
Models to
Code

With No Mysterious Gaps
—
Leon Starr
Andrew Mangogna
Stephen Mellor

www.allitebooks.com

http://www.allitebooks.org

Models to Code
With No Mysterious Gaps

Leon Starr

Andrew Mangogna

Stephen Mellor

www.allitebooks.com

http://www.allitebooks.org

Models to Code

Leon Starr Andrew Mangogna Stephen Mellor
San Francisco, California, USA Nipomo, California, USA San Francisco, California, USA

ISBN-13 (pbk): 978-1-4842-2216-4 ISBN-13 (electronic): 978-1-4842-2217-1
DOI 10.1007/978-1-4842-2217-1

Library of Congress Control Number: 2017944371

Copyright © 2017 by Leon Starr, Andrew Mangogna and Stephen Mellor

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

UML is a registered trademark of the Object Management Group.

Alf is a registered trademark of the Object Management Group.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484222164. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484222164
http://www.apress.com/source-code
http://www.allitebooks.org

To Kristina and Marjorie

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Authors ��xvii

Acknowledgments ��xix

Foreword ��xxi

 ■Chapter 1: The Modeling Landscape ��� 1

 ■Chapter 2: A Simple Executable Model �� 13

 ■Chapter 3: Making Translation Decisions �� 29

 ■Chapter 4: Translating the Air Traffic Control Model ��� 39

 ■Chapter 5: Model Execution Domain�� 59

 ■Chapter 6: An Extended Example �� 77

 ■Chapter 7: Sensor and Actuator Service Domain �� 111

 ■Chapter 8: Integrating the Application and Service Domains ��������������������������� 129

 ■Chapter 9: Event Polymorphism �� 161

 ■Chapter 10: Pycca and Other Platforms �� 185

 ■Chapter 11: The Translation Landscape �� 213

 ■Appendix A: xUML Summary ��� 237

 ■Appendix B: Scrall Overview ��� 255

 ■Appendix C: Pycca Language Overview ��� 265

 ■Appendix D: Bibliography �� 289

Index ��� 291

v

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors ��xvii

Acknowledgments ��xix

Foreword ��xxi

 ■Chapter 1: The Modeling Landscape ��� 1

Prerequisites �� 1

No Magic��� 1

Elaboration: The Easy Path to Failure ��� 2

Elaboration–Gradual Failure ��� 2

Elaboration–Abrupt Failure ��� 3

Model Destruction �� 3

The Value of a Good Model ��� 3

A Better Way Forward: Translation ��� 4

Executable Models ��� 4

Platform-Independent Models �� 4

Deriving Code from Models �� 4

xUML: Same Notation, Different Attitude �� 5

The x in xUML ��� 5

Translation �� 7

Our Target Technology �� 7

Our Translation Environment �� 8

A Final Word About UML and Standards ��� 9

What’s Next? �� 10

vii

www.allitebooks.com

http://www.allitebooks.org

viii

 ■ Contents

 ■Chapter 2: A Simple Executable Model �� 13

An Air Traffic Controller Application �� 13

Step 1: The Class Model ��� 15

Step 2: State Models��� 19

Step 3: Actions �� 22

Executing the Model ��� 27

Standard Action Languages ��� 27

Summary �� 28

 ■Chapter 3: Making Translation Decisions �� 29

Reviewing the Target Platform ��� 29

Working with the Class Model �� 31

Data Types �� 31

Classes and Attributes �� 32

Associations ��� 32

Generalizations ��� 34

Initial Instance Population �� 35

Describing the State Models �� 35

States ��� 37

Events, Transitions, and Responses �� 37

Executing State Machines �� 37

Translating Processing ��� 38

Coding from Models ��� 38

Translating a Model �� 38

Summary �� 38

 ■Chapter 4: Translating the Air Traffic Control Model ��� 39

Overview of Pycca Syntax �� 39

Organization of a Pycca File ��� 40

Translating the Class Model ��� 40

Data Types �� 40

www.allitebooks.com

http://www.allitebooks.org

ix

 ■ Contents

Class Definitions ��� 42

Initial Instance Population �� 46

Translating State Models �� 48

Duty Station State Model �� 48

Air Traffic Controller State Model �� 51

Translating Actions ��� 52

Air Traffic Controller State Activities ��� 53

Summary �� 57

 ■Chapter 5: Model Execution Domain�� 59

Role of the Model Execution Domain ��� 59

Overview of ST/MX ��� 60

The ST/MX View of a Class Instance �� 61

Managing Execution ��� 63

Event Control Block �� 65

Signaling an Event �� 66

Catching the Event-in-Flight Error �� 67

Delayed Signals �� 67

Event Dispatch �� 69

Tracing Execution ��� 73

Running in a POSIX Environment �� 74

Handling Errors �� 75

Summary �� 76

 ■Chapter 6: An Extended Example �� 77

The Automated Lubrication System ��� 78

ALS Domains �� 79

Lubrication Domain �� 81

Lubrication Class Model ��� 81

State Models �� 86

Injector State Model ��� 86

Autocycle Session State Model �� 89

www.allitebooks.com

http://www.allitebooks.org

x

 ■ Contents

Reservoir State Model �� 91

Class Collaboration ��� 91

Class Method and Other Activities �� 93

State Tables �� 93

Translating the Lubrication Domain�� 97

Translating Association Classes ��� 97

Navigating Associative Relationships ��� 99

Creation Events ��� 101

Asynchronous Instance Deletion �� 103

Operations �� 104

Summary �� 109

 ■Chapter 7: Sensor and Actuator Service Domain �� 111

Domain Overview ��� 112

Converting Electrical Signals ��� 113

Modeling Signal Conversion ��� 114

Implementing the Assigner ��� 120

Tracing Execution ��� 122

Limitations �� 123

Value Thresholds �� 123

Initial Instance Population �� 126

Summary �� 127

 ■Chapter 8: Integrating the Application and Service Domains ��������������������������� 129

Summary of Domain Benefits �� 129

Each Domain Is a Black Box ��� 130

Marking and Mapping �� 132

Start and Stop Monitoring Pressure ��� 138

Update Pressure ��� 140

Injector Pressure Alerts �� 142

Implementing Bridges in Pycca �� 146

Pycca Facilities for Implementing Bridge Code �� 146

www.allitebooks.com

http://www.allitebooks.org

xi

 ■ Contents

The Domain Portal �� 147

Identifying Domain Elements �� 147

Lubrication Domain External Entity Functions ��� 148

Implementing Injection Control Functions �� 148

Implementing Injector Pressure Monitoring Functions ��� 150

SIO Domain External Entity Function �� 151

Updating Injector Pressure Attribute��� 151

Signaling Pressure Alerts ��� 154

How the Portal Works ��� 156

Summary �� 160

 ■Chapter 9: Event Polymorphism �� 161

Generalization and Set Partitioning �� 161

Routing Polymorphic Events��� 162

Routing for each Form of Generalization �� 162

Torpedo Launch Example ��� 165

Translating Polymorphic Events with Pycca ��� 169

How Polymorphic Events Are Signaled ��� 174

How Polymorphic Events Are Dispatched ��� 174

Summary �� 182

 ■Chapter 10: Pycca and Other Platforms �� 185

Design of the Pycca Program ��� 185

Platform Model ��� 185

Domain Specific Language Processing �� 187

Template-Driven Code Generation �� 188

Pycca Implementation �� 188

Pycca Performance �� 189

Target Hardware Platform��� 189

Target Software Platform �� 190

ALS Code Size ��� 190

Execution Speed ��� 191

www.allitebooks.com

http://www.allitebooks.org

xii

 ■ Contents

Performance Discussion ��� 192

Supplying Implementation-Specific Code �� 192

Considering Other Platforms �� 195

Mapping Domain Data to Berkeley DB �� 195

Platform-Model Differences ��� 207

Alternate MX Design Discussion ��� 210

Summary �� 212

 ■Chapter 11: The Translation Landscape �� 213

A Reference Workflow for xUML Translation �� 213

Key Challenges ��� 215

Identify Domains �� 216

Build and Document the Models �� 217

Use the Right Modeling Talent �� 218

Enter and Edit the Models Productively �� 218

Usefully Document the Models ��� 219

Specify Domain Mapping ��� 220

Populate the Models ��� 221

Populate the Domain Mappings ��� 223

Marking �� 224

The xUML Metamodel ��� 224

The xUML Language ��� 226

Action Language ��� 226

Desirable Characteristics of an Action Language ��� 227

Translation Considerations ��� 231

The Pycca Workflow ��� 232

Summary �� 235

 ■Appendix A: xUML Summary ��� 237

xUML �� 237

Domain ��� 238

xiii

 ■ Contents

Bridge ��� 239

Domain Chart ��� 240

Class ��� 241

Attribute ��� 242

Data Type �� 243

Identifier ��� 244

Association ��� 245

Association Class ��� 246

Generalization/Specialization ��� 247

Other Activity Types �� 248

State Model (Instance Lifeycle) �� 250

Platform Independent Synchronization Rules �� 251

Events ��� 251

Activities ��� 251

State Model (Assigner) ��� 252

Single Assigner ��� 252

Multiple Assigner �� 252

Polymorphic Events �� 253

External Entity �� 254

 ■Appendix B: Scrall Overview ��� 255

Principles�� 255

Names �� 255

Variable Types �� 255

Instance Set Variable �� 255

Relation Variable ��� 256

Scalar Variable �� 256

Data Types �� 256

System Variables �� 256

No Literals �� 257

xiv

 ■ Contents

Boolean Values ��� 257

Enumerated Values ��� 257

Attribute References �� 257

Assignment Operators �� 257

Instance Selection �� 258

Selection with No Criteria ��� 258

Selection with Criteria �� 258

Relationship Navigation �� 259

Signaling �� 259

Link/Unlink ��� 260

Error Handling �� 260

Subclass Migration ��� 261

Interaction with External Domains ��� 261

Asynchronous: Signal to External Entity ��� 261

Synchronous: Invoke Operation on External Entity ��� 262

Self Reference �� 262

Events to Assigner State Machines �� 262

Class Method �� 263

More Commands �� 263

 ■Appendix C: Pycca Language Overview ��� 265

Invocation ��� 265

Options ��� 265

Lexical Conventions ��� 266

Comments �� 266

Whitespace ��� 266

C Variables �� 267

C Code �� 267

Name �� 267

Number ��� 267

xv

 ■ Contents

Keywords �� 267

Other Tokens ��� 267

Domain Definition ��� 268

domain �� 268

class ��� 268

domain operation �� 268

external operation �� 269

interface prolog, implementation prolog, interface epilog, implementation epilog ���������������������������� 269

instance �� 270

table �� 270

Class Definition �� 271

attribute �� 271

reference �� 271

subtype ��� 272

machine �� 273

population ��� 273

slots �� 273

class operation ��� 273

instance operation �� 274

polymorphic event �� 274

constructor ��� 274

destructor ��� 274

State Model Definition �� 275

state �� 275

transition �� 275

default transition �� 275

initial state �� 275

final state �� 276

Activity Macros ��� 276

Instance References ��� 276

Events ��� 277

xvi

 ■ Contents

Instance Creation and Deletion ��� 281

Instance Selection �� 281

Instance Identifiers ��� 284

Navigating Generalizations ��� 285

 ■Appendix D: Bibliography �� 289

Books ��� 289

Papers �� 289

Articles ��� 290

Index ��� 291

About the Authors

Leon Starr has been developing real-time distributed and embedded
software with object-oriented, executable models since 1984. His models
have been used in fighter jets, factory material transport control systems,
ultrasound diagnostic and cardiac pacing systems, gas chromatography
and semiconductor wafer inspection systems, video postproduction
systems, and networked military battle simulators. He has taught
numerous courses on executable systems and data modeling to systems
engineers and software developers worldwide through his company Model
Integration, LLC (modelint.com) based in San Francisco, California. He
is the author of How to Build Shlaer-Mellor Object Models, How to Build
Class Models, Executable UML: A Case Study, and assorted papers at
uml.org and modeling-languages.com. He regularly assists project teams
who model complex requirements and generate code from those models
for challenging hardware and software platforms.

Andrew Mangogna has developed a number of open source tools,
including pycca, which we use in this book to specify Executable UML
models and translate them into code. He has also worked extensively
in the medical device community. For more than 30 years, Andrew has
been a hands-on builder of embedded software systems. He has worked
in application areas ranging from laboratory instrumentation, remote
data collection, and video special effects, to implantable medical devices.
Andrew has always had a special interest in applying more formal
techniques to the challenge of engineering software to create systems in
a cost-effective manner with demonstrable quality. Trained in the basics
of modeling by Stephen Mellor himself, he has successfully applied
executable modeling techniques and model translation to many projects
and has written several tools to help automate the translation process.
With a keen interest in technology and a practical realization of the
benefits of modeling, he has a mastery of mapping models to appropriate
implementation technology to obtain high-quality software systems.

xvii

xviii

 ■ About the Authors

Stephen Mellor is the primary author of Executable UML: A Foundation
for Model-Driven Architecture, as well as several other books on model-
driven software. He is a frequent speaker and a key contributor to many
modeling language standards established by the Object Management
Group (OMG).

Acknowledgments

Any substantial project always depends on the generous help of others. Friends, colleagues, and a host of
experiences have provided valuable service to Models to Code.

We all wish to thank Ed Seidewicz, our technical reviewer, for his many insightful and detailed
comments throughout the text. His eye for detail rooted out quite a few potential and devilishly subtle errors.
He passed many of our “tests” to see whether he was actually reading this stuff. We especially appreciate
his patience with us, as we are well aware that our opinions and experience are often at odds with current
practice in the greater UML community.

I want to express my heartfelt thanks to friends and colleagues who expressed early enthusiasm for
this project. This includes many of my colleagues at SAAB Aerospace here in Sweden. At the Por Que No?
taqueria in Portland, Oregon in March of 2016, Dan George and I had some amazing tacos, and I was
encouraged by his infectious comments and enthusiasm. Back here in Linköping, Sweden, my present home
base, I enjoyed many beers, laughs, and technical discussions with Nils Paulsson of SAAB at The Bishops
Arms pub. He also contributed helpful comments on early drafts (in both the writing and beer sense of the
word). Thanks also to my Scandinavian “agent” and good friend, Christer Andersson, for equal measures of
encouragement and pestering me to get this project over with so I could get back to doing “real” work. My
longtime friend and business partner, Michael M. Lee, has served many a quality margarita on my recurring
visits back to the Bay Area in California. I would like to thank the staff at Babbettes Kafferie in Linköping for
letting me use a corner of their cafe as my second office and keeping me well supplied with coffee, morning
buns, and warm conversation during the dark and cold Swedish winter days. Most important, though, I owe
a massive debt of gratitude to my wife, Kristina, who set me up with a beautiful home office and forbade me
from getting a new Xbox until the book was complete and for putting up with my writing throughout our
summer wedding plans. Along with Andrew’s superb project management skills, you can thank her the most
for this book making it to the shelves in 2017.

—Leon Starr

The many discussions over coffee and beer of modeling and its foundations with Paul Higham were
fundamental to a broader understanding of how all the pieces fit together. There were many people, such as
Melanie Gurunathan, Cary Campbell, and Thomas Brennan-Marquez, who actually used pycca to deliver
real products and whose feedback was essential. Finally, without the patience and support of my wife,
Marjorie Lane-Mangogna, it is hard to envision how this book could ever have happened. Few would have
the patience to deal with the blah, blah, blah chatter that surrounds someone immersed in writing on a
technical subject.

—Andrew Mangogna

xix

Foreword

I published my first book on requirements analysis and modeling back in 1997. It was based on my
experience working with teams to build complex, real-time, model-driven software. Like so many other
books on software modeling, I left the process of transforming the models into code as an exercise for the
student. Ha!

In fact, on actual projects, we were able to make this transformation, but it certainly wasn’t easy.
Worthwhile, yes. The models proved themselves again and again as being worth the effort. But the code
translation problem has never been trivial. We always required a small team dedicated to the translation task
running in parallel with the modeling effort. Note that this was not a waterfall approach, as modeling and
design were being accomplished simultaneously.

Over time, the tools and technology to bridge the path from models to code improved. Unfortunately,
they were locked up in proprietary solutions and expensive licensed products. This put me in an awkward
position when extolling the benefits of modeling to younger engineers. Getting them interested in the
benefits of modeling and a more promising style of model execution and code generation was easy. I would
then be confronted with the inevitable question, “That’s sounds great; how do I get started with this stuff?”
I then had to concede that, while you might toy around with the ideas on your own, you really needed to get
attached to a project that could fund the required tooling. Consequently, I didn’t want to write another book
without giving the reader a real path, any path, that took the models into running code without requiring the
purchase of any expensive tools.

Andrew and I have worked together on and off on various projects over the years. One of his early
translation systems extracted models from a tool called BridgePoint at the time (now xtUML) and
transformed those models directly into assembly language. Because of the specialized CPU, no sufficiently
optimal C compiler was available. It was a proprietary solution for a particular embedded device company,
but it was a compelling proof of concept. Abstract models could be compacted and reorganized directly to
the machine instruction level and run on specialized and limited resource hardware to yield the precise
behavior specified by the models.

Andrew has since moved on to build a number of open source translation systems of which one, pycca,
is used in this book. I eventually realized that these open source tools were the key to explaining how to
bridge the gap from models to code while providing an accessible solution to any interested party.

Thus began our latest book project. After coaxing Andrew to take part, and enticing the primary author
of Executable UML and Agile signatory, Stephen Mellor, to join in, we had the perfect mix of expertise.

As you read along, you may find that this is not an easy subject, and may require some hard work to
make it through. The reward is the ability to take executable models that solve real problems through to an
efficient implementation without destroying the models in the process. I want you to know that you are not
alone in this journey, and we’re more than happy to help if you have questions or run into obstacles. Feel
free to use our contact page at the end of the book. Happy reading!

—Leon Starr
Linköping, Sweden

March 15, 2017

xxi

xxii

 ■ Foreword

In conversations with colleagues who share a similar outlook about software development, the topic
invariably turns to why the practice of software development using models and translation is not more
widespread. Many reasons are offered, but usually the conversation trails off into consternation over an
industry that claims to want well-engineered software juxtaposed to the repeated practices that do not
deliver.

For my part, I have concluded that modeling and translation are hard because abstraction is hard
and requires practice to master. One need only look at the facial contortions of a young teenager when
initially exposed to the idea of variables in beginning algebra to understand that we are creatures first of the
immediate and concrete. Gone are the comforts of explicit numbers, and suddenly a new set of rules is in
place to cope with the idea that an arbitrary symbol, which doesn’t look anything like a numeral, can now
range over many values. The look is similar to that of a beginning programming student struggling to fix
firmly the difference between a variable and the value contained in the variable when the same symbol is
used for both and only context provides the distinction. Even though I have successfully produced software
systems using modeling and translation for many years, there are times when looking at pages of boxes and
arrows that it is hard to see how the gap between symbols on a page and running software will ever be filled.
It looks like a jump across the Grand Canyon to be attempted only by an extreme stunt rider equipped with a
magic, rocket-propelled vehicle.

The young algebra student, by working through many specific problems, does come to grasp the
underlying abstractions. Reasoning, and sometimes wrestling, with the concrete yields up the abstract.
In this book, we undertake to illustrate general principles of translating models into code by examining
specific examples. We practice a specific way to model requirements and translate to a specific type of target
platform using a specific programming language. We hold tightly to our tagline of “no mysterious gaps” in
our attempt to show, at each step along the way, exactly how the translated software is produced and runs.
We show lots of models and lots of code, confident in the awesome power of an individual to grasp the
abstractions embedded in the specifics.

There is a danger that some readers will look at the details of the platform or translation technique
and conclude that, because the specifics don’t match their interests or preferences, the idea of translating
models into programs is itself not generally applicable. In that case, we will have failed as authors to provide
the vision of model translation as a tangible engineering approach. But I am confident that there are readers
who will realize that symbols on a diagram can be made tangible as a running program (as tangible as
software ever is) and that obtaining code by translating models looks more like driving over a bridge than
jumping the Colorado river.

—Andrew Mangogna
Nipomo, California

March 15, 2017

1© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_1

CHAPTER 1

The Modeling Landscape

We could begin this book with a litany of the failings and sins of software development. We won’t bother
with that. If you are a practicing software developer, you know the problems and have lived through them.
Instead, we’ll get straight to the point.

We believe that modeling requirements and translating those models directly to code can solve many
of the failings of software development. Unfortunately, a huge gap exists between creating requirement
models and a running program. How to bridge that gap is not obvious. If it were smooth, easy, and
productive, we would expect modeling to be everywhere. But it’s not. Reports vary, but only about 10 percent
of development efforts use models. Clearly, models are not delivering enough value to take the software
development world by storm. We believe this is caused primarily by the difficulty in bridging the gap
between models and implementation.

In this book, we’re going to take you on a detailed journey from a platform-independent model to
a very platform-specific file of C code. We focus on a specific modeling language, translation process,
implementation language, and class of hardware in an endeavor to demonstrate by example how to turn a
model into code. The study of concrete examples is essential to grasping the general principles of obtaining
code from models. This means that occasionally you may see concepts introduced that are not fully
described until later. It may be necessary—in fact, it is encouraged—to take multiple reading passes through
some of the chapters.

Prerequisites
We assume that you have some interest and background in modeling and UML. Although we won’t be
teaching modeling here, we explain key aspects of the Executable UML (xUML) modeling language we use,
provide external references, and expand on our modeling approach as we go.

There will be code. So we assume you have some familiarity with the C programming language. We’ll
be walking through a lot of it as we proceed. We don’t make any deep dives into the dark recesses of C, so a
passing knowledge should be sufficient for these purposes. And for whatever we can’t squeeze into the book,
we’ll provide online references.

No Magic
Software modeling tools and techniques have been around for many years, yet the industry seems to be
waiting for some future development to set us on the right path and make the whole process work like magic.
But this book isn’t about the future, unicorns, or fairies. It is about what you can do today, on a real project in
a real organization to produce deliverable code.

Chapter 1 ■ the Modeling landsCape

2

Elaboration: The Easy Path to Failure
To appreciate our approach, it is helpful it to compare it to a completely different and common approach
called elaboration that has repeatedly failed to deliver results. Elaboration was initially popular because of
its intuitive appeal and low bar of admission when it comes to learning anything new about analysis and
modeling. Knowledge of notation and skill in object-oriented programming were the only engineering
prerequisites. As it turns out, this practice generally leads to disaster. In fact, elaboration has caused many
a project to abandon the whole idea of model-driven software, stigmatizing the practice of modeling in
the process.

Elaboration has you start out creating a “system” or “architectural” design by building a high-level
model. The concept of high level has no definition, so it is supposedly intuitive. That fact alone should
be a sign that you are headed for trouble. This period is often concerned less with determining how the
components of the system will work together than with partitioning the work among the developers on
the project.

Over time, classes become less high level and more Java-ish or C++-ish. It all seems so natural.
Implementation boundaries cause model elements to be grouped along task, thread, or CPU boundaries.
Private and public methods and inheritance, in whatever particular form is supported by the target
language, are sculpted in and around the modeled classes.

Sooner or later in the modeling process, you will trip up on some vexing problem. After banging
your head a while trying to solve it at your oxygen-deprived modeling altitude, someone says, “Oh, that
can be fixed in implementation; don’t worry about it.” Then you smooth over the whole nastiness with an
aggregation diamond or whatever and keep going. That is where the lack of a definition of high level makes it
easy to avoid solving problems while modeling.

More modeling goes along until you realize that it’s hard to know when to stop modeling. The usual
guideline is to stop when all that remains is “implementation detail.” Sadly, there is no good definition of
implementation detail, either; there are usually lots of discussions and disagreements over what constitutes
a detail. This is another warning flag of trouble ahead.

You rinse and repeat until either gradual or abrupt failure sets in.

Elaboration–Gradual Failure
Here the models are elaborated until code results. Attributes are added, states are added, and models
are reorganized as necessary. Eventually, each modeled class corresponds directly to a Java or other
implementation language class. Each attribute corresponds to a property of an implementation class.
Each package corresponds to a thread, task, or other software execution unit. And you get code. As code
is produced, there are even tools that will “round trip” the code base with the model diagrams to keep
them in sync.

How is this a failure? Two reasons. First, the “high-level” models were destroyed. Adding detail
progressively obscures requirements, and the models morph into pictures of the code. These pictures may
be useful for navigating the code base, but any statement of the fundamental application requirements is
soon obscured.

So what was the point of building models you were going to destroy? They’ll have no life beyond
the project. They’ll be of little value moving to other platforms or software architectures. They’re not
substantially easier to understand than the code base itself and will be completely foreign to anyone in the
organization outside the software development staff.

Second, the modeling process wasn’t of much value because it wasn’t focused on capturing the
requirements of the problem. The difficult problems got swept under the rug and then later solved while
adding code, when there is no choice but to do something, anything, however right or wrong that may be. So,
the preliminaries are rightly perceived, in retrospect, as an additional, time-consuming, and not necessarily
helpful phase.

Chapter 1 ■ the Modeling landsCape

3

Elaboration–Abrupt Failure
In the abrupt case, pressure to deliver increases to the point where everyone freaks out, casts the models
aside, and starts coding. This start of coding is deemed when the “real work” begins, and any further
attempts to understand the problem being solved are abandoned. The models may be referenced later
somewhat, but attention inexorably shifts to the mounting code base because that’s now the only thing that
matters.

Model Destruction
In either failure scenario, the models are rendered useless. In the gradual case, the essential application logic
is obscured, and the models become little more than pictures of the code. In the abrupt case, the models
may survive for a short time as advisory documentation, but soon lose their relevance. After the project, in
either case, the value of having built the models in the first place is rightfully brought into question. With
results like these, it is no wonder that modeling never became widely accepted as an essential software
development activity.

The Value of a Good Model
Plenty of other books detail the many good reasons to model the requirements of your application. Here we
have to assume that you think models have the potential for redeeming value even if that value has appeared
tenuous in your experience. Let’s instead try to boil down whether you are getting tangible benefits from
your modeling efforts with a hardware engineering analogy.

Consider a typical workflow of our electrical engineering cousins when designing a printed circuit board
(PCB). They first capture the application logic of the circuits in a schematic diagram. They define the components
that are required and the way they are connected. The schematic defines exactly how the board works.

Only after schematic capture is consideration given to PCB layout. Layout is about the physicality of
the board: component sizes, trace widths, ground planes, signal distances, and many other elements must
be specified. In many organizations, the person doing the layout is different from the one who did the
schematic capture, because the skills for the two tasks are that different. When the board is fabricated, the
electrical circuits must function as dictated by the schematic diagram—layout does not change functionality.

To an electrical engineer, a schematic diagram is a model of the application logic. What is excluded
from the schematic diagram is the physical arrangement of the components on a PCB and all the practical
considerations of electrical connectivity. That exclusion is then introduced by the board layout.

After the board is fabricated, if testing indicates an error, then not only is the board patched, but the
schematic diagram is scrupulously updated to reflect the fix. Amazingly, the entire workflow of schematic
diagram, board layout, and schematic updates is never a subject of contention among electrical engineers.
The value of a schematic diagram and the absolute necessity that it accurately describes the way a board
works is part of the shared outlook for electrical engineers.

If you ask an electrical engineer a question about how a board works, immediately he or she will pull out a
thick wad of paper containing the schematic diagram drawings for the board. They flip to the relevant page and
proceed to point and trace through the diagram to answer the question. They do this with absolute confidence
that the answer obtained from the schematic diagram matches the way the board works on the lab bench.

Now, if someone asks you a question about how a software feature works and your first instinct to
answer the question is to browse through code files, to read and execute, in your head, a bunch of code, then
whatever models may exist for that software are not providing enough value to be worth producing. On the
other hand, your models truly capture the requirements of the system when someone asks, “How does the
gronkolator masticator know to turn itself off?” and you reach, without hesitation, for a thick wad of paper
(or load up a model file on your giant display) containing the software model diagrams and start pointing
and tracing to answer the question.

Chapter 1 ■ the Modeling landsCape

4

A Better Way Forward: Translation
We subscribe to an entirely different approach to getting code from models called translation.
This translation approach is based on two fundamental tenets:

•	 The models are detailed expressions of application logic. They should capture and
formalize requirements of a problem.

•	 Code is derived from the models. The models are not destroyed in the process of
translation.

The models are detailed in two key respects: executability and platform independence. The vague
concepts of high and low level are not meaningful or relevant here.

Executable Models
The models are fully executable without code. By executable, we mean that there must be a clear, complete,
unambiguous set of rules for running the models.

Each set of models is adequately detailed so that it can be executed and tested without the need for any
programming language code. This is made possible by a small set of well-defined, platform-independent
execution rules and descriptions of processing that operate exclusively on model elements. The execution
rules have been designed so that they can be implemented on a broad array of platforms such as a single
microcontroller or spread out across a distributed system with many parallel processing units.

If you are curious, you can get a taste of the execution rules by looking at how platform-independent
synchronization is managed in xUML by visiting www.modelint.com/MBSE or www.executableuml.org.

Platform-Independent Models
The models must not contain implementation technology. This is for two reasons.

First, the logic of an application stands apart from the means and methods of its implementation. We
have long been defining logic and processing without using any programming language. Second, as many
developers have discovered, implementation features are more flexibly defined in code rather than in the
constrained context of model formalisms. Any implementation concepts assumed in the models hampers
the choices that can be made downstream. It becomes more difficult to optimize and adjust to platform-
specific requirements when implementation choices are forced by the models. It’s the age-old principle of
using the right tool for the right job. Programming languages are great for devising implementations and not
so good at expressing application logic distinctly. Models of the type that we build are great at expressing
logic and required data and synchronization, but are a terrible place to design code.

Deriving Code from Models
Assuming that the models are executable and platform independent, we get code by mapping them onto
the implementation technology. All implementation decisions and artifacts are folded in downstream from
the modeling process. Consequently, all the work and intellectual property that goes into the models is
maintained, distinct from any particular implementation.

We never mix code anywhere back into the models themselves. We need a modeling language that
supports these features and, to bridge the gap to code, we need a way to take those models as input and
add the necessary implementation technology to transform them into running programs on a hardware
platform. Let’s start with the language.

http://www.modelint.com/MBSE
www.executableuml.org

Chapter 1 ■ the Modeling landsCape

5

xUML: Same Notation, Different Attitude
We use Executable UML (xUML) as our modeling language. Like most modeling languages, it has a graphical
notation and underlying semantics. Semantics is just a short way of saying, “what the notation actually
means.” xUML uses a subset of the UML notation on top of platform-independent execution semantics. This
is not the same as the object-oriented semantics employed by the greater UML community. Both Executable
UML: A Foundation for Model-Driven Architecture by Stephen Mellor and Marc Balcer (Addison-Wesley,
2002) and Model Driven Architecture with Executable UML by Chris Raistrick et al. (Cambridge University
Press, 2004) provide complete descriptions of xUML modeling.

Let’s take the class symbol, for example. Most UML folks will look at it and imagine a “high level”
Java-ish or C++-ish class. This brings with it all of the attendant object-oriented programming concepts
such as object references, public/private methods, inheritance, and so forth in whatever object-oriented
programming language you assume is most likely targeted.

In xUML, the semantics are entirely different. First of all, there is no implicit presumption that we
are targeting an object-oriented programming language. Instead, xUML is built on a set of mathematical
formalisms. Now, we do not intend to write lots of Greek letters or upside-down Latin characters when we
describe a model. Being based on a formalism is not the same as mimicking a formalism. We also don’t want
to imply that the modeling formalism is somehow associated with proving the correctness of the resulting
program. We’ll leave formal program proofs to the computer scientists and simply strive to be better software
engineers. It is not necessary to understand the underlying formalisms to use xUML, because they are
expressed as a set of modeling rules. However, understanding the fundamentals will make you a better
modeler. The formalisms remove any platform bias, and the mathematical basis provides assurance that
we can translate to any target platform required to meet our specific engineering needs, object oriented or
otherwise. A good introduction to the mathematics of logic and its use in describing data can be found in
Applied Mathematics for Database Professionals by Lex de Hann and Toon Koppelaars (Apress, 2011).

The x in xUML
As programmers, we read a lot of code. Reading code leads to understanding a program’s behavior, because
you can run the code in your head. In this sense, C code is executable because there are well-documented
execution rules to accurately predict what the code will do. Consider, for example, the following function,
written in C, which computes the y-coordinate of a line, given the x-coordinate, slope, and intercept:

int
linearValue (
 int x,
 int m,
 int b)
{
 return (m * x) + b ; /* yes, the parentheses are unnecessary */
}

int y = linearValue(5, 10, -2) ;

Any two C programmers can mentally execute this code line by line and conclude that the value
contained in the y variable will be 48. It is not subject to opinion, mood, or perspective, because each
programmer envisions the same execution model that defines how the program runs. (And if the answers
diverge, it means that one programmer or both are misunderstanding that model!) Yet we also know that
real computers do not behave in strict accordance with the execution model of the C language. The C
compiler lays out memory for variables, selects the correct integer instructions, and generates the necessary

Chapter 1 ■ the Modeling landsCape

6

instructions to enforce the conventions for passing arguments. But it must yield the same result as our
execution model. You don’t need to envision the compiler’s complicated layout scheme to get the correct
result if the compiler is doing its job correctly.

The same principle applies to an executable model. You must be able to read a model and accurately
predict an outcome, though the model may be implemented entirely differently from the way we execute it
in our heads. Nothing is open to subjective interpretation. UML alone does not provide this level of certainty,
but the xUML we use in this book does. Figure 1-1 illustrates this principle.

Figure 1-1. Mentally executing code and models

Chapter 1 ■ the Modeling landsCape

7

The syntax of any executable language associates keywords and symbols with corresponding executable
meaning or semantics. Assembly language, for example, operates with the registers and memory structure
of a particular processor. C, on the other hand, lives in the world of variables, structs, arrays, loops, and
functions. Our executable modeling language takes the level of abstraction up a few notches and operates in
a world of sets, relationships, life cycles, and data flows. This is ideal for capturing application logic without
distraction.

With an executable model, you can model applications unambiguously and in sufficient detail that
they can be executed and verified just as you commonly do with code, without actually being code. This
forces you to think about what the application is doing. Decisions must be made. Inadequate subject-matter
knowledge must be filled in. You cannot defer difficult problems with statements like, “We’ll sort that out
when we write the code.” When we model the requirements for an air traffic control system, for example, we
must decide exactly what is to happen for an on-duty controller to go off duty. We must define what data is
required, what computations must be performed on it, and how the computations must be sequenced or
otherwise synchronized. Model-level executable semantics let us specify all of this without assuming any
particular target programming language, design patterns, processor distribution, framework, library, or any
other implementation technology.

Translation
Executable models are not the same as code. Executable models describe application logic. To get to code,
an executable application model must be translated onto implementation technology.

Our insistence on a separation of logic and technology has created a larger gap to fill than if we had
insinuated implementation concepts into our modeling language. If your modeling language looks a lot like
an object-oriented programming language, the step to get object-oriented code is not very big. In our case,
we must fold in all the required technology. This can run the entire gamut of programming technology such
as a target programming language, design patterns, processor distribution, framework, runtime library, and
any other mechanisms of implementation we need to create a running program.

It is important to emphasize that translation adds nothing to the logic or behavior of the system. It adds
computing technology only. Whereas earlier we ignored implementation technology to capture concisely
the application logic, translation shifts the emphasis from application logic to technology. Because we are
concerned only with how computing technology implements the application logic, the details of how the
application logic meets the requirements of the system can be ignored. When we translate, we don’t try to
second-guess the application logic, just as we didn’t try to specify the implementation mechanism when we
were modeling.

Our Target Technology
The landscape of modern computing technology is vast, so many decisions need to be made in determining
the type of computing technology that should be applied to a given problem. Translation is directed, then, at
a particular target technology and environment, and we must be specific about the details of how and where
that program will run.

Although the approach we describe can be used in multiple contexts (web applications, software-
oriented architecture, batch programs, and distributed systems, to name just a few), it would be distracting
and counterproductive to keep switching back and forth between implementation environments. Instead,
we pick one and consider the consequences all the way through to the code. This book shows one example
of how to apply specific technology to translation. It is not a comprehensive treatise of translation theory.
Still, we expect you to come away with a greater understanding of how translation is accomplished.

Chapter 1 ■ the Modeling landsCape

8

We demonstrate translation assuming our target computing environment has the following characteristics:

•	 The environment is based on an embedded microcontroller. These typically have
less than 512 KB of memory, and frequently as little as 32 KB. We will not consider
the very small end of this scale. Microcontrollers with less than 16 KB of read-only
memory or less than 4 KB of read/write memory are outside the design scope of our
target environment.

•	 The implementation language is C. C is common in this realm, and good C compilers
are available.

•	 The class of applications is reactive in nature. The software responds to unsolicited
external stimuli and interacts with its environment via a set of hardware peripherals.
This is in contrast to applications that are primarily transforming in nature, such as
rendering a graphical image.

WHY NOT C++?

some readers may wonder why C was chosen rather than C++. despite their syntactic similarities,
C and C++ are very different languages. C++ provides powerful features, not all of which are
supportable in a microcontroller environment. some embedded projects use subsets of C++ to avoid
these difficulties. But programming language features make it easier for human programmers to
accomplish programming tasks. the same features are not as useful in a translation environment.
the role of an implementation language in translation is different than when you are directly coding a
program. a translation program doesn’t care whether a particular concept is not well supported in the
implementation language. Finally, several, obscure incompatibilities exist between C and C++, and our
translator program needs a construct in C that is illegal in C++.

This target technology would not work well for a web application. But that does not mean the
translation approach fails for a web application; it simply means that models for web applications must
target a different technology.

Our Translation Environment
There is a broad spectrum of ways to accomplish the translation of a model into code. Any mechanism
that faithfully maps the logic of the application onto its code equivalent without destroying the model is a
candidate.

At one end of the spectrum, translating a model starts with software tools that capture a graphical
representation of the model. Dozens of UML drawing tools are available. The model’s meaning is captured
in a database by using sophisticated tools. The database is then traversed in potentially complicated ways
to produce code. The main advantage of this approach is power and generality. The main disadvantage is
that it appears to be magic. This perception is heightened by the number of elements you must understand
before you can make anything happen and by the amount of unseen processing that goes on to get between
the model and the code.

Our approach starts at the other end of the spectrum. We have defined the details of the target platform
and fixed the way model execution rules are implemented within the technology of that target platform.
A set of platform-specific rules determine the choices for how model elements are mapped onto the
implementation constructs. We encode the mapping of model elements into implementation constructs by
using a text-based domain-specific language (DSL). Then, a relatively simple tool, named pycca, generates
the output C code. The main advantage is that we are assured of obtaining a program that matches our target
platform technology. The main disadvantage is the lack of integration to front-end model development.

Chapter 1 ■ the Modeling landsCape

9

Here is our basic workflow:

 1. Create an xUML model of the subject matter. Use your favorite model-drawing
tool. It does not matter which one.

 2. Analyze the model to determine the translation characteristics.

 3. Using the drawing tool artifacts, encode the structural model elements, such as
classes and state models, into a text file by using the pycca DSL.

 4. Translate the actions into C code that is also placed directly into the pycca file.

 5. Generate a code file by running pycca.

 6. Compile and link the resulting code.

What pycca lacks in front-end integration, it makes up for in these important characteristics: platform
specificity, transparency, and availability.

Platform Specificity
Every target platform has its engineering challenges. If you have the luxury of commonly available hardware
and software technology to satisfy the needs of your application, you are indeed fortunate and can focus your
attention on model logic. However, experience shows that there are many expectations for the characteristics
of an implementation. For our example target, small memories and slow processors mean that techniques
that would be acceptable on a conventional desktop computer simply do not work in a microcontroller
environment. Unlike many code generation schemes, pycca lets you handcraft your own algorithms to
implement modeled activities. This capability is crucial when you grapple with the idiosyncrasies of legacy
code or other peculiar aspects of your target platform.

Transparency
The correspondence between the model, the pycca source, and the generated C code is clear and direct. You
can understand the role that each part plays in your program. The particulars of what constructs are supported
by a drawing tool or how a drawing tool stores model content does not affect the translation to code.

Availability
Pycca is freely available, and all it takes to get this scheme to run is a little brain power and a C compiler.

A Final Word About UML and Standards
We use the UML notation as a lingua franca for presenting model diagrams in this book. When it comes
to models, however, we are mostly concerned with the stuff underneath the notation: model execution
semantics and platform independence. For this, we turn to xUML, which provides us with exactly what we
need: a strong mathematical foundation and platform-independent rules for running and testing models.

Occasionally, the UML notation is at odds with the xUML semantics. This is largely because UML is
biased in the direction of an object-oriented programming paradigm, whereas xUML is platform neutral.
As we consider the notation the less important factor, when push comes to shove, the execution semantics
will always prevail in our work. After all, it is easier to bend the interpretation of a graphical symbol than to
overcome the surprise of a whole new notation. Like the English language, the consequence of UML being
a lingua franca is that everyone is allowed to give the language its own regional flavor (sometimes to the
annoyance of the native speakers!).

Chapter 1 ■ the Modeling landsCape

10

You may also notice that we don’t claim to adhere to any particular UML standards. We think the best
standards in software are those that codify existing practice or attempt to ensure interoperability. Existing
practice in UML is targeted in many directions, and interoperability is demonstrated only by explicit
testing. With its dizzying selection of diagram types, UML is used for activities ranging from cocktail-napkin
sketches to, as we present here, formalized statements of software requirements. We find it difficult to pin
down existing industry practice. Usually, published standards result in nonstandard implementations.
From C compilers to SQL query languages, standards compliance does not seem to inhibit extending
functionality and limiting interoperability, because implementation necessities always win out in the end.
Noncompliance to a certain standard is just another engineering trade-off that a project team must evaluate.
We are not averse to standards that contribute value to a project team, and if it is important to your project
team to have UML diagrams that adhere to a particular version of the UML standard, then you should
pursue that goal. We still hold to the proposition that it is not the shape of the boxes and arrows that matter;
rather, it is the meaning attributed to them that determines true value.

What’s Next?
Our goal in this book is to teach the key principles of how models are translated into code by using
detailed examples. Model translation is not magic and need not be shrouded in mystery. We do our best
to be grounded firmly in the engineering realities of producing running software. Though we present
completed models and explain what they mean, it is not our intent to teach modeling here. While we
demonstrate how pycca is used to accomplish a translation into code, this is certainly not a pycca manual.
(The documentation for that is available online.) We show you C code and assume that you can read and
understand it. All the details of models that don’t fit here are readily available from www.modelstocode.com.
There you find all the examples completely worked out.

To get you to code as soon as possible, we’re going start by introducing a small example air traffic
controller model in Chapter 2. This model will also serve as a nice introduction (or review, depending on
your background) of xUML basics. We’ll show how the model captures platform-independent application
requirements and how we can walk through a model execution scenario.

We’ll then review our example executing model in Chapter 3 with a tour of the types of design decisions
that must be made to influence the translation process. Pycca will be introduced as a language for specifying
these decisions. The first glimmer of code structures to be shaped will appear in this chapter.

Things get serious in Chapter 4, where we write pycca statements to define our full translation to C.
Throughout, we will emphasize the tight correspondence between the input model, the pycca statements,
and the generated C code.

In Chapter 5, we pop open the hood of the supplied model execution runtime code that will be linked
with your generated code. The focus here is on how state machines are executed and events are queued,
dispatched and, where necessary, delayed. We will show how real-world interactions via interrupts can be
serviced in conjunction with model execution.

Having successfully translated our small model, we’ll expand on how real systems are put together with
a new and more challenging example. The automatic lubrication system for vehicles and machinery will
be introduced, featuring multiple modeled components called domains. Chapter 6 introduces a domain
concerned with user application logic, and Chapter 7 presents a domain called Signal I/O (SIO) that makes
solid contact with physical sensors and actuators.

We’ll pull it all together in Chapter 8, integrating the domains with a concept called bridging. This will
allow us to knit the domains together into a complete functioning system.

In Chapter 9, we’ll take a look at how polymorphic events are defined, signaled, and dispatched in
generalization relationships.

www.allitebooks.com

www.modelstocode.com
http://dx.doi.org/10.1007/978-1-4842-2217-1_2
http://dx.doi.org/10.1007/978-1-4842-2217-1_3
http://dx.doi.org/10.1007/978-1-4842-2217-1_4
http://dx.doi.org/10.1007/978-1-4842-2217-1_5
http://dx.doi.org/10.1007/978-1-4842-2217-1_6
http://dx.doi.org/10.1007/978-1-4842-2217-1_7
http://dx.doi.org/10.1007/978-1-4842-2217-1_8
http://dx.doi.org/10.1007/978-1-4842-2217-1_9
http://www.allitebooks.org

Chapter 1 ■ the Modeling landsCape

11

Performance is addressed in Chapter 10, where we’ll show detailed metrics for the system we have just
translated. The design of the pycca program itself is discussed as well as how to target a completely different
platform.

Finally, in Chapter 11, we’ll step back and put the entire model and translation workflow in perspective.
A reference model of this workflow is presented, and then the pycca workflow we have described is placed in
the reference context.

Now, let’s begin with a simple model…

http://dx.doi.org/10.1007/978-1-4842-2217-1_10
http://dx.doi.org/10.1007/978-1-4842-2217-1_11

13© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_2

CHAPTER 2

A Simple Executable Model

This chapter describes the main elements that make up an executable model for a sample application. The
application is deliberately small so that we can show how to translate the whole model into running code,
with no mysterious gaps. We’ll use the same principles later to build larger, more complex applications.

This chapter also serves to explain our interpretation of UML graphical notation. We use UML graphical
notation to represent the model, but xUML varies considerably in the semantics that apply to that notation.
We want to make sure you understand the meanings we attribute to the graphical symbols.

While reading through this chapter, you may find it helpful to refer to Appendix A, which summarizes
key xUML notation and semantics.

An Air Traffic Controller Application
The air traffic control application manages air traffic controllers (ATCs) in a control center. The system
ensures that all local air traffic is directed and that the ATCs take appropriate breaks. Figure 2-1 shows
their world.

Figure 2-1. An air traffic control center

Chapter 2 ■ a Simple exeCutable model

14

The application must do the following:

•	 Log an air traffic controller (ATC) onto a duty station

•	 Record the zones under the control of a duty station

•	 Verify that a control zone is always under the control of a duty station

•	 Record the handoff of a control zone to another duty station

•	 Log an ATC off a duty station

•	 Prevent an ATC working a shift longer than 2 hours 15 minutes

This description is surely incomplete and insufficient for us to build the application, but it’s a start.
Some would suggest investigating further and tying down details in a requirements document; others, of a
more agile persuasion, would recommend writing executable code to explore the application in the absence
of a complete understanding. We take the best of both worlds and build a detailed executable model that we
can use to investigate the application in more detail. We can use the model for evaluation, we can run it, and
we can test it. And when we’re satisfied, we can translate it directly into code.

We build the model as three interconnecting facets, as shown in Figure 2-2.

Figure 2-2. The three facets of the modeling language

The first facet is a class model, which declares the conceptual entities in the system. We use a limited
subset of UML class diagram notation to represent the model. The class model defines classes, their
attributes, and the associations between classes.

The second facet consists of state models, which describe the behavior of a class over time. Again, we
use a subset of the UML state machine diagram notation to represent the model. There is a state model for
each class. There is a copy of the state model, a state machine, for each class instance. Each state machine

Chapter 2 ■ a Simple exeCutable model

15

and, therefore, each instance, has its own independent notion of its current state. Most of the dynamic
behavior in a model takes place in the context of a state machine.

The third facet is actions. Actions give the details of computation and other algorithmic processing.
Depending on how the actions are represented, they might look like code. However, actions are really the
specification of model-level computations on model-level elements, and that is a better way to think of them.

Each of these three facets represents a single perspective of the system. They fit together into a coherent
whole that represents a solution to the logical problem your application poses. The integrated facets define
a complete, executable domain that can be translated into code. A domain is a coherent subject matter with
its own set of policies and rules. Generally, applications are composed of multiple domains that interact to
satisfy the whole set of application requirements. There is more to be said about domains, and we will take
that up in Chapter 6. For now, it is enough to know that a modeled domain is an independently executable
and testable composition of all three facets.

The order of model construction is significant:

•	 Class model, to capture definitions, data, rules, and constraints

•	 State models, to capture modes, control intervals, and synchronization

•	 Actions, to capture signaling, data manipulation, and computation

Each step lays a foundation and a constraining framework for the next. For example, the fact that a shift
ends at a certain time (contained in the class model) is more fundamental than the exact manner in which the
time is determined (contained in the state models and actions). So we nail down the elements least likely to
change first, with the more volatile elements defined and added later. This approach sets up a stable underlying
structure upon which to build, and decreases the overall refactoring required whenever a change occurs.

It is important to realize that executability depends on all three facets. You must know how you are
computing (actions), when you are computing (state models), and exactly the data on which you are
computing (class model).

Step 1: The Class Model
Figure 2-3 shows a class model for the ATC system. It has been annotated so we can point out our
interpretation of the graphical symbols.

-

Figure 2-3. Annotated class diagram

http://dx.doi.org/10.1007/978-1-4842-2217-1_6

Chapter 2 ■ a Simple exeCutable model

16

❶ Each box represents a class. A class is an abstraction of a set of physical or hypothetical
things having common behavior, common characteristics, and subject to the same rules and
policies—in this example, a Control Zone. Each instance of a class is called an object or an
instance. We will use the terms interchangeably. The second compartment contains a list of
attributes that define the data required for each instance. Each Control Zone is described by a
name, the amount of traffic, and the current controller.

❷ An identifying attribute is indicated by the tag {I}. The set of identifying attributes for a
class comprises its identifier, which constrains the instances so that no two of them may have
the same values for the identifying attributes. This also constrains the instances of a class to
be a set. In this case, no two Control Zones may have the same Name. The identifier is often
useful application data (the name of the Control Zone, for example), but sometimes it is
entirely manufactured. When the model is translated, the identifiers may be transformed or
substituted by something more appropriate to the implementation. As long as the identity
constraint is met, the translation is free to transform the identifiers in any way.

❸ A descriptive attribute has a data type, shown after the name and a colon. We capture the
type in application terms (for example, a whole number of airplanes between 0 and 200).
After we have defined all the actions that operate on the attribute, we can decide how to
represent the type in a program.

❹ A referential attribute is indicated by the tag {R}. This tells us that the attribute refers
to another instance—in this case, the controller directing the Control Zone. By refers, we
mean the value of the attribute in the instance has the same value as an attribute in another
instance. The Control Zone.Controller attribute tells us which controller is monitoring
a particular instance of Control Zone. However, the rules of the domain insist that the
controller must be on duty. So, the value of the Control Zone.Controller referential attribute
is constrained to match the value of an instance’s On Duty Controller.ID. At implementation
time, this may be implemented in many ways, such as a foreign-key constraint in a database
or simply as a check on a pointer value.

❺ This line between the two boxes, labeled R2, is an association relationship. It represents
the relationship that exists between On Duty Controller and Control Zone entities in the real
world. Each association has a unique number—in this case, 2. By convention, we label the
graphic with an R, followed by its number; for example, R2. The unique number is required
because more than one association may exist between the same two classes (for example, a
person may both drive one car and own other cars).

❻ These are association phrases. These verb phrases are textual annotations that tell us
important semantic information about the relationship and provide a mnemonic for how to
describe the real-world association. We can say that an On Duty Controller is directing traffic
within a Control Zone. Similarly, there is a passive-voiced version of the relationship stating that
a Control Zone has traffic directed by an On Duty Controller. The phrasing is constructed to read
in both directions as a “subject—verb phrase—object” sentence with the verb phrase for a given
direction being placed on the diagram nearer to the class that serves in the object role.

You may be more familiar with the UML style of using role names. We find, from extensive
practice, that the verb phrase style is almost always more precise and expressive. Also, it is
much easier to just say, “is directing traffic within,” than to contrive a role for a Control Zone.
We also find that it is much easier to establish the correct multiplicity and conditionality
by considering a verb phrase. In fact, the practice of carefully naming both sides of each
association with precise verb phrases frequently exposes contradictions, ambiguities, and
incompleteness in the source requirements.

Chapter 2 ■ a Simple exeCutable model

17

❼ We always further constrain an association by defining its multiplicity and conditionality
for each side. The multiplicity specifies whether more than one instance may be involved in
the association. The conditionality specifies whether an instance is required to participate in
the association. The two concepts are combined into one graphical symbol, so, for example,
“0..*” for R2 on the Control Zone side says that an On Duty Controller is directing traffic
in zero or more Control Zones. The purpose of the multiplicity and conditionality of an
association is to constrain the membership of the set of instances of a class.

❽ This indicates a generalization relationship. The arrow points to the superclass, which is a
generalization of all of its subclasses. In this example, an Air Traffic Controller can be either
an Off Duty Controller or an On Duty Controller, and not both. A specific controller (Ianto,
for example) will be both an Air Traffic Controller and an On Duty Controller. He is described
then by attributes ID, Name, Rating, a Time logged in, and the Duty Station he currently
controls. Our xUML interpretation of generalization is much more restrictive than that of
conventional UML. We consider a generalization as a set partition and that the superclass
instances are a disjoint union of all the subclass instances. UML would label this as {disjoint,
complete}. Because we have only a single specific interpretation, we omit the annotation
from here on. Further, we do not imply any notion of inheritance on the generalization.
We treat the superclass and subclass instances separately. We interpret generalization
relationships as meaning there is an unconditional, singular association between a
subclass instance and a superclass instance, and an unconditional, singular association
between a superclass instance and a subclass instance from among all the subclasses of the
generalization.

❾ This isn’t done often, but it is perfectly legal for a class not to be connected via any
association. In this case, there is only one instance of Shift Specification that defines a couple
of durations applicable to all Air Traffic Controllers. Because there is only one, it is easily
selected without requiring any relationship traversal. (This would change if different groups
of Air Traffic Controllers were subject to different break periods.)

There is a good deal more to be said about class models, and whole books have been written about
them, such as Executable UML: A Foundation for Model-Driven Architecture by Stephen Mellor and Marc
Balcer (Addison-Wesley Professional, 2002) and Model Driven Architecture with Executable UML by Chris
Raistrick et al. (Cambridge University Press, 2004). Moreover, there is a good deal more to be said about
how to go about constructing class models, and whole books have been written about that too. For example,
Executable UML: How to Build Class Models by Leon Starr (Prentice Hall, 2001). We recommend that you
read them, because a complete model must be constructed before translation, and translating a poor model
yields an equally poor implementation.

Interpretation
The class model says a great deal about the application with just a few, well-defined elements. Class models
provide a precise and unambiguous vocabulary with which to explain and discuss a problem. When we talk
of a Control Zone, we mean the exact Control Zone declared on the model, as characterized by its attributes,
and nothing else. It is Humpty Dumpty speak1 that enforces the precision necessary for a meaningful
discussion of problem logic.

1“When I use a word”, Humpty Dumpty said in rather a scornful tone, “it means just what I choose it to mean—neither
more nor less.” “The question is,” said Alice, “whether you can make words mean so many different things.” “The
question is,” said Humpty Dumpty, “which is to be master—that’s all.” —Lewis Carroll

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Chris+Raistrick&search-alias=books&field-author=Chris+Raistrick&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Chris+Raistrick&search-alias=books&field-author=Chris+Raistrick&sort=relevancerank

Chapter 2 ■ a Simple exeCutable model

18

For example, an On Duty Controller requires an ID, a time logged in, and a Duty Station to be
working at, whereas an Off Duty Controller must have an ID and a date the last shift ended. The
declaration of On and Off Duty Controllers allows us to differentiate between them, preventing an Off
Duty Controller from being logged in, and requiring an Off Duty Controller to have a break. Obviously.
But it would not have been obvious had we just plopped down an ATC with no subclasses. Such a model
would have allowed an Off Duty Controller to direct traffic within Control Zones, even though, in the real
world, this is prohibited.

The placement of attributes constrains our understanding of the meaning of a class, because each of
its attributes must apply uniformly to all instances of that class. For example, the attribute Duty Station.
Capacity places a maximum number of aircraft on each Duty Station, whereas an attribute Control Zone.
Capacity would place the maximum on the number of aircraft controlled by the Control Zone, thus limiting
the sum of the aircraft in each Control Zone, rather than all of them. A detail, certainly. But code is detailed,
and the code for those two interpretations is quite different.

We also need to be certain we understand the precise meaning of each attribute. For example, what
exactly is the meaning of Control Zone.Traffic? Is it the current number of aircraft in the zone? A maximum?
Something altogether different? We must tack these down before we generate code, or the code we generate
will be wrong. To capture this information, we must also write descriptions of each class, each attribute, and
each association.

Associations impose constraints that hold throughout the operation of the system. For example, the
multiplicity “0..*” on the Control Zone side of R2 tells us that an On Duty Controller logs in, and then takes
over Control Zones, rather than being implicitly logged in after they take over the first Control Zone. It also
means controllers must hand over their Control Zones before they log out. The multiplicity constrains the
possible behavior of the associated things, which ties down their meanings more precisely.

These statements, the definitions of the classes, attribute placement, and the constraints imposed by
multiplicity must be verified against the real world. If a controller can be considered on duty only when
controlling at least one Control Zone, the model is wrong and it should be changed. Is it? We have to find
out. We have to question and evaluate the implications of each element on the model systematically. The
attribute Off Duty Controller.Last shift ended, for example, enforces adequate break time. What break time?
That wasn’t in the preceding list of requirements! (It should have been: a minimum break time of 15 minutes
is required.) And so on.

These rules apply when the system is in operation, not during initialization. When the system comes
into existence, there will be no Duty Stations, controllers, nor zones, but it is useful to think of some classes
as having preexisting instances. Controllers come and go, but Duty Stations can be considered to exist before
the system comes into operation. Table 2-1 shows the instances of Duty Station that exist when the system
starts running.

Table 2-1. Duty Station Instances

Number Location Capacity

DS1 Front 20

DS3 Center 30

DS2 Front 45

Chapter 2 ■ a Simple exeCutable model

19

Similarly, Table 2-2 shows the preexisting instances of Control Zone.

Table 2-2. Control Zone Instances

Name Traffic Controller

SJC18C 30 ATC53

SFO37B 25 ATC53

OAK21C 15 ATC67

Here, we have represented the initial instance population of the Duty Station as a table, though, as
usual, the implementation may be entirely different. For example, references to the Controller in the Control
Zone table might be implemented by programming language constructs rather than the value comparison
implied by a table.

Step 2: State Models
The class model expresses behavioral constraints, but it does not define the specific behavior over time.
Each instance of a class is subject to the same rules and constraints, behaving the same way over time. An Air
Traffic Controller object will be off duty initially, log in at some point, become on duty for a period of time,
and eventually log out again and return to being off duty. This life cycle common to all ATCs is captured with
a state model.

A state model is defined on a class, and all instances of that class exhibit the same behavior. At any
given time, each instance will be in its own state, with other instances in possibly different states. This
is why we have distinguished between a state model and a state machine. A state model is the pattern of
states and events associated with a class and describes the behavior of all the instances of that class. A
state machine describes the behavior of a single instance that is governed by that instance’s value of its
current state.

Although we generally construct a state model for each class, we can omit the state model for a class
that has no interesting behavior. Classes that simply come into existence and do not behave differently over
time do not need a state model. In a generalization relationship, we have choices as to whether the state
model is associated with the superclass or the subclasses. A complete set of rules and heuristics for their use
can be found in Executable UML: A Foundation for Model-Driven Architecture.

Figure 2-4 shows the state model for the ATC. It also has been annotated so we can define our
interpretation of the graphical symbols.

Chapter 2 ■ a Simple exeCutable model

20

❶ The rounded rectangular boxes are states. For readers familiar with state models from
electrical engineering and math texts, in those contexts individual states are usually
represented as circles. The rounded rectangles notation is more convenient because we
like to write inside the boxes. The convention of using all capital letters for some state
names indicates that an instance remains in that state until an event is delivered from a
class instance other than itself or one that has been requested for a future time. By contrast,
an instance in a mixed case named state will exit on a transition as soon as the activity is
completed. This is only a notation convention that we have found useful and is not part of the
execution rules for a state model.

❷ The directed arrows represent transitions. An ATC who is Verifying Adequate Break may
transition to either the Off Duty or Logging In state.

❸ Each transition is caused by an event. If the break is adequate, the ATC will log in to
a station, but if not, that event triggers the transition back to the Off Duty state. Strictly
speaking, a distinction can be made between an event specification, which defines an event
name and parameter signature, and the occurrence of a corresponding event at runtime
directed at a particular instance, with values filled in for any parameters. In practice,
however, it is convenient to just say event for either case unless the meaning is not clear from
the context. In UML, a signal is something you send, and an event is something you detect,

Figure 2-4. Air Traffic Controller life cycle

Chapter 2 ■ a Simple exeCutable model

21

with several UML types of events defined. But, in xUML, we need only the type of event that
is triggered by a signal. Consequently, in xUML, there is no distinction between signal and
event, so we use the terms interchangeably.

❹ Each event may carry event parameters. This is data carried along with the event that can
used by the actions associated with the state. When ATCs log in, they log in to a specific duty
station. This is rendered as the event parameter Station.

Interpretation
A state machine behaves as follows:

•	 Each state machine is in exactly one state at a time.

•	 When an event occurs, a transition is triggered and the state machine moves to a new
state. The new state may be the same as its previous state, but it is considered to have
transitioned even if it arrives back at the same place.

•	 When entering a state, the state machine executes an activity comprising a particular
number of actions (described in the next section).

•	 How long that takes is indeterminate, but the state machine does not respond to any
further events until it finishes the activity and reaches the next state.

•	 When the state machine completes the activity of a state, it may respond to further
events.

The last two bullets encapsulate a concept called run to completion: you finish what you’re doing
before you start doing anything else. From an analysis point of view, you need not worry that an activity
might be interrupted. For example, a state activity can manipulate the data in the class model without being
concerned about transient inconsistencies in the activity’s processing. An activity can update longitude and
latitude, for example, without having to worry about the data being misread halfway through the update.
Run to completion ensures consistency of processing and simplifies the task of building models.

Beyond data consistency, this principle is critical to overall synchronization. To appreciate the
importance of run to completion, consider what might happen if it were not true. Assume a hypothetical
scenario in which a state activity generates a signal, and the dispatch of the corresponding event occurs
as part of the signaling operation. The event dispatch might cause another state activity to execute, which
in turn could signal back to the original sender. Again, if that event dispatch is executed synchronously to
the signal generation, we would execute a new state activity in the instance before the original activity that
generated the first signal completes. Such a situation might cause the underlying attribute values to differ,
depending on whether they were accessed before or after signaling.

Events are neither saved nor lost; they are simply unavailable until the state machine settles in the next
state and finishes its activity. Nor do we specify the mechanism whereby events are signaled or delivered.
It is necessary only to presume that there is a pervasive, underlying means to execute the state machine
event dispatch rules. The implementation of these rules can be accomplished in many ways, such as
queuing an event until the state machine is able to respond. Later, we show exactly how this happens for our
target execution environment. A summary of state, event, and activity synchronization rules is available in
Appendix A.

There are two fundamental formulations of state models: in one, actions are associated with entering
a state (Moore type model); and in the other, actions are associated with a transition (Mealy type model).
Much ink, hot air, and electrons have been burned up in discussions of which formulation is better. In fact,
a Mealy state model is easily converted into a Moore formulation, and vice versa, so there isn’t anything that
you can model with one style that cannot be accommodated by the other.

Chapter 2 ■ a Simple exeCutable model

22

In xUML, we use the Moore formulation, which means that an activity is executed when a state machine
enters a state. In UML, these are called entry activities, and these are the only type of UML activities we need.
Again, because we have only one interpretation of activities, we omit the UML entry / reserved word. xUML
uses the Moore formulation because it yields a more regular state table that is essential for both translation
and verifying event-state coverage. Moore state models associate activities with states, and this is convenient
both for model specification and translation.

The dynamic behavior of a collection of state machines is as follows:

•	 Each state machine is considered to be executing concurrently with respect to all
the others. (Toshiko may be going off duty, after handing off all her Control Zones to
Gwen, while Ianto is simultaneously logging in to Duty Station S3.)

•	 A state machine can access data synchronously from other objects. (Gwen can look
at Ianto’s last break time, irrespective of what Ianto is actually up to.)

•	 A state machine may send a signal to another state machine to cause it to change
state.

•	 A state machine may respond to events sent as signals from other state machines, the
outside world, or a signal requested some time in the past.

In this formulation, each object executes concurrently unless it is explicitly sequenced or synchronized
with other objects. This requires the modeler to think through synchronization early, before committing
to threads, tasks, processors, and so on. It also permits the implementation to be made more concurrent,
because the models do not impose unnecessary or arbitrary sequencing.

Step 3: Actions
At some point, the rubber must meet the road; we must actually compute something. Each activity
comprises a certain number of actions that must complete execution before the activity is completed.

Actions are expressed using an action language. There are many possible action languages; they have
(almost) the same underlying building blocks. They must all, for example, provide a means to traverse
associations, select and access instance data, communicate between objects, invoke external services and
libraries, and perform computations on selected model data.

Our action language is designed to be easy to write, with a minimum of language elements, while
remaining readable, which is a key purpose of modeling in the first place. A summary is provided in
Appendix B. We discuss the pros and cons of this language later in this chapter. For now, let’s look at how it is
used in our ATC example. Figure 2-5 shows the state model again, this time with actions filled in. Again, we
have included annotation to explain our interpretation.

Chapter 2 ■ a Simple exeCutable model

23

Figure 2-5. Air Traffic Controller actions

Chapter 2 ■ a Simple exeCutable model

24

❶ .= is an assignment. In this example, my station is an instance reference variable, valid
only within the activity where it is initialized. The single . in the .= operator limits the
selection to at most one instance.

❷ The <class>(<attribute>:<value> ...) syntax uses the criteria in the parentheses to
find matching objects. Because an identifier attribute is used in this example, one object, at
most, will be found. Hence, Duty Station(ID:in.Station) returns a reference to the Duty
Station object that matches the Station number that was passed in.

❸ The -> symbol specifies the immediate signaling of an event directed toward a set of
instances, typically one. In this case, the Air Traffic Controller object sends the Logged in
signal to itself so that it is not permanently stuck in the Logging In state. The me keyword
serves as a reference to the local object (self). Note that although the signal is immediately
sent, the event will not be processed until the entire activity associated with the Logging In
state has completed.

❹ In this case, the target of the signal is the related Duty Station object.

❺ The migrate action changes the subclass of an object. Formally, this involves dissolving
the generalization from the subclass instance, creating the new subclass, and reforming the
relationship to the superclass. In practice, implementations find ways to store subclasses so
that the formality is met efficiently (for example, using a union to store the subclass would
mean that we could reuse existing memory space rather than creating a new subclass object).

❻ To refer to data arriving with an event, preface it with the in keyword. In this example, in.
Station refers to the station number passed in with the event.

❼ The & and !& link/unlink operators create and delete an instance of the association. In
this example, & /R3/my station relates itself to the station referred to in my station across
R3. The / is the hop operator, which specifies a hop across a relationship. When it is not
preceded by any explicit instance, navigation is assumed to start with the local instance. Note
that linking/unlinking is a conceptual operation for the modeler. There are no "links" as such
in xUML. What’s really going on is that the link operator is setting the local instance’s Station
attribute to the value of my station.ID. We could just as easily have written Station = Duty
Station(Number:in.Station).Number, but such a statement risks overlooking the concept of
an association being instantiated.

❽ There is no need to explicitly unlink the Duty Station, because an Off Duty Controller has
no Station referential attribute and the On Duty Controller instance has been deleted.

Time and Other Details
Figure 2-6 shows the Duty Station state model and illustrates how to manage time.

Chapter 2 ■ a Simple exeCutable model

25

There are a couple of actions to note here:

❶ In this example, the Shift Specification singleton class holds a single instance with a delay
value. The extra step of first assigning the singleton instance to an instance variable is instead
folded into a single statement.

❷ By default, a signal is immediately sent, but a delay may be specified. The delayed signal
serves as a time-out, so it is canceled if the Duty Station logs out within the maximum on-
duty duration.

❸ UI refers not to a class, but to an external entity. An external entity is a proxy for something
outside the domain boundary. In this case, the ATC domain assumes that there is a user
interface (UI) that can post the warning message.

Discussion
There are many good ways to specify algorithmic computation. Figure 2-7 shows a data-flow representation
of the Logging In activity.

