication node and select Publisher Properties.

3. Select the Publication Databases page.

4. Ensure that the AdventureWorks2012 database is enabled for Transactional replication,
as shown here, and click OK.

5. Expand the Replication node by double-clicking it.

6. Right-click the Local Publications node and select New Publication.

7. Click Next in the New Publication Wizard to move past the Welcome page.

8. Select the AdventureWorks2012 database on the Publication Database page, and click Next.

9. On the Publication Type page, choose Transactional Publication, and click Next.

784 Chapter 24 ■ Implementing Replication

E X E R C I S E 2 4 . 2 (c ont inue d)

10. On the Articles page, expand the Tables node, scroll down to select the Product (Produc-
tion) table, then click Next.

11. On the Filter Table Rows page, accept the default and do not add any fi lters. Click Next.

12. On the Snapshot Agent page, choose to create a snapshot immediately, and click Next.

SQL Server Replication 785

13. On the Agent Security page, click the Use The Security Settings From The Snapshot
Agent option. Click the Security Settings button, choose Run under the SQL Server
Agent service account, click OK, and then click Next to save the Agent Security
settings.

14. On the Wizard Actions page, ensure that Create The Publication is checked, and click Finish.

15. Enter the publication name of Products Table, and click Finish.

16. Click Close when the process completes.

786 Chapter 24 ■ Implementing Replication

Once a publication has been created, you can modify the settings by right-clicking it
in Local Publications and selecting Properties. From there you can perform the following
operations:

■ Modify the articles in the publication or add new ones

■ Change the fi lters processed against the articles

■ Specify scripts to run before or after the snapshot is applied

■ Enable FTP-based snapshot downloads

■ Allow or disallow anonymous subscriptions

■ Determine the accounts allowed to create or synchronize subscriptions

■ Reconfi gure the agent accounts

■ Determine retention rules for snapshots

Conflict Resolution
Resolving confl icts is an important part of confi guring the publisher and distributor and
replication in general. When merge replication or transactional replication is used with
updates, confl icts can occur. SQL Server provides three levels of confl ict detection. Here’s a
description of each:

Row-Level Tracking When row-level tracking is used, any change to any column in a row
will generate a confl ict if any other replication partner has changed any column in that
same row.

Column-Level Tracking When column-level tracking is used, only changes to the same
column within a row generate a confl ict, and changes to different columns within a record
will be considered separate and valid updates.

Logical Record-Level Tracking When your replication article is based on a JOIN state-
ment between multiple tables, the logical record can be evaluated for confl icts; this is logi-
cal record-level tracking.

You can also have confl icts resolved automatically with notifi cation or manually. When
a subscription to a publication is created, it can be assigned a priority. Confl icts can be
resolved automatically based on the change location with the higher priority, and this is
known as the additive resolver or the averaging resolver. The additive resolver uses the
sum of the source and destination values, and the averaging resolver uses the average of the
two values. You can also specify that the subscriber or the publisher always wins. If you
confi gure confl icts to be managed manually, you must look at the confl icts and choose the
accepted change. Confl ict management rules are confi gured within each publication.

SQL Server Replication 787

Replication Security
The fi nal topic you’ll need to address when confi guring a publisher and distributor for
replication is security. Replication security is confi gured by setting the appropriate limits
on the accounts that are used by the various replication agents and ensuring that only
valid users can access publications or subscribe to them. Remember that snapshots are
stored in standard shares; therefore, normal Windows security permission management
guidelines apply.

Publications have a Publication Access List that determines which users can access the
publication. All users in the access list can subscribe to and synchronize publications. You
can also manage this list with the following stored procedures:

sp_help_publication_access Provides a list of all granted logins for a publication

sp_grant_publication_access Adds a login to the access list for a specifi ed publication

sp_revoke_publication_access Removes a login from the access list for a specifi ed
publication

Configuring a Subscriber
The replication subscriber is confi gured in a similar method as the publisher and distribu-
tor. The subscriber can be confi gured through the use of a wizard. Exercise 24.3 provides
the steps required to subscribe to the publication created in Exercise 24.2 from a different
server.

E X E R C I S E 2 4 . 3

Creating a Subscription

In this exercise, you will perform the steps used to create a subscription to the publication
created in Exercise 24.3. To do this, follow these steps:

1. Launch SSMS on the subscribing SQL Server instance, and connect as an administrator.

2. Expand the Replication node in Object Explorer.

3. Right-click Local Subscriptions and select New Subscriptions.

4. Click Next to move beyond the New Subscription Wizard Welcome page, if you have not
previously selected to turn off the Welcome page.

5. On the Publication page, select the Publishing instance of SQL Server that was used in
Exercise 24.2. Additionally, select the Products Table publication, and then click Next.

788 Chapter 24 ■ Implementing Replication

E X E R C I S E 2 4 . 3 (c ont inue d)

6. On the Distribution Agent Location page, choose Run Each Agent At Its Subscriber (Pull
Subscriptions), and click Next.

7. On the Subscribers page, select <New Database> in the Subscription Database fi eld for
the local instance.

8. In the New Database dialog that appears, enter the name Subscriptions for the database
(if you prefer, you can use any local database name you desire here), and then click OK
to create the new database.

SQL Server Replication 789

9. When you are returned to the Subscribers page, ensure that Subscription Database is
set to the database name you created in step 8, and click Next.

10. On the Distribution Agent Security page, click the dotted button to confi gure the
 security settings.

11. In the Distribution Agent Security dialog that appears, choose Run under the SQL
Server Agent service account (in a production environment, you would create a Win-
dows domain account for this purpose instead), and click OK.

790 Chapter 24 ■ Implementing Replication

E X E R C I S E 2 4 . 3 (c ont inue d)

12. On the Distribution Agent Security page, click Next.

13. Accept the default setting to run continuously on the Synchronization Schedule page,
and click Next.

14. Accept the default setting to initialize immediately on the Initialize Subscriptions page,
and click Next.

15. Ensure that Create The Subscription(s) is checked, and click Next.

16. Click Finish to create the subscription.

17. Click Close when the process completes.

Monitoring Replication
You can view the replication activity at the publisher by right-clicking the Replication con-
tainer and selecting Launch Replication Monitor. From here you can see the subscriptions
as well as which subscriptions have been initialized. The Replication Monitor can also be
used to confi gure alerts for proactive replication management. When monitoring replica-
tion, you are looking for the following events:

New Subscription Requests You can determine whether a subscription request made it
through to the publisher if a subscriber is reporting a failure.

Replication Actions You can see when a subscriber pulls a replication update and if any
errors occur.

Conflict Events You can see when confl icts occur and determine whether the appropriate
resolution action is taken.

Replication Performance
When you are using replication, you can monitor it with the System Monitor instead of
the Replication Monitor. Although the Replication Monitor shows replication events and
errors, it does not show statistics such as the number of replication updates per second or
the number of confl icts occurring. The System Monitor can be used to view such infor-
mation. This is the Windows tool that allows you to monitor performance counters to
determine where bottlenecks might exist or to pin down problematic confi gurations and
services. The System Monitor is covered extensively in Chapter 15, “Performance Monitor-
ing and Tuning.”

Replication performance, like all database access from the network, will be impacted
by the speed of the server as well as the bandwidth or speed of the network. For example,
if you are replicating across a WAN connection, you can expect performance to be
poor in comparison to replication across a LAN connection or within a server across
instances. By setting greater intervals for replication or reducing the publication size to

Importing and Exporting Data 791

include only the essential data, you can work around some of the limitations imposed by
limited bandwidth.

Replication Recovery
With replication, like all other SQL Server features and functions, it’s important to provide
recoverability for your implementation. Replication recovery is all about having good back-
ups of the replication confi gurations on each server involved in the replication topology. To
ensure that you can recover your replication confi guration, you must back up the following
databases regularly:

■ The distribution database on the distributor

■ The primary database on the publisher, also known as the publication database

■ The secondary database on the subscriber, also known as the subscription database

■ The MSDB and master databases on the distributor, publisher, and subscribers

Although you could restore your actual data with a full backup of the publication
database, you will have to re-create your entire replication topology if you have not backed
up all of these databases. To learn about the actions that can require a new backup of these
databases, search for Common Actions Requiring an Updated Backup in SQL Server 2012
Books Online.

Importing and Exporting Data
Another method used to distribute data is to export the data from one database and import
it into another. This can be accomplished using different methods in SQL Server, and this
section will introduce you to the basic techniques at your disposal. These techniques are
also used to import data from fl at text fi les. These text fi les may be generated from main-
frames or legacy database systems and then imported into SQL Server for ongoing modifi -
cation or for analysis purposes.

When importing data from fl at fi les, you should consider the following factors:

Source Location If the data is located on a network share, the limitations of the network
may slow the bulk import of the data. This can happen when the data is being pulled from
Internet websites or WAN locations. When the data is being imported from the local net-
work, the process can be faster. Of course, the fastest method is to import the data from
the local hard drive. In fact, it is often better to fi rst copy the data from the remote loca-
tion to the local hard drive when the data actually originates outside of the SQL Server
computer.

Import Method The import method can also impact performance. For example, the BCP
utility is a process external to the SQL Server service and is slower than a BULK INSERT
statement for this reason. However, while BCP may be slower at data import, it supports
data export where the BULK INSERT command does not. Integration Services can do both
the importing and exporting of data.

792 Chapter 24 ■ Implementing Replication

Data Destination Finally, you must consider the data destination. Do the tables already
exist, or will they need to be created? Do the databases exist, for that matter? Will you be
appending to existing data or overwriting any data that exists? To which database server
will you import the data and to which database? Finally, you must ensure that the permis-
sions are set appropriately so that the import process works as expected. This means the
user context you choose to use for the insert process must be given the appropriate permis-
sions in the databases and tables.

Using BCP
Whether using BCP (the bulk copy program) or some of the other methods that follow,
you should consider switching to the bulk-logged recovery model just before the import
takes place and then changing back to the full recovery model when it is fi nished. This will
make the import process go much faster. To switch to the bulk-logged recovery model using
T-SQ, execute the following code:

ALTER DATABASE dBname
SET RECOVERY BULK_LOGGED;

When you are fi nished with the import and ready to switch back to the full recovery
model, use the following T-SQL code:

ALTER DATABASE dBname
SET RECOVERY FULL;

BCP is a program that allows you to import and export data to and from SQL Server
databases. The program existed in previous versions of SQL Server and is still provided
in SQL Server 2012. The program is not capable of complex transformations during data
import. For this you will need to use either BULK INSERT commands or Integration Services.
In addition, BCP has limited error correction; however, you can set the error count
threshold with the -m switch.

The bcp command is used from the Windows command line and not from within a new
query window in SSMS. This means the tool can be used in batch fi les along with other
commands to include capabilities that may be more diffi cult if coded from the ground up in
T-SQL. The bcp command uses the following syntax:

bcp {[[database_name.][owner].]{table_name | view_name} | “query”}
 {in | out | queryout | format} data_file
 [-mmax_errors] [-fformat_file] [-x] [-eerr_file]
 [-Ffirst_row] [-Llast_row] [-bbatch_size]
 [-n] [-c] [-w] [-N] [-V (60 | 65 | 70 | 80)] [-6]
 [-q] [-C { ACP | OEM | RAW | code_page }] [-tfield_term]
 [-rrow_term] [-iinput_file] [-ooutput_file] [-apacket_size]
 [-Sserver_name[\instance_name]] [-Ulogin_id] [-Ppassword]
 [-T] [-v] [-R] [-k] [-E] [-h”hint [,...n]”]

Importing and Exporting Data 793

This may seem complex at fi rst; however, the following example command illustrates
how simple using the tool can be:

bcp theDatabase.dbo.theTable in data.dat –T –c

This command would import data from a fi le named data.dat, which resides in the
directory where bcp is being executed, into a table named theDatabase.dbo.theTable. In
this case, the –T switch informs bcp to use a trusted connection so that network credentials
are not required. Of course, you must be logged on as a user with the rights to perform the
action in SQL Server to use this switch. The -c switch indicates that the data type for all
columns should be the char() data type.

Other switches that are important to know, but not represented in this example, include
the following:

-fformat_file This switch is used to provide custom data formats.

-tcolumn_separator This switch specifi es the column separator to use during operations.

-mmax_errors This switch determines the number of errors that will be allowed before the
bcp command is canceled.

Bulk Insert Commands
The BULK INSERT statement is used to import data only. While bcp can export data as well,
BULK INSERT lacks this capacity. However, BULK INSERT works from within the SQL Server
instance and is therefore faster than bcp. All bulk-logged recovery model issues apply to
using the BULK INSERT statement, as they do to the bcp command. Because BULK INSERT is
a T-SQL command, it can be executed from a new query window. The syntax is as follows:

BULK INSERT database_name.schema_name. [table_name | view_name]
 FROM ‘data_file’
 [WITH
 (
 [[,] BATCHSIZE = batch_size]
 [[,] CHECK_CONSTRAINTS]
 [[,] CODEPAGE = { ‘ACP’ | ‘OEM’ | ‘RAW’ | ‘code_page’ }]
 [[,] DATAFILETYPE =
 { ‘char’ | ‘native’| ‘widechar’ | ‘widenative’ }]
 [[,] FIELDTERMINATOR = ‘field_terminator’]
 [[,] FIRSTROW =first_row]
 [[,] FIRE_TRIGGERS]
 [[,] FORMATFILE = ‘format_file_path’]
 [[,] KEEPIDENTITY]
 [[,] KEEPNULLS]
 [[,] KILOBYTES_PER_BATCH =kilobytes_per_batch]
 [[,] LASTROW = last_row]

794 Chapter 24 ■ Implementing Replication

 [[,] MAXERRORS = max_errors]
 [[,] ORDER ({ column [ASC | DESC] } [,...n])]
 [[,] ROWS_PER_BATCH = rows_per_batch]
 [[,] ROWTERMINATOR = ‘row_terminator’]
 [[,] TABLOCK]
 [[,] ERRORFILE = ‘file_name’]
)]

Like the bcp command, the BULK INSERT statements can be either very complex or
moderately simple. The following code inserts data into a table named theDatabase.dbo.
theTable from a fi le called c:\theData.dat using a fi eld separator of the piping (|) symbol:

BULK INSERT theDatabase.dbo.theTable
 FROM ‘c:\theData.dat’
 WITH
 (
 FIELDTERMINATOR =’ |’
);

Exporting Data Easily from the Command Line

I frequently need to export data from SQL Server tables. I’ve done it with the bcp com-
mand and with SQL Server Integration Services; however, I fi nd it more convenient to use
the SQLCMD command at the command line in many cases.

Recently, I received a call from a client who wanted an easy way to dump data from a
sales-tracking table to a comma-separated, fl at-text fi le. He wanted his users to be able to
dump the data by double-clicking a simple shortcut on their desktops. While I could have
told this client to use SQL Server Integration Services or the cap command, it would have
been more diffi cult for him to learn how to do that in a short window of time. Instead, I
directed him to the SQLCMD command.

With a single command line, he could easily export data with SQLCMD, and he could also
use it for many other tasks. That’s the benefi t of SQLCMD over bcp. The SQLCMD command
can do much more than just export data; it can do the data exports too. The bcp com-
mand is limited to imports and exports of data. Although SSIS can do more than import
and export data, it is much more complicated than SQLCMD.

The next time you need to export or import some data, consider using the SQLCMD com-
mand. I introduced the command in Chapter 4, “SQL Server Command-Line Adminis-
tration,” and you can always learn more about it by typing SQLCMD /? at the command
prompt of any SQL Server machine.

Importing and Exporting Data 795

Using SQL Server Integration Services
A fi nal method of data transport is the built-in extract, transform, and load (ETL) tool called
SQL Server Integration Services (SSIS). While you can perform extremely complex data trans-
formations with this tool, you can also call upon its power with the Import/Export Wizard
through SSMS. You can start this wizard from within the management studio interface or
from within the Business Intelligence Development Studio (BIDS). BIDS is beyond the scope
of this book, but you should learn how to use the wizard from within SSMS.

Here’s a great tip for you. If you find that you use the Import/Export Wiz-
ard a lot and in a manual fashion, you should learn the fast way to access
it. When sitting at the SQL Server, click Start and select Run. From there,
enter DTSWizard and press the Enter key to launch the tool.

Exercise 24.4 provides step-by-step procedures for exporting data with the Import/
Export Wizard. You can just as easily import data with the tool.

E X E R C I S E 2 4 . 4

Exporting Data with the Import/Export Wizard

In this exercise, you will export the HumanResources.Employee table from the Adventure-
Works2012 sample database. To do this, follow these steps:

1. As an administrator, launch SSMS, and connect to the SQL Server instance containing
the AdventureWorks2012 database.

2. From within SSMS, right-click the AdventureWorks2012 database and choose Tasks ➢
Export Data. The fi rst time you run the tool, you will receive a Welcome screen. To avoid
seeing this screen in the future, check the box that reads Do Not Show This Starting
Page Again.

3. After you click Next on the Welcome screen, go to the Choose A Data Source page,
where you must select a data source. Depending on whether you are importing data
into SQL Server or exporting data, the data source will be either an external data source
(importing) or a SQL Server data source (exporting). Select the AdventureWorks2012
database as the data source. Once you’ve selected the data source, click Next.

796 Chapter 24 ■ Implementing Replication

E X E R C I S E 2 4 . 4 (c ont inue d)

4. The next task is to choose the data destination. Again, if you are importing data, the
destination will be SQL Server. If you are exporting data, the destination will be another
SQL Server or some other data destination. Choose Flat File Destination, as shown here.
Once you’ve selected the data destination, click Next.

Summary 797

5. You can select to copy data from specifi c tables or views, or you can write a SELECT
statement to choose the exact data you want. Choose to Copy Data From One Or More
Tables Or Views, and then click Next.

6. You can select the table and the row or column delimiters. Select the [HumanResources.
Employee] table and the default delimiters used by the wizard.

7. You can execute your data import/export immediately, or you can save it as an
 Integration Services package, which can be scheduled or launched as part of another
job. Choose Run immediately, and then click Next.

8. Click Finish to export the data.

Summary
In this chapter, you learned to move data in and out of SQL Server databases using two key
methods: replication and import/export. You learned that you can use replication for low-
latency updates, high-latency updates, and bidirectional (merge) updates. You confi gured a
publisher, a distributor, and a subscriber in a replication implementation. You also learned
to deal with replication confl icts, security, and monitoring.

Finally, you learned about the different methods available for data import and export.
These methods include BCP, the BULK INSERT command, and SSIS.

798 Chapter 24 ■ Implementing Replication

Chapter Essentials

Using SQL Server Replication SQL Server replication is based on a magazine publishing
model. You must confi gure the publisher, distributor, and subscriber to complete a replica-
tion confi guration.

Replication can be implemented using one of three core replication methods. The fi rst is
transactional replication and offers near real-time updates. The second is snapshot replica-
tion, and it has lower latency but consumes network bandwidth only periodically. The third
is merge replication and is used when updates must be allowed at both the publisher and
the subscriber.

Importing and Exporting Data Data can be imported and exported using several meth-
ods in SQL Server. The Import/Export Wizard is used to create SSIS packages that can
import or export data. You can also use the bcp command at the command line or the BULK
INSERT command in T-SQL code.

Implementing
Business

Intelligence and
Reporting

PART

VII
CHAPTER 25 ■ Data Warehousing

CHAPTER 26 ■ SQL Server Integration
Services

CHAPTER 27 ■ Data Quality Solutions

Chapter

25
Data Warehousing

TOPICS COVERED IN THIS CHAPTER:

 ✓ Understanding Data Warehouses

 ✓ Implementing Fact Tables

 ✓ Implementing Dimensions

The strategy of data warehousing has increased in popularity
over the past decade dramatically—thanks, in part, to the
large volumes of data that must be housed and managed by

most organizations. Today, even a small business is likely to have hundreds of gigabytes
of data, or even terabytes. For this reason, you must be able to differentiate between data
used for active transactions (new and modifi ed information) and data used for business
intelligence (BI) actions (reporting, analysis, and decision support).

This brief chapter introduces the general concept of a data warehouse and the
components used to build one. You will learn about the basic building blocks that can
be implemented in SQL Server Analysis Services (SSAS) to provide data warehousing for
BI. This chapter is designed to serve as a launching point in your preparations for SQL
Server 2012 exam 70-463. From here, you can branch out to learn more about the data
warehousing features of SQL Server. In addition to this chapter, it is recommended that you
go through Microsoft’s free tutorials:

■ Tabular Modeling: http://msdn.microsoft.com/en-us/library/hh231691.aspx

■ Multidimensional Modeling: http://msdn.microsoft.com/en-us/library/ms170208
.aspx

These exhaustive tutorials (14 and 10 lessons, respectively) will provide information
to help you prepare for the exam and much more. This chapter will provide you with
foundational knowledge that will help you understand these tutorials as you work through
them.

Understanding Data Warehouses
Like any technology, data warehouses come with some terminology that must be defi ned
in order for the concepts to be understood. In this section, you will learn about the terms
used in and around data warehousing. This will help prepare you for further discussions
of specifi c areas of data warehousing later in the chapter. You will also explore some
usage scenarios for data warehousing so that you can grasp the benefi ts of this technology
solution.

http://msdn.microsoft.com/en-us/library/hh231691.aspx
http://msdn.microsoft.com/en-us/library/ms170208.aspx
http://msdn.microsoft.com/en-us/library/ms170208.aspx

Understanding Data Warehouses 803

Defining Terminology
A data warehouse is a specially formed database used for analysis and decision support,
sometimes collectively called business intelligence (BI). Data warehouses are used for
reporting, decision making, and other analysis operations. They are typically built by
performing extract, transform, and load (ETL) operations on production databases,
which are usually online transaction processing (OLTP) databases. In many cases, data
warehousing databases are synonymous with online analytical processing (OLAP).

To understand data warehousing and BI, you should understand the following
terminology:

Measures A measure is a numeric quantity that expresses an aspect of performance. You
could say that measures are the facts you use to make decisions or determine the real state
of your processes or organizations. An example of a measure might be units sold, members
added, or any other measurable (quantifi able) value. Measures that utilize the Sum function
for their aggregation are called additive measures. Additive measures and the use of the Sum
function are the default in SQL Server Analysis Services (SSAS). When the Sum function is
not used, the measure is described as nonadditive. In such cases you may use the minimum
or maximum values, or you may average the values. Measures related to a time dimen-
sion may be called semi-additive measures. This is because they can be summed on one or
more dimensions, but they cannot be summed on other dimensions. Only the Enterprise
edition, Business Intelligence edition, and Developer edition of SSAS support semi-additive
measures.

Dimension A dimension is a categorization that allows you to spread open an aggregate
measure to see its parts. For example, spreading the aggregate named Total Sales would
allow you to view sales by some dimension, such as the dimension of time (year, month,
day, and so on) or the dimension of product (blue trucks, white cars, and so on). Dimen-
sions are stored in dimension tables.

Attributes Dimensions have attributes. An attribute is an information value that is not the
unique identifi er or the description of the dimension but may provide value to the business
analyst. For example, a DimSalesRegion dimension table would probably include values for
SalesRegionID and SalesRegionDesc, but it might also include attributes such as RegionSe-
niorSalesRep or RegionManagerName. These last two would be considered the dimension
attributes. They may or may not be numeric in value.

Fact Tables OLTP databases are designed based on normalization rules. OLAP or data
warehouse databases are designed around facts. These facts (measures) are stored in fact
tables. The fact tables are related to dimensions stored in dimension tables. The relation-
ships between the fact table and the dimension tables allow the user to retrieve important
information for decision support and BI. Fact tables will include items such as sales, inven-
tory levels, number of members, and other interesting quantifi able values used for decision
support.

804 Chapter 25 ■ Data Warehousing

Hierarchies Data warehouse designs always implement some kind of hierarchy. The
schema used will defi ne the hierarchy implemented. A data value found within the hierar-
chy and used for aggregation functions is often called a child or child item. For example,
the month in which a sale is made can be a child item of the sale and allow for aggregation
by month. Hierarchies may be internal to dimension tables, when using the star schema, or
external to dimension tables, when using the snowfl ake schema.

Schemas A schema defi nes the structure of a database. Data warehouses typically use
either a star or snowfl ake schema. The star schema is the typical hub-and-spoke structure
with the fact table at the center. With a star schema, any existing hierarchies are stored
within the single dimension tables. The snowfl ake schema is more of a hierarchical schema
in its external design. When using the snowfl ake schema, the levels are stored in separate
dimension tables. You can learn more about the star schema at: http://social.technet
.microsoft.com/wiki/contents/articles/1238.star-schema-en-us.aspx. You can fi nd
more information about the snowfl ake schema at: http://social.technet.microsoft.com/
wiki/contents/articles/1239.snowflake-schema-en-us.aspx.

Data Marts A data mart is effectively a small data warehouse. It may be a portion of an
existing data warehouse or an independently created database generated directly from an
OLTP system. Data marts are usually designed to contain department-level or project-level
information, whereas data warehouses can encompass an entire organization. Like data
warehouses, data marts do not participate in active daily operations, which is the role of
an OLTP database. In addition, just like data warehouses, data marts have some level of
latency. Some time must elapse between the live transaction processing system’s data and
the state of the data mart because of the required ETL operations.

Data Lineage Data lineage is a metadata management term that refers to the path of the
data from the end report viewed by the user to the original data source. It answers impor-
tant questions for the user, such as “Can I trust this value?” and “Where did this value
come from?”

Summary Aggregation Summary aggregation allows the business analyst to view a num-
ber that is calculated from values in many different records. It is an aggregate, or bringing
together, of the values in some manner, typically as a sum of the values, though it could be
the average or some other mathematical operation as well. In most cases, aggregates are
summary aggregates; however, SSAS supports 12 aggregate functions, listed in Table 25.1.

Cubes Cubes are multidimensional objects within OLAP systems. They allow you to
view a data value from three or more dimensions. For example, a cube may show you the
number of blue trucks sold in January 2013 by John Thomas at the Akron, Ohio, sales lot.
The number of sales is found at the multidimensional intersection of January 2013; John
Thomas; Akron, Ohio, sales lot; and blue trucks. Four dimensions are used in this case.
While you can accomplish viewing of such information using traditional SELECT statements
with multiple joins, cubes make the process easier for business analysts.

http://social.technet.microsoft.com/wiki/contents/articles/1238.star-schema-en-us.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1238.star-schema-en-us.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1239.snowflake-schema-en-us.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1239.snowflake-schema-en-us.aspx

Understanding Data Warehouses 805

TA B LE 25 .1 SSAS 2012 aggregate functions

Function Additive type Outcome

AverageOfChildren Semi-additive Averages all nonempty child members.

ByAccount Semi-additive Depends on the aggregate function
defined by an account dimension in
a cube. When no account dimension
exists, the None aggregate function is
processed.

Count Additive Calculates the total number of child
members.

DistinctCount Nonadditive Calculates the total number of unique
child members.

FirstChild Semi-additive Returns the value in the first child
member.

FirstNonEmpty Semi-additive Returns the value in the first child
member that is not empty.

