
www.allitebooks.com

http://www.allitebooks.org

Mobile First Bootstrap

Develop advanced websites optimized for mobile
devices using the Mobile First feature of Bootstrap

Alexandre Magno

BIRMINGHAM - MUMBAI

Mobile First Bootstrap

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1111213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-579-2

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Alexandre Magno

Reviewers
Julien Renaux

Felipe Silva

Acquisition Editors
Meeta Rajani

Owen Roberts

Commissioning Editor
Amit Ghodake

Technical Editors
Monica John

Tarunveer Shetty

Copy Editors
Aditya Nair

Shambhavi Pai

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Akash Poojary

Proofreader
Linda Morris

Indexer
Rekha Nair

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

About the Author

Alexandre Magno has worked for 10 years as a web developer, and is currently
working as a software engineer at globo.com. He is a very active contributor in the
open source community with plenty of projects and acts as a jQuery evangelist and
a responsive design missionary. As a multidisciplinary developer, he has strong
experience in a wide range of server-side frameworks and CMS such as Ruby on
Rails, Django, WordPress, and exploring Node.js. He has developed many libraries
that are widely used at globo.com, and was one of the first developers to develop
mobile websites with a responsive design in the company he worked at. He is an
active contributor of Twitter Bootstrap and the creator of one of its branches, the
Globo Bootstrap, which is the first translation of Bootstrap to Portuguese, and also
developed some components used in globo.com.

He is very passionate about web development, and he writes about it in his blog
at alexandremagno.net. He has already contributed in the publishing of a web
magazine about jQuery UI and has even made presentations in some technical
events, such as the International Free Software Forum (FISL). Writing this book for
him is a great step further, after these achievements.

Besides technology, he is a musician and song writer too. He likes to remember every
moment of his life with a music lyric. At this moment, for example, the verse would
be "We are the champions, my friend".

www.allitebooks.com

http://www.allitebooks.org

Acknowledgements

It was a long journey to get this project into reality, and I would like to thank the
team behind this book's publication for their help.

But I would never forget to thank my mom, my family, and friends that support
me all the time. I'm sure they're all very excited about this book. Although some
of the people who are close to me have no idea what exactly this book is for (for
them, I'm just the "nerd guy" or the "geek"), they're still interested in checking it
out. It's pleasant to spread the technical knowledge for everyone with a strong
demonstration through this book about how the Web is changing society and
people's lives. This reason is far enough to make me proud to write this book.

It was very enjoyable to get involved in a new web paradigm and write my piece of
contribution to make it a part of the whole new world of web technologies across
devices. Mobile First and Bootstrap are powerful sources to make a developer, a
designer, or a curious advanced developer get into the brand new mobile web. After
this book, you will think about the Web in a different way, and I'm guiding you to
meet the new era that will change our minds from fixed width to fluid. So, let's make
your mind flexible to think about how to apply Bootstrap correctly with the Mobile
First approach and make you capable of doing amazing mobile web projects.

About the Reviewers

Julien Renaux is a software engineer specialized in frontend development.
Currently working in France, Julien worked in four continents for companies such as
eBay, in which he used Bootstrap since the first release in 2011. He is web-passionate
and a JavaScript-aholic, and he loves to learn new technologies and share his
experience and enthusiasm on his blog: http://julienrenaux.fr.

Felipe Silva is originally from Rio de Janeiro, and now lives in Brooklyn. He has
more than seven years' experience in frontend development. He is now a part of the
video team at The New York Times as a senior JavaScript engineer. Previously, he
worked at Huge, a digital agency based in Brooklyn, and during that time, he built
several responsive products for companies such as Four Seasons, GE Capital, Target,
and others. Back in Brazil, he used to work for globo.com, the Internet arm of Globo,
which is the largest media conglomerate in Latin America.

www.allitebooks.com

http://julienrenaux.fr/
http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @
PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Bootstrap 3.0 is Mobile First	 7

Bootstrap reviewed	 8
Desktop to responsive	 10
The new mindset – Mobile First	 11
Practical example – The responsive dropdown	 15
Now Bootstrap uses Bower and Jekyll	 16
Running the docs	 16

Version 3 in progress in the Github repository	 16
Installing Jekyll	 16

Bower	 17
First step to responsiveness	 18

Making changes in the Bootstrap source code	 18
Running tests	 19

Summary	 19
Chapter 2: Designing Stylesheet in Bootstrap 3	 21

The grid system	 22
Semantic grids	 22
The grid framework	 24
Breakpoints and completely fluid layouts	 25
Predefined classes to control responsive flow	 25

Forms in different resolutions	 27
The icon library	 28
Responsive utilities	 29

Responsive classes	 29
Semantic grid variables and functions	 30

Table of Contents

[ii]

Relative units	 30
Navigation	 31
Summary	 33

Chapter 3: JavaScript, the Behavior in Mobile
First Development	 35

The carousel example	 36
A touch of enhancement	 37

Data attributes	 41
Mobile First and progressive enhancements	 42

Be semantic in your HTML markup	 42
Unobtrusive JavaScript	 44
Follow the Bootstrap tips about accessibility	 44

Test a site in a lynx browser	 45
Namespace events	 46
JavaScript on the server	 46
Summary	 47

Chapter 4: Getting it All Together – a Simple Twitter App 	 49
Bootstrapping our application	 50

Inserting a customizable version of Bootstrap	 50
The project template	 52

The Bootstrap modal component example	 55
Geolocation	 56
The Twitter API search	 58

Make a search	 60
Going from a tablet device to desktop screen resolution	 61
The choice between a web app and mobile application	 63
Summary	 64

Chapter 5: Performance Matters	 65
Responsive images	 66
Load on demand	 72
Optimizing icons	 72
Summary	 73

Index	 75

www.allitebooks.com

http://www.allitebooks.org

Preface
We are living in a rapidly changing time because of the way we use the Web.
To follow up on this currently changing paradigm, the development cycle finds
its way to follow this new scenario. The frontend community is building amazing
tools to make it possible to deal with so many changes. In the past, we had to deal
with browsers that did not respect the standards. Now, we are dealing with new
devices with a wide range of features. The Web is going mobile. With so many
limitations on one side, and the power of flexibility on another side, the mobile
and tablet just cannot be a substitute for the huge and wide desktop screens.
The mobile needs are complementary to the desktop's standard nature. On the
other hand, there's a brand new opportunity with its mobile use and simplicity
that makes us see an ongoing challenge to expand our business. This way we
have a presence in the ever-growing online market. The Web is not only limited
to a desktop anymore. We have to think wider.

The most famous frontend frameworks also have to undergo a deep change to meet
this demand. They are radical. In the new Bootstrap release, they decided to get
their learning from the oldest version and redesign from scratch, but the focus is
now on Mobile First as a user environment. Why do you have to focus on the mobile
environment now?

Well, in the new paradigm, we will just get a Mobile First framework for simple
development like we used to. We have to follow it up and see how powerful an
online product cross device with no disturbing complexity can be, even though it
sounds complicated.

We know that Bootstrap is not a silver bullet, but it's a great option to start your
development cycle for Mobile First. It makes things simple, and we should know
how it does it, because this Version 3 is based on a lot of contributions from
Bootstrap developers. This is a strong reason for you to follow the same principles.

Preface

[2]

You may have already used Bootstrap or visited sites that use it. It's not hard to
identify Bootstrap's basic template in a lot of websites around here, for example, the
documentation APIs of open source projects. Research of the meanpath shows that
Bootstrap is present in 1 percent of the 150-million websites worldwide, powering
1 percent of the Web (http://blog.meanpath.com/twitter-bootstrap-now-
powering-1-percent-of-the-web/). So, we know the power of its use and the
amazing things we can do, but now we can do even more, and you have a chance to
explore its new capabilities.

In this book, we will not just look at the Bootstrap changes, but also cover the
mindset that makes us think mobile and go through an efficient multidevice
development. We will develop a sample short message app that will be called
Cochichous, which users can check the nearest messages sent by other users using
Twitter API. We will explore HTML5 and JavaScript capabilities, as well the grid and
the Bootstrap plugins. Besides that, we will also discover what has changed with this
new important release.

What this book covers
Chapter 1, Bootstrap 3.0 is Mobile First, introduces you to the Mobile First
development, and makes you understand why Bootstrap was redesigned to this new
approach and the reasons we should take care of. We will get a little vision about the
responsive design and how Mobile First works with it. Then, we will get in contact
with Bootstrap documents to start checking the new documentation and make tests
to familiarize ourselves with a Mobile First website.

Chapter 2, Designing Stylesheet in Bootstrap 3, gets us started with the CSS structure
and the main grid changes, as well as showing us an example on how to make
decisions about breakpoints using Bootstrap grid classes. We will get an overview
of how the navigation deals with Mobile First, and how to get forms optimized to
different devices.

Chapter 3, JavaScript, the Behavior in Mobile First Development, will lay the foundation
of stylesheets, and we will get in touch with JavaScript. In Bootstrap, this is
represented by JavaScript plugins using jQuery that's almost intact in this version.
It's a great opportunity to learn how to adapt the Bootstrap JavaScript plugins to
work with a new device's capability and how to explore its pattern to build your
own plugins. There's a clear explanation about progressive enhancement that we
probably have already heard before, but now we are focused on applying Mobile
First techniques.

www.allitebooks.com

http://www.allitebooks.org

Preface

[3]

Chapter 4, Getting it All Together – a Simple Twitter App, will get all the pieces already
learned to make a real Mobile First sample and a simple product to allow us to have
an overall idea of how to develop a Mobile First new product from scratch. We
start to deal with the capability offered by the mobile browser to deliver a better
experience on mobiles for our users. Then, we get all the points that surround the
decision about a web app or a native app.

Chapter 5, Performance Matters, will cover what needs to be done to have our mobile
experience optimized, how this optimization affects the accuracy still present in the
desktop, and how the Mobile First development can be a powerful tool to make our
website faster. We will learn three main techniques: optimizing images, loading
components on demand, and the use of fonts to render icons.

What you will need for this book
You will just need a computer and an Internet connection. Use your favorite
development tool that you are already using to develop your HTML/CSS/JavaScript
layers from your application. It would be good to have a mobile phone to test your
projects and feel how your site works on a mobile.

Who this book is for
This book assumes that you are already familiar with Bootstrap to understand the
huge differences in this third version. But, if you're discovering Bootstrap right
now, don't worry, just get into the documents and use the book as a guide to use
Mobile First development with Bootstrap. If you are already familiar with mobile
web app development, this book is helpful in allowing you to use this knowledge
with Bootstrap as a frontend framework for your Mobile First needs. Bootstrap is
for everyone, so if you are familiar with frontend technologies such as JavaScript,
HTML, and CSS, you will have a chance to customize and use it as a strong frontend
tool or even use Bootstrap as the style guide for your projects in your company. But,
if you are not familiar with frontend, for example, if you are a designer, Bootstrap
could be helpful, and you just need notions of HTML to use Bootstrap for your
websites. This is possible just with the lessons learned from the book and the
Bootstrap documentation.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The following lines of code apply a
conditional statement to the $(window) object that checks its width against a value
greater then 960 and them makes a loop in each image to change the attribute source
accordingly with this condition."

A block of code is set as follows:

if($(window).width() > 960) {
 $('img').each(function(){
 $(this).attr('src', $(this).data('desktop'));
 });
}

Any command-line input or output is written as follows:

grunt

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "In your account that
you just created, go to your account menu and click on Create a new application".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http://www.allitebooks.org

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Web page for the book
There is a web page for the example chapter at http://cochichous.herokuapp.com
with all the code used in Chapter 4, Getting all together – a Simple Twitter App so you
can explore the whole example.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Bootstrap 3.0 is Mobile First
Twitter Bootstrap framework's upcoming version is Mobile First. This milestone is
not just technical, it's strategic. It follows the current paradigm of design for the Web.
It's a design for the future.

But why Mobile First? Why did Bootstrap completely change its course from
Desktop First to Mobile First to get into this new way to develop more suitable
websites and web applications? Why did the most popular frontend framework
embrace this change at a time when responsive web design is continuously growing
with better suited and standard techniques such as media-queries, fluid layout, and
JavaScript on demand?

Mobile browsers are increasing support for the brand new HTML5 and CSS3,
with the philosophy to offer, for older browsers, a less stylized but fully functional
component, and for capable browsers a rich and full experience that comes from
mobiles to larger screens such as TVs.

For older browsers (such as IE 8 and IE 9), Bootstrap has functional support, but
enhanced features such as rounded corners and a placeholder attribute for tips in
input fields are not supported for these browsers. To see the full details on browser
support, check the Bootstrap documentation from the Getting started section
(http://getbootstrap.com/getting-started/#browsers).

We are living at a time when mobile use is increasing at a pace that will soon surpass
desktop usage (http://www.businessinsider.com/mobile-will-eclipse-
desktop-by-2014-2012-6). Apart from the statistics, one thing we can presume is
that the web scenario is changing so fast that we have to embrace the certainty of
devices getting better and smarter.

Bootstrap 3.0 is Mobile First

[8]

In this chapter, we will explore the main changes in Bootstrap 3. If you are already
familiar with Bootstrap 2, check the migration guide (http://getbootstrap.com/
getting-started/#migration) to have a practical overview about what has changed.
If you're not familiar with Bootstrap, there's nothing that's too difficult for you to
understand directly from this book about this new version. The only thing you need to
have in mind is the Mobile First approach, which is covered well in this book.

