Objective-(
for Absolute
Beginners

iPhone, iPad and
Mac Programming Made Easy

Stefan Kaczmarek
Brad Lees

Gary Bennett
Mitch Fisher

APress’

http://www.allitebooks.org

Objective-C for Absolute
Beginners

IPhone, iPad and Mac
Programming Made Easy

Stefan Kaczmarek
Brad Lees

Gary Bennett
Mitch Fisher

Apress’

vww allitebooks.conl

http://www.allitebooks.org

Objective-C for Absolute Beginners: iPhone, iPad and Mac Programming Made Easy

Stefan Kaczmarek Brad Lees

Phoenix, Arizona, USA Phoenix, Arizona, USA

Gary Bennett Mitch Fisher

Scottsdale, Arizona, USA Glendale, Arizona, USA

ISBN-13 (pbk): 978-1-4842-3428-0 ISBN-13 (electronic): 978-1-4842-3429-7

https://doi.org/10.1007/978-1-4842-3429-7
Library of Congress Control Number: 2018937904

Copyright © 2018 by Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar
Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3428-0. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3429-7
http://www.allitebooks.org

Table of Contents

About the AUtROrS.......ccucmmimmmsemmmmmmssmsasssssas s Xi
11T LT (] . Xiii
Chapter 1: Becoming a Great Objective-C Developer.......c.cccurrnsssnnnsnssssssssssssssnnnsssss 1
Thinking LiKe @ DEVEIOPET.........cciiicirererir s s sn s s sn s s n s nne s 2
Completing the DevelopmeNnt CYCIEccoveerreereree e 5
Introducing Object-Oriented Programming.........ccccooueevnenemenernsesessessssssessssessssssssssssssssssessesssssnens 7
Working with the AliCe INTErfaCe.........ccvvrrnserniesre s e s 11

E 1] 4= RS 12
(T (01T S 13
Chapter 2: Programming BaSiCS.....cccsurmsssnnnsrssssnnnssssssnnsssssssnssssssssnnsssssssnsnssssssnnnssnss 15
Taking @ TOUr With AlICEccvcreririrsirscr s r s s s nne 15
ApPlCAtION MENUL.......coieece e s 17
EdItiNG @ SCONE....cuiciece e e s 18
Classes, Objects, and INSTANCES N AlICE.........ccvverererrerrererresersereresessese e ssesessessessessssessessens 20
00T o2 (T 21

o 1 (0] N 22
METhOdS PANEL.........cooeeeeceree s 23
Creating an Alice App: To the Moon, AliCE ..o s 23
Your First Objective-C Program...........ccoeeeernnernnenesenesessesesssessssessssesesesessssessssessssssssssssssssessnses 32
Launching and USING XCOUEccuoererrrrerernererenerresesesesesesesss e sessese s ssssesessesessssessssesessesenns 32
SUIMIMAIY ...t e e be b e e e R e e R e e e A e e e n e e e Re e pa e nrn e e nsennns 41
oG] (0TSSP 42
iii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 3: It’s All About the Datacccccmrriinemnmmnmsennmmses s ————————— 43
Numbering Systems Used in Programmingccccoecerrvvnienennsennsesesesessesessssesesesessssessssesenns 43
BIES et R R EnE e nr s 43
BYEES. ..ttt AR E e e e 46
HEXAUECIMAL........oceeeeeecrce e e 47
L0100 L 49
DALA TYPES ...t e E e e R e p e R an 49
Using Variable and Data Types With AlICEccoveerrrermrnrmrensererrese e 50
Data Types and ODJECHVE-Cccoverrrerrrcerese e 64
Identifying ProbIEMS ..o e 71
11114 7R 72
(] (01T 73
Chapter 4: Making Decisions About and Planning Program Flowccccecceenisnna 75
2 T0T0] s N 0o 76
TrUEN TADIES .. 77
ComPariSON OPEIALOrS........ccvcrieririrrire s s r s s s b e e e s be st e e nne s 80
DL 4T T YA o oS 80
T 0o (0o o P 81
00§ U o T 84
Designing and Flowcharting an EXample APccoverrerernnessenersses s sesennes 85
THE APP’S DESION ...t e e s p e e e e nn 87
Using Loops to Repeat Program Statements..........ccocvcvvenmresrnscnnnenesese e 88
Coding the Example APP iN AlICEcovervreriirsine s s s s 91
Coding the Example App in ODJECTIVE-C.......ccovererirernerrresersse e s 92
Nested If Statements and Else-If Statementsccccoovevnrnnncsnins s 97
Removing EXtra CRAraCtersccvuerrresmnnsesssessssse s sessesssse s ssssssessssessssessnnes 97
Improving the Code Through Refactoring..........ccuueernsesnresesssesnsesssessssse s sessssessssesenns 98
RUNNING The AP v e e e e e s 98
Moving Forward WithOUT AlICEcccveveririerern s se s s sas e s seesesessesaes 99
£ 1114 7R 99
(] (01T T 100
iv