LastChild Semi-additive Returns the value in the last child
member.

LastNonEmpty Semi-additive Returns the value in the last child
member that is not empty.

Max Semi-additive Returns the highest value in all the child
members.

Min Semi-additive Returns the lowest value in all the child
members.

Non Nonadditive No aggregation is performed.

Sum Additive Calculates the sum of all values in all
child members. This is the default
aggregate function.

Defining Usage
Now that you understand the terms used with data warehousing, it’s important to think
about how and why data warehouses and data marts are used. The two primary purposes
are reporting and decision support.

Reporting is an important process in most organizations today. Reports are used to
document results and often lead to decisions, although decision support can be thought of
as a separate process from reporting. When reports are run against live OLTP databases,

806 Chapter 25 ■ Data Warehousing

they can be detrimental to performance. Some reports may require several minutes to
complete and can hinder productivity for active users of the database. By creating a
separate reporting database—a data warehouse or data mart—you help improve the
performance of the OLTP system; however, you trade this performance for latency in your
reports. The reports will be based on the data as it looked when the data warehouse was
fi lled from the OLTP system.

Decision support may utilize reports, but it is often more dynamic. Business analysts
may require very unique information, and static reports often do not fi ll the need. Decision
support processes can run against data warehouses and data marts to get the answers
required to make effective business decisions. As it does with reporting, separating decision
support from the OLTP system improves the performance of the OLTP system but results
in latency in the data used to perform the analysis.

Latency in the data warehouse information is a simple result of the fact
that the data warehouse is updated on a periodic basis using ETL pro-
cesses. For this reason, it is rarely synchronized with the OLTP data at the
moment when the analysis is performed.

Implementing Fact Tables
The core of your data warehouse is the fact table. This section provides more information
about fact tables. You’ll develop a deeper understanding of them and learn how to plan for
them and the basic process used to create them.

Understanding and Planning for Fact Tables
Fact tables are the core of your data warehousing solution. The tables must be properly
designed and their contents carefully selected in order to have a useful BI solution.
However, the good news is that fact tables are really no different from standard database
tables from a technical or functional perspective. Fact tables are simply a collection of facts
or measures that are stored together and used as a factor in queries. You may pivot queries
around these facts in many different ways, and this ability is what drives your design
decisions in creating a fact table.

The process of designing a data warehouse solution begins with the gathering of user
requirements. What do the users need from this data warehouse? You must ensure that the
proper data is there and is accessible in a usable manner. This is what brings focus to any
decisions about fact tables.

While many design guides seem to indicate that data warehouses can have only one fact
table, the truth is that they can have many different fact tables if required. Just know that
fact tables require dimensions that can be used to analyze the measures stored in those fact
tables.

Implementing Fact Tables 807

When planning a fact table, you are ultimately creating the core of your star or
snowfl ake schema design. The star schema is so named because the design of the data
warehouse is as if it were layered over a star pattern. The fact table is in the center of the
design, and it is surrounded by dimension tables or simply dimensions of those facts.

Within the data warehouse, one star schema will cover a business need. For example, it
may cover sales, employees, or some other factor to be measured and reported against. For
this reason, within the data warehouse, you can have multiple fact tables and, therefore,
multiple star schemas.

As you learned previously in this chapter, another schema type is the snowfl ake schema.
The primary difference between the two schemas is that a star schema is denormalized and
a snowfl ake schema is normalized to some degree. Stated differently, the snowfl ake schema
uses hierarchies of dimension tables, while the star schema fl attens the dimension tables.

When running reports directly against data warehouses, the star schema
is likely to perform better than the snowflake schema. You can also create
OLAP cubes against a snowflake schema to improve performance.

The good news is that fact tables are simple to create, but you must ensure that you have
planned them well. To properly design a fact table, ask and answer the following questions:

■ What values must be measured, and what columns in the database provide these val-
ues?

■ What are the dimensions of these values? You will learn more about this in the
“Implementing Dimensions” section.

■ What are the foreign keys needed to link or relate to these dimensions?

These three questions are the core questions you must ask and answer. With the answer
to these questions, you are ready to create the required fact tables for your data warehouse.

Creating Fact Tables
First, know that you typically create fact tables after creating dimensions. The fact table

is the many-side of a one-to-many relationship with the dimension tables. For example,
a dimension of the fact may be month. There is one month, but many sales, employee
work hours, purchases, or whatever measure you are exploring in relation to that single
dimension.

Second, the good news is that fact tables are created in data warehouse databases in the
same way as standard tables in transaction databases. For example, consider the following
code:
CREATE TABLE dbo.Sales
(
 SalesKey INT NOT NULL IDENTITY(1,1),
 CustDWID INT NOT NULL,

808 Chapter 25 ■ Data Warehousing

 ProductID INT NOT NULL,
 DateID INT NOT NULL,
 OrderQty INT NOT NULL DEFAULT 0,
 UnitPrice INT NOT NULL DEFAULT 0,
 CONSTRAINT PK_SalesKey
 PRIMARY KEY (SalesKey)
);
GO

This code will create a standard table. However, in the confi nes of a data warehouse,
OrderQty and UnitPrice are measures, and CustDWID, ProductID, and DateID are foreign
keys or links to dimensions. As you can see, creating a fact table is a straightforward and
simple process.

Implementing Dimensions
The opening section of this chapter introduced data warehousing terminology. In this
section, you will explore dimensions in greater depth. They are the wheels on which BI
turns, so it is important to understand them, plan for them, and know the basic process
used to create them.

Understanding and Planning for Dimensions
Dimensions are the different perspectives by which you can view measures or facts. Stated
differently, they constrain the measures within the confi nes defi ned by the dimension. For
example, they may constrain sales to a specifi c day, month, or year. They can be used to
constrain measures across multiple dimensions as well. For example, they may constrain
sales to a specifi c month, for a specifi c product, sold by a specifi c salesperson. This is the
power of dimensions in a data warehouse. They provide context for measures found in fact
tables.

When planning dimensions, you must identify keys that can be used to link the
dimensions to the measures in the fact tables. This is no different from relational database
design, but it is an important consideration when building dimensions (logical) and
dimension tables (physical). Dimensions include three types of information:

■ Keys

■ Naming values

■ Member properties

Keys are used to defi ne unique records, such as a specifi c customer or salesperson.
Naming values are descriptive of the unique record. For example, a naming value might
be the customer name or the salesperson’s name, which would be far more meaningful in

Implementing Dimensions 809

a report or decision support system than the simple record ID. The member properties are
used to provide extra information for reports. These member properties include items such
as street address, email address, and so on. They do not really describe the record item, but
they are properties of that item.

In addition to these three common types of information, attributes and lineage columns
may be included. Attributes are used for pivoting in analysis processes. Lineage columns,
when included, are used only for management and administration and are not shown to
end users of the BI system.

It is important to clearly defi ne when an information type may be an attribute as
opposed to a name value or a member property. It is an attribute if it can be effectively
pivoted. For example, birth date is a value that can be pivoted because there are a limited
number of them and they can be discretized (grouped) into groups like in the month of
January or in the year 1972. Marital status is another value that can be pivoted because
there are at least two possible values: married or unmarried. Additional values might
include divorced or remarried, but ultimately there will be few possible values, and this
allows for effective pivoting.

Now, consider the value of fi rst name. There are thousands of fi rst names, and this
means it cannot be pivoted well. Sure, you could discretize them into names starting with
A and B, and so on, but this would likely be of little value to most business analysis. When
the values are too many, the column does not work well as an attribute.

Remember, even when there are many varied values, it is possible to make
the column work as an attribute if it can be discretized.

In some cases, dimensions will be designed with hierarchies in place. For example,
consider the following potential Date dimension:

■ DateID

■ YearNumeric

■ CalendarSemester

■ CalendarQuarter

■ MonthName

Do you see the hierarchy represented in these dimension columns? CalendarSemester
represents half of the YearNumeric. CalendarQuarter represents half of the
CalendarSemester. MonthName represents a specifi c month in a CalendarQuarter. The
point is that a dimension with hierarchies like this can be used for easy drill-down analysis
in reporting and decision support tools. You can start your view of the data at the year level
and drill all the way down to the month. Potentially, even the day could be added to the
dimension.

810 Chapter 25 ■ Data Warehousing

Creating Dimensions
Creating dimensions is as simple as creating fact tables. You simply create the table in
the database with the appropriate columns to contain the dimension ID, naming values,
member properties, and attributes. This table is created exactly like any other table, as
explained in Chapter 10, “Creating Tables.”

After creating the dimensions (and the fact tables), you must acquire the data for those
tables. This is most commonly achieved with SQL Server Integration Services (covered in
the next chapter).

An additional factor you must consider when creating dimensions is something called
the slowly changing dimension (SCD) problem. This problem is that a dimension may
change over time or in relation to time. For example, a customer named Joe Thomas may
have a Country value of United States in the year 2006 and earlier but a Country value of
Canada in the year 2007 and later. If a business analyst wanted to see all the customers
in the United States for the year 2005, you would want the data warehouse to return the
customer Joe Thomas; however, if the business analyst wanted to see the customers in the
United States in 2008, you would not want it to return that customer.

Two common methods for dealing with the SCD problem are Type 1 SCD and Type 2
SCD. Type 1 SCD simply overwrites historical data. This means that the Country location
for Joe Thomas will change to Canada, and it would simply remove the historical record
that he was once a customer in the United States. Type 2 SCD preserves the historical
data by using data warehouse keys that are separate from the OLTP system keys (or the
source system keys). For example, if the key for Joe Thomas in the OLTP is 1457, the
data warehouse would have a CustomerDWKey value that matches 1457 from before the
move to Canada (preserving the history) and another CustomerDWKey value that matches
1457 from after the move (preserving the current state). This is Type 2 SCD. Table 25.2
illustrates a Type 2 potential implementation.

TA B LE 25 . 2 A Type 2 SCD solution

CusomterDWKey CustomerOLTPKey FirstName LastName Country

1457 1457 Joe Thomas United States

12876 1457 Joe Thomas Canada

As the example in Table 25.2 illustrates, a Type 2 SCD solution preserves the historical
data by maintaining the single OLTP key even as new data is brought into the data
warehouse; however, this process is not necessarily automatic, and the data warehouse
designer must accommodate it through data processing during ETL operations.

The key used within the data warehouse to track historical data for a record
that changes in the OLTP system is known as a surrogate key.

Chapter Essentials 811

Summary
In this chapter, you were introduced to the basic concepts of data warehouses and the
two primary building blocks used to create them: fact tables and dimension tables. You
learned how to plan for both components and the basic process used to create them. With
this foundation, you have the basic knowledge needed to move on and explore step-by-step
processes provided in the Microsoft tutorials available at http://msdn.microsoft.com/
en-us/library/hh231701.aspx.

Chapter Essentials

Understanding Data Warehouses Data warehouses are used to store data for analysis
purposes including reporting and decision support, often called business intelligence (BI).
SQL Server Analysis Services (SSAS) provides support for data warehousing in SQL Server
environments.

Implementing Fact Tables Fact tables are used to store facts or measures that can be
aggregated, analyzed, or calculated in some analytical way. They become the center of your
star or snowfl ake schemas.

Implementing Dimensions Dimensions are used to constrain or bring focus to facts. A
single fact, like total sales, provides value, but greater value may be achieved by viewing
total sales by region, by year, by salesperson, and so on. This is the benefi t dimensions
bring to the data warehouse.

http://msdn.microsoft.com/en-us/library/hh231701.aspx
http://msdn.microsoft.com/en-us/library/hh231701.aspx

SQL Server
Integration Services

TOPICS COVERED IN THIS CHAPTER:

 ✓ Integration Issues

 ✓ Installing SSIS

 ✓ Configuring SSIS Security Settings

 ✓ Deploying Packages

 ✓ SSIS Auditing and Event Handling

 ✓ Extracting, Transforming, and Loading Data

Chapter

26

In the preceding chapter, you learned about the foundational
concepts of data warehouses. You also learned that the data
warehouse is typically fi lled with data originating from other

sources. In this chapter, you will go deeper into the tool that allows you to move data
within your organization and even transform data in the process: SQL Server Integration
Services (SSIS).

SSIS was discussed briefl y in Chapter 13, “Implementing Advanced Features,” so you
should have a fundamental understanding of what SSIS is, what a package is, and the
purposes of such a tool. If not, you may want to go back and read the “Understanding
Integration Services” section in Chapter 13 again before proceeding in this chapter. This
chapter will explore SSIS in more depth and provide a solid foundation for your studies
toward the 70-463 exam, should you choose to take it. If you are preparing for this exam,
in addition to this chapter, I recommend you go through the documentation and tutorials
on the Microsoft TechNet site here:

http://technet.microsoft.com/en-us/library/bb522537.aspx

This chapter begins by covering integration issues. You will explore the business
scenarios that create the demand for a tool like SSIS. Next, you will review the basics of
SSIS installation. You will then learn about SSIS security settings, package deployment
procedures, and SSIS auditing before exploring the core work of SSIS: extraction,
transformation, and loading.

Integration Issues
The need to aggregate distributed and often incompatible data sources into a central reposi-
tory creates integration issues. For example, you might need to create a data warehouse
from many disparate systems so that business analysts have one simplifi ed source for their
data. Three primary drivers compel integration processes supported by SSIS: integrating
with existing systems, using existing data, and co-existing among multiple current data
systems. This section reviews these three common drivers.

Existing Systems
As you implement a database management system like SQL Server 2012, you often need
to access data from existing systems. These include systems such as Oracle, MySQL, and
even Microsoft Access databases. SSIS can be used to import data from these existing sys-
tems into SQL Server databases for use by SQL Server clients. A one-time import can be

http://technet.microsoft.com/en-us/library/bb522537.aspx

Integration Issues 815

performed, or regularly scheduled jobs can be used to update the data in SQL Server from
existing systems that continue to be used in production.

In most cases, if you can create an Open Database Connectivity (ODBC) connection to
the data source, you can use it as a source for packages created in SSIS. An SSIS package is
simply a collection of data sources, data destinations, and tasks that you want to perform
in relation to those sources and destinations. SQL Server Data Tools (SSDT), which was
referenced in several other chapters of this book, is used to create these Integration Services
packages; Chapter 13 shows how to do that.

Existing Data
The difference between existing systems and existing data is that existing systems are
assumed to be in production and existing data is assumed to be nonvolatile—it is no lon-
ger changing. In many cases, old data must be incorporated into new systems. This action
may be required for reporting, compliance, or simply access to data for business decisions.
Whatever the reason, SSIS supports the import of data in many static formats.

Text Files When the data desired exists in text fi les, it can be imported directly from a fi le
into a SQL Server destination database. Common text fi le formats include comma-sepa-
rated fi les, often called comma-separated values (CSV) fi les, and tab-delimited fi les. In real-
ity, a separator other than a comma or a tab may be used, and SSIS supports these alternate
separators as well.

Other Database Files Other database fi les, other than SQL Server MDF and NDF fi les,
may be used as data sources. In some cases, such as Paradox, Access, and FileMaker data-
base fi les, you can create an ODBC connection directly to the fi le. In other cases, such as an
Oracle database fi le, you must bring the database system online to access the fi le in SSIS.

Proprietary Data Storage Proprietary data storage is often used by local single-user appli-
cations. These applications may support an export function so that you can export the data
into a common format, such as CSV. If the application does not support an export func-
tion, contact the application vendor to see whether they have a utility that provides access
to the proprietary data.

Many applications support exporting to Microsoft Excel as well as CSV
files. When contacting a vendor, ask whether they provide tools for export-
ing data to Excel files. They are often more supportive of this because it
likely means you want to perform analysis of the data and not completely
abandon their application.

As you can see from the preceding list descriptions, SSIS can access many different data
formats. Ultimately, if you can either create an ODBC connection to the database system or
get the data into a supported fi le format, SSIS can use the data as a data source.

816 Chapter 26 ■ SQL Server Integration Services

Co-existence
When addressing existing systems as data sources, you saw that data can be imported into
SQL Server databases from other DBMS solutions. In the same way, you can export data
to those other DBMS solutions. For example, you may want to access data stored in a SQL
Server 2012 database from a MySQL application. In such cases, SQL Server becomes the
data source, and MySQL is the data destination.

The SSIS tool set is not a one-way solution, and it’s really not even constrained to
SQL Server. You can use SSIS as your ETL solution even if no SQL Servers are running
production or analysis databases. Simply use it to move and modify data between other
systems based on ODBC connections. The point is that SSIS can be used to allow SQL
Server to co-exist with other systems and to allow other systems to co-exist with each
other. In fact, when evaluating the ETL tools available in the marketplace, you will see that
SSIS is among the most powerful solutions available.

Installing SSIS
SSIS is typically installed with any SQL Server Database Engine or Analysis Services installa-
tion. This is simply because many other components depend on SSIS. However, in the event
that you have SQL Servers installed and no installation of SSIS, you should be aware of the
prerequisites, the installation process, and the types of SSIS servers that may be installed
(for example, development versus production servers). Additionally, you should be prepared to
confi gure SSIS properly for operations in your environment. This section provides important
information related to all of these tasks. Chapter 13 provided the basic steps for installing SSIS;
this chapter provides a deeper understanding of requirements and planning.

Providing Prerequisites
SSIS is constrained by the same prerequisites as SQL Server 2012. If the server can run SQL
Server 2012, it can run SSIS. However, you must consider important factors, such as the
following:

■ Is the server running SSIS for simple tasks such as database maintenance plans or for
complex ETL operations?

■ Is the server dedicated to SSIS tasks or sharing resources with OLTP or OLAP data-
bases?

■ Is the server located optimally for ETL operations?

The fi nal question in the list warrants more explanation. When a server acts as an ETL
operations server, such as an SSIS implementation, it must access multiple data sources.
Preferably, it will be on the same subnet or very close to the subnet of the data sources. If
the SSIS server is across multiple routers and switches from the data sources, it can have a
signifi cant impact on the performance of ETL operations. To improve the performance of
these operations, consider these solutions:

Installing SSIS 817

■ Place the SSIS server as close to the other data source servers as possible.

■ When the data sources support it, provide direct access to SAN shared storage for the
ETL operations so that SSIS directly accesses the data source fi les on the SAN that it
uses for data storage.

■ When communicating across the network, diminish network fi lters such as fi rewall
rules and ACLs as much as possible without breaching security policies.

Like the SQL Server Database Engine, SSIS 2012 is simplest to install on Windows
Server 2008 R2 or newer because it already has the primary software requirements within
the operating system.

On the machine used to create SSIS packages and projects, consider a high-resolution
display of more than 1280×1024. The greater resolution you have (and the larger monitor),
the simpler it will be to work with the SSDT software to create your SSIS solutions.

Installing the SSIS Components
When you install SSIS, you use the standard SQL Server 2012 Installation Wizard. Dur-
ing the installation, you simply select to install SSIS and the SSDT software. Like the SQL
Server 2012 Database Engine, SSIS lets you script the installation from a command prompt
or via a confi guration fi le. For more information about automating the installation of SQL
Server 2012, see: http://msdn.microsoft.com/en-us/library/bb500433.aspx.

In addition to the standard installation process you learned about in Chapter 2,
“Installing SQL Server 2012,” you can install SSIS in one of two basic confi gurations:

■ On a computer that has no previous instances of SQL Server

■ Side by side with an existing instance of SQL Server, including other instances of SSIS

It is important to know that you can upgrade from SQL Server 2005 or 2008 Integration
Services to SQL Server 2012 Integration Services. However, when you perform this
upgrade, a side-by-side installation of SSIS 2012 is actually created, and all packages are
moved from the older SSIS 2005 or 2008 installation to the SSIS 2012 installation. The
packages are not converted to the newer format, but they are moved to the new SSIS 2012
installation. Additionally, after the upgrade, you can no longer manage the SSIS 2005 or
2008 installation with the older Business Intelligence Development Studio.

If you upgrade to SSIS 2012 and want to later upgrade your packages to the newer
format, the process is very simple. Open the package in SSDT and then save it. When you
do this, the package is permanently upgraded to the new SSIS 2012 format. Additionally, if
you add an SSIS 2005 or 2008 package to an SSIS 2012 project, the package is permanently
upgraded to the SSIS 2012 format.

Development vs. Production Servers
With SSIS 2012, you have two ways to handle development and production. First, you can
create a dedicated server used to develop and test SSIS projects and packages. Once tested,
these solutions can be exported and moved to production servers. This is a more costly solu-
tion because a separate server, whether virtual or physical, must be created and maintained.

http://msdn.microsoft.com/en-us/library/bb500433.aspx

818 Chapter 26 ■ SQL Server Integration Services

Second, you can use the new environments available in SSIS 2012. Environments are
really nothing more than a collection of variables. These variables can impact the logic
and fl ow of execution when packages run. Environments are made available thanks to the
new project deployment model provided in SSIS 2012. Projects are discussed further in
the, “Working with the SSIS Catalog” section.

The reason for separating development from production is simple: the protection of
your data and applications. It is important that data be preserved. During development,
archived data is often used to prevent the destruction of live data because of development
errors. In addition, your applications must be available to users when they need them.
A development error could bring an entire SSIS server to a practical halt if it causes an
infi nite loop or some other processor-intensive problem. This latter issue is still a possible
motivator for using separate development servers instead of just separate environments.

Unlike the SQL Server Database Engine, only a single instance of SSIS
can be installed on a machine. To implement separate instances for
development and production, you must have separate physical or virtual
machines.

Configuring SSIS for Operations
After installing SSIS, you will run the SQL Server Data Tools (SSDT) to confi gure the
installation for operations. SSDT can be installed on client computers running Windows
Vista with SP1 through Windows 8 to work with the SSIS server. When it is fi rst executed,
it will display a screen asking you to choose the default environment settings, as shown in
Figure 26.1.

F I GU R E 26 .1 Choosing the default environment for Visual Studio when used with SSDT

Configuring SSIS Security Settings 819

If you plan to use Visual Studio 2010 for SSDT primarily, select Business Intelligence
Settings, and click Start Visual Studio. SSDT uses the Visual Studio shell as its interface.
After performing this action, the Visual Studio 2010 Shell will open, and you can choose
New Project to begin creating Integration Services projects.

You can confi gure the SSIS service itself using the SQL Server Confi guration Manager.
This tool is discussed in the next section, “Confi guring SSIS Security Settings,” because it
is used to determine the user context in which SSIS runs.

Configuring SSIS Security Settings
SSIS is used to access local and remote data sources. For this reason, it often has access to
important data throughout the organization, and security should be a top priority in imple-
mentation and management. Security techniques include confi guring the SSIS service, using
roles, and implementing access control and digital signatures. This section addresses these
important concerns.

SSIS Service
The SSIS Service, displayed as SQL Server Integration Services 11.0 in the Services console
of Windows Server, is the engine that drives and allows for the execution of SSIS pack-
ages. This service should not be confi gured in the Services console. It can be stopped and
restarted from there, but you should confi gure it only using the SQL Server Confi guration
Manager. This will ensure that all settings throughout the SQL Server installation are man-
aged appropriately.

When it comes to security settings for the SSIS Service, the following items should be
considered:

Service Account On the Log On tab of the SQL Server Integration Services 11.0 Proper-
ties dialog, shown in Figure 26.2, you can confi gure the account used by the SSIS service.
In most cases, the default confi guration for the service account can be used, but you may
desire to change this in highly secure environments. In most cases, the default settings work
because most packages are executed by the SQL Server Agent service, and its permissions
are the key to the package working.

820 Chapter 26 ■ SQL Server Integration Services

In Windows Server 2008, the Network Service account is used for SSIS by
default. In Windows Server 2008 R2 and newer, a virtual account is used by
default. A virtual account is an automatically managed local account.

Service Status The service status is simply whether the service starts automatically. Run-
ning unneeded services is a security concern. If you are using SSIS on a regular or sched-
uled basis, it should start automatically. If you are not, consider confi guring it for Manual
start.

SSIS Roles
Like the SQL Server Database Engine, SSIS has fi xed database-level roles. These roles are
created when SSIS is installed. The roles include the following:

■ db_ssisadmin

■ db_ssisltduser

■ db_ssisoperator

The db_ssisadmin role can read and write all resources within SSIS. The db_ssisltduser
is a limited user who can read information about packages and perform limited write
operations including importing packages, deleting the user’s own packages, and changing
the user’s own package roles. The db_ssisoperator has read-only access to the SSIS
information allowing for the enumeration and execution of packages, but db_ssisoperator
cannot modify anything within SSIS.

F I GU R E 26 . 2 The SSIS 11.0 Properties dialog

Configuring SSIS Security Settings 821

Access Control
Access control must be considered at several levels in SSIS. These levels include package
contents, packages stored in SQL Server, packages stored in the fi le system, and access to
the SSIS service itself.

Access to package contents can be controlled using encryption. To encrypt packages, set
the ProtectionLevel property. You can use a password for encryption so that anyone who
knows the password can decrypt the contents of the package. SSIS encrypts the sensitive
information within the package. Information defi ned as sensitive includes the following:

■ The password for a connection string.

■ XML nodes that are tagged as sensitive by SSIS. This tagging cannot be selected or
managed by the user.

■ All variables marked as sensitive.

You can encrypt all contents of the package as well. The following protection levels are
available for the ProtectionLevel property:

■ Do not save sensitive (DontSaveSensitive)

■ Encrypt all with password (EncryptAllWithPassword)

■ Encrypt all with user key (EncryptAllWithUserKey)

■ Encrypt sensitive with password (EncryptSensitiveWithPassword)

■ Encrypt sensitive with user key (EncryptSensitiveWithUserKey)

■ Rely on server storage for encryption (ServerStorage)

The protection levels that rely on a user key encrypt the information such that only the
user who encrypted it can access it. Therefore, if a package is encrypted with a user key,
only that user can execute the package. When it’s encrypted with a password, any user
who knows the password can access and execute the package. When it is saved in the SQL
Server msdb database or in the SSISDB catalog, server storage can be used, which uses the
roles to determine access to the package.

When packages are stored in SQL Server, roles are used to implement access control.
When packages are stored in the fi le system, NTFS fi le and folder permissions must be used
to control access to them.

To control access to the SSIS service and the ability to list packages managed by a
given server, you must control access to the server. This goes back to the standard security
practices covered in Chapters 18 through 20.

Digital Signatures
Digital signatures are used to provide identity capabilities for SSIS packages. The goal is to
identify the source of the package. This precaution helps diminish the likelihood of running
a package from an untrusted source that could damage your data and systems.

822 Chapter 26 ■ SQL Server Integration Services

Digital signatures require certifi cates. A certifi cate is a credential item that is associated
with private and public keys. The private key is used to encrypt an element in the package.
If you can decrypt the element with the public key, it ensures that the package came from
the source that owns the certifi cate. This is the same concept used for signing emails and
other fi les in secure computing environments.

You can acquire a certifi cate from one of several sources:

■ Use the Makecert.exe utility to generate an X.509 certifi cate. These are intended for
testing and development purposes only.

■ Purchase a certifi cate from a public certifi cate authority such as Thawte, GoDaddy, or
VeriSign.