Figure 2-6. Duty Station life cycle

Chapter 2 ■ a Simple exeCutable model

26

Each oval in the diagram represents an action. An action may execute when all of its inputs become
available. Data from sourceless arrows and class data stores (parallel lines) are available upon state entry.
Dashed arrows provide no data, but pass a control token to signal completion of the source action. The
Migrate, Logged In Signal, and Select actions can execute immediately upon state entry. The Write and Link
actions must wait until Migrate is finished. Finally, the In Use Signal action may execute.

Data-flow notation specifies sequencing only where it is essential to the problem space. It therefore
highlights opportunities for concurrent processing in the implementation. On the downside, data-flow
diagrams can be difficult to draw and edit, and they may make your brain hurt as you try to comprehend
sequencing.

Text-based action languages are much easier and more familiar to read, write, and edit. You can rely on
the familiarity and power of your favorite text editor to get the job done. Some textual action languages make
no attempt to eliminate arbitrary sequencing. Others mimic data-flow concurrency by using text symbols
rather than graphical symbols. In this book, we use Scrall as a pseudo-action language, as it is as easy to edit
as text and can be mapped to a data-flow representation for downstream translation. Its main elements are
summarized in Appendix B.

How much of the inherent concurrency of a state activity is realized as parallel execution depends
on the translation mechanism and the target platform. We are targeting a platform that has only a single
processor core, so no real parallel execution is possible. A more capable target platform allows the
translation mechanism to arrange how the concurrency in the model is realized as parallel execution.

Why not just write the actions in C directly? The whole point of this type of modeling is to capture the
logic of the problem in an implementation-independent fashion. We want to specify actions in terms of
non-C concepts such as object state machine communication, data access via compound relationships,
and instance set manipulation. By keeping all model facets, class, state, and actions at the same level of

Figure 2-7. Data flow diagramming an activity

Chapter 2 ■ a Simple exeCutable model

27

abstraction, we have a single consistent set of rules and increase the opportunities during translation to
choose a wider variety of efficient implementations. This also makes the modeling easier by concentrating
on the logic of the processing without having to consider all the details of programming language syntax and
semantics.

Executing the Model
Now that all three facets of our example application are modeled, we can execute them as an integrated unit
to verify correct behavior. This can (and should) be done prior to writing or generating any code. A complete
description of the execution rules can be found in the Executable UML books mentioned earlier in this
chapter. They are also summarized in Appendix A. Here, we just want to give you a feel for how the models
can be executed by walking through a simple scenario.

For this scenario, we will attempt to activate an Off Duty Controller by logging in to an available Duty
Station. Assume that ATC53 is in the Off Duty state and that the Duty Station to be selected, DS3, is waiting
in the Available state. A Ready for Duty(DS3) event will be addressed to ATC53 to kick things off. The value
DS3 is passed as the desired Duty Station number. The choice of Duty Station happens outside our system,
and our models are simply told that ATC53 is attempting to use DS3. Our models must, however, ensure that
certain conditions are fulfilled before allowing this to happen.

Upon receipt of the event, ATC53 makes a transition to arrive in the Verifying Adequate Break state and
executes the activity upon entry into the state. The Verifying Adequate Break activity checks to see whether a
sufficiently long break has been taken. Assuming it has, ATC53 signals a Log in(DS3) event to itself. Having
completed the activity, ATC53 then receives that same Log in event, matches it to an outgoing transition, and
proceeds to the Logging In state.

ATC53 executes the Logging In activity that results in its migration from off to on duty (delete off-duty
subclass instance and create on-duty subclass instance referring to the same superclass instance), linking of
the new ATC53 on-duty subclass instance to DS3, and logging the current time and the signaling, this time of
two events: ATC53 signals a Logged in event to itself and sends an In use event to DS3. The signaling occurs
in no particular order, as would be obvious only from the DFD.

Now we have two pending events, each of which will be consumed, again, in no required order. When
the Logged in event is processed by ATC53, it transitions to the On Duty state. When DS3 consumes the In
Use event, it transitions to the In Use state and addresses a Max shift exceeded event to itself, delayed by
the Max shift duration as indicated in the singleton Shift Specification instance. In essence, a time-out is
established so that if the On Duty ATC does not take a break, the delayed event will fire and trigger a warning
in the Max Shift Exceeded state.

At this point, the scenario is complete. ATC53 has successfully logged in at Duty Station DS3. Notice that
the state models and actions specify behavior for nonspecific instances that are interpreted during runtime
by individual instances consuming events and traversing from one state to the next.

Our scenario conveniently sidesteps the possibility of an instance consuming an event in a given state
for which no transition is specified. This situation is resolved through the construction of a state table, which
is required for each state model. A state table shows how an instance reacts if an unexpected event arrives,
or if an expected event arrives either when the instance is ready for the event or when it is not ready for the
event. Chapter 3 covers state tables in detail.

Standard Action Languages
We distinguished between elaboration and translation approaches in Chapter 1. When the UML came into
existence, elaboration was king—no one saw the need for an action language. But a few people persevered,
and some years later, UML finally has an action language, the Action Language for Foundational UML, or Alf.
The specification can be found on the Object Management Group website (www.omg.org).

http://dx.doi.org/10.1007/978-1-4842-2217-1_3
http://dx.doi.org/10.1007/978-1-4842-2217-1_1
http://www.omg.org

Chapter 2 ■ a Simple exeCutable model

28

The specification is some 439 pages long—longer than this book. We have no wish to teach you the
details of that language, or any other language for that matter. Rather, we wish to use the concepts of an
action language to show how translation works. Accordingly, we have used an invented informal language
that we hope can be understood intuitively with minimum effort. We describe this language in Appendix B.

Using an informal language for execution is clearly peculiar, at best. But the alternative is to teach you
another language, which is not the purpose of this book. Moreover, we wish to expose the steps required to
get from models to code. Consequently, we formalize the actions in later chapters. It may look as if we are
writing the code twice. We’re not. We’re simply bypassing the details of a formal language.

Summary
We’ve introduced a simple application as a fuzzy and incomplete set of requirements and cast it into a
concrete and executable set of models. The models are executable with a lean set of execution rules, and
those rules make it possible to step through and test application scenarios in much the same way you would
step through running code. The execution rules and semantics are organized into three facets: a single class
model, a state model for each class, and interesting behavior and actions within each state corresponding to
modeled data, modeled control, and modeled computation, respectively. The models are constructed in this
sequence to minimize refactoring.

What we have not done is include in this model any implementation concepts. We have coordinated
state machines by sending signals, but we have not said how those signals are sent; we’ve said we have
associations between instances of classes, but we have not said how they are implemented either. As we said
in Chapter 1, exclusion is neither the removal of that detail, nor the deprecation of it. The implementation is
critically important; it is the subject of this book.

From here on in, our focus is on translation. We will map these model elements, along with the
execution behavior defined by the modeling language, into a platform-specific bundle of C code that will
run on a computing device supported by our target platform. When we focus on code production, we
will not question the application requirements or try to expand or modify the application scope. Instead,
we’ll assume that the modelers knew what they were doing, code the models as they were given to us, get
it running in a testable environment, and move on to the next application. If the models don’t cover the
requirements, neither will the code!

http://dx.doi.org/10.1007/978-1-4842-2217-1_1

29© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_3

CHAPTER 3

Making Translation Decisions

In the previous chapter, you saw how vague statements can be transformed into a concrete and
unambiguous specification of the problem logic realized as a set of executable models. The models contain
problem-oriented concepts that you can discuss with your customers and users to make informed decisions
about the relevant problem logic. Although completed models define exactly what the implementation
should do, they do not say just how to do it.

Now we must decide how to translate the various model elements into code:

•	 How are classes and instances represented in the program?

•	 How will the identifier attributes be realized in memory?

•	 How will instances be accessed?

•	 How will relationships be navigated?

•	 How will events be signaled and dispatched?

And so on. We must ensure that every model element is translated into code to realize all of the required
functionality. And foremost, we must end up with a functioning and efficient implementation. When models
are being created, we are focused on analyzing the requirements and capturing the logic of the problem in
executable modeling constructs. When models are translated, we must analyze the models themselves to
make decisions about the appropriate code constructs to implement the model logic.

This chapter serves as an introduction and overview of the key decisions that must be made when
translating the ATC model. In the subsequent chapter, we get our hands dirty and start building a pycca
model script to specify those decisions. For now, though, we just take an inventory of what needs to be done.

The types of decisions discussed here are specific to both our target platform and to the way pycca
accomplishes a model translation. This does not imply that the process of translation is unique to our
platform and methods. Different platforms necessarily require varied strategies for the implementation and,
consequently, a distinct mapping from model elements to implementation. Nonetheless, we continue to
focus on pycca and our particular target platform to illustrate how our example becomes a running program.

Reviewing the Target Platform
The target platform sets boundaries for a practical implementation. Our target of small, embedded
microcomputers, for example, leads us to hold all of our application data in directly addressable memory.
Because we intend to use C as an implementation language, and C exposes variable addresses, we have
decided to use the memory address of an instance as an implementation-based identifier. Where possible,
we replace each identifier from the model with this implementation-defined identifier. For example, Duty
Station.Number is replaced with its instance’s memory address. Using a pointer-based identifier then
allows us to use pointer values to navigate relationships, resulting in many implementation efficiencies.

Chapter 3 ■ Making translation DeCisions

30

Our platform uses C as the implementation language, but the same principles can be applied to any other
statically typed language such as Java. In that event, a Java-specific translator with compatible runtime
libraries (pyjca, let’s say) would be required. But that’s a different book (bonus points if you get the acronym
pajama to work).

Figure 3-1 illustrates our overall process leading from models to code, using pycca. The model is
transformed in two steps.

The first step is to encode all of the model elements, from all three facets, as a series of pycca
language statements in a single file. We call this the model script. This script captures the structural
aspects of the models as well as the processing they perform. This script incorporates, along with the
model elements, numerous design decisions. You also include C code in the script at a later point. (pycca
is an acronym for “pass your C code along,” and that’s the C you’ll be passing along.) The set of available
pycca statements defines a domain-specific language (DSL) for an xUML model implementation. We’ll
introduce the language as the example is worked out and guide you through the key concepts. If you wish
to read all the details about pycca, they are readily available in online materials. The DSL is summarized
in Appendix C.

When your model script is complete, you feed it to the pycca program, which transforms any pycca
statements along with included C code for the activities into a specially organized source and header file
pair. The C code for the activities contains supplied preprocessor macro invocations to interface to the
runtime code. From here, the C preprocessor, compiler, and linker do all the work: the pycca C macros are
expanded and pycca-supplied runtime libraries are linked to yield a runnable program.

When modeling, we consider the three facets of data, behavior, and processing, in that order. When
translating, we follow the same order. Translation decisions for implementing the data facet of the
model impact the other facets, so it is important to pin down the application data structures first. In the
following sections, we show the types of implementation decisions that must be made to translate each
facet of the model.

Figure 3-1. Overview of pycca translation

Chapter 3 ■ Making translation DeCisions

31

Working with the Class Model
We first script the entire structure of the class model. This consists of the classes, attributes, data types, and
all relationships. We also populate the structure by specifying an initial instance population. Figure 3-2
shows the pycca script elements that are derived from the class model.

A class is made up of attributes, and each attribute is constrained by a data type. Data types, then, are
essential building blocks that must be defined before we can proceed with the rest of the class model.

Data Types
Figure 3-3 shows the transformation of model data types to implementation types.

A model data type defines the set of values that may be assigned to a class attribute. Aircraft Quantity is
a model-level concept that represents an actual quantity of aircraft. This means that it is a positive integer,
because it is nonsensical to talk about negative quantities of aircraft. An implementation data type defines
a set of allowable values for a programming language variable. The C language data type corresponding to
Aircraft Quantity would probably be unsigned. Be sure to choose an implementation data type that supports
all operations required by the modeled data type.

C typedef statements bind each model data type with its associated implementation data type. These
typedef statements can then be included at the top of the generated code file.

Figure 3-2. Defining the class model as a script

-

Figure 3-3. Data type decisions

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Making translation DeCisions

32

Classes and Attributes
Each modeled class is specified with a pycca class statement. Just as a model data type is different from
an implementation data type, a class in the model is different from its corresponding implementation
class. Because pycca converts each class statement into a C struct, there are no classes in the generated
code at all.

Figure 3-4 shows the transformation from modeled class to C structure.

The class statement encloses a series of attribute and reference statements. The descriptive,
identifier, and referential roles of each attribute require different implementations.

A descriptive attribute, such as Control Zone.Traffic, has real-world meaning. Its implementation data
type defines the set of values consistent with this real-world meaning. An identifying attribute, such as
Control Zone.Name, which is used in a descriptive manner, is handled the same way.

By contrast, an identifier attribute with no real-world meaning, such as Duty Station.Number, is simply
deleted. Pycca creates an implementation-defined identifier for each class instance. If a model identifier is
not used for any descriptive purposes, we can substitute the generated identifier for it. This technique is so
commonly used in implementation languages that we tend to overlook the fact that we are substituting one
identifier for another.

Associations
A referential attribute, such as Control Zone.Controller, is handled in the context of associations. The specification
of associations and referential attributes requires more consideration because a significant gap exists between
the “this class is related to that class” model-level abstraction, and the implementation collection and pointer
traversal mechanisms. The model purposely leaves many choices up to the implementer. We could, for example,
choose to use a linked list or array traversal mechanism for a particular association. Or a self-balancing tree. To
decide, we need to examine the runtime characteristics of each association, and then encode that decision in a
pycca statement and let the pycca processor generate the relevant C code.

When an instance must refer to a single related object, the simplest way is to map a referential attribute
to a pointer. Because referential attributes refer to identifying attributes of the associated class, and because
we are using the address of the instance as an implementation-defined identifier, storing a pointer value in
the place of a referential attribute realizes the model-level association.

This simple approach works well when following the pointer, but would be cumbersome in the other
direction, because this would mean we’d have to search the objects of a class looking for matching pointer
values. For the price of the memory occupied by a pointer, storing a pointer in both classes makes following
in both directions efficient. On the other hand, the single-sided reference approach would be sufficient and
efficient if there were no accesses from the “one side” to the “other side.”

Figure 3-4. Translating model classes to C structures

Chapter 3 ■ Making translation DeCisions

33

So, we approach the implementation of an association by examining the needs of each side and
considering each model association as two independent access directions. Figure 3-5 shows how the
association, R2, is decomposed into one direction referring from On Duty Controller to Control Zone, and
one referring in the opposite direction from Control Zone to On Duty Controller.

Then we decide on an implementation for each direction of the association based on direction of
access, multiplicity, and changeability:

•	 Access: Is the association accessed from one side only? Or from both sides? Storage
for a reference is required only for the side that is accessed. What is the frequency of
that access?

•	 Multiplicity: How many instances participate in the association from each side? A
multiplicity of one is implemented as a single pointer value. If the multiplicity is
greater than one, multiple pointer values must be stored, and pycca gives us several
common arrangements for that storage.

•	 Changeability: Are the participating instances static, or do they change over time? If
the instances participating in the association change, we will store the pointer values
in data structures that are efficient to update.

When we translate the model, we decide on an implementation for each side of the association. So
for the preceding example, we may choose to implement the association from the Control Zone to the On
Duty Controller as a pointer, while a linked list would be preferable in the direction of On Duty Controller to
Control Zone. We then encode those decisions in text by using the proper reference statement types. There
are many more choices, but the main point is that you must decide on an implementation while encoding
the model, and that decision should be based on the execution characteristics of the model.

Figure 3-5. Decomposing a model association

Chapter 3 ■ Making translation DeCisions

34

Generalizations
In our interpretation of a generalization, each instance of a subclass refers to exactly one instance of the
superclass, and each superclass instance refers to exactly one instance of a subclass from among all the
subclasses of the generalization. This implies that when we traverse a relationship from the superclass
instance to a particular subclass, we either find a single related instance, or we come up empty because
the superclass instance is not actually related to an instance of that particular subclass. To implement the
traversal from a superclass to a subclass, pycca uses a subtype statement as a part of the superclass class
definition. The result is that pycca adds an extra member to the generated C structure that encodes the
related subclass. This lets us navigate the generalization from the superclass to a subclass and know whether
we have found a related instance.

Storage for the subclass objects can be implemented in one of two ways. Figure 3-6 shows the two
alternatives.

One approach is to treat each sub/superclass relationship as a bidirectional association. In this
formulation, each On and Off Duty Controller instance would require a reference to its corresponding
Air Traffic Controller instance. The subclass statement in Air Traffic Controller would be declared as a
reference subclass, and a pointer to the subclass would be generated as another ATC structure member.

The other approach is to store the related subclass as a member of a C union. In this formulation,
the subclass statement in the ATC superclass would be declared to be of the union type. Pycca generates
the structure of the superclass to have a C union member containing the structures of the subclasses of
the generalization. Space for the subclass instance is then included as part of the space for the superclass
instance. This technique is quite common in C to implement a form of inheritance, even though inheritance
is not our intent here. The subclass instances no longer need a reference to the superclass, and navigating
the generalization is done via pointer arithmetic rather than pointer indirection.

Both approaches have their tradeoffs. For simple cases, the union formulation is more space-efficient.

Figure 3-6. Generalization implemention alternatives

Chapter 3 ■ Making translation DeCisions

35

Initial Instance Population
The last part of data translation is to specify the initial instance population. These are the instances of a class
that are to be in place when the system starts. It is analogous to specifying the starting state for a state model.
As the system evolves in time, attribute values change from known starting values.

Our strategy is to place the initial instance data directly into memory as variable initializers so that no
code is required to create instances at initialization time. There is usually a small amount of initialization
code that copies data initializers into their proper memory location. This behavior is a guarantee of the
C language, and the code is usually supplied as a compiler library and is run before main is invoked. This
eliminates wasting memory on code that will be executed only once. And we also avoid having to write
tedious sequences of code just to set the values of structure members. Just as important, the initial instance
population gives us insights prior to runtime for generating more-efficient code.

The initial population of the domain was specified as a table in Chapter 2. We can encode the table for
each class, and store the instances of that class as an initialized C array. Descriptive attributes are assigned to
the appropriate structure member in the initializer for the array element as shown:

table Control_Zone
 (Czone_Name Name) (Aircraft_quantity Traffic) R2
@sfo {"SFO37B" {27} -> atc53
@oak {"OAK21C" {18} -> atc67
@sjc {"SJC18C"} {9} -> atc51
end

Because we have generated an implementation-defined identifier (namely, the address of the object
in memory) for each class instance, we need a way to refer to instances to specify the association and
generalization pointer values. We cannot use actual addresses, because they are not known until link time.
So pycca allows you to associate an optional name with the @ symbol on the left and to use that name when
specifying the reference values. Pycca keeps track of where the named instances reside in the allocated
storage array and emits the proper address expressions as initializers. Naming an instance is optional, but if
you don’t name it, you can’t refer to it later.

Pycca also allows you to specify whether a class population is static or dynamic, indicating whether
instances are created or deleted at runtime. A static population is allocated only enough space to hold
the initial instance population. For a dynamic population, the total allocated space holds both the initial
instance population plus the number of additional slots declared for it. All classes have a fixed-size storage
pool allocated to them at compile time. The runtime library manages each pool for dynamic allocation, but
there may never be more class instances than allowed by the size of the storage pool. This means that class
instances are never allocated on the system heap, and there are no calls to malloc by the runtime library.
This is in keeping with the usual design conventions for embedded microcontrollers.

Populations can also be marked as constant. For embedded systems, memory is usually partitioned
into read-only and read/write types. There is usually much more read-only memory than read/write
memory. A constant population is placed in read-only memory, which means that its attributes cannot be
updated and that it cannot have an associated state model. Model classes that contain only specification
data usually can be marked as constant and so save RAM memory.

Describing the State Models
We depicted state models graphically in the previous chapter, because the diagrams make it easier
to visualize and achieve a well-designed solution. But this representation is incomplete for testing,
implementation, and error analysis because a state diagram highlights expected normal behavior. The
diagram does not show how to process an event that occurs and does not trigger a transition. When
implemented, state machines have an annoying tendency to execute those unexpected transitions. Does the
unexpected event require an error condition? Or was the event anticipated, but not warranting a transition?

http://dx.doi.org/10.1007/978-1-4842-2217-1_2

Chapter 3 ■ Making translation DeCisions

36

There are three possible responses when an event is dispatched:

•	 A transition to a new state occurs.

•	 The event is ignored.

•	 It is a logical impossibility for the event to occur in the given state.

The first response, a transition, represents common, expected behavior.
Sometimes the best response to events, like children, is to ignore them. Events may arrive too late or too

early. Consider the response to an Open button pressed after an elevator door is already open. An ignored
event is in the realm of normal behavior and does not constitute an error of any sort. It simply does not merit
a transition, and is signified by an IG (ignore) response.

The third response is quite different. It says that there is no logical way the event could occur given the
current state and is signified by a CH (can’t happen) response. If it does occur, it is deemed a serious error.
When the runtime code encounters a CH transition, it causes a system error. It is important not to interpret
a CH transition as a “shouldn’t happen” or “doesn’t happen very often” situation. A CH transition means
that it logically cannot under any circumstance happen and, if it does, we no longer know how to proceed.
Regardless of how small the probability that an event may occur in a state, it is not a CH transition if the
probability is nonzero.

Figure 3-7 shows the progression from state diagram to its translated code. A state table specifies a
definitive response (one of the three indicated previously) for every event in each state. In the first two cases,
transition and ignore indicate that the response can and should be modeled. But with a CH response, the
modeler indicates that the model is not designed to handle that case.

We now specify each state model state by using a pycca machine statement. Each state and its activity
code is specified by using a state statement. Each state table cell is specified by using a transition
statement. A transition statement records the new state into which an event causes a transition from the
object’s current state.

Figure 3-7. Translating a state model

Chapter 3 ■ Making translation DeCisions

37

class Air_Traffic_Controller
 #
 # attribute and reference statements
 #

 machine
 #
 # state and transition statements
 #
 end
end

States
Each state has an activity associated with it, which we capture as a function. Because the activity is executed
on state entry, all inbound transitions to the state must carry the same event data, which is passed in as
parameters.

Each state and its associated activity, executed upon entry into the state, is represented with a state
statement:

state Verifying_Adequate_Break(Station_number Station_id)
{
 // C code intermixed with C macros that perform common
 // model-level operations such as signal generation and
 // relationship navigation.
}

We cover the activity specification in Chapter 4, but you can see here that the activity in a state is
enclosed within a state statement.

Events, Transitions, and Responses
State transitions specify responses to events by the state model:

transition OFF_DUTY - Ready_for_duty -> Verifying_Adequate_Break

This statement says that, when in the OFF_Duty state, the Ready_for_duty event causes a transition to
the Verifying_Adequate_Break state. There are no pycca statements for events. Their names are taken from
the transition statements.

Executing State Machines
When we translate class models, some aspects of data operations, such as access to an attribute, are directly
supported by corresponding C language constructs. State machines, on the other hand, are not a native C
construct. To execute them, we must provide additional code, also written in C, to enable state machine
behavior such as dispatching signals and calling state activities when transitions are invoked.

The transition statements encode state models statically, and we need runtime code to use the
generated data structures to cause transitions. When a signal is dispatched, the runtime code uses the event
signaled and the current state to determine the new state. Then, by calling a single function, it executes the
logic of the new state. In Chapter 5, we show exactly how the runtime code signals and dispatches events.

http://dx.doi.org/10.1007/978-1-4842-2217-1_4
http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 3 ■ Making translation DeCisions

38

Translating Processing
The last step is to translate the processing expressed by the action language of the model into C. Translation
does not add to the processing logic in any way. We are concerned only with producing the C code that is
logically equivalent to the processing specified by the action language statements. All of the processing is
expressed by action language. When translated into C, a state’s actions are packaged by pycca into a function
that is invoked upon state entry.

Coding from Models
The strategy is to take each line of action language and write the corresponding C. As we analyze the actions,
we’ll find that that the elements fall into a small handful of categories. These are typically model-execution
functions, data-access operations, and standard mathematical expressions and flow-control statements.

An action language statement may invoke an aspect of the model execution architecture. These include
signal generation and relationship traversal. These types of elements may be translated by substitution with
one of the many pycca-provided C macros. These macros hide decisions about data structures and just how
a signal might be implemented.

Data access is provided by the normal C mechanism for access to structure members via a pointer.
To realize this, each state action has a self variable that points to the instance memory. Action code can
find and manipulate data across an association by using macros such as link and unlink, which hide the
association implementation.

State action code must also interface to the runtime event dispatcher to generate events. We provide a
set of helper C preprocessor macros so that we can use the same names for events as used in the state model.
Pycca generates preprocessor symbol definitions to encode the state and event names into numbers. The
naming conventions of that encoding are hidden by a set of preprocessor macros so you can use the names in
the state model definition even though we must ultimately produce something that the C compiler recognizes.

All other actions, such as computation and flow control, are coded in C statements that are passed
directly through to the output code file.

Translating a Model
There is a method at work here, and the order of doing the tasks has been worked out to give the best
results. In the next chapter, we show the translation of the ATC model by using the decision-making process
described in this chapter. We repeat the steps taken here, substituting the specifics of the ATC model.

Summary
We have examined the key translation decisions that must be specified in a pycca model script so that the
appropriate C code can be generated and, in some cases, passed along.

Class models are broken into data type, class, attribute, and relationship definitions. We convert class
definitions into pycca class definitions that end up as C structure declarations. Initial instance populations
are specified in tabular form, to be converted into a set of array initializers.

State models, expressed as tables, are specified as a collection of state and event/response statements.
State models define data structure values, including a state table, used by the runtime event dispatch
mechanisms. Each state activity is converted into a function.

The correspondence between the encoded source and C output is direct and predictable. Pycca
generates the many kinds of arbitrary encodings that are required, such as encoding event names into
integers; it calculates the pointer values for relationship references, and it orders the resulting code in a way
that suits the C compiler. The results are an ordinary C code and header file pair that can be integrated into
the system build.

39© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_4

CHAPTER 4

Translating the Air Traffic
Control Model

We took a tour of the key decisions made during translation of an xUML model in the previous chapter. Now,
we get busy making those decisions for the ATC example introduced in Chapter 2. A pycca model script is
prepared, and we examine the resulting C code. The subject of this chapter is implementation oriented, and
we assume you are familiar with the C language. Space doesn’t permit us to present all of the code here, but
if you are interested in reviewing the entire ATC project, including all of the code, feel free to download it
from www.modelstocode.com.

We translate the three facets of xUML in the order of classes, states, and actions. Translating the
class model specifies the entities on which the code operates. Translating state models determines the
sequencing and synchronization of the code and establishes the structure on which most of the actions are
executed. Translating actions implements the algorithmic processing. And by translating all three model
facets, we get a complete runnable program.

Overview of Pycca Syntax
Pycca reads one or more model source files and produces a single C header and source file pair. The C code
written directly in the model file will be rearranged and mixed in with additional C code generated by pycca.
Pycca has a few syntax conventions:

•	 Comments: A comment begins with the hash character (#) and continues to the end
of the line.

•	 Symbol names: Symbol names follow the syntax of C identifiers. Names must begin
with a letter, followed by an arbitrary number of letters, decimal digits, or underscore
(_) characters. Models may use whitespace in class or attribute names, and these
must be eliminated or replaced during translation because the names will be used
directly as C identifiers.

•	 C code: Anything enclosed in braces ({}) is passed directly on to the C compiler.

•	 Variable declarations: Anything enclosed in parentheses (()) is taken as a
comma-separated list, possibly empty, of C variable declarations.

http://dx.doi.org/10.1007/978-1-4842-2217-1_2
www.modelstocode.com

Chapter 4 ■ translating the air traffiC Control Model

40

Organization of a Pycca File
The largest unit of organization in a pycca file is a domain. The ATC example is centered around a single
application domain, though you may have noticed a few actions that coordinate with external domains. In
Chapter 6, we’ll pursue a multidomain example, but for this pycca file, we’ll we keep to a single domain.

A domain definition is cumulative. If the same domain name is encountered later in the input, any
content in the later definition is simply incorporated into the existing domain. A domain is defined as
follows:

domain atctrl
 # Model statements (data types, classes, etc)
end

domain atctrl
 # Additional atctrl model statements
 # For example, the initial instance population.
 # Domain statements may also be placed in separate files.
end

The model statements that make up the content of a domain will be introduced as needed as we go
about translating the Air Traffic Controller model. For reference, all possible model statements can be
found in the online materials. And you don’t need to worry about the ordering of model statements within
a domain section. Pycca parses all of its input before attempting to generate any output. It orders the
generated output to satisfy the C compiler’s needs.

Pycca assumes the existence of runtime functions that implement data management and the event
processing required by the state models. We discuss the runtime library in Chapter 5. For now, it is
sufficient to know that a small piece of code manages execution by generating signals and dispatching the
corresponding events, causing transitions that invoke state activities. You can use the preprocessor macros
that pycca supplies as a convenient way to interface to the runtime code for such activities.

Translating the Class Model
We first translate those aspects of the model that deal with data. We specify the data types, followed by the
class definitions and, finally, an initial instance population.

Data Types
What follows is the data type implementation for the domain. Data types are grouped in the interface or
implementation categories. The interface category is for those types that must be visible outside the domain
for the purposes of interaction. They are put into a header file that can be included by other code. The
implementation category is for all other data types in a domain. Generally, the majority of data types are
in the implementation category. If it helps, you can think of these two categories as public and private with
respect to a domain.

domain atctrl ❶

 #
 # Other domain components
 #

http://dx.doi.org/10.1007/978-1-4842-2217-1_6
http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 4 ■ translating the air traffiC Control Model

41

 interface prolog { ❷
 typedef char const *Employee_ID ; ❸
 typedef char const *Station_Number ;
 typedef char const *Czone_Name ;
 }

 implementation prolog { ❹
 typedef char const *Name_T ; ❺
 typedef time_t Date_T ;
 typedef unsigned Aircraft_Quantity ;
 typedef unsigned Aircraft_Maximum ;
 typedef unsigned Duration ;
 typedef char const *Experience_Level ;

 #include <assert.h>
 #include <time.h>
 #include <string.h>
 #include "atctrl.h"
 }

 #
 # Other domain components
 #

end

❶ In this pycca source, we show the surrounding domain/end statements. Later in this
chapter we assume all domain component definitions are enclosed in an outer domain
statement and dispense with including the containing statements themselves.

❷ This section defines declarations that are needed as part of the external interface of the
domain. Here we include those typedef statements that describe parameters exchanged with
other domains. For the atctrl domain, there are external calls to report error and warning
conditions (presumably to a user interface domain) that include the value of an employee
identifier. So, we must make the data type for that value available for the interface. Interface
prolog code is placed at the top of the generated C header file. Any additional required
include files or other declarations can be included as part of the interface prolog.

❸ We are careful to declare immutable values as const. For embedded systems, we can
direct the linker to place constants in nonvolatile memory (for example, flash), of which we
usually have much more than RAM. In C, string literals are constant, and we would not want
a piece of code changing a character in an employee’s name.

Chapter 4 ■ translating the air traffiC Control Model

42

❹ This section defines declarations used inside the domain and, therefore, not visible
externally. The implementation prolog text is placed at the top of the generated C header
file. This section can also be used to include declarations for external libraries that might
be used as part of the processing of the domain (for example, standard C libraries or a math
library or a core algorithm from a legacy system).

❺ We have called these types Name_T and Date_T in variance to the model names because of
a limitation in pycca that does not allow attributes and types to have the same name.

Class Definitions
Pycca will translate each class definition in the model file into a C structure definition. In the following
sections, we show the pycca class definitions for some of the model classes of the Air Traffic Controller
model from Chapter 2. Please refer to the model classes in Chapter 2 as you read along.

Duty Station
We start with a simple class, Duty Station. Figure 4-1 shows the correspondence between the class model
graphic and pycca source. In the pycca source, we adhere closely to the names of attributes and relationships
as they are found in the model. Nothing is gained by arbitrarily changing names and mucking up the
correspondence between the model and the code!

Figure 4-1. Specifying the Duty Station class

❶ We have retained the Number identifying attribute because its value is used in an activity.

❷ Duty_Station participates in a simple relationship, R3. The multiplicity of R3 traversing
from Duty_Station to On_Duty_Controller references at most one instance of On_Duty_
Controller (0..1 in UML notation). The reference statement with -> denotes this
multiplicity. A zero in a multiplicity expression expresses conditionality, which means that
there may be no related instances at any given time. This idea is implemented by letting the
R3 member take on a NULL value.

http://dx.doi.org/10.1007/978-1-4842-2217-1_2
http://dx.doi.org/10.1007/978-1-4842-2217-1_2

Chapter 4 ■ translating the air traffiC Control Model

43

Where the model shows attributes as names followed by the data type, we follow C syntax in the model
source file with the data type first, followed by the attribute name. Anything enclosed in parentheses must
follow C variable declaration syntax because it will be passed directly to the C compiler.

Pycca translates each class statement into a C structure definition. Figure 4-2 shows the correspondence
between the model graphic for the Duty Station class and the C structure generated by pycca.

Figure 4-2. C generated for the Duty Station class

❶ Note that the class names are used directly as structure names, so you must choose class
names that are valid C identifiers.

❷ Pycca inserts this member for the runtime to use when managing the data and state
processing of the class. Classes that don’t require those functions of the runtime will not
be given this structure member. The use of this structure member is described in detail in
Chapter 5.

❸ The singular reference statement is converted into a pointer to a structure.

This structure definition has a direct correspondence to the pycca statements. Class attributes become
structure members. Simple relationships are implemented as pointers to objects of the related structure type.

Air Traffic Controller
For the Air Traffic Controller class, we follow the same principles for the attributes as with the Duty Station
class. The additional consideration for this class is the R1 generalization. Figure 4-3 shows the encoding of
the model graphic into pycca statements.

http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 4 ■ translating the air traffiC Control Model

44

❶ This statement declares R1 as a generalization whose subclasses are to be held as a union
member within the Air_Traffic_Controller structure. We chose the union implementation
as this works best in simple cases.

❷ It’s okay that we haven’t defined the subclasses yet. Pycca imposes no particular order on
the definitions.

Similar to the Duty Station class, pycca generates a C structure definition for the Air Traffic Controller class:

struct Air_Traffic_Controller {
 struct mechinstance common_ ;
 Employee_ID ID ;
 Name_T Name ;
 Experience_level Rating ;
 SubtypeCode R1__code ; ❶
 union {
 struct Off_Duty_Controller R1_Off_Duty_Controller ;
 struct On_Duty_Controller R1_On_Duty_Controller ;
 } R1 ;
} ;

❶ The new constructs seen in this declaration are the R1__code and R1 members. The R1__code
member holds a small integer that encodes the union element currently related to the superclass
instance, and pycca supplies preprocessor definitions for the encoded values. The R1 structure
member is a union of all the subclasses that participate in the R1 generalization.

From a model execution point of view, when navigating R1 from the Air Traffic Controller class to one of
its subclasses, we must be able to determine whether the traversal across R1 comes up empty. So, if we have
an instance of Air Traffic Controller and we navigate across R1 to the Off Duty Controller class, it could be the
case that the Air Traffic Controller instance is not currently related to an Off Duty Controller class instance
(that is, it is currently related to an instance of On Duty Controller). The navigation operation yields the
empty set, and we must be able to determine that.

Figure 4-3. Specifying a superclass with a union

Chapter 4 ■ translating the air traffiC Control Model

45

From an implementation point of view, we need to know how to interpret the R1 structure member. By
testing the value of R1__code, we can determine which element of the union is currently in use. By placing
the subclasses in the R1 union member, no other storage for the R1 generalization is needed. We can traverse
R1 by appropriate pointer arithmetic. Pycca provides macros to do the heavy lifting and helps prevent
common errors. Don’t be alarmed that pycca uses the keyword subtype in this context.

On Duty Controller
Our last example of data translation is the On Duty Controller class. A key decision for this class is how to
store information for the R2 association. By considering the domain actions, we see that R2 associates one
On Duty Controller instance to many Control Zone instances and that association is dynamic in nature.
Actions will link and unlink instances of On Duty Controller to an arbitrary number of Control Zone
instances. We need a data structure for the relationship storage that supports the multiplicity and dynamics
of R2. Pycca provides a suitable linked list mechanism. That works for R2, but it is often the case, especially
in embedded systems, that associations are static over the running time of the application. So pycca also
provides a means for storing reference values suited to static associations. Figure 4-4 shows how the On Duty
Controller class is specified.

Figure 4-4. Specifying the On Duty Controller class

❶ Because we have chosen to hold the subclasses as a union composed into the superclass,
we have discarded the ID attribute. It is not needed to implement the R1 relationship, and
its value is available from the superclass if we need it. The default value for Time_logged_in
is zero because we are using a POSIX representation of time, and zero is used to indicate an
unknown login time.

❷ The ->>l (lowercase letter l) notation tells pycca to use a linked list to store instance
references for the R2 association in the Control Zone direction. This is one of the link types
mentioned in Chapter 3 for storing instance references to implement associations.

❸ The -> notation tells pycca that storage for R3 will be a single instance reference to a Duty_
Station class.

Pycca generates the following code:

struct On_Duty_Controller {
 Date_T Time_logged_in ;
 rlink_t R2 ; ❶
 struct Duty_Station *R3 ; ❷
} ;

http://dx.doi.org/10.1007/978-1-4842-2217-1_3

Chapter 4 ■ translating the air traffiC Control Model

46

❶ Pycca will provide the necessary data structures and code to deal with the linked list.

❷ The storage for relationship R3 is simply a pointer to the struct Duty_Station. Because the
multiplicity of the R3 relationship from On Duty Controller to Duty Station is one, at no time
should the value of the R3 member be NULL. The R2 member is the head of the linked list onto
which we can link a set of Control_Zones.

The other modeled classes follow a similar pattern, so we won’t reproduce them here. Complete pycca
source for the model, in the form of a literate program, can be found at the website for this book.

Initial Instance Population
After the class model has been fully translated, it requires one more thing before it can be used: an initial
instance population. This is a set of instances that are present when the system is initialized. Pycca can
place an initial population into memory as initialized variables, so no code is required to create instances
during initialization. This is particularly important in embedded systems in which instance populations are
frequently static. For dynamic populations, instances may be created both before and during runtime.

In Chapter 2, example instances in the ATC domain were shown as tables. Pycca supports a tabular
syntax for specifying initial instance populations. (There is also a syntax that is more convenient for
specifying single instances.) The following pycca code specifies the initial instance population for our
example:

table Air_Traffic_Controller
 (Employee_ID ID) (Name_T Name) (Experience_Level Rating) R1
@atc53 {"53"} ❶ {"Toshiko"} {"A"} -> On_Duty_Controller.atc53 ❶
@atc67 {"67"} {"Gwen"} {"B"} -> On_Duty_Controller.atc67
@atc51 {"51"} {"Ianto"} {"C"} -> On_Duty_Controller.atc51
end

table On_Duty_Controller
 R2 R3
@atc53 ->> sfo end -> s2 ❷
@atc67 ->> oak end -> s1
@atc51 ->> sjc end -> s3
end

table Control_Zone
 (Czone_Name Name) (Aircraft_Quantity Traffic) R2
@sfo {"SFO37B"} {27} -> atc53
@oak {"OAK21C"} {18} -> atc67
@sjc {"SJC18C"} {9} -> atc51
end

table Duty_Station
 (Station_Number Number) (Name_T Location) (Aircraft_Maximum Capacity)
@s1 {"S1"} ❸ {"Front"} {20}
@s2 {"S2"} {"Center"} {30}
@s3 {"S3"} {"Front"} {45}
end

http://www.literateprogramming.com/
http://www.modelstocode.com/
http://dx.doi.org/10.1007/978-1-4842-2217-1_2

Chapter 4 ■ translating the air traffiC Control Model

47

❶ For relationship storage, we are dealing with pointers. By naming the instance (using
the @<name> syntax), you can refer to the instances in relationship initializers. Pycca keeps
track of where the named instances reside in the allocated storage array and emit the proper
address expressions. When specifying the subclass instance for a generalization, it is also
necessary to give the subclass name by using the dot notation shown.

❷ For relationship paths that are singular, the -> notation indicates the name of the instance
to be related.

❸ Pycca stores all instances of a class in a C array. The descriptive attributes, such as
Location, are assigned to the appropriate structure member in the initializer for the array
element. The values are specified in braces ({}), because pycca passes anything in braces
directly through to the C compiler. This means we can use any valid C constant expression as
an attribute initializer.

Pycca converts the initial instance population into an array of structures with initializer values. Each
class has a separate array that serves as its memory pool. The following are the C variables and initializers
generated for the initial instance:

/*
Initial Instance Storage for, "Air_Traffic_Controller"
*/
static struct Air_Traffic_Controller Air_Traffic_Controller_storage[3] = { ❶
 {❷.common_ = {1, 0, &Air_Traffic_Controller_class}, "53", "Toshiko", "A", .R1 code = ,
 1, .R1 = {.R1_On_Duty_Controller = {0, .R2 = {.next = &Control_Zone_storage[0]. 
 R2__links, .prev = &Control_Zone_storage[0].R2__links}, .R3 = &Duty_Station_storage 
 [1]}}},
 {.common_ = {2, 0, &Air_Traffic_Controller_class}, "67", "Gwen", "B", .R1__code = 1, . 
 R1 = {.R1_On_Duty_Controller = {0, .R2 = {.next = &Control_Zone_storage[1].R2__links 
 , .prev = &Control_Zone_storage[1].R2__links}, .R3 = &Duty_Station_storage[0]}}},
 {.common_ = {3, 0, &Air_Traffic_Controller_class}, "51", "Ianto", "C", .R1__code = 1, . 
 R1 = {.R1_On_Duty_Controller = {0, .R2 = {.next = &Control_Zone_storage[2].R2__links 
 , .prev = &Control_Zone_storage[2].R2__links}, .R3 = &Duty_Station_storage[2]}}}
} ;
/*
 *Initial Instance Storage for, "Control_Zone"
 */
static struct Control_Zone Control_Zone_storage[3] = { ❸
 {"SFO37B", 27, .R2 = &Air_Traffic_Controller_storage[0].R1.R1_On_Duty_Controller, . 
 R2__links = {.next = &Air_Traffic_Controller_storage[0].R1.R1_On_Duty_Controller.R2, 
 .prev = &Air_Traffic_Controller_storage[0].R1.R1_On_Duty_Controller.R2, }},
 {"OAK21C", 18, .R2 = &Air_Traffic_Controller_storage[1].R1.R1_On_Duty_Controller, . 
 R2__links = {.next = &Air_Traffic_Controller_storage[1].R1.R1_On_Duty_Controller.R2, 
 .prev = &Air_Traffic_Controller_storage[1].R1.R1_On_Duty_Controller.R2, }},
 {"SJC18C", 9, .R2 = &Air_Traffic_Controller_storage[2].R1.R1_On_Duty_Controller, . 
 R2__links = {.next = &Air_Traffic_Controller_storage[2].R1.R1_On_Duty_Controller.R2, 
 .prev = &Air_Traffic_Controller_storage[2].R1.R1_On_Duty_Controller.R2, }}
} ;
/*
 * Initial Instance Storage for, "Duty_Station"
 */

Chapter 4 ■ translating the air traffiC Control Model

48

static struct Duty_Station Duty_Station_storage[3] = {
 {.common_ = {1, 0, &Duty_Station_class}, "S1", "Front", 20, .R3 = NULL},
 {.common_ = {2, 0, &Duty_Station_class}, "S2", "Center", 30, .R3 = NULL},
 {.common_ = {3, 0, &Duty_Station_class}, "S3", "Front", 45, .R3 = NULL}
} ;

❶ Recall that the Air_Traffic_Controller class is a union containing the subclasses of R1,
so no separate storage is allocated for the subclasses. The values for the subclass attributes
are included directly in the initializer for the superclass.

❷ The common_ member holds an allocation number, the current state, and a pointer to
class invariant data. This is the data required by the runtime code to manage the instance. In
Chapter 5, we discuss instances from the perspective of the runtime code and exactly how
this structure member is used.

❸ The Control_Zone class has no state model, and all of its instances are part of the initial
instance population. Consequently, there is no common_ member of its class structure
because the runtime does not have to manage the instances in any way.

Recall that R2 was implemented as a linked list originating at the Air_Traffic_Controller instances.
Pycca properly initializes the link pointers in both the Air_Traffic_Controller and Control_Zone storage
arrays. The pointer values in the initializers are constant expressions that index into the storage arrays and
onto the element structure members. Pycca allocates instances to the storage array and can therefore specify
these address calculations. Note that these expressions are bound to a memory address at link time after the
base address of the storage array has been placed by the linker.

Translating State Models
The second aspect of translating is to specify the state models. All model classes with a state model will
have a corresponding machine definition in pycca. State models specify both the transitions and the C code
executed when a state is entered. The C code for a state is placed directly in the definition of the state model
for a class. We leave out the C code for the time being so that we are better able to show just the transition
aspects of the state model. In the next section, “Translating Actions,” the C code will make its appearance.
We have included the action language in the state definitions as a C comment. It is particularly convenient to
have the action language nearby when translating it into C code.

Duty Station State Model
We recommend referring to the Duty Station state model in Chapter 2, Figure 2-6, as you read along so you
can readily see the correspondence between the model elements and the pycca statements.

The state model is encoded using a machine statement:

class Duty_Station

 # ... Other parts of Duty_Station definition, attributes, etc.

 Machine ❶
 state AVAILABLE() ❷

http://dx.doi.org/10.1007/978-1-4842-2217-1_5
http://dx.doi.org/10.1007/978-1-4842-2217-1_2
http://dx.doi.org/10.1007/978-1-4842-2217-1_2#Fig6

Chapter 4 ■ translating the air traffiC Control Model

49

 {
 // empty
 }
 transition AVAILABLE - In_use -> IN_USE ❸

 state IN_USE()
 {
 //+ Max shift exceeded -> me after Shift ❹
 //+ Specification().Max shift // selects singleton
 }
 transition IN_USE - Max_shift_exceeded -> MAX_SHIFT_EXCEEDED
 transition IN_USE - User_leaving -> Canceling_Shift_Timeout

 state MAX_SHIFT_EXCEEDED()
 {
 //+ UI.Break required(Station: Number)
 }
 transition MAX_SHIFT_EXCEEDED - User_leaving -> AVAILABLE

 state Canceling_Shift_Timeout()
 {
 //+ cancel Max shift exceeded -> me
 //+ Available -> me
 }
 transition Canceling_Shift_Timeout - Available -> AVAILABLE
 end

❶ The state model for a class is completely specified within a machine statement.

❷ Here we define a state. This statement specifies the name of the state along with any
parameters passed through incoming transitions. A corollary of the Moore state model
formalism is that all incoming transitions to a state must supply the same set of parameters.
As it turns out, the Duty Station state model has no parameters defined on any of its
transitions.

❸ The transition statement defines the state model transition (that is, what happens when
events are received by an instance of this class). Transitions are defined by the starting state,
a received event, and the new state that is the destination of the transition. Events do not
require a separate definition. Event names are gathered from the transition statements.

❹ The state activity will ultimately be C code, not generated, but written by hand directly
into the model source file. Don’t be alarmed; pycca provides a set of C macros that you can
substitute for most model actions. We’ll get to all of that later. For now, we are copying in the
modeled action language as comments. Even after we replace it with C code, it is a good idea
to retain the original action language as a comment.

The pycca source is a direct transliteration of the state model graphic. The syntax to specify a state
is reminiscent of a function definition complete with parameters (from the triggering event, none in this
example) and the code (activity) to be executed.

Chapter 4 ■ translating the air traffiC Control Model

50

No particular order is imposed on the state and transition statements. Here we have placed outgoing
transitions immediately below the state to which they apply. Another convenient organization is to place
all the transition statements together to emphasize the correspondence to the transition matrix for the state
model.

A set of data structures encodes all the state behavior for a given class. The runtime code uses these
data structures to dispatch events to state machines. An important function of pycca is generating the data
structures used by the runtime event dispatch code. Pycca transforms the state model specification into a set
of initialized variables whose values describe how to dispatch events and what processing to execute when
transitions occur. The dispatch code uses a tabular encoding of the state model. The behavior of the event
dispatch is the same for all the instances of a class. The algorithm for determining transitions and executing
state activities is the same for all classes.

The following listing shows the data structures generated by pycca for the Duty Station state model. The
data are initialized variables for a dispatch block, transition table, and action table. In Chapter 5, we show
the structure of this data and exactly how it is used by the runtime code to cause state transitions to happen.
Don’t be too concerned if the following doesn’t make much sense yet. After you’ve read through Chapter 5
and have a better understanding of how state transitions are managed and events are dispatched in the
runtime environment, it should all seem a bit more reasonable.

static PtrActionFunction const Duty_Station_acttbl[] = {
 Duty_Station_AVAILABLE, 
 Duty_Station_IN_USE,
 Duty_Station_MAX_SHIFT_EXCEEDED,
 Duty_Station_Canceling_Shift_Timeout,
} ;
static StateCode const Duty_Station_transtbl[] = {
 MECH_STATECODE_CH, // AVAILABLE - Available -> CH 
 1, // AVAILABLE - In_use -> IN_USE
 MECH_STATECODE_CH, // AVAILABLE - Max_shift_exceeded -> CH
 MECH_STATECODE_CH, // AVAILABLE - User_leaving -> CH
 MECH_STATECODE_CH, // IN_USE - Available -> CH
 MECH_STATECODE_CH, // IN_USE - In_use -> CH
 2, // IN_USE - Max_shift_exceeded -> MAX_SHIFT_EXCEEDED
 3, // IN_USE - User_leaving -> Canceling_Shift_Timeout
 MECH_STATECODE_CH, // MAX_SHIFT_EXCEEDED - Available -> CH
 MECH_STATECODE_CH, // MAX_SHIFT_EXCEEDED - In_use -> CH
 MECH_STATECODE_CH, // MAX_SHIFT_EXCEEDED - Max_shift_exceeded -> CH
 0, // MAX_SHIFT_EXCEEDED - User_leaving -> AVAILABLE
 0, // Canceling_Shift_Timeout - Available -> AVAILABLE
 MECH_STATECODE_CH, // Canceling_Shift_Timeout - In_use -> CH
 MECH_STATECODE_CH, // Canceling_Shift_Timeout - Max_shift_exceeded -> CH
 MECH_STATECODE_CH, // Canceling_Shift_Timeout - User_leaving -> CH
} ;
static struct objectdispatchblock const Duty_Station_odb = { 
 .stateCount = 4,
 .eventCount = 4,
 .transitionTable = Duty_Station_transtbl,
 .actionTable = Duty_Station_acttbl,
 .finalStates = NULL
} ;

http://dx.doi.org/10.1007/978-1-4842-2217-1_5
http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 4 ■ translating the air traffiC Control Model

51

 In the next section, you will see how activity functions are defined. Here, all the activity
functions for a state model are collected into a single array so the appropriate one can be
located when a given state is entered.

 CH means can’t happen. Any event that causes a CH transition results in a system error.

 The object dispatch block is the collection of information used by the runtime code to
accomplish event delivery. This is explained further in Chapter 5.

Air Traffic Controller State Model
The state model for the Air_Traffic_Controller class is somewhat longer but follows the same pattern as
shown previously for the Duty_Station class:

class Air_Traffic_Controller

 # ... Other parts of Air_Traffic_Controller definition, attributes, etc.

 machine
 state OFF_DUTY ()
 {
 // empty
 }
 transition OFF_DUTY - Ready_for_duty -> Verifying_Adequate_Break

 state Verifying_Adequate_Break(Station_Number Station)
 {
 //+ the shift spec .= Shift Specification() // selects singleton
 //+ if (_now - self.Last shift ended < the shift spec.Min break)
 //+ Log in(in.Station) -> me
 //+ else
 //+ Cannot go on duty -> me
 }
 transition Verifying_Adequate_Break - Log_in -> Logging_In
 transition Verifying_Adequate_Break - Cannot_go_on_duty -> OFF_DUTY

 state Logging_In(Station_Number Station)
 {
 //+ migrate to On Duty Controller
 //+ my station = Duty Station(ID: in.Station)
 //+ link /R3/my station
 //+ Time logged in = now()
 //+ Logged in -> me
 //+ In use -> my station
 }
 transition Logging_In - Logged_in -> ON_DUTY

 state ON_DUTY()
 {
 // empty
 }

http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 4 ■ translating the air traffiC Control Model

52

 transition ON_DUTY - Ready_for_a_break -> Verifying_Full_Handoff
 transition ON_DUTY - Handoff -> Handing_off_Control_Zone

 state Handing_off_Control_Zone(
 Czone_Name zone,
 Employee_ID controller)
 {
 //+ hoff zone .= /R2/Control Zone(Name: in.Zone)
 //+ if in.Controller == ID
 //+ UI.Cannot handoff to self(Controller: in.Controller)
 //+ else {
 //+ new controller .= On Duty Controller(ID: in.Controller)
 //+ swap hoff zone/R2/On Duty Controller with new controller
 //+ !new missing: UI.Unknown controller(Controller: in.Controller)
 //+ !old missing: UI.Zone not handled by(Controller: ID)
 //+ } // swaps controllers and checks for errors
 //+ Handoff complete -> me
 }
 transition Handing_off_Control_Zone - Handoff_complete -> ON_DUTY

 state Logging_Out()
 {
 //+ User leaving -> /R3/Duty Station
 //+ migrate to Off Duty Controller
 //+ Last shift ended = _now.HMS
 //+ Off duty -> me
 }
 transition Logging_Out - Off_duty -> OFF_DUTY

 state Verifying_Full_Handoff()
 {
 //+ if /R1/On Duty Controller/R2/Control Zone{
 //+ Must handoff zones -> me
 //+ UI.Control Zones Active(ATC: ID)
 //+ } else
 //+ Log out -> me
 }
 transition Verifying_Full_Handoff - Log_out -> Logging_Out
 transition Verifying_Full_Handoff - Must_hand_off_zones -> ON_DUTY
 end
end

We don’t show the generated output, because it follows the same pattern you have already seen.

Translating Actions
In this section, we translate the processing associated with actions in the state activities. Pycca turns each
state activity into a C function and arranges for the function to be included in the data structures generated
for the runtime dispatch mechanism.

Chapter 4 ■ translating the air traffiC Control Model

53

State activities almost always result in updating instance attributes and/or signaling an event. Data
access is provided by the normal C mechanism for access to structure members via a pointer. Pycca
augments the C code you provide for the state activity with the necessary declarations for a self (me)
variable and a rcvd_evt variable used to access event parameters.

Air Traffic Controller State Activities
We begin with the Air Traffic Controller class showing only selected state activities. The state activity for
the Logging In state is shown in the following code. We have included the action language for the state as a
comment and have interspersed the C that implements the corresponding actions:

class Air_Traffic_Controller

 # ... Other parts of Air_Traffic_Controller definition, attributes, etc.

 machine

 # ... Other parts of the state model definition

 state Logging_In(Station_Number Station)
 {
 //+ migrate to On Duty Controller
 PYCCA_migrateSubtype(self, Air_Traffic_Controller, R1,
 On_Duty_Controller) ; ❶

 //+ my_station = Duty Station(ID: in.Station)
 ClassRefVar(Duty_Station, my_station) ; ❷
 PYCCA_selectOneStaticInstWhere(my_station, Duty_Station,
 strcmp(my_station->Number, rcvd_evt->Station) == 0) ; ❸
 assert(my_station != EndStorage(Duty_Station)) ;

 //+ & /R3/my station
 ClassRefVar(On_Duty_Controller, ondc) =
 PYCCA_unionSubtype(self, R1, On_Duty_Controller) ; ❹
 ondc->R3 = my_station ; ❺
 my_station->R3 = ondc ;

 //+ Time logged in = now()
 ondc->Time_logged_in = time(NULL) ; ❻

 //+ Logged in -> me
 PYCCA_generateToSelf(Logged_in) ; ❼

 //+ In use -> my station
 PYCCA_generate(In_use, Duty_Station, my_station, self) ; ❽
 }

 # ... Other part of the state model definition

 end
end

Chapter 4 ■ translating the air traffiC Control Model

54

❶ Pycca provides a macro to perform the subclass migration for union-based
generalizations. This hides the internal instance structure members.

❷ The ClassRefVar macro declares a local variable that is a reference to an instance. In this
case, my_station is a variable that references an instance of Duty_Station.

❸ Finding a Duty_Station is accomplished with a linear search of the storage array for Duty_
Station. Pycca provides a convenience macro to perform the iteration. You would choose
other searching techniques if the number of instances of Duty_Station is large. Note that the
Station event parameter is obtained via the implicit rcvd_evt variable that is automatically
generated by pycca.

❹ Because R3 is between an On Duty Controller and a Duty Station, we must traverse R1 first.
R1 is implemented as a union, and the macro performs the required pointer arithmetic.

❺ Each class participating in R3 is keeping a reference to the corresponding instance, and so
linking involves setting both pointer values.

❻ Accounting for time is platform specific, and pycca does not supply any time functions.
Here we are assuming a POSIX environment.

❼ Here, a signal to self is generated. Note that Logged_in is the same name used in the state
model definition.

❽ The general form of signal generation specifies the signal, the class of the target instance,
the target instance itself, and the instance that is the source of
the signal.

Pycca turns the state action into a C function as shown here:

static void Air_Traffic_Controller_Logging_In(void *const s_, void *const p_)
{
#define THISSTATE__ Logging_In ❶
 struct Air_Traffic_Controller *const self = (struct Air_Traffic_Controller *)s_ ; ❷
 struct Air_Traffic_Controller_Logging_In_rcvd_evt {
 Station_Number Station ;
 } const *const rcvd_evt = (struct Air_Traffic_Controller_Logging_In_rcvd_evt const *)p_ ;

 //+ migrate to On Duty Controller on R1
 PYCCA_migrateSubtype(self, Air_Traffic_Controller, R1, On_Duty_Controller) ;

 //+ my_station = Duty Station(ID: in.Station)
 ClassRefVar(Duty_Station, my_station) ;
 PYCCA_selectOneStaticInstWhere(my_station, Duty_Station,
 strcmp(my_station->Number, rcvd_evt->Station) == 0) ;
 assert(my_station != EndStorage(Duty_Station)) ;

 //+ & self.R3.my_station // link station
 ClassRefVar(On_Duty_Controller, ondc) = PYCCA_unionSubtype(self, R1, On_Duty_Controller) ;
 ondc->R3 = my_station ;
 my_station->R3 = ondc ;

Chapter 4 ■ translating the air traffiC Control Model

55

 //+ Time logged in = _now.HMS
 ondc->Time_logged_in = time(NULL) ;

 //+ Logged in -> me
 PYCCA_generateToSelf(Logged_in) ;

 //+ In use -> my station
 PYCCA_generate(In_use, Duty_Station, my_station, self) ;
#undef THISSTATE__
}

❶ Preprocessor #define statements keep track of the current state. The current state is used
by other preprocessor macros.

❷ Pycca arranges the declarations of self and rcvd_evt.

Other than the declarations of self and rcvd_evt, pycca has simply turned the state action into a
function of file static scope and passed along the C code that was specified in the state model definition. The
name of the function has the class name prepended to make it unique within the file.

We show one more example of translating a state activity. Following is the pycca source for the Logging
Out state of the Air Traffic Controller class:

class Air_Traffic_Controller

 # ... Other parts of Air_Traffic_Controller definition, attributes, etc.

 machine

 # ... Other parts of the state model definition

 state Logging_Out()
 {
 //+ User leaving -> /R3/Duty Station
 assert(self->SubCodeMember(R1 ==
 SubCodeValue(Air_Traffic_Controller, R1,On_Duty_Controller)) ;
 ClassRefVar(On_Duty_Controller, ondc) =
 PYCCA_unionSubtype(self, R1, On_Duty_Controller) ; ❶
 ClassRefVar(Duty_Station, ds) = ondc->R3 ; ❷
 assert(ds != NULL) ;
 PYCCA_generate(User_leaving, Duty_Station, ds, self) ;

 //+ migrate to Off Duty Controller
 ondc->R3 = NULL ; ❸
 ds->R3 = NULL ;

 PYCCA_migrateSubtype(self, Air_Traffic_Controller, R1,
 Off_Duty_Controller) ;
 assert(self->SubCodeMember(R1) ==
 SubCodeValue(Air_Traffic_Controller, R1,
 Off_Duty_Controller)) ;

Chapter 4 ■ translating the air traffiC Control Model

56

 //+ Last shift ended = _now.HMS ClassRefVar(Off_Duty_Controller, offdc) =
 PYCCA_unionSubtype(self, R1, Off_Duty_Controller) ; ❹
 offdc->Last_shift_ended = time(NULL) ;

 //+ Off duty -> me
 PYCCA_generateToSelf(Off_duty) ;
 }

 # ... Other part of the state model definition

 end
end

❶ This traverses R1 from Air_Traffic_Controller to On_Duty_Controller. The assertion
checks that the instance of ATC is indeed related to an instance of On_Duty_Controller. If
not, something is terribly wrong.

❷ Traversal of R3 from an instance of On_Duty_Controller to an instance of Duty_Station
is a simple matter of retrieving a pointer. The relationship is unconditional from On Duty
Controller to Duty Station; therefore, a valid pointer value must be stored in Duty_Station.
R3. The assertion checks the data integrity.

❸ Because each class contains a reference to the other, maintaining the relationship storage
means updating both pointers.

❹ Because we have migrated subclasses, we must obtain a reference to the new subclass.

The generated C code follows:

static void Air_Traffic_Controller_Logging_Out(void *const s_, void *const p_)
{
#define THISSTATE__ Logging_Out
 struct Air_Traffic_Controller *const self = (struct Air_Traffic_Controller *)s_ ; ❶

 //+ User leaving -> /R3/Duty Station
 assert(self->SubCodeMember(R1) == SubCodeValue(Air_Traffic_Controller, R1,
 On_Duty_Controller)) ;
 ClassRefVar(On_Duty_Controller, ondc) =
 PYCCA_unionSubtype(self, R1, On_Duty_Controller) ;
 ClassRefVar(Duty_Station, ds) = ondc->R3 ;
 assert(ds != NULL) ;
 PYCCA_generate(User_leaving, Duty_Station, ds, self) ;

 //+ migrate self to Off Duty Controller on R1
 ondc->R3 = NULL ;
 ds->R3 = NULL ;

 PYCCA_migrateSubtype(self, Air_Traffic_Controller, R1,
 Off_Duty_Controller) ;

Chapter 4 ■ translating the air traffiC Control Model

57

 //+ Last_shift_ended = _now.HMS
 ClassRefVar(Off_Duty_Controller, offdc) =
 PYCCA_unionSubtype(self, R1, Off_Duty_Controller) ;
 offdc->Last_shift_ended = time(NULL) ;

 //+ Off duty -> me
 PYCCA_generateToSelf(Off_duty) ;
#undef THISSTATE__
}

❶ There is no definition of rcvd_evt for this action because there are no event parameters.

The C output is as expected. The action is turned into a function, and the C code has been passed
through.

Summary
The Air Traffic Control model from Chapter 2 has been translated here by applying the principles discussed
in Chapter 3. The model was encoded in a text file by using pycca statements intermixed with C code for the
state activities and following C language rules for naming. This file was then fed through the pycca processor,
which generated additional C code from the pycca statements, passing along the intermixed C code in a
form and order acceptable to the compiler. To complete the translation, the generated pair of C header
and source code files were then processed by a C compiler. Linking the object file for the domain with the
runtime code yields a complete executable program.

All three facets of the model were specified in the pycca script language to create a complete model
source file. First, the class model was specified. This consisted of a set of data type definitions split into
those required for external interaction and those private to the domain. These were followed by a set of
class statements. Each class statement defined the modeled class name, its attributes, its relationships,
and an optional state model. Some design decisions were made at this point, based on static vs. dynamic
populations and required paths for relationship navigation. In the process, some of the identifier and
referential attributes from the class model were not needed and so eliminated. Nonetheless, their
fundamental logical intent was still present. For example, a referential attribute may have been replaced
by a pointer.

For each class with a state model, a machine statement was embedded within the class statement to
specify the states, transitions, events, and activities. Each activity is initially filled with a comment containing
the action language copied from the corresponding state.

The last facet of the model, the actions, was then completed by inserting C code within each state. In
many cases, the C code consists of pycca-provided C preprocessor macros that provide the implementation
of common model actions such as signal generation, instance selection, and relationship navigation.
Additionally, user-written C code is used for flow of control, computing expressions, and other algorithmic
processing.

http://dx.doi.org/10.1007/978-1-4842-2217-1_2
http://dx.doi.org/10.1007/978-1-4842-2217-1_3

59© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_5

CHAPTER 5

Model Execution Domain

Until now, we have glossed over the operations of the translation’s runtime component. We have described
some of its functions, but have not said how it accomplishes anything. No longer! In this chapter, we explain
how code for managing model execution works and the important role it plays in generating a running
program.

Our focus remains on getting the air traffic control model to run, so this chapter discusses the model
execution of our target platform. With the means in place to control the data and sequencing of a model, we
are in a position to run the code derived from the translation. We do not explain all the runtime operations
in this chapter, only those parts needed to run our example. In Chapter 9, we fill in the remaining details.

The important insight here is that all the decisions about how execution is sequenced and managed
have been factored into one place. In fact, the data, rules, and policies of model execution form a distinct
subject matter entirely independent of any particular application or service. This subject matter is, in fact, a
domain just like any other. We call it the Model Execution domain, or MX domain for short. This domain has
historically been referred to as the software architecture, but we’ll avoid using that term without qualification
because the wider computing community also uses this term to describe vaguely the overall composition of
design elements of a software system.

We start with an overview of the role that a Model Execution domain plays in building a running
program by translation. We want to tell you how it fits in the larger scheme of a translation. But quickly, we
get down to the specifics of our example target platform. In Chapter 10, we discuss other possible platforms
and some general considerations that go into a Model Execution domain.

Role of the Model Execution Domain
The Model Execution domain (MX domain) forms the logical platform on which the models execute. In the
same way that a processor instruction set is the target of a programming language compiler, the building
blocks of the MX domain are the target of model translation. Every modeled system requires an MX domain,
as it provides the mechanism to run the model execution rules.

A processor instruction set consists of operations such as ADD and MOV. The building blocks of the
MX domain involve implementations of model execution elements such as event control blocks, transition
tables, and action tables, all of which are introduced in this chapter. The process of model translation maps
model elements such as classes, relationships, and states onto the MX building blocks.

Some of the MX capabilities are provided directly by the implementation language. For example,
invoking a function and accessing data directly or indirectly are common operations in C programs. When
activities are translated, those C features are used directly. Other model execution rules are not supported
directly by the implementation language. There are no C statements, for example, to signal an event and
have that event dispatched to an instance. To bridge this gap, the MX domain provides C functions for event
signaling and dispatch. The translation process maps state actions that signal events onto the invocation of
these MX-provided C functions to implement xUML event-signaling behavior.

http://dx.doi.org/10.1007/978-1-4842-2217-1_9
http://dx.doi.org/10.1007/978-1-4842-2217-1_10

Chapter 5 ■ Model exeCution doMain

60

Although the subject matter of the MX domain is distinct from the modeled application and service
domains it runs, it is strongly influenced by the computational demands imposed by those domains. The
rules of model execution are well defined (for example, in Executable UML: A Foundation for Model-Driven
Architecture referenced previously), but the computing strategies and technology to implement them can
vary dramatically. Scale, speed, and parallelism are all performance features that a modeled domain may
demand of its implementation. The availability of memory and its usage are also important considerations.
There is no universal MX domain that can cover all application demands in an optimal way. This is hardly a
surprise, as there is no universal processor or universal programming language that can cover all computing
circumstances. Decisions about which computing technology to apply to a particular problem involve many
engineering trade-offs, often contradictory. To obtain an optimal balance of cost, capability, and efficiency,
an MX domain needs to provide the best match of computing technology to the needs of the modeled
domains.

Neither is it necessary to build a separate MX domain for every software project! A well-designed,
configurable MX domain can accommodate the demands of a broad class of applications and platforms.
This should come as no surprise, as we are all accustomed to using components such as user-interface
toolkits, math libraries, or database engines optimized for a limited range of applications and platforms. No
one would seriously suggest that such a component must be redesigned for every software project. In the
same sense, we can carefully tailor the flexibility designed into an MX domain so it can run efficiently on a
class of platforms and support a wide range of applications. In Chapter 10, we show how an MX domain for a
different platform could be constructed.

In this chapter, we discuss one particular implementation of an MX domain called Single-Threaded
Model Execution, or ST/MX. It is designed to target bare-metal, microcontroller-based embedded systems of
the type we are considering.