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 5: Object-Oriented Programming with Objective-Cccccuseenrrisssnnnnns 101
3T 0 OO 102
WhEL IS @ CIASS?....c.ecceeeeereecreresesse e se e se s s se e s e e s e e sesae e re e e s e e nnnnnas 103
Planning ClIASSES.......ccveeeruererererersesersesesenesessesessssesesseses e e s sss e sessssessssessesesesssssssssessessssssssenns 104

Planning PrOPEITIESccoeeerrerereser s e 104
Planning MEthOUS.coeerrerreerese e 107
IMpPlementing the CIASSESc.ccoreerrererese e s 109
INNEHTANCE ... e e e e e nr s 116
WHY USE QOP......cceeecrsesss sttt ss e bbbttt 117
LIS EVEIYWREIE ...t s s 118
Eliminate Redundant Codecccverernrenrnennnnne s s ssasessnss 118
Ease 0f DEDUGQING.......cccvvrerrirerirerinnse e s 118
Ease of REPlaCeMENt...........ccvvrerieir e e e 118
AUVANCEA TOPICS .vvvruerrerrererserserersesesseressessesessessessessssessessessessssessessesssssssessessessessnsessessessssensessens 119
INEEITACE ...t s 119
a0 10 0 T RS 119
£ 11134 7R 120
(] (01T T 120

Chapter 6: Learning Objective-C and Xcodeccccusssummrmssssssnsmsssssnnnsssssssnssssssnnnnss 121
A Brief History of ODJECTIVE-Cccoveererererrenernesenese s ses e e ssssessens 121
Understanding the Language Symbols and Basic SyntaX............ccevivvinvniennnnsnsensenensensenens 122

Create @ Variable ... s 123
Begin and End a Section 0f COUEcoverrrermrenernse s s sessssesenses 124
Signify the End of a Ling 0f COdE........coceoveiernserncsirese s 124
Write @ COMMENT......cooiieicecer e s nne s 125
DEfiNg @ ClASS....coveerreereeserisesese s e n e 126
Defing @ MELNOM ..o s 127
Define an Objective-C Variablecovvvnrererenernsesnesessse s sennes 127