■ Obtain a certifi cate from an internal certifi cate server, such as the Microsoft Certifi cate
Services server.

The decision to use internal or public certifi cates is driven by the clients that will
communicate with the servers and other devices using the certifi cates. If the clients
will be external users or public users using computers that you cannot confi gure, consider
using a public certifi cate from a service provider so that their computers will trust them
automatically. If only internal systems that you control will use the certifi cate, an internal
certifi cate will work fi ne.

When you have the certifi cate, you can sign packages using the procedure outlined in
Exercise 26.1.

E X E R C I S E 2 6 .1

Signing a Package in SSDT

In this exercise, you’ll learn how to sign a package using the basic required steps in SSDT.

1. Launch SSDT, and open the Integration Services project that houses the package you
want to sign.

2. In Solution Explorer, open the package.

3. On the SSIS menu, select Digital Signing.

4. Click the Sign button in the Digital Signing dialog.

5. Select the certifi cate you acquired for this purpose.

6. Click OK to close the Select A Certifi cate dialog.

7. Click OK to close the Digital Signing dialog.

8. Save the package to store the changes.

Deploying Packages 823

Deploying Packages
SSIS supports package deployment in three basic ways. First, you can deploy a package as
part of a project via the SSIS catalog. Second, you can use the deployment utility. Third,
you can deploy to SQL Servers or simply to fi les. This section addresses these deployment
options and how they work. It also introduces the DTUTIL tool, which can be used in the
deployment process.

Working with the SSIS Catalog
Ultimately, all SSIS solutions are deployed via either the package deployment model or the
project deployment model. Project deployment is the more recent model; package deploy-
ment goes all the way back to SQL Server 2000 and the Data Transformation Services,
which was the predecessor to SSIS.

When you choose to use the project deployment model, you are also choosing to use the
SSIS catalog. This catalog, known as the SSISDB catalog, is really just a database used to
store the SSIS packages. It is housed in an instance of the SQL Server Database Engine like
any other database.

Within the SSIS catalog, you can use folders to organize projects and environments.
Only one catalog can be housed within a single SQL Server Database Engine instance.
Within the catalog, folders can be used as permission boundaries so that users can be
granted the ability to execute all projects in one folder but not in another.

When using the SSIS catalog and, therefore, the project deployment model, you can take
advantage of the following features:

Parameters Parameters specify the data to be used by a package during execution. Param-
eters can be scoped to the package level or the entire project, which may consist of multiple
packages. These parameters can be used within expressions in the packages. Parameters
can be fi lled with literal values or environment variables.

Environments An environment is a defi ned container of variables—called environment vari-
ables. Projects can have more than one environment reference in them. When they are executed,
a single environment is defi ned for that execution. This allows for dynamic fl exibility through
environment variables that, for example, reference one data source when the Development
environment is used and another data source when the Production environment is used.

Catalog Stored Procedures and Views Several stored procedures and views are available
for managing the SSISDB catalog. Through these tools you can defi ne the values of param-
eters and environment variables, and you can create, start, and monitor executions. If
needed, you can view the values that will be used by a package before you execute it.

To use the project deployment model, use the Integration Services Deployment Wizard.
It can be accessed from either Visual Studio (SSDT) or SSMS.

In addition to this project deployment model, the traditional package deployment model
is still available and can be performed with the Deployment Utility or direct deployment to
SQL Server or to fi les.

824 Chapter 26 ■ SQL Server Integration Services

Using the Deployment Utility
When using the package deployment model, you will use a Deployment Utility. The
Deployment Utility is created so that the packages and confi gurations can be deployed easily
together. The four basic steps to package deployment are as follows according to Microsoft:

1. The fi rst step is optional and involves creating package confi gurations that update
properties of package elements at run time. The confi gurations are automatically
included when you deploy the packages.

2. The second step is to build the Integration Services project to create a package deploy-
ment utility. The deployment utility for the project contains the packages you want to
deploy.

3. The third step is to copy the deployment folder that was created when you built the
Integration Services project to the target computer.

4. The fourth step is to run, on the target computer, the Package Installation Wizard to
install the packages to the fi le system or to an instance of SQL Server.

Technically, the deployment utility is a simple folder containing the fi les needed
to deploy the package or packages. It is created on the same computer that stores the
Integration Services project, which may be a client computer and not the computer that
runs SSIS.

Exercise 26.2 outlines the basic process used to create a deployment utility.

E X E R C I S E 2 6 . 2

Creating a Deployment Utility

In this exercise, you’ll learn the basic steps required to create an Integration Services
deployment utility.

1. Launch SSDT.

2. Open the solution containing the Integration Services project for which you want to cre-
ate a deployment utility.

3. Right-click the project and click Properties.

4. In the Property Pages dialog box, click Deployment Utility.

5. To update package confi gurations when packages are deployed, set AllowConfi gura-
tionChanges to True.

6. Set CreateDeploymentUtility to True.

7. Optionally, update the location of the deployment utility by modifying the Deploymen-
tOutputPath property.

8. Click OK.

Deploying Packages 825

9. In Solution Explorer, right-click the project and click Build.

10. View the build progress and build errors in the Output window.

Deploying to SQL Server or Files
After creating the deployment utility, with the basic procedure outlined in Exercise 26.2,
you will deploy the package or packages to the target server. This is done by fi rst copying
the deployment utility (remember, it’s a folder) to the target server. Next, you double-click the
manifest fi le in the deployment utility folder, which will be named <project name>
.SSISDeploymentManifest. This will launch the Package Installation Wizard.

The Package Installation Wizard can be used to install packages to the fi le system or
to SQL Server. The installation allows you to confi gure options such as the location type
(the fi le system or SQL Server) and specifi c location to install the packages, the location for
package dependencies, and the location for validating the packages after they are installed.
When you install to SQL Server, instead of to fi les or the fi le system, the fi le-based
dependencies for packages are still installed to the fi le system. When you deploy to fi les, the
dependencies are installed in the same folder as that specifi ed for the packages. When you
deploy to SQL Server, you defi ne the location for the fi le-based dependencies to be stored
within the fi le system.

Exercise 26.3 outlines the basic process used to deploy packages to an instance of SQL
Server once a deployment utility is created.

E X E R C I S E 2 6 . 3

Deploying with the Package Installation Wizard

In this exercise, you’ll learn the basic steps required to deploy a package with the Package
Installation Wizard:

1. Open the deployment folder on the target computer.

2. Double-click the manifest fi le, <project name>.SSISDeploymentManifest, to start the
Package Installation Wizard.

3. On the Deploy SSIS Packages page, select the SQL Server deployment option.

4. On the Specify Target SQL Server page, specify the instance of SQL Server to install the
packages to, and select an authentication mode. If you select SQL Server Authentica-
tion, you must provide a username and a password.

5. On the Select Installation Folder page, specify the folder in the fi le system for the pack-
age dependencies that will be installed.

6. If the package includes confi gurations, you can edit them by updating values in the
Value list on the Confi gure Packages page.

826 Chapter 26 ■ SQL Server Integration Services

Using DTUTIL
DTUTIL is a Command Prompt utility installed on SSIS servers. It is used to manage SSIS
packages from the command prompt and can be scripted using batch fi les or SQL Server
Agent jobs. It can do any of the following actions with packages:

■ Copy

■ Move

■ Delete

■ Verify

The syntax of the command is quite complex, and you can see all the details here:
http://technet.microsoft.com/en-us/library/ms162820.aspx. However, basic tasks can
be performed with simple command constructs once you know them. For example, you can
use the following command to copy a package:

dtutil /SQL src_package_name /COPY DTS;dest_folder\dest_package_name

You can use the following simple command to delete a package:

dtutil /SQL package_name /DELETE

SSIS Auditing and Event Handling
When you have one or two packages, auditing and event handling are less in focus. When
you have dozens or even hundreds of packages, they become very important. This section
introduces the basic features provided by SSIS for package monitoring (auditing), using log
providers, and event handling.

Auditing Packages
Auditing of SSIS packages can be either manual or automatic. Automatic auditing would
seek specifi c entries in the logs and take some action. Manual auditing involves monitor-
ing the SSIS operations. You can do this in the Active Operations dialog box. This dialog
allows you to view the status of all SSIS operations including deployment, validation, and
package execution.

To open the Active Operations dialog, expand the Integration Services Catalogs node in
SSMS, right-click SSISDB, and select Active Operations.

Additionally, SSIS 2012 offers built-in reports available by right-clicking SSISDB
in SSMS and selecting the desired report. Figure 26.3 shows the Integration Services
Dashboard report.

http://technet.microsoft.com/en-us/library/ms162820.aspx

SSIS Auditing and Event Handling 827

Using Log Providers
SSIS provides for logging within packages, containers, and tasks. This logging allows you
to collect information such as the name of the operator who executed the package and the
time when it started and fi nished. In addition to adding log providers to packages directly,
you can execute packages with the dtexec Command Prompt utility and specify what
should be logged within the command.

SSIS supports the following types of log providers:

■ Text fi le

■ SQL Server Profi ler

■ SQL Server

■ Windows event log

■ XML fi le

The log provider defi nes the way in which the events will be logged. For example, the
text fi le log provider will write events to a text fi le on the hard drive, while the SQL Server
log provider will write to a database table.

F I GU R E 26 . 3 Integration Services Dashboard report

828 Chapter 26 ■ SQL Server Integration Services

Defi ned events that can provide log entries include the following:

■ OnError

■ OnExecStatusChanged

■ OnInformation

■ OnPostExecute

■ OnPreExecute

■ OnPostValidate

■ OnPreValidate

■ OnProgress

■ OnQueryCancel

■ OnTaskFailed

■ OnVariableValueChanged

■ OnWarning

■ PipelineComponentTime

■ Diagnostic

For more information on log providers, see: http://technet.microsoft.com/en-us/
library/hh231191.aspx.

Using Event Handlers
In programming logic, a loop is a cycle that iterates a fi xed number of times or until a con-
dition is met. To accommodate looping and logic capabilities within SSIS packages, you use
event handlers.

An event handler allows execution to branch in different directions within a package.
For example, you may connect to a data source and then copy data from that source. In the
event that the data source is unavailable, you can branch the package logic in a different
direction. This allows for decision making and error correction within SSIS packages.

In addition to internal event handlers, external event handlers apply to the entire
package. For example, the OnError event can be used to execute a different package, send
an alert to an operator, or take some other predetermined action. Event handlers are the
key component used for notifi cation in the event of failures related to package execution.

Extracting, Transforming,
and Loading Data
This fi nal section introduces the basic building blocks used within SSIS packages. Each
is defi ned so that you can select the appropriate tools while building packages. You will
start your exploration with connection managers that allow you access to data sources and

http://technet.microsoft.com/en-us/library/hh231191.aspx
http://technet.microsoft.com/en-us/library/hh231191.aspx

Extracting, Transforming, and Loading Data 829

 destinations. Then you will explore data fl ow and data load design. Finally, a brief intro-
duction to script-based tasks is provided.

Connection Managers
Connection managers provide access to data sources and data destinations within SSIS
packages. SSIS supports connection managers for several data source types, including the
following:

■ ADO

■ ADO.NET

■ CACHE

■ DQS

■ EXCEL

■ FILE

■ FLATFILE

■ FTP

■ HTTP

■ MSMQ

■ MSOLAP 100

■ MULTIFILE

■ MULTIFLATFILE

■ ODBC

■ OLEDB

■ SMOSERVER

■ SMTP

■ SQLMOBILE

■ WMI

A quick perusal of this list makes it clear that SSIS can connect to just about any kind of
data source you desire.

Connection managers have different properties depending on the provider (data source
type or connection type) used. For example, Figure 26.4 shows the Connection Manager
for a SQL Server OLEDB connection, and Figure 26.5 shows the Connection Manager for
an Excel connection. As you can see, they are very different in what they offer.

830 Chapter 26 ■ SQL Server Integration Services

F I GU R E 26 . 4 The SQL Server OLEDB Connection Manager

F I GU R E 26 .5 The Excel Connection Manager

The Connection Manager you select will be determined based on the data source
to which you are connecting. If you have data in an Excel fi le, you will use the Excel
Connection Manager. If you have data in an Oracle database, you will likely use an ODBC

Extracting, Transforming, and Loading Data 831

Connection Manager, and so on. If you have used reporting tools such as Crystal Reports,
the concept is very similar. If you have not, just know that a Connection Manager provides
the credentials and location in formation to connect to some data source.

If you choose to use an Excel Connection Manager, remember that you
must disable 64-bit execution of the package for it to work. The Excel Con-
nection Manager is available in only a 32-bit implementation.

Data Flow Design
After adding a data fl ow task to a package, you can create the data fl ow design. This action
is performed on the Data Flow tab; Figure 26.6 shows a simple example.

F I GU R E 26 .6 The Data Flow tab of an SSIS package

It is in the data fl ow design process that you can implement event handlers for errors
that may occur during execution. For example, Figure 26.7 shows the OLEDB source from
Figure 26.6 in a closer view and selected with the event handler arrow, should you choose
to implement it.

832 Chapter 26 ■ SQL Server Integration Services

In addition to the internal event handler processing, you can use the Event Handler tab
to create an overall process for the OnError event should the package fail. This is shown in
Figure 26.8 with a single Notify Operator Task as the action to take on a failure event.

F I GU R E 26 . 8 The Event Handler tab

During the data fl ow of a package, you have data sources, data destinations,
and transforms. The sources are equivalent to extraction in the ETL process. The
destinations are equivalent to loading in the ETL process. The transforms take care of
the transformations. SSIS data fl ow processes support many transformations, as shown in
Figure 26.9.

F I GU R E 26 .7 The error event handler arrow

Extracting, Transforming, and Loading Data 833

Understanding Data Load Options
Data load options are confi gured in the Destination Editor, which you access by double-
clicking any destination into which you plan to insert data. The load options will vary
depending on the destination type. Figure 26.10 shows the Destination Editor for a SQL
Server OLEDB connection, and Figure 26.11 shows the same for an Excel connection.

F I GU R E 26 . 9 Supported common and other transforms in SSIS packages

834 Chapter 26 ■ SQL Server Integration Services

F I GU R E 26 .10 The SQL Server Destination Editor dialog

F I GU R E 26 .11 The Excel Destination Editor dialog

Extracting, Transforming, and Loading Data 835

In addition to the Connection Manager page, shown in Figures 26.10 and 26.11, each
destination has a Mappings page and an Error Output page. The Mappings page is used
to indicate which source columns should be placed into which destination columns. The
Error Output page is used to defi ne the failure level that should occur on an error type. For
example, you can fail the component (the entire load action), ignore the failure, or redirect
to an alternate destination.

Using Script Tasks
The fi nal element to be introduced is the use of script tasks. Because scripts depend on an
entire knowledge domain and this domain differs depending on the scripting language,
space is not dedicated here to understanding the actual scripting languages. However, it is
important to understand what you can do with the script component in a data fl ow process.
You can use any supported .NET language now and still use older scripting languages such
as VBScript and Jscript in some scenarios.

SSIS supports three script component types, as shown in Figure 26.12. The source
component type provides data output as columns. The destination component type provides
data input as columns. Stated differently, both source and destination script component
types are used to generate data as a source or destination through scripting procedures
rather than directly accessing data through Connection Managers. The transformation
script component type is the most commonly used. It allows for the manipulation of data
through scripted processes, which means that you can accomplish just about any task you
can conceive of in the transformation process.

F I GU R E 26 .12 The Select Script Component Type dialog shown when you drag a
script component to the Data Flow designer

836 Chapter 26 ■ SQL Server Integration Services

After creating a script component, you can edit the actual script using Visual Studio.
SSIS 2012 uses .NET development as the default scripting type, so you must use .NET-
compatible languages to develop your scripts. However, this capability means that SSIS
packages can be more powerful and fl exible than ever. It also means that you must learn
the .NET languages in order to successfully use the scripting features.

Summary
In this chapter, you explored SSIS in greater depth to prepare for continued learning or to
provide a foundation for the 70-463 exam with Microsoft. You learned about the motiva-
tors for using a tool such as SSIS, how to install and confi gure it, and the different options
for package deployment, auditing, and creation. In the next and fi nal chapter, you will
explore data quality issues and the solutions SQL Server 2012 provides for them.

Chapter Essentials

Understanding Integration Issues Many issues drive the need for a solution like SSIS.
These include existing systems, existing data, and co-existence of systems.

Installing SSIS You learned to install SQL Server in Chapter 2. This chapter provided
some added points related to the installation of SSIS specifi cally.

Configuring SSIS Security Settings SSIS security settings are related to the service and
access rights. You learned how to confi gure the SSIS services and about the different
options available for security access to packages and package execution.

Deploying Packages SSIS offers different deployment models. You can deploy to a proj-
ect using the project deployment model. You can deploy to a SQL Server or the fi le system
using the package deployment model.

SSIS Auditing and Event Handling When you run many packages, it is important to
ensure that they execute properly and achieve the desired results. Several options are avail-
able including active monitoring, viewing logs, and implementing event handlers.

Extracting, Transforming, and Loading Data The core of SSIS is ETL. It offers many
components to allow for ETL operations including Connection Managers, data fl ow, data
loading, and script tasks.

Data Quality
Solutions

TOPICS COVERED IN THIS CHAPTER:

 ✓ Understanding Data Quality Concerns

 ✓ Installing Data Quality Services

 ✓ Using Master Data Services (MDS)

 ✓ Cleaning Data

Chapter

27

It is important to have a data storage solution. It is
important to have a data availability solution. Data security
and recoverability are also important. It is equally important

to have a data quality solution. If you have the wrong data stored, available, secured, and
recoverable, it doesn’t do much good. This chapter will introduce the data quality concerns
addressed on the 70-463 exam and in your day-to-day operations. This chapter will
provide a foundational knowledge base for your exam preparations and help you discover
where you can go for more information.

You will fi rst learn why data quality is important and, for that matter, what it is. Next,
you’ll get a quick look at the Data Quality Services solution in SQL Server 2012 and how
to install it. You’ll then learn about Master Data Services and fi nally about data cleansing
processes.

Understanding Data Quality Concerns
To begin understanding Data Quality Services and the other data management technologies
in SQL Server 2012, you fi rst need to understand what is meant by data quality and why
it’s a concern for database administrators. This section begins by noting some common
problems that can affect data quality and then looks at the dimensions by which data qual-
ity can be evaluated and the processes involved in establishing and maintaining it.

Data Quality Problems
Two common problems exist in relation to an organization’s data. First, the database may
have the wrong data. Second, it may have the data wrong. While these two issues may
sound similar, there is an important and subtle difference.

Having the wrong data means there are errors in the data. Examples of wrong data
include the following:

■ Alpha characters in phone numbers within regions that do not support them

■ Email addresses without the @ character

■ Simply the wrong values

In many cases, you can use case-by-case data validation techniques to ensure that the
right data is being entered into a database. Tools such as Data Quality Services allow you
to centralize the management of this data validation into a logical system.

Understanding Data Quality Concerns 839

Having the data wrong simply means that the right data is stored in the wrong way. For
example, you may have numeric data stored in text columns or tables that are not properly
designed to allow for either good data entry or data analysis. These are the simplest data
quality problems to deal with because they should be addressed during database design.

Most of the data quality issues you face in an operational system involve miscategorized
data. To correct such problems, you must understand data quality dimensions and
processes.

Data Quality Dimensions
Data quality dimensions are the characteristics of data that determine whether it can be
considered good-quality data or poor-quality data. They can be described as hard, soft, or
schema dimensions.
Hard dimensions can be measured; they include the following:

■ Accuracy

■ Completeness

■ Consistency

Soft dimensions cannot be measured directly, although user input may be used to
determine the quality of data. Soft dimensions include the following:

■ Trust

■ Timeliness

■ Usability

In addition to the data dimensions listed here, schema dimensions may be used. Schema
dimensions apply to the design of the data storage rather than to the data itself. Schema
dimensions include the following:

■ Compliance with database design models

■ Documentation

■ Correctness

■ Completeness

The point is simple: data quality can be measured in several ways, both directly and
indirectly, and the measured items are called dimensions. The individual acting as the data
quality manager will measure these dimensions to ensure the organization’s data meets
defi ned quality expectations.

Data Quality Processes
Processes for establishing and maintaining data quality include the following:

■ Understanding and documenting data sources

■ Defi ning dimensions to assess

■ Assessing defi ned dimensions

■ Implementing a data quality correction plan

840 Chapter 27 ■ Data Quality Solutions

The process begins by understanding and documenting data sources. This step can
involve the perusal of existing documentation, or it may require the creation of database
documentation that does not exist. In either case, it is an important fi rst step. After
documenting your data sources, which can include databases, Excel workbooks, and more,
be sure to maintain this documentation by appropriately monitoring changes and creating
new data sources.

The next step is defi ning dimensions. In this step, you explore the different data values
that should be consistently managed. For example, fi nd the customer records and every
source of those records. You may fi nd that the company has a dozen different locations
where customer records are stored.

The third step is the assessment of the discovered and defi ned dimensions. Are they
consistently implemented? If not, how can you correct this? This step leads quickly into the
creation of the data quality correction plan.

A data quality correction plan should be put in place to address detected concerns.
In general, a data quality correction plan includes both correction of existing data and
prevention of future problems. The existing data is often passed through an ETL process
(see Chapter 13) of sorts to correct errors, and then the new data will be subject to more
stringent validation processes to prevent future errors.

In SQL Server 2012, Data Quality Services (DQS) is used to implement a data quality
correction plan. It is also used as a preventive measure to ensure continued data quality.
Master Data Services (MDS) is used to ensure that your master data—the single true
reference of or to an object (a noun) with low levels of volatility—is accurate and consistent.
The remaining sections of this chapter provide a foundational overview of DQS and MDS.

Installing Data Quality Services
In this section, you explore the components of DQS and the installation process. Then
you investigate the implementation of a confi guration that will allow for data governance
including assigning data quality roles and performing identity analysis.

DQS is used to implement your data quality correction plan. It can correct quality
issues, such as invalid stored data or the ability to create invalid data. It can also monitor
data sources to ensure that data quality is maintained. A tool like DQS is an important
part of modern data management processes. Many organizations have hundreds, even
thousands, of databases. A data quality solution, like DQS, can help ensure that these
databases are doing more than just storing data; it can ensure that the databases are storing
accurate and useful data.

Prerequisites
To install and use DQS, you must understand that there are two components to this solu-
tion. The fi rst is the Data Quality Server, and the second is the Data Quality Client.

Installing Data Quality Services 841

Data Quality Server Installed on the SQL Server 2012 Database Engine, the Data Quality
Server houses three databases: DQS_MAIN, DQS_PROJECTS, and DQS_STAGING_
DATA. The MAIN database is used to store the stored procedures used by DQS, the DQS
engine, and any published knowledge bases. The PROJECTS database includes the data
quality project information, and the STAGING_DATA database is the area where data
can be stored for DQS operations, such as cleansing, and then be exported to the desired
destination.

Data Quality Client The Data Quality Client can be installed on the Data Quality Server
or another administrative machine. It is a standalone application that connects to the Data
Quality Server. It provides a graphical interface used to perform both data quality actions
and DQS administrative tasks.

In addition to these two DQS components, the DQS Cleansing compo-
nent is available in SSIS to perform data cleansing from within an SSIS
package.

The minimum requirements for the Data Quality Server and Data Quality Client are as
follows:

■ Data Quality Server

■ 2GB RAM minimum

■ 4GB RAM recommended

■ SQL Server 2012 Database Engine installed

■ Data Quality Client

■ Compatible operating system:

■ Windows XP through Windows 7

■ Windows Server 2003 through Windows Server 2012

■ .NET Framework 4.0

■ Internet Explorer 6.0 SP1 or newer

For best performance and operation, consider using Windows 7 on the administration
computers and Windows Server 2008 R2 or newer on the servers. The client computers will
perform best with 2GB of RAM or more, and the servers will perform best with 4GB of
RAM or more.

Performing the Installation
The DQS components can be installed through the SQL Server 2012 installation engine
or directly using the sql_dq.msi and sql_dqc.msi packages. Specifi cally, the sql_dqs.msi
package is used to install the Data Quality Client component and can be very useful for
multiuser distribution through the Active Directory Group Policy infrastructure within an
organization. These MSI fi les are found on the SQL Server 2012 installation DVD.

842 Chapter 27 ■ Data Quality Solutions

Active Directory Group Policy allows for the central configuration and
management of Windows computers in a networked environment.
This management includes the distribution of software to the Windows
computers.

When installing using the SQL Server 2012 installation engine (SETUP), simply select
Data Quality Services under the Database Engine Services options on the Feature Selection
page. DQS can be installed during the installation of SQL Server 2012 or at any other time
using the same SETUP program. Other than that, the installation is the same as the other
installations covered in this book for SQL Server, SQL Server Analysis Services, and SQL
Server Integration Services. For this reason, the individual steps of the installation process
are not needed here.

After the installation is complete, you must perform the post-installation step of running
the DQSInstaller.exe program. This can be run from the Start menu by navigating to
Start ➢ All Programs ➢ Microsoft SQL Server 2012 ➢ Data Quality Services ➢ Data
Quality Server Installer. Alternatively, you can run it from Windows Explorer by browsing
to the SQL Server 2012 installation folder for the instance to which you installed DQS
from SETUP and then running DQSInstaller.exe from the Binn folder.

When you run DQSInstaller.exe, an initial preparation process runs in a Command
Prompt window. Then you are asked to provide the following information:

■ A password for the database master key, which is used to encrypt the reference data
service provider keys in the DQS_MAIN database that is created

■ Agreement with the completion message indicating installation was successful

At this point, DQS is installed on the server, and you are ready to fully confi gure it to
perform data governance operations (controlling who can use it and performing identity
analysis).

Data Governance
Data governance is the managing of data through policies and procedures that result in
data quality and security. An important element in data governance is security. For this,
DQS supports roles that allow for the proper assignment of permissions to individuals or
groups in a simple manner. Once DQS is installed, the following roles can be assigned to
principals for the DQS_MAIN database:

dqs_administrator Can perform any task in the scope of the DQS solution. They can edit
a project; create and edit a knowledge base; terminate connections and activity; and more.
Think of them as administrators, as the name implies, of the DQS_MAIN database.

dqs_kb_editor Can perform all DQS activities except for administration. May edit or
execute a project. May create and edit a knowledge base. They can view activity but cannot
terminate activity.

dqs_kb_operator Can edit and execute a project. Cannot perform any knowledge man-
agement or administrative tasks.

Using Master Data Services 843

As part of data governance, you must perform identity analysis. This is the process used
to determine the identity of the data owner. The data owner should be whoever knows the
most about the use and proper creation of that data. For example, the sales data will be
best understood by the people and processes that create it, which is likely to be the sales
department. Similarly, the human resources (HR) data will be best understood by HR.
When implementing a DQS solution, be sure to meet with the identifi ed data owners to
determine how to best ensure the quality of their data.

For more information on the installation and configuration process for
DQS, see the following MSDN article: http://msdn.microsoft.com/
en-us/library/gg492277.aspx.