You will be guided to design with Mobile First, discover why Mobile First is so
important, and how to make Bootstrap a powerful frontend platform to make your
site friendly for a wider range of devices.

We can take a step further and add to your previous Bootstrap knowledge by
thinking of a concrete way to design processes as a continuous layer of capabilities
and embrace the constraints and not fight with them. Mobile First with Bootstrap
is an elegant solution for frontend development. Combined with server-side
techniques, we get a full bag of solutions to get your product better suited to
different users and needs in different platforms.

This chapter will cover the following topics:

•	 Bootstrap reviewed
•	 Desktop to responsive
•	 The new mindset – Mobile First!
•	 Now Bootstrap uses Bower and Jekyll
•	 Running the docs

Bootstrap reviewed
In the third era of Bootstrap that is coming, the developers have redesigned the
whole framework with a different approach. Let's get started building interface
components of small and simple screens, instead of adapting the existent UI
components to fit in a constrained environment. From mobile, we will then go
to desktop. However, we will not adapt the experience as we usually do with
responsive design going from desktop to mobile. Now with Mobile First we will
enhance accordingly as we increase the device screens.

Why should I do this if my target audience will be using desktops? Going to mobile
indirectly benefits desktop users. But how? To better understand this, let's recap
Bootstrap history for a while.

In 2011, Bootstrap was launched to serve as a live and agnostic style guide that
was used by Twitter to create their products. It became an open source framework
at that time. It was a time when we worked in pixel-perfect layouts and explored
CSS3 animations, and we found in Bootstrap a well-documented and standardized
set of features.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[9]

Bootstrap creates a new design for the browsers because you don't need to define
basic interface elements from scratch, such as buttons. At the same time, you have
utility elements like badges to cover the most common interface elements. Bootstrap
does what a framework is supposed to do: Bootstrapping! The term means the
act of taking off a new project; it's like saying, "give me the tools that I will need
to start developing my application for different needs". Bootstrap is a toolkit belt
with standard conventions from well-defined classes with clean and practical
documentation to live code that is ready to use and be customized for your needs.
It's not a magic solution to solve the interface element reuse issue, but it's a kick-start.
It fits in so many scenarios that developers are increasing its use with their own tools.

"CSS moved beyond type, forms and grids. People get tired to create the same
stuffs"

— Mark Otto, one of Bootstrap's creators, in the Desktop First to Mobile First
Bootstrap presentation (https://speakerdeck.com/mdo/desktop-first-
to-with-bootstrap)

A must-have from this breeding ground of possibilities is the Bootstrap extension
font-awesome (http://fortawesome.github.io/Font-Awesome/). It uses font-face,
which is widely supported and flexible, instead of sprites for icons. With a single CSS
file and font resources used to render the custom fonts, you have a tool that can handle
all your icons. This shows the flexibility of Bootstrap tools; for example, font-awesome
is independent, works as a standalone project, and is a great fit with Bootstrap.

There are a lot of ways to use Bootstrap. You can customize and extend components,
from editing the source code in LESS variables or customize via the Bootstrap
download page (http://getbootstrap.com/customize/).

At the time of this writing, Bootstrap is the most popular project on Github, so it's
just one more reason to consider its importance. There's now an official Bootstrap
Expo (http://expo.getbootstrap.com/). This is one of the changes in this new
version. Bootstrap Expo is the official directory for websites and web applications
that are being developed using this framework.

A lot of developers get their first touch with the capabilities of HTML5 and
CSS3 with this framework. Bootstrap has amazing capabilities such as offering
a responsive grid, dozens of JavaScript components, and a customizer in a web
interface or through the LESS variables, if you're an experienced developer. It's
suitable for any level of developer and designers because it has solutions that suit
both scenarios. This is the second of Bootstrap's main philosophies—it's made for
everyone.

Bootstrap 3.0 is Mobile First

[10]

Desktop to responsive
With the rise of smart phones, there is a need for responsive content to cover the
growing demand. It's possible to add an optional file with media queries and a
bunch of CSS code and be adapted to mobile needs.

Media queries, a CSS3 module introduced in June 2012, is a basic structure that
gives a namespace with a bunch of CSS rules and declarations according to the
user resolution, density, and screen capabilities. So, with CSS files, it is possible to
manage the ongoing rise of smartphones. It was possible with just one stylesheet file
with good support to adapt according with the device and make a website mobile
friendly.

In Bootstrap Version 2, we used to have an optional file (responsive.less) that
used to have all the media queries necessary for Bootstrap to work well with mobiles.

Another good news is that we can adapt to tablets as a bonus. We have breakpoints
for the most common mobile resolutions—this means we have a range of width (768
px to 979 px) that can represent tablet devices. A breakpoint is the extreme point
(minimum and/or maximum) where you can define CSS rules specific to that range
and change your layout. This could be achieved with a simple declaration of media
queries in your CSS:

@media (min-width: 768px) and (max-width: 979px) { ... }

But sometimes it's indispensable to rethink some elements—some of those already
developed only for desktops—in a pixel-perfect scenario. There's no flexibility in a
pixel-width accommodation. No matter how much the screen is different, the website
will behave like you were using a desktop when we work with fixed units. This
is when we can use a bunch of media queries to get more flexible. Even with this
solution, redefining dimensions and CSS rules according to the device using media
queries will solve screen flexibility issues but not solve performance issues on mobiles.

Performance is one of the main concerns when we go mobile. We have to consider
scenarios where the Internet connection is slow and it is a recurrent issue. You will
have to perform reverse engineering to make your JavaScript optimize loading, and
combine it with server-side solutions. A worse solution would be to just hide content
after considering what could be painful for your page load; for example, images have
a deep impact on the final performance. Lower page response time is equivalent
to more money spent, as we can see in this article about page loading versus user
patience (http://blog.kissmetrics.com/loading-time/). One of the curious
things this research points to is that mobile Internet users expect their browsing
experience in phones to be comparable to what they get on their desktops.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[11]

We are living at a time when the Web is filled with rich content and we have faster
Internet connections. We have to be prepared to offer the closest thing to a fast and
optimized loading, at least for our most important content.

This does not involve just the use of CSS to hide content and show content
depending on the device, as we can do using media queries. It's all about keeping the
concepts simple and focused and developing each interface component thoughtfully
from scratch—the primary use, with the constraints and its enhanced capabilities. It's
not just about adapting, it's exploring the device's capabilities and delivering the best
user experience across platforms.

Sounds familiar? Yes, for sure, the same concept as progressive enhancement, you
might think. You're not wrong. Progressive enhancement was a term widely used at
a time when we talked about HTML page dependency on JavaScript to be functional.
Progressive enhancement is a strategy for web design that relies on semantic markup
and technologies such as JavaScript. Nowadays, progressive enhancement is a longer
term for Mobile First because it's not just about JavaScript disabled, as it was vastly talked
before. A hundred of articles tried to show its benefits in a no JavaScript environment
scenarios. Now progressive enhancement is about to be faster (http://coding.
smashingmagazine.com/2013/09/03/progressive-enhancement-is-faster/).

Progressive enhancement is one of the three keys of Mobile First, together with
responsive design and giving priority to content over navigation. So, these three
rationales are at the background of all the details of Bootstrap 3, from your CSS
components to your grid structure.

The new mindset – Mobile First
There's no way to be fully usable for all the possibilities of human interactions in one
place, as well all the possible scenarios that come as NUI (Natural User Interface),
such as touch, gestures, and voice and other innovative initiatives to interact.

But we need to adapt to the unknown. The desktop of today will be the smartphone
of tomorrow. It doesn't make sense to think of desktops as the key platform anymore.
Imagine a technology that has its own limitations but is flexible and can be relied on
for different devices.

Bootstrap 3.0 is Mobile First

[12]

When we create a new project, we have to think mobile, not just deploy our sites as
we usually do and simply ignore the mobile experience. If we decide to ignore this
anyway and start to develop a web application for desktops, we will soon discover
that mobile users grow considerably, and maybe it's too late to adapt then because
our project for desktop becomes complex and any initiative to go mobile is too
complex. Maybe it's not too late if we think positive, but it can become unviable to
have an existing site going mobile in an efficient and fast way. Luke Wroblewski, the
co-founder of Input Factory, said in his book Mobile First, from the A List Apart series
(http://alistapart.com/), published by A Book Apart:

"…if you design for mobile first, you can create agreement up front on what
matters most"

Let's presume we want to simply ignore mobile users for a while, and have our
Minimal Viable Product (MVP) mobile friendly, thinking that mobiles are too
expensive. On the other hand, consider that Mobile First is not only a great benefit
for the mobile experience, but, it also enhances user experience for desktops. When
you design thinking in the lines of constraints, and gradually increase experience
as you progress with the philosophy of keeping only those elements that are of
essential value, you get a thin, usable, fast, focused way to do simple tasks easily.
With a mobile friendly mentality, you can keep things simple and throw away the
unnecessary components.

With a lot of navigation options, it takes longer to decide which option to choose to
complete a task, and this fact makes users angry and they would probably leave the
website. The user's needs for each device is different.

Users are generally distracted while using their phones. They are not as focused
when using mobiles as they are when working on a desktop. These distractions are
present even at home; for example, talking with someone while checking some stuff
on their phones. A faster feedback is necessary.

The last thing they need is a bad and overloaded desktop experience that requires
concentration to choose between a whole bunch of navigation options. Remember
that the mobile user taps—they don't have a mouse with a pointer. It makes them
less precise. We have to consider that the user needs space and proper margins in
each device to have better contact with the website and have complete control with
no scope for mistakes and frustration. Everything has to be clear with the responsive
site flow.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[13]

The Web is blurry. So many functions, so many confusions, and navigations and
websites getting heavy. The necessity of a lot of information goes against the need
for getting information easily. Usability and accessibility become a worry—a key
point of successful projects, but still not obligatory. With Mobile First, progressive
enhancement, performance, and interaction capabilities to achieve the final result are
a priority from scratch.

This is just one of the reasons for unexpected result if your site was developed
expecting the best higher-level support and dependence. The foundation is still
HTML and CSS as a markup and presentation layer. The JavaScript came a layer
above, handling the behavior, and CSS is responsible to control the behavior of
animations and transitions. If your user couldn't have a good experience of your
site on mobile and mobile was his first contact with your site, they will probably not
access from their desktop to check if it's better.

Another point worth mentioning is about the use of screen readers. Its use is
increasing. Read a complete report in this WebAIM survey: http://webaim.org/
projects/screenreadersurvey4/. The usability improvements are in little changes
such as specifying a language attribute, being semantic, and describing images.
These little efforts are closely coupled with Mobile First.

A good example of how we can get a solution that has great benefits in a wide range
of scenarios is a simple anchor link. With a simple anchor link wisely used to skip
to a particular bit of content, it can be very exciting for screen reader users looking
for that bit of content. This can be very precious for mobile users with little space in
a very content-heavy site; for example, he does not want to see menu options but
wants to go directly to the content. A simple solution like that can be golden because
it's simple, a valid markup, and you can style with CSS.

Thinking Mobile First, we can ride in the growing opportunities generated by the
exponential rise in the use of new devices, from little phones to TV browsers. We
have a great possibility to also enhance user experience, from environments such as
desktops on desks to smartphones in hands. Understand that your user's needs are
beyond desktops. The key is to know that thinking Mobile First improves the overall
experience for your customers.

Bootstrap 3.0 is Mobile First

[14]

Simplifying need be expensive or time consuming. It's all about building all the
possible user needs in one platform and not writing the same application twice to get
full support. We all remember that Apple iPhone was the most used phone and now
we have the Android operational system for mobile phones as a strong competitor
(http://techland.time.com/2013/04/16/ios-vs-android/). Native apps have
their own benefits, but the Web is, even with the troublesome differences between
responsive browsers, the most common platform. So, the big networking services
such as Facebook and Twitter use the specificity of the native apps and the flexibility
of the Web.

Even if you want to explore native capabilities, you can have a browser making part
of its strategy. Links from applications point to browsers and applications are fully
featured with links that point to some information. If you want to have your place
in the market to go mobile with an app, you have to keep track on the Web too.
These are not competitors, they coexist together and one solution can make the other
stronger as a communication channel.

While native apps have great features and great advantages in performance, mobile
web experience has its benefits too.

One of the benefits is its easy access. All smartphones have a decent web browser, even
Opera Mini for simple phones. If you do it right, the user gets what he /she wants.

Here is my own personal experience. Once I lost my iPhone (the story of how I
lost it deserves another book). I had an old phone and had to use it for a while. I
became, for a short while, a potential Opera Mini user, but the only thing I could
check were my tweets, and it worked perfectly. Well, I could tweet (that's what a
tweeter is supposed to do). You should be able to tweet anywhere. And they made
my experience in that phone the best possible—I could log in and then have access to
tweets and even tweet about traffic in that little and limited phone, probably faster
than my lost smart phone. Yeah, I was a minority and it was temporary, but this is
just an example of the big picture: thinking mobiles satisfy users about the service as
a whole, not just half-satisfied or satisfied on a specific device. I love Twitter. They
are following me in my tough situation. I lost a phone, but I could communicate with
an old one. Thanks to Twitter.

