
Jon Manning &
Paris Buttfield-Addison

Mobile Game
Development
with Unity
BUILD ONCE, DEPLOY ANYWHERE

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Praise for Mobile Game Development with
Unity

“If you want to build any kind of game for mobile platforms, you’ve got
to take a look at Unity. This book is an excellent, thorough, and

seriously fun guide to putting together gameplay in one of the best
game engines out there for indie developers.”

—Adam Saltsman, Creator of Canabalt and
Overland at Finji

“The best way to learn how to use a game engine is by getting your
hands dirty and building your own projects. In this book, Paris and Jon
guide you through the creation of two radically different games, giving

you invaluable hands-on experience with a wide range of Unity’s
features.”

—Alec Holowka, Lead Developer of Night in the
Woods and Aquaria at Infinite Ammo

“This book changed my life. I now feel inner peace, and I’m pretty sure
I can see through time.”

—Liam Esler, Game Developers’ Association of
Australia

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Jon Manning and Paris Buttfield-Addison

Mobile Game Development
with Unity

Build Once, Deploy Anywhere

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-94474-5

[LSI]

Mobile Game Development with Unity
by Jon Manning and Paris Buttfield-Addison

Copyright © 2017 Jonathon Manning and Paris Buttfield-Addison. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Rachel Roumeliotis
Development Editor: Brian MacDonald
Production Editor: Justin Billing
Copyeditor: Jasmine Kwityn
Proofreader: Sonia Saruba

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2017: First Edition

Revision History for the First Edition
2017-07-31: First Release
2017-09-15: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491944745 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Mobile Game
Development with Unity, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491944745
http://www.allitebooks.org

Table of Contents

Preface. ix

Part I. The Basics of Unity

1. Introducing Unity. 3
Hello, Book 3
Hello, Unity 4

2. A Tour of Unity. 7
The Editor 7
The Scene View 11
The Hierarchy 14
The Project View 15
The Inspector 17
The Game View 19
Wrapping Up 19

3. Scripting in Unity. 21
A Crash Course in C# 22
Mono and Unity 23
Game Objects, Components, and Scripts 25
Important Methods 28
Coroutines 31
Creating and Destroying Objects 33
Attributes 36
Time in Scripts 39

v

www.allitebooks.com

http://www.allitebooks.org

Logging to the Console 40
Wrapping Up 40

Part II. Building a 2D Game: Gnome on a Rope

4. Getting Started Building the Game. 43
Game Design 44
Creating the Project and Importing Assets 50
Creating the Gnome 52
Rope 61
Wrapping Up 77

5. Preparing for Gameplay. 79
Input 79
Setting Up the Gnome’s Code 96
Setting Up the Game Manager 109
Preparing the Scene 122
Wrapping Up 124

6. Building Gameplay with Traps and Objectives. 125
Simple Traps 125
Treasure and Exit 127
Adding a Background 133
Wrapping Up 134

7. Polishing the Game. 137
Updating the Gnome’s Art 138
Updating the Physics 142
Background 150
User Interface 161
Invincibility Mode 171
Wrapping Up 173

8. Final Touches on Gnome’s Well. 175
More Traps and Level Objects 175
Particle Effects 182
Main Menu 189
Audio 196
Wrapping Up and Challenges 197

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Part III. Building a 3D Game: Space Shooter

9. Building a Space Shooter. 203
Designing the Game 204
Architecture 209
Creating the Scene 210
Wrapping Up 226

10. Input and Flight Control. 227
Input 227
Flight Control 233
Wrapping Up 243

11. Adding Weapons and Targeting. 245
Weapons 245
Target Reticle 263
Wrapping Up 264

12. Asteroids and Damage. 265
Asteroids 265
Damage-Dealing and Taking 272
Wrapping Up 284

13. Audio, Menus, Death, and Explosions!. 285
Menus 285
Game Manager and Death 291
Boundaries 303
Final Polish 311
Wrapping Up 322

Part IV. Advanced Features

14. Lighting and Shaders. 325
Materials and Shaders 325
Global Illumination 340
Thinking About Performance 347
Wrapping Up 353

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

15. Creating GUIs in Unity. 355
How GUIs Work in Unity 355
Controls 362
Events and Raycasts 362
Using the Layout System 364
Scaling the Canvas 367
Transitioning Between Screens 369
Wrapping Up 369

16. Editor Extensions. 371
Making a Custom Wizard 373
Making a Custom Editor Window 382
Making a Custom Property Drawer 395
Making a Custom Inspector 404
Wrapping Up 410

17. Beyond the Editor. 411
The Unity Services Ecosystem 411
Deployment 424
Where to Go from Here 435

Index. 437

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Welcome to Mobile Game Development with Unity! In this book,
we’ll take you from nothing all the way up to building two complete
games, and teach you both beginning and advanced Unity concepts
and techniques along the way.

The book is split into four parts.

Part I introduces the Unity game engine, and explores the basics,
including how to structure games, graphics, scripting, sounds, phys‐
ics, and particle systems. Part II then takes you through the con‐
struction of a full 2D game with Unity, involving a gnome on a rope
trying to get treasure. Part III explores the construction of a full 3D
game with Unity, including spaceships, asteroids, and more. Part IV
explores some of the more advanced features of Unity, including
lighting, the GUI system, extending the Unity editor itself, the Unity
asset store, deploying games, and platform-specific features.

If you have any feedback, please let us know! You can email us at
unitybook@secretlab.com.au.

Resources Used in This Book
Supplemental material (art, sound, code examples, exercises, errata,
etc.) is available for download at http://secretlab.com.au/books/unity.

Audience and Approach
This book is designed for people who want to build games but don’t
have any previous game development experience.

ix

mailto:unitybook@secretlab.com.au
http://secretlab.com.au/books/unity

Unity supports a few different programming languages. We’ll be
using C# in this book. We will assume that you know how to pro‐
gram in a relatively modern language, but it doesn’t have to be
recent programming experience as long as you’re somewhat com‐
fortable with the basics.

The Unity editor runs on both macOS and Windows. We use
macOS, so the screenshots shown throughout the book are taken
from there, but everything we cover is identical on Windows, with
one small exception: building iOS games with Unity. We’ll explain
when we get to it, but you can’t do it on Windows. Android works
fine on Windows though, and macOS can build for both iOS and
Android.

The book takes the approach that you need to understand the basics
of game design, as well as Unity itself, before you build some games,
so we teach you that in Part I. Once that’s done, parts II and III
explore the construction of a 2D game and a 3D game, respectively,
and then in Part IV we follow up with all the other Unity features
that you should know about.

We will assume that you’re fairly confident and comfortable navigat‐
ing your operating system, and using your mobile devices (whether
they be iOS or Android).

We won’t be covering the creation of art or sound assets for your
games, although we do supply assets for the two games you build
through this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

x | Preface

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This icon signifies a tip or suggestion.

This element signifies a general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, errata, etc.) is
available for download at http://secretlab.com.au/books/unity.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:

Preface | xi

http://secretlab.com.au/books/unity

“Mobile Game Development with Unity by Jonathon Manning and
Paris Buttfield-Addison (O’Reilly). Copyright 2017 Jon Manning
and Paris Buttfield-Addison, 978-1-491-94474-5.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa‐
tors, and individuals.

Members have access to thousands of books, training videos, Learn‐
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among oth‐
ers.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/Mobile-Game-Dev-Unity.

xii | Preface

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/Mobile-Game-Dev-Unity
http://bit.ly/Mobile-Game-Dev-Unity

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Jon and Paris wish to thank their fabulous editors, especially Brian
MacDonald (@bmac_editor) and Rachel Roumeliotis (@rroumelio‐
tis) for their work in bringing this book to fruition. Thanks for all
the enthusiasm! Thanks also to the fabulous staff at O’Reilly Media,
for making writing books such a pleasure.

Thanks also to our families for encouraging our game development,
as well as all of MacLab and OSCON (you know who you are) for
encouragement and enthusiasm. Thanks particularly to our fabulous
tech reviewer, Dr. Tim Nugent (@the_mcjones).

Preface | xiii

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://twitter.com/bmac_editor
https://twitter.com/rroumeliotis
https://twitter.com/rroumeliotis
https://twitter.com/the_mcjones

PART I

The Basics of Unity

This book covers much of what you need to know to effectively
build mobile games using the Unity game engine. The three chap‐
ters in this first part of the book introduce Unity, take you on a tour
of the application, and discuss how programming works in Unity,
using the C# programming language.

CHAPTER 1

Introducing Unity

To kick off our exploration of the Unity game engine, we’ll start with
the basics: what Unity is, what it’s useful for, and how to get it. At the
same time, we’ll set up some useful constraints for the subject mate‐
rial we’re looking at in this book; after all, you’re holding a book that
claims to be about mobile development, not all development. Such a
book would be much heavier, or would make your reading software
crash. We aim to spare you this misfortune.

Hello, Book
Before we dive into Unity itself, let’s take a closer look at what we’re
talking about here: the field of mobile games.

Mobile Games
So, what is a mobile game, and how is it different from any other
sort of game? More practically, how do these differences factor into
your decisions when you’re both designing and later implementing a
game?

Fifteen years ago, a mobile game was likely to be one of two things:

• An incredibly simple game, with minimal interactions, graphics,
and complexity

3

• A much more complex affair, available only on specialized
mobile gaming consoles, and created by companies with access
to expensive dev kits for said mobile gaming consoles

This split was the result of both hardware complexity and distribu‐
tion availability. If you wanted to make a game that was in any way
complex (and by complex we mean featured the incredible ability to
have more than one thing moving on the screen at a time), you
needed the more advanced computing power available only on
expensive portable consoles, like Nintendo’s handheld devices.
Because the console owners also owned the distribution channels
for the games, and wanted to have a high degree of control, getting
permission to make games for more capable hardware became a
challenge.

However, as more powerful hardware became cheaper over time,
more options opened up for developers. In 2008, Apple made its
iPhone available to software developers, and in the same year Goo‐
gle’s Android platform became available. Over the years, iOS and
Android have become extremely capable platforms, and mobile
games are the most popular video games in the world.

These days, a mobile game is typically one of three things:

• A simple game, with carefully chosen interactions, graphics, and
controlled complexity, because the game design was best sup‐
ported by these facets

• A much more complex affair, available for anything ranging
from specialized mobile game consoles to smartphones

• A mobile port of a game that debuted on a console or PC

You can use Unity to do all three of these; in this book, we’ll be con‐
centrating on the first approach. After exploring Unity and how it’s
used, we’ll step through the creation of two games that fit those fac‐
ets.

Hello, Unity
Now that we’ve elaborated a bit on what we’re trying to make, let’s
talk about what we’re going to make it with: the Unity game engine.

4 | Chapter 1: Introducing Unity

What’s Unity For?
Over the years, Unity’s focus has been on democratizing game devel‐
opment—that is, allowing anyone to make a game, and to make it
available in as many places as possible. However, no single software
package is perfect for all situations, and it’s worth knowing what
Unity is most suitable for, and when you should consider a different
software package.

Unity is particularly great in situations like these:

When you’re building a game for multiple devices.
Unity’s cross-platform support may be the best in the industry,
and if you want to build a game that runs on multiple platforms
(or even just multiple mobile platforms), Unity can be the best
way to go about it.

When speed of development is important.
You could spend months developing a game engine that con‐
tains the features you need. Or, you could use a third-party
engine, like Unity. To be fair, there are other engines that exist,
like Unreal or Cocos2D; however, this leads us into the next
point.

When you need a complete feature set, and don’t want to build your
own tools.

Unity happens to contain a blend of features that are ideal for
mobile games, and provides ways of creating your content that
are very easy to use.

That said, there are some situations in which Unity is less useful.
These include:

When you’re building something that shouldn’t redraw very often.
Some kinds of games that aren’t terribly graphically intense are
less suited for Unity, because Unity’s engine redraws the screen
every frame. This is necessary for real-time animation, but uses
more energy.

When you need very precise control over what the engine is doing.
Unless you’ve purchased a source code license to Unity (which
is possible, but less common), you don’t have any way to control
the lowest level behavior of the engine. That’s not to say you
don’t have fine-grained control over Unity (and in most cases,

Hello, Unity | 5

https://www.unrealengine.com
http://www.cocos2d.org

you don’t need it anyway), but that there are certain things that
are out of your hands.

Getting Unity
Unity is available for Windows, macOS, and Linux. Unity comes in
three main flavors: Personal, Plus, and Pro.

At the time of this book’s release (mid-2017),
Linux support was experimental.

• The Personal edition is designed for solo developers who want
to use Unity to make a game on their own. The Personal edition
is free.

• The Plus edition is designed for solo developers or small teams.
At the time of writing, the Plus edition costs $35 per month.

• The Pro edition is designed for small to large teams. At the time
of writing, the Pro edition costs $125 per month.

Unity is also available in an Enterprise license,
which is designed for large teams, but is not
something that the authors have used much.

The features of the Unity software are largely the same across each
edition. The main difference between the free and paid editions is
that the Personal edition imposes a splash screen on your game,
which shows the Unity logo. The free edition is only available to
individuals or organizations that have a revenue of $100,000 a year
or less, while the limit for Plus is $200,000. Plus and Pro also include
slightly better services, such as priority build queues in Unity’s
Cloud Build service (discussed in more detail in “Unity Cloud
Build” on page 423).

To download Unity, head to https://store.unity.com. Once you’ve
installed it, you’re ready to get going, and we’ll see you in the next
chapter.

6 | Chapter 1: Introducing Unity

https://store.unity.com

CHAPTER 2

A Tour of Unity

Once you’ve got Unity installed, it’s helpful to spend a bit of time
learning your way around it. Unity’s user interface is reasonably
straightforward, but there are enough individual pieces that it’s
worth taking some time to review it.

The Editor
When you fire up Unity for the first time, you’ll be asked to provide
your license key, and you’ll be asked to sign in to your account. If
you don’t have one, or if you don’t want to sign in, you can skip the
login.

If you don’t log in, Cloud Builder and other
Unity services will not be available to you. We’ll
look at Unity’s services later in Chapter 17; we
won’t use them much when we’re first starting
out, but it’s nice to be signed in.

Once you’re past that point, you’ll be taken to Unity’s start screen,
where you can choose to either create a new project, or open an
existing one (Figure 2-1).

7

Figure 2-1. Unity’s splash screen, when signed in

If you click on the New button at the top-right, Unity will ask you
for some information for it to use while setting up the project
(Figure 2-2), including the name of the project, where to save it, and
whether you’d like Unity to create a 2D or 3D project.

Figure 2-2. Creating a new project

8 | Chapter 2: A Tour of Unity

The selection between 2D or 3D doesn’t result in
a huge degree of difference. 2D projects default
to a side-on view, while 3D projects default to a
3D perspective. You can change the setting at
any time, as well, in the Editor Settings inspector
(see “The Inspector” on page 17 to learn how to
access it).

When you click the “Create project” button, Unity will generate the
project on disk for you and open it in the editor (Figure 2-3).

Figure 2-3. The editor

The Editor | 9

Project Structure

Unity projects are not single files; instead,
they’re folders, which contain three important
subfolders: Assets, ProjectSettings, and Library.
The Assets folder contains all of the files that
your game uses: your levels, textures, sound
effects, and scripts. The Library folder contains
data that’s internal to Unity, and the ProjectSet‐
tings folder contains files that contain your proj‐
ect’s settings.
You don’t generally need to touch any file inside
the Library and ProjectSettings folders.
Additionally, if you’re using a source control sys‐
tem like Git or Perforce, you don’t need to check
the Library folder into your repository, but you
do need to check in the Assets and ProjectSet‐
tings folders in order to make sure that your col‐
laborators have the same assets and settings as
you.
If all of that sounded unfamiliar, you can safely
ignore it, but we do strongly suggest following
proper source control standards for your code—
it can be extremely useful!

Unity is designed around the use of several panes. Each pane has a
tab at its top left, which can be dragged around to change the layout
of the application. You can also drag a tab out and make it a separate
window. Not all of Unity’s panes are visible by default, and as you
build your game, you’ll end up opening more of them via the Win‐
dow menu.

If you ever get completely lost, you can always
reset your layout by opening the Window menu
and choosing Layouts → Default.

Play Mode and Edit Mode
The Unity editor exists in one of two modes: Edit Mode and Play
Mode. In Edit Mode, which is the default, you create your scene,

10 | Chapter 2: A Tour of Unity

configure your game objects, and generally build your game. In Play
Mode, you play your game and interact with your scene.

To enter Play Mode, click the Play button at the top of the Editor
window (Figure 2-4). Unity will start the game; to leave Play Mode,
click the Play button again.

You can also press Command-P (Ctrl-P on a
PC) to enter and leave Play Mode.

Figure 2-4. The Play Mode controls

While in Play Mode, you can temporarily pause the game by press‐
ing the Pause icon in the middle of the Play Mode controls. Press it
again to resume playback. You can also ask Unity to advance a single
frame and then pause again by clicking the Step button at the far
right.

Any changes that are made to your scene are
undone when you leave Play Mode. This
includes both changes that happened as a result
of gameplay, and changes that you made to your
game objects without realizing you were in Play
Mode. Double-check before making changes!

Let’s now take a closer look at the tabs that appear by default. In this
chapter, we’ll refer to the location of the panes as they appear in the
default layout. (If you can’t see one of the panes, make sure you’re
using the default layout.)

The Scene View
The scene view is the pane in the middle of the window. The scene
view is where you spend most of your time, since it’s here that you’re
able to look at the contents of your game’s scenes.

The Scene View | 11

Unity projects are broken up into scenes. Each scene contains a col‐
lection of game objects; by creating and modifying game objects,
you create your game’s worlds.

You can think of a scene as a level, but scenes are
also used to break up your game into managea‐
ble chunks. For example, the main menu of your
game is usually its own scene, as well as each of
its levels.

The Mode Selector
The scene view can be in one of five different modes. The mode
selector, at the top-left of the window (seen in Figure 2-5), controls
how you’re interacting with the scene view.

Figure 2-5. The scene view’s mode selector, shown here in Translate
mode

The five modes, from left to right, are:

Grab mode
When this mode is active, left-clicking and dragging the mouse
will pan the view.

Translation mode
When this mode is active, the currently selected objects can be
moved around.

Rotation mode
When this mode is active, the currently selected objects can be
rotated.

Scale mode
When this mode is active, the currently selected objects can be
resized.

Rectangle mode
When this mode is active, you can move and resize the cur‐
rently selected objects using 2D handles. This is particularly
useful when laying out a 2D scene, or working with a GUI.

12 | Chapter 2: A Tour of Unity

You can’t select any objects in Grab mode, but
you can in the other modes.

You can switch the mode that the scene view is in using the mode
selector; alternatively, you can press the Q, W, E, R, and T keys to
quickly switch between them.

Getting Around
There are a few ways to get around in the scene view:

• Click the Hand icon at the top-left of the window to enter Grab
mode, and left-click and drag to pan the view.

• Hold down the Option key (Alt on a PC) and left-click and drag
to rotate the view.

• Select an object in the scene by left-clicking on it in the scene, or
clicking on its entry in the Hierarchy (which we’ll talk about in
“The Hierarchy” on page 14), move the mouse over the scene
view, and press F to focus the view on the selected object.

• Hold down the right mouse button, and move the mouse to
look around; while you’re holding the right mouse button, you
can use the W, A, S, and D keys to fly forward, left, back, and
right. You can also use the Q and E keys to fly up and down.
Hold the Shift key to fly faster.

You can also press the Q key to switch to Grab
mode, instead of clicking on the Hand icon.

Handle Controls
To the right of the mode selector, you’ll find the handle controls
(Figure 2-6). The handle controls determine where the handles—the
movement, rotation, and scaling controls that appear when you
select an object—should be positioned and oriented.

The Scene View | 13

Figure 2-6. The handle controls; in this image, the handle’s positions
are set to Pivot, and the orientation is set to Local

There are two controls that you can configure: the position of the
handles and their orientation.

The position of the handles can be set to either Pivot or Center.

• When set to Pivot, the handles appear at the pivot point of the
object. For example, 3D models of people typically have their
pivot point placed between their feet.

• When set to Center, the handles appear in the center of the
object, and disregard the object’s pivot point.

The orientation of the handles can be set to either Local or Global.

• When set to Local, the handles are oriented relative to the object
you have selected. That is, if you rotate an object so that its up
direction is now facing sideways, the up arrow will face sideways
as well. This allows you to move the object in its “local” up
direction.

• When set to Global, the handles are oriented relative to the
world—that is, the up direction will always be straight up, ignor‐
ing the object’s actual rotation. This can be useful when you
need to move a rotated object.

The Hierarchy
The Hierarchy pane (Figure 2-7) appears at the left of your scene
view, and displays the list of all objects in the currently open scene.
If you have a complex scene, the hierarchy lets you quickly find an
object by name.

14 | Chapter 2: A Tour of Unity

www.allitebooks.com

http://www.allitebooks.org

Figure 2-7. The Hierarchy pane

The hierarchy, as its name suggests, also lets you view the parent–
child relationship of objects. In Unity, objects can contain other
objects; in the hierarchy, you can explore this tree of objects. You
can also drag and drop objects to rearrange them in the list.

At the top of the hierarchy, you’ll find a search field, which you can
use to type the name of the object you’re looking for. This is particu‐
larly useful in complex scenes.

The Project View
The Project view (Figure 2-8), at the bottom of the Editor window,
displays the contents of your project’s Assets folder. From here, you
can work with the assets in your game, and manage the folder lay‐
out.

The Project View | 15

You should only move, rename, and delete assets
from within the Project view. When you do this,
Unity is able to track the files as they change,
whereas if you do it outside of the Project view
(such as in the Finder on macOS, or in Win‐
dows Explorer on a PC), Unity isn’t able to track
them. This can result in Unity getting confused,
and your game no longer functioning properly.

Figure 2-8. The Project view (seen here displaying the assets of another
project; newly created projects are empty)

The Project view can be viewed in either a single-column layout, or
a double-column layout. The double-column layout can be seen in
Figure 2-8; on the left column, the list of folders appears, and on the
right, the contents of the currently selected folder appear. The
double-column view is best suited for wide layouts.

By contrast, the single-column view (Figure 2-9) lists all folders and
their contents in a single list. This makes it ideal for narrower lay‐
outs.

16 | Chapter 2: A Tour of Unity

Figure 2-9. The Project view, in single-column mode

The Inspector
The Inspector (Figure 2-10) is one of the most important views in
the entire editor, second only to the Scene view. The Inspector dis‐
plays information about the currently selected objects, and it’s where
you’ll go to configure your game objects. The Inspector appears to
the righthand side of the window; by default, it’s in the same tab
group as the Services tab.

The Inspector | 17

Figure 2-10. The Inspector, showing information about an object con‐
taining a Light component

18 | Chapter 2: A Tour of Unity

The Inspector shows the list of all components attached to the
selected object or asset. Each component shows different informa‐
tion; as we build the projects in Parts II and III, we’ll be looking at a
wide variety of them. This means that we’ll get a lot more familiar
with the Inspector and its contents as time goes on.

In addition to showing information about the
current selection, the Inspector also shows your
project’s settings. which you can access via the
Edit → Project Settings menu.

The Game View
The Game view, which is in the same tab group as the Scene view,
displays the view from the game’s currently active camera. When
you enter Play Mode (see “Play Mode and Edit Mode” on page 10),
the Game view automatically activates, letting you play your game.

The Game view isn’t interactive on its own—all
it does is show what the camera is rendering.
This means that, when the editor is in Edit
Mode, attempting to interact with the Game
view won’t do anything.

Wrapping Up
Now that you know how to get around Unity, you’re ready to start
making it do what you want. There’s always more to explore in such
a complex piece of software; take the time to poke around.

In the next chapter, we’ll talk about how to work with game objects
and scripts. From there, you’ll be ready to start making your games.

The Game View | 19

CHAPTER 3

Scripting in Unity

In order for your game to work, you need to define what actually
happens in your game. Unity provides you with the foundations of
what you need, such as rendering graphics, getting input from the
player, and playing audio; it’s up to you to add the features that are
unique to your game.

To make this happen, you write scripts that get added to your game’s
objects. In this chapter, we’ll introduce you to Unity’s scripting sys‐
tem, which uses the C# programming language.

21

Languages in Unity

You have a choice of languages when program‐
ming in Unity. Unity officially supports two dif‐
ferent languages: C# and “JavaScript.”
We put JavaScript in quotes because it’s not
actually the JavaScript language that you might
be familiar with from the wider world. Instead,
it’s a language that looks like JavaScript, but has
multiple differences from its namesake. It’s dif‐
ferent enough that it’s often called “UnityScript,”
by both users of Unity and sometimes the Unity
team themselves.
We don’t use Unity’s JavaScript in this book for a
couple of reasons. The first is that Unity’s refer‐
ence material tends to show C# examples more
than JavaScript, and we get the feeling that the
use of C# is preferred by Unity’s developers.
Secondly, when you use C# in Unity, it’s the
same language you’ll find anywhere else,
whereas Unity’s version of JavaScript is very spe‐
cific to Unity. This means that it’s easier to find
help about the language.

A Crash Course in C#
When writing scripts for Unity games, you write in a language called
C#. We’re not going to explain the fundamentals of programming in
this book (we don’t have the space!), but we’ll highlight some main
points to keep in mind.

A great general reference on the C# language is
C# in a Nutshell, by Joseph and Ben Albahari
(O’Reilly, 2015).

To give you a quick introduction, we’ll take a chunk of C# code, and
highlight some important elements:

using UnityEngine;

namespace MyGame {

 [RequireComponent(typeof(SpriteRenderer))]

22 | Chapter 3: Scripting in Unity

 class Alien : MonoBehaviour {

 public bool appearsPeaceful;

 private int cowsAbducted;

 public void GreetHumans() {
 Debug.Log("Hello, humans!");

 if (appearsPeaceful == false) {
 cowsAbducted += 1;
 }
 }
 }
}

The using keyword indicates to the user which packages you’d
like to use. The UnityEngine package contains the core Unity
types.

C# lets you put your types in namespaces, which means that you
can avoid naming collisions.

Attributes are placed between square brackets, and let you add
additional information about a type or method.

Classes are defined using the class keyword, and you specify
the superclass after a colon. When you make a class a subclass
of MonoBehaviour, it can be used as a script component.

Variables attached to classes are called fields.

Mono and Unity
Unity’s scripting system is powered by the Mono framework. Mono
is an open source implementation of Microsoft’s .NET Framework,
which means that in addition to the libraries that come with Unity,
you also have the complete set of libraries that come with .NET.

A common misconception is that Unity is built on top of Mono.
Unity is not built on Mono; it merely uses Mono as its scripting
engine. Unity supports scripting, through Mono, using both the C#
language and the UnityScript language (what Unity calls “Java‐
Script;” see Languages in Unity).

Mono and Unity | 23

The versions of C# and the .NET Framework available in Unity are
older than the most current versions. At the time of writing in early
2017, the version of the C# language available is 4, while the version
of the .NET Framework available is 3.5. The reason for this is that
Unity uses its own fork of the Mono project, which diverged from
the mainline branch several years ago. This has meant that Unity
can add features that are specific to their uses, which are primarily
mobile-oriented compiler features.

Unity is in the middle of updating its compiler tools to make the lat‐
est versions of the C# language and the .NET Framework available
to users. Until that happens, your code will be a few versions behind.

For this reason, if you’re looking for C# code or advice around the
web, you should search for Unity-specific code most of the time.
Similarly, when you’re coding C# for Unity, you’re going to be using
a combination of Mono’s API (for generic things that most plat‐
forms provide) and Unity’s API (for game engine-specific things).

MonoDevelop
MonoDevelop is the development environment that’s included with
Unity. MonoDevelop’s main role is to be the text editor that you
write your scripts with; however, it contains some useful features
that can make your life easier when programming.

When you double-click on any script file in your project, Unity will
open the editor that’s currently configured. By default, this will be
MonoDevelop, though you can configure it to be any other text edi‐
tor you like.

Unity will automatically update the project in MonoDevelop with
the scripts in your project, and will compile your code when you
return to Unity. This means that all you need to do to edit your
scripts is to save your changes, and return to the editor.

There are several features in MonoDevelop that can save you a lot of
time.

Code completion
In MonoDevelop, press Ctrl-Space (on both PC and Mac). Mono
Develop will display a pop-up window that offers a list of sugges‐
tions for what to type next; for example, if you’re halfway through
typing a class name, MonoDevelop will offer to complete it. Press

24 | Chapter 3: Scripting in Unity

the up and down arrows to select from the list, and press Enter to
accept the suggestion.

Refactoring
When you press Alt-Enter (Option-Enter on a Mac), MonoDevelop
will offer to perform certain tasks that edit your source code. These
tasks include things like adding or removing braces around if state‐
ments, automatically filling in the case labels for switch statements,
or splitting a variable’s declaration and assignment into two lines.

Building
Unity will automatically rebuild your code when you return to the
editor. However, if you press Command-B (F7 on a PC), all of your
code will be built in MonoDevelop. The files that result from this
won’t be used in this game, but doing this means that you’re able to
verify that there are no compilation errors in your code before you
return to Unity.

Game Objects, Components, and Scripts
Unity scenes are composed of game objects. On their own, they’re
invisible objects, and have nothing but a name. Their behavior is
defined by their components.

Components are the building blocks of your game, and anything
you see in the Inspector is a component. Each component has a dif‐
ferent responsibility; for example, Mesh Renderers display 3D
meshes, while Audio Sources play sound to the user. Scripts that you
write are components as well.

To create a script:

1. Create the script asset. Open the Assets menu, and choose Create
→ Script → C# Script.

2. Name the script asset. A new script file will appear in the folder
you had selected in the Project panel, ready for you to name.

3. Double-click the script asset. The script will open in the script
editor, which defaults to MonoDevelop. Most of your scripts
will start off looking like this:

Game Objects, Components, and Scripts | 25

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class AlienSpaceship : MonoBehaviour {

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }
}

The name of the class, in this case AlienSpaceship, must be
the same as the asset filename.

The Start function is called before the Update function is
called for the first time, and is where you might put code
that initializes variables, loads stored preferences, or sets up
other scripts and GameObjects.

The Update function is called every frame, and is an oppor‐
tunity to include code that responds to input, triggers
another script, or moves things around—anything that
needs to happen.

You may be familiar with constructors from
other programming environments. In Unity, you
don’t construct your MonoBehaviour subclasses
yourself, because the construction of objects is
performed by Unity itself, and does not neces‐
sarily take place when you think it might.

Script assets in Unity do not actually do anything—none of their
code is executed—until they are attached to a GameObject (seen in
Figure 3-1). There are two main ways to attach a script to a Game‐
Object:

26 | Chapter 3: Scripting in Unity

1. Dragging the script asset onto the GameObject. This can be done
with either the Inspector or the Hierarchy panel.

2. Using the Component menu. You will find all the scripts that are
in the project under Component → Scripts.

Figure 3-1. The Inspector for a GameObject, showing a script called
“PlayerMovement” added as a component

Since scripts are primarily exposed in the Unity editor through
being attached, as components, to GameObjects, Unity allows you to
expose properties in your script as editable values in the Inspector.
To do this, you create a public variable in your script. Everything
specified as public will be visible in the editor; you can also set vari‐
ables to private, though.

public class AlienSpaceship : MonoBehaviour {
 public string shipName;

 // "Ship Name" will appear in the Inspector
 // as an editable field
}

Game Objects, Components, and Scripts | 27

The Inspector
When your script is added as a component to a game object, it
appears in the Inspector when that object is selected. Unity will
automatically display all variables that are public, in the order they
appear in your code.

private variables that have the [SerializeField] attribute will also
appear. This is useful for when you want a field to be visible in the
Inspector, but not accessible to other scripts.

The Unity editor will display the variable name
by capitalizing the first letter of each word, and
placing a space before existing capital letters. For
example, the variable shipName is displayed as
“Ship Name” in the editor.

Components
Scripts are able to access the different components that are present
on a GameObject. To do this, you use the GetComponent method.

// gets the Animator component on this object, if it exists
var animator = GetComponent<Animator>();

You can also call GetComponent on other objects, to get components
attached to them.

You can also get the components that are attached to parent or child
objects, using the GetComponentInChildren or GetComponentInPar
ent methods.

Important Methods
Your MonoBehaviours have several methods that are particularly
important to Unity. These methods are called at different times dur‐
ing the component’s life cycle, and are opportunities to run the right
behavior at the right moment. This section lists the methods in the
order that they’re run.

28 | Chapter 3: Scripting in Unity

Awake and OnEnable
Awake is run immediately after an object is instantiated in the scene,
and is the first opportunity you have to run code in your script.
Awake is called once in the object’s lifetime.

By contrast, OnEnable is called each time an object becomes
enabled.

Start
The Start method is called immediately before the first call to an
object’s Update method.

Start Versus Awake
You might wonder why there are two opportunities for setting up an
object: Awake and Start. After all, doesn’t that just mean that you’ll
pick one of them at random?

There’s actually a very good reason for it. When you start a scene, all
objects in it run their Awake and Start methods. Critically, however,
Unity makes sure that all objects have finished running their Awake
methods before any Start methods are run.

This means that any work that’s done in an object’s Awake method is
guaranteed to have been done by the time another object runs its
Start method. This can be useful, such as in this example, where
object A uses a field set up by object B:

// In a file called ObjectA.cs
class ObjectA : MonoBehaviour {

 // A variable for other scripts to access
 public Animator animator;

 void Awake() {
 animator = GetComponent<Animator>();
 }
}

// In a file called ObjectB.cs
class ObjectB : MonoBehaviour {

 // Connected to the ObjectA script
 public ObjectA someObject;

 void Awake() {

Important Methods | 29

 // Check to see if someObject has set its 'animator'
 // variable
 bool hasAnimator = someObject.animator == null;

 // May print 'true' OR 'false', depending on which
 // one happens to run first
 Debug.Log("Awake: " + hasAnimator.ToString());
 }

 void Start() {
 // Check to see if someObject has set its 'animator'
 // variable
 bool hasAnimator = someObject.animator == null;

 // Will *always* print 'true'
 Debug.Log("Start: " + hasAnimator.ToString());
 }
}

In this example, the ObjectA script is on an object that also has an
Animator component attached. (The Animator itself does nothing
in this example, and could just as easily be any other kind of compo‐
nent.) The ObjectB script has been set up so that its someObject
variable is connected to the object containing the ObjectA script.

When the scene begins, the ObjectB script will log twice—once in
its Awake method, and once in its Start method. In both cases, it
will try to figure out if its someObject variable’s animator field is not
null, and print either “true” or “false.”

If you were to run this example, the first log message, which runs in
ObjectB’s Awake method, would be either “true” or “false,” depend‐
ing on which script’s Awake method ran first. (Without manually set‐
ting up an execution order in Unity, it’s impossible to know which
runs first.)

However, the second log message, which runs in ObjectB’s Start
method, is guaranteed to return “true.” This is because, when a scene
starts up, all existing objects will run their Awake methods before any
Start methods are run.

Update and LateUpdate
The Update method is run every single frame, as long as the compo‐
nent is enabled, and the object that the script is attached to is active.

30 | Chapter 3: Scripting in Unity

Update methods should do as little work as pos‐
sible, because they’re run every single frame. If
you do some long-running work in an Update
method, you’ll slow down the rest of the game.
If you need to do something that will take some
time, you should use a coroutine (described in
the following section).

Unity will call the Update method on all scripts that have one. Once
that’s done, it will call LateUpdate method on all scripts that have
one. Update and LateUpdate have a similar relationship to that of
Awake and Start: no LateUpdate methods will be called until all
Update methods have been run.

This is useful for when you want to do work that relies on some
other object to have done work in Update. You can’t control which
objects run their Update method first; however, when you write
code that runs in LateUpdate, you’re guaranteed that any work in
any object’s Update method will have completed.

In addition to Update, the FixedUpdate method
can be used. While Update is called once per
frame, FixedUpdate is called a fixed number of
times each second. This can be useful when
working with physics, where you need to apply
forces at regular intervals.

Coroutines
Most functions do their work and return immediately. However,
sometimes you need something to take place over time. For exam‐
ple, if you want an object to slide from one point to another, you
need that movement to happen over multiple frames.

A coroutine is a function that runs over multiple frames. In order to
create a coroutine, first create a method that has a return type of
IEnumerator:

IEnumerator MoveObject() {

}

Next, use the yield return statement to make the coroutine tem‐
porarily stop, allowing the rest of the game to carry on. For example,

Coroutines | 31

1 This is actually not a great idea, for reasons that are explained in “Time in Scripts” on
page 39, but it’s the simplest example.

to make an object move forward by a certain amount every frame,1

you’d do this:

IEnumerator MoveObject() {
 // Loop forever
 while (true) {

 transform.Translate(0,1,0); // move 1 unit on the Y
 // axis every frame

 yield return null; // wait until the next frame

 }
}

If you include an infinite loop (such as the
while (true) in the previous example), then
you must yield during it. If you don’t, it will loop
forever without giving the rest of your code a
chance to do any other work. Because your
game’s code runs inside Unity, you run the risk
of causing Unity to freeze up if you enter an
infinite loop. If that happens, you’ll need to force
Unity to quit, and may lose unsaved work.

When you yield return from a coroutine, you temporarily pause
the execution of the function. Unity will resume execution later; the
specifics of when it resumes depends on what value you yield
return with.

For example:

yield return null

waits until the next frame

yield return new WaitForSeconds(3)

waits three seconds

yield return new WaitUntil(() => this.someVariable == true)

waits until someVariable equals true; you can also use any
expression that evaluates to a true or false variable

32 | Chapter 3: Scripting in Unity

To stop a coroutine, you use the yield break
statement:

// stop this coroutine immediately
yield break;

Coroutines will also automatically stop when
execution reaches the end of the method.

Once you have a coroutine function, you can start it. To start a coro‐
utine, you don’t call it on its own; instead, you use it in conjunction
with the StartCoroutine function:

StartCoroutine(MoveObject());

When you do this, the coroutine will start executing until it either
reaches a yield break statement, or it reaches the end.

In addition to the yield return examples we
just looked at, you can also yield return on
another coroutine. This means that the corou‐
tine you’re yielding from will wait until the
other coroutine ends.

It’s also possible to stop a coroutine from outside of it. To do this,
keep a reference to the return value of the StartCoroutine method,
and pass it to the StopCoroutine method:

Coroutine myCoroutine = StartCoroutine(MyCoroutine());

// ... later ...

StopCoroutine(myCoroutine);

Creating and Destroying Objects
There are two ways to create an object during gameplay. The first is
by creating an empty GameObject, and attaching components to it
by using code; the second involves duplicating another object (called
instantiation). The second method is more popular because you can
do everything in a single line of code, so we’ll discuss it first.

Creating and Destroying Objects | 33

When you create new objects in Play Mode,
those objects will disappear when you stop the
game. If you want them to stick around, follow
these steps:

1. Select the objects you want to save.
2. Copy them, either by pressing Command-C

(Ctrl-C on a PC), or opening the Edit menu
and choosing Copy.

3. Leave Play Mode. The objects will disappear
from the scene.

4. Paste, either by pressing Command-V
(Ctrl-V on a PC), or opening the Edit menu
and choosing Paste. The objects will reap‐
pear; you can now work with them in Edit
Mode.

Instantiation
In Unity, instantiating an object means that it, along with all of its
components, child objects, and their components, are copied. This is
particularly powerful when the object you’re instantiating is a pre‐
fab. Prefabs are prebuilt objects that you save as assets. This means
that you can create a single template of an object, and instantiate
many copies of it across many different scenes.

To instantiate an object, you use the Instantiate method:

public GameObject myPrefab;

void Start() {
 // Create a new copy of myPrefab,
 // and position it at the same point as this object
 var newObject = (GameObject)Instantiate(myPrefab);

 newObject.transform.position = this.transform.position;
}

The Instantiate method’s return type is
Object, not GameObject. You’ll need to do a cast
in order to treat it as a GameObject.

34 | Chapter 3: Scripting in Unity

www.allitebooks.com

http://www.allitebooks.org

Creating an Object from Scratch
The other way you can create objects is by building them up yourself
through code. To do this, you use the new keyword to construct a
new GameObject, and then call AddComponent on it to add new com‐
ponents.

// Create a new game object; it will appear as
// "My New GameObject" in the hierarchy
var newObject = new GameObject("My New GameObject");

// Add a new SpriteRenderer to it
var renderer = newObject.AddComponent<SpriteRenderer>();

// Tell the new SpriteRenderer to display a sprite
renderer.sprite = myAwesomeSprite;

The AddComponent method takes as a generic
parameter the type of component you want to
add. You can specify any class here that’s a sub‐
class of Component, and it will be added.

Destroying Objects
The Destroy method removes an object from the scene. Notice that
we didn’t say game object, but object! Destroy is used for removing
both game objects and components.

To remove a game object from the scene, call Destroy on it:

// Destroy the game object that this script is attached to
Destroy(this.gameObject);

Destroy works on both components and game
objects.
If you call Destroy and pass in this, which
means the current script component, you won’t
remove the game object, but instead the script
will end up removing itself from the game object
it’s attached to. The game object will stick
around, but will no longer have your script
attached.

Creating and Destroying Objects | 35

Attributes
An attribute is a piece of information that you can attach to a class,
variable, or method. Unity defines several useful attributes that you
can use, which change the behavior of the class or how it’s presented
in the Editor.

RequireComponent

The RequireComponent attribute, when attached to a class, allows
you to specify to Unity that the script requires that another type of
component be present. This is useful when your script only makes
sense when that kind of component is attached. For example, if your
script only does one thing, such as changing the settings of an Ani‐
mator, it makes sense that that class should require an Animator to
be present.

To specify the type of component that your component requires,
you provide the type of component as a parameter, like so:

[RequireComponent(typeof(Animator))]
class ClassThatRequiresAnAnimator : MonoBehaviour {
 // this class requires that an Animator also
 // be attached to the GameObject
}

If you add a script that requires a certain com‐
ponent to a GameObject, and that GameObject
doesn’t already have that component, Unity will
automatically add one for you.

Header and Space

The Header attribute, when added to a field, causes Unity to draw a
label above the field in the Inspector. Space works similarly, but
adds empty space. Both are useful for visually organizing the con‐
tents of the Inspector.

For example, Figure 3-2 shows the Inspector’s rendering of the fol‐
lowing code:

 public class Spaceship : MonoBehaviour {

 [Header("Spaceship Info")]

 public string name;

36 | Chapter 3: Scripting in Unity

 public Color color;

 [Space]

 public int missileCount;
 }

Figure 3-2. The Inspector, showing header labels and spaces

SerializeField and HideInInspector

Normally, only public fields are displayed in the Inspector. How‐
ever, making variables public means that other objects can directly
access them, which means that it can be difficult for an object to
have full control over its own data. However, if you make the vari‐
able private, Unity won’t display it in the Inspector.

To get around this, add the SerializeField attribute to private
variables you want to appear in the Inspector.

If you want the opposite behavior (that is, the variable is public, but
doesn’t appear in the Inspector), then you can use the HideInInspec
tor attribute:

class Monster : MonoBehaviour {

 // Appears in Inspector, because it's public
 // Accessible from other scripts
 public int hitPoints;

 // Doesn't appear in Inspector, because it's private
 // Not accessible from other scripts
 private bool isAlive;

 // Appears in Inspector, because of SerializeField
 // Not accessible from other scripts
 [SerializeField]

Attributes | 37

 private int magicPoints;

 // Doesn't appear in Inspector, because of HideInInspector
 // Accessible from other scripts
 [HideInInspector]
 public bool isHostileToPlayer;
}

ExecuteInEditMode
By default, your scripts will only run their code in Play Mode; that
is, the contents of your Update method will only run when the game
is actually running.

However, it can sometimes be convenient to have code that runs all
the time. For these cases, you can add the ExecuteInEditMode
attribute to your class.

The component life cycle performs differently in
Edit Mode as compared to Play Mode. When in
Edit Mode, Unity will only redraw itself when it
has to, which generally means in response to
user input events like mouse clicks. This means
that the Update method will run only sporadi‐
cally instead of continuously. Additionally, coro‐
utines won’t behave the way you expect.
Moreover, you can’t call Destroy in Edit Mode,
because Unity defers the actual removal of an
object until the next frame. In Edit Mode, you
should call DestroyImmediate instead, which
removes an object right away.

For example, here’s a script that makes an object always face its tar‐
get, even when not in Play Mode:

[ExecuteInEditMode]
class LookAtTarget : MonoBehaviour {

 public Transform target;

 void Update() {
 // Don't continue if we don't have a target
 if (target != null) {
 return;
 }

 // Rotate to look at target

38 | Chapter 3: Scripting in Unity

 transform.LookAt(target);
 }

}

If you were to attach this script to an object, and set its target vari‐
able to another object, the first object would rotate to face its target
in both Play Mode and Edit Mode.

Time in Scripts
The Time class is used to get information about the current time in
your game. There are several variables available in the Time class
(and we strongly recommend you look at the documentation for it!),
but the most important and commonly used variable is deltaTime.

Time.deltaTime measures the amount of time since the last frame
was rendered. It’s important to realize that this time can vary a lot.
Doing this allows you to perform an action that’s updated every
frame, but needs to take a certain amount of time.

In “Coroutines” on page 31, the example we used was one that
moves the object one unit every frame. This is a bad idea, because
the number of frames in a second can vary quite a lot. For example,
if the camera is looking at a very simple part of your scene, the
frames per second could be very high, whereas looking at more visu‐
ally complex scenes could result in very low framerates.

Because you can’t be sure of the number of frames per second you’re
running at, the best thing to do is to take into account Time.delta
Time. The easiest way to explain this is with an example:

IEnumerator MoveSmoothly() {
 while (true) {

 // move 1 unit per second
 var movement = 1.0f * Time.deltaTime;

 transform.Translate(0, movement, 0);

 yield return null;

 }
}

Time in Scripts | 39

https://docs.unity3d.com/Manual/TimeFrameManagement.html

Logging to the Console
As we saw in “Awake and OnEnable” on page 29, it’s sometimes con‐
venient to log some information to the Console, either for diagnos‐
tic purposes, or to warn you about some problem.

The Debug.Log function can be used to do this. There are three dif‐
ferent levels of logging: info, warning, and error. There’s no func‐
tional difference between the three types, except warnings and
errors are each more visible and prominent than the last.

In addition to Debug.Log, you can also use Debug.LogFormat, which
allows you to embed values in the string that’s sent to the Console:

Debug.Log("This is an info message!");
Debug.LogWarning("This is a warning message!");
Debug.LogError("This is a warning message!");

Debug.LogFormat("This is an info message! 1 + 1 = {0}", 1+1);

Wrapping Up
Scripting in Unity is a critical skill, and becoming comfortable with
both the C# language and the tools used for writing it will make
building your game easier and more fun to do.

40 | Chapter 3: Scripting in Unity

PART II

Building a 2D Game:
Gnome on a Rope

Now that we’ve explored Unity in the abstract, we’re going to put
these skills to work. In both this part and the next, we’ll be building
entire games from scratch.

In the next several chapters, we’ll build a side-scrolling action game
called Gnome’s Well That Ends Well. This game relies on the 2D
graphics and physics features of Unity to a large degree, in addition
to fairly heavy use of the UI system. It’s going to be fun.

CHAPTER 4

Getting Started Building the Game

Knowing how to navigate Unity’s interface is one thing. Creating an
entire game with it is another. In this section of the book, you’ll take
what you’ve learned in Part I, and use it to create a 2D game. By the
end of this part, you’ll have Gnome’s Well That Ends Well, a side-
scrolling action game (see Figure 4-1 for a sneak peek at what the
game looks like).

43

Figure 4-1. The finished product

Game Design
The gameplay of Gnome’s Well is straightforward. The player con‐
trols a garden gnome, who’s being lowered by an attached rope into
a well. At the bottom of the well there’s some treasure. The catch is

44 | Chapter 4: Getting Started Building the Game

that the well is filled with traps that kill the gnome if he touches
them.

To begin with, we created a very rough sketch showing how the
game would look. We used OmniGraffle, an excellent diagramming
application, but the choice of tool doesn’t especially matter—pen
and paper is just as easy, and can often be better. The goal is to get a
very rough sense of how the game will be put together, as quickly as
possible. You can see our Gnome’s Well sketch in Figure 4-2.

Figure 4-2. The rough concept sketch for the game

Once we decided on what the game was going to be, we started
deciding the overall architecture. We started by working out what
the visible objects were, and how they’d relate to one another. At the
same time, we began thinking about how the “invisible” components
would work—how input would be collected, and how the game’s
internal managers would communicate with each other.

Finally, we also considered the visuals of the game. We approached
an artist friend of ours, and asked him to draw a picture of gnomes
trying to get down a well and being menaced by traps. This gave us

Game Design | 45

an idea of what the main character could look like, and set the over‐
all tone of the game: a silly, cartoony, slightly violent game starring
greedy gnomes. You can see this final sketch in Figure 4-3.

If you don’t know any artists, draw it yourself!
Even if you don’t think that your skills are very
good, any thoughts on what the game will look
like are better than no thoughts at all.

Figure 4-3. The concept art for the gnome character

46 | Chapter 4: Getting Started Building the Game

Once we’d done this preliminary design, it was possible to start
working out the things that needed to be implemented: how the
gnome would move around within the game, how the interface
needed to be set up to make it work, and how the game objects
would need to be linked together.

To get the gnome down the well, the player is given three buttons:
one that increases the length of the rope, one that decreases it, and a
third that displays the game’s menu. By holding on the button that
increases the rope length, the gnome is lowered down the well. To
avoid the traps on the way down the well, the player tilts their device
left and right. This moves the gnome left and right.

The gameplay is primarily the result of 2D physics simulation. The
gnome is a “ragdoll”—a collection of pieces that are connected via
joints, with each piece an independently simulated rigid body. This
means that, when connected to the top of the well via the Rope
object, the gnome will dangle correctly.

The rope is made in a similar way: it’s a collection of rigid bodies, all
connected to each other with joints. The first link in the chain is
connected to the top of the well, and is connected to the second link
via a rotating joint. This second joint is connected to the third, the
third to the fourth, and so on, until the last link, which is connected
to the gnome’s ankle. To lengthen the rope, more links are added to
the top of the rope, and to shorten it, links are removed.

The rest of the gameplay is handled through very straightforward
collision detection:

• If any part of the gnome touches a trap object, the gnome is
dead, and a new gnome is created. Additionally, a ghost sprite
will be created that travels up the well.

• If the treasure is touched, the gnome’s sprites are updated to
show that he’s holding the treasure.

• If the top of the well (an invisible object) is touched, and if the
gnome is holding the treasure, the player wins the game.

In addition to the gnome, traps, and treasure, the game’s camera has
a script running that keeps its position linked to the vertical position
of the gnome, but also keeps the camera from showing anything
above the top of the well or below the bottom of the well.

Game Design | 47

The way that we’ll build this game is as follows (don’t worry—we’ll
walk you through it one step at a time):

1. First, we’ll create the gnome, using temporary stick-figure
images. We’ll set up the ragdoll, and connect the sprites.

2. Next, we’ll set up the rope. This will involve the first large
amount of code, since the rope will be generated at runtime, and
will need to support extending and contracting the rope.

3. Once the rope is set up, the input system will be created. This
system will receive information about how the device is being
tilted, and make it available to other parts of the game (in par‐
ticular, the gnome.) At the same time, we’ll also build the game’s
user interface, and create the buttons that extend and contract
the rope.

4. With the rope, gnome, and input system in place, we can begin
actually creating the game itself. We’ll implement the traps and
the treasure, and start playing the game proper.

5. From there, it’s just a matter of polish: the gnome’s sprites will
be replaced with more complex ones, particle effects will be
added, and audio will be added to the whole thing.

By the end of this chapter, the game will be functionally complete,
but not all of the art will be in there. You’ll be adding that later on, in
Chapter 7. See Figure 4-4 for a look at where things will be at.

Over the course of this project, you’ll end up
adding lots of components to game objects, and
tweaking the values of properties. There are a lot
more components than the ones we’re telling
you to change, so feel free to play around with
the settings for anything you wish to change;
otherwise, you can leave everything with the
default settings.

Let’s get started!

48 | Chapter 4: Getting Started Building the Game

Figure 4-4. The state the game will be in when we’re done with the
first, unpolished version

Game Design | 49

Creating the Project and Importing Assets
We’ll start by creating the project in Unity, and do a little bit of
setup. We’ll also import some of the assets that will be needed in the
early stages; as we progress, more will be imported.

1. Create the project. Choose File → New Project, and create a new
project called GnomesWell. In the New Project dialog (see
Figure 4-5), make sure you choose 2D, not 3D, and make sure
that there are no asset packages marked for importing. You just
want to make an empty project.

Figure 4-5. Creating the project

2. Download the assets. Download the art, sound, and other
resources we’ve packaged for the project from https://www.secret
lab.com.au/books/unity, and unzip them into an appropriate
folder on your computer. You’ll be importing these assets into
your project as you continue.

3. Save the scene as Main.scene. You may as well save the scene
now, so that hitting Command-S (or Ctrl-S on a PC) will
instantly save your work. The first time you save, you’ll be asked
for the name of the scene and where to put it—put it in the
Assets folder.

50 | Chapter 4: Getting Started Building the Game

https://www.secretlab.com.au/books/unity
https://www.secretlab.com.au/books/unity

4. Create the folders for your project. To keep things organized, it’s a
good idea to create folders for different categories of assets.
Unity is fine with you just keeping everything in one folder, but
doing that can make finding assets more tedious than it needs
to be. Create the following folders by right-clicking the Assets
folder in the Project tab and choosing Create → Folder:

Scripts
This folder will contain the C# code for the game. (By
default, Unity likes to put any new code files in the root
Assets directory; you’ll need to move them into this Scripts
folder yourself.)

Sounds
This folder will contain both the music and the sound
effects.

Sprites
This folder will contain all of the sprite images. There are
many of these, so they’ll be stored in subfolders.

Gnome
This folder will contain the prefabs needed for the gnome
character, as well as additional, related objects like the rope,
particle effects, and the ghost.

Level
This folder will contain prefabs for the level itself, including
the background, walls, decorative objects, and traps.

App Resources
This folder will contain resources used by the app as a
whole: its icon and its splash screen.
When you’re done, the Assets folder should look like
Figure 4-6.

Creating the Project and Importing Assets | 51

Figure 4-6. The Assets folder, with the folders created

5. Import the prototype gnome assets. The prototype gnome is the
rough version of the gnome that we’ll build first. We’ll later
replace it with more polished sprites.
Locate the Prototype Gnome folder in the assets you downloa‐
ded, and drag it into the Sprites folder in Unity (see Figure 4-7).

Figure 4-7. The prototype sprites for the Gnome

We’re now ready to begin constructing the gnome.

Creating the Gnome
Because the gnome will be composed of multiple independently
moving objects, we need to first create an object that will act as the
container for each of the parts. This object will also need to be given

52 | Chapter 4: Getting Started Building the Game

the Player tag, because the collision detection system that’s used to
detect when the gnome touches a trap, treasure, or the level exit will
need to know if that object was the special Player object. To build
the gnome, follow these steps:

1. Create the Prototype Gnome object. Create a new empty game
object by opening the GameObject menu and choosing Create
Empty.
Name this new object “Prototype Gnome”, and then set the tag
of the object to Player, by selecting “Player” from the Tag drop-
down list at the top of the Inspector.

The Prototype Gnome object’s Position,
which you can see in the Transform compo‐
nent near the top of the Inspector, should at
zero on the X, Y and Z axes. If it’s not, you
can click on the gear menu at the top-right
of the Transform and choose Reset Posi‐
tion.

2. Add the sprites. Locate the Prototype Gnome folder that you
added earlier, and drag and drop each of the sprites into the
scene, except for Prototype Arm Holding with Gold, which
won’t be used until later.

You’ll need to drag and drop each one indi‐
vidually—if you select all of the sprites and
try to drag them all in at once, Unity will
think that you’re trying to drag a sequence
of images in, and will create an animation.

When you’re done, you should have six new sprites in the scene:
Prototype Arm Holding, Prototype Arm Loose, Prototype Body,
Prototype Head, Prototype Leg Dangle, and Prototype Leg
Rope.

3. Set the sprites as children of the Prototype Gnome object. In the
Hierarchy, select all of the sprites that you just added, and drag
and drop them onto the empty Prototype Gnome object. When

Creating the Gnome | 53

you’re done, the hierarchy should look like that shown in
Figure 4-8.

Figure 4-8. The hierarchy, with the gnome sprites attached as child
objects of the Prototype Gnome object

4. Position the sprites. Once the sprites are added, they need to be
positioned correctly—the arms, legs, and head need to be
attached to the body. Within the Scene view, select the Move
tool by either clicking on it in the toolbar or pressing T.
Use the Move tool to rearrange the sprites so that they look like
Figure 4-9.
Additionally, make all of these sprites use the Player tag, just like
the parent object. Finally, make sure that the Z position of each
of the objects is zero. You can see the Z position in the Position
field of each object’s Transform component, at the top of the
Inspector.

54 | Chapter 4: Getting Started Building the Game

Figure 4-9. The prototype gnome’s sprites

5. Add Rigidbody 2D components to the body parts. Select all of the
body part sprites, and click Add Component in the Inspector.
Type Rigidbody in the search field, and add a Rigidbody 2D
(see Figure 4-10).