Using Master Data Services
In addition to DQS, you may choose to implement MDS. MDS is used to provide for mas-
ter data management. You learned previously that master data is the one source of known
accurate information for a given data set. For example, it may be the known accurate
source for customer records or for employee records. This master data requires manage-
ment, and that is the role of MDS. In this section, you learn about the requirements for
installation and the basic administration tasks related to MDS.

Installing and Implementing MDS
MDS is a two-part system. First is the MDS database, and second is the MDS web applica-
tion. The MDS database is hosted in SQL Server 2012, and the web application is hosted in
Internet Information Services (IIS) 7 or newer. For this reason, the following requirements
must be met to install and use MDS:

■ SQL Server 2012 for the MDS database (either Developer or Enterprise edition)

■ Windows Server 2008 R2 or newer as the operating system (or Windows Vista or
newer when installed on a nonserver computer)

■ Web Server (IIS) role installed on the server

For a complete list of the roles, role services, and features that must be
installed on the Windows Server to support the MDS web application, see:
http://msdn.microsoft.com/en-us/library/ee633744.aspx.

Optionally, you can install the MDS database on one server and the IIS MDS web
application on another server. This is useful for performance gains when dealing with

http://msdn.microsoft.com/en-us/library/gg492277.aspx
http://msdn.microsoft.com/en-us/library/gg492277.aspx
http://msdn.microsoft.com/en-us/library/ee633744.aspx

844 Chapter 27 ■ Data Quality Solutions

already loaded servers. The web application is called the Master Data Manager, and it is
used to manage the master data. This web application affectively creates a website that can
be used by master data operators for administration and management.

Like DQS, MDS is installed using the SQL Server 2012 installation manager (SETUP).
On the Feature Selection page, MDS can be found in the Shared Features section.
After installation is complete, you will confi gure MDS with the Master Data Services
Confi guration Manager (MDS CM). When you run MDS CM, it performs the following
operations:

1. Creates a Windows group named MDS_ServiceAccounts, which is used for the MDS
service accounts for application pools in IIS

2. Creates the MDSTempDir in the MDS installation path folder and provides permis-
sions for the MDS_ServiceAccounts group

3. Confi gures the web application Web.config fi le’s tempDirectory attribute with the path
to the MDSTempDir folder

After MDS CM completes this process, you can use it to create an MDS database for
master data. This is a simple process where you select Database Confi guration and then click
Create Database and use the wizard that appears to create it. With the database created, you
can create the Master Data Manager web application, using the Web Confi guration page of
MDS CM. This web application is used to manage the MDS database.

Next, you will want to defi ne security roles for MDS. When MDS is installed, the
following logins are created:

mds_dlp_login A disabled login that is used for the rare practice of creating UNSAFE
assemblies

mds_email_login An enabled login used for email notifi cations

The MDS database includes a role named mds_exec, which contains the account defi ned
as the account for the web application pool. For more detailed information on security
for database objects in MDS implementations, see: http://msdn.microsoft.com/en-us/
library/ff487057.aspx.

Creating MDS Objects
Finally, working with MDS requires understanding the objects and concepts within it.
These include the following:

■ Models

■ Hierarchies

■ Collections

■ Entities

■ Attributes

■ Subscriptions

■ Import/export processes

http://msdn.microsoft.com/en-us/library/ff487057.aspx
http://msdn.microsoft.com/en-us/library/ff487057.aspx

Cleaning Data 845

Models are used to organize the structure of the master data. A single MDS installation
can have one model or multiple models. Each model will group similar kinds of data.
You may choose to create a different model for each master data type, such as people or
products. Additionally, you can use a model as a security boundary to determine who can
update and manage the objects within the model.

You can also implement hierarchies or derived hierarchies. These hierarchies are
created to show relationships between attributes, discussed later. Derived hierarchies are
determined based on these relationships automatically. Explicit hierarchies are created
by users and contain members from a single entity. An alternative to a hierarchy is a
collection. A collection is a group of leaf members from an entity.

Entities are the objects contained within the MDS models. An entity includes members,
and these members are the rows of master data managed by MDS. An entity is a collection
of attributes, which are the descriptors of the members. Think of attributes like columns in
a table and members like rows in a table, and you will have the right concept.

Now that you have the description of an entity (it’s basically a table), you can better
understand a hierarchy or a collection. A hierarchy or collection is a tree structure used to
group like members for organizational purposes. You can also consolidate and summarize
members and then use them for reporting and analysis purposes. Therefore, hierarchies, in
MDS, are similar to views in standard SQL Server databases.

Finally, subscriptions are used to give users a simple method to pull data from MDS
using SSIS or another tool that supports them. MDS managers create subscription views,
and then users can pull data from those subscriptions.

In the end, MDS is all about organizing and managing your master data. To view free
online MSDN tutorials related to the use of MDS, visit: http://msdn.microsoft.com/
en-us/sqlserver/ff943581.aspx.

For more information on the installation and configuration process for
MDS, see the following MSDN article: http://msdn.microsoft.com/
en-us/library/ee633752.aspx.

Cleaning Data
So far, this chapter has introduced the concepts behind tools like DQS and MDS in SQL
Server 2012. This last section reviews the basic processes and tasks surrounding data
cleansing. These actions result in better data within your databases and may include links
to MDS as well as the use of DQS and SSIS.

Profiling Systems
Profi ling a system is simply gathering information about that system. You can profi le OLTP
and OLAP database systems using DQS, but you can also do it with tools like SSIS and
even Transact-SQL queries.

http://msdn.microsoft.com/en-us/sqlserver/ff943581.aspx
http://msdn.microsoft.com/en-us/sqlserver/ff943581.aspx
http://msdn.microsoft.com/en-us/library/ee633752.aspx
http://msdn.microsoft.com/en-us/library/ee633752.aspx

846 Chapter 27 ■ Data Quality Solutions

Profi ling with T-SQL is accomplished by discovering things like the following:

■ What percentage of rows include NULL values in a given column?

■ A high percentage may be acceptable on some columns and not on others.

■ What is the oldest birthdate for a stored person entity, or how many are listed as older
than 110 years?

■ Those shown as older than 110 years are most likely errors, particularly if there
are many.

■ Are there data values in a column that fall far outside the standard deviation?

■ Such values may represent dirty data.

Looking for data like this does not reveal why it has been allowed to happen, but
it reveals that it is happening. This is the core of data profi ling. After you determine
that inaccurate data is getting into your system, you must move on to the next step of
knowledge base management.

Knowledge Base Management
Knowledge base management is data cleansing management based on a knowledge base
(KB), which is a collection of domains that are mapped or connected to a data source.
Think of a domain as a defi ned data value constraint. For example, you may defi ne a phone
number domain or an email address domain. The domain constrains the allowed values
based on content or data type and the structure of the data.

Building a DQL KB includes the following actions:

1. Knowledge discovery

2. Domain management

3. Reference data services

4. Matching policy

Knowledge discovery is a computer process that uses sample data to automatically defi ne
domains. For example, if you have known clean data, the process can analyze that data to
defi ne constraints for each domain represented.

Domain management is the process you use to verify the domains created through
knowledge discovery and, if necessary, add new domains to the KB. Remember, a domain
is basically a fi eld in the source data tables. The following properties can be defi ned for a
domain:

Data Type String, date, integer, or decimal

Use Leading Values Determines whether all synonyms of a value are replaced with the
leading value defi ned

Normalize Used to remove special characters from values

Format Output Used to implement uppercase, lowercase, or capitalization for values

Cleaning Data 847

Speller Implements a spell checker

Syntax Algorithms Used to disable syntax error checking

Reference data services allow you to validate domain data against external data that
is provided by another organization (typically, a list service provider) that guarantees the
quality of the data.

Finally, a matching policy is used to identify duplicates for a single entity. For example,
you do not want two rows for the same customer if all information is identical. Matching
policies control the detection of such duplicate values in the de-duplication process.

Creating the Project
Data cleansing projects can be created in SSIS or in T-SQL code. With SSIS, you use the
DQS Cleansing transformation. It is available only after DQS has been installed on a SQL
Server that contains an SSIS installation as well. When you create an ETL process, simply
include the DQS cleansing transformation to perform the cleansing operation.

Before you can create a data quality project for cleansing or matching (an alternate data
quality project type), you must have a relevant knowledge based created. Additionally, to
create a project, you must have dqs_kb_operator role permissions on the DQS_MAIN
database.

Projects are created using the Data Quality Client. Exercise 27.1 outlines the basic steps.

E X E R C I S E 2 7.1

Creating a Data Quality Project

Take the following basic steps to create a data quality project in the Data Quality Client.

1. Start the Data Quality Client application.

2. On the home screen, click New Data Quality Project.

3. On the New Data Quality Project screen, confi gure the appropriate parameters.

a. Enter a name for the project.

b. Enter a description for the project.

c. Select the appropriate knowledge base in the Use Knowledge Base list.

d. Select either a cleansing or matching activity for the project.

4. Click Create to create the data quality project.

After a data quality project is created, a wizard launches so that you can perform the
activity selected. If you chose a data cleansing activity, the data will be analyzed and
corrected if necessary or desired. If you chose a data matching activity, the data will be
analyzed and duplicates can be removed.

848 Chapter 27 ■ Data Quality Solutions

You can learn more about data cleansing and data matching project details
at, http://msdn.microsoft.com/en-us/library/gg524800.aspx and,
http://msdn.microsoft.com/en-us/library/hh213071.aspx.

Summary
In this chapter, you explored fundamental concepts related to data quality. You learned
about the DQS and MDS solutions provided with SQL Server 2012 and the concepts
surrounding data cleansing. To learn the specifi c steps and procedures for use of these
tools, see the tutorials available on the Microsoft Developer’s Network (MSDN) at, http://
msdn.microsoft.com/en-us/library/gg492277.aspx and, http://msdn.microsoft.com/
en-us/sqlserver/ff943581.aspx.

Chapter Essentials

Understanding Data Quality Concerns Data quality is essential for modern organiza-
tions. We need not only data but the right data. This requires data quality processes.

Installing Data Quality Services (DQS) Installing DQS begins by understanding the
prerequisites and then using the SQL Server 2012 installation manager (SETUP) to perform
the installation.

Using Master Data Services (MDS) MDS allows for the management of master data. That
is the one authoritative data source. This includes creating models and entities for central-
ized management and control.

Cleaning Data Data cleaning can mean cleansing the data by changing actual values to
match defi ned domains or matching the data to remove duplicates. Both actions can be
performed using the data quality projects created within the Data Quality Client
application.

http://msdn.microsoft.com/en-us/library/gg524800.aspx
http://msdn.microsoft.com/en-us/library/hh213071.aspx
http://msdn.microsoft.com/en-us/library/gg492277.aspx
http://msdn.microsoft.com/en-us/library/gg492277.aspx
http://msdn.microsoft.com/en-us/sqlserver/ff943581.aspx
http://msdn.microsoft.com/en-us/sqlserver/ff943581.aspx

Appendices

Microsoft’s
Certification Program

Appendix

A
IN THIS APPENDIX:

✔ How Do You Become Certified on SQL Server 2012?

✔ Tips for Taking a Microsoft Exam

✔ Certification Objectives Map

Since the inception of its certifi cation program, Microsoft has
certifi ed more than 2 million people. As the computer network
industry continues to increase in both size and complexity, this

number is sure to grow—and the need for proven ability will also increase. Certifi cations
can help companies verify the skills of prospective employees and contractors.

The Microsoft certifi cation tracks for SQL Server 2012 include the following:

MCSA: SQL Server 2012 The MCSA is now the lowest-level certifi cation you can achieve
with Microsoft in relation to SQL Server 2012. It requires passing three exams: 70-461,
70-462, and 70-463. This book assists in your preparation for these exams. It provides in-
depth coverage of topics related to exams 70-461 and 70-462, and it provides foundational
coverage of topics related to exam 70-463.

MCSE: Data Platform or MCSE: Business Intelligence The MCSE certifi cations, in rela-
tion to SQL Server, require that you become an MCSA fi rst and then pass two additional
exams. The additional exams will vary depending on which of the two MCSE tracks you
choose. For more information, see http://bit.ly/YKgdp0.

MCSM: Data Platform The MCSM certifi cation takes things to an entirely new level. It
requires passing a knowledge exam (in addition to having the MCSE in SQL Server) and a
lab exam. This is now the elite-level certifi cation of SQL Server 2012.

How Do You Become Certified on
SQL Server 2012?
Attaining Microsoft certifi cation has always been a challenge. In the past, students have
been able to acquire detailed exam information—even most of the exam questions—from
online “brain dumps” and third-party “cram” books or software products. For the new
generation of exams, this is simply not the case.

Microsoft has taken strong steps to protect the security and integrity of its new certi-
fi cation tracks. Now prospective candidates should complete a course of study that devel-
ops detailed knowledge about a wide range of topics. It supplies them with the true skills
needed, derived from working with the technology being tested.

The new generations of Microsoft certifi cation programs are heavily weighted toward
hands-on skills and experience. It is recommended that candidates have troubleshooting
skills acquired through hands-on experience and working knowledge.

http://bit.ly/YKgdp0

Tips for Taking a Microsoft Exam 853

For MCSA: SQL Server 2012 certifi cation, you must pass three exams:

■ Querying Microsoft SQL Server 2012 (70-461)

■ Administering Microsoft SQL Server 2012 Databases (70-462)

■ Implementing a Data Warehouse with Microsoft SQL Server 2012 (70-463)

You can find the detailed exam objectives, and the chapters in which those
objectives are discussed, in the section “Certification Objectives Map,”
later in this appendix.

For a more detailed description of the Microsoft certifi cation programs, including a list
of all the exams, visit the Microsoft Learning website at: www.microsoft.com/learning.

Tips for Taking a Microsoft Exam
Here are some general tips for achieving success on your certifi cation exam:

■ Arrive early at the exam center so that you can relax and review your study materials.
During this final review, you can look over tables and lists of exam-related information.

■ Read the questions carefully. Don’t be tempted to jump to an early conclusion. Make
sure you know exactly what the question is asking.

■ Answer all questions. If you are unsure about a question, mark it for review and return
to it at a later time.

■ On simulations, do not change settings that are not directly related to the question.
Also, assume default settings if the question does not specify or imply which settings
are used.

■ For questions you’re not sure about, use a process of elimination to get rid of the obvi-
ously incorrect answers first. This improves your odds of selecting the correct answer
when you need to make an educated guess.

Exam Registration
You may take the Microsoft exams at any of more than 1,000 Authorized Prometric Test-
ing Centers (APTCs) around the world. For the location of a testing center near you, call
Prometric at 800-755-EXAM (755-3926). Outside the United States and Canada, contact
your local Prometric registration center.

Find out the number of the exam you want to take, and then register with the Prometric
registration center nearest to you. At this point, you will be asked for advance payment for
the exam. The exams are $125 each, and you must take them within one year of payment.
You can schedule exams up to six weeks in advance or as late as one working day prior to

http://www.microsoft.com/learning

854 Appendix A ■ Microsoft’s Certification Program

the date of the exam. You can cancel or reschedule your exam if you contact the center at
least two working days prior to the exam. Same-day registration is available in some loca-
tions, subject to space availability. Where same-day registration is available, you must regis-
ter a minimum of two hours before test time.

You may also register for your exams online at www.prometric.com. As of
this writing, VUE no longer offers Microsoft exams. If you have taken Micro-
soft exams with VUE, continue to watch VUE’s website (www.vue.com) to see
whether it starts offering Microsoft exams again.

When you schedule the exam, you will be provided with instructions regarding appoint-
ment and cancellation procedures, ID requirements, and information about the testing
center location. In addition, you will receive a registration and payment confi rmation letter
from Prometric.

Microsoft requires certifi cation candidates to accept the terms of a nondisclosure agree-
ment before taking certifi cation exams.

Certification Objectives Map
Table A.1 provides objective mappings for the 70-461 exam, Table A.2 provides objective
mappings for the 70-462 exam, and Table A.3 provides objective mappings for the 70-463
exam, which is covered at a foundational level with references to external information for
further study and exam preparation. In addition to the book chapters, you will fi nd cover-
age of exam objectives in the fl ashcards, practice exams, and videos on the book’s compan-
ion website, www.sybex.com/go/sqlserver12admin.

TA B LE A .1 Exam 70-461, Querying Microsoft SQL Server 2012 objectives map

Objective Chapter

Create Database Objects

Create and alter tables using T-SQL syntax (simple statements). 10

Create and alter views (simple statements). 11

Design views. 11

Create and modify constraints (simple statements). 11

Create and alter DML triggers. 12

http://www.prometric.com
http://www.vue.com
http://www.sybex.com/go/sqlserver12admin

Certification Objectives Map 855

Work with Data

Query data by using SELECT statements. 5

Implement sub-queries. 5

Implement data types. 10

Implement aggregate queries. 5

Query and manage XML data. 5

Modify Data

Create and alter stored procedures (simple statements). 12

Modify data by using INSERT, UPDATE, and DELETE statements. 5

Combine data sets. 5

Troubleshoot and Optimize Queries

Optimize queries. 5

Manage transactions. 5

Evaluate the use of row-based operations versus set-based operations. 5

Implement error handling. 5

TA B LE A . 2 Exam 70-462, Administering Microsoft SQL Server 2012 databases

Objective Chapter

Install and Configure SQL Server

Plan installation. 1, 2

Install SQL Server and related services. 2

Implement a migration strategy. 2

Configure additional SQL Server components. 2, 3, 4

Manage SQL Server Agent. 14

856 Appendix A ■ Microsoft’s Certification Program

TA B LE A . 2 Exam 70-462, Administering Microsoft SQL Server 2012 databases
(continued)

Objective Chapter

Maintain Instances and Databases

Manage and configure databases. 9

Configure SQL Server instances. 2, 3

Implement a SQL Server clustered instance. 22

Manage SQL Server instances. 2, 3

Optimize and Troubleshoot SQL Server

Identify and resolve concurrency problems. 15

Collect and analyze troubleshooting data. 15

Audit SQL Server instances. 20

Manage Data

Configure and maintain a backup strategy. 17

Restore databases. 17

Implement and maintain indexes. 11

Import and export data. 13, 26

Implement Security

Manage logins and server roles. 19

Manage database permissions. 19, 20

Manage users and database roles. 18, 19

Troubleshoot security. 18, 19, 20

Implement High Availability

Implement AlwaysOn. 21, 22

Implement database mirroring. 23

Implement replication. 24

Certification Objectives Map 857

TA B LE A . 3 Exam 70-463, Implementing a Data Warehouse with Microsoft
SQL Server 2012

Objective Chapter

Design and Implement a Data Warehouse

Design and implement dimensions. 25

Design and implement fact tables. 25

Extract and Transform Data

Define connection managers. 26

Design data flow. 26

Implement data flow. 26

Manage SSIS package execution. 26

Implement script tasks in SSIS. 26

Load Data

Design control flow. 26

Implement package logic by using SSIS variables and parameters. 26

Implement control flow. 26

Implement data load options. 26

Implement script components in SSIS. 26

Configure and Deploy SSIS Solutions

Troubleshoot data integration issues. 26

Install and maintain SSIS components. 26

Implement auditing, logging, and event handling. 26

Deploy SSIS solutions. 26

Configure SSIS security settings. 26

858 Appendix A ■ Microsoft’s Certification Program

TA B LE A . 3 Exam 70-463, Implementing a Data Warehouse with Microsoft
SQL Server 2012 (continued)

Objective Chapter

Build Data Quality Solutions

Install and maintain Data Quality Services. 27

Implement master data management solutions. 27

Create a data quality project to clean data. 27

Objectives for this exam are covered at a foundational level with references to external information for fur-
ther study and exam preparation.

Exam objectives are subject to change at any time without prior notice
and at Microsoft’s sole discretion. Please visit Microsoft’s website
(www.Microsoft.com/learning) for the most current listing of exam
objectives.

http://www.Microsoft.com/learning

About the Additional
Study Tools

IN THIS APPENDIX:

✔ Additional Study Tools

✔ System Requirements

✔ Using the Study Tools

✔ Troubleshooting

Appendix

B

Additional Study Tools
The following sections summarize the software and other

goodies you’ll fi nd on the companion website. If you need help installing the items, refer to
the installation instructions in the “Using the Study Tools” section of this appendix.

You will find the additional study tools at www.sybex.com/go/sqlserver
12admin. In this appendix, you will get instructions on how to download
the files to your hard drive.

Videos
For many of the hands-on exercises, I have included video walk-throughs. Look for the
video icon for exercises that include video walk-throughs.

Sybex Test Engine
The fi les contain the Sybex test engine, which includes three bonus practice exams, one for
each of the MCSA: SQL Server 2012 exams (70-461, 70-462, and 70-463). These practice
exams are intended to test your understanding of the objectives and do not contain actual
questions from the Microsoft exams.

Electronic Flashcards
These handy electronic fl ashcards are just what they sound like. One side contains a ques-
tion, and the other side shows the answer.

Glossary of Terms
I have included an electronic glossary of terms in .pdf format. You can view this glossary
with Adobe Reader. You’ll fi nd defi nitions of important terms related to SQL Server 2012

http://www.sybex.com/go/sqlserver12admin
http://www.sybex.com/go/sqlserver12admin

Troubleshooting 861

and the role of a DBA. If you’re preparing for the exams, be sure to read the glossary on the
morning of the exam. Doing so will ensure your understanding of the most important top-
ics covered.

Adobe Reader
I’ve included a link to download a copy of Adobe Reader so you can view PDF fi les that
accompany the book’s content. For more information on Adobe Reader or to check for a
newer version, visit Adobe’s website at www.adobe.com/products/reader/.

System Requirements
To use the additional study tools, make sure your computer meets the minimum system
requirements shown in the following list. If your computer doesn’t match up to these
requirements, you may have problems using the software and fi les. For the latest and great-
est information, please refer to the ReadMe fi le located in the downloads.

■ A PC running the Microsoft Windows 8 operating system or older

■ An Internet connection

Using the Study Tools
To install the items, follow these steps:

1. Download the .zip file to your hard drive, and unzip it to an appropriate location. You
will find instructions on where to download at: www.sybex.com/go/sqlserver12admin.

2. Click the Start.EXE file to open the study tools file.

3. Read the license agreement, and then click the Accept button if you want to use the
study tools.

The main interface appears. The interface allows you to access the content with just one
or two clicks.

Troubleshooting
Wiley has attempted to provide programs that work on most computers with the minimum
system requirements. Your computer may differ, and some programs may not work
 properly for some reason.

http://www.adobe.com/products/reader/
http://www.sybex.com/go/sqlserver12admin

862 Appendix B ■ About the Additional Study Tools

The two likeliest problems are that you don’t have enough memory (RAM) for the pro-
grams you want to use or you have other programs running that are affecting the installa-
tion or running of a program. If you get an error message such as “Not enough memory”
or “Setup cannot continue,” try one or more of the following suggestions and then try
using the software again:

Turn off any antivirus software running on your computer. Installation programs
sometimes mimic virus activity and may make your computer incorrectly believe it’s
being infected by a virus.

Close all running programs. The more programs you have running, the less memory is
available to other programs. Installation programs typically update fi les and programs,
so if you keep other programs running, installation may not work properly.

Add more RAM to your computer. This is, admittedly, a drastic and somewhat expen-
sive step. However, adding more memory can really help the speed of your computer
and allow more programs to run at the same time.

Customer Care
If you have trouble with the book’s companion study tools, please call the Wiley
Product Technical Support phone number at (800) 762-2974, or email them at
http://sybex.custhelp.com/.

http://sybex.custhelp.com/

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a
topic. Italicized page numbers indicate illustrations.

