
Modular Design
Frameworks

A Projects-based Guide for UI/UX
Designers
—
James Cabrera

www.allitebooks.com

http://www.allitebooks.org

Modular Design
Frameworks

A Projects-based Guide for
UI/UX Designers

James Cabrera

www.allitebooks.com

http://www.allitebooks.org

Modular Design Frameworks: A Projects-based Guide for UI/UX Designers

James Cabrera				
Holbrook, New York, USA			

ISBN-13 (pbk): 978-1-4842-1687-3		 ISBN-13 (electronic): 978-1-4842-1688-0
DOI 10.1007/978-1-4842-1688-0

Library of Congress Control Number: 2017951445

Copyright © 2017 by James Cabrera

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-1687-3. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-1687-3
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author��� ix

About the Technical Reviewer��� xi

Introduction��� xiii

■■Chapter 1: A Modular Future��� 1

■■Chapter 2: Fonts, Colors, and the Invisible UI�������������������������������� 11

■■Chapter 3: Defining Your Basic Unit��� 21

■■Chapter 4: Adaptation, Reusability, Variation, and Iteration���������� 37

■■Chapter 5: Organization, Clustering, Pages, and Navigation��������� 51

■■Chapter 6: What’s Next?�� 67

■■Appendix A: Breaking Down Examples into Modular Systems������ 71

Index��� 85

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author��� ix

About the Technical Reviewer��� xi

Introduction��� xiii

■■Chapter 1: A Modular Future��� 1

Breaking Down the Buzzword�� 2

The Shift Toward Design-Led Thinking��� 3

Design and Development: Let’s Bridge the Gap��������������������������������������� 5

Should Designers Learn to Code?�� 6

Design with the Medium�� 7

The Advantages of Reusability��� 7

Iterative Design�� 8

Taking the Focus Off Aesthetics��� 8

Taking Charge�� 8

Summary�� 9

■■Chapter 2: Fonts, Colors, and the Invisible UI�������������������������������� 11

Defining Visual Hierarchy��� 11

Establishing a Font System�� 14

Custom Fonts and System Fonts��� 14

Think About Function Before Form�� 15

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Establishing a Color System��� 17

Let’s Design an Example�� 18

Wearables and Conversational UI��� 19

Summary�� 20

■■Chapter 3: Defining Your Basic Unit��� 21

Understanding the Essence of Your Product�� 21

We Need a Product to Sell��� 21

Theory in Practice�� 22

Facebook��� 22

Airbnb�� 23

Uber��� 23

Amazon�� 24

BuzzFeed��� 25

Chase��� 26

Onward Inward��� 26

Inventory�� 27

Flow��� 27

Design�� 28

One for All�� 29

Building Our Own��� 29

Summary�� 36

■■Chapter 4: Adaptation, Reusability, Variation, and Iteration���������� 37

Preventing Confirmation Bias in Design��� 38

How to Adapt What You Have��� 38

Recycling and Reusing Basic Units�� 39

Variation��� 42

Example: Size��� 42

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Example: Availability of Data�� 43

Taking It Further�� 45

Making Iterations��� 45

A/B Testing��� 46

Example: Increase Click Rates��� 47

Example: Increase Scroll Depth��� 48

Summary�� 49

■■Chapter 5: Organization, Clustering, Pages, and Navigation��������� 51

Organization��� 51

Categorically�� 51

Consumption Paradigms��� 53

Clustering�� 55

Designing with Cluster Modules�� 59

Paging�� 60

Navigational Design Elements�� 62

Titles�� 62

Main Navigation��� 62

Internal Filters��� 63

Breaking Down the Basic Unit�� 64

Summary�� 66

■■Chapter 6: What’s Next?�� 67

Fonts, Colors, and the Invisible UI�� 67

The Basic Unit�� 68

Variations, Optimizations, and iterations�� 68

Clusters, Pages, and Navigation��� 69

A Never-Ending Job�� 69

Summary�� 70

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

■■Appendix A: Breaking Down Examples into Modular Systems������ 71

Example 1: Herokid Studios��� 71

Font System��� 72

Base Unit��� 73

Variations��� 74

Example 2: Huge�� 76

Font System��� 77

Base Unit��� 78

Variations��� 79

Example 3: iPhone 7��� 80

Font System��� 82

Base Unit��� 83

Variations��� 83

One in the Same��� 84

Index��� 85

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

James Cabrera is a self-taught Filipino-American designer based in New York City.
With a formal education in Math and Physics, James forged his own path into design,
working for companies like Foot Locker, Say Media, and Refinery29 over the past 10 years.
His analytical approach unconventional thinking, and knack for problem-solving has
greatly contributed to his success. He has also spoken at conferences internationally and
frequently writes about his design strategies. James loves constantly learning new things,
and sharing knowledge he has acquired over the years. In his free time he is currently
focusing on art, photography, and videography.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experience in Security, Web/Mobile development,
Cloud, and IT Architecture. His true IT passions are
Security and Android.

He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python,
C/C++, and MySQL for more than 20 years. He holds a
Master of Science degree in Computing Science from
the University of Salerno, Italy.

Massimo has worked as a Project Manager,
Software Engineer, Research Engineer, Chief Security
Architect, Information Security Manager, PCI/SCADA
Auditor, and Senior Lead IT Security/Cloud/SCADA
Architect for many years.

Technical skills include Security, Android, Cloud,
Java, MySQL, Drupal, Cobol, Perl, Web and Mobile development, MongoDB, D3, Joomla,
Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj.
He worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing companies
and he is the coauthor of Pro Android Games (Apress, 2015).

This book is dedicated to Antti Jalonen and his family who are always there when I
need them.

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

As a digital designer, how often has a project you worked on made it into production 100%
as you had designed it? In more cases than not, you may have passed off a deliverable to
development only to have many questions exchanged back and forth before eventually
getting a link to something that looks quite different than what you originally envisioned.

In the current state of digital design, you almost never truly have a blank slate to work
with at the beginning of any project. You’re often already binded to a myriad of factors,
from needing to use an already chosen premade platform, to the limited capabilities of
the people developing your designs.

This book isn’t about teaching you how to use one of the many named frameworks
already out there. It’s for the designer to reshape the way they approach digital design
without needing to learn a single line of code. We aim to teach the designer how to
structure the way they approach their designs in a way that’s conducive to the digital
format.

There is a unique property of digital that doesn’t exist in any other medium. It is the
ability to instantly change the design after it has already been delivered to the user. Being
able to really leverage that property alone will add infinite potential to your product.

Interchangeable parts in combination with the assembly line in manufacturing gave
rise to the Industrial Revolution. Why? The ability to mass produce identical parts in the
creation of a product made it cheaper and easier for a massive amount of people to own
and maintain. If you own a car and it breaks down because of the failure of a particular
component, there is likely the same component lying around somewhere that you can
easily buy and replace the broken one with.

Modular Design has the same exact effect to the success of digital products, if
approached in the correct way. This book aims to help guide you on how to design
a digital product in a similar way that can be scaled and maintained for the masses.
How can you approach your designs in a way that can be easily built in code and easily
updateable throughout time? That’s what we seek to answer throughout this book.

To continue the car metaphor, we won’t be teaching you how to design a clay model
of a hypothetical car. We will teach you how to connect a chassis, an engine, tires, and a
steering wheel to make a basic functioning car. Everything else you want to put around
that is up to you.

1© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0_1

CHAPTER 1

A Modular Future

So you need a Modular Design Framework. At least that’s the recommendation you’ve
gotten based on an objective analysis of the state of your current product (Figure 1-1).

Figure 1-1.  Have you been in a meeting like this before? (Illustration by Sarah Sabiniano)

Chapter 1 ■ A Modular Future

2

There have been many case studies done, many books written, and many talks given
that explain why you need to have a Modular Design Framework. Being a designer, where
do you even begin?

You, as a designer, should feel empowered to take charge when it comes to designing
a Modular Design Framework. That means understanding the underlying motivations of
why more and more people are employing Modular Design Frameworks. While in doing
so we might discover that the shift is developer-centric, it also has unique advantages
from a design perspective. The challenge really is in how we can unite the thinking
between both designers and developers in order to create great products.

Breaking Down the Buzzword
It’s safe to say that “Modular Design Framework” has reached industry buzzword
status nowadays. For much of the engineering community, it has become a code word
for “use a component library.”

Things like Bootstrap, Foundation, React, and Polymer might immediately rise
to the forefront of the conversation when talking about Modular Design Frameworks.
While these technologies may be used as a foundation to produce your Modular Design
Framework, they all already come designed from a developer-centric point of view. To put
it simply, these systems are precoded libraries that are capable of completing common
and generic tasks that facilitate modern-day, rapid software development.

Some may interpret “Modular Design Framework” as synonymous with some of
these component libraries. This should not be the case. That is like always referring to
tissues as Kleenex, and only Kleenex. When you have a runny nose, you wouldn’t let it start
dripping until someone can only provide Kleenex-branded tissues – all you really require
is soft disposable material. In some cases you may even use a handkerchief, which is not
considered disposable by many standards. The point is that needing a “Modular Design
Framework” does not immediately equate to, “We need to use Bootstrap.”

In this book, when we refer to Modular Design Frameworks, we are simply talking
about them as a logical system of reusable parts. This also includes defining the
interactions between those parts. A successfully crafted Modular Design Framework,
in its essence, can live on and be expanded upon without the need for a designer after
it is established.

That’s not to say that it’s the designer’s job to make themselves useless. After the
framework is created, evolving and iterating on the design language of the system to
better serve its users is a never-ending job.

If you consider the English language, all of the words in the dictionary today did
not exist upon the inception of the language. New words are created from the constantly
repeated usage and improvisation of the current set of words. It organically evolves based
on use and transforms into a better and more efficient communication system.

That’s ultimately what we want out of designs we create for our products. When we
create a design system and implement it, we want to constantly observe how everyone
uses it, from our developers using it to our users consuming it. As we notice patterns and
trends arise, we want to be able to add new pieces, modify existing ones, or maybe even
remove that which is no longer useful.

Chapter 1 ■ A Modular Future

3

So when we talk about “Modular Design Frameworks,” this is the essence of what
we’re getting to. We want to make you better at establishing the foundation of a system
and language for your designs.

The Shift Toward Design-Led Thinking
As mentioned before, defaulting to using a preexisting component library is always a
developer-led decision. It is not a wrong decision by any means; it has many advantages.
These libraries have already solved common development pain points when it comes
to building apps and have already proven to be portable across various environments.
This makes development “faster” in the sense that common problems that may arise are
already solved.