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Putting the “Objective” into ODJECHIVE-C.....cccovvcerrrerrrirrene s sere s s e s ssessssessesnens 128
Writing Another Program in XCOUE........ccueviinnnienesnsire s s sns s sne s 133
Creating the ProjECL.........cciicrrc st s 133
SUMIMANY ..ttt e s R e e e R b e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrs 155
(] (o1 S 155
Chapter 7: Objective-C Classes, Objects, and Methodsccccceurrrrrsssssssnnnnnnnnnnas 157
Creating an ObJECtiVE-C ClaSS........cuouverrrermrinernesssesess s s ss s sssssssssssesessessnns 157
Declaring Interfaces and Propertiescuvvrenernnsnsesssesessse s sesessssssessnses 159
Calling METhOUScceeerrierinerere s ne e nr s 160
Working with the Implementation File..........coucvieinisrinssnesnse s 163
Coding YOUr METNOUS.......ccvriirerrieriesesrsesesss s e s se s e s sns s 165
USING YOUF NEW ClASS ...cueverveririireresiesissessessessssessessessssessessessessssessessesssssssessesssssssessessessssnsesaens 167
Updating MYFIrSTADD ...covevciriere s s b s sp s e s 168
LT [0 410 0]] 1= O 169
Writing the Implementation File ... 173
Updating the USer INTErfacCe..........ccucvvieriiinernsesnessns s s ssanes 174
HOOKING UP the COEc.cceerieirereree e 177
Accessing the Xcode DOCUMENTALION...........ccverieriernirrene e s nnens 186
£ 1134 7R 188
(] (01T T 188
Chapter 8: Programming Basics in Objective-Ccccivuusmmmmmmssssnmnmsssssssssssssnnnns 191
[L= 0 T 191
LT TS T 192
USING NSAITAY ...ooueerreerrneresesessesessssesessesessesessssssesssssssssesesssssssssessssssssssssssssssssssssssssssssnsssanes 194
1RS]S 196
Using the Mutable Container ClASSESc.cururerirmrnsmsensesesesessssesessesssssse s ssssssessssesessesenns 197
NSMULADIESEL.......ceoeeeeerreer e ne s 198
NSMULADIBAITAYcvrreerreerinereseses e s e s e s se s e s se s e e s e e e e nne e nranis 199
NSMULADIEDICHONAIY......cceerrrerereser e re e 200

vi

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Creating the BoOKStOre AppPliCation........c.ccveevvrerrerieresessersesessssessesesssssssessessessssesessesssssssessesses 201
INtroducing PrOPEITIEScceiiiiiicriere e e s s 208
ACCESSING PrOPEILIES......ccvccrirrecirsire e s b e s 209
Custom Getter and SEHENocveerr s 211
Finishing the MyBooksStore Program...........cccorvinnnnnnnnsn s ssssessessesssssssessens 212
Creating the Initial VIEW.........ccoeriicri s 218
The Bookstore ODJECT ... s 224
Using the BoOKStore ODJECT ... s 227
Preparing the Table VIEW ... s 228
The BOOK DEtail VIBWcceceririrircseree s se s se e s sn s ss e s ss s s sssssesssssnsenens 231
Setting Up the QULIETS.......c.vcceeeecereerr s 246
Plugging in the BOOK DEtailScccoveerrrrerrsererenernsesesesessse s sessssesss e sessesessssessssessnses 250
11T 111 1T o OSSOSO 253
(=] £ T RN 254
Chapter 9: Comparing Dataccuucemmmmmssnnnmmmsssnnmmsssssnmssssssnssssssnsessssssssesssssnnns 255
Revisiting BooIean LOGIC.........cucuierierinrnnineress s s e e s s s e s sssses e ssessessssessennens 255
Using Relational OPEratorsccoeeecrreerereserenerensesesese s sesese s sessssesse e sessesenns 256
Comparing NUMDEIS........ccov e 257
Creating an Example XCOUE APP.....cccvereriririnene s sesse et sse s sss e s ssesssssssesne s 259
Using Boolean EXPreSSIONS.........cuouoeruererersmrenesesresesessesesesessesessssssessssessssessesssessssssssssssessssssssenns 263
L0 T2 U TS (T 265
COMPANNG DALEScveereecrerereree e s se e e 267
Combining COMPANISONS.......ccourueerrererereserreseressesesesessesesessesessssessesesesssssssssessessssssssssssnsssanes 270
Using the switCh Statement...........ccovcricnncsncs s 271
11T 111 T o OSSOSO 273
(=] (T PR 274
vii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 10: Creating User INterfacescccrumsmmmnmmssssnnsssssssnsssssssssnnsssssssnsssssssnnnss 275
Understanding Interface BUildEr ... snens 276
The Model-VieW-CONtrOlIEroeoereeeerererererere e se e se e snenens 277
Human Interface GUIAEINES........coccoerreeerrrrree e 279
Creating an Example iPhone App with Interface Builder...........ccccvvvivninininnsnsnienesensenennns 281