Overview of ST/MX
To translate a model, we must specify the general characteristics of the environment and the type of
computing technology on which the resulting program runs. As discussed earlier, we have chosen
microcontroller-based embedded systems as the target. This decision places constraints on what constitutes
an acceptable solution and limits the types of applications that can be deployed on the target. ST/MX was
designed to handle the most important constraints of a microcontroller-based system:

•	 Limited memory: Microcontrollers have small memories that are typically partitioned
into RAM and read-only (for example, flash) types. There is a single physical memory
space with no hardware-based memory address translation.

•	 Limited execution cycles: Microcontrollers have limited speeds and are often
deployed in battery-powered applications for which processor execution is one of
the more significant power-consuming activities.

•	 Interrupts: All modern computers have interrupts that allow external peripherals
to indicate significant happenings. ST/MX must support model operations and
interrupt service execution in a coherent manner.

•	 Timely response: Embedded systems usually react to stimuli from their external
environment and produce a response back into this environment. Often, time
constraints exist on producing the response. ST/MX strives to minimize execution
latency to meet real-time constraints.

To give you a good sense of how ST/MX works, we limit discussion in this chapter to the way the
sequencing of modeling behavior is managed. We focus on the way signals are issued and state machine
events are dispatched to the appropriate instances. Then we demonstrate how this relates to the execution of
our example ATC models.

http://dx.doi.org/10.1007/978-1-4842-2217-1_10

Chapter 5 ■ Model exeCution doMain

61

ST/MX is atypical in that the actual behavior of model elements is driven strictly by supplied data
values. A primary role of pycca, as was shown in the Air Traffic Controller example, is to generate the data
values to drive ST/MX. ST/MX itself knows nothing about the particular behavior of an Air Traffic Controller
or any other model element. This is no surprise. Real computers know nothing of the meaning of what they
compute and strictly act according to the program they are presented.

ST/MX is implemented as an ordinary C library. Just like any other library, it has an interface made
up of functions, parameters, and data structures. Unlike a typical C library, however, much of the public
interface consists of preproccessor macros. These hide the underlying low-level functions and ease the
process of translating action language. Consequently, the processing and algorithms are discussed in
general terms. We do not give complete invocation interfaces because, when translating with pycca, the
low-level ST/MX function interfaces are referenced only in the pycca-supplied macros. For those readers
who wish to see the code details and the design rationale, a complete description of the ST/MX domain,
including the C code that implements it, can be found on the book’s website.

The ST/MX View of a Class Instance
ST/MX doesn’t care about the meanings of individual instances. It just needs nimble access to them for
activities such as creating, deleting, locating a transition table, dispatching an event, and so forth. None of
these activities require knowledge of particular attribute values. Consequently, instances are seen as relatively
opaque blobs of user data. Generic data about an instance such as its class (to find the transition table), its
location in memory, the current state, and other management information are what’s of interest to ST/MX.

Class instances are stored as an array of C structs. To manage an instance, ST/MX places generic data
about an instance as the first member of the class structure declaration by using the following struct:

typedef struct mechinstance {
 AllocCount alloc ;
 StateCode currentState ;
 struct mechclass const *instClass ;
} *MechInstance ;

The MechInstance pointer type defined in this source code snippet is used later. Here, we focus on the
incorporation of the mechinstance struct as the first member of an example generated pycca class. Figure 5-1
shows the class-specific structure for an Air Traffic Controller. Remember that the Air Traffic Controller class
amalgamates the modeled super- and subclasses within a union.

Chapter 5 ■ Model exeCution doMain

62

Placing the mechinstance structure as the first member of every class structure declaration allows a
pointer to an arbitrary instance of an arbitrary class to be treated as a pointer to a generic instance. The
technique is common when using C in a more object-oriented programming style, however type unsafe it
may appear. We have seen this structure before, in the generated code from pycca. The instance structure
defines generic elements applicable to all instances and links the class instance back to data describing its
behavior.

The nonzero value for the alloc member determines whether a particular instance is currently in use.
The value of the alloc member is changed each time instance storage is allocated so that we can determine
whether it is being reused after a create-destroy-create sequence. The currentState member holds a small
integer value that is the state in which the instance currently resides. The instClass member is a pointer to
data that applies to all instances of the class.

Figure 5-2 shows what an Air Traffic Controller looks like with some example data values.

Figure 5-1. Instance data structure

Chapter 5 ■ Model exeCution doMain

63

ST/MX provides all the necessary functions to manage dynamic instance creation and deletion. We
postpone the explanation of how instance memory is managed. For now, you just need to know that ST/MX
sees an instance as a struct mechinstance and ignores the class-specific attributes. The class-specific code
ignores the struct mechinstance structure. Of course, this is C, and the language itself does not impose any
restrictions on access to structure members.

Managing Execution
ST/MX is specifically designed for bare-metal microcontroller-based systems. Its execution capabilities
match those provided directly by the hardware, namely:

•	 There is a single thread of execution provided by a single processing core.

•	 An interrupt may preempt the execution of the single thread, vectoring to code that
services the interrupt. Once serviced, the preempted thread is resumed.

In Chapter 2, we discussed the concept of run to completion. The model execution rules require each
activity complete before any other activity can run. ST/MX handles run to completion by deferring the
delivery of events until no state activity is executing. The simple mechanism of queuing signaled events and
then dispatching them from the queue accomplishes this.

ST/MX provides the C main function, which organizes the flow of execution as shown in Figure 5-3.

Figure 5-2. Dynamic instances in memory

http://dx.doi.org/10.1007/978-1-4842-2217-1_2

Chapter 5 ■ Model exeCution doMain

64

After initialization, execution proceeds in an infinite loop servicing the sync and event queues. The
sync queue is a queue of function execution requests posted by interrupt service routines. The event queue
is a queue of events signaled by domain activities. Most of the rest of this chapter is devoted to how the
event queue operates. The flow diagram shows that sync functions are executed one at a time until the sync
queue is empty. When there are no more sync functions, a single event is removed from the event queue
and dispatched. Interrupts are enabled and can be serviced when either a sync function or a state activity
is executing. If there is no sync function to execute nor any event to dispatch, then the execution waits.
Execution waits until an interrupt arrives and, after the interrupt processing has completed, waiting stops
returning control flow to the top of the main loop. The single thread of execution that is preemptable by
interrupts provides the familiar concept of foreground vs. background processing.

ST/MX does not support any notion of processor context or task as they exist in real-time operating
systems (RTOS). There are no semaphores, message queues, or controls over multiple execution threads.
Sync functions and state activities always execute to completion before the next computation is considered.
Interrupts are always active, except for small critical sections associated with access to the sync queue.

You may be thinking that the execution scheme of ST/MX does not accommodate long duration
computations very well. If so, you are correct. When a state activity goes compute bound for a long time, the
rest of the system is not responsive, because all must wait for access to the single processor in the system and
there is no preemption of state activities other than interrupt service. Interrupt service may queue requests
for code to be executed only when no state activity is running (and for servicing the interrupting hardware as
required) and is specifically not allowed to access the event queue.

Figure 5-3. Main loop activity diagram

Chapter 5 ■ Model exeCution doMain

65

If this characteristic of execution management will not meet the computation demands of the modeled
domains, ST/MX may not be the appropriate computing technology for the application, and you will need
an MX domain that either shares the processor in a different way or operates on a multicore processor.
That said, numerous applications fielded on bare-metal microcontrollers are reactive in nature: they detect
a stimulus from the environment, usually via an interrupt, and generate an immediate response, often to
control some aspect of the real world. For those types of applications, single-threaded execution domains
such as ST/MX work very well. They use computer resources efficiently because their capabilities are closely
aligned to those provided directly by the microcontroller hardware.

Event Control Block
When events are signaled by an activity, they are represented by an event control block (ECB). You can think
of it as a form that must be filled out for each generated signal. Here is the ECB data structure:

typedef struct mechecb {
 struct mechecb *next ;
 struct mechecb *prev ;
 RefCount referenceCount ;
 EventCode eventNumber ;
 AllocCount alloc ;
 MechEventType eventType ;
 union {
 MechInstance targetInst ;
 MechClass targetClass ;
 } instOrClass ;
 MechInstance srcInst ;
 MechDelayTimedelay;
 EventParamType eventParameters ;
} *MechEcb ;

•	 next and prev members are pointers that implement a doubly linked list. An ECB is
queued to one of three lists managed by ST/MX.

•	 referenceCount ECBs are reference counted, and that count is held in the
referenceCount member. Reference counting ECBs is an advanced feature of ST/MX
used in certain periodic signaling situations. We do not use reference counts in our
examples.

•	 eventNumber is a small integer encoding the event number. Event numbers are zero-
based sequential integers.

•	 alloc is a small integer number used to ensure that an event is not dispatched to an
instance that no longer exists. This is discussed later in this chapter.

•	 eventType encodes the type of the event. For now, assume that this is an event
that attempts to trigger a state transition. The other event types, creation and
polymorphic, are discussed in Chapter 9.

•	 instOrClass, for transitioning events, holds a targetInst that points to the instance
that will receive the event.

•	 srcInst is a pointer to the instance signaling the event.

http://dx.doi.org/10.1007/978-1-4842-2217-1_9

Chapter 5 ■ Model exeCution doMain

66

•	 delay is used for delayed signals (as we discuss later in this chapter).

•	 eventParameters contains the values of any parameters specified by the event.

An ECB is queued to one of three lists managed by ST/MX:

•	 A free queue is a list of blank ECBs available for use in signaling events. ECBs are
limited resources queued here when not in use.

•	 The imminent event queue is a list of filled-out ECBs awaiting imminent dispatch.

•	 The delayed event queue is a list of filled-out ECBs to be delivered at a designated
time in the future. These represent delayed signals.

Signaling an Event
The action of signaling an event is translated to the following procedure:

 1. Obtain a free ECB.

 2. Fill in the ECB with the required information.

 3. Queue the ECB into the appropriate event queue (imminent or delayed).

These steps are demonstrated in Figure 5-4.

Figure 5-4. Signaling an event

Chapter 5 ■ Model exeCution doMain

67

The eventNumber member holds a zero-based sequential integer encoding of the event. Event encoding
is on a per pycca class basis, so each pycca class has its own set of events, and each set is sequentially
encoded starting at zero. This choice of encoding means that the event number may be used as an index into
an array, and pycca generates the numbers to ensure proper indexing.

The srcInst is a pointer to the instance that is signaling the event. If the event is signaled outside an
instance context (by a domain function or a class-based operation, for example), then srcInst is set to NULL.

Any parameters of the event are placed at the end of the ECB in the parameters block. Parameters are
passed by value. Typically, only small amounts of data are passed as event parameters. Passing references to
data imposes the additional burden of managing the storage allocated to the parameter values. ST/MX does
not provide any facilities to manage event parameter data passed by reference.

Catching the Event-in-Flight Error
The alloc member of the ECB deserves special comment. ST/MX must be able to detect when an event is
dispatched to an instance that no longer exists. It is, for example, possible for an event to be signaled to an
instance and for that instance to be destroyed before the event is delivered. Worse yet, it is possible for a new
instance to be created in the same memory location as a destroyed instance before the event is delivered!
This is known as the event-in-flight error and is one of the few runtime errors diagnosed by ST/MX. It is
considered an analysis error because it is the modeler’s responsibility to ensure proper synchronization so
that an instance is not deleted while any event destined for it is still in flight.

Because the consequences of delivering an event to a nonexistent instance or the wrong instance are
severe, ST/MX takes steps to prevent the condition. To diagnose the error, when an event is signaled, the
alloc member value is set to the same value as the alloc member of the target instance. When the event is
delivered, the two values must still agree. Because each time an instance is allocated it receives a new value
for the alloc member and an instance that is free has an alloc member value of 0, it is possible to detect
when an instance is destroyed while it has an event in flight. For the purposes of dispatching an event, the
alloc member supplements the identification of the target instance provided by its memory address alone.

After filling in the values of the ECB members, the ECB is queued for dispatch. The state machine rules
require that an event directed by an instance to itself is dispatched before any events signaled from other
instances. So, self-directed events are placed at the front of the event queue, and non-self-directed events are
queued to the rear.

Delayed Signals
ST/MX supports the notion of a delayed signal. Delaying a signal is a request to have the event dispatched
no sooner than the requested delay time. Delay times are specified in milliseconds, and the delay time may
be zero (which results in the event being posted immediately to the imminent event queue). Delayed events
are posted to a separate, delayed event queue while they are awaiting delivery. In Executable UML, there
may be only one outstanding delayed event of a given event number between any sending/receiving pair of
instances (which need not be distinct—that is, a delayed event may be self-directed). This limits the number
of identical outstanding delayed events to one. ST/MX interprets any attempt to post a duplicate delayed
event as a request to cancel the first delayed event and to post the new one delayed by the new time. This is
the most convenient interpretation in practice.

The delay member of the ECB is used to implement delayed dispatch. When inserted into the delayed
event queue, the delay member stores the time difference between events rather than the actual requested
time delay. During insertion, the delay member of an ECB is set to the additional amount of time the
inserted event requires that is beyond the cumulative time of the previous events in the queue. This results
in the delayed event queue being ordered by increasing value of the time differences.

Chapter 5 ■ Model exeCution doMain

68

Delayed event dispatch uses a single timer that expires at the time indicated by whatever ECB is at the
head of the delayed event queue. When this time expires, the ECB is transferred to the rear of the imminent
event queue, and the timer is then reset to the time indicated by the ECB now at the head of the delayed
event queue. Even self-directed delayed events are placed at the rear of the imminent event queue. This ST/
MX mechanism embodies the idea that a delayed event is simply a request for a normal event to be delivered
at a later time, even if that request comes from the same instance that will receive the event.

Figure 5-5 shows an example.

Figure 5-5. Processing a delayed event

In the preceding example, the current timer is set to 15 minutes. The time difference value of each ECB
in the delayed event queue is relative to the next earliest delivery, so the head of the queue always has a zero
value. When the timer counts down to zero, the ECB at the head of the delayed event queue is transferred to
the rear of the imminent event queue, where it now represents a normal event awaiting to be dispatched.

The timer is then loaded with the delay value from the next entry, in this case 25 minutes, and the timer
resumes counting down. So, looking at the figure, you can see that the second ECB will be delivered in 15
min + 25 min = 40 minutes. The third ECB is dispatched in 40 min + 1 hr 50 min = 2 hr 30 min, which happily
matches that ECB’s requested delivery delay.

Chapter 5 ■ Model exeCution doMain

69

Boundary conditions and the need to start and stop the timing resource make the implementation logic
somewhat more complicated than this description implies. The ordering of the queue implies that inserting
into the delayed event queue requires a search to find the appropriate place, accounting for the cumulative
times associated with entries already in the queue. The design trades off computation at insertion time for a
simpler operation when delay times expire. Note that there is no periodic wake-up to scan the delayed queue.
Waking up to determine that there is no action to perform is undesirable in a battery-operated environment.

To implement delayed signals, ST/MX must have access to a timing resource. This is necessarily system-
specific and usually means that a timer peripheral of the microcontroller is dedicated to running the delayed
event queue. Care must be taken to ensure that the timer continues to run even if the microcontroller
is halted or placed in a low-power mode while waiting. Consequently, ST/MX delegates low-level timer
operations to a set of functions that can be adapted to the specifics of the microcontroller timer peripheral.

Delayed signals may be canceled. ST/MX guarantees that after canceling a delayed signal, it will not be
delivered. This implies that canceling a delayed signal would remove it from the delayed event queue or the
imminent event queue if it had already expired. It is not an error to cancel a delayed event that has not been
signaled or has already been delivered (that is, failing to find the requested delayed event during the cancel
operation is not an error).

Finally, ST/MX supports requesting the amount of time remaining for a delayed event. This duration
can be used to adjust the delay time.

Event Dispatch
Now that you know how immediate or delayed events are queued when signaled, we can examine how these
events are later dispatched. Figure 5-3 shows when in the main loop that event dispatch occurs. Figure 5-6
illustrates the data structures we need to navigate to get everything required to support event dispatch.

Figure 5-6. Locating the transition and action tables

Chapter 5 ■ Model exeCution doMain

70

Event dispatch starts by removing the ECB at the front of the imminent event queue. (From now on,
we’ll just call it the event queue.) We follow the targetInst member of the ECB to get to the instance that
will receive the event. Each instance has a currentState member in its structure as well as a pointer,
instClass, to data about its class. The class structure contains data about a class that applies to all of its
instances. For dispatching events, we are interested in the object dispatch block (ODB). The ODB is part of
the data generated by pycca for a class. You saw this data in Chapter 4, when we showed the pycca output of
translating a state model. From the ODB, we obtain the transition table, a matrix of states and events, and the
action table, an array of function pointers indexed by state number. After the destination state of a transition
is determined, a pointer to the code to be executed is obtained from the action table. The C definition of an
object dispatch block is as follows:

typedef struct objectdispatchblock {
 DispatchCount stateCount ;
 DispatchCount eventCount ;
 StateCode const *transitionTable ;
 PtrActionFunction const *actionTable ;
 bool const *finalStates ;
} const *ObjectDispatchBlock ;

The transitionTable is a stateCount-by-eventCount matrix held in a one-dimensional array of
StateCode type values. The new state value is obtained by indexing into the transitionTable by using the
instance currentState value and the eventNumber from the ECB of the dispatched event.

The new state is then used as an index into the actionTable array to find a pointer to an action function
(a more UML-correct term is activity function, because it leads to all actions of a state activity, but we’ll stick
to the terminology used in the code to minimize confusion). The actionTable member is a pointer to an
array of stateCount number of pointers to action functions with this signature.

typedef void ActionFunction(void *const inst, void *const params) ;
typedef ActionFunction *PtrActionFunction ;

Figure 5-7 illustrates the indexing process.

http://dx.doi.org/10.1007/978-1-4842-2217-1_4

Chapter 5 ■ Model exeCution doMain

71

The action function is invoked with the value of targetInst and a pointer to the eventParameters ECB
member. The action function arguments are typed as void pointers so that the data type of the action table
can be the same for all classes. Pycca adds code to the beginning of the state activity to cast these pointer
values back to the correct type of the instance and its parameters.

Upon return from the action function, the finalStates array is consulted. The finalStates member
is a pointer to a stateCount-sized array and, if it is not NULL, holds a Boolean indication as to whether the
new state of the instance is a final state. If the instance enters a final state, it is automatically deleted after the
action function is invoked.

Two other transition possibilities exist. The new state value can be either ignore or can’t happen. When
the new state is ignore, no transition happens, and the event is simply discarded. A can’t happen transition is
an error. The transition is deemed logically impossible, and should it occur at runtime, results in what can be
considered a panic situation.

Figure 5-8 is an overview of how all the key pieces of data necessary to process an event are related and
how the current state and event are used to find the transition and execute its activity.

Figure 5-7. Processing a dispatched event

Chapter 5 ■ Model exeCution doMain

72

To tie together these figures and, in the spirit of having no mysterious gaps, we present the C code from
ST/MX that dispatches an event. At this stage, the ECB has already been removed from the event queue.
The following code computes the new state, invokes the state activity for the transition, and handles all the
dispatch rules:

static void
dispatchNormalEvent(MechEcb ecb)
{
 MechInstance target = ecb->instOrClass.targetInst ;
 ObjectDispatchBlock db = target->instClass->odb ;

 // Test for corruption of the current state or event number.
 assert(db->stateCount > target->currentState) ;
 assert(db->eventCount > ecb->eventNumber)
 // Check for the "event-in-flight" error. This occurs when an instance is
 // deleted while there is an event for that instance in the event queue.
 // For this architecture, such occurrences are considered as runtime
 // detected analysis errors.
 if (target->alloc != ecb->alloc) {
 mechFatalError(mechEventInFlight, ecb->srcInst, target, ecb->eventNumber) ;
 }
 // Fetch the new state from the transition table.
 StateCode newState = *(db->transitionTable + ❶
 target->currentState * db->eventCount + ecb->eventNumber) ;
ifdef MECH_SM_TRACE
 // Trace the transition.
 traceNormalEvent(ecb->eventNumber, ecb->srcInst,
 ecb->instOrClass.targetInst, target->currentState, newState) ;
endif

Figure 5-8. Data used in dispatching an event

Chapter 5 ■ Model exeCution doMain

73

 // Check for a can’t happen transition.
 if (newState == MECH_STATECODE_CH) {
 mechFatalError(mechCantHappen, target, target->currentState, ecb->eventNumber) ;
 } else if (newState != MECH_STATECODE_IG) {
 // Check for corrupt transition table.
 assert(newState < db->stateCount) ;
 // We update the current state to reflect the transition before
 // executing the action for the state.
 target->currentState = newState ;
 // Invoke the state action if there is one.
 PtrActionFunction action = db->actionTable[newState] ;
 if (action) {
 action(target, &ecb->eventParameters) ; ❷
 }
 // Check if we have entered a final state. If so, the instance is deleted.
 if (db->finalStates && db->finalStates[newState]) {
 mechInstDestroy(target) ;
 }
 }
 // Return the ECB to the pool.
 mechEventDelete(ecb) ;
}

❶ Here we compute the new state from the current state and the event by indexing into the
transition matrix. The transition matrix is held as a one-dimensional array of state codes.
This is necessary so that all classes can have the same data type for the transition matrix,
regardless of the number of states and events that are defined for the class state model.
Because the transition matrix is held as a one-dimensional array, we have to undertake
the index computation that segments the transition matrix into a two-dimensional matrix
accessed by state and event (that is, we have to scale the “row” access by the number of
events in the state model). Pycca ensures that the transition matrix cells are ordered in this
manner.

❷ Invoke the state activity function associated with the new state. We allow for empty state
activities to have a NULL function pointer and avoid the call/return overhead.

This short piece of code accomplishes the majority of the execution sequencing in ST/MX and is,
except for the main loop code, by far the most frequently executed code in ST/MX.

Tracing Execution
A state model diagram does an excellent job of showing the possible ways that the life cycle of an instance
can evolve and the processing that takes place during that evolution. When the domain runs, instances make
transitions according to the sequence of signals that are directed to the state machine for that particular
instance. So, it is insightful to see the chronological sequence of transitions made by an instance.

ST/MX can trace the event dispatch for you. Because tracing has an impact on the execution speed
and code size of a program, it can be conditionally compiled in during testing phases and removed from a
delivered release. The following is a text log of the event dispatch that corresponds to the execution scenario

Chapter 5 ■ Model exeCution doMain

74

of the Air Traffic Control model we discussed in Chapter 2. This log was generated during an actual run of
the translated domain:

2016/06/09 11:17:12.112: (nil) - Ready_for_duty -> Air_Traffic_Controller.atc53: ←,
 OFF_DUTY -> Verifying_Adequate_Break
2016/06/09 11:17:12.113: Air_Traffic_Controller.atc53 - Log_in -> ←,
 Air_Traffic_Controller.atc53: Verifying_Adequate_Break -> Logging_In
2016/06/09 11:17:12.113: Air_Traffic_Controller.atc53 - Logged_in -> ←,
 Air_Traffic_Controller.atc53: Logging_In -> ON_DUTY
2016/06/09 11:17:12.113: Air_Traffic_Controller.atc53 - In_use -> Duty_Station.s3: ←,
 AVAILABLE -> IN_USE

In this log, four events were dispatched. Each dispatch is timestamped. The trace consists of the
instance that signaled the event, the name of the event, and the instance that received the event. If the event
was signaled outside an instance context, the source of the event is given as (nil). In this case, the scenario
was initiated by signaling Ready_for_duty from outside the domain and, hence, not from any instance.
Otherwise, instances are identified by their class name and the name given to the instance as part of the
initial instance population. The last two fields of the trace show the transition from the current state of the
instance, when the event was received, to the new state of the instance, after the transition.

The transitions in the log show the same sequences described in Chapter 2. The Ready_for_duty event
causes a sequence of transitions for the Off Duty Controller, atc53, as the instance goes from OFF_DUTY to
Verifying_Adequate_Break to Logging_in and finally arriving at the ON_DUTY state. The last log entry shows
the Duty_Station transitioning to the IN_USE state.

Tracing execution makes it easier to understand how the domain runs and supports documenting the
results of testing. Because a state model is a directed graph, it is possible to calculate a set of event sequences
guaranteeing that every state activity is executed at least once (this is related to a spanning tree of the state
model graph). Determining such a set of event sequences can be done with no knowledge of what the
activities compute. The structure present in a state model can help determine the minimum set of test cases
necessary to meet a project’s quality goals. The transition traces can provide objective evidence of the actual
execution of test cases.

Running in a POSIX Environment
The ST/MX execution domain is available to run on three platforms (and can be adapted to other
microcontroller platforms):

•	 ARM Cortex-M3

•	 TI MSP-430

•	 POSIX (Portable Operating System Interface)

It may seem unusual to target microcontroller-based systems and supply a version of the runtime code
for POSIX. Although you can build a POSIX application by using pycca, the primary purpose of the POSIX
version of ST/MX is to support cross-platform development. This sort of development is essential when
developing for a microcontroller. Here the models are translated and run in a simulation model execution
environment on a desktop computer. After the models are fully exercised, they can be compiled, integrated,
and further tested on the target platform.

A microcontroller does not have the capabilities to support compilers and other build environment
elements. So developers are faced with building on a desktop system and downloading the code to an
embedded platform. Microcontrollers do usually have debugging facilities, and most microcontroller
development environments support some form of source-level debugging.

http://dx.doi.org/10.1007/978-1-4842-2217-1_2
http://dx.doi.org/10.1007/978-1-4842-2217-1_2

Chapter 5 ■ Model exeCution doMain

75

However, there is rarely any file I/O or persistent storage of any great size. Usually, you have to be
content with simple printf() style debugging. There is a quandary about how much effort should be
spent improving the target environment and whether that effort would be better spent running the code
in simulation. This is particularly acute when the application is controlling physical entities and it is
impractical or unsafe to suddenly stop when a break point is encountered. For example, a moving robot arm
involves actual physics that must account for momentum. Simply stopping the processor at a break point
could do physical harm. In such cases, debugging by examining execution trace data is typically the only
practical solution.

For domains that are properly bridged to any system-specific facilities (for example, hardware
peripherals), compiling and linking against the POSIX version of the runtime will yield an executable that may
be run in most UNIX-like (for example, Linux), macOS, or Windows under Cygwin systems. Because these
development systems have lots of storage and I/O, it is possible to build test fixtures or test benches to exercise
the domain code outside its targeted environment. For example, compilers can be requested to track code
coverage, and the coverage of unit tests can be measured. It is also much easier to deal with state machine
traces when there is a place to store them. Tracking the transitions of the state models is a convenient way
to measure how much of the state space of a program has been exercised. Test sets to drive the state model
transitions can be obtained by inspection of the state diagrams of the model. The ability to run in a POSIX
environment also opens up the possibility to use continuous integration and regression testing tools that are
available. To run under simulation, it is necessary to stub or simulate those parts of the application that are
system specific. That can be a large undertaking, especially when interaction with the real world is a major
driver of the application execution. Project teams must evaluate the costs and benefits.

Of course, not all testing can be run in a simulation environment. Running in simulation is convenient
for testing, recording the logic of the program, and driving its execution path with specific test sets. It is still
necessary to integrate and perform additional testing on the target microcontroller. Running in simulation
divides the initial testing into logic testing and target integration testing, and places logic testing in an
environment where results are easier to obtain and record.

Handling Errors
We have also glossed over the way we deal with errors. The ST/MX domain is responsible for setting the
policy for handling errors in the system. ST/MX minimizes repetitive error handling by designating all errors
it detects as fatal. Consequently, all errors detected by ST/MX trigger the panic condition, which prevents
further execution. There is no interface to the models indicating the success or failure of ST/MX operations.
This is a benefit to the modeler because models signal an event or create an instance and have no need to
check error returns or handle potential exceptions. Models simply assume that execution management is
perfect. Anything that goes wrong is ST/MX’s responsibility to handle.

The ST/MX domain diagnoses two types of errors:

•	 Errors that arise from internal ST/MX execution

•	 Errors found at runtime that indicate an error in the model analysis

ST/MX uses several internal data structures—event control blocks, for example—each of which has
a fixed quantity. Like class instances, internal data structures are also allocated in arrays whose size is
established at compile time. This is in keeping with ST/MX’s design goal of not performing dynamic memory
allocation. Exhausting an internal resource results in a fatal error. The same is true of requests to allocate a
class instance when there are no free slots in the class instance storage array.

Analysis errors discovered at runtime are either state machine transition errors or event-in-flight errors.
These errors are also fatal.

ST/MX provides a means to supply your own fatal system error handler. This is useful for logging
purposes and for other types of external notifications. By default, ST/MX executes the standard C library
function abort() on a fatal error. In embedded systems, this usually results in a system reset, and the

Chapter 5 ■ Model exeCution doMain

76

microcontroller begins execution anew. As draconian as the approach may seem, there is little other
practical recourse for most embedded systems. Even if a state activity could know that there were no ECBs
available when it attempted to signal an event, what realistic recovery recourse would it have? One cannot
simply ignore the fact that a signal could not be sent or a state transition was logically impossible and then
blithely continue on hoping for the best. This implies that sizing the required data structure resources must
be done carefully. Analysis errors detected at runtime can be flushed out only by comprehensive test cases.
Recording the reason for a fatal error can help diagnose problems, but when the system is deployed in the
field and ST/MX determines that a severe error has occurred, there is little else to be done but restart and
try again.

Fatal software errors may also need to be handled in the context of the system as a whole. Safety-
critical systems, such as medical devices, often have dedicated hardware that can take over at least part
of the software’s function. Most embedded systems have one or more watchdog timers that must be reset
periodically as a check that the software is functioning. Failure to reset the watchdog in a timely manner can
trigger a processor reset through hardware or other fallback strategy. Some systems even have dedicated
hardware to catch run-reset-run-reset sequences that happen too frequently and indicate an endless reset
loop condition in the software. ST/MX provides the means to know only when the software execution has
reached a condition where it can no longer continue. The way that condition is handled in a larger system
context must be decided based on a thorough risk analysis.

Summary
In this chapter, we described the inner workings of the ST/MX domain, the runtime component of a pycca
translation. It is the last aspect of the translation needed to produce a running program.

ST/MX manages all the class data and execution sequencing of the system. ST/MX is strictly data
driven, and the emphasis in this chapter was on describing how the data structures generated by pycca
are used by the algorithms in ST/MX. ST/MX has a common view of instance data that allows it to perform
operations on an instance of any class.

Execution is managed primarily by queuing events for dispatch. A queued design supports the run-
to-completion semantics required by model execution rules. Events in the queue are represented by an
event control block. Event dispatch may also be delayed to support the need by a model activity to initiate
execution at some time in the future.

Instance state machine transitions are computed using a transition table. The transition table is indexed
by current state number and event number, and the indexed cell contains the new state to which the
transition is made. The activity of the state is a function, a pointer to which is placed in the action table that
is an array indexed by state number.

The C code for event dispatch was also given, showing exactly how the state transitions are computed.
ST/MX supports producing a chronological trace of event dispatch. The execution scenario from Chapter 2
was run, and the resulting trace log verified, by actual execution, the transitions we inferred from the state
model diagram.

ST/MX implements the error-handling policy for the system, and all errors detected by ST/MX are
unrecoverable and deemed fatal system errors.

http://dx.doi.org/10.1007/978-1-4842-2217-1_2

77© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_6

CHAPTER 6

An Extended Example

We presented the simple ATC application as an extended hello world example to demonstrate the
fundamental steps in a pycca translation. That initial application addressed a small portion (workloads and
shifts) of an isolated subject matter (air traffic control). It was defined by an integrated set of class, state,
and action facets wrapped up in a single executable model package. In this chapter, we begin a new case
study that requires coordination of multiple such executable packages which, in Executable UML, are called
domains.

The code generated for the ATC application works, but it doesn’t do much. That’s because the
application itself is only one portion of any deployed software system. You may have wondered, for example,
how radar, user displays, alarm handling, logging, and other essential functionality would be incorporated
into the ATC system.

Of course, you could simply extend the application models to incorporate all the required functionality,
but in practice, this is a bad idea. The models would sprout excessive complexity, not just in the number
of elements, but in the explosion of state combinations and awkward class relationships. The result would
be an inconsistent set of abstractions in the model, and the entire analysis effort would bog down. This is
symptomatic of what was called analysis paralysis at the time when modeling systems in this way was first
undertaken.

It is better practice to organize the system into a set of relatively isolated domains. A domain represents
a distinct set of abstractions focused on a particular subject matter. The ATC models, for example,
constituted an application level of abstraction with regard to the subject matter of air traffic controller duties.
Radar tracking would be an entirely different subject matter, as would the user interface and alarm handling.
You can imagine entirely different class vocabularies in each model set and wholly different relationships
and policies within each. The internal workings of each domain become opaque to adjoining domains, with
only the fundamental services exposed via a variety of runtime and pre-runtime bindings.

A domain is a fully executable package that can be run and tested on its own. It may be modeled in
Executable UML, another modeling language such as Simulink, or simply hand coded. Pycca can knit
together Executable UML and domains hand coded in C. But if you do use another modeling language and
can output the result in C code, you can use pycca to fold in the code.

The many benefits to a domain-based organization of a system (such as reduced complexity, platform
independence, firewalling against changes, large-scale reuse, and so forth) are beyond the scope of this
book. However, there is one benefit pertinent to model translation worth emphasizing here: domains
provide a systematic way to bridge the chasm from the application level of abstraction to a complete
implementation. This is done through a process of delegation. What one domain cannot do, it delegates
to another. Where one domain lacks expertise, another domain must provide it. This chain of reliance
continues until we get to the point where there’s nothing left to delegate. In other words, we have a complete
running system.

For example, the models in the ATC domain knew when a controller was working too long without
a break. But they did not know how to manifest this warning in the real world. That could be the job of a
user-interface domain that can make events visible, or audible, or otherwise tangible in the real world.

Chapter 6 ■ an extended example

78

The UI domain should not have any built-in application-specific knowledge; otherwise, it would have little
utility for other applications. Assuming for the moment that the UI domain is implemented as an existing
set of libraries, there is no need to model ATC further. It will be necessary to configure only those UI libraries
with information supplied by the ATC models and then somehow wire ATC events to the appropriate UI
library calls. As you’ll see, pycca provides the somehow. On the other hand, a radar domain that knows all
about tracks, signals, echo profiles, and such may need to be modeled to support the ATC domain with
information about air traffic.

Ultimately, the ATC domain, and any other modeled domains, have their models run by the Model
Execution (MX) domain, where the execution of models has been delegated. To sum up, when one domain
delegates functionality, another domain must fill in the required services. This keeps happening until we hit
solid ground, such as the MX domain or another existing domain. There is no unspecified layer where magic
happens. All the software is deemed to live in a domain or is bridging code between domains.

From a model translation perspective, we need a way to specify the organization of models into
domains and how domains, modeled or otherwise, interact with one another to define a complete software
system. Almost all systems built from models consist of a combination of code generated from the models
and manually written code, either existing or newly written. To see how all that works, we need to examine
and generate code for a multidomain example, which is the purpose of our next case study.

The Automated Lubrication System
The Automated Lubrication System (ALS) is a service that controls the lubrication of mechanical equipment
such as a vehicle engine, gear train, or heavy-lifting machinery. Although the applications of automated
lubrication can vary considerably, the fundamental idea is a series of grease injectors, installed around and
within the user’s equipment and controlled according to a programmable cyclic schedule.

Now, were it not for the potential, and likelihood, that things could go dangerously wrong, this would
be a trivial system. But the ALS must carefully monitor pressures throughout the system to ensure that
equipment is not damaged and that lubrication is performed adequately. The system must react to events
that occur in the equipment and may permanently or temporarily shut down lubrication. For example, an
idling engine may require different lubrication than one that is revving at high revolutions per minute (rpm).

The operator must be notified about routine maintenance, such as refilling lubricant, as well as minor
and serious faults. And the operator must have a way to lock out unwanted injections when a piece of
equipment is under maintenance. Care is taken to isolate units of equipment so that one can be locked out
without shutting down lubrication everywhere. It is also necessary to support various diagnostic modes
so that the operator can experiment with different lubrication parameters. To support a variety of user
equipment and applications, critical operating parameters must be configurable.

As an example of one possible user application, Figure 6-1 shows how the lubrication of a wind turbine
might be configured.

Chapter 6 ■ an extended example

79

This wind turbine is lubricated in five locations delivered by three injectors. Injector 1 (IN1) is dedicated
to the gearbox designated as one unit of machinery (M1), while injector 2 (IN2) lubricates the main shaft,
designated M2. A third injector (IN3) lubricates a single location on the generator (M3). Note that injectors 1
and 3 not only share the same grease reservoir; they are identical designs. Injector 2, on the other hand, is a
different model of injector, designed to deliver a special lubricant under higher pressure for the main shaft.

Each injector is driven by a dedicated lubrication cycle. All injectors are rigged with sensors to detect
pressure. Lubrication is started and stopped by enabling and disabling each injector’s solenoid. Each injector is
supplied by a lubricant reservoir. Injectors 1 and 2 are delivering lubricant to multiple sites. The delivery lines
to these sites are not individually controllable, so each injection has the same effect on each line. Note also that
each injector is dedicated to a single unit of machinery. This makes it possible to enable a safety lockout on one
unit of machinery to stop lubrication without necessarily affecting the lubrication of neighboring machinery.

ALS Domains
Before jumping into the models, let’s take a look at the domains necessary to support the ALS, as shown in
Figure 6-2.

Figure 6-1. Injector layout diagram

Chapter 6 ■ an extended example

80

❶ At the top level, we have the Lubrication domain. It is concerned with the primary
purpose of our system, which is to manage the injectors to schedule cyclic lubrication. This
domain is modeled.

❷ The Lubrication domain needs up-to-date pressure values and events announcing key
pressure thresholds. It also needs a way to convert a modeled event such as “Turn injector
on” into an appropriate signal or command to the injector solenoids. Signal I/O (SIO)
provides this service as indicated by the dashed dependency arrow. The SIO domain is
shown in Chapter 7.

❸ The Lubrication domain signals alarm conditions, but needs a way to manage systematic
setting and clearing of alarms as well as management of alarm categories such as operator
warnings, errors, and log items. The Alarms domain handles this job.

❹ The Lubrication domain needs to know when to activate and deactivate lubrication
schedules. It also needs a way to signal completion of schedules and other events to a human
operator. It uses the UI domain for this purpose.

❺ The Alarms domain needs to display alarms to a human operator and allow alarms to be
cleared. It also uses the UI domain.

❻ All modeled domains are translated to run on the Model Execution domain and need its
services to implement model-level actions.

❼ The Model Execution domain is coded in C. Yes, the C language is also a domain. This
might seem strange at first, but C is its own distinct subject matter. It isn’t modeled in
Executable UML, of course, but the C language is modeled to some degree as a grammar.
The entire interface to the C domain is defined pre-runtime by writing a program. The more
you think about it, the more you realize there isn’t anything special at all about a program
language as a subject matter.

Figure 6-2. ALS domain dependencies

http://dx.doi.org/10.1007/978-1-4842-2217-1_7

Chapter 6 ■ an extended example

81

As you can see, this arrangement of domains creates a complete path from the application-level
abstractions of the Lubrication domain through generic utility services, model execution, and ultimately,
code. Each domain, modeled or not, represents a distinct subject matter. Note that domains yield a largely
platform-independent partitioning. The underlying hardware, devices, and user-interface technology can
change, but the subject matter organization remains intact. Contrast this with many traditional high-level
software architecture diagrams, which are almost always platform specific.

Whether you view the domain interactions in a layering manner or as dependencies between domains,
it is important to realize that neither view represents a functional partitioning of the system, also known as
functional decomposition. Subject matter partitioning is based on cohesive classes and relationships without
regard to specific functions. Each class model defines a vocabulary and rule set that defines the subject matter
of a domain. Dividing a system by common data and rules is markedly different from dividing it by common
functions. Domain partitioning is based on subject matter, and the analysis of the subject matter of a domain
seeks to find a consistent set of abstractions directed to the role the domain plays in the overall system. The
functionality of the system is manifested when the model executes, and any given functional feature of the
system generally requires multiple domains, each to play its role. For the ALS, injecting lubricant involves
both the Lubrication domain to determine the appropriate time and the SIO domain to actuate the hardware.
Both domains use the Model Execution domain to interact and are ultimately coded in C.

In Chapter 8, we show how domain dependencies are specified and then implemented using pycca. For
the remainder of this chapter, we examine the models in the Lubrication domain. Bridges to the SIO, Alarms,
and UI domain are shown as we examine the state models and activities.

Lubrication Domain
We start by examining the Lubrication domain. This is the application level that addresses the primary
business purpose of the system. All other domains are present to provide services directly or indirectly in
support of the Lubrication domain’s needs. Because our purpose is to coordinate and manage lubricant
injection, we would expect the application level to know about the injection equipment and the lubrication
scheduling subject matter.

Lubrication Class Model
For a more readable illustration, we break the Lubrication class diagram into two adjacent pieces,
Equipment and Schedule. This split is strictly for presentation purposes and has no implications on the
model itself.

http://dx.doi.org/10.1007/978-1-4842-2217-1_8

Chapter 6 ■ an extended example

82

Figure 6-3 shows the equipment part of the class model, which focuses on physical components.

Figure 6-3. Lubrication equipment classes

Lubricant is delivered to some type of equipment. This could be anything from a robot, to a jet engine,
to a heavy-lifting construction vehicle. From the perspective of the ALS, the function of the lubricated
equipment is not relevant, so it is represented as generic “machinery.” The particular values established for
the Lubrication Schedule and Injection Spec attributes are determined, in part, by the specific needs and
function of the lubricated Machinery. But this model is not concerned with the specifics of the Machinery
and leaves it to a human to define acceptable values for the attributes to meet those needs. Those attribute
values appear in the initial instance population for the domain.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ an extended example

83

Injector Designs
To accommodate a variety of injector designs, the model separates out those features that are particular to
an individual injector and those that vary from one design to another. This is done using R4 in a common
specification class modeling pattern. The detailed reasoning behind this pattern is covered in modeling
books—for example, Executable UML: How to Build Class Models by Leon Starr (Prentice Hall, 2001) – See
note about future update in the bibliography.

The Injectors in the example, IN1 and IN3, are both built to the same design specification, so they
share the same Injector Design instance. IN2 is a different model of Injector, with a distinct set of design
parameters, so it requires a separate Injector Design instance.

A Single Injection
We have enough of the model to consider the behavior of a single injection. To reduce the load on power
and the local computer and network resources, an injector sits quietly until commanded. It does not even
monitor internal pressure because it is unlikely that dangerous pressure will build up when the injector is
inactive. Figure 6-4 shows a typical injection sequence.

Figure 6-4. Example good and bad injection sequences

Chapter 6 ■ an extended example

84

The Wakeup command causes the injector to begin monitoring pressure for error-reporting reasons.
Ideally, the pressure built up from the previous injection will have dissipated by now, but that is not always
the case. If any high pressure is detected, we want to report a warning. Regardless of how much the pressure
fluctuates, at most one warning should be issued.

This monitoring interval ends when the Start command arrives. Now it’s time to inject lubricant. To
do this, the Injector Design.Min delivery pressure must be achieved and maintained for the Injector Design.
Good injection duration. Upon success, a good injection is reported, and the injector goes inactive again.
Otherwise, each time the pressure drops too low, it is necessary to wait until it builds up and try again. If
a Stop command is received, it means that too much time has elapsed. A bad injection is logged, and the
injector goes inactive.

Controlling Lubrication Cycles
Now that we have a model of the equipment, we need to consider the cyclic schedule by which the injectors
are controlled. At its simplest, a cycle of injection repeats with a specified delay between injections. A
period of time must also be specified to allow the injector to begin monitoring pressure. We can also specify
whether the cycle should run for a default count or continuously until stopped manually. A maximum
number of low-lube cycles that will be tolerated before shutting off lubrication is also part of the lubrication
program. Figure 6-5 illustrates the typical cyclic control session.

Figure 6-5. A cyclic schedule of lubrication

With these concepts in mind, we can move on to the other half of thee Lubrication domain class model,
which covers cyclic scheduling and control of injection. Figure 6-6 introduces two new classes to cover the
scheduling requirements.

Chapter 6 ■ an extended example

85

Lubrication Schedule
This is a program of cyclic lubrication that can be used with any model of Injector, although typically, the
values will be set with a particular injector model and usage in mind. Each has a name and most important,
the main interval, which determines the wait time between injections (Wait interval), and a prep interval,
which determines the delay between wake-up and start (Monitor interval), is defined. If the operation
should continue without any specific total, Default continuous operation is set to true. A default maximum
number of cycles can be specified (Default max cycles), but it has no function if continuous operation is the
default. Both of these defaults can be overridden in an Autocycle Session.

Autocycle Session
R1 designates a default Lubrication Schedule to use for each Injector. This association is consulted to choose
an instance to relate along R2, where only one Lubrication Schedule can be controlling an Injector at a
time, though the same Lubrication Schedule could be in use simultaneously. After a Lubrication Schedule
has been selected and related across R2, an instance of Autocycle Session is created. The Autocycle Session
tracks timing for a specific Injector along with a count of failed cycles.

The reason for R1 is that it is sometimes necessary to choose a nondefault Lubrication Schedule for
a few cycles, often for diagnostic purposes. In that case, the previous Autocycle Session is deleted, and a
new one, related to the nondefault Lubrication Schedule, is created (an Injector is controlled by only one
Autocycle Session at a time). Once the temporary session has completed, usually by running through a
requested number of cycles, control automatically resumes with the default Lubrication Schedule found
on R1.

Figure 6-6. The lubrication cycle classes

Chapter 6 ■ an extended example

86

Example Population
The scenario illustrated in Figure 6-1 is represented by the population shown in Figure 6-7.

Figure 6-7. Scenario’s initial instance population

State Models
The Autocycle Session, Injector, and Reservoir classes each have a state model. Let’s start by walking through
the Injector state model. Again, the model is split to make the discussion easier.

Injector State Model
Figure 6-8 shows the top half of the Injector state model.

Chapter 6 ■ an extended example

87

❶ The Injector is in the SLEEPING state when it receives a Wakeup event, which will be sent
from the Autocycle Session. The SIO domain is told to start monitoring sensor values for this
Injector.

❷ In the MONITORING state, the Injector isn’t doing anything, because SIO is doing all the
sensor detection work. But, from this state, we react to the Above dissipation pressure event
supplied by the SIO domain when it detects that pressure has risen above the Injector Design.
Max dissipation pressure.

❸ A Dissipation error should never be triggered more than once per cycle. To avoid raising
multiple Dissipation error alarms, this state checks and sets the Injector.Dissipation error
Boolean attribute value.

❹ When the Start event is received from the Autocycle Session, it is necessary to verify that
the target Machinery is not locked out before proceeding to inject.

❺ Either a Lockout or a Stop event will put the Injector back to sleep.

Figure 6-8. Injector state model excerpt: Sleeping to Active

Chapter 6 ■ an extended example

88

Figure 6-9 shows the bottom half of the Injector state model.

Figure 6-9. Injector state model excerpt: Active to Sleeping

❶ The Injector solenoid is energized by sending the Inject signal to the SIO domain. From
there, the Injector waits until the Injector Design.Min delivery pressure is attained.

❷ This event can be triggered as a result of the check in the BUILDING PRESSURE state or
supplied by SIO when the condition is detected.

❸ When the pressure is high enough, lubrication is occurring. To get a good injection, this
pressure must be maintained for the Injector Design.Good injection duration. This delayed
event will be sent if all goes well while the Injector is in this state.

❹ Otherwise, SIO will send the Below inject pressure event, which leads to the Not enough
pressure state, where the delayed event is canceled and the Reservoir is notified. From there,
the Injector continues to wait for the pressure to build in the next state.

Chapter 6 ■ an extended example

89

❺ If a long enough continuous injection is not achieved soon enough, the Autocycle Session
will trigger the Stop event, which moves the Injector to the Quit low pressure injection state,
possibly via the Cancel injection state, which cancels the Good injection delayed event.

❻ But if all goes well, the Good injection delayed event occurs, the solenoid is de-energized
via SIO, and the Injector goes back to sleep.

Autocycle Session State Model
The Autocycle Session state model is a bit large to display here, so we walk through a summary without the
action language visible. Figure 6-10 highlights the primary part of the life cycle. All of the grayed-out areas
pertain to suspend/resume and deactivation behavior.

Figure 6-10. Autocycle Session state model overview

Chapter 6 ■ an extended example

90

❶ Let’s start with an active Autocycle Session in the WAIT INTERVAL state. Here, we are
waiting for the delay between cycles to expire. According to R2 on the class model, there will
be one such session instance per Injector at all times.

❷ It is possible during this state that the session may be suspended. If this happens, we
will go sit in the WAIT SUSPENDED state until resumed or deactivated. We must cancel
the pending Get ready to lubricate delayed event, but not before saving the time remaining.
Upon resuming, we will reschedule the Get ready to lubricate event for whatever time was
remaining when we were suspended.

❸ The scheduled event occurs, and we advance to the MONITOR INTERVAL state. This is
where we send the Wakeup event to our Injector so it begins monitoring pressure. We now
schedule the delayed Lubricate event for the interval defined in our Lubrication Schedule
and wait. If suspension occurs in this state, the logic is similar to the previous, except that the
intermediate time waited will not be saved.

❹ The Lubricate event occurs, and we advance to the LUBE INTERVAL state. We send the
Start event to our Injector and wait for one of two events. Either our Injector succeeds and it
sends us the Good injection event, or too much time elapses and our scheduled Lube interval
ended event occurs. The lubrication interval is determined by the value of Injector Design.
Delivery window. In the first case, we can cancel the pending Lube interval ended event.

❺ In the time-out case, we advance to the LOW PRESSURE LUBRICATION state, where we
tell the Injector to stop and increment the Failed cycles count. The Injector will respond with
either a Good injection or a Low pressure injection event. The first one can happen if our Lube
Interval times out at roughly the same instant that the Injector succeeds. Either way, it is
critical that we wait here for confirmation that the Injector has stopped before proceeding so
that we don’t lose synchronization with the Injector states.

❻ Either way, we advance to the Count cycle state, where the cycle is counted, and we check
to see whether too many failed (low-lube) cycles have occurred. If so, we send the Too many
low lube cycles event to our Reservoir so it can update its status. If we are operating in a
continuous mode (nonstop repeating cycles), we go on to the next cycle. Otherwise, we see
whether all requested cycles have been completed. If not, we also go on to the next cycle.
Otherwise, with all requested cycles completed, we proceed to the NOT ACTIVE state.

❼ Now let’s say that the user decides to run a different Lubrication Schedule on this Injector.
We will require that the session is in the NOT ACTIVE state for this request to be processed.
(It’s ignored in all other states.) A Change Schedule event will be received with the name
of the new Lubrication Schedule. This puts us in a deletion state, where we fire off the New
session creation event just before the present instance disappears. Entry into the NOT ACTIVE
state will always start by comparing the currently controlling Lubrication Schedule with the
default on R1. If they don’t match, it means that a temporary schedule has been running. This
will result in a New session creation back to the designated default Lubrication Schedule.

❽ A new instance of Autocycle Session is created with the input Schedule and Injector
instances linked together and placed in the NOT ACTIVE state.

❾ The user issues an Activate event along with the desired mode (continuous or not) and
a desired cycle count, which should be greater than zero if the continuous mode was not
requested. We’ll verify that we aren’t locked out by our Machinery before proceeding. If not
locked out, we’ll set the appropriate attributes and jump into the WAIT INTERVAL state. Note
that a lockout that occurs in any other state will be detected by the Machinery that signals the
Deactivate event to us.

Chapter 6 ■ an extended example

91

Reservoir State Model
The Reservoir keeps track of its fill states to provide useful alarms to maintenance. During an ordinary fluid
cycle, we start out with a normal level of fluid and then, driven by Injector events, descend through the states
of LOW, VERY LOW, and EMPTY. Figure 6-11 shows the complete state model for the Reservoir class.

Figure 6-11. Reservoir state model diagram

Class Collaboration
The class collaboration diagram provides a nice overview of asynchronous (signal/event) and synchronous
(methods invocation) interactions among state models within a domain. Class collaboration is not
considered a separate facet of a domain model, because it can be derived from the contents of the three
facets. But it is quite useful for devising a clean pattern of control within a domain (see Figure 14.8 on p. 245
of Executable UML: A Foundation for Model-Driven Architecture for a more complex example of control
collaboration). Figure 6-12 shows how the classes of the Lubrication domain interact.

Chapter 6 ■ an extended example

92

❶ These are events signaled in the Autocycle Session state model and detected in the
Injector state model.

❷ This is a method defined on the Autocycle Session class. See Figure 6-13 for the method
activities.

❸ These are signals issued by Injector actions that are translated to corresponding SIO
elements. The collaboration diagram makes no assumptions about the internal elements
or interfaces of external domains beyond basic services provided. All we can tell from this
diagram is that the events must be mapped to something in the SIO domain.

❹ These events occur in the Injector state model and must be triggered by SIO. The specific
mechanisms within SIO that accomplish this are unknown in the Lubrication domain.

❺ Events from an instance to itself are not shown on the collaboration diagram. In this case,
however, the event is sent from one instance of Autocycle Session to a different, newly created
instance of the same class.

❻ A processed signal value in the SIO domain is mapped to the Pressure attribute across the
domain boundary. This attribute is read-only within the Lubrication domain.

Figure 6-12. Class collaboration within the Lubrication domain

Chapter 6 ■ an extended example

93

Class Method and Other Activities
Activities in a domain are not limited to those within states. A class method is an instance-based activity
defined on a class. A domain operation is an activity defined as part of a domain interface. An external
domain can invoke another domain’s operation to invoke a class method, for example, without interacting
with any state machine.

Figure 6-13 shows the methods defined on each of the Lubrication domain classes.

Figure 6-13. Class method activities

State Tables
A table for each state model must be completed before we are ready for pycca. The tables are filled out
during the modeling process, and they must be complete before we begin specifying the translation. Some
drawing tools will do this work for you.

As the Autocycle Session and Injector state tables are rather large, we examine selected excerpts in this
chapter. You can download the tables as fully commented spreadsheets from the book’s website if you wish
to study them further.

Figure 6-14 is the first excerpt from the Injector state table.

Chapter 6 ■ an extended example

94

You may have noticed that some state names in the diagrams are named with all uppercase letters,
whereas others are mixed case. This is an informal style for distinguishing wait and transitory states. A wait
state is a state with an activity that does not send an event to itself to force a transition to another state.
Instead, an instance that has completed its activity will either process a pending nonlocal event (an event
not from this instance or delayed) or just wait for such an event to occur. Less formally, you can think of wait
states as those in which an instance is waiting on a process to complete in the physical world, in some other
domain or in some other instance, or for a delayed event to happen.

This means that all local events (nondelayed, self-to-self events) are marked Can’t Happen (CH) for
wait states. That’s because a local event is generated in another state and processed by that same state, so it
can’t happen here. So we can exclude all the local events, obtaining a smaller state table, and concentrate on
nonlocal events.

Note the inclusion of the single delayed Good injection event. We can mark it as Can’t Happen in all
states other than INJECTING AT PRESSURE if we can demonstrate that the event will either expire or be
canceled before entering any of those other states. The format of the state table forces consideration of this
possibility that is so easily overlooked otherwise!

Figure 6-15 shows the second state table excerpt for the Injector.

Figure 6-14. Injector wait states

Chapter 6 ■ an extended example

95

All states in the preceding table are transitory, which means that each state is exited on a local
(nondelayed, self-to-self) event. A transitory state makes it possible to execute an activity on one transition
path leading to a wait state, thus allowing the possibility of other transition paths to that same state where
different or possibly no activities are performed. Often transitory states are used to perform if-then logic
leading to alternate exit transitions.

Note that each transitory state responds only to an event it sends to itself, for the following reasons:

•	 The event will always be signaled by the state activity.

•	 Events that an instance signals to itself are dispatched before any other event.

This means that all other events may be marked CH, as shown in the preceding table excerpt. Because
CH will be marked for all the nonlocal events shown in the first excerpt, there isn’t much insight to be gained
from viewing that part of the table.

Figure 6-15. Injector transitory states

Chapter 6 ■ an extended example

96

Figure 6-16 shows the wait state excerpt of the Autocycle Session class.
The three delayed events are highlighted in the rightmost columns. Care has been taken to ensure that

each delayed event is managed so that it does not occur in any state where it is not helpful.

Figure 6-16. Autocycle Session wait states

Figure 6-17. Autocycle Session transitory states

Chapter 6 ■ an extended example

97

Finally, Figure 6-17 shows the transitory states of the Autocycle Session class.

Figure 6-18. Reservoir state table

The Reservoir state table is small enough to show entirely in Figure 6-18.

Translating the Lubrication Domain
We undertake the translation of the Lubrication domain in the same way as we translated the ATC
domain—namely, we transcribe the three facets into the pycca DSL. We apply the same decision process we
used for the ATC domain to determine the attributes and how references between pycca classes will work.
The state model is transcribed into transition and state statements, and the action language for each state
is translated into C with the help of the pycca macros to handle model-level requests.

Rather than repeat sequences that have already been seen, we will focus on pycca constructs that have
not already been presented. As always, the complete model and its translation are available as part of the
online materials for the book. In this section, we start with translating associations that have an association
class, followed by the translation of creation events and other operations as they arise in the Lubrication
domain.

Translating Association Classes
In Chapter 3, we discussed implementing associations by decomposing the link storage based on each
direction of traversal of the association. This was illustrated in the case of a simple association in Figure 3-5.

Referring to Figure 6-6, R2 is formalized by the Autocycle Session class. Not only does this class have
referential attributes to formalize R2, but it has descriptive attributes and a state model. Figure 6-19 shows
how R2 is decomposed into two sides with the Autocycle Session class serving as an intermediary.

http://dx.doi.org/10.1007/978-1-4842-2217-1_3
http://dx.doi.org/10.1007/978-1-4842-2217-1_3#Fig5

Chapter 6 ■ an extended example

98

The R2 association has several interesting properties:

•	 Each Autocycle Session instance corresponds to an instance of the R2 association
itself.

•	 Autocycle Session has two singular, unconditional references, one to Injector and
one to Lubrication Schedule.

•	 The conditionality and multiplicity of the two sides are inverted in the
decomposition. So Lubrication Schedule is related to Autocycle Session as “0..*” and
Injector is related to Autocycle Session as 1. This is a consequence of the singular,
unconditional reference from Autocycle Session to each participant of R2.

When translating the Lubrication domain, we use the decomposed form of R2 to determine how to set
up the references. For the Autocycle Session class, this appears as follows:

class Autocycle_Session
 reference R2_INJ -> Injector
 reference R2_LBS -> Lubrication_Schedule

 # Other attributes and state model for Autocycle Session
End

Navigating the R2 association is also a two-step action. So, to navigate from an instance of Injector to an
instance of Lubrication Schedule requires the following:

// Assuming inj holds are reference to an injector instance.

ClassRefVar(Lubrication_Schedule, sched) = inj->R2->R2_LBS ;

Figure 6-19. Decomposition with an association class

Chapter 6 ■ an extended example

99

Navigating Associative Relationships
In the previous section, we showed a simple example of navigating an associative relationship. In that case,
the multiplicity from the participating class to the association class was singular. In this section, we show
a many-to-many associative relationship using a linked list to implement the linkage with the association
class. Recall that in pycca, we treat associative relationships as being composed of two separate paths.
Consequently, the translation of navigation for an associative relationship requires two parts. Consider the
association shown in Figure 6-20.

Figure 6-20. Navigating an associative relationship

The decomposition of the associative relationship results in singular references to each participant in
the association class:

class Track
 reference R2_Satellite -> Satellite
 reference R2_Station -> Station
end

The participants have their own links to the association class. Here we have chosen linked lists in
anticipation that the association is dynamic:

class Satellite
 attribute (char const *ID)
 reference R2_Satellite ->>l Track
end

class Station
 attribute (char const *Name)
 reference R2_Station ->>l Track
end

Note that we have appended the class name to the reference names for each participant. We need
to have different reference names because pycca will use those names directly in the generated structure,
and we don’t want to have a naming conflict. We have chosen to append the class name because it is a
convenient convention that lets us easily keep track of where the references originate or terminate.

Chapter 6 ■ an extended example

100

Pycca will generate the following structures for the participants:

struct Satellite {
 struct mechinstance common_ ; // must be first !
 char const *ID ;
 rlink_t R2_Satellite ;
}

struct Station {
 struct mechinstance common_ ; // must be first !
 char const *Name ;
 rlink_t R2_Station ;
}

The preceding rlink_t R2_XX members serve as the terminus of a linked list and have the following
structure:

typedef struct rlink {
 struct rlink *next ;
 struct rlink *prev ;
} rlink_t ;

The Track structure will have linked list pointers inserted into its structure for the linked list references
defined by both the Satellite and Station classes:

struct Track {
 struct mechinstance common_ ; // must be first !
 struct Satellite *R2_Satellite ;
 struct Station *R2_Station ;
 rlink_t R2_Satellite__links ; // ❶
 rlink_t R2_Station__links ; // ❷
} ;

❶ Track instances are linked together from the Satellite side, and this list contains those
instances of Track related to an instance of Satellite.

❷ Likewise for the Station instances. Note that the two linked lists plus the singular
reference to the other participant gives us the many-to-many representation required by the
association.

To navigate the association from Satellite to Station, we must first navigate to Track instances and
from there follow the singular reference to a Station instance. Because the R2 association is many-to-many,
we can have many Track instances related to a given Station instance, and so we need an iteration loop as
we navigate from a Satellite instance to the related Track instances.

For a given instance of Satellite, to print the names of all the Stations, we would use the following
code:

Chapter 6 ■ an extended example

101

// ... assuming self is a reference to a Satellite instance ...

rlink_t *tracklink ; // ❶

PYCCA_forAllLinkedInst(self, R2_Satellite, tracklink) { // ❷
 ClassRefVar(Track, tracki) = PYCCA_linkToInstRef(tracklink,Track, R2_Satellite) ; // ❸
 ClassRefVar(Station, stationi) = tracki->R2_Station ; // ❹
 printf("Satellite, %s, is being tracked by, %s\n",
 self->ID, stationi->Name) ;
}

❶ When using linked lists, we need a linked list pointer variable to hold our place in the
iteration.

❷ Pycca supplies a macro to set up the iteration loop.

❸ The pointers in the linked list from the Satellite instance point to the R2_Satellite__
links member of the Track instance and not to the beginning of the Track instance. What
we really want is the pointer to the beginning of the instance element, because that is what
an instance reference truly is. Pycca supplies a macro to perform the address arithmetic to
get us from the R2_Satellite__links member back to the Track instance reference. This is a
common idiom when an object can be linked onto multiple linked lists.

❹ Finally, we can follow the singular link in the Station direction.

Creation Events
The two techniques for creating a class instance are synchronous creation and asynchronous creation. In
synchronous creation, an activity makes a direct request to the MX runtime to create an instance, and that
request is fulfilled immediately. The pycca macro that supports this is PYCCA_createInstance(). Class
instances created this way are placed in their default initial state (if they have a state model), but the activity
of the state is not executed. For example, all the instances that make up the initial instance population
are considered to have been created in this way (there is no runtime cost for creating the initial instance
population, because pycca arranges for the initial values to be placed in memory at compile time).

For the asynchronous case, instance creation is triggered by signaling a special creation event. The
activity that signals this event continues to execute to completion (as per our usual execution rules). At some
time in the future, when the event is dispatched, a new class instance is created, and the event is received
by the newly created instance. From the newly created instance’s perspective, this is just a normal event.
Consequently, the newly created instance makes a state transition, and the activity associated with the new
state is executed (again per our usual execution rules of state machines).

From the modeling point of view, both techniques for instance creation have their uses. For the
Lubrication domain, asynchronous creation is used to switch lubrication sessions. If you look back at
Figure 6-10, at the top of the diagram the New session event causes a transition from a solid circle into the
Creating state. The solid circle represents an initial pseudo-state, and the New session event is a creation
event. The MX runtime will ensure that when the New session event is dispatched, an instance of Autocycle
Session is created, it is placed in the initial pseudo-state, and the transition to the Creating state is taken,
causing the activity to be executed.

Pycca has direct support for specifying a creation event. Next we show the required pycca statements.
We have omitted much of the surrounding domain definition as well as the details of the Autocycle Session
class definition to focus on the creation event:

Chapter 6 ■ an extended example

102

... other parts of the Lube domain

class Autocycle_Session
 # ... attribute definitions, reference definitions, etc.

 machine
 default transition CH # ❶
 initial state Creating # ❷

 transition . - New_session -> Creating # ❸

 # ... remaining parts of the state model definition
 end
end

... other parts of the Lube domain

❶ As usual, we specify a default transition of CH and the ignored transitions explicitly.

❷ Just because a state model has creation events does not mean it cannot be created
synchronously. We have to specify the default initial state when instances of Autocycle
Session are synchronously created.

❸ The . (period) character designates the initial pseudo-state. Here we say that the New_
session event transitions from the initial pseudo-state to the Creating state, and that makes
it a creation event.

It is possible for a state model to have multiple creation events, although that is not a common situation.
It is also possible to signal New_session as an ordinary transitioning event, although that does not happen in
the Autocycle Session state model. It is also possible to signal an ordinary transitioning event as a creation
event. That results in a CH transition, and the pycca runtime will respond with a fatal error.

Signaling a creation event translates to a slightly different code sequence. In the Autocycle Session state
model, it is the Spawn new session state that signals the New session event:

New session(in.Schedule,
 Injector: /R2/Injector.ID) -> Autocycle Session
 // This event will create, and be delivered to,
 // a new instance of Autocycle Session to replace
 // this one being deleted.

The action language uses syntax to imply that the New session event is signaled directly to the Autocycle
Session class. This is a convenient way to distinguish a creation event, as signals are normally directed at
class instances. The translation of this action language follows:

... other parts of the Lube domain

class Autocycle_Session
 # ... Autocycle Session attribute definitions, reference definitions, etc.

 machine
 # ... other parts of the Autocycle Session state model definition

Chapter 6 ■ an extended example

103

 state Spawn_new_session(
 char const *schedule)
 {
 MechEcb new_session =
 PYCCA_newCreationEventForThisClass(New_session, self) ; // ❶
 PYCCA_eventParam(new_session, Autocycle_Session, New_session, schedule) =
 rcvd_evt->schedule ; // ❷
 PYCCA_eventParam(new_session, Autocycle_Session, New_session, injector) =
 PYCCA_idOfRef(Injector, self->R2_INJ) ;
 PYCCA_postEvent(new_session) ; // ❸

 self->R2_INJ->R2 = NULL ; // ❹
 }
 # ... remaining parts of the state model definition
 end
end

... other parts of the Lube domain

❶ This allocates an ECB and marks the event as a creation event.

❷ Because the event carries parameters, we need to fill in the values. When there are
no parameters, we use the pycca macro PYCCA_generateCreation() to handle the entire
operation.

❸ Posting the event finishes the event-signaling process.

❹ We need to clean up a reference from the Injector instance because this Autocycle_
Session instance is about to be deleted. The next section discusses this automatic instance
deletion.

Asynchronous Instance Deletion
Just as there are two ways to create class instances, there are also two ways to delete them. An activity may
synchronously delete an instance by using the PYCCA_destroyInstance() macro. When the underlying
runtime function returns, the instance no longer exists.

Referring to Figure 6-10 again, we notice that there is a transition from Spawn new session to a small
circle and that the transition has no event label. The small circle represents a final pseudo-state. The
transition to a final pseudo-state designates the Spawn new session as a final state. When an instance enters
a final state, it is deleted after its activity is run. The MX runtime handles deleting the instance automatically.
Pycca supports declaring any state to be a final state. For the Autocycle Session class, it appears as follows:

... other parts of the Lube domain

class Autocycle_Session
 # ... attribute definitions, reference definitions, etc.

 machine
 # ... other parts of the state model definition

Chapter 6 ■ an extended example

104

 final state Spawn_new_session

 # ... remaining parts of the state model definition
 end
end

... other parts of the Lube domain

Because the instance is deleted when a final state activity is run, outgoing transitions from a final state
are not allowed, and pycca will flag an error if one is defined.

Finally, we can return to the last line of code in the Spawn_new_session activity:

self->R2_INJ->R2 = NULL ;

It is necessary to NULL out the reference from the Injector instance to the Autocycle_Session because
Spawn_new_session is a final state and about to be deleted. We do not want the Injector instance referring
to something that is about to go away. We don’t have to deal with the references made by the Autocycle_
Session instance because it will be deleted and therefore can’t refer to anything.