The negative result of this path is that you are already establishing a restrictive
environment before even allowing yourself to fully understand what your product really
needs. As a designer, you are always told to “think outside the box.” In this approach you
are already forcing yourself inside a “box” that’s constrained by capabilities of the library
that’s chosen.

Companies who go down the path developing entirely on top of another framework
end up finding themselves in one of two positions. They either see their product
becoming more like everyone else’s, or they find themselves heavily restricted in trying
new ideas on their product and innovating. Once this is realized, it’s when the shift
usually occurs to take a more design-led approach. With this comes the unfortunate
decision to start all over again – with design at the forefront of decision making.

Why not set the rules to your own game from the start?
It’s important to note that the aforementioned examples of popular frameworks,

among many others, are the end results of specific companies trying to satisfy their own
respective product and user needs. Bootstrap was developed for Twitter, Foundation was
made for ZURB projects, React was made for Facebook, and Polymer is used to facilitate
Google’s own Material Design. All of these companies have come up with their own
systems that they’ve created specifically to handle their own product’s challenges.

In the long term, it is not advantageous to retrofit your product into the mold
of another (Figure 1-2). You will have your own specific product goals and your own
hypotheses you’d like to easily run, test, and adapt over time. There is an extra layer of
unnecessary work you would need to do to bridge another product framework with your
own product strategy.

Chapter 1 ■ A Modular Future

4

With that being said, already existing, established frameworks should not dictate
how you should approach designing whatever product you may be working on. Your
primary focus going into any project should be on the users of your product. It should not
be based on how to adapt your product to another system for the benefit of developers.
It’s about adapting your product for the benefit of your users by complementing their
specific behaviors. When you create, test, and validate designs against your users, you
don’t want it to be killed by the mere limitations of a code-based framework made for
another product.

Of course there is nothing wrong with opting to use one of these already existing
frameworks when it comes to creating proof-of-concepts with a fail-fast and fail-often
strategy. However, when you’re no longer prototyping and your market position is solidified,
that’s when you need to begin thinking about designing a more lean, sustainable, and
scalable solution to better support and optimize around your own product goals and user
needs. That means empowering your product with a Modular Design Framework of its own.

Figure 1-2.  Retrofitting one game to play another is not always the best option.
(Illustration by Sarah Sabiniano)

Chapter 1 ■ A Modular Future

5

Design and Development: Let’s Bridge the Gap
Designers often find themselves in situations where they feel like they are at the mercy of
the developer, often sacrificing concepts due to a combination of technical feasibility and
deadlines. In reality that should not be the case. When it comes to product creation and
iteration, design and development should carry equal weight in the process. Designers
should establish the what and the why, while developers determine the can and how.

Designer answers: What are we building and why are we building it?
Developer answers: Can we build this and how will we do it?
One of the most valuable things that can happen at the start of any designer

and developer relationship is for each side to have a mutual respect for the other’s
responsibilities.

Commonly the old way of doing things involves design at the start, then handing off
comps to developers who then go off and do the work, only to bring the designers back in
the end to make sure things look OK before launch (Figure 1-3).

Figure 1-3.  Traditional product development timeline

More modern processes, like Agile, suggest that both designers and developers
have a constant feedback loop throughout the entire process, from inception to launch.
Designers focus on the design as the developer is developing it, and they work side by
side (Figure 1-4).

Figure 1-4.  Modern product development timeline

Chapter 1 ■ A Modular Future

6

I would suggest taking this modern approach slightly further where both designers
and developers need to understand the utmost basic logic behind the other’s thought
processes: in some cases, maybe even contributing to the tasks of the other throughout
the entire process (Figure 1-5).

Figure 1-5.  Ideal product development timeline

Should Designers Learn to Code?
This brings me to the great debate in recent years over whether or not designers should
learn to code. To that question my answer is a resounding No.

Designers should be maximizing their focus on the end users of the products they
design. Of course there are many inseparable implications that code has on the core
experience. For example, page load time is a code-dependent variable that must be
accounted for by the designer. As a designer you can’t create designs that would add
unreasonable bloat that hinders the overall experience. For reasons like this, designers
absolutely need to be empathetic to the medium in which they are designing in.

This is in the same way that an architect needs to understand metal, wood, concrete,
or whatever materials need to be used in the buildings they design. Also in the same
way an artist effectively adapts their methods and styles based on the composition of
paint they are using. Acrylic-, oil-, and water-based paints require completely different
techniques from the painter.

The more you understand the medium in which you are designing in, the more
seamless it will be for your designs to make it to production as expected. There shouldn’t
be a constant tug and pull between designer and coder. Designs should be made already
with the predictability of how it will be built in code. By designing with an approach that’s
similar to a coder, you will spend less time figuring out how to make things work and more
time figuring out how to iterate and make designs better. Understanding the medium will
also allow you to be more creative in finding ways to push it in ways that it’s not commonly
being used. That’s where true creativity and innovation will happen. As a designer it
should be your job to bridge the needs of your users with the capabilities of the code.

The best designs are those that are synchronized with the medium.

Chapter 1 ■ A Modular Future

7

Design with the Medium
Philosophically, software development is essentially about building a foundation of
reusable and componentized code, then iterating on those in order to optimize and build
on top of. Oftentimes the best work is seen as that which performs complex tasks in the
least amount of lines of code.

As a starting point, it would be advantageous for a designer to align their design
thinking with the same approach. This would be much like cutting wood along the grain.

What is the least amount of design we need in order to satisfy our users’ needs? What’s
the best way to reuse those designs in order to optimize the user experience? Are our designs
structured in a way that we can repeatedly use them to build more complex applications?

Just by treating design with the same underlying philosophies as the medium we
work with, we will be well on our way to establishing our very own frameworks.

The Advantages of Reusability
Reusability of design is not just solely beneficial for the sake of working with the
medium. There are also huge advantages of reusing designs from a pure user-experience
perspective. By strategically reusing designs, we can create repeatable experiences that
will become intuitive over time. Making designs with predictable patterns makes it much
easier for your users to find what they need, giving your product a welcoming familiarity.

It’s easy to identify what designs can be reused if we look at our elements from a
purely functional point of view. Throughout the course of this book, we will be defining
every element of our designs by function, which will make it easy for us to determine
what we can reuse. If we require elements that need to perform similar tasks, then there’s
no shame in using things that already exist (Figure 1-6).

Figure 1-6.  If a design already works, there’s no reason to change it solely for aesthetic
purposes. (Illustration by Sarah Sabiniano)

Chapter 1 ■ A Modular Future

8

The purpose of design, after all, is not just to make things look different. Design is
meant to solve problems. There is no need to re-create elements that you’ve already
thoughtfully designed and already do the job.

By reusing designs, it will be much easier to gather data and apply updates across the
entire system. These are prime opportunities to take advantage of designs that we find to
be working effectively and iterate on them to make your entire product better over time.

Iterative Design
If you are consistently reusing elements of design from a functional perspective, you will
really see how iteration will consequently be that much easier. In essence it boils down
to the idea of designing one to design all. There is an incredible advantage in minimizing
duplicative efforts when iterating and improving a single individual element that is
repeated across the entire product.

Design should be treated as a constantly evolving system that you can always adapt
to changing conditions. It shouldn’t be looked at as a disposable layer that can always be
scrapped and completely redone at regular intervals. It should be a backbone that you
can build a knowledge base on and constantly improve upon.

Taking the Focus Off Aesthetics
While we will be building in a lot of aesthetics into our framework, our goal is ultimately
about the design. In this book we want to target your design senses, not your aesthetics.
You will learn valuable methods on how to approach establishing your own flexible
design system for your products. You also will learn ways to break down an already
existing design into a more modular system. In the product development life cycle, design
plays a just as, if not more, important of a role as the development. In fact, if your product
design strategy is truly user centered, then it should almost always inform the path to
development, and not the other way around.

Taking Charge
As you make your way through this book, we will establish the basics of constructing a
design that is modular and reusable. We will create a design that works hand in hand
with the medium of code. We will also experience designing in an iterative and flexible
way, which will allow our designs to grow organically and expand with the needs of our
product. Finally, we will focus on the problem-solving attributes of design, decoupling it
from its aesthetic quality.

Chapter 1 ■ A Modular Future

9

Summary
In this chapter we have defined what a “Modular Design Framework” really means. We
have also made the case for why you should learn how to establish a Design Framework
of your own entirely from scratch, without relying on something that’s already developed.
Not only does it afford you more freedom with solutions for your users, but it also makes
your product more powerful for iteration and easier to maintain in the long run. With
all of this, designers should feel empowered to be part of the crucial decision-making
process of how a product will be built.

11© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0_2

CHAPTER 2

Fonts, Colors, and the
Invisible UI

There is a saying, “The best UI is no UI.” That seems to be increasingly true as we
passively observe the trends in technology. As we continually try to find ways to lower the
barriers of friction for our user’s adoption of our products, we begin to see more and more
of our available UI options disappearing. In the coming years, will there be any space left
for design?

Designers are now embracing the need to become minimalists when they’re tasked
to design digital products — boiling functionality down to its essence. What is the bare
minimum you need to have a usable product? Font and color play a more important role
now than ever if you’re lucky enough to still get a choice in the matter.

Defining Visual Hierarchy
Before doing any design whatsoever, the first thing you need to think about is how you
want to prioritize the visual hierarchy. What elements of visual design will you use to
cue your users as to what’s most important? The elements we will be focusing on for the
purposes of this book are size, color, and order.

•	 Size — The bigger something is, the more important it is.

•	 Color — Creating primary, secondary, tertiary colors, and fixing
them on a scale of importance: that is, always using a primary
color on the most important elements.

•	 Natural Order — Whatever you place first in the natural flow of the
document is the most important. Natural flow is subjective based
on design. It could be top-down, left-right, outside-inside, etc.

Of course, you are not limited to these options. These are mainly considered in
designing for the Web. Depending on what you’re designing for, you may have access to
even more properties.

Chapter 2 ■ Fonts, Colors, and the Invisible UI

12

To see a little bit more about how we can leverage the possibilities, let’s take a look at
a design of an individual tweet on Twitter in Figure 2-1.

Figure 2-1.  This is the actual design of a tweet as seen on Twitter

By looking at all of the individual elements in this single tweet, what would you think
is the most important part of the design? There are actually several different ways to look
at it.