Another advantage for mobile browsers is that it is a single and flexible system
instead of a specific system for each device. Developing a browser for the iOS and
Android is hard because each one has its own language and tomorrow there will
be more languages and possibilities. The Web is growing too in a different way
alexmagno December 9, 2013 10:58 AM from native applications; the ongoing
evolution uses well-known technologies such as HTML, CSS, and JavaScript.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[15]

Practical example – The responsive
dropdown
The Bootstrap Navbar Component (http://getbootstrap.com/
components/#navbar) is combined with drop-down menus and is widely used to
offer a quick and easy way to give the user an option to navigate to other pages and
executing actions.

As shown in the following screenshot, there's a menu to the left that branches into
submenus to the right. There's a second option of changing this to a "flip" version,
where you navigate through an item to another as if you are jumping between pages.
The third solution works for both desktop and mobiles, with collapsed submenus
always visible. Thus, we need to think simple in order to avoid creating hacks. It is
best to have the optimal solution in both scenarios before even coding and avoid
unnecessary workarounds.

Bootstrap 3.0 is Mobile First

[16]

Now Bootstrap uses Bower and Jekyll
The big change in this Bootstrap release is Mobile First as the design process. But, there
are other relevant changes. From the same place that Bootstrap was born (Twitter),
other son came to the world, and its name is Bower (https://github.com/bower/
bower). The template engine used before, Hogan.js (forked from Mustache) is no more
used. Now, in Version 3, Jekyll (https://github.com/mojombo/jekyll) is adopted
as the template engine. Jekyll is a template language written in Ruby with native
support by Github pages, and it makes it a lot easier to get everything up and running.
With Jekyll, is not necessary to compile the mustache templates to HTML, as we had to
in the earlier version of Bootstrap.

Running the docs
Now, it's time to see Bootstrap V3 up and running and feel the changes for real.
Explore the docs, as it is one of the main features of Bootstrap. You get all frontend
snippets ready for use in your applications. The official documentation and release is
available at http://getbootstrap.com/. But in this section, you will locally run your
checkout version from Github repository.

Version 3 in progress in the Github repository
Execute a Git checkout (for a full Git reference, visit http://git-scm.com/) in your
console to get a clone of Bootstrap in your machine, as follows:

git clone git://github.com/twbs/bootstrap.git

Now, you can install Jekyll and run the server to get the documentation live in
your browser.

Installing Jekyll
Jekyll is a template framework that is very well accepted and widely used for blogs,
for users that prefer code with known markdown languages. It is a way to create
simple and static pages without the use of databases, just Ruby!

Jekyll has configuration options and a set of nice features for templates, but its use
in Bootstrap is very simple; just reuse snippets of HTML, like layout templates.
The main feature of Jekyll is that it is recognized as a template language for Github
pages. By using Jekyll we don't need to compile to HTML before generating pages,
because the Github hosting pages does this for us. So, if you use Jekyll and Github in
a certain way, you have a hosted free website.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[17]

To install Jekyll, you must have Ruby installed. To get a full explanation, visit
https://github.com/mojombo/jekyll.

After Jekyll is installed, you must execute:

jekyll serve

That's it. You now probably have your docs running at http://localhost:9001.

You should see the following screenshot on your desktop or other devices. Enjoy the
links, view it in any device, and explore the documentation as you go:

Bower
Bower (https://github.com/bower/bower) is a package manager for frontend
frameworks that is developed in Node.js to provide good management with client-
side libraries. It's a complete API and works in a way that is very similar to NPM, the
package manager for Node.js modules.

To install Bower, you have to execute the following command:

npm install bower

You can install Bower globally too, with the following command:

npm install bower -g

Bootstrap 3.0 is Mobile First

[18]

Basically, you should install NPM globally only if necessary, but not if it is not
needed. Full details are available at NPM's website (https://npmjs.org/). Bower
is a frontend package manager, so it makes sense for it to be global. To check the
differences, visit the NPM blog (http://blog.nodejs.org/2011/03/23/npm-1-0-
global-vs-local-installation/).

With Bower installed, you can install Bootstrap using the following:

bower install bootstrap

First step to responsiveness
There's a meta tag that you should include in the head of your document that tells the
browser to give a responsive experience using your media queries to rule the layout:
<meta name="viewport" content="width=device-width, initial-scale=1.0">

This meta tag sets the content to the device width. It makes it mobile friendly, not
a desktop site on a mobile. But, you have to define the right media queries. The
width parameter inside the content attribute means that the viewport will be
adapted and optimized for your device, and the initial scale is the applied zoom.
But, there's an interesting discussion about its use at http://stackoverflow.com/
questions/14775195/is-the-viewport-meta-tag-really-necessary.

So, we use this declaration:

<meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=5.0">

It makes the user able to zoom in five times the initial scale.

You can see this meta tag in an example that you could use to start
a sample template from Bootstrap (http://getbootstrap.com/
examples/starter-template/).

Making changes in the Bootstrap source
code
Now, the command line common tasks executed in Bootstrap with Make are
now working with Grunt (http://gruntjs.com/). You have to just use the same
commands that you did with Makefile and do it in Grunt. Makefile is a script from
Unix platforms that automatically compiles source files and it was used to execute
Bootstrap commands in Version 2. The problem comes in the fact that it is only Unix
based. With Grunt, which is JavaScript based, with Node installed, you can have the
common commands executed in other platforms such as Windows.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[19]

Before starting, we can install the necessary dependencies if needed:

•	 Install Node (http://nodejs.org/)
•	 Install all the dependencies (available in package.json, so you have to be in

the root bootstrap directory)
npm install

•	 The following is a command to generate a build via Grunt:
grunt

This command checks if the following aspects from your Bootstrap work
copy are fully functional:

°° Running JSHint on JavaScript
°° Compiling LESS with recess
°° Compiling template
°° Compiling and minifying JavaScript

Running tests
If you are a JavaScript expert, you can develop new JavaScript plugins with jQuery,
as well as fix JavaScript bugs. For this purpose, you need a test to reproduce the
bug to send a pull request for Bootstrap. To check if your JavaScript tests break the
framework, you need to execute the following command to run the JavaScript tests:

grunt test

Summary
This chapter makes you rethink and understand better the concepts behind Mobile
First and why Bootstrap was motivated to be developed with this new paradigm.
The Mobile First concepts change the design, code, and solutions. It's a new
challenge for us. You learned that Bootstrap makes this challenge easier for us by
adapting all the components and the philosophy for mobiles. Thinking mobile is
very important to make us better use Bootstrap 3.

You already know some basics of Bootstrap's new structure. Jekyll and Bower are
new technologies introduced with Version 3. We need to be at least a little familiar
with them to go ahead.

Bootstrap 3.0 is Mobile First

[20]

You got in this chapter a simple and running tutorial to open the Bootstrap 3
docs, which is a valuable reference kit. One of the key aspects of Bootstrap
is live documentation. It's a live style guide and all design elements are
meta-documented. With this knowledge, you will be able to plan a website
and explore the powerful features, starting from mobiles and finishing with
any device that can browse the Internet.

Now, we are ready to get the CSS components redesigned for Mobile First and
learn how they work with the new grid system, forms, and units and the issues
that surround stylesheet development for mobiles.

www.allitebooks.com

http://www.allitebooks.org

Designing Stylesheet in
Bootstrap 3

What's new in CSS implementation of this new Bootstrap version? One direct
answer: responsiveness is not optional anymore. Responsiveness is now included in
a single Bootstrap CSS and aims to be mobile friendly from the start.

In this chapter, we will discover the new features in the Bootstrap stylesheet that bring
us a powerful choice to stylize the content in a completely reliable way for the device.
With the new grid system, it's possible to define how the resolution will behave at
different breakpoints and allows us to think about Mobile First from the scratch. We
will discover flexible ways to work with semantic grids to explore the forms attached
to the grid system, and make different form layouts adapt easily to take form usability
a step further. Also, we will to discover some tricks about the issue with relative units
and how to use navigation components for friendly mobile navigation.

This chapter will cover the following topics:

•	 The grid system
•	 Forms in different resolutions
•	 The icon library
•	 Responsive utilities
•	 Relative units
•	 Navigation

Designing Stylesheet in Bootstrap 3

[22]

The grid system
The Bootstrap Mobile First grid system meets all of the developers demands for
flexibility. It's not just a simple grid system, as we knew in Bootstrap 2. It's more
flexible, adapted to the mobile mindset with full control of all the responsive
flows. This means Bootstrap 3 is an enhancement from the best of the existing grid
framework, with full new support to the semantic grid system.

Semantic grids
One of the main drawbacks in Bootstrap 2 is the fact that there's no nice way to make
the grid become semantic efficiently. This means that you have to stylize the grid
classes into HTML in the following manner:

<div class="grid_x"></div>

In a semantic grid, you can use declarative markups to transform the grid system
as we want, using the LESS mixins to define rows, columns, and grid elements,
as shown in the following code:

footer { .column(12); }

LESS is a preprocessed CSS language stylesheet that makes use of variables and
mixins for developing dynamic CSS. Mixins are a bunch of CSS declarations that
can be used as stylesheet functions.

Before getting into the semantic grid system in Bootstrap 3, you should know a little
about LESS and the power of mixins. In the following example, we use a basic mixin
to make a border-radius property work in Firefox and Chrome for you to get familiar
with a real mixin (first part is the LESS mixin, the second part is the LESS CSS, and the
third part is vanilla CSS):

//mixin
.rounded {
 border-radius: 5px;
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}
//CSS
#menu {
 color: gray;
 .rounded;
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[23]

//Output
.rounded {
 border-radius: 5px;
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}

Now, with the LESS mixins in mind, we can imagine a grid system generated by
mixins. A great example of semantic grid, is Semantic.gs (http://semantic.gs/).
You can achieve a semantic grid system from other frameworks too, such as Susy
(http://susy.oddbird.net/).

With the following HTML (with Semantic.gs):

<header>...</header>
<article>...</article>
<aside>...</aside>

We can have the related CSS (with LESS):

//variables
@column-width: 60;
@gutter-width: 20;
@columns: 12;
//Including mixins
header { .column(12); }
article { .column(9); }
aside { .column(3); }

The preceding CSS gives us the freedom to control the responsive flow using the LESS
mixins to construct the grid structure. All grid placements, are CSS responsibility.
Because we use CSS to define grid placements and not a class in HTML to tell how
many spaces the column will take, we put everything in its place without inserting
extra markups and grid styles into CSS. There's a great advantage in using this for
complex grids and not becoming a slave to the markup full of grid classes, because
you're not limited to declaring grid classes that tell the dimension. Using a semantic
grid, we have decoupled the layout from HTML and moved to CSS.

The semantic Bootstrap version from the same grid could be rewritten as follows:

.wrapper {
 .make-row();
}
.header {
 .make-sx-column(12);
}

Designing Stylesheet in Bootstrap 3

[24]

.article {
 .make-sx-column(9);
}
.aside {
 .make-sx-column(3);
}

The grid framework
In contrast to the semantic grid system, the grid framework is the common grid we
have already known in Bootstrap that use classes in HTML to determine grid spaces.

The semantic grid is an extracted mixin of the grid framework. To simplify this, we
could use:

grid_2 {
 .make-column(2);
}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

We can do this repeatedly to create an entire custom grid system. In fact, the
semantic grid mixin from the Bootstrap core builds the Bootstrap grid framework.

Even with this flexibility, the Bootstrap is a symmetric grid. This means, it follows
the @column-width, @gutter-width and @columns variables for building the whole
grid with an equal distribution based on these variables. There are other unlimited
ratios that are not symmetrical. These are called asymmetric grids. An asymmetric
grid is useful for more complex needs.

We have unlimited grid tools; one of these is Singularity, which explores the power
of an asymmetric grid (http://scottkellum.com/2013/04/05/singularity-
a-modern-grid-framework.html). Singularity is a grid system rather than a grid
framework. It has more robustness for exploring different ratios in custom grids.
Bootstrap 3 is not just a grid system because the grid component is just one part of
an entire framework. To see how it works, check the semantic grid examples in the
Bootstrap documentation (http://getbootstrap.com/css/#grid-less).

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[25]

The following table shows the main differences between the grid options in
Bootstrap 3:

Grid frameworks Semantic grid Asymmetric grids

Pros •	 Simple to use
•	 Predefined grid

width as per CSS
Classes

•	 No extra markup
•	 Grid dimensions

decoupled from the
markup

•	 Organic grid
organization

•	 Does not follow
fixed-ratio grid
dimensions

Cons •	 Has extra markup
•	 Row width defined

in HTML

•	 Defining the
width of every
grid component is
mandatory

•	 Complex to
use, more LESS
variables

Breakpoints and completely fluid layouts
Breakpoints set a range of common resolution widths used for making significant
changes in the layout. Bootstrap has a naming convention for this: phone, tablet,
and desktop.

Sometimes, there are more breakpoint cases and matching criteria than the three
main ones. So we have two scenarios: a pixel layout using breakpoints or a
completely fluid layout.

Now, Bootstrap has a flat-grid framework that allows us to create more complex
mobile grids; you can make use of the grid offsets, as we did for desktop in
Bootstrap's previous versions.

Predefined classes to control responsive flow
The grid in Bootstrap 3 now has a unique class for defining a grid. There are no row-
fluid classes anymore to say that the grid should behave as fluid in our stylesheet.
We can use declarative classes to define the orientation for many breakpoints.

In Bootstrap 2, we would do the following for enabling a fluid layout:

<div class="container-fluid">
 <div class="row-fluid"> … </div>
</div>

Designing Stylesheet in Bootstrap 3

[26]

In Bootstrap 3, we would do the following:

<div class="container">
 <div class="row">
 <div class="col-md-4"> … </div>
 </div>
</div>

Now, in Version 3, there are grid classes that describe the screen resolution's ranges.
This is an intuitive way for enabling us to differentiate between device width and its
respective breakpoints.