When the creation event is dispatched and a new Autocycle_Session instance is created, the activity
of the Creating state will set the new references properly. In a time window between the end of the Spawn_
new_session activity and the dispatch of the New_session creation event, the conditionality of the references
implied by the R2 association is violated. That is, there is a time when the Injector instance is not controlled
by any Lubrication Schedule. This does not violate our execution rules, because we have signaled the event
that, when it is dispatched, will bring all the references back to a consistent state. You can think of this
sequence as being part of a larger transaction on the data model, and any integrity rule checks are deferred
until the transaction is completed, which occurs when the creation event is dispatched. The ST/MX runtime
code does not actually perform any of these integrity checks, but other, more capable model execution
domains might. For example, a model execution domain that uses a relational database management system
to manage the domain data can easily provide transaction-based integrity checking.

Operations
Most of the algorithmic processing in a domain happens in the state activities. However, there are other
means to factor processing into invocable units. For example, common code executed in multiple state
activities should be factored into a single place. In this section, we show how code can be grouped into
various types of operations.

Class Methods
A domain may define class methods to encapsulate processing performed on a particular class instance. For
the Lubrication domain, several class methods were shown in Figure 6-13.

Pycca supports defining class methods as part of the specification of a class. Here we show the
translation of the Max system pressure method from the Injector class:

Injector.Max system pressure()

 ALARM. Set pressure error()
 /R2/Autocycle Session.Deactivate()

Chapter 6 ■ an extended example

105

Reacting to the lubricant pressure exceeding its maximum requires raising an alarm and invoking a
method on the related Autocycle Session instance. These two actions need to be performed together and so
are part of a single method.

In pycca terms, a class method is known as an instance operation and is defined as shown here:

... other parts of the Lube domain

class Injector
 # ... Injector attribute definitions, reference definitions, etc.

 instance operation Max_system_pressure() {
 ExternalOp(ALARM_Set_pressure_error)(PYCCA_idOfSelf) ; // ❶
 ClassRefVar(Autocycle_Session, acs) = self->R2 ; // ❷
 InstOp(Autocycle_Session, Deactivate)(acs) ; // ❸
 }

 # ... remaining parts of the Injector definition
end

... other parts of the Lube domain

❶ The ExternalOp() macro hides the naming conventions used by pycca to resolve external
operation names.

❷ Follow the association reference to obtain the instance of the Autocycle_Session that
must be deactivated.

❸ Because this is C, we must pass the reference to the instance explicitly. A more object-
oriented language would probably do this for us. The InstOp() macro hides the naming
conventions used by pycca for instance operations. Pycca uses a number of naming
conventions to ensure that function names are unique within the generated C file.

Domain Operations
The Lubrication domain depends on the Signal I/O domain to detect when the pressure on an injector
exceeds its maximum. When that happens, the Max system pressure method needs to be invoked for
the overpressured Injector instance. To accomplish this, we need a function that can be invoked on the
Lubrication domain that will find the correct instance of Injector and invoke the Max system pressure
method.

In pycca terms, an operation that forms part of the service interface for a domain is called a domain
operation. Domain operations provide the visible services that may be invoked on a domain at runtime.
A domain starts in a well-known state defined by the initial instance population and the initial states of
the active class instances. How a domain evolves over time depends on the initial configuration as well as
the invocations to the service interface provided by the domain operations. You may think of the domain
operations as forming an API for the domain but, unlike a conventional programming interface, a domain
can come with a significant initial configuration and is not necessarily completely configured at runtime.

Chapter 6 ■ an extended example

106

The following shows the domain operation definition that SIO may use to declare that the maximum
pressure on an Injector has been exceeded:

... other parts of the Lube domain

domain operation
Injector_max_pressure(
 InstId_t injId)
{
 PYCCA_checkId(Injector, injId) ; // ❶
 ClassRefVar(Injector, inj) = PYCCA_refOfId(Injector, injId) ; // ❷
 if (IsInstInUse(inj)) { // ❸
 InstOp(Injector, Max_system_pressure)(inj) ;
 }
}

... other parts of the Lube domain

❶ Injectors are identified by a small integer number at the domain interface. Here we use a
pycca macro to make sure we are not handed an out-of-bounds identifier.

❷ Convert the identifier to an actual pointer reference to the requested Injector.

❸ We must make sure the instance is not an empty storage slot.

External Operations
As domain operations provide the service interface for a domain, an external operation declares a service
dependency for a domain. Each external operation that appears in an activity has a corresponding definition
of its invocation interface. The following is an example of two external operation definitions:

... other parts of the Lube domain

external operation
SIO_Inject(InstId_t injectorId)
{
}

external operation
SIO_Stop_injecting(InstId_t injectorId)
{
}

... other parts of the Lube domain

The Lubrication domain will invoke these operations at the appropriate time to start and stop lube
injection. How starting and stopping injection happens in the real world has been delegated to another
domain, and the Lubrication domain assumes it will happen.

Notice that no code is included in the definition. Pycca will not emit code for the external operations
themselves; that is typically supplied by bridge code. However, pycca will accept code as part of the external
operation definition, and certain companion tools to pycca can create stubs for the external operations by
using the included code.

Chapter 6 ■ an extended example

107

We will have more to say about domain operations and external operations when we get to Chapter 8.
There we will use the domain and external operations to bridge the Lubrication and Signal I/O domains.

Class-Based Operations
Pycca supports one more type of grouping for processing, the class operation. A class operation is similar
to an instance operation, except that no instance reference is passed to the function. It is conceptually
similar to class-based operations in conventional object-oriented programming languages.

Class operations are not part of the domain model (and, more to the point, they are intentionally
not supported in xUML). They are strictly an implementation artifact. In a domain model, all operations
on classes are provided by constructs of the action language. For example, creating and destroying an
instance of a class is provided for by the action language. It is also possible in the action language to find a
subset of the class instances based on the value of an expression. All the operations on classes are provided
generically by the action language constructs.

When those action language constructs are translated, however, we must devise an implementation to
accomplish the action language intent. To illustrate this, we will consider the Creating state of the Autocycle
Session. Recall that in Figure 6-10, the Creating state is the one entered upon receiving the New session
creation event. Its activity is shown here:

// Link Schedule and Injector together to create this instance
Lubrication Schedule(Name: in.Schedule) &R2 Injector(ID: in.Injector)
Created -> me

The first line of the activity says to find the instance of Lubrication Schedule whose name is passed as a
parameter and relate it across R2 to the instance of Injector whose ID is also given as a parameter. To do this,
we need to search the instances of Lubrication Schedule to find the one of interest.

When considering how to translate this, two broadly different approaches can be taken:

•	 We can write a generic runtime expression evaluator that would operate across the
instances of an arbitrary class and evaluate an expression that contains variable
terms bound to the class attributes.

•	 We can write a type-specific piece of code suitable to evaluate a particular expression
across the instances of a particular class.

For the types of target systems we are considering, and because we are coding in a statically typed
language, we always choose the second approach. To write a generic runtime expression evaluator is a large
and complicated task, and the amount of code required has to be amortized across the entire application to
make it worthwhile. Unlike a database management system that must support ad hoc queries on the data
set that are not known in advance, the data queries for a domain are fixed by the activities in the model and
known at translation time.

Usually, the number of distinct expressions that must be evaluated is small, and writing a type-specific
piece of code for each one usually results in less code than a generic solution. Some object-oriented
implementation languages support type-safe generic programming (for example, C++ using templates), and
in those languages a simple search may require only “a one-liner.” For C, we will have to roll up our sleeves
and code each expression evaluation on its own or, as we see with pycca, perform some preprocessor macro
gyrations.

http://dx.doi.org/10.1007/978-1-4842-2217-1_8

Chapter 6 ■ an extended example

108

In pycca, implementing a search on class instances is most easily realized as a class operation. For
the Lubrication Schedule class, the search for a matching schedule appears as follows:

... other parts of the Lube domain

class Lubrication_Schedule
 # ... Lubrication Schedule attribute definitions, reference definitions, etc.

 class operation findByName(char const *name) : (struct Lubrication_Schedule *) { // ❶
 ThisClassRefVar(ls) ; // ❷
 PYCCA_selectOneStaticInstOfThisClassWhere(ls, strcmp(ls->Name, name) == 0) // ❸
 return ls == ThisClassEndStorage ? NULL : ls ; // ❹
 }

 # ... remaining parts of the Lubrication Schedule definition
end

... other parts of the Lube domain

❶ The return type is indicated after a colon (:) character. In this case, we return a pointer to a
Lubrication_Schedule instance.

❷ We need a variable to act as an iterator for the search and to hold the result.

❸ The operation is common enough that pycca provides a macro that expands to perform
a linear search of the class instances. The second argument to the macro is a Boolean
expression that evaluates to true if the instance matches.

❹ Because the Name attribute is an identifier, we know that there can be at most one
instance of Lubrication Schedule that matches the input name value. If the iterator reached
the end of the storage for class instances, we use NULL to indicate we did not find a match.

The following is the translation of the Creating state activity with the invocation of the findByName()
operation:

... other parts of the Lube domain

class Autocycle_Session
 # ... attribute definitions, reference definitions, etc.

 machine
 # ... other parts of the state model definition
 state Creating(
 char const *schedule,
 unsigned injector)
 {
 ClassRefVar(Lubrication_Schedule, ls) =
 ClassOp(Lubrication_Schedule, findByName)(rcvd_evt->schedule) ; // ❶
 assert(ls != NULL) ; // ❷
 ClassRefVar(Injector, inj) = PYCCA_refOfId(Injector, rcvd_evt->injector) ;
 self->R2_LBS = ls ;
 self->R2_INJ = inj ;
 inj->R2 = self ;

Chapter 6 ■ an extended example

109

 PYCCA_generateToSelf(Created) ;
 }

 # ... remaining parts of the state model definition
 end
end

... other parts of the Lube domain

❶ Again, pycca provides a macro to hide the naming conventions used.

❷ We insist that a Lubrication_Schedule instance is found.

The search for a matching schedule implemented by the findByName() class operation is a
simple linear search across the array of Lubrication Schedule instances. That is what the PYCCA_
selectOneStaticInstOfThisClassWhere() macro provides. For a small number of instances, this is
probably the best approach. But what happens if the number of instances of Lubrication Schedule is
substantially larger, say 1,000? If the number of instances is large and the frequency of invoking the search is
high, then the linear search technique could become a performance bottleneck.

We are obliged to state our strongly held belief that performance optimizations should always be based
on performance measurements and not thought experiments (a.k.a. guessing). That said, we can code the
findByName() operation to use a search algorithm that displays better performance characteristics when
faced with larger instance populations. For example, we can take advantage of pycca’s placement of initial
instances into their storage array in the order they are defined. If we define the instances of Lubrication_
Schedule in alphabetical order by the Name attribute, we can use the standard C library function,
bsearch(), to find a matching instance using a binary search. Because the search is for equality of an
identifier, another alternative would be to keep a parallel hash map data structure and use a hash function to
compute an index into an array of pointers to the class instances corresponding to where the Name attribute
hashes. If the number of instances of Lubrication Schedule is static (as we have translated it here), it is
possible to compute a perfect hash function for the schedule names. Searching is a well-researched aspect of
computer science, and we want to select the appropriate algorithms based on the computational demands
of the particular situation; that selection can have a large impact on the quality of the implementation.

It is important to recognize that regardless of how the search is performed, the model logic of the
activity is preserved, and the model is nondestructively transformed into the implementation. The action
language states that the instance must be found. How that is accomplished is strictly the purview of the
implementation, and choosing one search technique over another has zero impact on the logic specified by
the model.

Summary
An Automatic Lubrication System (ALS) was introduced, featuring multiple domains. A domain is an
executable package of content with a set of semantics at the same level of abstraction. Organization by
domain is orthogonal to the practice of modeling. A domain may be either modeled or hand coded.
Domains are organized by a principle of delegation. Whatever content is excluded from consideration in one
domain may be delegated to another. Ultimately, all concepts essential to a software system must be present
in a domain. To make implementation possible, the chain of domain delegation must always culminate in
one or more existing implemented domains.

The ALS consists of the Lubrication, Signal I/O (SIO), User Interface (UI), and Alarms domain. These
run on top of the model execution domain that is implemented in C. This chapter described the topmost
domain, Lubrication.

Chapter 6 ■ an extended example

110

The Lubrication domain manages a set of injectors according to a programmable cyclic schedule.
System pressure and safety lockouts are monitored as part of the lubrication process. Interaction among the
state models within the Lubrication domain and external domains are coordinated with a class collaboration
diagram.

Various state actions rely on services supplied by the SIO and Alarms domains. Additionally, the UI
interacts by interacting with the Autocycle Session class.

Translation examples of yet unused constructs in pycca were shown. This included signaling creation
events and factoring code into instance, domain, external, and class operations.

111© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_7

CHAPTER 7

Sensor and Actuator Service
Domain

In the previous chapter, we presented the Lubrication domain, which is part of an Automatic Lubrication
System (ALS). The Lubrication domain delegates to a Signal I/O (SIO) domain controlling and obtaining the
necessary data about the lubricated machinery. In this chapter, we describe the SIO domain and show how
sensing and control over the external world is accomplished.

From the point of view of the whole ALS, we are producing side effects in the outside world. Indeed, for
many systems, it is just these side effects that give the system its utility and purpose. Engineers have devised
many ways for happenings outside a computer system to be sensed and controlled by a computer system.
Despite the large variety of techniques, there are patterns, rules, and policies that apply to handling sensors
and actuators. Sensing and controlling signals form the subject matter we model for this domain.

Because SIO must directly address aspects of the physical world, it may appear that this domain would
need to specify platform-specific details. Our model contains abstractions of the real-world electronics
that the system hardware presents to us, yet still contains no artifacts of the software platform on which the
system executes. For example, we acknowledge that transducers in the outside world produce electrical
signals that are converted into digital quantities and that technology forms the basis for interfacing physical
quantities to the system. Our SIO model contains abstractions of that real-world fact. But the model artifacts
of those abstractions do not include any reference to the specifics of the computing platform on which the
system ultimately runs. Those specifics are, of course, supplied by the translation.

The role of the SIO domain in the ALS is to supply services to the Lubrication domain that it needs
to accomplish proper lubrication of the machinery. The abstractions that capture the requirements of
lubricating machinery are quite different from those of sensing and controlling the external environment.
We say there is a separation of concerns between the two domains, as shown in Figure 7-1. The Lubrication
domain is concerned with sequencing computation to cause machinery to be lubricated, without
worrying about how to acquire the data it needs to perform those computations. The SIO domain is
concerned with conditioning and transporting control and data across the system boundary, without
caring what the data and control mean. As we show in the next chapter, pycca provides mechanisms for
integrating the two worlds.

Chapter 7 ■ SenSor and aCtuator ServiCe domain

112

We sometimes characterize service domains such as SIO as being at a lower level. We do not use that
term in the traditional sense, where higher/lower indicates a relative degree of detail. By lower level, we
mean that the subject matter of a domain is less concerned with the business purpose of the application
and instead focused on other enabling aspects of the total solution. In fact, a modeled domain cannot be
more or less detailed. Every modeled domain is constructed with the same model elements: classes, states,
actions, and so forth. To execute, all the elements must specify the same degree of detail. The level of detail is
constant, and it is only the subject matter that varies across domains.

Separation of concerns is a tool we use to divide, conquer, and solve the larger problem at hand.
By attending to only certain aspects of the larger problem, we find it easier to construct solutions. The
separation has the added advantage of allowing us to construct the two domains simultaneously and of
potentially reusing the SIO domain in another application that needs control over the outside world.

Of course, creating a separation means that it must at some time be filled. Again, we must emphasize
that ignoring an aspect of a problem does not make it mysteriously disappear. We simply note that
experience shows that “thinking inside the box” and then “connecting the boxes” together yields a more
comprehensible and flexible solution. In the next chapter, we show how the Lubrication and SIO domains
are connected back together via a process known as bridging.

Domain Overview
We do not describe all the aspects of the SIO domain in this chapter. The complete domain description and
its translation is available as part of the online materials for the book. Our focus here is on translation, so we
have picked a few areas of the domain that need to use features of pycca that you have not seen already.

The primary abstraction presented by the SIO domain is the I/O Point. An I/O Point is an idealized
view of the way data values are passed between the system and the external world. Clients of SIO read a
point to obtain a value of a sensor, and write to a point to assert control over the outside world. I/O Points
are given simple small integer identifiers, such as 2 or 27, and clients use these identifiers to read or update
the point value.

Figure 7-1. Separation of concerns

Chapter 7 ■ SenSor and aCtuator ServiCe domain

113

Clients of SIO always deal with engineering units. Engineering units are the common units with which
we are familiar, such as meters, seconds, or kilopascals. Agreeing upon which engineering units are used
by a project is vitally important, and there are some notorious examples of what happens if there is a
discrepancy (the Mars Climate Orbiter is a relatively recent example). The electrical hardware that interfaces
to the system always deals with its own set of units, which we call device units. Device units are specially
encoded on a device-by-device basis for the benefit of the electronics hardware. For example, an analog-to-
digital converter (ADC) reports the fraction of the measured voltage relative to a reference voltage. How the
measured voltage is interpreted in terms of a physical quantity is an element of the electronics design that
must specify the calibration or scaling from the ADC voltage to a meaningful physical quantity. One essential
function of providing an idealized view of I/O values is to translate between engineering units and device
units (and vice versa).

SIO does compute the correct values in device units for controlling the hardware interface but delegates
that actual update and access of hardware to an external entity. This may seem strange, but delegating the
access to the physical hardware controls to a device access entity means that the many and varied ways in
which hardware controls are accessed does not become entangled into SIO. For example, some hardware
controls are mapped into memory. Some are mapped onto external busses. Depending on the operating
environment, special permissions may be required. Although SIO computes the right bits in the correct
device units, it does depend on something else to transport those bits to the hardware control registers.

Often for the type of systems that we target here, device access code is supplied as part of a software
library available from the manufacturer of the microcontroller chip. These libraries are often called
hardware access layers and usually provide functions for common peripheral device operations. For
example, a system on a chip (SOC) microcontroller may have supplied functions to run the on-board
ADC. Such libraries are useful because they usually encode details of the device operations that can be
difficult to determine solely from the chip design manual. It is necessary to supply a bridge from SIO to the
device access code. Such a bridge follows the same pattern of bridging we describe in the next chapter. For
hardware access, we are bridging to manually written code (written either by the chip manufacturer or by
the project), and it is part of the solid ground we use to build up the rest of the system.

Converting Electrical Signals
Most systems that interact with the outside world need to measure physical quantities. Even conventional
desktop computers usually measure the temperature of the processor to control the fan speed and ensure
that the CPU doesn’t overheat.

A common way to measure physical quantities is to use a transducer. A transducer is a device that
produces an electrical signal, typically a voltage, that can be related to a physical property, usually by linear
scaling. An ADC is typically used to interface transducer signals.

Digitizing signals is an ubiquitous operation and a distinct specialty in the computing world. We take a
much simpler view of things here. Figure 7-2 shows in block form the hardware arrangement that we assume.

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Chapter 7 ■ SenSor and aCtuator ServiCe domain

114

The ADC typically has a multiplexer that acts as a switch. This allows many signals to be wired
physically to the ADC, and one is selected via the multiplexer. It is also common that several signals need
to be sampled at the same time. This might happen if the signals represent different instances of the same
quantity sampled at the same rate or have some other correlation in time such as two quantities used to
compute a third value. The ADC cannot convert multiple signals simultaneously, but it can convert a signal
and switch the multiplexer to convert another signal fast enough that it can be effectively time shared
between multiple signals. Most ADC peripherals support converting a series of inputs as a distinct mode of
operation requiring no additional CPU intervention.

Modeling Signal Conversion
Figure 7-3 shows the fragment of the class diagram that deals with signal conversion.

Figure 7-3. Classes dealing with signal conversion

Figure 7-2. Block diagram of ADC hardware

Chapter 7 ■ SenSor and aCtuator ServiCe domain

115

The essential rules are as follows:

•	 Input points that must be sampled at the same time are grouped together (R4). A
group of one is used for those points with no correlation to other points.

•	 Grouped input points are all wired to the same Signal Converter (R5).

•	 At any point in time, at most one group of signals is being converted and there are
times when the Signal Converter is idle (R6).

Each Conversion Group has its own sampling period. The period is the amount of time to elapse
between samples being taken. This implies that at some point in time, two conversion groups may need
access to the same Signal Converter, or the Signal Converter may be in use at the same time a conversion
group decides to sample its inputs.

From the modeling point of view, we must be careful about how the R6 association is managed. It is
necessary to serialize the processing associated with creating and deleting instances of the R6 association.
This is accomplished with an assigner. An assigner is a state model attached to an association that manages
competition among the instances of the association. Rather than state activities creating or deleting
instances of the association synchronously, they signal events to the assigner declaring their intent. The state
activities of the assigner function as a single point of control to coordinate the life cycles of the association
instances to ensure proper access to the Signal Converter. Because our focus here is translation, we do not
discuss the general background of competitive associations and the protocols used to ensure the proper
sequencing of operations. See Executable UML: A Foundation for Model-Driven Architecture for more about
how to recognize and model competitive associations and construct assigner state models.

Figure 7-4 is a sequence diagram for one possible event sequence in which a group of points needs to
be sampled. This is the sequence that would happen the first time a conversion group is requested to be
sampled, assuming the corresponding Signal Converter is not being used.

Chapter 7 ■ SenSor and aCtuator ServiCe domain

116

The state models for the R6 assigner along with those for Conversion Group and Signal Converter
cooperate to ensure that Signal Converter access is properly serialized among the competing instances of
Conversion Group. Clients can request the Conversion Group to begin sampling, which, in turn, signals the
R6 assigner it is ready. Because this is the first time through, the assigner detects that the Signal Converter
is available and signals Converter ready to itself. That transition causes the Signal Converter to be signaled
with the Converter assigned event, which causes the Signal Converter to request the conversion from the
hardware. Meanwhile, the R6 assigner signals to itself that a converter is assigned and transitions to a state in
which no other conversions are allowed until the ongoing one is completed.

When the hardware finishes the conversion, it signals Conversion done to the Signal Converter, which
reads the converted values and processes them. The Conversion Group is signaled to tell it that the sampling
has been accomplished, and the assigner is signaled with the Converter ready event to inform it that another
Conversion Group may be assigned.

Figure 7-4. Event sequence assigning a Signal Converter

Chapter 7 ■ SenSor and aCtuator ServiCe domain

117

Figure 7-5 shows the state model for the R6 assigner.

Figure 7-5. R6 assigner state model

Note in particular that for this state model, if another Conversion Group signals Group ready while
a converter is still converting the signals of a previously assigned group, the state machine remains in the
WAITING FOR CONVERTER state until the Signal Converter signals Converter ready, indicating that it is
ready to perform another conversion. This ensures that two conversion groups don’t try to use the signal
converter at the same time. Conversely, if the conversion finishes before another group needs to be sampled,
the Converter ready event is ignored in the WAITING FOR GROUP state as we remain in that state until a
Conversion Group requests the signal converter. The state model defines a sequencing protocol between the
Conversion Group and Signal Converter classes to ensure that access to the Signal Converter is serialized
properly.

Chapter 7 ■ SenSor and aCtuator ServiCe domain

118

The following transition matrix is for the R6 assigner.

Group ready Converter ready Converter assigned

WAITING FOR GROUP WAITING FOR CONVERTER IG CH

WAITING FOR CONVERTER IG Assigning Converter CH

Assigning Converter CH CH WAITING FOR GROUP

Note the ignored events. Ignoring the Converter ready event when waiting for a Converter Group and
ignoring the Group ready event when waiting for a Signal Converter are an essential aspect of the way the R6
assigner serializes the access to the Signal Converter by the competing Converter Groups.

Figure 7-6 shows how a Conversion Group notifies the assigner that it needs the Signal Converter.

Figure 7-6. Conversion Group state model

Chapter 7 ■ SenSor and aCtuator ServiCe domain

119

The Conversion Group signals the assigner that it needs to perform a conversion and then waits to be
told that the conversion has been done. The Sample and Stop events are used to start and stop the periodic
conversion of the group of points.

Finally, Figure 7-7 shows how the Signal Converter operates.

Figure 7-7. Signal Converter state model

After being assigned to a Conversion Group by the R6 assigner, the Signal Converter requests the device
to perform the conversion and then waits for it to be done. Then it is necessary to retrieve the converted
values and update the values of the input points. Note that the CONVERSION COMPLETE state activity
deletes the instance of the R6 association because it knows when the conversion process is complete and
because there is a one-to-one correspondence between Signal Converter and R6 association instances.

Chapter 7 ■ SenSor and aCtuator ServiCe domain

120

Because input points are physically wired by the electronics design to a particular Signal Converter
(as stated by R5), there must be an instance of the R6 assigner for each Signal Converter class instance.
It is not possible to allow an arbitrary Signal Converter to sample an arbitrary Conversion Group. Such
an arrangement is called a multi-assigner because there are multiple instances of the assigner state
machine. For the simpler case in which an arbitrary resource can be allocated to an arbitrary user of that
resource, there needs to be only a single instance of the assigner. For a multi-assigner, one class always
serves to partition the instances of the assigners among the resource users. Formally, a multi-assigner
can be identified by the same identifying attributes as for the partitioning class. In this case, it is the Signal
Converter class that partitions the assigner instances, and the number of instances of the R6 assigner state
machine equals the number of instances of the Signal Converter class.

Implementing the Assigner
We use a pycca class to implement the R6 assigner. Although the assigner is not a class from the model point
of view, a pycca class has all the implementation characteristics we need—namely, attributes, state models,
and the ability to have multiple instances. This also demonstrates that a pycca class is an implementation
construct and not the same as a model class. We use a pycca class to implement a model class, but we also
use it to implement an assigner.

The pycca implementation follows the usual pattern we have already seen; however, the callouts point
to distinct usage that is specific to implementing assigners:

class R6_Assigner
 reference idclass -> Signal_Converter # ❶
 machine
 default transition CH
 initial state WAITING_FOR_GROUP

 transition WAITING_FOR_GROUP - Group_ready -> WAITING_FOR_CONVERTER
 transition WAITING_FOR_GROUP - Converter_ready -> IG
 transition WAITING_FOR_CONVERTER - Group_ready -> IG
 transition WAITING_FOR_CONVERTER - Converter_ready -> Assigning_Converter
 transition Assigning_Converter - Group_ready -> IG
 transition Assigning_Converter - Converter_ready -> IG
 transition Assigning_Converter - Converter_assigned -> WAITING_FOR_GROUP

 state WAITING_FOR_GROUP () {
 ClassRefVar(Signal_Converter, sc) = self->idclass ;

 ClassRefConstSetVar(Conversion_Group, cgset) ;
 PYCCA_forAllRelated(cgset, sc, R5) { // ❷
 ClassRefVar(Conversion_Group, cg) = *cgset ;
 if (cg->Waiting_for_converter) {
 PYCCA_generateToSelf(Group_ready) ;
 return ;
 }
 }
 }
 state WAITING_FOR_CONVERTER () {

Chapter 7 ■ SenSor and aCtuator ServiCe domain

121

 ClassRefVar(Signal_Converter, sc) = self->idclass ; // ❸
 if (sc->Converter_available) {
 PYCCA_generateToSelf(Converter_ready) ;
 }
 }
 state Assigning_Converter () {
 ClassRefVar(Signal_Converter, sc) = self->idclass ;
 assert(sc->Converter_available) ;
 ClassRefConstSetVar(Conversion_Group, cgset) ;
 PYCCA_forAllRelated(cgset, sc, R5) {
 ClassRefVar(Conversion_Group, cg) = *cgset ;
 if (cg->Waiting_for_converter) { // ❹
 sc->R6 = cg ;

 sc->Converter_available = false ;
 cg->Waiting_for_converter = false ;
 PYCCA_generateToSelf(Converter_assigned) ;
 PYCCA_generate(Converter_assigned, Signal_Converter, sc, self) ;
 return ;
 }
 }
 }
 end
end

❶ Because this is a multi-assigner partitioned by Signal Converter, we need a reference
to the Signal Converter instance on whose behalf this assigner instance is operating. The
reference to an identifying class has the net effect of giving the assigner the same identifying
attributes as Signal Converter.

❷ Iterate across the instances of Conversion Group related by R5 looking for one waiting
to be sampled. Here, cgset is an iterator that is assigned successive values of pointer to the
instances related across R5.

❸ There is no need to search for the Signal Converter that this instance is assigning. There is
a one-to-one correlation between R6 assigner instances and Signal Converter instances.

❹ Again, we find a group that is waiting to be converted. We select the first one we find and
assign the Signal Converter to it.

There is no specific policy implemented for deciding between multiple, waiting Conversion Groups. If
the requirements, and hence models, specified a particular policy for resolving the contention, it would be
implemented here. One possible policy might be “first come, first served,” but that is not what this code does.
This code assigns Conversion Groups based solely on the order in which they were related to the Signal
Converter. This would correspond to a requirement of assigning an arbitrary waiting Conversion Group
and, because the requirements allow for any Conversion Group to be assigned, we have chosen the most
convenient and efficient implementation. In general, the requirements for selecting how a resource might
be allocated in the presence of contention can be complex. Here we have taken the simple approach for the
benefit of the example.

Chapter 7 ■ SenSor and aCtuator ServiCe domain

122

Tracing Execution
As we discussed in Chapter 5, translated models executing on the ST/MX domain can generate an execution
trace. The following is a trace of the event transitions involving the R6 assigner. In this scenario, two
instances of Conversion Group are both connected to the same Signal Converter. The event sequence has
been constructed to ensure that there is competition for access to the Signal Converter. The trace shows how
the R6 assigner correctly serializes the Converter Group requests.

 1 (nil) - Sample -> Conversion_Group.cg1: FINISHED -> WAITING_FOR_CONVERSION ❶
 2 Conversion_Group.cg1 - Group_ready -> R6_Assigner.r6asgn1: WAITING_FOR_GROUP -> 
 WAITING_FOR_CONVERTER
 3 R6_Assigner.r6asgn1 - Converter_ready -> R6_Assigner.r6asgn1: WAITING_FOR_CONVERTER -> 
 Assigning_Converter
 4 R6_Assigner.r6asgn1 - Converter_assigned -> R6_Assigner.r6asgn1: Assigning_Converter -> 
 WAITING_FOR_GROUP
 5 R6_Assigner.r6asgn1 - Converter_assigned -> Signal_Converter.cvt1: CONVERSION_COMPLETE -> 
 CONVERTING
 6 (nil) - Sample -> Conversion_Group.cg2: FINISHED -> WAITING_FOR_CONVERSION ❷
 7 Conversion_Group.cg2 - GroupReady -> R6_Assigner.r6asgn1: WAITING_FOR_GROUP -> 
 WAITING_FOR_CONVERTER
 8 (nil) - Conversion_done -> Signal_Converter.cvt1: CONVERTING -> CONVERSION_COMPLETE ❸
 9 Signal_Converter.cvt1 - Conversion_done -> Conversion_Group.cg1: WAITING_FOR_CONVERSION -> 
 CONVERSION_COMPLETED
10 Signal_Converter.cvt1 - Converter_ready -> R6_Assigner.r6asgn1: WAITING_FOR_CONVERTER -> 
 Assigning_Converter
11 R6_Assigner.r6asgn1 - Converter_assigned -> R6_Assigner.r6asgn1: Assigning_Converter -> 
 WAITING_FOR_GROUP
12 R6_Assigner.r6asgn1 - Converter_assigned -> Signal_Converter.cvt1: CONVERSION_COMPLETE -> 
 CONVERTING
13 (nil) - Conversion_done -> Signal_Converter.cvt1: CONVERTING -> CONVERSION_COMPLETE ❹
14 Signal_Converter.cvt1 - Conversion_done -> Conversion_Group.cg2: WAITING_FOR_CONVERSION -> 
 CONVERSION_COMPLETED
15 Signal_Converter.cvt1 - Converter_ready -> R6_Assigner.r6asgn1: WAITING_FOR_GROUP -> IG

❶ The first five lines of the trace show the sequence of event dispatches to start the sample
conversion for Converter Group cg1. These events correspond to those shown in the top part
of Figure 7-4.

❷ Converter Group cg2 is requested to sample before the hardware has completed the
conversion for Converter Group cg1. The Group ready event sent to the R6 assigner (line 7)
causes it to transition to the WAITING FOR CONVERTER state, and there it examines the
Signal Converter to determine that it is not available at this time. This causes the assigner to
remain in the WAITING FOR CONVERTER state.

❸ The hardware has completed its work, and this initiates a sequence of event dispatches
that eventually end up with the Signal Converter signaling Converter ready to the R6 assigner.
Because a Conversion Group is ready to go, it is assigned the Signal Converter, and the next
sample is initiated.

❹ The second conversion is done. When the Signal Converter signals Converter ready to the
assigner, the event is ignored (line 15), as there are no ready Conversion Groups at this time.

http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 7 ■ SenSor and aCtuator ServiCe domain

123

Limitations
Sampling values in the manner that we have shown here is limited to relatively low frequencies, on the order
of a few hundred Hertz. The timing for sampling points is controlled by software, and that will necessarily
create jitter in the timing precision. The fastest that can be sampled is 1,000 Hz, because we are using
delayed signals and the delay time resolution is 1 millisecond.

In the larger data acquisition world, this is a low data rate, so our simple example should not be applied
indiscriminately. It is, of course, possible to do better, but it means moving more of the work into hardware.
Our view of that underlying hardware would be different from what we showed earlier. Each hardware
arrangement will require some software control, and that can be modeled and implemented by using the
techniques shown here. What differs is the underlying hardware reality that the software model controls.
What does not change is the service interface that the SIO domain presents.

Value Thresholds
Frequently, we are not so concerned about the value of a point but rather how that value compares to
a threshold. In the Lubrication domain, we saw the domain needed to have the lubrication pressure
monitored to ensure that it was in the correct pressure range to be effective. To support that delegated
capability, the SIO domain implements value threshold concepts and provides a way to compare values to
defined limits.

Figure 7-8 shows an example of a value threshold. As point values are sampled over time, the value may
rise above a specified threshold limit. When that happens, the value is deemed out of range. It remains out of
range until it falls below the threshold limit at which time it is deemed to be in range.

Figure 7-8. Threshold limit on a value

This diagram shows a rising-edge detection of the out-of-range condition. If you invert the value
comparisons, you have the complementary form of falling-edge detection, which detects a point considered
out of range when the point value falls below the threshold limit. By defining two threshold limits, one for a
rising-edge comparison and one for a falling-edge comparison, then a value can be monitored to determine
whether it is between upper and lower limits.

Chapter 7 ■ SenSor and aCtuator ServiCe domain

124

When deciding whether a value exceeds a threshold, we want to prevent oscillations near the threshold
limit from repeatedly triggering the out-of-range condition followed immediately by an in-range condition.
We use a simple counting filter to supply hysteresis to the detection. If we delay the determination that a
value is out of range or in range until we have seen a certain number of consecutive excursions above or
below the threshold, we can prevent minor fluctuations of the value causing a spurious detection of being
out of range. If we want to see each time a value exceeds its threshold, we can set the limit number to 1.
There are, of course, many other possible ways to add hysteresis to the threshold determination, but simple
counting schemes are both effective and, when translated, computationally efficient.

Figure 7-9 is a class diagram that captures these ideas.

Figure 7-9. Class diagram for Range Limitation

Each input point may have multiple Point Thresholds specified for it. In our example, we use three Point
Thresholds to monitor an injector’s lubrication pressure to know if the lubricant pressure is sufficient, if
there is excessive dissipation pressure, or if the maximum allowed pressure is exceeded. A Range Limitation
is an instance of applying a Point Threshold to the value of a Continuous Input Point. We may define
one Point Threshold and apply it to several input points, but we will need a separate instance of Range
Limitation for each of those applications. The computations necessary to detect the threshold excursions are
specified in the state model for the Range Limitation class.

Chapter 7 ■ SenSor and aCtuator ServiCe domain

125

We do not show the entire pycca implementation of the state model here because it follows the same
pattern you have already seen. We do, however, show the state definition of the Checking Out Of Range state:

state CHECKING_OUT_OF_RANGE(
 sio_Point_Value pointValue) {
 ClassRefVar(Point_Threshold, pt) = self->R7_PT ;

 bool outRange = pt->Direction == Rising ?
 rcvd_evt->pointValue > pt->Limit :
 rcvd_evt->pointValue <= pt->Limit ; // ❶
 if (outRange) {
 if (++self->Over_count >= pt->Over_limit) {
 PYCCA_generateToSelf(Out_of_range) ;
 }
 } else {
 self->Over_count = 0 ;
 }
}

❶ Pycca defines a pointer named rcvd_evt to access event parameters. The variable name and parameter
access technique is an unfortunate choice that will be improved in a future release.

Figure 7-10. Range Limitation state model

Chapter 7 ■ SenSor and aCtuator ServiCe domain

126

Initial Instance Population
In this section, we present part of an initial instance population for the Signal I/O domain. This population
corresponds to the needs of the Lubrication domain as it was populated in Chapter 6. We do not show the
entire set of values in the population, but only those parts that pertain to converting signals and detecting
value threshold limits. The complete population is available in the online materials.

Supporting the needs of the Lubrication domain population requires eleven I/O Points: three for
Machinery lockouts, two for Reservoir levels, three for Injector pressure, and three for Injector solenoids. We
focus here on the three I/O Points associated with the Injector pressure because they must be both sampled
and compared against threshold limits.

Injector pressure is represented by a Continuous Input Point whose value represents the lubricant
pressure at each injector. Each injector has a transducer for pressure that is sampled and converted to the
value of the Continuous Input Point.

ID Value Group

inj1_pres 0 inj1_cg

inj2_pres 0 inj2_cg

inj3_pres 0 inj3_cg

The I/O Points for the injector pressure are formed into three Conversion Groups, each group
containing only a single point.

ID Waiting for converter Period Converter

inj1_cg false 500 cvt1

inj2_cg false 500 cvt1

inj3_cg false 500 cvt1

We assume that only a single Signal Converter is attached to the system and that all the injector pressure
transducers are wired to it.

ID Converter available

cvt1 true

The Lubrication domain assumes that Signal I/O will perform threshold comparisons on the
injector pressure values. Three thresholds must be determined: above the dissipation pressure, above
the injection pressure, and above the maximum pressure. From the Lubrication domain population,
we know that there are two Injector models. Our pressure threshold values are selected based on the
different injector designs.

http://dx.doi.org/10.1007/978-1-4842-2217-1_6

Chapter 7 ■ SenSor and aCtuator ServiCe domain

127

ID Limit Direction Over limit Under limit

ix77b_above_disp 26 Rising 2 2

ix77b_above_inj 15 Rising 2 2

ix77b_max_pres 26 Rising 1 2

ihn4_above_disp 32 Rising 2 2

ihn4_above_ing 19 Rising 2 2

ihn4_max_pres 35 Rising 1 2

With three injectors and three thresholds for each injector design type, we have nine instances of Range
Limitation to detect all the threshold excursions that the Lubrication domain requires.

Point Threshold Over count Under count

inj1_pres ix77b_above_disp 0 0

inj1_pres ix77b_above_inj 0 0

inj1_pres ix77b_max_pres 0 0

inj2_pres ihn4_above_disp 0 0

inj2_pres ihn4_above_inj 0 0

inj2_pres ihn4_max_pres 0 0

inj3_pres ix77b_above_disp 0 0

inj3_pres ix77b_above_inj 0 0

inj3_pres ix77b_max_pres 0 0

Summary
In this chapter, we have shown a model and translation for the SIO domain. This domain handles
interactions with the external world by sensing values and controlling actuators. We focused on two
particular capabilities that are delegated to the SIO domain by the Lubrication domain:

•	 Sampling values of sensors

•	 Comparing sampled values against thresholds

For value sampling, our model included an assigner state model to manage the competition that is
inherent in the physical arrangement of our electronics design.

For value thresholds, we saw how a state model attached to an association class provides the means to
track multiple threshold limits applied to the same input point.

In both cases, we saw rules and policies applied to collecting and evaluating data from the external
world. From the point of view of the SIO domain, the values and meaning of the data were no of concern.
From the point of view of the Lubrication domain, it needs current, up-to-date data values, and the rules of
how the electronics design affects acquiring data is of no concern. This separation of concerns allows us to
focus on the development of a consistent set of abstractions for both domains and to potentially reuse the
SIO domain in another application that has similar needs to interact with the external world.

129© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_8

CHAPTER 8

Integrating the Application and
Service Domains

In this chapter, we discuss how to manage interactions among domains. Because we are bridging the
gap from the semantics of one domain to that of another, we call this topic bridging. From a modeler’s
perspective, bridging two domains can be relatively simple. This assumes that no semantic content is
missing between the two domains. For example, it would be difficult to bridge a video game application
directly to the rendering hardware without having at least an intermediate draw engine. We have avoided
this kind of trouble by carefully constructing the domain chart for the ALS example.

Efficient implementation of a bridge, on the other hand, can pose its own set of problems. Pycca
provides support for bridging, but a certain amount of code does have to be written. Fortunately, this can be
done systematically with pycca providing help to ease the process.

Before diving into implementation, as always, we need a clear and detailed vision of what must be
accomplished. The first part of this chapter presents useful building blocks for visualizing and specifying
the data necessary to define a bridge. We apply this to a few key interactions between the Lubrication and
SIO domains. Then, in the second part of this chapter, we show how to specify this data by using pycca-
generated constants in conjunction with handwritten C code. Finally, we show some of the details of how
pycca supports performing model-level actions from outside a domain.

Summary of Domain Benefits
As we proceed into all the details of bridging, you may wonder why we are going to all this effort to preserve the
semantic integrity of our domains. So let’s first take stock of why domains are important. A key goal of domain
engineering is to promote reuse of domains. If a domain is redesigned but provides the same specified services,
it should have minimal, preferably zero, impact on the models of any domains with which it interacts.

For example, if we (or someone else) devise a completely different way of managing SIO, it should make
no difference to the Lubrication domain. As long as the Above injection pressure event gets delivered, under
the proper physical conditions, the Lubrication domain’s needs are satisfied. The logic of the Lubrication
domain isn’t aware of and doesn’t care about how the event is delivered.

More benefits than reusability are at stake. By keeping the models separate, it becomes possible to
develop them in parallel without a lot of coordination overhead. The expertise required to build one domain
is distinct from that required to build the other. This means that you can employ entirely different specialists
to develop the models of each domain. Complexity is reduced because each domain model can be built
without having to worry about the details of how the other works. This outcome derives from applying the
principle of separation of concerns, as we discussed in the first part of Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-2217-1_7

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

130

Each Domain Is a Black Box
To preserve these benefits, the models in two bridged domains view one another as black boxes. SIO
doesn’t model anything about Lubrication, and Lubrication doesn’t model anything about SIO. The
Lubrication domain does not know which events, if any, ping around in the SIO domain. It knows nothing
of SIO’s internal states or actions. You can rename and reorganize the model content in one domain all you
want without breaking anything in the other domain. But this opacity principle applies only to the model
structures, not necessarily the data they contain! For example, an instance of the SIO Point Threshold class
can have its Limit attribute set equivalent to the Max delivery pressure of a corresponding instance of Injector
Design in the Lubrication domain. Or some instances of SIO’s Continuous Input Point class may correspond
to specific instances of Injector in the Lubrication domain. Depending on usage, this data may be glued
together at model time, compile time, initialization time, or dynamically at normal runtime.

Figure 8-1 depicts this mystery box principle.

Figure 8-1. Lubrication sees SIO as a black box

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

131

We can see that the Lubrication domain assumes the existence of an SIO domain that triggers sensor-
based events, method calls, and attribute values. It also assumes that SIO can manage control directed at the
physical world. But Lubrication has no idea how any of this is accomplished or what structures (modeled or
nonmodeled) are involved in SIO.

The Lubrication domain has an external entity named SIO that serves as a proxy for these assumptions.
Keeping the name of the proxy external entity and the actual domain the same is a convenient mnemonic,
but it is important to remember that the SIO external entity is not the same thing as the SIO domain. The SIO
external entity is the Lubrication domain's view of how it has delegated functionality outside its scope to be
accomplished elsewhere. The Lubrication domain uses the external entity as a proxy so that it can express
its requirements for actuator and sensor service in a way that is consistent with the structure and activities of
the domain. If the SIO external entity was in fact the same as the SIO domain, we would expect to be able to
connect the external entity operations arising in Lubrication directly to domain operations targeted at SIO,
and there would be no semantic gap to bridge. This is definitely not the situation we want. If there were no
semantic gap between the domains, the SIO domain would have to know the details of how the Lubrication
domains works. We would have sacrificed reducing complexity by separating the concerns of the domains
and abandoned any chance of reusing the SIO domain in another application.

Figure 8-2 shows the view looking back from SIO’s perspective. We get a similar picture.

Figure 8-2. SIO sees its clients as black boxes

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

132

SIO has no idea what Inject means. But it does know how to write a value out to a hardware register with
the Write point domain operation. Similarly, other SIO services are defined in a vocabulary that is consistent
with the view SIO has of its subject matter. SIO is not completely unconstrained in what it does. The services
provided are intended to be sufficient for a client domain such as Lubrication to interact with the physical
world, and the Lubrication domain does make known the specific services it needs.

Despite the black-box view that each domain takes of the other, when we bridge the Lubrication and
SIO domains together, we must provide data values to certain SIO classes that account for the specific
behavior the Lubrication domain requires. Those SIO classes were parameterized by having attributes
whose values control the processing details. For example, the SIO domain has attributes that specify a
value range limit as part of its service to provide its clients with alerts. We provide values for these types of
attributes with data gathered from the models and instance populations of the Lubrication domain, or any
other client domain that is serviced by SIO.

Note also that while the Lubrication domain needs SIO in order to function, SIO doesn’t really need
anything from Lubrication to perform its duty. This is the nature of a client/service domain bridge. The client
imposes requirements on the service, and the service is populated and bridged to fulfill them. That explains
the direction of the dependency arrows on the domain chart; these arrows are sometimes misinterpreted as
indicating some type of flow of control or data between domains. They are instead intended to represent the
flow of requirements or dependency between the domains. The actual control or data flow between domains
is determined later, as part of the bridging effort.

Marking and Mapping
Now let’s take a look at what data is required to connect one domain to another across a bridge. We need a
way to define how certain data and activity in one domain maps to corresponding data in the other domain.
This is done using two methods: marking and mapping.

Marking is the process of identifying and classifying model elements in a client domain that can be used
to configure properties in a service domain. For example, we mark attributes in the Lubrication domain whose
values are sensor driven. Mapping is the process of defining the correspondence between marked elements
in the client domain and supporting model elements in a service domain. For example, a Pressure attribute
in Lubrication will correspond to the sampled and scaled value of an SIO Continuous Input Point. There must
then be a way to map each instance of Injector to its counterpart instance of Continuous Input Point in SIO.

It is critical that we do this in such a way that is complete, but doesn’t specify any particular
implementation. That way, when we implement, we have all the marking and mapping data we need to
make the system work. We also have the freedom to implement the bridge efficiently, given our particular
platform technology.

Look at Figure 8-3, a snippet from the Injector state model in the Lubrication domain.

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

133

On the right-hand side, we see the external entity acting as a proxy for the SIO domain. We have
marked two Injector state actions that are special in that they trigger control in the physical environment
via some sort of actuator. So we declare them to be Actuator controls. They also happen to be external
entity operations. They invoke operations defined on an external entity that represents the SIO domain.
An external entity operation can be invoked with parameters and return a value. Neither operation in this
example specifies any parameters or expects any return value. Our action language presumes that the ID of
the calling instance is implicitly available via any external entity operation, so it is not necessary to explicitly
supply the Injector ID.

Figure 8-4 shows what the SIO domain must do in response to the operations on the SIO external entity.

Figure 8-3. External entity operations

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

134

The SIO domain provides the Write point domain operation. This operation takes an I/O Point
parameter, which is the value of an identifier of the target I/O Point and a Value to write. If 1 is written,
injection is started, and if 0 is written, injection is stopped. Note that the Injector and I/O Point parameters
have been highlighted to indicate that each carries an ID value corresponding to an instance. They are
handled a bit differently than the Value parameter, as you will see.

So our task is to map the marked external entity operations in the Lubrication domain onto the domain
operation in the SIO domain. To accomplish this, we will use something called half tables. You put two of
them together to create a bridge table. Figure 8-5 shows an example of how it works.

Figure 8-4. A domain operation

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

135

The first step is to map an external entity operation in the Lubrication domain to a domain operation in
the SIO domain. For the moment, we won’t consider how to identify the instances involved because, just now,
we are concerned only with how the domain models connect together. We then construct the half table for
each side. Joining the two halves together yields a bridge table. With the bridge table in hand, we can fill in the
values on each side corresponding to the two domains. The result shows exactly how the semantics of Inject
and Stop Injecting in the Lubrication domain are made manifest by writing specific values to an I/O Point.

But we’re not done yet. The preceding table shows how the semantic gap is bridged, but operations
happen on instances. We know that the Write point operation is called when the Lubrication domain invokes
an Inject or Stop injecting operation. But the method must be invoked on some instance of I/O Point.

To determine the instances involved in the operations, a further mapping is required, this time between
instances of Injector and instances of I/O Point. Again, we use half tables, as shown in Figure 8-6.

Figure 8-5. Inject operation half tables

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

136

We are making a correspondence between an instance of an Injector and an instance of an I/O Point.
The Injector class has a single identifying attribute named ID, and the same is true of the I/O Point class. So
the half tables, coincidentally, have the same column headings. To obtain the bridge table, we join the two
instance half tables.

The instance populations of Injector and I/O Point are static during runtime. During the running of
the system, we do not create or delete Injector instances, nor do we create or delete I/O Point instances.
Consequently, we can fill in the table when we are ready to build the system. If either or both populations
were dynamic, we would need to map create and delete actions in each domain to one another so that the
values in the instance mapping table could be maintained during runtime.

There is one final detail about the bridge that must be specified. The Inject and Stop injecting external
entity operations have a formal parameter named Injector whose value determines which Injector class
instance is to be started or stopped. Similarly, the Write point operation in SIO has a formal parameter
named I/O Point whose value determines to which I/O Point class instance the write operation pertains
(in addition to the parameter that specifies the value to write). We must say where we get the argument
values for these formal parameters. We want to say that the Injector parameter in the Lubrication operations
represents an instance of the Injector class and that this maps to the I/O Point parameter that represents a

Figure 8-6. Inject instance half tables

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

137

corresponding instance of the I/O Point class. Again, we specify a bridge table by using half tables, mapping
an ID parameter in an external entity operation to an ID parameter in a domain operation. Figure 8-7 shows
the resulting bridge table.

These three bridge tables precisely define the way the semantic gap for starting and stopping injection
between the Lubrication domain and the SIO domain is realized. Tracing through the bridge tables, we can
see the complete logic of the bridge mapping.

•	 When the Inject external entity operation is invoked in the Lubrication domain, the
inject operation bridge table, Figure 8-5, states that we must realize the Lubrication
domain’s intent by having the bridge code invoke the Write point domain operation
in the SIO domain and that passing 1 as the Value argument in that operation
corresponds to starting the injection.

•	 The ID parameter bridge table, Figure 8-7, states that the Injector parameter value,
given as an argument in the Inject invocation, is an identifier of an Injector class
instance and that the Write point operation requires the identifier of a corresponding
I/O Point class instance.

•	 The instance bridge table, Figure 8-6, provides the correspondence between the
value of an Injector identifier, as obtained from the Inject operation ID parameter
and the value of an I/O Point identifier that is supplied to the Write point ID
parameter.

In this way, the bridge can determine not only what domain operation in SIO satisfies the needs of the
Lubrication domain, but precisely what values have to be passed to the Write point operation when it is
invoked in the bridge code.

You may notice that the columns of the half tables always refer to generic model elements (operations,
instances, and so forth). Mapping across domains involves the general idea of creating a correspondence
between one kind of model element in a domain to another (or possibly the same) type of element in
another domain.

After we build our tables, we are in an excellent position to move forward with our pycca
implementation. Without them, things can get rather confusing. But before jumping into implementing the
bridge, we show other bridge tables to demonstrate the variety of mappings that can arise, particularly when
asynchronous operations such as event signaling are involved.

Figure 8-7. Mapping ID parameters

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

138

Start and Stop Monitoring Pressure
Figure 8-8 shows two asynchronous signals, Start and Stop monitoring, which are directed at the SIO
external entity. They are asynchronous because Lubrication wants to signal SIO and expects feedback in the
future, but needs to go on about its business in the meantime.

It’s a bit difficult to classify these as anything other than services we need, so we’ll just mark them as
Service. These signals correspond to the Sample and Stop events in SIO, as shown in Figure 8-9.

Figure 8-8. Signals to an external entity

Figure 8-9. Events in SIO

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

139

In this case, we are able to leave the Injector.ID implicit in the sent signal. So neither signal carries an
explicit ID parameter. It is always assumed that the source of a signal is available to the model execution
architecture even if it isn’t explicitly sent.

Now let’s build the tables. Figure 8-10 shows the result.

First we map an external entity signal specification to an event specification. We use the term
specification here to be clear that we are not talking about a particular signal flying around during runtime,
but rather the signature or specification of the signal/event structure.

In the second table, we map instances of Injector to SIO instances of Conversion Group. But we have
already seen this table when we mapped instances for the injection control. The table heading is the same,
so we can just add rows for the instance mapping from Injectors to Conversion Groups. We have now
specified all the information necessary to work out which event to trigger in the SIO domain and to which
instance it should be addressed.

Figure 8-10. Monitor start stop bridge tables

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

140

Update Pressure
Bridging is not limited to actions. If we look at the Injector class, we see that there is one special attribute,
Pressure. It is special in that the Lubrication domain assumes that it can read the attribute and obtain the
current lubricant pressure of the actual physical Injector. This implies that SIO is delegated the responsibility
to keep the pressure value up-to-date. In Figure 8-11, we mark it as a sensor attribute. In a domain such as
Lubrication, many such attributes are often scattered around. The SIO notion of a sensor is realized as a
Continuous Input Point. For each pressure value in Lubrication, there is a Continuous Input Point instance
in SIO. After the raw device value has been converted and scaled to a meaningful pressure value, it must be
made available somehow when an Injector reads its pressure. We’ll get to the somehow later in the chapter,
but for now it is enough to say that the attribute values are mapped together.

Figure 8-12 shows the specification of the bridge tables.

Figure 8-11. Marking a sensor attribute

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

141

In the instance-to-instance table, we map the instances of Injector to corresponding instances of
Continuous Input Point. This table also has the same heading as you have seen before. We can just extend
that table with the new instance mappings for the Continuous Input Points associated to the injector
lubricant pressure. Note that multiple SIO model elements are required to capture the services required by a
single Injector. This is not an unusual circumstance.

The correlation between the Injector.Pressure attribute and the Continuous Input Point.Value is
straightforward. If we had other sensor-based attributes, such as Temperature or Vibration, we would
add rows to the table, filling in the appropriate class and attribute names on the left half, and filling in the
appropriate Continuous Input Point ID Value on the right half.

We now know which data is mapped across the bridge, but we haven’t yet made any implementation
decisions about the mechanism used to transport the data. Are the values mapped to the same memory
location? Are values pushed or pulled between domains? This can be determined when the bridge is
implemented. From a model perspective, the requirement is that when an Injector.Pressure value is read, it
must be up-to-date and reflect the actual lubricant pressure seen at the real-world injector. From a bridge
perspective, we must ensure that the Injector.Pressure value is the same as its corresponding Continuous
Input Point.Value attribute value. From an implementation perspective, there are numerous means, each
with different performance trade-offs, that accomplish the goal.

Figure 8-12. Attribute mapping bridge tables

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

142

Injector Pressure Alerts
This last example is a bit more complex, but we will use the same process. We mark elements of the
Lubrication domain and then figure out how to map them onto corresponding elements of SIO.

During the period when injector pressure is monitored, the Lubrication domain expects SIO to notify an
Injector if one of four conditions occurs:

 1. The pressure is above the minimum required for injecting lubricant.

 2. The pressure is below the minimum required for injecting lubricant.

 3. The pressure is above the minimum allowed when dissipating (that is, when
lubricant is not being injected).

 4. The pressure is greater than the allowed maximum.

Injectors are characterized by their associated Injector Designs. Three attributes of Injector Design can
be marked as Threshold attributes. These markings show the Lubrication domain’s intent that the attributes
be used as part of the required pressure alerts for the injector pressure. Our task is to realize this marking as
elements of SIO. Max delivery pressure, Max system pressure, and Max dissipation pressure must correspond
to instances of Point Threshold whose Limit value is equal to the Injector Design attribute values. Figure 8-13
shows the correspondence.

Figure 8-13. Marking threshold attributes

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

143

Looking again at the Injector model, we see that three events and a class method correspond to the
preceding conditions, and these must be triggered by SIO at the appropriate times. We can think of these as
being marked as Alert events and an Alert method.

The SIO domain provides the capability to compare values of Continuous Input Points against limits
provided by a Point Threshold and determine whether a point value is in range or out of range with respect
to the Point Threshold. This comparison operation is captured in the life cycle of the Range Limitation
class. The association between Continuous Input Points and Point Thresholds, as mediated by the Range
Limitation class, allows a point to be compared against multiple thresholds and a threshold to be applied to
multiple points. So to configure the SIO domain to monitor for pressure alerts means that we must carefully
populate the Point Threshold and Range Limitation instances to match the expectations of the Injectors.
We already have seen, as part of updating the Injector.Pressure value, that three Continuous Input Points
are populated in SIO that correspond to the injector pressure. The values of those points are compared
against limits to decide whether there is a pressure alert. Figure 8-14 shows the correspondence between
Lubrication alert events and SIO range limits.

Knowing which Continuous Input Points refer to injector pressure and knowing which Point Thresholds
we need to apply to satisfy the pressure alerts, we can populate the instances of Range Limitation. Consider
a single Injector, IN2, which happens to be a model IHN4 injector. Its related Injector Design specifies the
following values:

Figure 8-14. Marking alert events

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

144

•	 Min delivery pressure ⇒ 19 MPa

•	 Max system pressure ⇒ 35 MPa

•	 Max dissipation pressure ⇒ 32 MPa

This means that there are three corresponding instances of Point Threshold called PT1, PT2, and PT3.
We already know from the bridge that updates the Injector.Pressure attribute, IN2 maps to the Continuous
Input Point IOP2. Three instances of Range Limitation must be created in SIO to monitor IOP2, one for each
Point Threshold that reflects the marked Threshold attributes of the Injector Design. These are identified in
SIO as PT1-IOP2, PT2-IOP2, and PT3-IOP2. In total, we have nine instances of Range Limitation for the three
Continuous Input Points, and the three distinct Point Thresholds corresponding to each Injector Design.

For each newly acquired point value, each associated instance of Range Limitation compares the
value to its corresponding threshold limit. When the threshold is crossed, an In range or Out of range signal
is sent to the NOTIFY external entity in SIO. The task is to ensure that this signal triggers the appropriate
event or method in Lubrication and directs it to the correct instance of Injector. Because the Lubrication
domain expects the alerts to be delivered as either a domain operation or as an event signaled to an Injector
instance, we’ll need two bridge tables to accomplish the mapping, as shown in Figure 8-15. One maps to the
Injector max pressure domain operation, and the other maps to our alert events.

We are doing something a bit different in these tables. Because we are handling an external entity signal
that originates in SIO, we are mapping from SIO to Lubrication this time. The table column order makes
no difference, but it is a bit easier to explain from the direction of the signal to its destination. Also in this
case, the half tables is a combination of two SIO model elements: an external entity signal and a parameter
value. That’s because any Continuous Input Point may have multiple thresholds defined for it, and we need
a parameter to distinguish which threshold is being signaled. Each of the six thresholds can be signaled as
either In range or Out of range. Notice also that of the twelve possible entries in the two tables, only eight
are populated with values. This is because the Lubrication domain is not interested in the cases where the

Figure 8-15. Mapping range limits

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

145

maximum injector pressure limit goes In range nor when the dissipation pressure limit is In range. There
are no alert events or alert methods for these cases. Consequently, when those external entity signals
are generated, they are not found in the bridge tables, and no bridge action is taken. Going back to our
example, consider when the value of Continuous Input Point, IOP2, exceeds the limit for Point Threshold,
PT2. This would be detected by the PT2-IOP2 instance of Range Limitation. If the Out of range signal is sent
to the NOTIFY external entity, and the Threshold ID is given as PT2, then our table shows that the bridge
invokes the Injector max pressure domain operation. Alternatively, if the Threshold ID value had been PT1,
consulting the first table would fail to find a match; but consulting the second table, we find that we must
signal the Above inject pressure event to an Injector.

Proceeding as before, we must build half tables that correlate the Continuous Input Point instances in
SIO to Injector instances in Lubrication. The Continuous Input Point identifiers here are the same ones that
are used for updating the Injector.Pressure value. It is that same value against which the threshold limit is
compared. Figure 8-16 shows the populated bridge table.

Finally, we must specify from where the ID parameters come. When we invoke the Injector max
pressure domain operation, the external entity ID parameter is a Continuous Input Point ID, and the domain
operation ID parameter is an Injector ID. Similarly, if we are signaling an alert event out of the bridge, the
instance to which the signal is sent is an Injector. Figure 8-17 shows the identifier mappings.

Figure 8-16. Mapping input points

Figure 8-17. Mapping identifier parameters

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

146

This last example of constructing the bridge tables is certainly more complicated than the others. It
requires populating several different classes in SIO to configure it appropriately to meet the Lubrication
domain’s needs. Once that is done, the bridge tables are built, following the techniques we have shown. It
serves as a good reminder that bridging is an abstract undertaking, requiring that we make correspondences
between multiple domains; we need to apply the marking and mapping techniques diligently to avoid
getting tangled up.

Implementing Bridges in Pycca
In the previous section, we showed how to bridge the assumptions and dependencies of one domain
onto the services provided by another domain. In this section, we turn our attention to creating the code
necessary to implement the bridge between the domains.

In our example, the Lubrication domain uses the SIO external entity as a proxy to express how it has
delegated actions. It invokes operations on the SIO external entity at the correct point in its processing
when those actions need to take place. We distinguished between external entity operations as synchronous
and asynchronous. This distinction is important to the Lubrication domain, as it expresses the domain’s
expectation for fulfillment of the service. When the Inject or Stop injecting operations are invoked, the
Lubrication domain assumes that, however it may happen, by the time the operation has completed,
the injector solenoids have been engaged or disengaged from applying lubricant. Contrast that with the
assumptions the Lubrication domain has when the Start monitoring and Stop monitoring operations are
invoked. In that case, the Lubrication domain assumes that it can continue with its processing, and events
will arrive later to indicate the results of monitoring the injector pressure.

For pycca-generated domains, each external entity operation, whether synchronous or asynchronous
in its nature, is converted into an external declaration of an ordinary C function. When the operation is
invoked, it executes as any other ordinary C function, potentially accepting arguments and returning a value.
The model-level concepts of synchronous vs. asynchronous become lost in the conversion to an ordinary
function but are still present in the interactions of the bridge.

To bridge pycca domains, it is necessary to supply a definition for the external entity functions. Pycca
uses a naming convention for the external entity functions:

 eop_<domain name>_<external operation name>

•	 <domain name> is the name of the domain in which the external entity was defined.

•	 <external operation name> is the name given to the external entity operation
when it was declared by the external operation declaration in the pycca source.

The bridge implementation consists of a function, named as just described, for each of the external
entity operations defined by a domain. Then, when the domain code files along with the bridge code files are
compiled and linked, all the external symbol references are resolved, and we obtain a runnable program.

Pycca Facilities for Implementing Bridge Code
In this section, we discuss the help that pycca provides in constructing bridges.

The bridging code for pycca-generated domains is manually written. We do not have any great
expectations that bridge code can be reused in the same way that we wish to reuse domains. Bridges
are specific to the usage of particular domains, populated with specific instances for a given application
context. As you saw previously, the population of the bridge tables depends on the initial population of class
instances in both Lubrication and SIO. For our example, the data values of SIO attributes have been chosen
specifically to match corresponding attribute values in Lubrication. Reusing the SIO domain in a different

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

147

application requires a different instance population and different bridge tables. Because we expect little
reuse of bridge code, manually writing such code is the most direct way to glue domains together. Although
there is no support in pycca for generating the bridge code itself, pycca does provide other essential support.

The Domain Portal
As we saw previously in the bridge tables that map an external entity operation onto model elements
of a service domain, there are several types of actions we might wish to perform in the service domain.
Sometimes it is as simple as invoking a domain operation on the service domain. Other times, we may need
to signal an event to a class instance or update an attribute value in the service domain.

When pycca generates a domain, the only symbols visible outside the domain are the domain operation
names. For each domain operation statement, pycca generates an ordinary C function of external scope
whose name is of the form <do-main name>_<domain operation name>. All other C identifiers in the
generated code file have file static scope, and so their symbols are not available outside the code file for the
domain. The domain is well encapsulated, and there is little probability of a symbol name conflict when
linking multiple domains into an application. Typically, the external entity functions for a domain are placed
in a separate C source file, but other organizations are possible. For simple cases, such as ours, we can place
the external entity functions for both domains in a single source file.

To help create the external entity functions, pycca supplies a means to accomplish simpler, common
model-level actions from outside the domain. Upon request, pycca creates a portal into the domain. The
portal consists of an initialized variable along with a set of C functions that operate over the data values in
the portal variable to perform common model-level operations. The name of the portal variable follows the
convention of <domain name>_portal, and this name is also of external scope. The C functions of the portal
code support the following operations:

•	 Creating and destroying class instances

•	 Reading and updating instance attribute values

•	 Signaling events

•	 Signaling and canceling delayed events

The ability to access attributes and signal events eliminates the need to create domain operations that
perform only simple, common, model-level operations. Any bridge operation that can be accomplished with
the portal functions does not require the domain to provide a domain operation. Domains must provide
domain operations when the required model-level operations are more complicated, such as traversing
relationships or searching for instances based on attribute values.

The pycca approach is a compromise between opening the domain to arbitrary processing from outside
and having each model-level operation required by a bridging operation implemented as a domain operation.
The portal breaks the encapsulation of a domain, but in a limited way. In practice, the compromise works well
for many cases and achieves the goal of enhancing domain reuse by minimizing the number of explicit domain
operations that might have to be created when a domain is used in a particular application context.

Identifying Domain Elements
When pycca is requested to generate a portal for the domain, it also includes in the generated header file for
the domain a set of C preprocessor define statements that constitute a numerical encoding for the model-
level elements of the domain. The definitions include the following:

•	 A number to uniquely identify each class in the domain

•	 The total number of classes in the domain

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

148

•	 A number to uniquely identify each attribute within a class

•	 The total number of attributes of a class

•	 A number to uniquely identify each instance within a class

•	 The total number of instances of a class

•	 The numerical encoding of the state model events for a class

This encoding gives symbolic names to a set of ordinary integers. The values are used as arguments to
the portal functions to specify which class or attribute is intended and to identify any instances that are part
of the initial instance population. For example, to send an event to an instance, you must supply the class
number, instance number, and event number to the portal function. This is done with the define statements
supplied by pycca in the generated header file for the domain. We show how these symbols are used in
implementing bridge mappings and how the portal itself operates.

Lubrication Domain External Entity Functions
Four external entity functions are defined by the Lubrication domain. Two control the lubricant injection,
and two monitor injector lubricant pressure.

Implementing Injection Control Functions
We now show the implementation of the external entity functions for starting and stopping lubricant
injection. Figure 8-6 showed the bridge tables that map between Lubrication domain Injector instances
and SIO domain I/O Point instances. We could design the external entity function by directly encoding
the table as shown. Looking closely, however, we see that the only two columns that vary are the ID Value
on the Lubrication domain side and the ID Value on the SIO domain side. The instance bridge table maps
a Lubrication domain Injector ID attribute value to an SIO I/O Point ID attribute value. This suggests
an optimization that yields a smaller table. We need only implement a mapping for the varying parts of
the bridge tables. We further observe that every Injector instance in the Lubrication domain appears in
the bridge table. This means that we can implement the bridge table search as a simple array-indexing
operation using the numerical encoding of instances supplied by pycca. The pycca encoding for instance
identifiers consists of zero-based consecutive integers that are intended to be usable as array indices. The
table to map Injectors to I/O Points that control the injector solenoids can be reduced to the following:

static sio_Point_ID const injToPointMap[LUBE_INJECTOR_INST_COUNT] = {
 [LUBE_INJECTOR_IN1_INST_ID] = SIO_IO_POINT_IOP1_INST_ID, // ❶
 [LUBE_INJECTOR_IN2_INST_ID] = SIO_IO_POINT_IOP2_INST_ID,
 [LUBE_INJECTOR_IN3_INST_ID] = SIO_IO_POINT_IOP3_INST_ID,
} ;

❶ Note the use of C99 designated initializers in the array definition. This allows us to use the
symbolic name of the injector instance number without regard for its value, and the ordering
of the elements of the array in memory are placed correctly by the compiler. Along with
making the mapping clearer, this technique avoids many potential errors, especially because
the values for the index symbols are automatically generated.