Make sure you add “Rigidbody 2D” compo‐
nents, and not the regular “Rigidbody.” Reg‐
ular rigidbody components do their
simulation in 3D space, which isn’t what
you want for this game.
Additionally, make sure you only add the
Rigidbody 2D on the sprites. Don’t add a
rigidbody to the parent Prototype Gnome
object.

Creating the Gnome | 55

Figure 4-10. Adding Rigidbody 2D components to the sprites

6. Add colliders to the body parts. Colliders define the physical
shape of an object. Because they’re visually different shapes, dif‐
ferent body parts will need different shaped colliders:
a. Select the arm and leg sprites, and add BoxCollider2D com‐

ponents.

56 | Chapter 4: Getting Started Building the Game

b. Select the head sprite, and add a CircleCollider2D compo‐
nent. Leave its radius as is.

c. Select the Body sprite, and add a CircleCollider2D. Once
you’ve added it, go to the Inspector for the collider, and
reduce the collider’s radius by about half to fit the Body
sprite.

The gnome and its body parts are now all ready to be linked
together. The linkages between the body parts will all be done using
the HingeJoint2D joint, which allows objects to rotate around a
point, relative to one another. The legs, arms, and head will all be
linked to the body. To configure the joints, follow these steps:

1. Select all of the sprites, except for the body. The body won’t need
any joint of its own—the other bodies will be connecting to it
via their joints.

2. Add a HingeJoint2D component to all of the selected sprites. This
is done by clicking the Add Component button at the bottom of
the Inspector, and choosing Physics 2D → Hinge Joint 2D.

3. Configure the joints. While you still have the sprites selected,
we’ll set up a property that will be the same for all of the body
parts: they’ll all be connected to the Body sprite.
Drag the Prototype Body from the Hierarchy pane into the
“Connected Rigid Body” slot. This will make the objects linked
to the body. When you’re done, the settings for the hinge joints
should look like Figure 4-11.

Figure 4-11. The initial hinge joint settings

Creating the Gnome | 57

4. Add limits to the joints. We don’t want the objects to rotate full
circles, but instead want to add limits on how far they can
rotate. This will prevent odd-looking behavior, like the leg
appearing to move through the body.
Select the arms and the head, and turn on Use Limits. Set the
Lower Angle to -15, and the Upper Angle to 15.
Next, select the legs, and also turn on Use Limits. Set the Lower
Angle to -45, and the Upper Angle to 0.

5. Update the pivot points for the joints. We want the arms to rotate
at the shoulder, and the legs to rotate at the hips. By default, the
joints will rotate around the center of the object (see
Figure 4-12), which will look odd.

Figure 4-12. The anchor points of the hinge joints start at incorrect
positions

To fix this, you need to update both the position of the joint’s
Anchor, as well as its Connected Anchor. The Anchor is the

58 | Chapter 4: Getting Started Building the Game

point at which the body that has the joint will rotate, and the
Connected Anchor is the point at which the body that the joint
is connected to will rotate. In the case of the gnome’s joints, we
want the Connected Anchor and the Anchor to both be at the
same position.
When an object that has a hinge joint is selected, both the
Anchor and Connected Anchor appear in the scene view: the
Connected Anchor is shown as a blue dot, and the Anchor is
shown as a blue circle.
Select each of the body parts that have hinge joints, and move
both the Anchor and the Connected Anchor to the correct pivot
point. For example, select the right arm, and drag the blue dot
to the shoulder location to move the Connected Anchor.
Moving the Anchor is slightly trickier, since by default it’s in the
center, and dragging the center of the object makes Unity move
the entire object. To move the Anchor, you first need to man‐
ually adjust the location of the Anchor by modifying the num‐
bers in the Inspector—this will change the Anchor’s location in
the scene view. Once it’s out of the center, you can drag it to the
correct location, just like you do with the Connected Anchor
(see Figure 4-13.)
Repeat this process for both arms (connecting at the shoulder),
both legs (connecting at the hip), and the head (connecting at
the base of the neck).

Now we’ll add the joint that will connect to the Rope object. This
will be a SpringJoint2D attached to the gnome’s right leg, which will
allow for free rotation around the joint’s anchor point, and will limit
the distance that the body will be allowed to be from the end of the
rope. (We’ll create the rope in the next section.) Spring joints work
just like springs in the real world: they’re bouncy, and can be
stretched a little.

In Unity, they’re controlled by two main properties: distance and
frequency. The distance refers to the “preferred” length of the
spring: the distance that the spring “wants” to return to after being
squashed or stretched. The frequency refers to the amount of “stiff‐
ness” the string has. Lower values mean looser springs.

Creating the Gnome | 59

Figure 4-13. The anchor points of the left arm, in the correct position;
notice how the dot has a ring surrounding it, indicating that both the
Connected Anchor and the Anchor are in the same place

To set up springs for use in the Rope, follow these steps:

1. Add the rope joint. Select the “Prototype Leg Rope.” This should
be the top-right leg sprite.

2. Add the spring joint to it. Add a SpringJoint2D to it. Move its
Anchor (the blue circle) so that it’s near the end of the leg. Don’t
move the Connected Anchor (that is, move the blue circle, not
the blue dot). The anchor positions on the Gnome can be seen
in Figure 4-14.

3. Configure the joint. Turn off Auto Configure Distance, and, set
the joint’s Distance to 0.01, and the Frequency to 5.

60 | Chapter 4: Getting Started Building the Game

Figure 4-14. Adding the spring joint that will connect the leg to the
rope—the joint’s Anchor is near the toe

4. Run the game. When you do, the gnome will dangle from the
middle of the screen.

The last step is to scale the gnome down, so that it will be shown at
the right size alongside the other level objects.

5. Scale the gnome. Select the parent Gnome object, and change its
X and Y scale values to 0.5. This will shrink the gnome by half.

The gnome’s now ready to go. It’s time to add the rope!

Rope
The rope is the first piece of the game that actually requires code. It
works like this: the rope is a collection of game objects that each
have rigid bodies and spring joints. Each spring joint is linked to the
next Rope object, and that object is linked to the next, all the way up
to the top of the rope. The top Rope object is linked to a rigidbody
that’s fixed in place, so that it stays put. The end of the rope will be
attached to one of the gnome’s components: the Rope Leg object.

Rope | 61

To create the rope, we first need to create an object that will be used
as the template for each of the rope segments. We’ll then create an
object that uses this segment object along with some code to gener‐
ate the entire rope. To prepare the Rope Segments, follow these
steps:

1. Create the Rope Segment object. Create a new empty game
object, and name it Rope Segment.

2. Add a body to the object. Add a Rigidbody2D component. Set its
Mass to 0.5, so that the rope has a bit of heft to it.

3. Add the joint. Add a SpringJoint2D component. Set its Damp‐
ing Ratio to 1, and its Frequency to 30.

Feel free to play with other values as well. We
found that these values lead to a decently realis‐
tic rope. Game design is all about fiddling with
numbers.

4. Create a prefab using the object. Open the Gnome folder in the
Assets pane, and drag the Rope Segment object from the Hier‐
archy Pane into the Assets pane. This will create a new prefab
file in that folder.

5. Delete the original Rope Prefab object. It won’t be needed any‐
more—you’re about to write code that creates multiple instances
of the Rope Segment, and connects them up into a rope.

We’ll now create the Rope object itself:

1. Create a new empty game object, and name it “Rope”.
2. Change Rope’s icon. Because the rope won’t have any visible

presence in the scene view when the game’s not running, you’ll
want to set an icon for it. Select the newly created Rope object,
and click on the cube icon at the top-left of the Inspector (see
Figure 4-15).
Choose the red rounded-rectangle shape, and the Rope object
will appear in the scene as a red pill-shaped object (see
Figure 4-16).

62 | Chapter 4: Getting Started Building the Game

Figure 4-15. Selecting an icon for the Rope object

Figure 4-16. With an icon selected, the Rope object appears in the
scene

Rope | 63

3. Add a rigidbody. Click the Add Component button, and add a
Rigidbody2D component to the object. Once you’ve added this
rigidbody, change the Body Type to Kinematic in the Inspector.
This will freeze the object in place, and will mean that it doesn’t
fall down—which is what we want.

4. Add a line renderer. Click the Add Component button again,
and add a LineRenderer. Set the Width for the new line ren‐
derer to 0.075, which will give it a nice, thin, rope-like look.
Leave the rest of the line renderer’s settings as the default values.

Now that you’ve set up the rope’s components, it’s time to write the
script that controls them.

Coding the Rope
Before we can write the code itself, we need to add a script compo‐
nent. To do so, follow these steps:

1. Add a Rope script to it. This script doesn’t exist yet, but Unity
will create the file for it. Select the Rope object, and click the
Add Component button.
Type Rope; you won’t see any components appear, because Unity
doesn’t have any components named Rope. What you will see is
a New Script option (see Figure 4-17). Select it.

Figure 4-17. Creating the Rope.cs file

64 | Chapter 4: Getting Started Building the Game

Unity will offer to create a new script file. Ensure that the lan‐
guage is set to C Sharp, and that Rope is spelled with a capital R.
Click Create and Add. Unity will create the Rope.cs file, and will
also attach a Rope script component to the Rope object.

2. Move Rope.cs to the Scripts folder. By default, Unity puts new
scripts in the Assets folder; to keep things tidy, move it into
Scripts.

3. Add the code to the Rope.cs file. Open Rope.cs by double-clicking
on it, or by opening the file in the text editor of your choice.
Add the following code to it (we’ll explain what it does in a
moment):

 using UnityEngine;
 using System.Collections;
 using System.Collections.Generic;

 // The connected rope.
 public class Rope : MonoBehaviour {

 // The Rope Segment prefab to use.
 public GameObject ropeSegmentPrefab;

 // Contains a list of Rope Segment objects.
 List<GameObject> ropeSegments = new List<GameObject>();

 // Are we currently extending or retracting the rope?
 public bool isIncreasing { get; set; }
 public bool isDecreasing { get; set; }

 // The rigidbody object that the end of the rope
 // should be attached to.
 public Rigidbody2D connectedObject;

 // The maximum length a rope segment should be (if we
 // need to extend by more than this, create a new rope
 // segment).
 public float maxRopeSegmentLength = 1.0f;

 // How quickly we should pay out new rope.
 public float ropeSpeed = 4.0f;

 // The LineRenderer that renders the actual rope.
 LineRenderer lineRenderer;

 void Start() {

 // Cache the line renderer, so we don't have to look

Rope | 65

 // it up every frame.
 lineRenderer = GetComponent<LineRenderer>();

 // Reset the rope, so that we're ready to go.
 ResetLength();

 }

 // Remove all rope segments, and create a new one.
 public void ResetLength() {

 foreach (GameObject segment in ropeSegments) {
 Destroy (segment);

 }

 ropeSegments = new List<GameObject>();

 isDecreasing = false;
 isIncreasing = false;

 CreateRopeSegment();

 }

 // Attaches a new rope segment at the top of the rope.
 void CreateRopeSegment() {

 // Create the new rope segment.
 GameObject segment = (GameObject)Instantiate(
 ropeSegmentPrefab,
 this.transform.position,
 Quaternion.identity);

 // Make the rope segment be a child of this object,
 // and make it keep its world position
 segment.transform.SetParent(this.transform, true);

 // Get the rigidbody from the segment
 Rigidbody2D segmentBody = segment
 .GetComponent<Rigidbody2D>();

 // Get the distance joint from the segment
 SpringJoint2D segmentJoint =
 segment.GetComponent<SpringJoint2D>();

 // Error if the segment prefab doesn't have a
 // rigidbody or spring joint - we need both
 if (segmentBody == null || segmentJoint == null) {
 Debug.LogError("Rope segment body prefab has no " +
 "Rigidbody2D and/or SpringJoint2D!");

66 | Chapter 4: Getting Started Building the Game

 return;
 }

 // Now that it's checked, add it to the start of the
 // list of rope segments
 ropeSegments.Insert(0, segment);

 // If this is the *first* segment, it needs to be
 // connected to the gnome

 if (ropeSegments.Count == 1) {
 // Connect the joint on the connected object to
 // the segment
 SpringJoint2D connectedObjectJoint =
 connectedObject.GetComponent<SpringJoint2D>();

 connectedObjectJoint.connectedBody
 = segmentBody;

 connectedObjectJoint.distance = 0.1f;

 // Set this joint to already be at the max
 // length
 segmentJoint.distance = maxRopeSegmentLength;
 } else {
 // This is an additional rope segment. We now
 // need to connect the previous top segment to
 // this one

 // Get the second segment
 GameObject nextSegment = ropeSegments[1];

 // Get the joint that we need to attach to
 SpringJoint2D nextSegmentJoint =
 nextSegment.GetComponent<SpringJoint2D>();

 // Make this joint connect to us
 nextSegmentJoint.connectedBody = segmentBody;

 // Make this segment start at a distance of 0
 // units away from the previous one - it will
 // be extended.
 segmentJoint.distance = 0.0f;
 }

 // Connect the new segment to the
 // rope anchor (i.e., this object)
 segmentJoint.connectedBody =
 this.GetComponent<Rigidbody2D>();
 }

Rope | 67

 // Called when we've shrunk the rope, and
 // we need to remove a segment.
 void RemoveRopeSegment() {

 // If we don't have two or more segments, stop.
 if (ropeSegments.Count < 2) {
 return;
 }

 // Get the top segment, and the segment under it.
 GameObject topSegment = ropeSegments[0];
 GameObject nextSegment = ropeSegments[1];

 // Connect the second segment to the rope's anchor.
 SpringJoint2D nextSegmentJoint =
 nextSegment.GetComponent<SpringJoint2D>();

 nextSegmentJoint.connectedBody =
 this.GetComponent<Rigidbody2D>();

 // Remove the top segment and destroy it.
 ropeSegments.RemoveAt(0);
 Destroy (topSegment);

 }

 // Every frame, increase or decrease
 // the rope's length if necessary
 void Update() {

 // Get the top segment and its joint.
 GameObject topSegment = ropeSegments[0];
 SpringJoint2D topSegmentJoint =
 topSegment.GetComponent<SpringJoint2D>();

 if (isIncreasing) {

 // We're increasing the rope. If it's at max
 // length, add a new segment; otherwise,
 // increase the top rope segment's length.

 if (topSegmentJoint.distance >=
 maxRopeSegmentLength) {
 CreateRopeSegment();
 } else {
 topSegmentJoint.distance += ropeSpeed *
 Time.deltaTime;
 }

 }

68 | Chapter 4: Getting Started Building the Game

 if (isDecreasing) {

 // We're decreasing the rope. If it's near zero
 // length, remove the segment; otherwise,
 // decrease the top segment's length.

 if (topSegmentJoint.distance <= 0.005f) {
 RemoveRopeSegment();
 } else {
 topSegmentJoint.distance -= ropeSpeed *
 Time.deltaTime;
 }

 }

 if (lineRenderer != null) {
 // The line renderer draws lines from a
 // collection of points. These points need to
 // be kept in sync with the positions of the
 // rope segments.

 // The number of line renderer vertices =
 // number of rope segments, plus a point at the
 // top for the rope anchor, plus a point at the
 // bottom for the gnome.
 lineRenderer.positionCount
 = ropeSegments.Count + 2;

 // Top vertex is always at the rope's location.
 lineRenderer.SetPosition(0,
 this.transform.position);

 // For every rope segment we have, make the
 // corresponding line renderer vertex be at its
 // position.
 for (int i = 0; i < ropeSegments.Count; i++) {
 lineRenderer.SetPosition(i+1,
 ropeSegments[i].transform.position);
 }

 // Last point is at the connected
 // object's anchor.
 SpringJoint2D connectedObjectJoint =
 connectedObject.GetComponent<SpringJoint2D>();
 lineRenderer.SetPosition(
 ropeSegments.Count + 1,
 connectedObject.transform.
 TransformPoint(connectedObjectJoint.anchor)
);
 }

Rope | 69

 }
 }

This is a large piece of code, so let’s step through each part of it:

 void Start() {

 // Cache the line renderer, so we don't
 // have to look it up every frame.
 lineRenderer = GetComponent<LineRenderer>();

 // Reset the rope, so that we're ready to go.
 ResetLength();

 }

When the Rope object first appears, its Start method is called. This
method calls ResetLength, which will also be called when the
gnome dies. Additionally, the lineRenderer variable is set up to
point toward the line renderer component attached to the object:

 // Remove all rope segments, and create a new one.
 public void ResetLength() {

 foreach (GameObject segment in ropeSegments) {
 Destroy (segment);
 }

 ropeSegments = new List<GameObject>();

 isDecreasing = false;
 isIncreasing = false;

 CreateRopeSegment();
 }

The ResetLength method deletes all rope segments, resets its inter‐
nal state by clearing the ropeSegements list and the isDecreasing/
isIncreasing properties, and finally calls CreateRopeSegment to
create a fresh new rope:

 // Attaches a new rope segment at the top of the rope.
 void CreateRopeSegment() {

 // Create the new rope segment.
 GameObject segment = (GameObject)Instantiate(
 ropeSegmentPrefab,
 this.transform.position,
 Quaternion.identity);

 // Make the rope segment be a child of this object,

70 | Chapter 4: Getting Started Building the Game

 // and make it keep its world position.
 segment.transform.SetParent(this.transform, true);

 // Get the rigidbody from the segment
 Rigidbody2D segmentBody
 = segment.GetComponent<Rigidbody2D>();

 // Get the distance joint from the segment
 SpringJoint2D segmentJoint =
 segment.GetComponent<SpringJoint2D>();

 // Error if the segment prefab doesn't have a
 // rigidbody or spring joint - we need both
 if (segmentBody == null || segmentJoint == null) {
 Debug.LogError(
 "Rope segment body prefab has no " +
 "Rigidbody2D and/or SpringJoint2D!"
);

 return;
 }

 // Now that it's checked, add it to the start of
 // the list of rope segments
 ropeSegments.Insert(0, segment);

 // If this is the *first* segment, it needs to be
 // connected to the gnome

 if (ropeSegments.Count == 1) {
 // Connect the joint on the connected object to
 // the segment
 SpringJoint2D connectedObjectJoint =
 connectedObject.GetComponent<SpringJoint2D>();

 connectedObjectJoint.connectedBody =
 segmentBody;
 connectedObjectJoint.distance = 0.1f;

 // Set this joint to already be at the max
 // length
 segmentJoint.distance = maxRopeSegmentLength;
 } else {
 // This is an additional rope segment. We now
 // need to connect the previous top segment
 // to this one

 // Get the second segment
 GameObject nextSegment = ropeSegments[1];

 // Get the joint that we need to attach to

Rope | 71

 SpringJoint2D nextSegmentJoint =
 nextSegment.GetComponent<SpringJoint2D>();

 // Make this joint connect to us
 nextSegmentJoint.connectedBody = segmentBody;

 // Make this segment start at a distance of
 // 0 units away from the previous one - it
 // will be extended.
 segmentJoint.distance = 0.0f;
 }

 // Connect the new segment to the rope
 // anchor (i.e., this object)
 segmentJoint.connectedBody =
 this.GetComponent<Rigidbody2D>();
 }

CreateRopeSegment creates a new copy of the Rope Segment object,
and adds it to the top of the rope chain. As part of doing this, it dis‐
connects the current top of the rope (if one exists), and reconnects it
to the newly created segment. It then connects the new segment to
the Rigidbody2D attached to the Rope object itself.

If this new segment is the only rope segment created so far, it
attaches itself to the connectedObject rigidbody. This variable will
be set up to be the gnome’s leg:

 // Called when we've shrunk the rope, and
 // we need to remove a segment.
 void RemoveRopeSegment() {

 // If we don't have two or more segments, stop.
 if (ropeSegments.Count < 2) {
 return;
 }

 // Get the top segment, and the segment under it.
 GameObject topSegment = ropeSegments[0];
 GameObject nextSegment = ropeSegments[1];

 // Connect the second segment to the rope's anchor.
 SpringJoint2D nextSegmentJoint =
 nextSegment.GetComponent<SpringJoint2D>();

 nextSegmentJoint.connectedBody =
 this.GetComponent<Rigidbody2D>();

 // Remove the top segment and destroy it.
 ropeSegments.RemoveAt(0);

72 | Chapter 4: Getting Started Building the Game

 Destroy (topSegment);

 }

RemoveRopeSegment works in the opposite way. The top segment is
deleted, and the segment underneath it is connected to the Rope rig‐
idbody. Note that RemoveRopeSegment doesn’t do anything if there’s
only a single rope segment, which means that the rope will not van‐
ish entirely if retracted all the way:

 // Every frame, increase or decrease
 // the rope's length if necessary
 void Update() {

 // Get the top segment and its joint.
 GameObject topSegment = ropeSegments[0];
 SpringJoint2D topSegmentJoint =
 topSegment.GetComponent<SpringJoint2D>();

 if (isIncreasing) {

 // We're increasing the rope. If it's at max
 // length, add a new segment; otherwise,
 // increase the top rope segment's length.

 if (topSegmentJoint.distance >=
 maxRopeSegmentLength) {

 CreateRopeSegment();

 } else {

 topSegmentJoint.distance += ropeSpeed *
 Time.deltaTime;

 }

 }

 if (isDecreasing) {

 // We're decreasing the rope. If it's near zero
 // length, remove the segment; otherwise,
 // decrease the top segment's length.

 if (topSegmentJoint.distance <= 0.005f) {
 RemoveRopeSegment();
 } else {
 topSegmentJoint.distance -= ropeSpeed *
 Time.deltaTime;
 }

Rope | 73

 }

 if (lineRenderer != null) {
 // The line renderer draws lines from a
 // collection of points. These points need to
 // be kept in sync with the positions of the
 // rope segments.

 // The number of line renderer vertices =
 // number of rope segments, plus a point at the
 // top for the rope anchor, plus a point at the
 // bottom for the gnome.
 lineRenderer.positionCount =
 ropeSegments.Count + 2;

 // Top vertex is always at the rope's location.
 lineRenderer.SetPosition(0,
 this.transform.position);

 // For every rope segment we have, make the
 // corresponding line renderer vertex be at its
 // position.
 for (int i = 0; i < ropeSegments.Count; i++) {
 lineRenderer.SetPosition(
 i+1,
 ropeSegments[i].transform.position
);
 }

 // Last point is at the connected
 // object's anchor.
 SpringJoint2D connectedObjectJoint =
 connectedObject.GetComponent<SpringJoint2D>();

 var lastPosition = connectedObject
 .transform
 .TransformPoint(
 connectedObjectJoint.anchor
);

 lineRenderer.SetPosition(
 ropeSegments.Count + 1,
 position
);
 }
 }

Every time the Update method is called (that is, every time the game
redraws the screen), the rope checks to see if isIncreasing or isDe
creasing is true.

74 | Chapter 4: Getting Started Building the Game

If the check reveals that isIncreasing is true, then the rope gradu‐
ally increases the distance property of the top rope segment’s
spring joint. If this property is greater than or equal to the maxRope
Segment variable, then a new rope segment is created.

Conversely, if isDecreasing is true, the distance property is
decreased. If this value is near zero, then the top rope segment is
removed.

Finally, the LineRenderer is updated so that the vertices that define
the visual position of the line match the location of the rope segment
objects.

Configuring the Rope
Now that the Rope’s code has been set up, we can now make the
objects in the scene use it. To do so, follow these steps:

1. Configure the Rope object. Select the Rope game object. Drag the
Rope Segment prefab into the rope’s Rope Segment Prefab slot,
and drag the gnome’s Rope Leg object into the rope’s Connected
Object slot. Leave everything else as the default values, which
were defined in the Rope.cs file. When you’re done, the Rope’s
inspector should look like Figure 4-18.

2. Run the game. The gnome will now be dangling from the Rope
object, and you’ll see the line connecting the gnome to a point
slightly above it.

Rope | 75

Figure 4-18. The configured Rope object

76 | Chapter 4: Getting Started Building the Game

There’s one step left for the Rope—we need to set up a material for
the Line Renderer to use:

1. Create the material. Open the Assets menu, and choose Create
→ Material. Name the new material Rope.

2. Set up the Rope material. Select the new Rope material, and
open the Shader menu in the Inspector. Choose Unlit → Color.
The inspector will change to show the parameters for the new
shader, which will be a single color slot. Change this color to be
a dark brown by clicking on the color and picking a new one
from the pop-up window.

3. Make the Rope use the new material. Select the Rope object, and
open the Materials property. Drag and drop the Rope material
you just created into the Element 0 slot.

4. Run the game again. The rope will now be brown.

Wrapping Up
At this point, the bare-bones structure of the game is starting to take
shape. We’ve got the two most important parts of the game function‐
ing: a ragdoll gnome, and the rope from which it is suspended.

In the next chapter, we’ll start creating the systems that implement
gameplay using these objects. It’s going to be great.

Wrapping Up | 77

CHAPTER 5

Preparing for Gameplay

Now that the gnome and the rope have both been created, it’s time
to set up the system that lets the user provide input to the game.

We’ll do this in two parts: first, we’ll add the script that makes the
gnome swing from side to side when the phone is tilted. After that,
we’ll add the buttons that lengthen and retract the rope.

Once that’s done, we’ll begin implementing the code that drives the
game itself: first, we’ll do a bunch of setup work that the gnome will
end up using, and then we’ll implement a manager object that keeps
track of some important game states.

Input
Because we’re now at the point where we need to get input from the
device, it’s time to make sure that the Unity Editor can receive input.
Without this, the only way to test the game is to build the game and
install it on a device, which can take a while. Unity’s all about being
able to rapidly test your changes, and waiting for a build to finish
will slow you down a lot.

Unity Remote
To allow quickly providing input to the Unity Editor, Unity has an
app on the App Store called the Unity Remote. Unity Remote con‐
nects to the Unity Editor through your phone’s cable; when the
game is playing in the Editor, the phone displays a copy of what’s
being shown in the Game window, and sends back all touch and

79

sensor information to your script. This allows you to test the game
without having to do a build—all you need to do is launch the app
on your phone, and play the game as if it were already installed.

There are a couple of downsides to the Unity Remote:

• In order to display the game on your phone, Unity compresses
the image down quite a bit. In addition to reducing the visual
quality of the picture, transferring the image to the phone adds
some latency and reduces the framerate.

• Because the game is running on your computer, the framerate
won’t be the same as if it were running on the phone. If you’ve
got a very graphics-intensive scene, or if your scripts take a long
time to run every frame, then you won’t get the same perfor‐
mance as if it were running on the phone.

• Finally, of course, it will only work when the phone is connected
to your computer.

To get the Unity Remote working, download it from your device’s
app store, launch it, and connect your phone to your computer
using your USB cable. Then click the Play button. The game will
appear on your device.

If you don’t see anything on the device, open the Edit menu, and
choose Project Settings → Editor. The Editor settings will open in
the Inspector. Change the Device setting to your phone.

For up-to-the-minute instructions on installing
Unity Remote for your device, check Unity’s
documentation.

Adding Tilt Control
This will be driven by two scripts: InputManager (which reads infor‐
mation from the accelerometer) and Swinging (which gets the input
from the InputManager and applies a sideways force to a rigidbody
—the rigidbody in question will be the gnome’s body).

80 | Chapter 5: Preparing for Gameplay

http://bit.ly/unity-remote-5
http://bit.ly/unity-remote-5

Creating a Singleton class

InputManager will be a singleton object. This means that there will
be precisely one InputManager in the scene, and all other objects
will access it. There will be other types of singletons that we’ll even‐
tually add to the code, so it makes sense to create a class that multi‐
ple parts of our code can reuse. To prepare the Singleton class that
the InputManager uses, follow these steps:

1. Create the Singleton script. Create a new C# script asset in the
Scripts folder by opening the Assets menu, and choosing Create
→ C# Script. Name the script “Singleton”.

2. Add the Singleton code. Open Singleton.cs, and replace its con‐
tents with the following code:

 using UnityEngine;
 using System.Collections;

 // This class allows other objects to refer to a single
 // shared object. The GameManager and InputManager classes
 // use this.

 // To use this, subclass like so:
 // public class MyManager : Singleton<MyManager> { }

 // You can then access the single shared instance of the
 // class like so:
 // MyManager.instance.DoSomething();

 public class Singleton<T> : MonoBehaviour
 where T : MonoBehaviour {

 // The single instance of this class.
 private static T _instance;

 // The accessor. The first time this is called, _instance
 // will be set up. If an appropriate object can't be found,
 // an error will be logged.
 public static T instance {
 get {
 // If we haven't already set up _instance...
 if (_instance == null)
 {
 // Try to find the object.
 _instance = FindObjectOfType<T>();

 // Log if we can't find it.
 if (_instance == null) {

Input | 81

 Debug.LogError("Can't find " +
 typeof(T) + "!");
 }
 }

 // Return the instance so that it can be used!
 return _instance;
 }
 }
 }

The Singleton class works like this: other classes will subclass this
template class, and will gain a static property called instance. This
property will always point to the shared instance of this class. This
means that when other scripts ask for InputManager.instance,
they’ll always get the single InputManager.

The advantage of doing it like this is that scripts that need the Input
Manager won’t need to have variables that connect to it.

Implementing an InputManager Singleton

Now that you’ve created the Singleton class, it’s time to create the
InputManager.

1. Create the InputManager game object. Make a new game object,
and name it InputManager.

2. Create and add the InputManager script. Select the InputMan‐
ager object, and click Add Component. Type InputManager, and
choose to create a new script. Make sure that the name of the
script is “InputManager”, and that the language is C Sharp.

3. Add the code to InputManager.cs. Open the InputManager.cs file
that was just created, and add the following code to it:

 using UnityEngine;
 using System.Collections;

 // Translates the accelerometer data into sideways motion
 // info.
 public class InputManager : Singleton<InputManager> {

 // How much we're moving. -1.0 = full left, +1.0 = full
 // right
 private float _sidewaysMotion = 0.0f;

 // This property is declared as read-only, so that other
 // classes can't change it

82 | Chapter 5: Preparing for Gameplay

 public float sidewaysMotion {
 get {
 return _sidewaysMotion;
 }
 }

 // Every frame, store the tilt
 void Update () {
 Vector3 accel = Input.acceleration;

 _sidewaysMotion = accel.x;
 }
 }

Every frame, the InputManager class samples data from the acceler‐
ometer via the built-in Input class, and stores the X component
(which measures the amount of force being applied to the left and
right sides of the device) in a variable. This variable is exposed using
the public read-only property sidewaysMotion.

A read-only property is used to prevent other
classes from accidentally writing to this value.

In short, if any other class wants to find out how much the phone is
tilting along the left-right axis, all it needs to do is simply ask for
InputManager.instance.sidewaysMotion.

Now it’s time to write the Swinging code:

1. Select the gnome’s Body object.
2. Create and add a new C# script called Swinging.cs. Add the fol‐

lowing code to it:

 using UnityEngine;
 using System.Collections;

 // Uses the input manager to apply sideways forces to an
 // object. Used to make the gnome swing side-to-side.
 public class Swinging : MonoBehaviour {

 // How much should we swing by? Bigger numbers = more
 // swing
 public float swingSensitivity = 100.0f;

Input | 83

 // Use FixedUpdate instead of Update, in order to play
 // better with the physics engine
 void FixedUpdate() {

 // If we have no ridigbody (anymore), remove this
 // component
 if (GetComponent<Rigidbody2D>() == null) {
 Destroy (this);
 return;
 }

 // Get the tilt amount from the InputManager
 float swing = InputManager.instance.sidewaysMotion;

 // Calculate a force to apply
 Vector2 force =
 new Vector2(swing * swingSensitivity, 0);

 // Apply the force
 GetComponent<Rigidbody2D>().AddForce(force);
 }

 }

The Swinging class runs code every time the physics system updates.
First, it checks to see if the object still has a Rigidbody2D compo‐
nent. If it doesn’t, then it immediately returns. If it still does, then it
takes the swidewaysMotion from the InputManager, uses it to create
a Vector2, and applies that as a force to the object’s rigidbody.

3. Run the game. Launch Unity Remote on your phone, and tilt the
phone side to side; the gnome will move left and right.

If you rotate your phone too far, Unity Remote
may rotate to landscape mode, stretching the
picture. You may need to turn on your device’s
rotation lock feature to prevent this..

Controlling the Rope
We’ll now add buttons that make the rope lengthen and shorten.
These will be implemented using Unity GUI buttons; when the user
starts holding the Down button down, it will signal the Rope to
begin extending, and when the user stops holding it down, the Rope

84 | Chapter 5: Preparing for Gameplay

www.allitebooks.com

http://www.allitebooks.org

will stop extending. The Up button works in a similar way, and will
make the Rope start and stop contracting.

1. Add the button. Open the GameObject menu, and choose UI →
Button. This will add the button, as well as a Canvas for it to
appear in, and an EventSystem that will handle its input. (You
don’t need to worry about these additional objects.) Name the
button’s game object “Down”.

2. Position the button at the bottom-right. Select the Down button,
and click on the Anchor button, which appears at the top-left of
the Inspector. Hold down the Shift and Alt keys (Option on a
Mac), and click the '"bottom-right” option (see Figure 5-1).
Doing this means that we’re setting the anchor and position of
the button to the bottom-right; as a result, when you do this, the
button will move to the bottom-right of the screen.

Input | 85

Figure 5-1. Setting the Down button’s anchor to bottom-right; in this
screenshot, the Shift and Alt keys are being held down, which means
clicking the bottom-right anchor point will also set the pivot point and
its position

3. Make the button’s text “Down”. The Button has a single child
object, named Text. This object is the label that’s included inside
the button. Select it, and locate the Text component that’s
attached to it in the Inspector. Change the Text property to
Down. The button will change to read “Down”.

86 | Chapter 5: Preparing for Gameplay

4. Remove the Button component from the Button object. Click the
gear icon at the top-right of the component, and choose
“Remove Component.”

This might seem a little unexpected, but we
don’t actually want this UI element to
behave like a “regular” button.
Regular buttons send an event when they’re
“clicked”—that is, when the user puts a fin‐
ger on the button, and then lifts that finger.
The event is only sent when the finger is lif‐
ted, which won’t suit our needs—what we
want is for an event to be sent when the fin‐
ger lands on the button, and a second event
when the finger is lifted from the button.
So, what we’ll do instead is manually add
components that will send messages to the
rope.

5. Add an Event Trigger component to the Button object. This com‐
ponent watches for interactions, and sends messages when
those interactions happen.

6. Add a Pointer Down event. Click the Add New Event Type but‐
ton, and choose Pointer Down from the list that appears.

7. Connect the Rope’s isIncreasing property to the event. Click the
+ button in the Pointer Down list, and a new entry will appear
(see Figure 5-2).
Drag the Rope object from the Hierarchy pane into the object
slot that appears.
Change the Function from “No Function” to Rope → isIncreas‐
ing. (When you select this, the drop-down menu will display
Rope.isIncreasing.) This will make the button modify the
isIncreasing property on the rope when the finger lands on
the button.
Change the checkbox that appears from unchecked to checked.
This will make the isIncreasing property change to true.
When you’re done, the new item in the Pointer Down event
should look like Figure 5-3.

Input | 87

Figure 5-2. A new event in the list

Figure 5-3. The configured Pointer Down event

8. Add a Pointer Up event, and make it set the Rope’s isIncreasing
property to false. When the finger lifts up off the button, we
want the rope to stop increasing.
Add a new event, Pointer Up, to the Event Trigger by clicking
Add New Event Type, and uncheck the checkbox for the Rope’s
isIncreasing property. This will make the isIncreasing prop‐
erty change to false when the finger lifts.
When you’re done, the Inspector for the Event Trigger should
look like Figure 5-4.

88 | Chapter 5: Preparing for Gameplay

Figure 5-4. The event trigger for the Down button, fully configured

9. Test out the Down button. Play the game, and click and hold on
the Down button. The rope should start lengthening, and
should stop when you release the mouse button. If it doesn’t,
double-check the events you’ve configured on the Down button;
Pointer Down should set isIncreasing to true, and Pointer Up
should set isIncreasing to false.

10. Add the Up button. You now need to repeat the same process,
but for the button that retracts the rope. Add a new button,
position it at the bottom-right just like you did for the Down
button, and then move it up a little.
Make its label say “Up,” remove the Button component, and add
an Event Trigger (with two event types; Pointer Down and
Pointer Up). Make the two Event Triggers affect the Rope’s isDe
creasing property.
The only difference between the two buttons is the text of the
label, and the property that they affect. Otherwise, they’re iden‐
tical.

11. Test out the Up button. Play the game again. You should now be
able to extend and retract the rope.
You can also use Unity Remote, running on your phone, to
swing the gnome from side to side at the same time as changing
the rope.

Input | 89

Congratulations: the core of the input system is complete!

Making the Camera Follow the Gnome
Currently, if you hold down the Down button, the rope will lower
the gnome until it’s no longer visible. What we want is to have the
camera follow the gnome.

To achieve this, we’ll create a script that’s attached to the Camera
and matching its Y coordinate (that is, the vertical position) to that
of another object. By configuring this other object to be the Gnome,
the Camera will follow the Gnome around. This script will be
attached to the camera, and will be configured to track the Gnome’s
body. To create this script, follow these steps:

1. Add the CameraFollow script. Select the Camera in the hierar‐
chy, and add a new C# component called CameraFollow.

2. Add the following code to CameraFollow.cs:

 // Adjusts the camera to always match the Y-position of a
 // target object, within certain limits.
 public class CameraFollow : MonoBehaviour {

 // The object we want to match the Y position of.
 public Transform target;

 // The highest point the camera can go.
 public float topLimit = 10.0f;

 // The lowest point the camera can go.
 public float bottomLimit = -10.0f;

 // How quickly we should move toward the target.
 public float followSpeed = 0.5f;

 // After all objects have updated position, work out where
 // this camera should be
 void LateUpdate () {

 // If we have a target...
 if (target != null) {

 // Get its position
 Vector3 newPosition = this.transform.position;

 // Work out where this camera should be
 newPosition.y = Mathf.Lerp (newPosition.y,

90 | Chapter 5: Preparing for Gameplay

 target.position.y, followSpeed);

 // Clamp this new location to within our
 // limits
 newPosition.y =
 Mathf.Min(newPosition.y, topLimit);
 newPosition.y =
 Mathf.Max(newPosition.y, bottomLimit);

 // Update our location
 transform.position = newPosition;
 }

 }

 // When selected in the editor, draw a line from the top
 // limit to the bottom.
 void OnDrawGizmosSelected() {
 Gizmos.color = Color.yellow;

 Vector3 topPoint =
 new Vector3(this.transform.position.x,
 topLimit, this.transform.position.z);
 Vector3 bottomPoint =
 new Vector3(this.transform.position.x,
 bottomLimit, this.transform.position.z);

 Gizmos.DrawLine(topPoint, bottomPoint);
 }
 }

The CameraFollow code uses the LateUpdate method, which runs
after all other objects have run their Update method. Update is often
used to update the position of objects, which means that using
LateUpdate means that your code will run after these position
updates are done.

CameraFollow matches the Y-position of the transform of the object
that it’s attached to, but also ensures that that position doesn’t go
above or below certain thresholds. This means that when the rope is
fully retracted, the camera won’t show the empty space above the
top of the well. In addition, the code uses the Mathf.Lerp function
to calculate a position that’s close to the target’s position. This makes
it “loosely” follow the object—the closer the followSpeed parameter
is to 1, the faster the camera will move.

To visualize these thresholds, the OnDrawGizmosSelected method is
implemented. This method, which is used by the Unity Editor itself,

Input | 91

draws a line from the top threshold to the bottom whenever the
camera is selected. If you use the Inspector to change the topLimit
and bottomLimit properties, you’ll see the line change length.

2. Configure the CameraFollow component. Drag the gnome’s Body
object into the Target slot (see Figure 5-5), and leave the other
properties as they are.

Figure 5-5. Setting up the CameraFollow script

3. Test the camera. Run the game, and lower the gnome down
using the Down button. The camera will follow the gnome.

Scripts and Debugging
This is a good point to discuss how to find and fix problems in your
scripts, since the code will only get more complex from here on out.

Sometimes scripts don’t behave the way you want them to, either
due to typos or otherwise because of logic errors. To track down and
solve these problems in your scripts, you can use the debugging fea‐
tures available in MonoDevelop. You can set breakpoints in your
code, inspect the state of a program, and precisely control the execu‐
tion of your scripts.

While you can use any text editor you want to
edit your scripts, you need to use a dedicated
development environment app to do your devel‐
opment work. This means using MonoDevelop
or Visual Studio. In this book, we’ll use Mono‐
Develop; if you want to use Visual Studio,
Microsoft has some excellent documentation.

92 | Chapter 5: Preparing for Gameplay

http://bit.ly/ms-debugger-basics

Setting breakpoints
To explore this feature, we’ll set a breakpoint in the Rope script that
we just wrote, and use it to get a closer look at the behavior of the
script. To do so, follow these steps:

1. Open Rope.cs in MonoDevelop.
2. Locate the Update method. Specifically, find the following line:

 if (topSegmentJoint.distance >= maxRopeSegmentLength) {

3. Click in the thin gray line at the left of this line. A breakpoint will
be added (Figure 5-6).

Figure 5-6. Adding a breakpoint

Next, we’ll connect MonoDevelop to Unity. This means that when
the breakpoint is hit, MonoDevelop will jump in and pause Unity.

4. Click the Play button at the top left of the window in MonoDe‐
velop (Figure 5-7).

Figure 5-7. The Play button at the top left of the MonoDevelop window

Input | 93

5. In the window that appears, click Attach (Figure 5-8).

Figure 5-8. The Attach to Process window

MonoDevelop is now attached to Unity. When the breakpoint is hit,
Unity will pause, allowing you to debug the code.

When we say Unity will pause, we don’t mean
that the game inside Unity will pause, such as
what happens when you click the Pause button.
Rather, the entire Unity application will freeze,
and will not continue executing until you tell
MonoDevelop to continue running. If it looks
like Unity is hanging, don’t panic.

6. Run the game, and click the Down button.

The moment you do so, Unity will freeze, and MonoDevelop will
appear. The line with the breakpoint will be highlighted, indicating
that this is the current point of execution.

At this point, you can get a close look at the state of the program. At
the bottom of the editor, you’ll see the screen divided into two
panes: the Locals pane, and the Immediate pane. (Different tabs may
be open, depending on your circumstances; if they are, just click on
them to open them.)

94 | Chapter 5: Preparing for Gameplay

The Locals pane lets you see the list of the variables that are cur‐
rently in scope.

7. Open the topSegmentJoint variable in the Locals pane. A list of
fields inside this variable will appear, allowing you to inspect
them (Figure 5-9).

Figure 5-9. The Locals pane, showing the data inside topSegmentJoint

The Immediate pane lets you type C# code that
you want to see the result of. For example, you
can access the same information about the
distance property on topSegmentJoint seen in
Figure 5-9 by typing topSegmentJoint.dis

tance.

When you’re done debugging your code, you’ll need to indicate to
the debugger that Unity should continue operating. There are two
ways you can do this: you can detach the debugger, or you can keep
the debugger attached and signal that execution should continue.

If you detach the debugger, breakpoints will stop being hit, and
you’ll need to reattach the debugger. If you keep the debugger
attached, the next breakpoint that’s hit will pause the game again.

• To detach the debugger, click the Stop button (Figure 5-10).

Figure 5-10. Stopping the debugger

Input | 95

• To keep the debugger attached and continue executing, click the
Continue button (Figure 5-11).

Figure 5-11. Continuing execution

Setting Up the Gnome’s Code
It’s now time to finally set up the gnome itself. The gnome needs to
know quite a bit about its state in the game, and it also needs to
know about things that are happening to it.

Specifically, we want the gnome to do the following things:

• When it receives damage, it should display some kind of parti‐
cle effect (based on what kind of damage it received).

• When it dies, it should do several things:
— It should update the sprites for the different body parts

(again based on damage), and detach some of them.
— It should create a Ghost object a short time after dying,

which will travel upward.
— It should spawn blood fountains from the body when a limb

detaches; we’ll need to know where to spawn these fountains
for each limb.

— When a detached limb stops moving, it should lose all phys‐
ics so that it doesn’t interfere with the player (we don’t want
dead gnomes piling up at the bottom that stop you from
reaching the treasure).

• It should keep track of whether it’s holding the treasure; when
that changes, it should swap out the sprite of the holding arm to
one that shows it’s holding treasure.

• It should store some important information, like which object
the camera should follow and which rigidbody the rope should
attach to.

• It should track whether it’s dead or not.

Keep in mind this is separate from the overall game state—the
gnome doesn’t track if you’ve won the game or not, it just manages

96 | Chapter 5: Preparing for Gameplay

the state of the gnome itself. We’ll also (eventually) create an object
that manages the overall game state, and causes the gnome to die.

To implement this system, we need a script to manage the gnome as
a whole. Additionally, we need to add a script to each body part (to
manage their sprite and to stop physics after they move.)

We also need to add some additional info to track where the blood
fountains should emit from. These positions will be represented by
game objects (since they can be positioned in the scene); each body
part will have a reference to its corresponding “blood fountain”
position.

We’ll start with the body part script, and then move on to the gnome
script. The reason we’re doing it in this order is because the main
gnome script will need to know about the BodyPart script, while the
BodyPart script doesn’t need to know about the gnome.

1. Create the BodyPart.cs file. Create a new C# script, called Body‐
Part.cs. Add the following code to it:

 [RequireComponent (typeof(SpriteRenderer))]
 public class BodyPart : MonoBehaviour {

 // The sprite to use when ApplyDamageSprite is called with
 // damage type 'slicing'
 public Sprite detachedSprite;

 // The sprite to use when ApplyDamageSprite is called with
 // damage type 'burning'
 public Sprite burnedSprite;

 // Represents the position and rotation that a blood
 // fountain will appear at on the main body
 public Transform bloodFountainOrigin;

 // If true, this object will remove its collision, joints,
 // and rigidbody when it comes to rest
 bool detached = false;

 // Decouple this object from the parent, and flag it as
 // needing physics removal
 public void Detach() {
 detached = true;

 this.tag = "Untagged";

 transform.SetParent(null, true);

Setting Up the Gnome’s Code | 97

 }

 // Every frame, if we're detached, remove physics if the
 // rigidbody is sleeping. This means this detached body
 // part will never get in the way of the gnome.
 public void Update() {

 // If we're not detached, do nothing
 if (detached == false) {
 return;
 }

 // Is our rigidbody sleeping?
 var rigidbody = GetComponent<Rigidbody2D>();

 if (rigidbody.IsSleeping()) {

 // If so, destroy all joints..
 foreach (Joint2D joint in
 GetComponentsInChildren<Joint2D>()) {
 Destroy (joint);
 }

 // ...rigidbodies...
 foreach (Rigidbody2D body in
 GetComponentsInChildren<Rigidbody2D>()) {
 Destroy (body);
 }

 // ...and the collider.
 foreach (Collider2D collider in
 GetComponentsInChildren<Collider2D>()) {
 Destroy (collider);
 }

 // Finally, remove this script.
 Destroy (this);
 }
 }

 // Swaps out the sprite for this part based on what kind
 // of damage was received
 public void ApplyDamageSprite(
 Gnome.DamageType damageType) {

 Sprite spriteToUse = null;

 switch (damageType) {

 case Gnome.DamageType.Burning:
 spriteToUse = burnedSprite;

98 | Chapter 5: Preparing for Gameplay

 break;

 case Gnome.DamageType.Slicing:
 spriteToUse = detachedSprite;

 break;
 }

 if (spriteToUse != null) {
 GetComponent<SpriteRenderer>().sprite =
 spriteToUse;
 }

 }

 }

This code won’t compile yet, because it makes
use of the Gnome.DamageType type that hasn’t
been written yet. We’ll add it when we write the
Gnome class shortly.

The BodyPart script works with two different types of damage:
burning and slicing. These are represented by the Gnome.Damage
Type enumeration, which we’ll write shortly and which will be used
by the damage-related methods in several different classes. Burning
damage, which will be applied by some kinds of traps, will cause a
burning visual effect, while Slicing damage will be applied by other
traps and will cause a (fairly bloody) slicing effect that involves a
stream of red blood particles emitting from the gnome’s body.

The BodyPart class itself is marked as requiring a SpriteRenderer
to be attached to the game object for it to work. Because different
types of damage will result in changing the sprite for the body part,
it’s reasonable to require that any object that has the BodyPart script
also has a SpriteRenderer.

The class stores a few different properties: the detachedSprite is
the sprite that should be used when the gnome receives Slicing
damage, while the burnedSprite is the sprite that should be used
when the gnome receives Burning damage. Additionally, the blood
FountainOrigin is a Transform that the main Gnome component

Setting Up the Gnome’s Code | 99

will use to add a blood fountain object; it isn’t used by this class, but
the information is stored in it.

Additionally, the BodyPart script detects if the RigidBody2D compo‐
nent has fallen asleep (that is, it has stopped moving for a few
moments, and no new forces are acting on it). When this happens,
the BodyPart script removes everything but the sprite renderer from
it, effectively turning it into decoration. This is necessary to keep the
level from getting filled up with Gnome limbs, which might block
player movement.

The blood fountain feature is something that
we’ll be returning to in “Particle Effects” on page
182; what we’re doing here is a bit of initial setup
that will make it a lot quicker to add later.

Nextr, it’s time to add the Gnome script itself. This script is mostly in
preparation for later, when we’ll make the gnome actually die, but
it’s good to have it set up ahead of time.

2. Create the Gnome script. Create a new C# script called Gnome.cs.
3. Add the code for the Gnome component. Add the following code

to Gnome.cs:

 public class Gnome : MonoBehaviour {

 // The object that the camera should follow.
 public Transform cameraFollowTarget;

 public Rigidbody2D ropeBody;

 public Sprite armHoldingEmpty;
 public Sprite armHoldingTreasure;

 public SpriteRenderer holdingArm;

 public GameObject deathPrefab;
 public GameObject flameDeathPrefab;
 public GameObject ghostPrefab;

 public float delayBeforeRemoving = 3.0f;
 public float delayBeforeReleasingGhost = 0.25f;

 public GameObject bloodFountainPrefab;

100 | Chapter 5: Preparing for Gameplay

 bool dead = false;

 bool _holdingTreasure = false;

 public bool holdingTreasure {
 get {
 return _holdingTreasure;
 }
 set {
 if (dead == true) {
 return;
 }

 _holdingTreasure = value;

 if (holdingArm != null) {
 if (_holdingTreasure) {
 holdingArm.sprite =
 armHoldingTreasure;
 } else {
 holdingArm.sprite =
 armHoldingEmpty;
 }
 }

 }
 }

 public enum DamageType {
 Slicing,
 Burning
 }

 public void ShowDamageEffect(DamageType type) {
 switch (type) {

 case DamageType.Burning:
 if (flameDeathPrefab != null) {
 Instantiate(
 flameDeathPrefab,cameraFollowTarget.position,
 cameraFollowTarget.rotation
);
 }
 break;

 case DamageType.Slicing:
 if (deathPrefab != null) {
 Instantiate(
 deathPrefab,
 cameraFollowTarget.position,
 cameraFollowTarget.rotation

Setting Up the Gnome’s Code | 101

);
 }
 break;
 }
 }

 public void DestroyGnome(DamageType type) {

 holdingTreasure = false;

 dead = true;

 // find all child objects, and randomly disconnect
 // their joints
 foreach (BodyPart part in
 GetComponentsInChildren<BodyPart>()) {

 switch (type) {

 case DamageType.Burning:
 // 1 in 3 chance of burning
 bool shouldBurn = Random.Range (0, 2) == 0;
 if (shouldBurn) {
 part.ApplyDamageSprite(type);
 }

 break;

 case DamageType.Slicing:
 // Slice damage always applies a damage sprite
 part.ApplyDamageSprite (type);

 break;
 }

 // 1 in 3 chance of separating from body
 bool shouldDetach = Random.Range (0, 2) == 0;

 if (shouldDetach) {

 // Make this object remove its rigidbody and
 // collider after it comes to rest
 part.Detach ();

 // If we're separating, and the damage type was
 // Slicing, add a blood fountain

 if (type == DamageType.Slicing) {

 if (part.bloodFountainOrigin != null &&
 bloodFountainPrefab != null) {

102 | Chapter 5: Preparing for Gameplay

 // Attach a blood fountain for
 // this detached part
 GameObject fountain = Instantiate(
 bloodFountainPrefab,
 part.bloodFountainOrigin.position,
 part.bloodFountainOrigin.rotation
) as GameObject;

 fountain.transform.SetParent(
 this.cameraFollowTarget,
 false
);
 }
 }

 // Disconnect this object
 var allJoints = part.GetComponentsInChildren<Joint2D>();
 foreach (Joint2D joint in allJoints) {
 Destroy (joint);
 }
 }
 }

 // Add a RemoveAfterDelay component to this object
 var remove = gameObject.AddComponent<RemoveAfterDelay>();
 remove.delay = delayBeforeRemoving;

 StartCoroutine(ReleaseGhost());
 }

 IEnumerator ReleaseGhost() {

 // No ghost prefab? Bail out.
 if (ghostPrefab == null) {
 yield break;
 }

 // Wait for delayBeforeReleasingGhost seconds
 yield return new WaitForSeconds(delayBeforeReleasingGhost);

 // Add the ghost
 Instantiate(
 ghostPrefab,
 transform.position,
 Quaternion.identity
);
 }

 }

Setting Up the Gnome’s Code | 103

When you add this code, you’ll see a couple of
compiler errors, including one or more lines of
“The type or namespace name RemoveAfterDe
lay could not be found.” This is expected, and
we’ll address it in a moment by adding the Remov
eAfterDelay class!

The Gnome script is primarily in charge of holding important data to
do with the gnome, and for handling what happens when the gnome
receives damage. Many of these properties aren’t used by the gnome
itself, but are used by the Game Manager (which we’ll be writing
shortly) to set up the game when a new gnome needs to be created.

Some of the highlights of the Gnome script:

• The holdingTreasure property is set up with an overridden set‐
ter. When the holdingTreasure property changes, the gnome
needs to visually change: if the gnome is now holding treasure
(that is, the holdingTreasure property is set to true), then the
“Arm Holding” sprite renderer needs to change to use a sprite
that contains the treasure. Conversely, if the property changes to
false, then the sprite renderer needs to use a sprite that doesn’t.

• When the gnome receives damage, a “damage effect” object will
be created. The specific object will depend on the specific type
of damage—if it’s Burning, then we want a puff of smoke to
appear, and if it’s Slicing, we want a burst of blood. We use the
ShowDamageEffect to depict this.

In this book, we’ll implement the blood effect.
The burning effect is left as a challenge for you!

• The DestroyGnome method is in charge of telling all connected
BodyPart components that the gnome has received damage, and
that they should detach. Additionally, if the damage type was
Slicing, then blood fountains should be created.

104 | Chapter 5: Preparing for Gameplay

The method also creates a RemoveAfterDelay component,
which is something we’ll add momentarily. This will remove the
entire gnome from the game.
Finally, the method kicks off the ReleaseGhost coroutine,
which waits for a certain amount of time and then creates a
Ghost object. (We’re leaving the creation of the Ghost prefab
itself as a challenge for you.)

4. Add the BodyPart script component to all of the gnome’s body
parts. Do this by selecting all of the body parts (the head, legs,
arms, and body), and adding a BodyPart component to it.

5. Add the container for the blood fountains. Create an empty game
object, and name it “Blood Fountains”. Make it a child of the
main Gnome object (that is, not any of the body parts, but
rather the parent object).

6. Add the markers for the blood fountains. Create five new empty
game objects, and make them be children of the Blood Foun‐
tains object.
Name them the same as the attached parts: Head, Leg Rope, Leg
Dangle, Arm Holding, Arm Loose.
Move them so that each of the objects is positioned where you
want the blood fountain to appear for each limb (e.g., move the
Head object to the gnome’s neck); then, rotate the object so that
its Z axis (the blue arrow) is aiming in the direction you want
the blood fountain to shoot from. See Figure 5-12 for an exam‐
ple—the Head object is selected, and the blue arrow is pointing
down. This will make the blood fountain shoot upward, out of
the gnome’s neck.

Setting Up the Gnome’s Code | 105

Figure 5-12. The position and rotation of the Head blood fountain

7. Connect the blood fountain markers to each body part. For each
body part, drag the blood fountain for each part to the Blood
Fountain Origin slot. For example, drag the game object for the
Head’s blood fountain origin to the Head body part (see
Figure 5-13). Note that the Body doesn’t have one—it’s not a
part that you detach. Don’t drag the body part itself into the
slot! Drag the new game object that you just created.

106 | Chapter 5: Preparing for Gameplay

Figure 5-13. Connecting the Head blood fountain object

The gnome body needs to disappear after a certain delay. So, we’ll
create a script that removes an object after a while. This will be use‐
ful for the main game, too—fireballs need to vanish after a while, as
well as the ghost.