A common ordering of importance based on an observed visual hierarchy may go as
follows:

•	 The 140-character Tweet

•	 The User (name + avatar)

•	 Actions to take on the tweet

•	 Data about when the tweet was made

Based on this analysis one might assume the designer thought about establishing the
visual hierarchy in the original order I set forth:

•	 Size

•	 Color

•	 Natural Order

But how could this be designed differently if we restructure the visual hierarchy? Say,
for example, this is how we wanted to set our priorities:

•	 Natural Order

•	 Size

•	 Color

Figure 2-2 shows a possible design direction. If we want our design framework
to value Natural Order the most, then what’s most important should come first in the
normal flow of reading (in this case top-down, but it could also mean from left to right).
In this example, our intention is for the tweet to be most important, followed by the
person who said it, then the actions, and lastly when it was posted.

Chapter 2 ■ Fonts, Colors, and the Invisible UI

13

Figure 2-3 shows another example using the following hierarchy:

•	 Color

•	 Size

•	 Natural Order

Figure 2-2.  Here, the tweet is most important

Figure 2-3.  Color, size, natural order

There is no right or wrong way to establish visual hierarchy. Aesthetically, I wouldn’t
qualify these designs as the best in the world. The design is ultimately up to you and your
users.

The point is that setting up a rule for visual hierarchy and sticking to it consistently
throughout your design is a very valuable thing to think about before beginning. We will
heavily leverage visual hierarchy to create a design that’s purely based on font and color.

For the rest of the examples throughout the rest of this book, this will be the
foundation for visual hierarchy we will be operating under:

•	 Size

•	 Color

•	 Natural Order

Chapter 2 ■ Fonts, Colors, and the Invisible UI

14

Establishing a Font System
Let’s get started defining a font system for our framework. This section will not be about
where to use serif or san-serif fonts, nor will it be about pairing typefaces. We want to
build a robust system that’s focused on function. With a good enough font system in
place, we could theoretically swap font-faces at any point in the process without requiring
a major design overhaul. It could be as easy as simply changing a variable. That’s the type
of system we want to create for our designs.

You might find yourself in one of two situations with respect to fonts.

	 1.	 You are designing something brand new. You have a clean
slate with respect to choosing fonts.

	 2.	 You are designing an interface for a brand that already has
well-defined brand guidelines. You need to establish a system
that accommodates set font guidelines.

Regardless of which situation you’re in, you should always be wary of the limitations
of the Web and always communicate them clearly with brand stakeholders.

Custom Fonts and System Fonts
Of course we need to play by the rules of the medium we are designing in, the Web, so we
do have a few limitations. When it comes to fonts, rendering typefaces to display to users is
a major limitation. A matter of milliseconds could be the deciding factor in whether or not
a user stays or bounces from your site. You can have a beautiful design, but if the user isn’t
willing to wait to see it, then what’s the point? We need to be careful in how we choose our
fonts. When do we need to use completely custom fonts versus generic system fonts?

We all know the advantage of using custom fonts is that it gives our sites a unique
identity. You want to be able to separate yourself, identity-wise, from the rest of the noise
of the Internet. The downfall of that is that in order for the user to see such custom fonts,
they need to download that extra data in order to see it. That means longer load times
since font files are typically not small by web file size standards.

System Fonts, on the other hand, are generic fonts that are already installed on most
computers by default, and don’t need to be downloaded to be seen. You can save a lot
of time by using common system fonts such as Helvetica, Arial, Georgia, and Times New
Roman.

The reliance on system fonts is becoming even more and more important with the
rise of content distribution platforms where you may have extremely limited control over
your design. Examples of content distribution platforms are Facebook Instant Articles,
Apple News, Google AMP, and Snapchat Discover. If you plan on distributing your
product through these channels, utilizing system fonts becomes of utmost importance in
order to maintain the visual consistency of your brand. You don’t want your users to have
different visual experiences of your designs within each of these different channels, in
addition to your own site.

Chapter 2 ■ Fonts, Colors, and the Invisible UI

15

Imagine a user reading a piece of your content on Facebook Instant Articles, then
clicking on a link within that article that directs them to a web view of your site. Will
there be consistency in the experience? What if you need to spin up a Google AMP
version of your content so you can land higher on Google Search results? Wouldn’t you
want the AMP version of your content to have the same look and feel as the content on
your own site? Ideally we would want to maintain visual continuity wherever our user is
experiencing our products.

Think About Function Before Form
When defining what fonts we want to use where, we want to always make sure we are
defining them based on function over form. What does that mean?

It is a common practice in web development to name fonts under a system in the
following way:

$serif_font: Georgia, serif;
$sans-serif_font: Arial, sans-serif;

This is also a different method with essentially the same fundamental flaw:

$primary_font: 'Helvetica Neue', sans-serif;
$secondary_font: Garamond, serif;

What’s the flaw? These naming techniques define fonts based on form first over
function, because the fonts are established on the basis of what the typeface is versus
what its function is. Why is this a problem? The typeface is what may be variable as time
goes on due to branding changes or other reasons. This defeats the purpose of declaring
them as variables to begin with.

So what might stay constant? Defining fonts by their function. In our system we want
to think about what types of information we will be commonly communicating with our
users, and defining our font system based off of that.

$title_font: 'Helvetica Neue', sans-serif;
$subtitle_font: Garamond, serif;
$body_font: Georgia, serif;

Chapter 2 ■ Fonts, Colors, and the Invisible UI

16

Figure 2-4.  Breaking up the fonts on Buzzfeed News Page by what their functions are
versus by the style of the typefaces

Figure 2-5.  Breaking up the fonts on an Airbnb listing by what their functions are versus
by the style of the typefaces

Figures 2-4 and 2-5 show popular websites and apps, and how they might have
defined their fonts based on our proposed naming convention.

Chapter 2 ■ Fonts, Colors, and the Invisible UI

17

Establishing a Color System
Creating a color system is a less complicated, more subjective process — but should still
be carefully thought out. As a point of emphasis when it comes to usability, you should try
not to lean on color too much as an element that defines actions.

Accessibility is the main point of concern. About 4.5% of the world population has
some form of color blindness, so we should be extra careful not to bias against or exclude
those potential users of our products.

For this reason it is always very useful to think about using tints and taking advantage
of contras first, then applying color afterward as an accent.

I almost always recommend looking at color in user interfaces as optional. After all,
your content should be the element providing color, and you wouldn’t want unexpected
combinations of color creating unpleasant visual dissonance. This is also reason to
leverage some neutral colors in your palette.

When setting colors for your interface, another important thing to always keep in
mind is common color associations. An example of this in UX design is applying color to
positive and negative actions, such as saving and deleting. It would be counterintuitive to
use a shade of green as a button color for deleting data or cancelling an action. Similarly
it may not be the best idea to apply a shade of red for actions like saving progress or
submitting data. These types of choices can cause confusion for your users.

For each color, also make sure to consider a corresponding foreground color. There
may be instances where your color may be applied as a background where you want text
or other elements to sit on top of.

As far as naming goes, it would be beneficial to abstract the names of the colors we
would like to use and define them by their roles versus outright calling them by their color
name. Consider utilizing a naming system like the following:

•	 Primary

•	 Secondary

•	 Background

•	 UI

Many people define their colors in their code by their names:

$DarkBlue = #0a62e5

I advise against this because you may very well in the future need to update your
colors. If you no longer wish to use Dark Blue, then you not only have to update the
Hex value, but you also need to refactor every spot where your $DarkBlue variable is
declared. This sort of defeats the purpose of even using a variable for your colors. Having
an abstract color naming system is more scalable to maintain and easy to pivot in case of
brand updates.

Chapter 2 ■ Fonts, Colors, and the Invisible UI

18

Let’s Design an Example
Now that we have a very basic foundation of visual hierarchy, font, and color, let’s try to go
through an example of building a pure text- and color-based site design.

In this example, let’s build ourselves a simple Nameplate Site. A Nameplate Site is
essentially just a site that identifies who you are and has some very basic information
about you. It’s basically like a business card on the Web.

There are some services that easily allow you to create a Nameplate Site without any
coding knowledge whatsoever. The most popular example is about.me (https://about.me/).

Let’s design our own highly functional Nameplate Site from scratch using what we’ve
learned in this chapter.

The first thing we want to do is decide how we want our visual hierarchy to be
defined. In this example, let’s go with the following rule of law:

•	 Size - The biggest things will always be most important.

•	 Color - Color will be a secondary way to command attention.

•	 Natural Order - From top to bottom in the document, although
not as important as size. For example, a colored element lower
in the document might be more important than something
small in the beginning.

For fonts, let’s start off by using system fonts, then later enhance our design by
converting them to custom fonts. Let’s think about what information we may want
to include in our Nameplate Site, and define our fonts accordingly. Here is some
information we might want to include in our design:

•	 Your name

•	 Your current title

•	 Short description about yourself

•	 Links to your social networks and email address

Considering that, here’s how we might want to define our font system:

•	 Title Font

•	 Subtitle Font

•	 Description Font

•	 Link Font

Choosing this font system doesn’t necessarily mean we need to choose four different
fonts. Depending on your knowledge of font pairing, typography, and personal style
(the subjective aspects), you may choose fewer font families but use them multiple
times across your font system.

https://about.me/

Chapter 2 ■ Fonts, Colors, and the Invisible UI

19

For this example, let’s arbitrarily choose our fonts in the following way.

@mixin title_font{
 font-family: Georgia, Garamond, serif;
 letter-spacing: -0.04em;
}
@mixin subtitle_font{
font-family: Arial, Verdana, sans-serif;
font-weight: bold;
}
@mixin description_font{
 font-family: Arial, Verdana, sans-serif;
}
@mixin link_font{
 font-family: Arial, Verdana, sans-serif;
 font-weight: bold;
 text-transform: uppercase;
}

Figure 2-6 shows how we would approach designing something as simple as a
Nameplate Site. Yes, simple in concept, but with an underlying design strategy behind it
makes it a strong foundation to evolve on top of.

Figure 2-6.  A simple font system and casual hierarchy

Wearables and Conversational UI
With the advent of smart watches, the rise of conversational UI’s, and even the early signs
of experimentation in the space of Augmented Reality, we can already start to see the
landscape of where our digital products may need to migrate in the coming years. What
will be our options for interfacing with users in the next generation of digital platforms?

In the space of smartwatches the majority of the interface is just font and color.
There, of course, is very limited real estate to incorporate graphical elements. Even still,
any graphical opportunities would have to recede to the text, which will be the main
communicator in the interface.