In the mobile-stacked, one-column version, we already define how Mobile First
will behave when a new breakpoint is reached, for example, from a 320-pixel phone
to a 768-pixel tablet.

The default column class is .col-xs-n, where n is a number between 1 and 12,
for extra small screens (phones below 768 px). It has 12 columns for mobile, and
is prefixed with lg, for instance .col-lg-n for larger devices, where n is a number
between 1 and 12, and we have .col-sm-x for tablets that work following the
same rationale.

We have the setup, as shown in the following figure. We can compare the grid size
of two devices and check out the behavior in wide and small resolutions:

As we can see in the previous figure, .col-xs-12 .col-md-8 classes indicate 12 columns
in mobile, and 8 columns in medium-screen devices such as desktops.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[27]

Then, .col-xs-6 .col-md-4 means that extra small screens (xs) are 6-columns wide and
medium screens, such as desktops, are 4-columns wide.

The last column is divided into two columns with the same width: 6 for right, 6 for
left, both for mobiles as well as desktops. The extra small screen is the default one,
so it will behave in the same way for desktops.

We can have the following variations:

Classes (* is a number between 1 and 12) Devices

.col-xs-* Below 768 px

.col-sm-* Between 768 px and 992 px

.col-md-* Between 992 px and 1200 px

.col-lg-* Up to 1200 px

You can refer to the Bootstrap Grid options section in the documentation at
http://getbootstrap.com/css/#grid-options for more details.

The Flex grid, a new draft specification for CSS level 3, works in a similar manner,
because it uses CSS rules to define breakpoint changes (http://www.w3.org/
TR/css3-flexbox/). This new box model can optimize the user interface design
experience and make it possible for us to really build layouts with CSS in two
dimensions. We define how the flex orientation should be, as the Bootstrap 3 does
using the preceding classes.

Forms in different resolutions
The form layout still resides in the same grid naming conventions. With the power of
Mobile First, you can have forms optimized to match the user's best experience
of filling forms.

In the old Bootstrap versions, you use the grid classes for full control on form
placement. However, the best practice is to not use classes in the form elements
dedicated to make an input column work as a grid. You can wrap the input into a grid
container and get its space. By default, the inputs keep your width as 100 percent.

Designing Stylesheet in Bootstrap 3

[28]

In a form design, we do not need to specify the width in pixels. It seems easier
to specify this at the beginning, but it's just a matter of time before you lose the
flexibility and feel obligated to design each input size. There's a more convenient
way to do this: relative and named sizes.

With named sizes, such as small, medium, and large, granulated names such
as big and bigger are better for defining the input sizes.

This convention gives us the power to develop different form designs, without
messy layouts in different resolutions, because it is already handled by Bootstrap
to behave accordingly in different devices.

If we try to have a fixed width in inputs, we may get into trouble. As the window
resizes, the input will keep that size. We may lose the power of the grid framework
and also lose a great opportunity to follow the Bootstrap framework to have a flexible
grid with little effort. It's really a good practice to use your inputs inside a grid
container and leave the control and command with the grid.

We can't forget to mention that using forms semantically is a wise decision for
avoiding unnecessary code. With the simple usage of the input in HTML 5 type
attributes, we have an easier method for collecting the best user experience for each
device. For example, a date-input format can make the date you select in a smart phone
look the same as used in apps. Input with the file type lets you attach a picture easily
and it even lets you use your smart phone camera to take a picture instantly and use
for your website.

The icon library
Bootstrap 2 usually uses images to render a basic set of icons as sprites. However, it
takes time to load and sometimes cannot be essential thinking in terms of performance
for a website page. We always have to import an extra image and sometimes lose
flexibility with it when we need optimized sizes in accordance with the device.

In different dimensions, we have to deal with different optimized image sizes, which
are optimized for a given device; this results in more image files, extra storage space,
more dependencies, and so on.

Glyphicons (http://glyphicons.getbootstrap.com/) is an icon library for
Bootstrap; part of its core responsibilities is to manage and give utility classes for
defining an icon:

<i class="icon-camera"></i>

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[29]

This library uses font-face to generate icons instead of sprites, so as an isolated icon
library, Glyphicon is getting better and now adapts to flexibility. One of the greatest
benefits of this, is that it now uses font-face to font rendering and lets us size the icon
according to the font size as well as use colors, animations, and CSS effects, such
as shadow. This is a great method to handle icons, but you can't forget that fonts
as icons have limitations and we can use them only for monochromatic icons.

Responsive utilities
Bootstrap now has a full set of mixins used for helping you improve the responsive
experience. It's time to explore semantic grid mixins and other responsive utilities.

Responsive classes
There are responsive utility classes for making mobile development easier and
friendly. With visible and hidden classes, combined with large, small, and medium
devices, we have a complete and powerful way to control our device experience
to sometimes not display some information in each specific device, as shown in
the following table:

Classes Devices

.visible-sm Small (up to 768 px) visible

.visible-md Medium (768 px to 991 px) visible

.visible-lg Larger (992 px and above) visible

.hidden-sm Small (up to 768 px) hidden

.hidden-md Medium (768 px to 991 px) hidden

.hidden-lg Larger (992 px and above) hidden

Designing Stylesheet in Bootstrap 3

[30]

Semantic grid variables and functions
Now, we can use a flexible way for defining our grid in CSS (with LESS):

.make-row(@gutter: @grid-gutter-width);

.make-sm-column(@columns; @gutter: @grid-gutter-width);

.make-sm-column-offset(@columns);

.make-sm-column-push(@columns);

The same applies for the md and xs prefixes; so, basically, we have the following
formula for the semantic grid functions:

.make-type-column(@columns; @gutter: @grid-gutter-width);

.make-type-column-offset(@columns);

.make-type-column-push(@columns);

The type can be xs, sm, md, and lg (extra small, small screen, medium, and large).

With these semantic grid mixins, you can create a grid structure. Use .make-row()
to create a row to be nested with a composition of column layouts that have a single
parameter for defining width. Use .make-column to create a column grid that sums
up to 12. You can use .make-type-offset to give an offset, like we usually do in
Bootstrap, as well as while pushing and pulling columns.

Relative units
Which unit of measure should we adapt for our mobile needs? Do we really not
need the EM unit anymore? When IE6 did not support font sizing, EM was the only
way for font sizing in IE without using JavaScript. For Mobile First, the EM unit
has its own advantages.

We need a font unit that allows us to maintain the aspect ratio, as per the screen size.
While considering the adequate font unit and while comparing it to the grid, the
fonts should follow the grid in a certain ratio. Instead of defining a base font-size in
each media-query breakpoint and for each element, redefine the font-sizes. It's better
to have a proportional and relative unit ratio, and this can be achieved with an EM
or percentage unit.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[31]

In this new version, the Bootstrap milestone has a lot of discussions about using the
EM unit over pixels, but the limitations with its use don't justify the benefits. They
still support IE8 with a pixel fallback, and this approach will generate duplicate
code. Nesting the EM unit is historically a headache and a cross browser issue, and
sometimes, we need extra math to compute the pixel values.

We can use a mixin to convert the font units, but that's not an ideal solution, and
Bootstrap will probably change it in future releases.

Pixel values are still used for font sizing and are controlled by @font-size-base,
@font-size-large, @font-size-small that hold fonts for the default size of large
screens and small screens respectively.

Navigation
Now, with responsive navigation we don't have more optional CSS files to make
your menu fully usable.

The menu now shrinks to a completely adapted menu for all user needs. The famous
technique of transforming a full menu into a mobile menu experience is free of
any setup. Just add the navbar and navbar-default classes, and you get a main
navigation bar for your website.

The navigation bar uses the JavaScript Collapse plugin (http://getbootstrap.com/
javascript/#collapse) to have a default responsive navigation bar using just links
and lists. Please check out the Bootstrap documentation (http://getbootstrap.
com/components/#navbar) to see more details about this component.

We can use simple classes such as navbar and navbar-inverse to have a fully clean
experience in different contrasts, so we have navbar with a white background and
the inverse class when we wish to have navbar with a black background.

From a Mobile First point of view, we start with a menu that can be toggled and
fully collapsed, which becomes a horizontal menu as the viewport increases. This
is shown in the following figure:

Designing Stylesheet in Bootstrap 3

[32]

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[33]

Summary
As we could see in this chapter, Bootstrap CSS got cleaner and more powerful in
Version 3. We took advantage of Mobile First to get the most well-designed style.
With Mobile First in mind, it becomes simple to progress and design our application
using the Bootstrap grid and utility classes. Bootstrap was revisited and the Mobile
First CSS gave us many approaches for different application needs for mobiles.

You learned different grid conventions adapted for Bootstrap, and got introduced
to the semantic grid, and saw how it works with the use of this flexible tool to make
Bootstrap grid more convenient for our mobile needs.

We saw how the grid can be a great auxiliary to form design and how powerful it
is to keep our form semantic.

We got in touch with the issues with relative units. We saw that Bootstrap tries to
explore the EM unit but still has a counterpart that overlaps its benefits, so Bootstrap
still has to deal with pixels and use it to define font sizing.

We saw a fully responsive menu, widely used in desktop and mobile applications
with a simple snippet of code, and the use of a thin JavaScript for offering simple
cross-platform navigation without any tricks.

In the next chapter, we will explore the JavaScript in Mobile First as a behavior layer
for the lessons learned from the Bootstrap CSS.

www.allitebooks.com

http://www.allitebooks.org

JavaScript, the Behavior in
Mobile First Development

JavaScript in Mobile First Development explores the best of the APIs offered by
the browser, but there are different browsers and so many devices. There are a lot
of APIs to explore the device capability.

In Bootstrap 3, the JavaScript jQuery plugins for Bootstrap have fixed a lot of bugs.
One of the biggest changes was the addition of namespace events to provide
a no-conflict environment for Bootstrap JavaScript plugins.

In this chapter, you will learn how to enhance the behavior of your mobile-to-desktop
experience. Get the best optimized JavaScript to achieve the right direction to your web
application. Let's get started with Bootstrap JavaScript!

Bootstrap, as a frontend framework, takes JavaScript to the server using Node.js and
Grunt, which is a powerful tool to manage common JavaScript and CSS tasks, such
as running tests and minifying JavaScript files.

This chapter will cover the following topics:

•	 The carousel example
•	 Data attributes
•	 Mobile First and progressive enhancements
•	 Namespace events
•	 JavaScript on the server with Node.js tools

JavaScript, the Behavior in Mobile First Development

[36]

There's no deep change in the JavaScript structure in Bootstrap 3,
so this chapter will cover the good practices to work with JavaScript
applied on a Mobile First project with Bootstrap.

The carousel example
In all Bootstrap JavaScript plugins, the JS works as an enhancement layer and is
often available with an equivalent CSS component improved by JavaScript. One
good example is the dropdown CSS component (http://getbootstrap.com/
components/#dropdowns) and a jQuery plugin (http://getbootstrap.com/
javascript/#dropdowns).

Another example is about CSS transition. If one specific browser supports CSS
transition, then make animation through CSS using transition as shown in the
following example:

if($.support.transition){ that.$element.addClass('fade in') }

The preceding example is recurrent in the Bootstrap JavaScript plugin's code,
and it checks if the browser supports transition. If the condition is true in the if
statement, then add a CSS class that fades the element through animation of the
opacity property:

.fade {
 opacity: 0;
 .transition(opacity .15s linear);
 &.in {
 opacity: 1;
 }
}

For better mobile experience with device events, we can use frameworks such as
jQuery mobile (http://jquerymobile.com/), because mobile events is not a part
of the Bootstrap core.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3.

[37]

When the Bootstrap carousel plugin (http://getbootstrap.com/
javascript/#carousel), was redesigned, the navigation became larger, and
increased the contact area for touch devices. This is one of the important principles
of design for touch-based devices.

LAYER 3

Layer 1 Layer 2 Layer 3 Layer 4

As we can see, some JavaScript components were redesigned to better achieve
mobile needs. Some of these improvements satisfy desktop users too. It's always the
best choice to plan the overall experience at first before thinking in device-specific
interactions.

A touch of enhancement
Now that we have a well-designed Carousel, we can give our enhancement. At first,
we will spend all our efforts to provide a good overall experience. Then, we will start
to think about every specific feature of a device and explore its compatibilities. Keep
this flow in mind to make design decisions for your Mobile First project.

We will use jQuery mobile to enable touch events to make our carousel navigation
available by touchable interactions. You can download this library from the jQuery
mobile website, (http://jquerymobile.com/download-builder/), with a custom
download (Alpha version) you will get the events and components that you need.
In our case, it just enhances the carousel with swipe events; we should just use swipe
events in the custom download options.