A
acceptable level of risk, 602
acceptance of risk, 713
access

methods, 51–52
restricting. See security

access control in SSIS, 821
Access databases, 11–12
Access Point for Administering the

Cluster page, 745
access points (APs) for wireless networks, 615
Access This Computer From The Network policy,

48, 683
accidental actions, triggers for, 400
accountability, C2 compliance for, 714–715
accounts

managing, 118–119
policy settings, 683
service, 61, 700–701
Windows logins, 662

Active/Active failover clusters, 749
Active Directory Domain Services (ADDS), 123
Active Directory Group Policy, 841–842
Active Operations dialog, 827
Active/Passive failover clusters, 749
ActiveX scripts, 452–453, 459
Activity Monitor, 496, 500, 501
actors in use cases, 254
acts of God, 606
ad hoc reporting, 432
Add Counters dialog, 514–515, 517
Add Features Wizard, 594
Add/Remove Snap-in dialog, 512
Add Stand-Alone Snap-In dialog, 512
additive measures for data warehousing, 803
additive resolvers, 786
Address Resolution Protocol (ARP) packets, 623
ADDS (Active Directory Domain Services), 123
Advanced page

ERDs, 259

jobs, 458–459, 458, 466
SQL Server Installation Center, 64
SSCM, 89, 89
Windows command jobs, 480

adware, 636
AES encryption, 672
AFTER triggers, 398, 401
Agent Security page, 785, 785
aggregate queries, 206–207
aggregation in data warehousing, 804–805
Aircrack-ng tools, 623
AirCrack program, 607
Aireplay program, 623
Alert Action page, 486
Alert Task page, 486
alerts

creating, 482–484, 483
free drive space, 484–486, 484–485
jobs, 461

Alerts page, 461
aliases for SQL Native Client, 90, 90
ALL SERVER clause, 401
Allow Online DML Processing option, 377–378
AllowConfigurationChanges setting, 824
ALTER AUTHORIZATION statement, 699
ALTER DATABASE statement, 325

BCP, 792
collations, 346, 348
mirroring, 763
recovery models, 577

ALTER INDEX statement, 386–387
ALTER INDEX REBUILD statement, 388
ALTER INDEX REORGANIZE statement, 388
Alter permission, 696
ALTER statement, 209–210
ALTER TABLE statement, 443
ALTER TRIGGER statement, 406
ALTER USER statement, 698
AlwaysOn technology

defined, 725–726
failover solutions, 728–730

AlwaysOn technology (continued)
hardware, 730–731
high availability, 722–725, 724
mirroring, 727–728

American National Standards Institute (ANSI),
172, 175

analysis servers, 41
Analysis Services. See SQL Server Analysis

Services (SSAS)
Analysis Services Configuration screen, 418
Analysis Services projects, 103
AND operators, 193
anomalies

read, 294
second normal form, 287
types, 281

anomaly-based detection, 636
ANSI (American National Standards Institute),

172, 175
ANSI NULL Default property, 319
ANSI NULLS Enabled property, 319
ANSI Padding Enabled property, 319
ANSI Warnings Enabled property, 319
antivirus and antispyware solutions, 636–637
appending files, 147–148
application-level encryption, 671–673, 672–673
Application log, 462
applications

roles, 667–668
types, 18–20, 19–20

APs (access points) for wireless networks, 615
APTCs (Authorized Prometric Testing Centers),

853
Arithmetic Abort Enabled property, 319
arithmetic operators in SQL, 183
ARP (Address Resolution Protocol) packets, 623
ARP poisoning, 627
articles for replication, 775
Articles page, 784, 784
AS DATABASE SNAPSHOT clause, 770
AS PARTITION clause, 361
AS SNAPSHOT OF clause, 332
assurance levels in TCSEC, 713–714
asterisks (*)

SELECT statements, 186
SQL comments, 178

asymmetric encryption keys, 670
asynchronous-commit failover mode, 729
at signs (@) in SQL identifiers, 180

atomicity, 51
Attach Database dialog, 330–331
attaching databases, 328–331, 329–331
attackers, 604–605
attributes

dimensions, 803, 809
MDS, 845

Attributes page, 268, 268
Audit Logon Events policy, 687, 687
Audit Policy Summary screen, 691
audits

C2 compliance, 714–716
DDL triggers, 706
enabling, 702–704, 703–704
logon triggers, 706–707
notifications, 705
overview, 701–702
packages, 826, 827

authentication, 642–644
credentials, 644–646
database users, 668
modes, 70, 76, 652–655, 654–655
passwords. See passwords
principals, 655–657
regulatory compliance, 648–652
roles, 656–657

application, 667–668
custom, 667–668, 668
fixed database, 666
fixed server, 664–665, 665

SQL logins, 657–659, 657–658
SSIS packages, 423, 472
types, 646–647
Windows logins, 661–665, 662–664
Windows Server, 611–612

authorization, 642
C2 compliance, 714
least privilege principle, 691–696, 693

Authorized Prometric Testing Centers (APTCs), 853
Auto Close property, 318
Auto Create Statistics property, 318
auto shrink feature, 316–317
Auto Update Statistics property, 318
Auto Update Statistics Asynchronously

property, 318
autogrowth property, 312–313
Automate phase in SAU, 451
automatic auditing of packages, 827
automatic failover, 729–730, 760

864 AlwaysOn technology – automatic failover

automatic page repair – binary string data types 865

automatic page repair, 726
Automatic Updates for WSUS, 487
automation

command prompt, 164
enforcement, 535
evaluation, 535
PBM and CMS, 564–566, 565–566
recovery, 51

AutoPlay feature
SSAS, 416, 416
SSIS, 420

availability
design for, 295–296
failover clustering. See failover clustering
server-based databases, 12–13

Avast products, 637
average query size, 59
AverageOfChildren function, 805
averaging resolvers, 786
Avg. Disk Queue Length counter, 494
AVG function, 188, 206

B
B-tree structures, 365, 366, 368–369, 368
background colors, 122
Backup Database dialog, 581
BACKUP DATABASE statement

differential backups, 583
filegroups, 588
files, 585
full backups, 580
transactional logs, 583–584

BACKUP LOG statement
compression, 588
tail logs, 592
transaction logs, 583

BACKUP SERVICE MASTER KEY statement,
670–671

backup-sqldatabase cmdlet, 22
backups, 570

compressed, 587–588
devices and files, 584–587, 585
differential, 580, 582–583
environment, 593–595, 594
filegroups, 310, 588
full, 579–582, 579, 581
jobs, 465–469, 465–469
plans, 571–574

recovery models, 573–578, 575, 578
restoring, 589–593, 591
server-based databases, 12–13
system databases, 588–589
transaction logs, 583–584
types, 578–579

balanced tree structures, 365, 366, 368–369, 368
bandwidth in WSUS, 487
bank vaults, 634
Barker notation, 259
baselines, security, 678–679

SCW, 688–691, 688–691
security templates, 679–686, 681, 684–685
settings analysis, 686–688, 686–687

batch directives, SQL, 178–180
batch files, 155

comments, 157–158
creating, 158–159
information gathering, 476–477
logic statements, 155–156
passing data, 156–157
running, 159–160, 160

BCMs (bulk changed maps), 576
BCNF (Boyce-Codd normal forms), 289–291
BCP (Bulk Changed Page) bit, 314–315
BCP (bulk copy program), 314–315, 792–793
Beacon frames, 616
BEGIN TRAN statement, 216–218
Beginning Database Design Solutions, 257
best practices, security

audits, 701–707
baselines, 678–679

SCW, 688–691, 688–691
security templates, 679–686, 681, 684–685
settings analysis, 686–688, 686–687

C2 compliance, 713–716
Common Criteria, 716–717
GRC, 712–713
least privilege principle. See least privilege

principle
surface area, 707–710, 709–711

BETWEEN clause, 194–195, 194
BI (business intelligence), 412, 803
BIDS (Business Intelligence Development

Studio), 21
SSDT. See SQL Server Data Tools (SSDT)
SSIS, 107, 795

bigint data type, 340
binary string data types, 342

866 binding sniffed data – CHECK_EXPIRATION option

binding sniffed data, 627
biometric systems, 643, 647
bit data type, 340
BitLocker encryption, 669
block comments, 178
blocks, 499–503, 500–501
Bold Fonts option, 133
Books Online, 54, 116–118, 117
Boyce-Codd normal forms (BCNF), 289–291
breaking network connections, 749
Broker Enabled property, 320
brute force attacks, 622
Buffer Cache Hit Ratio counter, 517
buffers

Command History, 133
installation planning, 50–51

Build and Load phase in DBLC, 238
bulk changed maps (BCMs), 576
Bulk Changed Page (BCP) bit, 314–315
bulk copy program (BCP), 314–315, 792–793
BULK INSERT statement, 793–794
bulk-logged recovery models, 314–315, 575–576
BulkAdmin server role, 664
Business, User, Model (BUM) process, 239–242

Business phase, 240–241
Modeling phase, 242
Performance and Usability phase, 241–242
Users phase, 240–241

business intelligence (BI), 412, 803
Business Intelligence Development Studio

(BIDS), 21
SSDT. See SQL Server Data Tools (SSDT)
SSIS, 107, 795

business logic, stored procedures for, 407
Business phase in BUM, 240–241
Business Process Mapping: Improving Customer

Satisfaction, 252
business processes evaluation, 252
business requirements for backups, 571–572
ByAccount function, 805

C
C1 security, 713–714
C2 security, 712–716
cabinets in RAID, 734
calculated columns, 187–188
candidate keys in Boyce-Codd normal forms, 289

capacity
as design consideration, 295
planning, 271–275, 276

capitalization of SQL keywords, 184
CAST function, 199–200, 200
catalogs of changed pages, 769
CATCH blocks, 218–220, 219
categories of PBM policies, 545–550, 546–549
Category policy, 545
CC (Common Criteria), 716–717
CCMP (Counter Mode with Cipher Block

Chaining Message Authentication Code
Protocol), 616

CD command, 136–137, 136–137
Central Management Server (CMS), 558

automation, 564–566, 565–566
benefits, 558–559, 562–563
creating, 559
requirements, 558–559
standardizations, 564
subscriber server registration, 559–562,

560–562
updating, 566–567

centralization of business logic, stored procedures
for, 407

certificate authorities, 645–646
certificates

authentication, 646–647
encryption, 670–673
SSIS, 822
storing, 645

certification, 852
exam registration, 853–854
exam tips, 853
objectives map, 854–858
process, 852–853

Certified Ethical Hacker (CEH) Prep Guide, 601
chaining

log, 714–715
ownership, 698–699

Change Data Capture feature, 28
change notifications, triggers for, 400
char data type, 338–339, 342
character injection, 626
character strings, 341–342
charters, project, 245
ChDir command, 136–137, 136–137
Check Condition property, 542–543
CHECK_EXPIRATION option, 658

child items in data warehousing – comparison operators in SQL 867

child items in data warehousing, 804
Choose a Data Source page, 107–108, 108, 470,

470, 795, 796
Choose a Destination page, 108, 108, 470, 471,

796, 796
CHOOSE command, 24
Choose Default Environment Settings dialog,

818, 818
classification for security, 603
clauses in SQL, 180
cleaning data, 845–848
clearing screen, 141
client/server applications, 18–19, 19
clients, security, 618–619
Close Cursor on Commit Enabled property, 319
closed-to-open systems, 634
CLR triggers, 398
CLS command, 141
cluster resource groups, 746
clustered indexes, 271–272, 365–366, 368–370

creating, 374–375, 374–375
defined, 17
size, 272–273
table size, 273–275, 276
with TOP keyword, 189

clustered services, 736
clusters

failover. See failover clustering
installation to, 76–77

CMD.EXE tool, 130–131
cmdlets, 165
CMS. See Central Management Server (CMS)
co-existence integration issues, 816
COALESCE function, 198–199, 199
Codd, E. F., 281
code-based administration vs. GUI, 94
code vs. design, 495–496
cold standby servers, 42
COLLATE clause, 201, 346, 348
Collation tab, 70
collations, 344

column, 345–348, 347–348
configuring, 345–348
installation settings, 70
SELECT statements, 201
server instances, 345

collection of information responsibilities, 5
collection principals, 655–657
collections in MDS, 845
collector sets

alerts, 484–486, 484–485
counters for, 517–518, 518–519

color
command prompt, 122, 135, 135
managing, 141–142
SQL keywords, 174

COLOR command, 122, 141–142
Color page, 135, 135
column collations, 345–348, 347–348
column-level encryption, 669
column-level tracking conflict resolution, 786
Column Properties window, 347, 347
columns

defined, 16
identity, 230–231
SELECT statements, 186–188

columnstore indexes, 373
comma-delimited files, 110
COMMAND.COM tool, 130–131
Command History buffer, 133
command-line administration, 130

batch files. See batch files
command prompt. See command prompt
copying data, 153–154, 154
defragmenting files, 150–151, 151
displaying information, 142–146, 144
exporting data, 794
general commands, 135–140, 136–139
network statistics, 151–153, 152–153
output redirection, 146–148, 147
PowerShell, 164–168, 165–167
screen management, 141–142
services, 148–150, 148–149
SQLCMD utility, 161–163, 161–163

command prompt, 130–132
automating, 164
color, 135, 135
fonts, 133, 134
Options page, 132–133, 132
screen layout, 134, 134

Command window for jobs, 466
comments

batch files, 157–158
SQL language, 178

COMMIT TRAN statement, 216–218
Common Criteria (CC), 712, 716–717
common table expressions (CTEs), 205–206
communications in TCP/IP, 124–125
Compact Edition, 11
comparison operators in SQL, 183

868 compatibility – CREATE CERTIFICATE statement

compatibility
compatibility level setting, 316
service pack, 54

Complete the Wizard screen, 472
compliance

C2, 713–716
GRC, 712–713
regulatory, 648–652

compression
backups, 587–588
data, 443

CONCAT command, 25
Concatenate NULL Yields NULL property, 319
concatenation operators in SQL, 183
concurrency

defined, 17
models, 497–498. See also locks

concurrent users, 10
defined, 59
support, 38

conDatabaseSize condition, 551
conditions, PBM, 539–540, 540–541, 550–553
Conditions node, 546
configuration servers, 26, 26
Configure Distribution Wizard, 779–781,

780–781
Configure Flat File Destination screen,

110, 110, 797, 797
Configure Management Data Warehouse Storage

screen, 521
Configure Management Data Warehouse Wizard,

521–524
Configure OLE DB Connection Manager dialog,

423–424
Configure Packages page, 825
Confirm Service Changes screen, 689
Confirmation page for failover clustering, 743
conflicts in resolution, 786, 790
Connect to Server dialog, 97, 97
connection managers

ETL, 829–831, 830
SSIS packages, 422–425, 424

connections
killing, 627
PIDs, 152–153, 152–153

connectivity
components, 415
security solutions, 635

conPasswordRules condition, 551–552

constrained data, 281
constraints as design consideration, 295
conSurfaceArea condition, 552–553
contained databases, 22
CONTAINS operator, 439
contents, file, 142–143
CONTIG program, 150–151, 151
contingency plans for risks, 713
contractors, on-site, 632
Control Flow page, 425, 425
Control permission, 696
controlled reporting, 432
CONVERT function, 199–200, 200
converting data, 199–200, 200
COPY command, 153–154
Copy Database Wizard, 79
Copy Files tab, 768
copy-only backups, 587
copying

data, 153–154, 154
log shipping, 764

configuring, 766–767
process, 764–765, 765
to remote sites, 766

core features, 38–39
correlation, performance log, 514–515
cost savings from performance tuning, 492–493
costs of flat-file databases, 8
Count function, 805
Counter Mode with Cipher Block Chaining

Message Authentication Code Protocol
(CCMP), 616

counters
data collection sets, 517–518, 518–519
System Monitor, 512–515

covering indexes
creating, 380–381, 380–381
description, 371

crackers, 605
cracks

0-day hacks, 633
encryption, 629–630, 630
examples, 621
network, 621–624
password, 624–629, 625, 628
social engineering, 630–633

CREATE APPLICATION ROLE statement, 667
CREATE CERTIFICATE statement,

441, 671, 673

Create Cluster Wizard – Data Collector component 869

Create Cluster Wizard, 745
CREATE CREDENTIAL statement, 699
CREATE DATABASE statement, 305

collations, 346
overview, 323–325
permissions, 695
snapshots, 331–334, 770

CREATE DATABASE ENCRYPTION KEY
statement, 441

CREATE ENDPOINT statement, 727, 761–762
CREATE EVENT NOTIFICATION

statement, 705
CREATE INDEX statement, 379

filters, 383
permissions, 695

CREATE LOGIN statement, 658
CREATE MASTER KEY statement,

441, 671, 673
Create New Condition dialog, 540, 540–541
Create New Data Collector Set dialog, 485, 485
Create New Policy screens

categories, 548
schedules, 554, 555
settings, 541–542, 542, 544

CREATE PARTITION FUNCTION statement,
360–361

CREATE PARTITION SCHEME statement, 361
Create permission, 696
CREATE PROCEDURE statement, 407–408
CREATE ROLE statement, 667
CREATE SCHEMA statement, 698
CREATE statements, 207–209, 509
CREATE SYMMETRIC KEY statement, 672
Create Table dialog, 427, 427
CREATE TABLE statement, 357–358

clustered indexes, 374
collations, 348
fact tables, 807–808
nonclustered indexes, 376
partitions, 361
permissions, 695

CREATE TRIGGER statement, 398, 401,
405, 706

CREATE USER statement
database users, 668
schemas, 698

CREATE VIEW statement
permissions, 695
views, 392

CreateDB.ps1 script, 327, 327
CreateDeploymentUtility setting, 824
credentials

authentication, 642–644
choosing, 645
least privilege principle, 699–700
overview, 644–646
Windows Server, 611–612

CRM (customer resource management)
applications, 40

Cross-database Ownership Chaining Enabled
property, 319

Crow’s Feet notation, 259
CSV files

counters, 514
Import and Export Wizard, 110
integration issues, 815

CTEs (common table expressions), 205–206
cubes in data warehousing, 804
cursor data type, 343
cursor size for command prompt, 132, 132
custom database roles, 667–668, 668
customer resource management (CRM)

applications, 40

D
D assurance level, 713–714
DACs (dedicated administrator connections), 32
daily scheduled jobs, 460
data

access methods, 51–52
availability, 12–13
classification, 603
collection, 27

alerts, 484–486, 484–485
Windows Server 2008, 515–518, 515–516,

518–519
vs. information, 226–227
integrity, 13–14, 399–400
partitioning, 358–359

with functions and schemes, 360–361,
360

horizontal, 360
vertical, 359–360

redundancy. See redundancy
security. See security

data change rate factor in backups, 573
Data Collector component, 27

870 data compression – database level elements

data compression, 443
Data Control Language (DCL) statements,

177, 212–213
Data Definition Language (DDL)

statements, 177
altering objects, 209–210
creating objects, 207–209
deleting objects, 210–211

triggers, 397–398, 706
creating, 404–405, 405
nested, 398
policy enforcement, 535
types, 402

data destination in importing data, 792
Data Directories tab, 71
Data Export Wizard, 470
data files

description, 50
overview, 308–309, 309

data flow design in ETL, 831–832, 831–833
Data Flow page

Import and Export Wizard, 111–112, 111
SSIS packages, 425

data governance in DQS, 842–843
data load options in ETL, 833–835, 834
Data Manipulation Language (DML)

statements, 176
triggers, 397–398

creating, 402–404, 404
nested, 398, 399
types, 402
uses, 400

data marts, 413, 804
data mining models, 413
data pages, 366
data processing jobs, 462
data protection application programming

interface (DPAPI), 669
data pumps, 422
data quality, 838

dimensions, 839
DQS, 840–843
MDS, 843–845
problems, 838–839
processes, 839–840
profiling systems, 845–846
project creation, 847–848

Data Quality Client, 841
Data Quality Server, 841

Data Quality Services (DQS), 840
data governance, 842–843
installation process, 841–842
prerequisites, 840–841

Data Security Standard (DSS), 649
Data Transformation Services (DTS), 32–33, 419
Data Type page, 268, 268
data types, 338–339

binary strings, 342
character strings, 341–342
date and time, 341
deprecated, 344
enhancements and changes, 28
knowledge base management, 846
numerics, 340
OSA, 268, 268
special, 343
SQL, 182

Data Types (Transact-SQL) page, 117
data warehousing, 413, 802

dimensions, 808–810
fact tables, 806–808
overview, 802
terminology, 803–805
usage, 805–806

data write methods, 52–53
database administrators (DBAs), 6, 17
database encryption keys (DEKs), 441
Database Engine Configuration screen, 70, 70

SSAS, 418
SSIS, 420
SSRS, 434

Database Engine Services, 419
Database Engine Tuning Advisor (DTA) tool,

497, 506
recommendations, 509–510
workload files

analyzing, 507–509
creating, 506–507

database engines, 53
database files in integration issues, 815
database level elements

audits, 701
collations, 345
encryption, 670
principals, 656
roles, 666, 758
subscriptions, 548
users, 668

Database Lifecycle (DBLC) model – Declarative Management Framework (DMF) 871

Database Lifecycle (DBLC) model, 238–239
Database Mail, 436–437

configuring, 437–438, 437–438
overview, 30, 31

Database Mail Configuration Wizard, 31, 32,
437–438, 438

Database Maintenance Plan Wizard, 421
database master encryption keys, 670
database master keys (DMKs), 441
Database Mirroring Monitor, 763
database models, 7
Database Properties dialog

ERDs, 260
log shipping, 765–766, 765
mirroring, 762–763, 763

Database Read Only property, 320
database securable scope, 694
database servers, 18

application types, 18–20, 19–20
core features, 38–39
installation planning, 47–48
new features, 35
roles. See roles

databases, 7
application types, 18–20, 19–20
availability, 726
contained, 22
copying. See log shipping
denormalizing, 294–295
design processes, 236–237

BUM, 239–242
DBLC, 238–239
SDLC, 237

flat-file, 8–9, 8
indexes. See indexes
local, 11–12
mirroring. See mirroring
normal forms. See normal forms and

normalization
planning, 250

business process evaluation, 252
use cases, 254
user surveys, 250–252

relational, 9–11, 10, 226
data, 226–227
information, 227
tables, 227–232, 228–230

restoring. See restoring databases
roles. See roles

server-based, 12–16, 15
snapshots, 768–771
SQL Server. See SQL Server databases
system. See system databases
tables. See tables
terms, 16–18
users, 668
views. See views

DataSizer tool, 275, 276
Date Correlation Optimization Enabled

property, 319
date data type, 341
date data types, 341
DATEFROMPARTS command, 24
datetime data type, 341
datetime2 data type, 28, 341
DATETIME2FROMPARTS command, 24
DATETIMEFROMPARTS command, 24
datetimeoffset data type, 341
DATETIMEOFFSET FROMPARTS command, 24
DB_ database roles, 666
db_ssisadmin role, 820
db_ssisltduser role, 820
db_ssisoperator role, 820
DBAs (database administrators), 6, 17
DBCC command, 214, 497
DBCC CHECKDB command, 163, 525–526
DBCC CHECKTABLE command, 162, 166,

167, 525–526
DBCC HELP command, 527
DBCC SHOW_STATISTICS command, 527
DBCC SHOWCONTIG command, 525–527, 526
DBCC SHRINKDATABASE command, 317
DBCC SHRINKFILE command, 317, 527
DBCreator server role, 664
DBLC (Database Lifecycle) model, 238–239
DCL (Data Control Language) statements,

177, 212–213
DDoS (distributed DoS) attacks, 604
de-identified information, 651
DEADLOCK_PRIORITY statement, 501, 503
deadlocks, 499–503, 500–501
debugging SSIS packages, 112, 112, 427–428, 428
decimal data type, 340
decision making statements in batch files,

155–156
decision support, 41, 412
Declarative Management Framework (DMF),

534–535

872 DecryptByKey function – Distribution Agent Security page

DecryptByKey function, 672–673, 673
DECRYPTION BY CERTIFICATE statement, 673
DECRYPTION BY PASSWORD statement, 671
dedicated administrator connections (DACs), 32
dedicated CMS servers, 564
Default Cursor property, 319
default extensions, 308
default instance installation, 62–73, 63, 65–73
defense-in-depth (DiD), 634, 637
Define phase in project management, 244–245
defragmenting files, 150–151, 151
DEKs (database encryption keys), 441
delete anomalies, 281
Delete permission, 696
DELETE statement, 216

indexes, 384
monitoring, 400

delimited SQL identifiers, 181
Deliver phase in project management, 246–247
demilitarized zones (DMZs), 635
denormalized databases, 9
denormalizing databases, 294–295
DENY statement, 213, 692, 695
DENY DELETE ON statement, 694
departmental database servers, 40
Deploy SSIS Packages page, 825
deployment

features, 53–56
packages, 823–826
SSIS, 825

Deployment Utility, 824–825
DeploymentOutputPath setting, 824
deprecated data types, 344
derived hierarchies, MDS, 845
DES (Digital Encryption Standard), 613
Description page and property, 564

Create New Policy dialog, 544–545, 544
PBM conditions, 540, 541
PBM policies, 545

descriptions, standardized, 564
design

for availability, 295–296
vs. code, 495–496
for performance, 295
processes, 236–237

BUM, 239–242
DBLC, 238–239
SDLC, 237

security, 297, 635

Design phase
DBLC, 238
project management, 246

Designers option, 95
Destination Editors, 833, 834
destruction of information responsibilities, 5
Detach Database dialog, 329, 329
detaching databases, 328–331, 329–331
Determine phase in project management, 247
development labs, 55
development servers in SSIS, 817–818
devices for backups, 584–587, 585
dictionary attacks, 612, 622
DiD (defense-in-depth), 634, 637
differential backups, 573, 580, 582–583
differentiation, 61–62
Digital Encryption Standard (DES), 613
digital signatures, 821–822
dimensions

data quality, 839
data warehousing, 803, 808–810

DIR command, 139–140, 139
DIRCMD variable, 140
directives in SQL, 178–180
directories

listing, 137–140, 138–139
navigating, 136–137, 136–137

dirty pages, 52–53
DISABLE TRIGGER statement, 406
disabling indexes, 384–387
disaster recovery. See recovery
Discard Old Duplicates option, 133
discretionary access control, 714
Disk Space Requirements screen

default instance installation, 68
named instance installation, 76
SSAS, 418
SSIS, 420
SSRS, 434

DiskAdmin server role, 665
Display Options settings, 133
displaying information, command-line for, 142–

146, 144
Distinct function, 805
DISTINCT keyword, 190
distributed DoS (DDoS) attacks, 604
distributed storage, 735
Distribution Agent Location page, 788, 788
Distribution Agent Security page, 789–790, 789

distribution of information responsibilities – encryption 873

distribution of information responsibilities, 5
Distributor Properties dialog, 781, 782
distributors in replication, 775, 779–786,

780–785
division in SQL, 183
DMF (Declarative Management Framework),

534–535
DMKs (database master keys), 441
DML. See Data Manipulation Language (DML)
DMVs (dynamic management views), 22,

523–525, 524
DMZs (demilitarized zones), 635
DNS verification, 123–124, 124
Do Not Save Sensitive security protection

level, 431
documentation, scripting for, 355–357, 356–357
Domain Admins group, 119
domains, defined, 16
down-level support policy, 564
DPAPI (data protection application programming

interface), 669
DQS (Data Quality Services), 840

data governance, 842–843
installation process, 841–842
prerequisites, 840–841

dqs_administrator role, 842
DQS Cleansing transformation, 847–848
dqs_kb_editor role, 842
dqs_kb_operator role, 842, 847
DQS_MAIN database, 841
DQS_PROJECTS database, 841
DQS_STAGING_DATA database, 841
DQSInstaller.exe program, 842
drive space alerts, 484–486, 484–485
DriveImage tool, 595
DROP statement, 210–211
DROP DATABASE statement, 334
DROP ENDPOINT statement, 761
DROP INDEX statement, 384
DROP TRIGGER statement, 404–405
dropping indexes, 384, 388
DSS (Data Security Standard), 649
DTA (Database Engine Tuning Advisor) tool,

497, 506
recommendations, 509–510
workload files

analyzing, 507–509
creating, 506–507

dtexec utility, 827

DTS (Data Transformation Services), 32–33, 419
DTUTIL utility, 826
dump text file information, 143
duplicate data, 281
dynamic management views (DMVs), 22,

523–525, 524

E
EALs (evaluation assurance levels), 717
EAP (extensible authentication protocol), 615
ECC (error-correcting code) memory, 731
ECHO command, 143–144, 144
efficiency

performance tuning for, 493
server-based databases, 12–13

EFS (Encrypting File System), 629, 669
email, 436–437

configuring, 437–438, 437–438
overview, 30, 31

Email Settings page, 436
embedded reporting, 433
employees in social engineering, 632–633
Enable File Rollover option, 504
Enable Server Audit Specification option, 704
Enable This as a Primary Database in a Log

Shipping Configuration option, 767
ENABLE TRIGGER statement, 406
Enabled property, 542
enabling

audits, 702–704, 703–704
indexes, 384–387
PBM policies, 542

Encrypt All Data with Password security
protection level, 431

Encrypt All Data with User Key security
protection level, 431

Encrypt Sensitive Data with Password security
protection level, 431

Encrypt Sensitive Data with User Key security
protection level, 431

Encrypting File System (EFS), 629, 669
encryption, 35, 669

application-level, 671–673, 672–673
cracks, 629–630, 630
hierarchies, 669–670
packages, 821
public key infrastructures, 670
transparent, 27, 441–443, 673–674

874 encryption – expressions in SQL

encryption (continued)
WEP, 613, 621
Windows Server, 613

ENCRYPTION BY PASSWORD statement, 671
Encryption Enabled property, 320
endpoints

HTTP, 37
mirroring, 761–762

Enforce Password History policy, 660
Enforce Password Policy option, 659
enforcement

password policies, 647
PBM for, 535

enterprise database servers, 40
Enterprise Manager, 30–31, 30
enterprise resource planning (ERP) applications, 40
entities

ERDs, 255
MDS, 845

entity relationship diagrams (ERDs), 255–257,
256–257

building, 257–258
Open System Architect for, 264–271, 265–271
Visio for, 258–264, 258–264

environment
backups, 593–595, 594
SSIS catalog, 823
SSMS, 95
virtual, 747

EOMONTH command, 24
equal signs (=) in SELECT statements, 191–192
eradicating risks, 712
ERDs. See entity relationship diagrams (ERDs)
ERP (enterprise resource planning) applications,