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

149

So, the bridge table from Figure 8-6 is implemented as an initialized C array, indexed by the Injector
instance identifier generated by pycca and whose element values are the SIO I/O Point instance numbers
corresponding to the Discrete Points controlling the injector solenoids. Notice that the symbol names
generated by pycca contain enough additional information to ensure that the symbols do not conflict with
those from other domains. Also notice that we have chosen names for the initial instances that reflect
their usage in the application and this text. Careful name selection can help avoid confusion when putting
together bridge-mapping data.

Figure 8-5 showed the bridge table that maps the Inject and Stop injecting external entity operation from
the Lubrication domain onto the Write point domain operation of the SIO domain. Again, if we examine the
table closely, we see that the only two columns that vary are Operation on the Lubrication domain side and
Value on the SIO domain side. This suggests another optimization. We implement the bridge mapping as a C
function that performs the instance mapping and parameterizes the I/O Point value depending on whether
we are starting or stopping the injection:

static void
controlInjector(
 InstId_t injectorId,
 bool starting)
{
 assert(injectorId < LUBE_INJECTOR_INST_COUNT) ;

 sio_Write_point(injToPointMap[injectorId], starting ? 1 : 0) ;
}

This function maps an Injector instance to an I/O Point instance, using the injToPointMap array, and
invokes the SIO domain operation to write a value to the point. The starting argument is true if we want
to start injecting, and false otherwise. Starting and stopping are mapped to 1 and 0, respectively, as the
required values of the Discrete Point to start and stop lubricant injection.

The external entity functions need only invoke the common controlInjector function with the
appropriate value for the starting argument:

void
eop_lube_SIO_Inject(
 InstId_t injectorId)
{
 controlInjector(injectorId, true) ;
}

void
eop_lube_SIO_Stop_injecting(
 InstId_t injectorId)
{
 controlInjector(injectorId, false) ;
}

Once distilled down to its essentials, the bridge to implement starting and stopping injection is quite
small. However, we want to emphasize that the path to this small implementation starts with designing the
bridge, using the ideas discussed in the first part of this chapter. Larger and more complicated bridges will
require larger and more complicated external entity function implementations, but those functions can be
derived using the design process we have shown.

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

150

Implementing Injector Pressure Monitoring Functions
The two other external entity functions for the Lubrication domain involve monitoring the injection
pressure. The Lubrication domain invokes Start monitoring when it has decided that the injection lubricant
pressure needs to be monitored. It invokes Stop monitoring when the Injector is at a point in its life cycle
where monitoring is no longer needed. The design of the bridge is shown in Figure 8-10. In this case, the
Lubrication domain maps an asynchronous signaling operation onto signaling an event to an instance in
the SIO domain. The instance mapping is from Injector instances in the Lubrication domain to Conversion
Group instances in the SIO domain.

Using the same reasoning as in the previous external entity function, we can construct an initialized C
array variable to perform the instance mapping:

static sio_Point_ID const presToConvGrpMap[LUBE_INJECTOR_INST_COUNT] = {
 [LUBE_INJECTOR_IN1_INST_ID] = SIO_CONVERSION_GROUP_INJ1_CG_INST_ID,
 [LUBE_INJECTOR_IN2_INST_ID] = SIO_CONVERSION_GROUP_INJ2_CG_INST_ID,
 [LUBE_INJECTOR_IN3_INST_ID] = SIO_CONVERSION_GROUP_INJ3_CG_INST_ID,
} ;

Again, because the set of Injector instances in the implementation of the mapping bridge table is the
complete set of instances for the domain, we can perform the search for the corresponding Conversion
Group by using array indexing.

Examining the bridge table in Figure 8-10 that maps the external entity signal to an event, we see
that the arrangement is similar to that for starting and stopping injection. In this case, the varying parts of
the bridge table are the Signal column from the Lubrication domain and the Event column from the SIO
domain. We exploit this arrangement by constructing a function where the SIO event, encoded as a number
by pycca, is a parameter:

static void
signalConversionGroup(
 InstId_t injectorId,
 EventCode event)
{
 assert(injectorId < LUBE_INJECTOR_INST_COUNT) ;

 int pcode = pycca_generate_event(&sio_portal,
 SIO_CONVERSION_GROUP_CLASS_ID,
 presToConvGrpMap[injectorId],
 NormalEvent,
 event,
 NULL) ;

 assert(pcode == 0) ;
 (void)pcode ; // ❶
}

❶ This eliminates compiler warnings about pcode being unused when the assertions are
removed.

The controlConvertionGroup function uses the pycca portal function pycca_generate_event to signal
an event to a Conversion Group instance from outside the SIO domain. The arguments to pycca_generate_
event are as follows:

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

151

•	 sio_portal, which tells the function which domain is involved.

•	 SIO_CONVERSION_GROUP_CLASS_ID, which gives the class of the signaled instance.
This symbol is generated by pycca.

•	 The Conversion Group instance number obtained from the instance mapping array
shown previously. The initializer values in this array are symbols generated by pycca.

•	 The type of the event to signal.

•	 The number of the event to signal, passed in as a parameter.

•	 A pointer to the event parameters. In this case, there are none.

Using the preceding function, we can code the Lubrication domain external entity functions for starting
and stopping pressure monitoring.

void

eop_lube_SIO_Start_monitoring(
 InstId_t injectorId)
{
 signalConversionGroup(injectorId, SIO_CONVERSION_GROUP_SAMPLE_EVENT_ID) ;
}

void
eop_lube_SIO_Stop_monitoring(
 InstId_t injectorId)
{
 signalConversionGroup(injectorId, SIO_CONVERSION_GROUP_STOP_EVENT_ID) ;
}

SIO Domain External Entity Function
In this section, we show the external entity functions for the SIO domain. We show only four of the
functions here. The remaining function not covered here is shown in the online materials for the book. Its
implementation pattern is similar to ones you have already seen.

Updating Injector Pressure Attribute
After the Lubrication domain has invoked Start monitoring, its expectation is that the value of the Pressure
attribute of the Injector instances always contains the latest measured value. You saw how monitoring
injector pressure was mapped to an event to an instance of Conversion Group in the SIO domain. Each time
a Continuous Input Point is sampled, it is scaled to engineering units, and the New point value operation of
the NOTIFY external entity is invoked. The asynchronous nature of the bridge from the Lubrication domain
perspective now shows up as an external entity operation invoked by the SIO domain.

The external entity function for New point value is responsible for updating, in the Lubrication domain,
the value of the Pressure attribute for the Injector instance corresponding to the Continuous Input Point.
Figure 8-12 shows the bridge table. From the point of view of the bridge, Figure 8-12 extends the bridge table
used in other parts of the bridge. However, from the point of view of our implementation, we are unable to
reuse the instance mapping created for starting and stopping injection. This is because we simplified the
instance mapping bridge table to exclude parts that did not vary when the mapping was used for controlling
injection. That “optimization” allowed us to use array indexing as the mapping search mechanism, but

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

152

prevents us from using the mapping array for any other external entity functions. It is a trade-off we
accept to simplify the instance-mapping search, but it requires us to build a different instance-mapping
implementation for this external entity function.

Unlike our previous maps, here we are mapping from I/O Point in the SIO domain onto Injectors in
the Lubrication domain. There may many more I/O Points in the SIO domain than there are Injectors in
the Lubrication domain, so our previous strategy of using a simple array index doesn’t work well. For this
mapping, we choose to build and search a table that explicitly maps I/O Point identifiers corresponding to
the Injector pressure values to the Injector instances’ IDs in the Lubrication domain.

To accomplish the mapping, we need a data structure to hold the necessary data:

typedef struct {
 InstId_t fromInst ;
 InstId_t toInst ;
} BridgeIDMap ;

Given an array of such structures, we code a simple linear search to find the corresponding ID value:

static BridgeIDMap const *
mapIOPoint(
 BridgeIDMap const *mapping,
 int numMappings,
 InstId_t from)
{
 for (; numMappings > 0 ; numMappings--, mapping++) {
 if (mapping->fromInst == from) {
 return mapping ;
 }
 }

 return NULL ; // ❶
}

❶ We use NULL to indicate that the mapping failed.

We have chosen a simple search implementation. Our instance populations are small, and so our
mapping tables are also small. Larger populations would warrant a more sophisticated search technique
such as a hash table.

The mapping from I/O Point instances that correspond to Injector pressure values to the Lubrication
domain Injector instances is held in an initialized array variable:

static BridgeIDMap const presToInjMap[LUBE_INJECTOR_INST_COUNT] = {
 {
 .fromInst = SIO_IO_POINT_IOP1_INST_ID,
 .toInst = LUBE_INJECTOR_IN1_INST_ID,
 },
 {
 .fromInst = SIO_IO_POINT_IOP2_INST_ID,
 .toInst = LUBE_INJECTOR_IN2_INST_ID,
 },
 {
 .fromInst = SIO_IO_POINT_IOP3_INST_ID,

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

153

 .toInst = LUBE_INJECTOR_IN3_INST_ID,
 },
} ;

Because we are searching the array for the identifier of an I/O Point, the order of the array elements is
arbitrary.

The code for the SIO external entity function uses a portal function to update the Injector pressure
attribute in the Lubrication domain:

<<sio external operations>>= void
eop_sio_NOTIFY_New_point_value(
 sio_Point_ID point,
 sio_Point_Value value)
{
 assert(point < SIO_IO_POINT_INST_COUNT) ;

 BridgeIDMap const *pointMap =
 mapIOPoint(presToInjMap, COUNTOF(presToInjMap), point) ; // ❶

 assert(pointMap != NULL) ; // ❷
 if (pointMap == NULL) {
 return ;
 }

 int pcode = pycca_update_attr(&lube_portal, // ❸
 LUBE_INJECTOR_CLASS_ID,
 pointMap->toInst,
 LUBE_INJECTOR_PRESSURE_ATTR_ID,
 &value,
 sizeof(value)) ;

 assert(pcode > 0) ;
 (void)pcode ;
}

❶ The COUNTOF macro computes the number of elements in its argument array.

❷ We use assert to catch bad mappings during development. There should be none.
However, when the assertions are gone in a release build, we have decided to protect
ourselves against dereferencing the NULL pointer. Just because we expect no failures in the
mapping does not mean one won’t happen in reality.

❸ This portal function updates the value of an attribute. In this case, the attribute is the
Pressure for an Injector instance in the Lube domain. Note the use of pycca-generated
symbols as argument values to the portal function.

You can think of this bridge implementation as a push strategy for transporting the injector pressure values
across to the Lubrication domain. The Pressure attribute of each Injector instance is updated at the same
frequency that the corresponding Conversion Group is sampled. So, the activities of the Lubrication domain
always pick up the latest pressure value when it is needed. You can contrast this technique with a pull technique,
in which the pressure values for the Injectors would be read from the Signal IO domain when needed.

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

154

Signaling Pressure Alerts
The second part of the lubricant pressure monitoring bridge is to alert an Injector in the Lubrication domain
when the lubricant pressure falls outside specified range boundaries. When SIO obtains a newly sampled value
for a Continuous Input Point, it checks to see whether that point has one or more Range Limitations associated
with it. The Range Limitation instances compare the point value against its Point Threshold limit and invoke
the external entity operations of Out of range or In range, depending on the outcome of the comparison.

Figure 8-15 shows the bridge table. To external entity functions must be supplied. The bridge mapping
of the external entity signal has one of three outcomes:

•	 A class method is invoked on an Injector.

•	 An event is signaled to an Injector.

•	 The threshold notification is not needed by Lubrication, and nothing happens.

The choice of three outcomes adds complexity to the external entity function implementations, but
following our previous pattern, we factor out a small piece of code to perform the signaling operation. We
use a pycca portal function and take the injector instance and event number as parameters:

static void
signalInjector(
 InstId_t injectorId,
 EventCode event)
{
 assert(injectorId < LUBE_INJECTOR_INST_COUNT) ;

 int pcode = pycca_generate_event(&lube_portal,
 LUBE_INJECTOR_CLASS_ID,
 injectorId,
 NormalEvent,
 event,
 NULL) ;

 assert(pcode == 0) ;
 (void)pcode ;
}

The external entity function to notify Injectors when a pressure threshold is out of range tests the
threshold ID to determine the manner of notification:

void
eop_sio_NOTIFY_Out_of_range(
 sio_Point_ID point,
 sio_Threshold_ID threshold)
{
 assert(point < SIO_IO_POINT_INST_COUNT) ;
 assert(threshold < SIO_POINT_THRESHOLD_INST_COUNT) ;

 BridgeIDMap const *pointMap = mapIOPoint(presToInjMap, COUNTOF(presToInjMap), point) ;

 assert(pointMap != NULL) ;
 if (pointMap == NULL) {
 return ;
 }

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

155

 switch (threshold) {
 case SIO_POINT_THRESHOLD_IX77B_ABOVE_INJ_INST_ID:// fall through
 case SIO_POINT_THRESHOLD_IHN4_ABOVE_INJ_INST_ID:
 signalInjector(pointMap->toInst,
 LUBE_INJECTOR_ABOVE_INJECT_PRESSURE_EVENT_ID) ;
 break ;

 case SIO_POINT_THRESHOLD_IX77B_ABOVE_DISP_INST_ID:// fall through
 case SIO_POINT_THRESHOLD_IHN4_ABOVE_DISP_INST_ID:
 signalInjector(pointMap->toInst,
 LUBE_INJECTOR_ABOVE_DISSIPATION_PRESSURE_EVENT_ID) ;
 break ;

 case SIO_POINT_THRESHOLD_IX77B_MAX_PRES_INST_ID:// fall through
 case SIO_POINT_THRESHOLD_IHN4_MAX_PRES_INST_ID:
 lube_Injector_max_pressure(pointMap->toInst) ;
 break ;

 /*
 * N.B. no default case.
 * Unexpected Range Limitation instances are silently ignored.
 */

 }
}

Like the preceding external entity functions, the In range external entity function also tests the threshold
ID. Because there is no Below dissipation pressure event and no Below max pressure method for an Injector,
some of the Range Limitation threshold values have no mapping in the bridge. The only threshold for which
In range notifications are meaningful is the lubrication injection pressure:

void
eop_sio_NOTIFY_In_range(
 sio_Point_ID point,
 sio_Threshold_ID threshold)
{
 assert(point < SIO_IO_POINT_INST_COUNT) ;
 assert(threshold < SIO_POINT_THRESHOLD_INST_COUNT) ;

 BridgeIDMap const *pointMap = mapIOPoint(presToInjMap, COUNTOF(presToInjMap), point) ;

 assert(pointMap != NULL) ;
 if (pointMap == NULL) {
 return ;
 }

 switch (threshold) {
 case SIO_POINT_THRESHOLD_IX77B_ABOVE_INJ_INST_ID:// fall through
 case SIO_POINT_THRESHOLD_IHN4_ABOVE_INJ_INST_ID:

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

156

 signalInjector(pointMap->toInst,
 LUBE_INJECTOR_BELOW_INJECT_PRESSURE_EVENT_ID) ; // ❶
 break ;

 /*
 * N.B. no default case.
 * Unexpected Range Limitation instances are silently ignored.
 */
 }
}

❶ Notice that we signal Below inject pressure when the minimum injection pressure
threshold returns to being In range.

Both of these external entity functions could have been implemented differently. The implementation
given is convenient for a small number of Point Threshold instances and makes clear which thresholds
cause which action, either signaling an event or invoking a domain operation. But say there were 100 Point
Threshold instances. A switch statement implementation would not scale well, and we would probably
choose to encode the Point Threshold mapping in data and write code to search the data for the correct
action to perform. Again we stress that the logic of the bridge and its mapping of semantics between
domains stands apart from the implementation of the bridge code itself.

How the Portal Works
We have shown how the Lubrication and SIO domains can be bridged together by supplying code for the
external entity functions of each domain. The code for the external entity functions mapped class instances
between the domains and invoked either a domain operation or a pycca portal function to fulfill the
expectations of the bridge. What remains is to show how the pycca portal functions themselves work.

The portal functions are data driven by the values contained in the portal variable generated by pycca.
The portal variable has the following type:

struct pycca_domain_portal {
 struct pycca_class_portal const *classes ;
 ClassId_t numClasses ;
} ;

The portal variable contains a pointer to an array of class descriptive information and a count providing
the number of elements in the class description array. For the Lubrication domain, the portal variable
generated by pycca is as follows:

struct pycca_domain_portal const lube_portal = {
 .classes = lube_class_portal,
 .numClasses = 6
} ;

As we stated before, pycca also emits a series of preprocessor defines that encode, as consecutive zero-
based integers, a set of identifiers for the instances of a class. These identifiers can be used directly as an
array index into the class instance storage array. Pycca also generates definitions that serve as identifiers
for the classes and attributes of the domain. All of these preprocessor symbols follow naming conventions
to make the symbol values unique. You saw examples of the symbol names in the preceding code. The
following data types are also placed in the generated header file of the domain:

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

157

typedef unsigned short ClassId_t ;
typedef unsigned short InstId_t ;
typedef unsigned short AttrId_t ;
typedef unsigned short AttrOffset_t ;
typedef unsigned short AttrSize_t ;

The class information for the portal has the following structure:

struct pycca_class_portal {
 void *storage ;
 struct pycca_attr_portal const *attrs ;
 struct mechclass const *mechClass ;
 AttrId_t numAttrs ;
 InstId_t numInsts ;
 size_t instSize ;
 size_t instOffset ;
 bool isConst ;
 bool hasCommon ;
 StateCode initialState ;
} ;

The members of the portal class description are as follows:

storage A pointer to the storage array for the class instances.

attrs A pointer to an array of attribute descriptors.

mechClass A pointer to the descriptor for the class.

numAttrs The number of attributes of the class. This is the number of elements pointed to by the
attrs member.

numInst The maximum number of instances of the class.

instSize The number of bytes occupied by an instance of the class.

instOffset The offset in bytes from the beginning of the storage for an instance, where the
instance data begins. This member is nonzero only for union-based superclasses.
Because the subclass is stored directly contained within the superclass for union-
based generalizations, this value gives the offset to the subclass storage.

isConst A Boolean value that indicates whether the instance storage has been placed in read-
only memory.

hasCommon A Boolean value that indicates whether the class structure definition contains the
common_member. For classes with static instance populations and no state model,
pycca does not define the common_member for the class structure and saves the
memory that would otherwise be filled with NULL pointers.

initialState The state number for the initial state of an instance. For classes that do not have a state
model, the value is ignored.

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

158

We show part of the class descriptive information, in this case for the Injector class:

static struct pycca_class_portal const lube_class_portal[] = {
 // omitted class descriptive information

 {
 .storage = Injector_storage,
 .attrs = Injector_attr_portal,
 .mechClass = &Injector_class,
 .numAttrs = 3,
 .numInsts = 3,
 .instSize = sizeof(struct Injector),
 .instOffset = 0,
 .isConst = 0,
 .hasCommon = 1,
 .initialState = Injector_INITIAL_STATE
 },

 // omitted class descriptive information
} ;

Each attribute of the class is described by the following data structure:

struct pycca_attr_portal {
 AttrOffset_t offset ;
 AttrSize_t size ;
} ;

The portal functions work primarily by using the pycca-generated symbols as indices into arrays
generated by pycca when the portal is requested. The data elements in the arrays contain pointer values to
internal domain data that can be passed as arguments to the runtime code. This arrangement provides a
level of indirection to prevent exposing the domain internals and provides some control over the operations
that may be performed on a domain externally. Because this is C, such protections are not firmly enforced
by the compiler, and knowing the structure of the portal data means that it can be abused. We assume some
level of good intentions and professionalism.

We show one example of a portal function, pycca_update_attr. All portal functions return an int value.
A return value less than zero indicates an error, whereas a return value greater than or equal to zero indicates
success. The pycca_update_attr function updates the value of an attribute in the given instance of the given
class. Here, a successful return value indicates the number of bytes copied into the attribute:

int
pycca_update_attr(
 struct pycca_domain_portal const *portal,
 ClassId_t class,
 InstId_t inst,
 AttrId_t attr,
 void const *src,
 AttrSize_t size)
{
 int result ;

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

159

 if (class < portal->numClasses) {
 struct pycca_class_portal const *classes = portal->classes + class ; // ❶
 if (inst < classes->numInsts) {
 MechInstance instRef = (MechInstance)((char *)classes->storage +
 classes->instSize * inst + classes->instOffset) ; // ❷
 if (attr < classes->numAttrs) {
 struct pycca_attr_portal const *attrs = classes->attrs + attr ; // ❸
 if (classes->hasCommon == false || instRef->alloc != 0) { // ❹
 if (!classes->isConst) { // ❺
 void *dst = (void *)((char *)instRef + attrs->offset) ;
 result = size < attrs->size ? size : attrs->size ; // ❻
 memcpy(dst, src, result) ;
 } else {
 result = PYCCA_PORTAL_NO_UPDATE ;
 }
 } else {
 result = PYCCA_PORTAL_UNALLOC ;
 }
 } else {
 result = PYCCA_PORTAL_NO_ATTR ;
 }
 } else {
 result = PYCCA_PORTAL_NO_INST ;
 }
 } else {
 result = PYCCA_PORTAL_NO_CLASS ;
 }

 return result ;
}

❶ Index to the class descriptor.

❷ Compute a pointer to the class instance.

❸ Index into the attribute descriptor.

❹ Check whether the instance storage slot is in use.

❺ Check whether we are trying to write to constant memory.

❻ Copy only the lesser of the size of the attribute storage and the size of the updated value storage. Note that
this works properly only for processors that store multibyte quantities in little endian order.

Most of the code is spent validating input arguments in a way that allows us to give specific error codes
on failure. The successful path through the code uses the class, inst, and attr arguments as indices into the
description data contained in the portal variable. Finally, the value is copied into the proper memory location.

The other portal functions follow a similar pattern. Argument values are validated and used as indices
into descriptive data. The descriptive data is used to compute a pointer to a class instance. Given an instance
pointer, the usual runtime functions may be invoked on it.

Chapter 8 ■ IntegratIng the applICatIon and ServICe domaInS

160

Summary
In this chapter, we showed how to bridge the semantic gap between two domains by using our example
Lubrication and SIO domains. Bridges were specified through marking and mapping. Marking designates
domain elements in the client that have a correspondence in a service domain. Marking is also used to
identify and populate class instances in the service domain. The service domain instance population is
configured to meet the requirements of its client. Mapping makes the correspondence between domain
elements explicit by recording data in bridge tables. Bridge tables are composed of half tables. Each domain
contributes columns to its half table to describe the elements of the domain that are involved in the bridge.
By joining half tables, we generate a bridge table that is then populated with rows for the instances and
parameters having a correspondence in the bridge.

The bridge code is implemented by manually writing code for each external entity function. Pycca
supplies a portal into a domain that is used in the external entity functions to perform common fundamental
model-level operations such as signaling an event. Pycca also supplies a symbolic encoding of model-level
elements such as classes, attributes, and instances. These symbols are useful in coding the external entity
functions and are used as arguments to the portal functions. Finally, we showed how the portal and its
functions work. The portal consists of an initialized variable and a set of C functions. The structure of the
portal variable was shown along with some of the initializers for the Lubrication domain. Finally, we showed
the C code for the portal function that updates the value of an attribute.

161© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_9

CHAPTER 9

Event Polymorphism

In programming, polymorphism is the idea that a function interface remains fixed, but the choice of a
particular implementation of that function is done at runtime. Many types of polymorphism are defined
in modern programming languages. Here we are referring to simple dynamic polymorphism. At the model
level, polymorphism arises in the signaling of events to subclasses of a generalization.

Generalization and Set Partitioning
Polymorphic events are applicable only in the context of a generalization relationship in which each
subclass has a state model and some events are shared across those state models. We must reiterate that the
xUML interpretation of a generalization relationship is more restrictive than the many forms expressed in
conventional UML. In xUML, the only generalizations permitted are those tagged as complete and disjoint.
The complete tag means that every instance in the superclass has a corresponding instance in a subclass. The
disjoint tag means that the corresponding instance is in exactly one subclass. So, in a generalization in which
Aircraft is either Rotary Wing or Fixed Wing (a helicopter or an airplane), a given Aircraft must be one or the
other, and not both, and not neither. Put another way, xUML generalization represents set partitioning rather
than type inheritance. The properties of a disjoint set partitioning are pertinent to our discussion. Because it
is understood that all xUML generalizations carry the same set partitioning constraints, we usually omit the
tags to reduce diagram clutter.

Figure 9-1. A simple generalization

Chapter 9 ■ event polymorphism

162

Routing Polymorphic Events
Consider the generalization shown in Figure 9-1.

We assume that each of the three subclasses of Vehicle has a state model and that there is a common
set of events to which each state model responds. Let’s say the common events are Park and Pass (pass
another vehicle). If a state activity of a class outside the generalization wishes to signal a Park event to either
Car, Truck, or Bus, that activity would need to locate a particular instance of Car, Truck, or Bus. Usually,
it navigates a relationship to an instance of Vehicle and then continues across R1 to find which particular
instance is currently related to that instance of Vehicle. Having found the related subclass instance, we can
proceed as we would for any event and signal the class instance.

Conceptually, determining which subclass is related to a particular instance of a superclass is not
difficult. You just traverse the relationship from the superclass to each of its subclasses. An empty instance
reference is obtained on navigation to a subclass to which an instance of Vehicle is not related. The
properties of a generalization relationship guarantee that exactly one related instance will be found among
the subclasses.

This solution has two notable problems. Navigating from the superclass to the subclass sprinkles a
large amount of generic and almost identical action language throughout the state activities of the subclass
signalers. Also, the action language is fragile, because adding or removing a subclass from the generalization
requires reworking the superclass-to-subclass queries for each event signaled to one of the subclasses.

Because the model enumerates the subclasses of a generalization and the events to which any
state model responds, we would prefer to address the event to the superclass instance and then let the
model execution domain route the event to the appropriate subclass instance. To accomplish this, we
designate polymorphic events that are signaled to a superclass but handled in one of the subclasses of the
generalization.

A polymorphic event gives the signaling state activity the illusion that the superclass is signaled.
However, the model execution domain performs the required work, at runtime, to find the currently related
subclass instance, map the polymorphic event onto the event set of the related subclass instance, and signal
the event. Because nothing is happening in the dispatch of polymorphic events that could not otherwise be
handled in the action language of a state activity, polymorphic events can be considered, strictly speaking,
an optimization, albeit a convenient and significant one. You can also think of event polymorphism as
delegating to the MX domain the task of dispatching events across a generalization when those events have
the same meaning in all the subclasses.

Routing for each Form of Generalization
The basic generalization form illustrated with the Vehicle scenario just described is the most common, but it
is not the whole story. Generalization relationships can be composed into more complex forms.

Repeated specialization is characterized by a subclass in one generalization acting as a superclass in a
different generalization. Figure 9-2 shows an example of this type of generalization. Polymorphic events may
be defined on both superclasses. Those defined at the topmost superclass are delegated to the first level of
subclasses. The subclass that is also a superclass of the next-lower generalization may further delegate those
same events to its subclasses. It may also define new polymorphic events that are delegated to the second
level of subclasses and not visible above the second-level superclass.

Chapter 9 ■ event polymorphism

163

Multiple generalization features a class that participates as a subclass in more than one independent
generalization. Figure 9-3 shows this case. Our interpretation of generalization does not allow a subclass
to participate in multiple generalizations that ultimately have a common superclass ancestor. Such an
arrangement violates the disjoint set interpretation of a generalization relationship. The spanning subclass
must respond to any polymorphic events directed at each of its superclasses.

Figure 9-2. A repeated generalization

Figure 9-3. A multiple generalization

Chapter 9 ■ event polymorphism

164

Compound generalization is a pattern in which a single class plays the role of a superclass in more than
one generalization relationship. Figure 9-4 shows this case. An event signaled to the superclass must be
dispatched to all generalizations for which the class serves as a superclass.

We should note that many of the composed forms involving multiple generalizations may have dubious
uses in modeling real-world problems. In particular, compound generalizations impose a strict set of constraints
that real-world problems often do not meet. But our concern here is translation, and we must be prepared to
render polymorphic event dispatch correctly across any composition of generalizations we are given.

Other implications of polymorphic events impact how they are translated:

•	 A polymorphic event defined on a superclass does not affect the behavior of that
particular superclass. A superclass may have a state model that responds to ordinary,
nonpolymorphic events.

•	 Classes that are repeatedly specialized and intermediate in a generalization hierarchy
may or may not have a state model. If they don’t have a state model, any polymorphic
events are passed along to the subordinate generalization. If they do have a state
model, then some, all, or none of the polymorphic events may be consumed by
that state model. Any polymorphic events not consumed by the intermediate state
model are passed to the subordinate generalization. Any polymorphic events that are
consumed are not available to the subordinate generalization.

•	 A leaf subclass (a subclass that is not subject to further specialization) must process
any events delegated to it or defined on it. If any polymorphic events have been
delegated along the generalization, the leaf subclass must have a state model.
Ultimately, all polymorphic events must be mapped to nonpolymorphic events and
be accounted for in a state model. This is another way of saying that there is nothing
special about a polymorphic event after it has been delegated to a leaf subclass.

Figure 9-4. A compound generalization

Chapter 9 ■ event polymorphism

165

Torpedo Launch Example
To illustrate how polymorphic events arise in models and to show how they are translated, we present
a small example. This example is an excerpt of a submarine simulation that focuses on the behavior of
torpedoes. As with all our examples, we do not imply that this is how a real submarine torpedo would be
controlled. The model shown is strictly for pedagogical purposes.

The problem we consider is how torpedoes are stored, made ready, and eventually launched.
Torpedoes are initially organized in storage racks. A torpedo is deployed for potential firing by taking it from
its storage rack and loading it into a torpedo tube.

Two types of torpedo design determine how torpedoes are launched. One type of torpedo has a motor
designed to propel the torpedo out of an open tube. The other torpedo type is launched using an air system
that propels both torpedo and water out of the tube.

One additional complication exists. Under rare conditions, it is necessary to recall a torpedo such that
there is no attempt to deploy or explode it. A torpedo could be recalled because of a late-discovered design
flaw, or the need to reconfigure the torpedo for some reason. If a torpedo is sitting in its storage rack, it is
easily recalled for maintenance or disposal. If it is already loaded into a tube when recalled, we must prevent
it from firing and remove it from the tube. If the torpedo is already launched, we must be able to disarm a
torpedo in flight before it explodes.

As always, we use a class model to capture the relevant abstractions, and it is shown in Figure 9-5. It is
helpful to understand the high-level behavior intended for the classes before diving into the details of the
individual state models, so we provide an overview of the class diagram.

Figure 9-5. Torpedo class model

Chapter 9 ■ event polymorphism

166

The R1 generalization captures the three conditions of a Torpedo as being either a Stored, Loaded, or
Fired Torpedo. The R5 association between Torpedo and Torpedo Spec provides the Launch type attribute
that tells us how the Torpedo is to be launched. The attribute can have a value of Active or Passive.

Initially, a Torpedo is created as a Stored Torpedo and assigned to a Storage Rack. A Load event will cause
a Stored Torpedo to migrate to being an instance of Loaded Torpedo. The Torpedo Spec.Launch type attribute is
consulted to determine whether the Passive or Active Launch Torpedo subclass must be instantiated. The Storage
Rack association is discarded, and R4 is established to register the Tube into which the Torpedo is loaded.

When the Fire event is received by a Loaded Torpedo, it will escape its Tube and migrate to an instance
of Fired Torpedo. The R4 association is discarded because the Torpedo is no longer in a Tube.

Note that the polymorphic events have been annotated on the class diagram. This is purely for
illustration and is not considered part of the class diagram. At the top, the Recall event is shown next to
Torpedo. The asterisk (*) symbol is an informal way of indicating that this event is polymorphic and may be
signaled to an instance of Torpedo, but is processed in one of the subclasses.

As you can see, the Recall event is noted next to each Torpedo subclass. In Executable UML, every
subclass must define a way to handle the polymorphic event of the superclass in a given generalization
relationship. In other words, if an instance of Torpedo receives a Recall event, a response to that event must
be defined regardless of which subclass characterizes the instance of Torpedo at a given moment.

An * remains on the Recall event for the Loaded Torpedo class, indicating that we intend to further
delegate the event to all of the subclasses on R2. The * is not present on the Recall event shown next to the
Passive and Active Launch Torpedo subclasses. These subclasses are leaves in the generalization and so
must have state models that react to the event.

Similarly the Fire and Cleared tube events directed at Loaded Torpedo are polymorphic and
delegated to the subclasses on R2. These events represent new polymorphic events introduced on the R2
generalization and have no effect on the other subclasses of R1. Regardless of whether an instance of Loaded
Torpedo is Passive or Active, for example, it must define a response for both the Fire and Cleared tube
events. Considering polymorphic events defined for both R1 and R2, Passive Launch Torpedo and Active
Launch Torpedo must respond to Recall, Fire, and Cleared tube.

Now let’s see how event polymorphism appears in the state models. We have decided to build a separate
state diagram for each of the leaf subclasses. We start with the Stored Torpedo state model shown in Figure 9-6.

Figure 9-6. Stored Torpedo state model

Chapter 9 ■ event polymorphism

167

This state model depicts the life cycle of a Stored Torpedo from the time it is initially created via
assignment to a Storage Rack to the point at which it is either recalled or loaded into a torpedo Tube.

When the Load(Tube) event is received, reclassification into a new instance of Loaded Tube occurs in
the Migrating to Loaded state. Here the association to the Storage Rack is broken, the appropriate instances
of Passive or Active Torpedo are created, along with an instance of Loaded Torpedo linked together along R2.
Finally, the Tube specified in the event in.Tube is selected and linked to the Loaded Torpedo instance. From
there, the final state symbol indicates that the Stored Torpedo instance is deleted.

The polymorphic event Recall appears as an ordinary event that triggers a transition in the STORED and
MAINTENANCE states. It is safely ignored in the other states, which are all transitory (exited on self-directed
events).

There is no Loaded Torpedo state model, by choice, and instead a state model has been defined on each
of its subclasses. Let’s start with the Passive Launch Torpedo shown in Figure 9-7.

As the Stored Torpedo instance expires, a newly created instance of Passive Launch Torpedo is created
in the LOADED state. The link to the Tube instance has already been established, and the Torpedo waits to
be fired. The Fire event has been designated as polymorphic, so it can be signaled to any instance of Loaded
Torpedo without regard to whether it is Passive or Active.

When a Fire event is signaled to an instance of Loaded Torpedo that is specialized as an instance of
Passive Launch Torpedo, the event is delivered to the subclass instance in the Passive Launch Torpedo state
model. This will cause a transition to the EXPELLING state, where the torpedo is pushed out of its Tube.

When the Cleared tube event (also polymorphic) is received, we know that the Torpedo is outside
the submarine. It transitions to the Migrating to Fired state, where it disassociates itself from its Tube and
becomes an instance of Fired Torpedo.

If the Recall event occurs while in the LOADED state, a software lock is placed on the torpedo such that
it will ignore any subsequent Fire events. Otherwise, the event is ignored in the EXPELLING state because it
is kind of hard to recall a Torpedo halfway out of the Tube! No worries, Figure 9-8 shows that action can be
taken in the Fired Torpedo state model.

Figure 9-7. Passive Launch Torpedo state model

Chapter 9 ■ event polymorphism

168

So now we have a Torpedo that has left the sub on its way, presumably to a target. At this point, the
Recall event will prevent the Torpedo from being armed. At a safe distance from the sub, the Arming distance
event will be detected.

There is a danger, however, that a Recall event would have been ignored during the Passive or Active
Launch Torpedo EXPELLING or ESCAPING TUBE states. And once ignored, an event is lost forever. This is
why a class method named Recall() has been defined on the Torpedo class. To recall a torpedo, this method
is called. It does two things. First, it sets the Torpedo.Recalled attribute to true. Second, it fires off the Recall
polymorphic event directed at itself, which is then delegated appropriately. This means that even though the
event may be discarded, the active recall status is remembered in the attribute value, which can be checked
and cleared in a subsequent state.

In the Arming state, the Torpedo.Recalled value is consulted before arming the Torpedo, just in case the
Recall event occurred in an earlier state, where no productive action could have been taken.

The state model for the Active Launch Torpedo subclass is similar to that of the Passive Launch
Torpedo, with the exception of the ESCAPING TUBE state. It is shown in Figure 9-9.

Figure 9-8. Fired Torpedo state model

Chapter 9 ■ event polymorphism

169

The important thing to note here is that the polymorphic events Recall, Fire, and Cleared tube are all
processed in the state models of the subclasses. We reiterate that there is nothing special about polymorphic
events when they are eventually consumed. We have delegated to the model execution domain only the
tasks of navigating the generalization from the superclass instance to the subclass instance, and mapping
the event onto the event set of the receiving instance. After the event is received, it acts as any other event
(it causes a transition, is ignored, or creates an error situation). The delegation of the runtime dispatch to
the Model Execution domain allows us to signal the polymorphic event to the superclass instance without
knowing which corresponding subclass is instantiated. As this example shows, polymorphic events, along
with migrating subclasses, can be used to specify complicated multimodal behavior by using only the state
models of individual classes.

Translating Polymorphic Events with Pycca
In this section, we show how the torpedo launch model is translated using pycca. As usual, we show only
those parts of the translation that involve constructs you have not already seen and refer you to the fully
worked-out example available as part of the online materials.

First, we must specify which events are polymorphic. Two classes define and delegate polymorphic
events, Torpedo and Loaded Torpedo:

class Torpedo
 attribute (Torpedo_ID ID)
 attribute (bool Recalled) default {false}
 reference R5 -> Torpedo_Spec

 polymorphic event # ❶
 Recall
 end

Figure 9-9. Active Torpedo state model

Chapter 9 ■ event polymorphism

170

 subtype R1 reference # ❷
 Stored_Torpedo
 Loaded_Torpedo
 Fired_Torpedo
 end

 instance operation
 Recall()
 {
 self->Recalled = true ;
 PYCCA_generatePolymorphic(Recall, Torpedo, self, self) ; // ❸
 }

 population dynamic # ❹
 slots 20
end

❶ The polymorphic event statement introduces the names of the polymorphic events that
may be signaled to the Torpedo class. Note that we use an asterisk (*) in the preceding code
as an informal annotation on the class diagram to illustrate how polymorphic events are
mapped across the generalization. Pycca does not use that notation. Events in the consuming
state model need only have the same name as the ones declared as polymorphic.

❷ Here we declare R1 to use pointer references to implement the generalization. This
choice is arbitrary, and we use the reference implementation here to demonstrate its
use. Polymorphic events would have worked the same if we had used the union style of
implementation as we did in other models.

❸ The instance operation shows how polymorphic events (with no event parameters) are
signaled. Note that you have to use a specific macro, PYCCA_generatePolymorphic() to signal
polymorphic events.

❹ Because the number of Torpedoes can vary, we declare the population to be dynamic and
allocate enough space for 20 instances. Remember, all storage is allocated at compile time,
and here we state that we have at most 20 torpedoes in our system. Also note that because
we have used the reference implementation in this case, storage will be allocated for each
Torpedo subclass. With the reference implementation of a generalization, the subclass
instances are stored separately from the superclass instances.

The second class to define polymorphic events is the Loaded Torpedo class:

class Loaded_Torpedo
 reference R1 -> Torpedo # ❶
 reference R4 -> Tube

 polymorphic event # ❷
 Fire
 Cleared_tube
 end

Chapter 9 ■ event polymorphism

171

 subtype R2 reference
 Passive_Launch_Torpedo
 Active_Launch_Torpedo
 end

 population dynamic # ❸
 slots 8
end

❶ As a subclass in a generalization implemented using a reference, we will need a reference
to our related superclass instance, as we need to traverse R1 from subclass to superclass. This
back reference is necessary only if we have to navigate R1 from the subclass to the superclass.
In this example, we need to perform that navigation. If the activities of Loaded Torpedo never
navigate R1 to Torpedo, this reference can be omitted.

❷ Two new polymorphic events are introduced. They are polymorphic across all the
generalizations in which Loaded Torpedo participates, which happens to be only R2 in this
case. This means that Fire and Cleared_tube must be handled by the state models of Passive
Launch Torpedo and Active Launch Torpedo.

❸ The instances of Loaded Torpedo are also dynamic. We have allocated space for only
eight Loaded Torpedo instances. Assuming that our submarine has eight torpedo tubes,
four forward and four aft, there can never be more than eight torpedoes loaded at a time on
a submarine. Because some torpedoes are stored and others have been fired at any given
point in time, the storage space allocated here need not be the same as for the Torpedo class
instances.

We show the state model for Stored Torpedo implemented in pycca. We have omitted the C code for the
state activities so we can focus on the structure of the state model itself:

class Stored_Torpedo
 reference R1 -> Torpedo

 reference R3 -> Storage_Rack
 machine
 state Installing_in_Rack(uint8_t rack) {
 // C code for the state activity.
 }
 transition . - Assigned -> Installing_in_Rack # ❶
 transition Installing_in_Rack - Installed -> STORED

 state STORED() {
 // C code for the state activity.
 }
 transition STORED - Load -> Migrating_to_Loaded
 transition STORED - Recall -> Cancel_maintenance_interval # ❷
 transition STORED - Request_maintenance_check -> MAINTENANCE

 state MAINTENANCE() {
 // C code for the state activity.
 }

Chapter 9 ■ event polymorphism

172

 transition MAINTENANCE - Checks_out_ok -> STORED
 transition MAINTENANCE - Failed_maintenance -> Removing
 transition MAINTENANCE - Recall -> Removing # ❸
 state Removing() {
 // C code for the state activity.
 }
 final state Removing # ❹

 state Migrating_to_Loaded(Tube_number Number) {
 // C code for the state activity.
 }
 final state Migrating_to_Loaded # ❺
 state Cancel_maintenance_interval() {
 // C code for the state activity.
 }
 transition Cancel_maintenance_interval - Maintenance_canceled -> Removing
 end

 population dynamic
 slots 20
end

❶ Stored Torpedo instances are created asynchronously (via a creation event) using the
Assigned event. The period character denotes a transition from the initial pseudo-state.

❷, ❸ The Recall event shows up as any other event would. Pycca will recognize that Stored
Torpedo is a subclass of Torpedo along R1 and that Recall was defined as polymorphic along
R1. So when Recall is signaled as a polymorphic event to Torpedo, it is dispatched as a normal
event to Stored Torpedo. Exactly how polymorphic event dispatch happens is discussed in a
separate section.

❹, ❺ Both the Removing and Migrating to Loaded states are shown as final states in the state
model. When a Stored Torpedo is recalled, it is removed from the system and no longer exists.
When a Stored Torpedo is loaded, we create a new instance of Loaded Torpedo and therefore
must delete the instance of Stored Torpedo to maintain the R1 generalization constraints.

Finally, we show the state activity for the Migrating to Loaded state of Stored Torpedo. This example
shows how the subclass migration from a Stored Torpedo to a Loaded Torpedo is implemented in pycca.
Let’s first refer back to the action language for the state activity:

!& /R3/Storage Rack //unlink rack
switch (/R1/R5/Torpedo Spec.Launch type)
.Passive : torp .= migrate to Passive Launch Torpedo
.Active : torp .= migrate to Active Launch Torpedo
// link tube
torp/R2/Loaded Torpedo &R4 Tube(Number: in.Tube)

Because we have chosen to implement both R1 and R2 by using reference generalizations, we
need to manage the instance creation and deletion explicitly. Migrating implies that an instance of the
new subclass is created and related back to the superclass and that the instance of the old subclass is
deleted. This processing would be different if we had chosen to implement the generalizations by using
the union mechanism. Because with the union implementation, subclass storage is included as part of the

Chapter 9 ■ event polymorphism

173

superclass storage, migration simply modifies things in place without creating and deleting instances. Both
generalization implementation mechanisms have their uses and trade-offs.

state Migrating_to_Loaded(Tube_number Number) {
 // Since this is a final state, the Stored Torpedo instance is deleted
 // automatically at the end of this activity and since there were no
 // references in Storage Rack back to the Stored Torpedo, we don’t have to
 // deal with the R3 association.

 // Get a reference to the superclass instance.
 ClassRefVar(Torpedo, torp) = self->R1 ;
 // Create an instance of Loaded Torpedo
 ClassRefVar(Loaded_Torpedo, ltorp) = PYCCA_newInstance(Loaded_Torpedo) ;
 // Relate the Loaded Torpedo to the Torpedo across R1.
 PYCCA_relateSubtypeByRef(torp, Torpedo, R1, ltorp, Loaded_Torpedo) ; // ❶
 ltorp->R1 = torp ;
 // Relate the Loaded Torpedo to the Tube.
 ltorp->R4 = PYCCA_refOfId(Tube, rcvd_evt->Number) ;

 // Now handle R2
 switch (torp->R5->Launch_type) { // ❷
 case Active: {
 // For Active Launch Torpedos, create a new instance.
 ClassRefVar(Active_Launch_Torpedo, altorp) =
 PYCCA_newInstance(Active_Launch_Torpedo) ;
 // Relate the Active Launch Torpedo across R2.
 PYCCA_relateSubtypeByRef(ltorp, Loaded_Torpedo, R2, altorp,
 Active_Launch_Torpedo) ; // ❸
 altorp->R2 = ltorp ;
 }
 break ;
 case Passive: {
 // For Passive Launch Torpedos, create a new instance.
 ClassRefVar(Passive_Launch_Torpedo, pltorp) =
 PYCCA_newInstance(Passive_Launch_Torpedo) ;
 // Relate the Passive Launch Torpedo across R2.
 PYCCA_relateSubtypeByRef(ltorp, Loaded_Torpedo, R2, pltorp,
 Passive_Launch_Torpedo) ;
 pltorp->R2 = ltorp ;
 }
 break ;
 }
}

❶ Relating the superclass and subclass across R1 is a two-step undertaking. First, we update
the pointer in the Torpedo superclass to the newly created subclass instance, including the
type of subclass (Loaded Torpedo) to which the superclass points. Second, we must set up
the reference from the subclass to the Torpedo superclass.

Chapter 9 ■ event polymorphism

174

❷ The Launch type attribute of Torpedo Spec determines which subclass we must create
for R2.

❸ The same process is used to relate superclass and subclass instances across R2.

How Polymorphic Events Are Signaled
In Chapter 5, we showed how normal events are signaled and dispatched. Signaling requires obtaining an
event control block (ECB), filling it in with the proper data, and posting the ECB to the event queue. The
same basic set of operations are required to signal a polymorphic event.

Pycca provides a macro to interface to the runtime code. For example, sending the Fire event to a
Loaded Torpedo might appear in a state activity as follows:

PYCCA_generatePolymorphic(Fire, Loaded_Torpedo, ltorp, self) ;

This signals the Fire polymorphic event to the ltorp instance of the Loaded Torpedo class.
If the polymorphic event has parameters, you would need to obtain the ECB, fill in the parameters, and

then post the event in the same way as is done for normal events. The only difference is that there is a macro
that obtains an ECB that has been marked as polymorphic. For some hypothetical event, Reload, that takes a
parameter named When, signaling the event might appear as follows:

MechEcb polyecb = PYCCA_newPolymorphicEvent(Reload, Torpedo, torp, self) ;
PYCCA_eventParam(polyecb, Torpedo, When) = 20 ;
PYCCA_postEvent(polyecb) ;

Pycca encodes the polymorphic event numbers as zero-based consecutive integers. This numeric
encoding is distinct from that used for normal events. Some classes will have both a set of normal events and
a set of polymorphic events. To distinguish the different event sets, an enumeration is defined, and each ECB
carries a value of this enumeration to indicate what must be done to dispatch each different event type:

typedef enum {
 NormalEvent,
 PolymorphicEvent,
 CreationEvent
} MechEventType ;

How Polymorphic Events Are Dispatched
In Chapter 5, you saw how a normal, nonpolymorphic event is signaled and later dispatched. To signal,
an ECB is filled out and queued. The dispatch of a normal event uses the ECB and the object dispatch
block of the receiving instance’s class to compute the transition to a new state and invoke the associated
activity. Similarly, dispatching a polymorphic event requires data from the ECB combined with data from a
polymorphic dispatch block (PDB).

Additionally, the dispatch of a polymorphic event involves navigating the generalization relationship
from the superclass instance to find the related subclass instance. Recall that pycca uses two strategies for
storing generalization relationship information:

•	 Generalizations stored as references include, in the superclass instance structure,
a pointer to the subclass. Because each subclass has a different data type, the
superclass pointer is typed as MechInstance (as a pointer to a generic instance).

•	 Generalizations stored as unions include, in the superclass instance structure, a
union of the data structures for all the subclasses of the generalization.

http://dx.doi.org/10.1007/978-1-4842-2217-1_5
http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 9 ■ event polymorphism

175

This difference impacts the way the related subclass instance reference is computed. An enumeration is
used to discriminate the two cases:

typedef enum {
 PolyReference,
 PolyUnion
} PolyStorageType ;

Regardless of the way the generalization is stored, pycca defines a member in the superclass structure
that encodes the type of the subclass to which the superclass instance is currently related. Pycca generates
this encoding as consecutive integers starting at zero, which we use as array indices.

After an event is removed from the event queue, the eventType member of the ECB determines whether
the event to dispatch is polymorphic. If it is, we can find the polymorphic dispatch block by following the
targetInst member of the ECB, which points to the instance receiving the polymorphic event. Like all
instances with dynamic behavior, its instClass member holds the value of a pointer to its class information.
For classes that have defined polymorphic events, the class information contains a non-NULL value for the
pdb member that points to a polymorphic dispatch block:

typedef struct polydispatchblock {
 DispatchCount eventCount ;
 DispatchCount hierCount ;
 HierarchyDispatch hierarchy ;
} const *PolyDispatchBlock ;

eventCount The number of polymorphic events defined for or delegated to this class and handled in
a subclass.

hierCount The number of generalization hierarchies in which the class participates. This value is usually
1, but superclasses in a compound generalization will have a hierCount greater than 1.

hierarchy A pointer to an array of hierarchy dispatch blocks. The array has hierCount number of
elements.

If the superclass participates in a compound generalization, multiple elements will be in the hierarchy
array. The polymorphic event is dispatched down each generalization relationship in which the superclass
participates, so the dispatch code iterates over the hierarchy array. Commonly, there is only a single
generalization.

Two operations are required to dispatch a polymorphic event. First, we must navigate the generalization
from the superclass to the subclass. Second, we need to map the polymorphic event onto the event set of the
subclass. The hierarchy dispatch block provides the information needed for both of these operations:

typedef struct hierarchydispatch {
 PolyStorageType refStorage ;
 AttributeOffset subCodeOffset ;
 AttributeOffset subInstOffset ;
 DispatchCount subtypeCount ;
 struct polyeventmap const *eventMap ;
} const *HierarchyDispatch ;

Chapter 9 ■ event polymorphism

176

refStorage Records whether the generalization relationship is stored in reference form or in union
form.

subCodeOffset Holds the byte offset from the beginning of the instance structure to where the type
encoding for the currently related subclass is held. (The encoding is the structure element
typed SubtypeCode described in Chapter 5.)

subInstOffset Holds the byte offset from the beginning of the instance structure to the location of either
a pointer to a subclass instance or to the union of the subclass structures.

subtypeCount Holds the number of distinct subclasses that exist for this generalization relationship.
This value is used for runtime checks.

eventMap A pointer to the polymorphic event mapping for the hierarchy. This mapping is indexed
in row order by subtype code and in column order by polymorphic event number. Each
entry in the mapping array is of the following type.

typedef struct polyeventmap {
 EventCode event ;
 MechEventType eventType ;
} const *PolyEventMap ;

To compute a reference to the subclass instance, the subInstOffset member is added to the beginning
of the superclass instance pointer. Depending on the value of the refStorage member, the resulting address
is either a pointer to the subclass instances (union storage) or a pointer to a member that is in turn a pointer
to the instance (reference storage).

The type of the subclass is determined by using the subCodeOffset to compute the location in the
superclass where the encoded subclass type is stored. Using the subclass code value and the polymorphic
event number, we can index into the eventMap. To make the data type of the event map the same for all
classes, we store it as a one-dimensional array and then compute the index by using the subtype code as a
row number and the polymorphic event number as a column number. This is the same tactic we used when
dispatching normal events from a transition table.

The event mapping consists of both an event and an eventType. Because polymorphic events can pass
down multiple levels in a repeated specialization hierarchy, a polymorphic event may map to yet another
polymorphic event, and so we need to know the event type. Given the event type, the event number, and
the subclass instance pointer, we can dispatch the event recursively. Figure 9-10 shows the data involved in
dispatching a polymorphic event.

http://dx.doi.org/10.1007/978-1-4842-2217-1_5

Chapter 9 ■ event polymorphism

177

Figure 9-11 is an illustration of a scenario in which the polymorphic Fire event is signaled to a Loaded
Torpedo instance.

Figure 9-10. Data used in dispatching a polymorphic event

Figure 9-11. Signaling the Fire polymorphic event

Chapter 9 ■ event polymorphism

178

An ECB has been filled out and queued. The only element that distinguishes this from any normal event
ECB is the eventType field filled out as a PolyEvent. Once dequeued for dispatch, the polymorphic dispatch
block must be found. Figure 9-12 illustrates how the PDB is located.

Finally, Figure 9-13 shows how the polymorphic event map is indexed to determine which normal event
to send.

Figure 9-12. Locating the PDB

Chapter 9 ■ event polymorphism

179

Returning to our torpedo launch example, here is the code generated by pycca to support the
polymorphic event dispatch for the Torpedo and Loaded Torpedo classes:

/*
 * PDB for Class, "Torpedo"
 */
static struct polyeventmap const Torpedo_R1_pem[] = {
 {.event = 6, .eventType = NormalEvent},
 {.event = 2, .eventType = PolymorphicEvent}, // ❶
 {.event = 6, .eventType = NormalEvent}
} ;
static struct hierarchydispatch const Torpedo_hdb[] = {
 {.refStorage = PolyReference,
 .subCodeOffset = offsetof(struct Torpedo, R1__code),
 .subInstOffset = offsetof(struct Torpedo, R1),
 .subtypeCount = 3, // ❷
 .eventMap = Torpedo_R1_pem}
} ;
static struct polydispatchblock const Torpedo_pdb = {
 .eventCount = 1,
 .hierCount = 1,
 .hierarchy = Torpedo_hdb
} ;

Figure 9-13. Indexing into the event map

Chapter 9 ■ event polymorphism

180

/*
 * PDB for Class, "Loaded_Torpedo"
 */
static struct polyeventmap const Loaded_Torpedo_R2_pem[] = {
 {.event = 0, .eventType = NormalEvent},
 {.event = 1, .eventType = NormalEvent},
 {.event = 2, .eventType = NormalEvent},
 {.event = 0, .eventType = NormalEvent},
 {.event = 1, .eventType = NormalEvent},
 {.event = 2, .eventType = NormalEvent}
} ;
static struct hierarchydispatch const Loaded_Torpedo_hdb[] = {
 {.refStorage = PolyReference,
 .subCodeOffset = offsetof(struct Loaded_Torpedo, R2__code),
 .subInstOffset = offsetof(struct Loaded_Torpedo, R2),
 .subtypeCount = 2,
 .eventMap = Loaded_Torpedo_R2_pem}
} ;
static struct polydispatchblock const Loaded_Torpedo_pdb = {
 .eventCount = 3,
 .hierCount = 1,
 .hierarchy = Loaded_Torpedo_hdb
} ;

/*
 * Class Structure for, "Torpedo"
 */
static struct mechclass const Torpedo_class = {
 .iab = &Torpedo_iab,
 .odb = NULL,
 .pdb = &Torpedo_pdb // ❸
} ;

/*
 * Class Structure for, "Loaded_Torpedo"
 */
static struct mechclass const Loaded_Torpedo_class = {
 .iab = &Loaded_Torpedo_iab,
 .odb = NULL,
 .pdb = &Loaded_Torpedo_pdb
} ;

❶ Here is a case where a polymorphic event is mapped to another polymorphic event. In this
case, it is the Recall event from R1 being propagated down the R2 generalization. It maps to
a polymorphic event on Loaded Torpedo and to a normal event in both the Stored and Fired
Torpedo subclasses.

❷ The number of elements in the event map (Torpedo_R1_pem) is always equal to the
subtypeCount value times the eventCount value from the PDB (Torpedo_pdb).

❸ Here the PDB shows up as part of the class information. Notice that neither Torpedo nor
Loaded Torpedo responds to normal events, and so pycca sets their odb members to NULL.

Chapter 9 ■ event polymorphism

181

In keeping with our theme to expose all the details of how a translated application runs, we show the
code that performs polymorphic event dispatch. At this point, the ECB has been removed from the event
queue, and it has been determined that a polymorphic event must be dispatched:

static void
dispatchPolyEvent(
 MechEcb ecb)
{
 PolyDispatchBlock pdb = ecb->instOrClass.targetInst->instClass->pdb ;

 assert(pdb != NULL) ;
 assert(ecb->eventNumber < pdb->eventCount) ;
 assert(pdb->hierCount > 0) ;
 /*
 * Each generalization hierarchy that originates at the supertype has an
 * event generated down that hierarchy to one of the subtypes.
 */
 HierarchyDispatch hd = pdb->hierarchy ;
 for (unsigned hnum = 0 ; hnum < pdb->hierCount ; ++hnum) {
 /*
 * The most common case is to dispatch along a single hierarchy. In any
 * case, we can modify in place the input ECB on the last dispatched
 * event.
 */
 MechEcb newEcb ;
 if (hnum == pdb->hierCount - 1) {
 newEcb = ecb ;
 } else {
 newEcb = mechEventAlloc() ;
 /*
 * We set the source as the original sender.
 */
 newEcb->srcInst = ecb->srcInst ;
 /*
 * Copy event parameters.
 */
 newEcb->eventParameters = ecb->eventParameters ;
 }
 SubtypeCode type = *(SubtypeCode *)
 ((char *)ecb->instOrClass.targetInst + hd->subCodeOffset) ; // ❶

 assert(type < hd->subtypeCount) ;
 PolyEventMap pem = hd->eventMap +
 (type * pdb->eventCount + ecb->eventNumber) ; // ❷
ifdef MECH_SM_TRACE
 /*
 * Trace the transition.
 */
 tracePolyEvent(ecb->eventNumber, ecb->srcInst,
 ecb->instOrClass.targetInst, type, hnum,
 pem->event, pem->eventType) ;
endif /* MECH_SM_TRACE */

Chapter 9 ■ event polymorphism

182

 newEcb->eventNumber = pem->event ;
 newEcb->eventType = pem->eventType ;

 void *subTypeRef = (char *)ecb->instOrClass.targetInst + hd->subInstOffset ;
 newEcb->instOrClass.targetInst = hd->refStorage == PolyReference ?
 /*
 * When the generalization is implemented via a pointer, we need an
 * extra level of indirection to fetch the address of the subtype.
 */
 *(MechInstance *)subTypeRef :
 /*
 * When the generalization is implemented by a union, we need only
 * point to the address of the subtype as it is contained in the
 * supertype.
 */
 (MechInstance)subTypeRef ;

 if (newEcb->eventType == NormalEvent) {
 newEcb->alloc = newEcb->instOrClass.targetInst->alloc ;
 assert(newEcb->alloc != 0) ;
 }

 mechDispatch(newEcb) ;
 ++hd ;
 }
}

❶ This bit of address arithmetic computes the location of the member of the instance
structure that stores the encoded value of the currently related subclass and fetches the value
located there. For example, if we were dispatching a polymorphic event to an instance of
Torpedo, this expression would compute the address of the R1__code member and fetch the
value from that location.

❷ This expression indexes into the polymorphic event map. Because the map is stored as
a one-dimensional array, we have to undertake the row/column indexing ourselves. The
eventCount tells us the number of elements that are in a row. Pycca ensures that the elements
in the polymorphic event map are stored in the proper order so this indexing expression
fetches the correct event mapping.

Again, distilled to its essence, the code to dispatch a polymorphic event is quite short. It derives most of
its “intelligence” from the values of the data structures provided by pycca.

Summary
In this chapter, we showed how polymorphism at the model level is specified and implemented.
Polymorphic events may be defined for the superclass in a generalization relationship. At runtime,
polymorphic events signaled to superclass instances are dispatched across the generalization to state

Chapter 9 ■ event polymorphism

183

machines in the subclasses. We showed how to specify polymorphic events to pycca, the data pycca
generates to support the polymorphic event dispatch, and exactly how the ST/MX domain performs such
event dispatch.

All xUML generalizations represent a set partitioning rather than inheritance. For each superclass, there
is exactly one subclass instance, and this instance is in exactly one subclass.

Generalizations may be interconnected to yield the following forms:

•	 Repeated specialization: A subclass of one generalization is also a superclass of
another generalization.

•	 Multiple generalization: A single subclass participates in more than one
generalization with a superclass in each.

•	 Compound generalization: A single class plays the role of a superclass in more than
one generalization.

It is important that polymorphic events are sensibly dispatched in each form.
A superclass may delegate events so that they are handled in each subclass rather than by a state

model on the superclass. A subclass may then either handle an event or, if it is also the superclass of another
generalization, further delegate it. Each delegated event must be handled by a subclass at the current level or
at a deeper level of specialization. A received event is always processed in a class.

Each polymorphic event is defined on a superclass and designated in the pycca model script. An event
delegated to a subclass may be used by that subclass, just like any other event in the subclass’s state machine
section of the model script.

Distinct pycca macros are provided to support the signaling of a polymorphic event with and without
parameters.

Polymorphic event dispatch is handled differently, based on whether the generalization was
implemented using the union or reference code pattern. The event control block used for normal events is
also used for dispatching polymorphic events. The key difference is that an additional polymorphic dispatch
block is referenced to navigate the generalization’s dispatch hierarchy and identify the corresponding
subclass event that is processed.

185© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_10

CHAPTER 10

Pycca and Other Platforms

In this chapter, we discuss the design and implementation of the pycca program itself. Pycca is designed as a
language processor that reads DSL statements to populate a platform model and generates code by using a
template system that queries the populated platform model. It is implemented in the Tcl language.

We also present some size and execution speed measurements of the ALS system on a representative
microcontroller platform to show that the resulting memory usage and execution speed are appropriate for
our targeted platform.

To conclude the chapter, we present a brief overview of a target platform using Berkeley DB, a key/value
data store engine, to store domain data rather than keeping all the data in memory.

Design of the Pycca Program
There remains one area in our translation approach that we have not discussed. We have shown input
to pycca and output from it, but we have not discussed pycca itself as a program. Space does not allow a
complete description of the pycca implementation. The source code and documentation for pycca are
freely available from this book’s website. In this section, we discuss several aspects of the design and
implementation of the pycca program itself.

Pycca has three major design elements:

•	 Platform model

•	 Domain-specific language processing

•	 Template-driven code generation

Platform Model
It should come as no surprise that there is a model underlying pycca operations. In the following discussion,
we use the same names for things that are at two levels of abstraction. Let’s define some terms to keep things
clear. When we speak of the executable model, we are referring to the model of logic that is to be translated.
When we speak of the platform model, we are referring to the model of the implementation technology
platform onto which we are translating.

The platform model for pycca is specific to the targeted implementation technology. This is not a
general model of modeling itself (a metamodel). The pycca platform model does not set the rules for how
to create an executable model. Rather, it gives the rules for how our C implementation will be formed. The
platform model reflects the technology choices we have made for the specific implementation that pycca
generates. Targeting a different platform or making different choices about the implementation details on
our platform would be reflected in platform model differences.

Figure 10-1 shows a fragment of the platform model for pycca.

Chapter 10 ■ pyCCa and Other platfOrms

186

Notice that there are classes named Domain and Class. These classes model the implementation
counterparts of a Domain or Class in the executable model.

The platform model states that Classes contain Data Elements and that a class may contain no Data
Elements at all (R3). Data Elements are part of exactly one class, and so there is no sharing of Data Elements
among Classes. All Data Elements are one of three types (R4): Attributes, ClassRefs, or SubtypeRefs. Further,
class references are one of four types (R21).

For our target, we have decided that all class instances will be held in memory and stored in arrays of
C structures. The members of a class structure are either attributes, references (of some form) to classes,
or references to subclasses in a generalization. The classes in the platform model are used to model the
implementation structure members that are generated by pycca. For pycca, the Class class in the platform
model has a direct correspondence to the C structure that is generated for the implementation.

For example, consider the Duty_Station class definition from our Air Traffic Control model:

Figure 10-1. Fragment of pycca platform model

Chapter 10 ■ pyCCa and Other platfOrms

187

class Duty_Station
 attribute (Station_Number Number)
 attribute (Name_t Location)
 attribute (Aircraft_Maximum Capacity)
 reference R3 -> On_Duty_Controller
end

The R3 reference is a singular reference to an instance of the On_Duty_Controller class. An instance
of SingClassRef (and all its related superclass instances) would be created to correspond to the reference
statement in the Duty_Station class definition. When pycca generates code, it uses this information in two
ways. When the Duty_Station structure is declared, it contains a member, struct On_Duty_Control *R3.
This is shown in the following pycca-generated structure definition:

/*
 * Duty_Station structure definition
 */
struct Duty_Station {
 struct mechinstance common_ ; // must be first !
 Station_Number Number ;
 Name_T Location ;
 Aircraft_Maximum Capacity ;
 struct On_Duty_Controller *R3 ;
} ;

When creating the initializers for the initial instance population, the R3 member is set to the address of
an On_Duty_Controller array member or NULL, depending on the population requested. This is shown for
the initial instance population of our example:

/*
 * Initial Instance Storage for, "Duty_Station"
 */
static struct Duty_Station Duty_Station_storage[3] = {
 {.common_ = {1, 0, &Duty_Station_class}, "S1", "Front", 20, .R3 = NULL},
 {.common_ = {2, 0, &Duty_Station_class}, "S2", "Center", 30, .R3 = NULL},
 {.common_ = {3, 0, &Duty_Station_class}, "S3", "Front", 45, .R3 = NULL}
} ;

Notice that many of the classes in the platform model have File and Line attributes. These attributes
record the name of the input file and line number within the file where the entity was defined. This information
is helpful for producing error messages as well as for inserting #line directives in the generated code file.

The pycca platform model has 35 classes. They cover the types of information that are specified in
the DSL language statements, such as classes, attributes, state transitions, and initial instances. The pycca
platform model forms the fundamental basis for how the rest of the program is organized and how the
processing required for code generation works.

Domain Specific Language Processing
Generating a parser for a computer language is a well-understood problem. Pycca follows the usual pattern
of defining a grammar and using a parser generator to create a pycca DSL interpreter. As the input is
scanned and recognized, code is executed when grammar elements are reduced. The code executed when
DSL statements are recognized creates instances of the platform-model classes. Data from the language

Chapter 10 ■ pyCCa and Other platfOrms

188

statements correspond to attributes in the platform-model class instances. You can think of the pycca DSL
as a textual and more convenient representation of a platform-model population. The same effect could be
created by populating the platform model directly, but using a DSL provides an opportunity to organize the
platform-model population in a more human-friendly way.

As with other computer languages, it is possible to write pycca DSL statements with correct syntax that
are meaningless. So, pycca performs a set of semantic checks after the input files have been parsed and the
platform model populated. Some of the semantics are enforced by the constraints on the platform model,
such as those implied by platform-model relationships. Others require executing code.

For example, if a state in a state model is marked as a final state, no outbound transitions are allowed
from that state. Because an instance that transitions to a final state is deleted after its state activity is
executed, it is not possible for it to respond to other events. Pycca also disallows isolated states (states that
have neither outbound nor inbound transitions). There are 20 such semantic checks.

Template-Driven Code Generation
The code generator for pycca is designed using template expansion. This is a common idiom for generating
everything from accounting reports to web pages. Pycca uses it much like any template system. Text is
passed from the template to the output. Commands are embedded in the template, and when the template
expander recognizes a command, it is executed, and the result returned from the embedded command is
placed in the output. The template pycca uses contains embedded commands which query the platform
model to find the information needed at that point in the code generation and then format the information
as valid C language statements. Conceptually, there is little difference between what pycca does and what
a banking program might do to consult a database and print an account statement. The goal of pycca is to
produce output for a C compiler rather than a bank customer.