USing INterface BUIlAENccoveeerecerneserese e 287
The DOCUMENT QULIINGcveeeeeec s nne s 288
The ODJECT LIDFArYccovveeereecerreerinsesesese e s sn e s se e srssesessssnsenens 289
Creating the VIBW ... e s sesss s s s s sessssssnsssnsans 290
USING QULIEES ..o e 291
Connecting Actions and ODJECES........c.veerrenrnsmrnesr e 294
IMpIemMentation File..........cccvviiiinn e s 294
11T 111 1T o OSSOSO 296
(=] (1T 296

Chapter 11: Storing Information..........ccucccmrrnnnnmmmnmsnnnmnssnn——————— 297
Storage ConSiderations...........ccccoecrriererienninsernre e se e 297
Lo (=] (=] €T (1 298

WHtiNG PreferenCesS......cccvcriiicirsire sttt s e e s s 298
Reading PreferenCesS ...t s s 300
DALADASEScoveerereeree e 301
Storing Information in @ DAtADASEcccreeerrrernesre s 301
Getting Started wWith Core Dataccccvierierninin e 303
THE MOTEI ...t e e 305
Managed ODJECE CONTEXTcccvverierrieriere e ae e e sa e e nnes 316
Setting Up the INTErfaCe. ..o vrrriererir e s sae s naesnens 317
£ 1134 7R 331
(] (01T 331
viii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 12: Protocols and Delegatescccussmmmrmssssnnssmsssssnnnssssssnnssssssssnssssssnnnnss 333
Multiple INNEFTANCE ... ene 333
Understanding ProtOCOIS.........cucuvirinnninnen e se s s s sss e snens 334

ProtoCOl SYNTAX.......ccciieiiiiirine s e e e e e 335
Understanding Delegates..........cocueeererrnnennenerese s 336
N XL S OIS ittt ———————————— 337
BT U] 134 RS 337
(=] {1 S 337

Chapter 13: Introducing the Xcode Debugger........ccueemrrmssnnnnmsssssnnsssssssnnssssssnnnnss 339

Getting Started with DEDUGQING.......cccvrerrirrrerre st 340
Setting BreakpoiNtS.... ...t s st e 341
Using the Breakpoint Navigator...........ccovvvninnnsnnn s ssssesse s 344
DebUQGUING BaSICS......ccecveieeririersiesereres e s ssessee s se s e s s e s s s e e s sesae s e s e e saesaesesseesnesaenseens 346
Working with the Debugger CONtroIS........c.ccvererrrrrerernrerserese s ses e ssesesse e ssessssessesseses 348
UsSing the SteP CONTIOISccccverererrerere s serere s s s sa e sae e s e saesnesasnesnesaees 350
Looking at the Thread Window and Call Stack...........ccevvvrrrrreriernrensenieresessesesesessessessenes 352
Debugging Variables..........cccvvriereriiriersie e rerses e r s se s e e s s s se e sr e s se e snesaesaeens 353

Dealing with Code Errors and Warningsc.ccccvevrernnnnnseniesnssnsessesssssssessesssssssessessesssssssessens 355
WEININGS .ecveiiircne e s s e e e R b e e e e R R e e s e R nnn 356

£ TS 358

(] (o1 SR 358

INA@X . eeeiiienrnsnnsnian s s s ————————— 359

ix

vww allitebooks.conl

http://www.allitebooks.org

About the Authors

Stefan Kaczmarek has 20 years of software development
experience specializing in mobile applications, large-scale
software systems, project management, network protocols,
encryption algorithms, and audio/video codecs. As chief
software architect and cofounder of SKJM, LLC, Stefan
developed a number of successful mobile applications
including iCam (which has been featured on CNN, Good
Morning America, and The Today Show, and which was
chosen by Apple to be featured in the “Dog Lover” iPhone
3GS television commercial) and iSpy Cameras (which held

the #1 Paid iPhone App ranking in a number of countries
around the world including the United Kingdom, Ireland, Italy, Sweden, and South
Korea). Stefan resides in Phoenix, Arizona, with his wife, Veronica, and their two children.