40
Error and Usage Reporting screen

SSAS, 418
SSIS, 420
SSRS, 435

error-correcting code (ECC) memory, 731
error handling in SQL, 218–220, 219
Error Lists

Query Editor, 28, 28
SSMS, 98–100, 99

error logs, 497
Error Output page, 835
Error Reporting service, 89, 89
ETL. See extraction, transformation, and loading

(ETL) tool

ettercap tool, 626–627
evaluation

business processes, 252
PBM for, 535
project, 245

evaluation assurance levels (EALs), 717
Evaluation Mode property, 543–544
Event Handler page, 832, 832
Event Logs node, 687, 687
Event Viewer log

full databases, 313
monitoring, 701–702
notifications, 462
Task Scheduling feature, 564–566, 565–566

events
alerts, 482
filters, 115–116, 115
logs, 497, 683
notifications, 705
replication, 790
SSIS, 828
viewing, 505

Events Selection tab, 115, 115, 505
Excel Connection Manager, 829–831, 830
Excel Destination object, 425–426
Excel worksheets, 292–293
exclusive locks, 498
EXEC directive, 179–180
EXECUTE AS clause

jobs, 457
stored procedures, 406

Execute permission, 696
EXECUTE sp_spaceused statement, 579
existing data in integration issues, 815
existing systems in integration issues, 814–815
explicit hierarchies in MDS, 845
exploits, security, 607–608
Export.bat files, 158–159, 160
Export Data Wizard, 422
exporting data, 791–792

BCP, 792–793
BULK INSERT statement, 793–794
collation in, 346
command line, 794
SSIS, 795–797, 796
triggers for, 399

Express Edition, 11, 74
Expression property, 540
expressions in SQL, 182–183

extensible authentication protocol (EAP) – fixed roles 875

extensible authentication protocol (EAP), 615
extents in installation planning, 50
external RAID, 731
extraction, transformation, and loading (ETL)

tool, 32–33, 412, 828–829
connection managers, 829–831, 830
data flow design, 831–832, 831–833
data load options, 833–835, 834
data warehousing, 803
replication, 795
script tasks, 835–836, 835
servers, 41
SSIS in, 107, 419

F
Facet property, 540
facets in PBM, 536–539, 538
fact tables

data warehousing, 803
planning, 806–807

Failover Cluster Management tool, 741–742, 745
failover clustering, 34, 723

components, 735–738
creating, 745–746
installing, 740–741, 740
monitoring and managing, 748–750
overview, 734–735
requirements, 738–739
resources, 746
SQL Server installation to, 747–748
troubleshooting, 750
validating configuration, 741–745,

742–744
virtual environments, 747

failover solutions, 728
asynchronous-commit mode, 729
process, 729–730
synchronous-commit mode, 728–729

failure points, restoring databases to, 591–592
fault tolerance

log shipping. See log shipping
RAID, 754–757, 756
snapshots, 768–771

Feature Selection screen, 67, 68, 842
SSAS, 417
SSIS, 420
SSRS, 434, 434

features, new. See new features
Features Summary window, 740, 740

FEKs (file encryption keys), 629
Field Programmable Gate Arrays (FPGAs), 622
fields, 16
File Download dialog, 610
file encryption keys (FEKs), 629
FILE keyword, 588
file systems

management, 119–120, 120
security templates, 683

FILEGROUP keyword, 588
filegroups

backups, 588
database, 309–311

FileMaker Pro databases, 11
files

appending, 147–148
backups, 584–587, 585
batch. See batch files
data, 308–309, 309
defragmenting, 150–151, 151
deploying to, 825
displaying contents, 142–143
log. See logs

filestream data type, 28
FileTables feature, 22–23
Fill page, 268
Filter page, 382
Filter Table Rows page, 784
filtered indexes, 372, 381–383, 382–383
filtered SELECT statements

comparison operators, 191–192
lists of values, 195, 195
logical operators, 193–194
ranges, 194–195, 194
string comparisons, 192–193

filters
event, 115–116, 115
MAC, 616
packet, 627
replication, 781

fingerprinting, 627
firewalls, 126–127, 126
first normal form (1NF)

from Excel worksheets, 292–293
overview, 282–286

FirstChild function, 805
FirstNonEmpty function, 805
fixed roles

database, 666
server, 664–665, 665

876 flat-file databases – hardware requirements

flat-file databases
importing, 791
overview, 8–9, 8

float data type, 340
Fluhrer, Scott, 622–623
folders

creating, 158
listing, 137–140, 138–139
navigating, 136–137, 136–137

fonts for command prompt, 133, 134
FOR clause with triggers, 401
forced manual failover, 729–730
foreground colors, 122
foreign keys, 232
FORMAT command, 25
fourth normal forms (4NF), 289–291
FPGAs (Field Programmable Gate Arrays), 622
fragmentation of indexes, 387–389, 388
Fragmentation page, 387
free drive space for alerts, 484–486, 484–485
Free Megabytes counter, 485
FreeNAS program, 747
FREETEXT operator, 439
frequency of backups, 572–573
FROM clauses for indexes, 365
full backups, 579–582, 579, 581
full databases, 313
FULL OUTER JOINs, 203
full recovery models, 315, 575
full-text indexes, 439–441, 440
full-text search features

description, 54
enhancements, 23

functions
partition, 360–361, 360
SQL, 182

G
General page

alerts, 483, 483
counters, 514
jobs, 455–457, 456–457, 465–467, 474, 474
OSA, 268
PBM conditions, 540, 540
PBM policies, 540, 542–545
Profiler traces, 114, 115, 504–505, 505
workload files, 507–508, 508

Generate System Information Log job,
479, 479

get-help command, 328
Ghost tool, 595
global service settings, 55
Glossary page for Books Online, 117
GO directive, 178–179
GOTO command in batch files, 155–156
governance, risk management, and compliance

(GRC), 712–713
GPO Accelerator tool, 679
GPRESULT tool, 660
GRANT statement, 212–213, 692
GRANT CONTROL ON statement, 693
GRANT CREATE TABLE TO statement, 695
GRANT INSERT ON statement, 693
GRANT SELECT ON statement, 694
GRANT SELECT ON OBJECT

statement, 696
granularity of locks, 498–499
GRC (governance, risk management, and

compliance), 712–713
GRE tunnels, 626
greater-than signs (>)

file appending, 147–148
output redirection, 147
SELECT statements, 191–192

Group Policies
passwords, 629–630, 659–660
security templates, 682–683
user account settings, 119

group policy objects (GPOs), 679
groups

availability, 726
cluster resource, 746
server, 560, 560
Windows logins, 662

GUI
GUI-based administration vs. code, 94
SQL Server databases, 321–323, 321–323

GUI Query Designer, 109

H
hackers, 605
Handling Unspecified Services screen, 689
hard dimensions in data quality, 839
hardware-based RAID, 755
hardware requirements, 58–60

hashing passwords – indivisible principals 877

hashing passwords, 644–645
Health Insurance Portability and Accountability

Act (HIPAA), 648–652
heap, 271, 365–366
help

batch files, 160
Books Online, 31, 54, 116–118, 117
DBCC, 527

Help Desk, social engineering attacks on,
631–632

hierarchies
data warehousing, 804
encryption, 669–670
MDS, 845

hierarchyid data type, 28, 343
high availability, 722–725, 724

design for, 295–296
vs. disaster recovery, 723
failover clustering. See failover clustering
hardware, 730–731
server-based databases, 12–13

high-change data, 766
high concurrency, 499
high latency in log shipping, 764, 766
high performance operating modes, 759
high safety operating modes, 759
hijacking, session, 619
HIPAA (Health Insurance Portability and

Accountability Act), 648–652
horizontal partitioning, 360
host-based antimalware, 636
host bus adapters, 738
hot standby servers, 34, 42, 757
hotfixes, 487
HTTP endpoints, 37
HTTPS support in ettercap, 626
Hulton, David, 624
hyphens (-) in SQL comments, 178

I
IAM (index allocation map) pages, 366
ICACLS command, 120
identifiers

ERD, 267, 267
SQL, 180–181

Identifiers page, 267, 267

identity columns, 230–231
identity management systems (IMSs), 643
Identity Seed setting, 354
idle scheduled jobs, 460
IDSs (intrusion detection systems), 636
IF command, 155–156
IIF command, 24–25
image data type, 342, 344
imaging tools, 595
Impersonate permission, 696
Implementation phase in DBLC, 239
Import and Export Wizard, 473

exporting data, 795–797
SSIS jobs, 470–473
SSIS packages, 107–112, 108, 110–111

Import dialog, 546, 546
importing data, 791–792

BCP, 792–793
BULK INSERT statement, 793–794
collation in, 346
PBM policies, 545–546, 546–547

IMSs (identity management systems), 643
IN clause, 195, 195
in-line comments, 178
Included Columns page, 381
incremental backups, 572–573
index allocation map (IAM) pages, 366
indexes, 364

benefits, 10
clustered. See clustered indexes
columnstore, 373
covering, 380–381, 380–381
defined, 17, 365–366, 366
disabling and enabling, 384–387, 385, 387
dropping, 384, 388
filtered, 372, 381–383, 382–383
fragmentation, 387–389, 388
full-text, 439–441, 440
nonclustered, 370–371, 376–378, 376–378
online, 34
partitioned, 371–372
spatial, 371
T-SQL for, 379
uses, 367–369, 368
views, 390
XML, 372

INDEXPROPERTY function, 386
indivisible principals, 655

878 information gathering, batch files for – IPSs (intrusion prevention systems)

information gathering, batch files for, 476–477
information technology (IT), 4

components, 6–7, 6
importance, 4–6
responsibilities, 227

ingress applications, 636
Initialization Vectors (IVs), 617, 622–623
Initiation phase in DBLC, 238
injection attacks, 618, 626
INNER JOIN statement, 201–202, 202, 359–360
inner queries, 205
Insert ActiveX Control Wizard, 512
insert anomalies, 281
Insert permission, 696
INSERT statement, 214–215
installation

to clusters, 76–77, 747–748
default instances, 62–73, 63, 65–73
extra features, 77
failover clustering, 740–741, 740
migrations, 79
named instances, 73–76, 75
planning

architecture overview, 46–47
data access methods, 51–52
data write methods, 52–53
database system components, 47–51, 47,

49
deployment features, 53–56
hardware requirements analysis, 58–60
overview, 56–57
permissions, 60–62
server use analysis, 57

removing, 80
SSAS, 416–418, 416–418
SSIS, 419–421
SSRS, 433–436, 434–436
System Monitor, 511–512
upgrades, 77–79
validating, 79–80
Windows Server Backup, 594–595, 594

Installation page
default instance installation, 64
SSIS, 420
SSRS, 433

Installation Rules screen, 68
SSAS, 418
SSIS, 420
SSRS, 435

Installation Type screen, 417
Installed SQL Server Features Discovery Report

tool, 57
installing

DQS, 840–843
MDS database, 843–844
SSIS, 816–819, 818

Instance Configuration screen
default instance installation, 68
named instance installation, 73–74
SSAS, 417, 418
SSIS, 420
SSRS, 434

instances
audits, 702
default, 62–73, 63, 65–73
multiple, 54–55
named, 73–76, 75

INSTEAD OF triggers, 398, 402
int data type, 340
integer data type, 339
integrated reporting, 433
integration issues, 814

co-existence, 816
existing data, 815
existing systems, 814–815

Integration Services. See SQL Server Integration
Services (SSIS)

Integration Services Dashboard report, 827, 828
Integration Services Deployment Wizard, 823
Integration Services projects, 103
integrity, data, 13–14, 399–400
intentional threats, 606
interesting frames, 623
intermediary servers, 41
intermediate levels, 366
internal RAID, 731
International Standards Organization (ISO), 172,

175
Internet Authentication Service, 643
INTO keyword, 214–215
intrusion detection systems (IDSs), 636
intrusion prevention systems (IPSs), 636
Inventory Test in failover clustering, 741
Invoke-SQLCMD cmdlet, 166, 167
IPCONFIG command, 122, 122
IPCONFIG /ALL command, 122, 123
IPSec associations, 653
IPSs (intrusion prevention systems), 636

Is Identity setting – lineage 879

Is Identity setting, 354
IS NULL expression, 197
IsDisabled property, 387, 387
ISO (International Standards Organization),

172, 175
isolation

lock levels, 499
security, 634

IVs (Initialization Vectors), 617, 622–623

J
Job Activity Monitor, 455, 469, 469
jobs, 452

properties, 454, 454
Alerts, 461
General, 455
Notifications, 461–462, 461
Schedules, 459–460, 460
Steps, 455–459, 456–458
Targets, 462

SSIS, 470–476, 470–475
steps, 452–453
T-SQL, 465–469, 465–469
typical, 462–463
Windows command, 476–480, 478–479

joins, SELECT statements, 201–203, 202, 204
junction tables, 236

K
KB (knowledge base) management, 846–847
Kerberos authentication, 652–653
keys

Boyce-Codd normal form, 289–291
clustered indexes, 375, 375
columns, 352–353
dimensions, 808
encryption, 629–630, 669–675
first normal form, 284–285
second normal form, 286–288
tables, 231–232
third normal form, 288–289
WEP, 621–622

keystreams, 621
keywords, SQL, 177–178

capitalization, 184
color, 174

KILL statement, 500

killing
connections, 627
processes, 500

knowledge base (KB) management, 846–847

L
L0phtCrack tool, 627–629, 628
Language Integrated Query (LINQ) feature, 29
large database support, 38
large objects (LOBs), 38
LastChild function, 805
LastNonEmpty function, 805
latency

data warehousing, 806
log shipping, 764, 766
replication, 777
updates, 42

layered security, 634, 655–656
Layout page, 134, 134
lazy writers, 52
LC4 tool, 627–629, 628
LDAP (Lightweight Directory Access Protocol),

645
leading values in knowledge base management,

846
least privilege principle, 691–692

configuring, 61–62
credentials, 699–700
implementing, 638
ownership chaining, 698–699
permissions and authorization, 691–696, 693
schemas, 697–698
service accounts, 700–701

LEFT OUTER JOINs, 203
less than signs (<) in SELECT statements, 191
levels

lock isolation, 499
RAID, 755, 756
risk, 602
security, 431, 655–656
TCSEC assurance, 713–714

License Agreement screen, 680
life expectancy in availability, 724–725
Lightweight Directory Access Protocol (LDAP),

645
LIKE clause, 192–193, 345, 439
lineage

data warehousing, 804
dimensions, 809

880 linking tables – master.mdf file

linking tables, 236
LINQ (Language Integrated Query) feature, 29
listener availability, 726
lists of values in SELECT statements, 195, 195
LOBs (large objects), 38
local databases, 11–12, 42
local distributor models, 778
Local Named Pipes, 86
local policies

passwords, 659–661, 660
security templates, 683

Local System option, 61
Locate Database Files dialog, 330
locks, 497

blocks and deadlocks, 499–503, 500–501
granularity, 498–499
isolation levels, 499
overview, 498
types, 498

Log An Entry In The Application Event Log
option, 486

log files. See logs
Log Files tab, 514
LOG ON clause, 325
Log On tab, 819, 820
log shipping, 764

configuring, 766–767
process, 764–765, 765
to remote sites, 766

logic in batch files, 155–156
logical capabilities, T-SQL, 176
logical databases, 49–50
Logical Disk counter, 484
Logical Model properties dialog, 266, 266
logical operators

SELECT statements, 193–194
SQL, 183

logical record-level tracking conflict
resolution, 786

logins
password policies, 35
SQL, 653–654, 657–659, 657–658
triggers, 706–707
Windows, 661–665, 662–664

logs
backups, 583–584
benefits, 50
chaining, 714–715
counters, 514–515

event and error, 497
Event Viewer, 565–566, 566
log providers, 827–828
monitoring, 702, 703
notifications, 462
SELECT statements, 15–16
tail, 591–592
transaction, 311–312
truncated, 313

loops in SSIS, 828
low concurrency, 499
low-latency data, 766
Lucent Registry Crack, 623

M
MAC filtering, 616
mail, 436–437

configuring, 437–438, 437–438
overview, 30, 31

maintenance jobs, 463
Maintenance page, 64
managed reporting, 432
Management Data Warehouse (MDW), 520–521
management tools in SSAS, 415
Manager Policy Categories dialog, 546–547
Mandate Database Subscriptions option, 548
Mantin, Itsik, 622–623
manual auditing of packages, 827
manual failover, 729–730
many-to-many relationships

ERDs, 256–257, 257, 261
first normal form, 285–286
overview, 235–236, 236

Map Logins and Users screen, 521
mapping

business processes, 253–254
SSIS packages, 427

Mappings page, 427, 835
marts, data, 413
master data, 840
master data file (.MDF) extension, 50, 308
Master Data Manager, 844
Master Data Services (MDS), 840
Master Data Services Configuration Manager

(MDS CM), 844
master databases, 303
master encryption keys, 670–671
master.mdf file, 303

masterlog.ldf – named columns 881

masterlog.ldf, 303
Max function, 188, 805
Maximum Password Age policy, 660
Maximum Security Log Size policy, 685
MBSA (Microsoft Baseline Security Analyzer),

609–611, 611
MCSA certification, 852
MCSE certification, 852
MCSM certification, 852
MD5 WEP key generation algorithms, 622
.MDF (master data file) extension, 50, 308
MDS (Master Data Services), 840
MDS database, 843–845
mds_dlp_login login, 844
mds_email_login login, 844
mds_exec role, 844
MDW (Management Data Warehouse), 520–521
meantime between failures (MTBF), 724
measures in data warehousing, 803
member properties for dimensions, 808–809
members, MDS, 845
memorable passwords, 647
memory requirements, 58–60
memory-resident tables, 409
merge replication, 776–777
message digests, 644
Messenger service, 462
Microsoft Access databases, 11–12
Microsoft Baseline Security Analyzer (MBSA),

609–611, 611
Microsoft DataSizer tool, 275, 276
Microsoft Management Console (MMC)

security templates, 682–686, 682, 684–685
System Monitor, 511–512

migrations, 79
Min function, 188, 805
Minimum Password Age policy, 660
Minimum Password Length policy, 660
minimum requirements, 58
mirror servers, 758
mirror sets, 584, 757
MIRROR TO clause, 584
mirroring, 727–728, 757

components, 758
implementing, 760–763, 763
operating modes, 759
overview, 34
role switching, 759–760

Mirroring page, 762–763, 763

mitigating risks, 712
Mixed Mode authentication, 70, 76, 652
MMC (Microsoft Management Console)

security templates, 682–686, 682, 684–685
System Monitor, 511–512

Modeling phase in BUM, 240, 242
models

database, 305
MDS, 845
replication, 778

modes, availability, 726
money data type, 340
monitoring

failover clustering, 748–750
log files, 702, 703
replication, 790
security, 635–637

monthly scheduled jobs, 460
MORE command, 143
moving resource groups, 749
MSDB databases, 304–305, 304
MSDBData.mdf file, 304
MSDBLog.ldf file, 304
MSSQLSERVER service, 48–49, 68
msvcp71.dll file, 265
msvcr71.dll file, 265
MTBF (meantime between failures), 724
MULTI_USER option, 317
Multidimensional Modeling tutorial, 802
multiple client/server relationships applications,

19–20, 20
multiple-column clustered indexes, 370
multiple filegroups, 310
multiple instances, 54–55
multiple subscriber models, 778
multiple tables in SELECT statements, 201–203,

202, 204
multiplication in SQL, 183
multiserver queries, 26, 26
MUST_CHANGE option, 658

N
n-tier applications, 19–20, 20
Name property

PBM conditions, 540
PBM policies, 542

named audits, 702
named columns, 187

882 named instances – nodes

named instances, 56, 73–76, 75
Named Pipes protocol, 85–86
names

collations, 348
PBM conditions, 540
PBM policies, 542
SQL identifiers, 180–181
standardized, 564
triggers for, 400

naming values for dimensions, 808
NAS (Network Attached Storage) devices, 613
nchar data type, 338, 342
.NDF extension, 50
Neesus Datacom algorithm, 622
nested triggers, 398, 399
NET command, 148
.NET integration, 36
NET SEND command, 462, 620
NET START command, 150
NET STOP command, 148–149, 149
NETSH command, 121, 123
NETSTAT command, 151–153
Network Access: Do Not Allow Anonymous

Enumeration Of SAM Accounts And Shares
policy, 683

Network Attached Storage (NAS) devices, 613
network load balancing (NLB), 731, 735
network packet analyzers, 113
Network Security phase, 690
Network Security screen, 690
Network Security Rules screen, 690
Network Service option, 61
Network Test, 741
networks

administration tasks, 120
cracks, 621–624
DNS configuration, 123–124, 124
firewalls, 126–127, 126
highly available, 731
in performance, 496
security, 614–618, 634
statistics, 151–153, 152–153
TCP/IP, 121–125, 121–125

New dialog for OSA, 266, 271
New Alert dialog, 482–483, 483
New Data Quality Project screen, 847
New Database dialog, 321–323, 321, 788
new features

SQL Server 2005

development, 36–38
management, 29–36, 30–33, 35

SQL Server 2008
development, 27–29, 28
management, 25–27, 26

SQL Server 2012
development, 22–25
management, 21–22

New Group dialog, 663, 663
New Inbound Rule Wizard, 126, 126
New Index dialog, 376, 376
New Job dialog, 454, 454

Alerts page, 461
Notifications page, 461–462, 461
Schedules page, 459–460, 460
Steps page, 455–459
Targets page, 462

New Job option, 430
New Job Schedule dialog, 475, 475
New Job Step dialog, 455, 456
New Login dialog, 664
New Profile dialog, 438, 438
New Project dialog, 104, 104
New Publication Wizard, 783–785, 783–786
New Query window, 98–100

clustered indexes, 374
deadlocks, 502
permissions, 693
SQL logins, 658
SSIS, 109
SSMS, 96
triggers, 403, 405

New Server Group dialog, 560, 560
New Server Registration dialog, 559, 561, 561
New SQL Server Stand-Alone Installation Or Add

Features to an Existing Installation option
installation, 64
named instances, 74
SSAS, 417
SSIS, 420
SSRS, 433

New Subscription Wizard, 787–790, 788–789
New User window, 662, 662
Newsham-21-bit attacks, 622
NLB (network load balancing), 731, 735
NO_TRUNCATE clause, 592
nodes

B-tree structures, 366
cluster, 736

Non function – optimized databases 883

Non function, 805
nonadditive measures in data warehousing, 803
nonclustered indexes, 365, 370–371

creating, 376–378, 376–378
defined, 17

nonrepudiation, 652
NORECOVERY option, 760–761
normal forms and normalization, 9, 290–291

for availability, 295–296
Boyce-Codd, 289–291
defined, 280–282
denormalizing, 294–295
first normal form

from Excel worksheets, 292–293
overview, 282–286

knowledge base management, 846
for performance, 295
second normal form, 286–288, 293
for security, 297
third normal form, 288–289, 293

NOT operators, 193
NOT LIKE operator, 345
notifications, 37–38

events, 705
jobs, 461–462, 461
operators, 481, 481
triggers for, 400

Notifications page, 461–462, 461, 481, 481
NSLOOKUP command, 124
nText data type, 342, 344
NTVDM.EXE program, 131
NULL values

columns, 351
properties, 319
SELECT statements, 197–198, 198

NULLIF expression, 197–199, 198–199
number signs (#) in SQL identifiers, 181
numeric data types, 340
Numeric Round Abort property, 320
nVarchar data type, 342, 344

O
Object Browser, 31
Object Explorer window, 97–98, 692
Object Types dialog, 664, 664
objects

altering, 209–210
creating, 207–209

deleting, 210–211
MDS, 844–845
permissions, 695–696
proxy, 699–700

ODBC (Open Database Connectivity)
connections, 815

OLAP (online analytical processing) databases,
9, 413

OLTP (online transactional processing) databases,
803, 806

On Change: Log Only condition, 543–544, 550,
557–558

On Change: Prevent condition, 543, 550, 558
ON clause for triggers, 401
On Demand condition, 543, 558
ON PRIMARY clause, 325
On Schedule condition, 543–544, 550, 558
on-site contractors in social engineering, 632
one time scheduled jobs, 460
one-to-many relationships, 233–235, 234–235
one-to-one relationships, 232–233, 232,

256, 261
online analytical processing (OLAP) databases,

9, 413
online help system, 116–118, 117
online indexing, 34
online transactional processing (OLTP) databases,

803, 806
Open Database Connectivity (ODBC)

connections, 815
Open Database dialog, 686, 686
Open File - Security Warning dialog, 680
OPEN SYMMETRIC KEY statement,

672–673
Open System Architect (OSA), 258

ERDs in, 264–271, 265–271
toolset, 242–243

OpenFiler program, 747
operating modes for database mirroring, 759
operating systems

fingerprinting, 627
jobs, 453, 459

Operations phase in DBLC, 239
operators

creating, 480–482, 481
notification, 462
SQL, 182–183

optimistic concurrency model, 498
optimized databases, 10

884 Options page – performance

Options page
backups, 581–582
command prompt, 132–133, 132
databases, 322, 322
nonclustered indexes, 377–378
restores, 591, 591
SQL Server Installation Center, 64
SSMS, 95, 95, 101, 101

OR operators, 193
Orange Book, 713–715
ORDERED BY clause

SELECT statements, 196, 196
TOP keyword, 189

OS (operating systems)
fingerprinting, 627
jobs, 453, 459

OSA (Open System Architect), 258
ERDs in, 264–271, 265–271
toolset, 242–243

other data types category, 343
OUTER JOINs, 203, 204
output

knowledge base management, 846
redirection, 146–148, 147

Overwrite Existing Database option, 591
owners separated from schemas, 35
ownership chaining, 698–699

P
Package Installation Wizard, 824–825
packages

access control, 821
auditing, 826, 827
deployment, 823–826
SSIS. See SQL Server Integration Services

(SSIS)
packets

ARP, 623
filtering and dropping, 627

page-level locks, 499
Page Verify property, 320
pages

automatic repair, 726
data files, 50

Pages/sec counter, 494
Parameterization property, 320
parameters

batch files, 156–157

SSIS catalog, 823
PARSE command, 23
partitioned indexes, 371–372
partitioning, 358–359

with functions and schemes, 360–361, 360
horizontal, 360
vertical, 359–360

passing data in batch files, 156–157
passive scanning, 627
Password Must Meet Complexity Requirements

policy, 661
PasswordExpirationEnabled property, 551–552
PasswordPolicyEnforced property, 551
passwords

attacks, 622
in authentication, 642–644
cracks, 624–629, 625, 628
hashing, 644–645
least privilege principle, 699–700
policies

local, 659–661, 660
SQL logins, 35, 658
strong, 630, 630
user accounts, 119

storing, 645
strong, 647–648
username and password pairs, 646
Windows Server, 611–612

PATH variable, 145
PATH XML indexes, 372
PathPING tool, 125, 125
Payment Card Industry (PCI) compliance,

649–650
PBM. See policy-based management (PBM)
pcap files, 622
PCI (Payment Card Industry) compliance,

