
www.allitebooks.com

http://www.allitebooks.org

Microsoft SQL Server
2012 Performance
Tuning Cookbook

80 recipes to help you tune SQL Server 2012 and achieve
optimal performance

Ritesh Shah

Bihag Thaker

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft SQL Server 2012 Performance
Tuning Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2012

Production Reference: 1160712

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-574-0

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Ritesh Shah

Bihag Thaker

Reviewers
Satya SK Jayanty

Maria Zakourdaev

Michael Zilberstein

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Kedar Bhat

Technical Editors
Apoorva Bolar

Madhuri Das

Merin Jose

Copy Editor
Brandt D'Mello

Project Coordinator
Sai Gamare

Proofreader
Lesley Harrison

Indexer
Monica Ajmera Mehta

Graphics
Manu Joseph

Valentina Dsilva

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Ritesh Shah is a data professional with over 10 years of experience with using Microsoft
technology, from SQL Server 2000 to the latest version. He has worked with various
technologies, from Visual Basic 6.0 to .NET Framework 4.0. He has deployed many
medium-scale as well as large-scale projects, using Microsoft technology.

He shares his knowledge on his blog, SQLHub.com, and also helps the community, using
different portals, such as BeyondRelational.com, Experts-Exchange.com, and
Asp.Net forum.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

It is really truer than ever that this is not an individual effort. The Packt team worked with me
the whole time, so a really big thanks goes to them, especially Sai, Kedar, Apoorva, Madhuri,
and many more. I cannot forget to mention Dhwani from the Packt team, as she is the one
who presented the idea of this book to me. Seriously, I wouldn't have been able to author this
book alone, so thanks should go to Mr. Bihag Thaker, as well, as he agreed to co-author this
book with me and has worked even harder on it than I have myself.

I am really honored to have Satya, Michael, and Maria as the technical reviewers for this book.
They are all well-known personalities in the world of SQL Server.

Apart from the team that worked on this book, I would also like to thank, on a personal note,
two well-known personalities in the SQL Server community, who always inspire me to do more.
In fact, they were the ones who diverted my interest from .NET technology to SQL Server.
They are:

ff Pinal Dave, who blogs at SQLAuthority.com and is an author of several SQL Server
books. Currently, he is working as a Technology Evangelist at Microsoft.

ff Jacob Sebastian, who blogs at BeyondRelational.com and is a SQL Server MVP,
book author, well-known speaker in SQL Server technology, and much more.

Most important of all, my deepest gratitude goes to my parents, Mr. Ashwin Shah and
Mrs. Divya Shah. It is because of their hard work, inspiration, and motivation that a
small-town boy like me, who has grown up with very limited resources, has progressed so
much in life, which in itself proves where there's a will there's a way. I would also like to thank
my one-and-a-half-year-old son, Teerth, who used to often start crying at midnight, because of
which I would lose my sleep and, not being able to get it back, started researching more on
the subjects that helped me write this book. Finally, I would like to thank my wife, Alka Shah.

www.allitebooks.com

http://www.allitebooks.org

Bihag Thaker is a SQL Server enthusiast, an MCTS (SQL Server 2005), and an MCITP
(SQL Server 2008), who has been working with SQL Server technology for the past
few years. Initially he was into .NET technology, but his keen interest for SQL Server
led him to be a database specialist.

He is currently working as a database administrator. He has worked on numerous
performance tuning assignments and executed large-scale database migrations. He
likes to share his knowledge and enjoys helping the SQL Server community. You will
find him talking about SQL Server on his blog MsSQLBlog.com.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I had never thought that the dream of writing my first book on SQL Server would come true so
early, and I must give full credit for this to Mr. Ritesh Shah and Packt Publishing.

I would sincerely like to thank Packt Publishing, for showing their confidence in me and
providing the invaluable opportunity of being a part of this book. Individuals at Packt whom
I am deeply grateful to, are Kedar Bhat, Sai Gamare, Madhuri Das, Ashwin Shetty, Apoorva
Bolar, and Dhwani Devater. They have been very co-operative and supportive at all the stages
of this book. I am extremely thankful to Michael Zilberstein and Maria Zakourdaev, the
technical reviewers, for their excellent work of getting the accuracy of the technical details
of the book in perfect shape.

I find it difficult to express, in words, my gratitude, to Ritesh, who has shared the priceless gift
of writing this book with me. This was not at all attainable without his continuous support.
Apart from being a TechMate, Ritesh is an all-time great friend of mine, who is always willing
to help the SQL Server community.

Two individuals to whom I am indebted and whose disciple I have always been, are Mr. Paresh
Vora and Mr. Mukesh Devmurari. I have learnt a lot from them, and they are the reason I'm
part of the IT community today.

Without my family support, a task such as writing a book would not have been achievable.
I would like to heartily thank my parents, Mr. Kanaiyalal Thaker and Mrs. Hema Thaker. It is
because of them that I exist, and I cherish their blessings, which are always with me. I am
very thankful to my wife, Khyati, who has always stood by me, helped me at all times, and has
even smilingly got me cups of coffee during my sleepless nights of writing!

Last but not the least, I would like to thank my friends who helped me directly or indirectly by
giving me moral support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Satya SK Jayanty is a SQL Server MVP and Subject Matter Expert with consulting and
technical expertise for D Bi A Solutions INc. Limited, with over 20 years of experience. His
work experience includes a wide range of industries, including the stock exchange, insurance,
tele-communications, financial, retail, and manufacturing sectors, among others.

He is a regular speaker and SME volunteer at major technology conferences such as
Microsoft Tech-Ed (Europe, India, and North America), and SQL PASS (Europe and North
America), SQL Bits - UK, and manages the Scottish Area SQL Server user group based in
Scotland. He is also a moderator in a majority of web-based SQL Server forums (Microsoft
Technet and www.sql-server-performance.com), writer, and contributing editor,
and blogs at www.sqlserver-qa.net, www.sql-server-performance.com, and
www.beyondrelational.com websites.

He is the author of Microsoft SQL Server 2008 R2 Administration Cookbook, Packt Publishing,
and co-author of SQL Server MVP Deep Dives, Volume 2, Manning Publications.

Maria Zakourdaev has more than 10 years of experience with SQL Server. She is
currently working with one of the most successful Israeli startup companies, called
Conduit. She has extensive knowledge of Microsoft replication solutions, table partitioning,
and advanced, query tuning techniques. Prior to Conduit she had worked with different
companies, benchmarking different SQL Server features and flows, such as partitioning, data
import, index impact on DML flows, star transformations in RDBMS, hierarchic queries, and
custom OLAP-like aggregations. She was a speaker in Microsoft Teched (Israel) on the SQL
Server track and is an active member of the Israel SQL Server Group.

www.allitebooks.com

http://www.allitebooks.org

Michael Zilberstein has more than 10 years of experience in the IT industry and database
world, working with all the SQL Server versions from 6.5 to 2012 and with different Oracle
versions as well. After working with several start-up companies during the first few years of his
career, in 2007 Michael founded DBArt Ltd – SQL Server, a consulting services company.

Two of Michael's most distinctive interests (besides rappelling, homebrewing, playing chess,
and reading history books) are performance tuning and architecture of large-scale systems.
The biggest professional satisfaction for him is to take a young start-up company and build its
product from schemas in scrapbook and Visio to a working and scalable terabyte-size system.

Michael is a frequent speaker at Israeli SQL Server Usergroup (ISUG) and other SQL
Server events in Israel. He also writes a blog—http://sqlblog.com/blogs/michael_
zilberstein/default.aspx.

www.allitebooks.com

http://sqlblog.com/blogs/michael_zilberstein/default.aspx
http://sqlblog.com/blogs/michael_zilberstein/default.aspx
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Mastering SQL Trace Using Profiler	 7

Introduction	 7
Creating a trace or workload	 9
Filtering events	 19
Detecting slow running and expensive queries	 27
Creating trace with system stored procedures	 34

Chapter 2: Tuning with Database Engine Tuning Advisor 	 45
Introduction	 45
Analyzing queries using Database Engine Tuning Advisor	 46
Running Database Engine Tuning Advisor for workload	 51
Executing Database Tuning Advisor from command prompt	 59

Chapter 3: System Statistical Functions, Stored Procedures,
and the DBCC SQLPERF Command	 63

Introduction	 63
Monitoring system health using system statistical functions	 64
Monitoring with system stored procedure	 69
Monitoring log space usage statistics with DBCC command	 75

Chapter 4: Resource Monitor and Performance Monitor	 79
Introduction	 79
Monitoring of server performance	 80
Monitoring CPU usage	 86
Monitoring memory (RAM) usage	 90

ii

Table of Contents

Chapter 5: Monitoring with Execution Plans	 95
Introduction	 95
Working with estimated execution plan	 97
Working with actual execution plan	 100
Monitoring performance of a query by SET SHOWPLAN_XML	 103
Monitoring performance of a query by SET STATISTICS XML	 108
Monitoring performance of a query by SET STATISTICS IO	 112
Monitoring performance of a query by SET STATISTICS TIME	 116
Including and understanding client statistics	 118

Chapter 6: Tuning with Execution Plans	 121
Introduction	 121
Understanding Hash, Merge, and Nested Loop Join strategies	 122
Finding table/index scans in execution plan and fixing them	 128
Introducing Key Lookups, finding them in execution plans,
and resolving them	 133

Chapter 7: Dynamic Management Views and Dynamic
Management Functions	 145

Introduction	 145
Monitoring current query execution statistics	 147
Monitoring index performance	 155
Monitoring performance of TempDB database	 164
Monitoring disk I/O statistics	 172

Chapter 8: SQL Server Cache and Stored Procedure Recompilations	 179
Introduction	 179
Monitoring compilations and recompilations at instance level using
Reliability and Performance Monitor	 182
Monitoring recompilations using SQL Server Profiler	 188

Chapter 9: Implementing Indexes	 197
Introduction	 197
Increasing performance by creating a clustered index	 198
Increasing performance by creating a non-clustered index	 206
Increasing performance by covering index	 212
Increasing performance by including columns in an index	 216
Improving performance by a filtered index	 219
Improving performance by a columnstore index	 222

Chapter 10: Maintaining Indexes	 231
Introduction	 231
Finding fragmentation	 232
Playing with Fill Factor	 234

iii

Table of Contents

Enhance index efficiency by using the REBUILD index	 237
Enhance index efficiency by using the REORGANIZE index	 240
How to find missing indexes	 241
How to find unused indexes	 244
Enhancing performance by creating an indexed view	 247
Enhancing performance with index on Computed Columns	 252
Determining disk space consumed by indexes	 258

Chapter 11: Points to Consider While Writing Queries	 261
Introduction	 261
Improving performance by limiting the number of columns and rows	 262
Improving performance by using sargable conditions	 265
Using arithmetic operator wisely in predicate to improve performance	 267
Improving query performance by not using functions on
predicate columns	 270
Improving performance by Declarative Referential Integrity (DRI)	 273
"Trust" your foreign key to gain performance	 277

Chapter 12: Statistics in SQL Server 	 283
Introduction 	 283
Creating and updating statistics	 284
Effects of statistics on non-key column	 292
Find out-of-date statistics and get it correct	 296
Effect of statistics on a filtered index	 299

Chapter 13: Table and Index Partitioning	 303
Introduction	 303
Partitioning a table with RANGE LEFT	 304
Partitioning a table with RANGE RIGHT	 311
Deleting and loading bulk data by splitting, merging, and switching
partitions (sliding window)	 319

Chapter 14: Implementing Physical Database Structure	 333
Introduction	 333
Configuring data file and log file on multiple physical disks	 334
Using files and filegroups	 342
Moving the existing large table to separate physical disk	 346
Moving non-clustered indexes on separate physical disk	 350
Configuring the tempdb database on separate physical disk	 354

Chapter 15: Advanced Query Tuning Hints and Plan Guides	 359
Introduction	 359
Using NOLOCK table query hint	 360
Using FORCESEEK and INDEX table hint	 363

iv

Table of Contents

Optimizing a query using an object plan guide	 367
Implementing a fixed execution plan using SQL plan guide	 371

Chapter 16: Dealing with Locking, Blocking, and Deadlocking	 381
Introduction	 381
Determining long-running transactions	 382
Detecting blocked and blocking queries	 384
Detecting deadlocks with SQL Server Profiler	 388
Detecting deadlocks with Trace Flag 1204	 395

Chapter 17: Configuring SQL Server for Optimization 	 399
Introduction	 399
Configuring SQL Server to use more processing power	 400
Configuring memory in 32 bit versus. 64 bit	 403
Configuring "Optimize for Ad hoc Workloads"	 405
Optimizing SQL Server instance configuration	 410

Chapter 18: Policy-based Management 	 415
Introduction	 415
Evaluating database properties	 416
Restricting database objects	 422

Chapter 19: Resource Management with Resource Governor	 427
Introduction	 427
Configuring Resource Governor with SQL Server Management Studio	 429
Configuring Resource Governor with T-SQL script	 436
Monitoring Resource Governor	 442

Index	 447

Preface
Microsoft SQL Server 2012 Performance Tuning Cookbook is divided into
three major parts—Performance Monitoring, Performance Tuning, and Performance
Management—that are mandatory for dealing with performance in any capacity.

Microsoft SQL Server 2012 Performance Tuning Cookbook offers a great way to manage
performance with effective, concise, and practical recipes. You will learn how to diagnose
performance issues, fix them, and take precautions to avoid common mistakes.

Each recipe given in this book is an individual task that will address different performance
aspects to take your SQL Server's Performance to a higher level.

The first part of this book covers monitoring with SQL Server Profiler, DTA, system statistical
functions, SPs with DBCC commands, Resource Monitor, Reliability and Performance Monitor,
and execution plans.

The second part of the book offers execution plan, dynamic management views and
dynamic management functions, SQL Server Cache, stored procedure recompilations,
indexes, important ways to write effective T-SQL, statistics, table and index partitioning,
advanced query tuning with query hints and plan guide, dealing with locking, blocking,
and deadlocking, and configuring SQL Server for optimization to boost performance.

The third and final part gives you knowledge about performance management with the help
of policy based management and management with Resource Governor.

Preface

2

What this book covers
Chapter 1, SQL Server Profiler, teaches you how to create and start your first SQL Trace,
limit the trace data and capture only the events which are of interest, detect slow running
and expensive queries, and create a trace with system stored procedures.

Chapter 2, Tuning with Database Engine Tuning Advisor, covers how to analyze queries
using Database Engine Tuning Advisor, how to run Database Engine Tuning Advisor for
Workload, and how to execute Database Tuning Advisor from the command prompt.

Chapter 3, System Statistical Functions, System Stored Procedures, and DBCC SQLPERF
Command, starts with the monitoring of system health using system statistical functions
and later on covers the monitoring of SQL Server processes and sessions with system stored
procedures, and log space usage statistics with the DBCC SQLPERF command.

Chapter 4, Resource Monitor and Performance Monitor, teaches you how to do quick
monitoring of server performance, followed by monitoring of CPU and memory (RAM) usage.

Chapter 5, Monitoring with Execution Plans, includes recipes for working with Estimated
Execution Plan and Actual Execution Plan, monitoring the performance of queries by SET
SHOWPLAN_XML, SET STATISTICS XML, and SET STATISTICS IO, finding the execution time
of a query by SET STATISTICS TIME, and including and understanding Client Statistics.

Chapter 6, Tuning with Execution Plans, explains the Hash, Merge, and Nested Loop
Join strategies, teaches how to find table/index scans in execution plans and how to fix them,
introduces Key Lookups, and explains how to find them in execution plans and resolve them.

Chapter 7, Dynamic Management Views and Dynamic Management Functions, includes
recipes to monitor current query execution statistics, manage and monitor index performance,
monitor the TempDB database's performance with database-related dynamic management
views, and monitor disk I/O statistics.

Chapter 8, SQL Server Cache and Stored Procedure Recompilations, covers monitoring of
compilations and recompilations at instance level, using Reliability and Performance Monitor,
and monitoring of recompilations using SQL Server Profiler.

Chapter 9, Implementing Indexes, explains how to improve performance by creating
a clustered index, by creating a non-clustered index, by covering index, by including
columns in an index, by a filtered index, and by a columnstore index.

Chapter 10, Maintaining Indexes, includes recipes to find fragmentation, to enhance index
efficiency by using the REBUILD and REORGANIZE index, to find missing and unused indexes,
to enhance performance by creating indexed views and creating an index on Computed
Columns, and to determine disk space consumed by indexes.

Preface

3

Chapter 11, Points to Consider While Writing Query, covers how to improve performance
by limiting the number of columns and rows and by using sargable conditions, how to use
arithmetic operators wisely in predicate to improve performance, how to improve query
performance by not using functions on predicate columns, how to improve performance by
Declarative Referential Integrity (DRI), and how to gain performance by trusting your foreign key.

Chapter 12, Statistics in SQL Server, explains how to create and update statistics, effects of
statistics on non-key columns, how to find out-of-date statistics and correct them, and effects
of statistics on a filtered index.

Chapter 13, Table and Index Partitioning, covers partitioning of table with RANGE LEFT and
RANGE RIGHT, and deleting and loading of bulk data by splitting, merging, and switching
partitions (sliding window).

Chapter 14, Implementing Physical Database Structure, includes recipes for configuring a
data file and log file on multiple physical disks, using files and filegroups, moving an existing
large table to a separate physical disk, moving non-clustered indexes to a separate physical
disk, and configuring the TempDB database on a separate physical disk.

Chapter 15, Advanced Query Tuning: Hints and Plan Guides, includes recipes for using the
NOLOCK table query hint, using the FORCESEEK and INDEX table hints, optimizing a query
using an object plan guide, and implementing a fixed execution plan using a SQL plan guide.

Chapter 16, Dealing with Locking, Blocking, and Deadlocking, covers determining
long-running transactions, detecting blocked and blocking queries, detecting deadlocks
with SQL Server Profiler, and detecting deadlocks with Trace Flag 1204.

Chapter 17, Configuring SQL Server for Optimization, includes recipes for configuring SQL
Server to use more processing power, configuring memory in 32-bit versus 64-bit, configuring
"Optimize for Ad hoc Workloads", and optimizing SQL Server instance configuration.

Chapter 18, Policy Based Management, explains how to evaluate database properties and
restrict database objects.

Chapter 19, Management with Resource Governor, includes recipes for configuring
Resource Governor with SQL Server Management Studio and T-SQL script, and
monitoring Resource Governor.

What you need for this book
To work with the examples given in the book, you must have the following infrastructure:

ff SQL Server Denail CTP version 3 or higher, or SQL Server 2012 RTM

ff The AdventureWorks2012 database, which can be freely downloaded from the following
link: http://msftdbprodsamples.codeplex.com/releases/view/55330

ff A Windows administrator login and/or a SQL server login with the sysAdmin privilege

http://msftdbprodsamples.codeplex.com/releases/view/55330

Preface

4

Who this book is for
Microsoft SQL Server 2012 Performance Tuning Cookbook is aimed at SQL Server Database
Developers, DBAs, and Database Architects who are working in any capacity to achieve
optimal performance. Basic knowledge of SQL Server is expected, and professionals who want
to get hands-on with performance tuning and have not worked on tuning the SQL Server for
performance will find this book helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "You may notice some TextData appearing multiple
times in a trace for a single execution of a T-SQL statement."

A block of code is set as follows:

--creating table for demonstration
CREATE TABLE ordDemo (OrderID INT IDENTITY, OrderDate DATETIME, Amount
MONEY, Refno INT)
GO

Any command-line input or output is written as follows:

dta -D AdventureWorks2012 -s adventureworks2012FromDTA5 -S WIN-
SLYJ9UY3PKD\DENALICTP3 -E -if D:\test.sql -F -of D:\DTA.sql

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Connect object explorer
with server and move to Management | Policy Management | Policies ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

5

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Mastering SQL Trace

Using Profiler

In this chapter we will cover:

ff Creating a trace or workload

ff Filtering events

ff Detecting slow running and expensive queries

ff Creating trace with SQL Trace system stored procedures

Introduction
Welcome to the world of Performance Monitoring and Tuning with SQL Server 2012!

Let's assume that you are a database administrator in your organization. What, if one day
one of your colleagues from your IT department calls you right away and complains that the
production database server has abruptly started to run very slowly and applications that are
accessing the production database are not responding the way they should? The issue needs
immediate attention and for that you are required to investigate the issue and fix it in timely
manner. What will be your approach to look at the problem and solve it? How would you be
able to analyze the situation and identify where the problem is? What actions would you take
once a particular problem is recognized in order to resolve it?

Mastering SQL Trace Using Profiler

8

Installing and upgrading database servers, managing and maintaining database servers,
managing database security, implementing disaster recovery plan, capacity planning,
managing high-availability of databases, and performance tuning of databases and SQL
server are some of the responsibilities of a DBA. Amongst these responsibilities, performance
tuning of the database server is one of the prime responsibilities of DBA. The most common
reason is, companies offering IT services are often engaged in signing Service Level
Agreements (SLAs) and as per their SLAs they are committed to provide a certain level of
services and up-time. Any additional down-time than what is allowed as per SLAs can cause
them money loss or business loss. Even companies not engaged in SLAs might lose business
because of their poor software systems caused by poor database systems. This is one of
the reasons why skilled DBAs are required to keep the database performance up-to date by
monitoring and tuning database performance.

In database centric application environment, it is very common for any DBA to face such
database related performance issues at different levels. By means of different levels, it
implies that performance problem can be found at query level, database level, server level or
application level .There can be a number of reasons for a database centric application to be
performing poorly. The troubleshooting skills and expertise in performance tuning of a DBA
are tested out in recognizing such factors behind the performance degradation and taking
the necessary corrective steps.

The first step towards performance tuning is monitoring. In data platform, monitoring
something is the process of analyzing and identifying something. So, until you monitor
something, you can't know for sure what and where the problem is. Until you know what
and where the problem is, you can't analyze the problem. And until you can analyze the
problem, you can't solve a problem! This also means that unless you understand performance
monitoring, you cannot master performance tuning in a true sense. Thus, performance tuning
always comes after performance monitoring. This is the reason why we have a few opening
chapters that specifically concentrates on performance monitoring.

The troublesome situation that was just described earlier needs thorough monitoring and
systematic analysis in order to identify the root problem accurately before a problem can
be solved.

SQL Server Profiler is the most common but powerful tool for monitoring and auditing an
instance of SQL server. By using this tool, a DBA is able to solve a large number of different
types of database performance issues whether it is a query issue, index issue, locking issue
or database, or server configuration issue. It is the tool that essentially any DBA must know.
So, SQL Server Profiler will be the subject of this first chapter.

Chapter 1

9

Creating a trace or workload
If you have never worked with SQL Server Profiler, this recipe will teach you how to create and
start your first SQL Trace. There is some detailed information on SQL Trace in There's more…
section of this recipe. This will help you in appreciating rest of the recipes quite easily, which
employs SQL Trace in remaining chapters. The section covers the information that will help
you in mastering core concepts of SQL Trace and thus mastering SQL Server Profiler. There
are no major changes in SQL Server Profiler 2012 documented. In SQL Server 2012, the
architecture and functionality of SQL Server Profiler is almost identical to that of SQL
Server 2008.

Getting ready
In this recipe, we will create our first trace with SQL Server Profiler. The following are the
prerequisites that you should fulfil:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff An SQL Server Login account with administrative rights.

ff Sample AdventureWorks2012 database on the instance of SQL Server. For more
details on how to install AdventureWorks2012 database, please refer to the
Introduction section of this book.

How to do it...
To create a new trace, follow the steps provided here.

1.	 Start SQL Server Profiler. To start SQL Server Profiler, navigate through Start |
All Programs | Microsoft SQL Server 2012 Program Group | Performance Tools |
SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of SQL Server hosting AdventureWorks2012 database and click
on Connect.

Login name that you use to connect SQL Server Profiler must
have the ALTER TRACE permission otherwise you will receive
an error and cannot start a trace session.

3.	 In the General tab of the Trace Properties dialog box, specify
CreatingTraceWorkload as trace name. Use the Standard
(default) trace template for the Use the template: option.

Mastering SQL Trace Using Profiler

10

4.	 Check the checkbox Save to file: and specify a path and file name in the Save As
dialog box and then click on Save.

5.	 Keep Enable file rollover checked and Set maximum file size (MB): to its default
value, that is, 128. The following screenshot shows the General tab of the Trace
Properties dialog box:

In the Trace Properties dialog box, there is a checkbox option in the General
tab with the caption Server processes trace data, to specify whether
trace data should be processed on the server. If not checked, trace data is
processed at the client side.
When trace data is processed at the client side, it is possible for some events
to be missed if the server load is high. If this option is checked, then trace
data is processed on the server and all the events included in trace definition
are guaranteed to be captured without miss. However, this guarantee comes
with performance penalty, because processing trace data on server has an
impact on the performance of SQL Server, and hence enabling this option is
not recommended on production server.
Also, running SQL Server Profiler on production server itself should be avoided
as running SQL Server Profiler is resource consuming. Instead, you should run
SQL Server Profiler from a client computer and connect it to your SQL Server
from there.

Chapter 1

11

6.	 Click on the Events Selection tab. On this screen, the events that are predefined
for the Standard (default) trace template are selected and shown in grid. Check
the Show all events check box to show all events.

7.	 Navigate through the Events list until you find Stored Procedures event category.
Expand Stored Procedures event category if it is collapsed. Uncheck the checkbox for
RPC:Completed event and check the checkbox for SP:Completed event. Uncheck the
Show all events checkbox to show only selected events. The screen should now look
as shown in following screenshot:

8.	 Click on the Run button to start the trace.

9.	 Now open SQL Server Management Studio and establish a connection to the same
SQL Server.

10.	 In query window, type the sample T-SQL statements as shown in following script and
then execute them by pressing the F5 key:
USE AdventureWorks2012
GO

SELECT DB_ID()
GO

EXECUTE sp_helpdb

Mastering SQL Trace Using Profiler

12

GO

SELECT
 P.FirstName + ' ' + P.LastName AS EmployeeName
 ,E.JobTitle
 ,E.BirthDate
 ,E.Gender
 ,E.BirthDate
FROM HumanResources.Employee AS E
INNER JOIN Person.Person AS P
ON E.BusinessEntityID = P.BusinessEntityID
GO

11.	 Now switch to the SQL Server Profiler window and stop the trace by clicking Stop
selected trace button in toolbar. Observe the events captured in the trace. The following
screenshot shows the captured events that are displayed in SQL Server Profiler:

How it works...
We started to configure a trace by setting a few trace properties. To demonstrate how we can
use one of the in-built trace templates to get a quick start, we used the default trace template
Standard (default) in this example. When this template is used, the following events are
selected by default:

Chapter 1

13

ff Audit Login

ff Audit Logout

ff ExistingConnection

ff RPC:Completed

ff SQL:BatchCompleted

ff SQL:BatchStarting

You may notice some TextData appearing multiple times in a trace for a
single execution of a T-SQL statement. For instance, in the previous example,
you will notice two events for SELECT DB_ID() statement even if we
executed it only once. These two entries here do not represent two executions
of the said statement. Rather, they represent two different related events
associated to one single execution of the statement. For example, both events
SQL:BatchStarting and SQL:BatchCompleted raised for a single
execution of batch containing SELECT DB_ID() statement and they both
show the same T-SQL command in TextData data column. This depends
upon what events you have selected in trace definition.

In the Trace Properties dialog box, we have set the maximum file size for our trace to 128 MB.
Option Enable file rollover was also enabled by default. Enabling this option is helpful while
working with large amount of trace data.

When large amount of event data is captured, the trace file can grow very quickly and become
very large. Enabling the Enable file rollover option can prevent a trace file from becoming
very large by limiting a file to the maximum file size specified. When the file size is reached to
the maximum file size specified, SQL Server creates a new roll-over file with the same name
appended with a suffix of an incremental number for the same trace. Thus, when we have this
option enabled and the size of trace data is greater than maximum file, we have multiple trace
files for the same trace.

In this example, we are saving our trace file as C:\MyTraces\CreatingTraceWorkload.
trc. A trace can also be started without having to save the trace data. In case a trace was
started in this way without enabling the Save to file: checkbox, SQL Server manages to
keep the captured data in queue temporarily. The unsaved trace data can be saved later
on as well after gathering the required data. This can be done with the Save or Save As
command from the File menu. With the Save As command, we can save trace data in our
desired format. Selecting the Trace Table... option in the Save As command, asks for the SQL
Server connection details and destination table details where the trace data will be stored.

Mastering SQL Trace Using Profiler

14

It's best to store the trace file on a separate disk other than the one which is used to store
data files and log files of SQL server databases. Storing the trace file on the same physical
disk where database files are stored can degrade the performance of normal I/O operations
of other databases.

Configuring a trace by enabling the Save to table checkbox in the Trace
Properties dialog box and saving trace data directly to trace table is less
efficient. If you want your trace data to be saved in a trace table then consider
saving the trace data first in a trace file; then export your trace data from
trace file to trace table by opening the trace file in SQL Server Profiler and
selecting the Save As command from the File menu with the Trace Table…
option. When you want to save your trace in a trace table, always consider to
save your trace in a separate database.

The Events Selection tab of Trace Properties dialog box displays the selected events only and
does not show all events by default. So, we checked the Show all events option to list all the
available events. Because we did not want to capture RPC:Completed event, we excluded this
event by un-checking its checkbox from the event list and included SP:Completed event under
Stored Procedures event category.

Once we finished configuring our trace, the trace was started. To demonstrate how the events
are captured, we produced some events by executing a few T-SQL statements from another
connection through SQL Server Management Studio.

In the final figure, we can see the trace data that is produced by the events included in trace
definition. Look at the trace data that we captured. By looking at the values in different data
columns, we can learn many different things. For example, for a given trace, by examining
LoginName, TextData, and HostName we can tell who is running which query and from
which machine. By examining StartTime and EndTime data columns we can determine
when a particular query was executed and when it finished its execution.

Pausing and Stopping a trace
Once a trace is started, it can be either paused or stopped. To do this, select
the Run Trace, Pause Trace, and Stop Trace commands from the File menu
or click on the corresponding shortcut command buttons on standard toolbar.
Pausing and resuming trace: When a trace is paused, event data stops
from being captured temporarily. Once a trace is paused, it can be resumed
by starting it again. Restarting a trace resumes and continues to capture
event data again without wiping out any previously captured trace data.
Stopping and restarting trace: When a trace is stopped, event data stops
from being captured. If a trace is stopped, it can be restarted by starting it
again. Restarting a stopped trace starts to capture event data again; but any
previously captured trace data is lost.
Remember that we cannot change the Trace Properties of a trace while it is
running. To do this, we must have to pause or stop the trace.

Chapter 1

15

There's more...
This section covers some essential information on SQL Trace that you must know if you want
to master SQL Tracing. It is advised that even if you are an advanced user, you do not skip
this section.

Some background of SQL Trace
Follow this section in order to have an in-depth understanding of SQL Trace and its architecture.

SQL Trace terms and concepts
Understanding the SQL Trace and its architecture by knowing its related terms and concepts is
a prerequisite for working with SQL Server Profiler effectively. This section discusses the basic
terminologies and concepts of SQL Trace in brief.

SQL Trace
SQL Trace is an event monitoring and capturing engine that comes with SQL Server. It
provides the capability to capture the database events with event data and create traces
that can be used for performance analysis afterwards.

SQL Server Profiler
SQL Server Profiler is a graphical user interface tool for working with SQL Trace. Behind the
scene, it uses the same SQL Trace engine, but additionally provides graphical user interface
to the user for working with traces. SQL Server Profiler provides functionalities, such as
displaying collected event data on its graphical interface, saving traces either in a file or in an
SQL Server table, opening previously saved traces, extracting T-SQL statements from a trace,
and many more. Finding and analyzing long running or costly queries, finding deadlocks and
their related information, looking for which indexes are scanned, and looking for database
connection requests are some of the practical applications of SQL Server Profiler.

Event
In context of SQL Trace terminology, an event is the happening of a database activity that
takes place within an instance of SQL Server. Execution of an ad-hoc query or T-SQL batch,
a call to stored procedure, an attempt to log in or log out from database server are a few
examples that raise specific SQL Server events.

Event class
An event class describes a specific type of event. There are many different types of
events that can occur within the database engine and each type of event is represented
by an event class. Audit Login, Audit Logout, SP:Completed, SP:Recompile,
SQL:BatchCompleted, Lock:Deadlock are some of the examples of event classes.
To get list of all available event classes, you can query sys.trace_events catalog view.

www.allitebooks.com

http://www.allitebooks.org

Mastering SQL Trace Using Profiler

16

Event category
An event category is a subset of related event classes. Each event class belongs to a
particular event category and each event category includes a subset of specific type of
event classes. Locks, performance, scans, and stored procedures are some examples of
the event categories. To get list of all available event categories,you can query sys.trace_
categories catalog view. You can join sys.trace_events and sys.trace_categories
catalog views on category_id column to make correlation between the two views.

Data column
A data column is an attribute that represents a particular characteristic of an event class.
For example, event class SQL:BatchCompleted can have different characteristics,
such as TextData, LoginName, Duration, StartTime, EndTime, and so on, where
TextData represents T-SQL statement(s) whose execution raises a particular event.
These characteristics of event classes are represented by different data columns.

Trace
A session that performs the activity of capturing database events and collecting events' data
is typically called a trace. Loosely, the term Trace is also used by database professionals to
refer the Trace Data that has been collected previously during a trace session and saved in
a trace file or SQL Server table.

Trace properties and Trace definition
A set of configured settings for a trace that defines how event data should be collected or
saved and which event classes or data columns should be collected as a part of trace data is
called Trace properties or a Trace definition.

Filter
A filter is an optional logical condition that can be applied to a trace to limit the resulting trace
data by capturing only the required trace events for which the filter condition is satisfied. For
example, in a trace definition we can specify a filter condition so that SQL Trace collects event
data only for a specific database by applying a filter on either DatabaseID data column or
DatabaseName data column.

Trace file
This is a file with the extension .trc in which the captured trace data is saved.

Trace table
A table in SQL Server database in which the captured trace data is stored is a trace table.

Trace template
A file which saves the pre-configured trace definitions is called a Trace Template. This can be
reused for creating new traces.

Chapter 1

17

Architecture of SQL Trace
After learning the basic SQL Trace terms and concepts, it will be easier to understand the
following architectural diagram of SQL Trace:

EVENT CLASSES

SP:Completed

SP:Recompile

SQL:BatchCompleted

Lock:Deadlock

TRACE

Filter

Trace File SQL Server

Profiler

Queue

Trace Table

When events are raised in SQL Server database engine, SQL Trace captures event data only
for those event classes that are included in trace definition and for which filter conditions if
specified any are satisfied. Once the event data is captured, it is queued and then sent to its
specified target location. The target location can be a Trace file, Trace table, or SQL Server
Profiler. Trace data can also be viewed only in SQL Server Profiler without the need of saving
a trace.

After understanding the basic concepts of SQL Trace, working with SQL Server Profiler and
traces should be an easy task. As this is our first recipe of the book where we learn how to
create a trace or workload with SQL Server Profiler, let's first discuss something about trace
and workload.

Trace and workload
We now know that a trace is a session during which the events are captured and event data is
collected. SQL Server supports few formats for saving this collected trace data. We can save
trace data in one of the following formats:

ff A trace file with .trc extension name

ff A trace file in XML format with .xml extension name

ff A trace table in an SQL Server database

A trace contains a series of events and every event has its associated event data. All the
events of a trace and their event data collectively form trace data for a trace file. Data
columns associated with trace events form the event data. T-SQL statements whose
execution causes the events to be raised are also a part of this event data under
TextData data column and are themselves included in trace data.

Mastering SQL Trace Using Profiler

18

A workload or workload file basically contains a series of T-SQL statements. A T-SQL script is
an example of a workload file. Because trace data also contains a series of T-SQL statements
as a part of event data (as TextData Column), they are also used as workloads. Thus, a
T-SQL script, trace file (.trc or .xml), trace table, all can be considered as workload. In
other words, a trace file is also a workload file. This workload can be used to re-run on a
database for workload or performance analysis. Usually, a workload file is provided as input
file to Database Engine Tuning Advisor (DTA) for a tuning session. You will learn more about
Database Engine Tuning Advisor in Chapter 2, Tuning with Database Engine Tuning Advisor.

Commonly-used event classes
The following list gives brief descriptions of commonly used event classes:

ff Audit Login: This event occurs when a user connects and logs in to SQL Server

ff Audit Logout: This event occurs when a users disconnects and logs out from
SQL Server

ff RPC:Starting: This event occurs when a Remote Procedure Call (RPC)
starts executing

ff RPC:Completed: This event occurs when a Remote Procedure Call (RPC)
completes its execution

ff SQL:BatchStarting: This event occurs when a T-SQL batch starts executing

ff SQL:StmtStarting: This event occurs when a statement inside a T-SQL batch
starts executing

ff SQL:StmtCompleted: This event occurs when a statement inside a T-SQL batch
completes its execution

ff SQL:BatchCompleted: This event occurs when a T-SQL batch completes
its execution

ff SP:Starting: This event occurs when a stored procedure starts executing

ff SP:StmtStarting: This event occurs when a statement inside a stored procedure
starts executing

ff SP:StmtCompleted: This event occurs when a statement inside a stored
procedure completes its execution

ff SP:Completed: This event occurs when a stored procedure completes its execution

Commonly-used data columns
The following list gives brief descriptions of commonly used event classes:

ff ApplicationName: This data column represents the name of the client application
causing a trace event to occur

ff DatabaseID: This data column represents the internal system assigned ID of the
database for which a trace event occurs

Chapter 1

19

ff DatabaseName: This data column represents the name of the database for which a
trace event occurs

ff HostName: This data column represents the name of the host or computer where the
client component connecting to SQL Server causes a trace event to occur

ff LoginName: This data column represents the name of the login under whose
security context, particular T-SQL statement(s) executes that causes trace event
to occur

ff ObjectID: This data column represents the internal system assigned ID of an object
for which a trace event occurs

ff ObjectName: This data column represents the name of an object for which a trace
event occurs

ff SessionLoginName: This data column represents the name of the login who
initiated the connection and under whose security context a trace event occurs

ff SPID: This data column represents the Server Process ID or Session ID of the
connection which causes a trace event to occur

For a complete list of event classes and data columns of SQL Trace with their
description, you can refer product documentation for SQL Server 2012 at msdn.
microsoft.com/en-us/library/bb418432(v=sql.10).aspx.

Filtering events
Running a trace which is configured to collect large number of events is not best practice.
While collecting trace data, SQL Trace itself can introduce overhead and affect the
performance of SQL Server if trace is configured to collect too much trace information.
This also depends on whether the trace is server-side trace or client-side trace. If the
trace is client-side using profiler, then the performance overhead can be greater.

Also, if large number of trace data is captured, the size of the trace file immediately grows
very big and it becomes a difficult job for us to look for the right data in the trace. Therefore,
any unnecessary or irrelevant trace data should not be collected.

This is the reason why we should consider limiting the resulting trace data and capturing only
the events which are of our interest. For this, we should identify what trace data we need to
look at and based upon that we should identify the filters that are applied to our trace.

Mastering SQL Trace Using Profiler

20

Collecting large amount of trace data can affect the performance of SQL
Server. So, before creating a trace, we should identify the type of analysis we
want to perform on trace information. A single trace should not be created
for multiple types of analysis. For each analysis type, a separate trace should
be created until and unless different types of analysis explicitly need to be
combined into single trace for performing correlative analysis. For example,
rather than creating a single trace that collects both scan events and lock
events for index scan analysis and object locking analysis respectively, we
should consider creating two separate traces; one for collecting only scan
events and another for collecting lock events only.

Getting ready
In this recipe, we will see how to capture only those trace events that occurred for a specific
database and from a specific SQL Server login.

Let's assume that sample database AdventureWorks2012 is our production database
on our production server, which is hosting other databases also. One of the database
users James complains that he faces some problems while running queries against
database AdventureWorks2012. So, we want to trace his session only for database
AdventureWorks2012. Because there are also other databases hosted on the same
production server and many users are accessing AdventureWorks2012 database, we
need to filter trace events based on session login name and database name in order
to avoid any unwanted trace data from being collected.

To emulate this case practically, we need the following as prerequisites:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff An SQL Server Login account with sysadmin rights

ff The sample AdventureWorks2012 database on the instance of SQL Server. For
more details on how to install AdventureWorks2012 database, please refer the
Introduction section of this book.

ff Two SQL Server logins named James and Peter with some permission on
AdventureWorks2012 database.

How to do it...
We will be performing three main actions in this example. These are as follows:

ff Creating the required logins and users in the AdventureWorks2012 database
(James and Peter)

ff Creating a trace by applying filters on the DatabaseName and SessionLoginName
data columns

Chapter 1

21

ff Executing sample queries from two separate connections belonging to James and
Peter respectively and observing the trace data

Because two SQL Server logins named James and Peter with permissions on
AdventureWorks2012 database are required, create them by performing the following steps:

1.	 Open SQL Server Management Studio.

2.	 Connect to the instance of SQL Server with login account having sysadmin rights.

3.	 Execute the following T-SQL script to create the logins and their corresponding users
in the AdventureWorks2012 database for James and Peter:
--Creating Login and User in
--AdventureWorks2012 database for James
USE [master]
GO
CREATE LOGIN [James] WITH PASSWORD=N'JamesPass123'
 ,DEFAULT_DATABASE=[AdventureWorks2012]
 ,CHECK_EXPIRATION=OFF
 ,CHECK_POLICY=OFF
GO
USE [AdventureWorks2012]
GO
CREATE USER [James] FOR LOGIN [James]
GO
ALTER ROLE [db_owner] ADD MEMBER [James]
GO

--Creating Login and User in AdventureWorks2012 database for Peter
USE [master]
GO
CREATE LOGIN [Peter] WITH PASSWORD=N'PeterPass123'
 ,DEFAULT_DATABASE=[AdventureWorks2012]
 ,CHECK_EXPIRATION=OFF
 ,CHECK_POLICY=OFF
GO
USE [AdventureWorks2012]
GO
CREATE USER [Peter] FOR LOGIN [Peter]
GO
ALTER ROLE [db_owner] ADD MEMBER [Peter]
GO

Notice the new command syntax in this script introduced in
SQL Server 2012 for adding members to a role.

Mastering SQL Trace Using Profiler

22

Now, we will create a trace and capture only events that occur for AdventureWorks2012
database from James' session only. To do this, follow these steps:

1.	 Start SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of SQL Server hosting the AdventureWorks2012 database and
click on Connect.

3.	 In the General tab of Trace Properties, enter FilteringEvents as the Trace name
and select Blank template for the Use the template: drop-down menu as shown
in following:

4.	 In Events Selection tab, check the checkbox for event class SQL:BatchCompleted
under the TSQL event category as shown in following screenshot:

Chapter 1

23

5.	 Click on Column Filters… button.

6.	 In the Edit Filter dialog box, select DatabaseName from the list of available
data columns on the left. Expand the Like option and enter string value
AdventureWorks2012; then press the OK button as shown in the
following screenshot:

Mastering SQL Trace Using Profiler

24

7.	 In the Edit Filter dialog box, select SessionLoginName from the list of available data
columns on the left. Expand the Like option and enter string value James; then press
the OK button as shown in following screenshot:

8.	 Click on the Organize Columns… button in Events Selection tab of Trace Properties
dialog box. Select TextData data column and then keep clicking on Up button
repeatedly to move the column up the order in the list, until the column appears as
the second item, at the top of the list underneath EventClass data column. Do this
same exercise also for the data columns DatabaseName and SessionLoginName
so that the final order of the data columns should look like as shown in following
screenshot. Press OK in the Organize Columns dialog box:

9.	 Click on the Run button to run the trace in the Trace Properties dialog box.

Chapter 1

25

Now, we will open two instances of SQL Server Management Studio one by one that connect
to SQL Server with the logins James and Peter respectively and run a few queries.

1.	 Open the first instance of SSMS and connect to SQL Server with the login credentials
of James. In the query window, type and execute the T-SQL statements as shown in
following script:
USE [AdventureWorks2012]
GO

SELECT * FROM [Sales].[Customer]
GO

USE [master]
GO

SELECT * FROM sys.databases
GO

2.	 Open a second instance of SSMS and connect to SQL Server with the login
credentials of Peter. In the query window, type and execute the same T-SQL
queries as shown in previous step.

3.	 Switch to SQL Server Profiler window that is running the trace. Examine the trace data
as shown in following screenshot:

Mastering SQL Trace Using Profiler

26

How it works...
In this recipe, we first created two SQL Server logins and their corresponding users in
AdventureWorks2012 database to demonstrate how to apply a trace filter based on a specific
SQL Server login, so that the events belonging to SQL Server logins other than the one for
which the filter condition on SessionLoginName is satisfied are not captured. We executed a
T-SQL script to create logins and users for James and Peter. For a login/user, the script first
creates an SQL Server login account by the executing T-SQL statement—CREATE LOGIN. It
then creates a user in the AdventureWorks2012 database for that login and adds the user
to the db_owner database role by executing the T-SQL commands CREATE USER and ALTER
ROLE respectively.

After creating logins and users, we started a new trace in SQL Server Profiler. We selected
a Blank trace template and chose SQL:BatchCompleted event class as the only event that
will be captured. Then we specified filters on DatabaseName and SessionLoginName data
columns so that only the events which are occurred against AdventureWorks2012 database
by user James are captured. We also organized the data columns in the Organize Columns
dialog box, so that we can have better view of data columns we are interested in when trace
data is displayed in SQL Server Profiler; we do not have to scroll much across the right side to
see the values of TextData, DatabaseName, and SessionLoginName.

Use of DatabaseID
We can alternatively use DatabaseID data column instead of DatabaseName
to specify a filter on a particular database. For this, we must know system
assigned ID value for a specific database. This value can be retrieved by
either calling DB_ID('AdventureWorks2012') metadata function or
querying sys.databases catalog view.

After starting the trace, we opened two instances of SSMS out of which one instance connects
with the login James and another one connects with the login Peter. In both the instances of
SSMS, we run a few sample queries against the AdventureWorks2012 and master database.

We can see the resulting trace data as shown in final screenshot. Notice that events belonging
to login Peter and the events occurred for master database were not captured.

There's more...
In a real world scenario, you may need to put filters on columns that are frequently used in
trace filters to narrow down the data that you have to look at for troubleshooting. The following
section lists some of data columns that are commonly used in trace filters:

ff ApplicationName: A filter can be specified on this data column so that only trace
events raised by a particular client application are captured

Chapter 1

27

ff DatabaseID: A filter can be specified on this data column so that only trace events
raised for a specific database are captured

ff DatabaseName: A filter can be specified on this data column so that only trace
events raised for a specific database are captured

ff HostName: A filter can be specified on this data column so that only trace events
raised from a specific host or client machine are captured

ff LoginName: A filter can be specified on this data column so that only trace events
raised by a specific login are captured

ff ObjectID: A filter can be specified on this data column so that only trace events
raised for a specific object are captured

ff ObjectName: A filter can be specified on this data column so that only trace events
raised for a specific object are captured

ff SessionLoginName: A filter can be specified on this data column so that only trace
events raised by a specific login are captured

ff SPID: A filter can be specified on this data column so that only trace events raised
from a specific session connection are captured

LoginName and SessionLoginName may look identical at first. However,
there is a small difference between them.
By using EXECUTE AS syntax in SQL Server, we can execute T-SQL
statements in the same session under different security context other
than the security context of the login who actually initiates the session/
connection. For example, James can login to SQL Server and run a query
under security context of Peter by using EXECUTE AS command. In this
case, data column SessionLoginName returns James, while LoginName
data column returns Peter. In other cases, where SQL Statements
are not executed under different security context, data columns
SessionLoginName and LoginName return the same value.

Detecting slow running and expensive
queries

Quite a few times, you may come across database related performance issues that are
caused by slow running and expensive queries. Slow running queries or expensive queries
are queries that have longer execution time and consume more hardware resources, such as
CPU, memory, and disk I/O. For instance, suppose that you are working for an organization
having an enterprise application environment with high degree of database transaction activity
against single production database that is used to support many applications, it is usual to face
database performance issues due to a poorly designed application or poorly written queries.

Mastering SQL Trace Using Profiler

28

For example, an application that processes one record at a time and makes a round trip to
SQL server for each record is an example of poorly designed application when it is possible
to process multiple records in batch and send them to database server in one go. Similarly,
a query can be considered to be poorly written if is not optimized for efficient read/write
operations, generates sub-optimum execution plan, and takes longer to execute. One
common example of a poorly written query is the one which processes records row-
by–row, using cursor to perform a task that can be accomplished by a set-based query.

When there are a few hundreds of query requests per second coming from different
applications hitting the same database continuously, how would you identify those slow
running and expensive queries?

Of course, you can use Dynamic Management Views or Activity Monitor to perform such
an investigation. However, SQL Profiler will give you more insight into the execution flow of
different applications because you can see the actual order and sequence of incoming query
requests in real-time along with their execution statistics that can help you in identifying the
performance related issues caused by any possible loopholes in application logic.

Getting ready
Remember that the objective of this recipe is not to teach you how to write efficient queries
but instead how to identify expensive queries. Thus, for demonstration purposes, we ourselves
will write a few expensive queries that take longer to execute in this example.

But before you can identify these slow running queries, you need to know what to look in SQL
Server Profiler to identify those queries.

Whenever there is problem with the logic of the query, there is a possibility that the queries
may start to take longer to execute as the database starts to grow. This results in holding
locks on resources for a longer time, which can lead blockage to other queries. Poorly written
queries also produce bad execution plans and can cause a high number of read/write
operations that are expensive and take longer to execute.

So, when you are identifying long running queries, mostly you will be looking at time
duration and CPU time that a query takes and the number of read/write operations
that a query causes.

Therefore, in this recipe we will look at the following data columns:

ff CPU: Amount of CPU processing time in milliseconds taken by an event

ff Duration: Total amount of time in microseconds taken by an event

ff StartTime: Time when an event starts

ff EndTime: Time when an event ends

ff Reads: Number of data pages that SQL Server has to read for an event

ff Writes: Number of data pages that SQL Server has to write on disk for an event

Chapter 1

29

The following are the prerequisites to do this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff An SQL Server Login account with administrative rights

ff Sample AdventureWorks2012 database on the instance of SQL Server

How to do it...
Follow the steps provided here for this recipe:

1.	 Start SQL Server Profiler. To start SQL Server Profiler, navigate through Start | All
Programs | Microsoft SQL Server 2012 Program Group | Performance Tools |
SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of SQL Server hosting the AdventureWorks2012 database and
click on Connect.

3.	 In the General tab of Trace Properties, specify IdentifyingExpensiveQueries
as trace name and select Blank template for the Use the template: drop-down menu.

4.	 Check the checkbox Save to file: and specify a trace file name and location in the
Save As dialog box.

5.	 In the Events Selection tab, check the checkbox for event class
SQL:BatchCompleted under TSQL event category.

6.	 Click on the Column Filters… button.

7.	 In the Edit Filter dialog box, select DatabaseName from the list of available
data columns on the left. Expand the Like option and enter string value
AdventureWorks2012; then click on the OK button.

8.	 Click on Organize Columns… button in Events Selection tab of Trace Properties
dialog box. Select TextData data column and then keep clicking the Up button
repeatedly to move the column up the order in the list until the column appears as
the second item at the top of the list underneath EventClass data column. Do this
same exercise also for data columns, such as CPU, Duration, StartTime, Endtime,
Reads, and Writes so that they appear underneath the TextData column. Press OK
in the Organize Columns dialog box.

9.	 Open SQL Server Management Studio and connect to SQL Server.

10.	 Click on the Run button to run the trace in Trace Properties dialog box.

11.	 Type and execute the following T-SQL script.The script creates a stored procedure
usp_calculateOrderTotals in AdventureWorks2012 database and a table
tbl_SampleData by generating and inserting five million sample records:
USE [AdventureWorks2012]
GO

Mastering SQL Trace Using Profiler

30

--Drop the stored procedure if it exists.
IF OBJECT_ID('[dbo].[usp_CalculateOrderTotals]') IS NOT NULL
 DROP PROCEDURE [dbo].[usp_CalculateOrderTotals]
GO
--Creates the stored procedure.
CREATE PROCEDURE [dbo].[usp_CalculateOrderTotals] AS
BEGIN
 CREATE TABLE [tempdb].[dbo].[#tbl_OrderTotals]
 (
 SRNo INT IDENTITY(1,1) PRIMARY KEY CLUSTERED
 ,OrderID INT
 ,OrderDate DATETIME
 ,CustomerName NVARCHAR(200)
 ,SalesPersonName NVARCHAR(200)
 ,OrderTotal NUMERIC(38,6)
)

 DECLARE @SalesOrderID INT
 DECLARE @OrderDate DATETIME
 DECLARE @CustomerName NVARCHAR(200)
 DECLARE @SalesPersonName NVARCHAR(200)
 DECLARE @OrderTotal NUMERIC(38,6)

 DECLARE curSalesOrders CURSOR FAST_FORWARD FOR
 SELECT
 SOH.SalesOrderID
 ,SOH.OrderDate
 ,UPPER(P2.FirstName + ' ' + P2.LastName) AS CustomerName
 ,UPPER(P1.FirstName + ' ' + P1.LastName) AS SalesPersonName
 FROM [Sales].[SalesOrderHeader] AS SOH
 LEFT OUTER JOIN [Sales].[SalesPerson] AS SP
 ON SOH.SalesPersonID = SP.BusinessEntityID
 LEFT OUTER JOIN [Sales].[Customer] AS C
 ON SOH.CustomerID = C.CustomerID
 LEFT OUTER JOIN [Person].[Person] AS P1
 ON SP.BusinessEntityID = P1.BusinessEntityID
 LEFT OUTER JOIN [Person].[Person] AS P2
 ON C.PersonID = P2.BusinessEntityID

 OPEN curSalesOrders

 FETCH NEXT FROM curSalesOrders INTO
 @SalesOrderID
 ,@OrderDate

Chapter 1

31

 ,@CustomerName
 ,@SalesPersonName

 WHILE @@FETCH_STATUS=0
 BEGIN

 SELECT @OrderTotal=SUM(LineTotal) FROM [Sales].
[SalesOrderDetail]
 WHERE SalesOrderID = @SalesOrderID

 INSERT INTO [tempdb].[dbo].[#tbl_OrderTotals]
 VALUES
 (
 @SalesOrderID
 ,@OrderDate
 ,@CustomerName
 ,@SalesPersonName
 ,@OrderTotal
)
 FETCH NEXT FROM curSalesOrders INTO
 @SalesOrderID
 ,@OrderDate
 ,@CustomerName
 ,@SalesPersonName
 END
 CLOSE curSalesOrders
 DEALLOCATE curSalesOrders

 SELECT * FROM [tempdb].[dbo].[#tbl_OrderTotals]
 ORDER BY OrderID DESC
END

GO
--Excutes stored procedure.
EXECUTE [dbo].[usp_CalculateOrderTotals]
GO
--Drop the table if it exists
IF OBJECT_ID('[dbo].[tblSampleData]') IS NOT NULL
 DROP TABLE [dbo].[tblSampleData]
GO
--Generate 5 million records and insert them into a table.
SELECT TOP 5000000 C1.*
INTO [dbo].[tblSampleData]
FROM sys.columns AS C1

Mastering SQL Trace Using Profiler

32

CROSS JOIN sys.columns AS C2
CROSS JOIN sys.columns AS C3

GO

12.	 After executing the previous script, switch to SQL Server Profiler and stop the trace.
Notice the CPU, Duration, StartTime, EndTime, Reads, and Write columns. The
following screenshot shows the trace after execution of the script:

Notice in the figure, how some of the SQL:BatchCompleted events caused high number of
CPU usage counts, duration counts, and reads/writes counts. These queries are resource
consuming and thus expensive queries.

How it works...
We started a new trace in SQL Server Profiler. We selected Blank trace template and
SQL:BatchCompleted event class that is the only event we wanted to capture. We then
specified a trace filter on DatabaseName data column so that only the events which are
occurred against AdventureWorks2012 database are captured.

We organized data columns in the Organize Columns dialog box so we can have a better view
of data columns that we are interested in when trace data is displayed in SQL Server Profiler;
we do not have to scroll much across the right side to see the values of TextData, CPU,
Duration, StartTime, Endtime, Reads, and Writes data columns.

Chapter 1

33

Trace Filter on CPU or Duration
We could also have put a trace filter on CPU or Duration data column with
> (greater than) operator in order to capture only those events whose CPU
or duration count is higher than the value specified in trace filter. With this,
let's say for example, if you want to find out the queries that are taking
total execution time of 10 seconds or more, then you can define a filter on
Duration column and only those queries running for 10 seconds or more will
be captured.

After starting trace, we opened SSMS and connected to SQL Server. We then
run sample script against AdventureWorks2012 database. The script creates and
executes a sample stored procedure named [AdventureWorks2012].[dbo].[usp_
CalculateOrderTotals] that loops through a cursor to calculate the total for an order and
inserts it in a temporary table. Looking at CPU and Duration data columns, it can be noticed
that stored procedure took almost around six seconds to execute. Also, the Reads data
column has high value and suggests that SQL Server had to read 296166 data pages to run
this stored procedure. Higher the reads and writes counts are, slower the query will be. When
the stored procedure [AdventureWorks2012].[dbo].[usp_CalculateOrderTotals]
is executed to retrieve the requested data with required columns along with the required
calculation, it performed a read operation on the following tables:

ff Sales.SalesOrderHeader

ff Sales.SalesPerson

ff Sales.Customer

ff Person.Person

ff #tbl_OrderTotals

The script also generates five million sample records by cross joining sys.columns catalog
view with itself multiple times and inserting the resulting data in tblSampleData table by
SELECT…INTO command. This demonstrates how the writes count gets high when large
amount of data is inserted. You can see that it caused 55369 reads and 35862 writes counts.

Remember that value in CPU data column is reported in milliseconds and the value in
Duration data column is reported in microseconds. However, when SQL Server Profiler shows
the value of Duration on its GUI, it shows the value in milliseconds by default. But when
you save the trace in a trace file or trace table the value is stored in microseconds and not
in milliseconds. Thus, for the Duration data column SQL Server behaves differently when it
displays and stores the value.

You can change the way SQL Server displays the value of Duration so that it is
reported in microsecond instead of millisecond on GUI if you wish so. You can
change this setting from Tools | Options….

Mastering SQL Trace Using Profiler

34

There's more...
If you are performing the task of identifying expensive queries on frequent basis, you may
want to use the same trace definition each time you run a trace. It's convenient to save our
trace definition as a trace template and use that template each time we run a trace.

Trace templates
Trace templates are the files that save the trace definition and trace properties. SQL Server
Profiler comes with some default trace templates. They are as follows:

ff Blank

ff SP_Counts

ff Standard

ff TSQL

ff TSQL_Duration

ff TSQL_Grouped

ff TSQL_Locks

ff TSQL_Replay

ff TSQL_SPs

ff Tuning

Each of the above trace templates has its own trace definition that can be used to start a new
trace. However, there are chances that the in-built templates may not have the settings which
you require for your regular task.

In this type of situation, creating and using trace template should be a practical thing. The
trace definition and settings that you normally use on regular basis or frequently can be saved
in a trace template file. For this, you just need to save a trace file as trace template in order to
create it. Once a trace template is created, it can be used for other trace sessions later on and
you do not need to perform the tedious task of playing with trace properties each time.

Creating trace with system stored
procedures

What if you have no SQL Server Profiler installed on your machine and want to create a trace?
What if you have SQL Server Profiler installed but the executable binary file of SQL Server
Profiler is corrupted and cannot be run? What if you want to automate completely the process
of capturing trace data as per your defined schedules so that you do not have to be physically
present to start and stop the traces? Is it possible to create a trace in this manner without
SQL Server Profiler?

Chapter 1

35

The answer is yes. You can do this. SQL Server provides T-SQL system stored procedures
to deal with SQL Trace. This capability enables us to write code that can create traces
programmatically. By using SQL Trace system stored procedures along with SQL Agent, it is
possible to automate and schedule the traces so that they run in background and capture
event data during only certain period of time on a regular basis.

In this recipe, we will see how to create a trace without SQL Server Profiler by using SQL
Trace system stored procedures. The trace that we will create in this recipe can be used
to monitor the file growth of data files and log files of all databases on an instance of SQL
Server. Monitoring file growth event for data files and log files will tell you how frequently your
database files are grown that helps further in determining appropriate values for FILEGROWTH
attribute of database files. If the size of files is increased by a smaller amount (for example, by
1 MB), SQL Server has to increase and extend the size of database files very frequently, which
degrades the performance of write operations while working with large amount of data. It may
also degrade the performance of read operations due to physical file fragmentation caused by
small file chunks that are spread all over on the disk which makes a possible sequential read
a random read. Thus, you should consider setting an appropriate FILEGROWTH value for
your databases.

Getting ready
Before you start with the recipe, it is necessary that you have some background of basic
system stored procedures provided in SQL Server which are used to work with traces.
Following are the stored procedures which you should know:

ff sp_trace_create: This stored procedure is used to create a trace and returns the
ID of newly created trace

ff sp_trace_setevent: This stored procedure is used to add or remove event classes
and data columns to and from a given trace

ff sp_trace_setfilter: This stored procedure is used to set a filter condition on
desired data column for a given trace

ff sp_trace_setstatus: This stored procedure is used to start, stop, or close a
given trace

In this example, we will capture only two event classes:

ff Data File Auto Grow
ff Log File Auto Grow

For these mentioned event classes, we will be capturing the following data columns:

ff DatabaseName
ff FileName
ff StartTime
ff EndTime

www.allitebooks.com

http://www.allitebooks.org

Mastering SQL Trace Using Profiler

36

By collecting these data columns, we can know which database file is automatically grown for
which database and when.

We will not apply any filter in this trace because we want to capture and audit the database file
growth events for all databases on the server. Thus, stored procedure sp_trace_setfilter
will not be used in our example.

How to do it...
Follow the steps provided here to create a trace with system stored procedures:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 In the query window, type and execute the following T-SQL script to create a new trace
through system stored procedures:
DECLARE @ReturnCode INT
DECLARE @TraceID INT
DECLARE @Options INT = 2
DECLARE @TraceFile NVARCHAR(245) = 'C:\MyTraces\MyTestTrace'
DECLARE @MaxFileSize INT = 5
DECLARE @Event_DataFileAutoGrow INT = 92
DECLARE @Event_LogFileAutoGrow INT = 93
DECLARE @DataColumn_DatabaseName INT = 35
DECLARE @DataColumn_FileName INT = 36
DECLARE @DataColumn_StartTime INT = 14
DECLARE @DataColumn_EndTime INT = 15

DECLARE @On BIT = 1
DECLARE @Off BIT = 0

--Create a trace and collect the returned code.
EXECUTE @ReturnCode = sp_trace_create
 @traceid = @TraceID OUTPUT
 ,@options = @Options
 ,@tracefile = @TraceFile

--Check returned code is zero and no error occurred.
IF @ReturnCode = 0
BEGIN
 BEGIN TRY
 --Add DatabaseName column to DataFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_DataFileAutoGrow
 ,@columnid = @DataColumn_DatabaseName

Chapter 1

37

 ,@on = @On

 --Add FileName column to DataFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_DataFileAutoGrow
 ,@columnid = @DataColumn_FileName
 ,@on = @On

 --Add StartTime column to DataFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_DataFileAutoGrow
 ,@columnid=@DataColumn_StartTime
 ,@on = @On

 --Add EndTime column to DataFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_DataFileAutoGrow
 ,@columnid = @DataColumn_EndTime
 ,@on = @On

 --Add DatabaseName column to LogFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_LogFileAutoGrow
 ,@columnid = @DataColumn_DatabaseName
 ,@on = @On

 --Add FileName column to LogFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_LogFileAutoGrow
 ,@columnid = @DataColumn_FileName
 ,@on = @On

 --Add StartTime column to LogFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_LogFileAutoGrow
 ,@columnid=@DataColumn_StartTime
 ,@on = @On

Mastering SQL Trace Using Profiler

38

 --Add EndTime column to LogFileAutoGrow event.
 EXECUTE sp_trace_setevent
 @traceid = @TraceID
 ,@eventid = @Event_LogFileAutoGrow
 ,@columnid = @DataColumn_EndTime
 ,@on = @On

 --Start the trace. Status 1 corresponds to START.
 EXECUTE sp_trace_setstatus
 @traceid = @TraceID
 ,@status = 1
 END TRY
 BEGIN CATCH
 PRINT 'An error occurred while creating trace.'
 END CATCH
END
GO

It is possible that the stored procedure sp_trace_create may
fail if the windows account under which the SQL Server Service
is running has no write permission on the directory where the
trace file is created. If this is the case, then you will need to assign
proper permissions to the login account so that it can write to the
specified directory.

3.	 By executing the following query and observing the result set, make sure that the
trace has been created successfully. This query should return a record for the trace
that we created:
--Verify the trace has been created.
SELECT * FROM sys.traces
GO

4.	 The previous query will give you the list of traces that are currently running on
the system. You should see your newly created trace listed in the result set of the
previous query. If the trace could be created successfully, execute the following T-SQL
script to create a sample database and insert one million records:
--Creating Sample Database keeping Filegrowth Size
--to 1 MB for Data and Log file.
CREATE DATABASE [SampeDBForTrace] ON PRIMARY
(
 NAME = N'SampeDB'
 ,FILENAME = N'C:\MyTraces\SampeDBForTrace_Data.mdf'
 ,SIZE = 2048KB , FILEGROWTH = 1024KB
)

Chapter 1

39

LOG ON
(
 NAME = N'SampeDBForTrace_log'
 ,FILENAME = N'C:\MyTraces\SampeDBForTrace_log.ldf'
 ,SIZE = 1024KB , FILEGROWTH = 1024KB
)
GO

USE SampeDBForTrace
GO

--Creating and Inserting one million records tbl_SampleData table.
SELECT TOP 1000000 C1.*
INTO tbl_SampleData
FROM sys.columns AS C1
CROSS JOIN sys.columns AS C2
CROSS JOIN sys.columns AS C3
GO

5.	 After executing the previous script, execute the following T-SQL script to stop and
close the trace:
DECLARE @TraceID INT
DECLARE @TraceFile NVARCHAR(245) = 'C:\MyTraces\MyTestTrace.trc'

--Get the TraceID for our trace.
SELECT @TraceID = id FROM sys.traces
WHERE path = @TraceFile

IF @TraceID IS NOT NULL
BEGIN
 --Stop the trace. Status 0 corroponds to STOP.
 EXECUTE sp_trace_setstatus
 @traceid = @TraceID
 ,@status = 0

 --Closes the trace. Status 2 corroponds to CLOSE.
 EXECUTE sp_trace_setstatus
 @traceid = @TraceID
 ,@status = 2
END
GO

Mastering SQL Trace Using Profiler

40

6.	 Execute the following query to verify that the trace has been stopped and closed
successfully. This query should not return a record for our trace if it is stopped and
closed successfully.
--Verify the trace has been stopped and closed.
SELECT * FROM sys.traces
GO

7.	 The previous query will not return the row for the trace that we created because the
trace has now been stopped and closed. Inspect the resulting trace data collected in
our trace file by executing the following query:

--Retrieve the collected trace data.
SELECT
 TE.name AS TraceEvent
 ,TD.DatabaseName
 ,TD.FileName
 ,TD.StartTime
 ,TD.EndTime
FROM fn_trace_gettable('C:\MyTraces\MyTestTrace.trc',default) AS
TD
LEFT JOIN sys.trace_events AS TE
ON TD.EventClass = TE.trace_event_id
GO

How it works...
In this recipe, we first created and configured our trace by executing a T-SQL script. The script
first declares some required variables whose values are passed as parameters to system
stored procedures. It creates a trace by executing the sp_trace_create stored procedure
that returns ID of the newly created trace. The stored procedure sp_trace_create accepts
the following parameters:

ff @traceid OUTPUT

ff @options

ff @tracefile

The @Options parameter is passed to specify the trace options. The following are the
predefined values for the @Options parameter:

ff 2: TRACE_FILE_ROLLOVER

ff 4: SHUTDOWN_ON_ERROR

ff 8: TRACE_PRODUCE_BLACKBOX

Chapter 1

41

The parameter @TraceFile specifies the location and file name where the trace file
should be saved. @TraceID is the output variable and the returned ID value of the trace
will be stored in this variable. If the stored procedure can create a trace file successfully, it
returns 0 that gets stored in variable @ReturnCode.

Remember that all SQL Trace system stored procedures are strictly typed. By
saying strictly typed, it means that the data types of the parameters that you
pass to these stored procedures must match exactly with the data types of
stored procedures' parameter definition. So, you cannot pass a parameter of
type INT when BIGINT is required.

If trace is created successfully and @ReturnCode is zero, then we add event classes and
data columns by calling stored procedure sp_trace_setevent for each combination of
event class and data column one-by-one for following event classes and data columns:

ff DataFileAutoGrow event class and DatabaseName data column

ff DataFileAutoGrow event class and FileName data column

ff DataFileAutoGrow event class and StartTime data column

ff DataFileAutoGrow event class and EndTime data column

ff LogFileAutoGrow event class and DatabaseName data column

ff LogFileAutoGrow event class and FileName data column

ff LogFileAutoGrow event class and StartTime data column

ff LogFileAutoGrow event class and EndTime data column

Stored procedure accepts the following parameters:

ff @traceid

ff @eventid

ff @columnid

ff @on

@TraceID is the ID of the trace we add event classes and data columns to.

Note that every event classes and data columns have their associated event IDs and column
IDs. We have to pass these ID values corresponding to event classes and data columns
that we want to include in our trace. These values are passed by appropriate variables
declared for each event class and data column. For example, for DataFileAutoGrow
event class and FileName data column we have stored their appropriate ID values in
@Event_DataFileAutoGrow and @DataColumn_FileName variables respectively.

Mastering SQL Trace Using Profiler

42

How to get IDs for all event classes and data columns?
ID values for required event classes and data columns must be passed to
the stored procedure sp_trace_setevent. You can get a list of EventIDs
for all event classes by querying sys.trace_events system catalog view.
To get a list of column IDs for all data columns, use sys.trace_columns
system catalog view. Also, you can retrieve list of column IDs for all available
columns for a given event by querying sys.trace_event_bindings
system catalog view and by joining it with sys.trace_events and sys.
trace_columns system catalog views on trace_event_id and trace_
column_id columns respectively.

The value of @ on parameter value can be either 0 or 1 where the value 1 means that event
data for specified event class and data column should be captured otherwise not.

After adding the required event classes and data columns, the stored procedure
sp_trace_setstatus is used to set the status of the trace to START. Any trace that
is created with system stored procedure is always in STOP state by default, and needs
to be started explicitly by calling sp_trace_setstatus stored procedure. This stored
procedure accepts the following parameters:

ff @traceid

ff @status

@TraceID is the ID of the trace we created and need to be started. @Status specifies the
state of the trace. Possible values for @Status parameter are as follows:

ff 0: Stops a trace
ff 1: Starts a trace
ff 2: Closes a trace

Because we wanted to start our trace, we are passing a value of 1 to this parameter.

SQL Server keeps track of currently opened trace sessions. This list of traces can be retrieved
by querying sys.traces system catalog view. We just make sure by querying this view that
the trace is indeed created.

Next, we create a sample database named SampleDBTrace. We deliberately keep the
value of FILEGROWTH attribute smaller in order to be able to produce Data File Auto
Growth and Log File Auto Growth events. The script also creates a sample table named
tbl_SampleData though SELECT … INTO statement in which we insert one million sample
records by cross joining sys.columns system catalog view with itself multiple times. This
operation requires additional space in data and log files to make room for inserting new
records. For this, SQL Server has to increase the size of data and log files when required by
one MB (specified value for the FILEGROWTH attribute). This causes DataFileAutoGrowth
and LogFileAutoGrowth events to be raised.

Chapter 1

43

We deliberately kept the value of the FILEGROWTH attribute as
smaller as 1 MB in order to demonstrate this recipe. Setting value
of the FILEGROWTH attribute this small is just for the sake of being
able to produce the desired file growth events. Such small value for
the FILEGROWTH attribute is not recommended and should not be
used on production server with heavy DML operations.

Once the record insertion operation is completed, the script is executed to stop and close the
trace by again calling the stored procedure sp_trace_setstatus twice with the appropriate
status value for each call. Remember that to close a trace, it should be stopped first. So, a
trace should be stopped first before it can be closed.

After closing a trace, we make sure that the trace stopped and closed successfully by querying
sys.traces system catalog view again.

Once our trace is stopped, we use fn_trace_gettable() function to query the captured
trace data saved in specified trace file whose full file path is also being passed to the function
for the first parameter filename. We also pass the default value for the second parameter
number_files of the function which specifies that the function should read all rollover files
to return trace data. Because this function does not return any column for the event class'
name, we join it with sys.trace_events system catalog view on IDs of event classes in
order to fetch the names of event classes.

If you want to analyze large size of trace data containing large
number of trace files, then you should specify 1 for number_files
parameter. If you specify default, the SQL Server tries to load all
trace files into memory and then inserts them into a table in a single
operation, which may crash your system.

2
Tuning with Database
Engine Tuning Advisor

In this chapter we will cover:

ff Analyzing queries using Database Engine Tuning Advisor

ff Running Database Engine Tuning Advisor for Workload

ff Executing Database Tuning Advisor from command prompt

Introduction
Database Engine Tuning Advisor (DTA) suggests ways to tune the database by analyzing the
Workload provided. DTA helps in creating an efficient index, an indexed view (if it's supported
by the SQL Server Edition you are using), statistics, and partitions. DTA can give efficient
suggestions only if you have created proper workload with sufficient data. For further details
of creating workload, refer Creating a trace or workload recipe of Chapter 1, Mastering SQL
Trace Using Profiler.

Studying an Estimated execution plan (covered in Chapter 5, Monitoring with Execution Plans)
of query from Query Editor to find out the bottleneck and resolve it needs knowledge of the
database structure as well as good command over performance tuning, whereas DTA offers a
very simple solution to this. Just collect the proper workload, give it to DTA and it will analyze
that Workload for you and suggests you the ways for tuning.

Tuning with Database Engine Tuning Advisor

46

Sometimes it happens that we tune one query by creating/removing an index, which helps
that query for performance but on the other hand, other SELECT or DML queries get hurt
in terms of their performance. (More about indexes and their behavior is explained in
Chapter 9, Implementing Indexes and Chapter 10, Maintaining Indexes.) DTA offers
suggestion to this situation if you have collected proper workload of the queries that
execute against the database we want to tune. By analysing the query included in workload,
DTA suggests changes to index, the indexed view, statistics, and partitions to improve the
overall performance

DTA won't provide efficient suggestions if an incomplete workload is provided to DTA. So make
sure to include every possible query in workload before you load it to DTA for analyzing.