JavaScript, the Behavior in Mobile First Development

[38]

Include the reference for the current file that you downloaded and insert the
following code in the head of your main HTML file:

<script src="jquery.mobile.custom.min.js"></script>

We can link it directly from jQuery CDN too. In this case, the file is hosted on jQuery
servers, and you can take advantage of optimized loading if your visitor already
has a downloaded copy of jQuery from the same CDN. In this case, there's no need
to download the file again on the user computer:

<script src="http://code.jquery.com/mobile/1.3.2/jquery.mobile-
1.3.2.min.js
"></script>

Now, there are swipe events that can easily link the next and previous button
methods of the Carousel plugin in the following code:

$(document).ready(function(){
 $('#layers').on('swiperight', function(){
 $(this).carousel('prev');
 }).on('swipeleft', function(){
 $(this).carousel('next');
 });;
});

We attach the event in the layers div, located in the following Carousel markup
(http://getbootstrap.com/javascript/#carousel):

<div id="layers" class="carousel slide">
 <!-- Indicators -->
 <ol class="carousel-indicators">
 <li data-target="#carousel-example-generic" data-slide-to="0"
class="active">
 <li data-target="#carousel-example-generic" data-slide-to="1"></
li>
 <li data-target="#carousel-example-generic" data-slide-to="2"></
li>

 <!-- Wrapper for slides -->
 <div class="carousel-inner">
 <div class="item active">

 <div class="carousel-caption">
 ...
 </div>

www.allitebooks.com

http://www.allitebooks.org

Chapter 3.

[39]

 </div>
 ...
 </div>

 <!-- Controls -->
 <a class="left carousel-control" href="#carousel-example-generic"
data-slide="prev">

 <a class="right carousel-control" href="#carousel-example-generic"
data-slide="next">

</div>

The carousel starts with a markup for indicators, and then proceeds to the content
and the controls, which hold the markup for the right and next directions.

With jQuery mobile downloaded and placed in our HTML document, we could use
the new events swiperight and swipeleft to call the associated next and previous
methods of the carousel to slide for each direction.

With a simple JavaScript, we can enhance the experience on a mobile efficiently.
Is it really distinct and optimized? Not yet. We can have a more pragmatic script that
checks if the browser supports swipe events before attaching it to the DOM through
JavaScript. The following code shows a simple optimized solution:

function giveTouch() {
 $('#layers').on('swiperight', function(){
 $(this).carousel('prev');
 }).on('swipeleft', function(){
 $(this).carousel('next');
 });
}

$(document).ready(function(){
 if(window.DocumentTouch && document instanceof DocumentTouch) {
 giveTouch();
 }
});

JavaScript, the Behavior in Mobile First Development

[40]

We are delegating enhancement in accordance with device support, wisely using the
behavior through feature detection, instead of blurry and specific device detection,
as shown in the following example:

If($.browser.msie) {
 //dummy for IE
}

A great library that gave me the chance to participate in its development is the
Responsive Hub (https://github.com/globocom/responsive-hub). It is used
in the following code to check if a touch event is supported. The Responsive Hub
is an alternate and simple way to check for event support in mobile devices, as well
as for control screen size changes in JavaScript change events. So, we could rewrite
the code of the feature detection, as shown in the following code snippet:

$(document).ready(function(){
 if($.responsiveHub("isTouch")) {
 giveTouch();
 }
});

It was developed at Globo.com as an open source project to make Globo.tv responsive
(http://globo.tv). With this library, you can have defined screen resolution as
a alias (phone, tablet, web). Then we have events associated through layout properties
as screen size and touch verification, as shown in the following code:

$.responsiveHub("ready", ["phone", "tablet", "web"], function(event)
{
 alert(event.layout); // Current layout
 alert(event.touch); // supports touch events
});

As we saw in the preceding section, the Responsive Hub acts as an event listener
to a ready DOM, and then you can listen for layout changes through the layout
object with dimensions and touch event's support.

Using Modernizr, we could have a nice elegant solution too:

Modernizr.load({
 test: Modernizr.touch && Modernizr.csstransitions,
 yep: 'carousel-swipe.js',
 complete: function() {
 buildTouch();
 }
});

www.allitebooks.com

http://www.allitebooks.org

Chapter 3.

[41]

In the preceding example, we test touch and transition that are easily verified by
Modernizr methods and then by the Yep (http://yepnopejs.com/) library that
is part of Modernizr. Using it we can load JavaScript files based on test conditions,
as we illustrated in the preceding code.

Data attributes
The data attribute is one of the most powerful tools for JavaScript plugins in
Bootstrap. You don't need to write any lines of JavaScript to achieve common tasks,
which could be in the future browsers.

Do you remember the time when a placeholder for an input element was possible
only with JavaScript? Now it is well supported in HTML5. We don't need JavaScript
to do this simple behavior anymore, but we can use JS as a fallback. This is what
Bootstrap does in plugins with the power of data attributes.

The data attributes are fully supported in Bootstrap 3. You can use all the plugins
to initialize them without using JavaScript.

But how is it possible? Well, with data attributes, you attach in your HTML
attributes the custom interaction for your element. A good example is the
Bootstrap modal plugin.

The modal plugin, due to Mobile First development, is now
very well optimized for mobiles. It had a lot of issues in Version
2. It has now found a good way to centralize and be flexible
accordingly to the device's screen size.

Let's get started with how to define the modal behavior in HTML:

<a data-toggle="modal" href="#myModal" class="btn btn-primary btn-
large">Launch demo modal

With the data-toggle attribute, you can specify the behavior of the link in an
intuitive way, and use the href attribute to target the modal element using an ID.
This is an unobtrusive way to build a plugin, for the following reasons:

•	 The href attribute is for complementary information on the page that makes
a link work without JavaScript, because it acts as a simple anchor.

•	 JavaScript is not required to initialize jQuery plugins.
•	 The data attributes can be browser-native in the future.
•	 All modal setup can be achieved with HTML attributes.
•	 It's good for SEO; the crawlers will not miss any content and still link

the information.

JavaScript, the Behavior in Mobile First Development

[42]

This is possible because all Bootstrap JavaScript plugins have a data-api pattern
inside all of them. The following code is a small demonstration of a simple way to
have your plugins fully customizable via data-api:

$(document).on('click.bs.carousel.data-api', '[data-slide], [data-
slide-to]', function(e) {
 // some javascript logic
});

In the preceding example, there's an event being attached in a namespace called
by the click.bs.carousel.data-api event, which is applicable to all data-
slide attributes. You can either access variables inside plugins or do the internal
implementation without affecting the event scope.

Check out the modal plugin's code to see how the Bootstrap pattern works.
There's a Github project that I've created with the core of Bootstrap plugins
(https://github.com/alexanmtz/bootstrap-javascript-pattern). This
pattern is used in all the jQuery plugins from Bootstrap 3.

Mobile First and progressive
enhancements
This section describes using JavaScript without having a JavaScript-enabled browser.

Progressive enhancement tries to take the best experience from limited devices to
a full experience (that's why it meets the needs of Mobile First). On the other hand,
there's another concept, the graceful degradation, which is focused on creating the
best experience for an environment with less restrictions, exploring the rich web
technologies as JavaScript at first, and then degrading for devices with more constraints.

We will follow some recommendations to achieve progressive enhancement and use
them with this version of Bootstrap accurately.

Be semantic in your HTML markup
Always be semantic. We don't want to cheat the browser. We have to use the right
element in the right place. It's just doing this to offer a JavaScript-rich experience as
an enhancement to the basic HTML structure at first.

For example, consider a link and a button. In Bootstrap documentation, it is
recommended that we should use buttons for actions and links to address resources.
It seems simple, because that was the purpose, but with JavaScript, we can change
the browser's default behavior and get unexpected results.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3.

[43]

Check a working code of the following example at http://jsfiddle.net/5xGGA/.

The HTML code is as follows:

<form action="#" method="get">
 <input type="text" />
 submit
 <input type="submit" value="submit" />
</form>

We could do the same in JavaScript (with jQuery), as follows:

$(function(){
 $('.link').on('click', function(){
 $('form').trigger('submit',['called by link']);
 return false;
 });
 $('form').submit(function(e, whocalls){
 if(whocalls){
 alert(whocalls);
 }
 alert('form submit default');
 });
});

As we can see, if we hit Enter in the form, the event triggered will be the form
submit. So, you can use an accessibility and primitive feature of the web, that
sends a form with a simple hit on the Enter key. In this code, we pass data in
the triggering event from the link to a form, and then when we click on the link,
the data in the event is passed to the form's submission by taking one more
unnecessary step. If we decide to change the submit button to a simple link
and break the semantic of a form element and its components, we lose the total
behavior of how a real form should work in your case. This is just an example
of a lot of ways to confuse, what should be handled by JavaScript.

But how should we do that? With no line of JavaScript, we can do it in a natural way:
use form to submit the process of user filled data!

So, in this example (see the fully working code at http://jsfiddle.net/Uk2aS/1/),
we can see an analogy that keeps JavaScript away when it's possible and just uses it
to enhance behavior.

JavaScript, the Behavior in Mobile First Development

[44]

Unobtrusive JavaScript
The unobtrusive JavaScript comes along with semantics and the Mobile First
approach. With the unobtrusive JavaScript, we can handle a form submission via
Ajax without the JavaScript obstructing the natural flow of form submission. That
is what unobtrusive JavaScript is about.

With the same example of the previous HTML form (without the
unnecessary link element), I will show how unobtrusive JavaScript works
(http://jsfiddle.net/5xGGA/).

Using the following code, we will create an enhanced loaded form for users having
JavaScript-enabled browsers:

$('form').on('submit', function(e){
 var action = e.target.action;
 var name = $('input[name]').val();
 var $self = $(this);
 $.post(action,{name: name},function(data, status){
 if(status=='success'){
 $self.append('<p> success </p>');
 }
 });
 return false;
});

At first, we get the form's action attribute from the HTML (captured by e.target.
action), then the name value of the form's input, and a reference to the form element.
With the name field, we could serialize many input fields with jQuery's $('form').
serialize(), send the information, and give feedback to the user. At the server
side, we can handle the request and give the right response depending on the type
of request. This is a simple way to use unobtrusive JavaScript at the application level.
This JavaScript doesn't hurt our main form.

Follow the Bootstrap tips about
accessibility
If we get the same example with link buttons and forms, we can see that Bootstrap
recommends the right use of each element.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3.

[45]

The following example shows different button states that represent a label. They're
the same elements with a different class:

Well, Bootstrap buttons have predefined states that are well designed for different
kinds of button behavior and links. When you want to define an action, we could use
buttons, otherwise, if you want to point a resource to a defined URL, use links.

We can still make a button look like a link in the following way:

<button type="button" class="btn btn-link">Link

We can similarly use a button to make a cancel action. It has to behave like one
button, but it is a secondary action and could fit well when designed as a link too.

Test a site in a lynx browser
Lynx (http://lynx.isc.org/) is one of the first browsers, and it's how a Robot
as a Google Crawler sees your site. It's the best tool to check real, progressive
enhancement. However, it's the most primitive browser ever, so take care, because
it's just a tool to help you make a more accessible website from the beginning.

I will show you a simple Bootstrap template from a simple sign-in form in a
lynx browser.

This is the interface in Firefox 24.0

JavaScript, the Behavior in Mobile First Development

[46]

So, we have the site viewed in lynx:

Namespace events
One of the biggest changes in JavaScript, in the Bootstrap framework, is to allow
namespace events to prevent JavaScript conflicts with other frameworks, and even
have a better control of JavaScript behavior to attach the Bootstrap plugin events.

As we can see, we have an event with a default namespace model for Bootstrap plugins:

$.Event('close.bs.alert')

This is an example of an alert plugin. As we can see, this is a close event in
Bootstrap's (bs) namespace of an alert plugin.

Another example of an event object used in Bootstrap plugins is as follows:

$.Event('show.bs.modal')

This is a show event in the bs namespace of the modal plugin.

JavaScript on the server
There are amazing tools to make Bootstrap better using JavaScript on the server.
Now, it has the power of Grunt to execute JavaScript tasks. With Grunt, the tasks to
build bootstrap packages are now written in pure JavaScript with Node.js. Grunt has
a great way to extend with plugins, so you can create any kind of integration with
powerful frontend tools such as Coffee Script, Less, Sass, JsHint, and many others.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3.

[47]

Summary
As we saw in this chapter, JavaScript is a delicate part of Mobile First development.
You have all CSS flexibility to adapt to devices that are up and running, and then
JavaScript comes to enhance the web page behavior.

We reviewed some of the JavaScript little changes at Bootstrap 3 as namespace
events and the power of data attributes. Then, we focus on the best practices to get
a better idea to Bootstrap the JavaScript and have a manageable way to improve
behavior accordingly with the device. We get a practical example to achieve this,
making a carousel touchable in a simple way. We also explore the main JavaScript
concepts of a Mobile First experience, terms used before those are reinforced now:
unobtrusive JavaScript and progressive enhancement.

Now, we are prepared to get the little pieces together, HTML/CSS and JavaScript
that now will be used to make a full web application working. We will combine the
Mobile First design with the Bootstrap knowledge to get our project working cross
device. In the next chapter, we will build a practical app to apply our knowledge in
the real world about Mobile First with Bootstrap.

www.allitebooks.com

http://www.allitebooks.org

Getting it All Together –
a Simple Twitter App

Now that we have a basement of all Bootstrap changes, let's see in practice how
to develop a simple Mobile First web application. We will see from design to
development, a lot of tips, tools, process, and code exploring; all the best that Bootstrap
can provide. Let's get started with a little project for the Web, but once again in
Bootstrap it's just a kick start. We will see a bit more about our project with techniques
and discuss ways to make a better experience and use Bootstrap as a powerful
framework for your mobile needs.

Here, we will learn to design a Mobile First full project from scratch with the little
pieces of the previous chapter. We will deal with a new, really big challenge when
we start to get into Mobile First in practice.

This is not a "hello world" example. The most famous example ever is already
available in the Getting started section at Bootstrap Docs. And as we know,
documentation is one of the key features of Bootstrap (http://getbootstrap.com/
getting-started/#template).