649–650
percent signs (%)

parameters, 156–157
string comparisons, 192
variable names, 144

perfmon command, 528–529, 529
performance

alerts, 482–484
and availability, 295–296
BUM, 241–242
data collectors, 27
data partitioning, 358–361, 360
design for, 295

Performance Counter object – polSurfaceAreaLog policy 885

encryption, 670
filegroups, 310
indexes, 368
mirroring operating mode, 759
one-to-many relationships, 233
replication, 790–791
stored procedures for, 407
tuning, 492

cost savings, 492–493
DBCC commands, 525–527, 526
DMVs, 523–525
DTA, 506–510, 508
for efficiency, 493
for frustration reduction, 494
locks. See locks
myths, 494–496
Performance Studio, 520–521, 522
Resource Governor, 519–520
Resource Monitor, 527–529, 528–529
SQL Server Profiler, 503–506, 504–505
System Monitor. See System Monitor
tools, 496–497

Performance Counter object, 517
Performance Counters properties dialog, 518
Performance Monitor, 484
Performance Studio, 520–521
Performance tab, 527
perimeter security solutions, 635
permissions, 653

DCL statements, 213
files, 119–120, 120
in installation, 60–62
least privilege principle, 691–696, 693
objects, 695–696
scopes, 694–695
SQL Server Agent, 638
statements, 695

Permissions page, 692
persistence in server-based databases, 12
pessimistic concurrency model, 498
PGP (Pretty Good Privacy) encryption

system, 629
PIDs for connections, 152–153, 152–153
PING tool, 124–125
piping symbols (|) for output redirection, 146–147
PKI (Public Key Infrastructure), 647, 669–670
planned manual failover, 729–730
planning

backups, 571–574

capacity, 271–275, 276
databases, 250

business process evaluation, 252
use cases, 254
user surveys, 250–252

dimensions, 808–809
fact tables, 806–807
installation. See installation
SQL Server Installation Center tasks, 63–64

plug-ins support in ettercap, 626
points in time, restoring databases to, 590–591,

590–591
points of contact, 480
points of failure, restoring databases to,

591–592
poisoners, 627
polDatabaseSizeScheduled policy, 553–554,

554–557
policies

account, 683
compliance, 54
encryption, 670
password, 647

local, 659–661, 660
SQL logins, 35, 658
strong, 630, 630
user accounts, 119

PBM. See policy-based management (PBM)
Policies Management node, 546
policy-based management (PBM)

automation, 564–566, 565–566
benefits, 562–563
CMS. See Central Management Server (CMS)
components, 536, 536
conditions, 539–540, 540–541
facets, 536–539, 538
overview, 26, 534–536
policies, 26, 542–545, 542, 544

categories, 545–550, 546–549
conditions, 550–553
creating, 553–557, 554–557
evaluating, 558
targets, 549–550, 550

standardizations, 563–564
surface area, 709–710, 709–711
updating, 566–567

polPasswordRulesPrevent policy, 556
polSurfaceAreaLog policy, 557,

565, 565

886 ports – Quoted Identifiers Enabled property

ports
security, 615
TCP, 56

pound signs (#) in tempdb database, 306
PowerShell, 22

database creation, 326–328, 327
jobs, 453, 459
overview, 164–168, 165–167

PPTP broker, 626
Pre-Windows 2000 Compatible group, 69
precedence of SQL operators, 183
Pretty Good Privacy (PGP) encryption

system, 629
previous versions, upgrading from, 77–79
primary keys, 231–232

Boyce-Codd normal form, 290
clustered indexes, 375, 375
columns, 352–353
first normal form, 284–285
second normal form, 286–288
third normal form, 288–289

principals
authentication, 655–657
mirroring, 758
permissions, 653
user accounts, 119

principle of least privilege. See least privilege
principle

private networks in failover clustering, 738
privileges. See least privilege principle
ProcessAdmin server role, 665
processes, standardized, 564
processor requirements, 58–60
% Processor Utilization counter, 494–495
production operational databases, 413
production servers in SSIS, 817–818
Profiler, 497, 503

DTA workload files, 506–507
traces, 113–116, 114–116, 504–505, 504–505

profiling systems in data quality, 845–846
project charters, 245
project evaluation, 245
project management, 243–244

Define phase, 244–245
Deliver phase, 246–247
Design phase, 246
Determine phase, 247

projects
creation, 847–848

SSDT, 104–107, 104–105
promiscuous attackers, 604
Property Pages dialog, 824
PROPERTY XML indexes, 372
proprietary data storage as integration

issue, 815
protected authentication, 714
protection levels in SSIS packages, 431
protection of information responsibilities, 5
ProtectionLevel property, 821
protocol configuration in SSCM, 89–91, 90
proxy attacks, 619
proxy objects, 699–700
Public database role, 666
Public Key Infrastructure (PKI), 647, 669–670
public networks in failover clustering, 738
Public server role, 665
Publication Access Lists, 787
Publication page, 787, 788
Publication Databases page, 783
Publication Type page, 783, 783
publications for replication, 775, 781, 783
Publisher Properties dialog, 781, 782
publishers for replication, 775, 779–786,

780–785
Purpose and Requirements phase in BUM,

240–241

Q
queries. See also SQL language

multiserver, 26, 26
requirements, 59
snapshots, 770
SSMS, 95

Query Analyzer, 30–31, 31
Query Designer window, 392
Query Editor

Error List view, 28, 28, 98–100, 99
surface area, 708

Query Execution option, 95
Query Results option, 95
Query Statistics system data collector set,

522, 522
queues, 10
Quick Edit feature, 133
quorums for clusters, 736–737
Quoted Identifiers Enabled property, 320

RAID (redundant array of independent disks) – replicas 887

R
RAID (redundant array of independent disks),

731, 734, 754–757, 756
Raise Alert When Message Contains option, 483
RAISERROR function, 219
RANGE LEFT clause, 361
RANGE RIGHT clause, 361
ranges in SELECT statements, 194–195, 194
Raster Fonts option, 133
RC4 algorithm, 621
read anomalies, 294
Read Committed isolation level, 499
read-only facets, 536–539, 538
Read Uncommitted isolation level, 499
read-write facets, 537
Ready to Install screen

SQL Server, 71, 71
SSAS, 418
SSIS, 420
SSRS, 435

real data type, 340
rebuild setup command, 345
rebuilding indexes, 384, 385, 388
record sets, 16
records, 16
recovery

automatic, 51
disaster, 51
vs. high availability, 723
models, 573–574

backups, 572
bulk-logged, 314–315, 575–576
full, 315, 575
selecting, 576–577
setting, 577–578, 578
simple, 313–314, 574, 575

replication, 791
time requirements, 573

recurring scheduled jobs, 460
recursive triggers, 320, 398, 399
Recursive Triggers Enabled property, 320
RECURSIVE_TRIGGERS option, 398
Red Book, 714
redirecting output, 146–148, 147
redundancy

in availability, 725
database mirroring. See mirroring
flat-file databases, 8

log shipping. See log shipping
normalization for. See normal forms and

normalization
RAID-based, 754–757, 756
WSUS, 487

redundant array of independent disks (RAID),
731, 734, 754–757, 756

redundant servers, 731
References permission, 696
REGEDIT program, 653–654, 654
Registered Servers window, 559–561, 561–562
registering subscriber servers, 559–562,

560–562
Registry

attacks on, 623
authentication modes, 653–655, 654
SCW, 690
security templates, 683

regulations
encryption, 670
regulatory compliance, 648–652

reinjection attacks, 623
relational databases, 9–11, 10, 226

data, 226–227
information, 227
tables, 227–232, 228–230

relations, 16
Relationship tab, 259, 259
relationships

ERDs. See entity relationship diagrams (ERDs)
improper, 281
many-to-many, 235–236, 236
one-to-many, 233–235, 234–235
one-to-one, 232–233, 232

Reliability and Performance Monitor,
511, 513

alerts, 484, 486
reports, 516, 516

Rely on Server Storage security protection
level, 431

REM statements, 158
remote distributor models, 778
remote sites, log shipping to, 766
removing installations, 80
reorganizing indexes, 388
Repeatable Read isolation level, 499
replicas

availability, 726
failover, 728–729

888 replication – row-level tracking conflict resolution

replication, 774–775
conflict resolution, 786
importing and exporting data, 791–797,

796–797
latency, 777
models, 778
monitoring, 790
new features, 778–779
performance, 790–791
publishers and distributors, 779–786,

780–785
recovery, 791
roles and concepts, 775
security, 787
SSIS, 795–797, 796
steps, 453
subscribers, 787–790, 788–789
support for, 39
types, 775–777

Replication Monitor, 777, 790
Report Builder application, 432
Report Designer, 29, 432
Report Server project, 103
Report Server Project Wizard option, 103
Reporting Services, 432–433

installing and configuring, 77, 433–436,
434–436

new features, 36
Reporting Services Configuration Manager,

435–436
Reporting Services Configuration screen, 434
reports

failover clustering, 743, 744
log shipping, 768
Performance Studio, 523
reporting servers, 41
SSMS, 100–101, 100
SSRS, 432–433

installing and configuring, 77, 433–436,
434–436

new features, 36
vulnerability, 608, 609

requirements
backups, 571–572
CMS, 558–559
failover clustering, 738–739
installation, 58–60

reserved keywords, SQL, 177–178
Resource Governor

implementing, 519–520
overview, 27

Resource Monitor, 527–529, 528–529
resources for clusters, 746
Resources page, 64
Response page for alerts, 483, 483
RESTORE DATABASE statement, 592

snapshots, 334, 770–771
SQLCMD for, 593

RESTORE LOG statement, 593
RESTORE SERVICE MASTER KEY

statement, 671
restore-sqldatabase cmdlet, 22
restoring databases, 589

method selection, 589
to points in time, 590–591, 590–591
to points of failure, 591–592
system, 592–593

restrict access, 317–318
restricted group policies, 683
RESTRICTED_USER option, 317–318
retention of information responsibilities, 5
retries of job actions, 459
reusing policies, 535
Revelation tool, 626
reverting to snapshots, 334, 770–771
Review Data Type Mapping screen, 471
REVOKE statement, 213, 692, 695
REVOKE CREATE TABLE TO statement, 695
RIGHT OUTER JOINs, 203
risk management, 712–713
ROBOCOPY command, 153–154, 154
Role-Based Service Configuration screen, 689
roles, 20

authentication, 656–657
application, 667–668
custom, 667–668, 668
fixed database, 666
fixed server, 664–665, 665

database mirroring, 759–760
overview, 39–42
replication, 775
SSIS, 820

ROLLBACK option for triggers, 402
ROLLBACK TRAN statement, 216–218
root nodes in B-tree structures, 366
rotation of backup devices, 586–587
rough order estimates, 245
row-level tracking conflict resolution, 786

rows – security 889

rows, 16
rules for firewalls, 126, 126
running batch files, 159–160, 160

S
safety operating modes in mirroring, 759
SAM (Security Access Manager), 628
SANs (Storage Area Networks), 731, 734–735
SAU (Standardize, Automate, and Update)

method, 450–452
Save and Run package screen, 471, 472
Save Changes dialog, 107
Save SSIS Package screen, 472, 472
saving SSIS packages, 429–430, 429–430
scalability, 10–11
scanning, passive, 627
SCD (slowly changing dimension) problem, 810
Schedule tab, 514
Schedules page

jobs, 459–460, 460, 467, 475, 479
SSIS packages, 430

scheduling
counters, 514
jobs, 459–460, 460, 467, 475, 479
SSIS packages, 429–430, 429–430

schemas
data warehousing, 804, 807
securable scope, 694
and security, 697–698
separated from owners, 35
tables, 230

schemes, data partitioning with, 360–361, 360
SCM (Security Compliance Manager),

679–682, 681
scopes of permissions, 694–695
screen

clearing, 141
layout, 134, 134
managing, 141–142
size, 93

Script Action To New Query Window option, 658
script kiddies, 604
script tasks in ETL, 835–836, 835
scripts

documentation, 355–357, 356–357
jobs, 453, 459
SSCM, 91–92

SSMS, 101–102, 101
SCW (Security Configuration Wizard),

688–691, 688–691
SCWCMD command, 691
SDK (SQL Server Software Development

Kit), 415
SDLC (Systems Development Lifecycle), 237
second normal form (2NF), 286–288, 293
Secunia.com website, 608, 609
securables, 653, 694–695
Secure Sockets Layer (SSL), 653
security

audits. See audits
authentication. See authentication
in availability, 724
backups, 573
baselines, 678–679

SCW, 688–691, 688–691
security templates, 679–686, 684–685
settings analysis, 686–688, 686–687

C2 compliance, 713–716
clients, 618–619
Common Criteria, 716–717
cracks. See cracks
data classification, 603
defense-in-depth, 637
defined, 600–603
design for, 297, 635
encryption. See encryption
enhancements, 35, 35
exploits, 607–608
GRC, 712–713
least privilege principle. See least privilege

principle
monitoring, 635–637
networks, 614–618, 634
one-to-one relationships, 233
principles overview, 633–634
real world, 605
replication, 787
restrict access, 317–318
server-based databases, 14–16, 15
social engineering, 619–620
SQL Server, 613–614
SSIS package protection levels, 431
SSIS settings, 819–822, 820
stored procedures for, 406–407
surface area, 707–710, 709–711
templates, 679

890 security – services

security (continued)
MMC for, 682–686, 682, 684–685
SCM, 679–682, 681
settings analysis, 686–688, 686–687

theory, 603–605
threats, 606
vulnerabilities, 606–607
Windows Server, 608–613, 609, 611

Security Access Manager (SAM), 628
Security Compliance Manager (SCM),

679–682, 681
Security Configuration and Analysis snap-in,

684, 686–687
Security Configuration Wizard (SCW), 688–691,

688–691
Security page for files, 120, 120
SecurityAdmin server role, 665
Select A Certificate dialog, 822
Select Additional Services screen, 689, 690
Select Administration and Other Options

screen, 689
Select Client Features screen, 688
Select Computers window, 742
Select configuration task screen, 521
SELECT INDEXPROPERTY statement, 386–387
Select Installation Folder page, 825
Select permission, 696
Select Policy File Name screen, 691, 691
Select Script Component Type dialog, 835, 835
Select Server screen, 689
Select Server Roles screen, 688, 689
Select Servers or a Cluster page, 742
Select Source Tables and Views screen, 471, 471
SELECT statements, 185

basic, 186
COALESCE function, 198–199, 199
collations, 201, 345
columns, 186–188
comparison operators, 191–192
converting data, 199–200, 200
DISTINCT keyword, 190
encryption, 673
indexes, 365, 367–369, 371
lists of values, 195, 195
logging, 15–16
logical operators, 193–194
mirroring, 761
multiple tables, 201–203, 202, 204
NULL data, 197–198, 198

ranges, 194–195, 194
snapshots, 770
sorted, 196, 196
stored, 389
string comparisons, 192–193
TOP keyword, 188–190

Select Users or Roles dialog, 693
semantic searches, 23
semi-additive measures in data warehousing, 803
Send an E-Mail screen, 566, 566
Serializable isolation level, 499
server-based databases, 12–16, 15
Server Configuration screen

named instance installation, 76
service accounts, 69, 69
SSAS, 418
SSIS, 420
SSRS, 434

server groups, 560, 560
server instances, 345
Server Manager window, 740
Server Restriction property, 544
server roles, 664–665, 665
Server Roles page, 665, 665
server securable scope, 694
server use analysis, 57
ServerAdmin server role, 665
servers

deploying to, 825
highly available, 730–731

Service Account setting, 819, 820
Service Broker, 37, 705
service master encryption keys, 671
service master keys (SMKs), 441
service packs, 73

compatibility, 54
failover clustering, 748

Service Set Identifiers (SSIDs), 617
Service Status setting, 820
services

accounts
least privilege, 700–701
settings, 61, 69, 69
unique, 118–119

command-line administration, 148–150,
148–149

installation planning, 48–49, 49
SSCM, 86–89, 87–89
starting and stopping, 148–150, 148–149

session hijacking – sp_serveroption stored procedure 891

session hijacking, 619
session-timeout periods, 726
Set As Default Catalog option, 440
SET command, 144–146
SET DEADLOCK_PRIORITY statement,

501, 503
Set-ExecutionPolicy command, 328
Set Primary Key option, 353
SET RECOVERY BULK_LOGGED

statement, 792
SET RECOVERY FULL statement, 577, 792
SET RECOVERY SIMPLE statement, 326
Set Up Database Mail option, 437
setup command for collations, 345
Setup Support Files screen

default instance installation, 65–66, 67
SSAS, 417
SSIS, 420
SSRS, 433

Setup Support Rules screen
default instance installation, 65, 65
named instance installation, 75
SSAS, 417
SSIS, 420
SSRS, 433

SetupAdmin server role, 665
Shamir, Adi, 622–623
shared locks, 498
Shared Memory protocol, 85
shared storage for clusters, 736
SharePoint servers, 19, 20
Shortcut page for command prompt, 131
shoulder surfing, 633
Show All columns option, 115
Show All Events option, 115, 505
shutting down active node, 749
signatures in SSIS, 821–822
simple recovery models, 313–314, 574, 575
simplicity of flat-file databases, 8
single subscriber models, 778
single tier applications, 18–19, 19
SINGLE_USER access option, 317–318
64-bit computing, 42
size

clustered index tables, 273–275, 276
clustered indexes, 272–273
cursor, 132, 132
password pools, 612

Size property

PBM facets, 537
PBM policies, 551

slashes (/) for SQL comments, 178
slowly changing dimension (SCD) problem, 810
smalldatetime data type, 341
SMALLDATETIME FROMPARTS command, 24
smallint data type, 340
smallmoney data type, 340
SMKs (service master keys), 441
SMOs (SQL Server Management Objects), 327
Snapshot Agent page, 784, 784
Snapshot isolation level, 499
snapshots, 331, 768

creating, 332–334, 333
functionality, 768–769
implementing, 770
mirror instances, 758
overview, 33
querying, 770
replication, 776–777, 784, 784
reverting to, 334, 770–771

sniffer utilities, 624–626, 625
Snort detection system, 636
snowflake schemas, 804, 807
social engineering, 619–620, 630–631

employees, 632–633
Help Desk, 631–632
on-site contractors, 632

soft dimensions in data quality, 839
software-based RAID, 755
Solution Explorer window, 105, 105, 107
solutions in SSDT, 103–107, 104–105
sorted SELECT statements, 196, 196
Source Control option, 95
source location in importing data, 791
sp_addrolemember stored procedure, 666
sp_addsrvrolemember stored procedure, 665
sp_addumpdevice stored procedure, 586
sp_configure stored procedure, 398, 535, 587,

707–708
sp_dboption system stored procedure, 577
sp_estimate_data_compression procedure, 443
sp_grant_publication_access stored

procedure, 787
sp_help_publication_access stored procedure, 787
sp_revoke_publication_access stored

procedure, 787
sp_send_dbmail stored procedure, 463
sp_serveroption stored procedure, 665

892 sp_setapprole stored procedure – SQL Server databases

sp_setapprole stored procedure, 667
sp_spaceused stored procedure, 579
sp_syspolicy_dispatch_event stored

procedure, 558
sp_trace_create stored procedure, 705
sparse columns, 29
sparse files, 769
spatial indexes, 371
special data types, 343
specifications in audits, 702
Specify Table Copy or Query screen, 109, 471
Specify Target SQL Server page, 825
spell checker in knowledge base management, 846
spyware, 636–637
sql_dq.msi package, 841
sql_dqc.msi package, 841
SQL injection attacks, 618
SQL language, 172

aggregate queries, 206–207
batch directives, 178–180
clauses, 180
coding recommendations, 184–185
comments, 178
data types, 182
DCL statements, 212–213
DDL statements, 207–212
defined, 17
DELETE statement, 216
error handling, 218–220, 219
identifiers, 180–181
INSERT statement, 214–215
keywords, 177–178, 184
learning curve, 173
operators and expressions, 182–183
query modes, 173–175, 174
query overview, 172–173
SELECT statements. See SELECT

statements
standardization, 175
statements overview, 180
statements terminators, 184
statements types, 176–177
subqueries, 204–206
system functions, 182
T-SQL, 176
transaction processing, 216–218, 217
UPDATE statement, 215
variables, 181–182

SQL logins, 653–654

creating, 657–659, 657–658
password policies for, 35

SQL Mail, 436
SQL Native Client protocols, 90
SQL Server 2005

migrating from, 79
new features, 29–38, 30–33, 35
upgrading from, 78

SQL Server 2008
new features, 25–29, 26, 28
upgrading from, 78

SQL Server 2012
Express version, 11
migrating to, 79
new features, 21–25
upgrading to, 78

SQL Server 2012 Installation Wizard, 817
SQL Server Agent service, 49, 61

least privilege principle, 638
proxy objects, 699–700
stopping and starting, 87

SQL Server Analysis Services (SSAS), 34, 54, 413
components, 415
data warehousing, 803
installing and configuring, 416–418, 416–418
jobs, 453
projects, 103
tools, 413–415, 414

SQL Server Configuration Manager (SSCM), 84
overview, 84–86, 86
protocol configuration, 89–91, 90
starting and stopping services, 87–88, 87–88
WMI scripting, 91–92

SQL Server Data Tools (SSDT), 102–103, 815,
818–819

data cubes, 414–415, 414
integration services packages, 107–112,

110–113
interface, 103, 103
projects and solutions, 104–107, 104–105
SSIS packages, 421–422, 421, 427–430, 795

SQL Server databases, 302
attaching and detaching, 328–331,

329–331
auto shrink, 316–317
autogrowth property, 312–313
compatibility level, 316
data files, 308–309, 309
filegroups, 309–311

SQL Server Express – sqlps command 893

GUI for, 321–323, 321–323
PowerShell, 326–328, 327
properties, 318–321
recovery models, 313–315
restrict access, 317–318
snapshots, 331–334, 333
system, 303–307, 304, 306–307
T-SQL for, 323–326, 323–324
transaction logs, 311–312
user, 308

SQL Server Express, 25
SQL Server Import and Export Wizard, 470
SQL Server Installation Center

SSAS, 416, 416
SSIS, 420
SSRS, 433
tasks, 63–64, 63

SQL Server Integration Services (SSIS), 53, 415,
419, 814

access control, 821
catalog, 823
components, 817
configuring, 419–421, 818–819, 818
deploying, 825
Deployment Utility, 824–825
development vs. production, 817–818
digital signatures, 821–822
DTUTIL utility, 826
ETL, 828–836, 830–835
event handlers, 828
installing, 419–421, 816–819, 818
integration issues, 814–816
log providers, 827–828
overview, 32–33, 33
packages, 104

auditing, 826, 827
benefits, 431–432
creating, 107–112, 110–113, 421–427,

421, 423–427, 470–473,
470–473

deployment, 823–826
jobs, 453, 459, 470–476, 470–475
scheduling, 429–430, 429–430
security protection levels, 431
troubleshooting and debugging,

427–428, 428
prerequisites, 816–817
projects, 103
replication, 795–797, 796

roles, 820
security settings, 819–822, 820

SQL Server-level principals, 656
SQL Server Management Objects (SMOs), 327
SQL Server Management Studio (SSMS), 21–22,

655, 663
authentication modes, 655, 655
backups, 580
C2 audit traces, 715–716
database roles, 667, 668
disabling indexes, 384, 385
installation tests, 71–72, 73
loading, 97–98, 97–98
overview, 31, 92–93, 93
permissions, 692–694, 693
publishers and distributors, 779
queries, 174
Query Editor windows and error lists,

98–100, 99
recovery models, 577–578
reports, 100–101, 100
scripts, 101–102, 101
SSAS, 415
table designer, 229–230, 230
tasks, 94–96, 95–96

SQL Server Object Explorer option, 95
SQL Server Profiler, 497, 503

DTA workload files, 506–507
traces, 113–116, 114–116, 504–505,

504–505
SQL Server Reporting Services (SSRS),

432–433
installing and configuring, 77, 433–436,

434–436
new features, 36

SQL Server Software Development Kit (SDK),
415

SQL Trace component, 705
SQL_Variant data type, 343
SQLCMD tool

DAC, 32
exporting data, 794
overview, 161–163
queries, 174
RESTORE DATABASE statement, 593
variables, 181–182

SQLCOLLATION option, 345
SqlLocalDB.exe utility, 25
sqlps command, 166

894 sqlps module – syntax algorithms in knowledge base management

sqlps module, 22
SSAS. See SQL Server Analysis Services (SSAS)
SSCM. See SQL Server Configuration Manager

(SSCM)
SSDT. See SQL Server Data Tools (SSDT)
SSH1 support, 626
SSIDs (Service Set Identifiers), 617
SSIS. See SQL Server Integration Services (SSIS)
SSIS service, 819, 820
SSISDB catalog, 823
SSL (Secure Sockets Layer), 653
SSMS. See SQL Server Management Studio

(SSMS)
SSMS Tasks option, 95
SSMS viewer, 702, 703
SSRS (SQL Server Reporting Services), 432–433

installing and configuring, 77, 433–436,
434–436

new features, 36
stability in availability, 724
Standard Edition, 11
standardizations, 464

CMS, 564
PBM, 563–564
SQL language, 175, 185

Standardize, Automate, and Update (SAU)
method, 450–452

Standardize phase in SAU, 451
standby servers

categories, 42
database mirroring, 34, 757

star schemas in data warehousing, 804, 807
starting services

commands for, 148–150, 148–149
SSCM, 87–88, 87–88

startup scheduled jobs, 460
statements in SQL language, 180

permissions, 695
terminators, 184
types, 176–177

statistical semantic searches, 23
statistics for networks, 151–153, 152–153
Steps page, 455–459, 456–458, 465
Stop Condition page, 518, 519
stopping services

commands for, 148–150, 148–149
SSCM, 87–88, 87–88

storage
advanced mechanisms, 38

credentials, 645
encryption, 613
failover clustering. See failover clustering
highly available, 731
log shipping. See log shipping
requirements, 58–60
security for, 602, 623–624

Storage Area Networks (SANs), 731, 734–735
Storage Test for failover clustering, 741
Store Passwords Using Reversible policy, 661
stored procedures

benefits, 406–407
creating, 407–409
defined, 17
SSIS catalog, 823
vs. triggers, 409

stored SELECT statements, 389–390
strings

comparisons, 192–193
concatenation operators, SQL, 183

stripe sets, 757
strong password policies

user accounts, 119
Windows domains, 630, 630

strong passwords, 647–648
subqueries, 204–206
subscriber servers, registering, 559–562, 560–562
subscribers in replication, 775, 787–790, 788–789
Subscribers page, 788, 789
subscribing to PBM categories, 549, 549
subscriptions, MDS, 845
SUM function, 206, 805
summary aggregation in data warehousing,