Workload is simply a collection of SQL statements that executes against the database(s).
Refer Creating a trace or workload section of Chapter 1 to know more about workload.

Analyzing queries using Database Engine
Tuning Advisor

There are few different ways that can help you in providing workload to DTA. One of the
popular ways is to ask DTA about the query you are designing at the moment for performance
point of view, so that DTA can analyze the query and provide suggestions, if any.

Getting ready
We will need two tables to demonstrate this recipe. Here is the script to create the same:

USE AdventureWorks2012
GO

IF OBJECT_ID('ProductDemo') IS NOT NULL
 DROP TABLE ProductDemo
GO

IF OBJECT_ID('ProductModelDemo') IS NOT NULL
 DROP TABLE ProductModelDemo
GO

select * into ProductModelDemo from Production.ProductModel
select * into ProductDemo from Production.Product
GO

We have just created two tables, named ProductDemo and ProductModelDemo, which
don't have any index or statistics right now.

Chapter 2

47

How to do it...
Now here is the query we want to execute and tune if possible:

SELECT
 P.ProductID
 ,P.ProductModelID
FROM
 ProductDemo AS P
JOIN
 ProductModelDemo AS PM
ON
 P.ProductModelID=PM.ProductModelID
WHERE
 P.ProductID=680
GO

Here is the list of steps that we should follow in order to analyze the given query in DTA.

1.	 Write down the query in SSMS. Click on Start | All Program | Microsoft SQL Server
2012 | SQL Server Management Studio (SSMS) and try to execute it by pressing the
F5 key or the execute button from standard toolbar.

2.	 Select the query in SSMS and right-click on it.
3.	 Select the option Analyze Query in Database Engine Tuning Advisor from the

pop up menu:

Tuning with Database Engine Tuning Advisor

48

4.	 DTA opens and asks for the credentials to run the tool; provide the same credential,
that is, Windows authentication or SQL authentication you use and open DTA. A piece
of advise is to use Windows authentication. There could be long debate regarding pro
and cons of each but let us make long story short by showing some key advantages
of using Windows authentication. Windows authentication will shield your SQL Server
installation from most Internet-based attacks by restricting connections to Microsoft
Windows user and domain user accounts. Your server will also benefit from Windows
security enforcement mechanisms, such as stronger authentication protocols,
mandatory password, complexity, and expiration:

You will find two tabs in the main window of DTA:

ff General

ff Tuning Options

1.	 Provide a proper name in the Session name box for documentation purposes for
future use:

Chapter 2

49

2.	 Now, click on the Start Analysis button under the View menu:

Tuning with Database Engine Tuning Advisor

50

3.	 Once it finishes progress, you can see three new tabs on the main screen:

ff Progress

ff Recommendations

ff Reports

4.	 In the Recommendations tab, it is showing two recommendations and also saying that
by implementing all two recommendations, we will get improvement of 84 percent:

5.	 There is a column Definitions on the right, which gives the exact syntax for creating
index or statistics DTA suggests. In this case, it has suggested one statistics and
two indexes.

How it works...
DTA analyzes the workload submitted to it; in our case, there is only one query provided.
DTA checks the table structure, predicate provided in the query and statistics/histogram if
available for predicates, and try to find out best suited way to execute the query, if it finds
anything missing (such as index, statistics, and so on), DTA recommends it to create. Basically
after submitting workload (or query), DTA goes through each table and view available in
workload along with the predicate used. It searches for the available index, statistics, and
partition scheme too (if selected) in order to prepare the suggestion list. If it doesn't find
statistics on predicate, DTA suggests to create statistics and if statistic is out of date on a
predicate column, DTA suggests that we update it. DTA also look for all available indexes on
the predicate and if DTA finds any missing index, it will suggest to create it.

All suggestions given by DTA is completely dependent on the workload provided. If incomplete
workload is provided to DTA, there is a chance that DTA would suggest something wrong that
may harm the overall performance. So it's highly recommended that we check the suggestions
carefully before implementing it.

A word of caution: Before creating any index suggested by DTA, it is
recommended to check the table and column that DTA suggests because
index comes with little overhead on DML statement and index needs space
to maintain itself. So it is better to first check whether the column that DTA
suggests is worth the index or not.

Chapter 2

51

Actually there is no index created at the moment on both the sample table we have created.
So DTA is suggesting to create one composite non-clustered index on the ProductDemo
table on ProductID and ProductModelID column so that both the predicate used from this
table can get benefit of leaf pages of index, return the resultset faster and; that is how DTA
calculated a performance improvement of 84 percent in the Recommendations tab. DTA
is also suggesting to create one non-clustered index on the ProductModelDemo table so
the ProductModelID column used as a predicate with join clause, can get benefit of fast
searching from the index tree.

Running Database Engine Tuning Advisor for
workload

Trace is a session during which the events are captured and event data is collected. SQL
Server supports a few formats for saving this collected trace data, which is known as a
workload. We can save trace data (a workload) in one of the following formats:

ff A trace file with .trc extension name

ff A trace file in XML format with .xml extension name

ff A trace table in an SQL Server database

We are going to use trace file .trc for this recipe. For detailed information regarding trace,
workload, and different events of trace in profiler, refer Creating a trace or workload recipe
in Chapter 1.

In this recipe, we will create a trace with SQL Server Profiler; execute some queries that will be
captured in running profiler trace file and load that trace file in Database Engine Tuning tool to
analyze the workload.

It is recommended to use server-side trace over profiler use on a production
server as profiler can consume lot of network bandwidth resources whereas
server-side trace consumes no network bandwidth resources, which is an
ideal situation to go for in-production server, where many users and/or
applications are connected.

Getting ready
Following are the prerequisites that you should fulfill:

ff An instance of SQL Server 2012

ff SQL Server Login account with administrative rights

ff Sample AdventureWorks2012 database on the instance of SQL Server

ff An instance of Database Engine Tuning Advisor

Tuning with Database Engine Tuning Advisor

52

DTA can analyze workload or even a single query but analyzing a workload is one of the
famous ways in DTA because a properly created workload has all different queries that we use
to execute in the database, and wide range of query helps DTA to make good decision, based
on the workload provided.

How to do it...
Follow the ensuing steps to create some sample tables in the AdventureWorks2012 database
for demonstration:

1.	 Create a table ordDemo and insert some records into that table with the
following script:
Use AdventureWorks2012
GO

--if orders table is already there. you can delete it than
--create new one with name "Orders"
IF OBJECT_ID('ordDemo', 'U') IS NOT NULL
BEGIN
 DROP TABLE ordDemo
END
GO

--creating table for demonstration
CREATE TABLE ordDemo (OrderID INT IDENTITY, OrderDate DATETIME,
Amount MONEY, Refno INT)
GO

--inserting 100000 sample rows into table
INSERT INTO ordDemo (OrderDate, Amount, Refno)
SELECT TOP 100000
 DATEADD(minute, ABS(a.object_id % 50000), CAST('2011-11-04'
AS DATETIME)),
 ABS(a.object_id % 10),
 CAST(ABS(a.object_id % 13) AS VARCHAR)
FROM sys.all_objects a
CROSS JOIN sys.all_objects b
GO

2.	 Create two more tables ProductDemo and ProductModelDemo from the existing
table of our database AdventureWorks2012 with the help of the following script.
IF OBJECT_ID('ProductDemo') IS NOT NULL
 DROP TABLE ProductDemo
GO

IF OBJECT_ID('ProductModelDemo') IS NOT NULL
 DROP TABLE ProductModelDemo
GO

Chapter 2

53

select * into ProductModelDemo from Production.ProductModel
select * into ProductDemo from Production.Product
GO

Follow the steps provided here to create a new trace:

1.	 Start SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of SQL Server hosting AdventureWorks2012 database and click
on Connect.

Login name which you use to connect SQL Server Profiler
must have ALTER TRACE permission otherwise you will
receive an error and cannot start a trace session.

3.	 In the General tab of Trace Properties dialog box, specify
AdventureWorks2012Trace as trace name. Use the Standard (default) trace
template for Use the template: option.

4.	 Enable the checkbox Save to file: and specify a path, file name in the Save As dialog
box; then click on Save, save file name as AdventureWorks2012Trace.trc file in
the D drive.

5.	 Keep Enable file rollover checked and Set maximum file size (MB): to its default
value 5. Refer the following screenshot, which shows the General tab of Trace
Properties dialog box:

Tuning with Database Engine Tuning Advisor

54

In the Trace Properties dialog box, there is a checkbox option in the General
tab with the caption Server processes trace data to specify whether trace
data should be processed on server. If not checked, trace data is processed
on client.
When trace data is processed on client, it is possible for some events to be
missed if the server load is high. If this option is checked, then trace data is
processed on the server, and all the events included in trace definition are
guaranteed to be captured without miss. However, this guarantee comes
with performance penalty because processing trace data on server has an
impact on performance of SQL Server and therefore, enabling this option is
not recommended for production servers. Also, running SQL Server Profiler on
production server itself should be avoided.

6.	 Click on the Events Selection tab. On this screen, the events that are predefined for
Standard (default) trace template are selected and shown in grid. Enable the Show
all events checkbox to show all events. Navigate through the event list until you
find the Stored Procedures event category. Expand Stored Procedures event
category if it is collapsed. Uncheck the checkbox for RPC:Completed event and
enable the checkbox for SP:Completed event. Disable the Show all events
checkbox to show only the selected events. The screen should now look similar
to the following screenshot:

Chapter 2

55

7.	 Details about SP:Completed event could be found in the following screenshot:

8.	 Click on the Run button to start the trace.

9.	 Now open SQL Server Management Studio and establish a connection to the same
SQL Server.

10.	 In the query window, type the sample T-SQL statements as shown in the following
code snippet and then execute them by pressing F5 key:
Use AdventureWorks2012
GO

SELECT OrderDate,Amount,Refno FROM ordDemo WHERE Refno>8
GO

SELECT
 P.ProductID
 ,P.ProductModelID
FROM
 ProductDemo AS P
JOIN
 ProductModelDemo AS PM
ON
 P.ProductModelID=PM.ProductModelID
WHERE
 P.ProductID=680
GO

Tuning with Database Engine Tuning Advisor

56

11.	 After executing this T-SQL statement, it's time to stop the trace that is
currently running by pressing the Stop button on the toolbar as shown in
the following screenshot:

12.	 Open Database Engine Tuning Advisor tool from Start | All Program | SQL Server
2012 | Performance Tool | Database Engine Tuning Advisor. Enter the Session
name as AdventureWorks2012WorkloadFile. In the Workload section, select the
File radio button and select the .trc file that we have saved in D drive. Select
Adventureworks2012 database from the drop-down menu besides Database
for workload analysis. Finally, your General tab should look similar to the
following screenshot:

13.	 Now, in the Tuning Options tab, select the Indexes radio button and enable the
Include filter index checkbox. The Tuning Options screen should look similar to
the following screenshot:

Chapter 2

57

14.	 Now, click on the Start Analysis button from toolbar under the Action menu.

15.	 As soon as the analysis will be completed, DTA will show its recommendation in the
Recommendations tab as shown in the following screenshot. Carefully read each
recommendations and if you think it is worth to go for, select the syntax to follow the
steps given in the Definition column:

How it works...
The .trc file is a bunch of T-SQL statement(s) that we have executed while generating the .trc
file. After submission of the .trc file to DTA, DTA goes through each and every T-SQL statement
to read its ways of execution (execution plan), start time of execution, end time of execution.
Once the data is read, it starts measuring performance based on the option selection that we
made in the Tuning Options tab.

Tuning with Database Engine Tuning Advisor

58

There's more...
In step 12, there is a screenshot given for Tuning Options tab. Some radio buttons and
checkboxes are suggested to select there but it will be interesting to know the use of other
radio buttons and checkboxes too. Here is the list of the same:

ff Limit Tuning Time: Select this checkbox and insert proper data and time when you
want to finish the analyses of trace file. DTA takes resources and locks on objects so
it is better to mention appropriate date/time there. It should stop the analyses before
the peak hour starts for SQL Server instance.

ff Physical Design Structure (PDS) to use in database:

�� Indexes and indexed views: Select this radio button to include
recommendations for adding clustered indexes, non-clustered indexes,
and indexed views.

�� Indexed views: Select this radio button to include recommendations for
adding indexed views. Clustered and non-clustered indexes will not be
recommended.

�� Include filtered indexes: Select this radio button to include
recommendations for adding filtered indexes. This option is available if you
select one of these physical design structures—indexes and indexed views,
indexes, or non-clustered indexes.

�� Indexes: Select this radio button to include recommendations for
adding clustered and non-clustered indexes. Indexed views will not be
recommended.

�� Non-clustered indexes: Select this radio button to include recommendations
for only non-clustered indexes. Clustered indexes and indexed views will not
be recommended.

�� Evaluate utilization of existing PDS only: This option will evaluate the
effectiveness of the current indexes but does not recommend additional
indexes or indexed views.

ff Partitioning strategy to employ:

To know more about what the partition is? And what is the role
partition plays? Refer Chapter 13, Table and Index Partitioning.

�� No partitioning: Does not recommend partitioning.

�� Full partitioning: Include recommendations for partitioning.

�� Aligned partitioning: New recommended partitions will be aligned to make
partitions easy to maintain.

Chapter 2

59

ff Physical Design Structure (PDS) to keep in database:

To know more about what the index is? And what is
the role index plays? ReferChapter-9, Implementing
Indexes and Chapter-10, Maintaining Indexes.

�� Do not keep any existing PDS: Recommend dropping unnecessary existing
indexes, views, and partitioning. If an existing Physical Design Structure
(PDS) is useful to the workload, Database Engine Tuning Advisor does not
recommend dropping it.

�� Keep indexes only: Keep all existing indexes but recommend dropping
unnecessary indexed views and partitioning.

�� Keep all existing PDS: Keep all existing indexes, indexed views, and
partitioning.

�� Keep clustered indexes only: Keep all existing clustered indexes but
recommend dropping unnecessary indexed views, partitions, and
non-clustered indexes.

�� Keep aligned partitioning: Keep partitioning structures that are currently
aligned, but recommend dropping unnecessary indexed views, indexes, and
non-aligned partitioning. Any additional partitioning recommended will align
with the current partitioning scheme.

Executing Database Tuning Advisor from
command prompt

There is a command prompt version of Database Engine Tuning Advisor, which is known as
DTA. Like a Database Engine Tuning Advisor, DTA also analyses the workload given to it in the
form of trace file, table, or query. There is no difference in tuning activity or the suggestions it
provides. The visible difference is that Database Engine Tuning Advisor provides GUI and DTA
provides a traditional approach. Apart from that, DTA gives you the liberty to provide XML file,
if you don't like to type down all parameter on command line.

If you have the same database structure in your development environment as you have
in production server with very less data in development environment, you can copy the
production instance's index statistics and metadata. This effectively recreates a target
environment without the need to migrate a volume of data onto a development server. DTA
creates a shell database that you can tune by using the TestServer sub-element and the
tuning options element in XML file. This is the advantage of DTA utility over Database Engine
Tuning Advisor.

Tuning with Database Engine Tuning Advisor

60

For more information regarding XML file in DTA, please have a look at the following links:

ff http://msdn.microsoft.com/en-us/library/ms190389.aspx

ff http://technet.microsoft.com/en-us/library/ms174202.aspx

Getting ready
Like the previous recipe (Running Database Engine Tuning Advisor for Workload), we can
load the AdventureWorks2012Trace.trc trace file in DTA. But we are going to create one
test.sql file in D drive with few SELECT statements, which we will load in DTA utility. Open
SQL Server Management Studio and write down the following SQL statement:

SELECT OrderDate,Amount,Refno FROM AdventureWorks2012.dbo.ordDemo
WHERE Refno>8
GO

SELECT
 P.ProductID
 ,P.ProductModelID
FROM
 AdventureWorks2012.dbo.ProductDemo AS P
JOIN
 AdventureWorks2012.dbo.ProductModelDemo AS PM
ON
 P.ProductModelID=PM.ProductModelID
WHERE
 P.ProductID=680
GO

Now, save this SSMS file in D drive with the name test.sql.

How to do it...
Execute the following command on command line utility:

dta -D AdventureWorks2012 -s adventureworks2012FromDTA5 -S WIN-
SLYJ9UY3PKD\DENALICTP3 -E -if D:\test.sql -F -of D:\DTA.sql

After successful execution of this command, the command prompt would look similar to the
following screenshot:

http://msdn.microsoft.com/en-us/library/ms190389.aspx
http://msdn.microsoft.com/en-us/library/ms190389.aspx

Chapter 2

61

How it works...
Just like DTA, we can submit the workload with necessary parameter to DTA and it analyses
each query that exists in the workload submitted to generate recommendations in the
output file.

Here is an explanation of the parameters that can be used in conjunction with the command:

ff -D: It represents our database AdventureWorks2012

ff -s: It is a session name

ff -S: It represents server name/instance name (in our server, it is WIN-
SLYJ9UY3PKD\DENALICTP3, you can replace it with your own server name/
instance name)

ff -E: It connects DTA with secure windows authentication, if you wish to run DTA with
SQL authentication and you have sysadmin account, you can provide -U username
and -P password instead of -E

ff -if: It is the input file that could be the .sql file we have saved in D drive

ff -of: It represents the path where we want to save the recommendation of DTA after
it analyses the workload

ff -F: It will overwrite any file that has the same name and path as our output file

Tuning with Database Engine Tuning Advisor

62

There's more...
DTA needs each object name has three part naming convention, that is, ProductDemo
table should be referred as AdventureWorks2012.dbo.ProductDemo (DatabaseName.
SchemaName.TableName) otherwise it would generate an error.

All the events in the workload were ignored due to syntax errors. The most
common reason for this error is that the database to connect has not been
set correctly.

The following is a screenshot of the error:

This screenshot has used the same .trc file, which we generated in the previous recipe
Running database engine tuning Advisor for workload, even DTA throws an error because the
SELECT statement we had executed to generate the .trc file did not have three part naming
for the table. You can also observe –U and –P parameter are used instead of –E. The –E
parameter works as Windows authentication and –U and –P works as SQL authentication.

3
System Statistical
Functions, Stored

Procedures, and
the DBCC SQLPERF

Command

In this chapter we will cover:

ff Monitoring system health using system statistical functions

ff Monitoring SQL Server processes and sessions with system stored procedures

ff Monitoring log space usage statistics with the DBCC SQLPERF command

Introduction
There are a few system statistical functions, stored procedures, and DBCC commands that
can be useful while analysing performance-related issues. However, even though most of
the statistical information that these commands provide can be retrieved by using dynamic
management views and dynamic management functions, many database professionals use
these features because they have been a part of SQL Server for a long time and are popular
and handy while monitoring and looking into performance-related statistics.

You would often use these commands in real life as a quick tool to check the health of the
server and the status of SQL Server processes.

System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command

64

Monitoring system health using system
statistical functions

SQL Server has a set of few useful system statistical functions that provide certain statistics
related to SQL Server health. These functions are useful for checking and monitoring the
health of the server.

Suppose that, in your database environment, one of the web applications is processing
records row-by-row. In order to process each row, the application makes a round trip to
the database. This means that to process each row there is a new connection. In order to
troubleshoot the issue, you want to monitor at regular intervals the number of connections
that are taking place. This example will describe how to perform the said task.

Getting ready
In this recipe we will use following functions:

ff @@CONNECTIONS

ff @@TIMETICKS

ff @@CPU_BUSY

ff @@IDLE

ff @@IO_BUSY

ff @@PACK_RECEIVED

ff @@PACK_SENT

ff @@PACKET_ERRORS

ff @@TOTAL_READ

ff @@TOTAL_WRITE

ff @@TOTAL_ERRORS

In this example, we will use all these functions, and create and execute a script several times
that will insert the output of these functions into a table and query that table by comparing
the number of connections between every two consecutive rows.

The following is the prerequisite for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

Chapter 3

65

How to do it...
Follow the steps given here to perform this recipe:

1.	 Open SQL Server Management Studio and connect to an instance of SQL Server.

2.	 In a new query window, type and execute the following T-SQL script several times to
monitor and capture the health of the SQL server:
--Creating a table to store server health
--statistics data if the table does not exist.
IF OBJECT_ID('[dbo].[tbl_ServerHealthStatistics]') IS NULL
BEGIN
 CREATE TABLE [dbo].[tbl_ServerHealthStatistics]
 (
 ID INT IDENTITY(1,1)
 ,StatDateTime DATETIME DEFAULT GETDATE()
 ,TotalConnections INT
 ,TimeTicks INT
 ,TotalCPUBusyTime INT
 ,TotalCPUIdleTime INT
 ,TotalIOBusyTime INT
 ,TotalReceivedPackets INT
 ,TotalSentPackets INT
 ,TotalErrorsInNetworkPackets INT
 ,TotalPhysicalReadOperations INT
 ,TotalWriteOperations INT
 ,TotalReadWriteErrors INT
)
END

GO

--Collect and store server health statistics
--data in our table.
INSERT INTO [dbo].[tbl_ServerHealthStatistics]
(
 TotalConnections
 ,TimeTicks
 ,TotalCPUBusyTime
 ,TotalCPUIdleTime
 ,TotalIOBusyTime
 ,TotalReceivedPackets
 ,TotalSentPackets
 ,TotalErrorsInNetworkPackets

System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command

66

 ,TotalPhysicalReadOperations
 ,TotalWriteOperations
 ,TotalReadWriteErrors
)
SELECT
 @@CONNECTIONS AS TotalConnections
 ,@@TIMETICKS AS TimeTicks
 ,@@CPU_BUSY AS TotalCPUBusyTime
 ,@@IDLE AS TotalCPUIdleTime
 ,@@IO_BUSY AS TotalIOBusyTime
 ,@@PACK_RECEIVED AS TotalReceivedPackets
 ,@@PACK_SENT AS TotalSentPackets
 ,@@PACKET_ERRORS AS TotalErrorsInNetworkPackets
 ,@@TOTAL_READ AS TotalPhysicalReadOperations
 ,@@TOTAL_WRITE AS TotalWriteOperations
 ,@@TOTAL_ERRORS AS TotalReadWriteErrors

GO

3.	 Next, run the query, as shown in the following script, to display the collected server
health statistics data:
--Display the collected server health
--statistics data.
WITH cteStatistics AS
(
 SELECT
 ID
 ,StatDateTime
 ,TotalConnections
 ,TotalCPUBusyTime*CAST(TimeTicks AS BIGINT)
 AS TotalCPUBusyTime
 ,TotalCPUIdleTime*CAST(TimeTicks AS BIGINT)
 AS TotalCPUIdleTime
 ,TotalIOBusyTime*CAST(TimeTicks AS BIGINT)
 AS TotalIOBusyTime
 ,TotalReceivedPackets
 ,TotalSentPackets
 ,TotalErrorsInNetworkPackets
 ,TotalPhysicalReadOperations
 ,TotalWriteOperations
 ,TotalReadWriteErrors
 FROM [dbo].[tbl_ServerHealthStatistics]
)
SELECT

Chapter 3

67

 Cur.TotalConnections AS CurrentConnections
 ,Cur.StatDateTime AS CurrentStatDateTime
 ,Prev.TotalConnections AS PreviousConnections
 ,Prev.StatDateTime AS Previous_StatDateTime
 ,Cur.TotalConnections - Prev.TotalConnections AS
ConnectionsIncreamentedBy
 ,DATEDIFF(millisecond, Prev.StatDateTime, Cur.StatDateTime)
 AS ConnectionsIncreamentedIn
FROM cteStatistics AS Cur
LEFT OUTER JOIN cteStatistics AS Prev
 ON Cur.ID = Prev.ID + 1

How it works...
We first created a table called dbo.tbl_ServerHealthStatistics. Before creating the
table, the script checks for its existence with the help of the OBJECT_ID() function. The
script creates the table only if OBJECT_ID() returns NULL and the table does not exist.
This will ensure that the same script can be executed multiple times without any problem.
When this script is executed for the first time, it will create the table. In all the subsequent
executions, the IF condition will not be satisfied and table creation logic will be skipped.

The next batch in the script gathers server health statistics data with the INSERT…SELECT
statement. In the SELECT statement, multiple system statistical functions are called and the
result set is inserted into table dbo.tbl_ServerHealthStatistics.

Finally, we query the table dbo.tbl_ServerHealthStatistics, which contains the
collected statistics. Because we need to compare the values for a row with the values of its
previous row, we are using a Common Table Expression (CTE) here by declaring it with the
WITH syntax. After creating CTE, we use the two instances of CTE in our query by using
LEFT JOIN. The first instance is aliased as Cur, which becomes the left table of the join
and represents the current rows. The second instance is aliased as Prev, which becomes
the right table of the join and represents the previous rows. This is achieved using the join
condition Cur.ID = Prev.ID + 1. You can see that we derived the difference between
the connections, and time interval between a row and its previous row, so that we can tell
how many new connections have been created in what time frame.

Note how we convert the time values of TotalCPUBusyTime, TotalCPUIdleTime,
and TotalIOBusyTime columns from tick to microseconds. We multiply these values by
Timeticks. While multiplying, we need to watch out for results for which the value falls
beyond the integer limit. This is the reason why we convert one of the operands (TimTicks)
by multiplication to BIGINT, to avoid arithmetic overflow.

System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command

68

There's more...
The following is a list of system statistical functions, along with their descriptions, that you will
find useful in monitoring SQL Server. All these system statistical functions return an aggregate
value that most of them have cumulatively calculated since SQL Server starts or restarts.

Let us briefly discuss all of them one by one and see what they will return:

ff @@CONNECTIONS: This function returns an integer value that represents the
number of connections that have been attempted since the SQL Server service was
last started. These connection attempts may either be successful or unsuccessful.

ff @@MAX_CONNECTIONS: This function returns an integer value that represents
the number of maximum connections that are allowed simultaneously. The value
depends on the current setting that has been configured for 'Max Connections'
with sp_configure, the version of SQL Server, and also the limitations of
applications and hardware.

ff @@TIMETICKS: This function returns an integer value that represents the number of
microseconds that make up a tick. A tick is system-dependent time unit. A tick in an
operating system is generally 31.50 milliseconds.

ff @@CPU_BUSY: This function returns an integer value that represents the CPU time
in ticks that SQL Server has taken to perform its tasks since the SQL Server service
was last started. Remember that on machines with multiple processors, this value is
cumulative for all CPUs used by SQL Server.

ff @@IDLE: This function returns an integer value that represents the CPU time in ticks
that SQL Server has been idle for, since the SQL Server service was last started.
Remember that on machines with multiple processors, this value is cumulative
for all CPUs used by SQL Server.

ff @@IO_BUSY: This function returns an integer value that represents the CPU time
in ticks that SQL Server has taken to perform input/output operations since the
SQL Server service was last started. Remember that on machines with multiple
processors, this value is cumulative for all CPUs used by SQL Server.

ff @@PACK_RECEIVED: This function returns an integer value that represents the
total number of network packets that SQL Server has received since the SQL
Server service was last started.

ff @@PACK_SENT: This function returns an integer value that represents the total
number of network packets that SQL Server has sent since the SQL Server service
was last started.

ff @@PACKET_ERRORS: This function returns an integer value that represents the total
number of erroneous network packets that SQL Server has encountered since the
SQL Server service was last started.

ff @@TOTAL_READ: This function returns an integer value that represents the total
number of physical read operations that SQL Server has performed since the SQL
Server service was last started.

Chapter 3

69

ff @@TOTAL_WRITE: This function returns an integer value that represents the total
number of write operations that SQL Server has performed since the SQL Server
service was last started.

ff @@TOTAL_ERRORS: This function returns an integer value that represents the total
number of errors in input/output operations that SQL Server has encountered since
the SQL Server service was last started.

Functions @@CPU_BUSY, @@IDLE, and @@IO_BUSY, return time value in
ticks and not in milliseconds or microseconds. To retrieve time values in
microseconds, multiply the returned values by time ticks (@@TIMETICKS).

The script in this recipe provides the SQL Server health statistics for a given point of time.
With SQL Server Agent, you can schedule this particular script, so that it executes at a
particular time interval on a regular basis and this task can be automated. This populates our
table [dbo].[tbl_ServerHealthStatistics] regularly and builds a history of statistical
data, which can then be used later for analysis.

ff sp_monitor: There is one system stored procedure named sp_monitor, which
provides the same statistical data that we retrieved in this recipe by system statistical
functions. It returns results in multiple result sets. You are advised to experiment this
stored procedure and observe its results.

Monitoring with system stored procedure
SQL Server provides a few system stored procedures that can be used to monitor SQL Server
by getting details on current processes, sessions, requests, locking information, and so on. In
this recipe, you will see how you can use some system stored procedures to monitor current
SQL Server processes, sessions, requests, and blocking information.

If you suddenly experience that database requests coming from applications are not being
served normally and applications have to wait normally for database responses, you may want
to do a quick check to see whether the requests are blocked by other requests or whether the
processes are getting suspended very frequently.

Getting ready
In this example, we will use following system stored procedures to get the status of
current processes:

ff sp_who

ff sp_who2

System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command

70

The following is the prerequisite for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

How to do it...
Follow the steps provided here to perform this recipe:

1.	 Open SQL Server Management Studio and connect to an instance of SQL Server.

2.	 In a new query window, type and execute the query, as shown in following script, to
monitor the SQL Server processes and sessions:
USE tempdb
GO

--Check if the table exists. If it does,
--drop it first.
IF OBJECT_ID('tempdb.dbo.#tbl_SPWho') IS NOT NULL
BEGIN
 DROP TABLE tempdb.dbo.#tbl_SPWho
END

--Creating table to store the output
--sp_who stored procedures.
CREATE TABLE dbo.#tbl_SPWho
(
 spid SMALLINT
 ,ecid SMALLINT
 ,status NVARCHAR(30)
 ,loginame NVARCHAR(128)
 ,hostName NVARCHAR(128)
 ,blk CHAR(5)
 ,dbname NVARCHAR(128)
 ,cmd NVARCHAR(16)
 ,request_id INT
)

--Insert the result of sp_who stored procedure
--into table.
INSERT INTO dbo.#tbl_SPWho
EXECUTE sp_who
GO

--Check if the table exists. If it does,
--drop it first.

Chapter 3

71

IF OBJECT_ID('tempdb.dbo.#tbl_SPWho2') IS NOT NULL
BEGIN
 DROP TABLE tempdb.dbo.#tbl_SPWho2
END

CREATE TABLE dbo.#tbl_SPWho2
(
 SPID SMALLINT
 ,Status NVARCHAR(30)
 ,Login NVARCHAR(128)
 ,HostName NVARCHAR(128)
 ,BlkBy CHAR(5)
 ,DBName NVARCHAR(128)
 ,Command NVARCHAR(16)
 ,CPUTime INT
 ,DiskIO INT
 ,LastBatch NVARCHAR(50)
 ,ProgramName NVARCHAR(100)
 ,SPID2 SMALLINT
 ,REQUESTID INT
)
INSERT INTO dbo.#tbl_SPWho2
EXECUTE sp_who2

--Looking at only processes for
--a particular database.
SELECT
 spid AS SessionID
 ,ecid AS ExecutionContextID
 ,status AS ProcessStatus
 ,loginame AS LoginName
 ,hostName AS HostName
 ,blk AS BlockedBy
 ,dbname AS DatabaseName
 ,cmd AS CommandType
 ,request_id AS RequestID
FROM dbo.#tbl_SPWho
WHERE dbname = 'AdventureWorks2012'
GO

--Looking at only blocked requests.
SELECT
 spid AS SessionID
 ,ecid AS ExecutionContextID

System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command

72

 ,status AS ProcessStatus
 ,loginame AS LoginName
 ,hostName AS HostName
 ,blk AS BlockedBy
 ,dbname AS DatabaseName
 ,cmd AS CommandType
 ,request_id AS RequestID
FROM dbo.#tbl_SPWho
WHERE blk > 0

--Looking at only suspended processes.
SELECT
 SPID AS SessionID
 ,Status AS ProcessStatus
 ,CPUTime
 ,DiskIO
 ,ProgramName
 ,Login AS LoginName
 ,HostName AS HostName
 ,BlkBy AS BlockedBy
 ,DBName AS DatabaseName
 ,Command AS CommandType
 ,REQUESTID AS RequestID
FROM dbo.#tbl_SPWho2
WHERE status = 'suspended'

How it works...
In this example, we created a temporary table named #tbl_SPWho. We first checked if the
table exists, with the IF condition. If one exists, we drop the table first. Note that the table
structure is identical to the set of columns that sp_who returns.

Next, the stored procedure sp_who is executed and its output is collected in the #tbl_SPWho
table by the INSERT…EXECUTE statements.

We also created another table called #tbl_SPWho2 and inserted the output of sp_who2 in
the same way that we did for sp_who.

Chapter 3

73

The reason why we created temporary tables and stored the output of sp_who and sp_who2
is that we cannot directly filter the result set returned by sp_who and sp_who2, based on
certain columns. We query the table by filtering the dbname, blk, and status columns to
view the processes that are only targeted to a specified database, the processes that are
blocked, and the processes that are suspended.

There's more...
Let's discuss briefly the system stored procedures that we used in our recipe. The following
are some useful system stored procedures that were commonly used before dynamic views
were introduced for troubleshooting performance issues:

ff sp_monitor

ff sp_who2

ff sp_who

Though most performance-related statistics that these stored procedures provide can be
retrieved by dynamic management views and functions, they are still widely used by many
database professionals.

We saw in the earlier recipe that we can use sp_monitor to check server health, and we can
get the same statistics information that we retrieve by using system statistical functions. They
can be used interchangeably.

Because we have used the sp_who system stored procedure in this recipe, we will now
discuss this stored procedure in detail.

sp_who is a system stored procedure that provides detailed information on current SQL
Server processes, sessions, and requests. This information can be used to know: what
operations/commands are being performed by whom and the processes that block other
processes and introduce blocking issues.

sp_who accepts optional parameters, which are @loginame(type sysname), session
ID (type smallint), and ACTIVE. By supplying login name, only processes belonging to
a specific login are returned. If a session ID is supplied for the session ID parameter, only
processes belonging to a specific session are returned. If no parameters are supplied to this
stored procedure, it returns processes for all sessions in the instance. If you don't have VIEW
SYSTEM STATE permissions, you will see information regarding your session only. If ACTIVE is
passed as a parameter, only processes that are active are returned.

System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command

74

The following are the columns that sp_who returns:

Column Name Description
spid This column represents the session ID. Values in this column starting

from 1 to 50 are reserved for system threads. Value 51 and onwards
are used for user connections.

ecid Sometimes you might see several sessions with the same spid value.
This can happen in case of query parallel processing. This column
represents the execution context ID for a session ID. This column will
have the value 0 for the main parent thread, and rest of the values
represent subthreads.

status This column represents the status of the process. The status can be one
of the following:

ff Dormant: A session is being reset
ff Running: A session is running the process
ff Background: A session is running a background task such

as deadlock detection
ff Rollback: A transaction within a session is being

rolled back
ff Pending: A session is waiting for the worker thread to

become available
ff Runnable: A task within a session is in the runnable queue

of scheduler while waiting to get a time quantum
ff Spinloop: A task within a session is waiting for spinlock to

become free
ff Suspended: The session is waiting for an event, for example,

I/O completion
loginame This column represents the login name associated with a session.
hostname This column represents the machine name associated with a session.
blk This column represents the ID of the session that is blocking the request

of the current session. If session is not blocked, this column will have the
value 0.

dbname This column represents the database name involved in a request for a
particular session request.

cmd This column represents the type of database engine command.
request_id This column represents the request ID within a session.

Apart from sp_who, there is another stored procedure that we have used in our recipe and
that is popular among database professionals—sp_who2. This stored procedure provides
additional columns, such as CPUTime, DiskIO, LastBatch, and ProgramName. sp_who2
is undocumented. This means that you will not find this stored procedure documented in SQL
Server Books online.

Chapter 3

75

Monitoring log space usage statistics with
DBCC command

Every database has a transaction log associated with it. A transaction log records every
DML activity that can be used by SQL Server to recover a database. If the recovery model
of the database is full and the frequency of DML operations is very high on the database,
this transaction log file can grow very quickly. Even if the recovery model is simple and the
database is published for transactional or merge replication; this can cause the log to blow
up as well. If the transaction log is not backed up regularly and the transaction file has been
allowed to grow unlimitedly, then it can even occupy all your hard disk space and turn your
databases down, which prevents all DML operations from functioning on databases and
your application goes down as well. As a DBA, you should regularly monitor log space usage
statistics to prevent any situation that can cause such downtime issues.

When you are working as a DBA, it should be one of your important responsibilities to monitor
the size of log files of your database to make sure that you do not run out of space and your
database server is not down.

SQL Server provides different DBCC commands for database administration. DBCC SQLPERF
is one of those commands that can be helpful in monitoring the size of the log files. In this
recipe, to get log space usage statistics on all databases, we will use the DBCC SQLPERF
command. Apart from retrieving log space usage statistics, the DBCC SQLPERF command
is also used to reset wait and latch statistics.

DBCC SQLPERF accepts one argument, LOGSPACE, when it is used to get log space usage
statistics. However, it also accepts other arguments; they are used to reset the wait and
latch statistics.

Useful columns that the DBCC SQLPERF command returns for log space usage statistics are
as follows:

ff Database Name

ff Log Size (MB)

ff Log Space Used (%)

Getting ready
This recipe will show you how to monitor log space usage statistics for all databases using the
DBCC SQLPERF command.

The following is the prerequisite for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command

76

How to do it...
Follow the steps provided here to perform this recipe:

1.	 Open SQL Server Management Studio and connect to an instance of SQL Server.

2.	 In a new query window, type and execute the query, as shown in following script, to
retrieve the log space usage statistics:
USE tempdb
GO

--Check if the table exists. If it does,
--Drop it first.
IF OBJECT_ID('dbo.#tbl_DBLogSpaceUsage') IS NOT NULL
BEGIN
 DROP TABLE dbo.#tbl_DBLogSpaceUsage
END

--Creating table to store the output
--DBCC SQLPERF command
CREATE TABLE dbo.#tbl_DBLogSpaceUsage
(
 DatabaseName NVARCHAR(128)
 ,FileGroupName NVARCHAR(128)
 ,LogSize NVARCHAR(25)
 ,LogSpaceUsed NVARCHAR(25)
 ,Status TINYINT
)

INSERT INTO dbo.#tbl_DBLogSpaceUsage
EXECUTE ('DBCC SQLPERF(LOGSPACE)')

--Retriving log space details for
-- all databases.
SELECT
 DatabaseName
 ,LogSize
 ,LogSpaceUsed
 ,Status
FROM dbo.#tbl_DBLogSpaceUsage
GO

Chapter 3

77

--Retriving log space details for
-- a specific databases.
SELECT
 DatabaseName
 ,LogSize AS LogSizeInMB
 ,LogSpaceUsed As LogspaceUsed_In_Percent
 ,Status
FROM dbo.#tbl_DBLogSpaceUsage
WHERE DatabaseName = 'AdventureWorks2012'
GO

How it works...
In this example, we created a temporary table named #tbl_DBLogSpaceUsage. We first
checked if the table exists, with the IF condition. If one exists, we first drop the table. The
table structure that we have created should be identical to the set of columns that DBCC
SQLPERF returns.

Next, DBCC SQLPERF is executed and its output is collected in the #tbl_DBLogSpaceUsage
table by INSERT…EXECUTE statements. Note that we have used a dynamic SQL statement
here in the EXECUTE statement, as we cannot directly redirect the output of the DBCC
command into the table.

Next, we queried the table and retrieved the log space usage statistics information
for all databases. The very next query returns the log space usage statistics for the
AdventureWorks2012 database by creating a filter on the DatabaseName column.

From the output, you can know the size of the log for every database and if you see any
alarming statistics, you can immediately take the necessary steps, such as backing up
the log files.

There's more...
You can use the logic of the script provided in this recipe to accumulate the log space usage
statistics for all databases and populate these details in a table. Over time, the table becomes
a history of log space usage details, which you can use in trend analysis of how fast a log file
is growing.

4
Resource Monitor and
Performance Monitor

In this chapter we will cover:

ff Monitoring of server performance

ff Monitoring CPU usage

ff Monitoring memory (RAM) usage

Introduction
If you encounter database performance problems caused by poorly written queries, lack
of necessary indexes, or anything else at database level, you can troubleshoot such issues
and investigate the root cause by using execution plans, DMVs and DMFs, SQL Traces, or
Database Engine Tuning Advisor (DTA).

However, if the performance issues are at hardware or operating system level, you need a
sophisticated tool that gives you an idea about the performance of your hardware resources
(such as CPU, memory, I/O, or network adapters) with respect to the processes that might
be running on the system. If the instance of your SQL Server suffers from lack of adequate
hardware resources or bad hardware performance, you need to identify that particular
hardware component and the reason behind its poor performance in order to fix the issue.

In the days of Windows Server 2003 or Windows Server 2000, prior to Window
Server 2008 R2 and Windows 7, you might have worked with Performance Monitor
with SQL Server Performance Objects and Counters to troubleshoot hardware-related
issues. In Windows Server 2008 R2 and Windows 7, you will find a similar Performance
Monitor tool, but with enhanced features. Microsoft calls it Performance Monitor or
Reliability and Performance Monitor.

Resource Monitor and Performance Monitor

80

Basically, in Windows, there are three tools for monitoring performance:

1.	 Resource Monitor

2.	 Performance Monitor

3.	 Reliability Monitor

Resource Monitor has a Resource View that provides a quick, real-time, graphical view
of hardware usage that includes CPU usage, memory usage, disk I/O usage, and network
usage. You can monitor and examine all the processes that are currently running on the
machine. From there, you can even kill a process that you might suspect to be the cause of a
bottleneck. You might want to replace the usage of Task Manager with Resource Monitor to
accomplish the tasks that you used to perform with Task Manager.

Performance Monitor is another tool that gives us a real-time graphical view of performance
counter data. We can specify required performance counters from hundreds of available
performance counters to trace performance data. The performance data can also be saved to
a log file, which can then be used for performance analysis.

Reliability Monitor provides a graphical report view of how stable the system is, by calculating
a system stability index over a period of time. The calculation of this system stability index
is based on system failures that might have occurred in the system. Any problem or system
failure reduces the system stability index.

All these three tools share a common interface, the Microsoft Management Console (MMC),
where they all can be viewed altogether. Reliability and Performance Monitor combines
functionalities of all these three tools at one place.

In this chapter, we will get familiar with Resource Monitor, and Reliability and Performance
Monitor, and see how we can use these tools to check and monitor the performance of
hardware resources. We will not cover Reliability Monitor in this chapter.

Monitoring of server performance
If you are approached by someone and told that the server hosting the instance of SQL Server
is running and responding very slowly, which tool would you prefer to first open to have a quick
review of server performance?

You may have used Task Manager in the past, to quickly check the health of the server. We
have yet another, similar, but new and powerful tool in our pocket that can be used to quickly
check the health of the server resources. Yes, we are talking about Resource Monitor! As its
name suggests, we can use Resource Monitor to monitor the various resources of the system.

In this recipe, we will have an overview of how we can use Resource Monitor to quickly monitor
hardware resources and server performance.

Chapter 4

81

Getting ready
The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition
ff Resource Monitor, as installed with Windows OS
ff A sample AdventureWorks2012 database on the instance of SQL Server

Resource Monitor is a new tool and you may not find this tool available
in previous releases of Windows, prior to Windows Server 2008 R2 and
Windows 7. To have Resource Monitor, you need Windows 2008 Server
R2 or Windows 7.

How to do it...
To monitor server performance, follow the steps given here:

1.	 In order to start Resource Monitor, press the Windows + R key combination to
display the Run dialog box. In this dialog box, type resmon.exe and press Enter.

2.	 Resource Monitor will start and you will see five tabs at the top of the window,
below the menu bar. Click on the first tab captioned Overview, to look at the
overview of overall system health. The following screenshot depicts the
Overview tab in Resource Monitor.

Resource Monitor and Performance Monitor

82

3.	 To see CPU usage for only the SQL Server service, click on the second tab captioned
CPU and in list of processes, locate the process sqlservr.exe; check its associated
checkbox in the image column. Based on the amount of activity that your SQL
Server is performing, you will see the CPU usage for the available CPUs, as shown
in following screenshot:

Chapter 4

83

4.	 To check the memory usage of your server, click on the tab captioned Memory, and
you will see the screen shown in the following screenshot:

Resource Monitor and Performance Monitor

84

5.	 To check the disk I/O activity on the server, click on the tab captioned Disk. Because
we have already selected sqlservr.exe from the list of available processes, we will see
disk I/O activity that is caused by only the SQL Server service. Let's run a query to cause
some I/O activity to occur. Connect SSMS to SQL Server, and in a new query window,
type and execute following query against the AdventureWorks2012 database:
USE AdventureWorks2012
GO

SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,CarrierTrackingNumber
 ,OrderQty
 ,ProductID
 ,SpecialOfferID
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
 ,rowguid
 ,ModifiedDate
FROM Sales.SalesOrderDetail WITH (NOLOCK)

GO

6.	 After running the preceding query, immediately switch to Resource Monitor, and
you will be able to monitor disk I/O activity performed on AdventureWorkk2012
database files, along with few others, as shown in the following screenshot:

Chapter 4

85

How it works...
The usage of Resource Monitor was straightforward in this recipe. Resource Monitor
basically provides resource usage information for CPU, memory, disk I/O, and network.
The main screen of Resource Monitor divides this resource usage information into the
following five tabs:

ff Overview: This tab gives you an overview of usage statistics for all four main server
resources—CPU, memory, disk, and network—in their separate sections and in
real-time graphs as well. The top section on the screen also displays the list of all
processes that are currently in action. If you identify a problematic process that
could be causing performance issues, you can kill that process from here.

ff CPU: This tab provides the CPU usage information, in percentage, and details for
each process that we saw on the Overview tab. From here, for any given process, we
can identify its associated services, handles, and modules. On the right-hand side, we
have a real-time graphical usage view of all the available CPUs. If you find that CPU
usage is very high, you can look at the list of processes, to identify the process that
is using more CPU by examining the CPU column.

ff Memory: This tab provides memory usage information. From here, you can tell how
much memory has been installed, how much has been used, and how much memory
is free. It also displays the same list of processes, from where you can identify which
processes consume how much memory and which processes consume most of the
memory resources.

The best and most helpful feature of Resource Monitor is that you can select
particular process(es) by checking the corresponding checkbox(es) from the list
of processes, to monitor the hardware resource usage information for only that
particular process(es).

Notice that in this recipe we have selected the sqlservr.exe process, to monitor the
resource usage information for SQL Server service only.

ff Disk: This tab provides usage information for the disk I/O activity of various
processes. By looking at the Read (B/Sec) and Write (B/Sec) columns, you can
identify disk I/O activity for a given process. It also displays the list of files upon
which the disk I/O activity (read/write operation) is performed for the processes.
The real-time graphical view of disk usage information is also displayed on the
right-hand side of the window.

In our example, to cause some disk I/O activity, we executed a query on the Sales.
SalesOrderDetail table in the AdventureWorks2012 database. Note the entry
for AdventureWorks2008R2_Data.mdf in Disk Activity. This file is the physical data
file for the AdventureWorks2012 database. Also, look at the Read (B/sec) column
for this file and examine the number of bytes that have been read from this file when
we executed the query.

www.allitebooks.com

http://www.allitebooks.org

Resource Monitor and Performance Monitor

86

ff Network: This tab provides information regarding current network usage. The real-
time graphical view is displayed on the right-hand side along with available network
adapters installed on your machine. You will see all the TCP connections that are
associated with different processes and can filter the network activity by a given
process also, in order to identify network usage by a particular process.

There's more...
By using Resource Monitor, you can quickly identify the processes that are swallowing your
hardware resources. In Resource Monitor, You can also check network usage information
and identify the processes that generate more network traffic.

On a production SQL Server, if you find any processes/applications other than SQL Server that
are consuming more hardware resources and affecting the SQL Server's performance, you
probably would like to move those processes or applications to a different server, so that the
performance of SQL Server does not get affected.

Monitoring CPU usage
The CPU is the most important resource on a server. On a database server, CPU usage
should be monitored from time to time to make sure that the performance of the database
server is optimized.

In this recipe, we will use Reliability and Performance Monitor to capture CPU-related
usage statistics.

You may have used Performance Monitor (where you could add different performance
counters that need to be traced) in the past. Reliability and Performance Monitor is an
enhanced version of the old Performance Monitor tool. In Reliability and Performance
Monitor also, we can use performance objects and counters to analyse system
performance by different parameters.

Performance Counters provide statistical data for various system activities. You will
find hundreds of performance counters that belong to the Windows OS or third-party
applications. SQL Server has hundreds of performance counters of its own that provide
useful performance-statistics information to the DBA.

In this recipe, we will trace the following CPU-related performance counters in our recipe:

ff Processor:% Processor Time

ff System:Processor Queue Length

Chapter 4

87

Getting ready
Before you continue with this recipe, you should know what data the Processor:% Processor
Time and System:Processor Queue Length performance counters gather.

Processor:% Processor Time: This provides the percentage of CPU time that has been used
by a thread. Remember that if you have multiple CPUs or multiple CPU cores installed on your
system, you will find multiple instances of this performance counter. For example, if you have
two Intel Xeon processors installed on your machine with four CPU cores on each processor,
then you will have a total of 8 instances of this performance counter. You can add this counter
either for all CPU/core instances or for a specific CPU/core instance.

System:Processor Queue Length: This provides you with the number of threads that are
waiting for their turn to use the CPU.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff Performance Monitor, as installed with Windows OS

How to do it...
To monitor CPU usage statistics, follow the steps given here:

1.	 To start Reliability and Performance Monitor, press the Windows + R key
combination to display the Run dialog box. In this dialog box, type perfmon.exe
and press Enter.

2.	 When Reliability and Performance Monitor is started, to switch to Performance
Monitor view, click the Performance Monitor node under the Monitoring Tools
node in the left-hand-side console tree.

3.	 Press the Delete key or click on the X button in the toolbar to delete any existing
performance counter. Click on the + button in the toolbar to add counters.

4.	 In the Add Counters dialog box, type the name of the computer that you are going to
monitor, or let it be <Local computer>, if you are monitoring a local machine under
the Select counters from computer: drop-down list.

5.	 In the list of available performance counter objects, expand Processor and select
% Processor Time.

Resource Monitor and Performance Monitor

88

6.	 In the list under Instances of selected object:, select <All instances>, and then
click on the Add > > button. This will add the % Processor Time counter to the list
of Added counters on the right-hand side.

7.	 Now to add another performance counter, in the list of available performance counter
objects, expand System and select Processor Queue Length; click on the Add > >
button to add it.

8.	 After adding these two counters, your screen should look like as shown in the
following screenshot:

9.	 Click the OK button in the Add Counter dialog box.

10.	 Performance Monitor will start to monitor performance data for the added
performance counters and will show you that data in a running chart. Select %
Processor Time from the list of added performance counters, which can be located
beneath the performance monitor graph, and observe the various values in the value
bar. Based on the activity your machine is carrying out, you should see a screen
similar to the one shown in the following screenshot:

Chapter 4

89

How it works...
Using performance counters in Reliability and Performance Monitor is very straightforward.
We started the Reliability and Performance Monitor tool, and in Performance Monitor view,
we added the % Processor Time performance counter to Processor counter and Processor
Queue Length performance counter to the System counter.

Note the graphical representation of collected data for a specific counter that has been
selected in the counter list. The data is collected at every second, and based on the timeline,
a real-time graph is created. To see the graph for different performance counters, select one
from the counter list located at bottom of the window.

Below the graph is a "Value Bar", which provides the Last, Average, Minimum, and Maximum
values for a performance counter that has been selected in the counter list.

If you notice that the average value of Processor:% Processor Time consistently remains
above 80 percent and the value of System:Processor Queue Length consistently remains
above 2, it should indicate that your processor is not fast enough to bear the burden of all the
processes running on the server and you either need to upgrade your CPU or add more CPU
cores to your system.

Resource Monitor and Performance Monitor

90

Monitoring memory (RAM) usage
Monitoring the memory (RAM) usage of your database server is very important. There are a
number of factors that can cause all your memory to be consumed. This is why you should
monitor memory usage on a regular basis.

In this recipe, we will use Reliability and Performance Monitor to capture memory
(RAM)-related usage statistics.

Getting ready
Before starting the recipe, it's important for you to know how to interpret the values of the
following performance counters that we will be using in this example:

ff Memory:Available MBytes: This provides the amount of memory available on
the system.

ff Memory:Pages/sec: This provides the number of pages that were read from, or
written to, the disk, due to hard page faults.

ff Paging File:% Usage: This provides the amount, in percentage, of the paging that
has occurred.

ff SQL Server:Buffer Manager:Buffer cache hit ratio: This provides the amount, in
percentage, of the SQL Server data read from the cache and not from the disk.

ff SQL Server:Buffer Manager:Page life expectancy: This provides the average
number of seconds during which data pages reside in memory.

ff SQL Server:Memory Manager:Memory Grants Pending: This provides the number
of processes that are waiting for the workplace memory grant.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff Performance Monitor, as installed with Windows OS

How to do it...
To monitor memory usage statistics, follow the steps given here:

1.	 To start Reliability and Performance Monitor, go to Control Panel | Administrative
Tools and double-click on the icon for Reliability and Performance Monitor.

2.	 When Reliability and Performance Monitor is started, to switch to Performance
Monitor view, click on the Performance Monitor node under the Monitoring Tools
node in the left-hand side console tree.

Chapter 4

91

3.	 To remove all previously added counters, right-click the list of counters and click on
Remove All Counters, in the shortcut menu.

4.	 To add required counters, right-click the list of counters and click on Add Counters…,
in the shortcut menu. This will display the Add Counters dialog box.

5.	 In the Add Counters dialog box, type the name of the computer (or let it be <Local
computer> if you are monitoring a local machine under the Select counters from
computer: drop-down list).

6.	 Select and add the following performance counters from the available list:

�� Memory:Available MBytes
�� Memory:Pages/sec
�� Paging File:% Usage
�� SQL Server:Buffer Manager:Buffer cache hit
�� SQL Server:Buffer Manager:Page life expectancy
�� SQL Server:Memory Manager:Memory Grants Pending

7.	 After adding these performance counters, your screen should look like the one shown
in the following screenshot:

Resource Monitor and Performance Monitor

92

8.	 Click on the OK button to start performance monitoring. The following is the
screenshot that shows the gathered performance data for the selected
performance counters:

How it works...
In this recipe, we used Reliability and Performance Monitor again, to collect performance
data for memory-related performance counters. Note the values of each performance counter
in the graph.

First check the Memory:Available MBytes performance counter. This is the value that
indicates the memory available in the system. If you frequently find this number to be low, it is
possible that your server is running short of memory and you need to upgrade your memory.
On a production database server, you would like this figure to be a few GB.

Check the value for the Memory:Pages/sec performance counter. This number indicates
the number of pages read from or written to a disk due to hard page faults. If this number
is frequently higher than 20 then it may indicate a shortage of memory that causes the
application to use virtual memory, resulting in paging.

Chapter 4

93

Along with Memory:Pages/sec, also check the Paging File:% Usage performance counter to
estimate paging usage. If you frequently find this value to be more than 20 percent, you are
probably falling short of memory.

SQL Server:Buffer Manager:Buffer cache hit ratio indicates the number of times SQL Server
reads data from the cache. It is desired that this be more than 90 percent. If this number
is frequently low, either you have a memory shortage or you need to check your query and
indexes. If you fetch a large amount of data, it alone may occupy much of the memory and can
cause SQL Server to read data from disk instead of from the memory. Check indexes. Make
sure that large tables are not getting scanned. Try to limit the number of rows in your queries.

Check the value of the SQL Server:Buffer Manager:Page life expectancy performance
counter. This value represents the life of data pages in seconds. Microsoft recommends
this value to be at least 300 seconds. For instance, if this value is less than 300 very often,
it means life of the data pages is less than 5 minutes, that they don't stay longer than this
duration in memory, and that they are removed from memory once the duration has elapsed.

If the SQL Server:Memory Manager:Memory Grants Pending performance counter frequently
suggests waiting processes, you should probably increase your memory.

For any reason if you find that there is a shortage of memory and paging is occurring quite
frequently, you should first check if there are any other services or applications other than SQL
Server that are heavily taking up the memory. If you find any such applications or services, try
to move them to a different server. If you can't do this, then add more memory to the server
and allocate the required amount of memory to SQL Server.

If the server is dedicated to SQL Server only and there are no other services or applications,
then you should analyze your queries and indexes to make sure that they are optimized. If
you find that the queries and indexes are optimized but all the memory is still used up by SQL
Server, you may probably need to add more memory to your server.

Correlating performance data with SQL Trace
You can also correlate the results of Performance Monitor with SQL Server
Profiler. For this, you need to create a user-defined data collector set
and save it to a file. When you gather performance data in Performance
Monitor, SQL Server Profiler also needs to be running simultaneously.
Once you are done with collecting data, you can import performance data
into SQL Server Profiler by selecting Import Performance Data from the
File menu. Importing performance data into SQL Server Profiler will allow
you to correlate SQL Trace events with performance data for a given point
of time on the system monitor graph.

5
Monitoring with
Execution Plans

In this chapter we will cover:

ff Working with an Estimated Execution Plan

ff Working with an Actual Execution Plan

ff Monitoring the performance of a query by SET SHOWPLAN_XML

ff Monitoring the performance of a query by SET STATISTICS XML

ff Monitoring the performance of a query by SET STATISTICS IO

ff Finding the Execution Time of a query by SET STATISTICS TIME

ff Including and understanding Client Statistics

Introduction
An execution plan is one of the most important feature shipped with SQL Server since long.
This feature is not only for DBA or SQL developer, but this is useful for everybody who is
dealing with T-SQL (Transact-SQL) in any capacity.

An execution plan guides you to understand what has happened with the query, which was
getting executed, with the help of estimated execution plan/actual execution plan. It helps you
to identify how your JOIN statements are behaving, whether Index is being used or not, what
was the estimation of query optimizer for your query, what are the actual costs taken by the
query executed, and much more such as data flow, sampling of rows, reads, writes, logical I/O,
physical constraints of query, operators.

Monitoring with Execution Plans

96

When we see questions related to slow query performance, in any
technical forum about SQL Server; we used to ask, Can you please
provide us with the execution plan of the query? This is the best way
to get an insight about the path taken by optimizer and storage engine
while executing the query, even without physically accessing the
production server of the person who has asked the question.

There are a few different ways to see the execution plan provided by SQL Server; some of the
important ways are listed here:

ff Graphical execution plan
ff Text execution plan
ff XML execution plan

We will see each of these in detail in this chapter, but even before you start looking at
different ways of seeing the execution plan, we would like to explain some fundamentals
about how query is being processed in SQL Server.

We want to keep the long story short as a detailed understanding of the internals would need
a few chapters or maybe a whole book. Kindly note that the steps which are being performed
during the execution of the query are beyond the scope of this book, so only the necessary
steps are mentioned, along with some important terminology which is useful to understand
the chapter correctly.

ff Relational engine: The relational engine, also known as query processor (QP)
manages execution of the query, requests data from the storage engine, and
processes result set.

ff Command parser: The command parser checks for proper syntax and translates
T-SQL command into query tree. If there is any syntax error, parser immediately pops
up the error.

ff Query optimizer: Query optimizer takes the query tree from the command parser and
if it is a Data Manipulation Language (DML) statement, it tries to optimize it. The
query optimizer first dismantles the batch it has received in form of query tree into
small pieces, and then tries to optimize each piece by finding different ways and then
choosing the best suited way to execute the query. Query optimizer is a cost-based
optimizer as the optimizer chooses the plan that it determines would cost the least,
based on its finding which is based on estimated memory requirements, index(es)
and statistics available on table, number of required I/O, and CPU utilization. Based
on all these analyses, query optimizer generates the estimated execution plan.

ff Storage engine: As the name suggests, storage engine takes care of data access,
modification, and caching. Storage engine also takes responsibility to read data
from disk or from memory and retains data integrity. The storage engine receives
information regarding the query from the query processor along with the execution
plan in the form of a query tree.

Chapter 5

97

ff Plan cache: SQL Server 2012 is equipped with memory pool which is used to save
execution plan. Plan cache will not store more than two copies of the execution plan
for a single query.

�� For serial execution

�� For parallel execution

ff Lazy writer: Lazy writer reads buffer pool memory, finds out dirty pages (pages which
has some data but have not written into the disk at the moment; so in time of server
crash, we might loose data in dirty pages), and writes them up into the disk in order
to clear the pool.

Understanding of relation between the relational engine and storage engine is described in
following diagram:

TSQL

from

Client

Relational Engine

Parser

check error

& generate

Query Tree

Query

Optimizer takes

Query Tree,

Optimize query,

generate

execution plan

Best plan based

on cost based

calculation goes

to plan cache

Storage Engine

reads data from

memory or disk

based on optimized

query tree received

from Optimizer along

with execution plan

Working with estimated execution plan
Estimated execution plan is the result of query optimizer, it is generated even before the query
execution. Hence, it might have some or more changes when compared with the actual execution
plan, but in most cases the actual and estimated execution plan remain almost the same.

Monitoring with Execution Plans

98

Getting ready
As a DBA, many times you might come across a situation where you come to the office in the
morning, somebody comes to you complaining that one of the page is taking a long time to
display data which was working just fine and fast some days back. What would you do in the
first step? How do you determine where the problem is?

This is the time where the estimated execution plan comes into picture. You take the query
or stored procedure from the page which is showing the data very slowly (though there could
be other reasons too, but let us assume that it is because of SQL Server only, as of now.) and
check the execution plan of the query or stored procedure in order to find the bottleneck of
the issue.

In this recipe, we will execute one select query which will display information regarding the
purchase order made by each vendor. It will consists of purchase order ID, purchase order
date, employee login ID (who has made a deal with the vendor), total order quantity, and
amount from the AdventureWorks2012 database.

How to do it...
To see the effect of the estimated execution plan, let us go through the steps given as follows:

1.	 Write down following query in SSMS from Start |All Programs | SQL Server 2012 |
SQL Server Management Studio (SSMS):
Use AdventureWorks2012
GO

SELECT
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
 ,COUNT_BIG(*) AS Count
FROM
 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN
 [Purchasing].[PurchaseOrderDetail] AS POD
ON
 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON

Chapter 5

99

 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON
 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO

2.	 Go to the Query menu and click on Display Estimated Execution Plan or press
Ctrl+L which will display the estimated execution plan. Look at the screenshot
given as follows:

How it works...
When we execute any T-SQL statement, it first goes to a relational engine which does two
tasks for us.

ff Parse the query with help of the parser

ff After getting the response from the parser, query optimizer processes the query and
generates the estimated execution plan

Once the query comes to the query optimizer, it finds out the optimal way to execute the
query by looking at the predicate given in the query. It finds out the statistics, if available,
and indexes to decide the path of execution in form of estimated execution plan which will be
available to the storage engine before it finally executes the query.

Query optimizer is a smart tool in SQL Server 2012 which is used to find the
best optimal way to execute the query in most cases. But, it may address the
sub-optimal way sometimes, due to lack of information such as out dated
statistics or over indexing.

Monitoring with Execution Plans

100

Working with actual execution plan
The actual execution plan is one of the most important features provided by SQL Server, as it
tells us how the query has actually performed. We can find the bottleneck in query, if any, and
find out the way to resolve it.

Getting ready
In the previous recipe, Working with estimated execution plan, we have already discussed
about the importance of estimated execution plan, which shows how your query should be
processed, with the way it should get executed.

Most of the time, your query runs exactly in the same way as it has been mentioned in
estimated execution plan. But, what if you find that your execution plan is perfect and still your
query execution seems slow? Well, in that case the actual execution plan comes into picture.

Execute your query with actual execution plan and see whether it is following the ways we
saw in estimated execution plan. In most cases, both the plans should be the same (except
that the estimated execution plan is based on sampling data stored in the histogram and the
actual execution plan is based on real table in database), but in some scenarios, especially in
case of out of date statistics and/or over indexing, both executions follow different paths. This
is called a bottleneck and we should fix it.

How to do it...
To generate and study the actual execution plan, refer the following steps:

1.	 Write down the following query which we have used in the previous recipe, Working
with estimated execution plan, so that we can compare both the plans.
USE AdventureWorks2012
GO

SELECT
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
 ,COUNT_BIG(*) AS Count
FROM
 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN

Chapter 5

101

 [Purchasing].[PurchaseOrderDetail] AS POD
ON
 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON
 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON
 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO

2.	 Go to the Query menu and click on Include Actual Execution Plan or press Ctrl+M
which will display the estimated execution plan.

3.	 Now, execute the query, you will get the output of the query in the Result tab and
the graphical actual execution plan in Execution Plan tab. Have a look at the
following screenshot:

The same execution plan as shown in the previous screenshot is presented in text format as
follows with the help of SHOWPLAN_TEXT:

 |--Stream Aggregate(GROUP BY:([POH].[PurchaseOrderID], [EMP].
[LoginID], [V].[Name]) DEFINE:([Expr1010]=Count(*), [Expr1008]=SUM([
AdventureWorks2012].[Purchasing].[PurchaseOrderDetail].[OrderQty] as
[POD].[OrderQty]), [Expr1009]=SUM([Expr1011]), [POH].[Or
 |--Sort(ORDER BY:([POH].[PurchaseOrderID] ASC, [EMP].[LoginID]
ASC, [V].[Name] ASC))

Monitoring with Execution Plans

102

 |--Hash Match(Inner Join, HASH:([V].
[BusinessEntityID])=([POH].[VendorID]))
 |--Clustered Index Scan(OBJECT:([AdventureWorks2012].
[Purchasing].[Vendor].[PK_Vendor_BusinessEntityID] AS [V]))
 |--Hash Match(Inner Join, HASH:([EMP].
[BusinessEntityID])=([POH].[EmployeeID]))
 |--Index Scan(OBJECT:([AdventureWorks2012].
[HumanResources].[Employee].[AK_Employee_LoginID] AS [EMP]))
 |--Hash Match(Inner Join, HASH:([POH].
[PurchaseOrderID])=([POD].[PurchaseOrderID]))
 |--Clustered Index Scan(OBJECT:([AdventureW
orks2012].[Purchasing].[PurchaseOrderHeader].[PK_PurchaseOrderHeader_
PurchaseOrderID] AS [POH]))
 |--Compute Scalar(DEFINE:([Expr101
1]=CONVERT_IMPLICIT(money,[AdventureWorks2012].[Purchasing].
[PurchaseOrderDetail].[OrderQty] as [POD].[OrderQty],0)*[AdventureWor
ks2012].[Purchasing].[PurchaseOrderDetail].[UnitPrice] as [POD].[U
 |--Clustered Index Scan(OBJECT
:([AdventureWorks2012].[Purchasing].[PurchaseOrderDetail].[PK_
PurchaseOrderDetail_PurchaseOrderID_PurchaseOrderDetailID] AS [POD]))

How it works...
As we already discussed, the optimizer generates the estimated execution plan and sends
it to the storage engine in a binary format to actually execute the query. Actual execution
plan is the feature of storage engine which conveys to you what has actually happened while
executing the query. We can compare both the estimated execution plan and the actual
execution plan to see whether there is any difference in both. In most cases both remain the
same, but in some situations we can find some differences in the actual execution plan and
the estimated execution plan; as explained in the Getting ready section of this recipe.

The estimated execution plan and actual execution plan should be the same if the situation
is normal, but there are some cases which create differences in both the execution plans.
For example, if you have old statistics for your index or column, estimated execution plan
selects the wrong path to execute the query, in this situation when query is actually going to
execute, the storage engine changes the path of query execution, to gain performance, which
will be reflected in the actual execution plan. This is how we see the difference between the
execution plans.

Generating an execution plan is one of the big overheads; that is why SQL Server stores
generated execution plan in plan cache.

Saving the execution plan in the plan cache will save it permanently. Once it is aged or is out
of date, it is removed by the Lazy Writer process.

Chapter 5

103

There's more...
After reading the last paragraph of the How It works section, you might have a question
regarding when and how the saved execution plan gets out of date and removed by SQL
Server 2012.

SQL Server 2012 has very smart way to remove aged, old, and unused execution plan from
the memory. Each query plan and execution context has an associated cost factor that
indicates how expensive the structure is to compile. These data structures also have an age
field. Every time the object is referenced by a connection, the age field is incremented by the
compilation cost factor.

To explain in more detail; if your query plan has a cost factor of four and it is referenced two
times, age of plan becomes eight now. The lazywriter process periodically scans the list of
objects in the plan cache. The lazywriter then decrements the age field of each object by one
on each scan. The age of the query plan is decremented to zero after 8 scans of the plan
cache if the same plan is not referenced even a single time in the duration of these eight
scans by lazywriter. The lazywriter process deallocates an object if the following conditions
are met:

ff The age field for the object is zero

ff The memory manager requires memory and all available memory is currently being
used

ff The object is not currently referenced by a connection

To know more about out of date statistics refer to the Finding out-of-date statistics and correct
them recipe in Chapter 12, Statistics in SQL Server.

Monitoring performance of a query by SET
SHOWPLAN_XML
SHOWPLAN_XML is an XML version of the estimated execution plan. It provides all the
information in XML format which we used to get in graphical format in estimated execution
plan, more details about information which is provided by XML execution plan is given in the
How it works section of this recipe. XML execution plan is nothing more than one XML file,
so it is really very easy to save for future reference or for comparing it with other execution
plan. The XML Execution plan becomes even more useful in a shared database hosting
environment, as in that case you don't have enough permissions on the server to determine
the bottleneck.

Monitoring with Execution Plans

104

Getting ready
I have already mentioned in the introduction section that the execution plan is the obvious
first step when we start looking into any performance issue in the query. Many times, in a
community portal, I have been asked a question regarding query performance tuning but in
that case I neither have access to the database nor have the server access of the person
who has asked the question. So, I usually ask them to post the execution plan in XML format
because it happens many times that the query has a big execution plan and it is not possible
to capture complete graphical execution plan in one screen.

How to do it...
SET SHOWPLAN_XML is small but powerful, let us see the usage by performing the
following steps:

1.	 Write down the following query in SSMS from Start |All Programs | SQL Server 2012
| SQL Server Management Studio (SSMS):
USE AdventureWorks2012
GO

SET SHOWPLAN_XML ON
GO

SELECT
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
 ,COUNT_BIG(*) AS Count
FROM
 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN
 [Purchasing].[PurchaseOrderDetail] AS POD
ON
 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON
 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON

Chapter 5

105

 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO

SET SHOWPLAN_XML OFF
GO

2.	 As it is explained that SHOWPLAN_XML is an XML version of the estimated execution
plan, it will not execute the previous query, instead it will generate the estimated
execution plan and display one row as a result; as shown in the following screenshot:

Monitoring with Execution Plans

106

3.	 When you click on the Result tab where you can see <ShowPlanXML….., you will
be redirected to the graphical estimated execution plan file which has .SqlPlan
extension, as given in the following screenshot. Right-click on that window and click
on the Show Execution Plan XML… option.

4.	 The Show Execution Plan XML… option will forward you to the XML screen in your
SSMS which you can even save to get your XML file for future use. The following is a
screenshot of XML file:

Chapter 5

107

You can download the full XML execution plan, 5740_05_01.xml, with the
code snippet of this chapter.

How it works...
XML execution plan provides a lot of crucial information to dig in. We will look at a few of the
important tags from XML file:

The previous screenshot shows the BatchSequence, Batch, and Statement elements which
are the starting tags of the XML file.

ff If we have multiple batch or statement in execution, we would have more then one
Batch and Statement element in XML.

ff The StmtSimple element displays information about the query we ran and some
physical attribute value at the time of executing the query.

ff The Statement SetOption elements make us aware with the value of the SET
environment variables.

ff The QueryPlan element gives you an insight regarding the resources and memory
consumed by plan generation task.

ff The RelOp elements provide information regarding the operation that is going to
be performed on a statement. An operation such as a table scan, index scan, index
seek, aggregation, sorting, or others would come under these elements along with
more details.

Monitoring with Execution Plans

108

Monitoring performance of a query by SET
STATISTICS XML
SET STATISTICS XML is an XML version of the actual execution plan. It provides all
the information in XML format which we used to get in graphical format in the actual
execution plan.

Getting ready
We are going to use the SELECT query given in the previous recipe's How to do it... section by
replacing SHOWPLAN_XML with SET STATISTICS XML. The main intention to use the same
query from the previous recipe Monitoring performance of query by SET SHOWPLAN_XML
is to see the difference between two execution plan. Generally, if an index and statistics'
histogram is updated, then the execution plan on sampling (estimated execution plan)
and execution plan on real table (actual execution plan) remain the same. If you find any
difference between these two plans, then it is a time to investigate that.

How to do it...
Perform the following steps to use SET STATISTICS XML:

1.	 Write down the following query in SSMS from Start |All Programs | SQL Server 2012
| SQL Server Management Studio (SSMS):
Use AdventureWorks2012
GO

SET STATISTICS XML ON
GO

SELECT
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
 ,COUNT_BIG(*) AS Count
FROM
 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN
 [Purchasing].[PurchaseOrderDetail] AS POD
ON

Chapter 5

109

 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON
 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON
 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO
SET STATISTICS XML OFF
GO

2.	 As it is explained that SET STATISTICS XML is an XML version of the actual
execution plan, it will execute the previous query and generate the actual execution
plan also. Have a look at the following screenshot:

Monitoring with Execution Plans

110

3.	 Since this is not like an estimated execution plan, SET STATISTICS XML will execute
the query and will generate the actual execution plan in XML format, so you will find
two result sets in the Results tab. The first result set shows the result of the query
and the second result set shows link to open the plan. Click on the link and you will
be forwarded to the graphical actual execution plan window:

4.	 Right-click on the graphical plan and select the Show Execution Plan XML… option
and you will be forwarded to the XML plan:

Chapter 5

111

You can download the full XML execution plan, 5740_05_02.xml , with the
code snippet of this chapter.

How it works...
XML actual execution plan provides a lot of crucial information to dig in. We will understand a
few of the important tags from the XML file:

The previous screenshot shows the BatchSequence, Batch, and Statement elements which
are the starting tags of the XML file.

ff If we have multiple batch or statement in execution, we would have more then one
Batch and Statement element in XML.

ff The StmtSimple element displays information about the query we ran and some
physical attribute value at the time of executing the query.

ff The Statement SetOption elements make us aware with the value of the SET
environment variables.

ff The QueryPlan element gives you an insight regarding the resources and memory
consumed by plan generation task.

ff The RelOp elements provide information regarding the operation that is going to
be performed on a statement. Operations such as a table scan, index scan, index
seek, aggregation, sorting, and others would come under these elements along
with more details.