Brad Lees has more than a decade of experience in
application development and server management. He
specialized in creating and initiating software programs in
real estate development systems and financial institutions.
His career has been highlighted by his positions as
information systems manager at The Lyle Anderson
Company, product development manager for Smarsh, vice
president of application development for iNation, and IT

manager at The Orcutt/Winslow Partnership, the largest
architectural firm in Arizona. A graduate of Arizona State
University, Brad and his wife, Natalie, reside in Phoenix with
their five children.

ABOUT THE AUTHORS

Gary Bennett teaches iPhone/iPad programming courses
online. Gary has taught hundreds of students how to
develop iPhone/iPad apps, and has several very popular
apps on the iTunes App Store. Gary's students have some

of the best-selling apps on the iTunes App Store. Gary

also worked for 25 years in the technology and defense
industries. He served 10 years in the U.S. Navy as a nuclear
engineer aboard two nuclear submarines. After leaving

the Navy, Gary worked for several companies as a software
developer, chief information officer, and resident. As CIO, he
helped take VistaCare public in 2002. Gary also co-authored

iPhone Cool Projects for Apress. Gary lives in Scottsdale, Arizona with his wife, Stefanie,

and their four children.

xii

Mitch Fisher is a software developer in the Phoenix,
Arizona area. He was introduced to PCs back in the 1980s
when 64K was a lot of memory and 1 MHz was considered

a fast computer. Over the last 25 years, Mitch has worked

for several large and medium-sized companies in the roles
of software developer and software architect, and had led
several teams of developers on multi-million dollar projects.
Mitch now divides his time between writing iOS applications
and server-side UNIX technologies.

Introduction

Over the last two years, we've heard this countless times: “I've never programmed
before, but I have a great idea for an iOS app. Can I really learn to program the iPhone or
iPad?” We always answer, “Yes, but you have to believe you can.” Only you are going to
tell yourself you can’t do it.

For the Newbhie

This book assumes you may have never programmed before. It is also written for
someone who may have never programmed before using object-oriented programming
(OOP) languages. There are lots of Objective-C books out there, but all of those books
assume you have programmed before and know OOP. We wanted to write a book that
takes readers from knowing nothing about programming to being able to program in
Objective-C.

Over the last nine years we have taught thousands of students at xcelMe.com to be
iOS developers. We have incorporated what we have learned in our first two courses,
Introduction to Object Oriented Programming and Logic along and Objective-C for
iPhone/iPad developers, into this book.

For the More Experienced

There are many developers who programmed years ago or programmed in a non-

OOP language and need some background in OOP and Logic before they dive into
Objective-C. This book is for you. We gently walk you through OOP and how it is used in
iPhone/iPad development.

xiii

INTRODUCTION

Why Alice: An Innovative 3D Programming
Environment

Over the years, universities have struggled with several issues with their computer
science departments:

e High male-to-female ratios
o High drop-out rates
o Longer than average time to graduation

One of the biggest challenges to learning OOP languages like Java, C++, or
Objective-C is the steep learning curve from the very beginning. In the past, students
had to learn at once the following topics:

e Object-oriented principles

e A complex integrated development environment (IDE)
o The syntax of the programming language

e Programming logic and principles

Carnegie Mellon University received a grant from the U.S. government and
developed Alice. Alice is an innovative 3D programming environment that makes it
easy for new developers to create rich graphical applications. Alice is a teaching tool
for students learning to program in an OOP environment. It uses 3D graphics and a
drag-and-drop interface to facilitate a more engaging, less frustrating first programming
experience.