804–805
surface area, 707

policy-based management, 709–710, 709–711
sp_configure for, 707–708

Surface Area Configuration for Reporting Services
facet, 709

Surface Area Configuration Manager, 707
Surface Area Configuration tool, 35, 35
surrogate keys for dimensions, 810
surveys, user, 250–252
Symantec products, 637
symmetric encryption keys, 670, 672
Synchronization Schedule page, 790
synchronous-commit mode, 728–729
syntax algorithms in knowledge base

management, 846

sys.dm_exec_cached_plans DMV – templates, security 895

sys.dm_exec_cached_plans DMV, 524
sys.dm_exec_connections DMV, 523, 524
sys.dm_exec_requests DMV, 500, 500
sys.dm_exex_query_stats DMV, 524
sys.dm_os_loaded_modules DMV, 524
sys.dm_os_performance_counters DMV, 524
sys.syslogins table, 657, 657
SysAdmin server role, 665
SysEdCo (Systems Education and

Consulting), 450
SysInternals toolset, 150
SysKey feature, 629
System Audit Policy screen, 690
System Configuration Test, 742
system databases, 303

backing up, 588–589
master, 303
model, 305
MSDB, 304–305, 304
restoring, 592–593
tempdb, 305–307, 306–307

System Diagnostics data collector set, 515, 515
system functions in SQL, 182
System Monitor, 494, 511

alerts, 483
data collection, 515–518, 515–516, 518–519
description, 496–497
installing, 511–512
live data viewing, 512–513, 513
logging counters, 514–515
replication, 790

System Performance template, 517
system service policies, 683
system variables, 144
Systems Development Lifecycle (SDLC), 237
Systems Education and Consulting Company

(SysEdCo), 239, 243, 450

T
T-SQL. See Transact-SQL (T-SQL)
tab-delimited files, 110
table data type, 343
Table Design window, 347
Table Designer

SSMS, 229–230, 230
tables, 349–357, 349–350, 352–357

table-only locks, 499
tables, 227–228, 228

collations, 344–348, 347–348
components, 228–230, 229–230
creating

T-SQL, 357–358
Table Designer, 349–357, 349–350,

352–357
data partitioning, 358–361, 360
data types, 338–344
defined, 16
dimension, 803
fact, 806–808
files, 22–23
identity columns, 230–231
keys, 231–232
relationship types

many-to-many, 235–236, 236
one-to-many, 233–235, 234–235
one-to-one, 232–233, 232

schemas, 230
tablix data regions, 29
Tabular Modeling tutorial, 802
tail logs, 591–592
Take Ownership permission, 696
targets

audits, 701
jobs, 462
PBM policies, 549–550, 550

Targets page, 462
Task Manager, 496
Task Scheduling feature, 565–566, 565–566
TASKLIST command, 148
TCP/IP protocol

attacks, 619
communications, 124–125
configuring, 91, 121, 121
SSCM support, 85
verifying, 122–123, 122–123

TCP ports, 56
TCSEC (Trusted Computing System Evaluation

Criteria), 713–714
TDE (Transparent Data Encryption) feature, 27,

441–443, 669, 673–674
tempdb database, 305–307, 306–307
tempdb.ldf file, 306
tempdb.mdf file, 306
templates, security, 679

MMC for, 682–686, 682, 684–685
SCM, 679–682, 681
settings analysis, 686–688, 686–687

896 Temporal Key Integrity Protocol (TKIP) – TYPE command

Temporal Key Integrity Protocol (TKIP), 616
terminators in SQL statements, 184
test labs, 55
Test phase in DBLC, 238–239
testing

failover clustering, 743
SSIS packages, 112

Testing Options page, 743
text data type, 342, 344
Text Editor option, 95
text files in integration issues, 815
third normal form (3NF), 288–289, 293
third-party tools

auto shrink, 317
backup, 595

threats, security, 606
time

data types, 341
restoring databases to, 590–591, 590–591

time data type, 341
TIMEFROMPARTS command, 24
timestamp data type, 343
tinyint data type, 340
TKIP (Temporal Key Integrity Protocol), 616
TNI (Trusted Network Interpretation), 714
tokens in SQL, 180
Tools page, 64
TOP keyword, 188–190
Trace Properties dialog, 504–505, 505
tracers, 777
TraceRT tool, 125
traces

C2, 715–716
creating, 504–505, 504–505
for notifications, 705
SQL Server Profiler, 114, 114, 504–505,

504–505
Transact-SQL (T-SQL), 172

changes, 36
database creation, 323–326, 323–324
indexes, 379

disabling and enabling, 386
filtered, 383

jobs, 453, 457–459, 465–469, 465–469
logical capabilities, 176
tables, 357–358

Transaction Log Shipping page, 765–768, 765
transaction logs, 311–312

backups, 576, 583–584

benefits, 50
log shipping, 764

configuring, 766–767
process, 764–765, 765
to remote sites, 766

truncated, 313
transaction processing, 38, 216–218, 217
transactional replication, 776–777
transferring risks, 713
transient operating states, 758
transit

encryption, 613
security, 602–603

transitive dependence, 288
Transparent Data Encryption (TDE) feature, 27,

441–443, 669, 673–674
transparent encryption, 441–443, 673–674
TREE command, 138–139, 138–139
trend analysis, 514
trial copies, 62
triggers

creating, 401–406, 404–405
DDL, 706
defined, 17, 396–397
logon, 706–707
policies, 535
recursive and nested, 398, 399
vs. stored procedures, 409
types, 397–398
uses, 399–401

Trojan horses, 636
troubleshooting

clusters, 750
SSIS packages, 427–428, 428

TRUNCATE TABLE statement, 216, 400
truncated transaction logs, 313
truncation, triggers for, 400
Trusted Computing System Evaluation Criteria

(TCSEC), 713–714
Trusted Network Interpretation (TNI), 714
Trustworthy property, 320
TRY blocks, 218–220, 219
TRY_CONVERT command, 24
TRY_PARSE command, 23
Tuning Options tab, 508
tuples, 16
Type 1 SCD, 810
Type 2 SCD, 810
TYPE command, 142–143

UCPs (utility control points) – weak credentials and protocols 897

U
UCPs (utility control points), 522
underscores (_) in string comparisons, 192
unicode character strings, 341–342
Uninstall feature, 80
unintentional threats, 606
unique keys in first normal form, 284–285
uniqueidentifier data type, 343
unsecured ports, 615
update anomalies

description, 281
second normal form, 287

Update permission, 696
Update phase in SAU, 451–452
UPDATE statement, 215, 400
updates

default instance installation, 73
failover clustering, 748
latency, 42
PBM and CMS, 566–567
WSUS, 487

Upgrade Advisor, 78
upgrading from previous versions, 77–79
usage in data warehousing, 805–806
use cases, 254
USE command, 162
user accounts, 643
user databases, 308
User Must Change Password At Next Logon

option, 658, 662
usernames

authentication, 646
least privilege principle, 699–700
storing, 645

users and user accounts
database, 668
managing, 118–119
surveys, 250–252
Windows logins, 662

Users phase in BUM, 239, 241–242
utility control points (UCPs), 522
utilization as design consideration, 295

V
Validate a Configuration Wizard, 741–745,

743, 750
validating

failover clustering configuration, 741–745,
742–744

installation, 79–80
VALUE XML indexes, 372
varbinary data type, 342, 344
varchar data type, 342, 344
variables

displaying, 144
setting, 144–146
SQL, 181–182
SSIS catalog, 823

VBScript files, 91–92
verbat.bat file, 155–156
verifying

DNS, 123–124, 124
TCP/IP

communications, 124–125
settings, 122–123, 122–123

versions
compatibility, 54
upgrading, 77–79

vertical partitioning, 359–360
very large databases (VLDBs), 310
View Definition permission, 696
View Facets window, 538, 538
views

creating, 390–392, 391
defined, 17
DMVs, 523–525, 524
overview, 389–390
SSIS catalog, 823

virtual environments in failover clustering, 747
virtual LANs (VLANs), 635
Virtual Private Networks (VPNs), 644
viruses, 636–637
Visio for ERDs, 257–264, 258–264
VLANs (virtual LANs), 635
VLDBs (very large databases), 310
VoIP (Voice over Internet Protocol) networks, 633
VPNs (Virtual Private Networks), 644
VUE exams, 854
vulnerabilities, 606–607

W
warehouses, data, 413
warm standby servers, 34, 42
weak credentials and protocols, 612

898 weak IV attacks – WMI Query Language (WQL)

weak IV attacks, 622–623
weakest link concept, 723
web database servers, 41
Web Service URL page, 435
weekly scheduled jobs, 460
WEI (Windows Experience Index),

723–724, 724
Welcome to the Security Configuration Wizard

screen, 688
WEP. See Wired Equivalent Privacy (WEP)

protocol
WHERE clause

DELETE statement, 400, 402
filters, 392
indexes, 372, 383
keys, 231
replication, 781
searches, 54
views, 392

whitespace in SELECT statements, 186
wildcard characters

copying data, 154
defragmenting files, 150–151
directories, 137
SELECT statements, 186
string comparisons, 192

Win Sniffer utility, 624–626, 625
Windows

accounts, 61
command jobs, 476–480, 478–479
logins, 661–665, 662–664

Windows Authentication, 423, 472
Windows Experience Index (WEI),

723–724, 724
Windows Failover Clustering service. See failover

clustering
Windows firewall, 126–127, 126
Windows-level principals, 656
Windows Management Instrumentation (WMI)

alerts, 482
SSCM, 91–92

Windows mode authentication, 652
Windows PowerShell, 22

database creation, 326–328, 327
jobs, 453, 459
overview, 164–168, 165–167

Windows Server
administration, 118

file system management, 119–120, 120
network configuration, 120–127, 121–125
user account management, 118–119

data collection, 515–518, 515–516, 518–519
security, 608–613, 609, 611

Windows Server Backup (WSB), 594–595, 594
Windows Server Update Services (WSUS),

487–488
Windows System Resource Manager (WSRM),

27, 519
Windows Wireless Zero Configuration (WZC)

utility, 617
WinPcap tool, 627
Wired Equivalent Privacy (WEP) protocol

cracks, 621–624
encryption, 613
keys, 607–608
weaknesses, 617

wired network security, 614–615
wireless networks, 615–616

MAC filtering, 616
security, 607–608, 618
SSID hiding, 617
WEP, 617

WITH clause
purpose, 326
triggers, 401

WITH ALGORITHM clause, 672
WITH COMPRESSION clause, 588
WITH DIFFERENTIAL clause, 583
WITH ENCRYPTION clause, 401
WITH EXECUTE AS clause, 401
WITH FORMAT clause, 584, 586
WITH IDENTITY clause, 699
WITH INIT clause, 586
WITH NO_COMPRESSION clause, 588
WITH NO_TRUNCATE clause, 592
WITH NO WAIT clause, 326
WITH NOINIT clause, 586
WITH NORECOVERY clause, 592
WITH TIES clause, TOP keyword, 190
witness servers, 34, 758
Wizard Actions page, 785
WMI (Windows Management

Instrumentation)
alerts, 482
SSCM, 91–92

WMI Query Language (WQL), 482

workload files – 0-day hacks 899

workload files
analyzing, 507–509
creating, 506–507

worms, 636
WPA and WPA2, 617, 623
WQL (WMI Query Language), 482
Write a Query to Specify the Data to Transfer

option, 109
write methods, 52–53
WSB (Windows Server Backup), 594–595, 594
WSRM (Windows System Resource Manager),

27, 519
WSUS (Windows Server Update Services),

487–488
WZC (Windows Wireless Zero Configuration)

utility, 617
wzcook application, 623

X
X.509 certificates, 822
XML

indexes, 372
support improvements, 37

XML data type, 343
XOR algorithms, 657
xp_cmdshell stored procedure,

708–710
xp_instance_regwrite stored procedure, 654
XPCmdShellEnabled property,

552–553

Z
0-day hacks, 633

Comprehensive Study Tool Package includes:

Free Online Study Tools
Register on Sybex.com to gain access

to a complete set of study tools

• Over an Hour of companion videos
of many of the exercises presented in
the book

• Three Practice exams to test your
knowledge of the material

• Electronic Flashcards to reinforce your
learning

• Searchable Glossary gives you instant
access to the key terms you’ll need to
know as a SQL Server Administrator

Go to www.sybex.com/go/sqlserver12admin to register and
gain access to this comprehensive study tool package.

http://www.sybex.com/go/sqlserver12admin
http://Sybex.com

	Cover
	Copyright
	Acknowledgments
	About the Author
	Contents at a Glance
	Contents
	Table of Exercises
	Introduction
	Who Should Read This Book
	What You Will Learn
	What You Need
	Suggested Home Lab Setup

	What Is Covered in This Book
	Additional Study Tools

	How to Contact the Author

	Part I: Introducing SQL Server 2012
	Chapter 1: Understanding SQL Server’s Role
	What Is Information Technology?
	The Importance of IT
	The Components of IT

	Introduction to Databases
	Types of Databases
	Weighing the Benefits of Using a Local or Server-Based Database
	Important Database Terms

	Database Servers and Applications
	Database Application Types

	SQL Server’s Role
	New Features Introduced in SQL Server 2012
	Features Introduced in SQL Server 2008
	Features Introduced in SQL Server 2005
	Core Features of SQL Server
	SQL Server Roles

	Summary
	Chapter Essentials

	Chapter 2: Installing SQL Server 2012
	Installation Planning
	SQL Server 2012 Architecture
	Installation Planning Process
	Managing Permissions

	Installing a Default Instance
	SQL Server Installation Center Tasks
	Installation

	Installing Named Instances
	Installing to a Cluster
	Installing Extra Features
	Upgrading from Previous Versions
	Handling Upgrades
	Understanding Migrations

	Validating an Installation
	Removing an Installation
	Summary
	Chapter Essentials

	Chapter 3: Working with the Administration Tools
	SQL Server Configuration Manager
	Overview of the SSCM
	Performing Common SSCM Tasks

	SQL Server Management Studio
	Overview of the SSMS
	Performing Common SSMS Tasks

	SQL Server Data Tools
	Overview of SSDT
	Performing Common SSDT Tasks

	SQL Server Profiler
	Books Online
	Windows Server Administration for the DBA
	User Account Management
	File System Management
	Network Configuration Administration

	Summary
	Chapter Essentials

	Chapter 4: SQL Server Command-Line Administration
	Introducing the Command Prompt
	General Command-Prompt Options
	Font Settings
	Screen Layout
	Color Choices

	General Commands
	Directory and Folder Navigation
	Directory and Folder Listing
	Screen Management
	Displaying Information
	Redirecting Output
	Administrative Commands

	Batch Files
	Using Logic (IF and GOTO)
	Passing Data
	Including Comments

	Mastering SQLCMD
	Introducing Windows PowerShell
	Using SQL Server PowerShell Extensions
	Summary
	Chapter Essentials

	Chapter 5: Querying SQL Server
	Understanding the SQL Language
	Queries
	Short Learning Curve
	Varied Query Modes
	Standardization
	Added Logical Capabilities of T-SQL

	SQL Statement Types
	Data Manipulation Language
	Data Definition Language
	Data Control Language

	SQL Syntactical Elements
	Keywords
	Comments
	Batch Directives
	SQL Statements
	Clauses
	Identifiers
	Variables
	Data Types
	System Functions
	Operators and Expressions
	Statement Terminator

	Coding Recommendations
	Capitalize Keywords
	Use Standard SQL
	Do Not Use Keywords as Identifiers

	Using SELECT Statements
	Basic SELECT Statements
	Filtered SELECT Statements
	Sorted SELECT Statements
	Handling NULL Data
	Converting Data in Result Sets
	Identifying Collation Details
	Using Data from Multiple Tables

	Advanced Query Techniques
	Subqueries
	Aggregate Queries

	Using DDL Statements
	Creating Objects
	Altering Objects
	Deleting Objects

	Using DCL Statements
	Granting Access
	Denying Access
	Revoking Permissions

	Modifying Data
	The INSERT Statement
	The UPDATE Statement
	The DELETE Statement

	Tuning and Optimizing Queries
	Transaction Processing
	Error Handling

	Summary
	Chapter Essentials

	Part II: Designing Database Solutions
	Chapter 6: Database Concepts and Terminology
	Relational Database Theory
	Data
	Information
	Tables
	Table Components
	Relationship Types

	Database Design Processes
	Systems Development Life Cycle
	Database Life Cycle
	Business, Users, Model

	Project Management for the DBA
	The Define Phase
	The Design Phase
	The Deliver Phase
	The Determine Phase

	Summary
	Chapter Essentials

	Chapter 7: ERD and Capacity Planning
	Planning a Database
	User Surveys
	Evaluating Business Processes
	Developing Use Cases

	Understanding Entity Relationship Diagramming
	Building an ERD
	Creating an ERD in Visio
	Creating an ERD in OSA

	Capacity Planning
	Summary
	Chapter Essentials

	Chapter 8: Normalization and Other Design Issues
	Designing for Normalization
	Normal Forms
	Normalizing a Database
	Denormalizing a Database

	Designing for Performance
	Designing for Availability
	Designing for Security
	Summary
	Chapter Essentials

	Part III: Implementing Database Solutions
	Chapter 9: Creating SQL Server Databases
	SQL Server Databases
	System Databases
	User Databases

	Database Storage
	Database Data Files
	Database Filegroups
	Transaction Logs

	Database Options and Properties
	Autogrowth
	Recovery Model
	Compatibility Level
	Auto Shrink
	Restrict Access
	More Database Properties

	Creating Databases in the GUI
	Creating Databases with T-SQL
	Creating Databases with PowerShell
	Attaching and Detaching Databases
	Database Snapshots
	Creating Snapshots
	Reverting to Snapshots

	Summary
	Chapter Essentials

	Chapter 10: Creating Tables
	Data Types
	Data Type Categories

	Collations
	Configuring Server Instance Collations
	Configuring Database Collations
	Configuring Column Collations

	Table Creation Process
	Creating Tables with the Table Designer
	Creating Tables with T-SQL

	Data Partitioning
	Vertical and Horizontal Partitioning
	Data Partitioning with Functions and Schemes

	Summary
	Chapter Essentials

	Chapter 11: Indexes and Views
	Understanding Indexes
	Indexes Defined
	Index Types

	Creating Basic Indexes
	Creating a Clustered Index
	Creating a Nonclustered Index

	Creating Advanced Indexes
	Creating a Covering Index
	Creating a Filtered Index

	Managing Indexes
	Dropping an Index
	Disabling and Enabling Indexes
	Understanding Index Fragmentation

	Understanding Views
	Creating Views
	Summary
	Chapter Essentials

	Chapter 12: Triggers and Stored Procedures
	Triggers Defined
	Types of Triggers
	Recursive and Nested Triggers

	Using Triggers
	Creating Triggers
	Understanding Stored Procedures
	Creating Stored Procedures
	How Triggers Differ from Stored Procedures

	Summary
	Chapter Essentials

	Chapter 13: Implementing Advanced Features
	Understanding and Installing Analysis Services
	Analysis Services Tools
	Analysis Services Optional Components
	Installing and Configuring Analysis Services

	Understanding Integration Services
	Installing and Configuring Integration Services
	Creating a Basic Integration Services Package
	Troubleshooting and Debugging an SSIS Package
	Scheduling Your Package to Run Automatically
	Security Protection Levels

	Understanding and Installing Reporting Services
	Implementing Database Mail
	Configuring Full-Text Indexing
	Implementing Transparent Data Encryption
	TDE Architecture
	TDE Implementation Process

	Data Compression
	Summary
	Chapter Essentials

	Part IV: Administering and Maintaining SQL Server 2012
	Chapter 14: Creating Jobs, Operators, and Alerts
	Standardize, Automate, and Update
	Understanding SQL Server Jobs
	Job Steps
	Job Configuration Properties
	Typical Jobs

	Creating T-SQL Jobs
	Creating SSIS Jobs
	Creating Windows Command Jobs
	Creating and Using Operators
	Creating and Using Alerts
	Using WSUS for SQL Server 2012
	Summary
	Chapter Essentials

	Chapter 15: Performance Monitoring and Tuning
	Performance Tuning Principles
	Why Performance Tuning Matters
	Common Performance Tuning Myths

	Performance and Troubleshooting Tools
	Blocks, Locks, and Deadlocks
	Understanding Locks
	Lock Types
	Granularity of Locks
	Lock Isolation Levels
	Blocks and Deadlocks

	SQL Server Profiler
	Database Engine Tuning Advisor
	Creating a DTA Workload File
	Analyzing Your Workload File
	Applying DTA Recommendations

	Performance Monitoring with System Monitor
	Installing the System Monitor
	Viewing Live Performance Data
	Logging Counters in Windows Server 2003
	Data Collection in Windows Server 2008

	Using the Resource Governor
	Performance Studio
	Advanced Monitoring Tools
	Dynamic Management Views
	DBCC
	Resource Monitor

	Summary
	Chapter Essentials

	Chapter 16: Policy-Based Management
	Policy-Based Management
	PBM Components
	Creating Conditions
	Creating Policies
	Evaluating Policies

	Centralized Server Management
	Major Benefits and Requirements
	Creating a Central Management Server
	Registering Subscriber Servers

	Standardizing with PBM and CMS
	Standardizing
	Automating
	Updating

	Summary
	Chapter Essentials

	Chapter 17: Backup and Restoration
	Backing Up a Database
	Creating a Backup Plan
	Choosing a Recovery Model
	Using the Different Backup Types
	Working with Backup Devices and Files
	Compressing Backups
	Performing File and Filegroup Backups

	Backing Up System Databases
	Restoring a Database
	Choosing a Restore Method
	Restoring to a Point in Time
	Restoring to the Point of Failure
	Restoring System Databases

	Backing Up the Environment
	Built-in Backup Tools
	Imaging and Third-Party Tools

	Summary
	Chapter Essentials

	Part V: SQL Server Security
	Chapter 18: Security Threats and Principles
	Security Defined
	How to Classify Data for Security Purposes
	Security in Theory
	Security in the Real World

	Security Threats
	Threats, Vulnerabilities, and Exploits Defined
	Attack Point 1: Windows Server
	Attack Point 2: SQL Server
	Attack Point 3: The Network
	Attack Point 4: The Client
	Cracking Examples

	Security Principles
	Start with Good Design
	Trust, but Monitor
	Defense-in-Depth
	Least Privilege

	Summary
	Chapter Essentials

	Chapter 19: Authentication and Encryption
	Understanding Authentication
	Credentials
	Common Authentication Methods
	Regulatory Compliance

	SQL Server Authentication Methods
	Logins, Users, and Roles
	Configuring the Authentication Mode
	Creating and Managing Principals and Roles
	Creating Database Users

	Understanding Encryption
	SQL Server Encryption Solutions
	Implementing Application-Level Encryption
	Implementing Transparent Encryption

	Summary
	Chapter Essentials

	Chapter 20: Security Best Practices
	Establishing Baselines
	Working with Security Templates
	Analyzing a Server’s Security Settings
	Using the Security Configuration Wizard

	Implementing Least Privilege
	Permissions and Authorization
	Ownership Chains
	Credentials

	Auditing SQL Server Activity
	Using Audits
	Notifications
	DDL Triggers
	Logon Triggers

	Configuring the Surface Area
	SP_Configure for Surface Area Management
	Policy-Based Management Surface Area Options

	Understanding Common Criteria and C2
	GRC
	C2 Compliance
	Common Criteria

	Summary
	Chapter Essentials

	Part VI: Implementing High Availability and Data Distribution
	Chapter 21: AlwaysOn and High Availability
	Introducing AlwaysOn Technology
	Understanding High Availability
	AlwaysOn Defined

	Mirroring and AlwaysOn
	Replacing Traditional Mirroring
	Using Traditional Mirroring

	Failover Solutions
	Synchronous-Commit
	Asynchronous-Commit
	The Failover Process

	Selecting Hardware for AlwaysOn
	Highly Available Servers
	Highly Available Storage
	Highly Available Networks

	Summary
	Chapter Essentials

	Chapter 22: SQL Server Failover Clustering
	Understanding Windows Failover Clustering Service
	Implementing a Windows Cluster
	Failover Clustering Components
	The Failover Clustering Installation Process

	Installing SQL Server 2012 to a Cluster
	Monitoring and Managing a SQL Server Cluster
	Service Packs and Update Management
	Failover Management
	Cluster Troubleshooting

	Summary
	Chapter Essentials

	Chapter 23: Database Mirroring and Snapshots
	RAID-based Data Redundancy
	Using Database Mirroring
	Database Mirroring Components
	Understanding Mirror Operating Modes
	Planning for Role Switching
	Implementing Database Mirroring

	Understanding Log Shipping
	Inside the Log-Shipping Process
	Configuring Log Shipping and Monitoring

	Implementing Database Snapshots
	Database Snapshot Functionality
	Implementing a Snapshot
	Querying a Snapshot
	Reverting to a Snapshot

	Summary
	Chapter Essentials

	Chapter 24: Implementing Replication
	SQL Server Replication
	SQL Server Replication Roles and Concepts
	Replication Types
	Replication Models
	New Features in SQL Server 2012
	Configuring a Publisher and Distributor
	Configuring a Subscriber
	Monitoring Replication
	Replication Performance
	Replication Recovery

	Importing and Exporting Data
	Using BCP
	Bulk Insert Commands
	Using SQL Server Integration Services

	Summary
	Chapter Essentials

	Part VII: Implementing Business Intelligence and Reporting
	Chapter 25: Data Warehousing
	Understanding Data Warehouses
	Defining Terminology
	Defining Usage

	Implementing Fact Tables
	Understanding and Planning for Fact Tables
	Creating Fact Tables

	Implementing Dimensions
	Understanding and Planning for Dimensions
	Creating Dimensions

	Summary
	Chapter Essentials

	Chapter 26: SQL Server Integration Services
	Integration Issues
	Existing Systems
	Existing Data
	Co-existence

	Installing SSIS
	Providing Prerequisites
	Installing the SSIS Components
	Development vs. Production Servers
	Configuring SSIS for Operations

	Configuring SSIS Security Settings
	SSIS Service
	SSIS Roles
	Access Control
	Digital Signatures

	Deploying Packages
	Working with the SSIS Catalog
	Using the Deployment Utility
	Deploying to SQL Server or Files
	Using DTUTIL

	SSIS Auditing and Event Handling
	Auditing Packages
	Using Log Providers
	Using Event Handlers

	Extracting, Transforming, and Loading Data
	Connection Managers
	Data Flow Design
	Understanding Data Load Options
	Using Script Tasks

	Summary
	Chapter Essentials

	Chapter 27: Data Quality Solutions
	Understanding Data Quality Concerns
	Data Quality Problems
	Data Quality Dimensions
	Data Quality Processes

	Installing Data Quality Services
	Prerequisites
	Performing the Installation
	Data Governance

	Using Master Data Services
	Installing and Implementing MDS
	Creating MDS Objects

	Cleaning Data
	Profiling Systems
	Knowledge Base Management
	Creating the Project

	Summary
	Chapter Essentials

	Appendices
	Appendix A: Microsoft’s Certification Program
	How Do You Become Certified on SQL Server 2012?
	Tips for Taking a Microsoft Exam
	Exam Registration

	Certification Objectives Map

	Appendix B: About the Additional Study Tools
	Additional Study Tools
	Videos
	Sybex Test Engine
	Electronic Flashcards
	Glossary of Terms
	Adobe Reader

	System Requirements
	Using the Study Tools
	Troubleshooting
	Customer Care

	Index

Administration