Chapter 2 ■ Fonts, Colors, and the Invisible UI

20

Conversational UI is even tougher. These interfaces often live totally within the
environment of another application. From SMS, to Facebook Messenger, and WhatsApp,
you don’t even have an option to design the text. Take it even further by considering
Conversational UI’s like Amazon Echo and the impending Google Home. In these cases
there is no text. You have but just a voice.

Voice and Tone is often an overlooked aspect of UI design. It also is just the beginning
of how we really start considerately designing for what I refer to as the Invisible UI.

Summary
In this chapter we learned how to begin a design from scratch, only relying on the most
basic visual devices of visual hierarchy, fonts, and colors. These basic elements are often
the very first things you should be thinking about when you approach starting a new
design from scratch.

In addition to that, if you are trying to take an existing design and establish a design
framework from it, you’ll most certainly want to tackle defining visual hierarchy rules,
establishing a font and color system first.

Technically once you’ve established these basic principles, you need to have the
utmost minimum knowledge required to start creating logical designs. There are actually
plenty of sites out there made with typography alone. Being able to perfect this is true
minimalism at its finest.

As we progress through the next few chapters we will be adding additional layers of
complexity to how we start grouping and clustering these visual elements. As the content
of subjects that we need to design for becomes more elaborate, such as in applications or
very large databases, the design framework we are establishing will also need to be more
accommodating.

www.allitebooks.com

http://www.allitebooks.org

21© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0_3

CHAPTER 3

Defining Your Basic Unit

Now that we’ve made decisions around our fonts, colors, and general hierarchy
principles, it’s time to do some actual design. Design always begins at the essence of
your product. That means getting down to the bottom of whatever it is you’re trying to
accomplish, and figuring out what pieces you need to put together to achieve that goal.

In this chapter we are going to understand the essence of what a basic unit should
be by analyzing examples, learn a process on how we can architect our own basic unit,
and then go through a practical example – essentially forming the basis of a Modular
Design Framework.

Our entire design is going to revolve around how we decide to construct our basic
unit. By the end of this chapter we will pretty much have the foundation of a usable
product. Although the aesthetic itself may appear very monotonous, it will still be
shippable.

Understanding the Essence of Your Product
Design should always be working to facilitate a primary function. What is it that you are
trying to accomplish?

•	 Are you selling a product?

•	 Are you providing a service?

•	 Are you presenting information?

After you figure out that question, you must then think about the tangible elements
you need that will help you satisfy that goal.

We Need a Product to Sell
What resource does our service come from?

What is the actual piece of information that you want to present?
Whenever you start a design, it’s easy to get caught up in the broad idea of what you

want to accomplish without thinking about the smallest pieces that will be doing the
heavy lifting to get you there.

Chapter 3 ■ Defining Your Basic Unit

22

We sometimes get too wrapped up in thinking about things such as increasing sales,
acquiring users, or driving views. That’s just the bottom line though. Designers need to be
focusing on the means of getting there. This starts by discovering what the bare minimum
elements you need to have in order to accomplish your task. Thereafter it’s all about
iterating on that element to hopefully optimize toward your goal.

The theory behind this approach is that once you determine your basic unit, all
other UI necessary from there has to do with the manipulation and interactions with that
element.

Theory in Practice
In order to better understand the logic behind what I’m proposing, it’s always good to go
through a few examples. Here I will analyze the designs of a few well-known and widely
used products, and under the lens of this approach identify what that product’s basic unit
can be.

To be clear, I am not saying this is how these products were designed – but only if we
were to reimagine their systems if they were to be thought through by using this principle.

Facebook
There seems to be a lot going on design-wise on Facebook; however, it is all based on
their basic unit of user posts. These units carry through to Pages, Groups, Events, News,
and even Messages (Figure 3-1).

Figure 3-1.  Facebook may seem like an extremely complicated system, but it can really be
boiled down into a single basic unit: the individual post

All of the interactions around Facebook rely heavily on the organization of individual
posts, whether that is posts you make, your friends make, or a company makes. The
Newsfeed is just an aggregation of posts of all the people you follow. Your “wall” is just
an aggregation of all of the individual posts you made. Most of the core functionality
of the site happens within each post (reactions, comments, consumption), and also as
different ways of aggregating groupings of individual posts.

Chapter 3 ■ Defining Your Basic Unit

23

Airbnb
Airbnb, the popular service that allows you to stay in other people’s homes while visiting
other cities, can also be reduced down to a single basic unit: individual home listings
(Figure 3-2).

Figure 3-2.  With Airbnb, every feature is built around an individual home listing

Many people may believe that services or utility-driven sites are more abstract
than other digital products. But they, too, can be contextualized into basic fundamental
units. Even when you consider the UI of the map, it is just merely a different method of
aggregating the basic unit.

Uber
Just looking at the interface of Uber, the popular ride-hailing app, it might not be
immediately clear what their basic unit could be. However, it could be said that their
entire app revolves around each individual driver, represented as cars on a map. Users
interact with this basic element of the car representing each driver (Figure 3-3). They are
categorized by tiers (uberX, uberBLACK, uberPOOL etc.), and when the user ultimately
summons one, they continue to follow that unit through the design on the app until they
reach their final destination.

Chapter 3 ■ Defining Your Basic Unit

24

Amazon
Amazon, like all retailers or shopping-focused sites, has the clear basic unit of a
shoppable product (Figure 3-4). The entire design for these types of sites is meant to
group and filter a variety of individual products together in different ways.

Figure 3-3.  Uber’s interface revolves around cars, which represent drivers as a basic unit

Chapter 3 ■ Defining Your Basic Unit

25

BuzzFeed
BuzzFeed, like many other news and media sites, presents pieces of content to their users
as their most basic unit (Figure 3-5). The various pages that make up the site are merely
different collections of this basic unit, which can be written content, images, and also
video.

Figure 3-4.  Individual products are the basic unit for Amazon

Figure 3-5.  BuzzFeed’s basic unit is each individual piece of content, represented in
discrete blocks

Chapter 3 ■ Defining Your Basic Unit

26

Chase
Let’s look at something a little less obvious – a banking site – through the new updated
Chase account page (Figure 3-6).

You might assume that the company goals for Chase are to acquire accounts and
increase investments. Although that’s the goal, it doesn’t give you any context for the
actual elements you need to design for. It may not have any direct relation to how you
would need to design an account management page.

If you think more about the essence of the functionality of a banking site, you’ll begin
to understand what you need to design for. I propose that the basic unit of a banking site
would be individual transactions.

Everything that a user would need to do within a banking app involves transactions.
Whether that’s paying for something, depositing money, transferring, or withdrawing
money, every action is just an aspect of individual transactions.

Onward Inward
Once you determine what your basic unit should be, the next task is to start designing
the unit itself. Designing inward means determining what elements you need to contain
within your unit. Designing outward means determining how you would like to aggregate
your basic units across pages. Designing outward also requires figuring out how you want
your units to be manipulated.

Since this chapter is about the basic unit, we will focus on how to design inward.
In later chapters we will tackle how to build up and out using this unit.

Figure 3-6.  Chase account page

Chapter 3 ■ Defining Your Basic Unit

27

Inventory
The first part of designing the inner part of your basic unit is determining what elements
you should display. You don’t have to display everything, just enough to give the user
relevant context. What you decide to start with will not be set in stone. In coming up
with a design, you should keep in mind how you might want to be able to add or remove
elements within your unit.

The first thing we want to do is try to take an inventory of everything that we can
show. Let’s take the example of a piece of content. This could potentially be all of the
possible elements you can show in your unit.

•	 Title of Content

•	 Short Description

•	 Image

•	 Timestamp

•	 Author

•	 Tags

•	 Category

Of course there could me more, depending on what data you actually have. Once
you have this inventory, the next step is to start narrowing it down to what you feel is
most important. In some cases you may feel that everything is important, but remember,
displaying too much information at once could be overwhelming.

Establish a threshold for yourself (I recommend 3-4 elements). Focus on what pieces
will represent your unit the best. The point of this unit is to lead the user into a more
detailed view.

Flow
The next thing to think about is flow. Think about how you want your units to flow
throughout your pages. The most common patterns are the “Z” and “F” patterns
(Figure 3-7). However, you may come up with something completely different – you
are the designer after all.

Chapter 3 ■ Defining Your Basic Unit

28

You may find that certain pages need different patterns. We will tackle those
questions in the next chapter as we focus on designing outward. We just need to have a
general idea of where we want to go now as we design the unit itself.

Design
Using your established font, color, and hierarchy principles from the previous chapter,
you can take your chosen inventory of elements and your idea of how you might want
your units to flow in order to design your unit. This is where you can flex your aesthetic
muscles. But don’t fall in love with a particular design nor get too perfectionist about it.
This will likely change down the road as you will see in a later chapter.

Figure 3-7.  You shouldn’t need to feel obliged to stick to a single pattern

Chapter 3 ■ Defining Your Basic Unit

29

One for All
It’s important to note that in the way we are building this modular system, to start, is
by using a single unit and repeating it. You may be thinking this is super restrictive and
limiting. However, this is the bare minimum you will need to build your product.

Of course there are an infinite amount of use cases you must probably be pouring
over in your head, and also a thirst for variety. When it comes to building a functional
product, these things are often unnecessary, and merely nice to have. It is possible to
move on to the next chapter from here once you decide on the design of your basic unit.

In Chapter 5 we will talk more about testing, iteration, and variation, where we will
be able to expand and grow the variety of our designs to accommodate more “types” of
content as well as revisit and optimize our designs.

For now, let’s go through the practice of designing a basic unit for our current
example site.

Building Our Own
As a designer, if we want to do a little more marketing for ourselves above just a basic
nameplate site that just has personal details, what would we do next? We might want to
make a site that shows several projects that we’ve worked on. Let’s build a portfolio site.

The Basic Unit for our portfolio site will be each individual project that we want to
showcase. Our site will be based off of reusing the design we make for this single base unit.

Now let’s take an inventory of all the information we want to include in our basic unit
and prioritize them based on importance. What you decide you want to include and how
you rank each piece of information may differ from the below, but it’s all up to you what
you decide to show and how.

•	 Image

•	 Project Title

•	 Short Description

•	 Project Type (i.e., Website, Photography, Graphic Design, etc.)