Monitoring with Execution Plans

112

Monitoring performance of a query by SET
STATISTICS IO

There are so many weapons in the world, but it depends on
the person what to choose. Everybody has their own choice
which may or may not change with the situation. Some people
like to use Stilettos whereas some would like to go for Swords.
Some people love Nunchucks whereas some would like to use
Spartan Spearhead.

Microsoft has also provided many weapons in SQL Server 2012 to monitor and deal with
performance issue; you can choose your weapon and use it. SET STATISTICS IO is one of
the light weight weapon that can be used very easily to get some of the important information
regarding input and output resources consumed by the batch we have executed.

SET STATISTICS IO is an evergreen weapon and most DBA never forget to give it a shot as
the first step on the enemy (slow performance). SQL Server used to provide this weapon from
the initial versions of SQL Server and it is still available in SQL Server 2012 without change.
This is really light weight and very effective in helping you to find the weakness of your enemy
(slow performance), once you find the weakness, you can deal with it.

Performance is affected by so many different factors. Out of them, a few are listed here which
are major:

ff Memory

ff CPU

ff Disk I/O

ff Network

ff (Logical/Physical) Read

All these factors are important in performance tuning and each has their own significance.
All other factors may have variance (fluctuation) depends on the situation such as in pick
hour, factors are in heavy pressure so might show you a higher number of CPU or memory
utilization; and in off hours, you will find idle resources.

While dealing with bad performance, it is highly important that we first see non-fluctuating
cost reference so we can decide query performance increment or decrement, after we
have taken the steps to improve query performance and re-executed the same query
multiple times.

Chapter 5

113

CPU and memory value may fluctuate significantly
when re-executing the same query with no change
in the base table schema or indexes or even data.

It happens because background applications running on the SQL Server machine
continuously affects the processing time of the under observation query. So these
values are not something we can depend on, at the same time reads remains the same
when a similar query with the same table schema and data is executed multiple times.

Getting ready
Use the SELECT query we have used in previous recipe Monitoring performance of query by
SET STATISTICS XML by adding SET STATISTICS IO.

If there is a difference found in the estimated execution plan and the actual execution plan,
we would definitely like to see what is the current reads status with SET STATISTICS IO
and we can observe the same after we take some action resolving the bottleneck.

How to do it...
SET STATISTICS IO is one of the favorite commands for anybody who is dealing with
performance tuning in SQL Server. Let us see the usage of the same by performing the
following steps:

1.	 Write down the following query in SSMS from Start |All Programs | SQL Server 2012
| SQL Server Management Studio (SSMS).
Use AdventureWorks2012
GO

SET STATISTICS IO ON
GO

SELECT
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
 ,COUNT_BIG(*) AS Count
FROM
 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN

Monitoring with Execution Plans

114

 [Purchasing].[PurchaseOrderDetail] AS POD
ON
 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON
 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON
 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO
SET STATISTICS IO OFF
GO

2.	 The SELECT query will be executed and the output is displayed in the Results panel
and the result of SET STATISTICS IO will come in the Message tab. The following is
the screenshot of the same:

Here is the message in text format to make it more readable:

(4012 row(s) affected)
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob
read-ahead reads 0.
Table 'PurchaseOrderDetail'. Scan count 1, logical reads 66, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads
0, lob read-ahead reads 0.
Table 'PurchaseOrderHeader'. Scan count 1, logical reads 44, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads
0, lob read-ahead reads 0.
Table 'Employee'. Scan count 1, logical reads 5, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob
read-ahead reads 0.

Chapter 5

115

Table 'Vendor'. Scan count 1, logical reads 4, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-
ahead reads 0.

How it works...
While executing the query in SQL Server, it has to read the data from data cache which is
represented by Logical Read and if the data is not available in data cache then the storage
engine reads the data from the disk which is represented by Physical Read. These are really
useful while doing performance tuning, which you can get by SET STATISTICS IO.

You can see one more important information in message tag for each table used in query,
which is Scan count.

The number that comes in Scan count represents the number of index or
table scan performed on a particular table while executing the query. If you
have a unique clustered index on primary key and you are searching for one
particular value on that column, then obviously clustered index seek will
happen and you will get 0 as the value of Scan count.

There's more...
To keep SET STATISTICS IO always on, go to the Query menu | Query Options and select
Advanced from the tree-view on left-hand side and select the checkbox of SET STATISTICS IO.
Look at the following screenshot for more information:

Monitoring with Execution Plans

116

Monitoring performance of a query by SET
STATISTICS TIME
SET STATISTICS TIME is also one of the light weight weapons which can be used to get
some of the important information regarding CPU resources consumed by the batch we
have executed.

Getting ready
In order to know the real CPU usage statistics of the query you execute, we will use the same
SELECT query that we have used in the previous recipe Monitoring performance of query by
SET STATISTICS IO by adding SET STATISTICS TIME.

After comparing the different execution plan, check the statistics IO of the query, it is now time
for further digging by looking at CPU resources consumed by query or batch which displays the
number of milliseconds required by the CPU to parse, compile, and execute query or batch.
This time doesn't include the time which SQL Server 2012 spends to deliver the result set
to client.

Every database professional wants to tune the query and make it faster than before, but how
could you measure whether query is working faster after the tuning action you have taken?

This is the time when SET STATISTICS TIME comes into picture.

How to do it...
Let us have a look at SET STATISTICS TIME by performing the following steps:

1.	 Write down the following query in SSMS from Start | All Programs | SQL Server
2012 | SQL Server Management Studio (SSMS).
SET STATISTICS TIME ON
GO

SELECT
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
 ,COUNT_BIG(*) AS Count
FROM

Chapter 5

117

 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN
 [Purchasing].[PurchaseOrderDetail] AS POD
ON
 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON
 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON
 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO
SET STATISTICS TIME OFF
GO

2.	 The SELECT query will be executed and the output is displayed in the Results
panel and the result of SET STATISTICS TIME will appear in the Message tab.
The following is screenshot illustrates this:

How it works...
To check the query execution time, are you going to look at your watch after start execution
and count it till end of execution of the query? This is not the best way. The query execution
time from start to end, according to your watch, may misguide you as query execution is
affected by many different things such as load on the server, usage of the SQL Server
instance, and many more things. To check how much CPU resources (CPU time) is
consumed by the query we can use the SET STATISTICS TIME option.

More CPU resources means slow query. It would be a nice combo to use SET STATISTICS IO
and SET STATISTICS TIME together, so that you can get information regarding how much
heavy load on CPU is coming from SET STATISTICS TIME and what table(s) is creating that
load from SET STATISTICS IO.

Monitoring with Execution Plans

118

There's more...
To keep SET STATISTICS TIME always on, go to the Query menu | Query Options and
select Advanced from the tree view on the left-hand side and select the checkbox of SET
STATISTICS TIME. Here is a screenshot for more information:

Including and understanding client statistics
Client statistics collects information of query execution by considering your computer as a
client. Because of this, you can see all those information and statistics which generally don't
come into picture if you execute query on the same server such as, network traffic and its
effect. Sometimes we feel query is running slower than what it suppose to. DBA might feel
to enhance the performance of the query by a different route such as create missing index,
update statistics, using proper predicate, and so on. DBA loves to see how much improvement
came in performance by looking at the facts which are given in client statistics.

Getting ready
Let us create one big table which will be used in this recipe. After a creating table with
thousands of row, we can check performance in client statistics and trying to improve its
performance. After performance tuning, we will compare the results.

USE AdventureWorks2012
GO

--if ordDemo table is already there. you can delete it than
--create new one with name " ordDemo"
IF OBJECT_ID('ordDemo', 'U') IS NOT NULL BEGIN

Chapter 5

119

 DROP TABLE ordDemo
END
GO

--creating table for demonstration
CREATE TABLE ordDemo (OrderID INT IDENTITY, OrderDate DATETIME, Amount
MONEY, Refno INT)
GO

--inserting 100000 sample rows into table
INSERT INTO ordDemo (OrderDate, Amount, Refno)
SELECT TOP 100000
 DATEADD(minute, ABS(a.object_id % 50000), CAST('2011-11-04' AS
DATETIME)),
 ABS(a.object_id % 10),
 CAST(ABS(a.object_id % 13) AS VARCHAR)
FROM sys.all_objects a
CROSS JOIN sys.all_objects b
GO

How to do it...
Client Statistics are very helpful to compare query execution and cost. Let us study them by
performing the following steps:

1.	 Select the Include Client Statistics option from Query menu or press Shift+Alt+S.

2.	 Execute the following query:
SELECT OrderDate,Amount,Refno FROM ordDemo WHERE Refno<3

3.	 Open a new query window and create the following index from that new query
window, if you use the same query window in which we have executed the previous
query, index creation statistics will also be included in client statistics; which
obviously we would not want.
--creating clustered index on column refno without discussing
--whether refno is right field to be a part of clustered index or
not
CREATE CLUSTERED INDEX idx_refno ON ordDemo(Refno)
GO

4.	 Go to the same query window where we have executed the SELECT query and
execute it again.
SELECT OrderDate,Amount,Refno FROM ordDemo WHERE Refno<3

Monitoring with Execution Plans

120

5.	 You will get a comparison of both SELECT query executions in Client Statistics tab,
as shown in the following screenshot:

How it works...
It gives you the time of query execution in Client Execution Time row along with many other
important details such as Client processing time, Total execution time of query, different
important Network Statistics, and much more. The beautiful thing is that you can find an up,
down, or horizontal arrow in result which gives you an idea about whether both the trials had
the same result and the processing time was increased or decreased (there is no up arrow in
this case).

There's more...
The Client Statistics window can contain a maximum number of 10 trials and follows FIFO
(First In First Out) method. While executing the 11th query, the first trial will be removed.

You can reset client statistics by selecting Reset Client Statistics from the Query menu.

6
Tuning with

Execution Plans

In this chapter we will cover:

ff Understanding Hash, Merge, and Nested Loop Join strategies

ff Finding Table/Index Scans in execution plan and fixing them

ff Introducing Key Lookups, finding them in execution plans, and resolving them

Introduction
Performance tuning needs concentration in the following areas:

ff Deciding the performance baseline of your environment

ff Monitoring current performance and finding bottleneck

ff Resolving the bottleneck to get good performance

An Estimated Execution Plan is a kind of blue-print that defines how a query should actually
perform, whereas an Actual Execution Plan is like a mirror that tells you what happened
while executing the query. By looking at this fact you can find the bottleneck and try to
resolve it. By comparing both execution plans, you can find out whether the query is
actually performed as per the blue-print (Estimated Execution Plan) or not.

Tuning with Execution Plans

122

There are some important parts (operator) that we should refer to in the execution plan in
the order to understand it and to find the pain point. Some of the very important operators
in execution plan, which we are going to cover in this chapter, are as follows:

ff Join strategies: There are three physical join operators in SQL Server 2012, which are
as follows:

�� Hash Join

�� Merge Join

�� Nested Loop Join

Each join operator has its own pros and cons, which we are going to discuss in
this chapter.

ff Scan and seek are two ways that SQL Server 2012 uses to read the data. Scan looks
at each and every row available in the table/index, whereas seek has address of each
row based on the key field value. So seek directly goes to that data page and fetches
the row if your predicate matches with the key field. This is an essential concept while
working with performance tuning and will be covered in this chapter.

ff Key Lookups sometimes become a major performance issue. As in the situation of
Key Lookup, storage engine has to go to clustered index from non-clustered index, in
order to fetch the value of non-key field of non-clustered index. This round-trip always
consumes time.

Understanding Hash, Merge, and Nested
Loop Join strategies

SQL Server uses three physical join operators, listed as follows, to interpret the query
you execute:

ff Hash Join

ff Merge Join

ff Nested Loop Join

None of the physical join operators are the "best" or "worst" for all situations. SQL Server 2012
chooses appropriate operator to perform query in an appropriate way. Join operators are being
used in SQL Server from earlier versions and is still available in SQL Server 2012 without
any change.

Chapter 6

123

Let us have short introduction of each join operator:

ff Hash Join: SQL Server chooses Hash Join as a physical operator for query in case of
high volume of data that is not sorted or indexed. Two processes together make the
Hash Join, which are Build and Probe. In Build process, it reads all rows from Build
input (left-hand side input table) and creates an in-memory hash table based on
the equijoin keys. In the Probe process, it reads all rows from the Probe input
(right-hand side input table) based on equijoin keys and matches those rows
in hash table created by Build process. Hash Join operator looks like the following
screenshot in the execution plan:

ff Merge Join: SQL Server chooses Merge Join as a physical operator for query in case
of a sorted join expression. Merge Join requires one equijoin predicate along with a
sorted input. It works better if the data is not as bulky as we have in the Hash Join; it
is not a heavy-weight champion like Hash Join. A Merge Join operator looks like the
following screenshot in the execution plan:

ff Nested Loop Join: The Nested Loop Join operator works well with at least two result
sets, and out of these, one is relatively small that is used as an outer loop input, and
another result set with efficient index works as inner loop set. It supports equijoin and
inequality operator. This is a simple form to understand as it is used to compare each
row of left-hand side table with every row of right-hand side table. So if the dataset is
big, nested loop process consumes more time. Nested Loop Join operator looks like
the following screenshot in the execution plan:

Tuning with Execution Plans

124

Getting ready
We are going to create two tables to see the different effects of physical join operator in the
execution plan. Execute the following query to create those tables. We are going to make
some schema-level changes in the tables. As it is not a good idea to change the schema of
the original AdventureWorks2012 database, we will create two sample tables from the
table of AdventureWorks2012:

USE AdventureWorks2012
GO

if object_id('SalesOrdHeaderDemo') is not null
begin
drop table SalesOrdHeaderDemo
end
GO

if object_id('SalesOrdDetailDemo') is not null
begin
drop table SalesOrdDetailDemo
end
GO

Select * Into SalesOrdHeaderDemo
from Sales.SalesOrderHeader
GO

Select * Into SalesOrdDetailDemo
from Sales.SalesOrderDetail
GO

How to do it...
Perform the following given steps to understand the Hash, Merge, and Nested Loop
Join strategies:

1.	 Execute the following query with the execution plan (press Ctrl + M to enable
Execution plan):
SELECT
sh.*
FROM
SalesOrdHeaderDemo AS sh
JOIN
SalesOrdDetailDemo AS sd
ON
sh.SalesOrderID=sd.SalesOrderID
GO

Chapter 6

125

2.	 The Execution plan shows a Hash Join, the following is a screenshot of the query:

3.	 Now create a unique clustered index on both tables with the following T-SQL
statements. As both the tables created before are meeting with table scan,
as shown in the previous screenshot, let us consider creating clustered index
so that data gets stored in sorted manner inside the clustered index.
CREATE UNIQUE CLUSTERED INDEX idx_salesorderheaderdemo_
SalesOrderID ON SalesOrdHeaderDemo (SalesOrderID)
GO

CREATE UNIQUE CLUSTERED INDEX idx_SalesDetail_SalesOrderlID ON
SalesOrdDetailDemo (SalesOrderID,SalesOrderDetailID)
GO

4.	 Next, execute the same SELECT query we ran previously along with the
Execution plan:
SELECT
sh.*
FROM
SalesOrdHeaderDemo AS sh
JOIN
SalesOrdDetailDemo AS sd
ON
sh.SalesOrderID=sd.SalesOrderID

Tuning with Execution Plans

126

5.	 The Execution plan shows Merge Join in the same query, as we have not sorted
the dataset in both tables. You can also see clustered index scan for both tables
instead of table scan, as now we have all records stored in clustered index in a
sorted manner. As there is no predicate in the SELECT query, there is no scope
for executing clustered index seek.

6.	 Now to see the Nested Loop Join, we are moving towards retrieving a small
dataset by providing WHERE clause with equality predicates. Execute the
following SELECT query:
SELECT
sh.*
FROM
SalesOrdHeaderDemo AS sh
JOIN
SalesOrdDetailDemo AS sd
ON
sh.SalesOrderID=sd.SalesOrderID
WHERE
sh.SalesOrderID=43659

7.	 The Execution plan shows a Nested Loop Join operator, as shown in the
following screenshot:

Chapter 6

127

How it works...
As discussed in the Introduction section, the Hash Join works with heavy data that is not
sorted on predicate column. So obviously when we execute our first SELECT query in step 1, it
shows Hash Join operator in the Execution plan as a high volume of data is generated, which
is not sorted or indexed.

In step 3, we have created unique clustered index on key fields in both the tables. So
obviously our data will be sorted physically as well as indexed in table. So when we execute
same SELECT query in step 5, we will see a Merge Join operator rather than a Hash Join, as
our data is now sorted and we also have equijoin operator.

In step 6 we have provided predicate in WHERE condition, so dataset from
SalesOrderHeaderDemo table becomes smaller than it used to be in step 3.
As dataset becomes small with sorted data, it performs as outer loop along with
inner loop of SalesOrderDetailDemo table to perform a Nested Loop Join.

A Nested Loop Join works well with at least two result sets and out of those, one is a relatively
small dataset which is used as an outer loop input and another result set with an efficient
index works as an inner loop set. It fetches each record from the left-hand side dataset
and loops through the second dataset to find a match, so we have reduced the dataset by
providing a WHERE clause and the Nested Loop comes into the picture.

As each join operator has its own pros and cons, no single one is the "best" or "worst" for all
situation. It depends on the task we are performing. Quite a few times I have been asked why
the Hash Join is there in SQL Server as it is consuming lots of CPU time?

I always answer that a Hash is not bad, it is good for situations where we have heavy datasets
that are not sorted or indexed. If it is possible in your environment, try to make a unique
clustered index on each table so that you can meet with a Merge Join operator. If it is not
possible, never try to advise optimizer to use a Merge or a Nested Loop by providing an
OPTION query hint, as it may degrade the performance. A Nested Loop works best only
with a small dataset, as described in this recipe.

There's more...

SQL Server chooses best physical operator for your join, but there is one
option called OPTION clause which helps you to change SQL Server 2012's
decision with your preferred way.

Tuning with Execution Plans

128

You can specify which physical operator (Loop, Merge, or Hash) should be used in your query.
For example:

--use
--OPTION(LOOP JOIN) for Nested Loop Join
--OPTION(HASH JOIN)for HashJoin
--OPTION(MERGEJOIN) for Merge Join
SELECT
sh.*
FROM
SalesOrdHeaderDemo AS sh
JOIN
SalesOrdDetailDemo AS sd
ON
sh.SalesOrderID=sd.SalesOrderID
WHERE
sh.SalesOrderID=43659
OPTION(HASH JOIN)

A word of caution, worth mentioning here, is that SQL Server 2012's optimizer
is very smart and it always makes a good choice for your query, so it is better
to let the optimizer do its work. Query hint OPTION should be used as a
last resort by expert database developer or administrator who knows what
actually is going to be done with the query hint. You can use OPTION in your
development environment to check the effect of different joins while working
on performance tuning, but it is not recommended on the production server. If
UNION is involved in the query, OPTION will go with the last query only.

Finding table/index scans in execution plan
and fixing them

In most cases, especially while working with small amount of data from big tables, table scan/
index scan should not be the desired way to go for. It becomes mandatory to find and resolve it
in order to improve the performance, because scanning process goes through each and every
row available in table/index, looks for match with the criteria provided, and returns the result
set. This is really a time and resource consuming, heavy process. While working on performance
tuning, people are afraid of several major bottleneck issues, mentioned as follows:

ff CPU

ff Network

ff Disk I/O

Chapter 6

129

Table/index scan creates all three types of bottleneck. Scanning every row of a table/index
creates a lot of disk I/O due to heavy CPU usage. As it is scanning the whole table/index and
preparing a big dataset, it takes heavy network resources and/or bandwidth to deliver the
big dataset.

Getting ready
We are going to create two tables to see different effects of physical join operator in execution
plan. Execute the following query to create those tables.

Actually these are the objects we have used in the previous recipe, Understanding Hash,
Merge, and Nested Loop Join strategies, as well, and have looked at different join operators
with these objects. But now we are going to find and resolve a major pain point scan with the
same tables.

USE AdventureWorks2012
GO

if object_id('SalesOrdHeaderDemo') is not null
begin
drop table SalesOrdHeaderDemo
end
GO

if object_id('SalesOrdDetailDemo') is not null
begin
drop table SalesOrdDetailDemo
end
GO

Select * Into SalesOrdHeaderDemo
from Sales.SalesOrderHeader
GO

Select * Into SalesOrdDetailDemo
from Sales.SalesOrderDetail
GO

Tuning with Execution Plans

130

How to do it...
Follow the given steps to find table/index scans in execution plan and fix them:

1.	 Execute the following query by keeping the Execution plan on:
SELECT
sh.SalesOrderID
FROM
SalesOrdHeaderDemo AS sh
JOIN
SalesOrdDetailDemo AS sd
ON
sh.SalesOrderID=sd.SalesOrderID
WHERE
sh.OrderDate='2005-07-01 00:00:00.000'
GO

You will find a table scan operator on both the tables, as shown in the
following screenshot.

The Execution plan suggests a missing index in the query, so
check the worthiness of this index also by looking at the key
field of the index to decide whether it is worth creating or not.

Chapter 6

131

2.	 To remove the table scan, create one clustered index on the table
SalesOrdHeaderDemo with the following query:
CREATE UNIQUE CLUSTERED INDEX idx_salesorderheaderdemo_
SalesOrderID ON SalesOrdHeaderDemo (SalesOrderID)
GO

3.	 Now execute the following SELECT query to see whether the table scan is removed
or not:
SELECT
sh.SalesOrderID
FROM
SalesOrdHeaderDemo AS sh
JOIN
SalesOrdDetailDemo AS sd
ON
sh.SalesOrderID=sd.SalesOrderID
WHERE
sh.OrderDate='2005-07-01 00:00:00.000'
GO

4.	 The following is the screenshot of the Execution plan that is now showing Clustered
Index Scan on the SalesOrdHeaderDemo table but is still showing Table Scan
operator on the second table. As we had clustered index on SalesOrdHeaderDemo
table, it is scanning from the index rather than table, so there is no major gain
in performance.

Tuning with Execution Plans

132

5.	 After creating clustered index on SalesOrdHeaderDemo table, table scan
disappears from the Execution plan but it is still there in SalesOrdDetailDemo
table. Let us try to remove table scan from the second table as well, by creating a
clustered index on SalesOrdDetailDemo table using the following query:
CREATE UNIQUE CLUSTERED INDEX idx_SalesDetail_SalesOrderlID ON
SalesOrdDetailDemo (SalesOrderID,SalesOrderDetailID)
GO

6.	 Again execute the same SELECT query to analyze the behavior of the operator:
SELECT
sh.SalesOrderID
FROM
SalesOrdHeaderDemo AS sh
JOIN
SalesOrdDetailDemo AS sd
ON
sh.SalesOrderID=sd.SalesOrderID
WHERE
sh.OrderDate='2005-07-01 00:00:00.000'
GO

7.	 Analyze the Execution plan given in the next screenshot, which shows Clustered
Index Seek on the second table:

Chapter 6

133

How it works...
Before we move further, let us clarify that scan is not always bad and seek is not always good,
but in most cases, especially while working with small dataset from big table, seek is going to
be the preferred way. Also, it is not always possible to remove scan in each and every query. If
there is any performance issue occurring in the query and if the query is making scan, which
is consuming more resource, then it will be better to remove scan, if possible, otherwise look
for another alternative. Suppose your table has 10 million rows out of which you are retrieving
only 100 rows, then you would use seek. But from the same table, for any reason, if you are
returning 9.5 million rows, then it is better to have scan rather than seek.

In step 1, when we have executed query with join, there were no indexes defined on both
tables and so table scan was the only option for optimizer to go for.

In step 3, we have created clustered index on SalesOrdHeaderDemo table and executed the
same SELECT query that we have used in step 1, but Execution plan was giving Clustered
index scan on first table as against table scan. Clustered index seek is desired, but we don't
have any predicate on the first table so it is not possible for the index to seek for any particular
record, so it scans the complete index.

In step 6, we had created clustered index on second table with non-key fields, SalesOrderID
and SalesOrderDetailID, out of which SalesOrderID is used as a predicate in the ON
clause to compare records with a parent table which resulted in clustered index seek.

There's more...
For more details about different types of indexes, refer to Chapter 9, Implementing Index and
Chapter 10, Maintaining Index.

As this chapter discusses the execution plan, we have not covered details about indexes here.

Introducing Key Lookups, finding them in
execution plans, and resolving them

Key Lookup is a bookmark lookup on a table with a clustered index. Key Lookup is used
by SQL Server while retrieving information regarding non-key column. All the queries that
use non-clustered index wouldn't have Key Lookup but all Key Lookup occurrences are
accompanied by a non-clustered index. One more thing to remember is that Key Lookup
always enjoys the company of Nested Loop operator.

Tuning with Execution Plans

134

Getting ready
We are going to create a table to see different effects of Key Lookup operator in execution
plan. In order to generate the case of Key Lookup, we need two essential things to be present
on the table:

ff Clustered index

ff Non-clustered index

When you have predicate based on key field of non-clustered index, which meets seek on the
same index and goes to clustered index to retrieve the data for non-key field of non-clustered
index, it generates Key Lookup, which we will achieve by creating SalesOrdDetailDemo
table. Execute the following query to create the table:

USE AdventureWorks2012
GO

if object_id('SalesOrdDetailDemo') is not null
begin
drop table SalesOrdDetailDemo
end
GO

Select * Into SalesOrdDetailDemo
from Sales.SalesOrderDetail
GO

How to do it...
Follow the steps given here to perform this recipe:

1.	 Create one clustered index and one non-clustered index on SalesOrdDetailDemo
table with the following query:
CREATE UNIQUE CLUSTERED INDEX idx_SalesDetail_SalesOrderlID ON
SalesOrdDetailDemo (SalesOrderID,SalesOrderDetailID)
GO

CREATE NONCLUSTERED INDEX idx_non_clust_SalesOrdDetailDemo_
ModifiedDate ON SalesOrdDetailDemo(ModifiedDate)
GO

2.	 Execute the following SELECT query with Execution plan:
SELECT
ModifiedDate
FROM SalesOrdDetailDemo
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

Chapter 6

135

3.	 The following screenshot shows non-clustered index seek, as we have a non-clustered
index on ModifiedDate and we have that field in the predicate:

Details of the execution plan in text format for the previous screenshot are as follows:
StmtText

 |--Index Seek(OBJECT:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[idx_non_clust_SalesOrdDetailDemo_
ModifiedDate]), SEEK:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[ModifiedDate]=CONVERT_
IMPLICIT(datetime,[@1],0)) ORDERED FORWARD)

4.	 Execute the previous SELECT query with small changes in SELECT column section.
Previously we had an index on ModifiedDate field only and also, it was the
only field in the SELECT list, but now we will add more fields (SalesOrderID,
SalesOrderDetailID) to the SELECT list.
SELECT
ModifiedDate,
SalesOrderID,
SalesOrderDetailID
FROM SalesOrdDetailDemo
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

Tuning with Execution Plans

136

5.	 The following screenshot shows a non-clustered index seek:

Details of the execution plan in text format for the previous screenshot are as follows:
StmtText

 |--Index Seek(OBJECT:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[idx_non_clust_SalesOrdDetailDemo_
ModifiedDate]), SEEK:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[ModifiedDate]=CONVERT_
IMPLICIT(datetime,[@1],0)) ORDERED FORWARD)

6.	 In the previous SELECT query, we had three fields and all were either belonging
to clustered index or non-clustered index. Now add two more fields (ProductID,
UnitPrice) to the SELECT query.
SELECT
ModifiedDate,
SalesOrderID,
SalesOrderDetailID,
ProductID,
UnitPrice
FROM SalesOrdDetailDemo
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

7.	 We can see the index seek operator on a non-clustered index, but two new operators
also come up, Key Lookup and Nested Loop, as shown in the following screenshot:

Chapter 6

137

Details of the execution plan in text format for the previous screenshot are given
as follows:
StmtText
--
 |--Nested Loops(Inner Join, OUTER REFERENCES:([Adventu
reWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrderID],
[AdventureWorks2012].[dbo].[SalesOrdDetailDemo].
[SalesOrderDetailID], [Expr1004]) WITH UNORDERED PREFETCH)
 |--Index Seek(OBJECT:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[idx_non_clust_SalesOrdDetailDemo_
ModifiedDate]), SEEK:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[ModifiedDate]='2005-07-01 00:00:00.000')
ORDERED FORWARD)
 |--Clustered Index Seek(OBJECT:([AdventureWorks2012].
[dbo].[SalesOrdDetailDemo].[idx_SalesDetail_SalesOrderlID]),
SEEK:([AdventureWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrder
ID]=[AdventureWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrderID]
AND

8.	 As it is showing heavy Key Lookup operator now, we might want to remove it by
guiding query optimizer to use clustered index by providing the table hint index
with the WITH keyword, as shown in the following query:
SELECT
ModifiedDate,
SalesOrderID,
SalesOrderDetailID,
ProductID,
UnitPrice
FROM SalesOrdDetailDemo WITH(INDEX=idx_SalesDetail_SalesOrderlID)
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

Tuning with Execution Plans

138

9.	 As per our guidance, SQL Server optimizer has used clustered index but it is not able
to make seek on clustered index, so it is showing scan on the clustered index.

10.	 Clustered Index Scan is shown in the previous screenshot, which is not good for
returning only a few records of date. So it would be interesting to know which one
is better, Key Lookup or clustered index scan. Let us compare the load by keeping
execution plan (press Ctrl + M) on in the following query and also keeping SET
STATISTICS IO ON to measure IO load:
SET STATISTICS IO ON
GO

SELECT
ModifiedDate,
SalesOrderID,
SalesOrderDetailID,
ProductID,
UnitPrice
FROM SalesOrdDetailDemo
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

SELECT
ModifiedDate,
SalesOrderID,
SalesOrderDetailID,
ProductID,
UnitPrice
FROM SalesOrdDetailDemo WITH(INDEX=idx_SalesDetail_SalesOrderlID)
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

SELECT

Chapter 6

139

ModifiedDate,
SalesOrderID,
SalesOrderDetailID,
ProductID,
UnitPrice
FROM SalesOrdDetailDemo WITH(INDEX=idx_non_clust_
SalesOrdDetailDemo_ModifiedDate)
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

11.	 Our suggestion of using the clustered index in the query seems heavy compared to
other options. Look at the following screenshot to confirm the query cost:

Details of the execution plan in text format for the previous screenshot are given
as follows:
StmtText
--
 |--Nested Loops(Inner Join, OUTER REFERENCES:([Adventu
reWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrderID],
[AdventureWorks2012].[dbo].[SalesOrdDetailDemo].
[SalesOrderDetailID], [Expr1004]) WITH UNORDERED PREFETCH)
 |--Index Seek(OBJECT:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[idx_non_clust_SalesOrdDetailDemo_
ModifiedDate]), SEEK:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[ModifiedDate]='2005-07-01 00:00:00.000')
ORDERED FORWARD)
 |--Clustered Index Seek(OBJECT:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[idx_SalesDetail_SalesOrderlID]),

Tuning with Execution Plans

140

SEEK:([AdventureWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrderI
D]=[AdventureWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrderID]
AND

StmtText
--
 |--Clustered Index Scan(OBJECT:([AdventureWorks2012].
[dbo].[SalesOrdDetailDemo].[idx_SalesDetail_SalesOrderlID]),
WHERE:([AdventureWorks2012].[dbo].[SalesOrdDetailDemo].
[ModifiedDate]='2005-07-01 00:00:00.000'))

StmtText
--
 |--Nested Loops(Inner Join, OUTER REFERENCES:([Adventu
reWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrderID],
[AdventureWorks2012].[dbo].[SalesOrdDetailDemo].
[SalesOrderDetailID], [Expr1003]) WITH UNORDERED PREFETCH)
 |--Index Seek(OBJECT:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[idx_non_clust_SalesOrdDetailDemo_
ModifiedDate]), SEEK:([AdventureWorks2012].[dbo].
[SalesOrdDetailDemo].[ModifiedDate]='2005-07-01 00:00:00.000')
ORDERED FORWARD)
 |--Clustered Index Seek(OBJECT:([AdventureWorks2012].
[dbo].[SalesOrdDetailDemo].[idx_SalesDetail_SalesOrderlID]),
SEEK:([AdventureWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrder
ID]=[AdventureWorks2012].[dbo].[SalesOrdDetailDemo].[SalesOrderID]
AND

SET STATISTICS IO result of all the three queries are given here, out of which the
second query, in which we have guided the optimizer to use the clustered index, has
the highest logical reads.

(357 row(s) affected)
Table 'SalesOrdDetailDemo'. Scan count 1, logical reads 1105,
physical reads 0, read-ahead reads 0, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

(357 row(s) affected)
Table 'SalesOrdDetailDemo'. Scan count 1, logical reads 1502,
physical reads 0, read-ahead reads 0, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

(357 row(s) affected)

Chapter 6

141

Table 'SalesOrdDetailDemo'. Scan count 1, logical reads 1105,
physical reads 0, read-ahead reads 0, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

12.	 As compared to clustered index scan, non-clustered index with Key Lookup seems
good, but it would be better if we can remove Key Lookup from non-clustered index
scan. Let us try to do that by either creating covering index or INCLUDE column
index. Let us also clear the cache memory so that the optimizer doesn't use the
plan already saved in the cache or buffer.
DROP INDEX idx_non_clust_SalesOrdDetailDemo_ModifiedDate ON
SalesOrdDetailDemo
GO

CREATE NONCLUSTERED INDEX idx_non_clust_SalesOrdDetailDemo_
ModifiedDate ON SalesOrdDetailDemo(ModifiedDate)
INCLUDE
(
ProductID,
UnitPrice
)
GO

--don't use these commands on live environment, it gives you
--temporary slow performance for all stored procedure whose
--plan are saved and being in use. This is just for testing or
--development environment.
DBCC FREEPROCCACHE
DBCC DROPCLEANBUFFERS
GO

13.	 Try to execute the SELECT query again:
SELECT
ModifiedDate,
SalesOrderID,
SalesOrderDetailID,
ProductID,
UnitPrice
FROM SalesOrdDetailDemo
WHERE ModifiedDate='2005-07-01 00:00:00.000'
GO

Tuning with Execution Plans

142

14.	 The following screenshot confirms that we have successfully removed the Key Lookup
from the non-clustered index:

How it works...
In step 2, we had ModifiedDate in predicate as well as in SELECT list, so we have
non-clustered index seek as index doesn't need to go anywhere else to find other values.
All the values could be searched within the index key.

In step 4, we had SalesOrderID and SalesOrderDetailID along with ModifiedDate
in SELECT list; even then it showed non-clustered index seek as the value of ModifiedDate
is there in the non-clustered index key. SalesOrderID and SalesOrderDetailID are
part of the clustered index key so it would be there in the non-clustered index as well, as a
reference of the clustered index.

In step 6, we have introduced two more fields, UnitPrice and ProductID, which are not
a part of any index. So non-clustered index has to go through the clustered index leaf pages
to find the values of UnitPrice and ProductID, and that is why Key Lookup operator
comes in picture along with Nest Loop operator. Key Lookup is a heavy process, so we have
instructed the optimizer to use clustered index with INDEX hint and WITH keyword in step 8.
So it is using clustered index but making scan rather then seek. So now we have the question:
which query works faster?

To get the answer to this question, we ran three queries together in step 10. The first query is
running without any query hint, so obviously it is showing non-clustered index seek along with
Key Lookup operator, the second query has a hint to use clustered index, and the third query
works like first query as we have instructed to use non-clustered index, which would be the
default way of SQL Server.

Chapter 6

143

If you observe the screenshot provided in step 11, you will come to know that SQL Server is
having proper instruction of using non-clustered index with Key Lookup as against clustered
index scan, because the second query with clustered index scan has taken 37 percent of
query cost as against 31 percent load in first and third query each.

It is now clear that non-clustered index seek along with Key Lookup is faster in current
situation, but it works more efficiently if we remove Key Lookup.

If we remove UnitPrice and ProductID from SELECT list, Key Lookup will be removed
from execution plan, but it may not be a desirable situation as we might need those fields in
the result set. So, now we can go for one of the other options, either create covering index
or create INCLUDE column non-clustered index rather than simple non-clustered index. We
decided to go for INCLUDE column index in step 12 and executed the same SELECT query in
step 13 which worked even better and removed the Key Lookup successfully.

One of the major reasons that invites Key Lookup is to have predicate that meets criteria to
call non-clustered index, and to have fields in SELECT section which neither belong to the
non-clustered index or clustered index. The clustered index has to make the Key Lookup to
find value of those non-key fields.

There's more...
For more details on different types of indexes, please refer to Chapter 9, Implementing Index
and Chapter 10, Maintaining Index.

In this chapter only the execution plan is discussed, so we have not covered details about
Indexes here.

7
Dynamic Management

Views and Dynamic
Management

Functions

In this chapter we will cover:

ff Monitoring current query execution statistics

ff Monitoring index performance

ff Monitoring performance of TempDB database

ff Monitoring disk I/O statistics

Introduction
With the inception of SQL Server 2005, Microsoft has introduced a very helpful feature in
SQL Server known as Dynamic Management Views(DMV) and Dynamic Management
Functions(DMF). These views and functions are used to retrieve internal statistics of an SQL
Server instance for performance monitoring. They provide real-time statistics about a variety
of the internal working details of the SQL Server that can be used for performance analysis
to identify performance bottlenecks and hardware bottlenecks, and tune the performance of
SQL Server. Some of the performance issues can be identified and the necessary steps to be
taken can be determined easily just by looking at the statistics returned by DMVs and DMFs.
This feature is a real blessing for database administrators.

Dynamic Management Views and Dynamic Management Functions

146

All DMVs and DMFs are located in the sys schema and all DMVs and DMFs have a common
naming convention, which is dm_*. This prefix is generally followed by a category prefix to
which a DMV or DMF belongs, which is followed by the name of DMV or DMF.

Executing these DMVs and DMFs requires VIEW SERVER STATE
and VIEW DATABASE STATE permissions.

The following section discusses some of the categories of DMVs and DMFs that we will cover
in this book:

ff Execution-specific DMVs and DMFs (sys.dm_exec_*): This category provides the
statistics related to query execution. These DMVs and DMFs can be used to monitor
statistics pertaining to the cached queries, execution plans, active connections/
sessions, and currently running queries along with their execution plans.

ff Index-specific DMVs and DMFs (sys.dm_db_index_* and sys.dm_db_
missing_*): This category provides the statistics related to indexes. These DMVs
and DMFs can be used to monitor and troubleshoot the performance of the indexes
by finding missing indexes, unused indexes and examining the index usage statistics.

ff Database-specific DMVs and DMFs (sys.dm_db_*): This category provides the
statistics related to databases. These DMVs and DMFs can be used to monitor and
troubleshoot the performance of databases by analyzing the database-specific file
statistics, session statistics, and task statistics.

ff I/O-specific DMVs and DMFs (sys.dm_io_*): This category provides the statistics
related to I/O operations. These DMVs and DMFs can be used to monitor and
troubleshoot the I/O performance of SQL Server.

ff OS-specific DMVs and DMFs (sys.dm_os_*): This category provides the statistics
related to SQL OS internals. These DMVs can be used to monitor and troubleshoot
the server configuration issues.

ff Transaction-specific DMVs and DMFs (sys.dm_tran_*): This category provides the
statistics related to transactions. These DMVs and DMFs can be used to monitor and
troubleshoot the locking and blocking issues caused by long-running transactions.

The statistics provided by dynamic management views and dynamic
management functions are not persistent. These statistics, for most
of the DMVs and DMFs, are reset when SQL Server is restarted
or DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR)
command is executed.

Chapter 7

147

Monitoring current query execution
statistics

In order to perform query tuning on production database server, you need to identify those
resource-consuming queries and the source from where they are coming. For this, you need to
monitor the incoming query requests and examine their execution time, number of read/write
operations, and so on.

SQL Server has dedicated a separate category of DMVs and DMFs to query execution
statistics. These DMVs and DMFs provide a wide range of statistics on query execution
requests. The names of these execution-related DMVs and DMFs are generally prefixed by
sys.dm_exec_. By examining the results returned by these DMVs and DMFs, you can find
out long-running and resource-consuming queries, and pick them up for query tuning.

In this recipe, we will see how to monitor current incoming query requests made on SQL
Server by using DMVs and DMFs in order to find out the queries with higher execution time.
We will also learn how to monitor currently opened cursors in a database that are expensive
in nature.

Getting ready
In this recipe, using DMVs and DMFs, we will write a query that will be used to monitor current
query requests by examining some of the useful columns of a request, such as database
name, login name, program name, query start time, reads, and writes.

As we know cursors are very resource-consuming objects that affect the query performance
and should be avoided, we will also see how to monitor the currently executing cursors on SQL
Server instance.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff Sample AdventureWorks2012 database on the instance of SQL Server. For more
details on how to install AdventureWorks2012 database, please refer the Preface
of this book.

Dynamic Management Views and Dynamic Management Functions

148

How to do it......
The following are the steps you should follow to do this recipe:

1.	 Open SQL Server Management Studio and connect to the instance of SQL Server.

2.	 In a new query window, type and execute the query as shown in the following script to
monitor currently running queries:

--Monitoring currently executing queries
--and listing them in the order of
--most resource-consuming to
--least resource-consuming
SELECT
 DB_NAME(R.database_id) AS DatabaseName
 ,S.original_login_name AS LoginName
 ,S.host_name AS ClientMachine
 ,S.program_name AS ApplicationName
 ,R.start_time AS RequestStartTime
 ,ST.text AS SQLQuery
 ,QP.query_plan AS ExecutionPlan
 ,R.cpu_time AS CPUTime
 ,R.total_elapsed_time AS TotalTimeElapsed
 ,R.open_transaction_count AS TotalTransactionsOpened
 ,R.reads
 ,R.logical_reads
 ,R.writes AS TotalWrites
 ,CASE
 WHEN R.wait_type IS NULL THEN 'Request Not Blocked'
 ELSE 'Request Blocked'
 END AS QueryBlockInfo
 ,blocking_session_id AS RequestBlockedBy
FROM sys.dm_exec_requests AS R
INNER JOIN sys.dm_exec_sessions AS S
 ON R.session_id = S.session_id
CROSS APPLY sys.dm_exec_sql_text(R.sql_handle) AS ST
CROSS APPLY sys.dm_exec_query_plan (R.plan_handle) AS QP
ORDER BY TotalTimeElapsed DESC
GO

3.	 Now execute the query as shown in the following script to monitor currently
opened cursors:
--Monitoring currently executing cursors
--and listing them in the order of
--most expensive to least expensive

Chapter 7

149

SELECT
 S.host_name AS ClientMachine
 ,S.program_name AS ApplicationName
 ,S.original_login_name AS LoginName
 ,C.name AS CursorName
 ,C.properties AS CursorOptions
 ,C.creation_time AS CursorCreatinTime
 ,ST.text AS SQLQuery
 ,C.is_open AS IsCursorOpen
 ,C.worker_time/1000 AS DurationInMiliSeconds
 ,C.reads AS NumberOfReads
 ,C.writes AS NumberOfWrites
FROM sys.dm_exec_cursors(0) AS C
INNER JOIN sys.dm_exec_sessions AS S
 ON C.session_id = S.session_id
CROSS APPLY sys.dm_exec_sql_text(C.sql_handle) AS ST
ORDER BY DurationInMiliSeconds DESC
GO

How it works...
In this recipe the first query uses the following DMVs and DMFs:

ff sys.dm_exec_requests

ff sys.dm_exec_sessions

ff sys.dm_exec_sql_text

ff sys.dm_exec_query_plan

In this query, we specified numerous columns that provide great amount of details on current
requests. The following are the questions whose answers we can determine about a particular
request by examining the result of the query:

ff Which database is supposed to handle the request?

ff Which login is executing the request?

ff From which computer has the request arrived?

ff From which application has the request been initiated?

ff When did the request arrive?

ff What SQL statements are being executed in the request?

ff What is the execution plan for the SQL statements?

ff What is the time duration since the request has been running?

ff Did the request open any transaction?

Dynamic Management Views and Dynamic Management Functions

150

ff What are the read/write counts made by the request?

ff Is the request blocked? If so, by which session?

To retrieve the session-specific information for the current request, we joined the output of
sys.dm_exec_requests with sys.dm_exec_sessions on session_id column.

We applied CROSS APPLY to the result set with sys.dm_exec_sql_text() function to
retrieve the SQL text for the request and with sys.dm_exec_query_plan() function to
retrieve the execution plan of the current query. We pass sql_handle of the current row to
sys.dm_exec_sql_text() function as a parameter and plan_handle parameter of the
current row to sys.dm_exec_query_plan() DMF as parameter. The output of the query
is sorted in descending order on the TotalTimeElapsed column so that we get the most
resource-consuming query at the top of the list.

The second query uses sys.dm_exec_cursors() function and returns a list of cursors with
the cursor details that are currently in use. The sys.dm_exec_cursors() function accepts
session_id as a parameter. If session_id is specified, then only the cursors that are
created by that specific session are returned. If 0 is passed to the session_id parameter,
then the details of all the cursors across all the sessions are returned. Because we wanted to
retrieve the details of all the cursors running on the server, we passed 0 to sys.dm_exec_
cursors() function.

We used the same sys.dm_exec_sessions DMV and sys.dm_exec_sql_text DMF
that we used in the first query. To retrieve session-specific details for the cursor, we joined the
output of sys.dm_exec_cursors() function with sys.dm_exec_sessions on session_
id column and applied CROSS APPLY to the result set with sys.dm_exec_sql_text()
function to retrieve the SQL text for the SQL batch that declared the cursor. The output of the
query is sorted in descending order on DurationInMiliSeconds, so that we get the most
resource-consuming cursor at the top of the list. Note that we divided worker_time by 1000
to calculate DurationInMiliSeconds because worker_time is reported in microseconds.

There's more...
The following section discusses the DMVs and DMFs that we used in this recipe, in more detail.

sys.dm_exec_connections (DMV)
sys.dm_exec_connections is a dynamic management view. This DMV returns a list of
currently active connections established to SQL Server with their connection details. This DMV
can be used to learn which applications or users are currently connected to SQL Server. Some
of the important columns of this DMV are as follows:

Chapter 7

151

Column name Description
session_id This column represents the ID of the session, which is

associated with the connection.
most_recent_session_
id

This column represents the ID of the session for the most
recent request that is associated with the connection.

connect_time This column represents the time when this connection was
established.

endpoint_id This column represents the type of the connection. Value in this
column can be mapped with sys.endpoints catalog view.

client_net_address This column represents the IP address of the client machine
that is connected to the server.

connection_id This column represents a unique ID of the connection. This
column is very important because it connects this DMV to other
useful DMVs such as sys.dm_exec_requests and sys.
dm_broker_connections.

most_recent_sql_
handle

This column represents the handle of the T-SQL text that was
executed last on this connection.

sys.dm_exec_sessions (DMV)
sys.dm_exec_sessions is a dynamic management view. This DMV returns a list of
currently active sessions on SQL Server. This DMV can be used to retrieve session-specific
details, such as host name, application name, login name, and login time. Some of the
important columns of this DMV are as follows:

Column name Description
session_id This column represents the ID of the session.
login_time This column represents the time when the session

was started.
host_name This column represents the name of the host machine

associated with the session.
program_name This column represents the application that started

the session.
host_process_id This column represents the windows-specific process ID of the

client program that started the session. This is very important
column as you can investigate the source windows process
associated with the session. You will find this process in Task
Manager under the column PID (process identifier) on the
machine associated with the system.

Dynamic Management Views and Dynamic Management Functions

152

Column name Description
login_name This column represents the login name under whose security

context the current session is running.
status This column represents the state of the session. It can be

Running, Sleeping, Dormant or Preconnect.
cpu_time This column represents the total CPU time in milliseconds

used by the session.
memory_usage This column represents the total number of 8 KB pages used

by the session.
total_elapsed_time This column represents the time in milliseconds since the

session has been running.
last_request_start_
time

This column represents the time when the last request
associated with this session was made.

last_request_end_time This column represents the time when the last request
associated with this session was ended.

reads This column represents the number of reads by requests for
the session.

writes This column represents the number of writes by requests for
the session.

logical_reads This column represents the number of logical reads by
requests for the session.

sys.dm_exec_requests (DMV)
sys.dm_exec_requests is a dynamic management view. This DMV returns a list of
requests that are currently executing on the server. This DMV can be used to monitor the
current query requests to identify long-running and resource-intensive queries. This view is
rich in terms of information that it returns and offers a lot of details which can be used for
performance analysis. Some of the important columns of this DMV are as follows:

Column name Description
session_id This column represents the ID of the session which the request

belongs to.
request_id This column represents the unique ID of the request within

a session.
start_time This column represents the time when the request arrives.
Status This column represents the status of the request.

Chapter 7

153

Column name Description
command This column represents the type of command that is executed

by the request.
sql_handle This column represents the handle of the T-SQL query text of

the request.
plan_handle This column represents the handle of the execution plan of

the request.
database_id This column represents the ID of the database against which

the request is made.
connection_id This column represents the ID of the connection this request

belongs to.
blocking_session_id This column represents the ID of the session that is blocking

the request.
wait_type This column represents the type of lock if the request

is blocked.
wait_time This column represents the time duration in milliseconds that

the request waited.
open_transaction_
count

This column represents the number of transactions that are
opened by the request.

transaction_id This column represents the ID of the transaction under which
the request is running.

cpu_time This column represents the CPU time in milliseconds that the
request took.

sys.dm_exec_sql_text (DMF)
sys.dm_exec_sql_text is a table-valued dynamic management function. This DMF returns
the SQL text for the T-SQL query or batch for a specified sql_handle or plan_handle that
is passed to this function as a parameter. The following are some of the columns of this DMF:

Column name Description
dbid This column represents the ID of the database.
objectid This column represents the ID of the object.
encrypted This column represents whether the SQL text is encrypted.
text This column represents the SQL text for specified sql_handle or

plan_handle.

Dynamic Management Views and Dynamic Management Functions

154

sys.dm_exec_query_plan (DMF)
sys.dm_exec_query_plan is a table-valued dynamic management function. This DMF
returns the query execution plan for a specified plan_handle that is passed to this function
as a parameter. The following are some of the columns of this DMF:

Column name Description
dbid This column represents the ID of the database.
objected This column represents the ID of the object.
encrypted This column represents whether the SQL text is encrypted.
query_plan This column represents the actual query execution plan for specified

plan_handle.

sys.dm_exec_cursors (DMF)
sys.dm_exec_cursors is a table-valued dynamic management function. This DMF returns
the list of cursors that are currently open for a given session_id or all sessions (for all
sessions, session_id should be 0). The following are some of the useful columns of
this DMF:

Column name Description
session_id This column represents the ID of the session that executes

the cursor.
cursor_id This column represents the ID of the cursor object.
name This column represents the name of the cursor object.
properties This column represents the cursor options with which the cursor

was created.
sql_handle This column represents the sql_handle of the SQL batch that

declared the cursor object.
creation_time This column represents the time when the cursor was created.
is_open This column represents the status of the cursor to indicate whether

the cursor is open or not.
fetch_status This column represents the last fetch status that was returned by

@@FETCH_STATUS.
worker_time This column represents the time duration in milliseconds that the

worker has taken to execute the cursor.
reads This column represents the number of reads caused by the cursor.
writes This column represents the number of writes caused by the cursor.

Chapter 7

155

There is more to execution-related DMVs and DMFs. The following is a list of some more DMVs
and DMFs that are frequently used in query tuning that you may like to explore:

ff sys.dm_exec_cached_plans (DMV)

ff sys.dm_exec_procedure_stats (DMV)

ff sys.dm_exec_query_stats (DMV)

ff sys.dm_exec_cached_plan_dependent_objects (DMF)

These DMVs and DMFs deal with providing caching details of the queries and objects, and are
helpful in query tuning as well.

Monitoring index performance
As you may know, index is a key to improve the query performance. Even if you have
appropriate indexes on your tables, you need to perform index-maintenance tasks from
time-to-time.

SQL Server has specialized DMVs and DMFs that provide useful index-related statistics
which can be helpful in evaluating the performance metrics of existing indexes and usage
patterns. By analyzing the statistics data returned by these DMVs and DMFs, you can do
the following things:

ff Examining the index usage patterns

ff Finding the missing indexes

ff Finding the unused indexes

ff Finding the fragmented indexes

ff Analyzing the index page allocation details

In this recipe, we will use some of these DMVs and DMFs to determine the missing indexes
in our database, number of seek and scan operations performed on indexes, and identify the
fragmented indexes that may need to be reorganized or rebuilt.

Getting ready
This example will show you how you can find the missing indexes using DMVs and DMFs.
Missing indexes are the indexes that are not present but can improve the performance of
the queries if created.

We will also see how to retrieve the index usage details and fragmentation details using
certain DMVs and DMFs so that you can easily perform the index-maintenance tasks on
your database.

Dynamic Management Views and Dynamic Management Functions

156

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff Sample AdventureWorks2012 database on the instance of SQL Server. For more
details on how to install AdventureWorks2012 database, please refer to the
Preface of this book.

How to do it...
To do this recipe practically, perform the following steps:

1.	 Open SQL Server Management Studio and connect to the instance of SQL Server
hosting AdventureWorks2012 database.

2.	 In a new query window, type and execute the queries as shown in the following script:
USE AdventureWorks2012
GO

--Retrieving records from Sales.SalesOrderDetail
--table based on ModifiedDate column.
SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,OrderQty
 ,ProductID
FROM Sales.SalesOrderDetail
WHERE ModifiedDate >='20080101'
GO

--Retrieving records from Sales.SalesOrderDetail
--for which the ProductId is 921
SELECT
 SalesOrderDetailID
 ,UnitPrice
 ,UnitPriceDiscount
FROM Sales.SalesOrderDetail
WHERE ProductID = 921
GO

3.	 To retrieve the missing index details, type and run the query as shown in the
following script:
--Retrieving Missing Index Details
SELECT
 MID.Statement AS ObjectName
 ,MID.equality_columns

Chapter 7

157

 ,MID.inequality_columns
 ,MID.included_columns
 ,MIGS.avg_user_impact As ExpectedPerformanceImprovement
 ,(MIGS. user_seeks + MIGS. user_scans) * MIGS.avg_total_user_
cost * MIGS.avg_user_impact As PossibleImprovement
FROM sys.dm_db_missing_index_details AS MID
INNER JOIN sys.dm_db_missing_index_groups AS MIG
ON MID.index_handle = MIG.index_handle
INNER JOIN sys.dm_db_missing_index_group_stats AS MIGS
ON MIG.index_group_handle = MIGS.group_handle
GO

4.	 To retrieve the index usage details, type and run the query as shown in the
following script:
USE AdventureWorks2012
GO

--Retrieving Index Usage Information
SELECT
 O.Name AS ObjectName
 ,I.Name AS IndexName
 ,IUS.user_seeks
 ,IUS.user_scans
 ,IUS.last_user_seek
 ,IUS.last_user_scan
FROM sys.dm_db_index_usage_stats AS IUS
INNER JOIN sys.indexes AS I
ON IUS.object_id = I.object_id AND IUS.index_id = I.index_id
INNER JOIN sys.objects AS O
ON IUS.object_id = O.object_id
GO

5.	 To retrieve the information related to index fragmentation, type and run the query as
shown in the following script:
USE AdventureWorks2012
GO

--Retrieving Index Fragmentation Details.
SELECT
 O.name AS ObjectName
 ,I.name AS IndexName
 ,IPS.avg_page_space_used_in_percent AS AverageSpaceUsedInPages
 ,IPS.avg_fragmentation_in_percent AS AverageFragmentation
 ,IPS.fragment_count AS FragmentCount

Dynamic Management Views and Dynamic Management Functions

158

 ,suggestedIndexOperation = CASE
 WHEN IPS.avg_fragmentation_in_percent<=30 THEN 'REORGANIZE
Index'
 ELSE 'REBUILD Index' END
FROM sys.dm_db_index_physical_stats(DB_
ID(),NULL,NULL,NULL,'DETAILED') AS IPS
INNER JOIN sys.indexes AS I
ON IPS.object_id = I.object_id AND IPS.index_id = I.index_id
INNER JOIN sys.objects AS O
ON IPS.object_id = O.object_id
WHERE IPS.avg_fragmentation_in_percent > 5
ORDER BY AverageFragmentation DESC
GO

The previous query should return a result similar to the one shown in the
following screenshot:

How it works...
In this recipe, we first executed sample queries on Sales.SalesOrderDetail table
against Adventureworks2012 database. The first query retrieves data from Sales.
SalesOrderDetail based on ModifiedDate, while the second query retrieves data
from Sales.SalesOrderDetail table for which the ProductID is 921.

sys.dm_db_missing_index_details provides details for missing indexes. Missing
indexes are the indexes that do not exist in the database, but by creating these missing
indexes, the queries could have benefited and executed faster. We then executed a query
that used sys.dm_db_missing_index_details by joining it with two other DMVs, sys.
dm_db_missing_index_groups and sys.dm_db_missing_index_group_stats. The
sys.dm_db_missing_index_group_stats returns the details regarding any possible
improvement in query performance if missing indexes are created. Note that to retrieve
the avg_user_impact column from this view, we indirectly joined it with sys.dm_db_
missing_index_details through sys.dm_db_missing_index_groups.

Chapter 7

159

Like DTA, DMVs also may recommend wide indexes with many INCLUDE
columns. It does not mean that you should create every index that DMVs
recommend. Practically, creating many indexes with many INCLUDE columns
also put overhead on your DML statements, such as INSERT, UPDATE, and
DELETE statements.

Then we executed a query that provides index usage statistics. It gives the number of seek
and scan operations performed on a particular index, and the time when seek or scan
operation was last performed on a particular index. To retrieve the index name and object
name, we joined the output of sys.dm_db_index_usage_stats with sys.indexes
and sys.objects catalog views respectively.

Then we retrieved the fragmentation details with the query that uses the sys.dm_db_
index_physical_stats() function. This DMF accepts the following parameters:

Parameter name Description
database_id This parameter specifies the ID of the database for which the index

details are to be returned. If the value of this parameter is NULL, 0,
or DEFAULT, then the index details for all databases is returned.

object_id This parameter specifies the ID of the object for which the index
details are to be returned. If the value of this parameter is NULL,
0, or DEFAULT, then the index details for all objects for a given
database is returned.

index_id This parameter specifies the ID of the index for which the index
details are to be returned. If the value of this parameter is NULL,
0, or DEFAULT, then the index details for all indexes for a given
object is returned.

partition_number This parameter specifies the partition number for which the index
details are to be returned. If the value of this parameter is NULL,
0, or DEFAULT, then the index details for all partitions for a given
index is returned.

mode This parameter specifies the mode of scan level that is used to
gather the statistics. DEFAULT, NULL, LIMITED, SAMPLED, and
DETAILED are the possible values that can be specified for this
parameter. The default is LIMITED. The LIMITED mode scans a
smaller number of pages to collect statistics. The SAMPLED mode
scans one percent of all pages. The DETAILED mode scans all
the pages and is the heavier operation.

Dynamic Management Views and Dynamic Management Functions

160

Notice that we are passing the value of DB_ID() as the database_id parameter and NULL
for the rest of the parameters because we want to retrieve the fragmentation details for all
indexes of the current database. To retrieve the index name and object name, we joined the
output of the sys.dm_db_index_physical_stats() function with the sys.indexes
and sys.objects catalog views respectively. Note that we also included a column named
SuggestedIndexOperation in the query that can suggest us, based on the level of
fragmentation, whether a particular index should be rebuilt or reorganized.

There's more...
The following section discusses the DMVs and DMFs that we used in the recipe, in more detail.

sys.dm_db_missing_index_details (DMV)
sys.dm_db_missing_index_details is a dynamic management view. This DMV returns
missing index details. The following are some of the useful columns of this DMV:

Column name Description
index_handle This column represents the identifier used to identify a missing

index.
database_id This column represents the ID of the database where missing index

should be created.
object_id This column represents the ID of the table to which the missing

index is applicable.
equality_columns This column represents a comma separated list of the columns

that contribute to equality predicates.
inequality_columns This column represents a comma separated list of the columns

that contribute to inequality predicates.
included_columns This column represents a comma separated columns that are

suggested to be included in missing index.
Statement This column shows the name of the table for which the missing

index is applicable.

Chapter 7

161

sys.dm_db_missing_index_groups (DMV)
sys.dm_db_missing_index_groups is a dynamic management view. This DMV returns
information about which missing indexes belong to which missing index group. The following
are the columns of this DMV:

Column name Description
index_group_handle This column represents the identifier used to identify the missing

index group.
index_handle This column represents the identifier used to identify a missing

index.

sys.dm_db_missing_index_group_stats (DMV)
sys.dm_db_missing_index_group_stats is a dynamic management view. This
DMV returns statistical details for missing index groups. This DMV can be used to analyze
approximately how much a missing index might have benefited the queries. The following are
some of the useful columns of this DMV:

Column name Description
group_handle This column represents the identifier of the missing index group.
unique_compiles This column suggests the number of compilation and

recompilation that could have been benefited from the
missing index.

user_seeks This column suggests the number of seek operations that the
missing index could have been used for.

user_scans This column suggests the number of scan operations that the
missing index could have been used for.

last_user_seek This column suggests the time when the missing index could
have been last used for seek operation.

last_user_scan This column suggests the time when the missing index could
have been last used for scan operation.

avg_total_user_cost This column suggests the average cost of the queries that can
be reduced by the missing index.

avg_user_impact This column suggests the improvement in percentage that could
have been achieved by the missing index.

Dynamic Management Views and Dynamic Management Functions

162

sys.dm_db_index_usage_stats (DMV)
sys.dm_db_index_usage_stats is a dynamic management view. This DMV returns the
index usage statistics for the different types of index operations. The DMV can be used to
analyze which indexes are used most frequently and which indexes are not. The following
are some of the columns of this DMV:

Column name Description
database_id This column represents the ID of the database where the index

is located.
object_id This column represents the ID of the object to which the index

is applicable.
index_id This column represents the ID of the index.
user_seeks This column represents the number of seek operations performed

on the index.
user_scans This column represents the number of scan operations performed

on the index.
user_lookups This column represents the number of Bookmark Lookup

operations performed on the index.
user_updates This column represents the number of update operations

performed on the index.
last_user_seek This column represents the time when the last seek operation was

performed on the index.
last_user_scan This column represents the time when the last scan operation was

performed on the index.
last_user_lookup This column represents the time when the last Bookmark Lookup

operation was performed on the index.
last_user_update This column represents the time when the last update operation

was performed on the index.

sys.dm_db_index_physical_stats (DMF)
sys.dm_db_index_physical_stats is a dynamic management function. This DMF
returns the fragmentation details of all indexes for all the databases or specified index(s)
for a specified database. The following are some of the useful columns of this DMF:

Column name Description
database_id This column represents the ID of the database

where the index is located.
object_id This column represents the ID of the object the index

belongs to.

Chapter 7

163

Column name Description
index_id This column represents the ID of the index.
partition_number This column represents the partition number of a

table, view, or index.
index_type_desc This column represents the type of the index.
avg_fragmentation_in_percent This column represents the percentage of the

logical fragmentation for indexes or the extent
fragmentation for HEAP in IN_ROW_DATA
allocation unit.

fragment_count This column represents the number of fragments
in leaf-level pages belonging to the IN_ROW_DATA
allocation unit.

avg_fragment_size_in_pages This column represents the average number of
pages in a fragment belonging to the IN_ROW_
DATA allocation unit.

page_count This column represents the total number of pages in
an index.

avg_page_space_used_in_
percent

This column represents the percentage of average
space used by all pages. This column is very
important as it tells you how much of your pages are
filled, on average.

record_count This column represents total number of records in
an index or HEAP.

There are two more index-related dynamic management functions that provide useful index-
related statistics that you would like to explore. These views are as follows:

ff sys.dm_db_index_operational_stats (DMF)

ff sys.dm_db_missing_index_columns (DMF)

Dynamic Management Views and Dynamic Management Functions

164

Monitoring performance of TempDB
database

We know that the TempDB database is one of the system databases in SQL Server and
SQL Server heavily depends on TempDB for its normal functioning. Therefore, monitoring
performance-related statistics of TempDB database is very important. Quite a few times,
we see that people just don't care about TempDB database and tend to ignore looking after
its performance. This is not a good idea because the reasons for SQL Server's inefficient
performance may be hiding behind the suboptimal performance of TempDB database. That's
why you should consider monitoring TempDB database time-to-time.

You should know that SQL Server uses TempDB database while performing certain kinds of
operations on a large data. Some of them perform grouping or sorting operations in query,
cursor operations, version store operation, online index creations, and storing user objects,
such as local or global temporary tables and table variable data. As a DBA, you may need to
keep a watch on certain statistics for TempDB database to find out the usage pattern of the
TempDB database to identify resource-consuming operations. You can get this information by
using database-related dynamic management views.

But, to work with most of the database-related dynamic management views, it's important
that you know the basic concept of how SQL Server internally organizes its data physically.
So, let's first do some groundwork by understanding the role of pages and extents.

As you may know, SQL Server stores its database primarily in two types of files. These are data
file (.mdf and .ndf file) and log file (.ldf file). Here, our discussion on pages and extents is
applicable to, and is in context of, data files only. So, do not get confused between pages and
extents, and log files, as they are not applicable to log files.

Data file is a type of database file where SQL Server stores its data for a database in the form
of database objects such as tables and indexes. This data file is composed of smaller storage
units called pages. A page is a block of 8 KB in size that actually stores the data.

On the other hand, extents are composed of pages. An extent is a series of 8 contiguous
pages. So, the size of an extent is 64 KB and there are 16 extents per MB.

Objects that contain data are allocated pages from these extents for data storage. There are
two types of extents and these are, uniform extent and mixed extent. A uniform extent is the
one whose data pages are dedicatedly allocated to a single object only, whereas a mixed
extent is the extent whose data pages can be allocated to up to 8 different objects. Mixed
extents are also called shared extents because they are shared amongst multiple objects.
Smaller tables are usually allocated to mixed extents initially and as soon as they get large,
they are allocated to their own uniform extents.

Chapter 7

165

Following diagram depicts the logical concept of the page, extent, uniform extent, and
mixed extent:

8 KB

Page

Extent

8 KB Page

Table-1

Uniform Extent

8 KB

Page

Mixed Extent

8 KB Page

8 KB Page

8 KB Page

Table-1

Table-2

Table-3

Table-4

Table-5

Table-6

Table-7

Table-8

8 KB Page

8 KB Page

8 KB Page

8 KB Page

In this recipe, we will learn how to monitor the performance of TempDB database. We
will learn how to identify the sessions and tasks that cause an increase in space usage
on the TempDB database.

Getting ready
In this recipe, we will run a sample query that generates 10 million rows and stores them in a
local temporary table in TempDB database. We will record and notice the difference in page
allocation and deallocation statistics for TempDB database, before and after running our
sample query.

Following is the prerequisite for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

How to do it...
Follow the steps provided here to perform this example practically:

1.	 Open SQL Server Management Studio and connect to the instance of SQL Server.

Dynamic Management Views and Dynamic Management Functions

166

2.	 In a new query window, type and execute the following T-SQL script:

USE tempdb
GO

--Checking if the table exists
--and dropping if it exists
IF OBJECT_ID('[dbo].[tbl_TempDBStats]') IS NOT NULL
 DROP TABLE [dbo].[tbl_TempDBStats]

--Creating a table to store
--page allocation details
CREATE TABLE [dbo].[tbl_TempDBStats] (
 session_id SMALLINT
 ,database_id SMALLINT
 ,user_objects_alloc_page_count BIGINT
 ,user_objects_dealloc_page_count BIGINT
 ,internal_objects_alloc_page_count BIGINT
 ,internal_objects_dealloc_page_count BIGINT
)
GO

--Collect page allocation details for
--current session before executing
--sample query.
INSERT INTO [dbo].[tbl_TempDBStats]
SELECT
 session_id
 ,database_id
 ,user_objects_alloc_page_count
 ,user_objects_dealloc_page_count
 ,internal_objects_alloc_page_count
 ,internal_objects_dealloc_page_count
FROM sys.dm_db_session_space_usage WHERE session_id = @@SPID
GO

--Checking if the table exists
--and dropping if it exists
IF OBJECT_ID('TempDB.dbo.#tbl_SampleData') IS NOT NULL
 DROP TABLE TempDB.dbo.#tbl_SampleData
GO

--Generating 10 million records and inserting
--them into temporary table
SELECT TOP 10000000
 SC1.object_id
 ,SC1.column_id

Chapter 7

167

 ,SC1.name
 ,SC1.system_type_id
INTO TempDB.dbo.#tbl_SampleData
FROM sys.columns AS SC1
CROSS JOIN sys.columns AS SC2
CROSS JOIN sys.columns AS SC3
ORDER BY SC1.column_id
GO

--Collect page allocation details for
--current session after executing
--sample query.
INSERT INTO [dbo].[tbl_TempDBStats]
SELECT
 session_id
 ,database_id
 ,user_objects_alloc_page_count
 ,user_objects_dealloc_page_count
 ,internal_objects_alloc_page_count
 ,internal_objects_dealloc_page_count
FROM sys.dm_db_session_space_usage WHERE session_id = @@SPID
GO

3.	 Now, run the following query and notice the difference in the statistics before and
after executing of the sample query:

USE tempdb
GO

--Notice the difference in page allocation
--and deallocation statistic details by looking at
--collected data.
SELECT * FROM [dbo].[tbl_TempDBStats]
GO

4.	 You should see a result similar to the one given in the following screenshot. Note
that the figures may vary on your system compared to what the following screenshot
is showing:

Dynamic Management Views and Dynamic Management Functions

168

5.	 Run the query as shown in the following script to retrieve the space usage statistics
of TempDB database files:

--Get file space usage statistics by calculating
--space of unallocated and allocated pages
SELECT
 DB_NAME(FSU.database_id) AS DatabaseName
 ,MF.Name As LogicalFileName
 ,MF.physical_name AS PhysicalFilePath
 ,SUM(FSU.unallocated_extent_page_count)*8.0/1024
 AS Free_Space_In_MB,
 SUM(
 FSU.version_store_reserved_page_count
 + FSU.user_object_reserved_page_count
 + FSU.internal_object_reserved_page_count
 + FSU.mixed_extent_page_count
)*8.0/1024 AS Used_Space_In_MB

FROM sys.dm_db_file_space_usage AS FSU
INNER JOIN sys.master_files AS MF
ON FSU.database_id = MF.database_id
 AND FSU.file_id = MF.file_id
GROUP BY FSU.database_id,FSU.file_id,MF.Name,MF.physical_name

6.	 Observe the result returned by the query.

How it works...
At the beginning of the first script, we first create a table tbl_TempDBStats in order to be
able to collect page allocation and deallocation statistic data for the current session. Before
creating the table, we first check if the table already exists. If it exists, we simply drop the
existing table and create a new one.

Next, page allocation statistics for TempDB database are collected for the current session
and we store them in our newly created table tbl_TempDBStats. To do this, we query
sys.dm_db_session_space_usage. We fetch total number of allocated and deallocated
pages by both user-defined objects and internal system objects. The result set returned by
the DMV is inserted into tbl_TempDBStats. Notice how we filter the result of sys.dm_db_
session_space_usage by comparing the session_id with @@SPID metadata function. @@
SPID returns the session ID for the current connection. So, only statistics data for our current
session is recorded and stored in the table.

Chapter 7

169

Next is a sample query that simply generates 10 million records by cross-joining
sys.columns catalog view with itself multiple times, and inserts the resulting data into
temporary table, #tbl_SampleData, by using SELECT INTO syntax. Because we inserted
records into temporary table, it required I/O operation to be performed on TempDB database
and SQL Server performed allocation and deallocation of space at page-level in order to
complete the request. SQL Server updates the internal statistics which are returned by
sys.dm_db_session_space_usage once the request is completed.

After the execution of the sample query is completed, the updated page allocation and
deallocation statistics are collected by querying sys.dm_db_session_space_usage
and inserting them into tbl_TempDBStats table.

Once the statistics data is gathered into the table, we then review the table data by executing
a query to examine how many pages were allocated and deallocated in TempDB database by
current session when the sample query was executed.

Finally, we fetch the space usage statistics for the file using a query that uses sys.dm_
db_file_space_usage. This view returns the number of unallocated pages, and pages
reserved by version store, user-defined objects, and internal objects. We calculate free
space and used space in MB by calculating all the deallocated and allocated pages
across all the files.

There's more...
The following section discusses the DMVs and DMFs that we used in this recipe in more detail.

sys.dm_db_session_space_usage (DMV)
sys.dm_db_session_space_usage is a the dynamic management view. This DMV
returns the total number of pages that have been allocated to and deallocated from TempDB
database by each session. Pages can be allocated to or deallocated from user-defined objects
or system objects. This DMV can be used to find the session that is making most of the
TempDB database. Following are some of the useful columns of this DMV:

Column name Description
session_id This column represents the ID of

the session.
database_id This column represents the internal ID

of the database assigned by SQL Server.
For TempDB database, database_id is
always 2.

user_objects_alloc_page_count This column represents the total number
of pages that have been allocated to or
reserved for user-defined objects by
the session.

Dynamic Management Views and Dynamic Management Functions

170

Column name Description
user_objects_dealloc_page_count This column represents the total number

of pages that have been deallocated or/
and are no longer reserved for user-defined
objects by the session.

internal_objects_alloc_page_count This column represents the total number
of pages that have been allocated to or
reserved for internal objects by the session.

internal_objects_dealloc_page_
count

This column represents the total number of
pages that have been deallocated or/and
are no longer reserved for internal objects
by the session.

sys.dm_db_file_space_usage (DMV)
sys.dm_db_file_space_usage is a dynamic management view. This DMV returns space
usage details by providing page allocation and deallocation details for each TempDB file.
This DMV can be used to monitor the number of unallocated, allocated, or reserved pages
in TempDB database. The following are some of the useful columns of this DMV:

Column name Description
file_id This column represents the internal ID of the

file assigned by SQL Server. This file_id
can be associated and used in Joins with
sys.master_files system catalog view
along with database_id.

unallocated_extent_page_count This column represents the total number of
pages in unallocated extents. This column
can be used to calculate free space in
TempDB database.

version_store_reserved_page_count This column represents the total number
of pages in uniform extents that have been
allocated or reserved for version store
mechanism.

user_object_reserved_page_count This column represents the total number
of pages in uniform extents that have been
allocated or reserved for user-defined objects.

internal_object_reserved_page_
count

This column represents the total number
of pages in uniform extent that have been
allocated or reserved for internal objects.

Chapter 7

171

Remember that these dynamic management views are used and are applicable only for
TempDB database.

This recipe demonstrated how we can monitor the usage of TempDB database by a
particular session.