Alice enables the students to focus on learning the principles of OOP without
having to focus on learning a complex IDE and Objective-C principles all at once.

They get to focus on each topic individually. This helps the students feel a real sense of
accomplishment as they progress.

Alice removes all of the complexity of learning an IDE and programming language
syntax. It is drag-and-drop programming. You'll see that it is actually fun to do, and you
can develop really cool and sophisticated apps in Alice.

After the OOP topic has been introduced and readers feel comfortable with the
material, we then move into Xcode, where readers get to use their new OOP knowledge
to write Objective-C applications. This enables readers to focus on the Objective-C
syntax and language without having to learn OOP at the same time.

Xiv

INTRODUCTION

How This Book Is Organized

You'll notice that we are all about successes in this book. We introduce the OOP and
Logic concepts in Alice and then move those concepts into Xcode and Objective-C. Most
students are visual and learn by doing. We use both of these techniques. We'll walk you
through topics and concepts with visual examples and then you'll follow step-by-step
examples to reinforce it all.

Often we will repeat previous topics to reinforce what you have learned and apply
these skills in new ways. This enables new programmers to reapply development skills
and feel a sense of accomplishment as they progress.

The Formula for Success

Learning to program is an interactive process between you and your program. Just like
learning to play an instrument, you must practice. You must work through the examples
and exercises in this book. Just because you understand the concept doesn’t mean you
will know how to apply it and use it.

You will learn a lot from this book. You will learn a lot from working through the
exercises in this book. But you will really learn when you debug your programs. Spending
time walking through your code and trying to find out why it is not working the way
you want is a learning process that is unparalleled. The downside of debugging is it can
be especially frustrating to the new developer. If you have never wanted to throw your
computer out the window, you will now. You will question why you are doing this, and
whether you are smart enough to solve the problem. Programming is very humbling,
even for the most experience developer.

Like a musician, the more you practice the better you get. You can do some
amazing things as a programmer. The world is your oyster. One of the most satisfying
accomplishments you can have is seeing your app on the iOS App Store. However, there
is a price, and that price is time spent coding.

Here is our formula for success:

e Believe you can do it. You'll be the only one who says you can’t do
this. So don’t tell yourself that.

o Work through all the examples and exercises in this book.

e Code, code, and keeping coding. The more you code, the better
you'll get.

INTRODUCTION

o Be patient with yourself. If you were fortunate enough to have been a
4.0 student who can memorize material just by reading it, this will not
happen with Objective-C coding. You are going to have to spend time

coding.

« DON’'T GIVE UP!

Required Software, Materials, and Equipment

One of the great things about Alice is that it’s available on the three main operating
systems used today:

¢ Windows
¢ Mac
e Linux

The other great thing about Alice is it is free! You can download Alice at
http://www.alice.org/.

Operating System and IDE

Although you can use Alice on many platforms, the IDE that developers use to develop
iOS apps is Xcode, which is free and is available from the Mac App Store.

Dual Monitors

It is highly recommended that developers have a second monitor connected to their
computer. It is great to step through your code and watch your output window and iOS
simulator at the same time on dual, independent monitors. Apple hardware makes this
easy. Note that it is not required to have dual monitors. You will just have to organize
your open windows to fit on your screen if you don't.

http://www.alice.org/

INTRODUCTION

1. To access the dual-monitor set-up feature, go to Apple System
Preferences and select Displays, as shown in Figure I-1.

® 0 < | > i Built-in Retina Display Q, Search
Display p\ehlsEihigd Color Night Shift

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

Mirror Displays
AirPlay Display: ~ Off
Show mirroring options in the menu bar when available Gather Windows 2

FigureI-1. Dual monitors

Book Forum

We developed an online forum for this book at http://forum.xcelme.com/ where
readers can go to ask questions of the authors while they are learning Objective-C.
See Figure I-2.

xvii

http://forum.xcelme.com/

INTRODUCTION

xcelMe.com

xcelMe Training Center And Interactive Developer Forum.