•	 Client

http://dx.doi.org/10.1007/978-1-4842-1688-0_5

Chapter 3 ■ Defining Your Basic Unit

30

As for flow, let’s go with a Z pattern for this example (Figure 3-8). We will do a second
example afterward to see how an F pattern might look different.

Now that we have decided on all of those details, let’s start designing a wireframe of
our basic unit design. Let’s apply what we learned in Chapter 2 about Fonts, Colors, and
Visual Hierarchy.

Here’s how we’ll establish visual hierarchy:

•	 Size

•	 Natural order (top-down)

•	 Color

Here is the font system we will be using based on our inventory:

•	 Title Font

•	 Description Font

•	 Meta Info Font

Figure 3-8.  For this example, we decide on a Z pattern, which will affect how we design
our basic unit

http://dx.doi.org/10.1007/978-1-4842-1688-0_2

Chapter 3 ■ Defining Your Basic Unit

31

Figures 3-9 and 3-10 show two potential designs we could do, but of course the
options are unlimited.

Figure 3-9.  One way we can design our unit

Figure 3-10.  Another take on our basic unit. Aesthetically it can look any way you choose,
as long as you accommodate all the elements in your inventory

Chapter 3 ■ Defining Your Basic Unit

32

Putting them into our decided Z pattern flow would render a site design like that
shown in Figure 3-11.

Figure 3-11.  Using the Z pattern

Figure 3-12 shows what a very basic structure of our design created from our single
basic unit will look like.

Chapter 3 ■ Defining Your Basic Unit

33

Although these designs may not look like anything groundbreaking, it serves as the
foundation for something that can be expanded upon to create something scalable, as
you will see in later chapters.

The important thing to note is that with very minimal effort and design, we actually
have a shippable product. Let’s choose one of the wireframe directions and flesh it out
into an actual design with real content (Figure 3-13).

Figure 3-12.  How the same design transforms by using a different basic unit design

Chapter 3 ■ Defining Your Basic Unit

34

If we had chosen to go with an F pattern, we may approach designing our basic unit
differently (Figure 3-14).

Figure 3-13.  The same design with some visual design applied to it

Chapter 3 ■ Defining Your Basic Unit

35

Figure 3-14.  The basic unit designed for a different flow. Here we consider an F pattern.

Figure 3-15.  How our alternative basic unit design flows for an F pattern

Figure 3-15 would be the rendered design in an F pattern that is guided by our unit.

Chapter 3 ■ Defining Your Basic Unit

36

Now that we know the basics of designing a basic unit, we can start thinking about
expanding our design by establishing some organization around our units through
programming, pages, and navigation.

Summary
In this chapter we defined what a basic unit should be. This is the most important
foundational element of your Modular Design Framework. In analyzing your own product,
you should be able to identify what you want your basic unit to represent. From there,
you should be creating and constantly maintaining an inventory of properties you want
to represent your basic unit to your users. This is what you’ll have to work with to design.
From there, aesthetics is entirely up to you. By focusing on the design of your basic unit,
you will indirectly already be designing the rest of your product.

From here, the rest of your framework will depend on establishing logic around
variations of your basic unit and also how you want to group your units for different pages.

37© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0_4

CHAPTER 4

Adaptation, Reusability,
Variation, and Iteration

Fold up a piece of paper several times, cut a few holes into the fold, and you have
completed a common exercise for elementary schoolchildren. You’ve made a unique
pattern for a snowflake. While this took minimal to no effort at all, you might be surprised
to know that – in a class of 30 children – no two snowflakes are the same. If you use a big
enough piece of paper and vary the individual shapes you cut into your paper, you might
produce some very fascinating designs.

This is essentially why creating a design pattern is so lucrative, especially for bigger
businesses. The focus is on designing a small finite set of pieces, yet affecting a much
larger, seemingly infinite picture.

This is the approach we want to take with our basic unit. At this point we have
designed only a single shape for our design as a whole. On a bigger scale, our single
module framework may appear uniform, monotone, and bland.

While this is true, there is also a huge advantage to taking this route for design
frameworks. We are able to design and ship a product very quickly. All the work you had
to do up to now was to identify and design your basic unit, which is often the core of what
your product is.

Just by having this one basic unit design along with your fonts, colors, and visual
hierarchy, you can build a quick, minimum viable product with a design system that you
can start closing a feedback loop on through actual usage. Being able to start collecting data
on your designs early in the process can help better inform the direction of your designs.

The main point of using a Modular Design Framework is to enable our design to
evolve with our product. This uniform, monotone, single-unit system is not where the
design ends. We can now start collecting data about our design early on, be able to
modify it rapidly, and also add units based on new features and extend the performance
of our product.

As we learn more about what is resonating with our users, we will get better at
knowing exactly what we should add, subtract, and modify versus making guesses and
doing the work – only to throw it away.

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

38

Imagine spending months trying to design the perfect ice cream sundae. You
carefully plan it out and meticulously choose the ingredients, mixing textures of crunchy
and soft, and balancing the savory and sweet. Once you present this sundae to your
primary user, you find out they don’t like chocolate. Meanwhile, several of the ingredients
you used on this sundae have chocolate in it and you need to go back to the beginning to
make a new sundae without chocolate.

It would have been nice to know this early on in this process: having tried serving
your user a basic scoop of chocolate ice cream first, then trying out individual ingredients
one at a time to see how your user responds to them – before you start pairing complex
textures and flavors.

This chapter will guide us through how we handle that same exact process of trying
out different ingredients to find a design that works well for our users.

Preventing Confirmation Bias in Design
There is no crystal ball that will outline all of the elements you will need to create designs
for at the beginning of any project. Much of the beginning is just a lot of guesswork
based on past experiences and the imitation of products that are already out there. This
is a potential minefield of confirmation biases that can do harm to your users, or even
exclude users.

One of the biggest flaws when it comes to design is the assumption that our own
preferences will be the same as those of our users.

“I love chocolate, so how could anyone hate chocolate?”
This type of thinking may cause us to only focus on results that prove our

assumptions, or only seek feedback from others who share similar opinions. When we
allow little biases like this to add up before closing the loop with our actual users, it may
hurt our designs in the long run. We invest and waste a lot of energy in something that
could have been proven wrong early on.

The real design work that will have a meaningful impact on your product happens
after a product is launched and you analyze how it gets used to determine what it needs.

This is a great reason for designers to be more comfortable shipping basic elements
first, then building on our design systems from there, armed with better data.

How to Adapt What You Have
So how do you approach taking what you have, and evolving it to be better at handling
more complex tasks for your product? In approaching developing our Modular Design
Framework, we want to create a plan for how we introduce different designs for our basic
unit, so we don’t go out of control assuming we need to create a new design for anything
and everything that comes up.

Remember we want to keep our framework as lean as possible: a smaller finite pool
of modules based on our basic unit that we can easily maintain. In Figure 4-1 we show a
line of questioning we need to apply to how we approach introducing new designs. This is
our playbook for adapting our framework.

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

39

Our last course of action should be requiring a new design. Since we want to create a
sustainable design framework, we should make every effort to use what we already have
and build upon it. This is crucial to the success of our Modular Design Framework.

Recycling and Reusing Basic Units
In our design method, our first course of action is to extend the capabilities of what
we already have. How do you make do with what you already have to meet the needs
of something new that you want to accomplish? Answering this question will be your
greatest task as the architect of your design framework.

Figure 4-2 shows the basic unit that we designed in our previous chapter.

Figure 4-1.  The line of questioning we need to ask ourselves before introducing any new
design to our framework

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

40

Figure 4-2.  A basic unit design from the previous chapter

Figure 4-3.  Repurposing the basic unit made to represent a project to now represent a
person who has different data types of data

This unit was designed to represent a project as part of a portfolio. However, say, for
example, we want to now also include bits of information about ourselves on the same
page. Instead of going right ahead and designing a brand new unit, let us think instead
about adapting our current unit (Figure 4-3).

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

41

If you find that the design that you went with is not adequate to meet your needs,
you can adapt the design to meet the needs of both your current and your new features
(Figure 4-4).

Figure 4-4.  After seeing how a person looks in this card format, you may want to update
the design of your basic unit to something that can display both types of content better

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

42

Whenever you encounter needing to add something new to your framework, see if
you can use any of your current designs to represent the new information. Try first to do
a straight replacement of the content. If it works, then consider whether or not you want
to update the design of your basic unit to better accommodate the new context you need
to use it for.

Variation
If attempting to reuse an element fails to accommodate different use cases you need to
satisfy, then you may begin introducing variations of your units. Variations are just simple
modifications to an existing design to accommodate different needs. For the most part,
a variation retains much of the same design qualities with a slight tweak in only a few
variables. We will go through a couple of examples that exemplify how we implement
variations to our basic unit design.

Example: Size
An example of a type of variation we might want to introduce is on the size of our units.
Maybe certain pieces of content are more important to us than others. In the example of
my portfolio, I feel my website work is stronger and more in depth than my print pieces,
so I want my design to communicate that to the user. A simple way to accommodate
this use case is to apply a size variation to my unit design for when they accommodate
websites.

In Figure 4-5 notice how all of the attributes of the modules remain the same except
for the size of the width. Variation is most easily implemented with the minimum amount
of attributes changed. Think of ways to leverage simple changes in order to maintain a
familiar visual system.

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

43

Example: Availability of Data
We might want to create variations in our modules for the reason of availability of data.
What does that mean?

In our example, we designed our module to have an image, headline, description
text, and call-to-action to view the project. What if a particular piece of data we want to
use our module design for doesn’t have an image?

We might want to consider variations in our module design that excludes missing
data. In many cases the design may not work by just simply leaving out an element, and
we need to make additional tweaks to the design to fill the void. So maybe for elements
that don’t have an image, we need to bump up the font size of the headline.

Figure 4-5.  Applying a size variation to my basic unit design for websites

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

44

In Figure 4-6 we show this third variation on the basic unit for a card representing a
written article titled, “Do It Right, or Do It Twice.”

Figure 4-6.  Showing a third basic unit variation to represent an article that doesn’t have
an associated image attached to it

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

45

Taking It Further
These are just very basic use cases for how we implement simple variations. How you
determine variations for your framework is entirely up to you. You may want to establish
logic to have modules be different colors than others, or you may want to use different
fonts or different layouts for different use cases. These choices are in the designer’s
hands. Tying your logic to some type of user benefit will create a more sustainable and
meaningful system.

Carefully crafting the way you handle variations in the designs of your modules is
your opportunity to affect the monotony in your designs.