Sometime we need to investigate further. Just finding out the session that is using TempDB
database heavily may not be enough. It may be required to discover the queries that are
resource-intensive and put load on TempDB database.

There is another dynamic management view that can be used for this purpose. This is sys.
dm_db_task_space_usage. With this DMV, you can know which task is consuming how many
resources in TempDB database. It returns total number of pages that have been allocated to
and deallocated from TempDB database by each task. Pages can be allocated or deallocated
for user-defined objects or system objects. This DMV can be used to find out the individual task
which consumes TempDB database a lot. The following is a brief overview of this DMV:

Column name Description
session_id This column represents the ID of the session.
request_id This column represents the ID of the request

within a session. This request_id can be
mapped with sys.dm_exec_requests.

exec_context_id This column represents the execution context
ID of the task.

database_id This column represents the internal ID of
the database assigned by SQL Server. For
TempDB database, database_id is
always 2.

user_objects_alloc_page_count This column represents the total number of
pages that have been allocated to or reserved
for user-defined objects by the task.

user_objects_dealloc_page_count This column represents the total number of
pages that have been deallocated or are no
longer reserved for user-defined objects by
the task.

internal_objects_alloc_page_count This column represents the total number of
pages that have been allocated or reserved for
internal objects by the task.

internal_objects_dealloc_page_
count

This column represents the total number of
pages that have been deallocated or are no
longer reserved for internal objects by
the task.

Dynamic Management Views and Dynamic Management Functions

172

Discovering responsible T-SQLquery or T-SQL batch
To discover a query or query batch associated with a task that is consuming
high resources of TempDB database, join sys.dm_db_task_space_
usage with sys.dm_exec_requests on session_id and request_
id, and then CROSS APPLY the result set with sys.dm_exec_sql_
text() function by passing sql_handle column of sys.dm_exec_
requests. sys.dm_exec_sql_text() function will return the SQL text
of the request associated with a task.

Monitoring disk I/O statistics
As a DBA, you often have to face disk I/O-related problems with your databases that might
have been introduced due to a number of reasons, and you have to analyze and troubleshoot
I/O performance of your databases. SQL Server provides certain DMVs and DMFs that can be
specifically used for troubleshooting such I/O-related performance issues.

This recipe will teach you how you can monitor your disk I/O subsystem for your databases
to identify any possible I/O bottlenecks. By monitoring how your databases consume disk
subsystem, you can distinguish the I/O usage patterns across different databases and can
make your decisions related to physical structure of the databases. You can identify those
databases that are causing or demanding high number of I/O operations. Then, you may
either want to move the databases having justified high number of I/O operations on separate
disks, or you may want to investigate databases further for high number of I/O operations.

Getting ready
This example will show you how you can monitor database files for I/O operations. We will
execute a sample query against AdventureWorks2012 database and monitor the I/O
operations by using DMVs and DMFs.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff Sample AdventureWorks2012 database on the instance of SQL Server. For more
details on how to install AdventureWorks2012 database, please refer to the Preface
of this book.

Chapter 7

173

How to do it...
The following are the steps to perform the tasks of this recipe:

1.	 Open SQL Server Management Studio and connect to the instance of SQL Server
hosting AdventureWorks2012 database.

2.	 In a new query window, type and execute the query as shown in the following script to
monitor the data files and log files of all databases on the instance of the SQL Server:

--Monitor the database files for all databases.
SELECT
DB_NAME(VFS.database_id) AS DatabaseName
 ,MF.name AS LogicalFileName
 ,MF.physical_name AS PhysicalFileName
 ,CASE MF.type
 WHEN 0 THEN 'Data File'
 WHEN 1 THEN 'Log File'
 END AS FileType
 ,VFS.num_of_reads AS TotalReadOperations
 ,VFS.num_of_bytes_read TotalBytesRead
 ,VFS.num_of_writes AS TotalWriteOperations
 ,VFS.num_of_bytes_written AS TotalBytesWritten
 ,VFS.io_stall_read_ms AS TotalWaitTimeForRead
 ,VFS.io_stall_write_ms AS TotalWaitTimeForWrite
 ,VFS.io_stall AS TotalWaitTimeForIO
 ,VFS.size_on_disk_bytes AS FileSizeInBytes
FROM sys.dm_io_virtual_file_stats(NULL,NULL) AS VFS
INNER JOIN sys.master_files AS MF
 ON VFS.database_id = MF.database_id AND VFS.file_id = MF.file_
id
ORDER BY VFS.database_id DESC
GO

3.	 Next, open a second instance of query window. In this query window, type and
execute the sample query on the AdventureWorks2012 database as shown
in the following script:

USE [AdventureWorks2012]
GO

--Clear the data cache.
DBCC DROPCLEANBUFFERS
GO

Dynamic Management Views and Dynamic Management Functions

174

--Exceute a sample query.
SELECT *
FROM [Sales].[SalesOrderDetail]
GO

4.	 Now, run the following query in the first query window to notice the number of
read operations and number of bytes read after running the sample query in the
previous step:

USE [AdventureWorks2012]
GO

--Monitor the database files for AdventureWorks2012.
--Observe the read operations.
SELECT
 DB_NAME(VFS.database_id) AS DatabaseName
 ,MF.name AS LogicalFileName
 ,MF.physical_name AS PhysicalFileName
 ,CASE MF.type
 WHEN 0 THEN 'Data File'
 WHEN 1 THEN 'Log File'
 END AS FileType
 ,VFS.num_of_reads AS TotalReadOperations
 ,VFS.num_of_bytes_read TotalBytesRead
 ,VFS.num_of_writes AS TotalWriteOperations
 ,VFS.num_of_bytes_written AS TotalBytesWritten
 ,VFS.io_stall_read_ms AS TotalWaitTimeForRead
 ,VFS.io_stall_write_ms AS TotalWaitTimeForWrite
 ,VFS.io_stall AS TotalWaitTimeForIO	
 ,VFS.size_on_disk_bytes AS FileSizeInBytes
FROM sys.dm_io_virtual_file_stats(DB_ID(),NULL) AS VFS
INNER JOIN sys.master_files AS MF
 ON VFS.database_id = MF.database_id AND VFS.file_id = MF.file_
id
ORDER BY VFS.database_id DESC
GO

5.	 Execute the query as shown in the following script to inspect if there are any pending
I/O operations to be performed on any database files on SQL server:
--Monitor database files for any
--pending I/O requests.
SELECT
 DB_NAME(VFS.database_id) AS DatabaseName
 ,MF.name AS LogicalFileName
 ,MF.physical_name AS PhysicalFileName

Chapter 7

175

 ,CASE MF.type
 WHEN 0 THEN 'Data File'
 WHEN 1 THEN 'Log File'
 END AS FileType
 ,PIOR.io_type AS InputOutputOperationType
 ,PIOR.io_pending AS Is_Request_Pending
 ,PIOR.io_handle
 ,PIOR.scheduler_address
FROM sys.dm_io_pending_io_requests AS PIOR
INNER JOIN sys.dm_io_virtual_file_stats(DB_ID('[AdventureWorks2012
]'),NULL) AS VFS
ON PIOR.io_handle = VFS.file_handle
INNER JOIN sys.master_files AS MF
ON VFS.database_id = MF.database_id AND VFS.file_id = MF.file_id
GO

How it works...
In the first query, we examined the data and log files for all the databases by using the sys.
dm_io_virtual_file_stats() function. It accepts the following two parameters:

Parameter name Description
database_id This is the internal ID of a database assigned by SQL Server. If

database_id is specified, then this function returns I/O statistics
details for specified database only. If database_id is NULL then I/O
statistics details for all databases is returned.

file_id This is the internal ID of a database file assigned by SQL Server. If
file_id is specified then this function returns I/O statistics details
for specified file of a particular database. If file_id is NULL then I/O
statistics details for all databases is returned.

Because we are passing NULL value for both parameters I/O statistics details for all the files
of all the databases will be returned. We joined the output of the sys.dm_io_virtual_
file_stats() function with the sys.master_files system catalog view on database_
id to retrieve database file details. The sys.master_files returns the list of data and the
log file details of all the databases. We determine whether a file is a data file or a log file by
checking the type column of sys.master_files.

We then executed the sample query shown against AdventureWorks2012 that simply
retrieves the records from Sales.SalesOrderDetails table. Before running this query we
cleared the data cache by running the DBCC DROPCLEANBUFFERS command to make sure
that the query reads data from the disk and not from the data cache.

Dynamic Management Views and Dynamic Management Functions

176

Remember that you should not run the DBCC DROPCLEANBUFFERS
command on the production database server. Doing so clears the data
cache of SQL Server and forces subsequent queries to read data from
disk, which hits the performance. However, you may want to use the DBCC
DROPCLEANBUFFERS command while performing query tuning in the
development environment.

After running the sample query against the AdventureWorks2012 database, we again
reviewed the IO statistics details by running sys.dm_io_virtual_file_stats() function,
but this time by specifying the database_id of the current database by calling DB_ID()
system metadata function. This query returns the IO statistics details only for the current
database, which happens to be AdventureWorks2012 in our case. You can notice that
the values of num_of_reads and num_of_bytes_read have been increased after we
run our sample query. This is due to the physical read operation caused by the query in the
previous step. It increased the count of num_of_reads and added the number of bytes to
num_of_bytes_read that it had read.

Finally we executed query that uses sys.dm_io_pending_io_requests. This query helps
us to track any pending I/O operations. Column io_handle represents the internal handle
of the file on which I/O operation is supposed to be performed. To retrieve file-specific details
from sys.master_files system catalog view, we first joined the output of sys.dm_io_
pending_io_requests with the output of sys.dm_io_virtual_file_stats() function
by having a join condition on io_handle and file_handle columns and then eventually
joined the resulting output with sys.master_files on database_id column.

For this simple example, it is unlikely that sys.dm_io_pending_io_requests reports
any pending I/O request if you are running these queries on standalone SQL Server. On
standalone environment, where there are no other queries running on SQL server, there is
hardly any contention between I/O requests and the query gets executed immediately that we
can hardly notice any pending I/O request. However, on production server, where there are a
number of I/O resource-consuming queries running, you may frequently notice pending I/O
requests reported by sys.dm_io_pending_io_requests.

There's more...
The following section discusses the DMVs and DMFs that we used in the recipe in more detail.

dm_io_virtual_file_stats (DMF)
dm_io_virtual_file_stats is a dynamic management function and provides disk input/
output statistics for the read/write operations performed on data files and log files of all or
a given database. It accepts two parameters, which are database_id and file_id. The
following are some of the useful columns of this DMF:

Chapter 7

177

Column name Description
num_of_reads This column represents the total number of read operations that

have been performed on the file.
num_of_bytes_read This column represents the total number of bytes that have been

read from the file.
num_of_writes This column represents the total number of write operations that

have been performed on the file.
num_of_bytes_written This column represents the total number of bytes that have been

written to the file.
io_stall_read_ms This column represents the total time duration in milliseconds

during which processes waited for performing read operations
on the file.

io_stall_write_ms This column represents the total time duration in milliseconds
during which processes waited for performing write operations
on the file.

io_stall This column represents the total time duration in milliseconds
during which the processes waited for performing both, read and
write operations on the file.

size_on_disk_bytes This column represents the size in bytes of a file on the disk.

dm_io_pending_io_requests (DMV)
dm_io_pending_io_requests is a dynamic management view that returns a list of
requests that are pending for input/output operations on a file. Following are some of the
columns of this DMV:

Column name Description
io_type This column represents the type of I/O request that is pending.
io_pending This column represents whether the request is indeed pending for

I/O operation or the I/O request has been completed but SQL Server
is yet to remove it from the list of pending I/O requests.

io_handle This column represents the file handle of the file on which I/O
operation is to be performed.

scheduler_address This column represents the address of the scheduler to which a
particular I/O request belongs.

Dynamic Management Views and Dynamic Management Functions

178

The I/O statistics provided by sys.dm_io_virtual_file_stats() function and sys.
dm_io_pending_io_requests are very useful in troubleshooting the issues with disk
subsystem. You can monitor I/O operations being performed on files by looking at their
usage statistics. You can easily find out database files having high degree of disk usage,
with frequent resource-intensive read/write operations being performed on them, degrading
the disk I/O throughput and thus causing I/O bottlenecks. Once you identify the files and
databases responsible for the degradation of the I/O performance, you can either investigate
the root cause of such a high degree of I/O operations or move those databases/files to
different physical disks.

8
SQL Server Cache

and Stored Procedure
Recompilations

In this chapter we will cover:

ff Monitoring compilations and recompilations at instance level, using Reliability and
Performance Monitor

ff Monitoring recompilations using SQL Server Profiler

Introduction
When a query, a batch, or a stored procedure is submitted to SQL Server for execution for the
first time, the query gets parsed and then compiled. The result of a compiled query is a query
plan that is cached in the procedure cache. The procedure cache is a portion of memory that
SQL Server allocates to cache its query plans.

When the query is executed, an execution plan with its execution context is derived from the
cached query plan, in order to save time during query execution, because query compilation
is quite a heavy and long process. If multiple users execute the same reusable query from
multiple sessions, the same query plan is used with different execution contexts. Each
execution plan has its own execution context (user and session-specific information) details
with it. Eventually, these execution plans get executed. Subsequent execution of the same
query can reuse the cached version of the plan, and the compilation step is skipped.

People often get confused between "query compilation" and "query recompilation". However,
there is a difference between the two.

SQL Server Cache and Stored Procedure Recompilations

180

Query compilation can be defined as the process of compiling a query and generating its
query plan, for query execution, for those queries that don't already have a query plan present
in the procedure cache.

Query recompilation can be defined as the process of compiling a query and generating a
new, different query plan for the query whose query plan is already present in the procedure
cache but cannot be used because the query plan is no longer valid for query execution.
A query or stored procedure can also be explicitly marked for recompilation with T-SQL
command options.

Query plan reusability refers to the ability of a query to be executed by reusing an existing
execution plan from cache without the query being recompiled. So, a query whose
execution plan is already cached does not have to pass through the phase of compilation
or recompilation and execution plan generation. Thus, plan reusability is an ideal factor for
improved performance in SQL Server, when a large number of query requests is processed at
a time. So, in your database environment, if you see frequent compilations and recompilations
for common queries, you are most probably having a recompilation issue and that harms SQL
Server performance. However, it's important to know that in some specific situations, query
recompilation can be beneficial. For example, to avoid the parameter sniffing problem, you
would want to force a recompile to a specific query. Parameter sniffing occurs when a query
executes and generates a good execution plan for a particular parameter value based on its
selectivity and number of returning rows but uses the same execution plan for a subsequent
query with different parameter values, which can be sub-optimal for that specific parameter
value, based on its selectivity and number of returning rows.

Don't underestimate the overhead of compilation/recompilation on
your SQL server. A query compilation or recompilation may take a few
milliseconds and it may seem trivial at first. However, if you have a
recompiling query that is hitting your database hundreds of times in a few
seconds, continuously, and if you have several recompiling queries of this
type, in your database application, your CPU will quite frequently be busy
just compiling/recompiling and generating query plans. In this type of
scenario, the degradation of your SQL server performance becomes quite
obvious. Therefore, always consider minimizing recompilation issues and
maximizing the query plan reusability in your SQL server environment.

However, we cannot evade recompilation issues completely. So, let's see some of the possible
factors of query compilation and query recompilation:

ff The query is executed for the first time, it has to be compiled to generate its
query plan.

ff The DBCC FREEPROCCACHE command is executed on SQL Server, it clears the plan
cache or procedure cache of SQL Server and removes all cached query plans from
memory. This causes any query to be compiled the next time it is run.

Chapter 8

181

ff The DBCC FLUSHPROCINDB command is issued on SQL Server, it removes all
cached query plans for a particular database. If, after executing this command on a
particular database, any query execution request comes for that particular database,
it becomes essential for the query to be compiled again due to non-existence of its
query plan in cache.

ff Restarting the SQL Server service also clears the procedure cache of SQL Server
and removes all cached query plans from the memory.

ff While performing other memory-consuming tasks, or if the procedure cache is full
and requests to execute some new queries whose query plans do not exist in the
procedure cache, SQL Server may need to remove few query plans (generally old
query plans that are reused infrequently) from memory to make room for new
query plans.

ff The schema of the object that is referenced by a query has been changed, for
example, if the definition of a column in a table is changed, if a column is dropped
from the table, or if an index is created or rebuilt.

ff The statistics of tables referenced by the query are updated. Statistics can be
updated by the sp_createstats, sp_updatestats, or UPDATE STATISTICS
T-SQL commands, by rebuilding an index, or automatically by SQL Server if statistics
are outdated.

ff An object does not exist at query compile time. For example, definitions of temporary
tables in a stored procedure may cause a recompilation issue.

ff A stored procedure has been declared with the WITH RECOMPILE option.

ff A stored procedure is executed with the WITH RECOMPILE option.

ff A stored procedure is recompiled with the sp_recompile system stored procedure.

ff A query is executed with the OPTION (RECOMPILE) query hint.

ff The following SET options may also cause recompilation of stored procedures in
which they are used:

�� ANSI_NULL_DFLT_OFF

�� ANSI_NULL_DFLT_ON

�� ANSI_NULLS

�� ANSI_PADDING

�� ANSI_WARNINGS

�� ARITHABORT

�� CONCAT_NULL_YIELDS_NULL

�� DATEFIRST

�� DATEFORMAT

�� FORCEPLAN

SQL Server Cache and Stored Procedure Recompilations

182

�� LANGUAGE

�� NO_BROWSETABLE

�� NUMERIC_ROUNDABORT

�� QUOTED_IDENTIFIER

DBCC FREEPROCCACHE and DBCC FLUSHPROCINDB
Never run the DBCC FREEPROCCACHE and DBCC FLUSHPROCINDB
commands on a production server. DBCC FREEPROCCACHE clears the
entire SQL Server procedure cache, whereas DBCC FLUSHPROCINDB
clears the procedure cache for a given database. Clearing the
procedure cache causes queries to compile again in their subsequent
executions, which degrades the performance of SQL Server.

As we saw, there can be a number of reasons for compilations and recompilations; we must
identify the correct reasons for a recompilation issue.

In this chapter, we will see how we can investigate and analyze recompilation issues.

Monitoring compilations and recompilations
at instance level using Reliability and
Performance Monitor

Imagine that you have set up your production SQL server that is hosting several databases
used by different applications. Initially your SQL server responds smoothly, but as the number
of query requests increases, becoming larger day by day, and when it reaches several hundred
per second, you notice that queries take a little longer to execute and your SQL server CPU
usage is higher than what you expected.

As you may know, there can be a number of reasons for SQL server to respond poorly, such as:

ff Your physical database design and database file placement is not optimized

ff Databases are missing proper indexes

ff Queries are not optimized and are poorly written

ff Statistics are out-of-date, and query optimizer is not able to generate an optimum plan

ff Queries face blocking issues

ff You need to upgrade the CPU or increase the number of CPU cores

ff The server does not have enough memory

ff There is a problem with the disk I/O system

Chapter 8

183

This is not a complete list of reasons!

Recompilation can be one of the issues to cause slow query response. If the recompilation
issue is severe, it can constantly keep the CPU busy. If you want to verify that your database
server is not facing a recompilation issue, monitoring the SQL Server instance for compilation
and recompilation events can be useful.

In this recipe, we will learn how to monitor compilation and recompilation events at server-
level with Reliability and Performance Monitor.

Getting ready
In this recipe, we will gather compilation- and recompilation-related statistics for the following
performance counters, using Reliability and Performance Monitor:

ff SQL Server:SQL Statistics:SQL Compilations/sec

ff SQL Server:SQL Statistics:SQL Re-Compilations/sec

For this, we will execute a script that will create a stored procedure named usp_
GetSalesOrderDetail_ProductID. This stored procedure will accept ProductID,
and based on ProductID, it will return records from the Sales.SalesOrderDetail table.

We will call this stored procedure twice. However, before we call the stored procedure
a second time, we will rebuild the index defined on the ProductID column, so that it
causes recompilations.

Before you can continue with the recipe, here are the prerequisites that you should fulfill:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff A sample AdventureWorks2012 database on the SQL Server instance

How to do it...
Follow the ensuing steps to capture compilation and recompilation events through Reliability
and Performance Monitor:

1.	 To start Reliability and Performance Monitor:

i.	 Press the Windows + R key combination to display the Run dialog box.

ii.	 In this dialog box, type perfmon.exe and press Enter.

2.	 When Reliability and Performance Monitor is started, to switch to Performance
Monitor view, click on the Performance Monitor node, under the Monitoring Tools
node, in the left-hand side console tree.

SQL Server Cache and Stored Procedure Recompilations

184

3.	 Press the Delete key or click on the X button in the toolbar, to delete any existing
performance counter. Click on the + button in the toolbar to add counters.

4.	 In the Add Counters dialog box, under the Select counters from computer:
dropdown list, type the name of the computer or let it be <Local computer>
if you are monitoring a local machine.

5.	 In the list of available performance counter objects, expand SQL Server:SQL
Statistics and select SQL Compilations/sec and SQL Re-Compilations/sec,
with the mouse, while holding down the Ctrl key.

6.	 Click on the Add > > button. This will add the SQL Compilations/sec and SQL
Re-Compilations/sec counters to the Added counters list, on the right-hand
side. After adding these two counters, your screen should look as shown in the
following screenshot:

7.	 In Reliability and Performance Monitor, click on the Action menu and select
Properties.

8.	 In the General tab of the Performance Monitor Properties dialog box, change
the value of Duration to 60 seconds in the Graph elements section. The following
screenshot shows the Performance Monitor Properties dialog box with an updated
Duration value:

Chapter 8

185

9.	 Click on the Graph tab of the Performance Monitor Properties dialog box, and
change the value of Maximum to 25 in the Vertical scale section. The following
screenshot shows the Performance Monitor Properties dialog box with an updated
Maximum value:

SQL Server Cache and Stored Procedure Recompilations

186

10.	 Now, open SQL Server Management Studio and establish a connection with the SQL
server hosting the AdventureWorks2012 database.

11.	 In the query window, type the following T-SQL script, and then execute the script twice
against the AdventureWorks2012 database:
USE AdventureWorks2012
GO

--Check if stored procedure exists
--or not. If it does, drop it.
IF OBJECT_ID('dbo.usp_GetSalesOrderDetail_ProductID') IS NOT NULL
 DROP PROCEDURE dbo.usp_GetSalesOrderDetail_ProductID
GO

--Creating stored procedure
CREATE PROCEDURE dbo.usp_GetSalesOrderDetail_ProductID
(
 @ProductID INT
)AS
BEGIN
 SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,CarrierTrackingNumber
 ,OrderQty
 ,ProductID
 ,SpecialOfferID
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
 ,rowguid
 ,ModifiedDate
 FROM Sales.SalesOrderDetail
 WHERE ProductID > @ProductID
END

GO

--Execute Stored Procedure by passing it
--764 as the value of ProductID
EXECUTE usp_GetSalesOrderDetail_ProductID 764

GO

--Rebuilding an existing non-clustered

Chapter 8

187

--index defined on ProductId column
ALTER INDEX IX_SalesOrderDetail_ProductID
ON Sales.SalesOrderDetail REBUILD

--Again execute Stored Procedure by passing it
--764 as the value of ProductID
EXECUTE usp_GetSalesOrderDetail_ProductID 764
GO

12.	 Now, switch to Reliability and Performance Monitor and note the statistics for
compilations/recompilations. Also, note the spikes in the graph for compilations
and recompilations:

How it works...
In this recipe, we started by opening the Reliability and Performance Monitor tool. First,
we deleted existing performance counters and added the following ones:

ff SQL Server:SQL Statistics:SQL Compilations/sec

ff SQL Server:SQL Statistics:SQL Re-Compilations/sec

SQL Server Cache and Stored Procedure Recompilations

188

We then reset the value of Duration to 60 and the value of Maximum to 25, so that the
graph's maximum CPU usage value is 25 percent (on the vertical axis) and graph's maximum
time length is 60 seconds (on the horizontal axis).

After setting up Reliability and Performance Monitor, we start SQL Server
Management Studio and execute the T-SQL script that creates the stored procedure
dbo.usp_GetSalesOrderDetail_ProductID. The script first checks whether the
stored procedure already exists. If it exists, it is dropped before it is recreated. The stored
procedure accepts a value for the @ProductID parameter, and based on the ProductID
value, it retrieves data from the Sales.SalesOrderDetail table.

We executed the stored procedure dbo.usp_GetSalesOrderDetail_ProductID by
passing 764 as ProductID. Because the stored procedure was executed for the first time,
it was compiled and then executed.

Because we wanted to cause recompilation, we rebuild an existing non-clustered index,
that is, IX_SalesOrderDetail_ProductID, which has been defined on the ProductID
column. Rebuilding an index on a table that is referenced by a stored procedure causes that
stored procedure to recompile.

After rebuilding the index, we executed dbo.usp_GetSalesOrderDetail_ProductID
a second time. Because the index IX_SalesOrderDetail_ProductID was rebuilt, the
stored procedure got recompiled and then executed.

Finally, we saw that the Reliability and Performance Monitor tool gathered statistics related
to compilation and recompilation events for the performance counters that we had added. If
the statistics/frequency of recompilation events is found to be very high, you can determine
that you are probably facing a recompilation issue.

Monitoring recompilations using SQL Server
Profiler

If you notice a large number of recompilations in the Reliability and Performance Monitor
tool and suspect that your database server is facing a recompilation issue, you would want to
confirm it by investigating the issue further, to identify which queries of which databases are
causing the recompilation issues.

To investigate the root cause of the recompilation issue, we will use SQL Server Profiler.
In this recipe, we will learn how we can trace recompilation events occurring on SQL server
for individual SQL statements and stored procedures as well. With the help of SQL Server
Profiler, we can identify the databases where recompilations occur and can identify queries
and stored procedures that cause query recompilations. After identifying recompiling queries
and stored procedures, you can look further into those queries and optimize them to minimize
recompilation issues.

Chapter 8

189

Getting ready
In this recipe, we will trace the following recompilation-related events through SQL Server Profiler:

ff SP:Recompile: This event is raised when a stored procedure is recompiled

ff SQL:StmtRecompile: This event is raised when an individual query in a batch or
stored procedure is recompiled

In order to catch these events, we will set up a scenario to produce recompilations for
stored procedures and queries. For this, we will execute a script that will create a stored
procedure named dbo.usp_GetOrderDetails_ByOrderYear. This stored procedure
will accept an integer value, representing a year value, as a parameter, and based on the
year, it will return records from the Sales.SalesOrderHeader table by creating a filter
on the OrderDate column.

We will call this stored procedure twice. However, before we call the stored procedure a
second time, we will create a non-clustered index on the OrderDate column, which will
cause stored procedure recompilation.

In another script, we will also execute two ad-hoc queries that we will run against the
Sales.SalesOrderHeader table in the AdventureWorks2012 database and retrieve
records based on the SalePersonID value. We will see how the OPTION (RECOMPILE)
query hint forces a query to recompile and raise a SQL:StmtRecompile event in SQL Trace.

Before you can continue with the recipe, here are the prerequisites that you should fulfill:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff Sample AdventureWorks2012 database on the instance of SQL Server

How to do it...
The following steps will enable you to capture recompilation events through SQL Server Profiler:

1.	 Start SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
connection details of the SQL server hosting the AdventureWorks2012 database
and click on Connect.

3.	 In the General tab for Trace Properties, select a Blank template from the Use the
template: drop-down menu.

4.	 In the Events Selection tab, check the checkboxes for the event class, for the
following events and event classes:

�� Stored Procedures

�� SP:Completed

SQL Server Cache and Stored Procedure Recompilations

190

�� SP:Recompile

�� SP:Starting

�� TSQL

�� SQL:StmtCompleted

�� SQL:StmtRecompile

�� SQL:StmtStarting

5.	 Select the following data columns and organize data columns by clicking on the
Organize Columns… button in the Events Selection tab of the Trace Properties
dialog box. The column should be organized in the order as shown here:

1.	 EventClass

2.	 TextData

3.	 EventSubClass

4.	 DatabaseName

5.	 DatabaseID

6.	 ApplicationName

7.	 Duration

8.	 SPID

6.	 Click on the Run button to run the trace in the Trace Properties dialog box.

7.	 Now, open SQL Server Management Studio and establish a connection to the SQL
server hosting the AdventureWorks2012 database.

8.	 In the query window, type the following T-SQL script, and then execute the script
against the AdventureWorks2012 database:
USE AdventureWorks2012
GO

--Check if stored procedure exists
--or not. If it does, drop it.
IF OBJECT_ID('dbo.usp_GetOrderDetails_ByOrderYear') IS NOT NULL
 DROP PROCEDURE dbo.usp_GetOrderDetails_ByOrderYear
GO

--Creating stored procedure
CREATE PROCEDURE dbo.usp_GetOrderDetails_ByOrderYear
(
 @OrderYear INT
) AS

Chapter 8

191

BEGIN
 DECLARE @FromDate DATETIME
 DECLARE @ToDate DATETIME

 SET @FromDate = CAST(@OrderYear AS VARCHAR) + '0101'
 SET @ToDate = CAST(@OrderYear+1 AS VARCHAR) + '0101'

 IF ISDATE(@FromDate)=0 OR ISDATE(@ToDate)=0
 RETURN

 SELECT
 SalesOrderID
 ,OrderDate
 ,ShipDate
 ,SalesOrderNumber
 ,CustomerID
 ,SalesPersonID
 ,SubTotal
 ,TaxAmt
 ,Freight
 ,TotalDue
 FROM Sales.SalesOrderHeader
 WHERE OrderDate>= @FromDate AND OrderDate<@ToDate

END

GO

--Execute Stored Procedure by passing it
--2007 as the value of Order Year
EXECUTE usp_GetOrderDetails_ByOrderYear 2007

GO

9.	 Now, type and execute the following queries against the AdventureWorks2012
database, to create a non-clustered index and execute the stored procedure we have
created in the previous step:
--Create nonclustered index on
--OrderDate column
CREATE INDEX idx_SalesOrderHeader_OrderDate
ON Sales.SalesOrderHeader(OrderDate)

SQL Server Cache and Stored Procedure Recompilations

192

GO

--Execute Stored Procedure by passing it
--2007 as the value of Order Year
EXECUTE usp_GetOrderDetails_ByOrderYear 2007
GO

10.	 Switch to SQL Server Profiler, and you should see the trace window with the trace
events shown in following screenshot:

Chapter 8

193

11.	 Now, in SQL Server Management Studio, type and execute the following queries in the
query window, against the AdventureWorks2012 database:
--Select data from Sales.SalesOrderHeader
--for SalesPersionID = 279
SELECT
 SalesOrderID
 ,OrderDate
 ,ShipDate
 ,SalesOrderNumber
 ,CustomerID
 ,SalesPersonID
 ,SubTotal
 ,TaxAmt
 ,Freight
 ,TotalDue
FROM Sales.SalesOrderHeader
WHERE SalesPersonID = 279

GO

--Select data from Sales.SalesOrderHeader
--for SalesPersionID = 279 but with
-- RECOMPILE query hint.
SELECT
 SalesOrderID
 ,OrderDate
 ,ShipDate
 ,SalesOrderNumber
 ,CustomerID
 ,SalesPersonID
 ,SubTotal
 ,TaxAmt
 ,Freight
 ,TotalDue
FROM Sales.SalesOrderHeader
WHERE SalesPersonID = 279
OPTION (RECOMPILE)

GO

SQL Server Cache and Stored Procedure Recompilations

194

12.	 Now, switch to SQL Server Profiler, and you should see the trace window with the
trace events shown in following screenshot:

How it works...
We first started with an SQL Trace, with Blank template, and included the following events:

ff Stored Procedures

�� SP:Completed

�� SP:Recompile

�� SP:Starting

ff TSQL

�� SQL:StmtCompleted

�� SQL:StmtRecompile

�� SQL:StmtStarting

In this recipe, we have new events—SP:Recompile and SQL:StmtRecompile. The
SP:Recompile trace event indicates the recompilation of whole stored procedure, whereas
the SQL:StmtRecompile event indicates the recompilation of individual SQL statements.

Chapter 8

195

In our trace definition, we included the EventSubClass data column. In the context of the
SP:Recompile and SQL:StmtRecompile events, the EventSubClass data column
indicates the type of recompilation that has occurred. It can be any of the following:

ff 1 = Schema Changed

ff 2 = Statistics Changed

ff 3 = Recompile DNR

ff 4 = Set Option Changed

ff 5 = Temp Table Changed

ff 6 = Remote Rowset Changed

ff 7 = For Browse Perms Changed

ff 8 = Query Notification Environment Changed

ff 9 = MPI View Changed

ff 10 = Cursor Options Changed

ff 11 = With Recompile Option

If you have declared your stored procedure with the WITH
RECOMPILE option, do not expect that it will raise the
SP:Recompile event in SQL Trace upon its execution. All that the
WITH RECOMPILE option instructs is not to cache the query plan for
the stored procedure and compile the stored procedure at runtime.
So, technically it is not a recompilation, but a fresh compilation.

We started the trace and executed a script that created and executed the stored procedure
dbo.usp_GetOrderDetails_ByOrderYear. Before creating the stored procedure, we
checked whether it exists (if it does, we drop and then recreate it).

The store procedure accepts an integer value, which represents a year in the OrderDate
column for which the sales data from Sales.SalesOrderHeader is to be retrieved. Based
on the passed integer year, the stored procedure extracts FromDate and ToDate values to
be used in the WHERE clause to compare the OrderDate column.

We executed the dbo.usp_GetOrderDetails_ByOrderYear stored procedure by passing
2007 as the order year, so it returns only the orders placed in the year 2007.

Because we used OrderDate in the WHERE clause of the query, in the stored procedure,
and because there is no index defined on the OrderDate column, we created an index
idx_SalesOrderHeader_OrderDate on the OrderDate column of the Sales.
SalesOrderHeader table, in next script. After creating the index, we executed the
same stored procedure again, by passing the same order year value, that is, 2007.

SQL Server Cache and Stored Procedure Recompilations

196

We saw, in SQL Server Profiler, that the second execution of the stored procedure
caused stored procedure recompilation. This resulted in raising SP:Recompile and
SQL:StmtRecompile events, and can be seen in SQL Trace. This happened due to index
creation just before executing the stored procedure for the second time.

In SQL Trace, you can even examine the cause of recompilation by looking at the
EventSubClass column. The EventSubClass column shows 1 = Schema Changed, which
means that the recompilation has occurred due to change in schema. The TextData column
indicates the SQL statement that caused the recompilation.

In the last script that we executed in this recipe, we executed two identical queries that
retrieved data from the Sales.SalesOrderHeader table, based on the SalePersonID
value as 279. The only difference between the two queries in this script is that the second
query uses the OPTION (RECOMPILE) query hint. The OPTION (RECOMPILE) query hint
instructs SQL Server to remove the query plan from the procedure cache, after its execution,
and forces recompilation the next time the query is executed. When we executed the script,
we noticed that, in SQL Trace, the SQL:StmtRecompile event was fired.

Examine the value in the EventSubClass column, which happens to be 11 – Option
(recompile). This suggests that the query hint OPTION (RECOMPILE) was used.

From the other columns, such as DatabaseName and ApplicationName, you can find out in
exactly which database recompilations occurred, and from which application.

There's more...
For further recompilation analysis, you can use the following dynamic management views
and functions:

ff sys.dm_exec_cached_plans

ff sys.dm_exec_sql_text()

ff sys.dm_exec_query_stats

You can further analyze the causes of recompilations, based on the result of given DMVs and
DMFs. By using these DMVs and DMFs in combination, you can identify the queries whose
query plans are reused frequently.

For more information on query compilation and recompilation, you can refer to two good
whitepapers that can be found at the following locations:

ff http://msdn.microsoft.com/en-us/library/
ee343986%28v=sql.100%29.aspx

ff http://technet.microsoft.com/library/Cc966425

However, these whitepapers refer to older versions of SQL Server, though the information is
applicable to SQL Server 2012 as well.

9
Implementing Indexes

In this chapter we will cover:

ff Increasing performance by creating a clustered index

ff Increasing performance by creating a non-clustered index

ff Increasing performance by covering index

ff Increasing performance by including columns in an index

ff Improving performance by a filtered index

ff Improving performance by a columnstore index

Introduction
Indexes are one of the most powerful objects in the RDBMS system, though the index
itself is not a relational concept. It significantly reduces disk I/O and logical reads, to
boost up the performance of the SELECT statement by locating proper data without even
scanning the whole table. That is why it is mandatory to have a proper index on proper
column(s) of the table. Missing indexes or Indexes on improper column(s) could start creating
performance-related issues, such as implanting a wrong execution plan, which may create
high I/O use and logical reads. Indexes are a double-edged sword, so use them with caution,
otherwise it may be harmful for performance. This is because indexes come with a little
overhead for DML statements, which requires storage space on the disk, and keeping
your index up to date with changing data is also one of the overheads.

Implementing Indexes

198

We could like to compare indexes to an English dictionary (this is really a widely used analogy
for indexes). Suppose we are searching for the meaning of the word "Treasure", we are sure
we have to search for it on the pages where all the words starting with "Tr" are listed. Once we
come across words starting with "Tr", we don't need to search up to the end of the dictionary.
For instance, if the words starting with "Tr" are listed from page number 725 to 729, we have
to look at only those five pages. If we don't find "Treasure" within them, we will not find the
meaning of that word in that dictionary.

Indexes are stored in the form of a B-Tree in SQL Server. Considering each index page as one
node, the top-most node is called root and the bottom-most nodes in Index B-Tree are called
leaf nodes. Any node between the root and a leaf node is called an intermediate node.

The leaf node contains the actual data pages of a database table. The root node and the
intermediate node could have Key Value(s), and pointers to another intermediate node,
downwards from the current node.

The following image shows the basic structure of an index:

contain key value + pointer to

Intermediate Page

contain Keyvalue + pointer to

LEAF pages

contain actual data row

root page

Intermediate Page Intermediate Page

L

E

A

F

L

E

A

F

L

E

A

F

L

E

A

F

L

E

A

F

L

E

A

F

L

E

A

F

Increasing performance by creating a
clustered index

Any RDBMS supports the functionality to perform the INSERT, UPDATE, and DELETE
operations, and retrieve the data with the SELECT statement. As time passes by, data will
increase in the database, and it will start creating an issue of slow retrieval of data whenever
the SELECT statement is processed.

RDBMS is supposed to support a very large-scale database, especially when you are talking
about SQL Server 2012. So, how can we eliminate this slow performance issue? Well, this is
when index makes an entry into the life of a database administrator!

Chapter 9

199

Prevention is always better than cure, so it is suggested that you implement proper indexes
and keep changing the indexes over a period of time, if needed, even before performance
issues start arising.

How to choose a proper field for the index defined in this recipe, and how to maintain
the index properly and change it, will be covered in the next chapter—Chapter 10,
Maintaining Indexes.

A clustered index is the base of all indexes; without it, the database table would be called a
heap. The clustered index stores physically sorted data, and that is the reason we can have
only one clustered index per table. Each clustered index has a row in the sys.partitions
catalog view, with the value of Index_ID as 1.

Clustered indexes can be defined in one or more than one column (composite index).
A clustered index should be on the column(s) that are going to be used the maximum
amount of time in search ranges.

Getting ready
There are some prerequisites that need to be checked before starting to work with clustered
indexes. We have to be prepared with some information, such as:

ff Which table needs a clustered index

ff Which column(s) is/are the prime candidate(s) for the index

A column should be chosen after considering the following facts:

ff The column should contain a large number of distinct values. If you have a Gender
column, which probably has two values—M for Male and F for Female—it shouldn't
be selected as a clustered index. Instead, choose the Birth Date column or maybe
a combination of First Name and Last Name columns, or maybe purchase order ID,
sales order ID, and so on.

ff Assigning of Primary Key to a column would create a clustered index on that column,
by default. However, this is not mandatory; you can change it to a non-clustered index
if you want to.

ff The column or columns should have high selectivity. By high selectivity, it means
that the column is being used frequently in the WHERE, JOIN, ORDER BY, or
GROUP BY clauses.

ff The columns should be widely used with search operators, such as >, <, >=, <=,
BETWEEN, or IN, and return large result sets.

ff The column should be short, like a wide key-value. This would increase the depth
of the clustered index and reduce the performance a bit. Also, increase the size of
a non-clustered index, as a Key Column value is present as a reference in all non-
clustered indexes.

Implementing Indexes

200

Best practices for selecting a column are:

ff The column should be unique and not NULL

ff Try to keep the index as short as possible by creating it on one column, or as few
columns as possible, to keep your scan narrow and to get the best performance

ff Create a clustered index on every table by selecting the column that is the best
candidate for an index and that is being used very frequently in the WHERE clause

ff If possible, try to avoid creating a clustered index on a varchar column

How to do it...
Well, after knowing about clustered index and finding out which table and column(s) (also
known as Key Column or Key Columns, in case of composite index) require a clustered index,
it is time to create the clustered index.

The following is the basic syntax for defining a clustered index:

CREATE CLUSTERED INDEX <Idx_Index_Name>
ON <table_Name> (column_name [ASC | DESC] [,…….N])

You can use the template explorer to see the syntax, from View | Template Browser, or
you can simply use the keyboard shortcut Ctrl + Alt + T. The index syntax is located in the
Template Browser, as shown in the following screenshot:

Chapter 9

201

Here is an exercise to practically build a clustered index on one table, which will be created to
observe the behavior of the index.

1.	 Run the following query:
--If the orders table is already present, you can delete it, and
then create new one with the name Orders
IF OBJECT_ID('ordDemo', 'U') IS NOT NULL BEGIN
 DROP TABLE ordDemo
END
GO

--creating table for demonstration
CREATE TABLE ordDemo (OrderID INT IDENTITY, OrderDate DATETIME,
Amount MONEY, Refno INT)
GO

--inserting 100000 fack rows into table
INSERT INTO ordDemo (OrderDate, Amount, Refno)
SELECT TOP 100000
 DATEADD(minute, ABS(a.object_id % 50000), CAST('2011-11-04'
AS DATETIME)),
 ABS(a.object_id % 10),
 CAST(ABS(a.object_id % 13) AS VARCHAR)
FROM sys.all_objects a
CROSS JOIN sys.all_objects b
GO

2.	 Now we are ready to see the effect of the index on the table ordDemo.

There are several ways to monitor performance-related stuff, already explained in
the Performance Monitoring section (the first five chapters) of this book. Here is a
list of some of the chapters in this book that will help to understand the concept
of monitoring:

�� The Creating a trace or workload recipe in Chapter 1, SQL Server Profiler

�� The Monitoring performance with Actual Execution Plan, Monitoring
performance of query by SET SHOWPLAN_XML, and Monitoring Performance
of query by SET STATISTICS XML recipes in Chapter 5, Monitoring with
Execution Plans

�� The Finding Table/Index Scans in execution plan and fixing them, and
Introducing Key Lookups, finding them in execution plans, and resolving
them recipes in Chapter 6, Tuning with Execution Plans

Implementing Indexes

202

3.	 We are going to use execution plan to see the effect of a clustered index. Execute the
following T-SQL command by keeping your execution plan enabled:
SELECT OrderDate,Amount,Refno FROM ordDemo WHERE Refno<3

In order to enable execution plan, select QUERY | Include
Actual Execution Plan, from the Menu bar, or use the Ctrl
+ M keyboard shortcut.

4.	 As soon as this query finishes execution, thousands of rows will be displayed in the
Results tab. Besides the Results tab, you will see two more tabs, as follows:

�� The Messages tab, which shows errors, warnings, and so on, that occurred
during the execution

�� The Execution Plan tab, which is enabled before executing a query

Here is a screenshot that shows a few of the rows in result set out of the query
executed in step 1:

Chapter 9

203

5.	 Move to the Execution Plan tab and see the graphical execution plan that the query
has used. It will show Table Scan, which means it has to look into the whole table
to find the rows we were searching. The following is a screenshot of the Execution
Plan tab:

6.	 After a sneak preview of the query's execution plan, create a clustered index on
the field Refno and execute the same SELECT statement given previously with
the execution plan, to see the difference in the query when run before and after
the clustered index is created. The main reasons for choosing the Refno field as
the key column of the clustered index are:

�� It is a numeric value (not a varchar), so the clustered index will be short

�� Refno will be frequently used in searches and maybe in a JOIN clause.

Implementing Indexes

204

�� In the current scenario (table), it seems better than the other two
(Orderdate and amount), in terms of selectivity.

--creating clustered index on column refno without discussing
--whether refno is right field to be a part of clustered index or
not
CREATE CLUSTERED INDEX idx_refno ON ordDemo(refno)
GO

--execute the same select statement again.
SELECT OrderDate,Amount,Refno
 FROM ordDemo WHERE Refno<3
GO

Let us see how these tasks will work.

Chapter 9

205

How it works...
In step 1, we created one purchase order table named ordDemo, by inserting a hundred
thousand records. In step 3, we executed the SELECT query by filtering records based on
the Refno field, with the execution plan enabled. We can see the execution plan with details,
in step 5, which was simply to scan the whole table just to return a few records from the
100,000 records we inserted. This is a CPU- and I/O-centric operation, because to return
a few thousand records, each and every record given in the table is scanned.

In step 6, we created the clustered index on the Refno column, based on the criteria we
discussed in the Getting Ready section of this recipe. After creating an index, we executed
the same SELECT query we ran in step 3, with execution plan enabled; you will see a big
difference between the two execution plans given in steps 5 and 6.

I/O cost is 0.379421, in the first execution plan, and 0.0571991, in the second execution
plan, even though both queries return the same number of rows. You might wonder why there
is a difference in the same query that is run on the same table and returns the same number
of rows.

The answer is really very simple if we know how an index works. When there was no index
on the table ordDemo, SQL Server went through each and every row to check whether its
Refno value is less than 3 or not. If it is less than 3, it was included in the results set. This
process is called a Table Scan. However, if there is an index, SQL Server knows what values
are contained in each data page. It directly moves to the particular pages, picks up all the
qualified records, and displays them in a results set. This process is called an Index Seek.

There's more...
The following is an explanation of some of the technical vocabulary used in this recipe:

Heap
Any database table that doesn't have a clustered index on it is called heap. Heap has Index
ID=0 in sys.partitions catalog view. Unlike the clustered index, which stores data sorted
logically, heap is used to store data without any sorting order. Data pages in heap are linked to
each other without any logical ordering, and one needs to scan the whole heap to search for
any data, unlike the clustered index, resulting in slow performance.

Here is the T-SQL command that will show you catalog view sys.partitions:

Select OBJECT_NAME(object_id) AS TableName,
 * from sys.partitions
 WHERE index_id=0

Implementing Indexes

206

Here is a screenshot of the results that came from this T-SQL command:

Table and Index Scan/Seek
Table/Index Scan means searching the whole table or index in sequential order, to locate rows
that meet the criteria given in a search condition. Index Seek first scans the index root and
intermediate node to find which leaf pages would have the data that meets search criteria,
and after that, directly goes to those leaf pages and gets the data.

In most cases, a seek is good as it doesn't travel through each and every data page, but
sometimes if a big chunk of data from the table is needed, for instance 30% or more, it is
good to scan rather than travelling to each root and intermediate node to find the matching
criteria, and then go to leaf pages to get the data. In an opposite situation, if only 5% to
10% data or even less is needed, and a scan is happening, it is a good idea to have a seek
operation to boost up performance.

Increasing performance by creating a
non-clustered index

It is now clear that indexes improve performance for most of the SELECT statements, if it is
created wisely on a proper key field. There is one limitation on clustered indexes—only one
clustered index is allowed per table, and in many cases, it may not be possible to cover all
the required columns in one clustered index. There is another object provided by SQL Server,
known as non-clustered index, which could be used on one or more than one column.

If you cover one highly selective column in the clustered index, it is not certain that you are
going to use that column only, in all the WHERE and JOIN statements, especially when a table
has many columns. In this scenario, we have to create a non-clustered index on the selective
fields that are not covered inside a clustered index, so that we can get a performance benefit
while using those fields as a predicate in the SELECT query.

Chapter 9

207

Till SQL Server 2005, 249 non-clustered indexes were allowed,
but after SQL Server 2008, including SQL Server 2012, 999
non-clustered indexes are allowed per table.

Unlike the clustered index, the non-clustered index stores the key column value along with the
row locator (pointer) to the actual data either in a clustered index, or in a heap if a clustered
index is not available.

Generally, making a unique key on any column could, by default, generates a non-clustered
index on that column. One row per non-clustered index is available in the sys.partitions
table with Index_ID>1. The following is the T-SQL command that allows you to run a query
on the sys.partitions catalog view, to get information regarding non-clustered indexes
that exist in the database:

Select OBJECT_NAME(object_id)
 AS TableName,* from sys.partitions
 WHERE index_id>1

The following screenshot shows the result set generated by this query:

Implementing Indexes

208

Getting ready
Even before you start working with a non-clustered index, it is mandatory to find:

ff A table that actually needs a non-clustered index

ff A good candidate column for the non-clustered index

Without a proper candidate for the non-clustered key field, you will end up with an unused
index that takes space to save itself, even though it is not going to be used anytime, and
creates I/O overhead for DML statements.

The following points will help you decide which column(s) should have non-clustered indexes,
so that you will be ready to process further, after obtaining the list of columns from a table:

ff The column should contain a large number of distinct values. Flagging columns that
might have only 0 or 1 as values, would be futile as they are not good candidates for
an index. A scan is a good option in this case, instead of a non-clustered index seek.

ff The column(s) should generally be used with an exact match conditional operator
such as the = sign

ff The columns should generally be used in an ON clause of JOIN, GROUP BY, and
ORDER BY

How to do it...
Well, after learning about non-clustered indexes and finding out which table and column(s)
(also known as Key Column or Key Columns, in case of the composite index) require a
non-clustered index, it is time to create a non-clustered index.

The following is the basic syntax for defining a non-clustered index—it is a good idea to know
its syntax before you actually deal with it:

CREATE [UNIQUE] NONCLUSTERED INDEX <Idx_Index_Name>
ON <table_Name> (column_name [ASC | DESC] [,…….N])

Now follows an exercise to practically build a non-clustered index on a table that we have
earlier used with a clustered index, and also to observe the behavior of the index.

1.	 Run the following query:
--checking the execution plan without having non-clustered Index
on the same table ordDemo that we had created in previous section.
--You might need to change the date based on the data in your
table.
SELECT OrderDate FROM ordDemo
 WHERE OrderDate='2011-11-28 20:29:00.000'
GO

Chapter 9

209

Observe the following screenshot of the overhead query that we ran without a non-
clustered index; especially look at the estimated I/O cost, operator cost, CPU cost,
and the number of rows returned in the result set:

The overhead execution plan displays that the query has
used a clustered index that is already available, but it has
performed an index scan rather an than Index Seek.

Implementing Indexes

210

2.	 Now, create a non-clustered index on the same table—ordDemo—and execute the
SELECT statement used previously:
--creating Non-Clustered Index in Clustered Index example, one
column was used
CREATE NONCLUSTERED INDEX idx_orderdate
 on ordDemo(orderdate)
GO

--running the same query we ran earlier to see behavior after Non-
Clustered Index created
SELECT OrderDate FROM ordDemo
 WHERE OrderDate=
 '2011-11-28 20:29:00.000'
GO

The following is a screenshot of the execution plan of this SELECT query:

Chapter 9

211

3.	 Now, it is time to compare both the execution plans, which will generate results in a
screenshot. By comparing I/O Cost, CPU Cost, Operator Cost, and other parameters,
a big difference will be seen in the cost figures, and that will prove that the second
execution plan, which has been generated after creating a non-clustered index, is
much better.

How it works...
In our case, all the data resides in a clustered index. So, any query you execute will get a
clustered index scan, if it doesn't fall under the clustered or non-clustered index seek. The first
query, which was run before the non-clustered index was created, had an OrderDate field
in the WHERE clause, but there was no index for OrderDate, and hence SQL Server Query
Optimizer decided to scan the complete clustered index.

After creating a non-clustered index on the OrderDate field, SQL Server Query Optimizer
finds the row locator of the clustered index data page (leaf node) from the leaf node of the
non-clustered index. This is because the non-clustered index's leaf node would have the
OrderDate entry with a row locator to the clustered index's leaf node, where the actual data
resides. So now, Optimizer doesn't need to scan all the leaf pages of the clustered index and
only needs to perform the index seek operation on the non-clustered index, which reduces
I/O, CPU, and other costs.

Here is the cost comparison before the non-clustered index's execution plan in (Step 1) and
after the non-clustered index's execution plan in (step 2):

Operator Cost before non-clustered index Cost after non-clustered index
Estimated I/O Cost 0.379421 0.0073226

Estimated Operator Cost 0.489578 (100%) 0.00975 (100%)

Estimated CPU cost 0.110157 0.0024274

Estimated Subtree Cost 0.489578 0.00975

There's more...
While creating a non-clustered index, keep in mind that it will need additional space to store
itself, along with the key column and row locator of the clustered index or heap. So, keep an
eye on the hard drive for space, as a bigger table would need more space to accommodate
the non-clustered index. We can define the non-clustered index on a separate database file
or filegroup, which reduces the I/O hit on the same file.

Implementing Indexes

212

Increasing performance by covering index
Before discussing covering index further, it should be understood that a covering index is
not a separate type of index that has a different internal structure and algorithm. It is just a
technique that is used to boost up the performance of data retrieval for the table.

You may wonder If it is not a new type of index, why do we need to use it?

Run the same SELECT query that we ran earlier in the Increasing performance by creating
non-clustered index section, which was creating the non-clustered index seek operation. But
now, run this query with some more fields in the SELECT clause, may be like this:

--running the same query we ran earlier to see behavior after
 --Non-Clustered Index was created with just one column extra
 --in the SELECT clause
SELECT OrderDate,OrderID FROM ordDemo
 WHERE OrderDate='2011-11-28 20:29:00.000'
GO

The ordDemo table already had a non-clustered index on the OrderDate field, so if you run
this query, it should meet the non-clustered index seek, but it will actually go for the clustered
index scan, in the execution plan. We can generate an execution plan and observe the same
to confirm the difference.

SQL Server Query Optimizer is smart enough to choose the best plan for a query in most
cases. However, what would happen if SQL Server were to have used the non-clustered
index—idx_orderdate—we had created previously? Let us try by forcing Query Optimizer
to use idx_orderdate forcefully with the WITH INDEX query hint.

--forcing the optimizer to use nonclustered index idx_orderdate
--rather than using Clustered Index scan
SELECT OrderDate,OrderID
 FROM ordDemo WITH (Index=idx_orderdate)
WHERE OrderDate='2011-11-28 20:29:00.000'
GO

Observe the given execution plan, which was generated by the SELECT query:

Chapter 9

213

It has used a non-clustered index seek along with Key Lookup; key column's value (the
orderDate column in our case) could come from the non-clustered index, but Optimizer
has to go through one overhead of Key Lookup to get a non-key column's value (OrderID).
To remove this Key Lookup overhead, covering the non-clustered index is required.

Implementing Indexes

214

Getting ready
To perform a covering non-clustered index, it is necessary to find out which other columns
need to be there in the non-clustered index. It is not rocket science to decide this; one has
to go through with different options and check the execution plan for the best-suited match.

By looking at Key Lookup in an execution plan, we get to know that it is going to the clustered
index, which is present on the RefNo column, to find out OrderID. So let us cover the
OrderID field in the non-clustered index and see the difference.

How to do it...
Perform the following steps to see the usage of the covering index:

1.	 Drop the previously created non-clustered index:
--Dropping the previously created non-clustered Index
DROP INDEX idx_orderdate ON ordDemo
GO

2.	 Create a non-clustered index by covering one more column, OrderID, within it:
--recreating a non-clustered Index with OrderDate and OrderID
--by sorting OrderDate in descending order in Index
--and sorting OrderID in ascending order in Index
CREATE NONCLUSTERED INDEX idx_orderdate_orderId
 on ordDemo(orderdate DESC,OrderId ASC)
GO
--running the same SELECT query we ran earlier to see
--behavior after covering Non-Clustered Index created
--with two fields
SELECT OrderDate,OrderID FROM ordDemo
 WHERE OrderDate='2011-11-28 20:29:00.000'
GO

Chapter 9

215

Here is a screenshot of this SELECT query, which successfully removed the Key Lookup
overhead, giving a better-looking execution plan:

Implementing Indexes

216

How it works...
After observing the new execution plan for the SELECT query, it is now clear that the Key
Lookup overhead is removed successfully by using a covering index. Actually, in this new
situation, SQL Server Optimizer wouldn't need to go to a clustered index to get values of the
non-key column, as the non-clustered index now covers both OrderID and OrderDate.

There's more...
While creating a non-clustered covering index, keep in mind that a maximum of 16 columns
is allowed in one index, and the total size of index columns (key columns) should not exceed
900 bytes.

Increasing performance by including
columns in an index

The concept of included columns in indexes was introduced in SQL Server 2005 and is also
available in SQL Server 2008 and 2012. We can include non-key columns in a non-clustered
index, as they are not counted in its index size.

There is a limitation wherein the maximum number of columns allowed is 16 and the
maximum size of the index key column allowed is 900 bytes, so it is not a good idea to
have an index with many unnecessary or non-key columns.

Only include the key column in the Index part, and to avoid the lookup of a non-key column,
keep another non-key column in the INCLUDE part of a non-clustered Index. This is because
any column given in the INCLUDE part of a non-clustered index doesn't fall under the
limitations discussed previously.

Getting ready
In the Increasing performance by a covering index section, we had an OrderId column as a
part of the main non-clustered index. However, OrderID is not the key column, as we have
not used it in the search condition (WHERE). So, OrderId could be under the INCLUDE part of
the non-clustered index instead of being a part of the main index. By doing so, we can reduce
the size of the non-clustered index.

Chapter 9

217

Apart from the limitations regarding the maximum number of columns (16) and maximum size
of an index key column (900 bytes), there is one more limitation in creating a non-clustered
index—SQL Server don't allow the use of certain data types as an index key. The following is a
list of the data types that are not permitted to be a part of an index key column:

ff text

ff ntext

ff image

ff nvarchar(max)

ff varchar(max)

ff varbinary(max)

You can use any data type in the INCLUDE clause, except text, ntext, and image.

How to do it...
The following are the steps to create and include a column index:

1.	 Drop the previously created non-clustered index:
--Dropping previously created non-clustered Index
DROP INDEX idx_orderdate_orderId ON ordDemo
GO

2.	 Create an index with the INCLUDE statement, which will have the OrderID column:
--creating NONCLUSTERED index on OrderDate
--have OrderID in Include section of Index
CREATE NONCLUSTERED INDEX idx_orderdate_Included
 on ordDemo(orderdate DESC)
INCLUDE(OrderID)
GO

3.	 Run the same SELECT statement we ran earlier, by keeping the execution
plan enabled:
--running the same query we ran earlier to see behavior after
--covering Non-Clustered Index created with two fields
SELECT OrderDate,OrderID FROM ordDemo
 WHERE OrderDate='2011-11-28 20:29:00.000'
GO

Implementing Indexes

218

Observe the screenshot of this SELECT query:

Chapter 9

219

How it works...
If you compare the execution plan we had for covering index and for the index with included
column, you can see almost every cost is identical, but the INCLUDE column index will
give you more freedom and get you out of the limitations. Apart from that, because of the
INCLUDE column index, the index tree will be small in size as compared to covering index,
which will result in fast searching.

Apart from the limitations discussed here, fewer columns in the index part would mean less
space on disk and a lower maintenance cost for the index.

The following are the best practices you should follow:

ff The columns that are going to be included in the WHERE, ORDER BY, GROUP BY, and
ON clauses of JOIN, should be a part of index key columns and hence, it is supposed
to be covered by a covering index.

ff The columns that are going to be included in the SELECT or HAVING clauses, should
be covered in the INCLUDE section of the include index. By doing this, we can reduce
the size of the key columns and B-Tree (Index Tree) of an index, which gives you a
faster search

Improving performance by a filtered index
The filtered column index is one of the enhancements of the non-clustered index provided in
Microsoft SQL Server 2008, and it is still available in SQL Server 2012. We can consider a
simple non-clustered index with the WHERE clause, as a filtered index. A well-defined filtered
index reduces maintenance cost and index storage, and improves query performance.

Actually, a non-clustered index, whether it is a covering or include index, indexes all the rows
available in a table, whereas a filtered index indexes only those rows that meet the criteria
given in the WHERE clause of the CREATE INDEX command. This is the main reason that a
filtered index needs low storage and displays improved performance.

Getting ready
It is time to be ready with some information that will be helpful in creating a filtered index.
Let us now look into some cases where implementation of a filtered index could be beneficial:

ff A big table with data of many years, but generally used to query data of only the
current year or may be current year along with last year. We can consider filtered
index based on date, in this case.

ff A products table that has a complete list of: categories available in an inventory at
the moment and all the past categories that may be deprecated or not in stock at
the moment but that are still present in the database table.

Implementing Indexes

220

ff Suppose Order StartDate and Order EndDate are in an Orders table. If an order
is completed, OrderEndDate is updated, otherwise it is NULL by default. Filtered
index could be useful in this situation, too. If, most of the time, there is a need to
query the table to find which orders are incomplete at the moment, have filtered
index on the OrderEndDate column for NULL checking.

As an instance, we have only seen few situations to get an idea about when a filtered index
is useful.

Some SET options should be set while creating a filtered index or while modifying data by DML
commands. Here is a list of the same:

ff ARITHABORT

ff CONCAT_NULL_YIELDS_NULL

ff QUOTED_IDENTIFIER

ff ANSI_WARNINGS

ff ANSI_NULLS
ff ANSI_PADDING

ff NUMERIC_ROUNDABORT – should be set to OFF and the rest of the specified options
should be set to ON

How to do it...
To see the magic of filtered index, follow the steps given here:

1.	 Create one non-clustered index with an INCLUDED column (same as previous
section), with an addition of the WHERE clause, which will make this index a
filtered index:
--set environment variables.
SET ANSI_NULLS ON
SET ANSI_PADDING ON
SET ANSI_WARNINGS ON
SET ARITHABORT ON
SET CONCAT_NULL_YIELDS_NULL ON
SET QUOTED_IDENTIFIER ON
SET NUMERIC_ROUNDABORT OFF
GO

--create NONCLUSTERED index on OrderDate
--have OrderID in Include section of Index
--make a filter of date.
--you have to use the dates you have in your table, so if
necessary, change the date
CREATE NONCLUSTERED INDEX idx_orderdate_Filtered
 on ordDemo(orderdate DESC)

Chapter 9

221

INCLUDE(OrderId)
WHERE OrderDate = '2011-11-28 20:29:00.000'
GO

2.	 After creating the filtered index, run the same SELECT query we ran earlier in the
previous section:

--run the same query we ran earlier to see behavior after
--covering Non-Clustered Index created with two fields
--along with filter in WHERE clause on OrderDate Field
SELECT OrderDate,OrderID FROM ordDemo WHERE OrderDate='2011-11-28
20:29:00.000'
GO

Study the execution plan generated by this SELECT query, after creating a
filtered index.

Implementing Indexes

222

How it works...
After studying the execution plan that we created for the SELECT statement after creating the
included index, and the recent execution plan, it is very clear that the current execution plan is
much better.

The I/O cost in the recent execution plan is 0.003125 and it returns 1982 rows, whereas the
I/O cost in the execution plan, which we created after the included index, is 0.0078751 and it
returns the same amount of rows, that is, 1982. Isn't this a BIG difference?

All indexes are being created on a table, and the non-clustered index keeps all the rows within
it (key column + pointer), whereas with the filtered index, the non-clustered index is used to
keep only those rows that met the criteria. As a result, there are fewer leaf pages in the index,
and the index will consume less disk space. Also, SQL Server doesn't need to go through all
the pages during a search clause.

There's more...
A filtered index consumes less disk space, because it doesn't have information for all the
rows. It has information for only those rows that satisfy the filter criteria of an index.

Filtered indexes have lower maintenance costs, because they will be maintained only when
the data, which has qualified for a filtered index, gets changed.

Filtered indexes boost up performance because a filtered index is smaller in size compared
to a full-table, non-clustered index. So, it will generate a good execution plan by using filtered
statistics that are more accurate.

Improving performance by a columnstore
index

All the indexes discussed here, so far, were rowstore indexes, which is a type available in SQL
Server for long time. But, there is a new index called columnstore index, which was introduced
in SQL Server 2012. So, now there are two types of indexes available in SQL Server 2012:

ff Rowstore index

ff Columnstore index

The rowstore index stores data row(s) in data pages, whereas the columnstore index stores
each column in a different data page(s).

For example, if we had one table, tblEmployee, with columns empId, FirstName,
and LastName, and an index on all three fields, the logical image of rowstore as well as
columnstore, for illustration purposes, would be something like this:

Chapter 9

223

A data page is nothing but an 8-KB page that stores data. If you have 10 rows and the total
size of those 10 rows is 16 KB, then each row should consume 2 data pages, in case of a
rowstore index.

The columnstore index doesn't contain a whole row, but the data of one column only,. For
example, the empID column has 100 values, and the size of those 100 values is 30 KB,
therefore it would be contained in 4 columnstore data pages. The same thing will happen
for the other two columns as well.

A columnstore index won't search all the data pages of all the columns, but it will search
for only the required column, and this is one of the reasons that it gives output with good
performance—due to less I/O. While storing data in a columnstore index, SQL Server
compresses it heavily, so it occupies less size on disk, performs fast searches, and
there's proper utilization of server resources.

Implementing Indexes

224

Getting ready
Before you start working with the columnstore index, find out its requirements, by checking
the following primary considerations:

ff Whether it is feasible to make your table read-only by creating a columnstore index

ff Is the table really very big with millions of rows?

ff If your database is OLTP, find out if are you able to disable columnstore index while
executing DML and enable it again after execution of DML to get the benefit of the
SELECT statement

You may proceed to create a columnstore index if you have answered all the three questions
with YES.

Keep the following points in mind while weighing the decision to use the columnstore index:

ff You can't include more than 1024 columns

ff Columns with the following data types can be a part of a columnstore index:

�� int

�� big int
�� small int
�� tiny int
�� money

�� smallmoney

�� bit

�� float

�� real

�� char(n)

�� varchar(n)

�� nchar(n)

�� nvarchar(n)

�� date

�� datetime

�� datetime2

�� small datetime
�� time

�� datetimeoffset, with precision <=2
�� decimal or numeric, with precision <=18

Chapter 9

225

ff Columns with the following data types should not be a part of a columnstore index:

�� decimal or numeric with precision>18

�� datetimeoffset with precision>2

�� binary

�� varbinary

�� image

�� text

�� ntext

�� varchar(max)

�� nvarchar(max)

�� cursor

�� hierarchyid

�� timestamp

�� uniqueidentifier

�� sqlvariant

�� xml

How to do it...
Follow the steps given here to perform this recipe:

1.	 Execute the following query, which will seek the clustered index we had created
earlier in this chapter:
--executing query before creating columnstore Index
--and observ execution plan
SELECT
	 Refno
	 ,sum(Amount) as SumAmt
	 ,avg(Amount) as AvgAmt
FROM
	 ordDemo
WHERE
	 Refno>3
Group By
	 Refno
Order By
	 Refno
GO

Implementing Indexes

226

Now, let us see the execution plan of this SELECT statement:

2.	 After seeing the effect of the index in a previous query, it is time to create a
columnstore index to see the magic. Remove the idx_refno clustered index,
so that rowstore doesn't affect the columnstore index. By doing this, we are also
ensuring that the columnstore index is not getting any performance help from the
rowstore index.
--dropping clustered index idx_refno
DROP INDEX idx_refno ON ordDemo

--creating columnstore index
CREATE NONCLUSTERED COLUMNSTORE INDEX
 idx_columnstore_refno
ON ordDemo (Amount,refno)

3.	 As we now have a columnstore index, run the same query we ran earlier with the
aggregate SUM and AVG functions, to see the effect of a columnstore index:
--executing same query after creating columnstore Index
--and observ execution plan
SELECT

Chapter 9

227

 Refno
 ,sum(Amount) as SumAmt
 ,avg(Amount) as AvgAmt
FROM
 ordDemo
WHERE
 Refno>3
Group By
 Refno
Order By
 Refno
GO

4.	 As soon as the execution plan is generated, we can see the magical difference in
operator cost, as shown in the following screenshot:

5.	 After comparing the result sets of both queries, it is clear that both queries return
the same number of rows. But, if you see the I/O cost before the columnstore index,
it is 0.358681, and after the columnstore index, it is only 0.003125. See how big
difference is?

Implementing Indexes

228

6.	 Create a clustered index again, for future use, and remove the columnstore index, so
that the table will no longer be a read-only table:

--removing columnstore index
DROP INDEX idx_columnstore_refno ON ordDemo
GO
--creating clustered index again for
--future use
CREATE CLUSTERED INDEX idx_refno ON ordDemo(refno)
GO

How it works...
The columnstore index uses Microsoft's VertiPaq technology, which is why columnstore indexes
don't have to fit in the main memory. However, they can effectively use as much memory as is
available on the server. Portions of columns are moved in and out of memory on demand.

As per the image given in the introduction to this recipe, this technology stores column(s) in
a single page, which results in faster searches than the rowstore index. Keep in mind that
once you add a columnstore to a table, you cannot delete, insert, or update the data, as it is
read-only. However, since the columnstore will be mainly (but not necessarily) used for data
warehousing, this should not be a big problem.

Step 2 shows the execution plan of the SELECT query that was using the rowstore
non-clustered index, and step 5 shows the execution plan of the SELECT query that
was using the columnstore index for the same query.

Here are the differences in performance between both the approaches, taken from the
screenshot given in steps 1 and 3:

Operator Cost before non-custered index Cost after non-clustered index
Estimated I/O Cost 0.358681 0.003125

Estimated Operator Cost 0.452945 (90%) 0.113282 (20%)

Estimated CPU cost 0.942642 0.110157

Estimated Subtree Cost 0.452945 0.113282

Chapter 9

229

There's more...
Keep in mind that, by creating a columnstore index, you are going to keep your table
read-only, and if partitioning is enabled on the table, data can still be loaded using the
partition switch mechanism. It will not allow any DML statements such as INSERT,
UPDATE, DELETE, and others. Apart from these limitations, the tables and columns
cannot participate in a replication topology, and columns with large datatypes cannot
participate in a columnstore index as well as in computed columns.

To use DML statements, we have to disable columnstore indexes first,
because the columnstore index is mainly designed for data warehousing
purposes, where DML statements are not required.

10
Maintaining Indexes

In this chapter we will cover:

ff Finding fragmentation

ff Playing with Fill Factor

ff Enhancing index efficiency by using the REBUILD index

ff Enhancing index efficiency by using the REORGANIZE index

ff How to find missing indexes

ff How to find unused indexes

ff Enhancing performance by creating indexed views

ff Enhancing performance by creating an index on Computed Columns

ff Determining disk space consumed by indexes

Introduction
The duty of a DBA is not finished by just creating an index on necessary fields. Actually,
the DBA's duty of keeping database performance high starts at the point of creating a the
necessary index.

From time to time, the DBA needs to keep an eye on some very important points, mentioned
as follows, with regards to the index, because index maintenance is on-going task and needs
the attention of the DBA.

ff Fragmentation level of index

ff Missing index

ff Unused index

Maintaining Indexes

232

Finding fragmentation
Fragmentation is one of the common bottlenecks in performance, if indexes are not being
maintained properly. Microsoft recommends going for a REORGANIZE index instead of
the resource-consuming REBUILD index, if fragmentation percentage is between 5 and
30. If the fragmentation level is more than 30 percent, then go for the REBUILD index. It
is recommended to treat these values as an approximation instead of considering them
absolute. From the time of Microsoft SQL Server 2000, this recommended figure has not
changed; at the same time, there are many things that have changed from Microsoft SQL
Server 2000 to Microsoft SQL Server 2012.

"It depends!" is the favorite quote of all IT personnel, and it really depends on our
environment. So, first check the server environment to decide what percentage level is good
enough for us to go for REBUILD, because many other factors need to be considered while
deciding to go for this resource-centric task. The following are a few of the tasks that need to
be considered before making a decision. There are many other things to consider as well, but
these are the major points:

ff Backup schedules
ff Workload on server
ff Available disk space
ff Recovery model

Though fragmentation makes a great impact on query performance, it also depends on the
table, and how you use the table. In most cases, if you are returning only one record from
the table by querying the Primary Key that has a clustered index, fragmentation doesn't
play a role.

Getting ready
After learning what fragmentation is, it is obvious that our curiosity drives us to find an answer
to the question How can we determine the fragmentation of the Index?.

Well, it is very simple: by using the query system function sys.dm_db_index_physical_
stats and system catalog sys.Indexes.

How to do it...
Gathering information about fragmentation for your indexes is the first important task to
perform, which could be done by using the following T-SQL query:

--for gathering information of all indexes/heap on specified table
SELECT
 sysin.name as IndexName
 ,sysIn.index_id

Chapter 10

233

 ,func.avg_fragmentation_in_percent
 ,func.index_type_desc as IndexType
 ,func.page_count
FROM
 sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID(N'ordDemo'),
NULL, NULL, NULL) AS func
JOIN
 sys.indexes AS sysIn
ON
 func.object_id = sysIn.object_id AND func.index_id = sysIn.index_
id
--Clustered Index's Index_id MUST be 1
--nonclustered Index should have Index_id>1
--with following WHERE clause, we are eliminating HEAP tables
--uncomment following line if you don't want to see
--fragmentation of HEAP
--WHERE sysIn.index_id>0;

--for gathering information of all indexes available in
--database This query may take long time to execute
SELECT
 sysin.name as IndexName
 ,sysIn.index_id
 ,func.avg_fragmentation_in_percent
 ,func.index_type_desc as IndexType
 ,func.page_count
FROM
 sys.dm_db_index_physical_stats (DB_ID(), NULL, NULL, NULL, NULL)
AS func
JOIN
 sys.indexes AS sysIn
ON
 func.object_id = sysIn.object_id AND func.index_id = sysIn.index_
id
WHERE sysIn.index_id>0;

How it works...
Pass your database ID with the DB_ID() function in sys.dm_db_index_physical_stats,
along with the object ID (in our case, OBJECT_ID(N'ordDemo')) of the table name for which
fragmentation information is required. This system function provides very detailed information
regarding index. It will not have index name, but it displays index ID. For getting the exact
name of the index, one has to make a join with the sys.Indexes system catalog.

Maintaining Indexes

234

There's more...
Fragmentation comes into the picture when the logical sorting order of data in the leaf pages
of an index doesn't match with the physical order of data in the actual data pages. When you
create an index, it sorts everything, but when data gets manipulated by DML commands,
there is no guarantee about which data pages will be used to accommodate the new records.
When you delete records, they get deleted from the actual data page, and the free space in
that data page might be used for any other records, which creates fragmentation.