GIFAQ fTiMembers o Register () Login

It is currently Sat Jan 27, 2018 9:18 am

FORUM TOPICS POSTS LAST POST

@)

How To Access Your Course Webinars And How To Use The Forum

New students need to d the attached pdf and follow instructions to
register for your webinars after you purchase the class. Additionally, there are
directions and updates on how to access your course and forum, post
questions, navigate the rnessage board, watch training videos, etc.

3

12

by zenith9356 (i
Thu Mar 13, 2014 10:24 am

Moderator: gary.b

Book -> Swift 3.0 for Absolute Beginners: iPhone and Mac
Programming Made Easy 3rd Edition

This forum contains answers readers may have for each chapter as well as any
corrections to the book. The forum also contains the Source Code for the book.
Moderator: gary.bennett

17

22

by schurms [
Wed Jan 17, 2018 6:04 pm

® | ®

Book -> Swift 2.0 for Absolute Beginners: iPhone and Mac
Programming Made Easy 2nd Edition

This forum contains answers readers may have for each chapter as well as any
corrections to the book. The forum also contains the Source Code for the book.
Moderator: gary.bennett

17

96

by zany76 [
Thu Aug 31, 2017 3:11 pm

Book -> Developing for Apple TV using tvOS and Swift

This forum contains answers readers may have for each chapter as well as any
corrections to the book. The forum also contains the Source Code for the book.
Moderator: gary.bennett

10

12

by mdstebel [
Mon Jun 13, 2016 11:26 am

® | ®

Book -> Objective-C for Absolute Beginners: (2nd Edition) iPhone and
Mac Programming Made Easy

This forum c ins all the assig and
each chapter.

Moderator: gary.bennett

q i readers may have for

20

224

by Drago [
Mon Jun 16, 2014 9:27 pm

@

Free Live Webinars for iPhone Developers

This forum lists the schedule for upcoming live webinars for iPhone developers.
Webinars are live and have limited seats. Current and former students get first
notifications. Seats for all others is first-come-first serve.

The sessions are recorded and will be made available to current and former
students on this forum.

Moderator: gary.bennett

by Miptigninguaw [&
Tue Nov 29, 2011 3:48 am

Figure I-2. The Reader Forum for accessing answers to exercises and posting
questions for authors

XVl1il

CHAPTER 1

Becoming a Great
Objective-C Developer

Now that you're ready to become a software developer and have read the introduction
of this book, you need to become familiar with several key concepts. Your computer
program will do exactly what you tell it to do—no more and no less. It will follow the
programming rules that were defined by the operating system and programming
language. Your program doesn’t care if you are having a bad day or how many times you
ask it to perform something. Often, what you think you've told your program to do and
what it actually does are two different things.

Key to Success If you haven’t already, take a few minutes to read the
introduction of this book. The introduction shows you where to go to access the
free webinars, forums, and YouTube videos that go with each chapter. Also, you'll
better understand why we are using the Alice programming environment and how
to be successful in developing your apps in Objective-C.

Depending on your background, working with something absolutely black and white
may be frustrating. Many times, programming students have lamented, “That’s not what
I wanted it to do!” As you gain experience and confidence programming, you'll begin
to think like a programmer. You will understand software design and logic, and you
will experience having your programs perform exactly as you want and the satisfaction
associated with this.

© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018
S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_1

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

Thinking Like a Developer

Software development involves writing a computer program and then having a
computer execute that program. A computer program is the set of instructions that you
want computer to perform. Before beginning to write a computer program, it is helpful
to list the steps that you want your program to perform, in the order you want them
accomplished. This step-by-step process is called an algorithm.