Making Iterations
Iteration is about repeating a process on our design to get it closer and closer to satisfying
goals through progressive improvements. We should be keeping our eye on the existing
designs we have and constantly making them better as we get more data about our
product.

Do you want higher click-throughs on your modules? Do you want users to reach
further scroll depths? Maybe you want to increase time on the site? To figure out how
we can optimize our designs to better at achieve these goals, we can apply an iterative
approach to our modules.

The way we have set up our framework up to now gives us a solid foundation to work
with. Not only can we use variations of our modules to achieve different tasks, but we can
also use them to perform an iterative cycle. Figure 4-7 shows what this execution looks
like within our framework.

Figure 4-7.  What an iterative execution looks like in the way we’ve set up our design
framework

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

46

We can prototype alternative designs of our basic unit through a variation, gather
data on it, and make a determination whether or not it is performing better than our
original design. We keep doing this continuously to make sure our designs are as effective
as they can be.

How can you tweak the design of your unit to advance those goals? Because we have
established a modular system, improvements we make to our single module can have a
compounding effect across our entire site. This is an extremely powerful characteristic of
Modular Design Frameworks.

A/B Testing
Let’s briefly go through the method of testing that will be the most effective in guiding
your iterative process within this framework: A/B Testing. A/B testing is a method by
which you show one design (version A) to a certain percentage of users and another
design (version B) to the rest of your users. You then analyze a specific metric you are
interested in about the designs, normalize the results, and compare them to each other to
determine which design is best.

For example, say we want to test the existing design of our basic unit versus a new
variation of it. We can show our existing design to 90% of our users, then the new design
to other 10%. We often expose a much smaller percentage of users to new designs just in
case the new design has a drastic negative impact on metrics. We reduce the amount of
risk involved.

Modular Design Frameworks are excellent for A/B testing because you can easily
interchange module variations to test against each other with little to no effort. Figure 4-8
is an example of how this could be executed just by simply applying a different class to
the same markup.

Figure 4-8.  An example of how two variations of the same base unit design can be applied
in code that would make it easy to A/B test

Let’s go through a few simple examples of some design variations we can make to
our modules for the purposes of iteration.

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

47

Example: Increase Click Rates
Let’s say one of our objectives is to get more users to take action on our designs. We may
have a hypothesis that we want our modules to appear more clickable. Let’s add a button
into our basic unit (Figure 4-9).

Figure 4-9.  A variation on our basic unit, which adds a more visible button

This is a small change, and easily testable. If this gets applied across every unit
throughout your site, it could have a huge impact with minimal to no effort at all.

You can even try different aesthetic variations to see if they’ll have any type of
impact. One simple aesthetic approach to try and affect the same exact metric would be
to make the unit appear more clickable by applying a drop shadow (Figure 4-10).

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

48

As mentioned earlier in Chapter 1, aesthetics are all up to you; however, you now
have the foundation to easily test different methods and have the data to back up design
choices instead of debating over subjective preferences.

Example: Increase Scroll Depth
Are there ways we can use the design of our basic unit to get users to scroll further
through our page? Using our framework we can test some simple variations, like playing
with size and visual elements to guide the user further down the page (Figure 4-11).

Figure 4-10.  Applying a drop shadow to the card versus a pixel border to make it appear
more clickable. Can it perform better? Let the metrics decide.

http://dx.doi.org/10.1007/978-1-4842-1688-0_1

Chapter 4 ■ Adaptation, Reusability, Variation, and Iteration

49

Figure 4-11.  Different design variation that affects size and introduces an arrow

We can leverage our framework to rapidly implement and start measuring real
data from our users. We can observe the reactions to different designs to inform what
directions we should or shouldn’t take. To many, this is a more effective approach than
spending time on ideological debates before even trying anything.

Summary
In this chapter we defined how we want to handle the way our Modular Design
Framework will adapt to various changes we may encounter. From our product needing
to accommodate new features, to optimizing with respect to certain metrics, we have
a plan for how we want to introduce alternative designs and update existing designs.
We see what we can reuse from our design, then we see how we can create variations of
existing designs, then we collect information on those variations and implement them
into our framework.

51© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0_5

CHAPTER 5

Organization, Clustering,
Pages, and Navigation

We now have the basis for our design framework through our basic unit and variations of
that unit. What happens when we start putting our units together and composing more
complicated layouts with them? Do they hold together or do they start to fall apart? In
this chapter we will discuss various strategies for organizing, clustering, paging, and
navigating through your base units.

Up until now we have only been focusing on the designs of the individual units. As
far as using them to create larger layouts, we have only discussed the concept of flow from
Chapter 2.

As we begin expanding our framework, we’ll want to start mixing and matching our
units to construct bigger modules. We’re going to set you up with some ideas to consider
as you form your designs.

Organization
As our content begins to grow we need to carefully think out how we want to organize
everything. There are many ways to go about this, but we will just cover a few approaches
so you can determine what’s best for your product. The main point is that organization
should be done primarily to facilitate your user’s comprehension of your content.

Categorically
The most common way of organizing content is categorically. Typically under this model,
your pieces of content will be divided under similar topics, themes, or properties.

http://dx.doi.org/10.1007/978-1-4842-1688-0_2

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

52

One of the most common examples of sites that get divided in this manner
is Shopping sites. In Figure 5-1 we see a categorical breakdown of content on the
Bloomingdale’s site by Dresses, Active, Tops, Swimsuits, etc.

Figure 5-1.  Bloomingdale’s women’s section divided into deeper categories

News and Media sites are also commonly organized under categories. In Figure 5-2
we take a look at The Verge, where they organize their content into categories like Tech,
Science, Culture, and Cars.

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

53

Consumption Paradigms
Suppose different pieces of your content can be consumed differently. A common example
of this is articles vs. videos vs. audio. Articles need to be read, while videos can be played,
and audio needs only to be listened to. This is a great way to separate your content out that
will hugely benefit your users, because they don’t require the same design.

Figure 5-2.  The Verge is divided categorically as well

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

54

In Figure 5-3 we look within the content of the design site It’s Nice That to see that
they have organized their content in a way that separates articles from videos. They have
also given them different designs based on how they should be consumed.

Make a decision on how you want to organize your content early on so you have
an idea as to how you’ll want to start guiding the expansion of designs within your own
framework.

Figure 5-3.  It’s Nice That separates articles from videos and gives them different design
treatments

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

55

Clustering
Clustering is merely the simple act of creating a bigger module from a collection of base
units. Figure 5-4 shows how a set of 16 base units can be reinterpreted as three bigger
modules. These bigger modules are clusters.

Figure 5-4.  We can form bigger modules by defining clusters of base units

In clustering our units into bigger modules, we can start building bigger and
better layouts. We’ll have logical ways to separate out our content that makes sense for
our users.

Media and Shopping Sites make the most use out of clustering since they always
have a plethora of content they want to show the user. Clustering allows them to present
their content in a clearer way.

In Figure 5-5 we see how Vice consciously clusters content to separate out their
Latest Stories from their Video content.

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

56

In Figure 5-6 we also see an example of how Nike creates visual clusters to help their
users parse through their products.

Figure 5-5.  Clustering as done on Vice

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

57

As we think about our own Modular Design Framework potentially growing, we’ll
want to consider our own logic for how our units could be clustered together to form
bigger modules. In considering my portfolio design from the previous chapter, Figure 5-7
shows how we might want to cluster it.

Figure 5-6.  Visual clusters for shoes, essentials, and brands, as seen on Nike’s website

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

58

Figure 5-7.  Applying the idea of clustering to my portfolio design from the previous chapter

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

59

Designing with Cluster Modules
Now that we understand the basic idea of clustering, we want to try and design a finite
set of cluster modules that we can begin reusing around our design. Imagine we have our
basic unit A with a variation of that unit represented by B in Figure 5-8.

Figure 5-8.  Basic unit A with a variation unit B

Figure 5-9.  Unit A and unit B put together into a cluster module

We then put these two units together to form a simple cluster module as seen in
Figure 5-9.

Let’s also make a second cluster module using three A units, as seen in Figure 5-10.

Figure 5-10.  Unit A used three times to design a cluster module

We can then use the two separate cluster modules to start creating different design
possibilities. Figure 5-11 shows just two layouts using these two-cluster modules. You can
create many different layouts, with just this simple two-module, two-cluster construct.

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

60

This is just a very basic example. If you expand your variations of units and form
different cluster modules with them, the possibilities begin to grow exponentially.

Paging
A more obvious way to expand on your framework is through paging your content. Paging
is literally dividing out your content onto separate pages. Depending on how you’ve
decided to organize your content will determine how you page your content.

Using your cluster modules, you can start composing templates for different types
of pages. In Figure 5-12 we see that in Netflix’s design, every category page shares the
same template.

Figure 5-11.  Unit A used three times to design a cluster module

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

61

If we were to achieve a similar design as Netflix’s with our Modular Design
Framework, we would need a single template that we could call a “Category Page” and
have a majority of the site’s design accounted for already.

When approaching your design framework, try to establish a limited number of
templates to use across all of your pages.

To continue the example of my portfolio, I can think of two types of templates that
I may need to compose page designs for the entire site, as represented in Figure 5-13.

Figure 5-12.  Netflix Category Pages of Action & Adventure and Comedies

Figure 5-13.  Project list and detail templates

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

62

Navigational Design Elements
Now that we know how we want to organize, cluster, and page out our content, we should
now consider how we want the user to navigate through it all. When we talk about the
concept of navigation, menus may come to the top of mind.

With our Modular Design Framework, we want to change our perspective of
navigation more toward the idea of sorting. As a user travels through the meat of your
product, what they really want is an easy way to sort through it all to find what they’re
looking for. Navigational elements should facilitate how the user moves through various
cluster modules and also across different pages.

Titles
Titles are an obvious piece of UI that will help us identify to the user the meanings of
each of our pages and also clusters of content. As you may have noticed, this element was
informally already added as seen in Figures 5-11 and 5-13. We can dress these up more
aesthetically as we please.

Main Navigation
The Main Navigation is an important universal piece of UI that you should always include
on every page of your design. This often includes branding for your page, along with a
way to access a list of other pages in your design. Treat this like the remote control for the
rest of your site (Figure 5-14).

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

63

Figure 5-14.  Simple example of a Main Navigation affixed atop example pages

Internal Filters
Filters are often an element seen mostly on Shopping Sites. However, filters could be
great ways for a user to sort through the units in your modules to find exactly what they
want. Consider incorporating filtering UI elements as part of your pages or even cluster
modules.