Just keep in mind that when an index is first built up, there is no or very less
fragmentation, but after having INSERT, UPDATE, and DELETE DMLs on the
table, it starts creating fragmentation.

Playing with Fill Factor
It is already discussed in the previous chapter, Chapter 9, Implementing Index, that when an
index is being created, it stores data in the B-Tree format that has a root page, intermediate
level, and leaf level. Leaf level, which is the bottom-most level, contains the actual data in a
clustered index. Each data page is 8 KB in size.

When insertion/updation/deletion of data to/from a table happens, it tries to insert in the
proper data page according to the record being inserted. For example, we have clustered
index on SSN number. We are inserting a new row with the SSN number. SQL Server tries to
insert that record in an appropriate data page. Suppose our SSN number starts with "2", then
it will find the last page that has SSN number starting with "2". SQL Server will insert our new
row in that page only. If your 8 KB page is full or doesn't have enough room to accommodate
the new row whose SSN starts with "2", it will split the page, and the data in that page will
be shared between two or more pages of records, based on the size of the row whose SSN
number starts with "2". Now we have two pages that are half filled, considering that the row
is not too big; otherwise, we might have more than two pages as well. So our new row will be
accommodated in that page. SQL Server tends to add new pages on the right-hand side of the
current page in hierarchy of data pages.

If there is enough space in the data page that can accommodate the new row of SSN number
starting with "2", the process doesn't need to wait till the page is getting split and then
finish the I/O overhead. There is one more overhead; the page split task locks the page and
prevents its usage until the process is finished.

This is the time when Fill Factor comes into the picture. Fill Factor decides how much of your
page would be filled up initially. Suppose you give "10" as the Fill Factor, then your data page
will consume only 10 percent of your 8 KB page size, and when you exceed this limit of 10
percent, it will keep 90 percent of the page empty and create a new page for other records.

Chapter 10

235

Now, when you insert new records, you don't need to worry about I/O overhead of page split
as you would have 90 percent free space and your record will be accommodated in that space
easily. So, if we have a low Fill Factor, we can decrease the I/O overhead generated by a page
split, which helps to write your data faster.

In short, I can say that Fill Factor is a double-edged sword—use it wisely or performance
will be affected. Increasing the performance of write operations creates more pages, which
decreases the performance of read operations.

Fill Factor comes into the picture only while creating an index or
rebuilding it; in regular DML operations, page will be filled up to
100 percent.

Getting ready
Before learning how to set the Fill Factor for an index, it is necessary to find the current Fill
Factor value so that a decision can be made regarding the current Fill Factor and what the
new value should be, based on the server environment. There are two places to look for the
value of Fill Factor, given as follows:

ff sys.indexes: This catalog view is used to know the Fill Factor value of a particular
index, as given in the following query:
--find fill factor value in index
SELECT
 OBJECT_NAME(OBJECT_ID) AS TableName
 ,Name as IndexName
 ,Type_Desc
 ,Fill_Factor
FROM
 sys.indexes
WHERE
 --ommiting HEAP table by following condition therefore
 --it only displays clustered and nonclustered index details
 type_desc<>'HEAP'

ff sys.configurations: This catalog view is used to find the default Fill Factor value
of the server, as given in the following query:
--find default value of fill factor in database
SELECT
 Description
 ,Value_in_use
FROM
 sys.configurations
WHERE
 Name ='fill factor (%)'

Maintaining Indexes

236

The default Fill Factor value is 0 (zero), which means that it will not keep any free space on
the page.

How to do it...
Once it is decided which table or index needs to set the Fill Factor, change it with the following
T-SQL query:

--altering Index for FillFactor 80%
ALTER INDEX [idx_refno] ON [ordDemo]
REBUILD WITH (FILLFACTOR= 80)
GO
-- If there is a need to change the default value of Fill
-- Factor at server level, use the following T-SQL

--setting default value server-wide for Fill Factor

--turning on advanced configuration option
Sp_configure 'show advanced options', 1
GO
RECONFIGURE
GO

--setting up default value for fill factor
sp_configure 'fill factor', 90
GO
RECONFIGURE
GO

How it works...
As already defined in the discussion in the introduction of this recipe, Fill Factor is nothing but
the value in percentage that is used while initial filling up of data pages. If the Fill Factor value
is 90, the data page will be filled up to 90 percent initially, keeping 10 percent of data page
blank for future use, so that while executing DML commands, it finds room for new records
and can avoid page splits at the time of DML execution preventing I/O overheads.

It is good that we can avoid page split by using Fill Factor, but again, use it
wisely, because if we keep more space blank in data pages, it will increase
the number of data pages, and while executing the SELECT statement, more
data pages will need to be scanned.

Chapter 10

237

There's more...
It is good to have a high Fill Factor value (greater than 90 percent and up to 100 percent)
for static tables, for those tables that update once in a while, or for incrementally populated
tables without UPDATE. If the table has a high frequency of updates, it is better to keep the
Fill Factor value lower, maybe 70 percent to 80 percent.

If the table has a clustered index on the IDENTITY column, set Fill Factor at 100 percent
without any issue, because each new record will be inserted after the last record available
in the table. There is no chance to insert records in between, in the table, in most cases.

Enhance index efficiency by using the
REBUILD index

Rebuilding an index will do nothing, but just drop the current index and recreate it internally,
so that all fragmentations go away, statistics are updated, and physical sorting order in
data pages are in co-ordination with each other. It compacts data pages, fills them up with a
proper Fill Factor, and adds new data pages if needed. All these things will help in faster data
retrieval, but at the same time this is a really very resource-centric job and takes a very long
time to finish on large tables with millions of rows.

Getting ready
Decide first whether it is really necessary to rebuild an Index. If it is worth rebuilding an index,
only then should one go for this option. Otherwise, use the REORGANIZE index, because the
REBUILD index can use lots of server resources. If fragmentation is greater than 30 percent,
it is good to use the REBUILD index.

Rebuilding an index can be done in two different modes and it is better to decide what mode
to go for, before we actually start rebuilding indexes. The two modes are discussed
as follows:

ff Offline: Offline is the default mode for rebuilding indexes. It locks the table and, until
rebuilding gets done, no one can access the table. If the table is big, it might take a
few hours or more and the user won't be able to use that table. Offline mode works
faster than Online mode and uses less time and space in the TempDB database, as
compared to the Online mode.

ff Online: If locking of tables is not possible in your environment and you must have the
tables online, then there is the option of Online mode that will make index and table
available even while creating or rebuilding the index. But it takes more time to finish
and takes more server resources. It is worth noting that if the table has data types
such as varchar (max), nvarchar (max), and text, it won't work if the Online
mode is specified.

Maintaining Indexes

238

Please note that the Online (ONLINE=ON) and Offline (ONLINE=OFF) options
are available in development and enterprise editions only. All other editions
will use OFFLINE, by default.

How to do it...
The following are ways to rebuild an index. In the previous chapter, Chapter 9, Implementing
Index, we had one clustered index, idx_refno, and we are going to use that index
for rebuild.

ff To rebuild an index in Online mode, use the following query:
--rebulding index idx_refno with ONLINE=ON (online mode)
ALTER INDEX [idx_refno] ON [ordDemo]
REBUILD WITH (FILLFACTOR=80, ONLINE=ON)
GO

ff To rebuild an index in Offline mode, use the following query:
--rebuilding index idx_refno with ONLINE=OFF (offline mode)
ALTER INDEX [idx_refno] ON [ordDemo]
REBUILD WITH (FILLFACTOR=80, ONLINE=OFF)
GO

ff To rebuild all indexes of a table, use the following query:
--rebuilding all index on table ordDemo
ALTER INDEX ALL ON [ordDemo]
REBUILD WITH (FILLFACTOR=80, ONLINE=OFF)
GO

ff To rebuild an index with DROP_EXISTING on, use the following query:
--rebuilding idx_reno index with DROP_EXISTING=ON
CREATE CLUSTERED INDEX [idx_refno] ON [ordDemo](refno)
WITH
(
 DROP_EXISTING = ON,
 FILLFACTOR = 70,
 ONLINE = ON
)
GO

ff To rebuild all indexes of a table with DBCC DBREINDEX, use the following query:
--rebuilding all index of ordDemo table
DBCC DBREINDEX ('ordDemo')
GO

Chapter 10

239

ff To rebuild one index of a table with Fill Factor, use the following query:
--rebuilding idx_refno index of ordDemo table
--with Fill Factor 90
DBCC DBREINDEX ('ordDemo','idx_refno',90)
GO

The DBCC DBREINDEX command will be deprecated from the future version
of SQL Server, so it is best practice to avoid that command and use the
alternate commands given in the previous list.

How it works...
Rebuilding an index is nothing more than dropping the existing index and creating a new one.
While creating a new index, rebuilding locks your object (if the rebuild mode is not Online) and
it will not be available for access until the process is finished. Rebuilding removes blank or
unused pages, creates new ones, splits pages if they do not meet Fill Factor criteria, and sorts
data pages to match up the logical sorting order in the index B-Tree.

There's more...
Based on personal experience, I recommend rebuilding an index of "large" tables with
bulk-logged recovery mode or simple recovery mode rather than full recovery mode, to
avoid excessive log file size. As soon as we finish with rebuilding an index in a large table,
we can move to the simple recovery mode.

A word of caution here: If you change your recovery mode from full to anything
else, you will break your database backup chain, if there is any. So you will
have to take a full backup again, after changing recovery mode back to full,
which may not be possible in every production environment.

Because it is mentioned that a large table's index might take few hours or may be even a
day, don't loose your patience and don't stop rebuilding the index in between. It could be
dangerous and the database may fall into recovery mode.

The user should be the owner of the table or a member of the sysadmin fixed server role, the
db_owner fixed database role, or the db_ddladmin fixed database role, in order to perform
REBUILD or DBCC DBREINDEX.

Maintaining Indexes

240

Enhance index efficiency by using the
REORGANIZE index

If the fragmentation level is less than 30 percent, one must use REORGANIZE on the index,
instead of REBUILD. The REORGANIZE index doesn't produce locks on data pages or tables,
leaving the object available for users to use, and takes less server resources and CPU
utilization, as compared with REBUILD index.

In short, REORGANIZE is the process of cleaning up current B-Tree (especially leaf level of
index), organizing data pages, and defragmenting it. Unlike REBUILD, REORGANIZE won't
add any new pages; if this is needed, it just cleans up current pages and defragments them.

Getting ready
To decide whether to use a REORGANIZE index or not, have a look at the fragmentation level of
the index first; if it is more than 10 percent and less than 30 percent, you require reorganization
of your index. If it is less than 10 percent, you don't need to maintain that index.

How to do it...
Like rebuilding an index, there are several ways to reorganize your indexes. Have a look at the
following queries:

ff To reorganize an index of a table without specifying the Online or Fill Factor option,
use the following query:
--reorganizing an index "idx_refno" on "ordDemo" table
--you can't specify ONLINE and FILLFACTOR option
ALTER INDEX [idx_refno] ON [ordDemo]
REORGANIZE
GO

ff To reorganize all indexes of a table, use the following query:
--reorganizing all index on table ordDemo
ALTER INDEX ALL ON [ordDemo]
REORGANIZE
GO

ff To reorganize all indexes of a table using DBCC INDEXDEFRAG, use the
following query:
--reorganizing all index of ordDemo table
--in AdventureWorks2012 database
--give your database and table name in INDEXDEFRAG function
DBCC INDEXDEFRAG ('AdventureWorks2012','ordDemo')
GO

Chapter 10

241

ff To reorganize one index of a table using DBCC INDEXDEFRAG, use the
following query:
--reorganizing idx_refno index of ordDemo table
--in AdventureWorks2012 database
DBCC INDEXDEFRAG ('AdventureWorks2012','ordDemo','idx_refno')
GO

The DBCC INDEXDEFRAG command will be deprecated from the future
version of SQL Server, so it is best practice to avoid that command and
use the alternate commands given in the previous list.

How it works...
Index reorganization, also known as defragmentation, occurs serially. This means that
the operation on a single index is performed using a single thread. No parallelism occurs.
Also, operations on multiple indexes from the same REORGANIZE or DBCC INDEXDEFRAG
statement are performed on one index at a time.

Reorganizing is simply rearranging data pages to match the physical sorting order of data
pages with the logical sorting order in index leaf node. Unlike REBUILD index, REORGANIZE
will not add new pages to match the Fill Factor defined, but it compacts the pages. If any page
gets empty during the compacting process, it gets removed, so the Fill Factor option is not
supported. REORGANIZE will not lock objects for a long time and hence the Online option is
also not supported, as it is always in Online mode, by default.

There's more...
The user should be the owner of the table or a member of the sysadmin fixed server role, the
db_owner fixed database role, or the db_ddladmin fixed database role, in order to perform
REORGANIZE or DBCC INDEXDEFRAG.

How to find missing indexes
By now, we hope that you have understood the requirement of the index in performance.
While developing a database table, initially it is not always possible for us to predict the right
column as an index. So, as per our prediction, we used to generate an index that might be
helpful; sometimes it would not even be used, and sometimes, we would need other indexes
as well, apart from the initial index we had created. So, now the question arises as to how to
find the indexes that are not even generated. How can we predict which indexes are missing
and which we need to create?

Maintaining Indexes

242

Generally, whenever any query gets executed, SQL Server query optimizer finds the best index
for the execution, and if it doesn't find it, the optimizer generates a suboptimal plan for your
query, returns the result set, and stores that information about missing index in the DMVs.

As soon as SQL Server services restart or the whole server restarts, all information stored for
this missing index would be lost. So it is a good idea to let the server keep running for one
business cycle that may be a week, month, or any other time period. Then, you would have
a proper list of all missing indexes.

Getting ready
For more details on index-related dynamic management views and functions, refer to
the recipe Monitoring index performance in Chapter 7, Dynamic Management Views and
Dynamic Management Functions. Along with the book, you can learn more from the Microsoft
links given in the following list to get a detailed idea about the DMVs and DMFs we are going
to use in this recipe:

ff sys.dm_db_missing_index_details: This DMV returns details about the missing index
you need to create. For more information, please visit:
http://msdn.microsoft.com/en-us/library/ms345434%28SQL.110%29.
aspx

ff sys.dm_db_missing_index_group_stats: This DMV returns a summary of the
benefit you would have gained if you had the particular index. For more information,
please visit:
http://msdn.microsoft.com/en-us/library/ms345421%28SQL.110%29.
aspx

ff sys.dm_db_missing_index_groups: This DMV returns information about which
missing indexes are contained in which missing index group handle. For more
information, please visit:
http://technet.microsoft.com/en-us/library/
ms345407%28SQL.110%29.aspx

ff sys.dm_db_missing_index_columns(Index_Handle): This DMV gives you an idea
about what columns are missing in Index; it is based on the Index_Handle field
of sys.dm_db_missing_index_groups. For more information, please visit:
http://technet.microsoft.com/en-us/library/
ms345364%28SQL.110%29.aspx

Chapter 10

243

How to do it...
The following T-SQL query will give you information about missing indexes in your database:

--finding missing Index
SELECT
 avg_total_user_cost * avg_user_impact * (user_seeks + user_scans)
AS PossibleImprovement
 ,last_user_seek
 ,last_user_scan
 ,statement AS Object
 ,'CREATE INDEX [IDX_' + CONVERT(VARCHAR,GS.Group_Handle) + '_' +
CONVERT(VARCHAR,D.Index_Handle) + '_'
 + REPLACE(REPLACE(REPLACE([statement],']',''),'[',''),'.','') +
']'
 +' ON '
 + [statement]
 + ' (' + ISNULL (equality_columns,'')
 + CASE WHEN equality_columns IS NOT NULL AND inequality_columns IS
NOT NULL THEN ',' ELSE '' END
 + ISNULL (inequality_columns, '')
 + ')'
 + ISNULL (' INCLUDE (' + included_columns + ')', '')
 AS Create_Index_Syntax
FROM
 sys.dm_db_missing_index_groups AS G
INNER JOIN
 sys.dm_db_missing_index_group_stats AS GS
ON
 GS.group_handle = G.index_group_handle
INNER JOIN
 sys.dm_db_missing_index_details AS D
ON
 G.index_handle = D.index_handle
Order By PossibleImprovement DESC

How it works...
It is necessary to find out the possible improvement if a suggested index were created. The
base logic to find this out is as follows:

ff avg_total_user_cost * avg_user_impact * (user_seeks + user_scans)

Maintaining Indexes

244

This information resides in the sys.dm_db_missing_index_group_stats DMV.
After finding out the possible improvement, it is better to see which table, which columns
need which index. Therefore, even the suggested query has been given in the field
Create_Index_Syntax, by using the following DMVs:

ff sys.dm_db_missing_index_group_stats

ff sys.dm_db_missing_index_details

These two DMVs contain all information regarding the column(s) of the table, that need an
index, so a CREATE INDEX syntax would be created from these two DMVs. But, to get the
relationship between these two DMVs, the sys.dm_db_missing_index_groups DMV is
the only way, as it contains Index_Group_Handle, which makes join possible with sys.
dm_db_missing_index_group_stats, and the Index_Handle field, which makes join
possible with sys.dm_db_missing_index_details.

The list of indexes created by the preceding DMVs is just a piece of advice regarding which
indexes are missing and need to be created. Finally it's up to you, based on your requirement,
whether to create the index or not. You need to check whether the table name and column
has any selectivity, and then decide whether or not to create it. More indexes on a table might
improve the performance of your SELECT statement, but it will harm other DML statements.
So, it is always advisable to make the decision manually rather than leaving everything
to DMVs.

There's more...
These DMVs can keep information for a maximum of 500 indexes, and the information is lost
whenever SQL Services restarts. Once again, this list of 500 missing indexes is a suggestion
only; apply your expertise to find whether it is really worth creating the index or not.

How to find unused indexes
By this time, it is crystal clear that an index can boost up performance, but it comes at a price.
Indexes need space in your desk to accommodate their own B-Tree and get updated each time
a DML statement gets executed, so it is a good idea to check for any unused indexes in every
business cycle.

Getting ready
Before executing the query to find the unused index, remember that we are going to use a
sys.dm_db_index_usage_stats dynamic management view that removes all the data
at every restart of a SQL Server instance and starts collecting data from scratch again.

Chapter 10

245

If we just restart the server or SQL Server instance and look for the statistics, it will show that
no index is used and will suggest dropping (DROP) all indexes; this is not right. So, keep your
SQL Server running for at least one business cycle, and then check for the statistics.

Business cycles differ from case tocase. Some tables and queries could
be in use every day, but some queries for some reports may execute once
in a month or year, may be by HR to see the performance of an employee,
especially at the time of yearly appraisal. So, let everything run, and finish
your business cycle, and then we will have an appropriate and correct picture.

How to do it...
There is one simple T-SQL query to execute for getting the information regarding unused
indexes. The query is given as follows:

--following query will show you which index is never used
SELECT
 ind.Index_id,
 obj.Name as TableName,
 ind.Name as IndexName,
 ind.Type_Desc,
 indUsage.user_seeks,
 indUsage.user_scans,
 indUsage.user_lookups,
 indUsage.user_updates,
 indUsage.last_user_seek,
 indUsage.last_user_scan,
 'drop index [' + ind.name + '] ON [' + obj.name + ']' as
DropIndexCommand
FROM
 Sys.Indexes as ind
JOIN
 Sys.Objects as obj
ON
 ind.object_id=obj.Object_ID
LEFT JOIN
 sys.dm_db_index_usage_stats indUsage
ON
 ind.object_id = indUsage.object_id
AND
 ind.Index_id=indUsage.Index_id

Maintaining Indexes

246

WHERE
 ind.type_desc<>'HEAP' and obj.type<>'S'
AND
 objectproperty(obj.object_id,'isusertable') = 1
AND
 (isnull(indUsage.user_seeks,0) = 0
AND
 isnull(indUsage.user_scans,0) = 0
AND
 isnull(indUsage.user_lookups,0) = 0)
ORDER BY
 obj.name,ind.Name
GO

How it works...
Generally, we get all necessary information from the dynamic management view
sys.dm_db_index_usage_stats, but to know index ID, index name, and index
type, it is mandatory to join the sys.Indexes view, and to know the table name,
it is mandatory to know the Sys.Objects view.

Generally, whenever an index is used, it fills up some value in the sys.dm_db_index_
usage_stats dynamic management view in the user_seek, user_scan, or user_lookup
columns. If the index has never performed seek, scan, and lookup, there is no need to keep
that index (which utilizes disk space and increases overhead in DML statements). Instead, we
can remove it and claim the disk space.

There's more...
Again, apply your expertise while deciding whether the index is actually used, and use the
DROP INDEX command generated by the given query. The use of an index depends on the
business cycle, and you might be running some HR or other report annually, so removing an
index might reduce the performance of those reports that use the index we have removed.
You might not see any scan/seek/lookup operator at the moment, because SQL Server might
have restarted in a recent week or month, while the report is run annually. There are two more
reasons given here that may change your decision about dropping the index:

ff If the index is a Primary Key or a unique key, it can be there for the sake of data
integrity even though it is not shown in any scan/seek/lookup

ff A unique index assists the optimizer in building a more efficient execution plan, even
though index itself isn't used, by providing information about data distribution

Chapter 10

247

Enhancing performance by creating an
indexed view

A view is a virtual table that consists of data columns from one or more tables. In simple
terms, it is a stored query that works as an object of a database, such as a table. A view can
be treated exactly like a table; it can be used in any stored procedure, JOIN, UDF, and so on.

A view provides the following two main benefits:

ff A security mechanism that restricts users to a certain subset of data in one or more
base tables

ff A mechanism that allows developers to customize how users can logically view the
data stored in base tables

When you query the view, the query optimizer complies a single execution plan for the query.
The query optimizer searches through a set of possible execution plans for a query, and
chooses the lowest cost plan.

In the absence of an indexed view, the portions of the view necessary to solve the query are
materialized at execution time. All joins and/or aggregations are done at execution time.
After creating an indexed view, the result set of view is materialized at the time of creating
it and persisted in physical storage in the database. This operation saves the overhead of
performing this costly operation at runtime for large tables in a complex query.

Getting ready
Before you start working with an indexed view, it is a prerequisite to find which column(s)
needs to be indexed in the view, what point needs to be considered before selecting a
candidate for indexed view, and whether the indexed view is worth creating or whether it just
causes an overhead instead of providing any benefit. The following points will help you to
make a decision:

ff A view must not reference any other view

ff A view can reference any required base tables

ff Column name must be explicitly stated with appropriate alias

Index comes up with additional cost of overhead, as follows:

ff Index consumes disk space to store itself

ff Index creates overhead in DML statements, such as INSERT/UPDATE/DELETE, as
whenever a DML statement is executed, the index needs to update itself

ff Index maintenance cost

Maintaining Indexes

248

So, before making a decision to create an indexed view, it is better to identify the ratio of the
approximate number of SELECT statements going to be executed on view to the approximate
number of DML statements going to be run on base table of view. If a small number of
SELECT statements is being executed and a higher number of DMLs are performed, or base
tables are very volatile and have a very high update ratio, it is not a good idea to create an
indexed view.

Before making any decision, it is advisable to gauge the workload of the database and apply
your expertise to find the selectivity of the query. Generally, a query with aggregation and
many joins, whose base tables are large (maybe millions of rows), and a query taking
time to execute, are good candidates to be in indexed view.

Based on my personal experience, I have observed that Online Analytical
Processing (OLAP), Data Warehouse, Date Mart, and Data Mining get more
benefit from indexed view over Online Transaction Processing (OLTP), because
in most OLTP, there would be a chance of having more DML statements than
SELECT statements in base tables, and hence each DML statement needs to
update the index on the view along with the indexes on the base table.

Some SET options should be set while creating an indexed view. The following is a list of
the same:

ff ARITHABORT

ff CONCAT_NULL_YIELDS_NULL

ff QUOTED_IDENTIFIER

ff ANSI_WARNINGS

ff ANSI_NULLS

ff ANSI_PADDING

ff NUMERIC_ROUNDABORT

NUMERIC_ROUNDABORT should be set to OFF, and all the other options should be set to ON.

How to do it...
Follow the steps provided here to perform this recipe:

1.	 First, let us create a view with a table from the AdventureWorks2012 database, by
using the following query:
--Using AdventureWorks2008R2, renamed as AdventureWorks2012,
--database which is compatible with SQL Server Denali and
--freely downloadable, there is no AdventureWorks database
--available for SQL Server 2012 at the moment.

--creating view

Chapter 10

249

CREATE VIEW POView
WITH SCHEMABINDING
AS
SELECT
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
 ,COUNT_BIG(*) AS Count
FROM
 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN
 [Purchasing].[PurchaseOrderDetail] AS POD
ON
 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON
 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON
 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO

--creating clustered Index on View to make POView Indexed View
CREATE UNIQUE CLUSTERED INDEX IndexPOView ON POView
(PurchaseOrderID)
GO

2.	 After creating a view and then creating a clustered index on the view, it is time to
check the effect of the index by running the query we have used in view definition
and also by running the view.
--Executing both the following queries with keeping Execution
--plan on we can turn execution plan on by pressing ctrl+M
--short cut key
SELECT TOP 10

Maintaining Indexes

250

 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name AS VendorName
 ,SUM(POD.OrderQty) AS OrderQty
 ,SUM(POD.OrderQty*POD.UnitPrice) AS Amount
FROM
 [Purchasing].[PurchaseOrderHeader] AS POH
JOIN
 [Purchasing].[PurchaseOrderDetail] AS POD
ON
 POH.PurchaseOrderID = POD.PurchaseOrderID
JOIN
 [HumanResources].[Employee] AS EMP
ON
 POH.EmployeeID=EMP.BusinessEntityID
JOIN
 [Purchasing].[Vendor] AS V
ON
 POH.VendorID=V.BusinessEntityID
GROUP BY
 POH.PurchaseOrderID
 ,POH.OrderDate
 ,EMP.LoginID
 ,V.Name
GO

SELECT top 10 * FROM POView WITH (NOEXPAND)
GO

3.	 Now, if we review the execution plan, we can see that the execution plan of the
POView view is much better, due to the clustered index we have created on the view.
The first query searches records from the different indexes defined on the table that
comes with the AdventureWorks2012 database, whereas the second query on the
view searches records from the single clustered Index we have created on the view.

Chapter 10

251

How it works...
As per BOL, the SQL Server query optimizer automatically determines when an indexed
view can be used for a given query execution. The view does not need to be referenced
directly in the query, for the optimizer to use it in the query execution plan. Therefore,
existing applications may take advantage of the indexed views without any changes
to the applications themselves; only the indexed views have to be created.

In fact, the optimizer always tries to find the best way to execute the query and it sometimes
decides to use the index defined on the base table, rather than using the index created on
view. In a development environment, we can test the execution of a query directly or in the
indexed view. If the optimizer uses the base table's index for both executions, we can force it
to use the index defined on the view while executing the view with the WITH NOEXPAND hint.

Maintaining Indexes

252

There's more...
Indexed view is available in every edition of SQL Server 2012. In the Developer and Enterprise
editions of SQL Server 2012, the query processor can use an indexed view to solve queries
that structurally match the view, even if they don't refer to the view by name. In other editions,
we must reference the view by name and use the NOEXPAND hint on the view reference, to
query the contents of an indexed view.

Indexed view must be created with the WITH SCHEMABINDING option, so that any object
referenced in the view cannot be altered in a way that could make the view stop working.

If an indexed view has a GROUP BY clause in its definition, the COUNT_BIG (*) column must
be included in the SELECT list of the view definition, and the view definition cannot specify
HAVING, CUBE, and ROLLUP.

The NOEXPAND hint forces the query optimizer to use the index created on the view rather
than searching for the index created in an underlying table. The NOEXPAND hint can only be
applied if the indexed view is referenced directly in the FROM clause.

Enhancing performance with index on Com-
puted Columns

Before trying to understand what "an index on a Computed Column" is, it is good to have a
basic understanding of what a Computed Column is.

As per MSDN, a Computed Column is computed from an expression that can use other
columns in the same table. The expression can be a non-computed column name, constant,
function, or any combination of these, connected by one or more operators. The expression
cannot be a subquery.

By default, a Computed Column is a virtual column and it is recalculated every time we call it,
until we specify it as PERSISTED in the CREATE TABLE or ALTER TABLE commands.

If a Computed Column is defined as being PERSISTED, it stores the calculated value and
those stored values are updated each time you change the value of the original column.
Moreover, you can't use Computed Column names in INSERT and UPDATE statements.

As it is already proved that an index plays an important role in performance, in the previous
chapter, Chapter 9, Implementing Index, it is good to know whether it plays any significant role
in all re-calculative values.

Chapter 10

253

Getting ready
First get yourself ready with some information to make sure whether it is possible to make an
index on a Computed Column or not. A Computed Column should meet the following criteria in
order to make an index on it:

ff If a Computed Column is derived from Image, Text, and ntext datatypes, it could
be a part of a non-key column of a non-clustered index only.

ff Computed Column expressions shouldn't be of the REAL or FLOAT datatypes.

ff A Computed Column should be precise.

ff A Computed Column should be deterministic, meaning that it should return the same
results for specific input. The IsDeterministic property of the COLUMNPROPERTY
function is used to identify whether computed column is deterministic or not.

ff If a Computed Column has used any function (user-defined function and/or built-in
function), the owner of the table and function should be the same.

ff Functions that depend on multiple rows, such as SUM or AVG, cannot be used in
Computed Columns.

ff INSERT, UPDATE, or DELETE statements executed on a table may change the value
of the index on a Computed Column, so the table must have six SET options set to
ON and one option set to OFF. SQL Server query optimizer won't use an index on a
Computed Column for any SELECT statement executed by a connection that does
not have the same option settings, as follows:

�� ARITHABORT

�� CONCAT_NULL_YIELDS_NULL

�� QUOTED_IDENTIFIER

�� ANSI_WARNINGS

�� ANSI_NULLS

�� ANSI_PADDING

�� NUMERIC_ROUNDABORT

NUMERIC_ROUNDABORT should be set to OFF, and all above options should be set to ON.

Maintaining Indexes

254

How to do it...
Follow the steps provided here to perform this recipe:

1.	 As said in the previous paragraph regarding the setting of the SET command, let
us first set those options and then create one table for demonstration purposes.
Accordingly, our demo table will be named SalesOrderDetailDemo and will be
created from the AdventureWorks2012 database's SaleOrderDetail table,
as in the following script:
--fix the value of SET environment variables.
SET ANSI_NULLS ON
SET ANSI_PADDING ON
SET ANSI_WARNINGS ON
SET ARITHABORT ON
SET CONCAT_NULL_YIELDS_NULL ON
SET QUOTED_IDENTIFIER ON
SET NUMERIC_ROUNDABORT OFF

--creating one table from the data of
--[Sales].[SalesOrderDetail] table
--from AdventureWorks2012 database for demonstration purpose.
SELECT
 [SalesOrderID]
 ,[SalesOrderDetailID]
 ,[CarrierTrackingNumber]
 ,[OrderQty]
 ,[ProductID]
 ,[SpecialOfferID]
 ,[UnitPrice]
INTO
 SalesOrderDetailDemo
FROM
 [AdventureWorks2012].[Sales].[SalesOrderDetail]
GO

2.	 Now, create one user-defined function that will be used in the Computed Column,
and add the Computed Column NetPrice to the newly created table. This will get
the calculated value from the user-defined function, UDFTotalAmount, as in the
following script:
-- Creating User Defined Function to use in computed column
CREATE FUNCTION
[dbo].[UDFTotalAmount] (@TotalPrice numeric(10,3), @Freight
TINYINT)
RETURNS Numeric(10,3)
WITH SCHEMABINDING
AS

Chapter 10

255

BEGIN
DECLARE @NetPrice Numeric(10,3)
SET @NetPrice = @TotalPrice + (@TotalPrice*@Freight/100)
RETURN @NetPrice
END
GO

--adding computed column SalesOrderDetailDemo table
ALTER TABLE SalesOrderDetailDemo
ADD [NetPrice] AS [dbo].[UDFTotalAmount] (OrderQty*UnitPrice,5)
GO

3.	 Now, create one clustered index on the table, so that the table doesn't become a
heap, as explained in the previous chapter, and set some SET options to measure
performance for each SELECT query. After setting the STATISTICS option to ON,
it will be time to execute one SELECT statement on the SalesOrderDetailDemo
table. Keep in mind that we have not created any index on a Computed Column, yet.
--creating Clustered Index on table.
CREATE Clustered Index idx_SalesOrderID_SalesOrderDetailID_
SalesOrderDetailDemo
ON SalesOrderDetailDemo(SalesOrderID,SalesOrderDetailID)
GO

--checking SalesOrderDetailDemo with statistics option ON to
--measure performance

SET STATISTICS IO ON
SET STATISTICS TIME ON
GO

--checking SELECT statement without having Index on Computed
Column
SELECT * FROM SalesOrderDetailDemo WHERE NetPrice>5000
GO

In the Messages tab of the Result panel, you might receive results of our
STATISTICS options, such as in the following text:
SQL Server parse and compile time:
 CPU time = 650 ms, elapsed time = 650 ms.
SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.

(3864 row(s) affected)

Maintaining Indexes

256

Table 'SalesOrderDetailDemo'. Scan count 1, logical reads 757,
physical reads 0, read-ahead reads 0, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

 SQL Server Execution Times:
 CPU time = 562 ms, elapsed time = 678 ms.

Please note that you might get different readings in the
previous text, as it depends on many parameters, such as
CPU of the server, memory, disk type, disk drive, server load,
parallel processes running on server, and many more.

4.	 Now, before creating an index on a Computed Column, it is mandatory to meet
certain requirements, as discussed in the Getting Ready section of this recipe. Let
us check whether we meet all requirements or not, by executing the following simple
T-SQL query:
--checking different property of column and table before making an
Index
--if 0 then answer is NO
--if 1 then answer is YES
SELECT
 COLUMNPROPERTY(OBJECT_ID('SalesOrderDetailDemo'),'NetPrice','
IsIndexable') AS 'Indexable?'
 ,COLUMNPROPERTY(OBJECT_ID('SalesOrderDetailDemo'),'NetPrice',
'IsDeterministic') AS 'Deterministic?'
 ,OBJECTPROPERTY(OBJECT_ID('UDFTotalAmount'),'IsDeterministic')
'UDFDeterministic?'
 ,COLUMNPROPERTY(OBJECT_ID('SalesOrderDetailDemo'),'NetPrice','
IsPrecise') AS 'Precise?'

5.	 Now, create an index on a Computed Column, if you have received all results as YES
in the previous query and executed the same SELECT statement that was executed
in the previous script. This can be done by executing the following script:
--creating an Index on Computed Column
CREATE INDEX idx_SalesOrderDetailDemo_NetPrice
ON SalesOrderDetailDemo
(
NetPrice
)
GO

Chapter 10

257

--checking SalesOrderDetailDemo after an Index on Computed
--Column
SELECT * FROM SalesOrderDetailDemo WHERE NetPrice>5000
GO

6.	 Now, look at the results of our STATISTICS command in the Messages tab. Here is
a copy from my server:
SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.
SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.

(3864 row(s) affected)
Table 'SalesOrderDetailDemo'. Scan count 1, logical reads 757,
physical reads 0, read-ahead reads 0, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

 SQL Server Execution Times:
 CPU time = 546 ms, elapsed time = 622 ms.

Please note that you might get different readings in the previous text, in your
installation of SQL Server 2012, as it depends on many parameters like
CPU of server, memory, disk type, disk drive, server load, parallel processes
running on the server, and many more.

How it works...
Creating an index on Computed Columns, stores key values in leaf-level pages and uses index
statistics while executing the SELECT statement, and it works well most of the time. If, for any
reason, the optimizer can't use a Computed Column Index, it will go for a regular index or table
scan. There are many cases (that we have already discussed in the Getting Ready section of
this recipe) where the optimizer won't use a Computed Column Index.

If you observe both copies of the STATISTICS figure, you will find differences in the SQL
Server Parse and Compile time section and also in the SQL Server Execution
Times section. The difference could be larger and better after creating an index on a
Computed Column, if the table is very large (maybe millions of rows) and the calculation
in the Computed Column is complicated.

Maintaining Indexes

258

Determining disk space consumed by
indexes

Performance tuning is part of a DBA's job; at the same time, the DBA also has to take care
of the SQL Server instance, the amount of disk space consumed by database(s), providing
high availability to the database users, managing database backup/restore policy as a part
of disaster management, and a lot more.

Out of these listed responsibilities, disk management is also one of the important tasks
to manage. The DBA needs to keep a watch on it and claim any free space consumed by
unused indexes, manage the size of log files and data files, and arrange for a larger-sized
disk, if needed.

In Chapter 9, and in this chapter, we have discussed many times that an index comes with
some overhead, and one of the overheads is that the index consumes disk space. So, this is
the time to see how much space an index consumes, as either low space or no space on disk
raises performance issues, and sometimes the query stops working due to the unavailability
of disk space.

Getting ready
In order to perform this operation, the following two things are required:

ff VIEW DATABASE STATE permission for the user

ff Knowledge of the sys.dm_db_partition_stats dynamic management view

How to do it...
Follow the steps provided here to perform this recipe:

1.	 The following T-SQL query will display information about space consumed by
the indexes:
SELECT
 CASE index_id
 WHEN 0 THEN 'HEAP'
 WHEN 1 THEN 'Clustered Index'
 ELSE 'Non-Clustered Index'
 END AS Index_Type,
 SUM(CASE
 WHEN FilledPage > PageToDeduct THEN (FilledPage-
PageToDeduct)
 ELSE
 0
 END)* 8 Index_Size

Chapter 10

259

FROM
(
 SELECT
 partition_id,
 index_id,
 SUM (used_page_count) AS FilledPage,
 SUM (
 CASE
 WHEN (index_id < 2) THEN (in_row_data_
page_count + lob_used_page_count + row_overflow_used_page_count)
 ELSE
 lob_used_page_count + row_overflow_used_
page_count
 END
) AS PageToDeduct

 FROM
 sys.dm_db_partition_stats
 GROUP BY
 partition_id
 ,index_id
) AS InnerTable
GROUP BY
 CASE index_id
 WHEN 0 THEN 'HEAP'
 WHEN 1 THEN 'Clusetered Index'
 ELSE 'Non-Clustered Index'
 END
GO

How it works...
sys.dm_db_partition_stats gives useful information to the DBA, such as the total row
count in each table per partition, used pages, reserved pages for LOB, in-row, and overflow.
Each page consumes 8 KB, so if the total number of pages found for any object is multiplied
by 8, it would give us the total size in KB.

We can get the Used_Page_Count field, which displays information about total pages used
by an object, and if it is a heap or clustered index (Index_id < 2), we remove in_row_
data_page_count, lob_used_page_count, and row_overflow_used_page_count,
otherwise only the last two fields are removed from total used pages. Multiply those pages
with 8 to get the total used KB (Kilo Bytes).

Maintaining Indexes

260

The following table gives the meaning of an important column, sys.dm_db_partition_
stats, along with those columns that we have used in our query:

Column Name Description
partition_id There is a database-wide unique ID available in the

sys.partitions catalog view that is referenced
here, in sys.dm_db_partition_stats

index_id ID of the index; if ID is 0 then the index is a heap, if
it is 1 then clustered index, and if it is greater than
1 then it always belongs to non-clustered index.

used_page_count Total number of pages used for the partition;
computed as in_row_used_page_count +
lob_used_page_count + row_overflow_
used_page_count.

in_row_data_page_count Number of pages in use for storing in-row data in
this partition. If the partition is part of a heap, the
value is the number of data pages in the heap. If
the partition is part of an index, the value is the
number of pages in the leaf level. (Non-leaf pages
in the B-Tree are not included in the count.) IAM
(Index Allocation Map) pages are not included in
either case.

lob_used_page_count Number of pages in use for storing and managing
out-of-row text, ntext, image, varchar(max),
nvarchar(max), varbinary(max), and
XML columns within the partition. IAM pages
are included.

row_overflow_used_page_count Number of pages in use for storing and managing
the row-overflow varchar, nvarchar,
varbinary, and sql_variant columns
within the partition. IAM pages are included.

object_id Object ID of the table or indexed view that the
partition is part of.

row_count Total number of rows within partition.

11
Points to Consider

While Writing Queries

In this chapter we will cover:

ff Improving performance by limiting the number of columns and rows

ff Improving performance by using sargable conditions

ff Using arithmetic operators wisely in predicate, to improve performance

ff Improving query performance by not using functions on predicate columns

ff Improving performance by Declarative Referential Integrity (DRI)

ff Trust your foreign key to gain performance

Introduction
Prevention is always better than cure is what I believe. It's a good idea to have a look at
some safeguards so that common mistakes don't happen in the TSQL we write, which can
cause performance issues later on. There are so many things to consider, to avoid common
programming mistakes. Here, we are going to present few of them from the performance
point of view.

Points to Consider While Writing Queries

262

Improving performance by limiting the
number of columns and rows

It has been observed that many developers tend to use SELECT * in queries even if only a few
columns of the tables are needed. It's also observed that, many a time, people execute the
SELECT query without applying a proper filter clause, which returns more rows in the result
set than actually required. After returning result sets to the application, filtering rows in the
result sets in application logic as and when needed which is not really a good practice. Both
of these cases create big result sets with unnecessary columns and rows, which has many
drawbacks. The following are the few of them:

ff A big result set creates I/O overhead by reading more columns/rows from the pages
that can be ignored, which in fact is actually not needed.

ff Creates unnecessary load on network traffic.

ff The SELECT * query with JOIN may create some issues and throw an error while
using the ORDER BY clause on columns, which are common in more than one table
with the same name.

ff If an application has used column number rather than column name from result sets,
SELECT * changes the position of the column in the result set, if a new column is
inserted in between any column in the table.

ff The SELECT * query changes covering index into non-covering, thus requiring
lookups. This is very important because lookup is an expensive iterator, so we can
end up scanning the entire table (if optimizer decides that lookup is too expensive).

In SQL Server 2012, there is an intellisense facility, so it is not very difficult to mention the
name of each and every column, which is really required in the result set. It is also a good
practice to apply proper filters in the query and return only necessary columns/rows to
the application.

Getting ready
Since this is a preventive action, there is no formulaic method to change your SELECT * with
SELECT ColumnName automatically. Human skills are required to identify which column and
which conditions are necessary to filter records in order to achieve the desired result set.
Even one small script will help to identify which stored procedure, trigger, or view has used
* or SELECT *:

SELECT DISTINCT
 so.name
 ,sc.definition
FROM
 sys.sql_modules sc
INNER JOIN

Chapter 11

263

 sysobjects so
ON
 sc.object_id=so.id
WHERE
 so.xtype in ('P','TR','V')
 and
 sc.definition LIKE '%*%'
--or to make more precise filter, you can go for
--sc.definition LIKE '%SELECT *%'
ORDER BY
 Name

Sys.sql_modules contains the text that has been used to create objects such as functions,
procedures, triggers, views, and so on, but it won't contain the name of the object. Hence
JOIN is required with the Sys.sql_modules system view.

Xtype can filter out the type of object, for example, P represents stored procedure, TR
represents trigger, and V stands for view.

This query displayed above will not give you 100 percent accurate results; it may bring any
definition of an object that has used *, maybe for mathematical expression or comment.
There is one free tool provided by Microsoft that helps you in identifying not only this issue but
many other common mistakes, too. You can download this tool, Microsoft SQL Server 2012
Best Practices Analyzer, from the following URL:

http://www.microsoft.com/download/en/details.aspx?id=29302

How to do it...
Since we have now found how to find objects that have used SELECT *, we can manually
update those objects by replacing * with the appropriate column name. It's always a good
practice to give a column name while generating an object for the first time, so that we don't
need to correct it repeatedly. Let us see how much it is affect if we do not provide a proper
column name and/or filter.

1.	 Set two STATISTICS options to display the information about query execution:
SET STATISTICS IO ON
SET STATISTICS TIME ON

2.	 Execute a simple SELECT query on the Sales.SalesOrderDetail table with * to
see the Messages tab displaying information about the execution time and IO load:
SELECT
 *
FROM
 Sales.SalesOrderDetail
WHERE
 SalesOrderID>50000 and OrderQty>1

Points to Consider While Writing Queries

264

The Messages tab after executing this query is shown in the following screenshot:

3.	 We may not need all columns of the Sales.SalesOrderDetail table in the
result set. So we may like to control the number of columns in the SELECT query
by specifying the proper column name with the query shown next:
SELECT
 CarrierTrackingNumber
 ,OrderQty
 ,ProductID
 ,SpecialOfferID
 ,UnitPrice
FROM
 Sales.SalesOrderDetail
WHERE
 SalesOrderID>50000 and OrderQty>1

The following screenshot shows the result of this query:

Chapter 11

265

If you observe both the screenshots, you will get to know that Scan count and logical reads
remain the same, as there is no change in filter of the query, but CPU time and elapsed time
is better in the second query, because we have controlled the column.

1.	 Let's set the STATISTICS command as it was before so it doesn't get calculated for
each query that we execute on the server:

SET STATISTICS TIME OFF
SET STATISTICS IO OFF

How it works...
A large number of unnecessary columns increases the I/O overheads and network traffic, and
may make your index ineffective. The absence of an appropriate filter increases the number of
rows, which again creates unnecessary network traffic, IO overhead, and forces the optimizer
to scan more pages then necessary, which delays the execution of the query. All these details
can be observed with the following two commands:

SET STATISTICS IO ON
SET STATISTICS TIME ON

See also
For more details on the SET command look at the Enhancing performance with index on
computed columns recipe in Chapter 10, Maintaining Indexes.

Improving performance by using sargable
conditions

Sargable stands for Search ARGument Able. Sargable conditions help query optimizers to
use the index defined on column(s) effectively. Sargable conditions have a higher chance of
meeting index seek than index or table scan.

Getting ready
Writing a sargable condition is also a preventive step. Consider this factor while writing the
query or while working on performance tuning projects. There are some operators that make
your query sargable or non-sargable. Here is the list:

Sargable operators:

ff =

ff >

Points to Consider While Writing Queries

266

ff >=

ff <

ff <=

ff BETWEEN

ff LIKE (only those LIKE conditions that have a wildcard character as a suffix, for
example, FirstName LIKE 'R%')

Non-sargable operators:

ff !=

ff !<

ff !>

ff <>

ff NOT EXISTS

ff IN

ff NOT IN

ff LIKE (LIKE conditions that have a wildcard character as a prefix in the filter, for
example, FirstName LIKE '%R')

ff NOT LIKE

ff Functions on column name in predicate

The main intention for giving a list of operators for both situations is to help you, for as long as
possible, try to avoid non-sargable operators to gain performance benefits from an index.

How to do it...
Follow the steps given here to perform this recipe:

1.	 Set two STATISTICS options to display information about the query execution:
SET STATISTICS IO ON
SET STATISTICS TIME ON

2.	 Now, execute a simple SELECT query on Sales.SalesOrderHeader with the IN
operator, which is non-sargable:
SELECT * FROM Sales.SalesOrderHeader
WHERE SalesOrderID IN (75000,75001,75002)

3.	 The statistics received from the Message tab of the result panel is as follows:
Table 'SalesOrderHeader'. Scan count 3, logical reads 9, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical
reads 0, lob read-ahead reads 0.

Chapter 11

267

4.	 Now, execute the same query as above with the >= and <= operators, which are
sargable operators:
SELECT * FROM Sales.SalesOrderHeader
WHERE SalesOrderID >=75000 AND SalesOrderID<=75002

5.	 The statistics received from the Message tab of the result panel is as follows:
Table 'SalesOrderHeader'. Scan count 1, logical reads 3, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical
reads 0, lob read-ahead reads 0.

6.	 Execute the same SELECT statement with another sargable operator—BETWEEN:
SELECT * FROM Sales.SalesOrderHeader
WHERE SalesOrderID BETWEEN 75000 AND 75002

7.	 The statistics received from the Message table of the result panel is as follows:

Table 'SalesOrderHeader'. Scan count 1, logical reads 3, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical
reads 0, lob read-ahead reads 0.

How it works...
Generally algebriser transforms the query in more suitable form for optimiser, for example,
transforming the IN operator to multiple OR operators, and SQL Server Query optimiser
performs a syntax-based tuning by its own before executing the query and tries to match up to
your non-sargable , which is IN , operator with sargable operator, which is OR , in most case,
so you might not see major difference.. I Personally recommend it is not good idea to leave
choice of operator on optimiser.

Compare all three statistics we have received for three queries. The second and third
statistics seem better than the first one the as second and third ones have Scan count as 1
and logical reads as 3, as compared to the first statistics, where Scan count is equal to
3 and logical reads is equal to 9.

Using arithmetic operator wisely in predi-
cate to improve performance

Arithmetic operation directly on the column name in the WHERE condition makes your
condition non-sargable and index defined on the column will not get performance benefits. As
long as possible, try to avoid this situation by logical workarounds to gain performance boosts.

Points to Consider While Writing Queries

268

Getting ready
There is no automatic way to find this behavior; this is simply a manual process. You either
keep this step in mind while developing the SQL script or while working on performance
tuning projects.

Let us use two tables from the AdventureWorks2012 database to demonstrate this exercise.

ff [AdventureWorks2012].[HumanResources].[Employee]

ff [AdventureWorks2012].[HumanResources].[EmployeePayHistory]

How to do it...
Follow the steps given here to perform this recipe:

1.	 Select some basic details of an employee from the Employee table and get
the latest the rate (considering rate as the hourly rate of an employee) from the
EmployeePayHistory table. Suppose we want to select those employees whose
latest hourly rate multiplied by eight is less than 152. A developer's obvious logic
would be like this:
SELECT
 E.LoginID
 ,E.JobTitle
 ,E.BirthDate
 ,E.MaritalStatus
 ,E.Gender
 ,E.HireDate
 ,EP.HourlyRate
 ,EP.RateChangeDate
FROM [AdventureWorks2012].[HumanResources].[Employee] AS E
JOIN
(
 Select
 Max(BusinessEntityID) AS BusinessEntityID
 ,Max(RateChangeDate) AS RateChangeDate
 ,Rate AS HourlyRate
 FROM
 [AdventureWorks2012].[HumanResources].[EmployeePayHistory]
 GROUP BY
 Rate
) as EP
ON E.BusinessEntityID=EP.BusinessEntityID
WHERE EP.HourlyRate*8<=152

Chapter 11

269

2.	 But, this is not an efficient method to make calculations on the column name in the
WHERE clause. Instead, we should go for an alternate way, like this one:
SELECT
 E.LoginID
 ,E.JobTitle
 ,E.BirthDate
 ,E.MaritalStatus
 ,E.Gender
 ,E.HireDate
 ,EP.HourlyRate
 ,EP.RateChangeDate
FROM [AdventureWorks2012].[HumanResources].[Employee] AS E
JOIN
(
 Select
 Max(BusinessEntityID) AS BusinessEntityID
 ,Max(RateChangeDate) AS RateChangeDate
 ,Rate AS HourlyRate
 FROM
 [AdventureWorks2012].[HumanResources].[EmployeePayHistory]
 GROUP BY
 Rate
) as EP
ON E.BusinessEntityID=EP.BusinessEntityID
WHERE EP.HourlyRate<=152/8

3.	 If we had run both the queries with an execution plan, we would get 29 rows
from each result set and the execution plan would look somewhat like the
following screenshot:

Points to Consider While Writing Queries

270

How it works...
The second execution plan seems much better, as it has used 47 percent of the total cost,
as against 53 percent in the first query. Though the difference is not that large, the second
execution plan has used Clustered Index Seek on the Employee table, as against "Clustered
Index Scan" in the first execution plan. There are few more differences between both the
plans, but overall the second query seems attractive from the performance point of view,
because it calculates the whole column while executing the SELECT statement. Table data
affects the result set; a big table shows you a large difference, and less data shows you a
small difference. In short, any arithmetic operator on the column name in the WHERE clause
affects the performance of the query, and the query optimizer will not be able to use the
proper index.

Improving query performance by not using
functions on predicate columns

Using a scalar function with column name in predicate would again make your condition
non-sargable. It is really a heavy load on the query optimizer and consumes lot of resources.
For as long as possible, try to use the alternate method and avoid using functions with
column name in predicate, to achieve performance boosts from the indexes.

Getting ready
There is no automatic way to find this behavior; this is simply a manual process. You either
keep this step in mind while developing the SQL script or while working on performance
tuning projects.

How to do it...
There will be two different examples here, in this recipe. The first example will use the DATE
function in predicate, and the second example will use string function in predicate.

1.	 For first example, let us first create one index on the Date column of the
Person.Person table:
CREATE INDEX IDX_Person_ModifiedDate ON Person.
Person(ModifiedDate)
GO

Chapter 11

271

2.	 Now, if there is a need to list out all people from the Person table whose last
modified date is in the year 2003. A developer will be tempted to use the DATEPART
function, as shown here:
SELECT
 BusinessEntityID
 ,ModifiedDate
FROM
 Person.Person
WHERE
 DATEPART(YYYY,ModifiedDate)='2003'
GO

3.	 This is really a bad way to draft the query; a shorter query is not always good. Let us
twist the WHERE part a little bit to get a workaround to remove a function from the
predicate in the WHERE clause, which will return the same logic:
SELECT
 BusinessEntityID
 ,ModifiedDate
FROM
 Person.Person
WHERE
 ModifiedDate >= '01/01/2003' AND ModifiedDate <= '12/31/2003'
GO

The following screenshot shows both the queries:

The first query has used scan on the non-clustered index, whereas the second query
has used seek in the non-clustered index and used only 6 percent of total query
execution cost. Isn't the second one better?

Points to Consider While Writing Queries

272

4.	 Now, dropping the non-clustered index created for this example and creates one "Non
Clustered "on "First Name" column:
DROP INDEX IDX_Person_ModifiedDate ON Person.Person
GO
CREATE INDEX IDX_Person_FirstName ON Person.Person(FirstName)
GO

5.	 Now, selecting all people from the Person table whose first name starts with R. In
this kind of task, logical steps to use are string functions, such as LEFT, RIGHT, or
SUBSTRING, which is again a bad idea:
SELECT
 BusinessEntityID
 ,FirstName
FROM
 Person.Person
WHERE
 Left(FirstName,1)='R'
GO

6.	 As already said, a shorter query is not always a smarter query, we can go for an
alternative like this:
SELECT
 BusinessEntityID
 ,FirstName
FROM
 Person.Person
WHERE
 FirstName LIKE 'R%'
GO

7.	 By looking at the execution plan of both queries, the picture becomes clear. The
second query seek on the non-clustered index IDX_Person_FirstName whereas
first query makes scan on the non-clustered index IDX_Person_FirstName. The
second query ran faster and used only 9 percent of the total query execution cost,
which is faster.

Chapter 11

273

How it works...
In both the previous examples (first query of both examples), query optimizer was not able to
use the proper non-clustered index that we had defined on the respective column due to the
functions DATEPART and LEFT, used with column name in the WHERE clause. At the same
time the second query, in both examples, has used an alternate way to achieve the same
result set, which is why query optimizer has used the Index Seek operation on the indexes
defined on predicate columns.

Improving performance by Declarative
Referential Integrity (DRI)

Declarative Referential Integrity (DRI) ensures integrity of the database by a properly
managed primary key and foreign key relationship. Correctly defined primary keys and
foreign keys help query optimizer to select the best-suited execution plan for the query.

It has been observed many times that developers create a master table with a primary key
and use that primary key field in the child table but don't define a foreign key in the table
schema. This is not a good practice because by initiating a foreign key in the child table, you
ensure that each record in the child table has a reference key in the parent table. This is a
good thing, right? But, let us clarify that, by maintaining the parent and foreign key properly,
we not only achieve integrity in the database but are also able to gain performance benefits.
We have an example to prove it.

Points to Consider While Writing Queries

274

Getting ready
There is no automatic way to find this behavior; this is simply a manual process. You
either keep this step in mind while developing the database schema or while working
on performance tuning project.

In this recipe, we are going to see the magic of defining a proper primary key and foreign
key relationship.

How to do it...
Follow the steps given here to perform this recipe:

1.	 First of all, we have to create two tables, for demonstration of this recipe, from the
AdventureWorks2012 database:
IF OBJECT_ID('ProductDemo') IS NOT NULL
 DROP TABLE ProductDemo
GO

IF OBJECT_ID('ProductModelDemo') IS NOT NULL
 DROP TABLE ProductModelDemo
GO

select * into ProductModelDemo from Production.ProductModel
select * into ProductDemo from Production.Product WHERE
ProductModelID is not null
GO

2.	 After creating the child table, ProductDemo, and the parent table,
ProductModelDemo, let us make sure that there is no the NULL value
in the foreign key (ProductModelID) of the ProductDemo table:
ALTER TABLE ProductDemo
ALTER COLUMN ProductModelID INT NOT NULL
GO

3.	 Now is the time to create a primary key constraint for the child table, ProductDemo:
ALTER TABLE ProductDemo ADD CONSTRAINT [PK_ProductDemo_ProductID]
PRIMARY KEY CLUSTERED
(
 [ProductID] ASC
)
GO

Chapter 11

275

4.	 Now, create a primary key constraint in the parent table, ProductModelDemo:
ALTER TABLE ProductModelDemo ADD CONSTRAINT [PK_ProductModelDemo_
ProductModelID] PRIMARY KEY CLUSTERED
(
 ProductModelID ASC
)
GO

5.	 It is observed that, after performing all of the given steps, people start executing
TSQL statements on the parent and child tables without making proper foreign key
constraints, such as the following SELECT query:
SELECT
 P.ProductID
 ,P.ProductModelID
FROM
 ProductDemo AS P
JOIN
 ProductModelDemo AS PM
ON
 P.ProductModelID=PM.ProductModelID
WHERE
 P.ProductID=680
GO

The following screenshot shows the execution plan generated by the given query:

Points to Consider While Writing Queries

276

As we have already discussed (with respect to indexes)in Chapter 9 Implementing Indexes,
and Chapter 10, Maintaining Indexes, seek is "good" and scan is "bad", in most cases. This
query performs the seek operation on both tables' clustered indexes, which is good, isn't it?
We'll decide later.

1.	 As of now, create a foreign key constraint on the child table:
ALTER TABLE ProductDemo
WITH CHECK
ADD CONSTRAINT
 FK_ProductDemo_ProductModelDemo_ProductModelID
FOREIGN KEY
 (ProductModelID)
REFERENCES
 ProductModelDemo(ProductModelID)
GO

2.	 After defining the foreign key constraint, let us execute the same SELECT
query again:
SELECT
 P.ProductID
 ,P.ProductModelID
FROM
 ProductDemo AS P
JOIN
 ProductModelDemo AS PM
ON
 P.ProductModelID=PM.ProductModelID
WHERE
 P.ProductID=680
GO

The following screenshot shows the execution plan generated by this query:

Chapter 11

277

This time, query optimizer has performed the seek operation only on the ProductDemo table
and didn't even get into checking anything in the parent table ProductModelDemo. Now
judge which execution plan looks better: before the foreign key constraint or after the foreign
key constraint.

How it works...
It is already said that DRI not only ensures the integrity of databases but also gains
performance benefits, and this is proved by the previous screenshot. By defining foreign key
field as NOT NULL in the child table, we are guiding the query optimizer that there is no value
in child field without reference of parent field and hence optimizer keep trust on this foreign
key and does not even go to look at the ProductModelDemo parent table to confirm this,
if no other data is requested from the parent table. This is the reason, the second SELECT
query performed seek operation on the child table only.

Apart from that, by defining the foreign key to the primary key field on the parent table, we also
ensure that no JOIN operation of a single row from the child table would bring two or more
rows from the parent table. Without it, optimizer would have to go to the parent table to check
whether we possibly have more than one corresponding row for the same row in the child table.

"Trust" your foreign key to gain performance
We have already studied what DRI can do and by how much it can increase performance, in
the previous recipe. This recipe is also related to DRI, which shows that even a single small
option can play a big role as far as performance is concerned.

Getting ready
We are going to see the sys.foreign_keys system view to get information about the
foreign key we defined in the table schema. Concentrate on the field is_not_trusted,
in the view, which gives you information whether your foreign key is trusted or not.

How to do it...
Follow the steps given here to perform this recipe:

1.	 First of all, we have to create two tables for demonstration of this recipe from the
AdventureWorks2012 database:
IF OBJECT_ID('ProductDemo') IS NOT NULL
 DROP TABLE ProductDemo
GO

IF OBJECT_ID('ProductModelDemo') IS NOT NULL
 DROP TABLE ProductModelDemo

Points to Consider While Writing Queries

278

GO

select * into ProductModelDemo from Production.ProductModel
select * into ProductDemo from Production.Product WHERE
ProductModelID is not null
GO

2.	 After creating the child table, ProductDemo, and parent table, ProductModelDemo,
let us make sure that there is no NULL value in the foreign key ProductModelID of
the ProductDemo table:
ALTER TABLE ProductDemo
ALTER COLUMN ProductModelID INT NOT NULL
GO

3.	 Now is the time to create a primary key constraint for the child table, ProductDemo:
ALTER TABLE ProductDemo ADD CONSTRAINT [PK_ProductDemo_ProductID]
PRIMARY KEY CLUSTERED
(
 [ProductID] ASC
)
GO

4.	 Now, create a primary key constraint in the parent table, ProductModelDemo:
ALTER TABLE ProductModelDemo ADD CONSTRAINT [PK_ProductModelDemo_
ProductModelID] PRIMARY KEY CLUSTERED
(
 ProductModelID ASC
)
GO

5.	 Add a foreign key to the child table with the WITH NOCHECK option. The WITH
NOCHECK option prevents the parser from checking the existence of existing data of
child field with parent field data. By default, the ALTER TABLE command uses the
WITH CHECK option if nothing is specified:
ALTER TABLE ProductDemo
WITH NOCHECK
ADD CONSTRAINT
 FK_ProductDemo_ProductModelDemo_ProductModelID
FOREIGN KEY
 (ProductModelID)
REFERENCES
 ProductModelDemo(ProductModelID)
GO

Chapter 11

279

6.	 Now that we have created a foreign key, let us look at the system view for the Is_
Not_Trusted field:
SELECT
 *
FROM
 sys.foreign_keys
WHERE
 name = 'FK_ProductDemo_ProductModelDemo_ProductModelID'
GO

7.	 The Is_Not_Trusted field will have value 1, which means that foreign key is not
trusted. Though, it is not trusted; let us execute below given query by keeping the
execution plan on to observe the way chosen by SQL Server while executing query
on the foreign key which is not trusted :
SELECT
 P.ProductID
 ,P.ProductModelID
FROM
 ProductDemo AS P
WHERE
 EXISTS(SELECT 1 FROM ProductModelDemo AS PM WHERE
P.ProductModelID=PM.ProductModelID)
GO

8.	 Here is the screenshot of the execution plan of this query:

This screenshot shows clustered index scans for both the tables.

1.	 Now, let us alter the foreign key with the WITH CHECK option and see its effect on the
SELECT query:
ALTER TABLE ProductDemo
WITH CHECK
CHECK CONSTRAINT
 FK_ProductDemo_ProductModelDemo_ProductModelID
GO

Points to Consider While Writing Queries

280

2.	 Before we execute our SELECT query in the parent/child table, it's good to check
whether our foreign key becomes trusted or not. Confirm it with the following query:
SELECT *
FROM sys.foreign_keys
WHERE name = 'FK_ProductDemo_ProductModelDemo_ProductModelID'
GO

3.	 Now is the time to execute the query on the parent/child table with the actual
execution plan:
SELECT
 P.ProductID
 ,P.ProductModelID
FROM
 ProductDemo AS P
WHERE
 EXISTS(SELECT * FROM ProductModelDemo AS PM WHERE
P.ProductModelID=PM.ProductModelID)
GO

4.	 Look at the following screenshot of the execution plan:

How it works...
A very small flag called Is_Not_Trusted, in the foreign key metadata, plays a big role in
performance. In the absence of checked data, SQL Server can't assure query optimizer that
every record of the ProductDemo table has a corresponding ProductModelID column in
the ProductModelDemo table, and this is the reason for a different execution plan. In short,
always use foreign key with the WITH CHECK option, so that it remains enabled and trusted as
well. By doing this, the query performance will increase even without any extra efforts.

Chapter 11

281

There's more...
Apart from the points we have discussed in the chapter, there are few more common points
to keep in mind while writing the query, here is the list of the same which are helpful in
performance gain.

ff Specifying as many possible filters in the query, to all the tables participating in the
query, even if the filter looks straightforward

ff Avoid using the ORDER BY clause, if not needed

ff Have smaller items in GROUP BY and make sure that they are from the same tables,
if possible

ff Have integer values in GROUP BY and not strings, if possible.

ff Have columns from the same table in GROUP BY and in ORDER BY, if possible.

12
Statistics in
SQL Server

In this chapter we will cover:

ff Creating and updating statistics

ff Effects of statistics on non-key columns

ff Finding out-of-date statistics and correct them

ff Effects of statistics on a filtered index

Introduction
Query Statistics:

By now, we have already learnt about the index in Chapter 9, Implementing Indexes, and
Chapter 10, Maintaining Indexes. The optimizer chooses the index for a query if there are
proper and updated statistics available for key columns of the index, because the SQL Server
optimizer is a cost-based optimizer. An optimizer can decide the best way to execute the
query, based on the data going to be displayed in result sets with the help of column(s) used
in the WHERE and ON clauses. The optimizer can get all these details from statistics before
executing the actual query.

While creating an index, SQL Server itself creates statistics on key columns of the index and if
required, SQL Server 2012 creates statistics on non-key columns, too.

In short, statistics are nothing more than the description of the distribution of data residing in
a column or in an index.

Statistics in SQL Server

284

Query Selectivity:

Query Selectivity is represented by the number generated by:

Total number of distinct value in the column/Total number of value in the column

For example, one table with two fields, ID and Name, has a total of 1,000,000 records
and has 900,000 unique names in the Name column. Thus, the selectivity of the column
would be:

900,000 / 1,000,000 = 0.9

A higher selectivity always improves the performance of an index, and that is why the ideal
selectivity is 1, which can be achieved by using Primary Key or a unique key.

Creating and updating statistics
Statistics is an integral part of performance as it helps the SQL Server optimizer choose the
proper operation to be performed while executing the SELECT statement. There are two main
ways to create and update statistics:

ff Manually create/update statistics

ff Automatically create/update statistics

We will see these options in this recipe.

Getting ready
Before we move further to generate statistics, let us see some commands to view the current
settings of statistics for database and table.

The following script will let you know whether the Auto_Create_Statistics option is
enabled for databases or not:

SELECT
 CASE
 WHEN
 DATABASEPROPERTYEX('Master','IsAutoCreateStatistics')=1
 THEN
 'Yes'
 ELSE
 'No'
 END as 'IsAutoCreateStatisticsOn?',
 CASE
 WHEN
 DATABASEPROPERTYEX('Master','IsAutoUpdateStatistics')=1
 THEN

Chapter 12

285

 'Yes'
 ELSE
 'No'
 END as 'IsAutoUpdateStatisticsOn?',
 CASE
 WHEN
 DATABASEPROPERTYEX('Master','is_auto_update_stats_async_
on')=1
 THEN
 'Yes'
 ELSE
 'No'
 END as 'isAutoUpdateStatsAsyncOn?'
GO

The following script will show you all the statistics available in a database or for a table based
on the WHERE clause specified:

SELECT
 object_id
 ,OBJECT_NAME(object_id) AS TableName
 ,name AS StatisticsName
 ,auto_created
FROM
 sys.stats
--you can apply WHERE clause to filter records for
--particular table
--remove comment in below given line to see the fact.
--where object_id=OBJECT_ID('Sales.SalesOrderHeader')
Order by object_id desc
GO

Here is a very small and handy line of code to display the statistics name and statistics key
column name generated by a user with the CREATE STATISTICS command, or it can be
generated automatically:

sp_helpstats 'Sales.SalesOrderHeader'

How to do it...
Follow the steps provided here to perform this recipe:

1.	 After becoming aware of the current situation of statistics for database and table, it is
now time to explore the different ways that help to create and update statistics. There
is a way to enable Auto_Create_Statistics (ON and OFF) at database level; by
default, Auto_Create_Statistics at database level is set to ON.
ALTER DATABASE AdventureWorks2012 SET AUTO_CREATE_STATISTICS ON
--OFF

Statistics in SQL Server

286

2.	 Enabling Auto_Create_Statistics creates single column statistics
synchronously, as and when needed by the predicate given in the SELECT query. The
SQL Server query optimizer creates statistics on a single column only if a histogram
(find more about histograms in the There's more section of this recipe) table is not
available for that column while executing the query to get an exact estimation of the
total number of rows and the pattern of data. Statistics created by SQL Server always
start with the prefix _WA, so you can query your database to get a list of all statistics
created by SQL Server.
SELECT
 st.name AS StatName
 ,COL_NAME(stc.object_id, stc.column_id) AS ColumnName
 ,OBJECT_NAME(st.object_id) AS TableName
FROM
 sys.stats AS st Join sys.stats_columns AS stc
ON
 st.stats_id = stc.stats_id AND st.object_id = stc.object_id
WHERE
 st.name like '_WA%'

3.	 The work does not end with switching your Auto_Create_Statistics option set
to ON. It is mandatory to keep your statistics updated to gain proper performance
benefits. Here is the setting for your statistics to auto-update synchronously,
whenever needed. By default, this option is set to ON; you can change it as per your
need. Auto_Update_Statistics generally works fine, but in some scenarios it
may not cater to your needs, so there may be a need to manually update plans.
ALTER DATABASE AdventureWorks2012 SET AUTO_UPDATE_STATISTICS ON
--OFF

4.	 The Auto_Update_Statistics option will update statistics that are created by an
index, auto-created by Auto_Create_Statistics, or manually created by a user,
with the CREATE STATISTICS command. What follows is an interesting script for
automatic updating of statistics.
ALTER DATABASE AdventureWorks2012 SET AUTO_UPDATE_STATISTICS_ASYNC
ON --OFF

5.	 Confirm all the three settings from the previous scripts, with the following query:
SELECT
 is_auto_update_stats_async_on
 ,is_auto_create_stats_on
 ,is_auto_update_stats_on
FROM
 sys.databases
WHERE
 name='AdventureWorks2012'

Chapter 12

287

6.	 So, we have talked about automatically creating and updating statistics so far; now it
is time to see how to manually create, update, and drop statistics:
--manually create stats
--CREATE STATISTICS <<Statastics name>> ON
--<<SCHEMA NAME>>.<<TABLE NAME>>(<<COLUMN NAME>>)
CREATE STATISTICS st_DueDate_SalesOrderHeader ON Sales.
SalesOrderHeader(DueDate)

--update statistics for Sales.SalesOrderHeader Table
UPDATE STATISTICS Sales.SalesOrderHeader;

--update statistics for st_DueDate_SalesOrderHeader stats
--of Sales.SalesOrderHeader Table
UPDATE STATISTICS Sales.SalesOrderHeader st_DueDate_
SalesOrderHeader

--update all statistics available in database
EXEC sp_updatestats

--manually deleting stats
--DROP STATISTICS
--<<SCHEMA NAME>>.<<TABLE NAME>>.<<Statastics name>>
DROP STATISTICS Sales.SalesOrderHeader.st_DueDate_SalesOrderHeader

How it works...
The optimizer creates statistics on key column(s) for an index created on a table or view, when
the index is created. Apart from that, if you have the Auto_Create_Statistics option
set to ON, the optimizer creates single column statistics, if it is not already present for the
column(s) used as a predicate in your query. If you feel any query is under-performing, check
all predicates; if you find any column has missing statistics, you will have to create it manually.
Sometimes, DTA (Database Tuning Advisor) also suggests some columns for statistics, and
you will have to manually create those statistics on column(s).

Generally, in a synchronous statistics update, before your query is compiled, SQL Server
checks for the out-of-date statistics and if it finds any, it first causes the statistics to update,
and then your query is executed with the up-to-date statistics that block the query, until the
update statistics process is over. In the asynchronous update process, if the compiler finds
any out-of-date statistics, it doesn't hold your query, instead it compiles the query with old
statistics, executes the query, and then updates the statistics, so that the next query will
benefit from newly updated statistics.

Statistics in SQL Server

288

Step 4 enables an auto-update setting at database level that will check whether your current
statistics, after having DML commands like INSERT/UPDATE/DELETE on your table, are
out-of-date or not. If it is out-of-date or there is a schema modification, such as new index
creation, the optimizer will first update your statistics, even before executing your query, so
you may experience slow performance when the optimizer updates statistics while executing
the query.

There's more...
By default, the members of the sysadmin fixed server role, the members of the db_owner
fixed database role, or the owner of the object can create/update statistics.

Histogram:

A histogram is a kind of table generated by SQL Server for statistics. Consider it as a statistical
report of the column with statistics that show the number of values in range within the
minimum and maximum.

For example, consider there were 1500 children born in one maternity hospital in the year
2011, and it is now intended to find the highest and lowest birth weight of the new-born
children in hospital, along with total number of children in each range. So the range would be
like 0 KG to 1 KG, 1 KG to 2 KG, 2 KG to 3 KG, 3 KG to 4 KG, 4 KG to 5 KG, and 5 KG to 6 KG,
where lower bound of the range is excluded and upper bound of the range is included.

By looking at the hospital chart, one can get an idea about the range with the highest number
of children, and vice versa. A histogram works the same way; by looking at a histogram, we
can understand the pattern of data in a table.

Let us look at one small example to confirm this. Execute the following T-SQL query:

--selecting AdventureWork2012 database
USE AdventureWorks2012
GO

--looking at statistics of SalesOrderHeader Table for index
--"PK_SalesOrderHeader_SalesOrderID
DBCC SHOW_STATISTICS ("Sales.SalesOrderHeader",PK_SalesOrderHeader_
SalesOrderID)

--counting total rows between two SalesOrderId to confirm the
--results of Histograme.
select Count(SalesOrderID) from Sales.SalesOrderHeader where
SalesOrderID between 43659 and 75123

Chapter 12

289

The T-SQL query execution would give you a screen similar to the following screenshot:

Now, let us understand what histogram tries to convey.

This histogram shows two steps (two rows), RANGE_HI_KEY in the first row shows the
value 43659 with 1 matched row in EQ_ROWS. It means that if you query the Sales.
SalesOrderHeader table with an exact search of 43659 for the SalesOrderID column,
it will return one row only, which you can confirm by executing the SELECT statement on the
said table.

The second row in the RANGE_HI_KEY column shows the 75123 column, which again shows
1 matched row in the EQ_ROWS column, and the RANGE_ROWS column shows 31463 rows
between the range of 43659 and 75123. The SELECT query given here shows a count of
31465, which means:

31463 rows of range + 1 matched row of 43659 + 1 matched row of 75123 = 31465

The DISTINCT_RANGE_ROWS column in the second row shows that the total number of rows
between the ranges are 31463, and that all 31463 rows are unique (distinct). This is how the
SQL Server query optimizer knows how many rows will be in a result set after matching the
predicate given in the WHERE or ON clause of the SELECT statement, even before executing
your SELECT query. This helps the optimizer to choose the proper execution plan in which it
decides which index to use, whether to go for seek or scan, and so on.