We will follow the Mobile First development of Cochichous (http://cochichous.
herokuapp.com/), a simple application to search tweets and see nearest ones
(Cochicho is a Brazilian word that means the action when we talk in others, ears
in a low voice, besides that, it's a bird species). It's a prototype from a sample web
application to list the search results of tweets in your range.

Getting it All Together – a Simple Twitter App

[50]

We will cover the following topics in this chapter:

•	 Bootstrapping our application
•	 Bootstrap modal component example
•	 Geolocation
•	 Going from tablet device to desktop screen resolution
•	 The choice between web app and mobile application

Bootstrapping our application
As we know, Mobile First focuses on content. Let's imagine the overall experience
and tasks in our sample short message application:

1.	 Give a search for keywords.
2.	 See search results from a location nearest to us from the Twitter network.

Usually from his neighborhood, or even city. Let's define a location radius of
50 kilometers to search for.

That's it, two things, keeping it simple. We could imagine a lot of things, but to
illustrate how the Mobile First process really works, let's keep it in two main
functionalities. These two little features will be good as our first challenge. As we
saw, Mobile First is content aware, this means that the content defines the layout
flow across the devices. Let's focus on content. We will see how amazing it can be.

Inserting a customizable version of Bootstrap
As we saw in Chapter 1, Bootstrap 3.0 is Mobile First, if you have a cloned Bootstrap
copy in your machine, you can change LESS files. You can generate a custom CSS
from it to change common variables too. This includes font size, colors and spacing
configuration as a general margin and padding. We will learn how to generate
Bootstrap CSS from a LESS file, which is an option to get BT customized. Another
option is the custom download page (http://getbootstrap.com/customize/).

You can always recompile and modify LESS files in a Bootstrap source file with the
grunt command:

grunt

We are generating assets for Bootstrap to use in our application when we run the
grunt command in the shell command line. As the final output, Bootstrap is just CSS
and JavaScript generated from Grunt tasks.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[51]

Now, we can edit the variables file located at variables.less inside the LESS folder
in Bootstrap's source root directory.

// Brand colors
// -------------------------

@brand-primary: #428bca;
@brand-success: #5cb85c;
@brand-warning: #f0ad4e;
@brand-danger: #d9534f;
@brand-info: #5bc0de;

This is an example of a portion of LESS variables inside variables.less where
we can customize all the color pallets and see how well it is organized. We can
customize font-sizes, measurements as overall padding and the margin, and finally
component colors.

The LESS variables are quite different in Bootstrap 3. They don't
use color reference, as it was in Version 2 such as main-blue,
secondary-red. Now, there are meaningful color names such as
primary, success, warning, and others.

If you take a look around (http://bootstraphero.com/the-big-badass-list-
of-twitter-bootstrap-resources) for Bootstrap tools, you will be surprised. We
can see a lot of great Bootstrap tools out there. So, always look for one of those before
you get into action.

I discovered an amazing tool called PaintStrap (http://paintstrap.com/). This
tool creates a CSS-customized version from a color palette. That's exactly what we
need right now!

It has integration with Adobe Kuler (https://kuler.adobe.com) and
COLOURlovers (http://www.colourlovers.com). It's a great tool to start defining
an identity of your product and customize Bootstrap.

Until this writing, the PaintStrap style used to generate files
from your customized pallet for Bootstrap 2, but probably they
will soon update to Bootstrap 3.

With LESS files modified and with the grunt command, it will generate a CSS file
with two versions: a full (for development needs) and a minified (for production)
version. All the files are generated in the dist folder located at Bootstrap's root
directory. This output is our Bootstrap-customized version ready to be referenced in
our template.

Getting it All Together – a Simple Twitter App

[52]

If you just need a simple Bootstrap download, you can download plugins and
CSS components that you use in your app. Just visit the Customize section
(http://getbootstrap.com/customize/), and there we can change LESS
variables through the web interface, just filling out the parameters in a form.
But, if you want to get in to the code to change the LESS variables, there's
an option to download the framework from the Bootstrap source at GitHub
(https://github.com/twbs/bootstrap).

The project template
We have to start with the mobile template. Let's get a basic template to start with.

We should start with the mobile, right? Should we truly test in the mobile phone? You
can start with a responsive design view; it's the simplest way. We can at least resize
your browser window in development to simulate mobile dimensions. But, there's
a tool that you can use to make mobile web development easier. It's just to activate the
responsive mode in Firefox (https://developer.mozilla.org/en-US/docs/Tools/
Responsive_Design_View) to have a preview to simulate your website in different
resolutions, instead of resizing the window to simulate mobile dimensions.

Later, you can start to explore tools to simulate devices (http://vanamco.com/
ghostlab/). With this tool you can test at real time by creating a profile for your
devices. After the device profile is set up, you can use the environment created by
the app available through a development URL from the Ghostlab server to access
your project on the real mobile device. Using it, we can avoid configuring the settings
in each phone in order to access the localhost.

This is the file structure of our sample application:

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[53]

Let's define the grid and elements for the header in our index.html (the code for
the HTML template can be found in 5792_04_01.html).

Remember the viewport metatag, whose importance we already explained in
Chapter 1, Bootstrap 3.0 is Mobile First. Also, let's reference our bootstrap.min.css
that was customized before.

The preceding code shows the basic template of the header. We'll try to use all the
Bootstrap elements, but sometimes we need to adjust some spacing (if possible, start
to change spaces to relative units to keep proportions). We are using a style.css file
to overwrite BT styles if needed.

In the template, we define 12 small device columns inside a row class and add a navbar
component (http://getbootstrap.com/components/#navbar).

Here's an overview of our code result in a tablet device:

It's a brand and search form. There's a simple modal window to display the
information about the Cochichous project. It's a section called About that will open
the modal window.

The toggle menu (visible only in mobile devices) has a target attribute that points
to the associated menu with the class navbar-ex1-collapse.

Another collapsed version of our header in mobile phones is shown in the
following screenshot:

Getting it All Together – a Simple Twitter App

[54]

In the main page of our application there's a simple form with a Search button. Now,
we will have panels that will accommodate the tweets. Panel is a new component in
Bootstrap 3 (http://getbootstrap.com/components/#panels) that is very useful
to show a simple collection of elements.

So, with these panels we could have the following search result making a Twitter
search in the mobile and desktop devices:

The previous screenshot is an overall view of how the mobile search result would
be and how it should be displayed on the desktop. The following is the code for
a single search result that we will use to fill with results from the Twitter API.
We now use a col-md-12 class to target the desktop too (available in 5792_04_02.
html from the code bundle):

<div class="col-xs-12 col-md-12 single-message">
 <div class="panel">
 <p class="text-primary">This is a sample Tweet near from you
 ;-)</p>
 <p class="text-muted">
 6 minutes ago
 </p>
 <p class="text-muted">
 from alexanmtz
 , New York
 </p>
 </div>
</div>

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[55]

But at first, the user loads a screen where there's no result until the user makes a search
and after the search the template will look like the following code (It can be found in
5792_04_03.html from the code bundle):

<div class="container">
 <div class="row">
 <div id="refresh">
 <div class="alert" id="no-search-message">
 Make a search above to find
 nearest Tweets.
 </div>
 </div>
 <div class="row">
 <div class="col-xs-12 col-md-12">
 <div class="alert alert-info">
 Your location:
 <p id="user-location"></p>
 </div>
 </div>
 </div>
</div>

The Bootstrap modal component
example
Then, we associate this modal in the same index.html below our previous example
with one link called the About section:

<a data-toggle="modal" href="#myModal" >About

We now have to define a basic modal markup (http://getbootstrap.com/
javascript/#modals) that can be viewed in 5792_04_04.html from the code
bundle. As we can check in this file, there's a header, text, and dismiss link. This
link has the data-attribute dismiss value. Once this is enabled, we don't need to use
JavaScript to initialize scripts. We can make the modal closing action just by defining
an HTML attribute in the desired element.

Getting it All Together – a Simple Twitter App

[56]

In the preceding link to the About modal section, we get an href attribute with a value
of a modal ID, in this case #myModal, and with data-toggle we are defining that
this link is a toggle for a modal. When the modal receives the right data-api, it gets
hidden and is activated when the associated button is linked. We have the following
result when the user clicks on the About link:

Geolocation
Now that we have our mobile style layer, we will interact and use JavaScript. With
Geolocation, we can explore the device capability to get the user location easily.
Using a standard API, we will support cross device GPS and explore the mobile
localization that the desktop can still offer its users.

We get the user information through a localization API from HTML5. The user
will be prompted to give us permission to get his/her location. Then, with the
user authorization we can have the current latitude and longitude. Using this
information with the Twitter API we can obtain the nearest tweets through a search
parameter. There's a technique through which we can obtain the address called
reverse geocoding (https://developers.google.com/maps/documentation/
javascript/examples/geocoding-reverse). It means from a given longitude and
latitude, we can obtain the address.

We make a simple call to Google Maps API in the following way:

<script type="text/javascript"
 src="http://maps.googleapis.com/maps/api/js?sensor=false">
 </script>

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[57]

So, the code starts defining the geocoder object (the code is located in the
geocode.js file inside the js folder in the file structure of our first figure about our
application tree and it can be found in 5792_04_01.js from the code bundle).

The code in the file has a geocoder variable to be used later to create a new geocoder
instance. So, we get the current position. There's a callback for success expressed as
successFunction, that holds the localization and calls the codeLatLng function (it
can be found in 5792_04_02.js).

The result is an object that holds all the information about the user's localization.

We call a getLocation generic function that handles the results object in a friendly
way to return the user to an appropriate local place. You can see the full code and
how it works in 5792_04_02.js.

 $('#user-location').val(address_line);
 $('input[name="latlng"]').val(lat+','+lng);

With the user locale data, we can display to the user his current place inside an alert
component (http://getbootstrap.com/components/#alerts):

 <div class="row">
 <div class="col-xs-12">
 <div class="alert alert-info">
 Your location:
 <p id="user-location"></p>
 </div>
 </div>
 </div>

Here, we are using JavaScript to display location information to the user. And what
if the users don't support the API? What about Internet Explorer 8? Well, in this
example we would like to explore a powerful way to get the user's right location,
and we target mobile devices as it was the main objective of the project. Without the
user location, there's no reason for our application to exist. We can handle the data in
the server to display alternative content, in this case it will be worldwide messages as
a fallback. Even if we miss the information of user location, we can display messages
and avoid stopping our application due to missing support from the browser.

We select the input through a jQuery selector with the name latlng and use the
variables in comma-separated values, that is, it's like the Twitter API expects to send
its parameters. We have the form with the following input hidden, that will be filled
by the current user's latitude and longitude coordinates through JavaScript:

<input type="text" name="search" class="form-control"
 placeholder="What you looking for?">

Getting it All Together – a Simple Twitter App

[58]

There's a form action to make a request to a PHP script that returns the result
block from the Twitter API. You can see the full form in 5792_04_07.html
from the code bundle.

With the information for the user location we can make an AJAX request to Twitter
based on the user's location in the main.js file:

$(function(){
 $('form[role="search"]').on('submit', function(e){
 $('#refresh').html('<div class="progress progress-striped
 active">' +
 '<div class="progress-bar" role="progressbar"
 aria-valuenow="45" aria-valuemin="0"
 aria-valuemax="100" style="width: 100%">' +
 '' +
 ' </div>' +
 '</div>'
);
 var search = $('input[name="search"]').val();
 var latlang = $('input[name="latng"]').val();
 var action_url = e.target.action;

 $('#refresh').load(action_url, {q: search, latlang: latlang});
 return false;
 });
});

In the preceding JavaScript code, we target a form with the role search. After it gets
submitted, we can see the progress bar applied in the targeted content while the
request is being made (http://getbootstrap.com/components/#progress).

We access the input and get its values. Then, we set the search, latlang, and
action_url variables, which are necessary for our AJAX request to perform
a search query.

You can check the full code in 5792_04_04.js from your code bundle.

The Twitter API search
Now, we have our template for the application and let's get results from Twitter.
First of all, we need to create a Twitter account to have an access to the developer
features (https://dev.twitter.com/). With an account created, we get the benefits
to use the whole API. In the account that you just created, go to your account menu
and click on Create a new application; fill up the basic information about your app,
such as name, description, and website. You are now ready to get your credentials
to use in your own application.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[59]

Now, you will see this page that shows all the keys and setup of the application
(the keys are like your password, so it's omitted here for you to use your own
credentials):

Take a note of these numbers that we will use to connect to the Twitter API with
OAuth and make search requests. OAuth (http://oauth.net/) is a protocol
standard for authentication for a given service, it is used by Facebook, Yahoo!, and
many others too for authenticating through API. It's now required for the Twitter
API v1.1.

So, take a note of your consumer key and consumer secret numbers.

Getting it All Together – a Simple Twitter App

[60]

Make a search
Now that we have our credentials to get access to the Twitter v1.1 API, we will use
a PHP script to return a search result, based on a query and the information about
latitude and longitude that we already have in our hidden field filled with JavaScript
obtained values accessing the Geolocation API from HTML5.

To execute this PHP script you will need to run a web server such as Apache
(http://www.apache.org/). If you have Linux and Mac OS, you already have
Apache installed beforehand and you just need to create the files in a web server
default folder and run in http://localhost in your browser (http://unix.
stackexchange.com/questions/47436/why-is-the-root-directory-on-a-web-
server-put-by-default-in-var-www). On Mac, there's a great tutorial for this
(http://georgebutler.com/blog/setting-up-local-web-server-on-os-x-
snow-leopard-10-6/) to set up a simple local server.