The use of a template permits us to order the generated output to suit the C compiler. There is a
separate template for the generated header and code files. The templates are designed and ordered so
that the embedded expansion commands place their output at the appropriate location in the output.
The C language requires a lot of type annotation and insists that symbol names be declared before (or
sometimes at the same time) as they are defined. Declarations and definitions are key concepts in C, and
usually declarations must precede definitions. For example, forward declarations of state activity functions
are placed before the definitions of the data structures that use the function names. These are then placed
before the definitions of the state activity’s function code.

Pycca Implementation
Pycca is implemented in the Tcl language. Tcl is a dynamic language often used as a scripting language.
The choice of a scripting language for implementing pycca may seem unusual, but Tcl has many desirable
characteristics:

•	 Tcl is a mature, stable language and has been under active development for more
than 20 years.

•	 Tcl is platform independent and runs on Linux (and other UNIX derivatives), macOS,
and Windows.

•	 Tcl programs can be distributed as single-file executable without external
dependencies or complicated installation requirements.

•	 Tcl is extensible and supports a large standard library of procedures.

In practice, the choice of language used to implement a program such as pycca should be made on
matters of availability and convenience. It should be a language that is familiar to the implementer and that
conveniently supports the implementation of the design ideas from the previous section. Here we discuss
how Tcl is used to implement the pycca design.

Chapter 10 ■ pyCCa and Other platfOrms

189

The platform model for pycca is a normalized relational schema, as are all of our example models.
Pycca uses the TclRAL (Relational Algebra Library) package to implement the operations on the platform
model. The TclRAL package implements relational algebra, in which the operators are Tcl commands
and the values and variables are directly integrated into the Tcl language. You can think of the TclRAL
implementation of the platform model as an in-memory database that uses ordinary Tcl language
commands to query and manipulate the platform-model data. It was designed expressly to support the
integrity constraints of our modeling approach. TclRAL is completely integrated into the Tcl value system.
There is no “impedance mismatch” in TclRAL in the sense that one does not use a different language to
query and manipulate data and then have to transfer query results back into the implementation language
for further processing. Contrast this approach with SQL, which requires you to deal with the inevitable
boundary between the implementation language and the query language.

Following in the tradition of the venerable lex and yacc programs, Tcl has fickle and taccle to
perform the same functions of generating a lexical analyzer and a parser. In this case, the generated analyzer
and parser are delivered as Tcl code rather than C code.

The standard Tcl library contains procedures to perform template expansion, and these are used
to generate the header and code files. Templates contain ordinary text passed directly to the output and
embedded Tcl commands. The embedded commands are executed, and their output is written to the
generated file. The embedded commands are implemented as TclRAL queries on the platform model with
appropriate formatting of the results into C language statements.

The pycca program consists of approximately 5,000 lines of Tcl code, grammar specification, and lexical
analyzer specification, not counting comments or blank lines. We are not fond of using lines of code as a
software metric and present only a gross, relative indication of the size of the pycca program. So pycca is
not a large program, but much of that can be attributed to using Tcl and the fact that Tcl as a language is
expressive in fewer lines of code. If it had been written in C, pycca would probably be several times larger.

Pycca Performance
Not only is it necessary to achieve a translation of a model into running code, but it is also essential that the
quality of the resulting implementation meet the needs of the project. It does little good to produce insightful
models and a faithful translation to code if the performance requirements are not met.

Our target platform is microcontroller-based systems. The major challenge for these types of systems is
the limited computing resources available. Both memory and processor speeds are usually quite small. In
this section, we show some performance numbers for the translation of the ALS system.

Target Hardware Platform
Many commercially available platforms would satisfy our needs. We have chosen the Giant Gecko from
Silicon Labs. This microcontroller is available in a starter kit called EFM32GG-STK3700.

The microcontroller on the starter kit is the EFM32GG990F1024. This computer is an ARM Cortex-M3
based SOC with 1 MiByte of flash and 128 KiByte of RAM. The SOC is capable of ultra-low power sleep
modes and consumes approximately 219 μ A / MHz when executing code from flash memory. Although
capable of running at a 48 MHz clock frequency, the microcontroller was clocked at 7 MHz in these
measurements. These specifications place the Giant Gecko at the more capable end of the class of
microcontrollers we target.

Chapter 10 ■ pyCCa and Other platfOrms

190

Target Software Platform
The code for this example was built using the Silicon Labs Simplicity Studio development environment.
We have included code from the vendor-supplied hardware access library as well as startup code and other
small code pieces required to build a complete application.

The application was built using the GNU compiler suite:

arm-none-eabi-gcc (GNU Tools for ARM Embedded Processors) 5.4.1 20160919 (release)
[ARM/embedded-5- branch revision 240496]

The application was compiled with preprocessor symbols NDEBUG, MECH_NINCL_STDIO, and RELEASE
defined to remove all the assertions and uses of C standard I/O functions (for example, printf). Optimization
was configured for minimum size using the -Os setting. Unused data and functions in object files were
discarded in the final executable. This combination of build settings yields the smallest executable. When
built for debugging and instrumentation, executables are often twice as large as those built for release.

ALS Code Size
The following measurements are for the ALS application example shown in Chapters 6–8. This example
consists of two domains and the bridge code between them. The Lubrication domain contained external entity
references to a UI and Alarms domain, and these references have been stubbed out. Also the SIO domain
contained external entity references for access to device hardware, and these too have been stubbed out.

Table 10-1 shows the overall memory usage, in bytes, of the integrated lube/sio application.

The total memory usage for the application easily fits our target hardware and would fit many other
target hardware platforms of this class as well.

We can break down the memory usage by examining the sizes of the domains and the bridge code, as
shown in Table 10-2.

Of the total memory usage, less than half is devoted to the domain and bridge code. We should note
that the initial instance population for this application was quite small, and this is reflected in the size of
the initialized data. Increasing the size of the initial instance population would only increase the usage of
initialized data. The code and constants memory usage would remain the same, regardless of the size of the
initial instance population, because that memory usage already includes all the code and pycca-generated
information for the domains. Note that the initialized data also results in the same amount of space being

Table 10-1. ALS Application Code Size (Bytes)

File Code and Constants Initialized Data Uninitialized Data Total

lube_sio.axf 12,064 1,784 756 14,606

Table 10-2. ALS Domain Code Size (Bytes)

File Code and Constants Initialized Data Uninitialized Data Total

lube.o 2,663 476 0 3,139

sio.o 2,070 776 0 2,846

lube_sio_bridge.o 471 0 0 471

Total 5,204 1,252 0 6,456

http://dx.doi.org/10.1007/978-1-4842-2217-1_6
http://dx.doi.org/10.1007/978-1-4842-2217-1_8

Chapter 10 ■ pyCCa and Other platfOrms

191

allocated to RAM, which does not show up in these totals. At reset time, the initialized data is copied from
flash memory to RAM by compiler-supplied startup code. Because flash memory technology does not allow
direct updating in the same way as RAM, the RAM copy allows the values of class instances to be updated
during the running of the program. This need to allocate twice the space for initialized data (in flash and an
equal amount in RAM) is a consequence of the usual split between flash memory and RAM characteristic of
microcontroller SOC designs.

It is worthwhile examining the contribution of the ST/MX domain to overall memory usage. This is
important because the Model Execution domain must be present to run pycca-generated applications and
represents a fixed cost that must be amortized across the entire application. See Table 10-3.

The mechs.o file contains all the target-independent code of the MX domain. This includes the
event queues and event signal/dispatch code, and so forth. The pycca_portal.o file consists of the portal
functions used in bridging. Finally, the platform.o file consists of the platform-specific code required by
the MX domain. This includes control of the timing resource used for delayed events, code to deal with
low-power mode sleep and wake-up, and code to interface to the synchronization queue. The uninitialized
data is allocated to event queues, event control blocks, and other internal resources of the ST/MX
implementation. These resources can be expanded or contracted as needed, and this total represents the
default sizing of 10 event control blocks with 16 bytes of parameter data space and 10 sync queue slots.

The memory usage by the ST/MX domain compares favorably with that of many RTOS
implementations that target microcontrollers. However, that comparison is not direct. An RTOS will include
facilities for multitasking, inter-task synchronization, and mutual exclusion not present in ST/MX.
ST/MX is single threaded, strictly event driven with run-to-completion execution, and does not need tasking
services nor the synchronization operations and mutual exclusion mechanisms required to support them.
Conversely, ST/MX can signal and dispatch events to state machines, a feature not available in RTOSs.

The approximately 25 percent of the remaining memory usage comes from startup code, standard C
libraries, compiler libraries, hardware access libraries, external entity stubs, and other “glue” code necessary
to obtain a running application. While this is a substantial part of the total memory usage, it represents a
fixed cost for the application.

Execution Speed
We present only one execution speed measurement, shown in Table 10-4. Signaling and dispatching an
event is a common operation in the ST/MX domain. Here we have measured the number of CPU cycles to
signal and dispatch a self-directed event. This includes the time required to allocate the ECB, fill it in, add
it to the event queue, return to the main loop to decide whether there is another event to dispatch, remove
the ECB from the event queue, compute the transition, and enter the state activity. Conveniently, the ARM
Cortex-M3 includes a cycle counter for these purposes.

Table 10-3. Model Execution Domain Code Size (Bytes)

File Code and Constants Initialized Data Uninitialized Data Total

mechs.o 2,032 12 720 2,764

pycca_portal.o 990 0 0 990

platform.o 471 1 0 472

Total 3,521 13 720 4,226

Chapter 10 ■ pyCCa and Other platfOrms

192

It takes 4,696 cycles to complete the signal/dispatch operation. At the 7 MHz clock frequency, this
means it takes approximately 67 μs or alternatively, we may perform approximately 1,491 such operations
per second. These numbers appear distorted when compared to the capabilities of modern desktop and
server class computers running at 2–3 GHz frequencies and having large instruction and data caches. We
must be careful not to extrapolate between such vastly different computing technologies.

Performance Discussion
Performance comparisons in this realm are difficult to make. We have no benchmarks to test MX domain
implementations. Direct comparisons are seldom possible, since providing the same functionality for an
application in both a modeled and non-modeled implementation is so expensive.

The measurements presented here demonstrate that the performance of pycca-translated domains do
match the computational facilities provided by many microcontroller-based systems. We have remained
well within our memory targets and with a reasonable cycle count for the implementation of event signaling.
Experience over many systems has shown that carefully tailoring the translation scheme and model
execution domain to the target platform allows translated models to meet a project’s performance goals.

Supplying Implementation-Specific Code
When we model application logic, the scale of the problem is one of the implementation aspects that we
do not consider. Whether a class has only a few instances or millions of instances does not change the
fundamentals of the application logic. If a particular activity is required to find a class instance based on the
value of an attribute, whether there are only a few instances or a great many instances does not affect the fact
that we must find the required instance.

But when we consider the implementation of such searching, scale matters a great deal. When the
number of instances of a class becomes large enough and the frequency at which we must search the
instances to find a particular one increases, the simple sequential search provided by pycca macros can
become a performance problem.

Consider our Air Traffic Controller class from Chapter 4:

class Air_Traffic_Controller
 attribute (Employee_ID ID)
 attribute (Name_T Name)
 attribute (Experience_Level Rating)
 # ...
 # other parts of the Air Traffic Controller Class
end

We could use a pycca macro to find an instance of Air Traffic Controller that matches a given ID:

ClassRefVar(Air_Traffic_Controller, atc) ;
PYCCA_selectOneInstWhere(atc, Air_Traffic_Controller, strcmp(atc->ID, "ATC-137") == 0) ;
if (atc >= EndStorage(Air_Traffic_Controller)) {

Table 10-4. Timing to Signal and Dispatch an Event

Cycles Time @ 7 MHz Operations / s @ 7MHz

4,696 67 μ s 1,491

http://dx.doi.org/10.1007/978-1-4842-2217-1_4

Chapter 10 ■ pyCCa and Other platfOrms

193

 // not found
} else {
 // found
}

This code performs a simple, sequential iteration across all the instances of Air Traffic Controller and
compares the value of the ID attribute looking for a match. This approach is simple, already provided, and
for a small number of instances, works well. As we scale up the number of instances of Air Traffic Controller,
we will need something better.

We could, for example, use a binary search to reduce the number of comparisons. A binary search
requires a particular ordering of the searched items. Pycca, however, organizes the initial instance
population in memory in the order of definition. To convert our sequential search to a binary search, we
need to order the initial instances of Air Traffic Controller by ascending order of the ID attribute. Let’s
suppose our initial instance population is as follows:

table
Air_Traffic_Controller (Employee_ID ID) (Name_T Name) (Experience_Level Rating) R1
@atc51 {"ATC-51"} {"Ianto"} {"C"} -> On_Duty_Controller.atc51
@atc53 {"ATC-53"} {"Toshiko"} {"A"} -> On_Duty_Controller.atc53
@atc67 {"ATC-67"} {"Gwen"} {"B"} -> On_Duty_Controller.atc67
@atc77 {"ATC-77"} {"John"} {"B"} -> Off_Duty_Controller.atc77
@atc87 {"ATC-87"} {"Fred"} {"B"} -> Off_Duty_Controller.atc87
...
many other controllers in ascending order of the ID attribute
...
end

By defining a class operation, we can add our own code to apply a binary search to find a matching
Air Traffic Controller. The standard library bsearch() function requires the following:

•	 A pointer to the search key

•	 A pointer to the beginning of an array of items to be searched

•	 The number of items in the array

•	 The size of each array item

•	 A function returning an integer that compares two items

We would define the class operation as part of the Air Traffic Controller class:

class Air_Traffic_Controller
 # ... other parts of the Air Traffic Controller Class
 class operation findByEmployeeID(char const *eid) :
 (struct Air_Traffic_Controller *) {
 struct Air_Traffic_Controller key = {
 .ID = eid
 } ;
 return (struct Air_Traffic_Controller *)bsearch(&key,
 BeginStorage(Air_Traffic_Controller), // ❶
 ATCTRL_AIR_TRAFFIC_CONTROLLER_INST_COUNT, // ❷
 sizeof(struct Air_Traffic_Controller),
 atc_compare_ids) ; // ❸
 }

Chapter 10 ■ pyCCa and Other platfOrms

194

end
implementation prolog { // ❹
 #include <stdlib.h>
 #include <string.h>
 static int
 atc_compare_ids(void const *m1, void const *m2)
 {
 struct Air_Traffic_Controller const *atc1 = m1 ;
 struct Air_Traffic_Controller const *atc2 = m2 ;
 return strcmp(atc1->ID, atc2->ID) ;
 }
}

❶ The BeginStorage macro resolves to the address of the storage array for the given class.

❷ Pycca emits a macro definition for the number of instances of a class.

❸ We must supply a comparison function for bsearch.

❹ Placing the comparison function in the implementation prolog ensures that its definition
appears before it is used in the class operation.

Now we can locate a reference to Air Traffic Controller, ATC-137, by using the following code:

ClassRefVar(Air_Traffic_Controller, atc) ;
atc = ClassOp(Air_Traffic_Controller, findByEmployeeID)("ATC-137") ;
if (atc == NULL) {
 // not found
} else {
 // found
}

There are, of course, other ways to implement this search. For example, we can use bsearch only for
static instance populations. For a dynamic population of Air Traffic Controller instances, we might choose
to keep a hash table. Then activity code that creates or deletes an Air Traffic Controller instance would also
add or remove the instance reference from the hash table, which would be keyed by the ID attribute value.
You would probably code the instance creations and hash table addition operations together into a class
operation, and similarly with the instance deletion and hash table removal operations.

Our point here is that the implementation can be tailored to match the scale of the problem. Most
important, the specific implementation mechanisms do not affect the model logic. If the model logic requires a
particular Air Traffic Controller to be found, then the translation must choose the appropriate implementation
for the search, and that choice is based, at least in part, on the number of instances that need to be searched.
Searching is a well-researched problem in computer science whose results we can draw upon here.

Chapter 10 ■ pyCCa and Other platfOrms

195

Considering Other Platforms
In this book, we have remained focused on one particular target platform. This focus on a single platform
has helped demonstrate concepts in translation without the burden of showing how the same effect is
achieved using another implementation mechanism. In this section, we broaden our discussion to consider
a different translation target. Space does not allow an extended discussion of the many possibilities of
implementation technology that we might wish to use to meet the requirements of a system. To bound our
discussion, we change only the platform requirement for how data is managed. We keep the programming
language as C and the execution single threaded. Many of the concepts for our microcontroller target carry
forward, and so we focus on how data management might be changed.

How data is held and managed is one of the key factors in determining the characteristics of an MX
domain. In the microcontroller target platform, we decided that all domain data would be held in primary
memory, directly addressable by the processor. Here, we change that requirement and insist that our
alternative MX domain hold data in secondary storage. Many classes of application either have too much
data to be held in primary memory or have other requirements to persist domain data into nonvolatile
secondary storage.

In this section, we outline what a MX domain might look like that holds domain data in secondary
storage. We do not present a complete MX domain in this discussion. Rather, we present a series of examples
of how model-level data concepts might be implemented using a persistent data storage mechanism. Again,
we must be precise about what the target platform supports:

•	 The implementation language is C.

•	 Domain data is managed using Berkeley DB.

•	 Execution is single threaded.

•	 The target hardware platform is a desktop or server class of processor.

•	 We assume a POSIX operating system environment with GiBytes of primary memory
and secondary disk storage at least 10 times the size of primary memory.

The main differences between the microcontroller target that we have been discussing and this new
platform is the use of Berkeley DB to manage the domain data and the assumption of a much more capable
computer running a fully featured operating system. We have purposely kept the implementation language
and the single-threaded nature of the execution the same as our microcontroller target to avoid introducing
other elements.

Berkeley DB is a general-purpose embedded database engine. The central concept in Berkeley DB
is that of a persistent key/value data store in which keys and values are arbitrary byte arrays of data. The
library is mature, well supported, and provides features well beyond our uses in this example. Complete
information on Berkeley DB can be found at the http://www.oracle.com/technetwork/database/
database-technologies/berkeleydb/overview/index.html.

Mapping Domain Data to Berkeley DB
Our first task is to map model execution data concepts to Berkeley DB implementation mechanisms.
Figure 10-2 shows how model data management concepts are mapped onto Berkeley DB facilities and how
Berkeley DB uses the file system for persistent storage.

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

Chapter 10 ■ pyCCa and Other platfOrms

196

For this example, we use parts of the Lubrication domain from Chapter 6. We discuss each of these
concepts and also show small code sequences to demonstrate how Berkeley DB functions might appear in
the MX domain and how the implementation of the mapping of model data management onto Berkeley
DB is realized in C code. We don’t expect you to be a Berkeley DB expert and recognize every library call.
Rather, you can get a general feel for how the data management would be coded, and documentation of the
database library calls is readily available for those who wish to delve deeper. You can also get a good sense of
how different data management is in ST/MX, where everything is held in memory, compared to using a key/
value pair storage mechanism.

This example deals with just two classes from the Lubrication domain: Injector and Machinery. To
refresh your memory, Figure 10-3 is a fragment of the class diagram from the Lubrication domain.

Following the mapping in Figure 10-2, we start with enclosing a domain’s data in a Berkeley DB environment.
This construct suits our needs to manage data for a single domain. An environment provides a grouping for
databases and transaction capability, and necessary files are stored in a single directory of the file system:

int dbres = 0 ;

dbres = db_env_create(&lube_env, 0) ; // ❶
if (dbres != 0) {
 handle_error(dbres, "Error creating environment handle") ; // ❷
}

Figure 10-3. Lubrication domain class diagram fragment

Figure 10-2. Mapping domain data to Berkeley DB

http://dx.doi.org/10.1007/978-1-4842-2217-1_6

Chapter 10 ■ pyCCa and Other platfOrms

197

dbres = lube_env->open(lube_env, "./lube_domain", // ❸
 DB_CREATE | DB_INIT_MPOOL, 0) ;
if (dbres != 0) {
 handle_error(dbres, "Environment open failed") ;
}

❶ Most entities in the library are created first, before any other operations are performed.

❷ For brevity, we assume some error-handling function.

❸ To use the environment, we must open it.

This code creates the environment if needed (it may already exist), and all the files will be placed in the
lube_domain directory.

A domain class is stored as a database. In Berkeley DB, a database is roughly the same as a table, which
matches a view of class data consisting of a set of instances that form rows in a table. After an environment
is open, we can create and open the databases that correspond to the classes. We show only code for the
Injector class, but all classes for a domain would have their own database for instance storage:

DB *injdb ;

dbres = db_create(&injdb, lube_env, 0) ; // ❶
if (dbres != 0) {
 handle_error(dbres, "Failed to create injector database") ;
}

dbres = injdb->open(injdb, NULL, "injector.db", NULL, DB_BTREE, // ❷
 DB_CREATE, 0) ;
if (dbres != 0) {
 handle_error(dbres, "Injector database open failed") ;
}

❶ The database is created in the context of the environment for the Lubrication domain.

❷ The database is stored in a file named injector.db.

Berkeley DB provides several choices for the details of how data will be stored. Here we have chosen a
Btree for the underlying storage organization. This is common usage in Berkeley DB. Other choices might be
better, depending on the details of the application demands for storage and access to the storage.

We represent an instance of a class as a Berkeley DB cursor. A cursor specifies a location in a database,
can be used to access instance attribute values, and can iterate across instances. We discuss cursors later
in this example. For now, it is sufficient to know that they can be considered (roughly speaking, again) as a
reference to one or more instances.

As with the ST/MX domain for our microcontroller platform, we convert each class description into a C
structure. The C structure for a class provides a convenient way to transfer values back and forth to Berkeley
DB and still have direct access to the attributes. Berkeley DB treats key and data values as byte arrays, and
variables of a C structure type can be used as a staging area in the transfer to and from the database. The C
structure variables also provide convenient access to individual members when database values are held
temporarily in memory. For our two classes in this example, the C structures would appear as follows:

Chapter 10 ■ pyCCa and Other platfOrms

198

typedef uint32_t uniqueID ;
typedef char InjModelName[16] ;
typedef char Name[32] ;

struct Injector {
 uniqueID ID ; // {I}
 unsigned Pressure ;
 bool Disspation_error ;
 bool Injecting ;
 Name Default_schedule ; // {R1}
 uniqueID Machinery ; // {R5}
uniqueID Reservoir ; // {R3}
InjModelName Model ; // {R4}
} ;

struct Machinery {
 uniqueID ID ;
 bool Locked_out ;
} ;

Previously, we omitted identifying attributes from the C structure. Because ST/MX used its own
identifier for an instance (that is, the pointer address of the instance in memory), we discarded identifying
attributes if they were not otherwise used. Using Berkeley DB, we need a key to uniquely identify an
instance, so we retain the identifiers in the model and use them as the key to the database storage. This is
shown in Figure 10-4.

Chapter 10 ■ pyCCa and Other platfOrms

199

It is also possible for a class to have multiple identifiers. Consider using both a system-supplied
identifier and a Customer’s e-mail address as identifiers. We map each additional identifier to a Berkeley DB
secondary index. A secondary index is associated with a primary database. This is shown in Figure 10-5.

Figure 10-4. Mapping class storage to Berkeley DB

Chapter 10 ■ pyCCa and Other platfOrms

200

The secondary index is stored like any other database. The key portion of the index record is the value of
the alternate identifier. The value portion of the index record is the value of the primary identifier. Berkeley
DB arranges it so that each time a record is inserted into the Customer Database, a corresponding record
is inserted into the Customer Email Index. Looking up a Customer by e-mail address involves obtaining a
record from the Customer Email Index that matches an e-mail address and then using the value portion of
that record as the key to look up a record in the Customer Database.

How information is stored to support relationship navigation is another important aspect of domain
data management. Returning to the Lubrication domain class diagram fragment, consider navigating
association R5 from an instance of Injector to an instance of Machinery. The multiplicity of the association
establishes that we expect to obtain exactly one instance of Machinery. Figure 10-6 shows how an attribute
from an Injector instance is used as a key into the Machinery database.

Figure 10-5. Using a secondary index for an alternate identifier

Chapter 10 ■ pyCCa and Other platfOrms

201

The code for navigating R5 in this direction might appear as follows:

struct Injector injinst ;
DBT key ;
DBT value ;

memset(&key, 0, sizeof(key)) ;
memset(&value, 0, sizeof(value)) ;
value.data = &injinst ; // ❶
value.ulen = sizeof(injinst) ;
value.flags = DB_DBT_USERMEM ;

// Assume "injcursor" is positioned in the Injector database.
dbres = injcursor->get(injcursor, &key, &value, DB_CURRENT) ;
if (dbres != 0) {
 handle_error(dbres, "Failed to dereference injector cursor") ;
}

Figure 10-6. Navigating to a machinery instance

Chapter 10 ■ pyCCa and Other platfOrms

202

DBC *machcursor = NULL ; // ❷
dbres = machdb->cursor(machdb, NULL, &machcursor, 0) ;
if (dbres != 0) {

 handle_error(dbres, "Failed to create machinery cursor") ;
}

memset(&key, 0, sizeof(key)) ; // ❸
key.data = &injinst.Machinery ;
key.size = sizeof(injinst.Machinery) ;
memset(&value, 0, sizeof(value)) ;

// Position the Machinery cursor to the record matching the
// value of the Machinery attribute of the Injector instance.
dbres = machcursor->get(machcursor, &key, &value, DB_SET) ;
if (dbres != 0) {
 handle_error(dbres, "Failed to set machinery cursor") ;
}

❶ The attribute values of the Injector instance are retrieved into a local variable of type
struct Injector.

❷ Create a cursor into the Machinery database.

❸ The key for positioning the cursor is the value of the Injector.Machinery attribute.

We assume that we have a cursor into the Injector Database that locates the starting instance for the
navigation across R5. Using the cursor, we fetch the value of the database record. In our case, the value is all
the data of an Injector structure. Contained within that structure is the Machinery member. The value of the
Machinery member is used as a key into the Machinery Database. So in this example, if, when we retrieve the
Injector structure value, we find the Machinery member contains the value of M685, we are able to position a
cursor into the Machinery Database corresponding to the record whose key is M685. After we have a cursor located
at the related instance of Machinery, we can use it to read or update the value portion of the record as needed.

To navigate R5 starting at an instance of Machinery, we must determine how we are going to handle
multiple instances of Injector related to a given instance of Machinery. The R5 association is “1..*” on the
Injector side, so there can be many records in the Injector database with the same value of the Machinery
attribute. The brute-force approach would be to scan the entire Injector Database, reading each record and
looking for those records in which the Injector.Machinery value matched the value of Machinery.ID of our
starting instance.

Fortunately, we can do better. Berkeley DB supports two concepts that can be used to navigate a
relationship so that the result will yield more than one instance. The idea is to create a secondary index for
the referential attributes that formalize a relationship and then to join across that secondary index. The
secondary index is configured to allow duplicate keys, and the join operation will create a cursor that can
access the multiple matching instances. This is shown in Figure 10-7.

Chapter 10 ■ pyCCa and Other platfOrms

203

Here the R5 Index uses Injector.Machinery as the key. So we must allow duplicate keys in the index. The
value portion of an R5 Index record holds the value of an Injector ID. In the example, the R5 Index shows
that the Machinery instance, M300, is lubricated by Injector 101 and Injector 102.

First we must create the R5 Index:

dbres = db_create(&R5db, lube_env, 0) ;
if (dbres != 0) {
 handle_error(dbres, "Failed to create R5 index") ;
}
dbres = R5db->set_flags(R5db, DB_DUP | DB_DUPSORT) ; // ❶
if (dbres != 0) {
 handle_error(dbres, "Failed flag setting on R5 index") ;
}
dbres = R5db->open(R5db, NULL, "R5.db", NULL, DB_BTREE, DB_CREATE, 0) ;
if (dbres != 0) {
 handle_error(dbres, "Failed to open R5 index") ;
}

❶ We must allow for duplicates. The 1..* multiplicity of R5 on the Injector side means, in
general, many instances of Injector will share the same value of Machinery.

Figure 10-7. Navigating R5 from Machinery to Injector

Chapter 10 ■ pyCCa and Other platfOrms

204

Now we can associate the R5 Index to the Injector Database as a secondary index:

dbres = injdb->associate(injdb, NULL, R5db, getMachineryID, 0) ; // ❶
if (dbres != 0) {
 handle_error(dbres, "Failed to associate R5 index to injector") ;
}

❶ The getMachineryID function constructs the key for the secondary index.

As R5 Index records are added, we must supply a key for the record. The value portion of the record is
already known: it is the key portion of the associated primary database. The key for the R5 Index is just the
value of the Machinery attribute of the associated Injector instance:

static int
getMachineryID(DB *R5db,
 DBT const *pkey,
 DBT const *pdata,
 DBT *skey)
{
 memset(skey, 0, sizeof(*skey)) ;
 skey->data = &((struct Injector *)pdata->data)->Machinery ; // ❶
 skey->size = sizeof(IDvalue) ;
 return 0 ;
}

❶ Here we set the key value for the R5 Index to be the same as the value of the Machinery
attribute of Injector.

To navigate R5 from Machinery to Injector, we start with a cursor into the Machinery Database.
Retrieving the value at the cursor, we can use Machinery.ID as a key to position a cursor into the R5 Index.
In our example for Machinery, M300, there are two records in the R5 Index the cursor would access. The R5
Index cursor is then joined to the Injector Database. The join operation establishes a cursor into the Injector
Database that accesses all the values of Injector.ID for the records in the R5 Index where the key is the same
value as that referenced by the R5 Index cursor. In our example, the join yields a cursor that can be used to
access Injector records that have keys of 101 and 102.

// Set up data areas to get the value of the Machinery instance attributes.
DBT key ;
memset(&key, 0, sizeof(key)) ;

struct Machinery machinst ;
DBT value ;
memset(&value, 0, sizeof(value)) ;
value.data = &machinst ;
value.size = sizeof(machinst) ;

dbres = machcursor->get(machcursor, &key, &value, DB_CURRENT) ; // ❶
if (dbres != 0) {
 handle_error(dbres, "Failed to set injector cursor") ;
}

Chapter 10 ■ pyCCa and Other platfOrms

205

DBC *R5cursor = NULL ;
dbres = R5db->cursor(R5db, NULL, &R5cursor, 0) ; // ❷
if (dbres != 0) {
 handle_error(dbres, "Failed to create R5 cursor") ;
}

memset(&key, 0, sizeof(key)) ;

key.data = &machinst.ID ;
key.size = sizeof(machinst.ID) ;
memset(&value, 0, sizeof(value)) ;

dbres = R5cursor->get(R5cursor, &key, &value, DB_SET) ; // ❸
if (dbres != 0) {
 handle_error(dbres, "Failed to set machinery cursor") ;
}

DBC *joincursors[2] = {
 R5cursor,
 NULL
} ;

DBC *navcursor = NULL ;
dbres = injdb->join(injdb, joincursors, &navcursor, 0) ; // ❹
if (dbres != 0) {
 handle_error(dbres, "Failed to join across R5") ;
}

memset(&key, 0, sizeof(key)) ;

struct Injector injinst ; // ❺
memset(&value, 0, sizeof(value)) ;
value.data = &injinst ;
value.ulen = sizeof(injinst) ;
value.flags = DB_DBT_USERMEM ;

while ((dbres = navcursor->get(navcursor, &key, &value, 0)) == 0) { // ❻
 printf("Injector ID = %u\nMachinery = %u\n", injinst.ID, injinst.Machinery) ;
}

❶ Assume that machcursor has been set to reference a Machinery instance. This function
gets the current Machinery instance values. In other words, we dereference the cursor.

❷ Create a cursor into the R5 secondary index.

❸ Set the cursor to the beginning of the entries in the R5 index that match the Machinery
instance ID.

❹ Join across the R5 cursor instances. This creates a new cursor to access the related Injector
instances.

Chapter 10 ■ pyCCa and Other platfOrms

206

❺In the interation at step 6, the Injector attributes are placed in a local variable for
convenient access to the attributes.

❻ Iterate over the join cursor to access the related instances of Injector. The get function
returns nonzero when all the joined records have been fetched.

Ensuring referential integrity is the final concept we consider. In the ST/MX for our microcontroller
target, no provisions were made to check the referential integrity between the instances at runtime. The MX
domain assumes that the model gets that right, and the translation provides no additional assurances. This
is the customary trade-off made for these types of targets. The code and data required to enforce referential
integrity are large enough, and the amount of dynamic activity in the applications deployed on such targets
is small enough, that the trade-off is to verify referential integrity by scrupulous model review, simulation,
and testing rather than at runtime.

However, we can do better in this particular MX domain. Berkeley DB supports the concept of a foreign-
key index. In this arrangement, referential attributes can be used as keys in a secondary index, which is
then used to restrict adding records unless the key for the record is present in an associated database. This
enables us to enforce a limited form of referential integrity checking as a domain executes.

Referring back to our Injector/Machinery example, we would like to make sure that any record added
to the Injector Database has a value for Injector.Machinery that matches a value of Machinery.ID from the
Machinery Database. We have already constructed the R5 Index, and so we can enlist it to play another role
as a foreign-key index. This is shown in Figure 10-8.

Each time a record is added to the Injector Database, Berkeley DB will add a record to the R5 Index,
just as it would any secondary index. Because the R5 Index is also associated with the Machinery Database
as a foreign-key index, the record is added only if its key value matches one of the existing key values in the
Machinery Database. If there is no match when adding the record to the R5 Index, the insert fails and the
record is not added to the Injector Database either. This behavior ensures that all Injector records refer to
Machinery records that exist. Complementary actions are taken with records that are deleted.

We can now associate the R5 Index as a foreign-key index to the Machinery Database:

Figure 10-8. Foreign-key index for referential integrity

Chapter 10 ■ pyCCa and Other platfOrms

207

dbres = machdb->associate_foreign(machdb, R5db, NULL, DB_FOREIGN_ABORT) ;
if (dbres != 0) {
 handle_error(dbres, "Failed to associate R5 index as foreign key") ;
}

In this section, we have presented only the barest sketch of how Berkeley DB could be employed as
a data-management component in an MX domain. Clearly, much more would have to be done to fully
develop an MX domain based on these ideas. The code examples shown were specific to the Injector/
Machinery example. In an actual MX domain, the code operations would be generalized to work on all
classes of a domain. To get a sense of the data required to generalize the data management, we consider a
platform-model fragment that deals with the ideas presented here.

Platform-Model Differences
The manner in which we manage class data by using Berkeley DB varies considerably from keeping all the
data in primary memory. In the case of ST/MX, we discard identifiers and use pointers to store the necessary
information for relationship navigation. The platform model for ST/MX reflects these choices by having
classes directly related to references to class instances. This was shown in the platform-model fragment in
Chapter 9.

In the Berkeley DB example, we decided to use the identifiers and referential attributes to create
key/value databases, secondary indices, and foreign-key indices. This usage mapped conveniently onto
facilities provided by Berkeley DB. We don’t consider this to be a lucky coincidence. The ideas of identifiers
and referential attributes are fundamental to the relational model of data, for which much research and
mathematical fundamentals exist and which has proven valuable in many contexts. Berkeley DB is just
another example. This example is more interesting because it is applied in the context of a key/value storage
mechanism. The platform models for these two cases differ considerably. Figure 10-9 shows a fragment of a
platform model that could be used in conjunction with a MX domain managing data with Berkeley DB.

Figure 10-9. Platform model for class identifiers and references

http://dx.doi.org/10.1007/978-1-4842-2217-1_9

Chapter 10 ■ pyCCa and Other platfOrms

208

We reiterate again, that, despite the class names, the classes in this model correspond to platform-
specific entities. So, the Class class in this model is a platform-specific counterpart to a model-level Class.

The R4 association requires that each Class have at least one Identifier. Identifiers consist of one or
more Attributes (R5). An Attribute may be part of more than one Identifier (or even no Identifier). This is
not an unusual circumstance, although it does not appear in this example. Taking the Injector/Machinery
example, Tables 10-5, 10-6 and 10-7 show a population of these platform-model classes that establishes
the classes, identifiers and attributes, respectively. Note that we are showing only the population for the
fragment of the example. For the entire domain, there would be many other table rows for the other classes.

The population of the Attribute table gives us enough information to define a C structure for each
class. So for each Class, we can define a structure in which the members are named the same as the Name
attribute value of the Attribute class, and the corresponding data type for the member is given by the Type
attribute value.

Each Attribute used in an Identifier results in an instance of R5 and consequently an instance of
Identifying Attribute, as shown in Table 10-8.

Table 10-7. Attribute Population

Domain Class Name Type

Lubrication Injector ID ID

Lubrication Injector Pressure MPa

Lubrication Injector Dissipation_error bool

Lubrication Injector Injecting bool

Lubrication Injector Default_schedule ID

Lubrication Injector Machinery ID

Lubrication Injector Reservoir ID

Lubrication Injector Model Name

Lubrication Machinery ID ID

Lubrication Machinery Locked_out Boolean

Table 10-5. Class Population

Domain Name

Lubrication Injector

Lubrication Machinery

Table 10-6. Identifier Population

Domain Name Number

Lubrication Injector 1

Lubrication Machinery 1

Chapter 10 ■ pyCCa and Other platfOrms

209

We can use the Identifying Attribute data to determine the set of attributes used as the key portion of a
Berkeley DB database that would store the class instances. In this example, there is only a single attribute,
but the technique can be extended to account for multiple attributes in an identifier. This information would
also be used to create any secondary indices required for additional identifiers. In the example, each class
has only a single identifier, and it is used as the key for the database storing the class instances. Additional
identifiers would show up as Number attribute values other than 1.

In the example model fragment, the Injector class is associated with the Machinery class. In this
association, the Injector class serves the role of Referring Class, and the Machinery Class serves the role of
Referenced Class. We can distinguish those roles because it is the Injector class that contains the referential
attribute referring to an identifier in the Machinery class. Our platform model would be populated as shown
in Table 10-9 and Table 10-10.

An Identifying Attribute may be referenced when it is an identifier for a class serving the role of a
Referenced Class in a relationship. Each time that happens, an instance of Referenced ID Attribute is
created, as shown by R11. This class represents an identifier being referenced (as opposed to just serving
as an identifier for its class). If you have an identifier that is referenced, there is also a referential attribute
performing the reference, as shown by R12. The corresponding instance of Attribute Reference represents
the referential attribute having the same value as its referenced identifying attribute.

For our example, the Attribute Reference and Referenced ID Attribute populations are shown in
Table 10-11 and Table 10-12.

Table 10-10. Referenced Class Population

Domain Class Relationship Role

Lubrication Machinery R5 Referenced

Table 10-11. Attribute Reference Population

Domain Referring Class Referring Attribute Referring Role Referenced Class

Lubrication Injector Machinery Referring Machinery

Referenced
Attribute

Referenced Role Referenced ID
Number

Relationship

ID Referenced 1 R5

Table 10-8. Identifying Attribute Population

Domain Name Attribute Number

Lubrication Injector ID 1

Lubrication Machinery ID 1

Table 10-9. Referring Class Population

Domain Class Relationship Role

Lubrication Injector R5 Referring

Chapter 10 ■ pyCCa and Other platfOrms

210

These tables give us the information we would need to create Berkeley DB secondary indices and
foreign-key indices. Using the Attribute Reference information, we must to create a secondary index for each
Relationship. The primary database would be the one corresponding to the value for the Referring Class
attribute (Injector, in this case). The key to the secondary index would be the value of the Referring Attribute
attribute (Machinery, in this case). With our example values, we would create a secondary index on the
Injector database by using the Machinery attribute of Injector as the key for the secondary index. This was the
code sequence we showed previously. There is also sufficient information here to generate the code for the
callback function supplying the key for the secondary database. In the preceding example, the callback was
named getMachineryID. Careful examination of this function shows that the name of the class, the name of
the referring attribute, and the type of the referring attribute can be parameterized for code generation.

Using the Referenced ID Attribute information, we would associate the secondary index created
for each Relationship as a foreign-key index of the database corresponding to the value of the Class
attribute (Machinery, in this case). Again, with our example values, the secondary index created for the R5
relationship would be associated as a foreign-key index to the Machinery class, because it is that class that is
referenced by the keys of the secondary index.

Alternate MX Design Discussion
We have briefly and incompletely shown how a MX domain might use a key/value store to manage domain
data and provide the basis for supporting other platforms. Expanding on this example, we can enumerate
the general points of our approach to building translation technology:

 1. Choose the appropriate implementation technology for the class of applications
to be deployed. The choice of implementation technology is rarely made in a
vacuum. Most project teams have produced systems similar to the one they are
undertaking. They have a good idea, even if it is not written down, of the scale
and appropriate computing technology that their application will require. One
is likely to fail deploying an online web store on a microcontroller. One is just as
likely to fail deploying a pacemaker on a laptop.

Implementation choices often are made at the beginning of a project, even
before basic requirements are well understood. We suspect that such early,
non-requirements-driven choices confuse the activity associated with making
decisions for real progress in completing the project.

 2. Map out how model-level actions will be implemented in the MX domain.
Some model-level operations may be directly supported in the implementation
language. Others will require designing mechanisms in the implementation
language or incorporating prebuilt components. The model execution rules are
the same in all cases. What differs is the manner in which they are implemented
and the resulting computational capabilities provided for the domains translated
onto the MX domain.

Table 10-12. Referenced ID Attribute Population

Domain Class Relationship Role Attribute Number

Lubrication Machinery R5 Referenced ID 1

Chapter 10 ■ pyCCa and Other platfOrms

211

 3. Develop a platform model that captures the essential characteristics of the
platform and supplies the MX domain with the required data. It is important that
the platform model be accessible in a way that supports ad hoc queries, and so
some relational-based implementation is easiest.

 4. Design and write a DSL to populate the platform model. There are many ways
to create language-based solutions. The venerable LALR(1) parser generators
are typified by yacc. There are many other parser generators, such as antlr.
There are also parser construction techniques based on parsing expression
grammars (PEG). The implementation language of the DSL should be chosen for
convenience and does not have to be the same as the target language of the MX
domain.

 5. Write a code generator to produce the code and data that supports the model
execution rules and drives the MX domain actions. As we implied in Chapter 9,
code generation can be accomplished by template expansion, and most modern
languages have libraries to support generating output based on templates.
The template expansion queries the populated platform model to find the
information needed. The code generator can be a separate part of the translation
or, as with pycca, be invoked immediately after the platform model is populated.

 6. Write the runtime code of the MX domain itself. This code will use the data
produced by the code generator to manage the model data and execution
sequencing.

We don’t pretend this is a trivial process, but it is one that can be accomplished by an individual or
small team managed as its own project. Furthermore, a robust MX domain and the ability to translate
models onto it represents a valuable resource with potential for reuse. Writing code that writes code is thus
a highly leveraged, if somewhat abstract, undertaking. Rosea, also available through the book site, is another
example of this style of translation program in which the target language is Tcl.

Remember that the xUML model execution rules are the same, regardless of the means and
mechanisms used to implement them. But you are always free to choose a different way to implement
these rules, as long as you can guarantee that those rules work correctly. The goal is the production of
a MX domain and its platform-model-based code generator that satisfies the scale and performance
requirements of the class of applications you expect to deploy and has the implementation characteristics
required in the deployed system.

Our approach emphasizes first establishing the required, often nonfunctional, characteristics of
the implementation. Then a platform that supports the model execution rules can be constructed.
Finally, we can then translate the logic of the models onto the platform with assurance that the system
will have both the means to execute the logic of the models and acceptable performance characteristics
when deployed to the field. Ideally, we would prefer that the entire workflow be integrated, automated,
modular, and facile to use. We do not see that currently and cannot bank on the future. We must develop
software systems in the present, given what is available, and cope with the engineering trade-offs as we
encounter them. The demands for increasingly complex software systems will continue to accelerate,
and the variety of implementation technologies, both hardware and software, will continue to grow
at staggering rates. Our approach represents one attempt to draw upon this astounding advance of
technology while maintaining a strict partitioning between logic and technology and with a keen focus
on producing quality, working software.

http://www.antlr.org/
http://dx.doi.org/10.1007/978-1-4842-2217-1_9

Chapter 10 ■ pyCCa and Other platfOrms

212

Summary
We discussed the design and implementation of the pycca program itself. Pycca is designed as a language
processor that reads DSL statements to populate a platform model and generates code using a template system
that queries the populated platform model. It is implemented in the Tcl language.

We presented some size and execution speed measurements of the ALS system on a representative
micro-controller platform to show that the resulting memory usage and execution speed are appropriate for
our targeted platform.

Finally, we provided a quick overview of a target platform using Berkeley DB. Model execution
domain mechanisms for how class instances are held and accessed and how relationships are navigated
were mapped onto Berkeley DB facilities. Support for a limited form of referential integrity checking using
Berkeley DB facilities was shown. We also presented a fragment of a platform model, demonstrating the
information needed to support code generation for the Berkeley DB approach. This demonstrated how
different platform implementation approaches would be reflected in distinct platform models.

213© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1_11

CHAPTER 11

The Translation Landscape

In this book, we have shown, by a series of examples, how an executable model can be nondestructively
translated into a running program. Our translation technique is one way to obtain code from models. We
do not claim it to be the only way to translate models. Nor do we claim it to be the best way to translate. The
techniques we have presented, like all software engineering processes, have benefits as well as drawbacks.
But we have met our goal of producing running code that satisfies the constraints of our target platform by
translation of an executable model. We consider that important because, to excerpt from the Agile Manifesto1:

We have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

In our experience, tools that purport to be comprehensive aren’t and do not substitute for individual
engineering skill. And regardless of how insightfully an executable model captures the logic of a domain,
modeling is a necessary, but not sufficient, step in the development of software. We do value tools,
development processes, and well-documented models but, in the spirit of the Agile Manifesto values, we
strive foremost for high-quality, working software produced by skilled individuals.

In this chapter, we take a broader view of model translation and examine how this might be
accomplished in the general case. We start by presenting a reference workflow for translation. We use the
reference workflow as an opportunity to discuss some of the difficulties encountered along the translation
path. We show how pycca compares to the reference workflow. Finally, we discuss how our approach to
translation might be applied to other target platforms.

A Reference Workflow for xUML Translation
Figure 11-1 gives a broad view of the tasks and work products necessary to translate xUML models into code.
This diagram is intended to illustrate all of the key elements that must be present, in some form or other, in
any xUML translation system. The pycca approach that we have described is a step in the direction of this
idealized workflow. Later in this chapter we will show how the pycca approach fits into this broader context.

1One of the authors, Stephen Mellor, was an original signatory to the Agile Manifesto.

Chapter 11 ■ the translation landsCape

214

The top of the diagram is divided into platform-independent and platform-specific areas. Moving left
to right within the platform-independent section, we have a sequence of modeling tasks completed in the
indicated order for a given iteration of the system. We do not want to imply that there is only one iteration.
We advocate an agile approach to system development, but also carefully distinguish between the technical
process and the project management process. Each iteration through the platform-independent section
delivers an internally consistent, fully executable, modeled version of the system. The frequency and content
of each iteration, how project team members are allocated to tasks, and how the results of each iteration are
used to solicit feedback and additional requirements is part of the project management process. These are
important aspects of any real-world project, but something each project must plan for itself. The discussion
here is strictly on the technical aspects of the workflow.

Jumping across to the far right of the platform-specific section is the code that must be written by hand,
acquired from a third party, previously existing or generated from non-xUML models. To the extent that
requirements are known, the non-xUML code can be developed in parallel with the xUML modeling track.

The remaining Mark task must be performed when a consistent fragment of the domain model has
been completed. Here, those modeled components that merit special consideration for performance
reasons during code generation are annotated. For example, you might indicate which classes have large vs.
small populations so that appropriate code can be generated, assuming the target platform model provides
facilities to discriminate between these cases.

That covers the top of the diagram. Now let’s move downward. As the models are created and edited, they
are stored in a model repository. This repository is an implementation of the xUML metamodel. As such, the
domain models and all populated instances themselves constitute the instance population of the metamodel.

Figure 11-1. Reference translation workflow

Chapter 11 ■ the translation landsCape

215

Model marks may also be stored in the repository. This does not compromise the platform
independence of the models, as the marks are stored as annotations cross-referenced against the models.
So the model repository will permit multiple sets of marks, possibly for different platforms, to be associated
with the same domain models.

The platform model defines the way xUML model elements are packaged and reorganized to perform
efficiently on the target platform. It is populated with a program that transforms the xUML model elements
into corresponding elements of the platform model. The platform model, its populator/transformer program,
and the compiled MX runtime constitute the core models-to-code solution for a given class of platform.

So now the platform model has been populated from the marked xUML models extracted from the
model repository. From here, code can be generated in the target programming language. This code is then
compiled, along with the non-XUML code, to yield a set of object files. These object files are linked together
along with the MX runtime to yield a complete system executable.

The MX runtime, you may recall, is the chunk of code that knows how to dispatch events, make state
transitions, navigate relationships, and otherwise execute xUML models.

To summarize, the components that must be supplied to enable code generation are as follows:

•	 A platform model

•	 A program that populates the platform model from the xUML models

•	 A program that generates code in a target programming language from the
population of the platform model

•	 A model execution runtime module

Key Challenges
The reference workflow presents an idealistic picture of the principal elements you need to build models
and generate code from them. It only partially represents the reality of how model-based systems are built
today. Unfortunately, many organizations get swept up in the ideals of model-based software engineering
(MBSE) and commit to an expensive and potentially constraining model development workflow. Without
prior experience, project teams proceed to acquire model-drawing tools and start making pictures because
model diagrams are a key artifact of the workflow. However, modeling is about solving problems in logic,
whereas diagrams are simply a means of capturing the problem solution in a form that directly contributes to
producing a software solution. Later in the project, theory and reality often collide in an expensive cloud of
disappointment. The result is filling the gap between the diagrams and the code by using one of the approaches
discussed in Chapter 1 (namely, gradually or abruptly), neither of which achieve much benefit from modeling.

Inexperienced project teams should seek help in training the team to undertake such a qualitatively
different way of building software. Yet, it is hard to convince project teams that have successfully built software
using conventional techniques that modeling and translation requires skills and thought processes they may
not possess and that manipulating diagrams in a modeling tool will not provide those skills. In this section, we
flag some of these ugly realities for you. Considering each stage of the translation workflow, we point out the
common difficulties and challenges that we have seen in our many years of model-based development.

We do not mean to imply that modeling and translating are an immature or unworkable development
approach just because difficulties exist in the state of the practice. Many project teams produce high-quality
systems by using modeling and translation. We could easily enumerate an even longer list of problems
with conventional software development techniques. We have purposely not done so because Internet
sites document the horrors discovered in real-world programs more comprehensively than we could here
and because highlighting problems in other approaches does nothing to solve our immediate concerns.
Software development approaches are subject to passing technical fads, just like any other complex human
undertaking. We won’t indulge in Pollyannaism aimed to convince you that everything is smooth and easy.
We don’t believe there is any silver bullet that will slay the software werewolf (See the papers “No Silver
Bullet—Essence and Accident in Software Engineering” and “No Silver Bullet Refired” by Fredrick P. Brooks,

http://dx.doi.org/10.1007/978-1-4842-2217-1_1

Chapter 11 ■ the translation landsCape

216

Jr..) Modeling and translation represent real, practical progress in grappling with the beast. But forewarned
is forearmed, and we hope our concerns and frustrations with current practices in modeling and translation
will save some project teams from their own disappointments.

Identify Domains
The first step in developing the software system is to identify all of the required domains. For translation
purposes, we are interested in which domains are modeled and which ones are provided as code. Those
provided as code could be hand coded, acquired from a third party, available as legacy code or existing
libraries, or generated from models in a non-xUML language. Ultimately, a diagram called a domain chart is
produced that inventories all domains and their dependencies.

The key challenge in this step is factoring the domains correctly. This is not a problem fixable with tools.
You need experience and skill and the right approach to thinking about the problem.

When it comes to dividing up a large system, it is easy to lean on the crutch of familiar platform
technology such as library, task, and hardware boundaries. These boundaries are just so tangible! But
experienced developers know that technology changes all the time, and tangibility and frailty go hand
in hand. “Don’t worry, the hardware design is frozen. . . ” Right. More to the point, a platform-specific
partitioning yields platform-specific models, which defeats much of the purpose of modeling.

Even if platform boundaries are successfully ignored, it is also common to split up a system into
functional rather than subject-matter categories. This mistake makes it difficult to develop solid class
models, which are the foundation of each domain. And let’s not even get started on pointy-headed
non-engineering boundaries such as managerial or political.

Here are a few guidelines that may help. For any prospective domain chart, consider these two questions:

 1. Would the domain chart change in any way if the platform technology changed?
It should not. For example, what if you have two CPUs instead of one? What if you
are using tasks and threads? What if you are running the system on a distributed
platform?

 2. Is there any class that must simultaneously exist in one or more domains?
There should not be any. A subject matter is defined by a vocabulary of classes
and relationships. Such a class-based, rather than function-based partitioning
then demands that each class live in only one domain. In the ALS, the Injector
pressure “exists” in both SIO and Lubrication; however, it means something
entirely different in each domain. In SIO, there is nothing special about pressure;
it is just data coming from an input point that needs to be scaled and converted.
But in the Lubrication domain, pressure really is pressure, and there, the
technology to gather and convert is of no consequence. Similarly, the Injector
class lives only in the Lubrication domain. For example, if we had divided the
Lubrication domain into Injecting Normally and Diagnostic Injection functions,
each would need to share the Injector class.

Consider the ALS domain chart from Chapter 6. It is entirely platform independent. You could put all
those domains in a single task, as we have done with pycca, or spread them across multiple processors or
threads. The hardware onto which the software is deployed has no impact on the domain chart itself. Note
that the domains are defined by what they know rather than what they do. The Lubrication domain knows
about the lubrication equipment and how lubrication works. It knows nothing about systematic handling of
alarms, it knows nothing about signal processing, and it knows nothing about user-interface technology. All
the functionality in the Lubrication domain follows from what it knows about the way equipment must be
lubricated. The SIO domain knows about signals and actuators, but assumes no specific meaning for any of
the data in the signals or controls over the external world.

http://dx.doi.org/10.1007/978-1-4842-2217-1_6

Chapter 11 ■ the translation landsCape

217

Ultimately, the best way to test a domain chart is to build a certain percentage of the class models
inside each of the modeled domains as a validation exercise. During this process, it is common to rethink
the partitioning and end up refactoring the domain chart. Had you not identified Signal I/O as a domain on
the first pass, for example, you may have found that the state models for lubrication got excessively complex,
constantly polling for new data. Each physical device with sensor-driven attributes would need to replicate
the same polling or event-response patterns. When you see the same cookie-cutter patterns replicating
across multiple state machines in a domain, it is usually a sign that a service domain is missing or some sort
of domain refactoring needs to be done.

It is often the case that the coded or non-xUML domains are not complete as domains and require some
kind of wrapper that may or may not be modeled. So additional modeling may be required in these domains,
which must be interfaced with the supplied code.

Build and Document the Models
For each domain modeled in xUML, one or more analysts work together with subject-matter experts to
model whatever subject matter is relevant to that domain. Figure 11-2 illustrates this concept.

Figure 11-2. The right talent is essential to successful modeling.

Chapter 11 ■ the translation landsCape

218

The sheer number of challenges in this phase require an entire book—Executable UML: How to Build
Class Models, by Leon Starr (Prentice-Hall, 2001)—but here are a few of the most significant:

•	 Get the right talent working together.

•	 Enter and edit the models productively.

•	 Usefully document the analysis and models.

Use the Right Modeling Talent
Three distinct talents are necessary to build models: analysis, modeling, and subject-matter expertise. Rarely
do all three reside in the same individual to an adequate degree, so it is generally necessary to get teams
working together. The first mistake most projects make is to just grab a bunch of programmers, because
those are the people who happen to be around, and assign them to modeling duty. This is a mistake because
most programmers lack the proper skills, knowledge, or inclination to build models.

Analysis is the ability to ask questions about a subject matter, and to write, draw, and otherwise describe the
subject matter. This requires good communication skills. The analyst is always trying to break down problems
and find the interesting cases that almost never happen but must be handled correctly when they do. The
analyst must have solid communication and presentation skills to elicit expert feedback. Most important, the
analyst must discard preconceptions about a subject matter and routinely expose his or her ignorance of a
topic in order to elicit the fine details from subject-matter experts. These are not skills typically cultivated by
programmers. Programmers like to show up to the party with patterns and libraries in hand, ready to write code.

Modeling is the ability to take the analysis and formalize it in an objective, testable way. This requires
skill at putting the platform-independent building blocks of classes, relationships, states, and so forth
together. This sounds a bit like programming, but there is one key difference. Whereas a programmer
is constantly coming up with clever ways to package things so that they work efficiently, the modeler is
typically unpacking ideas so as to expose the critical and subtle differences. The modeler is concerned about
efficiency, in the sense that an idea should be expressed as simply as possible and as clearly as possible,
while simultaneously handling all the subtle cases uncovered in the analysis. Whereas the programmer
often takes pride in having as few elements as possible in a program, packaging and hiding along the way,
the analyst takes pride in unpacking and exposing complexity. That extra class, attribute, or relationship that
reveals an overlooked case is a source of pride for the analyst.

Finally, subject-matter experts need not know anything about modeling. They just need to know their
subject matter well and have the inclination and time available to explain it to the analyst/modelers. And, of
course, it doesn’t hurt if they can read the models to verify that they are being understood.

On real projects, these three skills come in overlapping combinations with various individuals. The
necessity is to get enough of all three skill sets together to get the models done correctly. The best results occur
when you pair up a good analyst with a good modeler and give them access to at least one subject-matter expert.

Enter and Edit the Models Productively
As models are developed, they are ideally entered into a graphical editor. The editor stores the non-graphical
model information in a repository. To make the model information available in a useful manner to downstream
tools, such as those for code generation, the repository design should be based on the xUML metamodel.

Okay, so how hard can it be to draw boxes and arrows? Based on the current crop of model-editing
tools, it turns out, surprisingly hard and painful. To see what we mean, compare the task of entering and
editing graphical models to that of writing code in your favorite editor. Today’s programmer expects a
lot from a code editor. Features such as autocomplete, refactoring, expand/collapse, search/replace,
documentation lookup, syntax checking, keyword highlighting, and visual diff allow a programmer to move
nimbly through a large, complex code base. The productivity a programmer experiences is not even in the
same league as that of their modeler counterpart using a graphical editor.

Chapter 11 ■ the translation landsCape

219

Compare textual vs. graphical layout, for example. While a programmer effortlessly indents, closes
braces, expands and collapses a function block, a modeler limps along pushing rectangles and arrows, trying
to click connection points and shifting text labels a few pixels this way and that. You get carpal tunnel just
watching a large model being rearranged.

To be fair, some graphical editors take some of the pixel-shifting drudgery away and perform varying degrees
of automatic layout. Unfortunately, the geometric algorithms are still rather simplistic, yielding clunky layouts.
This may sound like nitpicking, but geometric layout to an experienced modeler is every bit as important as text
layout is to a programmer. Imagine the outrage of a programmer working with a bizarre indenting and line-
wrapping scheme, with open and closed parentheses being scattered to the wind. Experienced programmers are
quite careful about how they organize their code. Experienced modelers are no different.

More pertinent to translation is the storage of non-graphical model data. Many tools store this
information in either a file using some sort of interchange format or in a database or both. Our concern is the
way that data is organized. Ideally, the organization of the database, or definition of the file format, should
be derived directly from a model of the executable language (a metamodel). The language we are using is
xUML. Most model editors use the UML standard, which brings with it a lot of stuff we don’t need. There
is a standard for model interchange called XMI. But, again, it is intended to support the full UML standard.
So it is filled with lots of content that we don’t need. Our preference would be to have model-level data in a
commonly used implementation form on which we could directly operate, such as a population of a relational
database. What we really need is a tool that uses an xUML metamodel as the basis for model storage.

In the meantime, what is the modeler to do? It really depends on whether you are taking a pycca-like
approach or using a comprehensive draw tool/translation environment. In the pycca case, you are going to
encode your translation decisions by hand, anyway. Here you want a model editor that will let you specify
xUML elements nicely, such as verb phrases on associations, identifiers, and referential attribute tags. You
want something that isn’t trying to be too smart and preventing you from drawing a model the way you want it
to look. Umlet, OmniGraffle, Visio, and DrawExpress are some choices. None of these tools stores any model
semantics, but if you are proceeding to text, by hand, it doesn’t matter. On the other hand, if you are using a tool
such as BridgePoint, you don’t have any choice. You have to live with the model editor provided, warts and all.

Usefully Document the Models
Models are not self-documenting (and neither is code, despite some programmer assertions to the
contrary). They do expose application logic in a formalism that excludes implementation aspects. But
what is the reasoning behind that logic? Why is this class or attribute necessary? Why is relationship R3
unconditional on the many side? The why’s need to be answered clearly.

For the model to be useful, it must be adequately documented. In fact, we would go even further and say
that good model descriptions are more important than the model graphic. Only in the descriptions can the
basis of the abstraction for the model be explained. The model graphics present the model in an information-
dense form, but do so by using mnemonics such as class names, attribute names, and relationship phrases.
Names in a model use common natural language words that require additional explanation to give them the
meanings needed to build a precise vocabulary for the subject matter of the model. The precise meanings of
the mnemonics are contained only in the descriptions, which need both text and informal diagrams. Without
a precise meaning for the model terms, model readers will simply apply their own notions to the model
based on their own understanding of the natural language words used in the model diagram. Because natural
language relies so much on context for its precise meaning, confusion is the usual result.

Useful documentation goes way beyond short text descriptions. It includes the numerous analysis
notes, copies of whiteboard discussions, and informal (non-model) sketches, mathematical formulas, and
other supporting technical notes that are developed in the process of building the models. Without real-
world context, models quickly lose their value. Without the inclusion, integration, and maintenance of
adequate documentation, there isn’t much point in bothering to model in the first place.

Chapter 11 ■ the translation landsCape

220

Unfortunately, graphical model editors tend to attach slots to various model elements that are filled in
like forms. This sounds reasonable at first. But in practice, it results in lower-quality model documentation.
Modelers tend to fill in the slots in a robotic fashion without giving thought to the big picture. This tendency is
frequently reinforced by project development rules that insist every slot be filled in like a Bingo card, resulting
in little regard for the content. The descriptions tend to restate what is already obvious on the diagram. It is
our experience that informal non-model diagrams are essential elements of good model descriptions. But
most tools facilitate or accept only text. Finally, it is all too easy to look at a diagram and not see the underlying
documentation or to delete model elements, inadvertently trashing pages of descriptions. True, good model
documentation is hard work, but it is the foundation of a long-lived knowledge base; it is valuable intellectual
property, essential for training project team members and the basis for future maintenance.

It is helpful to consider two distinct approaches in practice that have arisen to deal with code
documentation. In one approach, documentation is placed in stylized comments directly in the source
code file, and a software tool is used to extract and format the documentation. Literate programs, a concept
introduced by Donald Knuth, takes the opposite view. In a literate program, the source code is placed into
the document, and a software tool is used to extract and reorganize the code from the document. Both
techniques can be used to produce good documentation. We prefer the literate program approach because it
allows more flexibility for the order of presentation and for including supporting materials. The worked-out
examples available as supplementary material for the book are literate programs.

We develop our models using tools primarily intended to produce high-quality documents and import
the model graphics as simply another diagram in that description. We do not want to imply that we think the
model graphic is not useful. It is extraordinarily useful, but only when combined with the background and
abstractions detailed in the model descriptions.

Specify Domain Mapping
A dependency between two domains on the domain chart is referred to as a bridge in xUML. The domain on
the tail of an arrow plays the role of client, to the domain on the arrow side playing the role of a service. The
direction of the arrow simply means that one domain exists for the express purpose of satisfying the needs
of another. In the ALS domain chart in Chapter 6, for example, the Lubrication domain needs some way of
interacting with the physical world, which is satisfied by the SIO domain.

The domain chart says nothing about what data and interactions are exchanged on a bridge.
Furthermore, the models of one domain are designed to be unaware of any particular model structure in
any other domain. This notion of domain-level encapsulation is a key organizational principle in xUML.
That said, certain model elements in one domain will have corresponding elements across each connected
bridge. These must be mapped together somehow, without muddying the interior of any one domain with
knowledge of another domain’s model content.

The bridging technique we demonstrated is based on explicitly invoking actions on an external entity.
Referring back to the Lubrication domain of Chapter 6, when an Injector began to apply lubricant, it made
an explicit call to the Inject operation of the SIO external entity. The activity of the Start injection state makes
clear its delegation of the physical injection process at a precise point in the model execution.

For some situations, sprinkling the model action language with external entity invocations detracts
from the intent of the model and inhibits its potential for reuse. Consider the Reservoir state model from
Chapter 6. Each of the state activities makes explicit calls to an ALARM external entity to reflect the status of
the Reservoir. The intent of the actions is to mark the state of the Reservoir and signal other instances in the
domain at key boundary conditions (that is, when things are Normal or when the Reservoir is Empty). The
ALS system is required to post alarms at these critical junctures in the Reservoir life cycle, but the ALARM
entity invocations are intrusive and have nothing to do with the essentials of the Reservoir class. Further,
what is considered worthy of an alarm is subject to considerable requirements churn. Project often start
with the notion of alarm everything only to find out that overwhelming amounts of information cannot be
digested into practical actions.

http://dx.doi.org/10.1007/978-1-4842-2217-1_6
http://dx.doi.org/10.1007/978-1-4842-2217-1_6
http://dx.doi.org/10.1007/978-1-4842-2217-1_6

Chapter 11 ■ the translation landsCape

221

We would prefer to specify how the ALARM entity is notified apart from the action language of state
activities. We want to say that after the LOW state activity of the Reservoir class executes, the Set lube level
low operation is to be invoked on the ALARM entity. The action language for the LOW activity would no
longer include the explicit invocation of Set lube level low, and the translation mechanism would arrange for
the ALARM invocation based on our specification.

This type of bridging arrangement is called implicit bridging. The idea has much in common with the
concepts of aspect-oriented programming (AOP). AOP has an entire vocabulary to describe the approach,
which we do not discuss here.

Implicit bridging is intended to reduce the coupling between domains by removing at least some of the
explicit external entity interactions. By providing a level of indirection in specifying where the external entity
operations are invoked, the potential for reuse of the Lubrication domain is enhanced, because the dependency
on an ALARM domain is no longer explicitly encoded in the domain actions. The invocation of ALARM operations
could also be applied to other domains that had not been built with any alarm concepts in mind.

We see the process of defining explicit or implicit bridges between domains as the same. It is still
necessary to mark, map, and populate the bridges. The difference is that implicit bridging uses a means
apart from the action language of a state activity to specify when the bridge operation is invoked. The
implicit means of specifying the bridge operations is also done relative to generic (metamodel) entities. In
this example, we specified the ALARM interactions relative to state transitions. Other model-level elements
are also candidates, such as creating or deleting class instances or signaling events.

Sadly, we see no substantial tool support for mapping and populating bridges. Explicit bridge
operations are present, but we are not aware of any implicit bridging support. It is a significant complication
to the model translation process that has not been overcome. We demonstrated in Chapter 8 that, despite
the lack of a complete theory, it is nonetheless possible to tackle bridging methodically using nothing more
than a spreadsheet application.

Populate the Models
It is common to document scenarios with real instances as you develop your models. The diagram of air
traffic controllers introduced in Chapter 2, for example, or the lubrication configurations shown in Chapter 6
are quite typical.

Once an iteration of the models is complete, it is helpful to construct initial populations for it. In fact,
you usually create multiple populations for various scenarios. In the ALS example, you could create one or
two populations for testing and then another two or three for anticipated real-world configurations of the
ALS. By careful selection of the attribute data values that influence the execution paths through the activities,
test populations can be constructed to force a larger trace of execution than might happen with a population
delivered for deployment.

Tools tend to focus on the development of the models, with the instance populations as an afterthought.
Few tools provide quality facilities for specifying initial instance populations. Again, our advice is to put
them in spreadsheets. The examples we have presented had small initial instance populations. When the
number of initial instances is small, almost any strategy to handle them will work. However, as the number
grows, it becomes more difficult to manage the populations.

We believe that initial instance populations should be specified entirely by the values of the attributes
of the model classes. In our examples, all the model-level descriptions of initial instance populations were
accomplished by treating the class as a table and specifying instances as rows of values. By contrast, we
dislike the approach of having to compose action language to explicitly create class instances and assign
the attribute values of the initial instance population. This approach is tedious and error prone, and does
not scale well. Worse yet, because many attributes are given the same value, the motivation to use action
language variables to hold repeated values is hard to resist. The values of these variables change during
runtime and, unlike explicit attribute values, are difficult to verify by simple inspection.

http://dx.doi.org/10.1007/978-1-4842-2217-1_8
http://dx.doi.org/10.1007/978-1-4842-2217-1_2
http://dx.doi.org/10.1007/978-1-4842-2217-1_6

Chapter 11 ■ the translation landsCape

222

Another problem with the action language approach is that it excludes non-modelers from providing
the initialization data. Consider an electric utility control system that requires a large amount of data to
describe the transmission lines, substations, transformers, and other equipment required to distribute
electric power. The control system will use the connectivity implied by the transmission specification data
to route and otherwise manage the distribution of electric power. The utility staff that updates and manages
the topology of the distribution grid is also the primary resource for obtaining correct instance population
values. A database management system is critical at this scale, so translation tooling should either take initial
instance population data directly from the database or at least provide an interface to which query results
from a database can be included as a domain’s initial instance population.