Statistics in SQL Server

290

Here, in this example, histogram has shown two steps for the table Sales.
SalesOrderHeader, in two rows. It can show you a maximum of 200
steps. Inserting more rows into the table increases the range of steps and the
number of rows between two ranges. A histogram table gets updated as and
when statistics get updated.

Density:

A histogram can show you the distribution of values for the first leading column, whereas
Density Vector is used to measure cross-column correlation.

While making an execution plan, the query optimizer chooses the best-suited plan for a query
by looking at query selectivity. A column with high selectivity returns a small number of rows,
and one with low selectivity returns big result sets, which is why the query cost will be high in
the second scenario.

The query optimizer finds selectivity by looking at the density of the column used in the WHERE
and ON clauses of JOIN.

The relationship of selectivity with density is inverse; generally, a high-selectivity column would
have low density and a low-selectivity column would have high density.

Density is calculated with the following formula:

Density=1.00/Number of distinct value in column

Let us look at the density table returned by statistics, and also manually calculate the density
of columns, to tally it with the density returned by the statistics object:

--looking at the statistics of
--"PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID"
--this query will return 3 result sets
DBCC SHOW_STATISTICS ("Sales.SalesOrderDetail","PK_SalesOrderDetail_
SalesOrderID_SalesOrderDetailID")
GO

--manually confirming density of "SalesOrderID" column to
--match up with density of SalesOrderID column return by
--"DBCC SHOW_STATISTICS" (4th result set)
SELECT 1.000/ count (DISTINCT SalesOrderID) AS Manual_Density_
SalesOrderID FROM Sales.SalesOrderDetail
GO

--manually confirming density of "SalesOrderID" AND
--"SalesOrderDetailID" columns to match up with

Chapter 12

291

--density of SalesOrderID,SalesOrderDetailID columns
--return by "DBCC SHOW_STATISTICS"(5th result set)
SELECT 1.000/count(*) AS Manual_Density_SalesOrderID_
SalesOrderDetailID FROM(
SELECT DISTINCT SalesOrderID,SalesOrderDetailID FROM Sales.
SalesOrderDetail
) AS t
GO

If all three queries given in the previous script are executed together, five result sets will be
returned, as per the following screenshot:

Out of these five result set, the first three result sets come from the DBCC SHOW_STATISTICS
command.

The second result sets out of these five, represents the density vector, the fourth result
set is a manual calculation of density for SalesOrderID, and fifth result set is a manual
calculation of density for SalesOrderID and SalesOrderDetailID.

Statistics in SQL Server

292

Statistics density comes in the exponential value form, whereas the density we have
calculated shows a real number. Let us confirm whether both are the same or not,
by manual math calculations:

Statistics Density 3.178134E-05: 3.178134/100000=0.00003178134435

Statistics Density 8.242868E-06: 8.242868/1000000=0.00000824286785

So, this is all about the first column, All density, from the density vector result set from the
statistics object. The second column is Average Length, which displays the length of the key.
In first row, it shows 4; SalesOrderID is an INT column, so it consumes 4 bytes. The second
row shows 8; 4 bytes for SalesOrderID (INT) and 4 bytes for SalesOrderDetailID (INT).

The last column, Columns, shows column names for those columns whose information is
being displayed.

The density vector is used to display density for all columns, starting from leading
column along with all other column(s). The PK_SalesOrderDetail_SalesOrderID_
SalesOrderDetailID statistics object has multi-column statistics on two columns, so you
are able to see two rows in the density vector result sets.

Suppose we have table T1 with three columns: Col1, Col2, and Col3. If all three columns were
to be included in the same statistics (multi-column statistics), then the first row would display
details of density, average length, and column name for Col1, the second row would display
the same details for both Col1 and Col2, and the third row for Col1, Col2, and Col3.

Effects of statistics on non-key column
The index always plays an important role, as far as the performance of the SELECT statement
is concerned. Actually, the query optimizer first checks statistics of the predicate and then
decides which index is supposed to be used. Generally, creating an index creates statistics on
key columns of an index, by default, but it doesn't mean that statistics on non-key columns
wouldn't get any benefit if it is available.

It is neither affordable nor desirable to have an index on each and every column of the table,
or on all those columns that you use in predicate, because index comes with an overhead: it
needs space to store itself as well as each DML statement update index.

Mostly, it is a good idea to have an index on a column you use in the WHERE or ON clauses,
but if for any reason, it is not possible to create an index on the column you use in predicate
(in other words, the non-key column), it is a good practice to at least create statistics on that
column. If Auto_Create_Statistics is ON, the query optimizer will perform this task on
behalf of you.

Chapter 12

293

Getting ready
Generally, Auto_Create_Statistics is ON by default for databases, but let us make
sure that it remains OFF (for this exercise only) to check the effect of statistics on a non-key
column. Execute the following T-SQL script:

ALTER DATABASE AdventureWorks2012 SET AUTO_CREATE_STATISTICS OFF
GO

ALTER DATABASE AdventureWorks2012 SET AUTO_UPDATE_STATISTICS OFF
GO

After making the proper settings at database level, let us now create one table that will be
used in demonstration of this recipe:

--creating one table "SaleOrdDemo" from
--Sales.SalesOrderHeader table of AdventureWorks2012
SELECT * into SalesOrdDemo FROM Sales.SalesOrderHeader
GO

How to do it...
Follow the steps provided here to perform this recipe:

1.	 Before we start anything, let us confirm that we have no statistics with us at the
moment, for the SalesOrdDemo table, with the help of the following script:
SELECT
 object_id
 ,OBJECT_NAME(object_id) AS TableName
 ,name AS StatisticsName
 ,auto_created
FROM
 sys.stats
where object_id=OBJECT_ID('SalesOrdDemo')
Order by object_id desc
GO

2.	 Now, create one clustered index on the SalesOrderID column of the
SalesOrdDemo table, which will create statistics for the SalesOrderID column:
CREATE Clustered Index idx_SalesOrdDemo_SalesOrderID
ON SalesOrdDemo(SalesOrderID)
GO

Statistics in SQL Server

294

3.	 By running the previously given SELECT script, it can be confirmed that statistics is
created automatically while creating a clustered index. Now, we are going to execute
the SELECT statement by keeping the execution plan ON:
SELECT
 s.SalesOrderID,
 so.SalesOrderDetailID
FROM
 SalesOrdDemo AS s join Sales.SalesOrderDetail AS so
ON
 s.SalesOrderID = so.SalesOrderID
WHERE
 s.DueDate='2005-09-19 00:00:00.000'

4.	 Here is the screen capture of the execution plan of the previous query; please note
that the SalesOrdDemo table has clustered index scan, which is expected because
we have not used SalesOrderID in the WHERE clause. The SalesOrderDetails
table has non-clustered index scan. The Estimated Number of Rows in the execution
plan is 2362.49 and the Actual Number of Rows in execution plan is 5.

Chapter 12

295

5.	 Now is the time to create statistics on the DueDate column of the SalesOrdDemo
table, since we have used the DueDate column in the WHERE clause but it is not part
of the index.
CREATE STATISTICS st_SaledOrdDemo_DueDate ON SalesOrdDemo(DueDate)

6.	 After creating STATISTICS on the non-key column DueDate, let us again run the
same SELECT query we ran in the previous script, without making any change to the
execution plan.
SELECT
 s.SalesOrderID,
 so.SalesOrderDetailID
FROM
 SalesOrdDemo AS s join Sales.SalesOrderDetail AS so
ON
 s.SalesOrderID = so.SalesOrderID
wHERE
 s.DueDate='2005-09-19 00:00:00.000'

7.	 Here is a screenshot of the previous query we ran. If you observe, the
SalesOrdDemo table has again used clustered index scan, as expected, but the
SalesOrderDetails table has used clustered index seek rather than non-clustered
index scan, which is a better situation as it uses only 2% of the cost during execution
of the query. Estimated Number of Rows in the execution plan is 5.07 and Actual
Number of Rows is 5, which again is a better situation.

Statistics in SQL Server

296

How it works...
If the query optimizer gets the statistics of each column used in predicate, it will have better a
idea of the number of rows going to return, based on predicate, and will also know the pattern
of data that helps the query optimizer in selecting the best route to execute your query. This
will result in good execution, and we can see its effect via the execution plan generated.

Find out-of-date statistics and get it correct
The statistics object is the major source of information about data distribution for the
predicate. Without knowing the exact data distribution, the query optimizer cannot have
cardinality estimation, which is the process of calculating number of rows to return by
applying the predicate.

After creating the statistics for the column, the column becomes out-of-date after executing
DML commands, such as INSERT, UPDATE, and DELETE, because these commands change
data, thereby affecting data distribution. In this scenario, a statistics update is needed.

In highly active tables, statistics become outdated in maybe a few hours; for static tables,
statistics become outdated maybe in a few weeks. The decision about out-of-date statistics
totally depends on the DML statements executed on the table

Before we move back to the core subject and start writing down the script, it is mandatory to
draw attention to some facts and also to look at flashbacks.

Till SQL Server 2000, the query optimizer used to track each insert, update, and delete
operation on the table and increment the value of the RowModCtr (Row Modification Counter)
column in the SysIndexes system view. As soon as statistics get updated, RowModCtr
reinitializes the value and starts count from zero again. So, by looking at the SysIndexes
system view and the value of the RowModCtr column, we get to know whether statistics are
out-of-date or not.

After SQL Server 2000, SQL Server Engine has changed the pattern of capturing the value
of modification in tables. Rather than capturing each insert, update, and delete operation
for every row, it now counts modifications made to each column and stores them. The
query optimizer decides whether statistics are out-of-date or not, based on values stored
for ColModCtr. Fortunately or unfortunately, ColModCtr is hidden for the user by all
documented system views.

But the good news is, Sys.SysIndexes is still available in SQL Server 2012 so we can even
use RowModCtr to decide whether statistics are out-of-date or not. Though RowModCtr is not
as accurate as ColModCtr but it is better to have something rather than nothing.

Chapter 12

297

Getting ready
In order to get the desired information, the following system view and compatibility view
will be used.

Sys.SysIndexes: This compatibility view provides RowModCtr column, which is the heart of
the script.

Sys.Indexes: Though we can get information about RowModCtr from the Sys.SysIndexes
view, we have to join it with Sys.Indexes, using the table's ID, in order to get statistics name
as well as the last update date.

Sys.Objects: The schema name will be received from the Sys.Objects view.

How to do it...
The following script will show you all statistics that have a greater RowModCtr value than
zero, in descending order along with the UPDATE STATISTICS command:

SELECT DISTINCT
 OBJECT_NAME(SI.object_id) as Table_Name
 ,SI.[name] AS Statistics_Name
 ,STATS_DATE(SI.object_id, SI.index_id) AS Last_Stat_Update_Date
 ,SSI.rowmodctr AS RowModCTR
 ,SP.rows AS Total_Rows_In_Table
 ,'UPDATE STATISTICS ['+SCHEMA_NAME(SO.schema_id)+'].['
 + object_name(SI.object_id) + ']'
 + SPACE(2) + SI.[name] AS Update_Stats_Script
FROM
 sys.indexes AS SI (nolock) JOIN sys.objects AS SO (nolock)
ON
 SI.object_id=SO.object_id
JOIN
 sys.sysindexes SSI (nolock)
ON
 SI.object_id=SSI.id
AND
	 SI.index_id=SSI.indid
JOIN
 sys.partitions AS SP
ON
 SI.object_id=SP.object_id

Statistics in SQL Server

298

WHERE
 SSI.rowmodctr>0
AND
 STATS_DATE(SI.object_id, SI.index_id) IS NOT NULL
AND
 SO.type='U'
ORDER BY
 SSI.rowmodctr DESC

How it works...
As shown in the script, we are doing all these exercises to get the following information:

ff How long since we have had the last statistics update

ff How many transactions happen on the table after updating statistics

ff What T-SQL script would be used to update statistics

ff Whether it is feasible to update statistics or not; the decision should be made based
on comparing the RowModCTR column with Total_Rows_In_table column.

Expertise is definitely required to read and understand the number in the RowModCtr column
and find their criticalness before actually updating statistics.

Now, the question comes to mind about why we need to update statistics by ourselves,
especially when we have set Auto_Update_Statistics to ON at the database level.

Well, even though you have set the Auto_Update_Statistics option, it will be triggered
after the optimizer considers statistics as out-of-date; the RowModCtr and ColModCtr
columns help the optimizer to decide whether statistics is out-of-date or not. As per Technet
Library, the following are the criteria for deciding the same:

ff The table size has gone from zero to more than zero rows

ff The number of rows in the table, when the statistics were gathered, was 500 or less,
and the ColModCtr of the leading column of the statistics object has changed by
more than 500 since then

ff The table had more than 500 rows when the statistics were gathered, and the
ColModCtr of the leading column of the statistics object has changed by more than
500 + 20% of the number of rows in the table when the statistics were gathered

This means that if I have 1,000,000 (one million) rows in a table, then the optimizer considers
it out-of-date after inserting 200,500 new rows. Until we insert 200,500 new rows, we have
to work with old statistics. Is this desirable? The answer may be "yes" for some databases,
but not for every database. This is the reason we have said that expertise is required for this
operation, to decide criticalness.

Chapter 12

299

There's more...
There is no direct and documented way of accessing the value of ColModCtr, as it is hidden
and intend for use by the query optimizer itself. However, there is a way to look at this value
in an undocumented way by looking at a system view (Sys.SysRsCols.rcmodified) via
Dedicated Administrator Connection (DAC) in SQL Server 2008 R2. At the time of writing this
chapter, SQL Server Denali CTP 3 is available, and DAC is not available in this version of SQL
Server. For more information about how to connect as DAC in SQL Server, look at http://
www.sqlhub.com/2011/01/life-savior-dedicated-administrator.html.

Effect of statistics on a filtered index
The filtered column index is one of the enhancements for non-clustered indexes, provided
in Microsoft SQL Server 2008, and it is available in SQL Server 2012. We can consider a
simple, non-clustered index with the WHERE clause as a filtered index. A well-defined, filtered
index reduces maintenance costs, reduces index storage, and improves query performance.
Since this chapter is about statistics, we are not going to see how a filtered index works,
in this recipe. Look at the Increasing performance by filtered index recipe in Chapter 9,
Implementing Indexes, to learn more about filtered indexes.

Getting ready
There is a table named WorkOrder in the Production schema in database
AdventureWorks2012, and this is the table that we will use for our demonstration.

How to do it...
Follow the steps provided here to perform this recipe:

1.	 Create one non-clustered index on the CurrencyRateID column of the
SalesOrdDemo table with following script:
CREATE INDEX idx_WorkOrder_ScrapReasonID on [Production].
[WorkOrder](ScrapReasonID)
GO

2.	 Creating a non-clustered index would create a statistics object automatically with the
same name we have provided for the index.
DBCC SHOW_STATISTICS ("[Production].[WorkOrder]",idx_WorkOrder_
ScrapReasonID)

Statistics in SQL Server

300

3.	 Here is the screenshot of the statistics window generated by the previous script:

4.	 After observing the All density column of the density vector result set, let us drop the
index we created previously and recreate a non-clustered index with a filter:
DROP INDEX idx_WorkOrder_ScrapReasonID on [Production].[WorkOrder]
GO

CREATE INDEX idx_WorkOrder_ScrapReasonID on [Production].
[WorkOrder](ScrapReasonID)
WHERE ScrapReasonID IS NOT NULL
GO

5.	 Now, let us look at the All density column of the density vector result set, with the
following script:
DBCC SHOW_STATISTICS ("[Production].[WorkOrder]",idx_WorkOrder_
ScrapReasonID)
GO

DROP INDEX idx_WorkOrder_ScrapReasonID on [Production].[WorkOrder]
GO

Chapter 12

301

6.	 Now, look at the following screenshot of statistics, generated after creating a
filtered index:

How it works...
Now, since we know that DBCC SHOW_STATISTICS returns three result sets. If you observe
the first result sets, you get to know the difference in the Row Sampled column. In the first
screenshot, it is 72591, and the recent screenshot has only 729, which is big difference. In
the Filter Expression column, the filter we have used will be displayed rather than NULL.

In the All density column, the first row represents the ScriptReasonID column. There is no
major difference between the two screenshots but the second row shows a major difference,
because the ScriptReasonID column is a non-clustered index that points to the clustered
index of the table WorkOrderID, and many WorkOrderID, are eliminated due to the filter we
have applied.

13
Table and Index

Partitioning

In this chapter we will cover:

ff Partitioning a table with RANGE LEFT

ff Partitioning a table with RANGE RIGHT

ff Deleting and loading bulk data by splitting, merging, and switching partitions
(sliding window)

Introduction
If data in a database table keeps growing and the number of records in a table reaches a
count in billions or more, data retrieval and data manipulation operations on such a large
table may become difficult. Due to very huge data, even simple INSERT, UPDATE, or DELETE
operations can take a long time. Tasks such as deleting certain old data and rebuilding
indexes become hard to perform. Managing and maintaining query performance becomes
a challenge in this situation.

In the olden days of SQL Server, with versions prior to 2005, you might have worked with
partitioned views to deal with huge amount of data. With SQL Server 2005, Microsoft
introduced a great feature named Table Partitioning, which allows us to divide our data
horizontally, into multiple partitions. SQL Server also allows us to put these multiple
partitions on multiple disks by configuring them with multiple filegroups. This greatly
improves the performance of queries when retrieving data in a certain fashion, because
SQL Server needs to access only required partitions where the requested data is located,
which eliminates the need for scanning or seeking other partitions.

Table and Index Partitioning

304

With table partitioning, the following tasks can be performed in an efficient manner:

ff Retrieving a certain range of data

ff Deleting and archiving old data

ff Loading new millions of data in bulk

ff Rebuilding and reorganizing indexes

We can also partition an index on a large table and rebuild or reorganize a partitioned index
on a particular partition. Because Table/Index partitioning is a very important feature that
helps in managing a large amount of data in an efficient manner, this becomes the subject
of this chapter.

You can create as many as 15,000 partitions in SQL Server 2012. You cannot
partition a column of the data type text, ntext, image, xml, timestamp,
varchar (max), nvarchar (max), or varbinary (max).

Partitioning a table with RANGE LEFT
Let's suppose that you are required to design a database and there is one particular table
that is expected to contain millions of rows. To improve the performance, you decide to
partition this particular table based on ID column (identity column) in such a way that each
partition contains a certain number of rows, rather than having all the millions of rows in
one single table. Initially, you decide to start with four partitions, so that they contain rows
as follows:

ff Partition 1: Rows with ID values greater than or equal to 0

ff Partition 2: Rows with ID values from 1 to 1,000,000

ff Partition 3: Rows with ID values from 1,000,001 to 2,000,000

ff Partition 4: Rows with ID values from 2,000,001 to 3,000,000

However, in our case, partition 1 is never going to contain any rows, because the value in
the ID column will start from 1, increasing by 1, and partition 1 will always remain empty; it
is still a good idea to have this partition range for scalability and the future requirement of
archiving data.

Table partitioning has two configurations to set range values of partitions—RANGE LEFT and
RANGE RIGHT. In this example, we will use RANGE LEFT to perform table partitioning.

Chapter 13

305

To partition a table, there are two main objects that need to be created: partition function
and partition scheme. First, a partition function is created to define the range values of the
partitions, and then a partition scheme is created to defines the physical storage locations of
defined partitions.

In this example, you will learn how to create a partition function, a partition scheme, and then
a partition table on a partition scheme to partition data, based on an integer column value
with the RANGE LEFT option.

Getting ready
To follow this recipe practically, all you have to do is create an instance of SQL Server 2012.
Also, Sample_DB uses the path C:\SQLData. So, make sure that you have the specified
path configured.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff The path C:\SQLData should be available on your machine

How to do it...
Follow the given steps to implement table partitioning with the RANGE LEFT option:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 Execute the following T-SQL script to create the Sample_DB database.
USE master
GO

--Creating Sample_DB database
--Dropping the database if it exists.
--DROP DATABASE Sample_DB
IF DB_ID('Sample_DB') IS NOT NULL
 DROP DATABASE [Sample_DB]

CREATE DATABASE [Sample_DB]
ON PRIMARY
(
 NAME = N'Sample_DB'
 ,FILENAME = N'C:\SQLData\Sample_DB.mdf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_1]
(

Table and Index Partitioning

306

 NAME = N'FG_1_DataFile'
 ,FILENAME = N'C:\SQLData\FG_1_DataFile.ndf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_2]
(
 NAME = N'FG_2_DataFile'
 ,FILENAME = N'C:\SQLData\FG_2_DataFile.ndf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_3]
(
 NAME = N'FG_3_DataFile'
 ,FILENAME = N'C:\SQLData\FG_3_DataFile.ndf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_N]
(
 NAME = N'FG_N_DataFile'
 ,FILENAME = N'C:\SQLData\FG_N_DataFile.ndf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
LOG ON
(
 NAME = N'Sample_DB_log'
 ,FILENAME = N'C:\SQLData\Sample_DB_log.ldf'
 ,SIZE = 1024KB , FILEGROWTH = 10%
)

GO

3.	 Create the partition function pf_OneMillion_LeftRange with RANGE LEFT, by
running the following T-SQL script:
USE Sample_DB
GO

--Creating Partition Function with RANGE LEFT
CREATE PARTITION FUNCTION pf_OneMillion_LeftRange(INT)
AS RANGE LEFT FOR VALUES(0,1000000,2000000,3000000)

GO

Chapter 13

307

4.	 Verify that the partition function pf_OneMillion_LeftRange has been created
with the specified partition ranges:
USE Sample_DB
GO

--Verify that the Partition Function
--and Range Values
SELECT
 name
 ,function_id
 ,type
 ,type_desc
 ,fanout
 ,boundary_value_on_right
 ,create_date
FROM sys.partition_functions

SELECT
 function_id
 ,boundary_id
 ,parameter_id
 ,value
FROM sys.partition_range_values

GO

5.	 After executing the preceding query, you should see a result similar to the one shown
in the following screenshot:

6.	 Now, run the following script, which will create and verify the partition scheme
ps_OneMillion_LeftRange based on the partition function pf_OneMillion_
LeftRange that we just created:
USE Sample_DB
GO

--Creating Partition Scheme

Table and Index Partitioning

308

CREATE PARTITION SCHEME ps_OneMillion_LeftRange
AS PARTITION pf_OneMillion_LeftRange
TO ([PRIMARY],[FG_1],[FG_2],[FG_3],[FG_N])

--Verify that the Partition Scheme
--has been created
SELECT
 name
 ,data_space_id
 ,type
 ,type_desc
 ,function_id
FROM sys.partition_schemes
GO

7.	 The preceding query should give you output similar to that shown in the
following screenshot:

8.	 Now, let us create our table tbl_SampleRecords on the partition scheme
ps_OneMillion_LeftRange, that we defined, and insert 5 million sample rows:
USE Sample_DB
GO

--Create Sample Table
IF OBJECT_ID('tbl_SampleRecords') IS NOT NULL
 DROP TABLE tbl_SampleRecords

CREATE TABLE tbl_SampleRecords
(
 ID INT
 ,SomeData sysname
 ,CONSTRAINT pk_tbl_SampleRecords_id PRIMARY KEY CLUSTERED(ID)
) ON ps_OneMillion_LeftRange (ID)
GO

--Inserting Sample Records
INSERT INTO tbl_SampleRecords
SELECT TOP 5000000
 ID = ROW_NUMBER() OVER(ORDER BY C1.name)

Chapter 13

309

 ,SomeData = C1.name
FROM sys.columns AS C1
CROSS JOIN sys.columns AS C2
CROSS JOIN sys.columns AS C3
GO

The preceding script may take a few seconds as it inserts
5 million records.

9.	 Now, verify the number of partitions and number of rows in each partition by using
the following query:
USE Sample_DB
GO

--Verifying Partitions and Number of Records
SELECT
 partition_id
 ,object_id
 ,index_id
 ,partition_number
 ,rows
FROM sys.partitions
WHERE object_id = OBJECT_ID('tbl_SampleRecords')
GO

10.	 The preceding query should return a result similar to the one shown in the
following screenshot:

11.	 You can now fetch only those records that belong to a particular partition, with the
following query:
USE Sample_DB
GO

--Fetching only records belonging to
--Partition 4

Table and Index Partitioning

310

SELECT
 ID
 ,SomeData
FROM tbl_SampleRecords
WHERE $PARTITION.pf_OneMillion_LeftRange(ID)=4

How it works...
In this recipe, we first create a sample database named Sample_DB. If the database already
exists, we first drop it and recreate it. The following filegroups along with their respective
secondary data files are created when the Sample_DB database is created:

ff FG_1

ff FG_2

ff FG_3

ff FG_N

After creating our sample database using the CREATE PARTITION FUNCTION command, we
create a partition function named pf_oneMillion_LeftRange by specifying the datatype
of the partitioning column (ID INT) based on the table that will be partitioned. The partition
function specifies RANGE LEFT values 0, 1000000, 2000000, and 3000000. These RANGE
LEFT values specify the boundary values for each partition, designating each range value as
the last highest value in its corresponding partition. In other words, the boundary value will
belong to the partition on the left when a partition function is defined with RANGE LEFT. Thus,
for this partitioned function, we will have a total of 5 partitions, as follows:

ff Partition 1: Rows with ID values less than or equal to 0

ff Partition 2: Rows with ID values from 1 to 1,000,000

ff Partition 3: Rows with ID values from 1,000,001 to 2,000,000

ff Partition 4: Rows with ID values from 2,000,001 to 3,000,000

ff Partition 5: Rows with ID values greater than 3,000,000

A partition function defines the number of partitions in a partitioned table and range
values for partitions. After creating the partition function, we verify it by querying the sys.
partition_functions and sys.partition_range_values system catalog views.
sys.partition_functions returns the list of all partition functions available in the
database and sys.partition_range_values returns all boundary values (range values)
specified in each partition function.

We then create a partition scheme using the CREATE PARTITION SCHEME command and
map each partition specified by a partition function to a filegroup defined by a partition
scheme. A partition scheme defines the storage scheme for each partition in a partitioned
table. By querying sys.partition_schemes, we verify that the partition scheme has
been created.

Chapter 13

311

We then create our sample table called tbl_SampleRecords, with ID as the clustered
primary key. Note that the syntax of CREATE TABLE is followed by the ON ps_OneMillion_
LeftRange(ID) clause. This clause specifies the name of the partition scheme and the
partitioning column, which happen to be ps_OneMillion_LeftRange and ID, respectively.
Remember that the data type specified in the partition function and the data type of the
partitioning column ID must match.

Once the table is created, we insert 5 million sample records. In order to generate 5 million
sample rows, we cross join the system catalog view sys.columns twice and retrieve the top
5000000 rows of resulting cross joins. We generate the serial value of ID with the help of
the ROW_NUMBER() function. The resulting rows will be inserted into our partitioned table
tbl_SampleRecords.

By querying the sys.partitions catalog view, we examine the state of partitions and the
number of rows in each partition. Note how the first partition remains empty because there
is no record whose ID value is less than 1. Also notice that after the first 3 million rows
are inserted into partitions 2, 3, and 4, each having 1 million rows, the remaining rows are
inserted into partition 5, because partition 5 is the last partition and an open-ended partition.

Finally, we use the $PARTITION.pf_OneMillion_LeftRange() function to retrieve only
rows of partition 4. This function accepts the value of the partitioning column (value of the ID
column) and returns the partition number to which that particular value belongs. This is the
most obvious benefit of table partitioning; once our table is partitioned, we can retrieve data
only from a specific partition of the table and the remaining partitions are eliminated from
being queried, which greatly improves the performance of queries.

Partitioning a table with RANGE RIGHT
As we saw previously, there are two ways to apply partition ranges while performing table
partitioning. In this recipe, we will do the same table partitioning that we did in the previous
recipe, Partitioning table with RANGE LEFT. However, this time we use the RANGE RIGHT
option for our table partitioning.

Getting ready
The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff Path C:\SQLData should be available on your machine

Table and Index Partitioning

312

How to do it...
Follow the given steps to implement table partitioning with the RANGE RIGHT option:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 Execute the following T-SQL script to create the Sample_DB database.
USE master
GO
--Creating Sample_DB database
--if it does not exist.
--DROP DATABASE Sample_DB
IF DB_ID('Sample_DB') IS NOT NULL
 DROP DATABASE [Sample_DB]

CREATE DATABASE [Sample_DB]
ON PRIMARY
(
 NAME = N'Sample_DB'
 ,FILENAME = N'C:\SQLData\Sample_DB.mdf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_1]
(
 NAME = N'FG_1_DataFile'
 ,FILENAME = N'C:\SQLData\FG_1_DataFile.ndf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_2]
(
 NAME = N'FG_2_DataFile'
 ,FILENAME = N'C:\SQLData\FG_2_DataFile.ndf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_3]
(
 NAME = N'FG_3_DataFile'
 ,FILENAME = N'C:\SQLData\FG_3_DataFile.ndf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
,FILEGROUP [FG_N]
(
 NAME = N'FG_N_DataFile'
 ,FILENAME = N'C:\SQLData\FG_N_DataFile.ndf'

Chapter 13

313

 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
LOG ON
(
 NAME = N'Sample_DB_log'
 ,FILENAME = N'C:\SQLData\Sample_DB_log.ldf'
 ,SIZE = 1024KB , FILEGROWTH = 10%
)

GO

3.	 Create the partition function pf_OneMillion_RightRange with RANGE RIGHT, by
running the following T-SQL script:
USE Sample_DB
GO

--Creating Partition Function with RANGE RIGHT
CREATE PARTITION FUNCTION pf_OneMillion_RightRange(INT)
AS RANGE RIGHT FOR VALUES(1,1000001,2000001,3000001)

GO

4.	 Verify that the partition function has been created along with its specified
partition ranges:
USE Sample_DB
GO

--Verify that the Partition Function
--and Range Values.
SELECT
 name
 ,function_id
 ,type
 ,type_desc
 ,fanout
 ,boundary_value_on_right
 ,create_date
FROM sys.partition_functions

SELECT
 function_id
 ,boundary_id
 ,parameter_id
 ,value
FROM sys.partition_range_values

GO

Table and Index Partitioning

314

If you have performed the previous recipe, Partitioning a table with
RANGE LEFT, you will find that the given script will also return the
details, as shown in following output screenshot, for the partition
function and its range values, as in the previous recipe.

5.	 After executing the previous query, you should see a result similar to the one shown
in the following screenshot:

6.	 Now, run the following script, which will create and verify the partition scheme
ps_OneMillion_RightRange based on the partition function pf_OneMillion_
RightRange that we just created:
USE Sample_DB
GO

--Creating Partition Scheme
CREATE PARTITION SCHEME ps_OneMillion_RightRange
AS PARTITION pf_OneMillion_RightRange
TO ([PRIMARY],[FG_1],[FG_2],[FG_3],[FG_N])

--Verify that the Partition Scheme
--has been created
SELECT
 name
 ,data_space_id
 ,type
 ,type_desc
 ,function_id
FROM sys.partition_schemes
GO

Chapter 13

315

If you have performed the previous recipe, Partitioning a table with
RANGE LEFT, the given script will also return the details, as shown in
following output screenshot, for the partition function and its range values,
as in the previous recipe.

7.	 The preceding query should give you a result similar to the one shown in the
following screenshot:

8.	 Now, let us create our table tbl_SampleRecords on the partition scheme ps_
OneMillion_RightRange, that we defined, and insert 5 million sample rows:
USE Sample_DB
GO

--Create Sample Table
IF OBJECT_ID('tbl_SampleRecords') IS NOT NULL
 DROP TABLE tbl_SampleRecords

CREATE TABLE tbl_SampleRecords
(
 ID INT
 ,SomeData sysname
 ,CONSTRAINT pk_tbl_SampleRecords_id PRIMARY KEY CLUSTERED(ID)
) ON ps_OneMillion_RightRange (ID)
GO

--Insertinng Sample Records
INSERT INTO tbl_SampleRecords
SELECT TOP 5000000
 ID = ROW_NUMBER() OVER(ORDER BY C1.name)
 ,SomeData = C1.name
FROM sys.columns AS C1
CROSS JOIN sys.columns AS C2
CROSS JOIN sys.columns AS C3
GO

Table and Index Partitioning

316

9.	 Verify the number of partitions and number of rows in each partition, by executing the
following query:
USE Sample_DB
GO

--Verifying Partitions and Number of Records
SELECT
 partition_id
 ,object_id
 ,index_id
 ,partition_number
 ,rows
FROM sys.partitions
WHERE object_id = OBJECT_ID('tbl_SampleRecords')
GO

10.	 The preceding query will return a result that should be similar to the one shown in the
following screenshot:

11.	 Click on the Include Actual Execution Plan button in the SSMS query window. Now,
execute the following query to fetch the row by creating a filter on the partitioning
column, and observe the execution plan of the query:
USE Sample_DB
GO

--Following query will access only one
--partition to which the 499999 belongs
SELECT
 ID
 ,SomeData
FROM tbl_SampleRecords
WHERE ID = 4999999

Chapter 13

317

12.	 After execution of the preceding query, look at the execution plan in the Execution
Plan tab and hover the mouse over the Clustered Index Seek operator. You should
see the following tool-tip window:

Table and Index Partitioning

318

Always try to keep your indexes aligned with your partitions. This means that
if the table is partitioned, the values in indexes should also be aligned and
partitioned according to the partitions. You can align an index by specifying
the name of a partition scheme in the ON clause in the CREATE INDEX
command. For more information on how to create a partitioned index,
look at the syntax of the CREATE INDEX command at http://msdn.
microsoft.com/en-us/library/ms188783.aspx.
If you do not specify the ON clause in CREATE INDEX, the index is created
on the same partition as the underlying table. By aligning your indexes with
your table partitions, you can avoid and eliminate unnecessary partitions from
being scanned/sought in queries, and this improves query performance.

How it works...
In this recipe, we first create a sample database named Sample_DB. If the database already
exists, we first drop it and recreate it. The following filegroups, along with their respective
secondary data files, are created when the Sample_DB database is created:

ff FG_1

ff FG_2

ff FG_3

ff FG_N

After creating our sample database using the CREATE PARTITION FUNCTION command, we
create a partition function named pf_OneMillion_RightRange by specifying the datatype
of the partitioning column (ID INT), based upon which the table will be partitioned. The
partition function specifies RANGE RIGHT values 1, 1000001, 2000001, and 3000001. These
RANGE RIGHT values specify the boundary values for each partition, designating each range
value as the lowest starting value in the partitioning column for its corresponding partition.
In other words, the boundary value will belong to the partition on the right when the partition
function is defined with RANGE RIGHT. Thus, for the preceding partitioned function, we will
have a total of five partitions, given as follows:

ff Partition 1: Rows with ID values less than or equal to 0

ff Partition 2: Rows with ID values from 1 to 1,000,000

ff Partition 3: Rows with ID values from 1,000,001 to 2,000,000

ff Partition 4: Rows with ID values from 2,000,001 to 3,000,000

ff Partition 5: Rows with ID values greater than 3,000,000

After creating the partition function, we verify it by querying the sys.partition_
functions and sys.partition_range_values system catalog views.

http://msdn.microsoft.com/en-us/library/ms188783.aspx

Chapter 13

319

We created a partition scheme named ps_OneMillion_RightRange, using the CREATE
PARTITION SCHEME command, mapped each partition specified by a partition function to
a file group defined by a partition scheme, and verified that the partition scheme has been
created by querying sys.partition_schemes.

We then created our sample table called tbl_SampleRecords, with ID as the clustered
primary key. Note that the syntax of CREATE TABLE is followed by the ON ps_OneMillion_
RightRange (ID) clause. This clause specifies the name of the partition scheme and
the partitioning column, which happen to be ps_OneMillion_RightRange and
ID, respectively.

Once the table is created, we insert 5 million sample records. In order to generate 5 million
sample rows, we cross join the system catalog view sys.columns twice and retrieve the top
5,000,000 rows of resulting cross joins. We generate the serial value of ID with the help of
the ROW_NUMBER() function. The resulting rows will be inserted into our partitioned table
tbl_SampleRecords.

By querying the sys.partitions catalog view, we examine the number of partitions and
the number of rows in each partition. Note how the first partition remains empty because
there is no record whose ID value is less than 1. Also note that, after the first 3 million
rows are inserted into partitions 2, 3, and 4, each having 1 million rows, the remaining
rows are inserted into partition 5, because partition 5 is the last partition and is an
open-ended partition.

Finally, the data for ID = 4999999 is retrieved from the tbl_SampleRecords table, and
the execution plan of the query is examined. By observing the execution plan, you can see
that Seek Predicates indicates the partition qualifier; also note the value of Actual Partition
Count, which is 1. This suggests that only one partition was accessed while performing
the query and other partitions were eliminated from being accessed. This is the one of the
advantages of implementing table partitioning.

Deleting and loading bulk data by splitting,
merging, and switching partitions (sliding
window)

Many times there is a requirement to archive or delete a large amount of data and load a
large amount of new data into a large table periodically, based on the date and time column.
Let's say for example, you regularly need to delete a large amount of data that belongs to the
oldest quarter. At the same time, you want to load a large amount of data into an existing
table. With billions of rows in a table, this operation is not trivial and can take hours. However,
if you implement table partitioning based on the date and time column, you can perform this
task very efficiently.

Table and Index Partitioning

320

In this recipe, we will learn how to efficiently delete a large amount of data belonging to one
quarter of the year, and load a large amount of data for a whole quarter into an existing table
by splitting, merging, and switching partitions.

Assume that we need to store data on a quarterly basis and that data belonging to each
quarter is stored in a partition. On a quarterly basis, we need to purge data for the oldest
quarter and load new data for the latest quarter. For example, in our partitioned table we
have partitions to contain data for the following quarters:

ff Quarter 1: January 2011 to March 2011

ff Quarter 2: April 2011 to Jun 2011

ff Quarter 3: July 2011 to September 2011

ff Quarter 4: October 2011 to December 2011

We want to delete data for quarter 1(January 2011 to March 2011) and load new data into
a new partition for quarter 1 (January 2012 to March 2012). For this, we can use the date
and time column in the table to implement table partitioning in such a way that the partition
contains data for one quarter. We can merge two partitions or split an existing partition by
introducing a new boundary range value in the partition function. We will delete the data and
partition for an older quarter by merging the partition, and will introduce a new partition by
splitting the last partition. For this, initially we will have the following partitions:

PARTITION-1

(EMPTY)

< JAN-11

PARTITION-2

(DATA)

JAN-11 TO

MAR-11

PARTITION-3

(DATA)

APR-11 TO

JUN-11

PARTITION-4

(DATA)

JUL-11 TO

SEP-11

PARTITION-5

(DATA)

OCT-11 TO

DEC-11

PARTITION-6

(EMPTY)

JAN-12 TO

MAR-12

This example will give you a foundation to implement a sliding window scenario. In a sliding
window, we purge the oldest data from a partition by switching it to a staging table and
truncating the staging table. In our case, partition 2 (the oldest quarter) will be switched to
a staging table and truncated. After deleting data, partition 2 will also be empty, and we will
merge it with partition 1. So, the total number of partitions will become five from six. The
following figure shows how partition switching and merging will occur:

Chapter 13

321

After Merging Partition

PARTITION-1

(EMPTY)

< JAN-11

PARTITION-2

(DATA)

JAN-11 TO

MAR-11

PARTITION-3

(DATA)

APR-11 TO

JUN-11

PARTITION-4

(DATA)

JUL-11 TO

SEP-11

PARTITION-5

(DATA)

OCT-11 TO

DEC-11

PARTITION-6

(EMPTY)

JAN-12 TO

MAR-12

Before Merging Partition

PARTITION-1

(EMPTY)

< APR-11

PARTITION-2

(DATA)

APR-11 TO

JUN-11

PARTITION-3

(DATA)

JUL-11 TO

SEP-11

PARTITION-4

(DATA)

OCT-11 TO

DEC-11

PARTITION-5

(EMPTY)

JAN-12 TO

MAR-12

Staging Table

To load new bulk data (for the quarter spanning Jan 12 to Mar 12), we split the last partition
by introducing a new boundary value (which will be 1st, Apr 12) and loading data for the
quarter spanning Jan 12 to Mar 12 to its respective partition. The following figure shows
how partition splitting and switching will occur:

PARTITION-1

(EMPTY)

< APR-11

PARTITION-2

(DATA)

APR-11 TO
JUN-11

PARTITION-3

(DATA)

JUL-11 TO
SEP-11

PARTITION-4

(DATA)

OCT-11 TO
DEC-11

PARTITION-5

(DATA)

JAN-12 TO
MAR-12

PARTITION-6

(EMPTY)

APR-12 TO
JUN-12

Partition Splitting and Switching

Staging Table with
New Data

Table and Index Partitioning

322

Note that, during the whole cycle, partition 1 and partition 6 always remain empty and will not
contain any data at any given point in time. They are required to provide the sliding window
mechanism. Therefore, they have deliberately been kept empty here. This is necessary when
you are implementing the sliding window scenario, because in this scenario, we need to
purge/archive the oldest data (partition 2) by truncating the partition and merging it with
partition 1, at the same time making room for new data by splitting the last existing empty
partition into two! The reason behind always keeping the first and last partition empty is the
data movement that SQL Server may have to perform across these partitions while merging
or splitting partitions. If two non-empty partitions are merged or split, it can cause data
movement across the partitions, based on new range values from one partition to the other,
which is quite an expensive operation in terms of I/O and may take a long time depending
upon the volume of data. On the other hand, merging or splitting two empty partitions
does not cause any data movement and is thus a very fast operation. So, to avoid any
data movement across the partitions for a faster sliding window operation, we always
keep partition 1 and partition 6 empty.

Getting ready
The following is the prerequisite for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

How to do it...
Follow the given steps to implement table partitioning on the DATETIME column for deleting
data and loading bulk data periodically in sliding window fashion:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 Execute the following T-SQL script to create the partition function
pf_Quaterly_RangeRight with RANGE RIGHT boundaries and
the partition scheme ps_Quaterly_RangeRight.
USE master
GO

--Creating Sample_DB database
--if it does not exist.
--DROP DATABASE Sample_DB
IF DB_ID('Sample_DB') IS NOT NULL
 DROP DATABASE [Sample_DB]

CREATE DATABASE [Sample_DB]
ON PRIMARY
(
 NAME = N'Sample_DB'

Chapter 13

323

 ,FILENAME = N'C:\SQLData\Sample_DB.mdf'
 ,SIZE = 3072KB , FILEGROWTH = 1024KB
)
LOG ON
(
 NAME = N'Sample_DB_log'
 ,FILENAME = N'ON'C:\SQLData\Sample_DB_log.ldf'
 ,SIZE = 1024KB , FILEGROWTH = 10%
)

GO

USE Sample_DB
GO

--Creating Partition Function pf_Quaterly_RangeRight
CREATE PARTITION FUNCTION pf_Quaterly_RangeRight(DATETIME)
AS RANGE RIGHT FOR VALUES
('20110101','20110401','20110701','20111001','20120101')
GO

--Creating Partition Scheme ps_Quaterly_RangeRight
CREATE PARTITION SCHEME ps_Quaterly_RangeRight
AS PARTITION pf_Quaterly_RangeRight ALL TO ([PRIMARY])
GO

When partitioning a table on the DATETIME column, always try to apply
RANGE RIGHT values. This makes it easier for you to partition tables perfectly
with less effort. If you apply RANGE LEFT values, you have to consider and
specify the "time" part, including milliseconds, to accurately specify range
values while partitioning a table. For example, if we partition the DATETIME
column with RANGE LEFT values, then you have to consider the last possible
date and time value for a given month, such as 20110331 23:59:59.997
(the last and highest possible value for the first quarter that should appear as
boundary value in the left partition). Partitioning a table on the DATETIME
column with RANGE RIGHT automatically takes care of the "time" part while
specifying range values in table partitioning.

Table and Index Partitioning

324

3.	 Now, let's create our partitioned table tbl_MyData and insert 275000 sample
records by executing the following T-SQL script:
USE Sample_DB
GO

--Creating Partitioned table tbl_MyData
CREATE TABLE tbl_MyData
(
 RecordDateTime DATETIME NOT NULL
 ,RecordID INT NOT NULL
 ,RecordData varchar(40) NOT NULL
)
GO

--Creating clustered index of tbl_MyData
--on partition scheme ps_Quaterly_RangeRight
CREATE CLUSTERED INDEX idx_tbl_MyData_RecordDateTime
ON tbl_MyData(RecordDateTime,RecordID) ON ps_Quaterly_RangeRight
(RecordDateTime)

--Inserting Sample Data
INSERT INTO tbl_MyData
SELECT
 '2011'
 + RIGHT('0' + CAST((CASE WHEN ID%12=0 THEN 12 ELSE ID%12 END)
AS VARCHAR),2)
 + RIGHT('0' + CAST((CASE WHEN ID%28=0 THEN 28 ELSE ID%28 END)
AS VARCHAR),2)
 AS RecordDateTime
 ,ID
 ,RecordData
FROM
(
 SELECT TOP 275000
 ID = ROW_NUMBER() OVER(ORDER BY C1.name)
 ,RecordData = NEWID()
 FROM sys.columns AS C1
 CROSS JOIN sys.columns AS C2
 CROSS JOIN sys.columns AS C3
) AS T
GO

Chapter 13

325

4.	 Examine the number of partitions and total number of rows in each partition by
running the following query:
USE Sample_DB
GO

--Examining Partitions and row count
SELECT
 partition_number
 ,rows
FROM sys.partitions
WHERE object_id = OBJECT_ID('tbl_MyData')
ORDER BY partition_number

5.	 The preceding query should give you a result similar to the one shown in the
following screenshot:

6.	 Now, we will remove data for the first quarter of 2011 (partition 1). For that, let's
create a staging table tbl_MyStagingData by executing the following script:
USE Sample_DB
GO

IF OBJECT_ID('tbl_MyStagingData') IS NOT NULL
 DROP TABLE tbl_MyStagingData

--Creating Staging table
CREATE TABLE tbl_MyStagingData
(
 RecordDateTime DATETIME NOT NULL
 ,RecordID INT NOT NULL
 ,RecordData varchar(40) NOT NULL
)
GO

Table and Index Partitioning

326

--Creating clustered index
--on tbl_MyStagingData
CREATE CLUSTERED INDEX idx_tbl_MyStagingData_RecordDateTime
ON tbl_MyStagingData(RecordDateTime,RecordID)
GO

7.	 Now, switch partition 2 of tbl_MyData to staging table tbl_MyStagingData
and truncate the staging table. After truncating the table, examine the number of
partitions and total rows in partitions. For this, execute the following script:
USE Sample_DB
GO

--Switching Partition 2 of tbl_MyData
--to tbl_MyStagingData and truncating table
ALTER TABLE tbl_MyData
SWITCH PARTITION 2 TO tbl_MyStagingData PARTITION 1
GO
TRUNCATE TABLE tbl_MyStagingData
GO

--Examining Partitions and row count
SELECT
 partition_number
 ,rows
FROM sys.partitions
WHERE object_id = OBJECT_ID('tbl_MyData')
ORDER BY partition_number

8.	 The preceding query should return the following partition details:

9.	 Now, merge partition 2 with partition 1, set the next used filegroup for partition
scheme ps_Quaterly_RangeRight to PRIMARY and examine the number of
partitions, using the following script:
USE Sample_DB
GO

--Merging Partition 2 to Partitin 1
ALTER PARTITION FUNCTION pf_Quaterly_RangeRight()

Chapter 13

327

MERGE RANGE ('20110101')
GO
--Setting Next Used Filegroup
--for next partition
ALTER PARTITION SCHEME ps_Quaterly_RangeRight
NEXT USED [PRIMARY]

--Examining Partitions and row count
SELECT
 partition_number
 ,rows
FROM sys.partitions
WHERE object_id = OBJECT_ID('tbl_MyData')
ORDER BY partition_number

10.	 Examine the output returned by the preceding query, as shown in the
following screenshot:

11.	 Now, we will bulk load data into our table tbl_MyData. To do this, we first generate
some sample data and insert it into our staging table tbl_MyStagingData, which
we have just created.
USE Sample_DB
GO

--Adding Check constraint to tbl_MyStagingData
ALTER TABLE tbl_MyStagingData
ADD CONSTRAINT ck_tbl_MyStagingData_RecordDateTime
CHECK (RecordDateTime >='20120101' AND RecordDateTime <
'20120401')

--Inserting data into tbl_MyStagingData
--for first quarter of 2012
INSERT INTO tbl_MyStagingData
SELECT
 '2012'

Table and Index Partitioning

328

 + RIGHT('0' + CAST((CASE WHEN ID%3=0 THEN 3 ELSE ID%3 END) AS
VARCHAR),2)
 + RIGHT('0' + CAST((CASE WHEN ID%28=0 THEN 28 ELSE ID%28 END)
AS VARCHAR),2)
 AS RecordDateTime
 ,ID
 ,RecordData
FROM
(
 SELECT TOP 100000
 ID = 275000 + ROW_NUMBER() OVER(ORDER BY C1.name)
 ,RecordData = NEWID()
 FROM sys.columns AS C1
 CROSS JOIN sys.columns AS C2
 CROSS JOIN sys.columns AS C3
) AS T

12.	 Now, add a new partition by splitting the last blank partition. After splitting the
partition, switch tbl_MyStagingData to partition 5 of tbl_MyData and set
the next used filegroup for the partition scheme ps_Quaterly_RangeRight to
PRIMARY, by running the following script:
USE Sample_DB
GO

--Add a new partition by splitting
--last empty partition.
ALTER PARTITION FUNCTION pf_Quaterly_RangeRight()
SPLIT RANGE ('20120401')
GO

--Switch table tbl_MyStagingData
--to partition 5 of tbl_MyData
--to load data
ALTER TABLE tbl_MyStagingData
SWITCH PARTITION 1 TO tbl_MyData PARTITION 5

--Setting Next Used Filegroup
--for next partition
ALTER PARTITION SCHEME ps_Quaterly_RangeRight
NEXT USED [PRIMARY]
GO

Chapter 13

329

13.	 Now, verify that the new rows are inserted into proper partitions by executing the
following query:
USE Sample_DB
GO

--Examining Partitions and row count
SELECT
 partition_number
 ,rows
FROM sys.partitions
WHERE object_id = OBJECT_ID('tbl_MyData')
ORDER BY partition_number

14.	 Observe the result returned by executing the preceding query, as shown in the
following screenshot:

How it works...
In this recipe, by using the CREATE PARTITION FUNCTION command, we first create a
partition function named pf_Quaterly_RangeRight, by specifying the datatype of the
partitioning column (RecordDateTime DATETIME), based upon which the table will be
partitioned. The partition function specifies RANGE RIGHT values 20110101, 20110401,
20110701, 20111001, and 20120101. These RANGE RIGHT values specify the boundary
values for each partition, designating each range value as the lowest starting value in the
partitioning column for a partition. By using the CREATE PARTITION SCHEME command,
we create partition scheme ps_Quaterly_RangeRight, to map all partitions to the
PRIMARY filegroup.

For the sake of simplicity in this example, we used the PRIMARY filegroup
for all partitions. However, in production environments, it is recommended to
place your partitions in different locations by specifying different filegroups.

Table and Index Partitioning

330

We then create our sample table called tbl_MyData with RecordDateTime and RecordID
as clustered composite primary keys. Note that the syntax of CREATE INDEX is followed
by the ON ps_Quaterly_RangeRight (RecordDateTime) clause. This clause
specifies the name of the partition scheme and the partitioning column, which happen
to be ps_Quaterly_RangeRight and RecordDateTime, respectively. By specifying the
partition scheme, the index is partitioned and aligned with the partitions as specified in the
partition scheme.

Once the table is created, we insert sample records. We generate rows by cross joining the
system catalog view sys.columns twice and then retrieve the top 275000 rows of the
resulting cross joins. We generate the serial value of ID with help of the ROW_NUMBER()
function in the subquery. Observe how we generate date values for the year 2011 by doing
some math and string manipulation. The resulting rows will be inserted into our partitioned
table tbl_MyData.

By querying the sys.partitions catalog view, we examine the number of partitions and
the number of rows in each partition. Note how we have kept first and last partitions empty.
For the whole year 2011, we get rows for each quarter in its respective partition—partition 2,
partition 3, partition 4, and partition 5.

We then created a staging table named tbl_MyStagingData, with the same schema as
tbl_MyData.

After creating the staging table, using the ALTER TABLE...SWITCH PARTITION statement,
we switch partition 2 of tbl_MyData (the partition that contains data for the first quarter
of 2011) to our staging table tbl_MyStagingData. When we do this, SQL Server just
changes the reference of data pages, so that tbl_MyStagingData points to the data
pages of partition 2 of tbl_MyData. All the data from partition 2 is now in our staging table
tbl_MyStagingData. We truncate the table tbl_MyStagingData and delete all data. The
switching operation does not move any data but just changes the references of data pages.
In this way, it is much faster and only takes a few milliseconds. After truncating the table,
we merge the emptied partition, partition 2, with partition 1.

Always try to merge two empty partitions. If you merge partitions that contain
data, then SQL Server may have to move actual data pages from one filegroup
to another filegroup, which is very expensive in terms of I/O operations.

After truncating the table tbl_MyStagingData, we verify the number of partitions and
number of rows in partitions by querying the sys.partitions system catalog view.
Observe that the data from partition 2 is removed.

Chapter 13

331

We then merge partition 2 with partition 1 by specifying the range value of partition 2 in
the ALTER PARTITION …MERGE statement. We alter the partition scheme ps_Quaterly_
RangeRight to set the next used filegroup. As long as we have all partitions on the PRIMARY
filegroup, this is not necessary. However, if we have multiple partitions on multiple filegroups,
we have to specify the name of the filegroup to be used for the next partition. After merging
the partition, we examine the partitions again, to verify that the partition has indeed been
removed. You should now see a total of five partitions, rather than six partitions.

Next, we remove the data for oldest quarter and remove its corresponding partition as well.
Next, we need to load new bulk data and create new partitions. The process is exactly the
reverse of what we do to purge old data.

We load data for the new quarter, January 2012 to March 2012, into our staging table
tbl_MyStagingData, by generating 100,000 records. Note that we create a check
constraint on the table, which checks that the date falls between January 2012 and March
2012. This check constraint is a mandatory part, without which it is not possible to load data
from the staging table into the partition.

We then add a new partition by altering the partition function by splitting the last empty
partition (January 12 to March 12) by specifying a new range value, 20120401. This creates
one new partition, to the "right", whose lowest range value happens to be 20120401.

Once the partition is created, we switch tbl_MyStagingData to partition 5 of the
tbl_MyData table. Again, for this switching, SQL Server just updates the page references,
and partition 5 will contain new loaded data in just a few milliseconds. As before, we set the
next used filegroup for ps_Quaterly_RangeRight.

Finally, we again verify the number of partitions, and the number of rows in partitions, by
querying the sys.partitions system catalog view. Note that partition 5 now contains
the 100000 records that we just loaded from the staging table.

While switching between tables with the ALTER TABLE…SWITCH command,
the schema of the corresponding table and partition must be identical.

There's more...
This recipe is an example of a basic sliding window and provides a solution for archiving/
deleting old data, removing old partitions, and loading new data in new partitions, periodically.

Based on this, you can implement a solution in your production environment to perform the
same task at regular intervals. This can be weekly, monthly, quarterly, yearly, or at any time
interval that you choose. The important thing is your script should be intelligent and dynamic
enough to create and remove partitions on the fly, appropriately, by setting range values
dynamically. This way you can delete a large amount of data from your data store in small
amount of time and load new bulk data in very large tables without locking the table for
long time.

14
Implementing

Physical Database
Structure

In this chapter we will cover:

ff Configuring a data file and log file on multiple physical disks

ff Using files and filegroups

ff Moving an existing large table to a separate physical disk

ff Moving non-clustered indexes to a separate physical disk

ff Configuring the tempdb database on separate physical disk

Introduction
Your database performance heavily depends on how you have physically placed your database
objects and how you have configured your disk subsystem. Designing the physical layout of
your database correctly is the key factor to improve the performance of your database queries
and thus the performance of your database. However, the correct decision on a physical
design structure of the database depends on the available hardware resources that you
might have. This includes the number of processors, RAM, and storage resources, such as
how many ,disks or RAID controllers you might have in your database environment. The best
thing while designing physical layout of the database is to have multiple physical disks for your
database. If you configure your database in such a way that it spreads across multiple disks, it
can benefit from parallel I/O operations.

Implementing Physical Database Structure

334

The following are some of the decisions that influence your database performance:

ff Where do you place data files?

ff Where do you place log files?

ff Where do you place large objects?

ff Where do you place indexes?

ff Where do you place the tempdb database?

You can control the physical location of database objects within the database by using files
and filegroups.

In this chapter, we will learn how to best design the physical structure of the database on
your disk subsystem when you have enough available hardware resources, such as multiple
processors and multiple physical disks.

Configuring data file and log file on multiple
physical disks

If you know the exact difference between the ways in which data files and log files of a
database are accessed, you can understand why you should place data files and log files
on separate physical disks for better performance.

The data file of a database, which is normally a file with a .mdf or .ndf extension, is used
to store the actual data in the database. The data is stored in pages that are 8 KB in size.
When particular data is queried by the user, SQL Server reads the required data pages from
the disk into memory containing the requested data from the data file. In case SQL Server
needs to make any modification in the existing data, it reads the required data pages into the
buffer cache, updates those cached data pages in memory, writes modifications to the log file,
when the transaction is committed, and then writes the updated data pages back to the disk,
when the checkpoint operation is performed. SQL Server performs configurable checkpoint
operations at regular intervals. In-memory modified data pages are called dirty pages. When
a checkpoint is performed, it permanently writes these dirty pages on disk.

The log file is used to record any change that is made to the database. It's intended for
recovery of the database in case of disaster or failure. Because a log file is intended to record
the changes, it is not designed to be read randomly, as compared to a data file. Rather, it is
designed to be written and accessed in a sequential manner.

Chapter 14

335

SQL Server is designed to handle and process multiple I/O requests simultaneously, if we
have enough hardware resources. Even if SQL Server is capable of handling simultaneous I/O
requests in parallel, it may face the issue of disk contention while reading large amounts of
data from data files and writing large a number of transaction logs to log files in parallel with
two different requests if data files and log files reside on the same physical disk. However, if
data file and log file are located on separate physical disks, SQL Server gracefully handles and
processes such requests in parallel.

When simultaneous requests for reading data and writing transaction logs are commonly
expected in the OLTP database environment, placing data files and log files on separate
physical drives greatly improves the performance of the database.

Let's suppose that you are a DBA and, in your organization, you maintain and administer a
production database called AdventureWorks2012 database. The database was created/
installed by an inexperienced team and has been residing in the default location for SQL
Server. You are required to separate the data files and log files for this database and place
them on different physical disks to achieve maximum I/O performance. How would you
perform this task?

The goal of this recipe is to teach you how to separate the data files and log files for an
existing database to improve the I/O response time and database performance.

Getting ready
This recipe refers to the following physical disk volumes:

ff E drive—to store the data file

ff L drive—to store the log file

In this chapter, wherever it is said "separate disk volume"or "separate drive",
consider it a separate physical drive and not logical partitioned drive.

The following are the prerequisites for completing this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff Sample AdventureWorks2012 database on the instance of SQL server. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book

ff E drive should be available on your machine

ff L drive should be available on your machine

Implementing Physical Database Structure

336

How to do it...
The following are the steps you need to perform for this recipe:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 In the query window, type and execute the following script to verify the existing
path for data files and log files for the AdventureWorks2012 database:

--Switch the current database
--context to AdventureWorks2012
USE AdventureWorks2012
GO

--Examine the current
--location of the database.
SELECT physical_name
FROM sys.database_files
GO

3.	 Assuming that the AdventureWorks2012 database resides in its default location,
depending upon your SQL Server installation path, you may see a result in the output
of the previous query, similar to the one given here:

4.	 Now, execute the following query to bring the database offline:
USE master
GO

--Bring database offline
ALTER DATABASE AdventureWorks2012
SET OFFLINE WITH ROLLBACK IMMEDIATE
GO

Chapter 14

337

5.	 Once the database is offline, you can detach it without any problem. Right-click on
AdventureWorks2012, in Object Explorer, and select Tasks and then Detach…, as
shown in following screenshot:

6.	 This step brings up the Detach Database dialog box, as shown in following
screenshot. Press the OK button on this dialog box. This will detach the
AdventureWorks2012 database from the SQL Server instance and it will
no longer appear in Object Explorer:

Implementing Physical Database Structure

338

7.	 Create the two following directories to place data files (.mdf files) and log files
(.ldf files), respectively, for the AdventureWorks2012 database, on different
physical disks:

�� E:\SQL_Data\

�� L:\SQL_Log\

8.	 Now, using Windows Explorer, move the AdventureWorks2012_data.mdf and
AdventureWorks2012_log.ldf database files manually from their original
location to their respective new directories. The following paths should be the
respective destinations

�� E:\SQL_Data\AdventureWorks2012_Data.mdf

�� L:\SQL_Log\ AdventureWorks2012_Log.ldf

9.	 After the data and log files are copied to their new locations, we will attach them
and bring our AdventureWorks2012 database back online. To do this, in Object
Explorer, right-click on the Databases node and select Attach…

10.	 You will see the following Attach Databases dialog box. In this dialog box, click on the
Add… button:

11.	 The previous step opens the Locate Database Files dialog box. In this dialog box,
locate the .mdf data file E:\SQL_Data\AdventureWorks2012_Data.mdf and
click on the OK button, as shown in following screenshot:

Chapter 14

339

12.	 After locating the .mdf data file, the Attach Databases dialog box should look similar
to the following screenshot. Note that the log file (.ldf file) could not be located at
this stage and there is a Not Found message against AdventureWorks2012_log.ldf,
under the AdventureWorks2012 database details: section. This happens because
we have moved the log file to our new location, L:\SQL_Log\, and SQL Server tries
to find it in its default location:

Implementing Physical Database Structure

340

13.	 To locate the log file, click on the … button in the Current File Path column for the
AdventureWorks2012_log.ldf log file. This will bring up the Locate Database Files
dialog box. Locate the file L:\SQL_Log\AdventureWorks2012_log.ldf and click on
the OK button. Refer to the following screenshot:

14.	 To verify the new location of the AdventureWorks2012 database, run the following
query in SSMS:
--Switch the current database
--context to AdventureWorks2012
USE AdventureWorks2012
GO

--Verify the new location of
--the database.
SELECT
 physical_name
 ,name
FROM sys.database_files
GO

Chapter 14

341

15.	 In the query result, examine the new locations of the data files and log files for the
AdventureWorks2012 database; see the following screenshot:

How it works...
In this recipe, we first queried the sys.database_files system catalog view to verify the
current location of the AdventureWorks2012 database. Because we wanted to move the
.mdf and .ldf files to new locations, we had to bring the database offline.

We brought the database offline with the ALTER DATABASE command. Note that, in
the ALTER DATABASE command, we included the ROLLBACK IMMEDIATE option.
This rolls back the transactions that are not completed, and current connections to
AdventureWorks2012 database are closed. After bringing the database offline, we
detached the AdventureWorks2012 database from the instance of SQL server.

You cannot move a database file to a new location if the database is
online. If a database is to be moved, it must not be in use by SQL Server.
In order to move a database, you can either stop the SQL Server service
or bring the database offline. Bringing the database offline is a preferable
option because stopping SQL Server service stops the functioning of the
whole SQL Server instance. Alternatively, you can also select the checkbox
Drop Connections in the Detach Database dialog box, which does not
require bringing a database offline.

We then created two new directories—E:\SQL_Data\ and L:\SQL_Log\—to place the data
and log files for AdventureWorks2012 and moved AdventureWorks2012_Data.mdf and
AdventureWorks2012_Log.ldf over there. We then attached the AdventureWorks2012
database by attaching the .mdf and .ldf files from their new locations. Finally, we verified
the new location of the database by querying sys.database_files.

You can script your Attach Database and Detach Database actions
by clicking on the Script button in the wizard. This allows you to save
and re-use the script for future purposes.

Implementing Physical Database Structure

342

Using files and filegroups
By placing certain database objects on different physical disks, you can improve the
performance of your databases. But, how do we control the placement of certain
database objects on particular physical disks?

Well, files and filegroups are used in SQL Server to physically organize your database files
and database objects. By organizing data files with the help of filegroups, you can place
specific database objects, such as tables and indexes, on particular physical disks.

Let's say that you are responsible for creating and designing a new production database,
which will be accessed by many applications. You expect one particular table to grow very
large with time. You are lucky enough to have enough hardware resources in the form of
multiple physical disks that you can use to distribute your database physically. You decide
to place the table that you estimate will become very large and expect will be accessed
heavily by many requests, so that you can achieve the maximum disk I/O performance
on the requests made on this table. How would you configure this implementation? Well,
to find out, follow this recipe!

Getting ready
In this recipe, you will learn how to configure databases for large objects. To do this, we
will create a sample database that we will configure with multiple data files and filegroups.
This recipe requires that you have at least three physical drives available, as this example
references following physical disk volumes:

ff E drive—for primary data file (primary filegroup)

ff G drive—for secondary data file (fg_LargeData filegroup)

ff L drive—for log file

The following are the prerequisites to completing this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff E—drive should be available on your machine

ff G—drive should be available on your machine

ff L—drive should be available on your machine

How to do it...
The following steps will describe how to work with files and filegroups, to distribute your
database across multiple physical disk drives:

1.	 Start SQL Server Management Studio and connect to SQL Server.

Chapter 14

343

2.	 In the query window, type and execute the following query to create a new sample
database named SampleDB:
--Creating Sample Database
CREATE DATABASE SampleDB
ON PRIMARY
(
 Name = SampleDB_Data
 ,FileName = 'E:\SQL_Data\SampleDB_Data.mdf'
 ,SIZE = 256MB
 ,FILEGROWTH = 128MB
 ,MAXSIZE = 1024GB
)
,FILEGROUP fg_LargeData
(
 Name = SampleDB_fg_LargeData_Data
 ,FileName = 'G:\SQL_LargeData\SampleDB_fg_LargeData_Data.ndf'
 ,SIZE = 256MB
 ,FILEGROWTH = 128MB
 ,MAXSIZE = 1024GB
)
LOG ON
(
 Name = SampleDB_Log
 ,FileName = 'L:\SQL_Log\SampleDB_Log.ldf'
 ,SIZE = 128MB
 ,FILEGROWTH = 64MB
 ,MAXSIZE = 128GB
)
GO

3.	 Run the following script to create a new sample table named tbl_SmallTable,
on the default filegroup, which happens to be a primary filegroup in our case:
USE SampleDB
GO

--Creating table tbl_SmallTable
CREATE TABLE tbl_SmallTable
(
 ID INT IDENTITY(1,1) PRIMARY KEY
 ,ObjectID INT
 ,ColumnID INT
 ,ColumnName sysname
)
GO

Implementing Physical Database Structure

344

--Inserting sample data into tbl_SmallTable
INSERT INTO tbl_SmallTable
SELECT
 object_id
 ,column_id
 ,name
FROM sys.all_columns AS AC1
GO

4.	 Execute the following script to create another sample table named
tbl_LargeTable, on filegroup fg_LargeTable, which we anticipate
will become very large:
USE SampleDB
GO

--Creating table tbl_LargeTable
CREATE TABLE tbl_LargeTable
(
 ID INT IDENTITY(1,1) PRIMARY KEY
 ,ObjectID INT
 ,ColumnID INT
 ,ColumnName sysname
) ON [fg_LargeData]
GO

--Inserting sample data into tbl_LargeTable
INSERT INTO tbl_LargeTable
SELECT
 AC1.object_id
 ,AC1.column_id
 ,AC1.name
FROM sys.all_columns AS AC1
CROSS JOIN sys.all_columns AS AC2
GO

5.	 Now, to verify the location of both the tables created with the previous script, execute
the following query:
USE SampleDB
GO

--Verifying the location of the tables.
SELECT
 OBJECT_NAME(I.object_id) AS TableName
 ,FG.name AS FileGroupName

Chapter 14

345

 ,DF.physical_name AS DataFilePath
FROM sys.indexes AS I
INNER JOIN sys.tables AS T
 ON I.object_id = T.object_id
INNER JOIN sys.filegroups AS FG
 ON I.data_space_id = FG.data_space_id
INNER JOIN sys.database_files AS DF
 ON I.data_space_id = DF.data_space_id
WHERE I.index_id <= 1
GO

6.	 You will observe that, as specified in our database definition, two tables are
created on different disks. Note the filegroup and physical path of database files
where the table data for both the tables will be stored in the following output of
the previous query:

How it works...
We created a SampleDB database with a CREATE DATABASE statement. We created the
database definition such that its primary data file is stored in E:\SQL_Data\ and log file is
stored in L:\SQL_Log. In the database definition, we also specified a new filegroup called
fg_Largedata and added a secondary data file named SampleDB_fg_LargeData_Data.
ndf to this filegroup.

Remember that a log file is never associated with a filegroup.
In other words, you cannot specify a filegroup name in a log
file definition.

In the provided script, we created two tables. Table tbl_SmallTable will be created on the
primary filegroup, because we did not specify any filegroup in the table definition and primary
filegroup is the default filegroup in our case. We specified the fg_LargeTable filegroup
with the ON clause in the table definition of tbl_LargeTable, so that it gets stored on its
separate physical drive at G:\SQL_LargeData.

If we do not specify the target filegroup name while creating an object, it is
always created in the default filegroup. By default, primary filegroup is the
default filegroup. A user-defined filegroup can be set as the default filegroup
with the ALTER DATABASE …MODIFY FILEGROUP statement.

Implementing Physical Database Structure

346

We then verify the location of our tables by executing a query that makes use of several
joins. We fetch details from sys.indexes, sys.tables, sys.filegroups, sys.
database_files. We join sys.indexes and sys.tables on the object_id column.
data_space_id is the ID of the filegroup in sys.indexes, sys.filegroups, and sys.
database_files; then we join these system views, based on data_space_id. We retrieve
table name by using the OBJECT_NAME() function, name of the filegroup from the sys.
filegroups system view, and path of the data files from the sys.database_files system
view. Remember that for a table that is on heap, the value of index_id is always 0. index_
id for a clustered index is always 1. Clustered index means that the data of the table itself is
attached to it. This is the reason why we have specified the condition I.index_id <= 1, so
that we get details only for a clustered table or a heap table. Any non-clustered index entries
are filtered. Note that as we have not partitioned the table, we have not included the sys.
partitions system catalog view in our query. In case the table was partitioned and you had
wanted to return a list of locations for each partition on the table, you would also have needed
to join sys.partitions in the query, to retrieve the partition-specific location information.

Moving the existing large table to separate
physical disk

In the previous recipe, Using Files and Filegroups, we saw that we can create a filegroup
and create a table that is expected to become large and place it on different physical disks
using filegroup.

But what if there is already an existing large table in an existing database that is
extensively used by queries? Let's say that you are responsible for the AdventureWorks2012
database in your production environment, and there is one large table named Sales.
SalesOrderDetail, which is located on the primary filegroup. You observe that the table
is very large, I/O operations with a large volume of data made on this table are taking more
time to be completed causing blocking issues, and other transactions have to wait for I/O
operations on the same resources, resulting in bad I/O response time. You realise that there
is a need to move this large table (Sales.SalesOrderDetail) containing billions of rows
onto a dedicated physical disk to improve the I/O response time. How would you achieve this
task of moving a large table to another disk?

In this recipe, you will learn how to move an existing large table to a different physical disk.

Placing two large tables used frequently in join queries on two different
physical disks can also help in improving performance by allowing SQL Server
to perform parallel read operations on two tables specified join queries.

Chapter 14

347

Getting ready
This recipe refers to the F: drive to place SalesOrderDetails data.

The following are the prerequisites to completing this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff A sample AdventureWorks2012 database on the instance of SQL server. For
more details on how to install AdventureWorks2012 database, please refer to
the Preface of this book.

ff F drive should be available on your machine.

How to do it...
The following are the steps that will describe how to move a large table to a different
physical disk:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 In the query window, type and execute the following T-SQL commands to add a new
filegroup and data file to the AdventureWorks2012 database:
--Adding new filegroup
--named fg_SalesOrderDetails
ALTER DATABASE AdventureWorks2012
ADD FILEGROUP fg_SalesOrderDetails
GO

--Adding new data file to new
--filegroup fg_SalesOrderDetails
ALTER DATABASE AdventureWorks2012
ADD FILE
(
 Name = fg_SalesOrderDetails_Data
 ,FileName = 'F:\SalesOrderDetails_Data\fg_SalesOrderDetails_
Data.ndf'
 ,SIZE = 512MB
 ,FILEGROWTH = 128MB
 ,MAXSIZE = 512GB
) TO FILEGROUP [fg_SalesOrderDetails]
GO

Implementing Physical Database Structure

348

3.	 Verify the current location of the table Sales.SalesOrderDetail, by executing the
following query:
USE AdventureWorks2012
GO

--Verifying the current physical location
--of table Sales.SalesOrderDetail
SELECT
 OBJECT_NAME(I.object_id) AS TableName
 ,FG.name AS FileGroupName
 ,DF.physical_name AS DataFilePath
FROM sys.indexes AS I
INNER JOIN sys.tables AS T
 ON I.object_id = T.object_id
INNER JOIN sys.filegroups AS FG
 ON I.data_space_id = FG.data_space_id
INNER JOIN sys.database_files AS DF
 ON I.data_space_id = DF.data_space_id
WHERE I.index_id <= 1 AND I.object_id = OBJECT_ID('Sales.
SalesOrderDetail')
GO

If AdventureWorks2012 is created at its default location; depending upon your
SQL Server installation path, you should get output similar to that shown in the
following screenshot:

4.	 Run the following script, which will drop the existing clustered index (clustered
primary key) and create it on a new filegroup, fg_SalesOrderDetails:
USE AdventureWorks2012
GO

--Dropping existing clustered primary key
--constraint (Clustered Index) from the table.
ALTER TABLE [Sales].[SalesOrderDetail]
DROP CONSTRAINT [PK_SalesOrderDetail_SalesOrderID_
SalesOrderDetailID]
GO

--Adding clustered primary key constraint
--(Clustered Index) on filegroup fg_SalesOrderDetails

Chapter 14

349

ALTER TABLE [Sales].[SalesOrderDetail]
ADD CONSTRAINT [PK_SalesOrderDetail_SalesOrderID_
SalesOrderDetailID]
PRIMARY KEY CLUSTERED
(
 [SalesOrderID] ASC,
 [SalesOrderDetailID] ASC
) ON [fg_SalesOrderDetails]
GO

5.	 Now, verify the new location of the table Sales.SalesOrderDetail, by running
the following query:
USE AdventureWorks2012
GO

--Verifying new physical location
--of table Sales.SalesOrderDetail
SELECT
 OBJECT_NAME(I.object_id) AS TableName
 ,FG.name AS FileGroupName
 ,DF.physical_name AS DataFilePath
FROM sys.indexes AS I
INNER JOIN sys.tables AS T
 ON I.object_id = T.object_id
INNER JOIN sys.filegroups AS FG
 ON I.data_space_id = FG.data_space_id
INNER JOIN sys.database_files AS DF
 ON I.data_space_id = DF.data_space_id
WHERE I.index_id <= 1 AND I.object_id = OBJECT_ID('Sales.
SalesOrderDetail')
GO

The following screenshot is the output of the previous query after moving the Sales.
SalesOrderDetail table to a new location:

How it works...
In order to place Sales.SalesOrderDetail on separate physical disk, we created a new
filegroup, fg_SalesOrderDetails, in the AdventureWorks2012 database and added a
new data file, fg_SalesOrderDetails_Data.ndf, to this filegroup. After creating a new
filegroup and data file, we observed the current location of the Sales.SalesOrderDetail
table with a query similar to what we had used in the previous recipe.