In Figure 5-15 we show how Airbnb uses a filtering UI to help the user sort through
the units on their Experiences page.

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

64

Breaking Down the Basic Unit
Although our basic unit should have been considered as our most fundamental piece of
design, it is possible to also break it down further into submodules.

The common use case for this is to represent a small collection of content as a single
unit. Maybe this comes in the form of a “popular content” module or maybe a multiple-
part series of content (i.e., multiple-part tutorials, episodes of a show, multiple pieces of a
single outfit, or breaking news stories). In Figure 5-16 we can see an example use case of
this employed by Facebook for their Trending Topics module.

Figure 5-15.  Airbnb’s filter UI on their Experiences page

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

65

Figure 5-16.  The stories contained in this broken down module are just much smaller
versions of posts you might also see appear as a regular unit in your feed

If you have multiple pieces of content that are lower in hierarchy to whatever you’ve
set as your basic unit, then you may need to create a design that breaks down your basic
unit into smaller pieces. It’s recommended not to go further than breaking down your
unit one level down. Going any further will create modules that may be dramatically
smaller in relative size to other groupings within your design. If you do believe you need
to break it down further, then you may need to reconsider what you’ve decided for your
basic unit (Figure 5-17).

Chapter 5 ■ Organization, Clustering, Pages, and Navigation

66

Summary
In this chapter we outlined approaches on how to begin expanding your design
framework from your basic units. We formed larger cluster modules from variations of
basic units. We then created templates from compositions of cluster modules. With the
addition of navigational UI elements to access all parts of the design, we now have all the
foundational knowledge to design a complete framework on our own.

Figure 5-17.  An example breaking down of our basic unit

67© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0_6

CHAPTER 6

What’s Next?

At this point we have introduced the foundational pieces you need to consider when
designing a Modular Design Framework of your own. What is outlined in this book is merely
just the boilerplate of things you should consider when approaching your own designs.

If you craft your designs with an underlying logic utilizing these methods, you’ll have
much greater control when it comes to its implementation. The reason is because this
approach in design is very similar to the approach taken when designing code. It’s the act
of building small reusable blocks that can be progressively enhanced to perform greater
tasks. This method of design is just the visual representation of that concept, which is how
design for digital should be handled.

Once we have laid our initial groundwork of basic units, variations, clusters, pages,
and navigational elements, the job from here is to continually enhance each of those
pieces. What new features will your product need to add in the future? What metrics do
you want to improve upon? These are only a couple questions that you can attack with
easy updates to your framework.

Each and every piece of your system is impermanent, meaning that you should be
able to quickly modify, redesign, or tweak any part without requiring any huge overhaul
of the entire design. Since everything is based off of your repeatable modules, you can
affect change rapidly and at scale. These changes will also be specific to the habits and
behaviors of your user’s unique experience with your product.

Let’s go back through each of the major concepts of your Modular Design
Framework and look at what could potentially be next as far as evolving and maintaining
the design language of your framework for your product.

Fonts, Colors, and the Invisible UI
Many brands, especially those that are not yet established, and constantly looking for
ways to stand out, may go through several brand overhauls in their lifetimes. For your
modular framework, the ability to update the design to accommodate completely
different branding elements should be just as easy as reassigning new font files and new
color codes to only a few different variables.

You may want to add more fonts or add additional logic by way of additional
variables. Our original example only included headline, body, and UI fonts, when your
system can expand based on your content to include things such as a meta-information
font, caption font, citation font, or whatever your product might require based on your
content. It really is ultimately up to you how you wish to construct your system.

Chapter 6 ■ What’s Next?

68

The same goes for colors and assigning new hex codes to only a few existing
variables. If anything, you may want to add some complexity to your color system to make
your designs a little more dynamic and not as predictable. For example, you might want
to implement a random color scheme into your color system, or leverage techniques like
using dominant colors from images to fill containers.

You may want to consider how and if you can implement your chosen fonts and
colors for your product on other platforms. If you can’t use custom color values or
import typefaces, you may need to determine system/platform-based fonts and color
fallback rules. For example, you only have access to a limited amount of typefaces
on iOS, which are also different on Android, and Windows-based systems. Since the
convention we established on applying fonts and colors is based off of a naming system
dependent on functional usage (headline, body, UI, etc.), and a color naming system
based on relative hierarchy (primary, secondary), it ultimately does not matter as much
what the actual values are so we can ensure our design stays relatively consistent no
matter where it appears.

As new platforms emerge that you need to adapt your product onto, you should
always be optimizing and evolving your core framework, and not simply making offshoots
of your design.

For screenless interfaces you may need to employ elements like language and
brand-voice into your framework. This may be done by establishing tone rules in your
copywriting.

The Basic Unit
Whether you’re building a product from scratch or creating a new system for an existing
product, your basic unit will require an endless amount of attention. Since your basic unit
represents your absolute core set of data, all of your future work involves maintaining that
data. That includes adjusting the design to either take into account more data, or finding
ways to strip out data that’s been tested and verified to be excess.

As your product develops and evolves through time, you’ll encounter several
requests to always add more and more to your design. As the designer, you’ll need to
be the gatekeeper of what core set of data you choose to expose within your basic unit.
You should constantly be playing with various elements, determining what is and isn’t
important to include as potential elements to manipulate and display.

Variations, Optimizations, and iterations
Similarly to maintaining the data for your basic unit, maintaining your inventory of
variations of your basic unit is just as important. Having too many variations may visually
clutter any type of hierarchy you hope to establish, while not having enough variations
will keep your design flat and unfocused.

Since you have a modular system, the biggest advantage is your ability to quickly
swap in and out design changes at scale. For this reason you should constantly be testing
and analyzing different variations before solidifying them as part of the system.

Chapter 6 ■ What’s Next?

69

The technological landscape is fickle, and sometimes data that you’ve gathered
to prove or disprove certain design decisions could change in a matter of months or
even weeks. For this reason you should constantly be collecting and analyzing data
on variations of your designs to know whether or not something needs to be tweaked
or replaced.

In some cases, even the functionality of your product may drastically change,
causing you to completely redesign your basic unit and variations of it. These are things
to be completely aware of and to constantly stay on top of as a designer of the framework.

You may also want to work on adding complexity into the relationships between
variations of your modules. If your product has significantly developed from its early
stage, you may need to deliver on complicated features, which require more logic from
your system. You will need to constantly adapt, improve, and iterate on your design
framework in a smart way in order to maintain its sustainability. This can be done
through proper management and development of your framework’s variations, iterations,
and optimizations.

Clusters, Pages, and Navigation
Your cluster modules and page compositions will likely be greatly affected by any updates
you make to your basic units and variations. So your most important task here is to make
sure the logic you’ve established holds up as you continue to progressively make changes.
If you need to introduce new design elements, you should make sure they can easily be
accommodated.

Your cluster modules and pages may even serve to accomplish certain tasks
themselves. So you may want to apply testing to these compositions as well to inform
their designs.

A Never-Ending Job
Maintaining your framework is a never-ending job. It’s a constant cycle of experimenting
new things, adding functionality, and feeding all of your new learnings back into the
system. Sometimes you may also need to tear down and reconstruct parts of the system.

This methodology is merely just a way to set you up for the right type of thinking
when approaching your own projects. It’s not a process that needs to be followed
religiously, since you have a lot of freedom as far as setting up your own visual language
and deciding exactly what you want to display, and how it gets displayed. This is an
approach to how to structure your design in a way that can easily manifest itself for your
own purposes.

Hopefully, after reading this book you’ll have a new perspective on how to approach
the way you design products. The next time you go into a project, try to apply this line of
thinking to your compositions, and make a framework out of it.

Chapter 6 ■ What’s Next?

70

Summary
Don’t ever assume that whatever design you create is ever complete or final. Design
should be organic, growing alongside your product. The most successful digital products
have gone a long way design-wise since from when they first launched. Just think about
how many times Facebook users were outraged because of a design update. Designing
with change in mind from the start will save you a lot of work in the long run. So keep
collecting data, keep testing changes, and keep evolving the design using your framework.

71© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0

APPENDIX A

Breaking Down Examples
into Modular Systems

One of the biggest criticisms of Modular Design systems is that the designs are always
bland and uniform. While many actually applied systems might appear that way, that
doesn’t need to be the case. It also shouldn’t be the case once there are more designers
who fully understand the proper way to logically design for these systems.

In fact, I might be able to argue that any site can be theoretically broken down into a
modularly defined system, whether or not they actually built it with a modular structure
in mind. This Appendix will take you through visually diverse examples of live sites, and
how those designs could be broken down into a modular as outlined in this book.

The goal here is to continue to inspire you to always make an effort to define a
modular structure and logic underneath your creative layouts.

Example 1: Herokid Studios
Herokid Studios is a creative services company who has a pretty slick and minimal design
for their site. The design in Figure A-1 can be easily achieved with the logic of a simple
Modular Design Framework.

Appendix A ■ Breaking Down Examples into Modular Systems

72

Font System
While it seems like Herokid Studios only uses two type styles, it’s still important to create
a font system defined by functions. For this design, it appears we can establish a system
with three fonts: A Title Font, a Client Label Font, and a Reading Font.

Figure A-1.  A screenshot of Herokid Studios’ site design

Appendix A ■ Breaking Down Examples into Modular Systems

73

A Title Font is seen to be used for the main subject line of each module and is using
the typeface Nuzeit Grotesk Uppercase (Figure A-2).

A Client Label Font can be defined in this design for all of the labels marking
whom a particular project was done for. The typeface used for this is Roboto Uppercase
(Figure A-3).

The last of the font styles needed to compose a font system around Herokid’s site is
a Reading Font. The Reading Font appears to be used in areas that provide more context
for each piece of content, and is simply using Roboto (Figure A-4).

Base Unit
The design of the base unit here is quite simple. It’s a block with an image background
and a couple of blocks of text atop it and a call-to-action (Figure A-5).

Figure A-2.  Close-up examples of titles on Herokid Studios’ site

Figure A-3.  Close-up examples of the client labels on Herokid Studios’ site

Figure A-4.  Close-up examples of descriptions on Herokid Studios’ site

Appendix A ■ Breaking Down Examples into Modular Systems

74

The flow for the units is a normal Z pattern, going from left to right then wrapping
down to the next row.

Variations
You might notice this base unit looks like it has way too much on it compared to the
actual blocks in the design. That’s because we want our base unit to incorporate every
possible piece that could be displayed. Any element that is not used is easily hidden.