For instance populations of an intermediate size, fashioning a domain-specific language (DSL) can
help solve the instance management problem. In the SIO domain example, the initial instance population
consisted of 50 instances of the various classes that specified the properties of 11 I/O Points. Directly
specifying the attribute values was not an onerous task because the population was small.

But imagine a case with 100 I/O Points (not an excessive number even for a microcontroller-based
system). Specifying values for all the attributes of the approximately 500 class instances now becomes
a significant task. To reduce the amount of detailed knowledge required to directly populate the class
instances, we could construct a DSL such as the following:

population SIO test_population_1 {
 Continuous_Input_Point inj1_pressure {
 group pressure_group
 thresholds {
 max_pressure
 inh4_pressure
 }
 scale ihn4_scaling
 }

 Conversion_Group pressure_group {
 period 500 ms
 converter main_converter
 }

 Point_Threshold max_pressure {
 direction rising
 limit 20 MPa
 successive_over 2
 successive_under 3
 }

 Point_Scale ihn4_scaling {
 multiply 100
 divide 27
 intercept 100
 }

 # ... and other similarly styled declarations
}

Such languages should be declarative in nature and minimize any knowledge of the class model
required to specify the attribute values. In this example, the fact that there are several generalization
relationships in the model is hidden by focusing on the attributes of the leaf subclasses. In contrast to an

Chapter 11 ■ the translation landsCape

223

action language, there is no order of execution. Variables are not used, and the output of the language
processing is direct input to the translation mechanism. Such population languages are usually better suited
to service domains in which the potential for reuse is higher than a domain whose subject matter is tied
closely to a particular application. We recommend the rule of three: when a domain is reused for the third
time, stop and invest some effort in making that reuse more productive.

Although constructing DSL’s is not a large undertaking, project teams must determine whether the
investment has good return. Many tools are available to construct small language processors such as
this. The DSL program can define a syntax and then use well-established techniques of lexical and parser
generators to form the core of the processing. Alternatively, some dynamic scripting languages such as
Tcl or Python are well suited to use for DSLs (sometimes called an internal DSL), and then the parser of
the scripting language itself can be used for parsing the DSL. Language-based solutions to application
configuration problems have a long tradition in software, and existing techniques can be employed for
specifying an initial instance population.

Populate the Domain Mappings
The population of the mappings between domains that form the basis of how a bridge is realized may be
known at translation time (at the time the code is generated from the model), at runtime, or a hybrid of both.

If the model elements involved in the mapping do not vary during the running of the system, the
population of those mappings is specified before translation. When the initial instance population is
determined, the mapping tables can be filled in. This was the case of the bridge mapping between the
Lubrication and SIO domains in Chapter 8. For example, the mapping for the Inject and Stop injecting
external entity operations was onto the Write Point domain operation of SIO for I/O Points that were defined
as part of the initial instance population and did not vary as the system ran.

If the model elements of the domain mapping are created or deleted during the running of the system, it is
not possible to populate the domain mappings before translation. In this case, the bridge code will populate the
mapping at runtime. The bridge will include operations that map the creating and deleting of model elements
in the client domain to the corresponding elements in the service domain and record the mapping for later use.
Although the mapping table heading still describes the information that needs to be collected and maintained,
it is not possible to specify the values of the tables before translation. The bridge code implementation is usually
more complicated, as it must know when the creation and deletion of model elements occur, and uses more-
sophisticated data structures to handle the dynamic nature of the half tables themselves.

Hybrid mappings can also occur. In this case, some of the mapping population is known at translation
time, and the remainder occurs at runtime. In this case, the bridge code is patterned after the dynamic case
but may start with a non-empty half-table population to be augmented as the system runs.

Again, we find no substantial support for this activity in available tools, so we recommend spreadsheets
as an easy and available way to enter and display the required mapping data. The example mapping tables
from Chapter 8 can serve as a guide. A specialized database application based on a spreadsheet metaphor
could also work well for larger mappings.

When populating the domain mappings, three data sets are being managed:

•	 Model element populations from the client domain

•	 Model element populations from the service domain

•	 Mapping between the two populations of model elements

With that many things in play, the challenge is that you might find out that things don’t quite match
up. Filling in data values to the mapping tables is the ultimate check on whether you have the populations
and domain mappings right. Don’t be surprised if you need to revise things. For example, you may find an
instance in the client domain that has no corresponding instance in the service domain and have to adjust
your initial instance population for the service domain. You might also find that the way an instance is
identified in a service domain can’t be determined from the elements of the client domain mapping, and

http://dx.doi.org/10.1007/978-1-4842-2217-1_8
http://dx.doi.org/10.1007/978-1-4842-2217-1_8

Chapter 11 ■ the translation landsCape

224

you might have to adjust the domain mappings themselves. To avoid too many surprises, it is advisable for
the modelers of a client and service domain to communicate routinely. This ongoing communication is
essential to ensure that the assumptions and dependencies given to the service domain by the client domain
are accounted for. As the models progress, the conversation can be extended to ensure that proper domain
mappings exist to realize all of the dependencies.

Marking
A complete iteration of the platform-independent models is marked with platform-specific features prior
to translation. For illustration purposes, it is helpful to imagine marking as involving a transparent sheet
laid over the top of the models and a box full of markers of different colors. The specific colors and number
of markers available depends on the features provided in the platform model. For example, one platform
model may prefer that you distinguish instance populations based on whether they max out at 1, 10, or 1
million for any given class so that the appropriate storage and access mechanism may be selected. Using the
max population marker provided by that platform model, you mark classes accordingly. Note, however, that
you aren’t marking the classes directly, thus the transparent sheet laid on top. That way, the models remain
platform independent. It is only the marked-up sheet that has the marks. Because marks themselves can
be abstracted as annotations, they can be stored in the metamodel. In fact, the same set of models can be
marked differently for each potential target platform. Just swap the marking sheets.

Marking has two key challenges. There must be adequate types of marks available to tune the models
for translation. There must also be a way to specify them without permanently embedding them into the
models themselves.

In reality, we don’t use markers or transparent sheets, though these might still make a good user-
interface design metaphor in some model-editing environment. Instead, there may simply be a text file
that provides a keyword for each mark type and a list of affected model elements. In the pycca approach,
the marking features are mixed into the DSL used to specify the design. While the markings on a particular
model are interpreted to create a platform-specific implementation, they are just a particular kind of
annotation that can be stored in the metamodel.

Care is taken to ensure that marks reference model elements but are never permanently mixed into
the models themselves. This is in stark contrast to the elaboration style of producing code from a model,
in which implementation artifacts are indiscriminately blended into the models. This style unnecessarily
destroys platform independence in the process of delivering a system.

The xUML Metamodel
Now we move downward underneath the platform-independent section to consider the xUML metamodel.
A metamodel is just an ordinary model whose subject matter happens to be the modeling language itself.
Whereas our air traffic control domain model captured classes such as Duty Station, Air Traffic Controller, and
Control Zone, a model of xUML would have classes such as Class, Association, Attribute, State, and so forth.

A metamodel serves as a formal definition of the language it is modeling. Thus, an xUML metamodel
would serve as the ultimate definition of the xUML language. Executable UML: A Foundation for Model-
Driven Architecture does a fine job of informally describing xUML, and it should serve as the key input to
an xUML metamodel. As with any subject matter, any ambiguity, inconsistency, or incompleteness in the
informal description of the modeling language should be resolved by the completed metamodel.

Just for fun, let’s assume that such an xUML model exists. Here’s how you could use it.
Imagine that you build a database schema based on such a metamodel. Assume that the database

perfectly imposes all constraints defined in the metamodel. Now let’s say that you have built an application
model, the Air Traffic Control application, let’s say. You should be able to populate the metamodel database
with your application model. For example, you would create instances of Class: Air Traffic Controller,
Control Zone, Duty Station, and so forth. You would proceed to create instances of State, Transition,
Attribute, and so forth until your entire ATC domain was instantiated in the metamodel.

Chapter 11 ■ the translation landsCape

225

If you found that you were unable to populate the metamodel database without triggering errors,
you would know that your models were incorrect. (We’re assuming a perfect metamodel database
implementation here.) For example, xUML requires that each transition exiting a state have a different event
specification. So if you have already inserted a transition out of state X on event A, and you attempt to define
another transition out of X with the same event A, you should get an error and the edit operation should fail.

This means that if a model has been successfully entered into the xUML metamodel database, it
is linguistically correct. The model may have runtime problems or may be incomplete, but at least it
doesn’t break any of the modeling language rules. So, with respect to a set of application xUML models, a
metamodel would serve the same role as a programming language grammar, and the metamodel schema
populator would play the same role as a parser.

Because the metamodel should also capture instance and instance value information, you should be
able to enter not just your model, but your model’s population as well. In the case of the ATC model, you
could enter a population (or in fact, multiple populations) for the same domain model.

You can also use the metamodel to design a DSL for storing a model and its population in text files.
Each metamodel element might correspond to a DSL statement, for example.

So the model serves as a formal definition of the modeling language, as a reference for the design of any
model repository or model file format. It also means that any downstream translation or model-processing
tools should be built to process any structures that can be inserted in a metamodel database.

Now for the bad news. There is no complete xUML metamodel currently in existence (as far as we
know). On the bright side, there are many partial metamodels, and we anticipate that a complete one should
be available in the near future. The lack of a complete, accepted xUML metamodel hasn’t stopped us from
having translation tools. But it would certainly be nice to sort this out.

In the past, a number of tool-specific metamodels have been built. One open source xUML tool,
BridgePoint, for example, is built around an xUML metamodel. Unfortunately, it has been modified away
from the xUML as described in Executable UML to support a variety of tool-specific features. It goes under the
name xtUML. Another tool-based metamodel called iUML also varies considerably from the xUML definition.

Our effort is titled miUML. The intention of this metamodel is to be open source and as tool
independent as possible, with a focus on both Executable UML and the Shlaer-Mellor methodology from
which it originates. It also strives to be based on firm foundations of relational theory with an orthogonal
type system for attributes. It has been implemented partially with a relational database schema and editing
functions in Postgres. Additionally, the models are thoroughly documented for your reading pleasure. You
can download it from www.executableuml.org. As of this writing, this model is incomplete with respect to
polymorphism and data types. But it has strong constraints for identifiers and referential attributes.

The OMG’s UML standard publishes a UML metamodel. It’s not much use in the context of xUML for
the following reasons. xUML uses a subset of the UML notation. xUML is built on relational foundations and
has special rules for the use of identifiers and referential attributes. xUML has built-in executable semantics
that the greater UML lacks. UML does define a framework called Foundational UML (fUML) for defining
executable UMLs. At this point, no attempt has been made to develop an fUML definition of xUML. It could
probably be done, but it is not clear that it would be worth the effort.

In addition to having an agreed-upon metamodel, it is also important to have agreed-upon
implementation representations of the metamodel. To be tool independent and support a more modular
approach, there needs to be specific and easily accessible implementation infrastructure for populating
and querying the metamodel. One such approach, as we have mentioned, is to use a relational database
management system. These are typically queried using SQL and so allow for the ad hoc queries that are
necessary to make effective use of the metamodel structure. Unfortunately, SQL exists as many vendor-
specific dialects, and we are faced with having to support several representations, depending on the
underlying database system. Other interchange representations may also be used, such as XML or JSON. The
important point is that the representation must completely cover all aspects of the metamodel and provide a
convenient starting point where an implementation of modeling tools can access the metamodel population.

http://www.executableuml.org/

Chapter 11 ■ the translation landsCape

226

The xUML Language
While we are on the topic of challenges, we need to discuss a few revolving around the modeling language itself.

There are several reasons for our choice of xUML. The primary reasons are that it was designed to
support the translation of models on the widest variety of platforms: everything from cloud distributed to
tightly embedded. This means that models built in xUML can be widely reused. The data and execution rules
of the language are based on relational data theory, finite state automata, and data-flow execution rather
than object-oriented foundations. There is no presumption that the target programming language be object-
oriented, though there is certainly nothing prohibiting or hampering such an implementation. The language
is designed to be as lean as possible. Rather than having lots of complex rules and model elements, there are
only a small number of building blocks that can be assembled strategically to tackle considerable real-world
complexity. This again is largely a consequence of its mathematical foundations. The benefit of this property
is twofold. From an analysis perspective, language simplicity means the modeling artifact fades into the
background, putting the emphasis on the subject matter being modeled. It is much more difficult to spot a
subtle flaw in application logic if the modeling notation itself is intruding with its own complexity. From an
execution and translation perspective, it is easier to run the models and generate code, because there are
so few elements and rules to implement. Furthermore, it is easier to devise model execution platforms that
guarantee the model execution rules work on diverse and challenging platforms.

But if you are coming from an object-oriented programming perspective, as most of the greater UML is
practiced, you will find some aspects of xUML to be a bit alien. There are no hidden identifiers and object
links, for example. The data is simply organized in a way to enforce the connectivity of the instances.

And instead of relying on a separate language to express constraints, such as the Object Management
Group’s (OMG) Object Constraint Language (OCL), constraints are built directly into the class and
relationship data. By declaring an identifier of a Die on a semiconductor Wafer to be Grid Location {I} +
Wafer {I, R}, we have effectively declared that you cannot have two Die at the same grid location on the same
Wafer. Identifiers and referential attributes can be combined in various ways to form a set of declarative
model constraints without requiring extra “check the constraint” code to be generated. These built-in
mechanisms cover most constraint circumstances with the exceptions handled by light annotation. In fact,
we see OCL as an artifact of the lack of inherent constraints in object-oriented programming languages,
filling that gap by constructing syntax trappings on predicate logic. Sadly, so many examples of the uses of
OCL are based on poor models and only highlight the need for better modeling to capture the problem logic
rather than explicit constraints.

Unfortunately, there is no official, widely accepted standard defining xUML. The best we have is an
informal standard consisting of various white papers describing the Shlaer-Mellor method, the predecessor
to xUML, and the Executable UML book. This serves as a fine guide for the analyst/modeler, but leaves a bit
open for interpretation when it comes to building model execution platforms and translation tools. This of
course, is where the previously mentioned metamodel fills the gap.

Fortunately, the modeling language is simple enough that there is general agreement, within the Shlaer-
Mellor, xUML community on most of its class and state modeling features. There is however, some variance
with regard to how activities are modeled.

Action Language
The manner in which algorithmic computations are specified is one of the more challenging areas in
the translation workflow. The syntax and semantics of an action language involve many trade-offs.
Because writing action language appears, superficially, to be like writing program code and because, as
programmers, we have definite opinions about how best to write program code, action language syntax is
subject to the extremes of a programmer’s personal taste.

Chapter 11 ■ the translation landsCape

227

But we do not consider writing action language to be coding in the usual sense. Coding is directed at
making a computing machine operate in a specific manner to achieve a desired result. By contrast, action
language is directed at specifying the algorithmic processing of a domain model void of implementation
technology considerations. A large fraction of what model activities do is directly related to model-level
concepts, such as signaling events, navigating relationships, and updating attributes. So we do not consider
it to be a more abstract version of program code but rather a detailed specification of operations supplied by
the formalism of the model execution rules. Clearly, action languages must be transformable into program
code. But we consider that transformation to be a discontinuous operation directed by mapping functions
and not a process of gradually elaborating the action language statements to some lower form of abstraction.

In other words, the notion of starting out with fuzzy actions written in natural language and then
inserting more and more code-like fragments to tighten it down as a means to get closer to implementation
is the antithesis of our approach. As sure as plaque will rot your teeth, elaboration erodes away the platform
independence of a domain model until it is neither a good model nor a good implementation. Instead,
we aim to map model-level operations to whatever constructs and idioms are appropriate to the target
programming language, be it object-oriented, functional, scripting, or otherwise.

Several action languages consistent with xUML have been defined, but because of the many ways that
algorithms may be stated, we see little convergence in the syntax. For example, BridgePoint (xtUML) Object
Action Language (OAL) and iUML’s Action Specification Language (ASL) have semantics that match closely to our
approach and have working implementations. Other action languages have been proposed, such as Shlaer-Mellor
Action Language (Small) and Starr’s Concise Relational Action Language (Scrall). See www.executableuml.org for
links to xUML-compatible action languages, but have not seen any production-ready translators.

On the wider front, Alf (Action Language for Foundational UML) has been established as a general-
purpose UML standard. We don’t find Alf appropriate to our approach because it covers conventional UML
semantics and carries the burden of object-oriented programming language constructs upon which UML was
based. We see, for example, the Alf constructs for namespaces, public/private declarations, collection data
types, inheritance, and so forth as implementation concepts. In our platform-independent context, these
constructs offer more confusion than clarity for specifying the model-level processing of application logic.

Desirable Characteristics of an Action Language
To be truly platform independent, a model should not specify a particular sequence of computation unless
that sequence must be enforced on every potential target platform. Here is an example of an arbitrary
computation sequence:

y = scale(x)
z = filter(i1, i2, ... in)
result = y + z

Depending on the implementation, actions 1 and 2 could be reversed or executed concurrently.
Action 3, on the other hand, must wait for both actions 1 and 2 to be complete. If the action sequence as
written is intended to indicate a required sequence of computation, the model is unnecessarily limiting
implementation choices. This breaks the principle that the model must specify only what is required on all
potential platforms. By breaking that principle, the model loses a bit of credibility. “What else in the model
might I ignore?” the implementor now begins to think!

Consider Figure 11-3.

http://www.executableuml.org/

Chapter 11 ■ the translation landsCape

228

Each action is represented as a circle, and we interpret each action to be runnable when all of its inputs
are available. Action 3 must therefore wait until both actions 1 and 2 have produced output. This data-flow
view of computation eliminates the statement of arbitrary sequencing. This is why the data flow is our
fundamental view of algorithmic processing in xUML.

Unfortunately, text representations are faster and easier to edit than graphical representations of data
flows. In Chapter 2, we showed a data-flow diagram of the Logging In activity from the Air Traffic Control
model. The difficulties of dealing with data-flow graphics and specification of the data-flow processes have
meant that all translation schemes of which we are aware use a text-based language to specify activities.

The use of a text-based action language does not preclude having data flow semantics in the language.
Early attempts at action language, such as Small, used a UNIX pipe style of syntax to indicate data flows. The
simple actions in Small would appear as follows:

x | scale > ~y
Input(all).i | filter > ~z
(~y, ~z) | sum

The text can then be processed in such a way as to yield a data-flow representation as input to the code-
generation process.

And, in fact, the original step-by-step text formulation with steps 1–3 is even okay if it is understood that
a data-flow analysis will determine the implementation sequencing. The important thing is that adequate
information is present to construct an intermediate data-flow representation before proceeding with translation.

Unfortunately, constructing a MX domain that actually takes advantage of this fine-grained concurrency
is nontrivial. Code that can deal with concurrency and map it onto the available processors to achieve parallel
execution without mucking everything up is difficult problem. As programming language support for this type
of fine-grained parallelism becomes available (consider Go), we hope better use of the inherent concurrency
of the model execution can be achieved as actual parallel execution.

Object-oriented and other common programming idioms impose more implementation biases in
action language syntax. Most action languages are patterned after programming languages and never
fully escape their roots. Because statically typed, usually object-oriented, languages are the most common
translation targets, most action languages have telltale signs of these programming languages baked into
their design. For example, the use of an object’s address in memory as an implementation-generated
identifier is common. An instance reference serves as a thinly disguised pointer, which, sadly, encourages
modelers to think in those terms.

There is an unnecessary distinction between sets of instance references and a single instance reference,
as if sets somehow cannot contain a single member. We suspect the differences are more related to the ease
at which most programming languages can hold a single pointer value in a simple variable of a language-
supplied type compared to a collection of pointers that requires a more costly implementation construct.
The translation knows, by the nature of the instance selection, when the outcome can be more than one
instance. The translation mechanism should then be responsible for choosing the optimal mechanism

Figure 11-3. No arbitrary sequencing in data-flow representation

http://dx.doi.org/10.1007/978-1-4842-2217-1_2
http://www.go-lang.org/

Chapter 11 ■ the translation landsCape

229

to hold the result and not press that decision back onto the modeler. On some occasions, the result of an
instance selection must be limited to being less than the full selected set—for example, selecting an arbitrary
instance from a set of otherwise identical instances or limiting the selection to a given number based on
sorting criteria. But those operations limit the cardinality of the selected set, the result of which is still a set.
The limiting operation does not dictate a particular way to store the result.

The remnants of imperative programming language constructs are evidenced in the fact that action
languages require excessive explicit iteration over class instances. In xUML, the instances of a class form a
set and so set at a time operations would be a desirable replacement for explicit iteration. For example, to
give a percentage price discount on items in a store, we would prefer to say something like

Item().Price *= percentDiscount // (). selects all instances

rather than what is more common:

items := select all instances of Item
foreach i in items {
 i.Price := i.Price * percentDiscount
}

or worse yet:

items := select all instances of Item
for count ranging 1..items.count() { // assuming indices start at 1
 item[count].Price = item[count].Price * percentDiscount
}

Model-level actions can be applied to sets. Consider signaling a torpedo recall for a certain model of
torpedo. Again, we would like to say something like

// Send a recall event to each Torpedo having a given design specification
Recall -> Torpedo(Spec:specToRecall)

compared to this:

torpsToRecall := select many from Torpedo where (Spec == specToRecall)
foreach torp in torpsToRecall {
 signal Recall to torp
}

Allowing an instance to be created without setting a value for each of its attributes is another example of
implementation seeping into an action language. Allowing attributes not to have a value assigned at creation
time follows from the assumption that an instance is a block of memory allocated out of a pool or heap. It
is an untrustworthy arrangement because different execution paths through the activities could potentially
leave one or more attributes uninitialized and containing whatever random bit pattern might already be
stored in the instance memory. An action language should not make assumptions about instance data being
stored in memory. An MX domain may choose any method of data management that meets the needs of the
targeted class of applications, such as a relational database management system (RDMS), a key/value pair
database, a flat file, or even an EEPROM.

The only way to keep an action language executable, yet free of any implementation assumptions or
biases, is to build it on mathematical foundations. Relational algebra is a branch of mathematics, extended
from set theory, functions, and predicate logic that can serve as a basis for action language operations.

https://en.wikipedia.org/wiki/Relational_algebra

Chapter 11 ■ the translation landsCape

230

We do not suggest that actions should be written as pure relational algebraic or predicate logic expressions.
Rather, action language operations on class instances should be derivable from relational algebra and provide
operations that clearly express model-level execution concepts. From that basis, the translation mechanism
can then transform the operations into the programming constructs that integrate with the data management
services provided by the MX domain. A lean and orthogonal basis for action language operations makes the
transformations to a wide variety of other data management techniques easier to accomplish.

Application models need a way to express and process real-world data such as pressure, temperature, video
images, geophysical coordinates, stock prices, and so forth. But most action languages do not acknowledge
value types of anything other than basic, supported system types or a type matching that of a class structure. This
eliminates values that might be composed of the join of two classes. For example, if we wished to have a report of
the launch type of our torpedoes, most action languages force us into awkward constructs such as

torps := select all instances of Torpedo
foreach thisTorp in torps {
 itsSpec := select Torpedo Spec related to torp across R5
 UI.REPORT(torpedo : thisTorp.Torpedo ID, type: itsSpec.Launch Type)
}

where we must compute the join by navigating associations, rather than this:

UI.REPORT(Torpedo().(ID, /R5/Torpedo Spec.Launch Type))
// Join is implied

or this:

UI.REPORT(Torpedo join R5 Torpedo Spec.(ID, Launch Type))

In fact, relational theory permits a value to have a type of arbitrary complexity. For any given data structure,
the modeler must decide whether exposing that structure contributes to the domain analysis or distracts from it.

Consider, for example, a domain that tracks geographical boundaries. Certainly, there will be a need
for some kind of two-dimensional Point type. You will need to store Points as attributes of classes. A Point is
a representation of a two-dimensional vector. The algebra of 2D vectors is well understood, and the domain
activities will need the ability to add points, multiply points by a scalar value, and determine the distance
between two points. An action language should support having a Point data type along with the algebraic
operations on it. The algebra of the user-defined type should be fully integrated into the action language syntax.

Encapsulation of any internal components of a user data type is critical. Even if we need to obtain the
value of the components of a Point, we should not know how the components are internally represented. We
may choose to hold the 2D point in Cartesian coordinates. However, if there is significant circular symmetry
in the application, using polar coordinates would be a better choice for the implementation of Point
operations. The two representations are equivalent, and each can be converted to the other.

We need to be able to define, presumably outside the action language itself, how user types would be
implemented. We do not want to be forced to define Point type attributes as two scalar numeric attributes
and have to expose to the model the details of the operations on the two attributes. This would lend nothing
to the analysis of a domain dealing with geographic boundaries as its subject matter. Neither do we think
data-type operations should be defined as external entity operations. Sprinkling external entity invocations
into the domain activities solely to accomplish abstract data-type operations compounds the lack of user-
defined data type support with action language clutter.

Furthermore, we probably don’t want to implement the algebraic operations on the Point type at all.
We would rather call an existing library that is better coded and tested than what we would write in action
language. The lack of good support for user-defined data types becomes more intractable when considering
larger algebraic structures such as matrix algebra, which would be required of a domain dealing with three-
dimensional graphics.

Chapter 11 ■ the translation landsCape

231

Translation Considerations
Referring back to the translation workflow, we work our way downward from the metamodel and produce
code. The reference translation workflow shows the generation of model code as a two-step process. First,
the populated metamodel is transformed into a population of the platform model. Second, the populated
platform model is transformed into the model code. The generation of model code from a populated
metamodel could be accomplished in a single step, and many translation schemes operate in that manner.
We prefer a two-step transformation for its added flexibility. Exposing a distinct platform model also allows a
close examination of how well the model fits the platform needs of an application:

•	 The platform model is most dependent on the class of applications and the demands
those applications place on computing technology to run them. We would like to
see the development of platform models that account for different mechanisms
to manage domain data, execution concurrency, and other key aspects of how
model execution rules are realized by implementation technology appropriate to a
particular class of applications.

•	 The code generation is most dependent on the chosen implementation language
and the interface details of the MX domain runtime functions.

Our conjecture is that the separation of model code generation into two steps would facilitate a modular
approach as well as allowing easier support for both differing implementation mechanisms of the model
execution rules and a larger variety of implementation languages. We have no direct evidence to support
that conjecture. However, for conventional computer language compilers, automatic generation of a code
generator from a machine description is an established technique. By analogy to language compilers, we
think such ideas may be applicable to automatically generating the transformation from a platform-model
population to implementation language code based on a description of the platform-model characteristics.
We think separating the transformation of the metamodel population into a platform-model population as
a separate phase from generating model code from the platform-model population would contribute the
flexibility to try such an approach. This is clearly a subject for additional research.

Adding steps to the overall workflow unfortunately increases the difficulty of tracing between models and
executing code. When something goes wrong in the execution of a modeled and translated program, it can
be arduous to work back up through the layers of transformation. In general, the transformation from code
to models is not reversible without additional information. Conventional language compilers accomplish
the feat by recording debugging information about how the generated code is related to the source files and
symbols of the program. Such backward traceability is desirable, but difficult to achieve both in terms of
recording the information during the translation processing and in having a program to interpret it.

Even well-established techniques sometimes don’t work. For example, C supports adding #line
directives to source code to indicate that the code originated from a file other than the one being compiled.
Pycca supports adding these directives so that error messages and source debugging can reference the
ultimate pycca source file (call it sio.pycca), rather than the generated C file. But sometimes source-level
debuggers, particularly those used for microcontrollers, do not admit to the fact that C source code might be
contained in a file that does not end in a .c suffix.

Execution tracing embedded into the generated code can help in some of these situations. It is
particularly useful to trace state machine dispatch information. Tracing other aspects, such as method
invocations, is sometimes available. Unfortunately, emitting trace information at runtime is intrusive on the
execution speed of the program as well as its size. If the tracing is removed for deployment, as often it must
be, then we are still faced with how to handle tracing execution faults that occur after deployment. Although
this problem might be solved for a specific tool chain, we do not see a more general solution.

Chapter 11 ■ the translation landsCape

232

The Pycca Workflow
The reference workflow just described represents the ideal situation. By contrast, the pycca translation
workflow, shown in Figure 11-4, is less ideal, but it is a working solution that yields real code for a certain
class of platform and applications. The software is open source, and you can download and use it today.
Realistically, we expect you’ll spend a bit of time reading through the online documentation, configuring
your environment, studying the online examples, and experimenting a bit. So maybe you’ll use it tomorrow.
But everything you need is, in fact, available now.

A pycca translation starts with one or more completed domain models with fully specified domain
bridges. This includes, at a minimum, all three facets of the model:

•	 A class model of the domain data including full descriptions of the classes, attributes,
relationships, and data types.

•	 An initial instance population.

•	 The state models of all active classes expressed as both diagrams and tables.

•	 The action language for all the domain activities, including the state activities, any
class methods, or domain operations. You may use pseudo-code, but it must cover
all model-level actions and fully specify all algorithmic computations.

•	 If the domain has any external entities defined for it, bridge markings and mappings
must also be supplied.

Figure 11-4. Translation workflow using pycca

Chapter 11 ■ the translation landsCape

233

For the reference workflow, we assume that the transformations are carried out programmatically.
The transforming programs would extract the necessary information from a metamodel population. As an
example, consider the decisions that must be made regarding how association navigation is implemented.
The multiplicity of the association is determined directly from its definition. By parsing the action language
of the activities and walking the abstract syntax tree (AST), we can examine the operations performed on
an association. This will tell us if, during runtime, any instances of the association are created or destroyed.
Similarly, analyzing the AST of the domain activities can determine whether an association is navigated in
both directions. This information can be recorded and used to make programmatic decisions as to how the
class data is organized to support navigating the association.

Human Roles in Translation
For the pycca workflow, human intervention is required. The model artifacts may exist in any format or
media because it will all be processed manually. For example, the state tables and instance population could
be entered into a spreadsheet. The class models may be drawn in any tool you like.

The human translator must perform three tasks:

•	 Analyze the model to decide how model-level constructs are mapped onto the
implementation constructs provided by pycca. The decisions involved in mapping
model-level constructs were discussed in Chapter 3. Pycca provides a set of choices for
how model-level constructs can be implemented. For example, association linkage is
configured based on the multiplicity, dynamic aspects of the association, and whether
the association is navigated in a particular direction. References to support relationship
navigation need to be included only for those paths navigated by the action language.
Frequently, both directions are not needed. Some attributes will be elided. For example,
attributes used strictly for identification purposes and not otherwise referenced in the
action language need not be included in the implementation class because the model
execution domain for pycca uses a platform-specific identifier (the address of the
class instance in memory). All of this information can be found by reading the action
language and annotating the model graphic for each attribute that is read or updated
and noting the direction that each relationship is navigated.

•	 Transcribe the model structure into the pycca DSL. In Chapter 4, we showed the
translation of the Air Traffic Control model. Each of the three facets of the model
have a correspondence in the pycca DSL. State models have the most direct
representation in pycca and correspond closely to the information contained in
the state transition matrix. Pycca class definitions will vary from those on the class
model by virtue of the translation decisions made in the first step. Here you do get to
think in terms of what C structure implements the model-level intent of a modeled
class. Of the three facets, the state activities require the most transformation effort. It
is necessary to formulate the semantics of the action language into C code by using
the provided pycca macros to perform model-level actions. The transformation of
action language to C usually falls into two categories: model-level operations and
flow control or computation. If you are transforming a model-level action such
as signal event, or select instance x related to instance y, use a provided macro.
Expression evaluation and flow of control are directly represented in the C code.

•	 Write the bridge code. In Chapter 8, we demonstrated how bridging is accomplished.
After the domain mapping is done, data structures and code must be written to
implement the intent of the domain mapping. In simple cases, this can be done with an
array to map identifiers from one domain to another, and a small piece of code to pass
control into the target domain. Pycca provides a portal into domains that can be used to
execute simple model-level actions from outside of a domain. Frequently, the domains
involved in the bridge will provide domain operations to assist in the bridging.

http://dx.doi.org/10.1007/978-1-4842-2217-1_3
http://dx.doi.org/10.1007/978-1-4842-2217-1_4
http://dx.doi.org/10.1007/978-1-4842-2217-1_8

Chapter 11 ■ the translation landsCape

234

Note that the marking task from the reference workflow is missing. It is, in fact, folded into the pycca
script-writing task. There is no distinct marking going on. While writing the script, the human translator
makes implementation choices based on the action language.

Our experience shows that translations benefit greatly when done by someone other than the person
doing the domain analysis. We find this true even in more automated translation schemes. This allows
project teams to specialize between those people more interested and skilled in application analysis and
those more interested and skilled in implementation technology. As previously stated, great proficiency in
both skills is rarely found in the same person.

Even if the same person serves multiple roles, making a sharp distinction between roles sets the
boundaries for the thought processes involved with each. The discipline of “thinking inside the box” is, in
this case, a highly valued skill. The process of translating a domain model is an ideal way to become familiar
with the logic of the domain in a way that merely reading the analysis materials does not accomplish. Project
teams that practice pair programming will find pairing a domain analyst with a domain translator yields a
higher-quality output and a deeper understanding of model and implementation for both team members.

Running pycca on the resulting source performs the two transformations shown in the workflow,
populating a platform model and generating code from the populated platform model. We discussed the
pycca platform model in the preceding chapter and gave a brief overview of the processing performed by
pycca. Processing by pycca yields C code files, which can then be integrated with bridge code and the ST/MX
domain code to produce a running program.

Pycca vs. the Big Tool Approach
The pycca approach is oriented to the implementation side of the complete development workflow.
The most important reason for that orientation is to be able to obtain the required characteristics of the
implementation. As beneficial as we consider modeling and translating to be, modeled and translated
programs that do not achieve the expected implementation characteristics do not see the light of day as real
products. Project teams that cannot see a clear path to an implementation that meets all their nonfunctional
requirements are not inclined to undertake a model/translate development approach.

A vast array of implementation technologies is available in the wider computing world. From operating
systems to database management systems to programming languages to web frameworks, programmers
have written many useful implementation components. As programmers, we delight in finding common and
reusable processing that can be implemented as a single body of code and still satisfy a larger scope of need. We
want to be in a position to make better use of available implementation components when translating models if
we are to achieve the required implementation characteristics and obtain the true benefits of modeling.

It is unrealistic to expect tool vendors to supply translation mechanisms that can use this variety of
implementation technology, especially when the technology choices for a project must be very specific
to meet broader corporate or team needs. Commercial concerns alone dictate that tool vendors attempt
to make their products appeal to the broadest possible set of customers. The drive is to the lowest
common denominator, as that yields the largest potential market. Tooling usually trails the leading edge of
implementation concepts and technology substantially due to the rapid pace of platform technology growth
and the limited market each technology presents.

Project teams have many of their own constraints to address. Target programming language support
is one example. It is common for tool vendors to support C, C++ (and to say C/C++ in one breath as if
they were the same language) and perhaps Java or Ada. A dizzying number of programming languages
are available, and more are always being developed. There may be compelling reasons for a project to use
a particular implementation language. Those reasons can be based on legacy system integration, target
platform restrictions, or knowledge and convenience of the development staff. For example, Python is a
popular language and has been used for implementing some rather large systems, but we are not aware of
any tool vendors targeting it.

Chapter 11 ■ the translation landsCape

235

Another example is the use of a database management system. There can be compelling reasons to use
them, because a central data store can be a powerful integration point for other programs of a larger system
or for ad hoc queries that may be needed to satisfy future requirements. But we are not aware of substantial
tool vendor support in this area either.

We believe that the separation between modeling and translation, which we have described as the
separation between logic and implementation technology, is a fundamental concept that should allow us
to choose the implementation technology most appropriate to our immediate engineering needs and still
obtain all the benefits that modeling gives.

The primary focus of our approach is to create platform models and MX domains specifically tailored
to the needs of the implementation requirements of the class of applications that a project team intends to
produce. The approach attempts to solve the overall workflow by starting at the implementation side and
working backward to integrate the analysis and modeling tools. We gain the benefit of all the structure provided
by the model execution rules, and we are sure that the executable models have a translation. However,
integration to front-end analysis capture tools is lacking. The trade-off is to place a human in that role.

It is conceivable that integration with front-end tools could be achieved when using a translation scheme
such as pycca. Many tool vendors supply configurable code generators that could potentially be modified to
produce pycca source rather than programming language source.

A Role for Humans in Code Generation
We don’t consider using a human in a particular role of the software development process to be an unusual
circumstance. After all, project teams embark on developing large systems of many tens, if not hundreds, of
thousands of lines of code with little more than a text editor and compiler and a few auxiliary tools, perhaps
in an integrated development environment tool. We are mystified in the divergent attitudes: it is acceptable
to undertake large software projects using conventional ad hoc design techniques with little if any tooling,
but somehow the use of models and translation necessitates extensive and complex software tools. We
suspect that project teams do not generally have a clear understanding of precisely how the translation is
achieved and so have little choice but to assume that the gaps are filled in by software tooling.

We have demonstrated in this book that large, complex tools are not required to achieve the benefits
of a model/translate development approach. We are not antagonistic toward tool vendors. They supply
a vital role and service. The target platforms supplied by tool vendors are entirely appropriate for many
projects. However, many organizations can ill afford the capital costs of complex tools, nor the learning costs
associated with tools, nor the administrative costs required to keep complex tools operational. We are also
disappointed by the monolithic nature of the available tools and would prefer a more modular solution.
We are disconcerted by modeling tools that segment the application class by performance characteristics.
For example, some modeling tools purport to be useful for producing “real-time” models. But it’s not the
models themselves that are real-time. It’s not clear how such tools add much support for nonfunctional
requirements such as fixed time limits in which a system must respond or deterministic response timing.
It is also disheartening that current usage of the term real-time has devolved in many contexts to mean
“fast enough so that a human is not annoyed.” The problems of real-time response must be solved by the
implementation strategies of the MX domain, and we see no model-level impact.

Summary
The reference workflow describes the essential tasks and work products necessary, in some form or other,
to build and translate xUML models. Any particular approach to translation, including pycca, can be
contextualized with respect to this workflow.

The reference workflow describes the steps of building and storing xUML models, populating them,
marking them, integrating the modeled and non-modeled domains, translating the models to a platform-
specific model, generating code compatible with a model execution runtime component as well as passing
through hand code, and then compiling and linking everything into a complete system.

Chapter 11 ■ the translation landsCape

236

The challenges and tool support relevant to each of these tasks was discussed.
The xUML modeling language can be formally described with a metamodel. This is a model of the

language defined itself in xUML. The metamodel also serves as a design for a database schema to store
xUML models. At present, most existing metamodels tend to be tool-specific representations. Open source
efforts are underway to define a tool-independent metamodel of xUML. (Though, as the pycca approach
demonstrates, you can get by without one).

The pycca workflow was presented in the context of the reference workflow. Notable differences are
the use of simple draw tools and spreadsheets to capture the models instead of a monolithic tool. Design
specifics, including marking, is performed in the process of creating a pycca script. This script is then used to
populate a distinct platform model prior to code generation. Although human intervention is required to a
greater degree than with a monolithic tool, there are more opportunities to customize the code. Nonetheless,
the source models are always carried forward and never altered in the process of translation, as is the case in
the reference workflow.

237© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1

APPENDIX A

xUML Summary

Here is a quick reference to the key features of the Executable UML we use in this book. At the time of
this writing, the most complete description is available in the book. Executable UML: A Foundation for
Model-Driven Architecture by Stephen J. Mellor and Marc J. Balcer (AddisonWesley Professional, 2002).
Resources can also be found in the sites mentioned on the Contact Us page in the back of this book.

xUML
xUML is a subset of UML notation with
platform-independent execution semantics.

 xUML supports object/data-oriented analysis
without assuming any sort of object-oriented
implementation.

All model elements are executable in a
platform-independent context.

 This means that you don’t need anything
extra (for example, code inserted somewhere) to
run a model.

If you have a tool that executes the model
rules, you can test a model on the computer.
Otherwise, you must apply the rules by hand.
Either way, the rules of execution are the same.
They are never subject to interpretation!

Appendix A ■ xUML SUMMAry

238

Domain
A domain is a subject matter representing the
rules and vocabulary of a real or abstract world.

Appendix A ■ xUML SUMMAry

239

Bridge
A bridge is a relationship between two domains:
one domain requires a capability that it cannot
perform itself from another domain.

The domain that requires the capability plays the
role of a client. The domain that provides the
needed capability plays the role of a service.

Appendix A ■ xUML SUMMAry

240

Domain Chart
The set of domains and their connecting bridges
necessary to build an entire software system is
shown on a domain chart.

 A domain may be modeled in xUML, partially modeled in xUML,
modeled in another language, hand coded, created in existing
legacy software, or acquired from a third party.

Remember, any domain can be split across many
processor/thread/task boundaries, or multiple domains
can be put in the same implementation unit.

 A domain chart is platform independent, so
platform- and other technology-specific
boundaries are not shown on the domain chart

Appendix A ■ xUML SUMMAry

241

Class
A class is a definition of a set of instances such that
all members of the set:

Have the same characteristics

Have the same behavior

Are subject to the same rules and policies

Appendix A ■ xUML SUMMAry

242

Attribute
An attribute is a characteristic of something that has
been abstracted as a class. It follows from the class
definition that each instance must have a meaningful
value for each of its attributes at all times.

At all times: The meaning and use is explained in an
associated attribute description.

The values that may be assigned to an attribute are
constrained by a data type.

Appendix A ■ xUML SUMMAry

243

Data Type
A data type is a constraint on the real-world values that
may be assigned to an attribute and the operations that
may be applied to those values.

Examples:

Pressure, mpa
Count

Count can be defined as an integer [0..maxint]

Even though it is based on integer, the only supported
operations are increment, decrement, and reset.

Aircraft tail number

This is not defined as string, because many strings would be illegal. A regular
expression could be defined to describe legal tail number names.

Also, most string operations would not be allowed on such a value.

Point

A 2D point type could be defined with operations that produce either a
Cartesian or polar point, thus encapsulating the internal representation.

r, theta = Track.Origin.Polar
x, y = Track.Origin.Cartesian

Definition of types (type theory) is orthogonal to
relational theory used for defining class and association
structures and behavior.

Appendix A ■ xUML SUMMAry

244

Identifier
An identifier is a constraint on a set of one or more attributes on the
same class such that no two instances of a class share the same value.

Real-world identifier Invented identifier

An identifier can be a real-world identifier such
as Tail Number. Real-world agencies establish
this constraint.

Or it can be an arbitrary value invented for the
purpose of uniqueness. In this case, the modeler
establishes the constraint.

Formalizes a real-world constraint. It is useful in conjunction with referential attributes to
formalize relationships and other constraints.

Symbol

Identifiers are numbered starting at 1 for each class. Each attribute component of an identifier
is tagged with {I} or {In}, where {I} means ID 1 and {In} indicates the participating ID number.
An identifier attribute may participate in one or more of its class’s identifiers.

The greater UML community encourages the implicit assumption of an architecture-supplied
handle to manage links among instances. In xUML, we rely on at least one explicit identifier on
each class. This ensures that we have a consistent system of relationship references, and it gives
us a powerful tool for expressing restrictive constraints on relationships.

Appendix A ■ xUML SUMMAry

245

Association
An association is a relationship that holds systematically among instances.

Appendix A ■ xUML SUMMAry

246

Association Class
An association class formalizes an association between two other classes.

Always use an association class for many-to-many
and any conditional-to-conditional or many-to-0..1
association to ensure that a referential attribute
always has a non-null value.

Appendix A ■ xUML SUMMAry

247

Generalization/Specialization
A set of instances may share properties and rules and at the same time
have exceptions. To handle this situation, the set definition established
by a class is partitioned into mutually exclusive subsets.

At all times:

 An ATC cannot exist without being On or Off Duty.

 An On or Off Duty Controller is certainly an ATC.

 Each real-world object has simultaneous membership in the
superclass and subclass sets. Consequently, one object = two
connected instances in a generalization.

 Generalization, in this case, is employed to establish an exclusive OR
constraint.

Appendix A ■ xUML SUMMAry

248

Other Activity Types
In xUML, activities are primarily state activities.
But they are also written in class methods, external
entity operations, and domain operations.

Class Method

 There are several reasons to put an activity in a class
method rather than in a state. For example, an activity might
be triggered from multiple states. Or a class may not have
a state model, but still be subject to state-less processing.

 The model merely states that when a derived attribute is accessed, it provides a correct
value according to a platform-independent formula. When and how frequently the value
is updated, on the other hand, is platform specific and, hence, not in the model.

Appendix A ■ xUML SUMMAry

249

Domain Operation

A domain operation provides a runtime, model-level API to external domains.
The activities should do nothing more than validate incoming data, locate relevant
model elements, and then issue an appropriate event or invoke a class method.

Limitations: Cannot refer to self attributes because there are none.

Domain operation in Lubrication domain invoked via bridge from UI domain

Appendix A ■ xUML SUMMAry

250

State Model (Instance Lifeycle)
By definition, all instances of a class share the same behavior. This behavior follows a common life cycle that
can be formalized with a state model. (There are many other uses of state models in software, but in xUML,
we use them exclusively to capture instance life cycles).

State Machine Behavior

An instance remains in a state of its state machine for events to occur.

When one or more events occur, one of them will be consumed according
to the event synchronization rules.

A consumed event results in one of three responses:

Follow a transition (as shown on the state model diagram)

The instance follows the transition and immediately begins executing
the activity in the destination state (which may be the same state).

Ignore the event

The event is consumed and exists no longer.

Can’t happen

The event is not anticipated and constitutes an unrecoverable error in the
model. The model execution domain is responsible for handling the error
outside the model.

Appendix A ■ xUML SUMMAry

251

Platform Independent Synchronization Rules
Events

At some time after an event is generated, it is made available to the destination instance or
external entity.

Events are never lost: every event will be delivered to an instance or external entity to which it
is directed.

After an event is consumed by an instance, it no longer exists.

Multiple events can be pending for a given instance.

(For example, events may arrive for an instance while it is executing an activity. Or, multiple
events may simply arrive concurrently.)

If events are pending for an instance that were generated by different senders, it is
indeterminate which event will be consumed first.

An event to self is always consumed by the instance that sent it before that instance consumes
any other event.

If an instance generates multiple events to a target instance, the events will be received in the
order generated.

Activities
An activity takes time, possibly none, to execute. (The actual duration depends on the
platform.)

Once initiated, an instance’s state activity must complete before another signal can be
accepted by the same instance.

An activity always runs to completion in xUML. So, if you need the ability to interrupt behavior
at the model level, break it down into multiple activities spread across one or more state
models.

Only one state activity of a given instance can be in execution at any time, because an instance
is in only one state at a time.

Multiple actions in an activity can execute concurrently. Activities in different instances can be
executing concurrently.

When an activity completes, it must leave the system consistent.

Appendix A ■ xUML SUMMAry

252

State Model (Assigner)
An assigner is a special state model that manages a competitive association. It follows all of the
synchronization rules, but has no instances. Instead, a token moves through the states.

We need them when competition among instances makes it impossible for instances on either
side of the association to avoid linking to the same instance.

Single Assigner

Multiple Assigner
Now let’s expand the scope to consider multiple departments in a store. In this case,
there is localized competition among customers and employees within each department.
This requires a multiple assigner.

The important concepts are 1) a single point of control is necessary to resolve competition in
an asynchronous world and 2) the xUML synchronization rules make it possible to specify a
platform-independent solution. The solution is not left as an “implementation detail.”

Appendix A ■ xUML SUMMAry

253

Polymorphic Events
A polymorphic event is declared on a superclass that does not define a response to the event
and need not have a state model at all.

The event is delegated through each specialization branch originating from that superclass.

Each encountered subclass in each specialization hierarchy must either further delegate the
event or respond to that event in its own state model.

In a single, or repeated specialization (same direction), exactly one state machine must
respond to any runtime instance of the event.

If there are multiple specializations (different directions), the event is received by one state
machine instance in each.

Appendix A ■ xUML SUMMAry

254

External Entity
An external entity serves as a proxy for runtime communication with external domains. It can
be named to match the domain or it can represent a large-scale or abstract entity handled by
the domain. (Care should be taken to avoid naming a specific model or code element in the
other domain subject to change.)

An external entity operation is triggered by a synchronous or asynchronous call from inside a
domain. The activity typically invokes a domain operation provided by another domain.

255© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1

APPENDIX B

Scrall Overview

Scrall (Starr’s concise relational action language) is the psuedo-action language that we use in this book
to specify model actions. You can find the most complete and current description of the language at
www.executableuml.com. For now, we present those aspects of the language used in this book to provide
more context than the running explanations in the text.

Principles
As with the class and state model facets of xUML, the action language must be executable and platform
independent. Scrall is designed to be consistent with xUML execution semantics. At the same time, it strives
to be easy to read and write.

Names
Scrall is designed to be readable without being needlessly verbose, delegating the hard work to the parser
and advanced editing tools. The names of model elements, variables, and values may contain spaces,
though care must be taken not to incorporate keywords delimited by spaces into names. To maximize the
comfortable use of whitespace, effort is made to define as few keywords as possible. A variable name such
as the shift spec is, therefore, perfectly legal. This approach differs from the design of a language that
attempts to be readable by introducing wordy keyword phrases.

Variable Types
There are three kinds of variables: instance set, scalar, and relation. Only the first two are used in this book,
so we only lightly describe the relation variable in this appendix.

Instance Set Variable
An instance set variable is typed as a class in the local domain and refers to zero, one, or many instances of
that class.

http://www.executableuml.com/

APPENDIX B ■ ScrAll OvErvIEw

256

Relation Variable
A relation is a set of attribute/data type pairs crossed with a set of tuples, each of which supplies a value for
every attribute. There may be zero, one, or many tuples assigned, and zero, one, or many attribute, data type
pairs. A relation variable holds a relation that can be visualized as a table (even though a relation really isn’t
a table). A tuple is a simple case of a relation, so there is no need for an additional tuple variable type. Here is
an example of an assignment to such a variable:

acdata #= /R8/Aircraft.(ID, Altitude, Airspeed)

Here the acdata relation variable holds a relation with the attribute:data type pairs ID: Tail Number,
Altitude:MSL Altitude, and Airspeed:K, and a tuple supplying a set of corresponding values for each instance
of Aircraft. Again, it is easy to visualize this as a table with attributes in the heading and each row representing
an instance of Aircraft. The #= assignment operator implicitly types acdata as a relation variable.

Scalar Variable
The term scalar in our context means “not a relation.” A scalar variable holds a single value belonging
to a set defined by a data type. The definition of data types is orthogonal to the relational organization
of instance data in classes. Examples of system-supplied scalar data types are integer, real, rational, and
string. By convention, system types are lowercase names. An example user type might be GPS Coordinate.
By convention, user types are all initials uppercase—for example, Compass Heading.

Data Types
A data type defines a set of scalar values and the operations that can be performed on members of that
set. System-supplied data types are typically boolean, integer, real, and string. User types such as GPS
Coordinate, Pressure, or License Number can be constructed based on restrictions, extensions, and
structural combinations of these types.

Operations can be performed by using infix, prefix, and suffix operators and with names accessed using
. notation. For example, the Count data type may be defined as an integer in the range [0..maxint] with the
supported operations being incr, decr, and reset.

++cars passed or cars passed.incr might both invoke the increment operation defined for the Count
type. cars passed.reset could set the value to zero.

current latitude = position.latitude invokes the latitude accessor on the GPS position type.

System Variables
System-supplied variables are prefaced with an underscore. _now, for example, provides the current time to
models in any xUML domain. So that the models can be run on as many MX domains as possible, there are
few system variables.

Time logged in = _now.HMS

Here the _now system variable invokes the system-defined HMS operator, which returns time in hours,
minutes, and seconds. The assignment implicitly types the scalar variable on the left side.

APPENDIX B ■ ScrAll OvErvIEw

257

No Literals
Literal values may not be specified in actions. The idea is to eliminate the encoding of data into action
language rather than where it usually belongs, as instance data in the class models. Mechanisms are
provided for allowing access to special values such as pi, zero, and so forth. In all cases, though, these are
named values defined outside the action language itself. For example, default initial values can be specified
with the standard UML notation on the class diagram. Double underscores reference a named value defined
somewhere outside the state models __pi, __0. Note that with a variable typed as Count described earlier,
you can set it to zero by invoking the reset operation.

Boolean Values
The set and unset operations are used instead of explicit assignment to literal true and false values.

Examples:

Injecting.set ⇒ set to true

Injecting.unset ⇒ set to false

if not Injecting ... ⇒ to test state

Enumerated Values
Although literal values are forbidden, you can define enumerated data type values. A Fluid State data type
might enumerate the values low, very low, empty, and normal. To refer to an enumerated value, put a . in
front of it.

Level = .very low

If the left side is an attribute, it is already typed, presumably as Fluid State in this example. With a
scalar variable, it may be necessary to explicitly type it with the :: type declaration operator.

level var::Fluid State = .full

Spaces are allowed in enumerated values.

Attribute References
An instance refers to its own attribute values without qualification. So an ATC instance can refer to its Last
shift ended attribute without the need for any kind of self-qualification. Input parameters are distinguished
with the in. preface to avoid name collisions. And a variable name may not match any attribute name of the
local class.

Assignment Operators
Variables are implicitly typed when first introduced on the left side of an assignment operator. It is also
possible to explicitly type them by using the :: operator, though this is rarely necessary.

APPENDIX B ■ ScrAll OvErvIEw

258

Operator Meaning

.= Assigns zero or one instance. If multiple instances are found, an error results. Normally used
in conjunction with a set of identifier values to select an instance.

..= Assigns zero, one, or multiple instances to an instance set variable.

.=. Assigns an arbitrary single instance from a set of instances, or no instance if none is found.

= Assigns a scalar value.

#= Assigns a relation.

Instance Selection
To select an instance, specify a class name followed by optional selection criteria in parentheses.

Selection with No Criteria
No critiera is required to select a singleton instance of a class.

the shift spec .= Shift Specification

The preceding statement selects one instance of the Shift Specification class. Because no criteria
is supplied, and because there is only one instance in a singleton class, that instance is selected. If none is
found, an error occurs.

Or you can select all instances of a class:

all aircraft ..=Aircraft

Because no criteria is specified, the all aircraft instance set variable will contain references to all
instances of Aircraft. If there are presently no instances of Aircraft, zero instances will be referenced by
the variable.

Selection with Criteria
The usual comparison operators (>, >=, and so forth) are supported. The : symbol stands in for == because
in the most common case, you want to match a value, such as selecting the instance with a matching ID.
Conceptually, you are looking for a match, so a single symbol is used. Read it as matches.

For example:

my station .= Duty Station(Number: in.Station)

This selects a single instance of Duty Station whose Duty Station.Number matches an input
parameter value.

Boolean operators such as and, not, and or may be mixed in. For convenience, the , separator is
interpreted as an and operator. The combination of the : and . operators make it easy to select a single
instance based on a set of matching values without the clutter of a series of and and == symbols.

landing runway .= Runway(Airport: in.airport code, Runway ID: in.runway)

APPENDIX B ■ ScrAll OvErvIEw

259

This selects an instance of Runway that matches two values. Presumably, the two values taken together
are supposed to be unique for the Runway class. If more than one instance is found, an error results.

high fast aircraft ..= Aircraft(Altitude > high alt and Airspeed > high speed)

This selects all aircraft above a certain altitude and faster than a certain speed.

Relationship Navigation
The / symbol delimits hops across class model relationships. The leftmost / indicates the beginning of a
relationship path expression beginning at the local instance.

hoff zone .= /R2/Control Zone(Name: in.Zone)

The path expression on the right-hand side starts at the local instance and hops across R2 to all related
instances in the Control Zone class. The selection criteria narrows the set to the single instances whose
Name attribute matches the in.Zone value. Assuming that the Name attribute is the identifier of Control Zone,
either zero or one instances should be assigned to the left side.

Relationship names (R1, R2, and so forth), verb phrases, and class names may appear between the hop
delimiters to define an unambiguous selection path.

Signaling
To send a signal, use the following expression:

<event name>(params) [after <duration>] -> instance set

For example:

Low injection pressure -> /R3/Reservoir

Here an event is sent to the linked instance. If multiple instances are in the target instance set, a
separate event will be delivered to each.

An instance can send an event to itself by using the me keyword. This keyword represents the local
state machine.

Injection canceled -> me

An assigner state model does not refer to any local instance, but because the me keyword refers to the
local state machine, it can be used there also for self-directed events.

A delay can be specified as shown:

Good injection -> me after /R4/Injector Design.Good injection duration

Here the Good injection event is sent after the duration specified in the related Injector Design. The
relationship along R4 is presumably to one unconditional. An error occurs if the path expression does not
select exactly one instance.

APPENDIX B ■ ScrAll OvErvIEw

260

Link/Unlink
The association operators are link &, unlink !&, and swap.

The form is as follows:

[<instance set>] & <association>/<instance set>

Each instance in the optional leftmost instance set is linked to each instance referenced by the set on
the right across the path. If the instance set on the left is not specified, it is assumed to be the local instance.

& /R3/my station

This links the local instance to each instance referenced by the variable across R3.
If the association is formalized by an association class, an instance of the association class will be

created for each link. The required referential attributes will be set to values referring to each participating
class instance as appropriate. Any other attributes will be set to their default initial values.

Another way to link is to set the values of a set of each referential attribute on the association to match
the values of corresponding identifier attributes on the other side of an association. In general, it is safer to
use the link action.

The unlink operator is !& and uses the same form as the link action:

!& /R5/takeoff runway

This unlinks the local instance from all instances referred to by the takeoff runway variable across R5.
Another way to unlink is to simply delete the instance holding the referential attributes referring to the

other side of an association.
With an unconditional one association, it is important not to leave the association unconnected. To

avoid this situation, use the swap operator instead of a pair of link and unlink actions:

swap /<association>/<old instance> with <new instance> [on <association>]
 !new missing: <action block>
 !old missing: <action block>

swap /R2/hoff zone with new controller [handed off]
 !new missing: UI.Unknown controller(Controller: in.Controller)
 !old missing: UI.Zone not handled by(Controller: ID)
!handed off {
 // further actions assuming handoff succeeded
}

The error conditions underneath the swap operation are explained next.

Error Handling
Some actions may trigger unrecoverable errors. Each such error sets a named guard. The names are
predefined for the action. If the error is, in fact, recoverable, the modeler can specify an internal response
and set an optional user-defined guard, with the [] guard set brackets to regulate downstream processing.

APPENDIX B ■ ScrAll OvErvIEw

261

In the swap action example, two guards, new missing and old missing, are predefined for the action.
A user-defined guard is set to the right of the swap action, which will be disabled if any error occurs. A single
action is specified for each of the two possible errors, making them both recoverable. If neither error occurs,
the handed off guard is not disabled, and an action block may be specified associated with that guard.

my station .= Duty Station(Number: in.Station) [station OK]
 !empty: UI.No such station(Number: in.Station)
!station OK {
 // actions that assume a station has been selected
}

Here the .= assignment action has two errors predefined: empty and many. If both are ignored, they are
unrecoverable. By inserting the !empty clause, the modeler indicates that the empty case is okay and there
is a response. Note that in the earlier singleton selection example, the error should be unrecoverable. The
station OK guard is disabled if empty occurs and can be used to enable further processing.

If there are several actions to perform, they can be enclosed in brackets to form an action block.
Otherwise, a : follows the error name.

Subclass Migration
The migrate operation deletes the local instance in one subclass, creates it in another, and relates the new
subclass instance to its parent superclass:

migrate [<instance set>] to <subclass name>

All instances in the set are migrated to the destination subclass. If the instance set is omitted, the local
instance only is migrated:

migrate to On Duty Controller

If the local instance is an Off Duty Controller, it will be migrated to the On Duty Controller
subclass.

This is a convenience action that replaces the corresponding create and delete actions that would be
otherwise necessary and ensures that a correct migration occurs without breaking the integrity of the model
by, say, leaving an illegal orphaned subclass instance behind.

Interaction with External Domains
Other than special access provided to system-supplied underscore variables, there are two ways to interact
with other domains at runtime.

Asynchronous: Signal to External Entity
Here a signal is sent to an external entity, which is then responsible for mediating that signal out to another
domain in some form. Unlike a regular event, an asynchronous signal is not directed to any particular
instance in the external domain. It is simply addressed to the external entity.

Start monitoring => SIO
<signal name><parameter list> => <ext entity name>

APPENDIX B ■ ScrAll OvErvIEw

262

This is used when you want to signal an activity in an external domain with the expectation of an
asynchronous response at an undetermined point in the future.

Here the warning signal is sent to the UI external entity acting as a proxy, presumably for the UI domain.

Synchronous: Invoke Operation on External Entity
Here there is an immediate and complete interaction with an external domain. A value may or may not be
returned, but there is no further activity triggered externally.

UI.Warning(MSG Control Zones Active, ID)
<EENAME>.<operation name><parameter list>

Self Reference
When sending a signal to self, the me keyword refers to the current state machine instance. In an instance
life-cycle state activity, this corresponds to the local instance’s state machine. In an assigner state activity,
there is no class instance, so me refers to the assigner state machine instance.

Events to Assigner State Machines
An assigner state machine is attached to a competitive association—that is, an association with constrained
multiplicity (a 1 on one or both sides), where instances on both sides are concurrently attempting to link to
one another.

In such a case, the association is bound to one or more state machines that resolve the competition.
This is called a single assigner association. If all instances on one side can link to all instances on the other
side, a single assigner suffices. But if an instance on one side of the association may link to only a subset of
instances on the other side, a separate assigner state machine is required for each subset. This is called a
multiple assigner association.

The format for sending an event to an assigner state machine depends on whether the target
competitive association is a single or multiple assigner.

For a single assigner, do this:

<event name> -> <path to association>/assigner
Customer waiting -> /R2/assigner

For a multiple assigner:

<event name> -> <assigner association>(<partitioning instance>)
Group ready -> /R6/assigner(/R5/Signal Converter)

The partitioning instance is the one that breaks, via some association, one class participating in the
competitive association into subsets.

In both cases, the event is addressed to a single assigner state machine and not to any instance life-cycle
state machine.

APPENDIX B ■ ScrAll OvErvIEw

263

Class Method
A class method is invoked by using dot notation on an instance set variable. If the set contains multiple
instances, each instance’s local method is invoked.

allAircraft ..= Aircraft // All aircraft selected
allAircraft.verifyPosition() // is applied concurrently to each instance
Aircraft.verifyPosition() // does the same thing without the instance set variable

Parameters input to an activity are available, as in.<parameter name>.
When specifying a parameter list for a class method invocation or any other action that takes a

parameter list, the format is as follows:

(<parameter name>: value, ...)

There are some shortcuts to reduce verbosity. If the parameter name and the name of the variable
supplying the value are the same, the parameter name can be omitted.

More Commands
Only the subset of Scrall necessary to follow the examples in this book has been covered in this appendix.
A more complete (and evolving) specification is available online at www.executableuml.org.

http://www.executableuml.org

265© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1

APPENDIX C

Pycca Language Overview

This appendix summarizes the pycca domain-specific language and the most important C preprocessor
macros used for translating state activities. Complete documentation can be found at the book’s website,
www.modelstocode.com.

Invocation
pycca ?OPTIONS? FILE ?FILE FILE ...?

The pycca program translates a specification of a domain into C code that is suitable for use with the ST/MX
Model Execution domain. The language that pycca translates is a simple configuration language that
allows the specification of domains, classes, state machines, and other model elements. Any associated
processing is specified in ordinary C code.

Pycca generates two files from its input. One file is the generated C code, named by appending a .c
suffix to the basename of the first input file. The other file is a generated header file that has an .h suffix.
More than one input file may be given in the invocation. Subsequent files are processed as if all the files had
been concatenated together. Typically, second and subsequent files hold domain population information
so that a domain may be populated differently without modifying the file containing the translation of
structural aspects.

Options

-help or -?
Print the help message.

-version
Print the version number and license for pycca, and then exit.

-noline
Do not output #line directives in the generated file that reference the pycca source file. Normally, the
generated C code contains line directives too, so that compiler error messages reference the pycca source
rather than the generated code. However, some debuggers are confused by these directives.

www.modelstocode.com

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

266

-output filename
Output the results to filename. This option allows finer control of the output file names. By default, pycca
derives the output file names from the source name by substituting any suffix in first FILE argument with .c
and .h. If filename is a directory, the output file names will be constructed as usual, except with filename as
the leading part of the path. Otherwise, filename is used as the base for constructing the output file names by
substituting .c and .h for any suffix that filename may have.

-instrument pattern
Insert instrumentation code for all classes that match pattern. To instrument everything, specify pattern as
an asterisk (*). Pattern is a list of simple wildcard-type string-matching expressions. Any functions for a class
whose name matches any of the given patterns will have instrumentation code inserted at the beginning
of the function that is intended to help trace code execution. Note that pattern is interpreted as a list of
whitespace-separated elements and that any wildcard specifications in the pattern will usually require
quoting to prevent interpretation by the invoking command shell.

-noC99
By default, pycca produces code intended for a C compiler that meets the C99 standard. Supplying this
option removes any C99 constructs in the generated code. This is for the benefit of old compilers. Note,
however, that pycca does not examine any of the passed-through code, and it may well contain constructs
that a particular “C” compiler does not accept.

-dataportal
Insert into the generated code file a set of data structures and encodings that allows certain model-level
operations to be invoked from outside the domain. This data is used with the portal code to support bridging
into the domain.

-portalcode
Create the files pycca_portal.h and pycca_portal.c in the current directory. Pycca exits successfully after
creating the files. These two files are the C code used in conjunction with the data structures generated with
the -dataportal option.

Lexical Conventions
Pycca uses a several lexical conventions to distinguish language constructs for C code constructs.

Comments
Start with a sharp character (#) and continue to the end of the line.

Whitespace
Is generally ignored, and no constructs depend on any particular arrangement of whitespace.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

267

C Variables
Any text appearing between matching parentheses, (…), is taken to be a list of comma-separated C variable
or parameter declarations. The C declarations of parameter lists and attribute declarations are parsed.
Because of the inherent ambiguity of typedef type aliases and the complexity of certain C declarations that
involve constant expressions, it is possible for pycca to incorrectly parse the declaration. These issues can
usually be solved with an appropriate typedef included in the implementation prolog section.

C Code
Any text appearing between matching braces, {…} is taken to be a C code sequence and is otherwise
uninterpreted. The determination of the matching enclosing brace accounts for the syntax of the C language.
Note that comments in C code must follow C language comment conventions, because any code is passed
through to the C compiler.

Name
A sequence of a letter followed by an arbitrary number of letters, decimal digits, or underscore characters
that is not also a keyword. This is the same convention used for C identifiers.

Number
A sequence of decimal digits.

Keywords
The tokens in Table A-1 are keywords and may not be used where an arbitrary name is required.

Table A-1. Pycca keywords

attribute class constant constructor

default destructor domain dynamic

end epilog event external

final implementation initial instance

interface machine operation polymorphic

population prolog reference set

slots state static subtype

Other Tokens
The strings in Table A-2 are also lexical tokens.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

268

Domain Definition
The pycca language allows the definition of domains. Domains consist of a set of components such as
classes and operations. In this section, we show the syntax for defining domains.

domain
Domain definitions start with the domain keyword followed by the name of the domain and stops at the
matching end keyword.

domain lube
 # Put your domain definition here
end

The remaining statements in this section may appear inside the domain definition. For brevity, we
assume that the statements are enclosed in the domain statement.

class
A class is a template for data and behavior. A class name must be a valid C identifier. A class definition
starts with the class keyword and stops at the matching end keyword. See the class definition section for
statements to define the properties of classes.

class Air_Traffic_Controller
 # statements defining the Air Traffic Controller class
end

domain operation
The procedural interface to a domain consists of a set of domain operations. Domain operations are
converted into ordinary C functions. They are made external in scope, and their prototype is inserted
into the generated header file. If a domain operation returns a value, the type is specified by following the
interface with a colon (:) and a variable type. If no return type is specified, the function is typed as void. To
help manage the global namespace, the name of the domain and an underscore are prepended to the C
function that is generated for a domain operation.