1. Create the RemoveAfterDelay script. Create a new C# script
called RemoveAfterDelay.cs. Add the following code to it:

 // Removes an object after a certain delay.
 public class RemoveAfterDelay : MonoBehaviour {

 // How many seconds to wait before removing.
 public float delay = 1.0f;

 void Start () {
 // Kick off the 'Remove' coroutine.
 StartCoroutine("Remove");
 }

 IEnumerator Remove() {
 // Wait 'delay' seconds, and then destroy the
 // gameObject attached to this object.
 yield return new WaitForSeconds(delay);
 Destroy (gameObject);

 // Don't say Destroy(this) - that just destroys this
 // RemoveAfterDelay script.
 }
 }

Once you add this code, the compiler error
mentioned earlier will go away—the Gnome class
needs the RemoveAfterDelay class to exist in
order to compile correctly.

Setting Up the Gnome’s Code | 107

The RemoveAfterDelay class is very simple: when the component
comes into existence, it uses a coroutine to wait for a certain amount
of time. When that time is up, the object is removed.

2. Attach the Gnome component to the gnome. Configure it like so:

• Set the Camera Follow Target to be the gnome’s body.
• Set the Rope Body to the Leg Rope.
• Set the Arm Holding Empty sprite to the Prototype Arm

Holding sprite.
• Set the Arm Holding Treasure sprite to the Prototype Arm

Holding with Gold sprite.
• Set the Holding Arm object to the gnome’s Arm Holding

body part.
When you’re done, the scripts settings should look like
Figure 5-14.
These properties are used by the Game Manager, which we’ll
add in a moment, so that the Camera Follow is aiming at the
correct object, and the Rope is connected to the correct body.

Figure 5-14. The configured Gnome component

108 | Chapter 5: Preparing for Gameplay

Setting Up the Game Manager
The Game Manager is the object that’s responsible for managing the
entire game. It’s in charge of creating gnomes when the game starts,
dealing with the gnome touching important objects like traps, treas‐
ure, or the level exit, and generally dealing with everything that lasts
longer than an individual gnome will.

Specifically, the Game Manager needs to do the following things:

1. When the game starts or restarts:
a. Create an instance of the gnome.
b. Remove the old gnome, if necessary.
c. Position it at the level start.
d. Attach the Rope to it.
e. Make the Camera start following it.
f. Reset all objects that need resetting, like the treasure.

2. When the gnome touches treasure:
a. Tell the gnome that it has claimed the treasure by changing

its holdingTreasure property.
3. When the gnome touches a trap:

a. Tell it to show damage by calling ShowDamageEffect.
b. Kill it by calling DestroyGnome.
c. Reset the game.

4. When the gnome touches the exit:
a. If it’s holding treasure, show a Game Over view.

Before we add the code for the Game Manager, we need to add a
class that the Game Manager will depend upon: the Resettable
class.

We want a general way to run code when the game resets. One way
to do this is with Unity Events—we’ll make a script called Resetta‐
ble.cs that has a Unity Event, which can be attached to any object
that needs resetting. When the game resets, the Game Manager will
find all objects that have a Resettable component, and invoke the
Unity Event.

Setting Up the Game Manager | 109

Doing it this way means that individual objects can be configured to
reset themselves, without having to write code for each of them. For
example, the Treasure object, which we’ll add later, will need to
change its sprite to indicate that there’s no longer any treasure; we’ll
be adding a Resettable object to it that will change the sprite back
to its original, treasure-present sprite.

Create the Resettable script. Add a new C# script called Resetta‐
ble.cs, and add the following code to it:

 using UnityEngine.Events;

 // Contains a UnityEvent that can be used to reset the state
 // of this object.
 public class Resettable : MonoBehaviour {

 // In the editor, connect this event to methods that should
 // run when the game resets.
 public UnityEvent onReset;

 // Called by the GameManager when the game resets.
 public void Reset() {
 // Kicks off the event, which calls all of the
 // connected methods.
 onReset.Invoke();
 }
 }

The Resettable code is incredibly simple. All it contains is a Unity
Event property, which allows you to add method calls and property
changes in the inspector. When the Reset method is called, the
event is invoked, and all of these methods and property changes are
performed.

We can now create the Game Manager:

1. Create the Game Manager object. Create a new empty game
object, and name it “Game Manager”.

2. Create and add the GameManager code to it. Add a new C# script
to it called GameManager.cs, and add the following code to it:

 // Manages the game state.
 public class GameManager : Singleton<GameManager> {

 // The location where the gnome should appear.
 public GameObject startingPoint;

 // The rope object, which lowers and raises the gnome.

110 | Chapter 5: Preparing for Gameplay

 public Rope rope;

 // The follow script, which will follow the gnome
 public CameraFollow cameraFollow;

 // The 'current' gnome (as opposed to all those dead ones)
 Gnome currentGnome;

 // The prefab to instantiate when we need a new gnome
 public GameObject gnomePrefab;

 // The UI component that contains the 'restart' and 'resume'
 // buttons
 public RectTransform mainMenu;

 // The UI component that contains the 'up', 'down' and
 // 'menu' buttons
 public RectTransform gameplayMenu;

 // The UI component that contains the 'you win!' screen
 public RectTransform gameOverMenu;

 // If true, ignore all damage (but still show damage
 // effects) The 'get; set;' make this a property, to make
 // it show up in the list of methods in the Inspector for
 // Unity Events
 public bool gnomeInvincible { get; set; }

 // How long to wait after dying before creating a new gnome
 public float delayAfterDeath = 1.0f;

 // The sound to play when the gnome dies
 public AudioClip gnomeDiedSound;

 // The sound to play when the game is won
 public AudioClip gameOverSound;

 void Start() {
 // When the game starts, call Reset to set up the
 // gnome.
 Reset ();
 }

 // Reset the entire game.
 public void Reset() {

 // Turn off the menus, turn on the gameplay UI
 if (gameOverMenu)
 gameOverMenu.gameObject.SetActive(false);

 if (mainMenu)

Setting Up the Game Manager | 111

 mainMenu.gameObject.SetActive(false);

 if (gameplayMenu)
 gameplayMenu.gameObject.SetActive(true);

 // Find all Resettable components and tell them to
 // reset
 var resetObjects = FindObjectsOfType<Resettable>();

 foreach (Resettable r in resetObjects) {
 r.Reset();
 }

 // Make a new gnome
 CreateNewGnome();

 // Un-pause the game
 Time.timeScale = 1.0f;
 }

 void CreateNewGnome() {

 // Remove the current gnome, if there is one
 RemoveGnome();

 // Create a new Gnome object, and make it be our
 // currentGnome
 GameObject newGnome =
 (GameObject)Instantiate(gnomePrefab,
 startingPoint.transform.position,
 Quaternion.identity);

 currentGnome = newGnome.GetComponent<Gnome>();

 // Make the rope visible
 rope.gameObject.SetActive(true);

 // Connect the rope's trailing end to whichever
 // rigidbody the Gnome object wants (e.g., his foot)
 rope.connectedObject = currentGnome.ropeBody;

 // Reset the rope's length to the default
 rope.ResetLength();

 // Tell the cameraFollow to start tracking the new
 // Gnome object
 cameraFollow.target = currentGnome.cameraFollowTarget;

 }

 void RemoveGnome() {

112 | Chapter 5: Preparing for Gameplay

 // Don't actually do anything if the gnome is invincible
 if (gnomeInvincible)
 return;

 // Hide the rope
 rope.gameObject.SetActive(false);

 // Stop tracking the gnome
 cameraFollow.target = null;

 // If we have a current gnome, make that no longer be
 // the player
 if (currentGnome != null) {

 // This gnome is no longer holding the treasure
 currentGnome.holdingTreasure = false;

 // Mark this object as not the player (so that
 // colliders won't report when the object
 // hits them)
 currentGnome.gameObject.tag = "Untagged";

 // Find everything that's currently tagged
 // "Player" and remove that tag
 foreach (Transform child in
 currentGnome.transform) {
 child.gameObject.tag = "Untagged";
 }

 // Mark ourselves as not currently having a
 // gnome
 currentGnome = null;
 }
 }

 // Kills the gnome.
 void KillGnome(Gnome.DamageType damageType) {

 // If we have an audio source, play "gnome died"
 // sound
 var audio = GetComponent<AudioSource>();
 if (audio) {
 audio.PlayOneShot(this.gnomeDiedSound);
 }

 // Show the damage effect
 currentGnome.ShowDamageEffect(damageType);

 // If we're not invincible, reset the game and make
 // the gnome not be the current player.

Setting Up the Game Manager | 113

 if (gnomeInvincible == false) {

 // Tell the gnome that it died
 currentGnome.DestroyGnome(damageType);

 // Remove the Gnome
 RemoveGnome();

 // Reset the game
 StartCoroutine(ResetAfterDelay());

 }
 }

 // Called when gnome dies.
 IEnumerator ResetAfterDelay() {

 // Wait for delayAfterDeath seconds, then call Reset
 yield return new WaitForSeconds(delayAfterDeath);
 Reset();
 }

 // Called when the player touches a trap
 public void TrapTouched() {
 KillGnome(Gnome.DamageType.Slicing);
 }

 // Called when the player touches a fire trap
 public void FireTrapTouched() {
 KillGnome(Gnome.DamageType.Burning);
 }

 // Called when the gnome picks up the treasure.
 public void TreasureCollected() {
 // Tell the currentGnome that it should have the
 // treasure.
 currentGnome.holdingTreasure = true;
 }

 // Called when the player touches the exit.
 public void ExitReached() {
 // If we have a player, and that player is holding
 // treasure, game over!
 if (currentGnome != null &&
 currentGnome.holdingTreasure == true) {

 // If we have an audio source, play the "game
 // over" sound
 var audio = GetComponent<AudioSource>();
 if (audio) {
 audio.PlayOneShot(this.gameOverSound);

114 | Chapter 5: Preparing for Gameplay

 }

 // Pause the game
 Time.timeScale = 0.0f;

 // Turn off the Game Over menu, and turn on the
 // "game over" screen!
 if (gameOverMenu) {
 gameOverMenu.gameObject.SetActive(true);
 }

 if (gameplayMenu) {
 gameplayMenu.gameObject.SetActive(false);
 }

 }
 }

 // Called when the Menu button is tapped, and when the
 // Resume Game button is tapped.
 public void SetPaused(bool paused) {

 // If we're paused, stop time and enable the menu (and
 // disable the game overlay)
 if (paused) {
 Time.timeScale = 0.0f;
 mainMenu.gameObject.SetActive(true);
 gameplayMenu.gameObject.SetActive(false);
 } else {
 // If we're not paused, resume time and disable
 // the menu (and enable the game overlay)
 Time.timeScale = 1.0f;
 mainMenu.gameObject.SetActive(false);
 gameplayMenu.gameObject.SetActive(true);
 }
 }

 // Called when the Restart button is tapped.
 public void RestartGame() {

 // Immediately remove the gnome (instead of killing it)
 Destroy(currentGnome.gameObject);
 currentGnome = null;

 // Now reset the game to create a new gnome.
 Reset();
 }

 }

Setting Up the Game Manager | 115

The Game Manager is primarily designed to deal with creating new
gnomes, and connecting the other systems to the correct objects.
When a new gnome needs to appear, the Rope needs to be connec‐
ted to the gnome’s leg, and the CameraFollow needs to be pointed
toward the gnome’s body. The Game Manager is also in charge of
handling the display of the menus, and for responding to buttons
from these menus. (We’ll be implementing the menus later.)

Because this is such a large chunk of code, we’ll step through what it
does in some detail.

Setting Up and Resetting the Game
The Start method, which is called the first time the object appears,
immediately calls the Reset method. Reset’s job is to reset the entire
game to its initial state, so calling it from Start is a quick way to
merge the “initial setup” and “reset the game” code into one place.

The Reset method itself ensures that the appropriate menu ele‐
ments, which we’ll be setting up later, are visible. All Resettable
components in the scene are told to reset, and a new gnome is cre‐
ated by calling the CreateNewGnome method. Finally, the game is un-
paused (just in case the game was paused).

 void Start() {
 // When the game starts, call Reset to set up the gnome.
 Reset ();
 }

 // Reset the entire game.
 public void Reset() {

 // Turn off the menus, turn on the gameplay UI
 if (gameOverMenu)
 gameOverMenu.gameObject.SetActive(false);

 if (mainMenu)
 mainMenu.gameObject.SetActive(false);

 if (gameplayMenu)
 gameplayMenu.gameObject.SetActive(true);

 // Find all Resettable components and tell them to
 // reset
 var resetObjects = FindObjectsOfType<Resettable>();

 foreach (Resettable r in resetObjects) {

116 | Chapter 5: Preparing for Gameplay

 r.Reset();
 }

 // Make a new gnome
 CreateNewGnome();

 // Un-pause the game
 Time.timeScale = 1.0f;
 }

Creating a New Gnome
The CreateNewGnome method replaces the gnome with a freshly con‐
structed gnome. It does this by first removing the current gnome, if
one exists, and creating a new one; it also enables the rope, and con‐
nects the gnome’s ankle (its ropeBody) to the end of the rope. The
rope is then told to reset its length to the initial value, and finally the
camera is made to track the new gnome:

 void CreateNewGnome() {

 // Remove the current gnome, if there is one
 RemoveGnome();

 // Create a new Gnome object, and make it be our
 // currentGnome
 GameObject newGnome =
 (GameObject)Instantiate(gnomePrefab,
 startingPoint.transform.position,
 Quaternion.identity);

 currentGnome = newGnome.GetComponent<Gnome>();

 // Make the rope visible
 rope.gameObject.SetActive(true);

 // Connect the rope's trailing end to whichever
 // rigidbody the Gnome object wants (e.g., his foot)
 rope.connectedObject = currentGnome.ropeBody;

 // Reset the rope's length to the default
 rope.ResetLength();

 // Tell the cameraFollow to start tracking the new
 // Gnome object
 cameraFollow.target = currentGnome.cameraFollowTarget;

 }

Setting Up the Game Manager | 117

Removing the Old Gnome
There are two cases where we need to cut the gnome from the rope:
when the gnome dies, and when the player decides to start a new
game. In both situations, the old gnome gets detached and is no
longer treated as the player. It still remains in the level, but if it hits
traps, the game won’t interpret it as a signal to restart the level any‐
more.

To remove the active gnome, we disable the rope and stop tracking
the current gnome with the camera. We then mark the gnome as not
holding the treasure, which switches the sprite back to the regular
version, and tags the object as “Untagged.” This is done because the
traps, which we’ll be adding shortly, will be looking for an object
tagged “Player”; if the old gnome was still tagged “Player,” the trap
would end up signaling the Game Manager to restart the level.

 void RemoveGnome() {

 // Don't actually do anything if the gnome is
 // invincible
 if (gnomeInvincible)
 return;

 // Hide the rope
 rope.gameObject.SetActive(false);

 // Stop tracking the gnome
 cameraFollow.target = null;

 // If we have a current gnome, make that no longer be
 // the player
 if (currentGnome != null) {

 // This gnome is no longer holding the treasure
 currentGnome.holdingTreasure = false;

 // Mark this object as not the player (so that
 // colliders won't report when the object
 // hits them)
 currentGnome.gameObject.tag = "Untagged";

 // Find everything that's currently tagged
 // "Player", and remove that tag
 foreach (Transform child in
 currentGnome.transform) {
 child.gameObject.tag = "Untagged";
 }

118 | Chapter 5: Preparing for Gameplay

 // Mark ourselves as not currently having a
 // gnome
 currentGnome = null;
 }
 }

Killing a gnome
When the gnome is killed, we need to show the appropriate in-game
effects. These include sounds and special effects; in addition, if the
gnome is not currently invincible, we should indicate to the gnome
that it died, remove the gnome, and then reset the game after a cer‐
tain delay. Here’s the code we’ll use to accomplish this:

 void KillGnome(Gnome.DamageType damageType) {

 // If we have an audio source, play "gnome died" sound
 var audio = GetComponent<AudioSource>();

 if (audio) {
 audio.PlayOneShot(this.gnomeDiedSound);
 }

 // Show the damage effect
 currentGnome.ShowDamageEffect(damageType);

 // If we're not invincible, reset the game and make
 // the gnome not be the current player.
 if (gnomeInvincible == false) {

 // Tell the gnome that it died
 currentGnome.DestroyGnome(damageType);

 // Remove the gnome
 RemoveGnome();

 // Reset the game
 StartCoroutine(ResetAfterDelay());

 }
 }

Resetting the Game
When the gnome dies, we want the camera to linger on the point
where that death happened. This will allow the player to watch the
gnome fall down for a bit, before returning to the top of the screen.

Setting Up the Game Manager | 119

To do this, we use a coroutine to wait for a number of seconds
(stored in delayAfterDeath), and then call Reset to reset the game
state:

 // Called when gnome dies.
 IEnumerator ResetAfterDelay() {

 // Wait for delayAfterDeath seconds, then call Reset
 yield return new WaitForSeconds(delayAfterDeath);
 Reset();

 }

Dealing with Touching
The next three methods all deal with reacting to the gnome touch‐
ing certain objects. If the gnome touches a trap, we call KillGnome
and indicate that slicing damage was done. If the gnome touches a
fire trap, we indicate that burning damage was done. Finally, if the
treasure was collected, we make the gnome start holding that treas‐
ure. Here’s the code we’ll use to accomplish this:

 // Called when the player touches a trap
 public void TrapTouched() {
 KillGnome(Gnome.DamageType.Slicing);
 }

 // Called when the player touches a fire trap
 public void FireTrapTouched() {
 KillGnome(Gnome.DamageType.Burning);
 }

 // Called when the gnome picks up the treasure.
 public void TreasureCollected() {
 // Tell the currentGnome that it should have the
 // treasure.
 currentGnome.holdingTreasure = true;
 }

Reaching the Exit
When the gnome touches the exit at the top of the level, we need to
check to see if the current gnome is holding treasure. If that’s the
case, the player wins! As a result, we play a “game over” sound (we’ll
be setting that up in “Audio” on page 196), pause the game by setting
the time scale to zero, and show the Game Over screen (which will
include a button that resets the game):

120 | Chapter 5: Preparing for Gameplay

 // Called when the player touches the exit.
 public void ExitReached() {
 // If we have a player, and that player is holding
 // treasure, game over!
 if (currentGnome != null &&
 currentGnome.holdingTreasure == true) {

 // If we have an audio source, play the "game
 // over" sound
 var audio = GetComponent<AudioSource>();
 if (audio) {
 audio.PlayOneShot(this.gameOverSound);
 }

 // Pause the game
 Time.timeScale = 0.0f;

 // Turn off the Game Over menu, and turn on the
 // Game Over screen!
 if (gameOverMenu) {
 gameOverMenu.gameObject.SetActive(true);
 }

 if (gameplayMenu) {
 gameplayMenu.gameObject.SetActive(false);
 }
 }
 }

Pausing and Unpausing
Pausing the game involves doing three things: first, time is stopped
by setting the time scale to zero. Next, the main menu is made visi‐
ble, and the gameplay UI is hidden. To unpause the game, we simply
do the reverse—set time moving again, hide the main menu, and
show the gameplay UI:

 // Called when the Menu button is tapped, and when the
 // Resume Game is tapped.
 public void SetPaused(bool paused) {

 // If we're paused, stop time and enable the menu (and
 // disable the game overlay)
 if (paused) {
 Time.timeScale = 0.0f;
 mainMenu.gameObject.SetActive(true);
 gameplayMenu.gameObject.SetActive(false);
 } else {
 // If we're not paused, resume time and disable
 // the menu (and enable the game overlay)

Setting Up the Game Manager | 121

 Time.timeScale = 1.0f;
 mainMenu.gameObject.SetActive(false);
 gameplayMenu.gameObject.SetActive(true);
 }
 }

Handling the Reset Button
The RestartGame method will be called when the user clicks on cer‐
tain buttons in the UI. This method immediately restarts the game:

 // Called when the Restart button is tapped.
 public void RestartGame() {

 // Immediately remove the gnome (instead of killing it)
 Destroy(currentGnome.gameObject);
 currentGnome = null;

 // Now reset the game to create a new gnome.
 Reset();
 }

Preparing the Scene
Now that the code is written, we can set up the scene to use it:

1. Create the start point. This is an object that the Game Manager
will use to position freshly created gnomes. Create a new game
object, and call it “Start Point.” Position it where you want the
gnome to start (somewhere near the Rope will do; see
Figure 5-15), and change its icon to be a yellow capsule (in the
same way as you set up the icon of the Rope).

122 | Chapter 5: Preparing for Gameplay

Figure 5-15. Positioning the start point

2. Turn the gnome into a prefab. Gnomes will now be created by
the Game Manager, which means that the gnome that’s cur‐
rently in the scene needs to be removed. Before you remove it,
you need to turn it into a prefab, so that the Game Manager can
create instances of it at runtime.
Drag the gnome into the Gnome folder in the Project pane. A
new prefab object will be created (see Figure 5-16), which will
be a complete copy of the origial Gnome object.
Now that you’ve created a prefab, you don’t need the object in
the scene anymore. Delete the gnome from the scene.

Figure 5-16. The gnome, as a prefab in the Gnome folder

3. Configure the Game Manager. There are several connections we
need to set up for the Game Manager:

Preparing the Scene | 123

• Connect the Starting Point field to the Start Point object you
just made.

• Connect the Rope field to the Rope object.
• Connect the Camera Follow field to the Main Camera.
• Connect the Gnome Prefab field to the Gnome prefab you

just made.
When you’re done, the inspector for the Game Manager
should look like Figure 5-17.

Figure 5-17. The Game Manager setup

4. Test the game. The gnome will appear at the start point, and will
be connected to the rope. Additionally, when you raise and
lower the rope, the camera will track the gnome’s body. You
won’t be able to test the treasure holding yet, but don’t worry—
we’ll be handling that soon enough!

Wrapping Up
Now that the Game Manager is in place, it’s time to add actual
gameplay. In Chapter 6, we’ll start adding elements that the gnome
will interact with: the treasure and the traps.

124 | Chapter 5: Preparing for Gameplay

CHAPTER 6

Building Gameplay with Traps
and Objectives

Now that the foundations of the gameplay are set up, we can start
adding in game elements like traps and treasure. From that point,
much of the rest of the game is simply level design.

Simple Traps
Most of this game is about when the player hits things—traps, the
treasure, the exit, and so on. Because detecting when the player hits
certain objects is so important, we’ll create a generic script that trig‐
gers a Unity Event when any object that’s tagged with “Player” col‐
lides with it. This event can then be set up in different ways for
different objects: the traps can be configured to tell the Game Man‐
ager that the gnome has received damage, the treasure can be con‐
figured to tell the Game Manager that the gnome has collected
treasure, and the exit can be configured to tell the Game Manager
that the gnome has reached the exit.

Now, create a new C# script called SignalOnTouch.cs, and add the
following code to it:

 using UnityEngine.Events;

 // Invokes a UnityEvent when the Player collides with this
 // object.
 [RequireComponent (typeof(Collider2D))]
 public class SignalOnTouch : MonoBehaviour {

125

 // The UnityEvent to run when we collide.
 // Attach methods to run in the editor.
 public UnityEvent onTouch;

 // If true, attempt to play an AudioSource when we collide.
 public bool playAudioOnTouch = true;

 // When we enter a trigger area, call SendSignal.
 void OnTriggerEnter2D(Collider2D collider) {
 SendSignal (collider.gameObject);
 }

 // When we collide with this object, call SendSignal.
 void OnCollisionEnter2D(Collision2D collision) {
 SendSignal (collision.gameObject);
 }

 // Checks to see if this object was tagged as Player, and
 // invoke the UnityEvent if it was.
 void SendSignal(GameObject objectThatHit) {

 // Was this object tagged Player?
 if (objectThatHit.CompareTag("Player")) {

 // If we should play a sound, attempt to play it
 if (playAudioOnTouch) {
 var audio = GetComponent<AudioSource>();

 // If we have an audio component,
 // and this component's parents
 // are active, then play
 if (audio &&
 audio.gameObject.activeInHierarchy)
 audio.Play();
 }

 // Invoke the event
 onTouch.Invoke();
 }
 }

 }

The SignalOnTouch class’s main code is handled in the SendSignal
method, which is called by OnCollisionEnter2D and OnTrig
gerEnter2D. These latter two methods are called by Unity when an
object touches a collider, or when an object enters a trigger. The
SendSignal method checks the tag of the object that collided, and if
it was “Player,” it invokes the Unity Event.

126 | Chapter 6: Building Gameplay with Traps and Objectives

Now that the SignalOnTouch class is ready, we can add the first trap:

1. Import the level object sprites. Import the contents of the Sprites/
Objects folder into your project.

2. Add the brown spikes. Locate the SpikesBrown sprite, and drag it
into the scene.

3. Configure the spike object. Add a PolygonCollider2D compo‐
nent to the spikes, as well as a SignalOnTouch component.
Add a new function to the SignalOnTouch’s event. Drag the
Game Manager into the object slot, and make the function be
GameManager.TrapTouched. See Figure 6-1.

Figure 6-1. Setting up the spike

4. Turn the spikes into a prefab. Drag the SpikesBrown object from
the Hierarchy into the Level folder. This will create a prefab,
which means that you can make multiple copies of the objects.

5. Test it out. Run the game. Make the gnome hit the spikes. He’ll
fall off-camera, and respawn!

Treasure and Exit
Now that you’ve successfully added a way to kill the gnome, it’s time
to add a way to win the game. You’ll do this by adding two new
items: the treasure and the exit.

The treasure is a sprite at the bottom of the well that detects when
the player has touched it, and signals the Game Manager. When that
happens, the Game Manager will inform the gnome that it is carry‐

Treasure and Exit | 127

ing treasure, which will make the gnome’s arm sprite change to look
like it’s carrying treasure.

The exit is another sprite, positioned at the top of the well. Like the
treasure, it detects when the player has touched it, and notifies the
Game Manager. If the gnome happens to be carrying treasure, the
player has won the game.

The majority of the work for both of these objects is handled by the
SignalOnTouch component—when the exit is reached, the Game
Manager’s ExitReached method needs to be called, and when the
treasure is touched, the Game Manager’s TreasureCollected

method needs to be called.

We’ll start by creating the exit, and then add the treasure.

Creating the Exit
Let’s start by importing the sprites:

1. Import the Level Background sprites. Copy the Sprites/Back‐
ground folder from the downloaded resources into your Sprites
folder.

2. Add the Top sprite. Position it slightly below the Rope object.
This sprite will be the Exit.

3. Configure the sprite. Add a BoxCollider2D component to the
sprite, and set its Is Trigger property to on. Click the Edit Col‐
lider button, and resize the box so that it’s short and wide (see
Figure 6-2).

128 | Chapter 6: Building Gameplay with Traps and Objectives

Figure 6-2. Setting up the exit’s collider to be wide and short, and posi‐
tioning it above the level

4. Make the sprite signal the game controller when it’s touched. Add
a SignalOnTouch component to the sprite. Add an entry in the
component’s event, and connect it to the Game Manager. Set the
function to GameManager.ExitReached. This will make the
Game Manager’s ExitReached method run when the gnome
touches it.

Next up, we need to add the treasure.

The way the treasure works is this: by default, the Treasure object
shows a treasure sprite. When the player touches it, the Game Man‐
ager’s TreasureCollected method is called, and the treasure’s sprite
will change to show that the treasure has been collected. If the
gnome dies, the Treasure object will reset to show the sprite that
contains the treasure.

Because swapping out one sprite for another is going to be a com‐
mon thing in the rest of the game, especially when we get to the pol‐
ishing stage, it makes sense to create a generic sprite-swapping class,
and set up the treasure using it.

Create a new C# script called SpriteSwapper.cs. Add the following
code to it: <<<

 // Swaps out a sprite for another. For example, the treasure
 // switches from 'treasure present' to 'treasure not present'.

Treasure and Exit | 129

 public class SpriteSwapper : MonoBehaviour {

 // The sprite that should be displayed.
 public Sprite spriteToUse;

 // The sprite renderer that should use the new sprite.
 public SpriteRenderer spriteRenderer;

 // The original sprite. Used when ResetSprite is called.
 private Sprite originalSprite;

 // Swaps out the sprite.
 public void SwapSprite() {

 // If this sprite is different than the current sprite...
 if (spriteToUse != spriteRenderer.sprite) {

 // Store the previous store in originalSprite
 originalSprite = spriteRenderer.sprite;

 // Make the sprite renderer use the new sprite.
 spriteRenderer.sprite = spriteToUse;
 }
 }

 // Reverts back to the old sprite.
 public void ResetSprite() {

 // If we have a previous sprite...
 if (originalSprite != null) {
 // ...make the sprite renderer use it.
 spriteRenderer.sprite = originalSprite;
 }
 }
 }

The SpriteSwapper class is designed to do two things: when the
SwapSprite method is called, the SpriteRenderer attached to the
game object is told to change its sprite. Additionally, the original
sprite is stored in a variable. When the ResetSprite method is
called, the sprite renderer is restored to its original sprite.

We can now create and set up the Treasure object:

1. Add the treasure sprite. Locate the TreasurePresent sprite, and
add it to the scene. Put it somewhere near the bottom, but make
sure that the gnome can still reach it.

2. Add a collider to the treasure. Select the treasure sprite, and add
a Box Collider 2D. Make this collider be a trigger.

130 | Chapter 6: Building Gameplay with Traps and Objectives

3. Add and configure a sprite swapper. Add a SpriteSwapper com‐
ponent. Drag the treasure sprite itself onto the Sprite Renderer
field. Next, locate the TreasureAbsent sprite, and drag it onto
the sprite swapper’s Sprite To Use field.

4. Add and configure a signal-on-touch component. Add a SignalOn
Touch component. Add two entries into the On Touch list:

• First, connect the Game Manager object, and make the event’s
method be GameManager.TreasureCollected.

• Next, connect the treasure sprite (that is, the object you’re
currently configuring), and make the method SpriteSwap‐
per.SwapSprite.

5. Add and configure a Resettable component. Add a Resettable
component to the object. Add a single entry to the On Touch
method, make the method be SpriteSwapper.ResetSprite, and
connect the Treasure object to it.

When you’re done, the Treasure object’s Inspector should look like
Figure 6-3.

Treasure and Exit | 131

Figure 6-3. The configured Treasure object

6. Test the game. Run the game, and touch the treasure. When you
touch it, the treasure will disappear; if you die, the treasure will
reappear when the gnome respawns.

132 | Chapter 6: Building Gameplay with Traps and Objectives

Adding a Background
Currently, the gnome is set against the default Unity background,
which is kind of an ugly blue. We’ll add a temporary background,
which will be eventually replaced with a background sprite when we
start to polish the art.

1. Add the background quad. Open the GameObject menu, and
choose 3D Object → Quad. Name the new object “Background.”

2. Move the background further back. To avoid a situation where
the background quad is drawn in front of the game’s sprites,
we’ll move it further back from the camera. Set the Z value of
the background quad’s position to 10.

Even though this is a 2D game, Unity is still a
3D engine. This means that we can take advan‐
tage of the fact that the concept of things being
“behind” other objects still exists, such as what
we’re doing here.

3. Position the background quad. Switch to the Rect tool by press‐
ing T, and then use the resizing handles to resize the back‐
ground quad. Make the top edge of the background line up with
the sprite at the top of the level, and the bottom edge line up
with the treasure (see Figure 6-4).

4. Test the game. When you play the game, the level will have a
gray background color behind it.

Adding a Background | 133

Figure 6-4. Sizing the background quad

Wrapping Up
At this point in the building of the game, the core gameplay func‐
tionality is present. Quite a lot of gameplay has been added:

• The gnome is physically simulated, and is attached to a physi‐
cally simulated rope.

• The rope is controllable via on-screen buttons, which means
that the gnome can be lowered and raised.

134 | Chapter 6: Building Gameplay with Traps and Objectives

• The camera is set up to track the gnome, so that it stays in sight
the entire time.

• The gnome responds to the phone tilting, and moves left to
right.

• The gnome is able to be killed by colliding with traps, and is
able to collect the treasure.

You can see a screenshot of the game in its current state in
Figure 6-5.

Figure 6-5. The game, at the end of this chapter

While functionally complete, it’s not the best-looking game at this
point. The gnome is still a stick figure, and the levels are quite bare-
bones. In Chapter 7, we’ll continue building the game and improv‐
ing the visuals of every on-screen element.

Wrapping Up | 135

CHAPTER 7

Polishing the Game

By the end of this chapter, you’ll have applied a number of tweaks to
Gnome’s Well That Ends Well, and the final result will be something
like Figure 7-1.

There are three main areas of polish that we’ll add to the game:

Visual polish
We’ll be adding new sprites for the gnome, improving the look
of the backgrounds, and adding particle effects that improve the
look of the game.

Gameplay polish
We’ll be adding different kinds of traps, a title screen, and also a
way to make the gnome invincible, which will help with game‐
play testing.

Audio polish
We’ll also be adding sound effects to the game, which react to
what the player’s doing.

The resources used in this chapter can be found in the assets pack‐
age available at https://www.secretlab.com.au/books/unity.

137

https://www.secretlab.com.au/books/unity

Figure 7-1. The final game

Updating the Gnome’s Art
The first thing that we’ll do to polish up the game is to change the
gnome’s sprites from their current stick-figure state, and swap them
for a hand-painted replacement set of sprites.

To get started with this, copy the GnomeParts folder from the origi‐
nal resources into the Sprites folder. This folder contains two sub‐
folders: Alive contains the new parts for the gnome, and Dead
contains sprites that are used for when the gnome is dead (see

138 | Chapter 7: Polishing the Game

Figure 7-2). We’ll start with the alive sprites, but we’ll be using the
dead sprites later.

Figure 7-2. The Gnome’s Alive sprites

There are more resources in the downloaded
assets than the ones we’ll be using, including a
version of the head sprite with no eyes, designed
to be used with the separated eye sprites. If you
want to take the game even further than what we
cover in this book, you might like to use these
bonus assets!

The first step is to configure the sprites so that they’re ready for use
in the Gnome object. In particular, we need to ensure that they’re
imported as sprites, and that the pivot points for these sprites are in
the right place. Here are the steps you’ll need to follow:

1. Convert the images into sprites, if they aren’t already. Select the
sprites in the Alive folder, and ensure that the texture type is set
to “Sprite (2D and UI).”

2. Update the pivot points for the sprites. For each sprite except the
Body sprite, do the following:
a. Select the sprite.
b. Click the Sprite Editor button.
c. Drag the pivot point icon (that is, the little blue circle) to the

point around which the body part should rotate. For exam‐
ple, Figure 7-3 shows the position for the ArmHoldEmpty
sprite.

Updating the Gnome’s Art | 139

Figure 7-3. Setting the pivot point for the ArmHoldEmpty sprite; notice
the position of the pivot point, at the top right

Once you’ve set up the sprites, it’s time to add them to the gnome.
To keep things tidy, and to allow you to keep the older version of the
gnome around, we’ll duplicate the gnome prefab, and make changes
to the new version. We’ll then tell the game to use this new and
improved gnome.

Once we’ve done this, we’ll add it to the scene, and start replacing
the various components of the gnome’s body with fresh art. Good
plan? Great plan. Here’s what to do:

1. Duplicate the prototype gnome prefab. Find the prototype gnome
prefab, and duplicate it by pressing Ctrl-D (Command-D on a
Mac). Name the new object “Gnome”.

2. Add the new gnome to the scene. Drag the new gnome prefab
into the Scene window to create a new instance of it.

3. Replace the art. Select all of the gnome’s body parts and replace
the sprite for it with the corresponding new sprite. For example,
select the head and replace its sprite with the Head sprite in the
Alive folder.

140 | Chapter 7: Polishing the Game

When you’re done, the gnome should look something close to
Figure 7-4. The body parts won’t be in precisely the right position,
but that’s OK—we’ll fix that in a moment.

Figure 7-4. The Gnome object, with updated sprites

Next, we need to adjust the position of the gnome’s body parts. The
new sprites are different shapes and sizes, and we need the various
bits and pieces to line up correctly. Follow these steps to set it up:

1. Reposition the head, arms, and legs. Select the Head object, and
adjust its position so that the neck lines up at the right point
between the shoulders. Repeat this process with the arms
(matching them with the shoulders) and the legs (matching
them with the waist).
Note that, for your convenience, the pivot points for the should‐
ers are the purple dots on the Body sprite.

Once you’ve repositioned them, it’s important to ensure that the
sprites are always in the right order—the legs should never be drawn
on top of the body, the body should never be on top of the arms, and
the head should be on top of everything.

Updating the Gnome’s Art | 141

2. Adjust the sorting order for the body parts. Select the head and
both the arms, and change the Order in Layer property of the
Sprite Renderer to 2.
Next, select the body and change its order to 1.

When you’re done, the Gnome should look like Figure 7-5.

Figure 7-5. The gnome, with properly positioned sprites

Updating the Physics
Now that the gnome’s sprites have been updated, we need to update
the physical components. There are two changes that need to be
made: the colliders need to be updated so that they’re the right
shape, and the joints need to be adjusted so that the body parts will
pivot at the right point.

142 | Chapter 7: Polishing the Game

We’ll start by adjusting the colliders. Because the sprites aren’t hori‐
zontal or vertical lines, we need to replace the simple box and circle
colliders with polygon colliders.

There are two ways to create polygon colliders: you can either let
Unity generate a shape for you or you can specify it yourself. We’ll
do it ourselves because it’s more efficient (Unity tends to generate
complex shapes, which isn’t great for performance), and it also
allows you much better control over the final result.

When you add a polygon collider to an object that also has a sprite
renderer, Unity will use the sprite to build a polygon shape by draw‐
ing a line around all of the nontransparent parts of the image. If you
want to define your own collision shape, the polygon collider com‐
ponent needs to be added to a game object that doesn’t have a sprite
renderer. The easiest way to do that is to create an empty child
object, and add a polygon collider to that. To do so, follow these
steps:

1. Remove the existing colliders. Select all legs and arms, and
remove the Box Collider 2D. Next, select the head and remove
the Circle Collider 2D.

2. Repeat these steps for each arm, each leg, and the head:
a. Add the child object for the collider. Create a new empty game

object called Collider. Make it a child of the body part, and
ensure its position is 0,0,0.

b. Add the polygon collider. Select this new Collider object, and
add a Polygon Collider 2D component to it. A green collider
shape will appear (see Figure 7-6); by default, Unity will cre‐
ate a pentagon shape for it, and you’ll need to adjust it to
make it fit the object.

c. Edit the shape of the polygon collider. Click Edit Collider (see
Figure 7-7) and you’ll enter edit mode.
While you’re in edit mode, you can drag the individual
points of the shape around. You can also click and drag on
the lines connecting each point to create new points, and
hold Ctrl (Command on a Mac) and click a point to remove
it.
Drag the points around so that they roughly match the shape
of the body part (see Figure 7-8).

Updating the Physics | 143

When you’re done, click the Edit Collider button again.

The colliders that you just added should now look roughly like
Figure 7-9.

Figure 7-6. A newly added Polygon Collider 2D

144 | Chapter 7: Polishing the Game

Figure 7-7. The Edit Collider button

Figure 7-8. The updated polygon collider for the gnome’s arm

Updating the Physics | 145

Figure 7-9. The colliders for the arms, legs, and head

There’s one more change to the colliders to do: the body’s circle col‐
lider needs to be enlarged slightly, to match the bulkier body.

3. Increase the radius of the Body’s circle collider to 1.2.

The effect you’re aiming to accomplish here is for the colliders to
roughly match the shape of the sprites, but without overlapping.
This means that, during gameplay, the parts of the gnome’s body
won’t overlap each other in ways that look odd.

Now that the colliders are the right shape, it’s time to update the
joints. Recall that the head, arms, the legs all have a hinge joint
attached to them, which connects them to the body. You’ll need to

146 | Chapter 7: Polishing the Game

make sure that the pivot point is correct to avoid weirdnesses like
the gnome’s arms appearing to rotate around the upper arm.

4. Update the Connected Anchor and Anchor position of the gnome’s
joints. For each body part except the body, drag the position of
the Connected Anchor and the Anchor to the pivot point. The
legs should pivot at the hips, the arms at the shoulders, and the
head at the neck.

If you drag the anchor and connected anchor
near the center point of the sprite, it will snap to
that point.

Don’t forget that Leg Rope has two joints on it: one that connects it
to the body, and one that’s used for the rope. Move the Anchor of
this second joint to the ankle.

There are a couple of changes we need to make to the gnome’s Gnome
script. Remember from earlier that the gnome’s arm sprite changes
when he touches the treasure? Currently, that’s still set to use the old
prototype art, which doesn’t fit the new art at all.

5. Update the sprites used by the Gnome script. Select the parent
Gnome object.
Drag the ArmHoldEmpty sprite into the Gnome’s Arm Holding
Empty slot, and drag the ArmHoldFull sprite into the Gnome’s
Arm Holding Full slot.

Now, when the gnome picks up the treasure, the arm’s sprite will
change to the correct image. Additionally, when the gnome drops
the treasure (which happens when the gnome touches a trap and
dies), the gnome’s arm won’t change into a stick-figure arm.

Lastly, we need to scale the gnome a bit, to make it fit in the world,
and then save your changes to the prefab.

6. Scale the Gnome. Select the parent Gnome object, and change
the X and Y scale from 0.5 to 0.3.

7. Apply the changes to the prefab. Select the parent Gnome object,
and click Apply at the top of the Inspector.

Updating the Physics | 147

8. Remove the gnome from the world. There’s no need to keep it in
the scene now that it’s saved, so delete it.

Now that you’ve finished updating the gnome, it’s time to update the
Game Manager so that it uses this newly updated object.

9. Make the Game Manager use the object. Select the Game Man‐
ager, and drag the gnome prefab that you just updated into the
Gnome Prefab slot.

10. Test the game. The updated gnome is now in the world! See
Figure 7-10 for an example of how it should look.

148 | Chapter 7: Polishing the Game

Figure 7-10. The updated gnome, in game

Updating the Physics | 149

Background
Currently, the background is a flat, gray quad, and doesn’t look at all
like the inside of a well. Let’s change that!

To address this issue, we’re going to add a more sophisticated set of
objects that represent both the background and the side walls of the
well. Before you continue, ensure that you’ve got the sprites from
the Background folder added to your project.

Layers
Before adding the images, we need to first work out how they will be
ordered in the scene. When you’re making a 2D game, getting the
right sprites to appear on top of other sprites is an important, and
sometimes tricky, thing to maintain. Thankfully, Unity has a built-in
solution for making it a little easier: sorting layers.

A sorting layer is a group of objects which are all drawn together.
Sorting layers, as the name implies, are able to be sorted into the
order that you want. This means that you can group certain objects
into the “Background” layer, other objects into the “Foreground”
layer, and so on. Additionally, each object can be ordered within its
own layer, so that you can ensure that certain pieces of the back‐
ground will always be drawn behind other pieces.

You always have at least one sorting layer, which is called “Default.”
All new objects go into this layer unless you change them.

We’ll be adding multiple sorting layers to this project. Specifically,
we’ll add the following:

• The Level Background layer, which contains level background
objects and will always be displayed behind everything else.

• The Level Foreground layer, which contains the foreground
objects, like the walls.

• The Level Objects layer, which contains things like traps.

To create the layers, follow these steps:

1. Open the Tags & Layers inspector. Open the Edit menu, and
select Project Settings → Tags & Layers.

150 | Chapter 7: Polishing the Game

2. Add the Level Background sorting layer. Open the Sorting Layers
section, and add a new layer. Call it “Level Background”.
Drag this to the top of the list (above “Default”). This will make
any object on this layer appear behind anything on the Default
layer.

3. Add the Level Foreground layer. Repeat the process, and add a
new layer called “Level Foreground”. Place this below the Default
layer. This makes objects on this layer appear in front of any‐
thing on the Default layer.

4. Add the Level Objects layer. Finally, repeat this process one more
time, adding a new layer called “Level Objects”. Place this below
“Default” and above “Level Foreground”. This is where the traps
and treasure will go, which means that they need to be behind
the foreground.

Creating the Backgrounds
Now that the layers are set up, it’s time to start building the back‐
ground itself. The background has three different themes—namely,
brown, blue, and red—and each theme is composed of multiple
sprites: a background, a side wall sprite, and a background version
of the side wall sprite.

Because you’ll want to lay out the content of the level to suit your
own tastes, the best thing to do is to create prefabs for each of the
three different themes. We’ll start with the Brown background
theme, build up the object, then save it as a prefab; next, you’ll do
the same thing with the Blue and Red themes.

Before we start any of that, however, we’ll want to create an object to
contain all of the level background objects, just to keep things tidy.
Here are the steps you’ll need to follow:

1. Create the Level container object. Create a new empty game
object by opening the GameObject menu, and choosing “Create
Empty.” Name this new object “Level”, and set its position to
(0,0,1).

2. Create the container for the Background Brown object. Create
another game object, and name this one “Background Brown”.
Make it a child of the Level object, and make sure that its posi‐

Background | 151

tion is (0,0,0). This will make the object’s position not offset
from the position of the Level object.

3. Add the main background sprite. Drag the BrownBack sprite
into the scene, and then make it a child of the Background
Brown object.
Select this new sprite, and change its Sorting Layer to “Level
Background.” Finally, set its X position 0 so that it’s centered.

4. Add the background side object. Drag the BrownBackSide sprite
into the scene, and make it a child of the Background Brown
object.
Set its Sorting Layer to Level Background, and set its Order In
Layer to 1. This will make the object appear above the main
background, while still being behind all objects in the other lay‐
ers.
Set its X position to -3, so that it’s pushed to the left.

5. Add the foreground side object. Drag in the BrownSide sprite,
and make it a child of the Background Brown sprite. Set the
Sorting Layer to Level Foreground.
Set its X position to -3.7, and set its Y position to the same as
the BrownBackSide sprite. You want them to line up horizon‐
tally, with the foreground object a little further to the left.

Because the side objects are only half as high as the main back‐
ground image, we’ll now create a second row of these side objects.

To duplicate the side objects, select both the BrownBackSide and the
BrownSide sprite, and duplicate them by pressing Ctrl-D
(Command-D on a Mac).

Move these new side objects down so that the bottom edge of the
upper row is at the same point as the top edge of the lower row.
When you’re done, the background should look like Figure 7-11.

152 | Chapter 7: Polishing the Game

Figure 7-11. The partially updated background

We’ve now set up the side objects for the lefthand side, and it’s time
to set up the righthand side. To do this, we’ll duplicate the existing
sprites, and adjust them to suit the righthand side:

1. Duplicate the side objects again. Select all of the BrownSide and
BrownBackSide objects, and press Ctrl-D (or Command-D on a
Mac.)

2. Ensure that the pivot mode is set to Center. If the Pivot Mode
button is currently set to Pivot, click it and it will change to
Center.

3. Rotate the objects. Using the Rotate tool, rotate the righthand
objects to 180 degrees. Hold down the Ctrl (Command on a
Mac) to snap the rotation.

Don’t use the Inspector to change their rotation
value, since that will rotate them around their
individual origins. What we want is for the
objects to rotate around their common center.

4. Flip the objects vertically. Do this by changing their Y scale to -1.
If you don’t do this, the lighting will look incorrect when upside
down.

When you’re done, the transform inspector for these objects should
look like Figure 7-12.

Background | 153

Figure 7-12. The transform of the righthand background elements

5. Move the new objects to the righthand side of the level. It’s where
they belong, after all. When you’re done it should look like
Figure 7-13.

Figure 7-13. The updated background

Now that the Background Brown object has been set up, it’s time to
turn it into a prefab. To do so, follow these steps:

1. Create a prefab from the Background Brown object. Drag the
Background Brown object into the Project tab, and a prefab will
be created. Move this prefab into the Level folder.

2. Duplicate the Background Brown object. Select the Background
Brown object, and press Ctrl-D (Command-D on a Mac) a few
times. Move each of these new objects down, until you’ve made
a decently long region of background.

154 | Chapter 7: Polishing the Game

Different Backgrounds
Now that the first background has been created, you can follow the
exact same steps for the other two background themes:

1. Create the Background Blue theme. Make a new empty object
called “Background Blue”, and make it a child of the Level
object.
Follow the same steps you followed to create the Background
Brown object, but this time, use the BlueBack, BlueBackSide,
and BlueSide sprites.
Don’t forget to make a prefab out of the Background Blue object
when you’re done.

2. Create the Background Red theme. Again, follow the same steps,
using the RedBack, RedBackSide, and RedSide sprites.

When you’re all done, the level should look something like
Figure 7-14.

Background | 155

Figure 7-14. The background areas

There’s one problem with this setup: the backgrounds tile well when
they’re touching background objects of the same color, but there are
harsh lines where the different colors meet.

To fix this, we’ll overlay sprites that cover up this discontinuity.
These sprites will be on the “Level Foreground” layer, and will be set
up to appear over everything else in the game.

156 | Chapter 7: Polishing the Game

1. Add the BlueBarrier sprite. This sprite is designed to mask the
line between the Brown and Blue backgrounds. Position it at the
point where the Brown and Blue backgrounds meet, and make
it a child of the Level object.

2. Add the RedBarrier sprite. This one’s designed to mask the line
between the Blue and Red backgounds; place it at the meeting
point between Blue and Red, and make it a child of the Level
object.

3. Update the sorting layers for both sprites. Select both the Blue‐
Barrier and RedBarrier sprites, and set their Sorting Layer to
“Level Foreground.”
Next, set the Order in Layer to 1. This will make the barriers
appear over the side walls.

When you’re done, the level should look like Figure 7-15.

Background | 157

Figure 7-15. The backgrounds, with Barrier sprites

The Bottom of the Well
There’s one last thing to add: the well needs a bottom. In this game,
the well is dry, and has drifts of sand that cover the very bottom of
the well. Some of this sand has blown up against the walls, too. To
add this to the scene, follow these steps:

158 | Chapter 7: Polishing the Game

1. Create a container object for the well bottom sprites. Create a new
empty game object named “Well Bottom”. Make it a child of the
Level object.

2. Add the well’s bottom sprite. Drag in the Bottom sprite, and add
it as a child of the Well Bottom object.
Set the sprite’s sorting layer to Level Background, and set its
Order In Layer to 2. This places it above the “Background” and
“Background Side” sprites, but behind everything else in the
game.
Position the sprite at the bottom of the well, and set its X posi‐
tion to 0, which will keep it in line with the rest of the level’s
sprites.

3. Add the side decoration sprite to the left of the well. Drag in the
SandySide sprite, and add it as a child of the Well Bottom
object.
Set the Sorting Layer to “Level Foreground.” Set the Order in
Layer to 1, so that it appears over the walls.
Next, move the sprite to the left, so that it lines up with the walls
(see Figure 7-16 for an example of how it should look).

Figure 7-16. The SandySide sprite, lined up with the bottom of the well

4. Add the righthand side object. Duplicate the SandySide sprite.
Set its X Scale to -1 to flip it, and then move to the right of the
well.

5. Ensure that the treasure is in the right position. Reposition the
treasure sprite so that it’s in the middle of the sand dune.

When you’re all done, it should look like Figure 7-17.

Background | 159

Figure 7-17. The finished well bottom

Updating the Camera
There’s now one last thing you need to do to make the new back‐
ground fit into the game: update the camera. There are two changes
that need to be made: first, the camera needs to be updated so that
the player can see the entire level, and second, the script that con‐
strains the position of the camera needs to be updated to take into
account the updated size of the level. Configure the camera by fol‐
lowing these steps:

1. Update the camera’s size. Select the Main Camera object, and
change the camera’s Ortho Size to 7. This will give the player a
sufficiently wide view on the whole level.

2. Update the camera’s limits. Because we’ve changed the amount
that the camera can see, we also need to adjust the limits of the
Camera. Change the camera’s Top Limit to 11.5.
You’ll also need to adjust the Bottom Limit, but the value you
choose here will depend on how deep you’ve made the well.
The best way to work it out is to lower the gnome as far as you
can, and if the camera stops moving before you reach the bot‐
tom of the well, lower the Bottom Limit; if the camera goes
below the bottom of the well (revealing the blue background),
raise the Bottom Limit.
Take note of the value before you stop the game, because it will
reset back to its original value when you end the game; after you
stop the game, enter the number you wrote down into the Bot‐
tom Limit field.

160 | Chapter 7: Polishing the Game

User Interface
It’s time to improve the look and feel of the game’s UI. Earlier, when
we were setting up the interface, we used the standard Unity-
provided buttons. While they’re capable, they don’t really suit the
look and feel of the game at all, and we’ll need to replace the button’s
imagery with better stuff.

Additionally, we need to show a Game Over screen when the gnome
reaches the top, as well as a screen that appears when the player pau‐
ses the game.

Before you continue, make sure that you’ve imported the sprites for
this section. Import the Interface folder of sprites, and put this folder
in the Sprites folder.

These sprites are designed to be high resolution, so that they can be
used in a variety of different situations. In order for them to be use‐
ful as buttons in the game, Unity needs to know how large they
should be when added to the Canvas. You do this by adjusting the
Pixels Per Unit value for the sprites, which controls their scale when
added to a UI component or sprite renderer.

Configure the sprites by selecting all of the images in this folder
(except for “You-Win”), and changing their Pixels Per Unit to 2500.

We’ll start by updating the Up and Down buttons, which currently
appear at the bottom right of the window, to use nicer images. To do
that, we’ll need to remove the label from the button, and also adjust
the size and position of each button to suit their new images. Here
are the steps you’ll need to follow:

1. Remove the label from the Down button. Find the Down Button
object, and remove the Text object that’s attached as a child.

2. Update the sprite. Select the Down Button object, and change
the Source Image property to the Down sprite (which is in the
Interface folder).
Click the Set Native Size button, and the button will adjust its
size.
Finally, adjust the position of the button so that it’s still in the
bottom-right corner of the screen.

3. Update the Up button. Repeat the same process for the Up but‐
ton. Remove the Text child object, and change the Source Image

User Interface | 161

to the Up sprite. Next, click Set Native Size, and update the but‐
ton’s position so that it’s just above the Down button.

4. Test the game. The buttons will still work, but will look much
nicer (see Figure 7-18).

Figure 7-18. The updated Up and Down buttons

We’ll now group these buttons into a container. This is for two rea‐
sons: first, it’s good to keep the UI organized, and second, by group‐
ing them into an object you’ll be able to enable and disable

162 | Chapter 7: Polishing the Game

everything at once. This will be useful very soon, when you imple‐
ment the Pause menu. Follow these steps to set it up:

1. Create the parent object for the buttons. Create a new empty
game object, named “Gameplay Menu”. Make it a child of the
Canvas.

2. Set the object to fill the entire screen. Set the Gameplay Menu’s
anchors to stretch horizontally and vertically. Do this by click‐
ing on the anchors near the top left, and clicking the option at
the bottom right of the menu that pops up (see Figure 7-19).
Once you’ve done that, set Left, Top, Right, and Bottom to 0.
This makes the whole object fill its entire parent (which is the
canvas, so the whole thing will fill the entire canvas).

User Interface | 163

Figure 7-19. Setting the anchors of the object to stretch horizontally
and vertically

164 | Chapter 7: Polishing the Game

3. Move the buttons into the Gameplay Menu object. Drag both the
Up button and the Down button’s entries in the hierarchy onto
the Gameplay Menu object.

Next, we’ll create the “You Win” graphic. This will display an image
to the player, as well as a button that lets them play the game again.
To prepare it, follow these steps:

1. Create the container object for the Game Over screen. Create a
new empty game object named “Game Over”, and make it a
child of the Canvas.
Make it stretch horizontally and vertically by following the same
steps as for the Gameplay Menu object.

2. Add the Game Over image. Create a new Image game object by
opening the GameObject menu and choosing UI → Image.
Make this new Image a child of the Game Over object that you
just created.
Make the new Image object’s anchors set to stretch horizontally
and vertically. Set the Left and Right margins to 30, and set the
Bottom Margin to 60. This will give the image some padding at
the sides, and will also ensure that it doesn’t cover up the New
Game button that you’re about to add.
Set the Image’s Source Image property to the You Win sprite,
and turn on the Preserve Aspect option to prevent it from
stretching.

3. Add the New Game button. Add a new Button to the Game Over
object by opening the GameObject menu and selecting UI →
Button.
Set the text of the new button’s label to read “New Game”, and
set the button’s anchors to the bottom-center.
Move the button to the bottom-center of the screen. When
you’re all done, the interface should look like Figure 7-20.

User Interface | 165

Figure 7-20. The Game Over interface

4. Connect the New Game button to the Game Manager. When the
button is clicked, we want the Game Manager to reset the game.
We can do this by calling the GameManager script’s RestartGame
function.
Click on the + button at the bottom of the Button’s inspector,
and drag the Game Manager into the slot that appears. Next,
change the function to GameManager → RestartGame.

166 | Chapter 7: Polishing the Game

We now need to connect the Game Manager to these new UI ele‐
ments. The GameManager script is already set up to enable and dis‐
able the appropriate user interface elements based on the state of the
game: when the game is playing, it will attempt to activate whatever
object is in the “Gameplay Menu” variable, and deactivate the other
menus. Follow these steps to configure and test it out:

1. Connect the Game Manager to the menus. Select the Game Man‐
ager, and drag the Gameplay Menu object into the Gameplay
Menu slot. Next, drag the Game Over object into the Game
Over Menu slot.

2. Test the game. Lower the gnome all the way down to the bottom
of the well, pick up the treasure, and reach the exit. You’ll get a
Game Over screen.