On Windows, you can use a WampServer (http://www.wampserver.com/en/) to
get this script working. If you have a web host, you can just upload files to a host that
supports PHP 5 and higher and test it live.

If you have a preferred language, you can make your own script, there are a lot of
Twitter clients for Ruby, C#, Node.js, Python, and so on.

Another option would be to use Yahoo! Pipes (http://pipes.
yahoo.com/pipes/). With the philosophy of rewiring the Web, this
Yahoo! service acts like a proxy for your web services and APIs. It
acts like an aggregator of services in one place. With YQL language,
we can execute queries from different services, so we could make a
query to get a Twitter search and use only JavaScript through JSONP.
Unfortunately, until this writing it was not possible to use it because
the new Twitter API v1.1 requires OAuth and Yahoo! Pipes, which is
outdated with the new Twitter API.

We can take a look at 5792_04_01.php from the code bundle that makes the request
to return the search results.

First, we include two libraries:

•	 That will make it easier to connect through Twitter
•	 Display the time of the tweet in a format such as 6 minutes ago from the date

The first one included is TwitterAPIExchange (https://github.com/J7mbo/
twitter-api-php). You can have it referenced in the twitter-api.php with
require_once and include it in the same directory. The other one is timeago
(https://github.com/jimmiw/php-time-ago), which is used to display the time
in a user-friendly way about when the tweet was posted.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[61]

We have a settings variable that gets your credentials from the Twitter developers
site to use with the TwitterAPIExchange to make a request to the Twitter REST
API. We get the post's information from our form submission to build the URL and
query string to perform in the Twitter API REST request. We then instantiate the
TwitterAPIExchange class and get the tweets. So, we get this object of the tweet,
extract the information we want (text, creation, name, and location), make a foreach
loop in the given returned object, and generate a template with our HTML Bootstrap
template, which we had already defined when we constructed the static files.

So, the following screenshot shows our fully working application on a mobile:

Going from a tablet device to desktop
screen resolution
We have completed the first step, now it's time we move beyond. We are now going
to the next breakpoint: tablet devices.

At its creation, the tablet was considered a "giant iPhone". When it was designed
there were many things in common, but there are subtle differences that make the
tablet our next desktop. With the ascension of tablets consolidated by Apple and
now with Galaxy Tabs and other ones everywhere, people are getting lazy to use
desktops. We now need the simplicity of a tablet device. But why do they differ?
Besides the obvious, for sure.

Getting it All Together – a Simple Twitter App

[62]

The big difference is that in your phone you deal with one hand. The tablet use
is similar to a desktop, but is still more practical. It can be as simple as it can get;
a tablet experience is a mixed experience between mobile and desktop.

In our application example, we do not need to put extra classes in HTML to change
breakpoints; it already has a good use in our iPad and desktop from the start.
In Bootstrap 3, when you declare 12 columns, with col-xs-12 class, it's a mobile
12 grid units by default, because if we targeted Mobile First, the mobile becomes the
default instead of the desktop. Let's imagine that we want to divide our tablet into 3
columns, because we don't want to see very wide messages in this device; we want
to see it as blocks, divided in four columns.

The only change to this layout responsiveness to the application will be the following:

<div class="col-xs-12 col-sm-4 single-message">
 <div class="panel">
 <p class="text-primary">Sample message</p>
 <p class="text-muted pull-right">
 2 minutes ago
 </p>
 <p class="text-muted pull-right">
 from Boston, Malden, USA %>
 </p>
 </div>
</div>

Note a class called col-sm-4 that defines the breakpoint to a tablet. Our grid will fit
in four columns in a tablet, and keep 12 columns in mobile phones.

If the desktop fits in four columns too, the same will work for col-md-4, but it's not
necessary, because it will keeps four columns for larger screen sizes until you define
a class with different column size. We just need to define classes that will behave
with a different grid setup over the screen sizes through devices.

Now, we are done with mobiles and tablets; let's go to desktops. This must have
sounded strange earlier, but now we already have seen the big difference.

Now that we are dealing with the desktop, we start to think in mouse interactions
and states that are consequences of it. But this Bootstrap version has already defined
the hover states for the desktop.

On the desktop, we could keep the same setup as a tablet: three column wide,
because there are just a few variations through the sizes, so we keep the fluid layout
and no different breakpoints for this case is a good option.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[63]

The choice between a web app and
mobile application
Yes, we could use native properties of the device to give a more optimized app
experience using native apps over our Mobile First suggested solution. Every type
of web app or native app has its advantages, but in recent times we do not consider
mobile app in preference to web app. The mobile experience is not just to install
apps, as we already know, but navigating through the Internet is being made more
common than ever in mobile devices.

I'm not intending to say that a native app would be better. My answer would be,
"a native app would be different, and that's it". This section is to show the difference
between the two approaches to consider when we need to decide if Mobile First
makes worth or a native application would be better, or even if the two solutions
should coexist together.

As we have seen, the web app has a great flexibility. We can access it from
everywhere by just having a browser and changing styles with the CSS media
queries accordingly with the screen resolutions.

The native application that resides in the devices, is a friendly way to access your
device services as applications. It has the great advantage to be managed and installed
by the user in a download service, such as the Apple Store for the iPhone/iPad and
Google Play for Android users. They can explore the enhancement of the hardware
capability in the device with direct access to OS and hardware compatibility, using
core features that in many cases browsers do not have access to such as the address
book, SMS, and camera. The native app is closer to the device because it doesn't need
a browser that intercepts it, so we can have, for example, a notification system and
then execute the process in the background.

The native application has its own language for different platforms, so for Apple
iPhone we have to use Objective-C and for Android we have to use Java. There's
now a technology known as PhoneGap (http://phonegap.com/) that offers
a native way to deliver the application using our frontend well-known languages.
PhoneGap solves the big issue of using different languages but it falls into another
key point: generating a native language with a framework is not comparable to
a device implemented in its pure and native language.

But why both? Well, here we are not talking about the iPhone or Android, which are
currently the most famous smartphones. Two years ago, Android did not have any
relevance to be cited in a book, now it's dictating tendencies. We have to be scalable
and try to reach the user anywhere, and get more potential satisfaction to them.

So, the answer now is Future Friendly (http://futurefriend.ly/) and embrace
the new opportunities that multiple devices can offer.

Getting it All Together – a Simple Twitter App

[64]

Summary
In this chapter, we put all our basic knowledge in Mobile First Bootstrap and work
in a real situation.

You have followed the development of Cochichous, a sample application that finds
the nearest tweets from Twitter API based on a search.

As we saw, there are lot of considerations and limitations, which we have to consider
when developing Mobile First. So, we start to sketch and think cross device. We
made a basic flow to make a search from Twitter REST API in a simple way in mobile
devices, and with little changes we have an app that works in other devices too.

We explored Geolocation to show how to get the user location through an HTML5
web page. Then, we saw how to change the grid to adapt in other devices going from
phone to tablet and from tablet to desktop. We made a simple use of the Bootstrap
grid that gives us countless flexibility.

Then, we get into the unavoidable dilemma: it should be better if it was a native
application? Analyzing the situations, and now we know how to use the power
of both.

Until now, we did not consider a variable that affects it most when we deal with the
mobile experience: performance. Let's start to worry with the key point in mobiles,
that was partly achieved with our best practices here, but there are still some other
important issues when we deal with the mobile experience to make it usable and fast.
Now, we are ready to develop more reliable applications about performance in the
next chapter.

www.allitebooks.com

http://www.allitebooks.org

Performance Matters
We now have enough knowledge to face the Mobile First challenges. We have
already launched a production site. Along the time, we will see that we are wasting
vital resources and discover that our site is not really usable because it is slow.
Some aspects can be optimized and doing this we can reduce the page loading time
significantly. For example, why load a high-resolution image in a small device?

In this chapter, we start to think about performance from the start, and how it
impacts the usability and user commitment on our site. We will see how to load
responsive images and the different options to do so. Besides that, you will discover
how to load external files as needed and have the flexibility that font icons offer; that
is, support for different sizes, density, and colors. In this chapter, we will see three
main aspects that will make our app faster and scalable. These optimization methods
will give you the additional benefit of having a more robust desktop website too. It
is worth mentioning one more time that Mobile First is not just for mobile needs—it
can even make your desktop faster.

This chapter will cover the following topics:

•	 Responsive images
•	 Load on demand
•	 How to optimize icons

Performance Matters

[66]

Responsive images
Images are a relevant point in web applications. More so, when you deal with
user uploads because you have to handle all kinds of cases and image-processing
methods. It is one of the biggest factors, responsible for around 80 percent of the
frontend loading performance, together with icons, JavaScript, and CSS (http://
www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule/).

Websites are getting fatter. We are exploring new resources in an uncontrolled way
because we have more availability, more memory and more facilities. As we can see in
the following figure, the overall image length is increasing exponentially on the web:

We are not in evolution at this point. We are getting smaller, and using smaller
processors and memories with more constraints. So, we have to be rational and focus
on content. Every unnecessary byte loaded on your site can be a loss for audience.
Research suggests that every 500 milliseconds of delay in loading time causes 20
percent reduction in traffic (http://www.nytimes.com/2012/03/01/technology/
impatient-web-users-flee-slow-loading-sites.html).

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[67]

User patience is even shorter for mobiles (http://www.developer-tech.com/blog-
hub/2013/mar/15/mobile-users-becoming-more-demanding-less-patient/).
We should take care of that, and one of the heaviest aspects is about images. 60
percent of page weight is images (http://httparchive.org/).

The preceding diagram, taken from the Mobilism 2013 event presentation by
John Clevely, shows how the BBC News builds its responsive news website
(http://vimeopro.com/mirabeaunl/mobilism-2013/video/68025331).

To start with, we have to separate concepts. All we are talking about here is content
images. The purpose of content images is to display a real picture or a photo. Even
a diagram icon is not applicable in this case because it's monochromatic and we use
a font method for rendering, allowing us to have more flexibility.

The other aspect is about image proportion. There's a recommended method,
max-width, that takes the image proportion that is scalable to the device. We use
pixel-defined images to make images fit in our body container. To remember this
method, we just use a single CSS declaration:

img {
 max-width: 100%;
}

Performance Matters

[68]

Bootstrap 3 has a wrapper that uses a simple img-responsive class (http://
getbootstrap.com/css/#overview-responsive-images):

So, we now have a simple way of making our images flexible. Unfortunately, in
this case, if an image has 1200 px width and 600 px height, the method will load all
the 1200 px and 600 px and it will be resampled. This will waste a lot of KBs, which
will decrease our page loading for slow connections, and even for average ones.
However, the expectation from mobile users is almost instant loading; remember
that user patience for mobiles is very limited.

The only thing we can do in the frontend to offer a solution for this, is to use Scalable
Vector Graphics (SVG) to generate images, because SVG is vector scalable, so
flexibility is in its core. However, SVG has its own application for drawings. Even if
we can draw images in SVG and make them scalable for different sizes, we should
not use these methods to substitute images because we would solve one problem
to create another. SVG should be used when the final file size of the generated data
is less than the equivalent image. But, SVG is usually also a good option for graphs
because it is generated by XML instructions to draw the graph.

There should be a better way to optimize images, right? Well, I can say that there's
not a single good and definitive solution until now to hold optimized images in
responsive designs that is scalable and well supported. We will see different options
and their pros and cons.

To make things worse, Retina Display comes to the scene to make the issue even
more complex. Because we need to have images with a higher pixel density in Retina
Display, we need a double-sized image. For example, if we have a 600 px square
image then we need an equivalent image of 1200 px as the pixel density in Retina
Display has to be two times greater than the default display. In that case, the image
in the retina is of 1200 px but we see it as 600 px with double-size pixel density
(http://en.wikipedia.org/wiki/Retina_Display) support. As we can see,
responsive images are a really hi-impact limitation to Mobile First at the moment.

There are different images for different breakpoints, and a lot of types of variables
that we need to consider when rendering an image in your web application:

•	 Different images for different breakpoints
•	 Different images for different pixel densities
•	 Art direction
•	 Image formats

There is a specific solution for each variable, and there is another variant with a mix
of each solution.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[69]

We can set different images for different breakpoints. It would work, but imagine
this getting bigger and bigger. Duplicate images are not a good solution in the long
run. As I said, there is now a need for different pixel densities with the use of Retina
Display that doubles the pixel size, needing double-sized images to achieve the right
resolution in supported devices.

Art direction is a smart method that cuts the image to the main content of the picture,
but requires methods to process the image on the server. The end result is an image
that is ready to be displayed with the focus on what matters in this photo. One of the
great tools for that is Thumbor (https://github.com/globocom/thumbor). This is an
open source project developed at Globo.com that uses Python and has smart cropping.

Data URI also needs to be mentioned. With data URI, we can append the image
directly in the src attribute with data encoded in base 64 token format. This way we
do not need to make a separate request to load an external resource. With data URI,
it is possible to use the upload API in HTML5. This APIs embeds as data URIs in the
image source attribute and give a preview in the browser before uploading to the
server.