Table A-2. Other Pycca Tokens

->>

->>c

->>n

->>l

-ddd>>, where ddd is a sequence of decimal digits

->

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

269

domain operation
Injector_max_pressure(
 InstId_t injId)
{
 PYCCA_checkId(Injector, injId) ;
 ClassRefVar(Injector, inj) = PYCCA_refOfId(Injector, injId) ;
 if (IsInstInUse(inj)) {
 InstOp(Injector, Max_system_pressure)(inj) ;
 }
}

external operation
Complementary to domain operations are external operations. They are defined similarly to domain
operations. External operations define the external function dependencies of the domain.

external operation
SIO_Inject(InstId_t injectorId)
{
 // any code here is not passed through
}

The domain expects these functions to be supplied from elsewhere. The preceding example places
the following external declaration into the generated header file (assuming the operation is defined in the
lube domain).

extern int eop_lube_SIO_Inject(InstId_t injectorId) ;

interface prolog, implementation prolog, interface epilog,
implementation epilog
Additional code can be placed in the generated files either at the beginning (prolog) or at the end (epilog).
The interface prolog statement places code near the beginning of the generated header file, and
implementation prolog places code near the beginning of the generated code file. Replacing prolog with
epilog causes the code to be included at the end of the respective generated files. There may be multiple
prolog or epilog statements, and the contents are accumulated across all such statements to be placed in
the generated files at the appropriate place.

interface prolog {
 #include "pycca_portal.h"
 #include <stdint.h>
 // Any additional interface includes, etc.
 typedef uint32_t Count ;
}

implementation prolog {
 struct Point {
 int x ;
 int y ;
 } ;
 static int multPoint(int a, Point *p) ;
}

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

270

interface epilog {
 #define POINT_DEFINED 1
}

implementation epilog {
 static int multPoint(
 int a,
 Point *p)
 {
 // implementation of multPoint
 p->x *= a ;
 p->y *= a ;
 }
}
end

instance
The instance statement is used to define initial class instances. Instances are given names specified as
class@name. The values of all attributes that do not have a defined default value must be specified. For
attributes that have a defined default value, they are given that default value if not mentioned in the instance
definition. Otherwise, the default value is overridden with any value given in the instance definition.

instance
Injector_Design@ihn4
 (Model_Name Model) {"IHN4"}
 (MPa Min_delivery_pressure) {19}
 (MPa Max_system_pressure) {35}
 (MPa Max_dissipation_pressure) {32}
 (Seconds Delivery_window) {90}
 (Seconds Good_injection_duration) {9}
end

table
When there are a number of instances of a particular class, the instance statement can be tedious to use and
obscures the nature of the instances as a group. In this case, the table command allows many instances to
be defined in a tabular arrangement. Default values for attributes can be specified by using a hyphen (-).

table
Lubrication_Schedule
 (Name_t Name)
 (Duration Wait_interval)
 (Duration Monitor_interval)
 (Count Max_low_lube_cycles)
 (bool Default_continuous_operation)
 (Count Default_max_cycles)

@gearbox {"Gearbox"} {210} {45} {8} {true} {5000}
@generator {"Generator"} {120} {25} {10} {true} {10000}
@shaft {"Shaft"} {90} {30} {10} {true} {10000}
@test2 {"Test2"} {20} {15} {1} {false} {200}
end

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

271

Class Definition
In this section, we describe the pycca statements that are used to define the properties of classes. Class
definitions are contained within enclosing class and end statements. For brevity, from here on we omit the
surrounding class and end statements.

attribute
Attributes are declared in the same way as structure members in C, but without any punctuation. Following
the lexical conventions, the C declarations appear in parentheses. The default value of an instance can also be
specified. The default value is used only if no value is specified when an initial instance of the class is defined.
Default values are used only when specifying the set of initial instances. For dynamically created instances, all
attribute values are set by running code. The default value must evaluate to a valid C compile-time constant
expression (because it will be used as an initializer). Because default value specifications are passed through
to the compiler, they must be enclosed in braces ({}).

attribute (Model_Name Model)
attribute (MPa Min_delivery_pressure)
attribute (MPa Max_system_pressure)
attribute (MPa Max_dissipation_pressure)
attribute (Seconds Delivery_window) default {30}
attribute (Seconds Good_injection_duration)

reference
A reference is a special kind of attribute that is turned into a pointer to a specific class structure. The
reference is given a name, which generally will be the same name as the relationship it implements (perhaps
augmented with an annotation if the relationship is reflexive). The type of the attribute need not be specified
because it can be deduced as a pointer to a structure that matches the class name.

Singular References
A single valued reference is used to implement traversal of a relationship on the side that is one or one-
conditional. In the case of a singular reference, a simple pointer member holds the address of the referenced
instance, and NULL may be used to indicate conditionality.

reference R4 -> Injector_Design

Multiple References
A multiple reference implements a relationship traversal for a side that is many or many-conditional. Using
the ->> symbol will cause pycca to insert an array of pointers. The ->> notation comes in several alternate
forms that are used to control the details of how the array of pointers is allocated. If ->> or ->>n is used to
define the multiple reference, the class structure has a pointer member defined for it that will point to a NULL
terminated array of class references. For example, the class fragment:

reference R2 ->> c1

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

272

If ->>c is used to define the reference, the array of class references is counted, and the class structure
will have two members defined for it, a pointer to the array and a count value.

reference R3 ->>c c5

For dynamic relationships, two alternatives are provided. If the reference specification is of the form
-ddd>>, where the ddd stands for a set of decimal digits, then an array of class references is allocated in
nonconstant memory. When the count form is used, the class instances will have an array of pointers of the
specified size defined as part of their class structure.

reference R4 -20>> c7

If the reference specification is of the form ->>l, a doubly linked list is set up to manage the multiple
relationship. The memory for the links is easily managed, and referenced instances may be easily added and
removed from the list. A set of macros, defined later in this appendix, is provided to hide the details of the
linking, unlinking, and traversal mechanism.

reference R2 ->>l Control_Zone

subtype
The subtype statement is used to declare the necessary data structures to hold generalization relationship
information in class structures. Generalization relationships can be implemented as either a reference or
union generalization.

Reference Generalization
A class defines storage for a generalization relationship implemented by reference using the subtype ...
reference statement. This statement gives a list of classes that are to be considered as the subtype classes.

subtype R1 reference
 Off_Duty_Controller
 On_Duty_Controller
end

Union Generalizations
In simple cases, typically a generalization hierarchy that is only a single level deep, it is usually more
convenient to hold the subclasses of the superclass directly in the storage of the superclass instances as a
union data type.

subtype R1 union
 Off_Duty_Controller
 On_Duty_Controller
end

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

273

machine
The machine statement is used to define a state model for a class to capture its life-cycle behavior. The
statements used within the machine statement to define the state model are given in the State Model
Definition section.

machine
 # statements to define a state model for the enclosing class
end

population
The population statement defines the storage characteristics of the instance population of a class. Class
populations can be declared as dynamic, static, or constant. If no population clause is present,
population static is assumed. A class population is dynamic if instances are created and deleted at
runtime. Class populations that are not created and deleted at runtime are termed static. This implies that
the number of instances does not change over the course of running the domain. A special case of static is
a class population that is constant. A constant population is both static and read-only (its attributes are not
updated).

population dynamic

slots
The slots statement defines the number of class instance storage slots that are allocated beyond those
occupied by initial instances. Additional slots only be defined only for class populations that are dynamic.

population dynamic
slots 5

class operation
A class may define class-based operations by using the class operation statement. Class operations do
not arise from model elements, but are implementation constructs provided to factor common code into a
single function.

class operation
findByName(
 char const *name) : (struct Lubrication_Schedule *) {
 ThisClassRefVar(ls) ;
 PYCCA_selectOneStaticInstOfThisClassWhere(ls, strcmp(ls->Name, name) == 0)
 return ls == ThisClassEndStorage ? NULL : ls ;
}

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

274

instance operation
The instance operation statement is used to translate instance-based operations. Instance operations
have an implicit first parameter that is a pointer to the instance on which the operation is to be performed. It
is not necessary to declare the self variable, as pycca will insert it. However, because this is C, it is necessary
to supply a value for the implied self parameter when invoking an instance operation.

instance operation Max_system_pressure() {
 ExternalOp(ALARM_Set_pressure_error)(PYCCA_idOfSelf) ;
 ClassRefVar(Autocycle_Session, acs) = self->R2 ;
 InstOp(Autocycle_Session, Deactivate)(acs) ;
}

polymorphic event
The polymorphic event statement declares one or more events to be polymorphic. A polymorphic event
can be declared only for a superclass.

polymorphic event
 e1
 e2
end

constructor
The constructor statement defines a constructor function for a class. This function is invoked with only the
implicit self parameter whenever any instance of the class is created at runtime. If any class that contains
a constructor also has an initial instance population specified, pycca will generate a function of the form
<domain name>_Ctor, where <domain name> is replaced by the name of the domain. This function will
invoke the constructor for all initial instances of all classes that have defined a set of initial instances and also
have defined a constructor. It is up to the user to invoke this function during the application initialization
phase (for example, in a domain operation that is invoked at initialization time).

attribute (int count)
constructor {
 self->count = 0 ;
}

destructor
The destructor statement defines a destructor function for a class. This function is invoked with only the
implicit self parameter whenever any instance of the class is created at runtime.

attribute (int count)
destructor {
 reportCount(self->count) ;
}

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

275

State Model Definition
The statements in this section are used to define a state model for a class. State model definition statements
must appear in enclosing machine and end statements. For brevity, we omit the enclosing machine and end
statements.

state
The state statement defines a state in a state model. A state has a name and may have parameters that are
passed to it as part of the event that causes the transition into the state. These parameters, if any, are listed
in parentheses following the state name. A state has C code associated with it that is run when the state is
entered. A set of preprocessor macros are provided to facilitate interfacing with the ST/MX runtime. The
macros are discussed in the “Activity Macros” section.

state BUILDING_PRESSURE()
{
 if (self->Pressure > self->R4->Min_delivery_pressure) {
 PYCCA_generateToSelf(Above_inject_pressure) ;
 }
}

transition
The transition statement is used to specify the transition behavior of a state model. This statement lists
the current state, event, and new state. Note that there is no separate list of events that are specified. Event
names are defined when they appear in transition statements. The state name consisting of a period
character (.) is the pseudo-initial state and defines the event in the transition to be a creation event.

transition BUILDING_PRESSURE - Above_inject_pressure -> INJECTING_AT_PRESSURE

default transition
The default transition statement defines the behavior of any transition not explicitly mentioned in a
transition statement. The default transition can be IG and the event is ignored, or CH and the event causes
an error condition. If no default transition statement is given in the definition of the state model, CH is
assumed.

default transition IG # ignore unexpected events

initial state
The initial state statement defines a default initial state for the state machines. If no initial state
statement is given in a state model definition, the first state defined is taken to be the default initial state.

initial state SLEEPING

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

276

final state
The final state statement defines a state in which the instance of the class is automatically deleted by the
runtime after the activity of the state has been executed.

final state perish

Activity Macros
This section gives a summary of the most frequently used preprocessor macros. This list is not
comprehensive, and the full list can be found in the online materials. We divide the interface descriptions
into groups according to the model elements upon which they operate.

Instance References
Frequently, there is a need to declare C variables that will hold a reference to class instances or refer to sets
of class instances.

ClassRefVar(c, v)
Declare a variable suitable for holding a reference to a class instance.

c The name of the class to which the instance refers.

v The name of a C variable.

ClassConstRefVar(c, v)
Declare a variable suitable for holding a reference to a class instance whose instance population is constant.

c The name of the class to which the instance refers.

v The name of a C variable.

ClassRefSetVar(c, v)
Declare a variable suitable for referring to a set of class instances.

c The name of the class to which the instance set refers.

v The name of a C variable.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

277

ClassConstRefSetVar(c, v)
Declare a variable suitable for referring to a set of class instances whose instance population is constant.

c The name of the class to which the instance set refers

v The name of a C variable

Events
Signaling events is a common action for a state activity.

Events with No Parameters
For the common case where the event carries no additional parameters, several macros are provided to
handle the three event types.

PYCCA_generate(e, c, i, s)

Signal an event to an instance.

e The name of the event to signal.

c The name of the class of the instance receiving the event.

i A pointer to the instance that is to receive the event.

s A pointer to the instance signaling the event. This may be NULL
if the event originates from outside an instance context.

PYCCA_generateToSelf(e)

Signal an event to self.

e The name of the event to generate

PYCCA_generatePolymorphic(e, c, i, s)

Signal a polymorphic event.

e The name of the polymorphic event to signal.

c The name of the class of the instance receiving the event.

i A pointer to the instance that is to receive the event.

s A pointer to the instance signaling the event. This may be NULL
if the event originates from outside an instance context.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

278

PYCCA_generateCreation(e, c, s)

Signal a creation event.

e The name of the creation event to signal.

c The name of the class of the instance receiving the event.

s A pointer to the instance that is sending the event. This may be NULL
if the event originates from outside an instance context.

PYCCA_generateDelayed(e, c, i, s, d)

Signal a delayed event.

e The name of the event to signal.

c The name of the class of the instance receiving the event.

i A pointer to the instance that is to receive the event.

s A pointer to the instance signaling the event. This may be NULL if the
event originates from outside an instance context.

d The delay time, in milliseconds.

PYCCA_generateDelayedToSelf(e, d)

Signal a delayed event to self.

e The name of the event to generate.

d The delay time, in milliseconds.

Events with Parameters
Because events can carry supplemental data, to signal such an event is a three-step process:

Obtain an event control block (ECB). A different macro is used to obtain an ecb for each of the three
event types.

Fill in the event data.
Post the event to the appropriate event queue.
As an example, assume that dog is an instance of class Dog and that the Bark event takes a single

parameter, howLoud. Then the following will signal the Bark event to the dog instance of Dog.

MechEcb bark = PYCCA_newEvent(Bark, Dog, dog, self) ;
PYCCA_eventParam(bark, Dog, Bark, howLoud) = 20 ;
PYCCA_postEvent(bark) ;

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

279

PYCCA_newEvent(e, c, i, s)

Returns a MechEcb for an ordinary event.

e The name of the event to signal.

c The name of the class of the instance receiving the event.

i A pointer to the instance that is to receive the event.

s A pointer to the instance that is sending the event. This may be NULL
if the event originates from outside an instance context.

PYCCA_newEventToSelf(e)

Returns a MechEcb for an ordinary event where the target instance and the signaling instance are self.

e The name of the event to signal.

PYCCA_newPolymorphicEvent(e, c, i, s)

Returns a MechEcb for a polymorphic event.

e The name of the event to signal.

c The name of the class of the instance receiving the event.

i A pointer to the instance that is to receive the event.

s A pointer to the instance signaling the event. This may be NULL if the
event originates from outside an instance context.

PYCCA_newCreationEvent(e, c, s)

Returns a MechEcb for a creation event.

e The name of the event to signal.

c The name of the class from which an instance is to be created.

s A pointer to the instance that is sending the event. This may be NULL
if the event originates from outside an instance context.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

280

PYCCA_eventParam(ecb, c, e, p)

Retrieve the value of an event parameter.

ecb A pointer to an event control block.

c The name of the class of the instance receiving the event.

e The name of the event to generate.

p The name of the event parameter.

PYCCA_postEvent(ecb)

Place ecb on the non-self-directed event queue.

ecb A pointer to an event control block.

PYCCA_postSelfEvent(ecb)

Place ecb on the self-directed event queue. Note that creation events should not be posted to the self-
directed event queue.

ecb A pointer to an event control block.

PYCCA_postDelayedEvent(ecb, d)

Post a delayed signal.

ecb A pointer to an event control block.

d The delay time in milliseconds.

Delayed Signal Operations
Delayed signals support both canceling and obtaining the remaining delay time.

PYCCA_cancelDelayed(e, c, i, s)

Cancel a delayed signal.

e The name of the event to cancel.

c The name of the class of the instance receiving the event.

i A pointer to the instance that is to receive the event.

s A pointer to the instance signaling the event. This may be
NULL if the event originates from outside an instance context.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

281

PYCCA_cancelDelayedToSelf(e)

Cancel a delayed event that was sent to self.

e The name of the event to cancel.

PYCCA_remainDelayed(e, c, i, s)

Retrieve the time remaining on a delayed signal.

e The name of the event to query.

c The name of the class of the instance receiving the event.

i A pointer to the instance that is to receive the event.

s A pointer to the instance signaling the event. This may be NULL if the
event originates from outside an instance context.

PYCCA_remainDelayedToSelf(e)

Retrieve the time remaining on a self-directed delayed signal.

e The name of the event to query.

Instance Creation and Deletion
Class instances may be created and destroyed at runtime. These macros help with the interface to the
mechanisms to handle instance management.

PYCCA_newInstance(c)
Create an instance of a class in the default initial state.

c The name of the class of the instance to be created.

PYCCA_destroyInstance(i)
Destroy an instance of a class.

i A pointer to the instance to be deleted.

Instance Selection
Pycca provides macros to iterate across instances and select them based on a certain criteria.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

282

PYCCA_selectOneInstWhere(i, c, expr)
This macro expands to a linear search of class named c for the first instance where expr is true. The
expanded code searches the storage pool for c stopping at the first instance that is in use and that satisfies
expr. Expr is presumed to contain accesses to the attributes of c in the form of i->a. The value of the i
variable is modified and at the end of the loop will either point to the first instance of c where expr evaluates
to nonzero or will point past the end of the storage pool for the class (as given by the EndStorage(c) macro,
that is, if i >= EndStorage(c), then the search failed). Note that this macro tests whether the instance is
currently allocated and therefore is useful only for classes that are either dynamically allocated or have a
state machine.

i The name of a variable that is a pointer to c class instances.

c The name of the class of the instance corresponding to i.

expr A C expression that will be interpreted as a Boolean.

PYCCA_forAllInst(i, c)
This macro is a convenience macro that sets up a loop that iterates across all instances of a class. The macro
should be followed by a statement (possibly compound and enclosed in braces ({}). In the statement, i will
iteratively take on the value of every instance defined for the class c.

i The name of a variable that is a pointer to c class instances.

c The name of the class of the instance corresponding to i.

ClassRefVar(Autocycle_Session, acs) ;
PYCCA_forAllInst(acs, Autocycle_Session) {
 if (IsInstInUse(acs)) {
 PYCCA_generate(Created, Autocycle_Session, acs, NULL) ;
 }
}

PYCCA_forAllRelated(v, i, r)
This macro is a convenience macro that sets up a loop that iterates across the instances related to the class.
This macro assumes that the related instances were declared using the ->>c, syntax (the related instances
are of the counted type). The macro should be followed by a statement (possibly compound and enclosed
in braces ({}). In the macro, v should be declared as ClassRefSetVar or a ClassRefConstSetVar. Then v is
iterated over the set of related instances.

v The name of a reference set variable.

i The name of an instance reference variable.

r The name of the relationship across which the iteration occurs.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

283

ClassRefConstSetVar(Injector, myinjs) ;
 PYCCA_forAllRelated(myinjs, self, R5) {
 ClassRefVar(Injector, inj) = *myinjs ;
 ClassRefVar(Autocycle_Session, acs) = inj->R2 ;
 InstOp(Autocycle_Session, Deactivate)(acs) ;
 }
}

PYCCA_forAllRelatedTerm(v, i, r)
This macro is the same as PYCCA_forAllRelated() except that the relationship must have been declared by
using the ->>n syntax (the relationship storage consists of a NULL terminated array of instance pointers).

v The name of a reference set variable.

i The name of an instance reference variable.

r The name of the relationship across which the iteration occurs.

PYCCA_forAllLinkedInst(o, r, l)
Iterate over the instances of a one-to-many relationship implemented using linked lists. This macro is
similar to PYCC A_forAllRelated except that the relationship must have been declared by using the ->>l
syntax (the relationship storage is implemented with linked lists). This macro expands to a loop construct in
which all the instances related to o across r are visited. The link variable, l, is successively assigned values of
the links related on the many side to o. The value of the link variable, l, is not a pointer to an instance. The
instance pointer must be recovered by using the PYCCA_linkToInstRef() macros described here.

o A pointer to a one-side instance.

r The name of the relationship.

l The name of a variable of type rlink_t *.

rlink_t *czlink ;
PYCCA_forAllLinkedInst(ondc, R2, czlink) {
 ClassRefVar(Control_Zone, found) =
 PYCCA_linkToInstRef(czlink, Control_Zone, R2) ;
 if (strcmp(rcvd_evt->zone, found->Name) == 0) {
 hoff_zone = found ;
 break ;
 }
}

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

284

PYCCA_linkToInstRef(l, c, r)
This macro converts a link pointer of type rlink_t * that is a link in relationship r to a pointer to an instance
of class c.

l The name of a variable of type rlink_t *.

c The name of the class on the many side of the relationship to which l refers.

r The name of the relationship.

Instance Identifiers
When invoking external operations, it is useful to use have a means to identify an instance of a particular
class outside a domain. The pointer value of the instance is not suitable for this purpose, but the array index
of the instance in its storage pool is satisfactory. The macros in this group provide a means of generating a
small integer value for an instance that can be used as an identifier external to the domain or to translate an
instance identifier into a pointer reference to the instance.

PYCCA_idOfSelf
Generate an integer identifier for the self reference.

ExternalOp(ALARM_Clear_lube_level_very_low)(PYCCA_idOfSelf) ;

PYCCA_idOfRef(c, r)
Generate an integer identifier for a reference r of class c.

c The name of the class.

r The reference value for a member of class c.

PYCCA_refOfId(c, i)
Return an instance reference to an instance of class c that is identified by the integer identifier i.

c The name of the class.

i An integer identifier for an instance of the class.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

285

PYCCA_checkId(c, i)
Generate an invocation of the assert() macro to test that the identifier i is valid for class c. This is useful if a
domain operation accepts an integer identifier for an instance and wants to assert its validity.

c The name of the class.

i An integer identifier for an instance of the class.

PYCCA_checkId(Autocycle_Session, sessionId) ;
ClassRefVar(Autocycle_Session, session) =
 PYCCA_refOfId(Autocycle_Session, sessionId) ;
if (IsInstInUse(session)) {
 InstOp(Autocycle_Session, Suspend)(session) ;
}

Navigating Generalizations
When a generalization relationship is implemented as a union data type, the instances of the subtypes do
not use a pointer to navigate to the supertype. Rather, it is necessary only to up cast the self pointer to
obtain the pointer to the supertype.

PYCCA_unionSupertype(sub, supc, r)
Navigate to the supertype for instances contained in a union.

sub A pointer to the subtype instance. This is frequently self.

supc The name of the supertype class.

r The name of the relationship.

 ■ Warning up casting in this context is just as dangerous and error prone as up casting in any other context.
If sub is not a subtype of the class supc, this macro will silently yield an incorrect result because it involves an
explicit cast that the compiler cannot check.

Navigation to the subtype is achieved by taking the address of the subtype member within the generated
structure. This macro hides the naming conventions for the subtype member.

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

286

PYCCA_unionSubtype(sup, r, subc)
Navigate to the subtype instance contained in a union.

sup A pointer to the supertype instance. This is frequently self.

r The name of the relationship.

subc The name of the subtype class.

ClassRefVar(On_Duty_Controller, new_ondc) =
 PYCCA_unionSubtype(new_controller, R1, On_Duty_Controller) ;

PYCCA_referenceSubtype(sup, r, subc)
Navigate to the subtype instance by pointer reference.

sup A pointer to the supertype instance. This is frequently self.

r The name of the relationship.

subc The name of the subtype class.

PYCCA_isSubtypeRelated(sup, supc, r, subc)
Determine whether a supertype instance is currently related to an instance of the given subtype. Returns
true if sup is related to an instance of the subtype class subc across the relationship r.

sup A pointer to the supertype instance. This is frequently self.

supc The name of the supertype class.

r The name of the relationship.

subc The name of the subtype class.

PYCCA_migrateSubtype(i, supc, r, subc)
Change the subtype of a supertype instance. For a generalization relationship, the supertype maintains an
encoded value of the subtype to which it is currently related. This macro changes that encoded value.

i Instance pointer to a supertype.

supc Name of the supertype class.

r Name of the generalization relationship.

subc Name of the subtype class.

PYCCA_migrateSubtype(self, Air_Traffic_Controller, R1, Off_Duty_Controller) ;

APPENDIX C ■ PyCCA LANguAgE OvErvIEw

287

PYCCA_initUnionInstance(sup, r, subc)
Initialize a subtype instance that is contained in a union-based supertype to its default initial state. When
subtype migration happens in subtypes contained in a union, if the subtype has a state model, then it is
necessary to initialize the architectural structures to be those of the new subtype. This macro accomplishes
that. Note that this macro does not run any constructor of the subtype. For subtypes that have a constructor,
an explicit call is required.

sup A pointer to the supertype instance. This is frequently self.

r The name of the relationship.

subc The name of the subtype class.

PYCCA_relateSubtypeByRef(s, supc, r, t, subc)
Relate a supertype instance to a subtype instance when the relationship is being stored by reference.

s A pointer to the supertype instance. This is frequently self.

supc The name of the supertype class.

r The name of the relationship.

t A pointer to the target subclass instance.

subc The name of the subtype class.

289© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1

APPENDIX D

Bibliography

Books
•	 Stephen J. Mellor and Marc J. Balcer, Executable UML: A Foundation for

Model-Driven Architecture, Addison-Wesley (2002), ISBN 0-201-74804-5.

•	 Chris Raistrick et al., Model Driven Architecture with Executable UML,
Cambridge University Press (2004), ISBN 0-521-53771-1.

•	 Leon Starr, Executable UML: How to Build Class Models, Prentice Hall (2001),
ISBN 0-13-067479-6. Note: This edition is out of print, but a new, extended edition
covering all the model facets is in the works for 2018, publisher to be determined.

•	 Sally Shlaer and Stephen J. Mellor, Object-Oriented Systems Analysis: Modeling the
World in Data, Prentice Hall (1988), ISBN 0-13-629023-X.

•	 Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in States,
Prentice Hall (1991), ISBN 0-13-629940-7.

•	 Lex de Hann and Toon Koppelaars, Applied Mathematics for Database Professionals,
Apress (2011), ISBN 1-43024-248-1. 1430242841.

•	 Fredrick P. Brooks, The Mythical Man Month (Anniversary Edition with four new
chapters ed.), Addison-Wesley (1995).

•	 ACM Letters on Programming Languages and Systems 1, 3 (Sep. 1992), 213–226.

Papers
•	 E.F. Moore, “Gedanken-Experiments on Sequential Machines,” Automata Studies,

Princeton University Press, Princeton, N.J. (1956), pp. 129–153.

•	 George H. Mealy, “A Method for Synthesizing Sequential Circuits,” Bell System
Technical Journal (1955), pp. 1045–1079.

•	 Christopher W. Fraser, David R. Hanson and Todd A. Proebsting, Engineering a
Simple, Efficient Code Generator Generator, ACM Letters on Programming Languages
and Systems 1, 3 (Sep. 1992), 213-226.

•	 http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/
no-silver-bullet.pdf.

http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no-silver-bullet.pdf
http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no-silver-bullet.pdf

APPENDIX D ■ BIBlIogrAPhy

290

Articles
•	 Leon Starr, “How to Build Articulate UML Class Models and Get Real Benefits

from UML” (2008) Originally published at www.uml.org/news.htm. Also at
www.modelint.com/mbse and www.executableuml.org.

•	 Leon Starr, “Time and Synchronization in Executable UML” (2008) Paper and video
available at www.modelint.com/mbse and www.executableuml.org

http://www.modelint.com/how-to-build-articulate-uml-class-models
www.uml.org/news.htm
www.modelint.com/mbse
www.executableuml.org
http://www.modelint.com/time-and-synchronization-in-executable-uml
www.modelint.com/mbse
www.executableuml.org

291© Leon Starr, Andrew Mangogna and Stephen Mellor 2017
L. Starr et al., Models to Code, DOI 10.1007/978-1-4842-2217-1

��������� Symbols
#=, 256, 258
..=, 258
.=., 258
=, 258

��������� A
abort(), 75
abort() C function, 75
Action

model script, 29, 30, 39, 183
parallel execution, 228
on sets, 229
translation, 39, 48, 52–53

Action function
pointer to, 70, 71

Action language
Alf (Action Language for Foundational

UML), 27, 227
ASL (Action Specification Language), 227
to C, 233
vs. coding, 227
desirable characteristics, 227–230
implementation bias, 228
mapping to code, 220
OAL (Object Action Language), 227
predicate logic, 230
vs. programming language, 227
relational algebra, 229, 230
Scrall (Starr’s Concise Relational Action

Language), 255–263
sequence

small, 227, 228
sequence of computation, 227
set at a time, 229
Small (Shlaer-Mellor Action Language), 227
syntax and semantics, 226
text vs. diagram, 219, 220
text vs. graphics, 219

Action translation
commented out, 48
preprocessor macros, 40

Activity
class based operation

for implementation only, 107
class method, 93
concurrency, 26
data flow diagram, 26, 228
derived attribute definition, 248
domain operation, 248, 249, 254
entry/, 22
external entity operation, 248
state, 21, 26, 49, 52, 53, 55, 63, 64, 70–74, 76, 95,

104, 108, 118, 162, 172, 174, 188, 191, 221,
251, 262, 277

synchronization, 21
translation, 52–57

ADC (analog to digital converter)
block diagram, 114

Ad hoc queries
database management system, 107

Aggregation, 2
Agile

iteration, 214
Manifesto, 213

Aircraft classes
airplane, 161
Fixed Wing aircraft, 161
helicopter, 161
Rotary Wing aircraft, 161
VTOL aircraft, 163

Air Traffic Control. See ATC (Air Traffic Control)
ALS (Automated Lubrication System)

code size, 190–191
description, 78–79
initial population, 86

ALS classes
Autocycle Session, 85, 96–98, 101–103
injector, 82–84
Injector Design, 82–83

Index

■ INDEX

292

Lubrication Schedule, 85
machinery, 82
Reservoir, 82

ALS domains
Alarms, 80, 190
Lubrication

description, 81
translating, 80

SIO (Signal I/O), 80
user-interface, 80, 81

ALS state models
Autocycle Session, 89–92, 102
Injector, 86–89
Reservoir, 91

ALS state tables
Autocycle Session, 93, 96
Injector, 94, 95
Reservoir, 97

Analysis paralysis, 77
Analysis skill

vs. modeling, 218
Application logic, 3, 4, 7, 10, 192, 219, 226, 227
Aspect oriented programming (AOP), 221
Assigner

example, 252
implementation, 120–121
multiple, 252
state model

definition, 252
Assignment operator (.=), 256–258
Association

access direction, 33
conditionality, 17
decomposition, 33
definition, 245
implementation choices, 32, 33
implementation considerations, 32
link, 260
model script, 30
multiplicity, 17, 33, 200, 233, 262
phrase, 16
referential attribute, 16, 32
translation, 97–98
verb phrase vs. role, 16

Association class. See also Associative relationship
decomposition, 98, 99
definition, 246
translation, 97–98

Association translation
to many linked list, 45
unconditional data integrity, 56

Associative relationship
code, 100–101
decomposition, 99
navigating, 99–101

ATC (Air Traffic Control)
application, 13–15
class model, 15–17
execution scenario, 15
limitations, 77

ATC classes
Air Traffic Controller, 44, 53, 55, 61, 192, 193
Control Zone, 14
On Duty Controller, 18, 247
Duty Station, 14, 43, 44
Off Duty Controller, 18, 247
Shift Specification, 17

ATC domains
Radar Tracking, 77

ATC state models
Duty Station, 21

ATC translation
Air Traffic Controller state model, 51–52
Air Traffic Controller superclass, 34
conditional association using NULL, 42
On Duty Controller subclass, 44
Duty Station class, 51
Duty Station class to C structure, 43
Duty Station state model, 48–51
generalization to C union, 34
identifier, 39
Logging In activity, 53
Logging Out activity, 55
to one association to pointer, 43

Attribute
definition, 242
descriptive, 16, 32, 35, 47, 97
I and R tags, 242
identifying, 16, 32, 42, 120, 121, 136, 198,

208, 209
notation, 5
referential, 16, 24, 32, 97, 202, 206, 207, 209, 219,

225, 226, 244, 246, 260
uninitialized, 229

��������� B
Battery-operated environment, 69
Berkeley DB

Btree, 197, 203
cursor

for navigation, 171
database, 195–198
environment, 197
foreign key index, 206, 210
join

for navigation, 206
key, 188
mapping domain data, 195–207
model alternate identifiers, 200
model identifiers, 32

ALS classes (cont.)

■ INDEX

293

navigation, 171
secondary index, 199, 200, 202, 204–206, 210
using C struct, 193

Bridge
assertions in code, 190, 219
asynchronous signals, 138, 150, 261–262
bridge table, 134–137, 139–141, 144–151, 160
code, 106, 137, 146, 147, 156, 160, 190, 223,

233, 234
counterpart instance, 132
definition, 239
half tables, 134–137, 144, 145, 160, 223
ID parameters, 137, 139, 145
implementation, 146, 153
implicit vs. explicit, 221
instance bridge table, 137, 148
mapping optimization, 132–134
mapping tables, 136, 152, 223
pull strategy, 153
push strategy, 153
semantic gap, 131, 135, 137, 160
table search

array indexing, 148, 150, 151
Bridging, 1, 10, 78, 112, 113, 129, 132, 140, 146, 147,

191, 220, 221, 233, 266
bsearch(), 109, 193

for performance, 193

��������� C
C

familiarity, 1, 26
files, 38
passed through, 57, 266, 267, 269, 271
preprocessor macros, 30, 38, 40, 55, 57, 107, 265,

275, 276
in this book, 1

C++
elaboration, 2
high-level, 2
why not, 8

Can’t happen. See Transition
C99 designated initializer

for bridge initialization, 136
Class

abstraction, 185
definition, 185
diagram, 14, 15, 81, 114, 124, 165, 166, 170, 196,

200, 257
implementation, 186
model script, 29, 30, 38, 39, 183
notation, 257
translation, 32
unassociated, 24
without state model, 19–20

Class based operation
none in xUML, 107

Class collaboration diagram, 91, 110
Class method, 29, 30, 38, 39, 183
Class model

model script, 30
Class operation

implementation specific
code, 192–194

C main function, 63
Code

derivation, 230
Code generation

template driven, 185, 188
Code generator

task of designing, 3, 149, 210
Competitive association

first come first served, 121
Computations

long duration, 64
const, 41

for immutable values, 41
Constraints

relational vs. OCL, 226
Creation

asynchronous, 101
event

model script, 101
translation, 101

Cross platform development, 74

��������� D
Database, 5, 8, 16, 60, 104, 107, 188, 189, 195–202,

204, 206, 207, 209, 210, 219, 222–225, 229,
234, 236

Data flow
UNIX pipe syntax, 288

Data flow diagram. See Activity
Data type

definition, 243
2D Point, 230, 243
examples, 243
matrix algebra, 230
model script, 29, 30, 38, 39
model vs. implementation, 31
operations, 230
typedef, 198

Data type translation
typedef, 198

Debugging, 74, 190, 231
Delayed event

queue, 66–69
Deletion

asynchronous, 91, 101, 103–104

■ INDEX

294

Desktop computer vs. micro-controller
environment, 8, 9

Device access entity, 113
Device units, 113
Diagnostic

lubrication schedule, 78, 85, 216
Documentation

literate programming, 46, 220
useful, 219

Domain
application, 77
application level, 77, 81
benefits, 129
as black box, 130–132
client and service roles, 220, 239
configuration data, 221
delegation, 77, 109, 220
dependency, 106, 132, 220, 221
distinct subject matter, 59, 80, 81
element

identifier, 147–148
high level and low level, 2, 81
interaction, 81
layering view, 81
lubrication, 81

class model, 81
external entity, 133

Lubrication domain
marking, 147

populate mapping, 143
portal, 147, 156, 158
requirements source, 156
reuse, 147
satisfies requirement for service, 136
semantic gap, 160
separation of concerns, 111, 112, 127, 129
specifies need for service, 133
subject matter vs. functional

partitioning, 81
vocabulary, 238

Domain chart
for ALS, 78–82
dependency arrows, 80, 132
platform independence, 4, 215, 227
refactoring, 15, 28, 217, 218

Domain operation
C function, 52
defined, 93
naming convention, 38, 105, 109, 146,

156, 285
Write point, 132, 134–137, 149, 223

DSL (domain-specific language)
pycca, 8
Tcl or Python, 223

internal, 223

��������� E
Edge detection

falling, 123
rising, 123

EEPROM, 229
Elaboration

abrupt failure, 2
action language, 227
failure of, 2
gradual failure, 2
model destruction, 3

Encapsulation
domain level, 220

Engineering units, 113, 151
Error

fatal
custom handler, 75–76

handling, 75–76
types, 75

Event
calculate sequences, 74
cancel delayed, 67, 69, 88
consuming, 164, 170, 250, 251
data to dispatch diagram, 69, 71
delayed, 67–69
delayed event queue, 66–69
dispatch

data, 69, 72
delayed, 69
generated code, 70
locating action table, 69, 70
locating transition table, 70

in flight error, 67
ignored

Boolean attribute trick, 168
self-directed, 167
software lock, 167
transitory state, 167

local and non-local, 94, 95
numbering, 65, 67, 70
parameters

pass by value, 67
pointer to, 125

pending, 27
polymorphic (see (Polymorphic event))
response possibilities, 36, 37
self and non self-directed, 67, 68, 167,

191, 259
signaling, 66–67
too late or too early, 36
tracing dispatch, 73
types, 65, 175, 176, 178

enum, 174, 175
unexpected, 27, 35

■ INDEX

295

Event control block (ECB)
MechEcb, 65
polymorphic event, 174

Event, delayed, 27, 66–69, 88–90, 94, 96, 147, 191,
278, 281

Event map
generated code, 176
index into, 179
polymorphic event dispatch, 179, 181, 183

Event queue
free, 66
imminent, 66–70
main loop, 64

Event specification, 20, 139, 225
Example external entities

NOTIFY, 144, 145, 151, 154
SIO

functions, 148, 149
Executability, 4, 15
Execution cycles

limited, 60
External bus, 113
External entity

asynchronous signals, 138, 150, 261–262
definition, 131
functions

injection control, 148–150
pressure alert, 154–156
pressure attribute, 151–154
pressure monitor, 150–151

implicit ID, 139
operation, 131, 133–137, 146, 147, 149, 151, 154,

221, 223, 230
naming convention, 146

portal function, 147, 150, 153, 154, 156, 160
as proxy for service domain, 131, 146
synchronous operation, 137

External entity function
implementation of EE operation, 148–151

External entity operation
C function, 147, 149
inject, 136, 137
parameter, 133

mapping, 135, 137
return value, 133
synchronous and asynchronous, 146

External operation
defined, 106

��������� F
Facet

actions, 15
class model, 14, 15
pycca workflow, 232

state model, 14, 15
translation order, 30

Faults
modeled, 78

Final pseudo-state
instance deletion, 103

Final states
array, 71

fUML (Foundational UML)
and xUML, 225

Functional
decomposition, 81
partitioning, 81

��������� G
Gap

bridging, 1
Generalization

composed form
compound generalization, 164
multiple generalization, 163
repeated specialization, 162

disjoint/complete tags, 17, 161
disjoint set interpretation, 163
disjoint union, 17
example, 247
implementation alternatives, 34
migration

state model, 172
model script, 34
navigation

empty reference, 162
pycca, 171

pointer references
pycca, 170

polymorphism, 161–164, 166, 169–171,
174–176

reference, 34
reference implementation, 170
referential attribute, 247
relating super and subclass instances, 169, 170,

174, 183
spanning subclass, 163
state models in subclasses, 166
subclass determination

Launch type, 166
translation, 43, 44, 47, 54
type inheritance, 161
union, 34
union implementation, 44, 172
XOR (exclusive or) constraint, 247
xUML and UML, 161, 183

Go language
target for concurrency, 228

■ INDEX

296

��������� H
Half table

attribute to attribute, 136
generic model elements, 137
inject ID parameter, 137
inject instance, 136
inject operation, 135
instance to instance, 135
instance to instance mapping, 136
parameter to attribute, 137
parameter to parameter, 136, 137
population, 223
pressure monitor, 138–139
pressure update, 140–141
runtime and static population, 136

Hardware access library, 190, 191
Hardware controls, 113
Hardware engineering

modeling analogy, 3
workflow, 3

Hash table
for performance, 194

HierarchyDispatch, 175, 179–181
typdef, 175

Hierarchy dispatch block (HDB), 175
Hop operator (/), 24
Human intervention

pycca workflow, 233

��������� I
Identifier

definition, 244
discarded, 29
implementation-defined, 29, 32, 35
invented vs. UML implicit, 244
notation, 244
real world meaning, 32
real world vs. invented, 244

Identifying attribute
referenced, 209

Identity constraint, 16
Ignore event. See Transition
Impedance mismatch elimination

TclRAL, 189
Implementation detail, 2, 185, 252
Implementation technology

choosing, 210
in., 24, 257, 259

input parameter prefix, 24
Inheritance, 2, 5, 17, 34, 161, 183, 227
Initial instance population

DSL, 222, 223
non-modelers, 222
tables vs. action language, 221

Initial pseudo-state
instance creation, 101

Injection sequence, 83
Instance

class data, 62
current state, 61
data structure, 62
dynamic, 63
memory, 61, 63, 67
pre-existing, 18, 19
slot allocation, 35
slot in use, 75
ST/MX view, 61–63

Instance creation
asynchronous, 172
migration, 172

Instance mapping
initialized C array variable, 150

Instance operation
translation of class method, 105

Instance search
generic vs. specific strategy, 107

Intellectual property, 4, 220
Interchange

format, 219
relational database, 219
UML vs. xUML, 219
XMI, 219
XML or JSON, 225

Interrupts
handling, 60

��������� J
Java

elaboration, 2
high-level, 2
target language, 2

��������� K
Key/value pair

store, 229

��������� L
#line directive, 187, 231, 265
Link action (&), 26, 260
Linked list

iteration, 101
Link type

linked list, 45
in reference statement, 42, 43

Lockout
machinery, 79, 87, 90

Lubrication cycle, 79, 84–85

■ INDEX

297

��������� M
Magic

modeling tools, 1
model translation, 10

Main loop
activity diagram, 64

Management vs. technical process, 214
Mapping

input points, 145
range limits, 144

Marking
actuator control, 133
alert event, 143
annotations, 215, 224
platform model, 224
pressure monitor, 138
in pycca, 224, 234
repository, 215
sensor attribute, 140
task, 214, 234
threshold attribute, 142, 144
transparent sheet, 224

Marking and mapping, 132–137, 146, 160
Mars climate orbiter, 113
Mars probe classes, 164

Mars Probe, 164
Nulear Powered, 164
Rover, 164
Solar Powered, 164
Stationary, 164

Mathematical foundations, 9, 226, 229
MBSE (model-based software engineering), 215
me, 24, 53, 259, 262

self instance action keyword, 2
MechEcb, 279

typedef, 65
MechEventType, 65, 174, 176

enum, 174
MechInstance, 61, 174

struct, 61–63
typedef, 61

Memory
limited, 60

Memory map, 113
Memory usage

example application, 190, 191
model execution domain, 191
RAM and flash, 190–191

Metamodel
BridgePoint-xtUML, 225
constraints, 224, 225
database schema, 224, 225
iUML, 225
miUML

tool independent, 225

relational theory, 225
SQL, 225
tool independent, 225
xUML, 224–225

Migrate, 24, 26, 56, 166, 261
action, 24

Model
application logic, 3, 4, 7, 192, 226, 227
deriving code, 4
destruction of, 3
detail, 4, 10
executable, 4, 6, 7, 13–29, 77, 185, 186,

213, 214, 235
high level, 2, 5
intellectual property, 4
language, 1, 4, 5, 7, 14, 77, 224–226
mental execution, 5, 6
platform-independent, 1, 4, 224
running, 1, 4, 9
translation, 1, 4, 7–11
uses, 14, 219
value of, 3

Model descriptions, 219, 220
Model editor

draw tools, 219
Model execution

configurable, 60
domain

implementation, 59, 60
microcontroller constraints, 60, 63, 74
no universal domain, 60
performance, 60
persistent non-volatile storage, 195
rules

invariance, 210–212
runtime

C preprocessor macros, 38
subject matter of, 59, 60

Model execution run-time. See MX run-time
Model facets, 26, 39, 255
Modeling

required skills, 213, 215, 216, 218
Model parsing

analogy, 231
Model repository, 214, 215, 225
Model script, 29, 30, 38, 39, 183
Model script statements. See Pycca statements
Model validation

using metamodel database, 225
Monitoring interval

lubrication, 84
Monitor pressure, 78
Moore state diagrams, 22, 49
Multiplexer, 114
MX. See Model execution
MX run-time, 104, 215, 275

■ INDEX

298

��������� N
Navigation

generalization, 34
pointer arithmetic, 34
pointers, 34

Next state
determine, 64

Non-xUML models, 214
Notation and complexity, 226

��������� O
Object. See Instance
ObjectDispatchBlock, 50, 70, 72

typedef, 70
Object files, 190, 215
Object-oriented

vs. mathematical foundations, 229
perspective, 226
programming, 2, 5, 7, 9, 62, 107, 226, 227
semantics, 5

OCL (Object Constraint Language), 226
ODB (object dispatch block), 70, 180

��������� P, Q
Pair programming, 234
Panic

on can’t happen, 71
Parallel processing, 4
Parsing actions

AST (abstract syntax tree), 233
PDB (polymorphic dispatch block)

locating, 178
Perfect hash function, 109
Performance

code size, 190, 191
execution speed, 192
immutable values, 41
initialization, 35
measurement vs. guessing, 109
model execution domain, 60
optimization, 109
pointers, 54
pycca, 189–211
scale, 211
trade-off, 141

Platform
ARM Cortex-M3, 74, 189
Linux, 75, 188
macOS, 75, 188
other targets, 190, 213
POSIX, 74–75
server/desktop target, 195

supporting diverse and challenging, 226
TI MSP-430, 74
Windows, 75, 188

Platform constraints
microcontroller, 60

Platform independence, 4, 9, 77, 215, 224, 227
Platform-independent

execution rules, 4
model, 4
synchronization, 4

Platform-independent and specific tasks, 214
Platform model

Attribute, 186
Berkeley DB, 207, 209, 210
class, 186–188, 208
ClassRef, 186
code generation

two step process, 231
Data Element, 186
domain, 186
vs. executable model, 185
File and Line attributes, 187
vs. metamodel, 185
populate with DSL, 185, 188, 211
relational schema, 189
SingClassRef, 186, 187
SubtypeRef, 186
task, 195

Platform-specific features, 224
PolyDispatchBlock

struct, 175
PolyEventMap

typedef, 176
Polymorphic event

definition, 162
delegation, 169
dispatch

data used, 177
event map, 178, 179
eventType, 175
generated code, 179
PDB (polymorphic dispatch block), 174

enumeration, 175
event map, 178, 179
example

Arming distance, 168
Cleared tube, 166, 167, 169
Fire, 166–169
Hitch load, 163
Hover, 163
Park, 161
Pass, 161
Recall, 166–169, 172, 180
Sleep mode, 164
Taxi, 163

■ INDEX

299

model script, 183
parameters, 174, 183
signaling

pycca, 174
translation, 169–174

Polymorphism
model vs. programming, 161
simple dynamic, 161

PolyStorageType
enum, 175

Populating models, 188, 234
Population

attribute initialization, 46
constant, 35, 273
dynamic, 35, 46, 194
identifying attribute

Berkeley DB example, 207
initial instance

C array, 35
model script, 30
translation, 46

relationship initialization, 46
runtime vs. translation time, 223
static, 273

Population instance name (@), 35
Population instance reference, 35
Portal

capabilities, 147
class information, 157
element numbering, 147–148
function, 147, 148, 150, 153, 154, 156,

158, 159, 191
how it works, 134, 135
limitations, 154
variable, 147, 156, 159

Postgres
miUML metamodel, 225

Programming language
as a domain, 107

Pycca
availability, 9, 188
DSL (domain-specific language), 9, 185, 187,

188, 233, 265
file, 9, 40
implementation

lex and yacc equivalents, 189
Tcl language, 185, 188, 189
TclRAL (Tcl relational algebra

language), 189
language overview, 265–287
overview, 39
parser, 187
pass your C code along, 30
platform specificity, 9
program

design, 188
DSL (domain-specific language), 187, 188
platform model, 185–189, 234
source code and documentation, 185

syntax
code, 39
comments, 39
symbol name, 39
variable declaration, 39

transparency, 9
Pycca language

comments, 266
C variables, 267
keywords and tokens, 267–268
pass along C code, 267
whitespace, 266

Pycca macros
ClassConstRefSetVar, 277
ClassConstRefVar, 276
ClassRefSetVar, 276, 282
ClassRefVar, 54, 276
PYCCA_cancelDelayed, 280
PYCCA_cancelDelayedToSelf, 281
PYCCA_checkId, 285
PYCCA_createInstance, 101
PYCCA_destroyInstance, 103, 281
PYCCA_eventParam, 280
PYCCA_forAllInst, 282
PYCCA_forAllLinkedInst, 283
PYCCA_forAllRelated, 282–283
PYCCA_forAllRelatedTerm, 283
PYCCA_generate, 277
PYCCA_generateCreation, 103, 278
PYCCA_generateDelayed, 278
PYCCA_generateDelayedToSelf, 278
PYCCA_generatePolymorphic, 170, 277
PYCCA_generateToSelf, 277
PYCCA_idOfRef, 284
PYCCA_idOfSelf, 284
PYCCA_initUnionInstance, 287
PYCCA_isSubtypeRelated, 286
PYCCA_linkToInstRef, 283, 284
PYCCA_migrateSubtype, 286
PYCCA_newCreationEvent, 279
PYCCA_newEvent, 279
PYCCA_newEventToSelf, 279
PYCCA_newInstance, 281
PYCCA_newPolymorphicEvent, 279
PYCCA_postDelayedEvent, 280
PYCCA_postEvent, 280
PYCCA_postSelfEvent, 280
PYCCA_referenceSubtype, 286
PYCCA_refOfId, 284
PYCCA_relateSubtypeByRef, 287
PYCCA_remainDelayed, 281

■ INDEX

300

PYCCA_remainDelayedToSelf, 281
PYCCA_selectOneInstWhere, 282
PYCCA_selectOneStaticInstWhere, 53, 54
PYCCA_unionSubtype, 286
PYCCA_unionSupertype, 285

Pycca program
options, 265–266
output file, 266

Pycca script
lexical conventions, 266–268

Pycca statements
attribute, 43, 97, 271
class, 31, 32, 271–272
class operation, 273
constructor, 274
default transition, 275
destructor, 274
domain, 40, 41, 268–270
domain operation, 268–269
external operation, 269
final state, 276
grouping

cumulative, 40
order, 40

implementation epilog, 269–270
implementation prolog, 42, 269–270
initial state, 275
instance, 270
instance operation, 274
interface epilog, 269–270
interface prolog, 269
machine, 273, 275
polymorphic event, 274
population

constant, 273
dynamic, 273
static, 273

reference
multiplicity, 42

state, 48
subtype

reference, 272
union, 272

table, 270
transition, 275

Python, 223, 234

��������� R
Range

in and out of states, 123, 124
Raw device value, 140
RDMS (relational database management system),

104, 225, 229

Referential attribute
pointer substitution, 32

Referential integrity
foreign-key index, 206

Relational theory
complex values, 230
model of data, 207

Requirements
modeling and translation, 7

Response time
real-time constraints, 60

Reuse
bridging, 220, 221
domains, 127
rule of three, 223
xUML, 226

Risk analysis, 76
Round trip, 2
RTOS and ST/MX

memory comparison, 191
RTOS (real-time operating system), 64, 191
Run to completion, 21, 63, 191

��������� S
Sampling

hysteresis, 124
jitter, 123
period, 115

Satellite classes
Satellite, 100–101
Station, 100
Track

association class, 99
Scale

binary search, 109, 193
hash table, 152, 194

Schematic, 3
Scrall (Starr’s concise relational action language)

assignment operators, 257–258
attribute references, 257
class method, 263
data types, 256, 257
error handling, 260–261
event to assigner, 259, 262–263
event to me, 259, 262
external entity

asynchronous signal, 261–262
synchronous operation, 262

instance selection
with criteria, 258–259
with no criteria, 258

link and unlink, 260
navigation, 259
online reference, 263

Pycca macros (cont.)

■ INDEX

301

signaling, 259
subclass migration, 261
symbol names, 255
values

Boolean, 257
enumerated, 257
literals not supported, 257

variable
instance set, 255
relation, 256
scalar, 256
system, 256

variable types, 255
Self C variable

translation of `me` keyword, 24, 53, 262
Sequence diagram

signal converter assignment, 116–122
Shlaer-Mellor Action Language, 227
Shlaer-Mellor methodology, 225–226
Signal. See Event
Signal an event action (->), 59, 75, 76, 147, 150, 277
Simulation

desktop model execution, 74
SIO classes

Continuous Input Point, 124, 126, 130, 132, 140,
141, 143–145, 151, 154

Conversion, 114–120
Conversion Group, 115–122, 126, 150, 151, 153
I/O Point, 112, 126, 149, 222, 223
Point Threshold, 124, 127, 130, 142–145, 154, 156
Range Limitation, 124, 125, 127, 143–145,

154–156
Signal Converter, 115–122, 126

SIO (Signal I/O domain)
sensing and controlling signals, 111
sensors and actuators, 10, 111
side effects, 111

SOC (system on a chip), 113, 189, 191
Software architecture, 2, 59, 81
Specialization

project teams, 234
Specification class

modeling pattern, 83
subclass determination

Torpedo Spec, 166
Spreadsheets

for bridge tables, 134–137, 139–141, 144–151,
154, 160

for initial population, 35, 46, 146, 221
State

event signature rule, 20, 139
model script, 29, 30, 38, 39, 183
naming, 35, 38, 47, 57

State activity
as C function, 52, 54, 59, 146, 147, 149, 160, 268

preprocessor macros and hand code, 30, 38, 40,
55, 57, 107, 265, 275–276

State coverage
spanning tree, 74

State machine
diagram, 14
for each instance, 14, 67, 120, 253, 262

State model
action, 15, 21, 27, 28, 48, 167, 168
activity, 76, 81, 171, 248, 251
behavior, 15, 19, 28, 251, 273, 275
definition, 38, 54, 55, 273, 275–276
entry activity, 22
event, 38, 40, 73, 92, 102, 148, 161, 162, 166, 253
event parameter, 21
execution, 103, 162
generated code, 10, 31, 32
lifecycle, 19, 73, 89, 167, 250
model script, 29, 30
polymorphism, 225
signal, 28, 38, 92
state, 19–20, 21, 35, 101, 188, 275
table, 27, 232
transition, 37, 49–50, 75, 233, 250, 275
translation, 36, 39, 48–52, 70

State model diagram, 73, 76, 232, 250
Moore and Mealy, 21, 49

State transition table
transitory state, 94–97
wait state, 94–96

ST/MX (single threaded model execution)
C library, 61, 75, 109
instance management, 222, 281
memory usage, 191

Subclass
state model, 161, 167, 169, 183
translation, 170–174

Subclass migration
preprocessor macro, 57, 147, 285–287

Subject matter experts, 217–218
Superclass

model script, 183
Synchronization

activities, 21
concurrency, 22
events, 21, 67, 191, 250
platform independent, 4, 251, 252

Sync queue
main loop, 64, 191

System executable, 215
System on a chip (SOC). See SOC (system on a chip)
System partitioning

functional vs. subject matter, 81
platform independent vs. specific, 1, 214, 224,

240, 248

■ INDEX

302

��������� T
Target platform

hardware
Arm Cortex-M3, 74, 189, 191
Giant Gecko, 189

implementation language, 1, 2, 8, 29, 30, 32, 59,
107, 189, 195, 210, 211, 231, 234

micro-controller, 4, 8, 9, 35, 60, 63, 65, 69, 74–76,
113, 185, 189, 191–192, 195, 197, 206, 210,
222, 231

programming language, 1, 4, 5, 7, 8, 19, 27, 31, 59,
60, 107, 161, 195, 215, 225–229, 234–235

reactive applications, 8, 65
software

Silicon Labs Simplicity Studio, 190
technology, 8, 132, 216, 234

Textual vs. graphical layout, 219
Third party code, 214, 216, 240
Threshold limit, 123–124, 126–127, 144–145, 154
Time

platform specific, 54
POSIX, 45, 54, 74–75, 195

Timeout
modeling, 25, 27, 90

Timer. See also Event, delayed
platform resource, 69, 191

Tools
complexity, 235
misuse of "real-time" term, 235
monolithic vs. tool chains, 235–236

Torpedo classes
Active Launch Torpedo, 166, 168, 171
Fired Torpedo, 166–168, 180
Loaded Torpedo

model script, 166, 167, 169–174, 177, 179, 180
Passive Launch Torpedo, 166–168, 171
storage rack, 165–167
Stored Torpedo

model script, 166, 167, 171–172
Torpedo

pycca, 169–174, 179
torpedo design, 165
Torpedo Spec, 166, 174
torpedo tube, 165, 167, 171
Tube, 165–169

Torpedo class method
arm, 168
disarm, 165

Torpedo launch example
polymorphism, 169–182

Torpedo state model
Active Torpedo, 167, 169
Fired Torpedo, 166–168, 180
Passive Launch Torpedo, 166–168, 171
Stored Torpedo, 166, 167, 171, 172

Traceability, 231
Trace execution, 73–76, 122, 221, 266
Transaction

data model integrity, 104
Transducer, 111, 113, 126
Transition

can’t happen (CH), 36, 51, 71, 94, 250
ignore (IG), 36, 71, 76, 90, 102, 167, 169,

250, 275
matrix, 50

as array, 70, 73
normal, 101, 176
table, 50, 59, 61, 70, 76, 176

Translation
actions, 27, 28, 38, 48, 59, 61, 66, 97, 102, 107,

221, 223, 226
basic workflow, 9
class model, 37, 39–48, 233
data types, 40–42
decisions, 29–38, 219, 233
environment, 7–9, 219
human intervention, 233, 236
processing, 1, 10, 59, 221, 231
pycca workflow, 11, 232–236
three facets, 30, 39, 97
working backwards, 235

Translation workflow
pycca, 11, 232–236

��������� U
UML

lingua franca, 9
standards, 9–10, 219, 225, 227, 257

Unicorns, 1
Unlink action (!&), 24, 260

��������� V
Value threshold, 123–127
Variable initializers, 35
Vehicle classes

Box Truck, 163
Bus, 162
Car, 162
Semi Truck, 163
Truck, 162
Vehicle, 10, 78, 82, 162

Vendor tools
target technology, 7–8

��������� W
Watchdog timer, 76
Web application, 7–8
Wind turbine, 78–79

■ INDEX

303

Workflow
pycca, 8, 29, 39, 61, 77, 111, 129, 169, 185, 213, 265
reference, 213–215, 232–236

��������� X, Y, Z
xUML

executability, 225, 226, 255
language, 219, 224, 226, 227, 236, 240, 255

lean notation, 226
mathematical foundation, 9, 226, 229
notation, 5–7, 13, 225, 237
platform independent execution

semantics, 5, 237
semantics, 5, 9, 13, 225, 237, 255
synchronization, 4, 39, 252, 290
and UML, 1, 9, 17, 20–21, 22, 161, 225
why use it, 6, 22

	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Foreword
	Chapter 1: The Modeling Landscape
	Prerequisites
	No Magic

	Elaboration: The Easy Path to Failure
	Elaboration–Gradual Failure
	Elaboration–Abrupt Failure
	Model Destruction

	The Value of a Good Model
	A Better Way Forward: Translation
	Executable Models
	Platform-Independent Models
	Deriving Code from Models

	xUML: Same Notation, Different Attitude
	The x in xUML

	Translation
	Our Target Technology
	Our Translation Environment
	Platform Specificity
	Transparency
	Availability

	A Final Word About UML and Standards
	What’s Next?

	Chapter 2: A Simple Executable Model
	An Air Traffic Controller Application
	Step 1: The Class Model
	Interpretation

	Step 2: State Models
	Interpretation

	Step 3: Actions
	Time and Other Details
	Discussion

	Executing the Model
	Standard Action Languages
	Summary

	Chapter 3: Making Translation Decisions
	Reviewing the Target Platform
	Working with the Class Model
	Data Types
	Classes and Attributes
	Associations
	Generalizations
	Initial Instance Population

	Describing the State Models
	States
	Events, Transitions, and Responses
	Executing State Machines

	Translating Processing
	Coding from Models
	Translating a Model

	Summary

	Chapter 4: Translating the Air Traffic Control Model
	Overview of Pycca Syntax
	Organization of a Pycca File
	Translating the Class Model
	Data Types
	Class Definitions
	Duty Station
	Air Traffic Controller
	On Duty Controller

	Initial Instance Population

	Translating State Models
	Duty Station State Model
	Air Traffic Controller State Model

	Translating Actions
	Air Traffic Controller State Activities

	Summary

	Chapter 5: Model Execution Domain
	Role of the Model Execution Domain
	Overview of ST/MX
	The ST/MX View of a Class Instance
	Managing Execution
	Event Control Block
	Signaling an Event
	Catching the Event-in-Flight Error
	Delayed Signals
	Event Dispatch
	Tracing Execution
	Running in a POSIX Environment

	Handling Errors
	Summary

	Chapter 6: An Extended Example
	The Automated Lubrication System
	ALS Domains
	Lubrication Domain
	Lubrication Class Model
	Injector Designs
	A Single Injection
	Controlling Lubrication Cycles
	Lubrication Schedule
	Autocycle Session
	Example Population

	State Models
	Injector State Model
	Autocycle Session State Model
	Reservoir State Model
	Class Collaboration
	Class Method and Other Activities
	State Tables

	Translating the Lubrication Domain
	Translating Association Classes
	Navigating Associative Relationships
	Creation Events
	Asynchronous Instance Deletion
	Operations
	Class Methods
	Domain Operations
	External Operations
	Class-Based Operations

	Summary

	Chapter 7: Sensor and Actuator Service Domain
	Domain Overview
	Converting Electrical Signals
	Modeling Signal Conversion
	Implementing the Assigner
	Tracing Execution
	Limitations

	Value Thresholds
	Initial Instance Population
	Summary

	Chapter 8: Integrating the Application and Service Domains
	Summary of Domain Benefits
	Each Domain Is a Black Box

	Marking and Mapping
	Start and Stop Monitoring Pressure
	Update Pressure
	Injector Pressure Alerts

	Implementing Bridges in Pycca
	Pycca Facilities for Implementing Bridge Code
	The Domain Portal
	Identifying Domain Elements

	Lubrication Domain External Entity Functions
	Implementing Injection Control Functions
	Implementing Injector Pressure Monitoring Functions

	SIO Domain External Entity Function
	Updating Injector Pressure Attribute
	Signaling Pressure Alerts

	How the Portal Works
	Summary

	Chapter 9: Event Polymorphism
	Generalization and Set Partitioning
	Routing Polymorphic Events
	Routing for each Form of Generalization

	Torpedo Launch Example
	Translating Polymorphic Events with Pycca
	How Polymorphic Events Are Signaled
	How Polymorphic Events Are Dispatched
	Summary

	Chapter 10: Pycca and Other Platforms
	Design of the Pycca Program
	Platform Model
	Domain Specific Language Processing
	Template-Driven Code Generation
	Pycca Implementation

	Pycca Performance
	Target Hardware Platform
	Target Software Platform
	ALS Code Size
	Execution Speed
	Performance Discussion
	Supplying Implementation-Specific Code
	Considering Other Platforms
	Mapping Domain Data to Berkeley DB
	Platform-Model Differences
	Alternate MX Design Discussion

	Summary

	Chapter 11: The Translation Landscape
	A Reference Workflow for xUML Translation
	Key Challenges
	Identify Domains
	Build and Document the Models
	Use the Right Modeling Talent
	Enter and Edit the Models Productively
	Usefully Document the Models

	Specify Domain Mapping
	Populate the Models
	Populate the Domain Mappings
	Marking
	The xUML Metamodel
	The xUML Language
	Action Language
	Desirable Characteristics of an Action Language
	Human Roles in Translation
	Pycca vs. the Big Tool Approach
	A Role for Humans in Code Generation

	Translation Considerations
	Summary

	Appendix A: xUML Summary
	xUML
	Domain
	Bridge
	Domain Chart
	Class
	Attribute
	Data Type
	Identifier
	Association
	Association Class
	Generalization/Specialization
	Other Activity Types
	State Model (Instance Lifeycle)
	Platform Independent Synchronization Rules
	Events
	Activities

	State Model (Assigner)
	Single Assigner
	Multiple Assigner

	Polymorphic Events
	External Entity

	Appendix B:
Scrall Overview
	Principles
	Names
	Variable Types
	Instance Set Variable
	Relation Variable
	Scalar Variable

	Data Types
	System Variables
	No Literals
	Boolean Values
	Enumerated Values
	Attribute References
	Assignment Operators
	Instance Selection
	Selection with No Criteria
	Selection with Criteria

	Relationship Navigation
	Signaling
	Link/Unlink
	Error Handling
	Subclass Migration
	Interaction with External Domains
	Asynchronous: Signal to External Entity
	Synchronous: Invoke Operation on External Entity

	Self Reference
	Events to Assigner State Machines
	Class Method

	More Commands

	Appendix C:
Pycca Language Overview
	Invocation
	Options
	-help or -?
	-version
	-noline
	-output filename
	-instrument pattern
	-noC99
	-dataportal
	-portalcode

	Lexical Conventions
	Comments
	Whitespace
	C Variables
	C Code
	Name
	Number
	Keywords
	Other Tokens

	Domain Definition
	domain
	class
	domain operation
	external operation
	interface prolog, implementation prolog, interface epilog, implementation epilog
	instance
	table

	Class Definition
	attribute
	reference
	Singular References
	Multiple References

	subtype
	Reference Generalization
	Union Generalizations

	machine
	population
	slots
	class operation
	instance operation
	polymorphic event
	constructor
	destructor

	State Model Definition
	state
	transition
	default transition
	initial state
	final state

	Activity Macros
	Instance References
	ClassRefVar(c, v)
	ClassConstRefVar(c, v)
	ClassRefSetVar(c, v)
	ClassConstRefSetVar(c, v)

	Events
	Events with No Parameters
	PYCCA_generate(e, c, i, s)
	PYCCA_generateToSelf(e)
	PYCCA_generatePolymorphic(e, c, i, s)
	PYCCA_generateCreation(e, c, s)
	PYCCA_generateDelayed(e, c, i, s, d)
	PYCCA_generateDelayedToSelf(e, d)

	Events with Parameters
	PYCCA_newEvent(e, c, i, s)
	PYCCA_newEventToSelf(e)
	PYCCA_newPolymorphicEvent(e, c, i, s)
	PYCCA_newCreationEvent(e, c, s)
	PYCCA_eventParam(ecb, c, e, p)
	PYCCA_postEvent(ecb)
	PYCCA_postSelfEvent(ecb)
	PYCCA_postDelayedEvent(ecb, d)

	Delayed Signal Operations
	PYCCA_cancelDelayed(e, c, i, s)
	PYCCA_cancelDelayedToSelf(e)
	PYCCA_remainDelayed(e, c, i, s)
	PYCCA_remainDelayedToSelf(e)

	Instance Creation and Deletion
	PYCCA_newInstance(c)
	PYCCA_destroyInstance(i)

	Instance Selection
	PYCCA_selectOneInstWhere(i, c, expr)
	PYCCA_forAllInst(i, c)
	PYCCA_forAllRelated(v, i, r)
	PYCCA_forAllRelatedTerm(v, i, r)
	PYCCA_forAllLinkedInst(o, r, l)
	PYCCA_linkToInstRef(l, c, r)

	Instance Identifiers
	PYCCA_idOfSelf
	PYCCA_idOfRef(c, r)
	PYCCA_refOfId(c, i)
	PYCCA_checkId(c, i)

	Navigating Generalizations
	PYCCA_unionSupertype(sub, supc, r)
	PYCCA_unionSubtype(sup, r, subc)
	PYCCA_referenceSubtype(sup, r, subc)
	PYCCA_isSubtypeRelated(sup, supc, r, subc)
	PYCCA_migrateSubtype(i, supc, r, subc)
	PYCCA_initUnionInstance(sup, r, subc)
	PYCCA_relateSubtypeByRef(s, supc, r, t, subc)

	Appendix D:
Bibliography
	Books
	Papers
	Articles

	Index