There’s one last menu that we need to set up: the Pause menu, along
with the button that’s used to pause the game. The Pause button will
appear at the top-right of the screen, and when the player taps it, the
game will freeze and display buttons for resuming the game and
restarting it.

To set up the pause button, create a new Button object, and name it
“Menu Button”. Make it a child of the Gameplay Menu object.

• Remove the Text child object, and set the button’s Source Image
to the Menu sprite.

• Click Set Native Size, and move it to the top right of the canvas.
Set anchors to top right.

• When you’re done, the new button should look like Figure 7-21.

User Interface | 167

Figure 7-21. The Menu button

Next, we need to connect this button to the Game Manager. When
the button is tapped, it will instruct the Game Manager to enter the
Paused state. Doing this will show the Pause Menu (which we’re
about to create), hide the Gameplay Menu, and also freeze the game.

To connect the Menu button to the Game Manager, click the + but‐
ton at the bottom of the button’s inspector, and drag the Game Man‐
ager into the slot that appears.

168 | Chapter 7: Polishing the Game

Make the button call GameManager.SetPaused. Turn the checkbox
on, so that the SetPaused button is sent a true parameter when the
button is tapped.

We can now set up a menu to appear when we pause the game:

1. Create the Main Menu container. Make a new empty object
named “Main Menu”. Make it a child of the Canvas, and set its
anchors to stretch horizontally and vertically. Set the Left, Right,
Top, and Bottom margins to 0.

2. Add the buttons to the Main Menu. Add two buttons, named
“Restart” and “Resume”. Make both of these buttons children of
the Main Menu object that you just created, and update the text
of their respective labels to read “Restart Game” and “Resume
Game”.
When you’re done, the Main Menu should look like
Figure 7-22.

User Interface | 169

Figure 7-22. The Main Menu

3. Connect the buttons to the Game Manager. Select the Restart
button, and make it call the Game Manager object’s GameMan
ager.RestartGame function.
Next, select the Resume button, and make it call the Game
Manager’s GameManager.Reset function.

4. Connect the Main Menu to the Game Manager. The Game Man‐
ager needs to know which object should appear when the Set
Paused function is called. Select the Game Manager, and drag

170 | Chapter 7: Polishing the Game

the Main Menu object into the Game Manager’s Main Menu
slot.

5. Test the game. You can now pause the game and resume it; addi‐
tionally, you can restart the whole game.

Invincibility Mode
The idea of video game cheat codes actually comes from a very prac‐
tical requirement. When you’re building a game, it can get quite
tedious to have to successfully defeat the various traps and puzzles
that your game contains in order to reach the specific part that you
want to test. In order to speed up development, it’s very common to
add tools that change the way the game plays: shooting games fre‐
quently have codes that make enemies not attack the player, and
strategy games can disable the fog of war.

This game is no different: in order to build the game, you shouldn’t
have to deal with each and every obstacle, every time you run the
game. To that end, we’ll add a tool for making the gnome invincible.

This will be implemented as a checkbox (sometimes called a toggle),
which appears at the top-left of the screen. When turned on, the
gnome will never die. It will still “receive damage,” which means that
the various particle effects that you’ll be adding in the next chapter
will still appear, which is useful for testing.

To keep things organized, this checkbox will be contained inside a
container object, just like the other UI components. Let’s get started
by creating this container:

1. Create the Debug Menu container. Create a new empty game
object called “Debug Menu”, and make it a child of the Canvas.
Set its anchors to stretch horizontally and vertically, and make it
fill the screen by setting the Left, Right, Top, and Bottom mar‐
gins to zero.

2. Add the Invincible toggle. Create a new Toggle object by opening
the GameObject menu and choosing UI → Toggle. Name this
object “Invincible”.
Set the new object’s anchors to Top Left, and move it to the top-
left of the canvas.

Invincibility Mode | 171

3. Configure the toggle. Select the Label object, which is a child of
the toggle you just added, and set the Text component’s color to
white. Set the label’s text to read “Invincible”.
Set the Toggle object’s “Is On” property to off.
When you’re done, the toggle should look like Figure 7-23.

Figure 7-23. The Invincible checkbox, visible at the top-left of the
screen

172 | Chapter 7: Polishing the Game

4. Connect the toggle to the Game Manager. Add a new entry to the
Invincible toggle’s Value Changed event by clicking the + but‐
ton. Drag the Game Manager into the slot that appears, and
change the function to GameManager.gnomeInvincible. Now,
when the toggle changes value, the gnomeInvincible property
will change.

5. Test the game. Play the game, and turn on Invincible. The
gnome will now not die when he touches a trap!

Wrapping Up
The game is looking pretty good, now. The core gameplay is present
and feeling nice, and you’ve added some developer tools of your
own to make play-testing easier. There’s still more that we can do,
though. In the next chapter, we’ll add more content and polish, and
we’ll finish up our development of the game by building out the
menu structure and audio.

Wrapping Up | 173

CHAPTER 8

Final Touches on Gnome’s Well

More Traps and Level Objects
The game is starting to take shape: the gnome’s art has been upda‐
ted, the UI has been updated, and the backgrounds look nice. Cur‐
rently, we only have one type of trap: the brown spikes. Our next
steps will be to create two more themed versions of these static
spikes, to add a bit more variety.

We’ll also add a new type of trap: the spinning blade. The spinning
blade deals the same kind of damage as the spikes, but is slightly
more complicated—it’s composed of three sprites, one of which is
animated.

Finally, we’ll add some non-damage-dealing stuff, in the form of
walls and blocks that the player will need to navigate around. These
objects, when placed in conjunction with traps, will force the player
to think carefully about how they’re going to navigate the level.

Spikes
Let’s start with the themed spikes. We currently already have a pre‐
fab for the existing sprites; all that needs to change is to update the
sprites and regenerate the collider. To do so, follow these steps:

1. Create the new prefabs for the spikes. Select the SpikesBrown pre‐
fab, and create a duplicate of it by pressing Ctrl-D (Command-
D on a Mac). Name this new object “SpikesBlue”.
Make another copy, and call it “SpikesRed”.

175

2. Update the sprite. Select the SpikesBlue prefab, and change the
sprite to the SpikesBlue image.

3. Update the polygon collider. Because the polygon collider is on
the same object as a Sprite Renderer, the collider uses the sprite
to calculate its shape. However, it won’t automatically update the
shape when the sprite changes; to fix this, you’ll need to reset
the polygon collider.
Click the Gear icon at the top right of the Polygon Collider 2D
component, and click Reset in the menu that appears.

4. Update the SpikesRed object. Now that you’re all done with the
SpikesBlue object, follow the same steps for the SpikesRed
object (and use the SpikesRed image.)

When you’re done, you can add a few SpikesBlue and SpikesRed
objects to the level.

Spinning Blade
Next up, we’ll add the spinning blade. The spinning blade pokes out
into the game a little further than the spikes, and contains a nasty-
looking circular saw. In terms of the underlying logic, the spinning
blade is actually identical to the spikes—when the gnome touches it,
he dies. However, adding a variety of different traps to the game
helps to break up the flow of the level, and maintains player interest.

Because the spinning blade is animated, we’ll build it up using mul‐
tiple sprites. Additionally, one of these sprites—the circular saw—
will be set up to rotate at high speed.

To build the spinning blade, drag the SpinnerArm sprite into the
scene, and set its Sorting Layer to “Level Objects.”

Drag out the SpinnerBladesClean sprite, and add it as a child to the
SpinnerArm object. Set its Sorting Layer to “Level Objects,” and set
its Order in Layer to 1. Position it at the top of the arm, then set the
X position to 0, so that it’s exactly centered.

Drag out the SpinnerHubcab sprite, and add it as a child to Spinner‐
Arm as well. Set the Sorting Layer to “Level Objects,” and set the
Order in Layer to 2. Set the X position to 0 as well.

When you’re done, the spinner should look like Figure 8-1.

176 | Chapter 8: Final Touches on Gnome’s Well

Figure 8-1. The constructed spinner

We’ll now add the bit that makes it damage the gnome: a SignalOn
Touch script. The SignalOnTouch script sends a message when the
gnome touches the collider that’s attached to the object; to make it
work, we’ll also need to add a collider. Follow these steps to set it all
up:

1. Add a collider to the blades. Select the SpinnerBladesClean
object, and add a Circle Collider 2D. Reduce the radius to 2; this
reduces the size of the hitbox, and makes it slightly easier to deal
with the spinning blade.

More Traps and Level Objects | 177

2. Add the SignalOnTouch component. Click the Add Component
button, and add a SignalOnTouch script.
Click the + button at the bottom of the Inspector, and drag the
Game Manager into the slot. Change the function to GameMan
ager.TrapTouched.

Next, we’ll make the blade rotate. To do this, we’ll add an Animator
object, and configure it to run an Animation. The Animation is very
simple: all that it needs to do is rotate whatever object it’s attached to
in a full circle.

To set up an Animator, you need to create an Animator Controller.
Animator Controllers allow you to define which animation the Ani‐
mator is currently playing, based on different parameters. We won’t
be making use of any of the advanced features of the Animator Con‐
troller in this game, but it’s useful to know that it exists. To set it up,
follow these steps:

1. Add the Animator. Select the blades and add a new Animator
component.

2. Create the Animator Controller. In the Level folder, create a new
Animator Controller asset named “Spinner”.
While you’re in the Level folder, create a new Animation asset,
called “Spinning”.

3. Make the Animator use the new Animator Controller. Select the
blades, and drag the Animator Controller you just created onto
the Controller slot.

Next, we’ll set up the Animator Controller itself:

1. Open the Animator. Double click the Animator Controller and
the Animation tab will open.

2. Add the Spinning animation to the Animator Controller. Drag the
Spinning animation into the Animator pane. The Animator
Controller should now have a single animation state in it, as
well as the preexisting Entry, Exit, and Any State items (see
Figure 8-2).

178 | Chapter 8: Final Touches on Gnome’s Well

Figure 8-2. The Animator Controller for the Spinner

The Animator is now set up to use the Animator Controller, which
itself is set up to start playing the “Spinning” animation. It’s time to
set up this animation to actually make things spin.

1. Ensure that the spinner’s blades are selected. Go back to the Scene
view, and select the blades again.

2. Open the Animation pane. Open the Window menu, and choose
Animation. The Animation tab will open; drag the tab to some‐
where convenient to you. You can also dock it to another sec‐
tion of Unity by dragging the tab at the top of the pane around
the main Unity window.
Ensure that the Spinning animation is selected in the top left of
the Animation pane before you continue.

3. Add a curve for the spinner’s Rotation property. Click the Add
Property button, and a list of animatable components will
appear. Navigate to the Transform → Rotation element, and
click the + button at the righthand side of the list.

By default, new properties come with two keyframes—one at the
start of the animation and one at the end (see Figure 8-3).

More Traps and Level Objects | 179

Figure 8-3. The keyframes for the newly created animation

We want the object to rotate 360 degrees. This means that at the
start of the animation, the object should be rotated 0 degrees, and at
the end of the animation, it should be rotated 360 degrees. To make
this change, we’ll need to modify the last keyframe in the animation:

1. Select the rightmost keyframe.
2. Click on the rightmost diamond in the Animation pane, and the

animation will jump to that point in the timeline. Unity will
now be in record mode, which means that your changes to the
spinner will be loggged. You’ll also notice that the controls at the
top of the Unity window will be red, to remind you of this fact.
When you look at the Transform component in the Inspector,
you’ll also notice that the Rotation values are red.

3. Update the rotation. Change the Z rotation to 360.
4. Test the animation. Click the Play button in the Animation tab,

and watch the blades spin. If they aren’t spinning fast enough,
click and drag the final keyframe so that it’s closer to the start.
This reduces the duration of the animation, and makes the
object complete its revolution faster.

5. Make the animation loop. Go to the Project pane, and select the
Spinning animation asset you created. In the Inspector, make
sure the Loop Time checkbox is selected.

180 | Chapter 8: Final Touches on Gnome’s Well

6. Play the game. The blades of the circular saw will now be rotat‐
ing.

There’s one last thing to do before the spinner is ready for use—it
needs to be scaled down, to fit with the rest of the game:

1. Scale the spinner. Select the parent SpinnerArm object, and set
the X and Y scale values to 0.4.

2. Make the spinner into a prefab. Drag the SpinnerArm object into
the Project pane. This will create a new prefab called Spinner‐
Arm; rename it “Spinner”.

You can now rotate the spinner, and place it in the level; the gnome
will die when he touches it.

Blocks
In addition to traps, it’s also a good idea to add obstacles that don’t
kill the gnome when he touches them. These blocks serve to slow
the player down, and force them to think about how they’re going to
get around the different traps you’ve added.

These blocks are among the simplest objects you’ll add to the game:
all they’re made of is a sprite renderer and a collider. Because they’re
all so simple and similar to each other, you can produce the prefabs
for them all at the same time. Here’s what you’ll need to do to set
them up:

1. Drag out the block sprites. Add the BlockSquareBlue, Block‐
SquareRed, and BlockSquareBrown sprites to the scene. Next,
add the BlockLongBlue, BlockLongRed, and BlockLongBrown
sprites to the scene.

2. Add the colliders. Select all six of these objects, and click the Add
Component button at the bottom of the Inspector. Add a Box
Collider 2D component, and each of the blocks will be given a
green box collision shape.

3. Convert them to prefabs. Drag each block into the Level folder to
create prefabs.

You’re done, and can now add blocks and walls to the level. That was
easy.

More Traps and Level Objects | 181

Particle Effects
When the gnome dies, having him simply fall apart isn’t a terribly
satisfying visual effect. To create a more interesting effect, we’re
going to add particle systems.

In particular, we’re going to add a particle effect that appears when
the gnome touches a trap (the “blood explosion”), and an effect that
appears when one of the gnome’s limbs detaches (the “blood foun‐
tain”).

Defining the Particle Material
Because both of these particle systems will emit the same thing (that
is, gnome blood), we’ll start by creating a single material that’s
shared between the two. Follow these steps to create and prepare it
for use:

1. Configure the Blood texture. Find the Blood texture, and select it.
Change its type from Sprite to Default, and ensure that the
“Alpha Is Transparency” setting is on (see Figure 8-4).

2. Create the Blood material. Create a new Material asset by open‐
ing the Asset menu and choosing Create → Material. Name this
material “Blood”, and change the shader to Unlit → Transparent.
Next, drag the Blood texture into the Texture slot. When you’re
done, the Inspector should look like Figure 8-5.

182 | Chapter 8: Final Touches on Gnome’s Well

Figure 8-4. The import settings for the Blood texture

Figure 8-5. The material for the particle effect

The Blood Fountain
The material is now ready for use, so it’s time to start building the
particle effects. We’ll start with the Blood Fountain effect, which cre‐
ates a stream of particles that shoot in a specific direction and even‐
tually fade out. Here’s how to set it up:

Particle Effects | 183

1. Create the game object for the particle system. Open the Game‐
Object menu, open the Effects submenu, and create a new Parti‐
cle System. Name this new object “Blood Fountain”.

2. Configure the particle system. Select the object, and update the
values in the Particle System to match Figures 8-6 and 8-7.
There are a couple of parameters that need a little more explan‐
ation, since they’re not numbers that you can just copy from the
screenshots. In particular:

• The Color Over Lifetime value goes from 100% alpha at the
beginning to 0% alpha at the end. The color value goes from
white at the beginning to black at the end.

• The Renderer section of the Particle System uses the Blood
material you just created.

3. Make the Blood Fountain into a prefab. Drag the Blood Fountain
object into the gnome folder.

184 | Chapter 8: Final Touches on Gnome’s Well

Figure 8-6. The settings from the Blood Fountain

Particle Effects | 185

Figure 8-7. The settings from the Blood Fountain (cont.)

186 | Chapter 8: Final Touches on Gnome’s Well

The Blood Explosion
Next, we’ll create the Blood Explosion prefab, which emits a single
burst of particles, rather than creating a continuous stream of them.

1. Create the particle system object. Create another Particle System
game object, and name it “Blood Explosion”.

2. Configure the particle system. Update the values in the Inspector
to match those in Figure 8-8.
This particle system uses the same material and color over life‐
time settings as the Blood Fountain effect; the only major differ‐
ences are the fact that it uses a circle emitter, and the emission
rate is set up to emit all of its particles in a single burst.

3. Add a RemoveAfterDelay script. To keep the scene tidy, the
Blood Explosion should remove itself after a certain amount of
time.
Add a RemoveAfterDelay component to the object, and set the
Delay property to 2.

4. Make the Blood Explosion into a prefab.

Particle Effects | 187

Figure 8-8. The Blood Explosion settings

188 | Chapter 8: Final Touches on Gnome’s Well

You’re just about ready to start using it in the game.

Using the Particle Systems
To make the game use these particle systems, you need to connect
them to the Gnome prefab. Here’s how to set it up:

1. Select the Gnome prefab. Don’t forget to select the correct one—
you want the new Gnome prefab, not the old Prototype Gnome
prefab.

2. Connect the particle systems to the Gnome. Drag the Blood
Explosion prefab into the Death Prefab slot, and drag the Blood
Fountain prefab into the Blood Fountain slot.

3. Test the game. Make the gnome touch a trap, and you’ll see
blood.

Main Menu
The core of the game is now complete and polished. It’s now time to
work on some of the features that all games need, as opposed to the
features that are specific to Gnome’s Well. To wit: you need a title
screen, and a way to get from the title screen into the game.

This will be implemented as a separate scene, to keep the game sepa‐
rate. Because the menu is a simpler scene than the full game, the
menu will load faster than the game, and the player will be looking
at stuff sooner. Additionally, the menu will start loading the full
game in the background; when the player taps the New Game but‐
ton, the game will finish up its loading, and switch scenes. The net
result will be that the game appears to start up much more quickly.
To set it up, follow these steps:

1. Create a new scene. Open the File menu, and choose New Scene.
Immediately save this new scene by opening the File menu
again and choosing Save Scene. Name this scene “Menu”.

2. Add the background image. Open the GameObject menu, and
choose UI → Image.
Set the image’s Source Image to the Main Menu Background
sprite.

Main Menu | 189

Set the image’s anchors to stretch vertically, and to be centered
horizontally. Set the X position to 0, the Top margin 0, the Bot‐
tom margin to 0, and the width to 800.
Turn on Preserve Aspect on the image, to prevent it from
stretching.
The Inspector should now look like Figure 8-9, and the image
itself should look like Figure 8-10.

190 | Chapter 8: Final Touches on Gnome’s Well

Figure 8-9. The Inspector for the main menu’s background image

Main Menu | 191

Figure 8-10. The background image

1. We’ll now add the New Game button. To do so, open the Game‐
Object menu, and choose UI → Button. Name this object “New
Game”.
Set the button’s anchors to bottom-center. Next, set the X posi‐
tion to 0, the Y position to 40, the width 160, and the height to
30.
Set the text of the button’s Label object to “New Game”. When
you’re done, the button should look like Figure 8-11.

192 | Chapter 8: Final Touches on Gnome’s Well

Figure 8-11. The menu, with the button added

Scene Loading
When the player taps the New Game button, we want an overlay to
appear that tells the player that the game is loading. Let’s get that set
up by doing the following:

1. Create the overlay object. Create a new empty game object
named “Loading Overlay”. Make it a child of the Canvas object.

Main Menu | 193

Make the overlay’s anchors stretch vertically and horizontally,
and set the Top, Bottom, Left, and Right margins to zero. This
will make it fill the screen.

2. Add an Image component. With the Loading Overlay object still
selected, click the Add Component button, and add an Image
component. The canvas will fill with white.
Change the Color property to black, with a transparency value
of 50%. The overlay will now be a translucent black cover.

3. Add a label. Add a Text object, and make it a child of the Load‐
ing Overlay.
Set the label’s anchors to center horizontally and vertically. Set
the Left, Top, Right, and Bottom positions to 0.
Next, increase the Text component’s font size, and make the text
vertically and horizontally centered. Set color to white, and set
the text to “Loading…”

Now that the overlay has been set up, we’ll add the code that actually
loads the full game, and switches scenes when the New Game button
is tapped. For convenience, we’ll add this to the Main Camera,
though you can add it to a new empty game object, if you prefer.
Follow these steps to get it done:

1. Add the MainMenu code to the Main Camera. Select the Main
Menu and add a new C# script called MainMenu.
Add the following code to MainMenu.cs:

 using UnityEngine.SceneManagement;

 // Manages the main menu.
 public class MainMenu : MonoBehaviour {

 // The name of the scene that contains the game itself.
 public string sceneToLoad;

 // The UI component that contains the "Loading..." text.
 public RectTransform loadingOverlay;

 // Represents the scene background loading. This is
 // used to control when the scene should switch over.
 AsyncOperation sceneLoadingOperation;

 // On start, begin loading the game.
 public void Start() {

194 | Chapter 8: Final Touches on Gnome’s Well

 // Ensure the 'loading' overlay is invisible
 loadingOverlay.gameObject.SetActive(false);

 // Begin loading in the scene in the background...
 sceneLoadingOperation =
 SceneManager.LoadSceneAsync(sceneToLoad);

 // ...but don't actually switch to the new scene until
 // we're ready.
 sceneLoadingOperation.allowSceneActivation = false;

 }

 // Called when the New Game button is tapped.
 public void LoadScene() {

 // Make the 'Loading' overlay visible
 loadingOverlay.gameObject.SetActive(true);

 // Tell the scene loading operation to switch scenes
 // when it's done loading.
 sceneLoadingOperation.allowSceneActivation = true;

 }

 }

The Main Menu script is responsible for two things: loading the
game scene in the background, and responding to the player tapping
the New Game button. In the Start method, the SceneManager is
asked to begin loading the scene in the background. This is returned
as an AsyncOperation object called sceneLoadingOperation, which
gives us control over how the loading is performed. In this case, we
tell the sceneLoadingOperation that the new scene should not be
activated when loading is complete. Doing this means that after
loading is complete, the loading operation will wait until the user is
ready to proceed to the next menu.

This is done in the LoadScene method, which is called when the user
taps on the New Game button. First, the “loading” overlay that you
just set up is made to appear; next, the scene loading operation is
told that it is allowed to activate the scene after loading completes.
Doing this means that if the scene has finished loading, it will
immediately appear; if the scene hasn’t finished loading yet, it will
appear as soon as loading finishes.

Main Menu | 195

Structuring the main menu this way means that
the entire game will appear to load faster.
Because the main menu requires fewer resources
that need to be loaded than the main game does,
it will appear faster; when it appears, the user
will take a moment to click on the New Game
button. This is time that the game will spend
loading the new scene; however, because the
user wasn’t stuck staring at a “please wait”
screen, the whole thing will feel faster than if the
game had launched directly to the game itself.

Follow these steps:

1. Configure the Main Menu component. Set the Scene to Load
variable to Main (that is, the name of the game’s main scene).
Set the Loading Overlay variable to the Loading Overlay that
you just made.

2. Make the button load the scene. Select the New Game button,
and make it run Main Camera’s MainMenu.LoadScene function.

Finally, we need to set up the list of scenes to include in the build.
Application.LoadLevel and its related functions are only able to
load scenes that appear in the list of scenes that are included in the
build, which means that we need to ensure that both the Main and
Menu scenes are present. Here’s how to do it:

1. Open the Build Settings window. Do this by opening the File
menu, and choosing File → Build Settings.

2. Add the scenes to the Scenes In Build list. Drag both the Main
and Menu scene files from the Assets folder into the Scenes In
Build list. Make sure that Menu is first in the list, since that’s the
scene that should appear when the game starts.

3. Test the game. Run the game, and click the New Game button.
You’ll end up in the game!

Audio
There’s one last piece of polish to add: sound effects. Without sound,
the game is merely a horrifying vignette of gnome death, and we
need to fix that.

196 | Chapter 8: Final Touches on Gnome’s Well

Fortunately, the code that you’ve already added to the game is set up
to make adding sound easy to do. The Signal On Touch script will
make sound play when the gnome touches the corresponding col‐
lider, but only if there’s an audio source attached. To make it happen,
you’ll need to add Audio Source components to the various prefabs.

Additionally, the Game Manager script plays sounds when the
Gnome dies, and also when the gnome successfully reaches the exit
while holding the treasure. Again, you’ll need to add Audio Source
components to the Game Manager. To do that, follow these steps:

1. Add Audio Source components to the spikes. Find the Spikes‐
Brown prefab, and add a new Audio Source component.
Attach the “Death By Static Object” sound to the new Audio
Source. Ensure that Loop and Play On Awake are both turned
off.
Repeat this for the SpikesRed and SpikesBlue prefabs.

2. Add an Audio Source component to the Spinner. Find the Spinner
prefab, and add a new Audio Source component. Attach the
“Death by Moving Object” sound to the Audio Source. Again,
make sure that Loop and Play On Awake are both off.

3. Add an Audio Source component to the Treasure. Find the Treas‐
ure at the bottom of the well, and add a new Audio Source com‐
ponent. Attach the “Treasure Collected” sound to the Audio
Source. Once more, make sure that Loop and Play On Awake
are both turned turned off.

4. Add an Audio Source component to the Game Manager. Finally,
select the Game Manager object, and add an Audio Source com‐
ponent. Leave the Audio Clip property empty; instead, attach
the “Game Over” sound to the Gnome Died Sound slot, and the
“You Win” sound to the Game Over Sound slot.

5. Test the game. You’ll now hear sound effects when the gnome
dies, picks up the treasure, and wins the game.

Wrapping Up and Challenges
You’re now all done building Gnome’s Well That Ends Well, and you
should be looking at a game that looks a little something like
Figure 8-12. Congratulations!

Wrapping Up and Challenges | 197

Figure 8-12. The final game

From this point, there are a number of additional things you can do
to explore the possiblities of this game:

Add the ghost
In “Setting Up the Gnome’s Code” on page 96, we set it up so
that when the gnome dies, it creates an object. As your next

198 | Chapter 8: Final Touches on Gnome’s Well

step, create a prefab that displays a ghost sprite (we’ve included
one in the resources) that travels upward. Consider also using a
particle effect to make it leave an ethereal trail.

Add more traps
We’ve included assets for two additional traps: the swinging
blade and the flamethrower. The swinging blade is a big blade,
attached to a chain, and is designed to swing from left to right.
You’ll need to use an Animator to make it move. The flame‐
thrower is an object that’s designed to shoot fireballs at the
gnome; when they hit the gnome, they should call the Game
Manager’s FireTrapTouched function. Don’t forget to investi‐
gate the burned skeleton sprites for the gnome!

Build more levels
The game is designed to only have a single level, but there’s no
reason not to add more.

Add more effects
Make particles appear around the treasure (use the Shiny1 and
Shiny2 images.) Make particles come off the walls when the
player hits them.

Wrapping Up and Challenges | 199

PART III

Building a 3D Game:
Space Shooter

In this part, we’ll build a second game from scratch. Unlike the game
we built in Part II, this game will take place in 3D. You’ll build a
space combat simulator, in which the player has to defend a space
station from incoming asteroids. As part of this, we’ll be exploring
systems that frequently appear in other games, such as projectile
shooting, respawning objects, and managing the appearance of 3D
models. It’s going to be a blast. (Our editors let us keep that pun in.)

CHAPTER 9

Building a Space Shooter

In addition to being an excellent platform for building 2D games,
Unity is also great for creating 3D content. Unity was designed as a
3D engine long before its 2D features came on the scene, and as
such, Unity’s features were first built for 3D games.

In this chapter, you’ll learn how to use Unity to build Rockfall, a 3D
space-simulator game. This style of game was originally popular in
the mid-1990s, when games like Star Wars: X-Wing (1993) and
Descent: Freespace (1998) gave players the freedom to fly around in
open space, shooting at bad guys and blowing space up. These kinds
of games are closely related to flight simulators, but because they’re
not expected to be realistic implementations of flight physics, game
developers can get away with more fun-oriented mechanics.

203

That’s not to say that arcade-style flight simula‐
tors don’t exist, but it’s more common to find an
arcade-style spaceflight simulator than a realistic
one. The biggest exception, in recent years, has
been Kerbal Space Program, which is so realistic
in its spaceflight physics simulation that it’s
about as far removed from the type of game cov‐
ered in this chapter as you can get. If you really
want to learn about orbital mechanics, and what
happens when you thrust prograde at the apoap‐
sis, this is the kind of game for you.
It’s therefore fairly reasonable to say that the
term “space simulator,” though more common
for the type of game in this chapter, might be
better off as “space combat simulator.”
Enough waffling about labels. Let’s start shoot‐
ing laser cannons.

At the end of these next few chapters, you’ll have a game that looks
like Figure 9-1.

Figure 9-1. The finished game

Designing the Game
When we began to design the game, we decided on some key con‐
straints:

204 | Chapter 9: Building a Space Shooter

• Gameplay sessions should be a couple of minutes, at most.
• The controls should be very simple, and try to keep to a mini‐

mum of “move” and “shoot.”
• The game should focus on multiple short-term challenges,

instead of a single one. That is, lots of little enemies, rather than
a single boss fight. (This is the opposite of Gnome’s Well, which
is the 2D game we discussed in Part II.)

• The game should primarily be about shooting laser beams in
space. There aren’t enough video games about shooting laser
beams in space. There never can be.

It’s almost always a good idea to start thinking about high-level con‐
cepts on paper. Thinking on paper gives you an unstructured
approach that’s useful for discovering new ideas that fit in nicely
with your overall plan. To that end, we sat down and sketched up a
quick idea of the game (seen in Figure 9-2).

Figure 9-2. The original sketched idea for the game

The whole sketch is deliberately rough, and drawn very quickly, but
you can see a number of additional items popping up: asteroids are
moving toward a space station, the player uses an on-screen joystick
to pilot the spaceship, and taps a fire button to shoot lasers. Some

Designing the Game | 205

more specific details are visible as well, which were the result of
thinking about how to represent this kind of scene: things like a
label that shows how far away the asteroids are from the space sta‐
tion, and thoughts on how the player would hold the device.

Once we had this rough sketch, we grabbed an artist friend, Rex
Smeal, and asked him to turn Jon’s messy sketch into something a
little more fleshed out. While doing this wasn’t an absolutely critical
part of the game design process, it helped us to figure out the overall
feel of the game. In particular, we realized that the central space sta‐
tion that the player is defending needs to have a a significant
amount of attention paid to it, since it needs to look like it’s some‐
thing worth saving. After grabbing our local artist and describing
the game to him, he came up with the design shown in Figure 9-3;
once we’d locked down the design together, Rex refined the design
into something that could be modeled (Figure 9-4).

Figure 9-3. Rex’s initial concept for the game’s look

206 | Chapter 9: Building a Space Shooter

https://twitter.com/RexSmeal
https://twitter.com/RexSmeal

Figure 9-4. The refined concept art for the space station, ready for
modeling

Following this design, we modeled it up in Blender. During the
development of the station, we decided that a low-poly approach to
the art (inspired by artists like Heather Penn and Timothy Reynolds)
would work well, due to its simple style. (That’s not to say that low-
poly art is simple or easy to make; just that it’s easier to work with
the style for the same reason that drawing with a pencil can be sim‐
pler than painting with oils.)

You can see the station in Figure 9-5. Additionally, we modeled the
spaceship and an asteroid in Blender as well, which you can see in
Figures 9-6 and 9-7.

Designing the Game | 207

https://twitter.com/heatpenn
http://turnislefthome.com

Figure 9-5. The modeled space station

Figure 9-6. The modeled spaceship

208 | Chapter 9: Building a Space Shooter

Figure 9-7. The modeled asteroid

Getting the Assets
To build this game, you’ll be working with several resources, includ‐
ing sound effects, models, and textures that we’ve packaged for you.
You’ll need to download these resources first. The files are organized
into a folder structure to make it easy for you to find everything.

To download the assets, grab them from the project’s GitHub page.

Architecture
The game’s architecture is, at its core, very similar to the one used in
Gnome’s Well That Ends Well. A central game manager is in charge of
instantiating critical game objects, like the player-controlled space‐
ship and the space station; this manager is also notified about when
the game ends, which happens when the player dies.

The user interface in the game is slightly more complex than the one
we created previously. In Gnome’s Well, the in-game controls were
two buttons, plus tilt controls; in a 3D game where the player can
conceivably move in any direction, tilt controls tend not to work
very well. Instead, the game will use an on-screen “joystick”—a
region on the screen that detects touches, and lets the user drag a
finger to indicate direction. This will feed information to a shared
input manager, which the spaceship uses to adjust its flight.

Architecture | 209

http://bit.ly/rockfall-assets

Tilt controls are more challenging to pull off in
3D games, but that doesn’t mean that it’s impos‐
sible to do them well. NOVA 3 is an FPS that
uses tilt controls that allow the player to turn
their character and to aim quite precisely, and
it’s worth playing this game to get a feel for how
they did their input.

The flight model used in the game will be deliberately slightly unre‐
alistic. The simplest, and most realistic approach, would be to sim‐
ply model a physics object that applies a forward thrust, and uses
physical forces to rotate the craft. However, this would be difficult to
fly, and would lead the player to getting lost easily. Instead, we deci‐
ded to do fake physics: the ship will always move forward at a fixed
speed, and has no momentum. Additionally, the player can’t roll the
ship, and any roll will be corrected (that is, unlike the real outer
space, space in this game has an “up”).

Design and Direction

Every single one of the design decisions made
for the games in this book are entirely arbitrary.
Even though we decided that we didn’t want to
do a physical flight model in this game, it doesn’t
mean that physical flight models are something
to avoid in arcade-style flight simulations. Play
around, and see what you come up with. Don’t
decide that games are one certain way based on
what some book author told you. They could
just be making it all up as they go.

The asteroids will be prefabs that are created by a dedicated “aste‐
roid spawner” object. This object will instantiate asteroids every so
often, and aim them toward the space station. When the asteroids
collide with the space station, they’ll decrease the station’s hit points;
when the space station has no more hit points, it’s destroyed, and the
game is over.

Creating the Scene
Let’s get started by setting up the scene. We’ll create a new Unity
project, and then we’ll create the spaceship, which we’ll fly around
the scene. Follow these steps to get started:

210 | Chapter 9: Building a Space Shooter

http://bit.ly/nova-3

1. Create the project. Create a new Unity project called Rockfall,
and set its mode to 3D (see Figure 9-8).

Figure 9-8. Creating the project

2. Save the new scene. Once Unity has created your project and
shows the empty scene, save it by opening the File menu and
choosing Save. Save the scene as Main.scene in the Assets folder.

3. Import the downloaded assets. Double-click on the .unitypackage
file that you downloaded in “Getting the Assets” on page 209.
Import all of the assets into the project.

You’re now ready to start building a spaceship.

Ship
We’ll start the game with the spaceship, using the spaceship model
that you downloaded in “Getting the Assets” on page 209.

The Ship object itself will be an invisible object that contains only
scripts; multiple child objects will be attached to it, which handle the
specific tasks of appearing on screen.

1. Create the Ship object. Open the GameObject menu, and choose
Create Empty. A new GameObject will appear in the scene;
rename it to “Ship”.

Creating the Scene | 211

We’ll now add the ship’s model.

2. Open the Models folder, and drag the Ship model onto the Ship
game object. Doing this will add the 3D model of the ship to the
scene, seen in Figure 9-9. By dragging it onto the Ship game
object, it will be made a child, which means that it will move
with the parent Ship game object.

Figure 9-9. The ship model in the scene

3. Rename the model object to “Graphics”.

Next, we need to make the Graphics object be at the same location
as the Ship object.

4. Select the Graphics object. Click on the gear icon at the top-right
of the Transform component and select Reset Position (see
Figure 9-10).

Leave the rotation at (-90, 0, 0). This is needed
because the ship was modeled in Blender, which
uses a different coordinate system to Unity;
specifically, Blender’s “up” direction is the Z axis,
while Unity’s “up” is the Y axis. To fix this, Unity
automatically rotates Blender models to com‐
pensate.

212 | Chapter 9: Building a Space Shooter

Figure 9-10. Resetting the position of the Graphics object

We want the ship to collide with objects. To do that, we’ll add a Col‐
lider.

5. Add a Box Collider to the ship. Select the Ship object (that is, the
parent of the Graphics object), and click the Add Component
button at the bottom of the Inspector. Choose Physics → Box
Collider.
Once the collider has been added, turn Is Trigger on, and set the
box’s Size to (2, 1.2, 3). This will create a box surrounding the
player.

The ship needs to travel forward at a constant speed. To do this,
we’ll add a script that translates whatever object that it’s attached to.

6. Add the ShipThrust script. With the Ship object still selected,
click the Add Component button at the bottom of the Inspector.
Create a new C# script called ShipThrust.cs.
Once it’s added, open ShipThrust.cs, and add the following code:

 public class ShipThrust : MonoBehaviour {

 public float speed = 5.0f;

Creating the Scene | 213

 // Move the ship forward at a constant speed
 void Update () {
 var offset = Vector3.forward * Time.deltaTime * speed;
 this.transform.Translate(offset);
 }
 }

The ShipThrust script exposes a single parameter, speed, which the
Update function uses to move the object forward. This forward
movement is applied by multiplying the forward vector by the speed
parameter and by the Time.deltaTime property, which ensures that
the object moves forward at the same speed independently of how
many times Update is called per second.

Make sure you attach the ShipThrust compo‐
nent to the Ship object, and not to the Graphics
object.

7. Test the game. Hit the Play button, and watch as the ship starts
moving forward.

Camera follow
The next step is to make the camera follow the spaceship as it
moves. There are several options for how you can do this: the most
primitive is to put the camera inside the Ship object, so that it moves
with it. However, this tends to look kind of bad, since it means that
the ship will never appear to be rotating relative to the camera.

A better solution is to keep the camera as a separate object, and add
a script that makes the camera slowly move into the right position
over time. This means that when the ship performs a sharp turn, it
will take a moment for the camera to compensate—which is exactly
how it would look if a real camera operator was trying to follow an
object around.

1. Add the SmoothFollow script to the main camera. Select the
Main Camera, and click the Add Component button. Add a new
C# script called SmoothFollow.cs.
Open the file, and add the following code:

214 | Chapter 9: Building a Space Shooter

 public class SmoothFollow : MonoBehaviour
 {

 // The target we are following
 public Transform target;

 // The height we want the camera to be above the target
 public float height = 5.0f;

 // The distance to the target, not counting height
 public float distance = 10.0f;

 // How much we slow down changes in rotation and height
 public float rotationDamping;
 public float heightDamping;

 // Update is called once per frame
 void LateUpdate()
 {
 // Bail out if we don't have a target
 if (!target)
 return;

 // Calculate the current rotation angles
 var wantedRotationAngle = target.eulerAngles.y;
 var wantedHeight = target.position.y + height;

 // Note where we're currently positioned and looking
 var currentRotationAngle = transform.eulerAngles.y;
 var currentHeight = transform.position.y;

 // Damp the rotation around the y-axis
 currentRotationAngle
 = Mathf.LerpAngle(currentRotationAngle,
 wantedRotationAngle,
 rotationDamping * Time.deltaTime);

 // Damp the height
 currentHeight = Mathf.Lerp(currentHeight,
 wantedHeight, heightDamping * Time.deltaTime);

 // Convert the angle into a rotation
 var currentRotation
 = Quaternion.Euler(0, currentRotationAngle, 0);

 // Set the position of the camera on the x-z plane to:
 // "distance" meters behind the target
 transform.position = target.position;
 transform.position -=
 currentRotation * Vector3.forward * distance;

Creating the Scene | 215

 // Set the position of the camera using our new height
 transform.position = new Vector3(transform.position.x,
 currentHeight, transform.position.z);

 // Finally, look at where the target is looking
 transform.rotation = Quaternion.Lerp(transform.rotation,
 target.rotation,
 rotationDamping * Time.deltaTime);

 }
 }

The SmoothFollow.cs script that appears in this
book is based on code provided by Unity. We’ve
adapted it slightly so that it’s better suited for the
flight simulator. If you want to see the original
version of this code, you can find it in the Utility
package, which you can import by opening the
Assets menu and choosing Import Package →
Utility. After importing, you’ll find the original
SmoothFollow.cs file in Standardard Assets →
Utility.

SmoothFollow works by calculating a location in 3D space for where
the camera should be, and then calculating a point between that
location and where the camera is right now. When applied over
multiple frames, this has the effect of making the camera gradually
approach that point, but also to slow to a stop as it gets closer. Addi‐
tionally, because the location of where the camera should be is
changing every frame, the camera will always be slightly lagging
behind—which is exactly what you want.

2. Configure the SmoothFollow component. Drag the Ship object
into the Target field.

3. Test the game. Hit the Play button. When the game starts, the
Game panel will no longer show the ship moving; instead, the
camera will be following along. You’ll be able to see this in
action in the Scene panel.

Space Station
The space station, which is under threat from the incoming aste‐
roids, will follow the same development pattern as the ship: we’ll

216 | Chapter 9: Building a Space Shooter

create an empty game object, and attach the model to it. The space
station is also simpler than the spaceship, since it’s entirely passive: it
just sits there, and has rocks thrown at it. Follow these steps to set it
up:

1. Create a container for the space station. Create a new empty
game object, and name it “Space Station”.

2. Add the model as a child object. Open the Models folder, and
drag the Station model onto the Space Station game object.

3. Reset the position of the Station model object. Select the Station
object you just added, and right-click the Transform compo‐
nent. Choose Reset Position, just like you did for the Ship’s
model.

When you’re done, the space station should look like Figure 9-11.

Figure 9-11. The space station

Creating the Scene | 217

Now that the model has been added, it’s worth taking a quick look at
the structure of the model, and to ensure that it’s got colliders. The
station’s colliders are important, because the asteroids (which we’ll
add eventually) will need something to collide with.

Select the model object, and expand it to show its children. The sta‐
tion model is composed of multiple submeshes; the main one is
named Station. Select it.

Look at the Inspector. In addition to the Mesh Filter and Mesh Ren‐
derer, you’ll also see a Mesh Collider (see Figure 9-12). If you don’t
see this, see Models and Colliders.

Figure 9-12. The space station’s collider

218 | Chapter 9: Building a Space Shooter

Models and Colliders

When you import a model, Unity can create a
collider for it as well. When you imported the
model from the Asset package, you also impor‐
ted the settings that we created for it, which
include the setting to create a collider for the
station. (We did the same thing for the Ship and
Asteroid models, too.)
If you don’t see it, or if you’re importing your
own model and want to know how to set it up,
you can view and change these settings by
selecting the model itself (that is, the file in the
Models folder), and looking at the settings
(Figure 9-13). In particular, note that the Gener‐
ate Colliders option is selected.

Figure 9-13. The import settings for the space station model

Creating the Scene | 219

Skybox
Currently, the skybox is the Unity default, which is designed to suit a
game set on the surface of a planet. Changing that skybox to one
designed to look like you’re floating in space will go a long way
toward making the game feel correct.

Skyboxes work by creating a virtual cube that’s always drawn under‐
neath everything else in the scene, and never moves relative to the
camera. This creates the impression that the textures on that cube
are infinitely far away—hence, “skybox.”

In order to create the illusion that you’re inside a sphere instead of a
boxy cube, the textures on the skybox need to be distorted so that
there aren’t visible seams at the edges. There are multiple ways to do
this, including several plug-ins for Adobe Photoshop; however, most
of these are designed around warping photos that you or others have
taken. It’s not easy to get photos of space that are designed for video
games; instead, it’s a lot easier to use a tool to create the images for
you.

Creating the skybox
Once you’ve got your skybox images, it’s time to add them to the
game. You’ll do this by creating a skybox material, and then provid‐
ing that material to the scene’s lighting settings. Here are the steps
you’ll need to follow:

1. Create the Skybox material. Create a new material by opening
the Assets menu, and choosing Create → Material. Name the
new material “Skybox”, and move it into the Skybox folder.

2. Configure the material. Select the material, and change the
shader from Standard to Skybox → 6 Sided. The Inspector will
change to one that lets you attach six textures (see Figure 9-14).
Locate the skybox textures in the Skybox folder. Drag and drop
these six skybox textures into their corresponding slots—drop
the Up texture into the Up slot, the Front into the Front slot,
and so on.
When you’re done, the Inspector should look like Figure 9-15.

220 | Chapter 9: Building a Space Shooter

Figure 9-14. The skybox, with no textures

Creating the Scene | 221

Figure 9-15. The skybox, with textures attached

222 | Chapter 9: Building a Space Shooter

3. Connect the skybox to the lighting settings. Open the Window
menu, and choose Lighting → Settings. The Lighting panel will
appear; near the top of the panel, you’ll see a slot labeled “Sky‐
box.” Drop the Skybox material that you just attached into the
slot (see Figure 9-16).

Figure 9-16. Creating the lighting settings

When you’re done, the sky will be replaced with the space images (as
seen in Figure 9-17). Additionally, Unity’s lighting system uses infor‐
mation from the skybox to influence how objects are lit; if you look

Creating the Scene | 223

closely, you’ll notice that the spaceship and the space station are
both slightly tinted green, because the skybox images are green.

Figure 9-17. The skybox in use

Canvas
Currently, the spaceship will always travel forward through space,
because there’s no way for the player to control the flight. We’ll be
adding a UI for controlling the spaceship shortly, but before we do
that, we need to create and set up the canvas on which the UI will be
displayed. To do that, follow these steps:

1. Create the Canvas. Open the GameObject menu, and choose UI
→ Canvas. Both a Canvas and an EventSystem object will be
created.

2. Configure the canvas. Select the Canvas game object, and in the
Inspector for the Canvas component that’s attached, find the
Render Mode setting. Change it to “Screen Space - Camera.”
New options will appear, which allow you to provide specific
settings relevant to this render mode.
Drag the Main Camera into the Render Camera slot, and
change the Plane Distance to 1 (see Figure 9-18). This will place
the UI canvas exactly one unit away from the camera.
Change the “UI Scale Mode” setting for the Canvas Scaler to
“Scale with Screen Size,” and set the reference resolution to 1024
x 768, which is the right shape for an iPad.

224 | Chapter 9: Building a Space Shooter

Figure 9-18. The Inspector for the canvas

Creating the Scene | 225

Now that the canvas has been created, we can begin adding compo‐
nents to it.

Wrapping Up
Our scene is ready, and we’re all set to start implementing the sys‐
tems we’ll need for gameplay. In the next chapter, we’ll dive into the
darkness of space and implement the flight control system for the
spaceship.

226 | Chapter 9: Building a Space Shooter

CHAPTER 10

Input and Flight Control

Once you’ve got the scene largely laid out, it’s time to start adding
the basics of gameplay. In this chapter, we’ll start building the sys‐
tems that let you get your ship around in space.

Input
There are two different kinds of input used in the game: a virtual
joystick, which lets the player provide directional input used for
flight, and a button that signals whether the player wants to be firing
the ship’s lasers or not.

Don’t forget that the only way to properly test a
touchscreen game’s input is by testing it on a
touchscreen. To test your game without building
to the device, use the Unity Remote app (see
“Unity Remote” on page 79).

Adding the Joystick
We’ll begin by creating the joystick. The joystick is composed of two
visible components: a large square “pad” in the lower-left corner of
the canvas, and a smaller “thumb” in the center of that square. When
the user places a finger inside the pad, the joystick will reposition
itself so that the thumb is directly under the finger, and is still cen‐
tered. When the finger moves, the thumb will move with it. <<<
Follow these steps to start building the input system:

227

1. Create the pad. Open the GameObject menu, and choose UI →
Panel. Name the new panel “Joystick”.
We’ll start by making it square, and placing it in the lower-left
corner of the screen. Set the anchors to Lower Left. Next, set
both the width and height of the panel to 250.

2. Add the imagery to the pad. Change the Source Image setting of
the Image component to the Pad sprite.

When you’re done, the panel should look like Figure 10-1.

Figure 10-1. The joystick pad

3. Create the thumb. Create a second Panel UI object, and name it
“Thumb”.
Make the thumb be a child of the Joystick. Set its anchors to
Middle Center, and set its width and height to 80. Set the Pos X
and Pos Y to 0. This will center the thumb in the middle of the
pad. Finally, set the Source Image to the Thumb sprite.

4. Add the VirtualJoystick script. Select the Joystick, and add a
new C# script called VirtualJoystick.cs. Open the file, and add
the following code:

 // Get access to the Event interfaces
 using UnityEngine.EventSystems;

 // Get access to UI elements

228 | Chapter 10: Input and Flight Control

 using UnityEngine.UI;

 public class VirtualJoystick : MonoBehaviour,
 IBeginDragHandler, IDragHandler, IEndDragHandler {

 // The sprite that gets dragged around
 public RectTransform thumb;

 // The locations of the thumb and joystick when no dragging
 // is happening
 private Vector2 originalPosition;
 private Vector2 originalThumbPosition;

 // The distance that the thumb has been dragged away from
 // its original position
 public Vector2 delta;

 void Start () {
 // When the joystick starts up, record the original
 // positions
 originalPosition
 = this.GetComponent<RectTransform>().localPosition;
 originalThumbPosition = thumb.localPosition;

 // Disable the thumb so that it's not visible
 thumb.gameObject.SetActive(false);

 // Reset the delta to zero
 delta = Vector2.zero;
 }

 // Called when dragging starts
 public void OnBeginDrag (PointerEventData eventData) {

 // Make the thumb visible
 thumb.gameObject.SetActive(true);

 // Figure out where in world-space the drag started
 Vector3 worldPoint = new Vector3();
 RectTransformUtility.ScreenPointToWorldPointInRectangle(
 this.transform as RectTransform,
 eventData.position,
 eventData.enterEventCamera,
 out worldPoint);

 // Place the joystick at that point
 this.GetComponent<RectTransform>().position
 = worldPoint;

 // Ensure that the thumb is in its original location,
 // relative to the joystick

Input | 229

 thumb.localPosition = originalThumbPosition;
 }

 // Called when the drag moves
 public void OnDrag (PointerEventData eventData) {

 // Work out where the drag is in world space now
 Vector3 worldPoint = new Vector3();
 RectTransformUtility.ScreenPointToWorldPointInRectangle(
 this.transform as RectTransform,
 eventData.position,
 eventData.enterEventCamera,
 out worldPoint);

 // Place the thumb at that point
 thumb.position = worldPoint;

 // Calculate distance from original position
 var size = GetComponent<RectTransform>().rect.size;

 delta = thumb.localPosition;

 delta.x /= size.x / 2.0f;
 delta.y /= size.y / 2.0f;

 delta.x = Mathf.Clamp(delta.x, -1.0f, 1.0f);
 delta.y = Mathf.Clamp(delta.y, -1.0f, 1.0f);

 }

 // Called when dragging ends
 public void OnEndDrag (PointerEventData eventData) {
 // Reset the position of the joystick
 this.GetComponent<RectTransform>().localPosition
 = originalPosition;

 // Reset the distance to zero
 delta = Vector2.zero;

 // Hide the thumb
 thumb.gameObject.SetActive(false);
 }
 }

The VirtualJoystick class implements three key C# interfaces:
IBeginDragHandler, IDragHandler, and IEndDragHandler. When
the player begins dragging, continues a drag, or finishes dragging
anywhere in the Joystick, the script will receive an OnBeginDrag,
OnDrag, and OnEndDrag method call, respectively. These methods
receive a single parameter: a PointerEventData object that contains

230 | Chapter 10: Input and Flight Control

information about where the finger is on the screen, among lots of
other data.

• When a drag begins, the pad repositions itself so that its center
point is under the finger.

• When a drag continues, the thumb is moved to stay under the
finger, and the distance from the center of the pad to the thumb
is measured and stored in the delta property.

• When a drag ends (that is, when the touch is lifted from the
screen) the pad and thumb reset to their earlier position. The
delta property is reset to zero.

To finish building the input system:

5. Configure the joystick. Select the Joystick object, and drag the
Thumb object into the Thumb slot.

6. Test the joystick. Run the game, and click and drag inside the
joystick pad. The pad will move when the drag begins, and the
thumb will move as you continue dragging. Pay attention to the
value of the Joystick object’s Delta—it should change as you
move the thumb around.

The Input Manager
Now that the joystick has been set up, we need a way for the space‐
ship to get information from it, so that it can be used for steering.

We could directly connect the ship to the joystick, but doing that has
a problem. During the game, the ship will be destroyed, and new
ships will be created. In order to make this possible, the ship needs
to be made into a prefab, so that the game manager can make multi‐
ple copies of it. However, prefabs aren’t allowed to refer to objects in
the scene, which means that a freshly created ship object would have
no reference to the joystick.

A better way to do it is to create an Input Manager singleton that’s
always in the scene, and which does have a reference to the joystick.
Because it’s not instantiated from a prefab, we don’t need to worry
about losing its reference when it’s created. When the ship is created,
it will use the Input Manager singleton (which it accesses through
code) to reach the joystick, and to get at the joystick’s value.

Input | 231

1. Create the Singleton code. Create a new C# script in the Assets
folder named Singleton.cs. Open this file, and put the following
code in it:

 // This class allows other objects to refer to a single
 // shared object. The GameManager and InputManager classes
 // use this.

 // To use this, subclass like so:
 // public class MyManager : Singleton<MyManager> { }

 // You can then access the single shared instance of the
 // class like so:
 // MyManager.instance.DoSomething();

 public class Singleton<T> : MonoBehaviour
 where T : MonoBehaviour {

 // The single instance of this class.
 private static T _instance;

 // The accessor. The first time this is called, _instance
 // will be set up. If an appropriate object can't be found,
 // an error will be logged.
 public static T instance {
 get {
 // If we haven't already set up _instance..
 if (_instance == null)
 {
 // Try to find the object.
 _instance = FindObjectOfType<T>();

 // Log if we can't find it.
 if (_instance == null) {
 Debug.LogError("Can't find "
 + typeof(T) + "!");
 }
 }

 // Return the instance so that it can be used!
 return _instance;
 }
 }

 }

232 | Chapter 10: Input and Flight Control

This Singleton code is identical to the Singleton
used in Gnome’s Well. For a description of what
it does, see “Creating a Singleton class” on page
81.

2. Create the Input Manager. Create a new empty game object
called “Input Manager”. Add a new C# script to it, called Input‐
Manager.cs. Open the file, and add the following code:

 public class InputManager : Singleton<InputManager> {

 // The joystick used to steer the ship.
 public VirtualJoystick steering;

 }

Currently, InputManager serves as a simple data object: it just stores
a reference to the VirtualJoystick. Later on, we’ll be adding some
more logic to it, to support things like firing the current spaceship’s
weapons.

3. Configure the Input Manager. Drag the Joystick into the “Steer‐
ing” slot.

Now that the joystick is set up, we’re ready to start using it to control
the spaceship’s flight.

Flight Control
At the moment, the ship simply moves forward. To control the ship’s
flight, we just need to change the ship’s “forward” direction. We’ll be
doing this by taking information from the virtual joystick, and using
it to update the ship’s orientation in space.

Every frame, the ship uses the direction indicated by the joystick,
along with a value that controls how quickly the ship should rotate,
to generate a new rotation. This is then combined with the ship’s
current orientation, resulting in the new direction the ship is facing.

However, we want the player to not roll over and get confused about
where important objects like the space station are. To address that,
the steering script also applies an additional rotation, which slowly
rolls the ship back to a level surface. This makes the ship behave a

Flight Control | 233

little more like an aircraft that’s flying through an atmosphere,
which is more intuitively understandable (but is also less realistic).

1. Add the ShipSteering script. Select the Ship, and add a new C#
script called ShipSteering.cs. Open the file, and add the following
code:

 public class ShipSteering : MonoBehaviour {

 // The rate at which the ship turns
 public float turnRate = 6.0f;

 // The strength with which the ship levels out
 public float levelDamping = 1.0f;

 void Update () {

 // Create a new rotation by multiplying the joystick's
 // direction by turnRate, and clamping that to 90% of
 // half a circle.

 // First, get the user's input.
 var steeringInput
 = InputManager.instance.steering.delta;

 // Now, create a rotation amount, as a vector.
 var rotation = new Vector2();

 rotation.y = steeringInput.x;
 rotation.x = steeringInput.y;

 // Multiply by turnRate to get the amount we want to
 // steer by.
 rotation *= turnRate;

 // Turn this into radians by multiplying by 90% of a
 // half-circle
 rotation.x = Mathf.Clamp(
 rotation.x, -Mathf.PI * 0.9f, Mathf.PI * 0.9f);

 // And turn those radians into a rotation quaternion!
 var newOrientation = Quaternion.Euler(rotation);

 // Combine this turn with our current orientation
 transform.rotation *= newOrientation;

 // Next, try to minimize roll!

 // Start by working out what our orientation would be
 // if we weren't rolled around the Z axis at all

234 | Chapter 10: Input and Flight Control

 var levelAngles = transform.eulerAngles;
 levelAngles.z = 0.0f;
 var levelOrientation = Quaternion.Euler(levelAngles);

 // Combine our current orientation with a small amount
 // of this "zero-roll" orientation; when this happens
 // over multiple frames, the object will slowly level
 // out to zero roll
 transform.rotation = Quaternion.Slerp(
 transform.rotation, levelOrientation,
 levelDamping * Time.deltaTime);

 }
 }

The ShipSteering script uses the joystick input to calculate a new,
smoothed-out rotation, and applies that to the ship. Having done
that, it then applies an additional slight rotation that causes the ship
to level out.