Implementing Physical Database Structure

350

We then executed a script that drops the existing clustered index from the Sales.
SalesOrderDetail table with an ALTER TABLE statement. Because it's a clustered primary
key, we needed to drop the clustered primary key constraint instead of dropping the index,
as dropping the clustered primary key constraint automatically drops its associated clustered
index. After dropping the clustered primary key constraint, we recreated it with the ON [fg_
SalesOrderDetails] filegroup option, by using ALTER TABLE. Creating the clustered
index on the fg_SalesOrderDetails filegroup moves all data pages of the Sales.
SalesOrderDetail table to F drive.

Finally, we executed the query to verify the new location of Sales.SalesOrderDetail.

Moving non-clustered indexes on separate
physical disk

If you have few large tables and some non-clustered indexes on these tables, which are
frequently used in queries, you can consider placing the non-clustered indexes on a separate
physical drive. By having non-clustered indexes on a separate physical disk, SQL Server can
perform bookmark lookups in parallel and can simultaneously read data pages and index
pages. This parallelism improves the performance of queries.

In this recipe, we will move all non-clustered indexes of table Sales.SalesOrderDetail to
a separate physical disk (the table Sales.SalesOrderDetail that we moved to F: drive in
the previous recipe, Moving Existing Large Table to Separate Physical Disk).

Getting ready
This example refers the I drive to place non-clustered indexes.

The following are the pre-requisites to completing this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff Sample AdventureWorks2012 database on the instance of SQL server. For more
details on how to install AdventureWorks2012, please refer to the Preface of
this book

ff I drive should be available on your machine

How to do it...
The following are the steps that will describe how to move non-clustered indexes to a separate
physical disk:

1.	 Start SQL Server Management Studio and connect to SQL Server.

Chapter 14

351

2.	 In the query window, type and execute the following T-SQL commands to add
a new filegroup fg_Indexes, and data file fg_Indexes_Data.ndf, to the
AdventureWorks2012 database:
--Adding new filegroup
--named fg_Indexes
ALTER DATABASE AdventureWorks2012
ADD FILEGROUP fg_Indexes
GO

--Adding new data file to new
--filegroup fg_Indexes
ALTER DATABASE AdventureWorks2012
ADD FILE
(
 Name = fg_Indexes_Data
 ,FileName = 'I:\SQLIndex_Data\fg_Indexes_Data.ndf'
 ,SIZE = 512MB
 ,FILEGROWTH = 128MB
 ,MAXSIZE = 256GB
) TO FILEGROUP [fg_Indexes]
GO

3.	 Execute the following query to examine the current location of non-clustered indexes:
USE AdventureWorks2012
GO

--Verifying the current physical location of
--nonclustered indexes on table Sales.SalesOrderDetail
SELECT
 OBJECT_NAME(I.object_id) AS TableName
 ,I.name AS IndexName
 ,FG.name AS FileGroupName
 ,DF.physical_name AS DataFilePath
FROM sys.indexes AS I
INNER JOIN sys.tables AS T
 ON I.object_id = T.object_id
INNER JOIN sys.filegroups AS FG
 ON I.data_space_id = FG.data_space_id
INNER JOIN sys.database_files AS DF
 ON I.data_space_id = DF.data_space_id
WHERE I.object_id = OBJECT_ID('Sales.SalesOrderDetail')
GO

Implementing Physical Database Structure

352

4.	 If the AdventureWorks2012 database is installed at its current location, depending
upon your SQL Server installation path, you will see a result set similar to the one
shown in the following screenshot:

5.	 Now, the following query will drop and recreate the non-clustered indexes on a new
filegroup, fg_indexes:
USE AdventureWorks2012
GO

--Dropping and re-creating nonclustered
--index on filegroup fg_Indexes
CREATE NONCLUSTERED INDEX [IX_SalesOrderDetail_ProductID] ON
[Sales].[SalesOrderDetail]
(
 [ProductID] ASC
) WITH (DROP_EXISTING = ON)
ON [fg_Indexes]
GO

--Dropping and re-creating nonclustered
--index on filegroup fg_Indexes
CREATE UNIQUE NONCLUSTERED INDEX [AK_SalesOrderDetail_rowguid] ON
[Sales].[SalesOrderDetail]
(
 [rowguid] ASC
) WITH (DROP_EXISTING = ON)
ON [fg_Indexes]
GO

6.	 To verify the new location of indexes, run the following query:

USE AdventureWorks2012
GO

--Verifying the new physical location of
--nonclustered indexes on table Sales.SalesOrderDetail
SELECT
 OBJECT_NAME(I.object_id) AS TableName
 ,I.name AS IndexName

Chapter 14

353

 ,FG.name AS FileGroupName
 ,DF.physical_name AS DataFilePath
FROM sys.indexes AS I
INNER JOIN sys.tables AS T
 ON I.object_id = T.object_id
INNER JOIN sys.filegroups AS FG
 ON I.data_space_id = FG.data_space_id
INNER JOIN sys.database_files AS DF
 ON I.data_space_id = DF.data_space_id
WHERE I.object_id = OBJECT_ID('Sales.SalesOrderDetail')
GO

The following is the screenshot of the result after moving the non-clustered index onto table
Sales.SalesOrderDetail:

How it works...
In order to place non-clustered indexes on a separate physical disk, we created a new
filegroup fg_Indexes in the AdventureWorks2012 database and added a new data file,
fg_Indexes_Data.ndf, to this filegroup. After creating a new filegroup and data file, we
observed the current location of all indexes specified on the Sales.SalesOrderDetail
table with a query similar to what we had used in the previous recipe. However, we did not
put any filter on index_id this time, as we wanted to return rows for every index.

We then executed a script that drops the existing non-clustered indexes, IX_
SalesOrderDetail_ProductID and AK_SalesOrderDetail_rowguid, and recreated
them on the Sales.SalesOrderDetail table with the CREATE INDEX statement. Note the
inclusion of the index option DROP_EXISTING = ON. This drops the existing index with the
same name before it creates a new one. Also note that we created two non-clustered indexes,
IX_SalesOrderDetail_ProductID and AK_SalesOrderDetail_rowguid, with the ON
[fg_Indexes] filegroup option. This places index data in our new location.

Finally, we executed the query to verify the new location of all indexes specified on the
Sales.SalesOrderDetail table.

Implementing Physical Database Structure

354

Configuring the tempdb database on
separate physical disk

The tempdb database is one of the system databases of SQL Server that is essential for
its normal functioning. SQL Server relies on the tempdb database to perform many of
its operations and stores internal objects in this database. The following are some of the
operations for which the tempdb database is used by SQL Server:

ff Performing grouping or sorting operations in queries

ff Cursor operations

ff Version store operation

ff Online index creation

ff Storing intermediate results in worktables

ff Storing user objects, such as local or global temporary tables and table variable data

The tempdb database is the central database for all the databases and applications per the
SQL Server instance. Therefore, if many database applications are using tempdb extensively,
the performance of the tempdb database is very crucial for the overall performance of the
SQL Server instance. If tempdb resides on the same disk, which is also used by the other
application databases, it is possible to have poor I/O response time depending upon the
number of read/write operations being performed on other databases and the usage of the
tempdb database by various applications.

This is the reason why, the tempdb database is configured on a separate physical disk, on
production database servers where the tempdb database is used extensively, to get the best
I/O performance. It is also advisable to add more data files to the tempdb database.

The goal of this recipe is to teach you how you can configure and move your tempdb
database, so that its database files reside on their dedicated physical drives. Configuring the
tempdb database on its separate physical drives reduces the I/O load on the disk where the
application database resides. Placing the tempdb database on different disks also increases
the chances of the SQL Server's performing parallel read/write operations. This improves the
performance of the database server.

Getting ready
This example refers following two physical disk volumes as new file locations to place the
tempdb database files:

ff M drive—for data files (.mdf files) of the tempdb database

ff N drive—for log files (.ldf files) of the tempdb database

Chapter 14

355

The following are the prerequisites to completing this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff Sample AdventureWorks2012 database on the instance of SQL server. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

ff M drive should be available on your machine.

ff N drive should be available on your machine.

How to do it...
The following are the steps that will describe how to move a tempdb database to a new location.

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 In the query window, type and execute the following query to verify the current
physical location of the tempdb database:
--Switching database context to tempdb
USE tempdb
GO

--Examining curent physical location
--of tempdb database
SELECT
 name AS LogicalFileName
 ,physical_name AS PhysicalFilePath
FROM sys.database_files
GO

3.	 If the tempdb database has been created at its default location and you have not
changed it yet, you will see the physical location of database files of the tempdb
database; depending on your SQL Server installation path, it will be similar to the
one shown in following screenshot:

4.	 Create the following directories on the specified disks to place data files and log files
of tempdb on separate physical drives:

�� M:\TempDB_Data\

�� N:\TempDB_Log\

Implementing Physical Database Structure

356

5.	 Once the these directories are created, execute the following script to modify the
location of the tempdb database for your SQL Server instance:
USE master
GO

--Changing the location of data file
--(.mdf file) of tempdb database.
ALTER DATABASE tempdb
MODIFY FILE
(
 Name = tempdev
 ,FileName = 'M:\TempDB_Data\tempdb.mdf'
)
GO

--Changing the location of log file
--(.ldf file) of tempdb database.
ALTER DATABASE tempdb
MODIFY FILE
(
 Name = templog
 ,FileName = 'N:\TempDB_Log\templog.ldf'
)
GO

6.	 After executing the previous commands, you will need to restart SQL Server service.
For this, select SQL Server Configuration Manager from the Configuration Tools
option in the Microsoft SQL Server 2012 program group in the Start menu.

7.	 In SQL Server Configuration Manager, select SQL Server Services from the left
pane. Right-click on the name of a SQL Server service for your SQL Server instance,
and then select Restart to restart the service. Refer to the following screenshot for
more details:

Chapter 14

357

Always use SQL Server Configuration Manager to restart the SQL Server
Service. Do not restart SQL Server service directly from the Windows
Services MMC.

8.	 Once the SQL Server service is restarted, the tempdb database can be located at a
new specified location. To verify that the tempdb database is now at its new location,
run the following query:
--Switching database context to tempdb
USE tempdb
GO

--Examining new physical location
--of tempdb database
SELECT
 name AS LogicalFileName
 ,physical_name AS PhysicalFilePath
FROM sys.database_files
GO

9.	 After executing the previous query, you should see a result similar to the one shown
in following screenshot:

How it works...
We first retrieved the current location of the tempdb database by querying the sys.
database_files system catalog view. We then altered the locations of the data file and
log file of the tempdb database using the ALTER DATABASE command, so that the data file
and log file are stored on different physical drives, M:\TempDB_Data\tempdb.mdf and
N:\TempDB_Log\templog.ldf, respectively, after SQL Server restarts. We then restarted
SQL Server service through SQL Server Configuration Manager. Finally, we queried the
sys.database_files system catalog view again, to verify the changes in location
of the tempdb database.

15
Advanced Query
Tuning Hints and

Plan Guides

In this chapter we will cover:

ff Using the NOLOCK table query hint

ff Using the FORCESEEK and INDEX table hints

ff Optimizing a query using an object plan guide

ff Implementing a fixed execution plan using a SQL plan guide

Introduction
When you submit a SQL query to the SQL Server, SQL Server first parses the query to check
whether it's syntactically correct or not. Once the query is parsed, a parse tree is generated.
The parse tree becomes the input of the next process, which is known as algebraization. The
algebrizer resolves all the names, data types, and aliases of columns of various objects and
creates a query tree, which the query optimizer can understand. Query optimizer optimizes
queries, depending on various factors, such as available indexes and statistics, and produces
the execution plan. A query can be executed in a number of different ways to retrieve the same
result set. However, it's the job of a query optimizer to select the best possible execution plan
for a query so that it can be executed faster and will require fewer hardware resources. In most
cases, the query optimizer selects the optimum execution plan, provided that statistics are up to
date. However, sometimes it's possible that the execution plan picked up by the query optimizer
is sub-optimal, and you may not be happy with the execution plan of the query.

Advanced Query Tuning Hints and Plan Guides

360

To address this issue, SQL Server comes with a feature called hints. Hints can be specified
within DML statements, so that you can give the SQL Server a hint as to how a particular
query should be executed and can thus control the way a query executes. This affects the
query execution plan. So, by using query hints, you instruct the query optimizer to execute
a query in a certain way.

SQL server has the following three types of hints that you can use in queries, to force the
query execution plan:

ff Query hint

ff Table hint

ff Join hint

In this chapter, we will see how to use these different hints while writing our queries.

In addition to hints, SQL server also offers another unique feature called a plan guide. A plan
guide is a kind of object that is created in the database. A plan guide can be helpful in tuning
and optimizing queries that are developed by a third party and that you are not allowed or
don't have access to modify. But by using plan guides, you can attach query hints and force
execution plans to those queries, whenever those queries execute.

In this chapter, we will also learn how we can use these different types of plan guides and
tune the performance of queries without touching their source code.

Using NOLOCK table query hint
As you may know, SQL Server uses different kinds of locks on resources belonging to the
requested data and objects, to manage and maintain data consistency and data concurrency.
By default, SQL Server acquires a shared lock on the resources when a SELECT query is
executed. The resources can be anything from a table, to a range of keys, or single row.
So, when we execute a SELECT query, the SQL Server tries to acquire a shared lock on the
requested resources. However, if another transaction is updating the same data and has
acquired the UPDATE locks on the same resource, the SELECT query that tries to acquire
a SHARED lock on the resources may have to wait until another transaction is completed,
based on the transaction isolation level.

The SQL Server allows us to specify query hints in the queries that we execute against
the database engine. To avoid the query waiting time caused by lock conflicts, as we just
discussed, we can use one of the table hints, WITH (NOLOCK), in our queries.

The NOLOCK hint instructs the SQL Server to retrieve the requested data without acquiring any
locks on the resources. The power of NOLOCK is that it ignores other locks. This ensures that
the query will not cause any shared locks on the resources and will always return data without
waiting. Note that using the NOLOCK query hint is equivalent to using the READ UNCOMMITTED
concurrency level.

Chapter 15

361

So, data read with the NOLOCK query hint also includes dirty data that other transactions have
not committed. However in some cases, using a NOLOCK query hint is usually safe and offers
performance benefit, based on architecture and requirements of the application. The NOLOCK
query hint can be used, if the data concurrency scenarios are well-known in advance.

In this recipe, we will see how we can use the NOLOCK table hint while writing our queries, to
make sure that in most of the cases queries do not need to wait and always return the result
set immediately, without acquiring any locks on the resources.

Getting ready
The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install AdventureWorks2012 database, please refer to the Preface
of this book.

How to do it...
The following are the steps to be performed in this recipe:

1.	 Open SQL Server Management Studio and connect to the SQL Server hosting the
instance of AdventureWorks2012 database.

2.	 In a new query window (Connection-1), execute following script. The script will begin
a new transaction and acquire an update lock (UPDLOCK) on the rows and
hold it (HOLDLOCK) until the transaction is completed:
USE AdventureWorks2012
GO

--Beginning Transaction (From Connection-1)
BEGIN TRANSACTION
 --Fetching Order Details for
 --which LineTotal>10000.00 with
 --UPDATE and HOLD lock query hint
 SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
 FROM Sales.SalesOrderDetail WITH (UPDLOCK,HOLDLOCK)
 WHERE LineTotal>10000.00

Advanced Query Tuning Hints and Plan Guides

362

3.	 Open a new query window and try to run the following SELECT query. You will notice
that the query will not execute and it will have to wait:
--Fetching Order Details for
--which LineTotal>10000.00 (From Connection-2)
SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail
WHERE LineTotal>10000.00

4.	 Now, open one more query window (Connection-3). In this query window, type and
execute the following query, which is the same as the preceding one, except the fact
that the following query is using a NOLOCK query hint:
--Fetching Order Details for
--which LineTotal>10000.00
--with NOLOCK query hint (From Connection-3)
SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail WITH (NOLOCK)
WHERE LineTotal>10000.00

5.	 Note that this query will succeed and return the result set immediately. Now, go back
to the first query window (Connection-1) where the transaction was started, and in
this query window, run the following command to end the transaction:

--Rolling back the transaction
--(From Connection-1)
ROLLBACK TRANSACTION

6.	 Now, go to the second query window (Connection-2) where you can observe that
the query was able to retrieve data as the transaction which was started from
Connection-1 was completed.

Chapter 15

363

How it works...
In this recipe, we first executed a query from Connection-1, which retrieved records from the
Sales.SalesOrderDetail table where LineTotal > 10000. Note that we have used the
UPDLOCK and HOLDLOCK query hints here. The UPDLOCK query hint acquires the UPDATE
lock on rows, as if the rows are going to be updated and HOLDLOCK holds that lock until the
transaction is completed. In a real-life scenario, you can think of these rows as if they are
going to be updated by the UPDATE statement.

We could have used the UPDATE statement instead of using the UPDLOCK
and the HOLDLOCK hints here. However, this has been done purposefully,
just to show you how incorrectly used query hints can block other queries.

We then executed the same query without any query hint from Connection-2. The SELECT
statement in the second query tried to acquire the SHARED locks (default behavior of the
SELECT statement) to access the same set of records but the request was blocked, because
there are UPDATE locks on the same rows held by Connection-1.

Finally, we executed the same query from Connection-3, to retrieve the same set of rows,
but this time with the query hint NOLOCK. This hint instructed SQL Server to simply retrieve
the data without acquiring any shared lock on the data. Because SQL Server did not need
to acquire any lock, it could run the query to return the same rows, which are locked by
Connection-1.

Considering the database application architecture and requirements, try to
use the NOLOCK query hint when it is safe to use. It reduces the overhead
on SQL Server caused by acquiring and releasing locks. Using the NOLOCK
hint reduces the blocking issues, as queries with a NOLOCK hint do not have
to wait for the result. This improves the overall performance of queries.

Using FORCESEEK and INDEX table hint
A major role of a query optimizer is to choose the best execution plan among the different
available plans for query execution. In most of the cases, query optimizer always chooses
the right execution plan, and we generally don't need to specify query hints to force the query
optimizer to execute a query in a desired way. However, in rare cases, it can happen that query
optimizer may fail to choose the right query plan.

SQL Server allows us to specify query hints while writing queries, which forces the query
optimizer to execute the query in a specific way only.

In this recipe, we will see how we can force a query to perform an index seek operation by
using the FORCESEEK and INDEX table query hints when the query optimizer performs an
index scan operation.

Advanced Query Tuning Hints and Plan Guides

364

Getting ready
In this recipe, we first see that certain ProductIDs cause an index scan operation while
retrieving data from the Sales.SalesOrderDetail table. Then we will use the query
hints INDEX and FORCESEEK, so that an index seek operation can be used.

Before starting this recipe, make sure that you fulfil the following prerequisites:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition

ff Sample AdventureWorks2012 database on the instance of SQL Server

How to do it...
Follow the ensuing steps to perform this recipe:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 In a new query window, execute the following T-SQL script against the
AdventureWorks2012 database. Make sure that, before executing a query,
you click on Include Actual Execution Plan to view the execution plan once
query execution is completed:
USE AdventureWorks2012
GO

--Retrieving Data from Sales.SalesOrderDetail table
-- for ProductID 800,801,802,803,804,805
SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail
WHERE ProductID >= 800 AND ProductID <=805

GO

Chapter 15

365

3.	 Click on the Execution plan tab at the bottom of the result pane and observe
the execution plan. As it can been seen from the following screenshot, the query
optimizer has chosen an index scan operation to retrieve records:

4.	 Now, execute the following query to retrieve the same set of records, but this time
using the FORCESEEK and INDEX table hints along with the index name, as
shown next:
USE AdventureWorks2012
GO

--Retrieving Data from Sales.SalesOrderDetail
--table for ProductID 800,801,802,803,804,805
--using FORCESEEK and INDEX query hints
SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail WITH (INDEX(IX_SalesOrderDetail_
ProductID), FORCESEEK)
WHERE ProductID >= 800 AND ProductID <=805

GO

Advanced Query Tuning Hints and Plan Guides

366

5.	 Now click on the Execution Plan table in the result pane and observe the execution
plan that the preceding query has used. You will notice that the previous query
has used the index seek operation and used index on the ProductID column,
as shown next:

How it works...
In this recipe, we retrieved records from Sales.SalesOrderDetail, for which the
ProductID is any from 800, 801, 802, 803, 804, 805, and hence we specified the condition
WHERE ProductID >= 800 AND ProductID <=805. However, the returned rows are not
"most of the rows" and though they are few in number, the query optimizer has still elected
to perform a clustered index scan operation, which can be seen in the execution plan.

The second query uses the table hints INDEX and FORCESEEK. The FORCESEEK table hint
forces a query to perform an index seek operation. By specifying INDEX along with the index
name IX_SalesOrderDetail_ProductID, we suggest that the query optimizer use the
index IX_SalesOrderDetail_ProductID, so that it performs an index seek operation.

Remember that using table/query hints does not guarantee that there will
always be a performance gain. You should use table/query hints as the last
option. Before applying query hints, first confirm that there will be a gain in
query performance. This is because, in most cases, the query optimizer is
intelligent enough to find out cheap execution plan among the other execution
plans. If you observe that the query optimizer uses an index scan operation
instead of an index seek operation in a specific scenario, it does not always
mean that the query optimizer has failed at choosing the right query plan.
It also means that the query optimizer has estimated that an index scan
operation is less costly than an index seek operation. That usually happens
when the query optimizer estimates a clustered index scan operation to be
cheaper than an index seek and a key lookup operation. Therefore before
using query hints, always check and compare the query execution statistics.

Chapter 15

367

Optimizing a query using an object plan
guide

Plan guide is a feature in SQL Server that you can use to tune queries, which are developed/
deployed by third parties and for which you are not allowed to modify the code. With a plan
guide, it's possible to attach query hints to the queries that are executed against the database
server. A SQL Server attaches the query hints, as specified by the plan guide, to the query
before executing it. In this way, an ad-hoc query or a query in the stored procedure can be
tuned without changing it in the source code.

There are three types of plan guides, as follows:

ff Object plan guide: Used with stored procedures and user-defined functions

ff SQL plan guide: Used with ad-hoc SQL queries

ff Template plan guide: Used with ad-hoc SQL queries

We will learn how to use an object plan guide to optimize a query for a particular value. An
object plan guide is created upon a stored procedure or user defined functions. A SQL query
statement specified in the plan guide is matched against the query found within the stored
procedure for optimization, and if it is matched, the query is optimized before it gets executed.

In this recipe, we will create a stored procedure named Sales.
GetSalesOrderByCountry_TestPlanGuide, which retrieves the data from the Sales.
SalesOrderHeader table, based on parameter @Country_region, representing a specific
country region by joining it with Sales.Customer and Sales.SalesTerritory. Knowing
in advance that most of the orders are from the US country region, we will apply a plan guide
to the stored procedure, so that the query that retrieves sales data in the stored procedure is
optimized for the US country region, with the OPTIMIZE FOR query hint.

Getting ready
The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

Advanced Query Tuning Hints and Plan Guides

368

Also, you need to know how a plan guide is created. We will be creating plan guides with a
system stored procedure named sp_create_plan_guide. The following are the parameters
that are passed to sp_create_plan_guide:

ff @name: Name of the plan guide

ff @stmt: Query text, which is to be optimized

ff @type: Type of the plan guide—this can be OBJECT, SQL, or TEMPLATE

ff @module_or_batch: Name of the stored procedure, if the plan guide is an object
plan guide

ff @params: Parameter definition for SQL statements

ff @hints: Can be a table/query hint or a forced execution plan XML

Creating a plan guide using SSMS
A plan guide can also be created using SQL Server Management Studio by
right-clicking on the Databases|AdventureWorks2012|Programmability|Pl
an Guides node and then selecting New Plan Guide… in Object Explorer.

How to do it...
For this recipe, follow the given steps:

1.	 Start SQL Server Management Studio and connect to SQL Server.
2.	 In a new query window, execute the following T-SQL script against the

AdventureWorks2012 database to create the stored procedure
Sales.GetSalesOrderByCountry_TestPlanGuide:
USE AdventureWorks2012
GO

CREATE PROCEDURE Sales.GetSalesOrderByCountry_TestPlanGuide
(
 @Country_region NVARCHAR(60)
) AS
BEGIN
 SELECT *
 FROM Sales.SalesOrderHeader AS SOH
 INNER JOIN Sales.Customer AS C
 ON SOH.CustomerID = C.CustomerID
 INNER JOIN Sales.SalesTerritory AS ST
 ON C.TerritoryID = ST.TerritoryID
 WHERE ST.CountryRegionCode = @Country_region;
END
GO

Chapter 15

369

3.	 Now let us create a plan guide, MyObjectPlanGuide, for the stored procedure
Sales.GetSalesOrderByCountry_TestPlanGuide, with the following script:
USE AdventureWorks2012
GO

--Creating plan guide for
--stored procedure MyObjectPlanGuide
EXEC sp_create_plan_guide
 @name = N'MyObjectPlanGuide',
 @stmt = N'SELECT *
 FROM Sales.SalesOrderHeader AS SOH
 INNER JOIN Sales.Customer AS C ON SOH.CustomerID =
C.CustomerID
 INNER JOIN Sales.SalesTerritory AS ST
 ON C.TerritoryID = ST.TerritoryID
 WHERE ST.CountryRegionCode = @Country_region;',
 @type = N'OBJECT',
 @module_or_batch = N'Sales.GetSalesOrderByCountry_
TestPlanGuide',
 @params = NULL,
 @hints = N'OPTION (OPTIMIZE FOR (@Country_region = N''US''))';
GO

4.	 In Object Explorer, expand Databases|AdventureWorks2012|Programmability|P
lan Guides node, make sure that the new plan guide has been created, as shown in
the following screenshot:

Advanced Query Tuning Hints and Plan Guides

370

5.	 Now, execute the stored procedure as shown in following script. Make sure that
before executing the following script, you click on Include Actual Execution Plan,
to view the execution plan once the stored procedure execution is completed:
USE AdventureWorks2012
GO

EXECUTE Sales.GetSalesOrderByCountry_TestPlanGuide 'US'
GO

6.	 Press F4 to display the Properties window, if it is not shown. Click on the Execution
Plan tab in the result pane and click on the icon for the SELECT statement in
the execution plan. In the Properties window, examine the value for the property
PlanGuideName, which is used by the execution plan. The following screenshot
shows a plan guide name in the Properties window:

Plan Guide and SQL Server Profiler
When a plan guide is used successfully in an execution plan for a query or
stored procedure, you will also see the Plan Guide Successful event
captured in SQL Server Profiler, if you include this event in your trace.

Chapter 15

371

How it works...
In this recipe, we first created a stored procedure Sales.GetSalesOrderByCountry_
TestPlanGuide. In a real-life example, this stored procedure can be compared to a
database object developed by a third party and which you don't have access to modify. The
procedure accepts a country region as parameter and retrieves sales data by joining tables
Sales.SalesOrderHeader, Sales.Customer, and Sales.SalesTerritory. The data
is filtered by the @Country_region parameter.

We then created a plan guide named MyObjectPlanGuide, by calling the system stored
procedure sp_create_plan_guide. The @stmt parameter in sp_create_plan_guide
represents the exact query text in the stored procedure, which is to be optimized. The @type
parameter is set to OBJECT, as we wanted to create an object plan guide. The @module_or_
batch parameter specifies the name of the stored procedure for which the plan guide is to
be created, which happens to be Sales.GetSalesOrderByCountry_TestPlanGuide
in this example. The @params parameter was set to null in our example, as this parameter is
not relevant to our case. Finally, we specified the query hint OPTIMIZE FOR with the OPTION
clause and with the value US to be optimized for the @Country_region parameter. This
option instructs the SQL server to optimize the query for the US country region. Because
majority of the orders are from the US country region, the overall performance of the query
will be optimized whenever the sales data for the US country region is requested.

We verified the newly created plan guide in Object Explorer in SQL Server Management Studio.

Finally, we executed the stored procedure Sales.GetSalesOrderByCountry_
TestPlanGuide and examined the execution plan of the query to verify that the
execution plan used the plan guide we created.

Implementing a fixed execution plan using
SQL plan guide

As plan guides can be used to specify query hints for SQL statements, they can also specify an
execution plan instead of query hints to force an execution plan.

In this recipe, we first observe that even though there is a non-clustered index on ProductID
column, some of the values of ProductID cause an index scan operation when data is
retrieved. We will create an SQL plan guide so that all the queries as specified by the plan
guide performs the index seek operation for every ProductID by forcing a previously saved
execution plan.

Advanced Query Tuning Hints and Plan Guides

372

Getting ready
We will see that ProductID 806 causes an index seek operation while ProductID 800
causes an index scan operation. We will generate an execution plan with an index seek
operation and force that plan for the same type of queries so that for every ProductID
an index seek is performed.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

How to do it...
For this recipe, follow the given steps:

1.	 Start SQL Server Management Studio and connect to SQL Server.

2.	 In the query window, execute the following T-SQL script against the
AdventureWorks2012 database, to retrieve sales order details from the
Sales.SalesOrderDetail from Sales.SalesOrderDetail table for
ProductID equal to 806. Just make sure that before executing the following
script, you click on Include Actual Execution Plan, to view the execution plan
of the query:
USE AdventureWorks2012
GO

DECLARE @ProductID INT = 806
DECLARE @Param NVARCHAR(100)= '@ProductID int'
DECLARE @SQL NVARCHAR(MAX) = 'SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail
WHERE ProductID = @ProductID
OPTION (RECOMPILE)'

--Retrieving Sales Order Details for
--Product = 806
EXECUTE sp_executesql @SQL,@Param,@ProductID
GO

Chapter 15

373

3.	 Click on the Execution Plan tab in the result pane and observe the execution plan
for the preceding query. Note that for ProductID 806, the query optimizer has
performed the index seek operation. The execution plan of the preceding query
should look like the following screenshot:

4.	 Now, execute the following query to retrieve data for ProductID equal to 800 from
the Sales.SalesOrderDetail table:
USE AdventureWorks2012
GO

DECLARE @ProductID INT = 800
DECLARE @Param NVARCHAR(100)= '@ProductID int'
DECLARE @SQL NVARCHAR(MAX) = 'SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail
WHERE ProductID = @ProductID
OPTION (RECOMPILE)'

--Retrieving Sales Order Details for
--Product = 800
EXECUTE sp_executesql @SQL,@Param,@ProductID
GO

Advanced Query Tuning Hints and Plan Guides

374

5.	 Click on the Execution Plan tab in the result pane and observe the execution plan
for the preceding query. Note that for ProductID 800, the query optimizer has
performed an index scan operation. The execution plan should look like the
following screenshot:

6.	 We want an execution plan to be generated, which performs an index seek operation.
Let's execute the following query, which retrieves the sales order details for
ProductID equal to 806:
USE AdventureWorks2012
GO

--Retrieving Sales Order Details for
--Product = 806 to in order to generate
--optimum Execution Plan with Index Seek
--operation.
SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail
WHERE ProductID = 806
GO

7.	 The following script will retrieve an execution plan for the preceding query in XML
format by querying Dynamic Management Views (DMVs) and store it in a variable.
It also creates a SQL plan guide named MySQLFixedPlanGuide, by using the
execution plan. Run the following script:
USE AdventureWorks2012
GO

Chapter 15

375

--Retrieving Execution Plan of above
--query in XML Format from DMVs and
--Saving in Variable @Execution_Plan_XML
DECLARE @Execution_Plan_XML nvarchar(max);
SET @Execution_Plan_XML = (SELECT TOP 1 query_plan
 FROM sys.dm_exec_query_stats AS QS
 CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) AS ST
 CROSS APPLY sys.dm_exec_text_query_plan(QS.plan_handle,
DEFAULT, DEFAULT) AS QP
 WHERE ST.text LIKE
 N'SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail
WHERE ProductID = 806%');

--Creating SQL Plan Guide using
--the generated execution plan
EXEC sp_create_plan_guide
@name = N'MySQLFixedPlanGuide',
@stmt = 'SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
FROM Sales.SalesOrderDetail
WHERE ProductID = @ProductID',
@type = N'SQL',
@module_or_batch = NULL,
@params = '@ProductID int',
@hints = @Execution_Plan_XML;

GO

Advanced Query Tuning Hints and Plan Guides

376

8.	 Verify that the plan guide has been created with appropriate values as expected.
To do this, right-click on the plan guide named MySQLFixedPlanGuide, located at
Databases | AdventureWorks2012 | Programmability | Plan Guides , and then
select Properties in Object Explorer. You should see a dialog box that is similar to
the following screenshot. Verify the details of all parameters:

9.	 After a plan guide is created, run the following query to retrieve the sales order details
for when ProductID is 800, once again:
USE AdventureWorks2012
GO

DECLARE @ProductID INT = 800
DECLARE @Param NVARCHAR(100)= '@ProductID int'
DECLARE @SQL NVARCHAR(MAX) = 'SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,ProductID
 ,OrderQty
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal

Chapter 15

377

FROM Sales.SalesOrderDetail
WHERE ProductID = @ProductID'

--Retrieving Sales Order Details for
--Product = 800
EXECUTE sp_executesql @SQL,@Param,@ProductID

10.	 Now, go to the Execution Plan tab and look at the execution plan for the preceding
query. Your execution plan should be similar to the one shown as follows:

11.	 Note, in the preceding execution plan, that the query now performs an index seek
operation. To make sure that the plan guide was applied indeed and used, press F4
to display the Properties window, if it is not shown. In the execution plan, click on the
icon for SELECT statement in execution plan. In the properties window, examine the
value for the property PlanGuideName, which is used by the execution plan. The
following screenshot shows a plan guide name in the Properties window:

Advanced Query Tuning Hints and Plan Guides

378

How it works...
In this recipe, we first executed a parameterized query to retrieve data from the Sales.
SalesOrderDetail table for when ProductID is 806 with a sp_executesql system
stored procedure, and then we observed that the execution plan uses an index seek
operation to retrieve data.

Next, we executed the same query for when ProductID is 806, and we noticed in the
execution plan that, for ProductID 800, the query optimizer used an index scan operation.
Note that in both the queries we have used the OPTION (RECOMPILE) query hint, so that
both the queries produce their own execution plan and do not use any previously generated
execution plan. This guarantees that we get the exact execution plan for a particular
ProductID that a query optimizer generates for a specific ProductID. If we had not used
the WITH (RECOMPILE) query hint, the second query might have used the same execution
plan with an index seek operation that was generated by the first query. Also note that if we
had run the query with Product ID equal to 800 first and then executed the same query
for when ProductID is 806, without the OPTION (RECOMPILE) query hint, we might have
ended up getting an index scan operation for both the queries, as the second query also
should have used the execution plan residing in the cache.

We knew that for when ProductID is 806, the query optimizer performs an index seek
operation. Therefore, we once again executed the query for when ProductID is 806. After
this query is executed, we retrieved its XML execution plan by joining DMVs and functions—
sys.dm_exec_query_stats, sys.dm_exec_sql_text() and sys.dm_exec_text_
query_plan(). To do this, we cross-apply the result of sys.dm_exec_query_stats with
sys.dm_exec_sql_text(), passing it sql_handle, filtering the query text by our actual
query text; then we cross applied result with sys.dm_exec_text_query_plan() by
passing plan_handle to it and accessing the XML execution plan from there. We stored
XML execution in the @Execution_Plan_XML variable. This XML was then passed in the
stored procedure sp_create_plan_guide to @hints parameter to create our plan
guide named MySQLFixedPlanGuide.

Chapter 15

379

Because we had an XML execution plan for when ProductID is 806, the plan was generated
having an index seek operation performed on the index defined in the ProductID column.
We wanted to force the index seek operation by forcing the same execution plan for every
product. Hence, we have specified a parameter @ProductID in our query text that we
passed to the @stmt variable and defined parameter @ProductID int for @params
variable in the sp_create_plan_guide stored procedure call. Because we wanted to
create a SQL plan guide, we passed a literal value SQL to the @type parameter and NULL
value to the @module_or_batch parameter.

We then verified that our plan guide was created by opening Databases |
AdventureWorks2012 | Programmability | Plan Guides and then selecting
Properties in Object Explorer.

Once the plan guide was created, we executed the same parameterized query for ProductID
equal to 800 with a sp_executesql system stored procedure and observed it execution
plan. When we executed our query, the plan guide's query template was matched against
the executed query and the plan guide was used for query optimization, which forced the
execution plan that we had specified. We could see that the execution plan of the query
resulted in an index seek operation and not in an index scan, this time.

Finally, we verified that the plan guide MySQLFixedPlanGuide was indeed used by looking
at the execution plan property and by examining the value of the PlanGuideName property in
the Properties window.

16
Dealing with Locking,

Blocking, and
Deadlocking

In this chapter we will cover:

ff Determining long-running transactions

ff Detecting blocked and blocking queries

ff Detecting deadlocks with SQL Server Profiler

ff Detecting deadlocks with Trace Flag 1204

Introduction
Transactions are an integral part of any OLTP database system. They manage data
consistency and data concurrency issues, to make sure that data always remains in a valid
state in the database, when multiple sources read or update the same data at the same
time. In SQL Server, this is achieved through a locking mechanism that SQL Server applies
while reading and writing data from and to the database. The lock manager in SQL Server is
responsible for applying this locking mechanism. SQL Server issues different types of locks on
different types of resources, such as database, file, object, table, extent, page, and key.

While working with transactions, there is always a chance that you will face the issues caused
by transactions. These issues are generally related to locking, blocking, and deadlocking. We
often need to troubleshoot such issues and fix them, so that we can avoid them.

This chapter will discuss such challenges and provide you with insight on how to cope with
these types of situations.

Dealing with Locking, Blocking, and Deadlocking

382

Determining long-running transactions
Long-running transactions block the other transactions and in turn introduce new long-running
transactions! This affects the performance of the database server.

As a DBA, you should regularly monitor your database transactions and should take necessary
remedial steps whenever you identify such long-running transactions, as they can degrade the
performance of the application drastically.

In this recipe, you will see how you can monitor the transactions by looking at their time
duration. If you frequently find some transactions running for a long time, you may probably
want to find if they are blocked by other transactions. You may also probably look into the
query to investigate which statements of the transaction are taking more time and why, so
that you can know which part of the T-SQL code should be modified accordingly.

Getting ready
This will be a very simple recipe that will show you how to track the transaction time. With the
script that has been provided in this example, you can see all the current running transactions
along with the time duration for which they have been executing.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

How to do it...
Follow the ensuing steps to perform this recipe:

1.	 Start SQL Server Management Studio and establish a connection to the SQL Server
hosting the AdventureWorks2012 database.

2.	 In the query window (Connection-1), type the following T-SQL statements and then
execute them to begin a sample transaction from Connection-1:

--Beginning a sample transaction
USE AdventureWorks2012
GO

BEGIN TRANSACTION

SELECT * FROM Sales.SalesOrderHeader

Chapter 16

383

3.	 Now, to monitor currently running transactions, type and execute the following T-SQL
script in a new query window (Connection-2):

--Detecting Long-Running Transaction
SELECT
 ST.transaction_id AS TransactionID
 ,DB_NAME(DT.database_id) AS DatabaseName
 ,AT.transaction_begin_time AS TransactionStartTime
 ,DATEDIFF (SECOND, AT.transaction_begin_time, GETDATE()) AS
TransactionDuration
 ,CASE AT.transaction_type
 WHEN 1 THEN 'Read/Write Transaction'
 WHEN 2 THEN 'Read-Only Transaction'
 WHEN 3 THEN 'System Transaction'
 WHEN 4 THEN 'Distributed Transaction'
 END AS TransactionType
 ,CASE AT.transaction_state
 WHEN 0 THEN 'Transaction Not Initialized'
 WHEN 1 THEN 'Transaction Initialized & Not Started'
 WHEN 2 THEN 'Active Transaction'
 WHEN 3 THEN 'Transaction Ended'
 WHEN 4 THEN 'Distributed Transaction Initiated Commit
Process'
 WHEN 5 THEN 'Transaction in Prepared State & Waiting
Resolution'
 WHEN 6 THEN 'Transaction Committed'
 WHEN 7 THEN 'Transaction Rolling Back'
 WHEN 8 THEN 'Transaction Rolled Back'
 END AS TransactionState
FROM sys.dm_tran_session_transactions AS ST
INNER JOIN sys.dm_tran_active_transactions AS AT
ON ST.transaction_id = AT.transaction_id
INNER JOIN sys.dm_tran_database_transactions AS DT
ON ST.transaction_id = DT.transaction_id
ORDER BY TransactionStartTime
GO

4.	 You should get an output similar to the one shown in following screenshot:

Dealing with Locking, Blocking, and Deadlocking

384

5.	 Execute the following statement in the first query window(Connection-1), to roll back
the transaction initiated previously:

--Rolling Back sample transaction

ROLLBACK TRANSACTION
GO

How it works...
We first connected to the SQL Server instance that is hosting the AdventureWorks2012
database. In a query window (Connection-1), we started a new transaction in which we
queried data from the table Sales.SalesOrderHeader.

In another query window (Connection-2), we executed a query to see all currently
running transactions. In this query we used the following transaction-related dynamic
management views:

ff sys.dm_tran_session_transactions, which provides transaction-related information
along with some session specific information

ff sys.dm_tran_active_transactions, which provides information on all transactions
currently active at instance level

ff sys.dm_tran_database_transactions,which provides information on transactions
that are database-specific

All these DMVs are joined to the transaction_id column. To know with which database
a particular transaction is associated, we used the DB_NAME() function by passing the
database_id column.

The transaction_begin_time column specifies the time when the transaction was
started. By using DATEDIFF() function on this column, we calculated the number of
seconds for which a particular transaction has been running.

The other columns denote the types and states of the transaction.

Finally, we sorted the output of the query based on TransactionStartTime, so that we get
the oldest and longest-running transactions at the top of the list.

Detecting blocked and blocking queries
If a transaction is waiting for some resources because the same resources are locked by
other transactions, that transaction is considered a blocked transaction. On the contrary, a
transaction that has locked the resources and caused other transactions to wait is considered
a blocking transaction.

Chapter 16

385

Long-running transactions can block other transactions and queries for a long time. In a
heavily transacted database, many times we face the "blocking" problem. If a transaction is
not completed because it is blocked, it can take time to complete, which in turn blocks the
other transactions.

In this recipe, we will learn how to find which queries are blocked by which queries, and how to
kill those blocking queries, as part of the immediate solution!

Getting ready
As we are going to see how to find blocked and blocking queries, we will first create a scenario
so that we can create a blocking query.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

How to do it...
The following are the steps for detecting blocked and blocking queries:

1.	 Start SQL Server Management Studio and establish a connection to the SQL Server
hosting the AdventureWorks2012 database.

2.	 In the query window (Connection-1), type the following T-SQL statements and then
execute them, to begin a transaction from Connection-1:

--Execute this script from Connection-1
USE AdventureWorks2012
GO

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO

--Beginning a transaction.
BEGIN TRANSACTION

--Fetching SessionID
SELECT @@SPID AS Connection1_SessionID

SELECT * FROM Sales.SalesOrderDetail
WHERE SalesOrderDetailID = 121316

Dealing with Locking, Blocking, and Deadlocking

386

3.	 After executing the previous statements, you should see output similar to that shown
in the following screenshot. Note that the session ID that you get in your output is
likely to be different.

4.	 Now, open another query window (Connection-2). Type the following T-SQL script,
and then execute the script to begin a transaction from Connection-2. Note that the
UPDATE statement in this script will not complete and will be waiting because the
same row is blocked by Connection-1.

--Execute this script from Connection-2
USE AdventureWorks2012
GO

--Begin transaction and try
--to update row that is blocked
--by Connection-1
BEGIN TRANSACTION

UPDATE Sales.SalesOrderDetail
SET OrderQty = 10
WHERE SalesOrderDetailID = 121316

COMMIT TRANSACTION

5.	 In another new query window (Connection-3), type and execute the following query, to
find out the blocked and blocking queries:

--Finding Blocking Information
SELECT
 R.session_id AS BlockedSessionID
 ,S.session_id AS BlockingSessionID
 ,Q1.text AS BlockedSession_TSQL
 ,Q2.text AS BlockingSession_TSQL
 ,C1.most_recent_sql_handle AS BlockedSession_SQLHandle

Chapter 16

387

 ,C2.most_recent_sql_handle AS BlockingSession_SQLHandle
 ,S.original_login_name AS BlockingSession_LoginName
 ,S.program_name AS BlockingSession_ApplicationName
 ,S.host_name AS BlockingSession_HostName
FROM sys.dm_exec_requests AS R
INNER JOIN sys.dm_exec_sessions AS S
ON R.blocking_session_id = S.session_id
INNER JOIN sys.dm_exec_connections AS C1
ON R.session_id = C1.most_recent_session_id
INNER JOIN sys.dm_exec_connections AS C2
ON S.session_id = C2.most_recent_session_id
CROSS APPLY sys.dm_exec_sql_text (C1.most_recent_sql_handle) AS Q1
CROSS APPLY sys.dm_exec_sql_text (C2.most_recent_sql_handle) AS Q2

6.	 Considering that the query we executed from Connection-1 has been blocking other
queries for a long time, we need to terminate its process by killing its session, with
the following T-SQL command:

KILL 56
GO

7.	 Switch to the second query window (Connection-2) and observe that, as soon as we
kill the blocking session (56), the UPDATE statement is successfully executed and the
transaction in Connection-2 gets committed.

How it works...
We first created a connection through SSMS and started a transaction in
AdventureWorks2012 database. Note that we have set the transaction isolation level to
REPEATABLE READ. Why have we used the REPEATABLE READ transaction isolation level?
Well, on this isolation level, shared locks issued on resources are held until the transaction is
complete. So, when we fetched data from the table Sales.SalesOrderDetail, when the
value of SalesOrderDetailID was specified as 121316, it issued a shared lock on that
particular row and held it. The lock will not be released until the transaction is committed or
rolled back.

When we executed the UPDATE statement from Connection-2, it could not complete the
request, as this transaction was blocked by Connection-1, because the transaction in
Connection-1 was running on the REPEATABLE READ isolation level and was not still
committed and rolled back. Therefore, the transaction in Connection-2 became a blocked
transaction and the transaction in Connection-1 became a blocking transaction that actually
locked the resources.

Dealing with Locking, Blocking, and Deadlocking

388

To identify the blocked and blocking requests, we executed a query that joined the following
dynamic management views and dynamic management functions:

ff dm_exec_requests

ff dm_exec_sessions

ff dm_exec_connections

ff dm_exec_sql_text

The DMVs in the query are joined using session_id. By using CROSS APPLY on the dynamic
management function by passing the sql_handle value of the most recent request of a
session, we retrieved the T-SQL queries for both blocked query and blocking query as well.
The resulting columns are very helpful in detecting the source of blocking queries.

We then fictitiously assumed that the transaction that was started from Connection-1 was
blocking the other transactions and we killed the process of that transaction by passing its
session_id value(56) to the KILL command.

As soon as the transaction with session_id value 56 was killed, the update was successful
and the transaction in Connection-2 was committed.

Detecting deadlocks with SQL Server
Profiler

Let's suppose you are a database administrator. One of your colleagues reports to you about
frequent deadlocks occurring in the database due to inefficient application code and asks you
to investigate such deadlocks and to analyze when they occur. As a DBA you are required to
detect such situations and find out the queries that are the culprits behind these deadlocks.

Deadlock is a state of blockage that occurs when two or more transactions are blocked by
one another in such a way that, in order to complete its transaction, each transaction waits to
acquire a lock on the resource that the other one has locked. In this state, each transaction
waits for the other one to be finished, in order to be able to complete its own transaction. This
results in endless blocking and neither transaction can be completed. The following sample
diagram represents the deadlock in action:

Chapter 16

389

Row-1

Lock Acquired Lock Request

Transaction-1 Transaction-2

Lock AcquiredLock Request

Row-2

In this recipe, we will learn how to detect such deadlocks occurring in the database by using
SQL Server Profiler. Once the part of code that causes the deadlock to occur is identified,
necessary corrections can be made to modify the code to prevent any possible deadlocks
from occurring.

Getting ready
To detect deadlocks with SQL Server Profiler, we first need to create a scenario such that we
can produce a deadlock condition.

In this recipe, we will run two transactions from two different sessions and produce a
deadlock. We will then see how this deadlock can be detected using SQL Server Profiler
and how we can save a deadlock graph in a file for later analysis.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

How to do it...
The following steps enable you to detect deadlocks with SQL Server Profiler:

1.	 Start SQL Server Profiler.

2.	 Select New Trace… from the File menu. In the Connect to Server dialog box, provide
the connection details for the SQL Server hosting the AdventureWorks2012
database and click on Connect.

3.	 In the General tab of Trace Properties, select the Blank template in the Use the
template: dropdown list.

Dealing with Locking, Blocking, and Deadlocking

390

4.	 Click on the Events Selection tab. On this screen, expand the Locks event category
and select the following events:

�� Deadlock graph

�� Lock:Deadlock

�� Lock:Deadlock Chain

5.	 Expand the TSQL event category and select the following events:

�� SQL:StmtCompleted

�� SQL:StmtStarting

6.	 Click on the Column Filters… button in the Events Selection tab of the Trace
Properties dialog box. In the Edit Filter dialog box, select the DatabaseName data
column from the list of available data columns on the left-hand side. Expand the Like
option, enter the string value AdventureWorks2012, and click on the OK button.

7.	 Click the Organize Columns… button in the Events Selection tab of the Trace
Properties dialog box and organize the data columns in the order shown in
following screenshot. Click on the Ok button in the Organize Columns dialog box.

8.	 Click on the Run button to start the trace.

9.	 Now, open SQL Server Management Studio and establish a connection to the
SQL server.

Chapter 16

391

10.	 In the query window (Connection-1), type the following T-SQL statements and then
execute them, to begin a transaction from Connection-1:
USE AdventureWorks2012
GO
--Execute this script from Connection-1
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO

BEGIN TRANSACTION

SELECT * FROM Sales.SalesOrderDetail
WHERE SalesOrderDetailID = 121316

11.	 Now, open another query window (Connection-2). Type the following T-SQL script, and
then execute the script to begin a transaction from Connection-2:
USE AdventureWorks2012
GO

--Execute this script from Connection-2
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRANSACTION

SELECT * FROM Sales.SalesOrderDetail
WHERE SalesOrderDetailID = 121317

12.	 Now, in the first query window (Connection-1), type the following query underneath
previously entered T-SQL statements. Select and highlight the following query and
execute this query only, to try to update the record:
--Execute this script from Connection-1
UPDATE Sales.SalesOrderDetail
SET OrderQty = 2
WHERE SalesOrderDetailID = 121317

13.	 Next, in the second query window (Connection-2), type the following query
underneath previously entered T-SQL statements. Select and highlight the
following query, and execute this query only, to try to update the record:
--Execute this script from Connection-2
UPDATE Sales.SalesOrderDetail
SET OrderQty = 2
WHERE SalesOrderDetailID = 121316

Dealing with Locking, Blocking, and Deadlocking

392

14.	 You will notice that both the updates will not occur as each transaction will be waiting
for the locked row that the other one has locked to be released. This creates a
deadlock between these two transactions, and you will see following error message:
Msg 1205, Level 13, State 51, Line 1
Transaction (Process ID 55) was deadlocked on lock resources with
another process and has been chosen as the deadlock victim. Rerun
the transaction.

15.	 Switch to the SQL Server Profiler window and stop the trace. Your trace window along
with captured trace events should look as shown in following screenshot:

16.	 Examine the deadlock-related events that SQL Server Profiler has captured. Locate
the Deadlock graph event in the EventClass data column and click its associated
row. SQL Server Profiler will display the deadlock graph in the bottom pane of the
trace window, as shown in following screenshot:

Chapter 16

393

17.	 To save the deadlock graph, right-click the row with the event Deadlock graph and
then select Extract Event Data…. In the Save As dialog box, specify a file name
and click on Save. This will save the deadlock file with the extension .xdl, which
is an XML file. The following screenshot shows the partial XML of the deadlock
that occurred:

Dealing with Locking, Blocking, and Deadlocking

394

How it works...
In this recipe, we first created a trace by using the Blank trace template. To capture the
T-SQL statements that are executed and the deadlock events that occurred, we selected
the following events for our trace:

ff Deadlock graph

ff Lock:Deadlock

ff Lock:Deadlock Chain

ff SQL:StmtCompleted

ff SQL:StmtStarting

We configured the trace by specifying a filter on DatabaseName, so that it only captured
events raised against the database AdventureWorks2012. We also organized columns,
so that we can view the necessary columns relevant to deadlocks, on screen.

After configuring and starting the trace, we ran two separate transactions from two different
query sessions from SSMS. In both transactions, we selected a row from the table Sales.
SalesOrderDetail, on the basis of the value of SalesOrderDetailID, and tried to
update the same row with the other transaction. Note that in both the transactions, we set
the transaction isolation level to REPEATABLE READ. This isolation level holds the shared
locks issued on SELECT statements until the transaction is completed. This is the reason why
Connection-1 had to wait while updating the same row (SalesOrderDetailID = 121317)
on which Connection-2 had held the lock, because Connection-2 had not completed its
transaction. We ran the same type of query from Connection-2 and tried to update the same
row (SalesOrderDetailID = 121316) that the Connection-1 had held the lock on. This
creates permanent blocking from both sides and creates a deadlock situation.

SQL Server automatically handles and detects such types of deadlocks. It then selects one of
the processes involved in the deadlock as the deadlock victim and kills that process. That's
why we received the error (1205) in Connection-2 after executing the UPDATE query.

In SQL Server Profiler, we examined how the trace captured the deadlock events. In the trace
result, you can see that two transactions tried to issue an EXCLUSIVE lock on the KEY for the
UPDATE operation that the other had a SHARED lock on. The lock was requested on a single
row in an index, and this can be confirmed by looking at the value in the Type data column. In
our case, this happens to be KEY, which indicates a single key value in an index.

By clicking the row associated with the Deadlock graph event, we could see the deadlock
graph in the bottom pane of the trace window. This graph gives the details of the deadlock
that occurred. As you can see, it also shows which process was chosen as the deadlock victim
and killed. We then saved the deadlock graph by right-clicking the Deadlock graph row in the
trace window. This is an XML file that consists of deadlock details. A part of this XML file is
shown in the last step of this recipe, in the form of a screenshot.

Chapter 16

395

To prevent/minimize deadlock issues as much as possible, here are some precautions that
you can take while developing your code:

ff Make sure that your transactions are as small as possible.

ff Try to use lower-level isolation, as a lower level of isolation increases the data
concurrency.

ff When possible, you can use the NOLOCK query hint to minimize blocking.

ff Normalize your database design properly, so that appropriate related data is
distributed between multiple tables through relationships.

ff Create an index on the required columns, so that tables don't have to be scanned.
Whole table scans can also increase the locking issues.

ff Access database objects in your transaction in the same order as everywhere else in
your application.

Detecting deadlocks with Trace Flag 1204
In the previous recipe, Detecting deadlocks with SQL Server Profiler, we learned to detect
deadlocks using SQL Server Profiler. This can be useful when deadlocks occur regularly in a
specific pattern and you are able to reproduce them by executing certain part of application
code that you know produces the deadlock. For this type of investigation, you simply start an
SQL Trace session, reproduce the deadlock condition, and analyze the queries.

However, when deadlocks occur irregularly, without any specific pattern, it becomes hard
for you to investigate them because you do not know in which case they occur. Thus, it also
becomes difficult for you to reproduce them. To troubleshoot such irregular deadlocks, you
might prefer not to keep a trace session running and wait for deadlocks to occur for hours.

This recipe will show you how you can configure SQL Server so that whenever deadlocks
occur, SQL Server logs the deadlock-related information into the SQL Server error log. Once
the server is configured in this way and someone comes to you and complains about any
deadlock occurrence, you can simply analyze the error log to investigate whether any
deadlock occurred in the database and if so, where.

Getting ready
In this example, we will learn how to configure SQL Server by setting TRACE Flag 1204 at
instance level.

We will be using the same code that was used in the previous recipe, Detecting deadlocks
with SQL Server Profiler, to produce a deadlock condition. So, the prerequisites are the same
as those for the previous recipe.

Dealing with Locking, Blocking, and Deadlocking

396

How to do it...
Follow the ensuing steps to configure Trace Flag 1204 at instance level, to log the deadlock
information into SQL Server error log:

1.	 Start SQL Server Configuration Manager from Configuration Tools, in the Microsoft
SQL Server 2012 Program group in the Start menu.

2.	 Select the SQL Server Services node in the left-hand side pane, right-click the
instance of SQL Server Service in the right-hand side pane, and select Properties
from the context menu, as shown in following screenshot:

3.	 In the SQL Server (MSSQLSERVER) Properties window, select the Startup
Parameters tab. Type –t1204 in the textbox provided under Specify a startup
parameter:. Click on the Add button to add this new parameter to the list of Existing
parameters. The following screenshot shows the Startup Parameters tab with the
added trace flag:

Chapter 16

397

4.	 Click on the Ok button in the Properties window.

5.	 Again, right-click the instance of SQL Server Service that you just configured and
select Restart from the context menu, as shown in following screenshot. This will
restart the SQL Server Service.

Always use SQL Server Configuration Manager to restart
SQL Server Service. Do not restart SQL Server service
directly from the Windows Services MMC.

6.	 Now, perform the same steps to produce the deadlock condition as in the
preceding recipe. Execute the queries from step 9 through step 14, provided
in the previous recipe.

7.	 Performing the previous step generates a deadlock and you will receive the same
error (1205) as in the previous recipe.

8.	 Now, based on the name of SQL Server instance and your SQL Server installation
directory, navigate to the directory that contains the ERRORLOG file located in the Log
directory. The following is the default installation path for a default instance of SQL
Server 2012 by which the ERRORLOG file can be located:
C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLServer\
MSSQL\Log

Dealing with Locking, Blocking, and Deadlocking

398

9.	 The following screenshot shows the deadlock information that you can find in the
ERRORLOG file:

How it works...
In SQL Server, Trace Flag 1204 is used to redirect deadlock-related information to ERRORLOG.
The SQL Server service can use some parameters while starting up; these are called startup
parameters. We can add, modify, or delete these startup parameters from within SQL Server
Configuration Manager.

We started this recipe by adding a new parameter, specified by –t1204, to the list of startup
parameters for the SQL Server Service instance. The parameter added comes into effect only
when SQL Server Service is restarted. This is the reason we restarted the SQL Server Service.
Once the SQL Server Service restarts, the new parameter, Trace Flag 1204, comes into effect
and starts logging deadlock-related information into SQL Server's ERRORLOG file.

We then produced a deadlock to test how the SQL Server logs deadlock information in
ERRORLOG file. We used the same sequence to execute the scripts (to generate the deadlock)
that was used in previous recipe. Finally, we examined the ERRORLOG file in which SQL Server
logged the deadlock-related information.

17
Configuring

SQL Server for
Optimization

In this chapter we will cover:

ff Configuring SQL Server to use more processing power

ff Configuring memory in 32 bit versus 64 bit

ff Configuring "Optimize for Ad hoc Workloads"

ff Optimizing SQL Server instance configuration

Introduction
SQL Server provides one system stored procedure, named SP_Configure, which helps you
to manage the SQL Server instance-level configuration. A configuration comes with a default
value, but based on the server, load on the server, and your own usage, you can change its
default value to something else that can give you benefits from the performance point of view.
Apart from the settings given in the SP_Configure stored procedure, the type of instance
(32 bit/64 bit) also affects a bit.

It has been often observed that people use a SQL Server machine along with IIS, as a file
server, or as a domain controller. Performance will be affected if you are using the same
server for SQL Server Services along with other services, such as, IIS, domain controller,
and so on.

Configuring SQL Server for Optimization

400

Configuring SQL Server to use more
processing power

In today's age, databases keep getting bigger and bigger, so in order to get information quickly
from a database, it is not enough to manage your database wisely; you will also need a CPU
with faster processing power.

No matter how efficiently you maintain indexes and statistics, you will not receive a prompt
response from your SQL Server if you are running with low processing power. Choosing a
proper CPU for your database need, is a part of "capacity planning", which is out of the scope
of this chapter, as it itself requires few chapters to describe it in-depth. However, here we will
learn how to utilize your current processing power efficiently.

Have you ever wondered how many CPUs are used by a SQL Server while processing a query?
Users used to buy increasingly powerful computers, with many processors and cores, but it is
interesting to know how many of them are used while executing a query in SQL server.

Getting ready
Before we move forward, it is important to know how many CPUs there are in the server. I will
be using the sys.dm_os_sys_info DMV to retrieve that information, as it tends to provide
miscellaneous useful information about the computer and about the resources available
to—and consumed by—the SQL Server:

SELECT
 cpu_count AS 'Cores'
 ,hyperthread_ratio
FROM
 sys.dm_os_sys_info

The hyperthread_ratio column given in this query does not distinguish between actual
hyper-threaded cores and true physical cores. This makes it even more difficult to guess which
processor is being used in the server. It would nice if Microsoft includes more information
about cores in this DMV, in its next release of SQL Server 2012.

How to do it...
Follow the steps given here to perform this recipe:

1.	 To set the number of CPUs that can be used while executing a query on an instance
level, execute the following query:
--0 is the default value
sp_configure 'max degree of parallelism', 0
RECONFIGURE WITH OVERRIDE
GO

Chapter 17

401

2.	 To set the value of parallelism at the query level, execute the two following SELECT
queries, using SET STATISTICS TIME along with the MAXDOP option a few times,
and observe the value of SET STATISTICS TIME in the Message tab:
set statistics time on
SELECT
 *
FROM
 Sales.SalesOrderDetail
OPTION (MAXDOP 1)
set statistics time off
GO

set statistics time oN
SELECT
 *
FROM
 Sales.SalesOrderDetail
OPTION (MAXDOP 0)
set statistics time ofF

Here is the one of the screenshots of the preceding query, after running it a few times:

Configuring SQL Server for Optimization

402

How it works...
SQL Server has a smart algorithm to decide whether to generate parallelism (the use of
more than one processor to execute the query) for a query or not. Overriding SQLServer's
decisionabout the number of processors to use needs expertise as well as experience.
There is no predefined number available for this setting, as deciding on a number depends
completely on the type of server you are using, the type of use you are having, the workload on
the server, and many other factors. There is only one sure way of deciding upon the number of
CPUs—by experimenting on the server.

In Step 1, we had executed the SP_Configure stored procedure for "max degree of
parallelism" with value 0 (zero), which is the default value. The zero indicates that SQL Server
has the power to decide whether to generate parallelism or not, and if yes, how many CPUs
should be used. If you set the value as 4 rather than 0, SQL Server will use up to four cores to
process the query. If you set the value as 1, it means that parallelism will not occur and the
query will be processed by one processor only.

In Step 2, OPTION (MAXDOP numeric value) sets the parallelism value for that particular
query as against the instance-level settings given in Step 1.

There are two SELECT queries executed in Step 2, out of which the first query uses (MAXDOP
1). It means that no parallelism will occur and the process will be processed by one processor
only. In the second SELECT query, (MAXDOP 0) is used, which means that SQL Server decides
whether to use parallelism or not.

Because of the SET STATISTICS TIME option with a SELECT query, we can see how much
CPU time is consumed by each query, in the Messages tab, beside the Results panel. You
might get a different CPU time in your instance, as it depends on the number of servers,
available memory, and many more things. You might also get a different CPU time and
elapsed time each time you execute the query.

There's more...
Change the default settings for "max degree of parallelism", as they can be dangerous on
a live server. So, keep the current value handy, in case you are making a change, and also
consult a senior or colleague before doing this on a live server. Based on my experience, I'm
not comfortable assigning all the available processors to process a single query in SQL Server.
Apart from that, I wouldn't touch this setting on an OLTP database, as changing this setting in
a big OLTP database creates uncertainty in performance that users won't like. But, it is good
to assign as many processors as possible in the database warehouse system.

Chapter 17

403

If you have 16 cores and change the Max Degree of Parallelism
setting to 8, it doesn't mean that only eight cores will work with SQL
Server. It only means that any single query optimizer can't use more
than eight cores, even when it runs using a parallel plan. But, SQL
Server will continue to use all the available 16 cores.

Configuring memory in 32 bit versus. 64 bit
I have observed quite a few times that in SQL Server 2005/2008, DBAs tend to use the AWE
Enabled option to limit memory. However, from SQL Server 2012 onwards, this option has
been deprecated so we cannot use more memory than what the virtual address space limits
in 32-bit instances of SQL Server. If you have more memory for this instance of SQL Server, you
have to migrate to a 64-bit instance of SQL Server. Here is the memory limit given by Microsoft:

SQL Server and operating system settings Maximum amount of memory
used by SQL Server

32-bit SQL Server on 32-bit OS 2 GB
32-bit SQL Server on 32-bit OS with /3G
boot option

3 GB

32-bit SQL Server on 64-bit OS 4 GB

Though the AWE Enabled option is deprecated in SQL Server 2012, it would be helpful to
understand its usage in the previous version to understand other memory-related options.
Address Windowing Extensions (AWE) allows 32-bit operating systems to access large
amounts of memory. AWE is exposed by the operating system.

If the available physical memory is greater than the value of the
Maximum server memory option, the SQL Server instance locks
the amount of memory specified in Maximum server memory.
If the available physical memory is less than the value of the
Maximum server memory option, or if the Maximum server
memory option has not been set, the SQL Server instance locks
all the available memory except 256 megabytes (MB).

The main intention to expose facts about AWE here is to emphasize that even though it is
deprecated by Microsoft, the role of the Maximum server memory option when there was
AWE working.

Configuring SQL Server for Optimization

404

Getting ready
Keep the current list of values for Minimum server memory (MB) and Maximum Server
Memory (MB) by querying sys.configurations, which contains a row for each server-wide
configuration option value in the system. So, if you wish, you can set the current value in these
parameters after completing the exercise given in this recipe.

How to do it...
Follow the steps given here to perform this recipe:

1.	 Set the minimum memory for SQL Server and execute the following query:
--setting 1024 MB as a minimum memory for SQL Server
EXEC sp_configure 'min server memory (MB)',1024
GO
RECONFIGURE WITH OVERRIDE;
GO

2.	 Set the maximum memory for SQL Server and execute the following query:

--setting 3000 MB as a maximum memory for SQL Server
EXEC sp_configure 'max server memory (MB)',3000
GO
RECONFIGURE WITH OVERRIDE;
GO

How it works...
Step 1 configures minimum memory allocation for the SQL Server. The default value of min
server memory is 0 (zero). You can set any value to min server memory that is less than or
equal to the value of max server memory.

Step 2 configures maximum memory allocation for the SQL Server. The default value of max
server memory is 2147483647, which is 2 TB. You cannot configure max server memory
value as less than 64.

Both of the memory settings reserve the memory for the SQL Server buffer pool. By
ensuring this, if you are dealing with 32-bit systems, you can't use more than 3 GB for your
SQL Server instance, no matter how much available memory you have on the server; this is
possible if enabling AWE and PAE, in older versions of SQL Server. But these features are
deprecated in SQL Server 2012, so if possible, go in for the 64-bit version of SQL Server
2012, which allows you to utilize as much memory as supported by your OS or by the SQL
Server edition you are using.

Chapter 17

405

If the SQL Server service is the only server service running on your system, it is fine to have
the default value for max server memory. However, if multiple services are running on the
server, and if the domain controller uses maximum memory, SQL Server will be starved of
memory; on the other hand, if SQL Server uses maximum memory, the domain controller
will be starved of memory. Therefore, it is good to assign proper memory to SQL Server,
so it doesn't run out of memory, but it also doesn't consume memory unnecessarily.

Configuring "Optimize for Ad hoc Workloads"
Execution of any query or stored procedure for the first time creates an execution plan, which
is stored in SQL Server 's procedure cache memory. It happens many times that we execute
a simple query once, which is not even going to be used again anytime soon and it may never
run again in future too even execution plan generated for that query will consume space
in procedure cache. You may run out of cache sometimes, due to lack of memory, which
affects performance. This was really a big issue till SQL Server 2005. In order to remedy
this, Microsoft introduced "Optimize for Ad hoc Workloads" in SQL Server 2008, and it is
still available in SQL Server 2012. This setting is instance-wide in SQL Server.

In one of my performance tuning consultation projects, I had observed
the company's SQL developer making and testing a query directly on the
production server. If they didn't get the required results, they'd change
the query and re-test it on the production server, which was creating
immense pressure on the procedure cache. I pointed out and explained
the side effects of their testing on the production server; they then
cleared the procedure cache and changed their habits. I hope that none
of the readers of this book finds themselves in this situation.

Getting ready
Before moving further, let us clean up the procedure cache and buffer on the testing server
that we are using.

1.	 Before cleaning up the cache and buffer, let's look at how many rows come from our
saved plan DMV:
SELECT
 CP.usecounts AS CountOfQueryExecution
 ,CP.cacheobjtype AS CacheObjectType
 ,CP.objtype AS ObjectType
 ,ST.text AS QueryText
FROM
sys.dm_exec_cached_plans AS CP
CROSS APPLY

Configuring SQL Server for Optimization

406

sys.dm_exec_sql_text(plan_handle) AS ST
WHERE
CP.usecounts > 0
GO

Here is the result I received on my development server; you will get a different result
in your environment:

2.	 Now, clear the cache and buffer:
--don't execute these two commands on production server
--this is just to prove the case given in this recipe...
--this should run on testing or development servers only
DBCC FREEPROCCACHE
GO

3.	 If you want to check whether our saved plan is cleaned up so far, execute the query
we ran in step 1, again:

SELECT
 CP.usecounts AS CountOfQueryExecution
 ,CP.cacheobjtype AS CacheObjectType
 ,CP.objtype AS ObjectType
 ,ST.text AS QueryText
FROM
sys.dm_exec_cached_plans AS CP
CROSS APPLY

Chapter 17

407

sys.dm_exec_sql_text(plan_handle) AS ST
WHERE
CP.usecounts > 0
GO

After clearing the cache in step 2, here is the result of the query we ran in step 3:

How to do it...
Follow the steps given here to perform this recipe:

1.	 Execute the following query.
SELECT * FROM Sales.SalesOrderDetail WHERE SalesOrderID=43659
GO

2.	 Check whether anything come in plan cache for query run above or not. After clearing
the cache, it was the first time we executed the preceding query:
SELECT
 CP.usecounts AS CountOfQueryExecution
 ,CP.cacheobjtype AS CacheObjectType
 ,CP.objtype AS ObjectType
 ,ST.text AS QueryText
FROM
sys.dm_exec_cached_plans AS CP
CROSS APPLY
sys.dm_exec_sql_text(plan_handle) AS ST
WHERE
CP.usecounts > 0
AND CP.cacheobjtype='Compiled Plan'
AND ST.text LIKE 'SELECT * FROM Sales.SalesOrderDetail WHERE
SalesOrderID=43659%'
GO

You can find a long running query in the Activity Monitor tool.
Use the Ctrl + Alt + A keyboard shortcut or the standard toolbar
from SSMS to open Activity Monitor.

Configuring SQL Server for Optimization

408

3.	 By running the SELECT query in step 1, it made and entry in plan cache in the very
first time. Confirm the same with the following screenshot.

4.	 Now, set the value of Optimize for Ad hoc Workloads to 1, by executing the
following query:
EXEC sp_configure 'optimize for ad hoc workloads',1
RECONFIGURE
GO

5.	 Again, clear the cache:
DBCC FREEPROCCACHE
GO

6.	 Execute the SELECT query again:
SELECT * FROM Sales.SalesOrderDetail WHERE SalesOrderID=43659
GO

7.	 You can confirm whether anything was inserted in plan cache or not by executing the
following query:
SELECT
 CP.usecounts AS CountOfQueryExecution
 ,CP.cacheobjtype AS CacheObjectType
 ,CP.objtype AS ObjectType
 ,ST.text AS QueryText
FROM
sys.dm_exec_cached_plans AS CP
CROSS APPLY
sys.dm_exec_sql_text(plan_handle) AS ST

Chapter 17

409

WHERE
CP.usecounts > 0
AND CP.cacheobjtype='Compiled Plan'
AND ST.text LIKE 'SELECT * FROM Sales.SalesOrderDetail WHERE
SalesOrderID=43659%'
GO

8.	 You will not get anything in the plan cache, so execute the SELECT query from
step 6, again:
SELECT * FROM Sales.SalesOrderDetail WHERE SalesOrderID=43659
GO

9.	 Confirm again whether anything came in the plan cache after executing the preceding
query for the second time after clearing the cache:
SELECT
 CP.usecounts AS CountOfQueryExecution
 ,CP.cacheobjtype AS CacheObjectType
 ,CP.objtype AS ObjectType
 ,ST.text AS QueryText
FROM
sys.dm_exec_cached_plans AS CP
CROSS APPLY
sys.dm_exec_sql_text(plan_handle) AS ST
WHERE
CP.usecounts > 0
AND CP.cacheobjtype='Compiled Plan'
AND ST.text LIKE 'SELECT * FROM Sales.SalesOrderDetail WHERE
SalesOrderID=43659%'
GO

10.	 This time you will get one entry in the plan cache:

Configuring SQL Server for Optimization

410

How it works...
When the new query arrives for the first time, only the query_hash value is kept in memory,
instead of the entire plan. When the same query arrives for the second time, SQL Server
identifies that it already has a query_hash for this query, for example, it is not the first time
this query runs. From this point, query plan will be stored in cache. This way, plans for all the
queries that run only once won't be kept in cache. That is why it is recommended to keep this
setting on; this will not cause any harm, but will save space in the plan cache.