Let’s see how this base unit takes on different forms throughout the design. Figure A-6
shows a few of the modules from the page side by side with the base unit to see how it
adapts. For each unit, what’s highlighted in green is what’s being used and in red is what’s
being hidden.

Figure A-5.  A way to reinterpret Herokid Studios’ design from a basic unit under our
modular design strategy

Appendix A ■ Breaking Down Examples into Modular Systems

75

Figure A-6.  A way we could define the rest of the Herokid Studios’ design as variations of
our proposed basic unit

Appendix A ■ Breaking Down Examples into Modular Systems

76

Figure A-7.  A screenshot of Huge’s site design

Example 2: Huge
Huge is a much bigger, well-known international digital creative agency, and has a strong
design sense (Figure A-7). Let’s take a look at the design for their site.

Appendix A ■ Breaking Down Examples into Modular Systems

77

Font System
It appears that Huge uses a fairly simple logical font system. It can likely be broken down
and defined into three types: a Headline Font, Label Font, and Reading Font.

The Headline Font is used wherever there are big and bold titles for content and is
using the typeface Avante Garde Bold (Figure A-8).

Figure A-8.  A close-up example of titles within Huge’s design

The Label Font appears to be used wherever there is meta information associated to
a piece of content and the typeface being used is Arial (Figure A-9).

Figure A-9.  A close-up example of meta information within Huge’s design

Finally, the Reading Font is used for the actual content itself that gives context.
It’s used for the article abstracts as well as the body copy and is in the typeface Galaxie
Copernicus Book (Figure A-10).

Appendix A ■ Breaking Down Examples into Modular Systems

78

Base Unit
Huge’s design can be based off of a pretty flexible single base unit (Figure A-11).

Figure A-10.  A close-up example of article abstracts within Huge’s design

Figure A-11.  A way to reinterpret Huge’s design from a basic unit under our modular
design strategy

You may question if the Abstract is actually part of the base unit since it is almost
nowhere to be found. That’s because in most cases it is omitted; however, it is required for
other areas of the design, which you’ll see later. As part of your base unit design it is better
to include everything and omit pieces for variations than to conditionally add pieces for
variations.

The flow of the units is a waterfall. A waterfall is a slightly more complex version of a
Z pattern. A waterfall moves left to right, then down to the closest available spot vertically
since each unit has a variable height based on the amount of content within it. Figure A-12
provides an example to understand this unit flow.

Appendix A ■ Breaking Down Examples into Modular Systems

79

Figure A-12.  Diagram illustrating the flow of cards within Huge’s design

As you can see the unit 4 flows below unit 2 since that is the next available position,
vertically, as opposed to below unit 1.

Variations
There are several variations of the base unit being used by Huge. Figure A-13 show some
different examples and just exactly how they are variations of the basic unit by outlining
in green what is being, and outlining in red what’s just being hidden.

Appendix A ■ Breaking Down Examples into Modular Systems

80

Figure A-13.  A way we could define the rest of Huge’s design as variations of our proposed
basic unit

Example 3: iPhone 7
Let’s take a look at a slightly different design, focused on an individual product, the
iPhone7 (Figure A-14). While Apple is highly regarded as a design-centric company,
we’ll see that the design of their sites that are marketing their products are actually quite
simple if we follow our modular design approach.

Appendix A ■ Breaking Down Examples into Modular Systems

81

Figure A-14.  A screenshot of Apple’s iPhone 7 site design

Appendix A ■ Breaking Down Examples into Modular Systems

82

Font System
Since introducing their new San Francisco typeface, Apple has been applying it
everywhere in their products. Their font system ends up being very simple, and also
semantic. In trying to break this design down into a designed system, it seems to follow
that we can use conventional HTML as inspiration with a Headline Font, Sub Headline
Font, Paragraph Font, and Link Font.

While all fonts all use San Francisco with a slight alteration in font weight, we still
need to separate out the application of the fonts by function, for future sustainability of
the design system (Figure A-15).

Figure A-15.  Breaking down Apple’s iPhone 7 site design to create a potential font system

Appendix A ■ Breaking Down Examples into Modular Systems

83

The flow of the units is directly from the top-down.

Variations
There is barely any variation necessary to the design of the base unit to achieve the
iPhone7 design. Everything can follow from nearly the same design, aside from a video
module and a detail module (Figure A-17).

Figure A-16.  A way to reinterpret Huge’s design from a basic unit under our modular
design strategy

Base Unit
The base unit on the iPhone7 site is also quite simple and familiar (Figure A-16).

Appendix A ■ Breaking Down Examples into Modular Systems

84

One in the Same
You may notice in the analysis of how these three seemingly different examples can
be built using a modularly designed system, which they may all follow the same exact
framework. This is exactly true. Of course there are sights that can leverage a differently
designed basic unit; however, the majority of what modern sites and applications require
at the onset is one in the same design.

That’s the power of designing the system versus designing just based on aesthetic.
As a designer we can design the framework, then just by simply modifying the rules of the
system we can easily transform the look and feel of a site like Huge into the design of that
of the iPhone7.

There are other ways to architect your base unit, and this is where your creativity as
a designer comes into play: thinking out of the box, as the saying goes. Also, being able
to A/B test variations of your base unit to help you settle on your final design would be
advantageous.

Designing for the framework versus designing just the pixels arbitrarily will allow
you to create much more sustainable designs that can be handled automatically by code.
Instead of requiring production designers to create mocks, design updates can be down
instantly on the fly with just a few programmatic tweaks.

Figure A-17.  Examples from Apple’s iPhone 7 page showing what could be variations of
the same unit under our modular design strategy

85© James Cabrera 2017
J. Cabrera, Modular Design Frameworks, DOI 10.1007/978-1-4842-1688-0

�       � A
Agile, 5
Airbnb, 23
Amazon, 24–25

�       � B
Base unit

Herokid Studios, 73–74
Huge, 78–79
iPhone, 7–83

Basic unit, 64, 66, 68
Bootstrap, 3
Breaking down, 64, 66
BuzzFeed, 25

�       � C
Chase banking site, 26
Client Label Font, 73
Clustering, 55, 57–60, 69
Color system, 17, 67
Custom fonts, 14–15

�       � D, E
Design-led thinking, 3–4
Design pattern, 37
Design transforms, 33

�       � F, G
Facebook, 22

Trending Topics module, 64, 65
Filters, 63

Font system, 14–16,
30, 67, 73

Herokid Studios, 72–73
Huge, 77
iPhone, 7–82

F pattern, 34–35

�       � H
Headline Font, 77
Herokid Studios

base unit, 73–74
font system, 72–73
site design, 72
variations, 74–75

Huge
base unit, 78–79
font system, 77
site design, 76
variations, 79–80

�       � I, J
Invisible UI, 67
iPhone, 7

base unit, 83
font system, 82
site design, 81
variations, 83–84

Iterations, 68–69
A/B testing, 46
design framework, 45
increase

click rates, 47–48
increase scroll depth, 48–49

Index

■ INDEX

86

�       � K
Kleenex tissues, 2

�       � L
Label Font, 77

�       � M
Modular Design Framework, 37–39, 46, 67

advantages of reusability, 7–8
aesthetics, 8
buzzword, 2
designer, 2
design-led thinking, 3–4
and development, 5–6
Herokid Studios, 71–75
Huge, 76–80
iPhone, 7, 80–84
iterative, 8
with medium, 6

�       � N
Nameplate Site, 18–19
Navigation, 62, 64, 69

�       � O
Onward inward

design, 28
flow, 27–28
inventory, 27

Optimizations, 68–69
Organization, 51, 53–54

�       � P, Q
Pages, 60–61, 69
Popular content module, 64

Product development timeline
ideal, 6
modern, 5
traditional, 5

�       � R
Reading Font, 73, 77
Recycling and reusing basic units, 39–40, 42
Reusability, advantages of, 7–8

�       � S
System fonts, 14–15

�       � T
Title Font, 73
Titles, 62

�       � U
Uber, 23–24

�       � V
Variation, 68–69

availability of data, 43–44
size, 42–43

Visual design, 34
Visual hierarchy, 11–13

�       � W, X, Y
Waterfall, 78
Wearables and

conversational UI, 19–20

�       � Z
Z pattern, 30, 32

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: A Modular Future
	Breaking Down the Buzzword
	The Shift Toward Design-Led Thinking
	Design and Development: Let’s Bridge the Gap
	Should Designers Learn to Code?
	Design with the Medium
	The Advantages of Reusability
	Iterative Design
	Taking the Focus Off Aesthetics
	Taking Charge
	Summary

	Chapter 2: Fonts, Colors, and the Invisible UI
	Defining Visual Hierarchy
	Establishing a Font System
	Custom Fonts and System Fonts
	Think About Function Before Form

	Establishing a Color System
	Let’s Design an Example
	Wearables and Conversational UI
	Summary

	Chapter 3: Defining Your Basic Unit
	Understanding the Essence of Your Product
	We Need a Product to Sell

	Theory in Practice
	Facebook
	Airbnb
	Uber
	Amazon
	BuzzFeed
	Chase

	Onward Inward
	Inventory
	Flow
	Design
	One for All

	Building Our Own
	Summary

	Chapter 4: Adaptation, Reusability, Variation, and Iteration
	Preventing Confirmation Bias in Design
	How to Adapt What You Have
	Recycling and Reusing Basic Units
	Variation
	Example: Size
	Example: Availability of Data
	Taking It Further

	Making Iterations
	A/B Testing
	Example: Increase Click Rates
	Example: Increase Scroll Depth

	Summary

	Chapter 5: Organization, Clustering, Pages, and Navigation
	Organization
	Categorically
	Consumption Paradigms
	Clustering
	Designing with Cluster Modules

	Paging
	Navigational Design Elements
	Titles
	Main Navigation
	Internal Filters

	Breaking Down the Basic Unit
	Summary

	Chapter 6: What’s Next?
	Fonts, Colors, and the Invisible UI
	The Basic Unit
	Variations, Optimizations, and iterations
	Clusters, Pages, and Navigation
	A Never-Ending Job
	Summary

	Appendix A: Breaking Down Examples into Modular Systems
	Example 1: Herokid Studios
	Font System
	Base Unit
	Variations

	Example 2: Huge
	Font System
	Base Unit
	Variations

	Example 3: iPhone 7
	Font System
	Base Unit
	Variations

	One in the Same

	Index