2. Test the steering. Start the game. The ship will start flying for‐
ward; when you click and drag inside the joystick area, the ship
will change direction. Using this, you can fly around. Note that
if the ship becomes rolled (e.g., if you pull up and then turn to
the side), the ship will attempt to roll back to a flat attitude.

Indicators
Because this game involves flying around in 3D space, it’s very easy
to lose track of the various objects in the game. The space station
will (eventually) be under threat from asteroids, and the player will
want to know where the station is, and where the asteroids are.

To deal with this, we’ll implement a system for showing indicators
on the screen that highlight the position of important objects. If the
camera can see the objects, then they’ll have a circle around them. If
the objects are off-screen, then their indicators will appear on the
edges of the screen, indicating the direction that you should turn to
look at them.

Creating the UI elements
To get started, create an object inside the canvas that will act as the
container for all of the indicators. Once that’s done, you’ll need to

Flight Control | 235

build an indicator, which will then be turned into a prefab for reuse.
To set them up, follow these steps:

1. Create the Indicator container. Select the Canvas, and create a
new empty child object by opening the GameObject menu, and
choosing Create Empty Child. This will create a new object that
has a Rect Transform (which is used for 2D objects like canvas
elements), as opposed to an object with a regular Transform
(which is used for 3D elements). Set the anchors of the con‐
tainer to stretch horizontally and vertically.
Name the new object “Indicators”.

2. Create the prototype Indicator. Create a new Image by opening
the GameObject menu and choosing UI → Image.
Name the new object “Position Indicator”. Make it a child of the
Indicators object you created in the previous step.
Drag the Indicator sprite into the sprite’s Source Image slot.
You’ll find it in the UI folder.

3. Create the text label. Create a new Text object (again, via the
GameObject menu, in the UI submenu). Make this Text object
be the child of the Position Indicator sprite object.
Change the text’s color to white, and set alignment to horizon‐
tally and vertically centered.
Change the text’s Text to “50m”. (The text will change during
gameplay, but doing this will mean you have a better idea of
how the indicator looks.)
Set the anchor of the Text to “center middle”, and set its X and Y
position to zero. This will center the text in the middle of the
sprite.
Finally, we’ll use a custom font for the indicator. Locate the
CRYSTAL-Regular font, which is in the Fonts folder, and drag it
into the Text’s Font slot. Next, change the Font Size to 28.
When you’re done, the Text component’s Inspector should look
like Figure 10-2, and the indicator object itself should look like
Figure 10-3.

236 | Chapter 10: Input and Flight Control

Figure 10-2. The Inspector for the indicator text labels

Figure 10-3. The prototype indicator

Flight Control | 237

4. Add the code. Add a new C# script called Indicator.cs to the pro‐
totype Indicator object, and add the following code to it:

 // Get access to the UI classes
 using UnityEngine.UI;

 public class Indicator : MonoBehaviour {

 // The object we're tracking.
 public Transform target;

 // Measure the distance from 'target' to this transform.
 public Transform showDistanceTo;

 // The label that shows the distance we're measuring.
 public Text distanceLabel;

 // How far we should be from the screen edges.
 public int margin = 50;

 // Our image's tint color.
 public Color color {
 set {
 GetComponent<Image>().color = value;
 }
 get {
 return GetComponent<Image>().color;
 }
 }

 // Set up the indicator
 void Start() {
 // Hide the label; it will be re-enabled in
 // Update if we have a target
 distanceLabel.enabled = false;

 // On start, wait a frame before appearing to prevent
 // visual glitches
 GetComponent<Image>().enabled = false;

 }

 // Update the indicator's position every frame
 void Update()
 {

 // Is our target gone? Then we should go too
 if (target == null) {
 Destroy (gameObject);
 return;

238 | Chapter 10: Input and Flight Control

 }

 // If we have a target for calculating distance, then
 // calculate it and display it in the distanceLabel
 if (showDistanceTo != null) {

 // Show the label
 distanceLabel.enabled = true;

 // Calculate the distance
 var distance = (int)Vector3.Magnitude(
 showDistanceTo.position - target.position);

 // Show the distance in the label
 distanceLabel.text = distance.ToString() + "m";
 } else {
 // Don't show the label
 distanceLabel.enabled = false;
 }

 GetComponent<Image>().enabled = true;

 // Work out where in screen-space the object is
 var viewportPoint =
 Camera.main.WorldToViewportPoint(target.position);

 // Is the point behind us?
 if (viewportPoint.z < 0) {
 // Push it to the edges of the screen
 viewportPoint.z = 0;
 viewportPoint = viewportPoint.normalized;
 viewportPoint.x *= -Mathf.Infinity;
 }

 // Work out where in view-space we should be
 var screenPoint =
 Camera.main.ViewportToScreenPoint(viewportPoint);

 // Clamp to screen edges
 screenPoint.x = Mathf.Clamp(
 screenPoint.x,
 margin,
 Screen.width - margin * 2);

 screenPoint.y = Mathf.Clamp(
 screenPoint.y,
 margin,
 Screen.height - margin * 2);

 // Work out where in the canvas-space the view-space
 // coordinate is

Flight Control | 239

 var localPosition = new Vector2();
 RectTransformUtility.ScreenPointToLocalPointInRectangle(
 transform.parent.GetComponent<RectTransform>(),
 screenPoint,
 Camera.main,
 out localPosition);

 // Update our position
 var rectTransform = GetComponent<RectTransform>();
 rectTransform.localPosition = localPosition;

 }
 }

The indicator code works like this:

• Every frame, in the Update method, the 3D coordinates of the
object that the indicator is tracking are converted to viewport
space.
In viewport space, coordinates represent positions on the
screen, where (0,0,0) is the bottom-left of the screen, and (1,1,0)
is the top-right. The Z component of a viewport-space coordi‐
nate represents distance from the camera, in world units.
This means that you can very easily tell if something is on
screen or not, and if it’s behind you or not. If an object’s view‐
space coordinate’s X and Y components are not within (0,0) to
(1,1), then it’s off to the side; if the Z coordinate is less than 0,
it’s behind you.

• If the object is behind you (that is, the Z coordinate is less than
zero), we need to push the marker off to the side. If we don’t,
then the indicator for something directly behind you would
appear in the center of the screen, and the player would be led
to believe that the object that the indicator is tracking is in front
of you.
To push the markers to the side, the X component of the view‐
port is multiplied by negative infinity; by multiplying by infin‐
ity, the indicator will always be at the far left or far right of the
screen. We multiply by negative infinity to compensate for the
fact that it’s behind you.

• Next, the view-space coordinate is converted to screen-space,
and then clamped so that it’s never outside of the window. An
additional margin parameter is used to bring the indicators in a

240 | Chapter 10: Input and Flight Control

little bit, to ensure that the text label that shows distance is
always readable.

• Finally, this screen-space coordinate is converted into the coor‐
dinate space of the indicator container, and is then used to
update the position of the indicator. Once this is done, the indi‐
cator is now in the right position.

The indicators also do their own cleanup: every frame, they check to
see whether their target is null; if it is, they’re destroyed.

There’s one final step left to set up the indicator. Once that’s done,
you can convert this prototype indicator into a prefab.

4. Connect the distance label. Drag the Text child object into the
Distance Label slot.

5. Turn the prototype into a prefab. Drag the Position Indicator
object into the Project pane. A new prefab object will be created,
which will allow you to create multiple Indicators at runtime.
Once you’ve created this prefab, delete the prototype from the
scene.

Indicator Manager
The Indicator Manager is a singleton object that manages the pro‐
cess of creating indicators. This object will be used by any other
object that needs to add an indicator to the screen—in particular,
the space station and the asteroids.

By making this object a singleton, we can create and set up the
object in the scene without having to do anything tricky to make
objects that are loaded from prefabs aware of the manager.

1. Create the Indicator Manager. Create a new empty object, and
name it “Indicator Manager.”

2. Add the IndicatorManager script. Add a new C# script to the
object, called IndicatorManager.cs, and add the following code
to it:

 using UnityEngine.UI;

 public class IndicatorManager : Singleton<IndicatorManager> {

Flight Control | 241

 // The object that all indicators will be children of
 public RectTransform labelContainer;

 // The prefab we'll instantiate for each indicator
 public Indicator indicatorPrefab;

 // This method will be called by other objects
 public Indicator AddIndicator(GameObject target,
 Color color, Sprite sprite = null) {

 // Create the label object
 var newIndicator = Instantiate(indicatorPrefab);

 // Make it track the target
 newIndicator.target = target.transform;

 // Update its color
 newIndicator.color = color;

 // If we received a sprite, set the indicator's sprite
 // to that
 if (sprite != null) {
 newIndicator
 .GetComponent<Image>().sprite = sprite;
 }

 // Add it to the container.
 newIndicator.transform.SetParent(labelContainer, false);

 return newIndicator;
 }

 }

The Indicator Manager provides a single method, AddIndicator,
which instantiates an Indicator prefab, configures it with a target
object to track and a color to tint the sprite with, and adds it to the
indicator container. You can also optionally provide your own
Sprite to this method, if you want to create a special indicator.
(You’ll be doing this later, when you add the ship’s target reticle.)

Once you’ve written the IndicatorManager source code, you now
need to configure it. The manager needs to know two things: which
prefab should be instantiated for the indicators, and which object
should be their parent.

242 | Chapter 10: Input and Flight Control

3. Set up the Indicator Manager. Drag the Indicators container
object into the Label Container slot, and the Position Indicator
prefab into the Indicator Prefab slot.

Next, we’ll make the space station run code that adds an indicator
when it starts.

4. Select the space station.
5. Add the SpaceStation script it. Add a new C# script to the

object called SpaceStation.cs, and add the following code to it:
 public class SpaceStation : MonoBehaviour {

 void Start () {
 IndicatorManager.instance.AddIndicator(
 gameObject,
 Color.green
);
 }

 }

This code simply asks the IndicatorManager singleton to add a new
indicator that tracks this object, and for that indicator to be green.

6. Run the game. The station will now have an indicator attached
to it.

The distance display won’t appear, because the space station doesn’t
set up the showDistanceTo variable. That’s on purpose—we’ll be set‐
ting that up for the Asteroids, but not the station. Having too many
numbers on screen can get confusing.

Wrapping Up
Congratulations! You started from next to nothing, and now you’ve
already got spaceflight. In the next chapter, we’ll be extending this
game and adding actual gameplay.

Wrapping Up | 243

CHAPTER 11

Adding Weapons and Targeting

Now that you’ve got a spaceship flying around, it’s time to add more
gameplay to the whole thing. First, you’ll be adding weapons to your
spaceship; once that’s done, you’ll need a target to shoot at.

Weapons
Every time the ship fires its weapons, it shoots a laser bolt that flies
forward until it either hits something or runs out of time. If it hits
something, and that other object is able to take damage, then the
shot needs to convey information to that object.

We can do this by creating an object that has a collider, and travels
forward at a certain rate (much like the spaceship). There are a
number of different possibilities for how the shot could appear—you
could create a 3D model of a missile, create a particle effect, or cre‐
ate a sprite. The specifics are up to you, and don’t affect how the
shot actually behaves in the game.

In this chapter, we’ll use a trail renderer to display the shot. A trail
renderer creates a trail behind it as it moves, which eventually disap‐
pears. This makes it especially good for representing moving
objects, such as swinging sorts and flying projectiles.

The trail renderer for the shot will be a simple one: it will leave
behind a thin red line, which gets thinner and thinner over time.
Because the shots will always be moving forward, this will create a
good-looking “blaster bolt”‐like effect.

245

The nongraphical component of the shot will be implemented with
a kinematic rigidbody. Ordinarily, rigidbodies respond to forces that
are applied to them: gravity will pull them down, and when another
rigidbody knocks into them, Newton’s first law of motion means
that their velocity will change. However, we don’t want shots to be
bumped out of the way. To tell Unity that a rigidbody ignores any
forces applied to it, while still making that rigidbody collide with
other bodies, you make it kinematic.

It’s a reasonable question to ask why we’re using
rigidbodies at all for the shot. After all, the
spaceship doesn’t use one, so why do shots?
The reason is because of a limitation of Unity’s
physics engine. Collisions only occur when at
least one of the colliding objects has a rigidbody;
as a result, to ensure that the shots are always
told about when they touch another object, we
attach a rigidbody to it and then make it kine‐
matic.

Let’s start by creating the shot object and setting up its collision
properties. We’ll then add the Shot code to it, which is responsible
for making the shot fly forward at a constant speed.

1. Create the shot. Create a new empty game object, and name it
“Shot”.
Add a rigidbody component to the object. Then make sure Use
Gravity is turned off, and Is Kinematic is turned on.
Add a sphere collider to the object. Set its radius to 0.5, and
ensure that its center is (0,0,0). The Is Trigger setting should be
turned on.

2. Add the Shot script. Add a new C# script called Shot to the
object. Open Shot.cs, and add the following code:

 // Moves forward at a certain speed, and dies after a certain
 // time.
 public class Shot : MonoBehaviour {

 // The speed at which the shot will move forward
 public float speed = 100.0f;

 // Remove this object after this many seconds

246 | Chapter 11: Adding Weapons and Targeting

 public float life = 5.0f;

 void Start() {
 // Destroy after 'life' seconds
 Destroy(gameObject, life);
 }

 void Update () {
 // Move forward at constant speed
 transform.Translate(
 Vector3.forward * speed * Time.deltaTime);
 }
 }

The Shot code is extremely simple, and focuses on two tasks: mak‐
ing sure that the shot disappers after a while, and moving the shot
forward at all times.

The Destroy method is usually used with only a single parameter,
which is the object that you want to remove from the game. How‐
ever, you can also pass in an optional second parameter, which is the
number of seconds from now that you want the object to be
destroyed. In the Start method, Destroy is called and the life vari‐
able is passed in, which tells Unity to destroy the object after life
seconds.

The Update function simply uses the transform’s Translate

method to move the object forward at a constant speed. By multi‐
plying the Vector3.forward property by speed and then by
Time.deltaTime, the object will move forward at a constant speed
every frame.

Next up, we’ll add the shot’s graphics. As we mentioned earlier, we’ll
be using a trail renderer to create the visual effects of the shot. A
trail renderer uses a material to define exactly how the trail looks,
which means that we’ll need to create one.

Your material can be anything you like, but to keep the look and feel
of this game simple, we’ll go with a solid, unlit red color.

1. Create a new material. Name it “Shot”.
2. Update the shader. To make the trail display as a solid color,

without any lighting, set the material’s shader to Unlit/Color.

Weapons | 247

3. Set the color. Once you’ve changed the material’s shader, the
parameters for the material will change to a single parameter,
which is the color to use. Change it to a nice bright red color.

Once the material has been created, we can use it in a trail renderer.

1. Create the Shot’s graphics object. Create a new empty object, and
name it “Graphics”. Make it a child of the Shot object, and set its
position to (0,0,0).

2. Create the trail renderer. Add a new Trail Renderer component
to the Graphics object.
Once it’s added, the Cast Shadows, Receive Shadows, and Use
Light Probes should all be turned off.
Next, set Time to 0.05, and Width to 0.2.

3. Make the trail get narrower toward the end. Double-click in the
curve view (below the Width field), and a new control point will
appear. Drag this new control point to the bottom-right of the
curve view.

4. Apply the Shot material, Open the list of Materials, and drag in
the Shot material that you just created.
When you’re done, the trail renderer’s Inspector should look
like Figure 11-1.

248 | Chapter 11: Adding Weapons and Targeting

Figure 11-1. The configured trail renderer for the shot

We’re not yet finished creating the Shot object:
there’s no way to test firing the ship’s weapons
(yet), but we’ll be adding that very soon.

Weapons | 249

There’s one final step left—make the Shot a prefab:

1. Drag the Shot object from the scene into the Objects folder. This
will turn the Shot into a prefab.

2. Delete the Shot from the scene.

Next up, we’ll create the object that handles firing the weapons.

Ship Weapons
When the player wants to start firing the ship’s lasers, we need some‐
thing that handles the actual creation of the Shot objects. The way
that the ship fires its lasers is slightly more complex than simply
spawning a Shot every time the Fire button is tapped; instead, what
we want to happen is that when the Fire button is held down, the
ship starts firing Shot objects at a constant rate.

Additionally, we need to specify where these shots come from. The
concept art for the ship (seen in Figure 9-3) shows that there are
laser cannons over both wings, which means that shots should come
from both of them.

There’s a decision to be made here about how these shots are fired.
You could create two shots at the same time, or you could alternate,
firing first from the left and then from the right. In this game, we’ve
decided to go for the alternating pattern, because it makes the firing
feel very continuous—however, don’t take our word for it! Try dif‐
ferent firing patterns and see how it changes the way the ship feels.

The weapon firing will be handled by the ShipWeapons script. This
script uses the shot prefab that you created in the previous section,
as well as an array of Transform objects; when the weapons start fir‐
ing, it begins instantiating the shots at the same position as each of
the Transform objects in turn. When it hits the end of the Trans
form array, it returns to the start.

1. Add the ShipWeapons script to the ship. Select the Ship, add a
new C# script called ShipWeapons.cs, and add the following
code to it:

 public class ShipWeapons : MonoBehaviour {

 // The prefab to use for each shot
 public GameObject shotPrefab;

250 | Chapter 11: Adding Weapons and Targeting

 // The list of places where a shot can emerge from
 public Transform[] firePoints;

 // The index into firePoints that the next shot will
 // fire from
 private int firePointIndex;

 // Called by InputManager.
 public void Fire() {

 // If we have no points to fire from, return
 if (firePoints.Length == 0)
 return;

 // Work out which point to fire from
 var firePointToUse = firePoints[firePointIndex];

 // Create the new shot, at the fire point's
 // position and with its rotation
 Instantiate(shotPrefab,
 firePointToUse.position,
 firePointToUse.rotation);

 // Move to the next fire point
 firePointIndex++;

 // If we've moved past the last fire point in
 // the list, move back to the start of the queue
 if (firePointIndex >= firePoints.Length)
 firePointIndex = 0;

 }

 }

The ShipWeapons script keeps track of a list of positions at which
shots should appear (the firePoints variable), as well as a prefab
that represents each shot (the shotPrefab variable.) Additionally, it
keeps track of which fire point the next shot should appear from (the
firePointIndex variable); when the Fire button is pressed, a shot
will appear from one of the fire points, and then firePointIndex is
updated to refer to the next fire point.

2. Create the shot fire points. Create a new empty game object, and
name it “Fire Point 1”. Make it a child of the Ship object, and

Weapons | 251

then duplicate it by pressing Ctrl-D (Command-D on a Mac.)
This will create another empty object called “Fire Point 1”.
Set the position of Fire Point 1 to (-1.9, 0, 0). This will place it to
the left of the ship.
Set the position of Fire Point 2 to (1.9, 0, 0). This will place it to
the right of the ship.
When you’re done, the position of Fire Points 1 and 2 should
look like Figures 11-2 and 11-3.

Figure 11-2. The position of Fire Point 1

Figure 11-3. The position of Fire Point 2

252 | Chapter 11: Adding Weapons and Targeting

3. Configure the ShipWeapons script. Drag the Shot prefab that you
created in the earlier section to the ShipWeapons’s Shot Prefab
slot.
Next, we need to add both of the Fire Point objects to the Ship
Weapons script. You can do this by setting the size of the Fire
Points array to 2, and then dragging each object in one at a time,
but there’s a faster way.
Select the Ship, and click the lock at the top right of the Inspec‐
tor. This will lock the Inspector, and means that the object that
the Inspector is showing won’t change when you select another
object.
Next, select both Fire Point objects in the Hierarchy by clicking
Fire Point 1 and then holding the Ctrl key (Command key on a
Mac), and clicking Fire Point 2.
Then, drag these two objects onto the ShipWeapons' Fire Points
slot. Be sure to drag it onto the text “Fire Points” (and not any‐
thing below it), or it won’t work.

This technique works for any array variable in a
script. It can save you a lot of dragging and
dropping. One thing to keep in mind is that the
order of the objects may not be preserved when
you drag and drop from the hierarchy into an
array.

4. Unlock the Inspector. Now that you’re done configuring the Ship
Weapons script, unlock the Inspector by clicking the lock icon at
the top right.

In this game, the spaceship only has two fire
points, but the script is capable of handling
more. If you want to, you can add as many more
fire points as you like—just make sure that
they’re children of the Ship object, and that
they’re added to the Fire Points list in the
Inspector.

Weapons | 253

Next up, we’ll add the Fire button to the game’s interface, which will
let you actually fire the weapons.

Fire Button
We’ll now add a button that makes the ship start firing its weapons
when the user starts touching the button, and stop firing when they
lift their finger.

There will only ever be one Fire button in the game, but there will
be multiple ships. This means that we can’t hook the Fire button
directly to the ship; instead, we need to add support to the Input
Manager to allow it to deal with multiple instances of the ShipWeap
ons script.

The way that the Input Manager will deal with it is this: because
there’s only ever one ship in the game at a time, there will only be
one ShipWeapons instance in the game at a time. When a ShipWea
pons script appears, it will contact the InputManager singleton, and
inform it that it’s the current ShipWeapons script. The InputManager
will record this, and will use it as part of the firing system.

Finally, the Fire button will be connected to the Input Manager
object, and will send a “firing started” message when the Fire button
starts being held down, and a “firing stopped” message when the
button stops being held down. The Input Manager will forward
these messages to the current ShipWeapons script, resulting in firing.

An alternative method of doing this is to use the
FindObjectOfType method. This method
searches all objects for any component that
matches a type, and returns the first one it finds.
Using FindObjectOfType, you do away with the
need to have an object register itself as the cur‐
rent object, but this comes at a cost: FindOb
jects OfType is slow, since it needs to check
every component of every object in the scene.
It’s OK to use every now and again, but you
shouldn’t use it every frame.

First, we’ll add support for tracking the current ShipWeapons
instance to the InputManager class; we’ll then add code to Ship
Weapons that makes it register as the current instance when it

254 | Chapter 11: Adding Weapons and Targeting

appears, and de-register it when the component is removed (such as
when the ship is destroyed).

We’ll need to add the ShipWeapons management code to InputMan
ager, by adding the following properties and methods to the Input
Manager class:

 public class InputManager : Singleton<InputManager> {

 // The joystick used to steer the ship.
 public VirtualJoystick steering;

> // The delay between firing shots, in seconds.
> public float fireRate = 0.2f;
>
> // The current ShipWeapons script to fire from.
> private ShipWeapons currentWeapons;
>
> // If true, we are currently firing weapons.
> private bool isFiring = false;
>
> // Called by ShipWeapons to update the currentWeapons
> // variable.
> public void SetWeapons(ShipWeapons weapons) {
> this.currentWeapons = weapons;
> }
>
> // Likewise; called to reset the currentWeapons
> // variable.
> public void RemoveWeapons(ShipWeapons weapons) {
>
> // If the currentWeapons object is 'weapons',
> // set it to null.
> if (this.currentWeapons == weapons) {
> this.currentWeapons = null;
> }
> }
>
> // Called when the user starts touching the Fire button.
> public void StartFiring() {
>
> // Kick off the routine that starts firing
> // shots.
> StartCoroutine(FireWeapons());
> }
>
> IEnumerator FireWeapons() {
>
> // Mark ourself as firing shots
> isFiring = true;

Weapons | 255

>
> // Loop for as long as isFiring is true
> while (isFiring) {
>
> // If we have a weapons script, tell it
> // to fire a shot!
> if (this.currentWeapons != null) {
> currentWeapons.Fire();
> }
>
> // Wait for fireRate seconds before
> // firing the next shot
> yield return new WaitForSeconds(fireRate);
>
> }
>
> }
>
> // Called when the user stops touching the Fire button
> public void StopFiring() {
>
> // Setting this to false will end the loop in
> // FireWeapons
> isFiring = false;
> }
>
 }

This code keeps track of the current ShipWeapons script that is
responsible for firing the shots from the ship. The SetWeapons and
RemoveWeapons methods will be called by the ShipWeapons script
when it is created and destroyed.

When the StartFiring method is called, a new coroutine is started,
which fires a shot by calling Fire on the ShipWeapons component
and then waits for fireRate seconds. This then loops while
isFiring is true; isFiring is set to false when the StopFiring
method is called. The StartFiring and StopFiring methods will be
called when the user starts and stops touching the Fire button,
which we’ll set up shortly.

We then need to add the InputManager-communicating code to
ShipWeapons by adding the following methods to the ShipWeapons
class:

 public class ShipWeapons : MonoBehaviour {

 // The prefab to use for each shot
 public GameObject shotPrefab;

256 | Chapter 11: Adding Weapons and Targeting

> public void Awake() {
> // When this object starts up, tell the input
> // manager to use me as the current weapon
> // object
> InputManager.instance.SetWeapons(this);
> }
>
> // Called when the object is removed
> public void OnDestroy() {
> // Don't do this if we're not playing
> if (Application.isPlaying == true) {
> InputManager.instance
> .RemoveWeapons(this);
> }
> }

 // The list of places where a shot can emerge from
 public Transform[] firePoints;

 // The index into firePoints that the next shot
 // will fire from
 private int firePointIndex;

 // Called by InputManager.
 public void Fire() {

 // If we have no points to fire from, return
 if (firePoints.Length == 0)
 return;

 // Work out which point to fire from
 var firePointToUse = firePoints[firePointIndex];

 // Create the new shot, at the fire point's position
 // and with its rotation
 Instantiate(shotPrefab,
 firePointToUse.position,
 firePointToUse.rotation);

 // Move to the next fire point
 firePointIndex++;

 // If we've moved past the last fire point in the list,
 // move back to the start of the queue
 if (firePointIndex >= firePoints.Length)
 firePointIndex = 0;

 }

 }

Weapons | 257

When a spaceship is created, the ShipWeapons script’s Awake method
now accesses the InputManager singleton and registers itself as the
current weapons script. When the script is destroyed—such as when
the ship collides with an asteroid, which we’ll be adding later—the
OnDestroy method makes the input manager de-register this script.

Notice how the OnDestroy method checks to see
if Application.isPlaying is true before con‐
tinuing? That’s because, when you stop playing a
game in the editor, all objects are destroyed, and
as a result, all scripts that have an OnDestroy
method have that method called on them. How‐
ever, this creates a problem, since asking for the
InputManager.singleton will result in an error,
because the game is ending and that object has
been destroyed.
In order to get around this problem, we check
Application.isPlaying. This property is false
after you ask Unity to stop playing, which avoids
the problematic call to InputManager.single
ton entirely.

We’ll now create the Fire button that instructs the Input Manager to
start and stop firing. Because we need to tell the Input Manager
about the button beginning to be held down and ending, we can’t
use the default button behavior, which only sends a message after a
“click” (finger down and then up). We’ll instead need to use Event
Triggers to send individual messages on both the Pointer Down and
Pointer Up events.

First, though, let’s create and position the button. You will need to
create a new button by opening the GameObject menu, and choos‐
ing UI → Button. Name the new button “Fire Button”.

Set both the anchors and the pivot of the button to Bottom Right by
clicking on the Anchor button at the top-left of the Inspector, hold‐
ing the Alt key (Option on a Mac), and clicking on the Bottom Right
option.

Next, set the position of the button to (-50, 50, 0). This will place the
button at the bottom-right of the canvas. Set both the width and
height of the button to 160.

258 | Chapter 11: Adding Weapons and Targeting

Set the Source Image of the button’s Image component to the Button
sprite. Set the Image Type to Sliced.

Select the Text child object of the Fire Button, and set its text to
“Fire”. Set its Font to CRYSTAL-Regular, and its Font Size to 28. Set
its alignment to be both vertically and horizontally centered.

Finally, set the color of the Fire button to a light cyan by clicking on
the Color field, and in the Hex Color field, enter 3DFFD0FF (see
Figure 11-4).

Figure 11-4. Setting the color of the fire button’s label

Weapons | 259

When you’re done, the button should look like Figure 11-5.

Figure 11-5. The Fire button

We’ll now set up this button to behave the way we need it:

1. Remove the Button component. Select the Fire Button object, and
click on the settings icon at the top right of the Button compo‐
nent. Click Remove Component.

2. Add an Event Trigger, and add the Pointer Down event. Add a
new Event Trigger component, and then click Add Event Type.
Choose “PointerDown” from the menu that appears.
A new event will appear in the list, containing the list of objects
and methods that will run when the pointer touches down
inside the button (that is, the user begins touching the Fire but‐
ton). By default, it’s empty, so you’ll need to add a new target.

3. Configure the Pointer Down event. Click the + button at the bot‐
tom of the PointerDown list, and a new item will appear in the
list.

260 | Chapter 11: Adding Weapons and Targeting

Drag and drop the Input Manager object from the Hierarchy
panel into the slot. Next, change the method from “No Func‐
tion” to “InputManager→StartFiring”.

4. Add and configure the Pointer Up event. Next, you need to add
an event for when the finger lifts up from the screen. Click the
Add Event Type again, and choose “PointerUp”.
Configure this event in the same way as the PointerDown, but
make the method called on the InputManager be “StopFiring”.

When you’re done, the Inspector should look like Figure 11-6.

Weapons | 261

Figure 11-6. The configured Fire button

262 | Chapter 11: Adding Weapons and Targeting

5. Test the Fire button. Play the game. When you hold down the
Fire button, shots will appear!

Target Reticle
Currently, there’s no clear way for the player to know where they’re
aiming at. Because both the camera and the ship can be rotating, it’s
actually quite tricky to aim shots correctly. To fix this, we’ll use the
indicator system that we created earlier to display a target reticle on
the screen.

We’ll create a new object that, like the Space Station, instructs the
Indicator Manager to create a new indicator on screen that tracks its
position. This object will be an invisible child object of the ship, and
placed a distance away from the front of the ship. This will have the
effect of making the indicator place itself at the point where the
player’s currently aiming.

Finally, this indicator should use a special icon, so that it’s clear that
the indicator represents the aiming point. The Target Reticle.psd
image contains a crosshairs icon that will do the job nicely.

1. Create the Target object. Name this object “Target”, and make it a
child of the Ship.

2. Position the Target. Set the position of the Target object to
(0,0,100). This will place the target some distance away from the
ship.

3. Add the ShipTarget script. Add a new C# script to the Target
object named ShipTarget.cs, and add the following code to it:

 public class ShipTarget : MonoBehaviour {

 // The sprite to use for the target reticle.
 public Sprite targetImage;

 void Start () {

 // Register a new indicator that tracks this
 // object, using a yellow color and the custom
 // sprite.
 IndicatorManager.instance.AddIndicator(gameObject,
 Color.yellow, targetImage);
 }

Target Reticle | 263

 }

The ShipTarget code uses the targetImage variable to tell the Indi‐
cator Manager to use a custom sprite on the screen. This means that
the Target Image slot needs to be configured.

4. Configure the ShipTarget script. Drag the “Target Reticle” sprite
into the Target Image slot of the ShipTarget script.

5. Play the game. As you fly around, a target reticle will appear
where the ship is aiming.

Wrapping Up
The weapons systems are all prepared. You should take the ship out
for a spin, and see how it feels. You might notice that there are no
targets in space; while this is a largely realistic representation of
space, which famously doesn’t contain much of anything, it’s not so
great for our gameplay. Turn the page, and let’s fix that.

264 | Chapter 11: Adding Weapons and Targeting

CHAPTER 12

Asteroids and Damage

Asteroids
So far, you’ve got a ship flying around space, you’ve got indicators
on screen, and you’ve got the ability to aim and shoot your laser
cannon. What you don’t have is a legitimate target to shoot at. (The
space station doesn’t count.)

So, it’s time to finally remedy this. We’ll create the asteroids, which
will do not a huge amount by themselves besides fly around. Addi‐
tionally, we’ll create a system that creates those asteroids, and flings
them at the space station.

First, let’s make the prototypical asteroid. The asteroid will be com‐
posed of two objects: the high-level, abstract object that contains the
collider and all logic, and an additional “graphics” object that’s
responsible for providing the visible presence of the asteroid to the
player.

1. Create the object. Make a new empty game object, and name it
“Asteroid”.

2. Add the asteroid model to it. Locate the Asteroid model in the
Models folder. Drag it onto the Asteroid object you just created,
and rename the new child object “Graphics”. Reset the Position
of the Graphics object’s Transform component, so that it’s posi‐
tioned at (0,0,0).

3. Add a rigidbody and sphere collider to the Asteroid object. Don’t
add it to the Graphics object.

265

Once they’re added, turn gravity off on the rigidbody, and make
the radius of the sphere collider be 2.

4. Add the Asteroid script. Add a new C# script to the Asteroid
game object, called Asteroid.cs, and add the following code to it:

 public class Asteroid : MonoBehaviour {

 // The speed at which the asteroid moves.
 public float speed = 10.0f;

 void Start () {
 // Set the velocity of the rigidbody
 GetComponent<Rigidbody>().velocity
 = transform.forward * speed;

 // Create a red indicator for this asteroid
 var indicator = IndicatorManager.instance
 .AddIndicator(gameObject, Color.red);

 }

 }

The Asteroid script is very simple: when the object appears, a “for‐
ward” force is applied to the object’s rigidbody, which makes it start
moving forward. Additionally, the indicator manager is told to add a
new indicator to the screen for this asteroid.

You’ll get a warning about the indicator vari‐
able being written to but not read. That’s OK—it
won’t cause a bug in the game. We’ll be adding a
little more code later that uses the indicator
variable, which will remove this warning.

When you’re done, the Inspector for the Asteroid should look like
Figure 12-1.

266 | Chapter 12: Asteroids and Damage

Figure 12-1. The configured asteroid

Asteroids | 267

When you’re done, the object should look like Figure 12-2.

Figure 12-2. The asteroid, in-game

6. Test the asteroid. Start the game, and take a look at the asteroid.
It should be moving forward, and an indicator will appear on
the screen!

Asteroid Spawner
Now that asteroids are working, it’s time to create the asteroid
spawner. This is an object that periodically creates new asteroid
objects, and aims them at a target. These asteroids will be created at
random points on the surface of an invisible sphere, and will be con‐
figured so that their “forward” direction is aiming at an object in the
game. Additionally, the asteroid spawner will make use of Unity’s
“Gizmos” feature, which allows you to show extra information in the

268 | Chapter 12: Asteroids and Damage

scene view, to visualize the volume of space where asteroids will
appear.

First, let’s turn the prototype asteroid that you created in the last sec‐
tion into a prefab. We’ll then create and set up the Asteroid Spawner.

1. Make the asteroid a prefab. Drag the Asteroid object from the
Hierarchy panel into the Project panel. This will create a prefab
from the object. Next, delete the Asteroid from the scene.

2. Create the Asteroid Spawner. Make a new empty game object,
and name it “Asteroid Spawner”. Set its position to (0,0,0).
Next, add a new C# script called AsteroidSpawner.cs, and add
the following code to it:

 public class AsteroidSpawner : MonoBehaviour {

 // The radius of the spawn area
 public float radius = 250.0f;

 // The asteroids to spawn
 public Rigidbody asteroidPrefab;

 // Wait spawnRate ± variance seconds between each asteroid
 public float spawnRate = 5.0f;
 public float variance = 1.0f;

 // The object to aim the asteriods at
 public Transform target;

 // If false, disable spawning
 public bool spawnAsteroids = false;

 void Start () {
 // Start the coroutine that creates asteroids
 // immediately
 StartCoroutine(CreateAsteroids());
 }

 IEnumerator CreateAsteroids() {

 // Loop forever
 while (true) {

 // Work out when the next asteroid should appear
 float nextSpawnTime
 = spawnRate + Random.Range(-variance, variance);

 // Wait that much time

Asteroids | 269

 yield return new WaitForSeconds(nextSpawnTime);

 // Additionally, wait until physics is about to
 // update
 yield return new WaitForFixedUpdate();

 // Create the asteroid
 CreateNewAsteroid();
 }

 }

 void CreateNewAsteroid() {

 // If we're not currently spawning asteroids, bail out
 if (spawnAsteroids == false) {
 return;
 }

 // Randomly select a point on the surface of the sphere
 var asteroidPosition = Random.onUnitSphere * radius;

 // Scale this by the object's scale
 asteroidPosition.Scale(transform.lossyScale);

 // And offset it by the asteroid spawner's location
 asteroidPosition += transform.position;

 // Create the new asteroid
 var newAsteroid = Instantiate(asteroidPrefab);

 // Place it at the spot we just calculated
 newAsteroid.transform.position = asteroidPosition;

 // Aim it at the target
 newAsteroid.transform.LookAt(target);
 }

 // Called by the editor while the spawner object
 // is selected.
 void OnDrawGizmosSelected() {

 // We want to draw yellow stuff
 Gizmos.color = Color.yellow;

 // Tell the Gizmos drawer to use our current position
 // and scale
 Gizmos.matrix = transform.localToWorldMatrix;

 // Draw a sphere representing the spawn area
 Gizmos.DrawWireSphere(Vector3.zero, radius);

270 | Chapter 12: Asteroids and Damage

 }

 public void DestroyAllAsteroids() {
 // Remove all asteroids in the game
 foreach (var asteroid in
 FindObjectsOfType<Asteroid>()) {
 Destroy (asteroid.gameObject);
 }
 }
 }

The AsteroidSpawner script uses the coroutine CreateAsteroids to
continuously create new asteroid objects by calling CreateNewAste
roid, waiting a moment, and then repeating the process.

Additionally, the OnDrawGizmosSelected method causes a wire‐
frame sphere to appear around it when selected. This sphere repre‐
sents the locations where asteroids come from: they’ll appear at the
surface of the sphere and move toward the target.

3. Flatten the Asteroid Spawner. Set the Asteroid Spawner’s Scale to
(1,0.1,1). Doing this will make the asteroids mostly appear in a
circle around their target, rather than in a sphere (Figure 12-3).

Figure 12-3. The Asteroid Spawner, in the Scene View

4. Configure the AsteroidSpawner. Drag the Asteroid prefab that
you just created into the Asteroid Prefab slot, and drag the
Space Station object into the Target slot. Turn Spawn Asteroids
on.

5. Test the game. Asteroids will start appearing, and moving
toward the space station!

Asteroids | 271

Damage-Dealing and Taking
Your ship can now fly around the space station and all of the aste‐
roids that are being hurled toward it, but the shots that you’re firing
don’t actually do anything. We need to add the capability to both
inflict and respond to damage.

“Damage,” in this game, simply means that some objects have “hit
points,” which is a number representing their health. If an object’s
hit points are reduced to zero, the object is removed from the game.

Some objects will be able to deal damage, and some objects will be
able to inflict damage. Some objects will be able to do both, such as
the asteroids—they can receive damage dealt to them by the laser
shots, and they can inflict damage to things they hit, like the space
station.

To make this work, we’ll create two separate scripts: DamageTaking,
and DamageOnCollide.

• The DamageTaking script maintains the number of hit points
that the object it’s attached to has remaining, and removes the
object from the game when this reaches zero. DamageTaking
also exposes a method, TakeDamage, which is called by other
objects to inflict damage upon it.

• The DamageOnCollide script runs code when it collides with any
object, or enters a trigger area. If the object it collides with has a
DamageTaking component, the DamageOnCollide script calls its
TakeDamage method.

The DamageOnCollide script will be added to the Shot and Asteroid,
while the DamageTaking script will be added to the Space Station
and Asteroid.

Let’s get started by making the asteroids take damage:

1. Add the DamageTaking script to asteroids. Select the Asteroid
prefab in the Project pane, add a new C# script called Damage‐
Taking.cs to it, and add the following code to the file:

 public class DamageTaking : MonoBehaviour {

 // The number of hit points this object has
 public int hitPoints = 10;

272 | Chapter 12: Asteroids and Damage

 // If we're destroyed, create one of these at
 // our current position
 public GameObject destructionPrefab;

 // Should we end the game if this object is destroyed?
 public bool gameOverOnDestroyed = false;

 // Called by other objects (like Asteroids and Shots)
 // to take damage
 public void TakeDamage(int amount) {

 // Report that we got hit
 Debug.Log(gameObject.name + " damaged!");

 // Deduct the amount from our hit points
 hitPoints -= amount;

 // Are we dead?
 if (hitPoints <= 0) {

 // Log it
 Debug.Log(gameObject.name + " destroyed!");

 // Remove ourselves from the game
 Destroy(gameObject);

 // Do we have a destruction prefab to use?
 if (destructionPrefab != null) {

 // Create it at our current position
 // and with our rotation.
 Instantiate(destructionPrefab,
 transform.position, transform.rotation);
 }

 }

 }

 }

The DamageTaking script simply keeps track of the number of hit
points the object has, and provides a method that other objects can
call to apply damage. If the hit points ever reaches zero or below, the
object is destroyed, and if a destruction prefab (such as an explo‐
sion, which we’ll add in “Explosions” on page 276) was provided, it’s
created.

Damage-Dealing and Taking | 273

2. Configure the Asteroid. Change the asteroid’s Hit Points variable
to 1. This will make the asteroid very easy to destroy.

Next, we’ll make the Shot objects deal damage to anything they hit.

3. Add the DamageOnCollide script to shots. Select the Shot prefab,
add a new C# script called DamageOnCollide.cs to it, and add
the following code to the file:

 public class DamageOnCollide : MonoBehaviour {

 // The amount of damage we'll deal to anything we hit.
 public int damage = 1;

 // The amount of damage we'll deal to ourselves when we
 // hit something.
 public int damageToSelf = 5;

 void HitObject(GameObject theObject) {
 // Do damage to the thing we hit, if possible
 var theirDamage =
 theObject.GetComponentInParent<DamageTaking>();
 if (theirDamage) {
 theirDamage.TakeDamage(damage);
 }

 // Do damage to ourself, if possible
 var ourDamage =
 this.GetComponentInParent<DamageTaking>();
 if (ourDamage) {
 ourDamage.TakeDamage(damageToSelf);
 }
 }

 // Did an object enter this trigger area?
 void OnTriggerEnter(Collider collider) {
 HitObject(collider.gameObject);
 }

 // Did an object collide with us?
 void OnCollisionEnter(Collision collision) {
 HitObject(collision.gameObject);
 }
 }

The DamageOnCollide script is also very simple; if it detects either a
collision, or an object intersecting with the object’s trigger collider
(which is the case for the ship), the HitObject method is called,

274 | Chapter 12: Asteroids and Damage

which determines if the hit object has a DamageTaking component.
If it does, that component’s TakeDamage method is called. Addition‐
ally, we do the same thing on the current object; the reason for this is
that, if an asteroid hits the space station, we want to destroy it as
well as make the space station take some damage.

4. Test the game. Fly around, and shoot some asteroids. When a
shot hits an asteroid, the asteroid will vanish.

Next, we’ll make the space station destructible.

5. Add DamageTaking to the Space Station. Select the Space Station,
and add a DamageTaking script component.
Turn on Game Over On Destruction. This won’t do anything
yet, but it will be used later to make the game end when the
space station is destroyed.
When you’re done, the Inspector for the Space Station should
look like Figure 12-4.

Figure 12-4. Adding the DamageTaking script to the space station

Damage-Dealing and Taking | 275

Explosions
When an asteroid is destroyed, it simply vanishes. This isn’t terribly
satisfying—it would be better to have the asteroid vanish in an
explosion.

One of the best ways to create explosions is using a particle effect.
Particle effects are great for situations where you want an element of
natural-looking randomness. They’re great for things like smoke,
fire, wind, and (of course) explosions.

The explosion in this game will be composed of two particle effects.
The first particle effect will create an initial bright flash. The second
will leave behind some dust that eventually fades away.

When working with particle effects, it’s important to have your
resources already lined up. In particular, you need to decide whether
your particle effect needs to use a custom material, or whether it
should use the default particle material. The default material is just a
blurry circle, which is useful for lots of things, but if you need to add
more detail to your effect, you’ll need to create your own material.

We can use the default particle material for the flash, but we’ll need
to create a custom material for the dust cloud. While you could re-
create a dust cloud using lots of very small instances of the default
particle, you get a much better looking effect for much less effort if
you just use a picture of dust as your starting point.

1. Create the Dust material. Open the Asset menu, and choose
Create → Material. Name the new material “Dust”.

2. Configure the material. Select the material and change its shader
to Particles/Additive.
Next, drag the Dust texture into the Particle Texture slot.
Set the tint color to a semiopqaue dark gray by clicking on the
Tint Color slot and selecting a color. If you’d prefer to enter spe‐
cific values, enter these: (70, 70, 70, 190). See Figure 12-5 for an
example.

276 | Chapter 12: Asteroids and Damage

Figure 12-5. The Dust material’s tint color

Finally, set the Soft Particles Factor to 0.8.

When you’re done, the material’s Inspector should look like
Figure 12-6.

Damage-Dealing and Taking | 277

Figure 12-6. The Dust material

We can now create the particle systems. First, we’ll create the empty
container object for the explosion, and then we’ll create and set up
the two particle systems.

1. Create the Explosion object. Create a new empty object, and
name it “Explosion”.

2. Create the Fireball object. Create a second empty object, and
name it “Fireball”. Make this object a child of the Explosion
object.

3. Add and configure the particle effect for the Fireball. Select the
Fireball, and add a new Particle Effect component.
Set up the particle effect as in Figure 12-7.

278 | Chapter 12: Asteroids and Damage

Figure 12-7. The Inspector for the Fireball’s particle effect

Damage-Dealing and Taking | 279

While most of these parameters are numbers
that you can just enter in, there’s a couple that
need some explanation:

• The color over lifetime gradient looks like
Figure 12-8.

The alpha values for the gradient are:

• 0 at 0%
• 255 at 12%
• 0 at 100%

The color values are:

• White at 0%
• Light tan at 12%
• Dark tan at 57%
• White at 100%

The size over lifetime starts at zero, goes to
about 3 at 35% of the way through, and returns
to zero at the end (see Figure 12-9).

Figure 12-8. The color-over-lifetime gradient for the explosion’s fireball

280 | Chapter 12: Asteroids and Damage

Figure 12-9. The size-over-lifetime curve for the explosion’s fireball

The Fireball object creates that initial, short-lived flash for the
explosion. The second particle effect, which we’re about to add, will
be the Dust effect.

1. Create the Dust object. Make an empty game object, and name it
“Dust”. Make it a child of the Explosion object.

2. Add and configure the particle system. Add a new Particle Sys‐
tem component, and set it up as per Figure 12-10.

Damage-Dealing and Taking | 281

Figure 12-10. The inspector for the Dust particle

282 | Chapter 12: Asteroids and Damage

Some things that aren’t immediately copyable
from Figure 12-10:

• The Material used by the Renderer is the
Dust material you just made. Simply drag
and drop it into the Material slot.

• The start color is the RGBA value [130, 130,
120, 45]. Click on the Start Color variable,
and enter these numbers.

• The size over lifetime is a straight line,
going from 0% to 100%.

• The color over lifetime looks like
Figure 12-11—the color is a constant tan
color, and the alpha goes from 0 at 0%, to
255 at 14%, to 0 at 100%.

Figure 12-11. The color-over-lifetime for the explosion’s dust particles

You’re all done! You can now use this explosion for your asteroids:

1. Convert the object into a prefab. Drag the Explosion object into
the Project pane, and then remove it from the scene.

Damage-Dealing and Taking | 283

2. Make the asteroids use the explosion when they’re destroyed.
Select the Asteroid prefab, and drag the Explosion into the
Destruction Prefab slot.

3. Test it out. When you shoot down the asteroids, they’ll explode!

Wrapping Up
Now that the asteroids and damage model have been created, we’re
close to having a full game. In the next chapter, we’ll start to polish
this thing, and turn it into a bigger, better experience.

284 | Chapter 12: Asteroids and Damage

CHAPTER 13

Audio, Menus, Death,
and Explosions!

The core gameplay of your space shooter is done, but it’s not a com‐
plete game yet. In order to be playable outside of Unity, you’ll need
to add menus and other controls that let the player navigate around
the game as an application. Finally, we’ll polish up the game by
replacing the temporary art with higher-fidelity 3D models and
materials.

Menus
Right now, the gameplay is entirely constrained to the editor’s Play
button. When you start the game, you’re in the action immediately,
and if your space station is destroyed, you have to stop the game and
start it again.

To provide the player with a little more context for their game, we
need to add menus. In particular, we need to add an especially
important button: “New Game.” If the space station is destroyed, we
need a way to let the player start again.

Adding the menu structure to a game goes a long way toward mak‐
ing the game feel complete. We’ll be adding four components as part
of the menus:

Main Menu
This screen presents the game’s title, and shows the New Game
button.

285

Paused screen
This screen shows the text “Paused,” and contains a button to
unpause.

Game Over screen
This screen shows Game Over and the New Game buttons.

In-Game UI
This screen contains the joystick, indicators, Fire button, and
everything else that the player actually sees while playing the
game.

Each of these UI groups will be exclusive—only one will appear at a
time. The game will start with the Main Menu, and when you click
on the New Game button, the menu will disappear and be replaced
with the In-Game UI (in addition to the actual game action being
started).

Unity’s UI system lets you test your menu using
your computer’s mouse or touchpad. However,
you should still test how the menu feels on a real
touchscreen as you develop it, such as through
the Unity Remote app (see “Unity Remote” on
page 79.)

The first step in this process is to bring the In-Game UI components
together into a single object, so that it can be managed all at once.

1. Create the In-Game UI container. Select the Canvas object, and
make a new empty child object. Name this object “In-Game UI”.

2. Configure the container. Make In-Game UI’s anchors to stretch
horizontally and vertically, and set the left, top, bottom, and
right margins to zero. This makes it fill the entire canvas.

Next, we’ll bring all of the existing UI elements together into the
container.

3. Group the game’s UI. Select every child of the canvas except the
In-Game UI container, and move it into In-Game UI.

We’ll now start building the other menus. Before we begin, it’s help‐
ful to turn off the In-Game UI, so that it doesn’t distract from the
other UI content you’re about to build.

286 | Chapter 13: Audio, Menus, Death, and Explosions!

4. Disable the In-Game UI. Select the In-Game UI object, and dis‐
able it by clicking the checkbox at the top-left of the Inspector.
When you’re done, it should look like Figure 13-1.

Figure 13-1. The In-Game UI, shown disabled; also note the size and
position of the object, which is set to fill the entire canvas with no bor‐
der

Main Menu
The content of the Main Menu is very simple—it’s a text label that
shows the game’s title (“Rockfall”), and a button that creates a new
game.

Much like the In-Game UI, the Main Menu will be composed of an
empty container object, with all of the UI components that belong to
the menu added as a child.

1. Create the Main Menu container. Create a new empty game
object, and make it a child of the Canvas. Name it “Main Menu”.
Make it fill the entire canvas by setting it to stretch horizontally
and vertically. Set all of the margin values to zero.

Menus | 287

2. Create the title label. Create a new Text object by opening the
GameObject menu, and choosing UI → Text. Make it a child of
the Main Menu, and name it “Title”.
Set the anchor of this new Text object to Center Top. Set the Pos
X value to 0, and the Pos Y to -100. Set the height to 120, and
the width to 1024.
Next, you’ll need to set up the text itself. Set the text’s color to
the hex color #FFE99A (slightly yellow-y), the text’s alignment
to center, and the text itself to “Rockfall”. Additionally, turn on
the Best Fit setting. This will make the text automatically size
itself to fit the Text object’s boundaries. Finally, drag the At
Night font into the Font Slot.

3. Create the Button. Create a new Button object, and name it
“New Game”. Make it a child of the Main Menu.
Set the anchors of the button to be center top, and set the X and
Y position values to [0, -300]. Set its height to 330, and its height
to 80.
Set the Source Image of the button to the Button sprite, and set
its Image Type to Sliced.
Select the Text child object, and change its text value to “New
Game”. Set the Font as CRYSTAL-Regular, the Font Size to 28,
and the Color as 3DFFD0FF.

When you’re done, the menu should look like Figure 13-2.

Figure 13-2. The Main Menu

Before you continue, disable the Main Menu container.

288 | Chapter 13: Audio, Menus, Death, and Explosions!

Paused Screen
The Paused screen shows the text “Paused”, along with a button to
unpause the game. To build it, follow the same steps as you did for
the Main Menu, but with the following changes:

• The container object should be called “Paused”.
• The text of the Title object should be “Paused”.
• The button object should be called “Unpause Button”.
• The text of the button should be “Unpause”.

When you’re done, the Pause menu should look like Figure 13-3.

Figure 13-3. The Pause menu

Disable the Paused container before building the final menu: the
Game Over screen.

Game Over Screen
The Game Over screen shows the text “Game Over”, along with a
button to start the game again. The Game Over screen will appear
when the space station is destroyed, which will end the game.

Again, follow the same steps as for the Main Menu and Paused
screens, but with the following changes:

• The container object should be called “Game Over”.
• The text of the Title object should be “Game Over”.
• The button object should be called “New Game Button”.

Menus | 289

• The text of the button should be “New Game”.

When you’re done, the Game Over screen should look like
Figure 13-4.

Figure 13-4. The Game Over menu

All three of these new menus are pretty much
identical, and you might be wondering why
you’ve done the same work three times. The rea‐
son is that you’ll want to customize them later,
and breaking them apart now will save you work
later.

There’s one last UI component that we need to add to the game, and
that’s a way to Pause the game.

Adding a Pause Button
The Pause button will appear at the top-right of the In-Game UI,
and will signal to the game that the user wants to stop the action for
a moment.

To build the Pause button, you first need to create a new Button
object, and make it a child of the In-Game UI container object.
Name it “Pause Button”.

Set the anchors of the Pause button to the top-right, and set the X
and Y position values to [-50, -30]. Set the width to 80, and the
height to 70.

290 | Chapter 13: Audio, Menus, Death, and Explosions!

Set the Source Image of the Image component to the Button sprite.

Set the text of the Text child object to “Pause”. Set its font to
CRYSTAL-Regular, and its size to 28. Set its color to #3DFFD0FF.

Congratulations! Your UI is all done. However, none of the buttons
that you’ve set up work correctly. In order for it all to work, you’ll
need to add a Game Manager to coordinate everything.

Game Manager and Death
The Game Manager, much like the Input Manager and the Indicator
Manager, is a singleton object. The Game Manager has two main
jobs:

• Managing the state of the game and the menus, and
• Spawning the ship and station

When the game starts, the game will be in an unstarted state. The
ship and station won’t be in the scene, and the asteroid spawner
won’t be creating an asteroids. Additionally, the Game Manager will
display the Main Menu container object, and hide every other menu.

When the user taps the New Game button, the In-Game UI will be
displayed, the ship and station created, and the asteroid spawner will
be told to start creating asteroids. Additionally, the Game Manager
will set up some important elements of the game: the Camera Fol
low script will be told to follow the new Ship object, and the Aste‐
roid Spawner will be told to aim its asteroids at the Space Station.

Finally, the Game Manager will handle the Game Over state. You
might recall from earlier that the DamageTaking script has a check‐
box called “Game Over On Destroyed”. We’ll be setting that up to
instruct the Game Manager to end the game whenever the object
that the script is attached to is destroyed, if the checkbox is on. End‐
ing the game is simply a matter of turning off the asteroid spawner,
and destroying the current ship (and the station, if it happens to still
be around).

Before we get started building the Game Manager, we need to be
able to create multiple copies of the Ship and the Station. This
requires turning both of these objects into prefabs, and also defining
the positions at which they’ll both appear.

Game Manager and Death | 291

Turn the Ship and Space Station into prefabs. Drag and drop the
Ship into the Project pane to create the prefab, and then remove it
from the scene. Repeat this process for the Space Station.

Start Points
We’ll now create two marker objects, which will serve as indicators
for where the Ship and Space Station should be created when a new
game starts. These indicators won’t be visible to the player, but we’ll
make them visible to you inside the editor.

1. Create the Ship position marker. Create a new empty game
object, and name it “Ship Start Point”.
Click the icon at the top-left of the Inspector and choose the red
label (see Figure 13-5). The object will now appear in the scene
view, despite being invisible to the player.
Position the marker where you want the ship to appear.

Figure 13-5. Selecting a label for the ship’s start point

2. Create the Space Station position marker. Repeat these steps, this
time creating an object called “Station Start Point”. Position it
where you want the space station to appear.

With this done, we’re now able to create and set up the Game Man‐
ager.

292 | Chapter 13: Audio, Menus, Death, and Explosions!

Creating the Game Manager
The Game Manager largely serves as a central point for storing criti‐
cal information about the game, such as references to the current
Ship and Space Station, as well as changing the state of important
game objects when either a button is clicked or when a Damage
Taking script reports that the game should end.

To set up the Game Manager, create a new empty game object called
Game Manager, add a new C# script to it called GameManager.cs,
and add the following code to the file:

 public class GameManager : Singleton<GameManager> {

 // The prefab to use for the ship, the place it starts from,
 // and the current ship object
 public Gameobject shipPrefab;
 public Transform shipStartPosition;
 public GameObject currentShip {get; private set;}

 // The prefab to use for the space station, the place
 // it starts from, and the current ship object
 public GameObject spaceStationPrefab;
 public Transform spaceStationStartPosition;
 public GameObject currentSpaceStation {get; private set;}

 // The follow script on the main camera
 public SmoothFollow cameraFollow;

 // The containers for the various bits of UI
 public GameObject inGameUI;
 public GameObject pausedUI;
 public GameObject gameOverUI;
 public GameObject mainMenuUI;

 // Is the game currently playing?
 public bool gameIsPlaying {get; private set;}

 // The game's Asteroid Spawner
 public AsteroidSpawner asteroidSpawner;

 // Keeps track of whether the game is paused or not.
 public bool paused;

 // Show the main menu when the game starts
 void Start() {
 ShowMainMenu();
 }

 // Shows a UI container, and hides all others.