There is a new image format to help us compact image sizes while keeping the
quality. Besides JPG, GIF, and PNG, which are the most common image formats,
there's a WebP format that makes the final image size smaller without loss of quality.
Google developed it. But, it is not yet well supported. However, it can become
standard in the near future. The following table shows the strengths and weaknesses
of various image formats:

Image format Strengths Weaknessess

GIF Small graphic animations Colors and alpha

PNG Small, medium, and
large images with alpha
transparency Larger images

JPG Photos, selective quality, and
progressive loading Larger images

Data URI Inline (no extra requests)
Larger images

WebP Small
Chrome/Opera only

Performance Matters

[70]

There's a solution using the sourceset attribute that we can use to take advantage
of an already known method that we mentioned before, data-api. The sourceset
attribute instructs the browser to set different size setups and change according to
the resolution. This can be done with this simple JavaScript and HTML code:

<script>
if($(window).width() > 960) {
 $('img').each(function(){
 $(this).attr('src', $(this).data('desktop'));
 });
}
</script>
<img alt="Cochichous"
src="logo-mobile.png"
data-desktop="logo-desktop.png"/>

We have a simple solution to load the image according to the device, by just creating
an attribute and check the resolution with JavaScript. So we can load different images
accordingly with the data attribute that corresponds to the current screen resolution.

There's more accurate syntax in the following HTML:

<img alt="The Breakfast Combo"
src="banner.jpeg"
srcset="banner-HD.jpeg 2x,
banner-phone.jpeg 100w,
banner-phone-HD.jpeg 100w 2x">

In this syntax, we define a collection of image sources to different resolutions and
the syntax as 2x to define density. This is not well supported until now. This was
introduced by WebKit in August 2013 (http://mobile.smashingmagazine.
com/2013/08/21/webkit-implements-srcset-and-why-its-a-good-thing/).
As of now, we need a polyfill to have better support for this, using libraries such as
Picturefill (http://scottjehl.github.io/picturefill/).

But, if we think we have used the best solution for optimizing, just by loading the
right image for the devices (because we are using JavaScript, and JavaScript rocks),
we are completely wrong. If you check your browser, you will see that all images
have been loaded and you can make the problem even worse.

The World Wide Web Consortium (W3C) came to the scene to offer some standards
in this aspect. We will now see how it works.

The W3C proposed a tag picture, whose code is as follows:

<picture alt="Pizza">
<source srcset="small-1.jpg 1x, small-2.jpg 2x">

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[71]

<source media="(min-width: 18em)" srcset="med-1.jpg 1x, med-2.jpg 2x">
<source media="(min-width: 45em)" srcset="large-1.jpg 1x, large-2.jpg
2x">

</picture>

With this syntax, we define the image collections that the browser used to decide the
image to be displayed.

It has great advantages, as follows:

•	 Audio/Video element syntax
•	 Media-query-based
•	 Supports non-pixel values
•	 Supports art direction
•	 Uses the 2x functionality of @srcset
•	 Fallbacks for unsupported types

On the other side, we have server-side technologies and a lot of solutions to take
this responsibility out of the frontend and just deliver the image processed to be
rendered.

Thumbor is an example and has already been mentioned. Sencha is another example
(http://src.sencha.io). Adaptive images (http://adaptive-images.com) also
do the same job. The drawback in all three is their availability on the server. We
expect an external resource to generate the images in this case.

With Sencha, it is done in the following manner:

<img src='http://src.sencha.io/http://sencha.com/files/u.jpg'
alt='My smaller image'/>

Dave Rupert (http://twitter.com/davatron5000) proposes a middle method
called 1.5x hack. In this case we find a half way to balance up a size between the
smaller (for mobile) and higher(for desktop). So we don't load all the images but an
intermediary that will not affect one in preference to another (http://daverupert.
com/2013/06/ughck-images/).

There's the clown car method too (https://github.com/estelle/clowncar),
which counts with SVG. As I have already mentioned, and it's Bootstrap philosophy,
we should work in an implementation that can be recommended by W3C in the
future and be native. Until then, you use JavaScript to do the job. We can see once
again that JavaScript programming is really being a superhero, doing for us what a
browser would normally do.

Performance Matters

[72]

Load on demand
We used Modernizr in our project in the previous chapter to detect browser
compatibility. With Modernizr, we can do the following in our previous scenario:

Modernizr.load({
 test: Modernizr.geolocation,
 yep : 'geolocation.js',
 nope: 'find-by-ip.js'
});

Here, for example, we test for geolocation support.

If we find support, we load geoloation.js, which we have already explored, and it
is all that GPS can offer. If we do not have support for this, we can still load a polyfill
as a fallback if the supported feature fails to load.

There are other libraries, such as Respond.js (https://github.com/scottjehl/
Respond), that can be loaded as a polyfill to support CSS3 media queries in browsers
that don't support this (such as Internet Explorer 8). Well, it's an enhanced solution
because we don't need to load an extra script in browsers that do this by default.

There are different loading methods using different libraries and approaches; for
example, lazy load (http://www.appelsiini.net/projects/lazyload). This
library delays the loading of images in long web pages and displays the images as
the user scrolls to those particular images.

Optimizing icons
There is a golden rule to optimizing icons: use web fonts when applicable. You can
use SVG for scalable icon graphs too.

One of the best tools that Bootstrap has is font-awesome. It has been mentioned
before and is one of my favorite tools. We have a complete open source icon gallery
that is generated by font-icons. Glyphicons is another great tool that is a part of the
Bootstrap core. It's a great time to talk about Glyphicons, because they use font-face
to render fonts. The use of sprite images to generate a collection of icons is no longer
used in Glyphicons.

The nomenclature has very few changes—just load a CSS and use the following:

Now, we have an icon class.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[73]

With font-icons, we can use a character from a font and use it as an icon. With this
solution, we can have all the flexibility that the font already has for type, such as
applying shadow through CSS3, animations, and size. If you don't have to worry
about icon sizes, it's one thing less to disturb you to get your application optimized.
The font-face tool is loaded once and with a simple class, you can have an icon font
without worries. There's a set of common icons included in this tool that support all
basic needs of your web application.

If you need another set of fonts, or even want to create your own, use the open
source project called Icosmith (http://icosmith.com/). It generates custom fonts
from an SVG icon, contains classes already, and are ready for use.

Summary
In this chapter, we covered one more important layer in Mobile First Bootstrap with
a final touch of enhancement in the time taken for site loading. The time taken for
loading decides if our users are happy or angry. We have seen the three main aspects
that affect page loading directly.

You now have the knowledge to make the best decisions in terms of using different
options and tools to manage performance issues, handle images and icons, and load
content on demand.

We saw that using the font-icons tool makes us improve the inclusion of icon
families as font-families and discover how flexible it is and how simple it is
to include in your project.

We discovered great tools that make the management of performance a real cost
benefit for you. We also covered tools that provide better responsive images, keeping
the quality and using smart methods, such as art direction, to deliver just the right
content for the user. Now, we can think "mobile" at the highest level, because we know
about Bootstrap Mobile First!

www.allitebooks.com

http://www.allitebooks.org

Index
Symbols
.col-lg-* class 27
.col-md-* class 27
.col-sm-* class 27
.col-xs-* class 27
.hidden-lg class 29
.hidden-md class 29
.hidden-sm class 29
.visible-lg class 29
.visible-md class 29
.visible-sm class 29

A
Adaptive images

URL 71
Adobe Kuler 51
alert plugin 46
application bootstrapping

about 50
customizable version, inserting 50, 51
project template 52-55

asymmetric grid
pros 25
URL 24

B
Bootstrap

documentation feature 49
download page 9

Bootstrap 3 35
Bootstrap carousel plugin

about 37
enhancement 37-40

Bootstrap documentation 24

URL 31
Bootstrap Expo

URL 9
Bootstrap Mobile First

about 8
reviewing 8, 9

Bootstrap modal component example 55, 56
Bootstrap modal plugin 41
Bootstrap navbar component 15
bootstrapping 9
Bootstrap source code

modifying 18, 19
tests, running 19

border-radius property 22
Bower

about 16
responsiveness 18
URL 17

C
close event 46
clown car method 71
Cochichous 49
COLOURlovers 51
CSS component 36

D
data attribute 41, 42
docs running

Git checkout, executing 16
Jekyll, installing 16

double-sized image 68

[76]

F
forms

designing 28

G
geocoding 56
Geolocation 56, 57
GitHub

URL 52
Glyphicons

URL 28
grid framework

about 24
cons 25
pros 25

grid system
about 22
breakpoints 25
completely fluid layout 25
grid framework 24
icon library 28
predefined classes 25, 26, 27
predefined classes 27
semantic grids 22, 23

I
icons

optimizing 72, 73
Icosmith 73
image formats

Data URI 69
GIF 69
JPG 69
PNG 69
WebP 69

Install Node 19

J
JavaScript

using, on server 46
JavaScript Collapse plugin

URL 31
Jekyll 16
jQuery plugin 36

L
lazy load

URL 72
LESS variables 51
lynx

Bootstrap template 45
URL 45

M
max-width method 67
Minimal Viable Product (MVP) 12
mobile application

choosing 63
Mobile First

benefit 14
new project, creating 12-14

Modernizr
using 72

N
namespace events 46
NUI (Natural User Interface) 11

O
OAuth

URL 59
opacity property 36

P
PaintStrap 51
PhoneGap 63
Picturefill 70
progressive enhancement 42
project template 52

R
relative units 30
Respond.js

URL 72
responsive classes

.hidden-lg 29

.hidden-md 29

.hidden-sm 29

www.allitebooks.com

http://www.allitebooks.org

[77]

.visible-lg 29

.visible-md 29

.visible-sm 29
responsive content

need for 10, 11
responsive dropdown 15
responsive images 66-71
responsive navigation 31
responsive utilities

about 29
responsive classes 29
semantic grid variables 30

S
Scalable Vector Graphics (SVG) 68
semantic grids

about 22, 23
cons 25

Semantic.gs
URL 23

Sencha
URL 71

sourceset attribute 70
Susy

URL 23

T
tablet devices

moving to 61, 62
Thumbor 69, 71
timeago library 60

TwitterAPIExchange class 61
TwitterAPIExchange library 60
Twitter API search

about 58, 59
making 60, 61

U
unobtrusive JavaScript 44

W
W3C

about 70
advantages 71

WampServer
URL 60

web app
choosing 63

World Wide Web Consortium. See W3C

Y
Yep

URL 41

www.allitebooks.com

http://www.allitebooks.org

Thank you for buying
Mobile First Bootstrap

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Twitter Bootstrap Web
Development How-To
ISBN: 978-1-84951-882-6 Paperback: 68 pages

A hands-on introduction to building websites
with Twitter Bootstrap's powerful front-end
development framework

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Conquer responsive website layout with
Bootstrap’s flexible grid system

3.	 Leverage carefully-built CSS styles for
typography, buttons, tables, forms, and more

Windows Phone 8 Game
Development
ISBN: 978-1-84969-680-7 Paperback: 394 pages

A practical guide to creating games for the Windows
Phone 8 platform

1.	 Create a 3D game for the Windows Phone
8 platform

2.	 Combine native and managed development
approaches

3.	 Discover how to use a range of inputs,
including sensors

4.	 Learn how to implement geolocation and
augmented reality features

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

Appcelerator Titanium Application
Development by Example
Beginner's Guide
ISBN: 978-1-84969-500-8 Paperback: 334 pages

Over 30 interesting recipes to help you create
cross-platform apps with Titanium, and explore
the new features in Titanium 3

1.	 Covers iOS, Android, and Windows 8

2.	 Includes Alloy, the latest in Titanium design

3.	 Includes examples of Cloud Services,
augmented reality, and tablet design

LiveCode Mobile Development
Beginner's Guide
ISBN: 978-1-84969-248-9 Paperback: 246 pages

Create fun-filled, rich apps for Android and iOS with
LiveCode

1.	 Create fun, interactive apps with rich media
features of LiveCode

2.	 Step-by-step instructions for creating apps and
interfaces

3.	 Dive headfirst into mobile application
development using LiveCode backed with clear
explanations enriched with ample screenshots

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Bootstrap 3.0 is Mobile First
	Bootstrap reviewed
	Desktop to responsive
	The new mindset – Mobile First
	Practical example – The responsive dropdown
	Now Bootstrap uses Bower and Jekyll
	Running the docs
	Version 3 in progress in the Github repository
	Installing Jekyll

	Bower
	First step to responsiveness

	Making changes in the Bootstrap source code
	Running tests

	Summary

	Chapter 2: Designing Stylesheet in Bootstrap 3
	The grid system
	Semantic grids
	Grid framework
	Breakpoints and completely fluid layouts
	Predefined classes to control responsive flow

	Forms in different resolutions
	The icon library
	Responsive utilities
	Responsive classes
	Semantic grid variables and functions

	Relative units
	Navigation
	Summary

	Chapter 3: JavaScript, the Behavior in Mobile First Development
	The carousel example
	A touch of enhancement

	Data attributes
	Mobile First and progressive enhancements
	Be semantic in your HTML markup

	Unobtrusive JavaScript
	Follow the Bootstrap tips about accessibility
	Test a site in a lynx browser

	Namespace events
	JavaScript on the server
	Summary

	Chapter 4: Getting it All Together, a Simple Tweet Application Page
	Bootstrapping our application
	Inserting a customizable version of Bootstrap
	The project template

	Bootstrap modal component example
	Geolocation
	The Twitter API search
	Make a search

	Going from tablet device to desktop screen resolution
	The choice between web app and mobile application
	Summary

	Chapter 5: Performance Matters
	Responsive images
	Load on demand
	Optimizing icons
	Summary

	Index