Generally, whenever you run the query, it generates an execution plan and saves it in the
procedure cache. So, when we run the SELECT query in step 1, we get an entry in the cached
plan DMV, but when we run the same SELECT query in step 6, after enabling Optimize for
Ad hoc Workloads in step 4 and clearing up the buffer in step 5, we don't receive any row in
the cached plan DMV. After executing the same SELECT query in step 8, we get an entry in
the cached plan DMV. This is a useful feature, if we have ad hoc queries, which are supposed
to be used only once or rarely executed then why do we need to save the plan for that and
consume the "Procedure Cache"?

I have observed many databases that have saved plans of a few gigabytes; they can simply
reduce it to half, as most of the ad-hoc queries in those saved plans run only once and there
is no chance that they run again.

By the way, if you are curious to know how much space is consumed by ad hoc queries in a
procedure cache that has been run only once, you can run following query:

SELECT
 SUM(size_in_bytes) as TotalByteConsumedByAdHoc
FROM
 sys.dm_exec_cached_plans
WHERE
 objtype = 'Adhoc'
 AND usecounts = 1

It is worth repeating the warning to not use the "DBCC" command on your live server. It was
just to prove the recipe in this example so you can test these commands in your testing or
development server.

Optimizing SQL Server instance
configuration

MSDN introduced the concept of SP_Configure with the following understanding. You
can manage and optimize SQL Server resources through configuration options by using
SQL Server Management Studio or the sp_configure system stored procedure. The most
commonly used server configuration options are available through SQL Server Management
Studio; all configuration options are accessible through sp_configure. Consider the effects
on your system carefully before setting these options.

Chapter 17

411

Getting ready
To perform this recipe, you will need a developer or an enterprise edition of SQL Server Denali
CTP 3 or a greater edition. In order to see the current instance level configuration settings in
SQL Server, execute the following query:

SELECT
 *
FROM
 sys.configurations
ORDER BY
 name
GO

The result of this query will show you the list of settings out of which we are going to see
few of the most important performance-related settings. All configurations are given in
the following two screenshots:

First screen:

Configuring SQL Server for Optimization

412

Second screen:

How to do it...
Follow the steps given here to perform this recipe:

1.	 Execute the following query to show you some of the instance-level
configuration options:
sp_configure
GO

2.	 To see the full list of all configuration options available with the SP_Configure
stored procedure, execute the following query:
sp_configure 'show advanced options', 1;
GO
RECONFIGURE WITH OVERRIDE;
GO

Chapter 17

413

3.	 Execute again the same query that we ran in step 1, and see the difference in the
result set:
sp_configure
GO

4.	 Execute the following query to set a recovery time in minutes, for the server:
EXEC sp_configure 'recovery interval', 5
RECONFIGURE WITH OVERRIDE
GO

5.	 To set the memory for the index creation task, execute the following query.
EXEC sp_configure 'index create memory (KB)',1024
RECONFIGURE WITH OVERRIDE
GO

Please note that the value I have provided here is just an example;
it may vary from environment to environment.

How it works...
Before we move further, we would like to clarify one statement given from step 2 onwards; we
have used the statement RECONFIGURE WITH OVERRIDE. This statement asks SQL Server
to accept the value; if it is in the correct data type format, given in the sp_configure stored
procedure and forces it to reconfigure the option with the provided value.

In step 1, we executed the sp_configure stored procedure, which shows a list of instance-
level configuration along with its value. The list consists of basic options. If you want to display
the advanced options list, provide Show Advanced Option with the value 1 (by default, it is 0),
which is executed in step 2.

We executed the same SQL statement in step 3 that we executed in step 1, but this time, it
will show all options, as we set the Show Advanced Option value to 1 in step 2.

Step 4 sets the value for recovery interval to five minutes. It means that recovery should
take up to five minutes. SQL Server issues CHECKPOINT so that it can maintain a recovery
interval time. At the time CHECKPOINT runs, it transfers all data from data pages to the disk,
writes all committed transactions to disk from the log file, and rolls back all the uncommitted
transactions, so the question of data integrity doesn't arise.

The index creation operation is one of the heaviest operations, especially when the table is
large, with millions of rows, though SQL Server manages memory dynamically and efficiently by
itself This nature of SQL Server may affect the performance of the server adversely sometimes,
when we have some other services running on the server simultaneously, such as those for file
server, domain controller, IIS server, and so on. At that time, we may need to control the memory
consumed by the index creation operation, which you can perform by the query given in step 5.

Configuring SQL Server for Optimization

414

There's more...
I witnessed an incident a while ago wherein a junior DBA had executed T-SQL that created
one non-clustered index on a table, which had approximately 22 million rows and 79 columns
(don't you think that normalization rules should be followed?). It was peak hour for the server,
which had been catering to requests for SQL Server as well as the web server. As soon as
the index operation started it made the log files increasingly bigger and after few hours,
the database went into recovery mode and nobody was able to access it, either directly or
from the website. I had to be called in to bring the situation under control. I hope you now
understand the importance of the memory management concept. In this kind of situation,
the DBA had to plan out so many more things apart from memory management. I can't list
the complete procedure to follow before executing these kinds of commands, as it is out of
the scope of this book, but here are a few considerations:

ff Check the recovery model, and if possible, make it bulk logged or simple from full, if
you can afford to take a full database backup after the index operation, so that your
backup chain won't break

ff Try to schedule in off-hours or over the weekend, if possible.

ff If possible, perform the index operation offline.

ff Set the index create memory option so it won't be used beyond a limit.

18
Policy-based
Management

In this chapter we will cover:

ff Evaluating database properties

ff Restricting database objects

Introduction
Microsoft made database administrators very happy by introducing a feature called
Policy-based Management (PBM). PBM helps administrators to manage one or more
instances of SQL Server and manage database entities and/or other SQL Server objects,
based on the policy defined in PBM. It helps DBAs to apply/enforce policies for server
objects and databases, or to manage different tasks effortlessly and effectively.

The following terms will be needed in the recipes coming up in this chapter, so keep them in
mind to ensure that you can understand all the recipes properly:

ff Policies: Defined rules for the database or server objects under Policy-Based
Management

ff Conditions: A condition is a Boolean value that shows the status of facets

Policy-based Management

416

ff Facets: A set of properties that models the behavior of a target in Policy-Based
Management

A few years ago, when I visited a small company, I observed that there
were no rules defined for naming conventions. All the user stored
procedures in that company had the prefix sp_. The sp_ prefix is being
used by SQL Server 2012 for the system stored procedure. By defining
the prefix sp_ along with the user stored procedure, we are not only
creating confusion between the user object and the system object,
but it also has a small overhead on the performance. This is because
whenever SQL Server finds a stored procedure with the prefix sp_, it
checks the list of system stored procedures first. I suggested using PBM
to forcefully implement a naming convention policy along with some
other policies required for their setup.

Evaluating database properties
I still remember the days when a DBA's life was not as easy as it is today. Some of the
database configurations are very important, and changes in those properties can cause big
issues. So, we had to write a customized script to check those database properties, schedule
them in SQL Server Agent, and get a report by e-mail every day, so that if any change were
found in an important property of the database, we could take action immediately, before
it started creating an issue. Life is not that difficult now; we can use PBM to keep an eye on
those properties.

Getting ready
The following are the prerequisites for the recipe:

ff SQL Server Denali (2012) CTP 3 or higher

ff Login credentials that have the sysadmin role in SQL Server, may be SA or an
administrator login for windows, if we connect through windows authentication

How to do it...
Follow the steps given here to perform this recipe:

1.	 Connect to the server, using Object Explorer, and move to Management | Policy
Management | Policies. Right-click on Policies and click on the New Policy… option
from the pop-up menu, as shown in the following screenshot:

Chapter 18

417

2.	 Type the name Property Monitor in the textbox besides Name, in the pop-up
window, and then click on the New Condition… option in the drop-down box beside
Check Condition.

Policy-based Management

418

3.	 In the Create New Condition dialog box, give the name Database Property Monitor
to the new condition. Select Database from the Facet drop-down menu. Set the
property @AutoShrink to False, the @Status property to Offline, and the @Status
property to EmergencyMode, and finally click on the OK button, as shown in the
following screenshot:

4.	 Now, from the Create new Policy dialog box, set the Evaluation Mode to On
Schedule. By clicking on the New button, set the schedule for when you want to run
this condition, and click on the OK button in both the dialog boxes that are open at
the moment. Generally, the schedule should be set at the end of the day or at the
start of the working day. If you have set up a database mail in your server, you can
get the report by e-mail too.

Chapter 18

419

5.	 Click on the New button and open following dialog box:

Policy-based Management

420

6.	 Now, the policy will run as per the schedule, but at the moment, we are going to execute
it manually to see what it shows. Go to Policy Management | Policies | Property
Monitor, right-click on it, and select the Evaluate option from the pop-up menu:

7.	 The Evaluate option will execute the policy and display the result; for more
information, click on the link named View… under the Details column in the
grid, as shown in the following screenshot:

Chapter 18

421

How it works...
There are many different database properties available to check in the Create New Condition
dialog box, but we have checked only two of them for demonstration. Auto Shrink is a
dangerous property; leaving it as True has very few pros but so many cons that we strongly
advise you to leave it set to False. Whenever a condition is evaluated, it will give us a result
as to whether the AutoShrink property of the database is True or False.

The Status property of a database is also one of the important properties; it should be
Normal. So we are supposed to check the condition !=Normal while also showing the use
of the two conditions we used earlier—=offline and =EmergencyMode. If any of these two
properties shows TRUE, we can take immediate action, but in our case it will show False as
our database condition is Normal.

The red-cross symbol you observed in the Result field conveys that the policy doesn't meet
the required value. For example, we set the value Offline for @Status, but at the moment the
value is Normal, and hence it shows the red-cross mark.

AutoShrink should generally be off, so if it becomes TRUE, PBM should
notify the concerned person. That was the reason we selected FALSE for
the AutoShrink property.

There's more...
Administering PBM requires membership in the PolicyAdministratorRole role in the msdb
database, as policies are stored in this database. This role has complete control over all
policies on the system. This control includes creating and editing policies and conditions,
and enabling and disabling policies.

You can find the available policy in the SQL Server instance by using the following T-SQL script:

Select name,date_created ,facet,obj_name from msdb.dbo.syspolicy_
conditions order by date_created desc

Here is a screenshot of the results I have received in my instance; you may get more or
fewer rows:

Policy-based Management

422

Restricting database objects
In an organization, you might have more than one developer creating a SQL script for the
project. It is mandatory to maintain some kind of naming convention rules to maintain
consistency and readability. There is a chance that a mistake or lack of co-ordination among
developers may occur, so it would be great if we could handle the rules for this kind of naming
convention forcefully, by some policy.

Naming the object in the right way is not only necessary for maintaining consistency and
readability but also impacts performance, sometimes. So, to avoid performance penalties,
restrict the naming convention for database objects. Generally, SP_ is the prefix used for
stored procedures in SQL Server (system stored procedure), but it has been observed that
many developers tend to use it for their own customized stored procedure, too. It has little
overhead in terms of performance.

We are going to learn how to restrict certain names for the database objects. You can see the
difference in SQL Profiler by your own by making one stored procedure with the SP_ prefix and
same stored procedure code without using the SP_ prefix.".

Getting ready
The following are the prerequisites for the recipe:

ff SQL Server Denali (2012) CTP 3 or higher

ff Login credentials with the sysadmin role in SQL Server, may be SA or
Administrator login of Windows, if we connect through Windows authentication

Chapter 18

423

How to do it...
Follow the steps given here to perform this recipe:

1.	 Connect to the server, using Object Explorer, and move to Management | Policy
Management | Policies. Right-click on Policies and click on the New Policy option
from the pop-up menu, as shown in the following screenshot:

2.	 Enter Stored Procedure Naming Convention as Name for your policy and click
on the New Condition… option from the drop-down list for Check condition:

Policy-based Management

424

3.	 On the Open Condition dialog box, enter Stored Procedure Naming as the Name,
select Multipart Name from the Facet drop-down menu, and in the Expression grid,
select @Name as the Field, Not LIKE as the Operator, and sp_% as the Value, and
click on the OK button:

4.	 Now, in the Create New Policy dialog box, select the On change: prevent option from
the Evaluation Mode drop-down menu of. Check the Enabled checkbox and click on
the OK button, as shown in the following screenshot:

Chapter 18

425

5.	 Try to create a procedure in the AdventureWorks2012 database with the following
T-SQL script:
Create Procedure sp_SelectProc
AS
SELECT 1
GO

6.	 As we are violating the policy we just created, you will be greeted with the error shown
in the following screenshot:

Policy-based Management

426

7.	 Now, create the stored procedure using the name that does not violate the naming
policy we have created, and you will not find any error.

Create Procedure usp_SelectProc
AS
SELECT 1
GO

How it works...
We have mentioned the importance of the naming convention rules. Accordingly, we have tried
to prevent the developer from using the sp_ prefix—whether intentionally or unintentionally—
for the stored procedure, by creating a policy in the PBM.

In the PBM, we have created conditions that restrict the prefix sp_ and apply that condition
to all the stored procedures to all databases in the SQL Server instance. We set On Change:
Prevent as Evaluation Mode to so that SQL Server will not allow any stored procedure to be
created with the prefix SP_, if the policy created is enabled.

There's more...
Administering PBM requires membership in the PolicyAdministratorRole role in the msdb
database as policies are stored in this database. This role has complete control over all
policies on the system. This control includes creating and editing policies and conditions,
and enabling and disabling policies.

19
Resource

Management with
Resource Governor

In this chapter we will cover:

ff Configuring Resource Governor with SQL Server Management Studio
ff Configuring Resource Governor with T-SQL script
ff Monitoring Resource Governor

Introduction
In previous chapters, you saw how you can improve the database server's performance in
different ways. You have learnt how to improve the performance of queries by implementing
proper indexes and keeping statistics updated, using query hints and plan guides, implementing
optimum physical database design, and changing server configuration settings.

It is natural that you try your best to get the maximum out of your database server by tuning
your databases in different ways as just described, even though you may be left with a
few stored procedures/queries, which run slowly, if you do so; you also won't be able to do
much about that, due to some hardware limitations. For example, your database server is
supposed to support multiple applications, and one of these is a reporting application that
executes expensive, calculated queries that are essential for the reporting application in
your environment. Despite knowing that your database server has hardware limitations, you
don't have the luxury of adding more hardware resources to it, and yet you are still expected
to manage available CPU and memory resources in the most efficient manner among your
applications. Along with this resource limitation, you need to tackle those long-running queries
that consume resources and cause other priority applications to suffer. How would you handle
this type of situation?

Resource Management with Resource Governor

428

Well, prior to SQL Server 2008, you could not have done much, except for just setting
server-level parameters, such as query governor, that can control and prevent long-running
queries for a whole SQL Server instance. But what if you want to set resource restrictions on
particular queries coming from a particular application or from a particular user?

Since SQL Server 2008, we have had Resource Governor to address this situation. Resource
Governor is also present in SQL Server 2012, which you can use to manage the CPU and
memory resources on your server, based on different types of requests. These "different
types of requests" can be classified based on the source of the request, the login accounts /
request user, and role of the request user.

The functionality of Resource Governor can be divided into the following three components:

ff Classification

ff Workload group

ff Resource pool

Here is a basic functional/architectural diagram of Resource Governor:

Session Request

Classification
(User Defined

Function)

Internal Resource Pool

Default Resource Pool

User Resource Pool-1

User Resource Pool-2

Internal Workload Group

Default Workload Group

User Workload Group-1

User Workload Group-2

The classification component defines a user-defined scalar function that is to be registered
with Resource Governor as a classifier function. Every time a request is made, the classifier
function gets executed. It identifies source requests and routes those requests to a particular
workload group, as per the rules defined in classifier function.

A workload group defines the workload by grouping multiple source requests into a single
logical unit to which the resource rules are to be applied for execution, as specified by a
particular resource pool. SQL Server creates two default workload groups, named internal
and default. A workload group is mapped to a resource pool in order to route incoming query
requests to its mapped resource pool.

Chapter 19

429

A resource pool contains the definition of resource rules that are to be applied to incoming
query requests being routed by a particular workload group to which a resource pool is
mapped. SQL Server creates two default resource pools, named internal and default. A
resource pool is mapped to a workload group to apply resource rules to incoming query
requests routed by its mapped workload group.

Configuring Resource Governor with SQL
Server Management Studio

Before we look at configuring Resource Governor, we will first set up a real-life scenario.

Let's suppose that AdventureWorks2012 is our production database and it has billions
of records. The database supports multiple applications. One of the applications supported
by the database is a web application, which is an OLTP database application that consumes
AdventureWorks2012 database. The normal functioning of the web application is very
important compared to any other applications consuming the database server resources.

Another application is the reporting application that is used to generate reports. To fulfil
reporting requirements, this application runs queries with heavy calculations. Because of
heavy calculations, queries take longer to execute and consume a high percentage of CPU
and memory resources, which leaves less room for other query requests, made by the web
application, to execute efficiently. Due to this, the web application faces performance issues.

To solve this problem, we will configure the Resource Governor in such a way that, even in
conditions of resource contention caused by multiple application requests, query requests
coming from the web application get a minimum of 50 percent of CPU and memory resources,
and query requests coming from the reporting application get a minimum of 25 percent of
CPU and memory resources. This way, by restricting resources for the reporting application,
the web application can have more room to execute its queries smoothly.

In this recipe, we will learn how to set up and configure Resource Governor with SQL Server
Management Studio.

Getting ready
To address the mentioned problem, we will create two pairs of a resource pool and a workload
group each; one of these pairs is associated with the web application and the other with the
reporting application.

The resource pool associated with the web application will be configured such that it has at
least 50 percent of CPU and memory resources available at the time of resource contention.

Resource Management with Resource Governor

430

The resource pool associated with the report application will be configured such that it has at
least 25 percent of CPU and memory resources available at the time of resource contention.

For both the applications, we will create a separate, dedicated login account and user, in the
AdventureWorks2012 database, for each application that should be used to connect to SQL
Server by respective application.

A separate username will be helpful in distinguishing the source of request in the classifier
function. Based on username of the current request, the classifier function will route the
request to the appropriate workload group, and the resource pool associated with that
particular workload group will be used to execute the request.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff An SQL Server login account with administrative rights.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

How to do it...
To configure Resource Governor with SQL Server Management Studio, perform the
following steps:

1.	 Open SQL Server Management Studio and connect to an instance of SQL Server
containing the AdventureWorks2012 database.

Make sure that the login account you are using to connect to SQL
Server is an administrative account, so that it can create new
login accounts and Resource Governor objects without any hassle!
However, this is not mandatory, as any account with ALTER LOGIN
and CONTROL SERVER will work. But for the sake of simplicity, an
administrative account is recommended.

2.	 First, in order to set up our scenario, we need to create two login accounts and their
corresponding users, one of which is supposed be used by our web application and
the other by the report application. To create these logins and users, execute the
following T-SQL script in a query window:
USE [master]
GO

--Creating new login AW_WebAppUser in SQL Server
--and its associated user in AdventureWorks2012
CREATE LOGIN [AW_WebAppUser] WITH PASSWORD=N'AW_WebAppUser123',

Chapter 19

431

DEFAULT_DATABASE=[AdventureWorks2012]
GO

USE [AdventureWorks2012]
GO

CREATE USER [AW_WebAppUser] FOR LOGIN [AW_WebAppUser]
GO
ALTER ROLE [db_owner] ADD MEMBER [AW_WebAppUser]
GO

--Creating new login AW_ReportAppUser in SQL Server
--and its associated user in AdventureWorks2012
CREATE LOGIN [AW_ReportAppUser] WITH PASSWORD=N'AW_
ReportAppUser123',
DEFAULT_DATABASE=[AdventureWorks2012]
GO

USE [AdventureWorks2012]
GO

CREATE USER [AW_ReportAppUser] FOR LOGIN [AW_ReportAppUser]
GO
ALTER ROLE [db_owner] ADD MEMBER [AW_ReportAppUser]
GO

3.	 After the login/users are created, we will need to create a scalar function that will be
used as a classifier function by Resource Governor. The following script will create a
classifier function named dbo.RGClassifier():
USE [master]
GO

--Creating Classifier Function in master
--database to be used with Resource Governor.
CREATE FUNCTION dbo.RGClassifier() RETURNS SYSNAME
WITH SCHEMABINDING AS
BEGIN

 DECLARE @Workload_GroupName SYSNAME

 IF SUSER_SNAME() = 'AW_WebAppUser'
 SET @Workload_GroupName = 'rg_WebApp'

 ELSE IF SUSER_SNAME() = 'AW_ReportAppUser'
 SET @Workload_GroupName = 'rg_ReportApp'

 ELSE
 SET @Workload_GroupName = 'default'

 RETURN @Workload_GroupName
END

Resource Management with Resource Governor

432

4.	 In SSMS, expand the Management node under the root connection node.
Right-click the Resource Governor node, under Management node, and select
Properties. You should see a Resource Governor Properties dialog box, as shown
in the following screenshot:

5.	 In this dialog box, check the Enable Resource Governor checkbox.

6.	 For the Classifier function name drop-down menu, select our function dbo.
RGClassifier() to designate it as the classifier function name.

7.	 In the Resource pools grid, you will find two resource pools, named default and
internal. In this grid, add a new resource pool named rp_WebApp with the following
specified configuration values at the end of the list and leave the other configuration
values with their default settings:

�� Minimum CPU %: 50

�� Minimum Memory %: 50

The total for Minimum CPU % across all resource pools
should not exceed 100 percent. The same is true for
Minimum Memory % as well.

Chapter 19

433

8.	 Keep the row for the new resource pool selected, and in the grid for Workload groups
for resource pool: rp_WebApp, create a new workload group named rg_WebApp
with following specified configuration value:

�� CPU Time (sec): 300

9.	 In the Resource pools grid, add another new resource pool named rp_ReportApp
with the following specified configuration values, at the end of the list, and leave the
other configuration values at the default:

�� Minimum CPU %:25

�� Minimum Memory %:25

10.	 With the row of new resource pool selected, create a new workload group named
rg_ReportApp, in the grid for Workload groups for resource pool: rp_ReportApp,
with following specified configuration value:

�� CPU Time (sec): 300

11.	 After you create these resource pools and workload groups, your Resource Governor
Properties dialog box should look like the one shown in the following screenshot:

Resource Management with Resource Governor

434

12.	 Expand the Resource Governor node under the Management node in Object
Explorer. After creating the resource pools and workload groups, you will see
them in Object Explorer, as shown in following screenshot:

How it works...
After connecting to the SQL server, we first executed a script, which by using the CREATE
LOGIN T-SQL command, created the two following login accounts for web application and
reporting application, respectively:

ff AW_WebAppUser

ff AW_ReportAppUser

The script also created corresponding users for these two login accounts in the
AdventureWorks2012 database by using the CREATE USER T-SQL command. The new
users were added to the db_owner database role by executing the ALTER ROLE [db_
owner] command.

After creating the required login accounts and users in the AdventureWorks2012 database,
we executed a script that created a user-defined scalar function—dbo.RGClassifier(). The
purpose of this function is to identify the incoming session requests, classify them on the basis
of their current user, and route them to their appropriate workload groups. Note that we used
the SUSER_SNAME() system function, which returns the user initiating the current request.

In the SUSER_SNAME() function, a condition is checked against the current user. If the user
is AW_WebAppUser (query request coming from the web application), the workload group
name rg_WebApp is assigned to the variable @Workload_GroupName. If the user is AW_
ReportAppUser (query request coming from the reporting application), the workload group
rg_ReportApp is assigned to the variable @Workload_GroupName. In all the other cases,
the default workload group name is stored in the @Workload_GroupName variable.

Chapter 19

435

Finally, the value of @Workload_GroupName, which will be the workload group to which the
classifier function will route the current request, is returned.

Thus, if a request comes from the web application, the request will be routed to the
rg_WebApp workload group and the rp_WebApp resource pool will be used. If the request
comes from the reporting application, the request will be routed to the rg_ReportApp
workload group and the rp_ReportApp resource pool will be used. As both resource pools
specify the limit on resources, SQL Server manages resource allocation accordingly, in case
of resource contention. This will guarantee that the web application will get its allocated
50 percent of CPU and memory resources, even if the reporting application executes heavy
and long-running queries. Also, if there is no resource contention, the application will not be
limited to using only 50 percent of the available resources.

Remember that you may frequently see requests consuming more
resources than what they have been assigned by a resource pool. This is
normal behaviour and can happen when there is no resource contention
(no other requests are executing) at the time of executing a request.

After creating the classifier function dbo.RGClassifier(), we open the Resource
Governor Properties dialog box by right-clicking the Resource Governor node in Object
Explorer and choosing Properties. There, we enable the Resource Governor and specify
dbo.RGClassifier() as our classifier function.

Enabling Resource Governor
By default, Resource Governor is disabled. In order to work with Resource
Governor, you must enable it. You can enable Resource Governor from
the Resource Governor Properties dialog box in SSMS or by executing
the ALTER RESOURCE GOVERNOR RECONFIGURE command as well.

In the Resource Governor Properties dialog box, we first created the rp_WebApp resource
pool, and the rg_WebApp workload group under this resource pool, by assigning a minimum
of 50 percent of CPU and memory resources to be used by the web application.

We then created the rp_ReportApp resource pool, and the rg_ReportApp workload group
under this resource pool, by assigning a minimum of 25 percent of CPU and memory
resources to be used by the reporting application.

Requests that are not routed to any specific workload group are always
routed to the default workload group and use the default resource pool.
Internal system requests generated by SQL Server are routed to the
internal workload group and use the internal resource pool.
Also, remember that a Dedicated Administrator Connection (DAC) is not
affected by Resource Governor Classification.

Resource Management with Resource Governor

436

Finally, we see the Resource Governor objects created in Object Explorer, under the
Resource Governor node.

There's more...
In the real world, before implementing Resource Governor, you should do a trend analysis on
resource requirements for various applications. This will help you in setting proper resource
pool parameter values.

Resource pools are configured based on the following parameters:

ff MIN_CPU_PERCENT

ff MAX_CPU_PERCENT

ff MIN_MEMORY_PERCENT

ff MAX_MEMORY_PERCENT

The percentage of resources specified by MIN parameters is not shared by multiple resource
pools, and the MIN parameter values for CPU and memory specify the minimum percentage of
resources guaranteed. There can be multiple resource pools in Resource Governor. This is the
reason why the total of all MIN percent values across all resource pools cannot exceed 100.

On the other hand, the percentage of resources as specified by MAX parameters is shared
across multiple resource pools, and the effective MAX values are adjusted if the MIN values
for any resource pools are increased or decreased.

In SQL Server 2012, Resource Governor introduced a new parameter
called CAP_CPU_PERCENT. The value of this parameter specifies a
hard cap for CPU bandwidth and it limits the maximum CPU usage to
the specified value for all the requests in the resource pool.

Configuring Resource Governor with T-SQL
script

In the previous recipe, we learnt how to enable/configure Resource Governor and create
workload groups and resource pools, using SQL Server Management Studio.

However, DBAs always love to work with scripts. The reason is that scripts are scalable and
reusable. They can be executed on different servers to create identical objects. They can even
be executed without opening SQL Server Management Studio, with a utility such as SQLCMD.

Chapter 19

437

As a DBA, you must know how to work with Resource Governor using T-SQL commands. In this
recipe, we will implement Resource Governor rules for the same scenario that we came across
in our previous recipe. In this example, we will see how to achieve the same functionality with
T-SQL scripts.

Getting ready
We will use the same scenario of the web application and the reporting application that we
covered in our previous recipe. In this recipe, we will create required the resource pools and
workload groups using T-SQL script, such that the web application gets minimum 50 percent
of CPU and memory resources and the reporting application gets minimum 25 percent of CPU
and memory resources, in case of resource contention.

It is assumed that you have completed the previous recipe as a part of the prerequisites for
this recipe. Therefore, we are not going to repeat the part about creating the login accounts
and users AW_WebAppUser and AW_ReportAppUser, for web application and reporting
application, respectively.

We will also not recreate the classifier function and will use the same function that we had
already created in the previous recipe.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff An SQL Server login account with administrative rights.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

ff You should have completed the previous recipe, Configuring Resource Governor with
SQL Server Management Studio.

How to do it...
To configure Resource Governor with T-SQL, perform the following steps:

1.	 Open SQL Server Management Studio and connect to an instance of SQL Server
containing the AdventureWorks2012 database.

Make sure that the login account you are using to connect to SQL
Server is an administrative account, so that it can create Resource
Governor objects. However, this is not mandatory, as any account
with CONTROL SERVER permission will work. But for the sake of
simplicity, an administrative account is recommended.

Resource Management with Resource Governor

438

2.	 Run the following script to drop the existing Resource Governor objects that were
created by the previous recipe:
USE [master]
GO
--Dropping the resource pools and
--workload groups created previously.

DROP WORKLOAD GROUP rg_WebApp
DROP RESOURCE POOL rp_WebApp
DROP WORKLOAD GROUP rg_ReportApp
DROP RESOURCE POOL rp_ReportApp
ALTER RESOURCE GOVERNOR RECONFIGURE
GO

3.	 Now, we will create the following Resource Governor objects:

�� Resource pool: rp_WebApp

�� Workload group: rg_WebApp

�� Resource pool: rp_ReportApp

�� Workload group: rg_ReportApp

Next, execute the following T-SQL script to create these Resource Governor objects:
USE [master]
GO

--Creating resource pool to be
--used for web application.
CREATE RESOURCE POOL [rp_WebApp]
WITH
(
 min_cpu_percent=50,
 max_cpu_percent=100,
 min_memory_percent=50,
 max_memory_percent=100
)
GO

--Creating workload group to be
--used for web application.
CREATE WORKLOAD GROUP [rg_WebApp]
WITH
(
 group_max_requests=0,
 importance=Medium,

Chapter 19

439

 request_max_cpu_time_sec=300,
 request_max_memory_grant_percent=25,
 request_memory_grant_timeout_sec=0,
 max_dop=0
) USING [rp_WebApp]
GO

--Creating resource pool to be
--used for report application.
CREATE RESOURCE POOL [rp_ReportApp]
WITH
(
 min_cpu_percent=25,
 max_cpu_percent=100,
 min_memory_percent=25,
 max_memory_percent=100
)
GO

--Creating workload group to be
--used for report application.
CREATE WORKLOAD GROUP [rg_ReportApp]
WITH
(
 group_max_requests=0,
 importance=Medium,
 request_max_cpu_time_sec=300,
 request_max_memory_grant_percent=25,
 request_memory_grant_timeout_sec=0,
 max_dop=0
) USING [rp_ReportApp]
GO

--Registering Classifier Function.
ALTER RESOURCE GOVERNOR
WITH (CLASSIFIER_FUNCTION = [dbo].[RGClassifier]);
GO

--Applying the in-memory changes
--in order for them to take effect.
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Resource Management with Resource Governor

440

4.	 To check whether Resource Governor objects have been created, run the following
script to query DMVs sys.dm_resource_governor_resource_pools and sys.
dm_resource_governor_workload_groups:
SELECT
 pool_id
 ,name
FROM sys.dm_resource_governor_resource_pools
GO

SELECT
 group_id
 ,name
 ,pool_id
FROM sys.dm_resource_governor_workload_groups
GO

5.	 The preceding query should give you output similar to that shown in the following
screenshot:

How it works...
After getting connected to SQL Server, we started by dropping the Resource Governor objects
that we created in the previous recipe. Because we were to recreate the same objects with
T-SQL commands, we dropped the following, previously created objects:

ff Resource pool: rp_WebApp

ff Workload group: rg_WebApp

ff Resource pool: rp_ReportApp

ff Workload group: rg_ReportApp

Observe that after dropping these objects, the command ALTER RESOURCE GOVERNOR
RECONFIGURE was executed.

Chapter 19

441

Next, we executed the script that created the required resource pools and workload groups.
To create resource pools, we used the CREATE RESOURCE POOL command, and to create
workload groups we used the CREATE WORKLOAD GROUP command.

We first created the rp_WebApp resource pool and the rg_WebApp workload group using the
rp_WebApp resource pool. This resource pool is used by the web application.

We then created the rp_ReportApp resource pool and the rg_ReportApp workload group,
using the rp_ReportApp resource pool. This resource pool is used by the reporting application.

The script also registered the [dbo].[RGClassifier] function as a classifier function
with the ALTER RESOURCE GOVERNOR syntax. At the end of script, we executed the ALTER
RESOURCE GOVERNOR RECONFIGURE command for the applied changes to take effect.

If you make any changes in the Resource Governor configuration, you
must execute the ALTER RESOURCE GOVERNOR RECONFIGURE
command for new changes to take effect.

Finally, we verified that the script created the Resource Governor objects required, by querying
dynamic management views sys.dm_resource_governor_resource_pools and sys.
dm_resource_governor_workload_groups.

There's more...
While configuring workload groups, the following parameters should be kept in mind:

ff IMPORTANCE: It specifies the relative importance of the requests in a workload
group. The value can be LOW, MEDIUM, or HIGH.

ff GROUP_MAX_REQUESTS: It specifies the maximum number of requests that can be
executed in parallel in a workload group.

ff MAX_DOP: It specifies the maximum degree of parallelism for parallel requests in a
workload group.

ff REQUEST_MAX_MEMORY_GRANT_PERCENT: It is the maximum memory in
percentage that a single request in a workload group can use.

ff REQUEST_MAX_CPU_TIME_SEC: It is the maximum amount of time in seconds that
a single request can use in a workload group.

ff REQUEST_MEMORY_GRANT_TIMEOUT_SEC: It is the maximum amount of time in
seconds that a query can wait for, for memory.

For more information on Resource Governor, refer to the product documentation for SQL
Server 2012 at http://msdn.microsoft.com/en-us/library/bb933866.aspx.

Resource Management with Resource Governor

442

Monitoring Resource Governor
After you are done with configuring Resource Governor as per your applications' resource
requirements, you will need to monitor your Resource Governor. You may want to monitor how
resource pools are utilized and how many session requests are routed to a particular resource
pool. You may also want to monitor the internal and default pool activity.

In this recipe, we will execute required sample queries from different connections, with
different logins (AW_WebAppUser and AW_ReportAppUser), and monitor the CPU and
memory resource usage for each resource pool in Reliability and Performance Monitor.

Getting ready
This recipe extends our previous recipe and assumes that you have already completed
previous recipes in this chapter.

Taking further the scenario of the web application and the reporting application in the
context of monitoring Resource Governor, we will execute sample queries with login accounts
AW_WebAppUser and AW_ReportAppUser, to simulate the scenario of incoming requests
from the web application and the reporting application. This causes the appropriate resource
pool to be used while executing a query request. We monitor resource usage by the resource
pool in Reliability and Performance Monitor.

The following are the prerequisites for this recipe:

ff An instance of SQL Server 2012 Developer or Enterprise Evaluation edition.

ff An SQL Server login account with administrative rights.

ff A sample AdventureWorks2012 database on the SQL Server instance. For more
details on how to install the AdventureWorks2012 database, please refer to the
Preface of this book.

ff You should have completed the previous recipe, Configuring Resource Governor with
T-SQL Script.

How to do it...
To monitor Resource Governor, perform the following steps:

1.	 Start Reliability and Performance Monitor. To do this, press the Windows + R key
combination to display the Run dialog box. In this dialog box, type perfmon.exe
and press Enter.

2.	 When Reliability and Performance Monitor is started, to switch to Performance
Monitor view, click on the Performance Monitor node under the Monitoring Tools
node, in left-hand side console tree.

Chapter 19

443

3.	 Click on the + button in the toolbar to add counters.

4.	 In the Add Counters dialog box, type the name of the computer or let it be <Local
computer> under the Select counters from computer: drop-down list, if you are
monitoring a local machine.

5.	 In the list of available performance counter objects, expand
SQLServer:ResourcePoolStats and select CPU usage %.

6.	 In the list under Instances of selected object:, you will see resource pools that
have been created previously. Select <All instances> and then click on the Add > >
button. This will add the CPU usage % counter to the list of Added counters on the
right-hand side.

7.	 After adding the performance counter object, your screen should look as shown in
the following screenshot:

8.	 Open SQL Server Management Studio and connect to an instance of SQL Server
containing the AdventureWorks2012 database, by using the AW_WebAppUser
login account (Connection-1).

9.	 Open another instance of SQL Server Management Studio and connect to another
instance of SQL Server containing the AdventureWorks2012 database, by using
AW_ReportAppUser login account (Connection-2).

Resource Management with Resource Governor

444

10.	 Now, from Connection-1, type and execute the following sample queries:
USE AdventureWorks2012
GO

--Connection-1 with Login AW_WebAppUser

--Running sample query to create a table
--tbl_TEMPSalesOrderDetail and populating
--it with the data of Sales.SalesOrderDetail
IF OBJECT_ID('tbl_TEMPSalesOrderDetail') IS NOT NULL
 DROP TABLE tbl_TEMPSalesOrderDetail

GO

SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,CarrierTrackingNumber
 ,OrderQty
 ,ProductID
 ,SpecialOfferID
 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
 ,rowguid
 ,ModifiedDate
INTO tbl_TEMPSalesOrderDetail
FROM Sales.SalesOrderDetail

11.	 From Connection-2, type and execute the following sample queries:
USE AdventureWorks2012
GO

--Connection-2 with Login AW_ReportAppUser

--Running sample query to fetch data from
--of Sales.SalesOrderDetail

SELECT
 SalesOrderID
 ,SalesOrderDetailID
 ,CarrierTrackingNumber
 ,OrderQty
 ,ProductID
 ,SpecialOfferID

Chapter 19

445

 ,UnitPrice
 ,UnitPriceDiscount
 ,LineTotal
 ,rowguid
 ,ModifiedDate
FROM Sales.SalesOrderDetail
ORDER BY SalesOrderID

GO

SELECT
 SalesOrderID
 ,SUM(LineTotal)
 ,ROW_NUMBER() OVER (ORDER BY SUM(LineTotal) desc,SalesOrderID)
FROM Sales.SalesOrderDetail
GROUP BY SalesOrderID

12.	 Switch to Reliability and Performance Monitor; you will notice that there are spikes for
the rp_WebApp and rp_ReportApp resource pools, as shown in following screenshot:

Resource Management with Resource Governor

446

How it works...
Because we wanted to monitor the resource usage statistics for the available resource pools,
we started Reliability and Performance Monitor and added the following performance counter
for monitoring:

ff SQLServer:ResourcePoolStats:CPU usage %

We added <All instances>, so that we can monitor all the available resource pools, not only a
single one.

We then opened two instances of SQL Server Management Studio (two connections—
Connection-1 and Connection-2).

We logged in with the AW_WebAppUser login account for Connection-1, while we logged in
with the AW_ReportAppUser login account for Connection-2.

From both the connections, we executed sample queries on the AdventureWorks2012
database and monitored the performance counter we had added in Reliability and
Performance Monitor. Note that the query executed from Connection-1—using the
AW_WebAppUser login account—used the rp_WebApp resource pool, and the query
executed from Connection-2—using the AW_WebReportUser login account—used the
rp_ReportApp resource pool. Examine the peaks of CPU resource usage for both the
resource pools in Performance Monitor, which are represented there in different colours.

There's more...
If you want to map a particular session with a workload group, you can join the DMV sys.dm_
exec_sessions with the DMV sys.dm_resource_governor_workload_groups, on the
group_id column. You can further join DMV sys.dm_resource_governor_workload_
groups to the DMV sys.dm_resource_governor_resource_pools, on the pool_id
column, to learn the name of the resource pool for a particular session.

DMVs sys.dm_resource_governor_resource_pools and sys.dm_resource_
governor_workload_groups provide various detailed statistics of Resource Governor. Just
explore the different columns of these DMVs on your own. For more information on Resource
Governor, refer to the product documentation for SQL Server 2012.

Index
Symbols
$PARTITION.pf_OneMillion_LeftRange()

function 311
32 bit versus 64 bit

memory, configuring in 403-405
@columnid parameter 41
@@CONNECTIONS function 68
@Country_region parameter 371
@@CPU_BUSY function 68
[dbo].[RGClassifier] function 441
-D, command prompt 61
-E, command prompt 61
@eventid parameter 41
-F, command prompt 61
@@IDLE function 68
-if, command prompt 61
@@IO_BUSY function 68
@@MAX_CONNECTIONS function 68
-of, command prompt 61
@on parameter 41
@Options parameter

2: TRACE_FILE_ROLLOVER 40
4: SHUTDOWN_ON_ERROR 40
8: TRACE_PRODUCE_BLACKBOX 40
predefined values 40

@options parameter 40
@@PACKET_ERRORS function 68
@@PACK_RECEIVED function 68
@@PACK_SENT function 68
-s, command prompt 61
-S, command prompt 61
@@TIMETICKS function 68
@@TOTAL_ERRORS function 69
@@TOTAL_READ function 68

@@TOTAL_WRITE function 69
@tracefile parameter 40
@traceid OUTPUT parameter 40
@traceid parameter 41, 42
.trc file 57
@Workload_GroupName variable 434

A
actual execution plan

about 100, 121
generating, steps 100, 101
working 102

Address Windowing Extensions (AWE) 403
AdventureWorks2012_log.ldf database file

338
algebraization 359
ALTER DATABASE command 341
ALTER ROLE [db_owner] command 434
ALTER TABLE command 278
ALTER TABLE... SWITCH PARTITION statement

330
ApplicationName data column 18, 26
arithmetic operator

used, to improve query performance 267-270
Audit Login, event classes 18
Audit Logout, event classes 18
Auto_Create_Statistics option 284, 286
Auto_Update_Statistics option 298
avg_fragmentation_in_percent 163
avg_fragment_size_in_pages 163
avg_page_space_used_in_percent 163
avg_total_user_cost 161
avg_user_impact 161
AWE Enabled option 403

448

B
batch element 107
blk column 74
blocked queries

determining 384-387
blocked transaction

determining 384-387
blocking queries

determining 384-387
blocking_session_id 153
blocking transaction

determining 384-387
build process, hash join operator 123
bulk data

loading 319, 320
loading, by partition splitting 321, 322
loading, by partition switching 321, 322
loading, in sliding fashion 322-331

C
classification component, resource governor

428
classifier function 428
client_net_address 151
client statistics 118
clustered index

about 199
heap 205
index scan 206
need for 134
seek 206
table scan 206
used, for increasing performance 198-205

clustered index scan
about 138, 270
versus non-clustered index scan 141

cmd column 74
Column Filters... button 23
columns

limiting, to improve query performance
262-265

used, for improving index performance
216-219

columnstore index
used, for improving performance 222-229

command 153
command parser 96
command prompt

-D 61
-E 61
-F 61
-if 61
-of 61
-s 61
-S 61
Database Engine Tuning Advisor,

executing from 59
Common Table Expression (CTE) 67
computed columns, index on

performance, enhancing 252-257
conditions 415
connection_id 151, 153
connect_time 151
covering index

used, for increasing performance 212-216
CPU tab, resource monitor 85
cpu_time 152, 153
CPU usage

monitoring 86
monitoring, steps for 87-89

CREATE INDEX command 219
CREATE LOGIN T-SQL command 434
Create new Policy dialog box 418
CREATE PARTITION FUNCTION command 310,

318, 329
CREATE PARTITION SCHEME command 310,

329
creation_time 154
Ctrl + M keyboard shortcut 202
cursor_id 154

D
Database Engine Tuning Advisor. See DTA
database_id 153, 159, 160, 162, 169, 171,

175
DatabaseID data column

about 18, 27
uses 26

DatabaseName data column 19, 27
database objects

restricting 422

449

restricting, prerequisites for 422
working 423-425

database properties
about 416
evaluating 417-420
evaluating, prerequisites for 416
working 421

database-specific, DMFs 146
database-specific, DMVs 146
data columns

about 16
ApplicationName 18
DatabaseID 18
DatabaseName 19
HostName 19
LoginName 19
ObjectID 19
ObjectName 19
SessionLoginName 19
SPID 19

data file
about 164, 334-341
configuring, on multiple physical disks

334-341
Data Manipulation Language. See DML
DATEDIFF() function 384
DBCC command

used, for monitoring log space usage statistics
75, 77

DBCC FLUSHPROCINDB command 181
DBCC FREEPROCCACHE command 180
DBCC SQLPERF command 75
dbid 153, 154
dbname column 74
DB_NAME() function 384
dbo.RGClassifier() function 432
dbo.usp_GetOrderDetails_ByOrderYear stored

procedure 195
db_owner database 434
deadlocks

detecting, with SQL Server Profiler 388-395
detecting, with Trace Flag 1204 395

Declarative Referential Integrity. See DRI
Dedicated Administrator Connection (DAC)

299
DELETE statement 253
Density Vector 290, 292

dirty pages 334
disk I/O statistics

dm_io_pending_io_requests (DMV) 177
dm_io_virtual_file_stats (DMF) 176
monitoring 172-176

disk space, indexes
determining 258-260

disk tab, resource monitor 85
DISTINCT_RANGE_ROWS column 289
DMF. See DMFs
DMFs

about 145
database-specific 146
execution-specific 146
index-specific 146
I/O-specific 146
OS-specific 146
transaction-specific 146

dm_io_pending_io_requests (DMV), disk I/O
statistics

io_handle 177
io_pending 177
io_type 177
scheduler_address 177

dm_io_virtual_file_stats (DMF), disk I/O
statistics

io_stall 177
io_stall_read_ms 177
io_stall_write_ms 177
num_of_bytes_read 177
num_of_bytes_written 177
num_of_reads 177
num_of_writes 177
size_on_disk_bytes 177

DML 96
DML command 220
DMV. See DMVs
DMVs

about 145
database-specific 146
execution-specific 146
index-specific 146
I/O-specific 146
OS-specific 146
transaction-specific 146

DRI
about 273

450

used, for improving query performance
274-277

DROP INDEX command 246
DTA

about 18, 45, 59, 79
executing, from command prompt 59
running, for workload 51-57
used, for analyzing queries 46-50
XML files, URL 60

DVM
about 374
sys.dm_db_missing_index_columns(Index_

Handle) 242
sys.dm_db_missing_index_groups 242
sys.dm_db_missing_index_group_stats 242

Dynamic Management Functions. See DMFs
Dynamic Management Views. See DMVs
dynamic management views, dynamic related

used, for monitoring TempDB performance
164-169

E
ecid column 74
E drive 335, 342
Enable file rollover option 13
encrypted 153, 154
endpoint_id 151
equality_columns 160
ERRORLOG file 398
estimated execution plan

about 97, 121
effects 98, 99
working 99

Evaluate option 420
event category 16
event classes

about 15
Audit Login 18
Audit Logout 18
RPC:Completed 18
RPC:Starting 18
SP:Completed 18
SP:Starting 18
SP:StmtCompleted 18
SP:StmtStarting 18
SQL:BatchCompleted 18

SQL:BatchStarting 18
SQL:StmtCompleted 18
SQL:StmtStarting 18

events
about 15
filtering 19
filtering, steps 20-25
working 26

EventSubClass column 196
exec_context_id 171
execution plan

about 95
graphical execution plan 96
text execution plan 96
XML execution plan 96

Execution Plan tab 373
execution-specific, DMFs 146
execution-specific, DMVs 146

F
facets 416
fetch_status 154
FIFO (First In First Out) method 120
filegroups 342-346
FILEGROWTH attribute 42, 43
file_id 170, 175
FileName data column 41
files 342-346
Fill Factor

about 234, 235
of index 236
value, finding 235

filter 16
filtered index

statistics, effects 299-301
used, for improving performance 219-222

fixed execution plan
implementing, SQL plan guide used 371-379

FORCESEEK table hint
steps 364-366
using 363, 364

foreign key
used, to improve query performance 277-281

fragmentation
about 232
of index, deciding 232

451

of index, information gathering 232, 233
fragment_count 163

G
G drive 342
graphical execution plan 96
group_handle 161
GROUP_MAX_REQUESTS parameter 441

H
hash join operator

about 123
build process 123
probe process 123

hints
about 360
join hint 360
query hint 360
table hint 360

histogram 288, 289
host_name 151
hostname column 74
HostName data column 19, 27
host_process_id 151
hyperthread_ratio column 400

I
IMPORTANCE parameter 441
Include Client Statistics option 119
included_columns 160
index

about 197
basic structure 198
disk space, determining 258-260
efficiency enhancing, REBUILD index used

237, 239
efficiency enhancing, REORGANIZE index used

240, 241
missing indexes, finding 241-244
performance improving, clustered index used

198-205
performance improving, columnstore index

used 222-229
performance improving, covering index used

212-216

performance improving, non-clustered index
used 206-211

performance increasing, by including columns
in index 216-219

unused indexes, finding 244-246
indexed view

used, for enhancing index performance
247-252

index_group_handle 161
index_handle 160, 161
index_id 159, 162, 163
index_id column 260
index on computed columns

performance, enhancing 252-257
index performance

enhancing, indexed view used 247-252
managing 155-160
monitoring 155-160
prerequisites 156
sys.dm_db_index_physical_stats (DMF) 162
sys.dm_db_index_usage_stats (DMV) 162
sys.dm_db_missing_index_details (DMV) 160
sys.dm_db_missing_index_groups (DMV) 161
sys.dm_db_missing_index_group_stats (DMV)

161
index scans

about 206
execution plan, finding in 128
execution plan, fixing 128-132
working 133

Index Seek 205
index-specific, DMFs 146
index-specific, DMVs 146
INDEX table hint

steps 364-366
using 363, 364

index_type_desc 163
inequality_columns 160
in_row_data_page_count column 260
INSERT�EXECUTE statement 72, 77
INSERT statement 253
instance level

query compilation monitoring, performance
monitor used 182

query compilation monitoring, reliability used
182

452

query recompilation monitoring, performance
monitor used 182

query recompilation monitoring, reliability
used 182

intermediate node 198
internal_object_reserved_page_count 170
internal_objects_alloc_page_count 170, 171
internal_objects_dealloc_page_count 170,

171
io_handle 177
io_pending 177
I/O-specific, DMFs 146
I/O-specific, DMVs 146
io_stall 177
io_stall_read_ms 177
io_stall_write_ms 177
io_type 177
IsDeterministic property 253
Is_Not_Trusted field 279
is_open 154

J
join hint 360
join operator

about 122
clustered index, creating 125
execution plan, enabling 124
hash join operator 123
merge join operator 123
nested loop join operator 123, 126
physical join operator, in execution plan 124
SELECT query, executing 125
working 127

JOIN statement 95

K
key lookups

about 122, 133
clustered index, need for 134
clustered index scan 138
clustered index scan versus non-clustered

index scan 141
execution plan, details in text format 135-139
non-clustered index, need for 134
removing, from non-clustered index 142

working 142
KILL command 388

L
large table

moving, to physical table 346-350
last_request_end_time 152
last_request_start_time 152
last_user_lookup 162
last_user_scan 161, 162
last_user_seek 161, 162
last_user_update 162
lazy writer 97
L drive 335, 342
leaf nodes 198
lob_used_page_count column 260
log file

configuring, on multiple physical disks
334-341

logical_reads 152
loginame column 74
login_name 152
LoginName data column 19, 27
login_time 151
log space usage statistics

monitoring, with DBCC command 75-77
long-running transactions

determining 382-384
prerequisites 382
sys.dm_tran_active_transactions 384
sys.dm_tran_database_transactions 384
sys.dm_tran_session_transactions 384

M
MAX_DOP parameter 441
memory

configuring, in 32 bit versus 64 bit 403-405
Memory:Available MBytes 90, 92
Memory:Pages/sec 90-93
memory (RAM) usage

about 90
Memory:Available MBytes 90
Memory:Pages/sec 90
monitoring 90
monitoring, steps for 90-92

453

Paging File:% Usage 90
SQL Server:Buffer Manager:Buffer cache hit

ratio 90
SQL Server:Buffer Manager:Page life

expectancy 90
SQL Server:Memory Manager:Memory

Grants Pending 90
memory tab, resource monitor 85
memory_usage 152
merge join operator 123
Microsoft Management Console (MMC) 80
Minimum server memory (MB) 404
mode 159
ModifiedDate field 135
most_recent_session_id 151
most_recent_sql_handle 151
multiple physical disks

data file, configuring 334-341
log file, configuring 334-341

N
name 154
nested loop join operator 123
network tab, resource monitor 86
New Condition... option 423
NOEXPAND hint 252
NOLOCK table query hint

prerequisites 361
steps 361, 362
using 360
working 363

non-clustered index
about 206
moving, on separate physical disk 350-353
need for 134
used, for increasing performance 2060211

non-clustered index scan
versus clustered index scan 141

non-key column
statistics, effects 292-296

number_files parameter 43
num_of_bytes_read 177
num_of_bytes_written 177
num_of_reads 177
num_of_writes 177

O
objected 154
objectid column 153
object_id column 260
object_id parameter 159, 160, 162
ObjectID data column 19, 27
OBJECT_ID() function 67
ObjectName data column 19, 27
object plan guide

about 367
used, for optimizing query 367-370

objects 164
offline mode 237
OK button 23
Online Analytical Processing (OLAP) 248
online mode 237
open_transaction_count 153
Optimize for Ad hoc Workloads

configuring 405
configuring, steps 405-407
working 407-410

OPTION 128
ordDemo table 212
OS-specific, DMFs 146
OS-specific, DMVs 146
out-of-date statistics

finding 296-299
overview tab, resource monitor 85

P
page_count 163
pages 164
Paging File:% Usage 90, 93
partition_id column 260
partition_number 159, 163
partition splitting

used, for loading bulk data 321, 322
partition switching

used, for loading bulk data 321, 322
PBM 415
PDS

about 58, 59
to keep, in database 59
to use, in database 58

454

performance
improving, filtered index used 219-222

performance counters 86
performance monitor

about 79, 80
used for monitoring query compilation, at

instance level 182
used for monitoring query recompilation, at

instance level 182
Physical Design Structure. See PDS
physical disk

non-clustered indexes, moving 350-353
tempdb database, configuring 354

physical operator 128
physical table

large table, moving to 346-350
plan cache 97
plan guide

about 360
used, for optimizing query 367-370

plan_handle parameter 150, 153
policies 415
Policy-based Management. See PBM
probe process, hash join operator 123
procedure cache 179
processing power

using, by configuring SQL Server 400-402
Processor:% Processor Time 87
ProductDemo table 280
program_name 151
properties 154

Q
QP 96
queries

analyzing, Database Engine Tuning Advisor
used 46-50

expensive queries, detecting 27-33
optimizing, object plan guide used 367-370
optimizing, plan guide used 367-370
performance improving, arithmetic operator

used 267-270
performance improving, by limiting columns

262-265
performance improving, by limiting rows

262-265

performance improving, by unusing functions
on predicate columns 270-273

performance improving, DRI used 274-277
performance improving, sargable conditions

used 265-267
performance improving, with foreign key

277-281
slow running queries, detecting 27-33

query compilation
about 180
factors 180-182
monitoring at instance level, performance

monitor used 182
monitoring at instance level, reliability used

182
query execution statistics

monitoring 147-150
prerequisites 147
sys.dm_exec_connections (DMV) 150, 151
sys.dm_exec_cursors (DMF) 154
sys.dm_exec_query_plan (DMF) 154
sys.dm_exec_requests (DMV) 152, 153
sys.dm_exec_sessions (DMV) 151
sys.dm_exec_sql_text (DMF) 153

query hint 360
query optimizer 96
query, performance monitoring

SET SHOWPLAN_XML used 103-107
SET STATISTICS IO used 112-115
SET STATISTICS TIME used 116, 117
SET STATISTICS XML used 108-110

query_plan 154
QueryPlan element 107
query processor. See QP
query recompilation

about 180
factors 180-182
monitoring at instance level, performance

monitor used 182
monitoring at instance level, reliability used

182
monitoring, SQL server profiler used 188

query selectivity 284
query statistics 283

455

R
RANGE LEFT

about 304
used, for partitioning table 304-311

RANGE RIGHT
about 304
used, for partitioning table 311-319

reads 152, 154
REBUILD index

about 232
DBCC DBREINDEX used 238
DROP_EXISTING used 238
offline mode 237
of table 238
online mode 237
used, for enhancing index efficiency 237, 239
using, offline mode 238
using, online mode 238
working 239

record_count 163
Refno field 203
relational engine

about 96
and storage engine, differences 97

reliability
used for monitoring query compilation, at

instance level 182
used for monitoring query recompilation, at

instance level 182
Reliability and Performance Monitor tool

79, 188
reliability monitor 80
RelOp element 107
REORGANIZE index

about 232
DBCC INDEXDEFRAG used 240, 241
used, for enhancing index efficiency 240, 241
without specifying fill factor option 240
without specifying online option 240

REPEATABLE READ transaction 387
request_id column 74, 152, 171
REQUEST_MAX_CPU_TIME_SEC parameter

441
REQUEST_MAX_MEMORY_GRANT_PERCENT

parameter 441

REQUEST_MEMORY_GRANT_TIMEOUT_SEC
parameter 441

resource governor
architectural diagram 428
components 428
configuring, with SQL Server Management

Studio 429, 430
configuring, with T-SQL script 436, 437
enabling 435
functional diagram 428
monitoring 442
parameters, for configuring 436

resource governor, components
classification 428
resource pool 428
workload group 428

resource governor, configuring with SQL
Server Management Studio

about 429
prerequisites 430
steps 430-434
working 434, 435, 436

resource governor, configuring with T-SQL
script

about 436
steps 437-441

resource governor, monitoring
prerequisites for 442
steps 443-445
working 446

Resource Governor Properties dialog box 432
resource monitor

about 80
CPU tab 85
disk tab 85
memory tab 85
network tab 86
overview tab 85

resource pool component, resource governor
429

Resource pools grid 433
ROLLBACK IMMEDIATE option 341
root 198
row_count column 260
RowModCtr (Row Modification Counter)

column 296

456

ROW_NUMBER() function 311, 319
row_overflow_used_page_count column 260
rows

limiting, to improve query performance
262-265

rowstore index 222
RPC:Completed, event classes 18
RPC:Starting, event classes 18
rp_ReportApp resource pool 441
Run button 11

S
SalesOrderDetailDemo table 127
SalesOrderHeaderDemo table 127
sargable conditions

used, to improve query performance 265-267
Save As command 14
Save to table checkbox 14
scan 122
scheduler_address 177
Search ARGument Able. See sargable condi-

tions
seek 206 122
SELECT DB_ID() statement 13
SELECT query 360
SELECT statement 198, 206, 248, 363
server performance

about 80
monitoring, steps for 81-84
prerequisites 81

Service Level Agreement. See SLA
session_id 151, 152, 154, 169, 171
SessionLoginName data column 19, 27
SET option 220, 248
SET SHOWPLAN_XML

about 103
batch element 107
QueryPlan element 107
RelOp element 107
Statement element 107
Statement SetOption element 107
StmtSimple element 107
usage, steps for 104-106
working 107

SET STATISTICS IO
about 112

usage, steps for 113, 114
working 115

SET STATISTICS TIME
about 116
usage, steps for 116, 117
working 117

SET STATISTICS XML
about 108
usage, steps for 108-111
working 111

Show all events option 14
size_on_disk_bytes 177
SLA 8
sliding window 320
SP:Completed, event classes 18
SP:Recompile 189
SP:Starting, event classes 18
SP:StmtCompleted, event classes 18
SP:StmtStarting, event classes 18
SP_Configure stored procedure 402
spid column 74
SPID data column 19, 27
sp_monitor 69
sp_ prefix 416
sp_trace_create, system stored procedures

@options parameter 40
@tracefile parameter 40
@traceid OUTPUT parameter 40
about 35

sp_trace_setevent, system stored procedures
35

sp_trace_setfilter, system stored procedures
35

sp_trace_setstatus, system stored procedures
35

sp_who system 73
SQL:BatchCompleted event 32
SQL:BatchCompleted, event classes 18
SQL:BatchStarting, event classes 18
SQL:StmtCompleted, event classes 18
SQL:StmtRecompile 189
SQL:StmtStarting, event classes 18
SQLCMD 436
sql_handle 153, 154
SQLPERF 75
SQL plan guide

about 367

457

used, for implementing fixed execution plan
371-379

SQL Server
about 399
Buffer Manager:Buffer cache hit ratio

90, 93
Buffer Manager:Page life expectancy 90, 93
configuring, to use more processing power

400
instance configuration, optimizing 410-414
Memory Manager:Memory Grants Pending

90, 93
SQL Server instance configuration

optimizing 410-414
SQL server profiler

about 8, 15
deadlocks, detecting 388-395
used, for monitoring query recompilation 188

SQL trace. See trace
start_time 152
startup parameters 398
Statement 160
statement element 107
Statement SetOption element 107
statistics

automatic creation 284
creating 284
creating, ways 284
effects, on filtered index 299-301
effects, on non-key column 292-296
histogram 288, 289
manual creation 284
updating 286, 287
working 287, 288

STATISTICS command 257
status 152
Status 152
status column 74
Status property 421
StmtSimple element 107
storage engine

about 96
and relational engine, differences 97

Stored Procedures event category 14
SUSER_SNAME() function 434
sys.configurations 235
sys.database_files system catalog view 341

sys.dm_db_file_space_usage (DMV), TempDB
performance

file_id 170
internal_object_reserved_page_count 170
unallocated_extent_page_count 170
user_object_reserved_page_count 170
version_store_reserved_page_count 170

sys.dm_db_index_physical_stats (DMF), index
performance

avg_fragmentation_in_percent 163
avg_fragment_size_in_pages 163
avg_page_space_used_in_percent 163
database_id 162
fragment_count 163
index_id 163
index_type_desc 163
object_id 162
page_count 163
partition_number 163
record_count 163

sys.dm_db_index_physical_stats() function
159, 160

database_id 159
index_id 159
mode 159
object_id 159
partition_number 159

sys.dm_db_index_usage_stats (DMV), index
performance

database_id 162
index_id 162
last_user_lookup 162
last_user_scan 162
last_user_update 162
object_id 162
user_lookups 162
user_scans 162
user_seeks 162
user_updates 162

sys.dm_db_index_usage_stats dynamic
management view 246

sys.dm_db_missing_index_columns(Index_
Handle) 242

sys.dm_db_missing_index_details (DMV),
index performance

about 242
database_id 160

458

equality_columns 160
included_columns 160
index_handle 160
inequality_columns 160
object_id 160
Statement 160

sys.dm_db_missing_index_groups (DMV),
index performance

about 242
index_group_handle 161
index_handle 161

sys.dm_db_missing_index_group_stats (DMV),
index performance

about 242
avg_total_user_cost 161
avg_user_impact 161
group_handle 161
last_user_scan 161
last_user_seek 161
unique_compiles 161
user_scans 161
user_seeks 161

sys.dm_db_partition_stats dynamic
management view 258, 259

sys.dm_db_session_space_usage (DMV),
TempDB performance

database_id 169
internal_objects_alloc_page_count 170
internal_objects_dealloc_page_count 170
session_id 169
user_objects_alloc_page_count 169
user_objects_dealloc_page_count 170

sys.dm_db_task_space_usage (DMV), Temp-
DB performance

database_id 171
exec_context_id 171
internal_objects_alloc_page_count 171
internal_objects_dealloc_page_count 171
request_id 171
session_id 171
user_objects_alloc_page_count 171
user_objects_dealloc_page_count 171

sys.dm_exec_connections (DMV), query
execution statistics

about 150
client_net_address 151
connection_id 151

connect_time 151
endpoint_id 151
most_recent_session_id 151
most_recent_sql_handle 151
session_id 151

sys.dm_exec_cursors (DMF), query execution
statistics

creation_time 154
cursor_id 154
fetch_status 154
is_open 154
name 154
properties 154
reads 154
session_id 154
sql_handle 154
worker_time 154
writes 154

sys.dm_exec_cursors() function 150
sys.dm_exec_query_plan (DMF), query

execution statistics
dbid 154
encrypted 154
objected 154
query_plan 154

sys.dm_exec_requests (DMV), query execution
statistics

blocking_session_id 153
command 153
connection_id 153
cpu_time 153
database_id 153
open_transaction_count 153
plan_handle 153
request_id 152
session_id 152
sql_handle 153
start_time 152
Status 152
transaction_id 153
wait_time 153
wait_type 153

sys.dm_exec_sessions (DMV), query execution
statistics

about 151
cpu_time 152
host_name 151

459

host_process_id 151
last_request_end_time 152
last_request_start_time 152
logical_reads 152
login_name 152
login_time 151
memory_usage 152
program_name 151
reads 152
session_id 151
status 152
total_elapsed_time 152
writes 152

sys.dm_exec_sql_text (DMF), query execution
statistics

dbid 153
encrypted 153
objectid 153
text 153

sys.dm_exec_sql_text() function 150
sys.dm_io_pending_io_requests function 178
sys.dm_io_virtual_file_stats() function

about 175, 176, 178
database_id 175
file_id 175

sys.dm_tran_active_transactions 384
sys.dm_tran_database_transactions 384
sys.dm_tran_session_transactions 384
sys.foreign_keys system view 277
sys.indexes 235, 297
sys.Indexes view 246
sys.master_files function 175
Sys.Objects view 246, 297
sys.partitions catalog view 199, 311
Sys.SysIndexes 297
system health

monitoring, system statistical function used
64-69

System:Processor Queue Length 87
system statistical function

used, for monitoring system health 64-69
system stored procedures

monitoring with 69-74
parameters 41
sp_trace_create 35
sp_trace_setevent 35
sp_trace_setfilter 35

sp_trace_setstatus 35
used, for creating trace 34-43

sys.trace_categories catalog view 16
sys.trace_events system catalog 43

T
table

partitioning, RANGE LEFT used 304-311
partitioning, RANGE RIGHT used 311-319

table hint 360
table partitioning

RANGE LEFT 304
RANGE RIGHT 304
uses 304

Table Scan operator 131
table scans

about 206
execution plan, finding in 128
execution plan, fixing 128-132
working 133

tempdb database
about 354
configuring, on separate physical disk 354

TempDB performance
monitoring, with database related dynamic

management views 164-169
template plan guide 367
text 153
TextData data column 13, 24
text execution plan 96
total_elapsed_time 152
Total_Rows_In_table column 298
trace

about 15, 16
and concepts 15
and workload 17
architecture 17
creating, steps 9-12
creating, system stored procedures used

34-43
pausing 14
restarting 14
resuming 14
stopping 14
templates 34
working 12, 14

460

trace definition 16
trace file 16
Trace Flag 1204

deadlocks, detecting 395
Trace Properties dialog box 10, 13, 14, 16
Trace Table� option 14, 16
trace template 16
transaction

about 381
blocked transaction 384
blocking transaction 384
long-running transactions, determining

382-384
REPEATABLE READ transaction 387

transaction_begin_time column 384
transaction_id column 153, 384
transaction-specific, DMFs 146
transaction-specific, DMVs 146
Transact-SQL. See T-SQL
T-SQL 95
Tuning Options tab 58

U
unallocated_extent_page_count 170
unique_compiles 161
UPDATE statement 386
used_page_count column 260
Used_Page_Count field 259
user_lookup column 246
user_lookups 162
user_object_reserved_page_count 170
user_objects_alloc_page_count 169, 171
user_objects_dealloc_page_count 170, 171
user_scan column 246
user_scans 161, 162
user_seeks 161, 162
user_updates 162

V
version_store_reserved_page_count 170
view. See also indexed view

about 247
benefits 247

VIEW DATABASE STATE permission 258

W
wait_time 153
wait_type 153
WHERE clause 285
WHERE condition 267
WITH CHECK option 278
WITH keyword 137
WITH NOCHECK option 278
WITH RECOMPILE option 181
WITH SCHEMABINDING option 252
worker_time 154
workload. See also trace
workload

about 18
Database Engine Tuning Advisor, running

51-57
workload group component, resource

governor 428
writes 152, 154

X
XML execution plan 96

Thank you for buying
Microsoft SQL Server 2012 Performance

Tuning Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft SQL Server 2012
Integration Services:
An Expert Cookbook
ISBN: 978-1-84968-524-5 Paperback: 400 pages

Over 100 expert recipes to design, ceate, and deploy
SSIS packages

1.	 Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real time examples

2.	 Master all transformations in SSIS and their
usages with real-world scenarios

3.	 Learn to make SSIS packages re-startable and
robust; and work with transactions

4.	 Get hold of data cleansing and fuzzy operations
in SSIS

Microsoft SQL Server 2008
High Availability
ISBN: 978-1-84968-122-3 Paperback: 308 pages

Minimize downtime, speed up recovery, and achieve the
highest level of availability and reliability for SQL server
applications by mastering the concepts of database
mirrorring, log shipping, clustering, and replication

1.	 Install various SQL Server High Availability options
in a step-by-step manner

2.	 A guide to SQL Server High Availability for DBA
aspirants, proficient developers and system
administrators

3.	 Learn the pre and post installation concepts and
common issues you come across while working on
SQL Server High Availability

Please check www.PacktPub.com for information on our titles

Microsoft SQL Server 2008
R2 Administration Cookbook
ISBN: 978-1-84968-144-5 Paperback: 468 pages

Over 70 practical recipes for administering a
high-performance SQL Server 2008 R2 system

1.	 Provides Advanced Administration techniques for
SQL Server 2008 R2

2.	 Covers the essential Manageability,
Programmability, and Security features

3.	 Emphasizes important High Availability features
and implementation

4.	 Explains how to maintain and manage the SQL
Server data platform effectively

Expert Cube Development
with Microsoft SQL Server
2008 Analysis Services
ISBN: 978-1-847197-22-1 Paperback: 360 pages

Design and implement fast, scalable, and
maintainable cubes

1.	 A real-world guide to designing cubes with
Analysis Services 2008

2.	 Model dimensions and measure groups in BI
Development Studio

3.	 Implement security, drill-through, and MDX
calculations

4.	 Learn how to deploy, monitor, and performance-
tune your cube

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright

	Credits

	About the Authors

	Acknowledgement

	Acknowledgement

	About the Reviewers

	www.PacktPub.com

	Table of Contents

	Preface
	Chapter 1:
Mastering SQL Trace Using Profiler
	Introduction
	Creating a trace or workload
	Filtering events
	Detecting slow running and expensive
queries
	Creating trace with system stored
procedures

	Chapter 2:
Tuning with Database Engine Tuning Advisor
	Introduction
	Analyzing queries using Database Engine Tuning Advisor
	Running Database Engine Tuning Advisor for workload
	Executing Database Tuning Advisor from command prompt

	Chapter 3:
System Statistical Functions, Stored Procedures, and the DBCC SQLPERF Command
	Introduction
	Monitoring system health using system
statistical functions
	Monitoring with system stored procedure
	Monitoring log space usage statistics with DBCC command

	Chapter 4:
Resource Monitor and Performance Monitor
	Introduction
	Monitoring of server performance
	Monitoring CPU usage
	Monitoring memory (RAM) usage

	Chapter 5:
Monitoring with Execution Plans
	Introduction
	Working with estimated execution plan
	Working with actual execution plan
	Monitoring performance of a query by SET SHOWPLAN_XML
	Monitoring performance of a query by SET STATISTICS XML
	Monitoring performance of a query by SET STATISTICS IO
	Monitoring performance of a
query by SET STATISTICS TIME
	Including and understanding client statistics

	Chapter 6:
Tuning with
Execution Plans
	Introduction
	Understanding Hash, Merge, and Nested Loop Join strategies
	Finding table/index scans
 in execution plan and fixing them
	Introducing Key Lookups, finding them in
execution plans, and resolving them

	Chapter 7:
Dynamic Management Views and Dynamic Management Functions
	Introduction
	Monitoring current query execution
statistics
	Monitoring index performance
	Monitoring performance of TempDB
database
	Monitoring disk I/O statistics

	Chapter 8:
SQL Server Cache and Stored Procedure Recompilations
	Introduction
	Monitoring compilations and recompilations at instance level using Reliability and
Performance Monitor
	Monitoring recompilations using SQL Server Profiler

	Chapter 9:
Implementing Indexes
	Introduction
	Increasing performance by creating a
clustered index
	Increasing performance by creating a
non-clustered index
	Increasing performance by covering index
	Increasing performance by including
columns in an index
	Improving performance by a filtered index
	Improving performance by a columnstore index

	Chapter 10:
Maintaining Indexes
	Introduction
	Finding fragmentation
	Playing with Fill Factor
	Enhance index efficiency by using the
REBUILD index
	Enhance index
 efficiency by using the
REORGANIZE index
	How to find missing indexes
	How to find unused indexes
	Enhancing performance by creating an
indexed view
	Enhancing performance with index on Computed Columns
	Determining disk space consumed by
indexes

	Chapter 11:
Points to Consider While Writing Queries
	Introduction
	Improving performance by limiting the
number of columns and rows
	Improving performance by using sargable conditions
	Using arithmetic operator wisely in predicate to improve performance
	Improving query performance by not using functions on predicate columns
	Improving performance by Declarative
Referential Integrity (DRI)
	"Trust" your foreign key to gain performance

	Chapter 12:
Statistics in
SQL Server
	Introduction
	Creating and updating
 statistics
	Effects of statistics on non-key column
	Find out-of-date statistics and get it correct
	Effect of statistics on a filtered index

	Chapter 13:
Table and Index Partitioning
	Introduction
	Partitioning a table with RANGE LEFT
	Partitioning a table with RANGE RIGHT
	Deleting and loading bulk data by splitting,
	merging, and switching partitions (sliding window)

	Chapter 14:
Implementing Physical Database Structure
	Introduction
	Configuring data file and log file on multiple physical disks
	Using files and filegroups
	Moving the existing large table to separate physical disk
	Moving non-clustered indexes on separate physical disk
	Configuring the tempdb database on
separate physical disk

	Chapter 15:
Advanced Query Tuning Hints and
Plan Guides
	Introduction
	Using NOLOCK table query hint
	Using FORCESEEK and INDEX table hint
	Optimizing a query using an object plan guide
	Implementing a fixed execution plan using SQL plan guide

	Chapter 16:
Dealing with Locking, Blocking, and Deadlocking
	Introduction
	Determining long-running transactions
	Detecting blocked and blocking queries
	Detecting deadlocks with SQL Server
Profiler
	Detecting deadlocks with Trace Flag 1204

	Chapter 17:
Configuring SQL Server for Optimization
	Introduction
	Configuring SQL Server to use more
processing power
	 Configuring memory in 32 bit versus. 64 bit
	Configuring "Optimize for Ad hoc Workloads"
	Optimizing SQL Server instance
configuration

	Chapter 18:
Policy-based Management
	Introduction
	Evaluating database properties
	Restricting database objects

	Chapter 19:
Resource Management with Resource Governor
	Introduction
	Configuring Resource Governor with SQL Server Management Studio
	Configuring Resource Governor with T-SQL script
	Monitoring Resource Governor

	Index