Game Manager and Death | 293

 void ShowUI(GameObject newUI) {

 // Create a list of all UI containers.
 GameObject[] allUI
 = {inGameUI, pausedUI, gameOverUI, mainMenuUI};

 // Hide them all.
 foreach (GameObject UIToHide in allUI) {
 UIToHide.SetActive(false);
 }

 // And then show the provided UI container.
 newUI.SetActive(true);
 }

 public void ShowMainMenu() {
 ShowUI(mainMenuUI);

 // We aren't playing yet when the game starts
 gameIsPlaying = false;

 // Don't spawn asteroids either
 asteroidSpawner.spawnAsteroids = false;
 }

 // Called by the New Game button being tapped
 public void StartGame() {
 // Show the In-Game UI
 ShowUI(inGameUI);

 // We're now playing
 gameIsPlaying = true;

 // If we happen to have a ship, destroy it
 if (currentShip != null) {
 Destroy(currentShip);
 }

 // Likewise for the station
 if (currentSpaceStation != null) {
 Destroy(currentSpaceStation);
 }

 // Create a new ship, and place it
 // at the start position
 currentShip = Instantiate(shipPrefab);
 currentShip.transform.position
 = shipStartPosition.position;
 currentShip.transform.rotation
 = shipStartPosition.rotation;

294 | Chapter 13: Audio, Menus, Death, and Explosions!

 // And likewise for the station
 currentSpaceStation = Instantiate(spaceStationPrefab);

 currentSpaceStation.transform.position =
 spaceStationStartPosition.position;

 currentSpaceStation.transform.rotation =
 spaceStationStartPosition.rotation;

 // Make the follow script track the new ship
 cameraFollow.target = currentShip.transform;

 // Start spawning asteroids
 asteroidSpawner.spawnAsteroids = true;

 // And aim the spawner at the new space station
 asteroidSpawner.target = currentSpaceStation.transform;

 }

 // Called by objects that end the game
 // when they're destroyed
 public void GameOver() {
 // Show the Game Over UI
 ShowUI(gameOverUI);

 // We're no longer playing
 gameIsPlaying = false;

 // Destroy the ship and the station
 if (currentShip != null)
 Destroy (currentShip);

 if (currentSpaceStation != null)
 Destroy (currentSpaceStation);

 // Stop spawning asteroids
 asteroidSpawner.spawnAsteroids = false;

 // And remove all lingering asteroids from the game
 asteroidSpawner.DestroyAllAsteroids();
 }

 // Called when the Pause or Resume buttons are tapped
 public void SetPaused(bool paused) {

 // Switch between the in-game and paused UI
 inGameUI.SetActive(!paused);
 pausedUI.SetActive(paused);

 // If we're paused..

Game Manager and Death | 295

 if (paused) {
 // Stop time
 Time.timeScale = 0.0f;
 } else {
 // Resume time
 Time.timeScale = 1.0f;
 }
 }

 }

The Game Manager script is bulky, but simple. It has two main
functions: managing the appearance of the menus and In-Game UI
and creating and destroying the space station and ship when the
game begins and ends.

Let’s walk through what it does, one step at a time.

Initial setup

The Start method is called when the Game Manager first appears
in the scene—that is, at the start of the game. The only thing that it
does is cause the main menu to appear, calling ShowMainMenu.

 // Show the main menu when the game starts
 void Start() {
 ShowMainMenu();
 }

In order to show any UI, we use a method called ShowUI that han‐
dles the presentation of the desired UI object and the dismissal of all
other UI objects. It does this by hiding all UI objects, and then un-
hiding the desired UI element:

 // Shows a UI container, and hides all others.
 void ShowUI(GameObject newUI) {

 // Create a list of all UI containers.
 GameObject[] allUI
 = {inGameUI, pausedUI, gameOverUI, mainMenuUI};

 // Hide them all.
 foreach (GameObject UIToHide in allUI) {
 UIToHide.SetActive(false);
 }

 // And then show the provided UI container.
 newUI.SetActive(true);
 }

296 | Chapter 13: Audio, Menus, Death, and Explosions!

With this implemented, ShowMainMenu can be implemented. All it
does is show the main menu UI (via ShowUI), and indicates to the
game that gameplay isn’t currently happening, and that the asteroid
spawner should not be spawning asteroids:

 public void ShowMainMenu() {
 ShowUI(mainMenuUI);

 // We aren't playing yet when the game starts
 gameIsPlaying = false;

 // Don't spawn asteroids either
 asteroidSpawner.spawnAsteroids = false;
 }

Starting the game

The StartGame method, which is called when the New Game button
is tapped, shows the In-Game UI (which hides the other UI as a
result), and sets up the scene for gameplay by removing any existing
ship or station, and creating new ones. It also makes the camera start
tracking the newly created ship, and tells the asteroid spawner to
start throwing asteroids at the newly created station:

 // Called by the New Game button being tapped
 public void StartGame() {
 // Show the In-Game UI
 ShowUI(inGameUI);

 // We're now playing
 gameIsPlaying = true;

 // If we happen to have a ship, destroy it
 if (currentShip != null) {
 Destroy(currentShip);
 }

 // Likewise for the station
 if (currentSpaceStation != null) {
 Destroy(currentSpaceStation);
 }

 // Create a new ship, and place it
 // at the start position
 currentShip = Instantiate(shipPrefab);
 currentShip.transform.position
 = shipStartPosition.position;
 currentShip.transform.rotation
 = shipStartPosition.rotation;

Game Manager and Death | 297

 // And likewise for the station
 currentSpaceStation = Instantiate(spaceStationPrefab);

 currentSpaceStation.transform.position =
 spaceStationStartPosition.position;

 currentSpaceStation.transform.rotation =
 spaceStationStartPosition.rotation;

 // Make the follow script track the new ship
 cameraFollow.target = currentShip.transform;

 // Start spawning asteroids
 asteroidSpawner.spawnAsteroids = true;

 // And aim the spawner at the new space station
 asteroidSpawner.target = currentSpaceStation.transform;

 }

Ending the game

The GameOver method will be called by certain objects that, when
they’re destroyed, end the game. It shows the Game Over UI, stops
gameplay, and destroys the current ship and station. Additionally,
asteroid spawning is stopped, and all remaining asteroids are
removed. Essentially, we’re returning to the initial starting condi‐
tions of the game:

 // Called by objects that end the game when they're destroyed
 public void GameOver() {
 // Show the Game Over UI
 ShowUI(gameOverUI);

 // We're no longer playing
 gameIsPlaying = false;

 // Destroy the ship and the station
 if (currentShip != null)
 Destroy (currentShip);

 if (currentSpaceStation != null)
 Destroy (currentSpaceStation);

 // Stop spawning asteroids
 asteroidSpawner.spawnAsteroids = false;

 // And remove all lingering asteroids from the game

298 | Chapter 13: Audio, Menus, Death, and Explosions!

 asteroidSpawner.DestroyAllAsteroids();
 }

Pausing the game

The SetPaused method is called when either the Pause or Resume
buttons are tapped. All it does is manage the display of the pause UI,
and stop or resume the flow of time.

 // Called when the Pause or Resume buttons are tapped
 public void SetPaused(bool paused) {

 // Switch between the in-game and paused UI
 inGameUI.SetActive(!paused);
 pausedUI.SetActive(paused);

 // If we're paused..
 if (paused) {
 // Stop time
 Time.timeScale = 0.0f;
 } else {
 // Resume time
 Time.timeScale = 1.0f;
 }
 }

Setting Up the Scene
With the code written, we can now set up the Game Manager in the
scene. Configuring the Game Manager is entirely a matter of con‐
necting objects in the scene to variables in the script:

• Ship Prefab should be the ship prefab you just made.
• Ship start position should be the ship start position in the scene.
• Station prefab should be the station prefab you just made.
• Station start position should be the station start position in the

scene.
• Camera Follow should be the Main Camera in the scene.
• In-Game UI, Main Menu UI, Paused UI, and Game Over UI

should be their equivalent UIs in the scene.
• Asteroid Spawner should be the Asteroid Spawner object in the

scene.
• Leave Warning UI for now; that’s for the next section.

Game Manager and Death | 299

When you’re done, the Inspector for the Game Manager should look
like Figure 13-6.

Figure 13-6. The Inspector for the Game Manager

Now that the Game Manager is set up, we need to connect the vari‐
ous buttons that are in the Game UI to the Game Manager.

1. Connect the Pause button. Select the Pause button in the In-
Game UI, and click the + button at the bottom of the Clicked
event. Drag the Game Manager into the slot that appears, and
change the function to GameManager → SetPaused. A check‐
box will appear; turn it on. This has the effect of calling the Set
Paused method on the Game Manager, and passing in the
boolean value true.

2. Connect the Unpause button. Select the Unpause button in the
Paused menu. Perform the same set of steps as for the Pause
button, but with one change: turn the checkbox off. This will
make the button call SetPaused with the boolean value false.

3. Connect the New Game buttons. Select the New Game button in
the Main Menu, and click the + button at the bottom of the
Clicked event. Drag the Game Manager into the slot, and
change the function to GameManager → StartGame.

300 | Chapter 13: Audio, Menus, Death, and Explosions!

Next, repeat these steps for the New Game button in the Game
Over screen.

The buttons will now be set up! Before we’re done, there are a few
more minor things we need to set up to get the full gameplay experi‐
ence.

First, we need to make it so that destroying the Space Station ends
the game. The Space Station already has the DamageTaking script on
it; we need to make this script call the GameOver function on the
Game Manager.

4. Add the call to GameOver in DamageTaking.cs. Open the file and
add the following code:

 public class DamageTaking : MonoBehaviour {

 // The number of hit points this object has
 public int hitPoints = 10;

 // If we're destroyed, create one of these at
 // our current position
 public GameObject destructionPrefab;

 // Should we end the game if this object is destroyed?
 public bool gameOverOnDestroyed = false;

 // Called by other objects (like Asteroids and Shots)
 // to take damage
 public void TakeDamage(int amount) {

 // Report that we got hit
 Debug.Log(gameObject.name + " damaged!");

 // Deduct the amount from our hit points
 hitPoints -= amount;

 // Are we dead?
 if (hitPoints <= 0) {

 // Log it
 Debug.Log(gameObject.name + " destroyed!");

 // Remove ourselves from the game
 Destroy(gameObject);

 // Do we have a destruction prefab to use?
 if (destructionPrefab != null) {

Game Manager and Death | 301

 // Create it at our current position
 // and with our rotation.
 Instantiate(destructionPrefab,
 transform.position, transform.rotation);
 }

> // If we should end the game now, call the
> // GameManager's GameOver method.
> if (gameOverOnDestroyed == true) {
> GameManager.instance.GameOver();
> }
 }

 }

 }

This code makes the object check to see if the gameOverOnDestroyed
variable is set to true; if it is, the Game Manager’s GameOver method
is called, ending the game.

We also need to make the asteroids inflict damage when they collide.
To do this, we’ll add a DamageOnCollide script to them.

To make the asteroids apply damage, select the Asteroid prefab, and
add a DamageOnCollide component.

Next, the asteroids should display their distance to the space station.
This will help the player decide which asteroid is the most important
one to go over. We’ll do this by modifying the Asteroid script to
query the Game Manager for the current space station, which is
then given to the showDistanceTo variable of the asteroid’s indica‐
tor.

To make the asteroid show the distance label, open Asteroid.cs, and
add the following code to the Start function:

 public class Asteroid : MonoBehaviour {

 // The speed at which the asteroid moves.
 public float speed = 10.0f;

 void Start () {
 // Set the velocity of the rigidbody
 GetComponent<Rigidbody>().velocity
 = transform.forward * speed;

 // Create a red indicator for this asteroid
 var indicator =
 IndicatorManager.instance.AddIndicator(

302 | Chapter 13: Audio, Menus, Death, and Explosions!

 gameObject, Color.red);

> // Track the distance from this object to
> // the current space station that's
> // managed by the GameManager
> indicator.showDistanceTo =
> GameManager.instance.currentSpaceStation
> .transform;
 }

 }

This code sets up the indicator to show the distance from the aste‐
roid to the current space station, which helps the player to prioritize
the asteroids that are closest to the station.

You’re done!

Play the game. You can now fly around and shoot asteroids, and
asteroids will destroy the space station if too many hit it; you can
also destroy the space station by shooting at it, and if the station is
destroyed, game over!

Boundaries
There’s one last core piece of gameplay that we need to add: we want
to warn the player if they’re getting too far away from the space sta‐
tion. If the player goes too far, we’ll show a red warning border
around the edges of the screen; if turn around, it’s game over.

Creating the UI
First, we’ll set up the UI for the warning:

1. Add the Warning sprite. Select the Warning texture. Change the
texture’s type to Sprite/UI.
What we need to do is slice the sprite, so that it can be stretched
over the entire screen without distorting the shape of the cor‐
ners.

2. Slice the sprite. Click the Sprite Editor button, and the sprite will
appear in a new window. In the panel at the lower-right of the
window, set the border to 127 for all sides. This will make the
corners not get stretched (see Figure 13-7).

Boundaries | 303

Figure 13-7. Slicing the Warning sprite

Click the Apply button.
3. Next, we’ll create the Warning UI. This will simply be an image

displayed on the UI, which will be set to stretch over the entire
screen.
To set up the warning UI, create a new empty game object, and
name it “Warning UI”. Make it a child of the Canvas object.
Set the anchors to stretch horizontally and vertically, and set the
margins to zero. This will make it fill the entire canvas.
Add an Image component to it. Make the Source Image of this
Image component be the Warning sprite that you just created,
and set the Image Type to sliced. The image will be stretched
over the entire screen.

With that done, it’s time to code it up.

Coding the Boundary
The boundaries are invisible to the player, which means that they’ll
be invisible while editing the game. If you want to visualize the vol‐
ume in which the player can fly around, you’ll need to use the Giz‐
mos feature again, just like you did for the Asteroid Spawner.

304 | Chapter 13: Audio, Menus, Death, and Explosions!

There are two concentric spheres that we care about, which we’ll call
the warning sphere and the destroy sphere. Both of these spheres will
be centered on the same point, but they’ll have different radii: the
warning sphere’s radius will be less than that of the destroy sphere.

• If the ship’s position is within the warning sphere, then all is
good, and no warning will be visible.

• If the ship is outside the warning sphere, then the warning will
appear on screen, which will signal to the player that they need
to turn around and head back.

• If the ship is outside the destroy sphere, the game ends.

The actual checking of the ship’s position will be handled by the
Game Manager, which will use the data stored inside the Boundary
object (which you’re about to create) to determine whether the ship
is outside either of the two spheres.

Let’s get started by creating the Boundary object, and adding the
code that visualizes the two spheres:

1. Create the Boundary object. Create a new empty object, with the
name “Boundary”.
Add a new C# script to the object called Boundary.cs, and add
the following code to it:

 public class Boundary : MonoBehaviour {

 // Show the warning UI when the player is this far from the
 // center
 public float warningRadius = 400.0f;

 // End the game when the player is this far from the center
 public float destroyRadius = 450.0f;

 public void OnDrawGizmosSelected() {
 // Show a yellow sphere with the warning radius
 Gizmos.color = Color.yellow;
 Gizmos.DrawWireSphere(transform.position,
 warningRadius);

 // And show a red sphere with the destroy radius
 Gizmos.color = Color.red;
 Gizmos.DrawWireSphere(transform.position,
 destroyRadius);
 }
 }

Boundaries | 305

When you return to the game editor, you’ll see two wireframe
spheres. The yellow sphere shows the warning radius, and the red
sphere shows the destroy radius (as seen in Figure 13-8).

Figure 13-8. The boundaries

The Boundary script doesn’t actually do any logic
of its own in-game. Instead, the GameManager
uses its data to determine if the player has flown
beyond the boundary radii.

Now that the boundary object has been created, we just need to set
up the Game Manager to use it.

2. Add the boundary fields to the GameManager script, and update
GameManager to use them. Add the following code to GameMan‐
ager.cs:

 public class GameManager : Singleton<GameManager> {

 // The prefab to use for the ship, the place it starts from,
 // and the current ship object
 public GameObject shipPrefab;

306 | Chapter 13: Audio, Menus, Death, and Explosions!

 public Transform shipStartPosition;
 public GameObject currentShip {get; private set;}

 // The prefab to use for the space station, the place it
 // starts from, and the current ship object
 public GameObject spaceStationPrefab;
 public Transform spaceStationStartPosition;
 public GameObject currentSpaceStation {get; private set;}

 // The follow script on the main camera
 public SmoothFollow cameraFollow;

> // The game's boundary
> public Boundary boundary;

 // The containers for the various bits of UI
 public GameObject inGameUI;
 public GameObject pausedUI;
 public GameObject gameOverUI;
 public GameObject mainMenuUI;

> // The warning UI that appears when we approach
> // the boundary
> public GameObject warningUI;

 // Is the game currently playing?
 public bool gameIsPlaying {get; private set;}

 // The game's Asteroid Spawner
 public AsteroidSpawner asteroidSpawner;

 // Keeps track of whether the game is paused or not.
 public bool paused;

 // Show the main menu when the game starts
 void Start() {
 ShowMainMenu();
 }

 // Shows a UI container, and hides all others.
 void ShowUI(GameObject newUI) {

 // Create a list of all UI containers.
 GameObject[] allUI
 = {inGameUI, pausedUI, gameOverUI, mainMenuUI};

 // Hide them all.
 foreach (GameObject UIToHide in allUI) {
 UIToHide.SetActive(false);
 }

Boundaries | 307

 // And then show the provided UI container.
 newUI.SetActive(true);
 }

 public void ShowMainMenu() {
 ShowUI(mainMenuUI);

 // We aren't playing yet when the game starts
 gameIsPlaying = false;

 // Don't spawn asteroids either
 asteroidSpawner.spawnAsteroids = false;
 }

 // Called by the New Game button being tapped
 public void StartGame() {
 // Show the In-Game UI
 ShowUI(inGameUI);

 // We're now playing
 gameIsPlaying = true;

 // If we happen to have a ship, destroy it
 if (currentShip != null) {
 Destroy(currentShip);
 }

 // Likewise for the station
 if (currentSpaceStation != null) {
 Destroy(currentSpaceStation);
 }

 // Create a new ship, and place it
 // at the start position
 currentShip = Instantiate(shipPrefab);
 currentShip.transform.position
 = shipStartPosition.position;
 currentShip.transform.rotation
 = shipStartPosition.rotation;

 // And likewise for the station
 currentSpaceStation = Instantiate(spaceStationPrefab);

 currentSpaceStation.transform.position =
 spaceStationStartPosition.position;

 currentSpaceStation.transform.rotation =
 spaceStationStartPosition.rotation;

 // Make the follow script track the new ship
 cameraFollow.target = currentShip.transform;

308 | Chapter 13: Audio, Menus, Death, and Explosions!

 // Start spawning asteroids
 asteroidSpawner.spawnAsteroids = true;

 // And aim the spawner at the new space station
 asteroidSpawner.target = currentSpaceStation.transform;

 }

 // Called by objects that end the
 // game when they're destroyed
 public void GameOver() {
 // Show the Game Over UI
 ShowUI(gameOverUI);

 // We're no longer playing
 gameIsPlaying = false;

 // Destroy the ship and the station
 if (currentShip != null)
 Destroy (currentShip);

 if (currentSpaceStation != null)
 Destroy (currentSpaceStation);

> // Stop showing the warning UI, if it was visible
> warningUI.SetActive(false);

 // Stop spawning asteroids
 asteroidSpawner.spawnAsteroids = false;

 // And remove all lingering asteroids from the game
 asteroidSpawner.DestroyAllAsteroids();
 }

 // Called when the Pause or Resume buttons are tapped
 public void SetPaused(bool paused) {

 // Switch between the in-game and paused UI
 inGameUI.SetActive(!paused);
 pausedUI.SetActive(paused);

 // If we're paused..
 if (paused) {
 // Stop time
 Time.timeScale = 0.0f;
 } else {
 // Resume time
 Time.timeScale = 1.0f;
 }
 }

Boundaries | 309

> public void Update() {
>
> // If we don't have a ship, bail out
> if (currentShip == null)
> return;
>
> // If the ship is outside the Boundary's Destroy Radius,
> // game over. If it's within the Destroy Radius, but
> // outside the Warning radius, show the Warning UI. If
> // it's within both, don't show the Warning UI.
>
> float distance =
> (currentShip.transform.position
> - boundary.transform.position)
> .magnitude;
>
> if (distance > boundary.destroyRadius) {
> // The ship has gone beyond the destroy radius,
> // so it's game over
> GameOver();
> } else if (distance > boundary.warningRadius) {
> // The ship has gone beyond the warning radius,
> // so show the warning UI
> warningUI.SetActive(true);
> } else {
> // It's within the warning threshold, so don't
> // show the warning UI
> warningUI.SetActive(false);
> }
>
> }

 }

This new code makes use of the Boundary class that you just created
to check to see if the player has gone beyond either the warning
radius or the destroy radius. Every frame, the distance from the
player to the center of the boundary spheres is checked; if they’re
beyond the warning radius, the warning UI is made to appear, and if
they’re beyond the destroy radius, the game ends. If the player is
within the warning radius, they’re fine, so the warning radius is dis‐
abled. This means that if the player flies outside the warning radius
and then returns to safety, they’ll see the warning UI appear and
then disappear.

Next, you just need to connect up the slots. The Game Manager
needs a reference to the Boundary object you created a moment ago,
as well as a reference to the Warning UI.

310 | Chapter 13: Audio, Menus, Death, and Explosions!

3. Configure the Game Manager to use the boundary objects. Drag
Warning UI into the Warning UI slot, and the Boundary object
into the Boundary slot.

4. Play the game. When you get close to the boundary, the warning
will appear, and if you don’t turn around, game over!

Final Polish
Congratulations! You’ve now finished setting up the core gameplay
of a rather sophisticated space shooter. As you followed along in the
preceding sections, you set up a space environment, created space‐
ships, space stations, asteroids, and laser beams; set up their physics;
and set up all of the various logical components that connect them
together. On top of that, you’ve created the UI that’s necessary for
actually playing the game outside of the Unity editor.

The core of the game is done, but there’s still room for some visual
improvements. Because the visuals of the game are quite sparse, we
don’t have many visual reference points to give the player a sense of
traveling at speed. Additionally, we’ll add a little more color to the
game by adding trail renderers to the ship and asteroids.

Space Dust
If you’ve ever played a spaceflight game before, like Freelancer or
Independence War, you might have noticed how, when the player
flies around, small pieces of dust, debris, and other small objects
move past the player.

To improve our game, we’ll add small dust motes that provide a
sense of depth and perspective as the player moves past them. We’ll
achieve this with a particle system that moves with the player, con‐
tinuously creating dust particles in a sphere surrounding the player.
Importantly, these dust particles will not move relative to the player.
This means that, as the player flies, dust particles will appear that the
player then flies past. This creates a much better impression of speed
in the game.

To create the dust particles, follow these steps:

1. Drag the Ship prefab into the scene. We’ll be making some
changes to the prefab.

Final Polish | 311

2. Create the Dust child object. Create a new empty game object,
and name it “Dust”. Make it a child of the Ship game object you
just dragged out.

3. Add a Particle System component to it. Copy the settings in
Figure 13-9 to it.

312 | Chapter 13: Audio, Menus, Death, and Explosions!

Figure 13-9. The settings for the dust particles

Final Polish | 313

The critical parts of this particle system are the fact that the Simula‐
tion Space setting is World, and the Shape is a Sphere. By setting the
Simulation Space to World, the particles will not move with their
parent object (the Ship). This means that the Ship will fly right past
them.

4. Apply your changes to the prefab. Select the Ship object, and click
the Apply button at the top of the Inspector. This will save your
changes to the prefab. We’re not quite done with the ship, so
don’t delete it just yet.

You can see the particle system in action in Figure 13-10. Note how
it creates a feeling of a field of stars against the relatively smooth col‐
ors of the skybox.

Figure 13-10. The dust particle system

Trail Renderers
The ship is a very simple model, but there’s no reason why you can’t
dress it up a little with some special effects. We’ll add two line ren‐
derers to the ship that create the effect of engines behind them.

1. Create a new Material for the trail. Do this by opening the Assets
menu, and choosing Create → Material. Name the new material
“Trail”, and place it in the Objects folder.

2. Make the Trail material use an Additive shader. Select the Trail
material, and change its Shader to Mobile → Particles → Addi‐

314 | Chapter 13: Audio, Menus, Death, and Explosions!

tive. This is a simple shader that simply adds its color to the
background. Leave the Particle Texture empty—it won’t be
needed.

3. Add a new child object to the Ship. Name it “Trail 1”. Position it
at (-0.38,0,-0.77).

4. Add a Trail Renderer component. Make it use the settings in
Figure 13-11. Note that the Material it’s using is the new Trail
material you just created.

Figure 13-11. The settings for the ship’s trail renderer

Final Polish | 315

The colors used in the trail renderer’s gradient
are:

• #000B78FF
• #061EF9FF
• #0080FCFF
• #000000FF
• #00000000

You’ll notice that the colors darken toward the
end. Because the Trail material uses an Additive
shader, this has the result of making the trail
fade out.

5. Duplicate the object. Once you’ve set up the first trail, duplicate
it by opening the Edit menu and choosing Duplicate. Move this
new duplicate object to (0.38,0,-0.77).

The location for this second trail is the same as
the first, but with the X component flipped.

6. Apply the changes you’ve made to the prefab. Select the Ship
object, and click the Apply button at the top of the Inspector.
Finally, delete the Ship from the scene.

You’re now ready to test it out! When you fly the ship, two blue lines
will appear behind it, as seen in Figure 13-12.

316 | Chapter 13: Audio, Menus, Death, and Explosions!

Figure 13-12. The engine trails behind the ship

We’ll now apply a similar effect to the asteroids. The asteroids in the
game are quite dark, and while they have indicators to help the
player keep track of where they are, they could do with a little more
color. To improve things, we’ll add a trail renderer to them.

1. Add an Asteroid to the scene. Drag out the Asteroid prefab into
the scene, so that you can make changes.

2. Add a Trail Renderer component to the Graphics child object. Use
the settings you see in Figure 13-13.

Final Polish | 317

Figure 13-13. The settings for the asteroid’s trail

3. Apply the changes to the Asteroid prefab, and remove it from the
scene.

The asteroids will now have a bright trail behind them. You can see
the full game in action in Figure 13-14.

318 | Chapter 13: Audio, Menus, Death, and Explosions!

Figure 13-14. The game in action

Audio
There’s one last part that we need to add: audio! Even though there’s
no sound in real space, video games are seriously improved with the
addition of sound. There are three sounds that we need to add: the
roar of the ship’s engines, the zap of laser blasts, and the boom of
asteroids exploding. We’ll add each one, one at a time.

We’ve included some public-domain sound
effects in the book’s files, which you’ll find in the
Audio folder.

Spaceship
First, we’ll add a looping sound effect to the spaceship.

1. Add the Ship to the scene. We’re about to make some changes to
it.

2. Add an Audio Source component to the Ship. Audio Sources are
how you make sound happen.

3. Turn on the Loop setting. We want the engine noises to play con‐
tinuously as the player flies the ship.

4. Add the rocket sound. Drag the Engine audio clip into the
AudioClip slot.

Final Polish | 319

5. Save the changes to the prefab. That’s it!

Adding looping sounds is incredibly easy, and gives you a huge
amount of overall improvement to the game for very little effort on
your part.

Don’t delete the Ship from the scene yet—we’ll
add some more to it in a moment.

Weapon effects
Adding sound effects to the weapons is a little more complex. We
want to play a sound effect every time the weapon fires, which
means we’ll need to make the code aware of sound effects.

First, we’ll need to add audio sources to the two weapon points:

1. Add Audio Sources to the weapon fire points. Select both of the
weapon fire points. With both of them selected, add an Audio
Source.

2. Add the Laser effect to the audio sources. Once you’ve done that,
turn off the Play On Awake setting—we only want to play sound
when we fire a shot.

3. Add code to play the sound effect when shots are fired. Add the
following code to ShipWeapons.cs:

 public class ShipWeapons : MonoBehaviour {

 // The prefab to use for each shot
 public GameObject shotPrefab;

 public void Awake() {
 // When this object starts up, tell the input manager
 // to use me as the current weapon object
 InputManager.instance.SetWeapons(this);
 }

 // Called when the object is removed
 public void OnDestroy() {
 // Don't do this if we're not playing
 if (Application.isPlaying == true) {
 InputManager.instance.RemoveWeapons(this);
 }

320 | Chapter 13: Audio, Menus, Death, and Explosions!

 }

 // The list of places where a shot can emerge from
 public Transform[] firePoints;

 // The index into firePoints that the next
 // shot will fire from
 private int firePointIndex;

 // Called by InputManager.
 public void Fire() {

 // If we have no points to fire from, return
 if (firePoints.Length == 0)
 return;

 // Work out which point to fire from
 var firePointToUse = firePoints[firePointIndex];

 // Create the new shot, at the fire point's position
 // and with its rotation
 Instantiate(shotPrefab,
 firePointToUse.position,
 firePointToUse.rotation);

> // If the fire point has an audio source
> // component, play its sound effect
> var audio
> = firePointToUse.GetComponent<AudioSource>();
> if (audio) {
> audio.Play();
> }

 // Move to the next fire point
 firePointIndex++;

 // If we've moved past the last fire point in the list,
 // move back to the start of the queue
 if (firePointIndex >= firePoints.Length)
 firePointIndex = 0;

 }

 }

This code checks to see if the fire point that the shot is being fired
from has an AudioSource component. If it does have one, it’s made
to play the shot sound.

Final Polish | 321

4. Save your changes to the Ship prefab, and remove it from the
scene.

You’re done. Now, you’ll hear a sound effect every time a shot is
fired!

Explosions
There’s one last sound effect to add: an explosion sound effect, for
when explosions appear. This one’s easy: we just need to add an
audio source to the explosion object, and set it to play on awake.
When an explosion appears, it will automatically play the Explosion
sound.

1. Add an Explosion to the scene.
2. Add an Audio Source component to the explosion. Drag in the

Explosion audio clip, and turn on Play On Awake.
3. Save your changes to the prefab and remove it from the scene.

You now get explosions whenever one appears!

Wrapping Up
You’re now all done. Congratulations! Rockfall is now complete, and
in your hands. It’s up to you to decide what to do next with it!

Some ideas:

Add new weapons
Maybe a rocket that turns to face its target?

Add enemies that attack the player
The asteroids are pretty simple, and fly straight at the space sta‐
tion, while nothing actually goes after the player.

Add damage effects to the space station
When an asteroid hits, add a particle system that emits smoke
and flames at the point of impact. It’s not realistic, but that
hasn’t stopped us adding any of the other features to the game.

322 | Chapter 13: Audio, Menus, Death, and Explosions!

PART IV

Advanced Features

In this part, we’ll take a closer look at some specific features of Unity,
ranging from a more detailed examination of the UI system to some
deeper Unity plumbing through extending the editor. We’ll also
examine the lighting and shading system, and conclude with a tour
of the extended Unity ecosystem, and discuss how to get your games
onto your devices and out into the world.

CHAPTER 14

Lighting and Shaders

In this chapter we’ll look at lighting and materials, which are the pri‐
mary thing—besides the textures that you use—that determine how
your game looks. In particular, we’ll take a closer look at the Stan‐
dard shader, which is a shader designed to make it simple to create
good-looking materials. We’ll also talk about how to write your own
shaders, which give you a huge amount of control over how objects
appear in game. Finally, we’ll discuss how to use global illumination
and lightmapping, which can create a great-looking environment by
realistically modeling how light bounces in a scene.

Materials and Shaders
In Unity, the appearance of objects is defined by the material
attached to it. A material is composed of two things: a shader and
data that’s used by that shader.

A shader is a very small program that runs on the graphics card.
Every single thing that you see on the screen is the result of a shader
calculating the correct color value to show for each pixel.

In Unity, there are two main different types of shaders: surface shad‐
ers and vertex-fragment shaders.

Surface shaders are responsible for calculating the color of the sur‐
face of an object. As we already discussed in “Materials and Shaders”
on page 325, there are multiple components that define the color of
a surface, including its albedo, smoothness, and so on. A surface
shader’s job is to compute the values of each of these properties for

325

every pixel of the object; this surface information is then returned to
Unity, which combines the surface information with information
about each of the lights in the scene, and determines the final lit
color for that pixel.

By contrast, vertex-fragment shaders are much simpler. This kind of
shader is responsible for calculating the final colour of the pixel; if
your shader needs to include lighting information, you’ll need to do
it yourself. Vertex-fragment shaders give you low-level control,
which means that they’re great for effects. Because they’re generally
simpler, they’re also typically a lot faster than surface shaders.

Surface shaders actually get compiled down to
vertex-fragment shaders by Unity, which does
much of the heavier lifting for you by imple‐
menting the lighting calculations needed to ach‐
ieve realistic lighting. Anything you can do in a
surface shader can also be done in a vertex-
fragment shader, but it will take more effort.

Unless you have a very specific use case, surface shaders are gener‐
ally your best choice. In this chapter, we’ll look at both.

Unity also provides a third type of shader, called
a fixed-function shader. Fixed function shaders
work by combining predefined operations
together, rather than letting you write your own
custom shaders. Fixed function shaders were the
main way things got done before the wider
adoption of custom shaders; they’re less com‐
plex than custom shaders, but tend to not look
as great, and their use is now discouraged. We
won’t be talking about fixed-function shaders in
this chapter, but if you really want to learn about
them, Unity’s documentation includes a tutorial
on writing fixed-function shaders.

Let’s get started by creating our own custom surface shader that’s
quite similar to the standard shader, but adds the ability to show rim
lighting—that is, a highlight around the edges of the object. You can
see an example of this effect in Figure 14-1.

326 | Chapter 14: Lighting and Shaders

http://docs.unity3d.com/Manual/ShaderTut1.html
http://docs.unity3d.com/Manual/ShaderTut1.html

Figure 14-1. Rim lighting, using a custom shader

To begin creating the effect, follow these steps:

1. Create a new project. Name it whatever you like and select 3D
mode.

2. Create a new shader by choosing Create → Shader → Surface
Shader. Name the new shader “SimpleSurfaceShader”.

3. Double-click it.
4. Replace it with the following code:

 Shader "Custom/SimpleSurfaceShader" {

 Properties {
 // The color to tint the object with
 _Color ("Color", Color) = (0.5,0.5,0.5,1)

 // The texture to wrap the object in;
 // defaults to a plain white texture
 _MainTex ("Albedo (RGB)", 2D) = "white" {}

 // How smooth the surface should be
 _Smoothness ("Smoothness", Range(0,1)) = 0.5

Materials and Shaders | 327

 // How metallic the surface should be
 _Metallic ("Metallic", Range(0,1)) = 0.0

 }

 SubShader {
 Tags { "RenderType"="Opaque" }
 LOD 200

 CGPROGRAM
 // Physically based Standard lighting model, and
 // enable shadows on all light types
 #pragma surface surf Standard fullforwardshadows

 // Use shader model 3.0 target, to get nicer-
 // looking lighting
 #pragma target 3.0

 // The following variables are "uniform" - the
 // same value is used for every pixel

 // The texture to use for the albedo
 sampler2D _MainTex;

 // The color to tint the albedo with
 fixed4 _Color;

 // The smoothness and metallicness properties
 half _Smoothness;
 half _Metallic;

 // 'Input' contains variables whose values are
 // different for every pixel
 struct Input {
 // Texture coordinates at this pixel
 float2 uv_MainTex;

 };

 // This single function computes the properties
 // of this surface
 void surf (Input IN,
 inout SurfaceOutputStandard o) {

 // Using the data stored in IN and the
 // variables above, compute the values and
 // store them in 'o'

 // Albedo comes from a texture tinted by
 // color

328 | Chapter 14: Lighting and Shaders

 fixed4 c =
 tex2D (_MainTex, IN.uv_MainTex) * _Color;
 o.Albedo = c.rgb;

 // Metallic and smoothness come from slider
 // variables
 o.Metallic = _Metallic;
 o.Smoothness = _Smoothness;

 // Alpha value for this comes from the
 // texture we're using for albedo
 o.Alpha = c.a;

 }
 ENDCG
 }

 // If the computer running this shader isn't capable of
 // running at shader model 3.0, fall back to the built-in
 // "Diffuse" shader, which doesn't look anywhere as good
 // but is guaranteed to work
 FallBack "Diffuse"
 }

4. Create a new material, called “SimpleSurface”.
5. Select the new material, and open the Shader menu at the top of

its Inspector. Choose Custom → SimpleSurfaceShader.

The properties for your surface shader will now appear in the
Inspector (Figure 14-2).

Figure 14-2. The Inspector for the custom shader

Materials and Shaders | 329

6. Create a new capsule by choosing GameObject → 3D Object →
Capsule.

7. Drag the SimpleShader material onto the capsule, and it will start
using the new material (Figure 14-3).

Figure 14-3. A capsule, using the custom shader

At the moment, the object looks very similar to the standard shader.
Let’s now add rim lighting!

To calculate rim lighting, you need to know three things:

• The color that you’d like the lighting to be.
• How thick the rim should be.
• The angle between the direction the camera is pointing and the

direction the surface is pointing.

The direction a surface is pointing is called the
normal of the surface. The code that we’ll be
writing will use this term.

330 | Chapter 14: Lighting and Shaders

The first two items are uniform—that is, their value applies to every
pixel of the object. The third item is varying, which means that its
value depends on where you’re looking; the angle between the cam‐
era’s direction and the surface’s normal depends on whether you’re
looking at the middle of the cylinder or the edges.

Varying values are calculated at runtime by the graphics card for
your surface shader to use, while uniform values are exposed as
properties of the material that you can modify through the Inspec‐
tor. To add support for rim lighting, therefore, we first need to add
the two uniform variables to the shader.

1. Modify the Properties section of the shader to include the fol‐
lowing code:

 Properties {
 // The color to tint the object with
 _Color ("Color", Color) = (0.5,0.5,0.5,1)

 // The texture to wrap the object in;
 // defaults to a plain white texture
 _MainTex ("Albedo (RGB)", 2D) = "white" {}

 // How smooth the surface should be
 _Smoothness ("Smoothness", Range(0,1)) = 0.5

 // How metallic the surface should be
 _Metallic ("Metallic", Range(0,1)) = 0.0

> // The color the rim lighting should be
> _RimColor ("Rim Color", Color) = (1.0,1.0,1.0,0.0)
>
> // How thick the rim lighting should be
> _RimPower ("Rim Power", Range(0.5,8.0)) = 2.0

 }

This code makes the shader show two new fields in the Inspector.
We now need to make these properties available to the shader’s code,
so that the surf function can make use of them.

2. Add the following code to the shader:

 // The smoothness and metallicness properties
 half _Smoothness;
 half _Metallic;

> // The color for the rim lighting

Materials and Shaders | 331

> float4 _RimColor;
>
> // How thick the rim lighting should be - closer to
> // zero means thicker rim
> float _RimPower;

Next, we need to make the shader able to get the direction that the
camera is looking. All of the varying values that the shader uses are
included in the Input structure, which means that the look direction
needs to be added there.

The Input structure can have several fields added to it, and Unity
will automatically fill them with the relevant information. If you add
a float3 variable called viewDir, Unity will put the direction that
the camera is looking into it.

viewDir isn’t the only variable name that Unity
will automatically use for varying information.
For a full list, see Unity’s Surface Shader docu‐
mentation.

3. Add the following code to the Input structure:

 struct Input {
 // Texture coordinates at this pixel
 float2 uv_MainTex;

> // The direction the camera is looking at this vertex
> float3 viewDir;
 };

The material’s Inspector will now be showing the additional fields
(Figure 14-4).

332 | Chapter 14: Lighting and Shaders

http://docs.unity3d.com/Manual/SL-SurfaceShaders.html
http://docs.unity3d.com/Manual/SL-SurfaceShaders.html

Figure 14-4. The Inspector, showing the newly added fields

We now have all of the information we need to calculate the rim
lighting; the last step is to actually perform the calculation, and add
it to the surface’s information.

4. Add the following code to the surf function:

 // This single function computes the properties of this
 // surface
 void surf (Input IN, inout SurfaceOutputStandard o) {

 // Using the data stored in IN and the variables above,
 // compute the values and store them in 'o'

 // Albedo comes from a texture tinted by color
 fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
 o.Albedo = c.rgb;

 // Metallic and smoothness come from slider variables
 o.Metallic = _Metallic;
 o.Smoothness = _Smoothness;

 // Alpha value for this comes from the texture we're
 // using for albedo
 o.Alpha = c.a;

Materials and Shaders | 333

> // Calculate how bright the rim light should be at this
> // pixel
> half rim =
> 1.0 - saturate(dot (normalize(IN.viewDir), o.Normal));
>
> // Use this brightness to calculate the rim colour, and
> // use it for the emission
> o.Emission = _RimColor.rgb * pow (rim, _RimPower);

 }

5. Save the shader, and return to Unity. The capsule will now have a
rim light! You can see the results in Figure 14-5.

Figure 14-5. The capsule, with rim lighting

You can also tweak the rim lighting through the material’s proper‐
ties. Try changing the Rim Color setting to change the brightness
and tint of the rim lighting, and the Rim Power setting to adjust how
thick the rim appears.

Surface shaders are great for building upon the existing shading sys‐
tem, and they’re your best choice if you want your surface to
respond to the lights you’ve added to your scene. However, there are

334 | Chapter 14: Lighting and Shaders

some situations where you either don’t care about lighting, or need
very specific control over the appearance of the surface. In these sit‐
uations, you can create your own completely custom fragment-
vertex shaders.

Fragment-Vertex (Unlit) Shaders
A fragment-vertex shader is so named because it’s really two shaders
in one: a fragment shader and a vertex shader. These are two separate
functions that control the appearance of how a surface is rendered.

A vertex shader is a function that transforms each vertex—that is,
each point in the object’s space—from world-space to view-space, in
preparation for rendering. World-space means the world that you
see in the Unity editor: objects are positioned in space, and you can
move them around. However, when Unity needs to render the scene
using a camera, that camera must first convert the positions of every
object in the scene into view-space: a space in which the entire
world, and every object in it, is repositioned such that the camera is
in the middle of the world. Additionally, in view-space, the entire
world is reshaped to make objects further away from the camera
smaller. The vertex shader is also responsible for calculating the
value of the varying variables that should be passed to the fragment
shader.

You almost never need to write your own vertex
shader, but there are situations where it can be
useful. For example, if you want to distort an
object’s shape, you can write your own vertex
shader that modifies the position of each vertex.

The fragment shader is the other half of the pair. Fragment shaders
are responsible for calculating the final color of each fragment—that
is, pixel—of the object. The fragment shader receives the value of
the varying variables calculated by the vertex shader; this value is
interpolated, or blended, based on the proximity of the fragment
being rendered to its nearest vertices.

Because a fragment shader has full control over the final color of the
object, it’s up to the shader itself to calculate the effect of nearby
lights. If your shader doesn’t perform the calculation itself, the sur‐
face won’t appear lit.

Materials and Shaders | 335

It’s for this reason that surface shaders are the recommended way to
make your surfaces lit; lighting calculation can get complex, and it’s
often a lot easier to not have to think about it.

In fact, surface shaders are actually fragment-
vertex shaders. Unity converts surface shaders to
the lower-level fragment-vertex code for you,
and adds in the lighting calculations.

The downside is that surface shaders are designed for the general
case, and can be less efficient than a handcoded shader.

To demonstrate how fragment-vertex shaders work, we’ll create a
simple one that renders objects in a single flat color. We’ll then mod‐
ify it to render a gradient depending on where the object is on the
screen.

1. Create a new shader by opening the Assets menu, and choosing
Create → Shader → Unlit Shader. Name the new shader “Sim‐
pleUnlitShader”.

2. Double-click it to open it.
3. Replace the contents of the file with the following code:

 Shader "Custom/SimpleUnlitShader"
 {
 Properties
 {
 _Color ("Color", Color) = (1.0,1.0,1.0,1)

 }
 SubShader
 {
 Tags { "RenderType"="Opaque" }
 LOD 100

 Pass
 {
 CGPROGRAM

 // Define which functions should be
 // used in this shader.

 // The 'vert' function will be used as
 // the vertex shader.
 #pragma vertex vert

336 | Chapter 14: Lighting and Shaders

 // The 'frag' function will be used as
 // the fragment shader.
 #pragma fragment frag

 // Include a number of useful utilities from
 // Unity.
 #include "UnityCG.cginc"

 float4 _Color;

 // This structure is given to the
 // vertex shader for each vertex
 struct appdata
 {
 // The position of the vertex in world space.
 float4 vertex : POSITION;

 };

 // This structure is given to the
 // fragment shader for each fragment
 struct v2f
 {
 // The position of the fragment in
 // screen space
 float4 vertex : SV_POSITION;
 };

 // Given a vertex, transform it
 v2f vert (appdata v)
 {
 v2f o;

 // Convert the vertex from world space to
 // view space by multiplying it with a matrix
 // provided by Unity. (This comes from
 // UnityCG.cginc)
 o.vertex = UnityObjectToClipPos(v.vertex);

 // Return it, passing it to the fragment
 // shader
 return o;
 }

 // Given interpolated information about
 // nearby vertices, return the final color
 fixed4 frag (v2f i) : SV_Target
 {
 fixed4 col;

Materials and Shaders | 337

 // Render the provided color
 col = _Color;

 return col;
 }
 ENDCG
 }
 }
 }

4. Create a new material by opening the Assets menu, and choos‐
ing Create → Material. Name the material “SimpleShader”.

5. Select the new material, and change the shader to Custom →
SimpleUnlitShader.

6. Create a sphere in the scene by opening the GameObject menu,
and choosing 3D Object → Sphere. Drag the SimpleShader
material onto it.

The sphere will now be a single flat color. You can see the result in
Figure 14-6.

Figure 14-6. The sphere, rendered using a flat color

338 | Chapter 14: Lighting and Shaders

Flat-shading an object with a color is a common
enough task that a very similar shader to the one
you just wrote comes bundled with Unity. You
can find it in the Shader menu, under Unlit →
Color.

Next, we’ll build upon this shader to make it dynamically animate.
This will involve zero scripting; instead, all of the animation will be
done inside the graphics shader itself.

1. Add the following code to the frag function:

 fixed4 frag (v2f i) : SV_Target
 {
 fixed4 col;

 // Render the provided color
 col = _Color;

> // Fade over time - start black, fade up to _Color
> col *= abs(_SinTime[3]);

 return col;
 }

2. Return to Unity, and notice that the object has changed to black.
This is expected.

3. Hit the Play button, and watch the object fade in and out. You
can see an example of this in action in Figure 14-7.

Figure 14-7. The object fading in and out

As we’ve seen, vertex-fragment shaders give us signficant control
over the appearance of our objects, and this section has given you a
taste of them. Discussing this in all of its detail can fill an entire

Materials and Shaders | 339

book; if you’d like a more in-depth discussion of how to use shaders,
check out Unity’s detailed documentation.

Global Illumination
When an object is lit, the shader that’s responsible for rendering that
object needs to perform several complex calculations to determine
the amount of light that the object is receiving, and use that to calcu‐
late the color of the object that the camera can see. This is usually
fine, but certain things are very difficult to compute at runtime.

For example, if a sphere is resting on a white surface in direct sun‐
light, the sphere should be lit from below, because light is bouncing
up off the ground. However, the shader can only know about the
direction of the sun itself, and as a result it doesn’t show this light‐
ing. It’s certainly possible to calculate it, but this quickly becomes a
very challenging problem to solve every frame.

A better solution is using global illumination and lightmapping.
Global illumination is the name given to a number of related techni‐
ques that compute the amount of light received by every surface in a
scene, taking into account how light bounces off objects.

Global illumination results in very realistic lighting, but it is very
processor intensive; as a result, the lighting calculations can also be
done ahead of time, in the Unity editor. The results can then also be
stored in a lightmap, which records the final amount of light
received by every part of every surface in the scene.

Because the global illumination calculation takes place ahead of
time, it can only think about objects that are guaranteed to never
move (and thus change the way that light works in the scene.) Any
moving objects in your game can’t directly use global illumination;
instead, a different solution is needed, which we’ll talk about shortly.

Using lightmapping can significantly improve the performance of
the realistic lighting in a scene, because the lighting calculations
have been performed ahead of time and are stored in textures. How‐
ever, if you use lightmaps, these textures must be loaded into mem‐
ory in order to be used by the renderer. This can be a problem if
your scene is already complex, or already uses a lot of textures. A
way to mitigate this problem is to reduce the resolution of the light‐
map, but this reduces the visual quality of the lighting.

340 | Chapter 14: Lighting and Shaders

http://docs.unity3d.com/Manual/SL-Reference.html

With this in mind, let’s dive into using global illumination by creat‐
ing a scene. We’ll first set up a few materials of different colors, to
help us to see how light will bounce around the scene; we’ll then cre‐
ate some objects, and make them use the global illumination system.

1. Create a new scene in Unity.
2. Create a new material called “Green”. Keep the shader as Stan‐

dard, and change the Albedo color to green. You can see the
Inspector settings for this material in Figure 14-8.

Figure 14-8. The settings for the Green material

Global Illumination | 341

Next, let’s create the objects in the world.

3. Create a cube by opening the GameObject menu, and choosing
3D Object → Cube. Name the cube “floor”, and set its position
to 0,0,0, and set its scale to 10,1,10.

4. Create a second cube, and name it “Wall 1”. Set its position to
-1,3,0, and its rotation to 0,45,0. Additionally, set its scale to
1,5,4.

5. Create a third cube, and name it “Wall 2”. It should have the
position 2,3,0, rotation 0,45,0, and scale 1,5,4.

6. Drag the Green material onto Wall 1.

The scene should now look like Figure 14-9.

Figure 14-9. The scene, with no lightmapping

We’ll now make Unity calculate lighting.

7. Select all three objects—the floor and both walls—and select the
Static checkbox at the top right of the Inspector (see
Figure 14-10).

342 | Chapter 14: Lighting and Shaders

Figure 14-10. Setting the objects to be static

With static objects in the scene, Unity will immediately begin calcu‐
lating lighting information. After a few moments, the lighting will
shift subtly. The most significant effect that you’ll notice is the fact
that the green wall will bounce some of its light onto the back of the
white wall. Compare the difference between Figures 14-11 and
14-12.

Figure 14-11. The scene with global illumination inactive

Global Illumination | 343

Figure 14-12. The scene with global illumination active—note the
green reflection on the back of the wall

This will make the lighting use real-time global illumination. This
looks good, but it causes a signficant performance hit, because only
part of the lighting calculation is being done ahead of time. To
improve performance at the cost of higher memory usage, you can
bake the lighting into a lightmap.

8. Select the directional light and set the Baking setting to Baked.

After a moment, the lighting will be calculated and stored in a light‐
map.

While global illumination is good for statical objects, it won’t affect
your nonstatic objects. To improve this, you can use light probes.

Light Probes
A light probe is an invisible object that picks up the lighting coming
from all directions and records it. Nearby nonstatic objects can then
use this lighting information to illuminate themselves.

344 | Chapter 14: Lighting and Shaders

Light probes don’t work in isolation. Instead, you create them in
groups; at runtime, objects that need lighting information combine
their nearest probes based on how close they are to the object. This
allows an object to reflect more light as it gets closer to a surface
that’s bouncing light, for example.

Let’s add a nonstatic object to the scene, and then add some light
probes, to see how they affect the lighting.

1. Add a new capsule to the scene by choosing GameObject → 3D
Object → Capsule. Place the capsule somewhere near the green
wall.

You’ll notice that the capsule doesn’t pick up any of the reflected
green light from the wall. In fact, it’s receiving too much light in the
direction of the wall, because the light from the sky is illuminating it
in that direction. This light should be blocked by the wall. You can
see this in Figure 14-13.

2. Add some light probes by opening the GameObject menu and
choosing Light → Light Probe Group.

You’ll see a collection of spheres appear; each sphere represents a
single light probe, and shows the lighting that is being received at
that point in space.

3. Reposition the probes so that none of them are embedded in the
scene—that is, they’re all floating in space, and not stuck inside
the floor or walls.

You can adjust the position of individual probes
in the group by selecting the light probe group
and clicking Edit Light Probes; you can then
select individual probes and move them.

With this done, your capsule will now pick up the reflected green
light from the wall—compare the difference between Figures 14-13
and 14-14.

Global Illumination | 345

Figure 14-13. The scene with no light probes

Figure 14-14. The scene with light probes--note the green light reflect‐
ing onto the capsule

346 | Chapter 14: Lighting and Shaders

The more probes you have, the longer your
lighting will take to calculate. Additionally, if
you have a sudden change in lighting (that is,
between areas) you should cluster the probes
more densely near the transition, to prevent
your objects looking out of place.

Thinking About Performance
Before we wrap up the work in this chapter, now’s a good opportu‐
nity to talk about the performance tools built into Unity. The light‐
ing setup that you use in your game can significantly affect the
performance on the user’s device; additionally, marking objects as
static has performance implications in addition to making global
illumination and lightmapping possible.

However, not all of your game’s performance depends upon the
graphics of the game: the amount of time that your scripts take up
on the CPU can have as much of an impact.

Helpfully, Unity comes with several tools and features that you can
take advantage of to boost your productivity.

The Profiler
The profiler is a tool that records data about your game as it’s being
played. It gathers information from several different locations every
frame, such as:

• The script methods that are called every frame, and the amount
of time that’s taken in calling them

• The number of “draw calls”—that is, instructions to the graphics
chip that cause it to do drawing work—needed to draw the
frame

• The amount of memory consumed by the game, in both the
scripts and in graphics memory

• The amount of CPU time taken in playing audio
• The number of active physics bodies, and the amount of physi‐

cal collisions that need to be processed in the frame
• The amount of data being sent and received over the network

Thinking About Performance | 347

The Profiler is split into two halves. The top half is itself divided up
into several rows—one for each of these data recorders. You can see
an image of the profiler in Figure 14-15. As the game is played, each
recorder fills with information. The bottom half shows detailed
information about the specific frame that you’re inspecting, from
the currently selected recorder.

Figure 14-15. The Profiler

The specific results that you’ll see here in this
book won’t necessarily be identical to what you
see in your game. It depends on the hardware
you’re using, of both the computer you’re using
Unity on and the mobile device you’re testing
your game on, as well as the specific version of
Unity you’re using. Unity Technologies is always
changing the engine behind the scenes, so you’ll
likely see different results.
That said, the steps you follow to gather data
about your game’s performance will be the same,
and you can apply the techniques to just about
any game.

1. To open the Profiler, open the Window menu, and choose Profiler.
Alternatively, you can press Command-7 on a Mac, or Ctrl-7 on
a PC. When you do, the Profiler will appear.

348 | Chapter 14: Lighting and Shaders

To begin using the Profiler, you just need to have it open while the
game is running.

2. Start the game by pressing the Play button, or by pressing Ctrl-P
(Command-P on a Mac).

The Profiler will begin to fill up with information. It’s a lot easier to
analyze the game when it’s not in the middle of running, so you’ll
need to take the game out of Play mode before you continue.

3. After a few moments, stop or pause the game. The data in the
Profiler won’t go away.

Now that the Profiler has stopped filling with data, you can now take
a closer look at individual frames.

4. Click and drag with the left mouse button over the top row in the
Profiler. A vertical line will appear as you do so, and the data
being shown in the bottom half of the Profiler will update to
show the selected frame.

Different recorders show different information. In the case of the
CPU, it defaults to showing the Hierarchy, which is the list of all of
the methods that were called in that frame, sorted by the amount of
time each method took to call (Figure 14-16). You can also click the
triangles at the left of each row to open them and see information
about the methods that that row called.

Figure 14-16. The Hierarchy view of the CPU profiler

Thinking About Performance | 349

We’re going to spend a bit of time focusing on
the CPU profiler, because understanding what
it’s telling you can help you identify and fix a
large number of possible performance issues in
your game.

The columns of the Hierarchy show different information for each
row:

Total
This column shows the percentage amount of time that calls to
this method, and the methods that were called as a result, took
when rendering this frame.

In Figure 14-16, for example, calls to the Camera.Render
method (a method internal to the Unity engine) took 4.3% of
the time needed to render the entire frame.

Self
This column shows the percentage amount of time that calls to
this method, and only this method, took when rendering this
frame. This helps to identify whether a method is responsible
for taking a lot of time, or that the methods that it calls are
responsible. If the value of Self is close to the value of Total, it
indicates that the method itself is responsible for the time taken,
and not the methods that it calls.

In Figure 14-16, Camera.Render only takes 0.4% of the time
needed in the frame, indicating that the method itself is quite
cheap, but that the methods that it calls take more time.

Calls
This column shows the number of times this method was called
during this frame.

In Figure 14-16, Camera.Render was only called one time (likely
because there’s only one camera in the scene).

GC Alloc
This column shows the amount of memory that this method
had to allocate during this frame. If memory is frequently allo‐
cated, it increases the chance that the memory garbage collector
has to run later, which causes lag.

350 | Chapter 14: Lighting and Shaders

In Figure 14-16, the call to GameView.GetMainGameViewTarget
Size allocated 24 bytes. While this might seem like a small
number, don’t forget that the game is rendering as many frames
as it can; over time, if a small amount of memory is allocated
every frame, it can build up, necessitating the garbage collector
to step in and clean up, which harms your game’s performance.

Time ms
This column shows the amount of time, in milliseconds, that
the calls to this method (and all of the calls that this method
made) took to execute. In Figure 14-16, the call to Camera.Ren
der took 0.17 milliseconds.

Self ms
This column shows the amount of time, in milliseconds, that
the calls to this method (and only this method) took to execute.
In Figure 14-16, the call to Camera.Render spent only 0.02 milli‐
seconds in that method; the other 0.15 milliseconds were spent
in methods that were called as a result.

Warnings
This column shows any issues that the Profiler identified. The
Profiler is capable of performing some analysis of the data it
records, and can give you limited amounts of advice.

Getting Data from Your Device
When you follow the steps in the previous section, the data you’ll be
gathering comes from the Unity Editor. However, playing your game
in the Editor doesn’t have the same performance characteristics as
playing the game on your device. A PC or Mac generally has a much
faster CPU, more RAM, and a better GPU than a mobile device. As
a result, the results that you get from the Profiler will be different,
and optimizing for what you see when you run the game in the Edi‐
tor may not improve the performance for the end user.

To address this, you can use the Profiler to gather data from the
game when it’s running on the device. To do so, follow these steps:

1. Build and install the game on your phone by following the steps in
“Deployment” on page 424. Importantly, make sure that Devel‐
opment Build and Autoconnect Profiler are both turned on.

Thinking About Performance | 351

2. Make sure that your device and computer are both on the same
WiFi network, and that your device is connected to your com‐
puter with a USB cable.

3. Launch the game on your device.
4. Open the Profiler, and open the Active Profiler menu. Choose

your device from the list that appears.

The Profiler will start collecting data directly from your device.

General Tips
There are several things you can do to improve your game’s perfor‐
mance:

• In the Rendering profiler, try to keep the Verts count below
200,000 per frame.

• When selecting shaders for use in the game, choose ones from
the Mobile or Unlit categories. These shaders are simpler, and
take less time to run per frame than others.

• Keep the number of different materials that you’re using in the
scene as low as you can. Additionally, try to make as many
objects as you can use the same material. This makes it easier
for Unity to draw those objects at the same time, which is a per‐
formance gain.

• If an object will never move, scale, or rotate in the scene, turn
on the Static checkbox at the top right of the Inspector. This will
enable a number of internal optimizations in the engine.

• Reduce the number of lights in your scene. The more lights you
have, the more work the engine has to do.

• Using baked lighting instead of real-time lighting is more effi‐
cient. Keep in mind, however, that baked lights can’t move, and
the baked light information will take up memory.

• Use compressed textures instead of uncompressed textures as
much as you can. Compressed textures take up less memory,
and take less time for the engine to access (because there’s less
data to read).

You can find a collection of other useful performance tips in the
Unity manual.

352 | Chapter 14: Lighting and Shaders

http://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html

Wrapping Up
Lighting can make your scene look signficantly better. Even if your
game isn’t intended to look entirely realistic, putting some effort into
how your scenes are lit can make the entire game just feel better.

It’s also important to keep an eye on the performance of your game.
Using the Profiler, you can take a closer look at what the game is
actually doing, and adjust your game using this information.

Wrapping Up | 353

CHAPTER 15

Creating GUIs in Unity

Games are software, and all software needs a user interface. Even if
it’s as simple as a button that starts a new game, or a label that shows
the player’s current score, your game still needs a way to show the
more mundane, “nongame” stuff for the user to interact with.

The good news is that Unity has a really great UI system. Introduced
in Unity 4.6, the UI system is extremely flexible and powerful, and is
designed for the situations that games typically encounter. For
example, the UI system supports PC, console, and mobile platforms;
allows a single UI to scale to multiple sizes of screens; is capable of
responding to input from the keyboard, mouse, touchscreen, and
game controllers; and supports displaying the UI in both screen-
space and in world-space.

In short, it’s a pretty incredible toolkit. While we’ve been building
GUIs in the games discussed in Parts II and III, we’d like to look at
some finer points of the GUI system, so that you’re ready to take full
advantage of the features that it offers.

How GUIs Work in Unity
Fundamentally, a GUI in Unity is not terribly different from the
other visible objects in your scene. A GUI is a mesh that’s construc‐
ted at runtime by Unity, with textures applied to it; additionally, the
GUI contains scripts that respond to mouse movement, keyboard
events, and touches to update and modify that mesh. The mesh is
displayed via the camera.

355

The GUI system in Unity has several different pieces that work
together. At its core, a GUI is composed of several objects with Rect
Transforms that draw their content and respond to events, all con‐
tained within a Canvas.

Canvas
The Canvas is the object that’s responsible for drawing all of the UI
elements on screen. As a result, it’s also the total space in which the
canvas is drawn.

All UI elements are child objects of the Canvas—if the button isn’t a
child of the canvas, it won’t appear.

The Canvas lets you decide how the UI is drawn. Additionally, by
attaching a Canvas Scaler component, you can control how UI ele‐
ments are scaled. We’ll talk more about Canvas Scalers in “Scaling
the Canvas” on page 367.

The Canvas can be used in one of three modes—Screen Space -
Overlay, Screen Space - Camera, and World Space:

• When the Canvas is in the Screen Space - Overlay mode, the
entire Canvas is drawn on top of the game. That is, all Cameras
in the scene render their view of the game onto the screen, and
then the Canvas is drawn on top of it all. This is the default
mode for the Canvas.

• In Screen Space - Camera mode, the contents of the Canvas are
rendered into a plane, which is positioned in 3D space some
distance in front of a specified Camera. When the Camera
moves, the Canvas is repositioned to keep it at the same point
relative to the Camera. When being used in this mode, the Can‐
vas is effectively a 3D object, which means that objects between
the Canvas and the Camera will occlude the Canvas.

• In the World Space mode, the Canvas is a 3D object in the
scene, with its own position and rotation that’s independent of
any Camera in the scene. This means that you can, for example,
create a Canvas that contains a keypad for a door, and position
it next to the door.

356 | Chapter 15: Creating GUIs in Unity

If you ever played the games DOOM (2016) or
Deus Ex: Human Revolution, you’ve interacted
with a world-space GUI. In these games, the
player interacts with in-game computer screens
by walking up to them and “clicking” on the on-
screen buttons that are being displayed.

RectTransform
Unity is a 3D engine, which means that all objects have a Transform
component that determines their position, rotation, and scale in 3D
space. However, a GUI in Unity is 2D. This means that all UI ele‐
ments are 2D rectangles that have a position, a width, and a height.

In order to control this, UI objects have a RectTransform object.
The RectTransform represents a rectangle in which UI content can
appear. Importantly, if a RectTransform is the child of another Rect
Transform, then the child can be positioned and sized relative to
that parent.

For example, the Canvas object has a RectTransform that defines, at
a minimum, the size of the GUI; additionally, all of the GUI ele‐
ments that make up your game’s GUI will have their own RectTrans
form. Because these GUI elements are child objects of the Canvas,
the GUI elements’ RectTransform will be positioned relative to the
Canvas.

The Canvas’s RectTransform can also define the
position of the GUI, but this depends on
whether the Canvas is a screen-space, camera-
space, or world-space one or not. If the Canvas is
anything but a world-space one, the position of
the Canvas will be determined automatically.

You can take this further when you nest multiple child objects. If
you create an object with a RectTransform, and add child objects
(each with their own RectTransform), then those child objects will
be positioned relative to the parent.

How GUIs Work in Unity | 357

RectTransforms aren’t limited to UI elements.
You can add a RectTransform to any object; if
you do, the RectTransform will replace the
Transform component at the top of the Inspec‐
tor.

The Rect Tool
The Rect tool provides you with a simple way to move and resize
objects that have a RectTransform component. To activate the Rect
tool, you press the T key, or choose the Rect tool from the toolbar at
the top-left of the Unity window (Figure 15-1).

Figure 15-1. Selecting the Rect tool in the toolbar

When the Rect Tool is enabled, a rectangular set of handles will sur‐
round the selected object (Figure 15-2). When you drag these han‐
dles, the object will be resized and repositioned.

Additionally, if you move your mouse cursor near a handle, outside
the rectangle, the cursor will change to show that it’s in rotation
mode. When you click and drag, the object will rotate around its
pivot point. The pivot point is the circle in the middle of the object;
if the selected object has a RectTransform, you can click and drag
the pivot point to move it.

Figure 15-2. The Rect tool handles, with the pivot point in the center

358 | Chapter 15: Creating GUIs in Unity

The Rect tool isn’t limited to UI elements! It can
also be used with 3D objects; when you have one
selected, the rectangle and handles will be placed
depending on how you’re looking at the object
in the Scene view. See Figure 15-3 for an exam‐
ple of how it looks.

Figure 15-3. The Rect tool handles, surrounding a 3D cube

Anchors
When a RectTransform is a child of another RectTransform, it’s
positioned relative to its anchors. This allows you to define a rela‐
tionship between the size of a parent rect, and the position and size
of its children. For example, you can make a rectangle be positioned
at the bottom of its parent, filling its entire width; when the parent
changes size, the child rect’s position and size will be updated.

In the Inspector for the RectTransform, you’ll see a box that allows
you to select preset values for the anchors (Figure 15-4).

How GUIs Work in Unity | 359

Figure 15-4. The box showing the currently selected preset for the Rect
Transform’s anchors

If you click this box, a small pop-up window will appear that allows
you to change the preset (Figure 15-5).

360 | Chapter 15: Creating GUIs in Unity

Figure 15-5. The anchor preset selection panel

Clicking on any of these presets changes the anchors of the Rect
Transform. It won’t change the position or size of the rectangle, but
it will change how the rectangle changes size when its parent
changes size.

How GUIs Work in Unity | 361

This is a very visual part of the GUI system, so
the best way to learn about how this works is to
play with it yourself. Place an Image game object
inside another Image object, and then experie‐
ment with changing the child view’s anchors and
resizing the parent view.

Controls
There are several controls available for you to use in your scenes.
These range from simple controls that you’d recognize just about
anywhere, like buttons and text fields, up to complex controls like
scroll views.

In this section, we’ll talk about some of the most important ones to
know about, and how they’re intended to be used. More controls
tend to get added over time, so for a complete list, check out the
Unity manual.

Controls in the Unity GUI system are often
composed of multiple game objects, all working
together. Don’t be surprised if, when you add a
control to your canvas, you end up with multiple
objects in your hierarchy.

Events and Raycasts
When the user taps on a button on the screen, they expect that but‐
ton to perform whatever task it was configured for. In order to do
this, the UI system has to be able to know which object was tapped.

The system that supports this is called the event system. This system
is quite sophisticated: in addition to providing input to the GUI, it
can also be used as a general solution for identifying when any
object in your game is clicked, tapped, or dragged.

The event system is represented by the Event
System object that appears when you create your
Canvas.

362 | Chapter 15: Creating GUIs in Unity

The event system works on the principle of raycasts. In a raycast, a
ray—an invisible line—is sent from the point where the user tapped
the screen. This ray continues until it hits something, at which point
the event system knows what’s “under” the user’s finger.

Because the raycast system works in 3D space, just like the rest of
the engine does, the event system is able to work with both 2D GUIs
and 3D GUIs. When an event happens, such as a finger tap or
mouse click, every raycaster in the scene fires its ray. There are three
different types of raycast colliders, each of which looks for different
things for the ray to hit—graphic raycasters, 2D physics raycasters,
and 3D physics raycasters:

• Graphic raycasters check to see if their ray has collided with any
Image component in the canvas.

• 2D physics raycasters check to see if their ray has collided with
any 2D collider in the scene.

• 3D physics raycasters check to see if their ray has collided with
any 3D collider in the scene.

When the user taps on a button GUI, the graphic raycaster compo‐
nent attached to the Canvas fires a ray out from the finger’s location
on screen, and checks to see if it hit any Image. Because buttons
have an Image component, the raycaster reports to the event system
that the button was tapped.

While they’re not used in the GUI system, you
can use the 2D and 3D physics raycasters to
detect clicks, taps, and drags on 2D and 3D
objects in your scene. For example, you can use
a 3D physics raycaster to detect when the user
clicks on a cube.

Responding to Events
When you’re building custom UI, it’s often extremely useful to be
able to add custom behavior to your UI elements. Generally, this
involves being notified about input events like clicks and drags.

To make a script that can respond to these, you make the class con‐
form to certain interfaces, and then implement the required meth‐
ods for those interfaces. For example, the IPointerClickHandler

Events and Raycasts | 363

interface requires its implementors to have a method with the signa‐
ture public void OnPointerClick (PointerEventData event

Data). This method is run when the event system detects that the
current pointer (either the mouse cursor or a finger touching the
screen) performed a “click”—that is, the mouse button was pressed
and released, or a finger was pressed and lifted, within the bounds of
the image.

To demonstrate this, here’s a quick little tutorial on how to respond
to pointer clicks on a GUI object:

1. In an empty scene, create a new Canvas by opening the Game‐
Object menu and choosing UI → Canvas. A Canvas will be
added to the scene.

2. Create a new Image by opening the GameObject menu and
choosing UI → Image. An Image object will be added as a child
of the Canvas.

3. Add a new C# script to the Image object named EventRes‐
ponder.cs, and add the following code to the file:

 // Necessary for access to 'IPointerClickHandler' and
 // 'PointerEventData'
 using UnityEngine.EventSystems;

 public class EventResponder : MonoBehaviour,
 IPointerClickHandler {

 public void OnPointerClick (PointerEventData eventData)
 {
 Debug.Log("Clicked!");
 }

 }

4. Run the game. When you click on the image, the word
“Clicked!” will appear in the Console.

Using the Layout System
When you create a new UI element, you generally add it directly
into the scene and manually set its position and size. However, this
quickly becomes untenable in two important situations:

364 | Chapter 15: Creating GUIs in Unity

• When you don’t know the size of the canvas, because the game
will be shown on different sized screens; and

• When you’re going to be adding and removing content from the
UI at runtime.

In these situations, you can take advantage of the layout system built
into the Unity GUI system.

To illuminate how it works, we’ll quickly put together a vertical list
of buttons:

1. Select a Canvas object by clicking on it in the Hierarchy. (If you
don’t have one, create one by opening the GameObject menu
and choosing UI → Canvas.)

2. Create a new empty child object by opening the GameObject
menu and choosing Create Empty Child, or by pressing Ctrl-
Alt-N (Command-Option-N on a Mac).

3. Name the new object “List”.
4. Create a new Button by opening the GameObject menu and

choosing UI → Button. Make this new Button be a child of the
List object.

5. Add a Vertical Layout Group component to the List object by
selecting it, clicking the Add Component button, and choosing
Layout → Vertical Layout Group. (You can also type the first few
letters of “vertical layout group” to quickly select this object.)

You’ll notice that the moment the Vertical Layout Group is added to
the List object, the Button is resized to fill the entire space of the
List’s rectangle. You can see a before and after view of this in Figures
15-6 and 15-7.

Using the Layout System | 365

Figure 15-6. The button, before adding a Vertical Layout Group to the
List

Figure 15-7. The button, after adding a Vertical Layout Group to the
List

Next, watch what happens when there are multiple buttons in the
layout group.

366 | Chapter 15: Creating GUIs in Unity

6. Select the Button, and duplicate it by pressing Ctrl-D
(Command-D on a Mac).

When you do this, both the original button and the duplicate will
immediately be repositioned and resized so that they both fit in the
List object (Figure 15-8).

Figure 15-8. The two buttons, laid out in a vertical arrangement

In addition to the Vertical Layout Group, the GUI system also
includes the Horizontal Layout Group, which works exactly the
same as its Vertical counterpart, only sideways; additionally, the
Grid Layout Group lays out content in a regular grid, allowing you
to display multiple lines of content that wrap around as needed.

Scaling the Canvas
In addition to the fact that the various different types of screens that
your game will be shown on will differ in size, the screens will likely
also differ in display density. Display density refers to the size of the
individual pixels; on more modern mobile devices, the screen is typ‐
ically of a higher density.

A high-profile example of this is the Retina display that’s used in all
iPhones since the iPhone 4, and in all iPads since the third-
generation iPad. These devices have screens that are the same physi‐
cal size as the previous model, but have double the display density:
on the iPhone 3GS, the screen is 320 pixels wide, but on the

Scaling the Canvas | 367

iPhone 4, the screen is 640 pixels wide. The content shown on the
screen is designed to remain the same physical size, while the
increase in display density means that content is much smoother
and better-looking.

Because Unity deals in individual pixels, rendering a GUI on a high-
density display will result in your GUI content being shown at half
the size.

To address this problem, the Unity GUI system includes a compo‐
nent called the Canvas Scaler. The Canvas Scaler’s role is to automat‐
ically adjust the scale of all GUI elements to ensure that they’re an
appropriate size for the display that the game is currently being
played on.

When you create a Canvas object through the GameObject menu, a
Canvas Scaler component is automatically added. The Canvas Scaler
can work in one of three modes—Constant Pixel Size, Scale With
Screen Size, and Constant Physical Size:

Constant Pixel Size
The default mode. In this mode, the Canvas won’t scale based
on screen size or density.

Scale With Screen Size
This mode makes the Canvas scale its contents based on its size
compared to a “reference resolution,” which you specify in the
Inspector. For example, if you set the reference resolution to 640
by 480, and then play the game on a device that happens to be
1280 by 960, then every UI element will be scaled by a factor of
2.

Constant Physical Size
This mode makes the Canvas scale its contents based on the
DPI (dots per inch) reported by the device the game is on, if this
is available.

In our experience, we’ve found that the Scale
With Screen Size mode is the most useful in the
majority of situations.

368 | Chapter 15: Creating GUIs in Unity

Transitioning Between Screens
Most game GUIs can be divided into two types: menu and in-game.
The menu GUI is what the player interacts with in order to prepare
the game for play—that is, choosing to start a new game or continue
a previous one, configuring settings, or browsing for a multiplayer
game to join. The in-game GUI is overlaid on top of the player’s
view of the game world.

In-game GUIs tend to not change their structure very much, and
usually contain readouts on important information: how many
arrows are in the player’s quiver, how many hit-points they have,
and the distance to the next objective. Menus, however, tend to
change significantly; the main menu will usually be very different in
appearance from the settings screen, because they have different
structural requirements.

Because your GUI is just an object that’s rendered by the camera,
Unity doesn’t really have the concept of a “screen” of content. There’s
just the current collection of objects that are present in the canvas. If
you want to be able to move from one screen to another, you need to
do one of two things: change the canvas that the camera is currently
looking at, or move the camera to look at something different.

Changing the canvas works well for when you want to change a sub‐
set of the GUI elements. For example, if you want to keep most of
the decorative GUI elements visible, but swap out a portion of the
GUI, then it can make more sense to not adjust the camera and to
make changes to the canvas. However, if you’re doing a complete
replacement of GUI elements, adjusting the position of the camera
can be more effective.

One thing that’s important to keep in mind is that moving the cam‐
era separately from the canvas requires that the canvas mode be set
to World Space; in both Screen Space - Overlay and Screen Space -
Camera, the UI always appears directly in front of the camera.

Wrapping Up
As we’ve seen, the Unity GUI system is extensive and powerful. You
can use it in a variety of different ways, and in a variety of different
contexts; additionally, its flexible design allows you to build exactly
the GUI that you need.

Transitioning Between Screens | 369

It’s important to remember that the UI for your game is one of the
most important components. The UI is how your user works with
your game, and on mobile devices, it’s a fundamental part of your
game’s controls. Be prepared to spend a lot of time polishing and
refining it.

370 | Chapter 15: Creating GUIs in Unity

CHAPTER 16

Editor Extensions

Building games in Unity means working with a lot of game objects,
and dealing with all of the components that those game objects are
composed of. The Inspector in Unity already takes care of a lot: by
automatically exposing all of the variables in your scripts as easy-to-
use text fields, checkboxes, and slots for dropping in assets and
scene objects, the process of assembling a scene is made a lot faster.

However, sometimes the Inspector isn’t enough of a solution. Unity
was designed to make it as easy as possible to build things like 2D
and 3D environments, but the developers of Unity can’t possibly
predict all of the things that will go in your game.

Custom editors allow you to take control of the editor itself. This
can range from very small add-on windows that let you automate
common tasks in the editor, all the way up to completely overriding
Unity’s Inspector.

When you’re creating a game more complex than the games we’ve
built, we’ve found that it can be incredibly time-saving to write tools
for yourself to automate repetitive tasks. That’s not to say that your
main task as a game developer should be writing software to help
make your game—your main task is to make your game! However,
if you find yourself doing something repetitious or difficult to do
with the existing Unity features, consider writing an editor exten‐
sion to take care of it for you.

371

This chapter goes behind the scenes of Unity
somewhat. In fact, we’ll be using classes and
code that the Unity editor itself uses. As a result,
the code in this can get a little more complex
and trickier than the earlier code we’ve been
writing.

There are several ways that you can extend Unity. In this chapter,
we’ll look at four of them, each of which is slightly more complex
and powerful than the last:

• Custom wizards give you a simple way to ask for input and per‐
form some action in the scene, such as creating a complex
object.

• Custom editor windows allow you to create your own windows
and tabs, which can contain whatever controls you need to have.

• Custom property drawers let you create a custom user interface
for your own types of data in the Inspector.

• Custom editors let you completely override the Inspector for an
object.

To get started working through the examples in this chapter, it will
help to be working with a new project:

1. Create a new project called “Editor Extensions”. Make it a 3D
project, and save it wherever you like (Figure 16-1).

372 | Chapter 16: Editor Extensions

Figure 16-1. Creating a new project

2. After Unity has loaded, create a new folder within the Assets
folder. Name this new folder Editor. You’ll be putting your editor
extension scripts in here.

Note that it’s very important that the folder be named Editor, with
the correct spelling and capitalization. Unity will be specifically
looking for a folder with this name.

This folder can actually be anywhere—it doesn’t
need to be a direct child of the Assets folder, it
just needs to be called Editor. This is useful,
because it means that in a larger project, you can
have multiple Editor folders throughout your
project, which can make it easier to deal with
having lots of scripts.

With that done, you’re ready to start making your own custom edi‐
tor scripts!

Making a Custom Wizard
We’ll start by creating a custom wizard. Wizards are a simple way to
show a window that lets you get input from the user and then use
that to do something in the scene. A very common example is

Making a Custom Wizard | 373

creating an object in the scene that varies depending on the settings
that you provide.

Wizards and editor windows, which are dis‐
cussed in “Making a Custom Editor Window”
on page 382, are conceptually similar in that
they both display a window that contains con‐
trols. However, they differ in how they’re put
together; a wizard’s controls are taken care of for
you by Unity, while an editor window’s controls
are entirely up to you. Wizards are great for
when you don’t really need a specific UI to ach‐
ieve a task, while an editor window is better
suited for when you need control over what’s
shown.

The best way to understand how wizards can help you in your day-
to-day use of Unity is to make one. We’ll create a wizard that creates
game objects that show a tetrahedron—a triangular pyramid, seen in
Figure 16-2—in the scene.

374 | Chapter 16: Editor Extensions

Figure 16-2. A tetrahedron created by the wizard

Creating objects like this involves manually creating a Mesh object.
Usually, these objects are imported from a file, such as the .blend file
used in Chapter 9; however, you can also create one in code.

With a Mesh, you can create an object that renders that mesh. To do
this, you first create a new GameObject, and then attach two compo‐
nents: a MeshRenderer and a MeshFilter. Once that’s done, the
object is ready to use in the scene.

These steps are very easy to automate, which means that they’re per‐
fect for a wizard:

Making a Custom Wizard | 375

1. Create a new C# script called Tetrahedron.cs in the Editor folder,
and add the following code to it:

 using UnityEditor;

 public class Tetrahedron : ScriptableWizard {

 }

The ScriptableWizard class defines the base behavior of the wiz‐
ard. We’ll implement some methods that override this behavior, and
get us to the good stuff.

To start, we’ll implement a method that displays the wizard. This
involves two tasks: first, a menu item needs to be added to Unity’s
menu, which the user will use to call the method; second, inside this
method, we need to instruct Unity to display the wizard.

2. Add the following code to the Tetrahedron class:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

 // This method can be called anything - the important thing
 // is that it's static and has the MenuItem attribute
 [MenuItem("GameObject/3D Object/Tetrahedron")]
 static void ShowWizard() {
 // First parameter is title, second is the label on
 // the Create button
 ScriptableWizard.DisplayWizard<Tetrahedron>(
 "Create Tetrahedron", "Create");
 }

The MenuItem attribute, when attached to a static method, makes
Unity add an entry to the application menu. In this case, it creates a
new entry in the GameObject → 3D Object menu called “Tetrahe‐
dron”; when this menu item is selected, the ShowWizard method is
called.

The method doesn’t actually need to be called
ShowWizard. You can call it whatever you like—
Unity is only looking for the MenuItem attribute.

376 | Chapter 16: Editor Extensions

3. Return to Unity, and open the GameObject menu. Choose 3D
Object → Tetrahedron, and an empty wizard window will
appear (Figure 16-3).

Figure 16-3. An empty wizard window

Next, we’ll add a variable to the wizard’s class. Doing this will make
Unity show the appropriate control for this variable in the wizard’s
window, just like it does in the Inspector. This will be a Vector3,
which represents the height, width, and depth of the object.

4. Add the following variable to the Tetrahedron, to represent the
size of the tetrahedron:

 // This variable will appear just like it would in the
 // Inspector
 public Vector3 size = new Vector3(1,1,1);

5. Return to Unity. Close and reopen the Wizard, and you’ll see a
slot for the Size variable (Figure 16-4).

Making a Custom Wizard | 377

Figure 16-4. The wizard, with a control for the Size variable

The wizard now lets you provide data to it, but doesn’t currently do
anything with that data. Let’s address that now!

When you call the DisplayWizard method, you provide two strings.
The first is the title of the menu, and the second is the text that
should appear in the wizard’s Create button. When this button is
tapped, your wizard’s class will receive a call to the OnWizardCreate
method, which indicates that the user has finished providing infor‐
mation to the wizard; after the OnWizardCreate method returns,
Unity will close the window.

We’ll now implement the OnWizardCreate method, which will do
the bulk of the actual work of the wizard. It will create the Mesh that
uses the Size variable, and construct a game object that renders that
mesh.

6. Add the following method to the Tetrahedron class:

 // Called when the user clicks the Create button
 void OnWizardCreate() {

 // Create a mesh
 var mesh = new Mesh();

378 | Chapter 16: Editor Extensions

 // Create the four points
 Vector3 p0 = new Vector3(0,0,0);
 Vector3 p1 = new Vector3(1,0,0);
 Vector3 p2 = new Vector3(0.5f,
 0,
 Mathf.Sqrt(0.75f));
 Vector3 p3 = new Vector3(0.5f,
 Mathf.Sqrt(0.75f),
 Mathf.Sqrt(0.75f)/3);

 // Scale them based on size
 p0.Scale(size);
 p1.Scale(size);
 p2.Scale(size);
 p3.Scale(size);

 // Provide the list of vertices
 mesh.vertices = new Vector3[] {p0,p1,p2,p3};

 // Provide the list of triangles that connect each of
 // the vertices
 mesh.triangles = new int[] {
 0,1,2,
 0,2,3,
 2,1,3,
 0,3,1
 };

 // Update some additional data on the mesh, using this
 // data
 mesh.RecalculateNormals();
 mesh.RecalculateBounds();

 // Create a game object that uses this mesh
 var gameObject = new GameObject("Tetrahedron");
 var meshFilter = gameObject.AddComponent<MeshFilter>();
 meshFilter.mesh = mesh;

 var meshRenderer
 = gameObject.AddComponent<MeshRenderer>();
 meshRenderer.material
 = new Material(Shader.Find("Standard"));

 }

This method works by first creating a new Mesh object, and then fig‐
uring out the locations of the four points that make up the tetrahe‐
dron. These are then scaled based on the size vector, which means
that they’re repositioned such that they’re in the right location to
make up a tetrahedron of size’s width, height, and depth.

Making a Custom Wizard | 379

These points are provided to the Mesh via its vertices property;
once that’s done, a list of triangles is provided by providing a list of
numbers. Each number represents one of the points provided to the
vertices.

For example, in the triangle list, 0 refers to the first point, 1 refers to
the second, and so on. The triangle list uses groups of three numbers
to define a triangle; so, for example, the numbers 0, 1, 2 mean that
the mesh will contain a triangle made up of the first, second, and
third point in the vertices list. A tetrahedron is made of four trian‐
gles: the base, and the three sides. As a result, the triangles list is
made up of four groups of three numbers.

Finally, the mesh is told to recalculate some internal information,
based on the vertices and triangles data it now contains. It’s then
ready for use in the scene: a new GameObject is created, a MeshFil
ter is attached and is given the Mesh we just built, and a MeshRen
derer is attached to actually show the Mesh. Finally, the
MeshRenderer is given a new Material, which is created using the
Standard shader—just like all the other built-in objects you create
via the GameObject menu do.

7. Return to Unity, and close and reopen the wizard window. When
you click the Create button, a new tetrahedron will be added to
the scene. If you change the Size variable, the tetrahedron’s
dimensions will be different.

There’s one last feature to add to the wizard. Currently, the wizard
doesn’t check to see if the Size variable has been set to something
reasonable; for example, the wizard should refuse to create a tetrahe‐
dron that’s negative two units in height.

Strictly speaking, this would actually can be
totally fine, since Unity can handle it. However,
it’s useful to know how to do this kind of input
validation.

For this example, we’ll make the wizard refuse to create tetrahedrons
when any of the Size variable’s components—X, Y, or Z—have a
value of zero or less.

380 | Chapter 16: Editor Extensions

We’ll do this by implementing the OnWizardUpdate method, which
is called every time the user makes a change to any of the variables
in the wizard. This gives you a chance to check the values, and
enable or disable the Create button. Importantly, you can add
explanation text that tells the user why the wizard is refusing the
input.

8. Add the following method to the Tetrahedron class:

 // Called whenever the user changes anything in the wizard
 void OnWizardUpdate() {

 // Check to make sure that the values provided are
 // valid
 if (this.size.x <= 0 ||
 this.size.y <= 0 ||
 this.size.z <= 0) {

 // When isValid is true, the Create button can
 // be clicked
 this.isValid = false;

 // Explain why this is the case
 this.errorString
 = "Size cannot be less than zero";

 } else {

 // The user can click create, so enable it and
 // clear any error message
 this.errorString = null;
 this.isValid = true;
 }
 }

When the isValid property is set to false, the Create button will be
disabled, meaning that the user cannot click it. Additionally, if you
set the errorString property to anything besides null, an error
message will appear in the window. You can use this to explain to
the user what the problem is (Figure 16-5).

Making a Custom Wizard | 381

Figure 16-5. The wizard, showing an error

Wizards can let you save a lot of time in doing repetitive work, or
work that’s difficult to accomplish in the Unity editor alone. They’re
quick to code, because the Unity editor takes care of the majority of
the user interface for you. However, sometimes you’ll need more
than what the wizard system can provide; next, we’ll look at entirely
custom editor windows.

Making a Custom Editor Window
A window is what Unity calls a region that can be either a separate,
floating window, or a tab that’s docked to a part of the main Unity
editor’s interface.

Just about every single part of Unity that you
can see is an editor window.

When you create an editor window, you have complete control over
its contents. This is quite different to how wizards and the Inspector
work, where Unity will automatically draw the user interface for

382 | Chapter 16: Editor Extensions

you; in an editor window, nothing will appear unless you specifically
tell it to. This gives you significant power, since you can add entirely
new features to Unity that are specific to your needs.

In this section, we’ll create a new editor window that simply counts
the number of textures in the project. Before we can get to this func‐
tionality, though, we need to learn how to draw anything in an editor
window.

First, let’s create a new empty editor window.

1. Create a new script called TextureCounter.cs, and put it in the
Editor folder.

2. Open it, and replace the contents of the file with the following
code:

 using UnityEngine;
 using System.Collections;
 using UnityEditor;

 public class TextureCounter : EditorWindow {

 [MenuItem("Window/Texture Counter")]
 public static void Init() {
 var window = EditorWindow
 .GetWindow<TextureCounter>("Texture Counter");
 // Stops this window from being unloaded when a
 // new scene is loaded
 DontDestroyOnLoad(window);
 }

 private void OnGUI() {
 // Editor GUI goes here
 EditorGUILayout.LabelField("Current selected size is "
 + sizes[selectedSizeIndex]);
 }

 }

This code adds a new menu item to the Window menu, which cre‐
ates and displays a new window that uses the TextureCounter class.
It also marks this window as something that should not be unloaded
by Unity if the current scene changes.

3. Save this file, and go back to Unity.

Making a Custom Editor Window | 383

4. Open the Window menu, and you’ll see a “Texture Counter”
menu item. Click it, and an empty window will appear!

Now that we’ve got the empty window going, it’s time to start adding
controls to it. To do that, we need to know about how to work with
the Editor GUI system.

The Editor GUI API
The GUI system used by the editor is quite different from the GUI
system that you use to build your game.

In the game’s GUI system (we’ll call it Unity GUI), you create game
objects that represent things like text labels and buttons, and you
position them in your scene.

In the GUI system used to create editor GUI (we’ll call it the imme‐
diate mode GUI, for reasons that we’ll get to in a moment), you call
special functions that cause a label or button to appear at a certain
point; these functions are called by Unity repeatedly, every time
Unity needs to redraw the screen.

The term immediate mode refers to the fact that the act of calling
these special GUI functions causes a button to be shown on screen
immediately; the screen will then later be cleared, removing the but‐
ton from the screen along with everything else, and then the GUI
function will be called again on the next frame. This process repeats
forever.

For efficiency, Unity doesn’t continuously call
these editor GUI functions. Instead, it only does
so when potentially needed: when the user clicks
the mouse or types a key, when the window con‐
taining the GUI content resizes, or other screen-
related events.

The other main difference between the immediate mode and Unity
GUI systems is the way that layout works. In the Unity GUI, objects
are positioned relative to their parent objects, as well as to their
anchor; in the immediate mode GUI, you either provide a specific
rectangle that describes the position and size of the thing you want
to draw, or you make use of a managed layout system called GUILay
out, which we’ll describe in a moment.

384 | Chapter 16: Editor Extensions

The best way to explain this difference is through an example. For
the next several pages, we’ll go through the fundamentals of how to
use the GUI system, as well as the different controls available to you.

Rects and layout
The simplest possible control to add in the window is a simple text
label. We’ll add some code that does the task, and then we’ll explain
it.

1. Add the following code to the OnGUI method:

 GUI.Label(
 new Rect(50,50,100,20),
 "This is a label!"
);

2. Return to Unity, and open the editor window. You’ll now see the
text “This is a label” appear in the window (Figure 16-6).

Figure 16-6. A manually placed label in the editor window

Let’s walk through this code:

Calls the Label method of the GUI class, which will end up dis‐
playing the text in the window.

Making a Custom Editor Window | 385

Creates a new Rect, which defines the x position, y position,
width, and height of the label. In this case, it’s positioned 50 pix‐
els from the top and the left, is 100 pixels wide, and is 20 pixels
high.

Provides the actual text that should appear in the label: “This is
a label!”

This code is run every time Unity needs to update what’s being
shown in the window. When the GUI.Label method is called, the
label is added to the window.

Every call to a GUI function must take place
inside the OnGUI method. You’l get problems if
you call GUI.Label from anywhere else.

The Rect that you provide controls where the label will appear. For
simple situations, such as this example, this is fine, but for more
complex situations, it can become challenging.

To help with this, the immediate mode GUI provides a method for
automatically laying out your controls, both vertically or horizon‐
tally.

To show controls in a vertically stacked list, for example, you create
a new EditorGUILayout.VerticalScope, and wrap this in a using
statement.

3. Replace the contents of the OnGUI method with the following code:

using (var verticalArea
 = new EditorGUILayout.VerticalScope()) {
 GUILayout.Label("These");
 GUILayout.Label("Labels");
 GUILayout.Label("Will be shown");
 GUILayout.Label("On top of each other");
}

There are two main differences about the labels in this example.

First, you’ll notice that the Label method being called comes from
the GUILayout class, not the GUI class. This version of the label is
able to make use of the fact that they’re being called within the con‐
text of the VerticalScope, and position themselves correctly.

386 | Chapter 16: Editor Extensions

Second, you don’t need to provide a Rect to define their position
and size. They’ll make use of the VerticalScope to determine that.

Using the layout system like this is much faster, and leads to a much
better experience for you as a programmer. As a result, we’ll be
using the layout system for almost all of the rest of this chapter.

The one exception to this is property drawers,
where the GUI layout system doesn’t work. In
this section, we’ll fall back to manually laying
out controls and specifying their rectangles.

How controls work
As mentioned earlier, a control in the immediate GUI system is a
function call. This is easy to understand for simple controls like
labels, but for controls where the user can provide input, such as
buttons and text fields, it might get a little complex.

Given that a control is the result of calling a function, how is it pos‐
sible to get back any information from the user? The answer is
actually quite clever: the functions for displaying a control also
return information back to their caller.

Again, the best way to explain this is through an example.

Buttons
Let’s start by creating a button using the immediate GUI system:

1. Replace the OnGUI method with the following code:

 private void OnGUI() {
 using (var verticalArea
 = new EditorGUILayout.VerticalScope()) {
 var buttonClicked = GUILayout.Button("Click me!");
 if (buttonClicked) {
 Debug.Log("The custom window's " +
 "button was clicked!");
 }
 }
 }

When the GUILayout.Button method is called, two things happen.
A button appears on screen; additionally, if a mouse click just fin‐
ished in this area, the method returns true.

Making a Custom Editor Window | 387

This system works because OnGUI is called repeatedly. When the
window first appears, the call to Button causes the button to appear
on screen. When the user moves the mouse over the button and
holds down the mouse button, OnGUI is again called, and the GUI
system draws the button in a “down” state. When the user lifts the
mouse button, OnGUI is called once more; because a click has com‐
pleted, this third call to Button returns true.

In practical terms, you can think of this style of programming like
this: GUILayout.Button simultaneously draws a button on the
screen, and returns true if the user clicked it.

2. Return to Unity, and note that a button now appears. When you
click that button, “The custom window’s button was clicked!”
appears in the Console tab.

Yes, this is a bit weird. However, ¯_(ツ)_/¯.

Text fields
A button is the simplest possible type of control that the user can
provide information through—the user is either clicking the button,
or not. However, there are more complex types of controls that the
GUI system supports. For example, a text field has two tasks: show‐
ing some text to the user, and letting the user edit that text.

The method that you call to display a text field is EditorGUILay
out.TextField. When you call this method, you provide a string
that should be displayed in the text field; the method then returns
what the user has entered in the text field, which may be different.

For this to work, the variable that you store the text in must not be a
local variable. That is, the following code will not work correctly:

 private void OnGUI() {
 using (var verticalArea
 = new EditorGUILayout.VerticalScope()) {
 string textValue = "";

 textValue
 = EditorGUILayout.TextField(textValue);

388 | Chapter 16: Editor Extensions

 }
 }

TextField is inside the EditorGUILayout class,
not the GUILayout class. GUILayout does include
a TextField method, but it doesn’t have quite
the same functionality.

If you test this code in Unity, it will let you type in it, but when you
leave the text field, it will reset to the empty string.

To do this correctly, the variable that you store the text in must be a
variable that belongs to the class:

private string stringValue;
private void OnGUI() {
 using (var verticalArea
 = new EditorGUILayout.VerticalScope()) {

 this.stringValue
 = EditorGUILayout.TextField(this.stringValue);
 }
}

This works because stringValue’s contents are preserved between
the different calls to OnGUI.

The TextField control displays a single line of text. If you want to
display multiple lines of text, use a TextArea:

 this.stringValue = EditorGUILayout.TextArea(
 this.stringValue,
 GUILayout.Height(80)
);

You’ll notice that because these two controls are
working with the same variable, they’ll show the
same text—additionally, when you make
changes to one, you’ll automatically make
changes to the other. It’s pretty cool.

In this previous example, the height of the text area was overridden
by providing a GUILayout option. This can be added to any control;
if you need a tall button, you can just add a call to GUILay
out.Height(80) to any button, and it will be 80 pixels high.

Making a Custom Editor Window | 389

Delayed text fields. An additional type of text field is the delayed text
field. These work like regular text fields, except that the value that
they return doesn’t change away from the original value you put in,
until they lose focus—that is, the user moves to a different text field
or clicks something else.

This is useful for situations where you need to do some validation
on the data the user has entered, but it doesn’t make sense to do so
until the user indicates that they’re done typing.

You create a delayed text field using the DelayedTextField method,
like so:

 this.stringValue
 = EditorGUILayout.DelayedTextField(this.stringValue);

Special text fields. In addition to handling regular text, text fields
can also be used for numbers. In particular, there are four very use‐
ful variants on the TextField control: integer fields, float fields, Vec
tor2D fields, and Vector3D fields.

For example, given these backing fields in your class:

 private int intValue;

 private float floatValue;

 private Vector2 vector2DValue;

 private Vector3 vector3DValue;

You can create fields that provide data to them:

 this.intValue
 = EditorGUILayout.IntField("Int", this.intValue);

 this.floatValue
 = EditorGUILayout.FloatField("Float", this.floatValue);

 this.vector2DValue
 = EditorGUILayout.Vector2Field("Vector 2D",
 this.vector2DValue);
 this.vector3DValue
 = EditorGUILayout.Vector3Field("Vector 3D",
 this.vector3DValue);

390 | Chapter 16: Editor Extensions

Note the strings used for the first parameter: if
you provide this, then a label will appear before
the text field.

Sliders
In addition to using text fields for numeric input, you can also pro‐
vide a graphical slider. For example, you can use an IntSlider like
so:

 var minIntValue = 0;
 var maxIntValue = 10;
 this.intValue
 = EditorGUILayout.IntSlider(this.intValue,
 minIntValue,
 maxIntValue);

Sliders are especially useful when combined with an IntField or
FloatField control that uses the same variable, since you can use
the slider to quickly set a value, but if you need to set a very specific
value, you can just type it in.

You can also use min-max sliders, which let you present a way to
define a minimum and maximum value. For example, given the two
class variables used to store the minimum and maximum range:

 private float minFloatValue;
 private float maxFloatValue;

You can draw a min-max slider using the MinMaxSlider method:

 var minLimit = 0;
 var maxLimit = 10;
 EditorGUILayout.MinMaxSlider(ref minFloatValue,
 ref maxFloatValue,
 minLimit,
 maxLimit);

Note that this method doesn’t return a value; instead, it modifies the
minFloatValue and maxFloatValue variables that you pass in. Addi‐
tionally, the minLimit and maxLimit values limit the minimum and
maximum values that both minFloatValue and maxFloatValue can
be set to.

Making a Custom Editor Window | 391

Space

The Space control is entirely invisible, and simply adds space to
your UI. It’s useful for visually breaking up your controls into differ‐
ent groups:

 EditorGUILayout.Space();

Lists
So far, all of the controls that we’ve discussed that allow for user
input are quite open-ended: the user can enter whatever text or
number they like. However, you’ll sometimes encounter situations
where you want the user to choose from a list of predefined options.

To support this, you can use a Popup. A Popup works using an array
of string options, and an integer that represents the current selection
from that array; when the user changes the current selection, the
current selection number changes.

For example, if you add this variable to your class:

 private int selectedSizeIndex = 0;

And then add this code to your OnGUI method:

 var sizes = new string[] {"small","medium","large"};

 selectedSizeIndex
 = EditorGUILayout.Popup(selectedSizeIndex, sizes);

However, it can be annoying to have to remember the association
between the numbers stored in selectedSizeIndex and the values
that they represent. A better way to do this is with enumerations,
which are also known as enums.

Enums are better because they’re checked by the compiler—in the
previous example, you’d need to remember that “0” means “small,”
but it would be nicer to simply say Small. Enums let you do this!

Let’s define an enum that defines a few different types of damage;
we’ll also add a variable that stores the currently selected damage
type.

1. Add the following code to your TextureCounter class:

 private enum DamageType {
 Fire,
 Frost,

392 | Chapter 16: Editor Extensions

 Electric,
 Shadow
 }

 private DamageType damageType;

Using this enum and the damageType variable, we can now create a
Popup that shows values from this list.

2. Add the following code to the OnGUI method:

 damageType
 = (DamageType)EditorGUILayout.EnumPopup(damageType);

Doing this will show a Popup containing all of the possible values
representable by the DamageType enum, set to the currently selected
value of the damageType variable.

You need to cast to the correct enum type,
because the EnumPopup method doesn’t know
what type of enum it’s using.

Scroll views
If you’ve been adding all of the different controls presented so far in
this chapter, you might notice that the controls are starting to spill
beyond the bounds of the editor window. To solve this, you can use
scroll views to let the user scroll around.

A scroll view needs to keep track of its scroll position. As a result,
you need to create a variable to store the scroll position, just like you
do with other controls.

1. Add the following variable to the TextureCounter class:

 private Vector2 scrollPosition;

You create a scrolling view in a very similar way as creating a vertical
list: you create a new EditorGUILayout.ScrollViewScope, inside a
using statement.

2. Add the following code to your OnGUI method:

 using (var scrollView =
 new EditorGUILayout.ScrollViewScope(this.scrollPosition)) {

Making a Custom Editor Window | 393

 this.scrollPosition = scrollView.scrollPosition;

 GUILayout.Label("These");
 GUILayout.Label("Labels");
 GUILayout.Label("Will be shown");
 GUILayout.Label("On top of each other");
 }

3. Return to Unity, and the labels will be contained within a scroll‐
ing area. You may need to resize the window to see the effect.

The Asset Database
To wrap up our discussion of editor windows, we’ll return to the
goal of the TextureCounter window: we’ll make it count the num‐
ber of textures in the project, and show it in a label.

To do this, we’ll use the AssetDatabase class. This class acts as your
gateway to all of the assets currently in the project, and you can use
it to get information about and make changes to all files under Uni‐
ty’s control.

We don’t have space to discuss all of the different
things that the AssetDatabase class can do;
instead, we strongly recommend that you check
out the Unity manual’s page on AssetDatabase.

1. Replace the OnGUI method in TextureCounter with the following
code:

 private void OnGUI() {
 using (var vertical = new EditorGUILayout.VerticalScope()) {
 // Get the list of all textures
 var paths = AssetDatabase.FindAssets("t:texture");

 // Get the count
 var count = paths.Length;

 // Show a label
 EditorGUILayout.LabelField("Texture Count",
 count.ToString());

 }

 }

394 | Chapter 16: Editor Extensions

http://docs.unity3d.com/Manual/AssetDatabase.html

2. Return to Unity, and add some images to your project. It doesn’t
matter what images they are—drag any files in. If you’re stuck
for ideas, go to Flickr and search for “cats.”

The editor window will now display the number of textures that you
added.

Making a Custom Property Drawer
In addition to creating entirely custom editor windows, you can also
extend the behavior of the Inspector window.

The role of the Inspector is to provide a user interface for configur‐
ing each of the components attached to the currently selected game
object. For each component, the Inspector shows a control that rep‐
resents each of its variables.

The Inspector already knows how to present the appropriate con‐
trols for common types, like strings, integers, and floats. However, if
you define a custom type, the Inspector won’t necessarily know how
to present it correctly. This is usually fine, but it can get cluttered.

This is where property drawers come in. You can provide code to
Unity that determines how different types of data should appear to
the user.

The GUI layout system doesn’t work inside cus‐
tom property drawers. Instead, you’ll need to
manually lay out your controls. Don’t worry—
it’s not as scary as it sounds, and we’ll be doing
this in the example code.

To demonstrate this, we’ll create a custom class that represents a
range of values, which can then be used in any script. We’ll then
define a custom property drawer for this custom class. To do so, fol‐
low these steps:

1. Create a new C# script called Range.cs, and put it in the Assets
folder.

2. Add the following code to Range.cs:

 [System.Serializable]
 public class Range {

Making a Custom Property Drawer | 395

https://flickr.com/

 public float minLimit = 0;
 public float maxLimit = 10;

 public float min;
 public float max;

 }

The System.Serializable attribute marks this
class as able to be saved to disk. This also indi‐
cates to Unity that its values should appear in
the Inspector.

3. Create a second C# class called RangeTest, and put it in the Assets
folder as well. This will be a simple script component that uses a
Range. Add the following code to RangeTest.cs:

 public class RangeTest : MonoBehaviour {

 public Range range;

 }

4. Create an empty game object and drag the RangeTest script onto
it.

When the game object is selected, the Inspector will show the raw
values (Figure 16-7).

Figure 16-7. The Inspector, showing the default interface for the Range
class

To override this, we’ll implement a new class that replaces the
default interface that Unity provides.

396 | Chapter 16: Editor Extensions

5. Create a new script called RangeEditor.cs, and place it in the Edi‐
tor folder.

6. Replace the contents of RangeEditor.cs with the following code:

 using UnityEngine;
 using System.Collections;

 using UnityEditor;

 [CustomPropertyDrawer(typeof(Range))]
 public class RangeEditor : PropertyDrawer {

 // This property drawer will be two lines high - one for the
 // slider, and one for the text fields that let you change
 // the values directly
 const int LINE_COUNT = 2;

 public override float GetPropertyHeight (
 SerializedProperty property, GUIContent label)
 {
 // Return the number of pixels of height that
 // this property takes up
 return base.GetPropertyHeight (property, label)
 * LINE_COUNT;
 }

 public override void OnGUI (Rect position,
 SerializedProperty property, GUIContent label)
 {

 // Get the objects that represent the fields inside this
 // Range property
 var minProperty = property.FindPropertyRelative("min");
 var maxProperty = property.FindPropertyRelative("max");

 var minLimitProperty
 = property.FindPropertyRelative("minLimit");
 var maxLimitProperty
 = property.FindPropertyRelative("maxLimit");

 // Any controls inside the PropertyScope will work
 // correctly with prefabs - values that have been
 // changed from the prefab will be bold, and you can
 // right-click on a value and choose to reset it back
 // to the prefab
 using (var propertyScope
 = new EditorGUI.PropertyScope(
 position, label, property)) {

 // Show the label; this method returns a rect

Making a Custom Property Drawer | 397

 // that stuff next to it can contain
 Rect sliderRect
 = EditorGUI.PrefixLabel(position, label);

 // Construct rectangles for each of the controls:

 // Calculate how big a single line is
 var lineHeight = position.height / LINE_COUNT;

 // The slider needs to be one line high
 sliderRect.height = lineHeight;

 // The area for the two fields is the same shape
 // as the slider, but shifted down one line
 var valuesRect = sliderRect;
 valuesRect.y += sliderRect.height;

 // Work out rects for the two text fields
 var minValueRect = valuesRect;
 minValueRect.width /= 2.0f;

 var maxValueRect = valuesRect;
 maxValueRect.width /= 2.0f;
 maxValueRect.x += minValueRect.width;

 // Get the float values out
 var minValue = minProperty.floatValue;
 var maxValue = maxProperty.floatValue;

 // Start a change check - we do this to
 // correctly support multi-object editing
 EditorGUI.BeginChangeCheck();

 // Show the slider
 EditorGUI.MinMaxSlider(
 sliderRect,
 ref minValue,
 ref maxValue,
 minLimitProperty.floatValue,
 maxLimitProperty.floatValue
);

 // Show the fields
 minValue
 = EditorGUI.FloatField(minValueRect, minValue);
 maxValue
 = EditorGUI.FloatField(maxValueRect, maxValue);

 // Was a value changed?
 var valueWasChanged = EditorGUI.EndChangeCheck();

398 | Chapter 16: Editor Extensions

 if (valueWasChanged) {
 // Store the modified values
 minProperty.floatValue = minValue;
 maxProperty.floatValue = maxValue;
 }
 }

 }
 }

This is a large piece of code, so we’ll step through it in chunks.

Creating the Class
First, we need to define the class, and indicate to Unity that it should
be used for drawing the interface for any Range property that the
Inspector encounters. We do this using the CustomPropertyDrawer
attribute, which takes as a parameter the Range class type.

Additionally, the RangeEditor’s superclass is set to PropertyDrawer.

 [CustomPropertyDrawer(typeof(Range))]
 public class RangeEditor : PropertyDrawer {

Setting the Height of the Property
A property takes up a certain amount of vertical space in the Inspec‐
tor. By default, this amount is around 20 pixels; however, range
properties will need more space, because we want to draw the range
slider, as well as two text fields underneath it.

The GetPropertyHeight method is responsible for returning the
height of the property, in pixels. You can override this method to
change this height.

Rather than hardcode a certain value in, which might change
between different versions of Unity, we define the number of lines
that we want to have as a constant called LINE_COUNT; we then call
the base implementation to get the size of one line, and then multi‐
ply it by LINE_COUNT.

 // This property drawer will be two lines high - one for the
 // slider, and one for the text fields that let you change
 // the values directly
 const int LINE_COUNT = 2;

 public override float GetPropertyHeight (
 SerializedProperty property, GUIContent label)

Making a Custom Property Drawer | 399

 {
 // Return the number of pixels of height that this
 // property takes up
 return base.GetPropertyHeight (
 property, label) * LINE_COUNT;
 }

Overriding OnGUI
It’s now time to start implementing the main method in this class:
OnGUI. For property drawers, this method takes three parameters:

• The position parameter is a Rect that defines the position and
size of available area that the OnGUI method has to draw its con‐
trols.

• The property parameter is a SerializedProperty object,
which is the way you interact with the specific Range property of
the component that this particular instance of the class pro‐
vides.

• The label parameter is a GUIContent object that represents
some graphical content—usually some text—that should appear
as the label for this property.

 public override void OnGUI (Rect position,
 SerializedProperty property, GUIContent label)
 {

Getting the Properties
A property drawer’s job is to present and modify a single property
inside a component. You don’t directly modify the component itself;
instead, the property parameter mediates your access. Doing this
means that Unity can provide additional functionality, such as auto‐
matic support for undo.

In the case of the Range object, it’s a property that contains other
properties. The min, max, minLimit, and maxLimit variables are all
themselves properties, so we need to access them:

 // Get the objects that represent the fields inside this
 // Range property
 var minProperty = property.FindPropertyRelative("min");
 var maxProperty = property.FindPropertyRelative("max");

 var minLimitProperty

400 | Chapter 16: Editor Extensions

 = property.FindPropertyRelative("minLimit");
 var maxLimitProperty
 = property.FindPropertyRelative("maxLimit");

Creating a property scope
In addition to getting the objects that represent these properties, we
need to indicate to the GUI system that the controls that we’re draw‐
ing relate to a specific property.

Doing this means that Unity is able to customize the appearance of
the controls when needed; some important examples of this include
when the object that the property belongs to is a modified instance
of a prefab, in which case the property should appear as bold; addi‐
tionally, when you right-click on a modified property, Unity will
open a menu that lets you revert its value back to the prefab.

To support all of this, we wrap all of the controls inside a Property
Scope:

 using (var propertyScope
 = new EditorGUI.PropertyScope(position, label, property)) {

Drawing the Label
We now draw the label, using the PrefixLabel control. This control
draws the label text inside the position rectangle; it then returns a
new Rect, which represents the remaining area that controls can be
drawn in, next to the label.

Doing this means that the layout of the property will follow the style
established by the rest of Unity: properties have their label at the
top-left corner, and their fields to the right; the area beneath the
label is left empty:

 Rect sliderRect = EditorGUI.PrefixLabel(position, label);

Calculating the Rectangles
Now that we know how much space is available to draw the controls
in, we need to start calculating the rectangles for each of the three
controls: the slider and the two text fields.

We do this by first calculating the height of a single line, in pixels, by
dividing the total space by LINE_COUNT. We then set sliderRect’s

Making a Custom Property Drawer | 401

height to this new lineHeight, while leaving its width alone. This
means that the slider will take up the entire top line.

We can then calculate the rectangles for the two text fields. These
will be shown side by side on the line underneath the slider. To cal‐
cualte this, we figure out the rectangle that represents the entire sec‐
ond line, and then divide it in half:

 var lineHeight = position.height / LINE_COUNT;

 // The slider needs to be one line high
 sliderRect.height = lineHeight;

 // The area for the two fields is the same shape as
 // the slider, but shifted down one line
 var valuesRect = sliderRect;
 valuesRect.y += sliderRect.height;

 // Work out rects for the two text fields
 var minValueRect = valuesRect;
 minValueRect.width /= 2.0f;

 var maxValueRect = valuesRect;
 maxValueRect.width /= 2.0f;
 maxValueRect.x += minValueRect.width;

Getting the Values
Because the MinMaxSlider directly modifies the variables that you
pass into it, we need to temporarily store the values of minProperty
and maxProperty into variables. These values will eventually be
stored back into the property objects, after being modified by the
controls we’re about to draw:

 var minValue = minProperty.floatValue;
 var maxValue = maxProperty.floatValue;

Creating the Change Check
There’s one more bit of setup required before we get into the guts of
drawing the controls. We need to ask Unity to tell us if any controls
that we’re about to draw have had their value changed.

This is an important step, because if we didn’t do this, we’d be mak‐
ing changes to the properties every time that we draw the controls,
even if the changes weren’t applied.

402 | Chapter 16: Editor Extensions

This would usually be fine, except that if multiple objects are
selected, and they all have a Range, then the act of displaying the
controls for the Range would also change them all to a single value,
even when the user does nothing at all. Adding a change check pre‐
vents this accidental behavior.

 EditorGUI.BeginChangeCheck();

Drawing the Slider
We can finally start drawing controls. We have the data that they
need to display, a way to store the results that come back, and the
rectangles in which they should appear.

We’ll first draw the MinMaxSlider:

 EditorGUI.MinMaxSlider(
 sliderRect,
 ref minValue,
 ref maxValue,
 minLimitProperty.floatValue,
 maxLimitProperty.floatValue
);

Drawing the Fields
Next, we’ll draw the text fields. Note how we’re using the same vari‐
ables that were passed to the MinMaxSlider; doing this means that
changing the slider will also update the text fields, and vice versa:

 minValue = EditorGUI.FloatField(minValueRect, minValue);
 maxValue = EditorGUI.FloatField(maxValueRect, maxValue);

Checking for Changes
Finally, we can ask Unity if any control was changed since we began
the change check. The EditorGUI.EndChangeCheck method will
return true if that’s the case:

 var valueWasChanged = EditorGUI.EndChangeCheck();

Storing the Properties
If a control was changed, we need to store the new value in the
property:

 if (valueWasChanged) {
 // Store the modified values

Making a Custom Property Drawer | 403

 minProperty.floatValue = minValue;
 maxProperty.floatValue = maxValue;
 }

Testing It Out
With this, we’re all done.

Return to Unity, and look at the Inspector. You’ll see a custom UI for
the Range variable (Figure 16-8).

Figure 16-8. The customized property drawer

You may need to de-select and then select the
game object for the user interface to update.

With this code written, any Range property on any script will get this
custom interface.

Making a Custom Inspector
The last thing we’ll discuss in this chapter is creating entirely cus‐
tomized Inspectors. In addition to customizing the appearance of
individual properties, you can replace the entire user interface for a
component in the Inspector.

We’ll look at how you can do this by first creating a simple compo‐
nent, and then creating an entirely new Inspector interface for that
component.

Creating a Simple Script
This simple component will change the color of a mesh when the
game starts.

1. Create a new script called RuntimeColorChanger.

404 | Chapter 16: Editor Extensions

2. Update the RuntimeColorChanger class to the following code:

 public class RuntimeColorChanger : MonoBehaviour {

 public Color color = Color.white;

 void Awake() {
 GetComponent<Renderer>().material.color = color;
 }
 }

3. Return to Unity. Open the GameObject menu, and choose 3D
Object → Capsule.

4. Drag the RuntimeColorChanger script onto the object.
5. Change the RuntimeColorChanger’s Color property to red and

hit Play. The capsule will turn red.

Creating a Custom Inspector
So far so good: the script does exactly what we want it to.

We now want to create a custom Inspector that adds a cool feature:
we want to have a list of buttons that let us quickly change the color
to a predefined color. To do this, we’ll create the custom Inspector
that adds these buttons.

1. Create a script called RuntimeColorChangerEditor.cs, and put it
in the Editor folder.

2. Replace the contents of RuntimeColorChangerEditor.cs with the
following code:

 using UnityEngine;
 using System.Collections;
 using System.Collections.Generic; // needed for Dictionary
 using UnityEditor;

 // This is an editor for RuntimeColorChangers
 [CustomEditor(typeof(RuntimeColorChanger))]
 // It can handle editing multiple things at once
 [CanEditMultipleObjects]
 class RuntimeColorChangerEditor : Editor {

 // A collection of string-color pairs
 private Dictionary<string, Color> colorPresets;

Making a Custom Inspector | 405

 // Represents the "color" property on all selected objects
 private SerializedProperty colorProperty;

 // Called when the editor first appears
 public void OnEnable() {

 // Set up the list of color presets
 colorPresets = new Dictionary<string, Color>();

 colorPresets["Red"] = Color.red;
 colorPresets["Green"] = Color.green;
 colorPresets["Blue"] = Color.blue;
 colorPresets["Yellow"] = Color.yellow;
 colorPresets["White"] = Color.white;

 // Get the property from the object(s)
 // that are currently selected
 colorProperty
 = serializedObject.FindProperty("color");
 }

 // Called to draw the GUI in the Inspector
 public override void OnInspectorGUI ()
 {
 // Ensure that the serializedObject is up to date
 serializedObject.Update();

 // Start a vertical list of controls
 using (var area
 = new EditorGUILayout.VerticalScope()) {

 // For each color in the preset list..
 foreach (var preset in colorPresets) {

 // Show a button
 var clicked = GUILayout.Button(preset.Key);

 // If it was clicked, update the property
 if (clicked) {
 colorProperty.colorValue = preset.Value;
 }
 }

 // Finally, show a field that allows for
 // setting the color directly
 EditorGUILayout.PropertyField(colorProperty);
 }

 // Apply any property that was changed
 serializedObject.ApplyModifiedProperties();

406 | Chapter 16: Editor Extensions

 }
 }

Once again, we’ll go through this large chunk of code in detail.

Setting Up the Class
The first step is to define the class and its role in the Unity system.
The RuntimeColorChangerEditor class is made to be a subclass of
the Editor class.

Additionally, we give it the CustomEditor attribute, indicating that
this class should be used as the editor for any RuntimeColorChanger
component. Finally, the class is given the CanEditMultipleObjects
attribute (which, as the name suggests, indicates that multiple
objects can be edited at once):

 // This is an editor for RuntimeColorChangers
 [CustomEditor(typeof(RuntimeColorChanger))]
 // It can handle editing multiple things at once
 [CanEditMultipleObjects]
 class RuntimeColorChangerEditor : Editor {

Defining the Colors and Properties
The class needs to store two main piece of information. First, we
need a list of predefined colors that the user can choose from. Addi‐
tionally, we need an object that represents the color property on all
of the currently selected objects.

Just like when we were creating the custom property drawer, we rep‐
resent properties with the SerializedProperty object. Doing this
means that Unity can provide extra features for us, such as undo:

 // A collection of string-color pairs
 private Dictionary<string, Color> colorPresets;

 // Represents the "color" property on all selected objects
 private SerializedProperty colorProperty;

Setting Up the Variables
When an object containing a RuntimeColorChanger component is
selected, the Inspector will create an editor for it. It then calls the
OnEnable method, which is your first opportunity to do some setup.
In this editor, we prepare the colorPresets dictionary by filling it
with predefined colors.

Making a Custom Inspector | 407

In addition, we need to get the color property to work with. We do
this by accessing the serializedObject variable, which is set by
Unity; this variable represents all objects that are currently selected.

 public void OnEnable() {

 // Set up the list of color presets
 colorPresets = new Dictionary<string, Color>();

 colorPresets["Red"] = Color.red;
 colorPresets["Green"] = Color.green;
 colorPresets["Blue"] = Color.blue;
 colorPresets["Yellow"] = Color.yellow;
 colorPresets["White"] = Color.white;

 // Get the property from the object(s)
 // that are currently selected
 colorProperty = serializedObject.FindProperty("color");
 }

Starting to Draw the GUI
In the OnInspectorGUI, we can implement our own custom Inspec‐
tor. The first step is to ask the serializedObject to update itself to
the current situation in the game scene, which ensures that the con‐
trols that we’re about to draw will accurately represent the scene:

 public override void OnInspectorGUI ()
 {
 // Ensure that the serializedObject is up to date
 serializedObject.Update();

Drawing the Controls
At this point, we can draw the controls for this component. Using a
VerticalScope, we draw a button for each of the presents in the col
orPresets dictionary. If any of these buttons are clicked, the color
Property’s value is set to the corresponding preset’s color value.

After the button is drawn, we display a PropertyField for the color.
The PropertyField control displays a control that’s appropriate for
whatever type the property is—in this case, because colorProperty
represents the color variable in RuntimeColorChanger, a color well
will appear, allowing the user to choose their own color. In this way,
we preserve the ability for the user to make fine-grained choices
about the object, as well as providing additional features:

408 | Chapter 16: Editor Extensions

 using (var area = new EditorGUILayout.VerticalScope()) {

 // For each color in the preset list...
 foreach (var preset in colorPresets) {

 // Show a button
 var clicked = GUILayout.Button(preset.Key);

 // If it was clicked, update the property
 if (clicked) {
 colorProperty.colorValue = preset.Value;
 }
 }

 // Finally, show a field that allows for setting the color
 // directly
 EditorGUILayout.PropertyField(colorProperty);
 }

Applying Changes
The last thing to do is to ask the selected object (or objects, if multi‐
ple objects are selected) to apply the changes that were made. We do
this by calling ApplyModifiedProperties on the serialized

Object.

 // Apply any property that was changed
 serializedObject.ApplyModifiedProperties();

Testing It Out
You can now test out the custom Inspector.

Select the game object, and you’ll see your custom Inspector
(Figure 16-9). You may need to deselect and then reselect the cap‐
sule first.

Making a Custom Inspector | 409

Figure 16-9. The custom inspector

Showing the Default Inspector Contents

Sometimes, you don’t need to replace the Inspec‐
tor for a component, but rather just want to add
some extra stuff. In these cases, you can use the
DrawDefaultInspector method to quickly draw
everything that the Inspector would normally
contain; you can then draw additional controls
above or below this:

public override void OnInspectorGUI() {

 // Draw the default Inspector controls
 DrawDefaultInspector();

 // Show a motivational message to the
 // developer underneath
 var msg = "You're doing a great job! " +
 "Keep it up!";

 EditorGUILayout.HelpBox(msg, MessageType.Info);
}

Wrapping Up
Custom editors can make your life a lot easier. If you have a repeti‐
tive task, or if you need a better way to view the data contained
inside your objects, then editors can be a real help. <<< It’s worth
keeping in mind, though, that your players will never see your cus‐
tom editors. They only exist for you as a developer, so don’t get too
caught up in making the perfect custom editor—what counts is what
those editors help you to create.

410 | Chapter 16: Editor Extensions

CHAPTER 17

Beyond the Editor

Your game is done, the gameplay is polished, and the whole thing
looks great. What do you do now?

It’s time to look outside the Unity editor itself. Unity provides a
number of useful services that you can either use to improve your
game, improve the way you make your game, or even develop a rev‐
enue stream for your game. In this chapter, we’ll look at all three.

We’ll also discuss building your game for devices, and making it
available to the wider world.

The Unity Services Ecosystem
When people discuss Unity, they’re typically referring to the Unity
editor—the software that Unity Technologies develops and sells.
However, Unity is more than just the editor. In addition to this soft‐
ware, Unity provides a number of services that are designed to
improve the quality of life for developers. Three of the most useful
ones are the Asset Store, the Unity Cloud Build service, and the
Unity Ads platform.

The Asset Store
The Unity Asset Store is an online storefront where programmers,
artists, and other content creators for games can sell content
designed to be integrated into a game.

411

The Asset Store is particularly good for people who lack a certain
skill; for example, programmers without sufficient skill in (or time
for) producing art assets can purchase the 3D models they need, so
that they can focus on the programming that they’re better at. The
same applies for people who need audio, a script in their game, and
so on. Content in the Asset Store ranges from small to large;
through the store, you can purchase a single 3D model of a car, all
the way through to complete asset kits for a certain type of game.

Assets you buy from the Asset Store—especially
the good assets—are often quite easily noticed by
other people as having come from the store. Be
aware that relying too heavily on Asset Store
assets can make your game look and feel quite
samey.

Some of the assets available through the store are of particular inter‐
est, because they add features to Unity that it otherwise lacks.

PlayMaker
PlayMaker is a visual scripting tool created by Hutong Games. In a
visual scripting system, you define the behavior of your game
objects by connecting together predefined modules of code, which
are represented as boxes with wires coming out of them.

Visual scripting systems are an alternative to writing code, and are
often easier to grasp for newcomers to programming. They’re par‐
ticularly good at representing behaviors that rely heavily on state—
for example, an enemy AI that roams around randomly until it sees
the player, at which point it jumps into a seeking state and charges at
the player until either it dies, the player dies, or it loses sight of the
player.

PlayMaker is available via the Asset Store.

Installing PlayMaker. Because PlayMaker provides a completely dif‐
ferent approach to defining game behavior, it’s worth taking a closer
look at it, and set up some simple behavior. To follow these steps,
you’ll need to purchase PlayMaker from the Asset Store; at the time
of writing in mid-2017, it is $65.

412 | Chapter 17: Beyond the Editor

https://www.assetstore.unity3d.com/#!/content/368

We’ll be following these steps in a new, empty
project configured for 3D graphics.

1. Download and import the package. The installation window will
appear (Figure 17-1).

Figure 17-1. The PlayMaker installation window, which appears after
you import the package

2. Click Install. PlayMaker will check your project to be sure that
installation will work, and ensure that you have the most up-to-
date version.

PlayMaker will complain if you’re not using a
version control tool such as Git; you can ignore
it, but using version control is a great idea over‐
all.

The Unity Services Ecosystem | 413

Figure 17-2. The second installation window

3. Click Install in the second installation window (Figure 17-2),
and click “I Made a Backup, Go Ahead!” in the dialog box that
appears. Unity will import a second package.

4. Click Import in the window that appears.

Depending on your version of Unity, you may
be asked if it’s OK if Unity upgrades the code to
be compatible with the most recent APIs. You’ll
need to agree to it in order to proceed.

After the installation process is complete, close any lingering win‐
dows. You’re now ready to start.

Playing with PlayMaker. PlayMaker’s whole idea is based around the
concept of finite state machines, or FSM for short. A finite state
machine is a logical system in which an object can be in one of mul‐

414 | Chapter 17: Beyond the Editor

tiple states; each state is allowed to change, or transition, to a pre-
determined subset of those states. That is, if you had the states
sitting, standing, and running, you could transition from standing to
either sitting or running, but you couldn’t transition directly from
sitting to running. When the state changes, you have an opportunity
to run some behavior.

The behavior we’ll add in this brief tutorial will be extremely simple:
we’ll create a ball that, when it lands on a surface, changes color.

To begin, we’ll set up the environment:

1. Create the sphere by opening the GameObject menu, and choos‐
ing 3D Object → Sphere.
Select the newly created object, and, using the Transform com‐
ponent in the Inspector, set the position to (0, 15, 0).

2. Add a Rigidbody component to the sphere.
3. Create the ground by opening the GameObject menu again, and

choosing 3D Object → Plane.
Position this object at (0, 0, 0).

4. Finally, reposition the Camera to (0, 9, -16), with a rotation of
zero. This will make it view both the ball and the ground.

Your scene should now look like Figure 17-3.

The Unity Services Ecosystem | 415

Figure 17-3. The laid-out scene for the tutorial

We’ll now start adding the PlayMaker behaviors to the sphere.

1. Open the PlayMaker Editor by opening the PlayMaker menu and
choosing PlayMaker Editor.
The PlayMaker Editor tab will appear (Figure 17-4).

You might find it more convenient to attach
the tab to the Unity window. To do this,
drag and drop the tab at the top of the win‐
dow to where you’d like it to be.

416 | Chapter 17: Beyond the Editor

Figure 17-4. The PlayMaker editor

2. Add an FSM to the sphere. Select the Sphere, and in the Play‐
Maker window, right-click and choose Add FSM.

The PlayMaker window displays a number of
tips, which can be quite useful, but take up a lot
of space. You can disable the hints by pressing
the F1 key, or by clicking the Hints button at the
lower-right of the PlayMaker window.

By default, the FSM will contain a single state, titled State1. In our
demo, we’ll have two states: Falling and HitGround. We’ll rename
the first state, and then add another.

3. Rename the first state to “Falling”, by selecting it, going to the
State tab at the right of the PlayMaker window, and changing its
name to “Falling”.

4. Add the HitGround state by right-clicking in the PlayMaker win‐
dow, and choose Add State. Rename the new state to
“HitGround”.
Your FSM should now look like Figure 17-5.

The Unity Services Ecosystem | 417

Figure 17-5. The FSM, with states added

We want the state to change when the ball hits the ground. To do
this, we’ll create a transition from the Falling state to the HitGround
state, which fires when the object that the FSM is attached to collides
with something.

5. Add the transition by right-clicking on the Falling state, and
choosing Add Transition → System Events → COLLISION
ENTER. A new transition will appear, with a warning indicating
that the transition isn’t connected to a destination state (see
Figure 17-6).

Figure 17-6. The FSM, after you’ve added a transition, but before it’s
connected

6. Connect the transition to the HitGround state by left-clicking on
the COLLISION ENTER transition, and dragging to the Hit
Ground state. An arrow will appear that connects them
(Figure 17-7).

418 | Chapter 17: Beyond the Editor

Figure 17-7. The FSM, with the states connected

7. Test the game by pressing the Play button. The FSM window will
highlight the current state; the Falling action will be highlighted
until the moment that the sphere touches the ground.

Next, we need to add an action to run when the object enters the
HitGround state. Specifically, we want the material to change color.

1. Add the Set Material Color action to the HitGround state by
selecting the state, going to the State tab, and clicking Action
Browser. The Action Browser window will appear; scroll down
to the Material button, click it, and then select the Set Material
Color entry (Figure 17-8). Click Add Action to State; the action
will appear in the State tab (Figure 17-9).

The Unity Services Ecosystem | 419

Figure 17-8. The Action Browser

420 | Chapter 17: Beyond the Editor

Figure 17-9. The FSM, with the action added and configured

2. Make the color change to green. In the State section, change the
color to green.

3. Test the game. When the ball touches the ground, it will change
color to green.

Amplify Shader Editor
Shaders, as you’ll recall from Chapter 14, generally involve writing
code. However, the visual nature of shaders lends them to visual
construction even more than gameplay code; instead of writing code
that multiplies two vectors that represent colors together, it would
be more intuitive to see that happening.

Amplify Shader Editor (Figure 17-10) is one of a couple of such vis‐
ual shader editors for Unity. By connecting nodes together, Amplify
creates and demonstrates your material, and generates the assets for
use in your game. This is often faster and easier than writing the
shader code yourself, and is particularly useful for people who may
find visual creation of visual results to be more intuitive.

The Unity Services Ecosystem | 421

Figure 17-10. Amplify Shader Editor

Amplify Shader Editor is available via the Asset Store.

UFPS
UFPS, or Ultimate FPS (Figure 17-11), is a simple base for first-
person shooter games. While Unity does ship with a first-person
controller, it doesn’t include other features that are common to first-
person games, such as ducking, climbing ladders, or interacting with
buttons. UFPS provides implementations of these, as well as features
that are specific to shooting-oriented gameplay, such as managing
an inventory of weapons, ammunition management, and managing
player health.

While UFPS is geared toward building action-
oriented shooters, it’s equally good at slower-
paced games; Fullbright’s Gone Home (2014), a
game whose gameplay revolves around walking
around a house and examining the objects,
documents, and furniture that are left behind,
uses UFPS to handle the first-person presenta‐
tion.

422 | Chapter 17: Beyond the Editor

https://www.assetstore.unity3d.com/en/#!/content/68570

Figure 17-11. Ultimate FPS

UFPS is available via the Asset Store.

Unity Cloud Build
Building a project for your destination platform is a complex pro‐
cess that requires a large amount of processing power and time.
While you can do builds on your own computer, it doesn’t always
follow that you should—especially if you have a large, complex
project.

Unity Cloud Build is a service that downloads your source code,
builds it, and then makes the build available to you to download (or
notifies you if the build failed). When you configure Cloud Build to
watch your source code repository, it will be watched for changes; as
a result, Unity will automatically build your game as it changes.

It’s certainly possible to create your own build
server, and not use Cloud Build. However, the
process is fiddly, and also consumes one of the
two activations that you get with your license.
Cloud Build takes some control out of your
hands, but replaces it with ease of use.

At the time of writing, Cloud Build is a free service. If you own a
Unity Plus subscription, your builds are prioritized, so that they get

The Unity Services Ecosystem | 423

https://www.assetstore.unity3d.com/en/#!/content/2943

completed sooner. If you own a Unity Pro subscription, your builds
are also able to run in parallel, so that if your game is designed to
run on multiple platforms (e.g., both iOS and Android), then both
builds will start at the same time.

You can find more information about Cloud Build on Unity’s web‐
site.

Unity Ads
Unity Ads is a service that delivers fullscreen video ads for display in
your game. When the player views an ad, you get paid a small fee. In
this way, you can develop an additional source of revenue for your
game.

One particular use case for video ads is rewarded advertising, in
which your player receives an in-game reward of some kind (such as
bonus currency, cosmetic changes, or other content) in exchange for
watching ads.

Designing a monetization strategy for games is a huge topic, and can
(and does!) take up a whole library of books. To get started with
Unity Ads, take a look at the service’s page on Unity’s website.

Deployment
When you’re ready to take your game out of the editor and put it
onto an actual device, Unity needs to build your game. This involves
three things: bundling up all of your game’s assets, compiling its
scripts, and installing the built app onto the device. The first two
parts are done for you by Unity; the second is something that you’ll
need to help with yourself.

In this section, we’ll talk about how to build your game, for both iOS
and Android devices. Before we do that, we need to talk a little bit
about some of the setup you’ll need to do, and differences between
the different versions of Unity.

Setting Up Your Project
You can build your project at any time. However, for best results, it’s
good to ensure that the player settings for your game are correct.
Player settings include your game’s name and icon, as well as set‐
tings that control which screen orientation your game runs in, what

424 | Chapter 17: Beyond the Editor

https://unity3d.com/services/cloud-build
https://unity3d.com/services/cloud-build
https://unity3d.com/services/ads

the unique ID string is that identifies your game to the operating
system you’re installing on, and so on.

To configure them, you’ll need access to Player Settings. To do this,
open the Edit menu, and choose Project Settings → Player. The
Inspector will look like Figure 17-12.

Deployment | 425

Figure 17-12. The PlayerSettings Inspector

426 | Chapter 17: Beyond the Editor

Certain settings are the same across multiple
platforms. For example, the name of your game
is unlikely to change between platforms, as is the
icon. Unity identifies settings that are shared
across multiple platforms with an asterisk (*)
next to their name.

Every application, on both iOS and Android, needs several things:

• The product name of the game, for display on the home screen
and the marketplace;

• The company name of the game, used on the marketplace;
• The game’s icon, again for the home screen and marketplace;
• The game’s splash screen, which is shown while the game is

starting up;
• The game’s bundle identifier, which is a piece of text that

uniquely identifies the game on the marketplace and is not
shown to the user; this is done by taking a domain name that
you own (e.g., oreilly.com), reversing it, and adding the name of
the game (e.g., com.oreilly.MyAwesomeGame).

To test your game, you need to have the name and identifier config‐
ured. To release your game to either the iTunes App Store or the
Google Play store, you need to have all of these elements.

By default, the product name is set to the name of your project, and
the company name is set to “DefaultCompany”. If you’re happy with
that, you can leave the product name (seen at the top of
Figure 17-12) unchanged.

To change the bundle identifier, select the platform you want to
build for from the menu (underneath Cursor Hotspot), and open
the Other Settings section. From there, set the Bundle Identifier to
the identifier you’d like to use (see Figure 17-13).

Deployment | 427

Figure 17-13. Setting the bundle identifier of the project

If you’re building a game for both iOS and
Android, you don’t need to set the bundle iden‐
tifier twice. The setting is shared between all
platforms, as well as the game’s version number
and several other features.

Setting Your Target
You can only select one target at a time. By default, Unity sets your
target to PC, Mac, and Linux Standalone, and will default the specific
target to the same as the one you’re running Unity on—so, for
example, if you’re using a Mac, the target will default to macOS, and
to Windows if you’re using a PC.

428 | Chapter 17: Beyond the Editor

Downloading Platform Modules

In order to build for a certain platform, Unity
first needs to have the right module installed for
it. When you first install Unity, the installer asks
you which platforms you want to install mod‐
ules for; if you don’t have the module for the
platform you want to deploy to, the Build Set‐
tings window will look like Figure 17-14. You’ll
need to click on the button in the window to
download and install the appropriate module.

Figure 17-14. The Build Settings window, with a platform
selected whose module is not loaded

Given that in Parts II and III we designed and built mobile games,
the first thing to do will be to switch to your desired platform. To do
this, open the Build Settings window by opening the File menu and
choosing Build Settings (see Figure 17-15).

Deployment | 429

Figure 17-15. The Build Settings menu

From there, it’s a simple matter of selecting your target platform,
and clicking Switch Platform at the bottom left of the window.

When you switch platforms, Unity will re-
import all of your game’s assets. If you have a
large project, this can take a long time. Be pre‐
pared to wait. To assist with this, Unity provides
a tool called the Cache Server, which saves a
copy of imported assets; for more information,
check the documentation.

Splash screens
It’s worth pointing out that there are differences between the Free
subscription plan and the Plus and Pro plans, as far as built apps go.
Users of the Free plan are required to have a splash screen appear at
the start of their game, while Plus and Pro subscribers can choose to
disable it.

430 | Chapter 17: Beyond the Editor

http://bit.ly/cache-server

The splash screen is fairly restrained; the Unity logo is displayed,
along with the words “Made with Unity,” and it lasts for two seconds
while your game’s initial scene is loaded in the background.

The splash screen can be customized fairly sig‐
nificantly, regardless of which version of Unity
you use. In addition to showing the Unity logo,
you can also include your own logos, customize
the background color, set a background image
and opacity, and set the splash screen to either
display multiple logos on screen at once or show
them sequentially. To customize the splash
screen, open the Edit menu, choose Project Set‐
tings → Player, and scroll down to Splash Image
→ Splash Screen. Unity provides lots of docu‐
mentation on this topic, so for more info, go and
take a look.

Building for Your Platform
The steps for building for iOS and Android are different. In this sec‐
tion, we’ll walk you through the steps for each.

Building for iOS
Unity makes it easy to build a version of your game for iOS. In this
section, we’ll step through the process you need to follow to get your
game running on your phone.

Building for iOS is currently only possible on a
macOS computer, or via Unity Cloud (who do
their builds on Macs).

It’s totally free to deploy your games directly to your own personal
device. To distribute your games to others, you need to do it via the
iTunes App Store. This means enrolling in the Apple Developer Pro‐
gram, which costs $99 per year; you can do so at https://devel
oper.apple.com/programs/.

To get started, you’ll first need to download Xcode, the iOS develop‐
ment environment:

Deployment | 431

https://docs.unity3d.com/Manual/class-PlayerSettingsSplashScreen.html
https://docs.unity3d.com/Manual/class-PlayerSettingsSplashScreen.html
https://developer.apple.com/programs/
https://developer.apple.com/programs/

1. Download Xcode from the Mac App Store by launching it,
searching for Xcode, and downloading it.

2. Once it’s downloaded, launch Xcode.

We now need to configure Xcode to use your account. Regardless of
whether you’re enrolled in the paid Apple Developer Program or
not, Xcode needs to use your Apple ID to register you as a developer
in order to do the necessary code signing before your game can be
installed on your device.

1. Open the Xcode menu, and choose Preferences. At the top of the
window, click Accounts. In the lower-left corner, click the Add
button (+). Choose Add Apple ID from the pop-up menu.

2. Connect your device to your computer’s USB port.

With Xcode now configured, you’re ready to build your Unity game.

1. Return to Unity, and open the Build Settings window by opening
the File menu, and choosing Build Settings.

2. Select the iOS platform, and click Switch Platform. Unity will
switch the project over to iOS (Figure 17-16). It might take a
few minutes.

Figure 17-16. The Build Settings window, using the iOS platform

432 | Chapter 17: Beyond the Editor

To save space, turn on the Symlink Unity Libra‐
ries button. Doing this will make your project
not copy the entire Unity library into your
project, which can be several hundred mega‐
bytes in size.

3. Click Build and Run. Unity will ask you where you want to save
the project; after you select a folder to put it in, Unity will build
the app for iOS, then open the project in Xcode, and instruct
Xcode to build and run the app on the connected device.

Code Signing Issues

If you get an error about code signing, select the
project at the top-left of the window, select the
Unity-iPhone target, select your development
team (which may just be your name) from the
Team drop-down menu, and click Fix Issue
(Figure 17-17). This will sort out your certifi‐
cates and get things going again; press
Command-R to try building again.

Figure 17-17. The Fix Issue button in Xcode

Building for Android
To build for Android, you’ll want to first install the Android SDK.
This handles the delivery of the built application to your device:

1. Download the Android SDK from the Android Developer site:
http://developer.android.com/sdk.

Deployment | 433

http://developer.android.com/sdk

2. Install the SDK by following the instructions at: http://devel
oper.android.com/sdk/installing/index.html.

If you’re on Windows, you may need to down‐
load an additional USB driver before your com‐
puter can communicate with your Android
device. You can download the driver at: http://
developer.android.com/sdk/win-usb.html. You
don’t need this if you’re on macOS or Linux.

You can now tell Unity where the installed Android SDK is:

1. Open the Unity menu, and choose Preferences → External Tools.
In this window, click on the Browse button next to the SDK
field, and browse to the folder where you installed Android Stu‐
dio.

2. Open the Build Settings window by opening the File menu and
choosing Build Settings.

3. Select the Android platform, and click Switch Platform. Unity will
switch the project over to Android.

4. Select Google Android Project (see Figure 17-18). Doing this
means that Unity will export and produce a project to use in
Android Studio.

Figure 17-18. Making the Android build generate a Google Android
project

5. Click Export. Unity will ask you where you want to save the
project. After you do, the project will be generated.

6. Open the project in Android Studio, and click the Play button.
The project will compile, and install on your phone.

434 | Chapter 17: Beyond the Editor

http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html

While Unity tends to not change significantly between releases, the
processes for setting up and building onto mobile devices can
change more frequently. To this end, rather than repeat Unity’s doc‐
umentation in a form that might go out of date as quickly as it’s
printed, we’ll instead direct you to Unity’s useful step-by-step tutori‐
als on how to get set up for both Android and iOS:

• “Getting started with Android development”
• “Getting started with iOS development”

Both iOS and Android development involve
downloading and installing fairly significant
amounts of software. We recommend that you
set up in a place where you will have a decent
internet connection.

Where to Go from Here
Welcome to this: the last section of the book. If you’ve read this far,
you’ve completed a fairly huge journey, having started from scratch,
built two complete games, and then taken the reins of Unity to cus‐
tomize it to your needs.

If you skipped to the end of the book: this is
how it ends. Congratulations on spoiling your‐
self.

Before we part ways, here are some useful resources for future read‐
ing:

• Unity’s documentation is quite good, and serves as a reference
manual for the entire editor. The documentation is split into
two sections: the Manual, which describes the editor, and the
Scripting Reference, which describes every class, method, and
function of Unity’s scripting API. It’s extremely handy to have as
a reference.

• Unity’s official forum serves as a hub for community discussion,
and is a good place to go to get help.

Where to Go from Here | 435

http://bit.ly/android-gettingstarted
http://bit.ly/iphone-gettingstarted
http://docs.unity3d.com
http://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/ScriptReference/index.html
http://forum.unity3d.com

• Unity Answers is an officially supported question and answer
forum. If you have a specific question, it’s a great place to check
first.

• Unity frequently performs live training sessions, in which one
of their trainers demonstrates a feature or complete project in a
live class session. Even if you can’t make it to the live session,
they’re generally recorded for later viewing.

• Finally, Unity hosts a number of tutorials, which range from
introductory beginner content through to more advanced,
highly specific instruction.

We hope that you’ve enjoyed reading this book. If you make some‐
thing, no matter how small and no matter if you think it’s bad, we’d
love to hear about it. Send us an email any time.

436 | Chapter 17: Beyond the Editor

http://answers.unity3d.com
http://unity3d.com/learn/live-training
http://unity3d.com/learn/tutorials
mailto:unitybook@secretlab.com.au

Index

A
AddComponent(), 35
AddIndicator(), 242
Amplify Shader Editor, 421
Anchors (of joints), 58
anchors (of rects), 359-362
Android

building for, 433-435
introduction of platform, 4

Animator Controller, 178
Animator object, 178
Apple Developer Program, 431
AssetDatabase class, 394
Assets folder, 10, 15
assets, downloading, 50
asteroid spawner, 268-271
asteroids (Rockfall), 265-271

asteroid spawner, 268-271
distance label for, 302
explosions, 276-284
trail renderers, 317

attributes, 36-39
defined, 36
ExecuteInEditMode, 38
Header, 36
HideInInspector, 37
RequireComponent, 36
SerializeField, 37
Space, 36

audio
Gnome's Well, 196
Rockfall, 319-322

Awake(), 29

B
backgrounds (Gnome's Well)

adding, 133
and well bottom, 158
creating, 151-157
polishing, 150-160
sorting layers for, 150
updating camera for, 160
with differing colors, 155-157

blade, spinning (Gnome's Well),
176-181

Blender, coordinate system for, 212
blocks (Gnome's Well), 181
Blood Explosion effect, 187-189
Blood Fountain effect, 183-184
boundaries (Rockfall), 303-311

coding, 304-310
UI creation for, 303

breakpoints, setting, 93-95
buttons

editor GUI API, 387
for controlling rope, 84-90
improvements for Gnome's Well,

161-171

C
C#

basics, 22
JavaScript vs., 22

camera
following gnome (Gnome's Well),

90-92

437

following spaceship (Rockfall),
214-216

updating for new Gnome's Well
backgrounds, 160

canvas
for Rockfall UI, 224-224
in GUI, 356
modes, 356
scaling, 367

Canvas Scaler, 368
cheat codes, 171

(see also invincibility mode)
classes, attributes and, 36-39
cloud (Unity Cloud Build), 423
code signing, 433
colliders

adding to body parts, 56
models and, 219
updating, 143-146

collisions
detection, 47
rigidbodies and, 246

components
defined, 25
life cycle in Edit Mode vs. Play

Mode, 38
Connected Anchors (of joints), 59
Console, logging to, 40
control, in GUI system, 387
coordinate system, Blender vs. Unity,

212
coroutines, 31-33
CPU profiler, 349
CreateNewGnome(), 117
creating objects, 33-35

from scratch, 35
instantiating, 34

custom editor windows (see editor
windows)

custom Inspector, 404-410
applying changes, 409
creating, 405
defining colors/properties, 407
drawing the controls, 408
setting up the class, 407
setting up variables, 407
simple script for, 404
starting to draw the GUI, 408

testing, 409
custom property drawers (see prop‐

erty drawers)
custom wizards (see wizards)

D
damage (Gnome's Well), 104
damage (Rockfall), 272-284

DamageOnCollide script, 272, 274
DamageTaking script, 272-274
explosions, 276-284

Debug.Log(), 40
debugging

Gnome's Well scripts, 92-96
setting breakpoints, 93-95

deployment, 424-435
building for Android, 433-435
building for iOS, 431-433
downloading platform modules,

429
setting up your project, 424-428
setting your target, 428-431

Destroy(), 247
DestroyGnome(), 104
destroying objects, 35
display density, 367
DrawDefaultInspector(), 410
dust

explosions and, 281-283
space dust, 311-314

E
Edit Mode, 10, 38
editor, 7-19

Edit Mode, 10
game GUI vs. editor GUI, 384
handle controls, 13
Hierarchy pane, 14
Inspector, 17-19
mode selector, 12
OS compatibility, x
Play Mode, 11
Project view, 15
receiving input for Gnome's Well,

79-96
scene view, 11-14

editor extensions, 371-410

438 | Index

custom editor window, 382-395
custom Inspector, 404-409
custom property drawers, 395-404
custom wizards, 373-382

editor GUI API, 384-394
buttons, 387
how controls work, 387
lists, 392
rects and layout, 385-387
scroll views, 393
sliders, 391
Space control, 392
text fields, 388-391

editor windows
asset database, 394
buttons, 387
editor GUI API, 384-394
how controls work, 387
lists, 392
making, 382-395
rects and layout, 385-387
scroll views, 393
sliders, 391
Space control, 392
text fields, 388-391
wizards vs., 374

enumerations (enums), 392
event system, 362-364
ExecuteInEditMode attribute, 38
exit (Gnome's Well)

creating, 128
defined, 128
gnome touching, 120

explosions (Rockfall), 276-284
audio effects, 322
Dust effect, 281-283
Fireball object, 278-281

F
FindObjectOfType(), 254
finite state machines (FSM), 414-421
fire button (Rockfall), 254-263
fixed-function shaders, 326
flat-shading, 339
flight control

IndicatorManager singleton
object, 241-243

indicators, 235-241

Rockfall, 233-243
flight simulators, 203
folders

creating for project, 51
Unity project structure, 10

fragment shader, 335
fragment-vertex (unlit) shaders,

335-339

G
Game Manager (Gnome's Well)

configuring, 123
creating a new gnome, 117
game setup/resetting, 116
gnome touching an exit, 120
gnome touching objects, 120
handling the reset button, 122
killing a gnome, 119
pausing/unpausing, 121
removing old gnome, 118-119
resetting the game, 119
setting up, 109-122
updating for updated gnome, 148

Game Manager (Rockfall), 291-303
connecting buttons to, 300
creating, 293-299
initial setup, 296
pausing the game, 299
setting up the scene, 299-303
start points, 292
starting the game, 297

game objects, 25
Game Over screen, 289
Game Over state, 291
Game view, 19
GameObject

accessing components on, 28
attaching script asset to, 26

GameOver(), 298, 301
gameplay

preparing Gnome's Well for,
79-124

Rockfall, 245-264
traps and objectives for Gnome's

Well, 125-135
GetComponent(), 28
global illumination, 340-347
gnome

Index | 439

body part script for, 97-100
code setup, 96-108
connecting particle systems to,

189
CreateNewGnome(), 117
creating, 52-61
killing a, 119
making the camera follow, 90-92
polygon colliders for, 143-146
reactions to touching objects, 120
removing old, 118-119
scaling, 147
script, 100-105
touching an exit, 120
updating joints, 146
updating sprites' appearance,

138-142
Gnome's Well That Ends Well (2D

game)
adding background, 133
adding treasure, 129-132
audio, 196
background polishing, 150-160
blocks, 181
Blood Explosion effect, 187-189
Blood Fountain effect, 183-184
building gameplay with traps and

objectives, 125-135
controlling the rope, 84-90
CreateNewGnome(), 117
creating backgrounds with layers,

151-157
creating basic game, 43-77
creating exit, 128
creating the gnome, 52-61
creating the project, 50-51
final touches, 175-199
game design, 44-50
Game Manager setup, 109-122
gnome code setup, 96-108
gnome touching an exit, 120
importing prototype gnome

assets, 52
input, 79-96
invincibility mode, 171-173
killing a gnome, 119
main menu, 189-196

making the camera follow the
gnome, 90-92

particle effects for, 182-189
pausing/unpausing, 121
polishing the game, 137-173
possible additions to, 197-199
preparing for gameplay, 79-124
preparing the scene, 122-124
removing old gnome, 118-119
reset button, 122
resetting the game, 119
rope, 61-77
rope coding, 64-75
rope configuration, 75-77
scene loading, 193-196
scripts and debugging, 92-96
simple traps, 125-127
spikes, 175
spinning blade, 176-181
tilt control, 80-84
traps and level objects, 175-181
treasure and exit, 127-132
Unity Remote and, 79
updating gnome's art, 138-142
updating physical components,

142-148
user interface improvements,

161-171
Grid Layout Group, 367
GUIs, 355-370

anchors, 359-362
canvas, 356
controls, 362-367
elements of, 355-362
events and raycasts, 362-364
game vs. editor, 384
Rect tool, 358
RectTransform object, 357
responding to events, 363
scaling the canvas, 367
transitioning between screens, 369
using the layout system, 364-367

H
handle controls, 13
Header attribute, 36
HideInInspector attribute, 37
Hierarchy pane, 14

440 | Index

HingeJoint2D joint, 57
Horizontal Layout Group, 367

I
illumination, global, 340-347
immediate mode GUI, 384
Immediate pane, 95
in-Game UI, 286, 369
indicator variable, 266
IndicatorManager singleton object,

241-243
indicators (Rockfall), 235-241

IndicatorManager singleton
object, 241-243

UI elements, 235-241
input (for Gnome's Well), 79-96

controlling the rope, 84-90
making the camera follow the

gnome, 90-92
scripts and debugging, 92-96
tilt control, 80-84
Unity Remote and, 79

input (for Rockfall), 227-233
InputManager singleton, 231-233
joystick, 227-231

InputManager
creating a Singleton class for Gno‐

me's Well, 81
creating for Gnome's Well, 82-84
for Rockfall, 231-233

Inspector, 17-19
custom (see custom Inspector)
property drawers, 395-404
script in, 28
showing default contents, 410

instantiating an object, 34
invincibility mode, 171-173
iOS

building for, 431-433
code signing issues, 433

iPhone, opening of platform for inde‐
pendent developers, 4

J
JavaScript, 22
joints

configuring, 57-60

updating gnome's, 146
joystick

creating, 227-231
InputManager singleton for,

231-233

K
Kerbal Space Program, 204
kinematic rigidbodies, 246

L
LateUpdate(), 31
layers, sorting, 150
layout system, GUI, 364-367
Library folder, 10
light probes, 344-347
lighting, 325-353

fragment-vertex (unlit) shaders,
335-339

general tips for performance, 352
global illumination, 340-347
light probes, 344-347
materials and shaders, 325-340
performance and, 347-352

lightmapping, 340
lists (of predefined options), 392
LoadScene(), 195
Locals pane, 95
logging to the Console, 40

M
main menu (Gnome's Well), 189-196

scene loading, 193-196
setting up, 189-192

main menu (Rockfall), 287-288
materials

particle effects and, 276
shaders and, 325-340

menu GUI, 369
menus (Rockfall), 285-291

main menu, 287-288
Pause Button, 290
Paused screen, 289

mobile games, evolution of, 3
mode selector, scene view, 12
models, colliders and, 219
Mono, 23-25

Index | 441

building, 25
code completion, 24
MonoDevelop, 24
refactoring, 25

MonoBehaviours
Awake(), 29
LateUpdate(), 31
methods important to Unity,

28-33
OnEnable(), 29
Start(), 29-30
Update(), 30

MonoDevelop, 24, 92

N
.NET Framework, 23
normal of a surface, 330

O
objects

creating, 33-35
creating from scratch, 35
destroying, 35
instantiating, 34

obstacles (Gnome's Well), 181
OnDestroy(), 258
OnEnable(), 29
OnGUI(), 400
OnInspectorGUI(), 408

P
panes, 10
particle effects

adding to Gnome's Well, 182-189
Blood Explosion effect, 187-189
Blood Fountain effect, 183-184
defining particle material, 182
for explosions, 276-284
using particle systems, 189

Pause Button (Rockfall), 290
Paused screen (Rockfall), 289
pausing/unpausing a game, 121
performance tools, 347-352

general tips, 352
getting data from your device, 351
Profiler, 347-351

Play Mode, 11

component life cycle in, 38
Game view and, 19

PlayMaker, 412-421
installing, 412-414
playing with, 414-421

pointer clicks, responding to, 364
polygon colliders, 143-146
popups, 392
PrefixLabel(), 401
private variables, 28
Profiler, 347-351
Project view, 15
ProjectSettings folder, 10
property drawers, 395-404

calculating rectangles, 401
checking for changes, 403
creating change check, 402
creating property scope, 401
creating the class, 399
drawing the label, 401
drawing the slider, 403
drawing the text fields, 403
getting properties, 400
getting values, 402
overriding OnGUI, 400
setting height of property, 399
storing properties, 403
testing, 404

PropertyScope(), 401
public variables, 28

R
ragdoll, 47
raycasts, 363
Rect tool, 358
rectangles, calculating for property

drawers, 401
RectTransform object, 357, 359-362
RequireComponent attribute, 36
reset (Gnome's Well), 109, 116, 119
RestartGame(), 122
reticle (Rockfall), 263
rewarded advertising, 424
rigidbodies

2D vs. 3D, 55
kinematic, 246

rim lighting, 326-334
Rockfall (3D game)

442 | Index

architecture, 209
asteroid spawner, 268-271
asteroids, 265-271
audio, 319-322
boundaries, 303-311
building, 203-226
canvas for UI, 224-224
designing the game, 204-209
downloading assets, 209
final polish, 311-322
fire button, 254-263
flight control, 233-243
Game Over screen, 289
gameplay, 245-264
ideas for additions to, 322
IndicatorManager singleton

object, 241-243
indicators, 235-241
input, 227-233
Input Manager singleton, 231-233
joystick, 227-231
menus, 285-291
pausing the game, 299
setting up the scene, 299-303
ship weapons, 250-254
skybox for, 220-224
space dust, 311-314
space station creation, 216-219
spaceship creation, 211-216
start points, 292
starting the game, 297
target reticle, 263
trail renderers, 314-318
weapons, 245-263

rope (Gnome's Well)
basic structure, 47
coding, 64-75
configuring, 75-77
creating, 61-77
creating buttons for controlling,

84-90
setting breakpoints for debugging

script, 93-95

S
scaling

canvas, 367
gnome, 147

scene
for Rockfall, 210-226
loading (Gnome's Well), 193-196
preparing for Gnome's Well,

122-124
setup (Rockfall), 299-303
skybox (Rockfall), 220-224
space station (Rockfall), 216-219
spaceship (Rockfall), 211-216

scene view, 11-14
handle controls, 13
Hierarchy pane, 14
mode selector, 12
navigating in, 13

screens, transitioning between, 369
script asset

attaching to a GameObject, 26
creating a, 25

scripting, 21-40
attributes, 36-39
Awake(), 29
C# basics, 22
C# vs. JavaScript, 22
components, 25
coroutines, 31-33
creating a script, 25
creating objects, 33-35
destroying objects, 35
for rope, 64-75
game objects, 25
important methods, 28-33
LateUpdate(), 31
logging to the Console, 40
OnEnable(), 29
Start(), 29-30
time in scripts, 39
Update(), 30

scripts
accessing components on Game‐

Object, 28
and Inspector, 28
creating, 25
debugging (for Gnome's Well),

92-96
Mono framework, 23-25
time in, 39

scroll views, 393
SerializeField attribute, 37

Index | 443

SetPaused(), 299
shaders

Amplify Shader Editor, 421
defined, 325
fragment-vertex (unlit), 335-339
materials and, 325-340

shot object, 246
skybox (Rockfall), 220-224
sliders

for editor windows, 391
for property drawers, 403

Smeal, Rex, 206
SmoothFollow script, 214-216
sorting layer, 150
sound (see audio)
Space attribute, 36
Space control, 392
space dust, 311-314
Space Shooter (see Rockfall (3D

game))
space station (Rockfall), 216-219
spaceship (Rockfall)

audio, 319
camera follow, 214-216
connecting to joystick with Input

Manager, 231-233
creating, 211-216
ship weapons, 250-254
trail renderers, 314-316

spikes (Gnome's Well), 175
spinning blade (Gnome's Well),

176-181
splash screen

customizing, 431
free vs. paid versions of Unity, 6,

430
spring joints, 59
sprites, 52

(see also specific sprites)
adding to scene, 53
prototype gnome and, 52

start points (Rockfall), 292
Start(), 26

Awake() vs., 29
Gnome's Well, 29-30
Rockfall, 296

StartGame(), 297
states, in FSM, 414

surface shaders, 325

T
target platform, setting, 428-431

downloading platform modules,
429

splash screens, 430
target reticle (Rockfall), 263
testing, invincibility mode for,

171-173
text fields

delayed, 390
displaying, 388-391
for property drawers, 403
special, 390

3D games (see Rockfall)
tilt control (Gnome's Well), 80-84

creating a Singleton class, 81
implementing an InputManager

singleton, 82-84
tilt control (Rockfall), 209
Time class, 39
touching

an exit, 120
reactions to gnome touching

objects, 120
touchscreen games, testing input, 227
trail renderers

adding to graphics object, 248
defined, 245
for asteroids, 317
for spaceship, 314-316

transitioning between screens, 369
traps (Gnome's Well), 125-127,

175-181
treasure (Gnome's Well)

adding, 129-132
defined, 127

2D Games (see Gnome’s Well That
Ends Well)

U
UFPS (Ultimate FPS), 422
Unity (generally)

basics, 3-6
Blender coordinate system vs.,

212

444 | Index

educational resources, 435
getting and downloading, 6
mobile game evolution and, 3
project structure, 10
starting for first time, 7
user interface basics, 7-19
when not to use, 5
when to use, 5

Unity Asset Store, 411-423
Amplify Shader Editor, 421
PlayMaker, 412-421
UFPS, 422

Unity Cloud Build, 423
Unity editor (see editor)
Unity Events, 109
Unity Personal (Free) edition, 6, 430
Unity Plus edition, 6
Unity Pro edition, 6
Unity Remote

for testing, 227
input for Gnome's Well, 79

Unity services ecosystem
Asset Store, 411-423
Unity Ads, 424
Unity Cloud Build, 423

unpausing a game, 121
Update(), 26, 30, 247
user interface, 7

(see also GUIs)
basics, 7-19
canvas for Rockfall UI, 224-224
editor, 7-19

(see also editor)
elements for Rockfall indicators,

235-241

for boundary warning (Rockfall),
303

polishing (Gnome's Well),
161-171

V
variables

custom Inspector and, 407
Inspector and, 28

vertex shader, 335
vertex-fragment shader, 326
Vertical Layout Group, 365-367
viewport space, 240
visual scripting system, 412

W
weapons (Rockfall), 245-263

audio effects, 320-322
fire button, 254-263
ship weapons, 250-254

well, adding bottom to, 158
window

defined, 382
editor (see editor windows)

wizards
editor windows vs., 374
making custom wizards, 373-382

X
Xcode, 431-433

Y
yield return statement, 31-33

Index | 445

About the Authors
Dr. Jon Manning and Dr. Paris Buttfield-Addison are cofounders
of Secret Lab, where they build games and game development tools.
Recently, they’ve built the ABC Play School iPad games, helped on
indie game Night in the Woods, and built the Qantas Joey Playbox.

At Secret Lab, they build the YarnSpinner narrative game frame‐
work, and write books for O’Reilly Media.

Jon and Paris formerly worked as mobile developers and product
managers for Meebo (acquired by Google), and both have a PhD in
Computing.

Jon can be found on Twitter at @desplesda and online at http://
www.desplesda.net, and Paris can be found on Twitter at @parisba
and online at http://paris.id.au.

Secret Lab can be found on Twitter at @thesecretlab and online at
http://www.secretlab.com.au.

Colophon
The animals on the cover of Mobile Game Development with Unity
are the thorny devil stick insect (Eurycantha calcarata) and longhorn
beetle (family Cerambycidae).

The thorny devil stick insect is a herbivorous, wingless insect native
to Australasia. Males grow to 4–5″ in length, while the larger
females tend to be around 6″. While most stick insects tend to live
in trees, Eurycantha calcarata live on the ground (typically in rain‐
forests), where they forage for food at night, using a combination of
camouflage and catalepsy to evade predators. They huddle in groups
under shed bark and in tree hollows during the day. These insects
are popular pets, and the long thorns on the hind legs of males (for
which the species is named) are used as fish hooks in Papua New
Guinea.

The longhorn family of beetles possess uniquely long and powerful
antennae that often extend to, if not exceeding, the length of the
insect’s body. Over 26,000 species make up this family, ranging from
the titan beetle (the world’s lagest insect at 12.6″, excluding legspan)
to the tiny genus Decarthia, whose three species are only a few milli‐
meters long. Family Cerambycidae gets its name from the Greek

https://twitter.com/desplesda
http://www.desplesda.net
http://www.desplesda.net
https://twitter.com/parisba
http://paris.id.au
https://twitter.com/thesecretlab
http://www.secretlab.com.au

myth of Cerambus, a shepherd who is transformed into a beetle by a
group of nymphs.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover image illustrations are by Karen Montgomery, based on
engravings from J.G. Wood’s Insects Abroad. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code
font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Resources Used in This Book
	Audience and Approach
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. The Basics of Unity
	Chapter 1. Introducing Unity
	Hello, Book
	Mobile Games

	Hello, Unity
	What’s Unity For?
	Getting Unity

	Chapter 2. A Tour of Unity
	The Editor
	Play Mode and Edit Mode

	The Scene View
	The Mode Selector
	Getting Around
	Handle Controls

	The Hierarchy
	The Project View
	The Inspector
	The Game View
	Wrapping Up

	Chapter 3. Scripting in Unity
	A Crash Course in C#
	Mono and Unity
	MonoDevelop

	Game Objects, Components, and Scripts
	The Inspector
	Components

	Important Methods
	Awake and OnEnable
	Start
	Update and LateUpdate

	Coroutines
	Creating and Destroying Objects
	Instantiation
	Creating an Object from Scratch
	Destroying Objects

	Attributes
	Time in Scripts
	Logging to the Console
	Wrapping Up

	Part II. Building a 2D Game: Gnome on a Rope
	Chapter 4. Getting Started Building the Game
	Game Design
	Creating the Project and Importing Assets
	Creating the Gnome
	Rope
	Coding the Rope
	Configuring the Rope

	Wrapping Up

	Chapter 5. Preparing for Gameplay
	Input
	Unity Remote
	Adding Tilt Control
	Controlling the Rope
	Making the Camera Follow the Gnome
	Scripts and Debugging

	Setting Up the Gnome’s Code
	Setting Up the Game Manager
	Setting Up and Resetting the Game
	Creating a New Gnome
	Removing the Old Gnome
	Resetting the Game
	Dealing with Touching
	Reaching the Exit
	Pausing and Unpausing
	Handling the Reset Button

	Preparing the Scene
	Wrapping Up

	Chapter 6. Building Gameplay with Traps and Objectives
	Simple Traps
	Treasure and Exit
	Creating the Exit

	Adding a Background
	Wrapping Up

	Chapter 7. Polishing the Game
	Updating the Gnome’s Art
	Updating the Physics
	Background
	Layers
	Creating the Backgrounds
	Different Backgrounds
	The Bottom of the Well
	Updating the Camera

	User Interface
	Invincibility Mode
	Wrapping Up

	Chapter 8. Final Touches on Gnome’s Well
	More Traps and Level Objects
	Spikes
	Spinning Blade
	Blocks

	Particle Effects
	Defining the Particle Material
	The Blood Fountain
	The Blood Explosion
	Using the Particle Systems

	Main Menu
	Scene Loading

	Audio
	Wrapping Up and Challenges

	Part III. Building a 3D Game: Space Shooter
	Chapter 9. Building a Space Shooter
	Designing the Game
	Getting the Assets

	Architecture
	Creating the Scene
	Ship
	Space Station
	Skybox
	Canvas

	Wrapping Up

	Chapter 10. Input and Flight Control
	Input
	Adding the Joystick
	The Input Manager

	Flight Control
	Indicators
	Indicator Manager

	Wrapping Up

	Chapter 11. Adding Weapons and Targeting
	Weapons
	Ship Weapons
	Fire Button

	Target Reticle
	Wrapping Up

	Chapter 12. Asteroids and Damage
	Asteroids
	Asteroid Spawner

	Damage-Dealing and Taking
	Explosions

	Wrapping Up

	Chapter 13. Audio, Menus, Death, and Explosions!
	Menus
	Main Menu
	Paused Screen
	Game Over Screen
	Adding a Pause Button

	Game Manager and Death
	Start Points
	Creating the Game Manager
	Setting Up the Scene

	Boundaries
	Creating the UI
	Coding the Boundary

	Final Polish
	Space Dust
	Trail Renderers
	Audio
	Explosions

	Wrapping Up

	Part IV. Advanced Features
	Chapter 14. Lighting and Shaders
	Materials and Shaders
	Fragment-Vertex (Unlit) Shaders

	Global Illumination
	Light Probes

	Thinking About Performance
	The Profiler
	Getting Data from Your Device
	General Tips

	Wrapping Up

	Chapter 15. Creating GUIs in Unity
	How GUIs Work in Unity
	Canvas
	RectTransform
	The Rect Tool
	Anchors

	Controls
	Events and Raycasts
	Responding to Events

	Using the Layout System
	Scaling the Canvas
	Transitioning Between Screens
	Wrapping Up

	Chapter 16. Editor Extensions
	Making a Custom Wizard
	Making a Custom Editor Window
	The Editor GUI API
	The Asset Database

	Making a Custom Property Drawer
	Creating the Class
	Setting the Height of the Property
	Overriding OnGUI
	Getting the Properties
	Creating a property scope
	Drawing the Label
	Calculating the Rectangles
	Getting the Values
	Creating the Change Check
	Drawing the Slider
	Drawing the Fields
	Checking for Changes
	Storing the Properties
	Testing It Out

	Making a Custom Inspector
	Creating a Simple Script
	Creating a Custom Inspector
	Setting Up the Class
	Defining the Colors and Properties
	Setting Up the Variables
	Starting to Draw the GUI
	Drawing the Controls
	Applying Changes
	Testing It Out

	Wrapping Up

	Chapter 17. Beyond the Editor
	The Unity Services Ecosystem
	The Asset Store
	Unity Cloud Build
	Unity Ads

	Deployment
	Setting Up Your Project
	Setting Your Target
	Building for Your Platform

	Where to Go from Here

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