If you want to write a computer program to toast a piece of bread, you first write an
algorithm. This algorithm might look something like the following:

1. Take the bread out of the bag.

2. Place the bread in the toaster.

3. Press the Toast button.

4. Wait for the toast to pop up.

5. Remove the toast from the toaster.

At first glance, this algorithm seems to solve the problem. However, the algorithm

leaves out many details and makes many assumptions. Here are some examples:

¢« What kind of toast does the user want? Does the user want white
bread, wheat, or some other kind of bread?

o How does the user want the bread toasted? Light, medium, or dark?

o What does the user want on the bread after it is toasted: butter,
margarine, honey, or strawberry jam?

e Does this algorithm work for all users in their cultures and
languages? Some cultures may have another word for toast or not
know what toast is.

Now, you might be thinking we are getting too detailed for just making a simple
toast program. Over the years, software development has gained a reputation of taking
too long, costing too much, and not being what the user wants. This reputation came to
be because computer programmers often start writing their programs before they have
really thought through their algorithms.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

The key ingredients to making successful applications are the design requirements.
Design requirements can be formal and detailed or as simple as a list on a piece of paper.
Design requirements are important because they help the developer flesh out what the
application should and should not do when complete. Design requirements should
not be completed in a programmer’s vacuum but should be produced as the result of
collaboration between developers, users, and customers.

Another key ingredient to your successful app is the user interface (UI) design.
Apple recommends you spend more than 50 percent of the entire development process
focusing on the Ul design. The design can be done using simple pencil and paper
or using Xcode’s storyboard feature to lay out your screen elements. Many software
developers start with the UI design, and after laying out all the screen elements and
having many users look at paper mock-ups, they then write the design requirements
from their screen layouts.

Note If you take anything away from this chapter, let it be the importance

of considering design requirements and user interface design before starting
software development. This is the most effective (and least expensive) use of time
in the software development cycle. Using a pencil and eraser is a lot easier and
faster than making changes to code because you didn’t have others look at the
designs before starting to program.

After you have done your best to flesh out all the design requirements, laid out all the
user interface screens, and had the client(s) or potential customers look at your design
and give you feedback, coding can begin. Once coding begins, design requirements and
user interface screens can change, but the changes are typically minor and are easily
accommodated by the development process. See Figures 1-1 and 1-2.

Figure 1-1 shows a mock-up of a rental report app screen prior to development.
Developing mock-up screens along with design requirements forces developers to think
through many of the application’s usability issues before coding begins. This shortens
the application development time and makes for a better user experience and better
reviews on the App Store. Figure 1-2 shows how the view for the rental report app
appears when completed. Notice how mock-up tools enable you to model the app to the
real thing.

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

see00 |nVision ¥ B8:00 PM

Walkdround

LOG IN

SIGN UP

PRIVACY POLICY TERMS OF USE

Figure 1-1. This is a UI mock-up of the Log In screen for an iPhone mobile rental
report app before development begins. This Ul design mock-up was completed
using InVision.

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

the rental report app

Figure 1-2. This is the completed iPhone rental report app. This app is called
WalkAround.

Completing the Development Cycle

Now that you have your design requirements and user interface designs and have written
your program, what’s next? After programming, you need to make sure your program
matches the design requirements and user interface design and ensure that there are no
errors. In programming vernacular, errors are called bugs. Bugs are undesired results of
your programming and must be fixed before the app is released. The process of finding
bugs in programs and making sure the program meets the design requirements is called
testing. Typically, someone who is experienced in software testing methodology and
who didn’t write the app performs this testing. Software testing is commonly referred to
as quality assurance (QA).

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

Note When an application is ready to be submitted to the App Store, Xcode gives
the file an .app or .ipa extension, such as appName.app. That is why iPhone,
iPad, and Mac applications are called apps. This book uses program, application,
and app to mean the same thing.

During the testing phase, the developer will need to work with QA staff to determine
why the application is not working as designed. The process is called debugging. It
requires the developer to step through the program to find out why the application is not
working as designed. Figure 1-3 shows the complete software development cycle.

Release

Figure 1-3. The typical software development cycle

Frequently during testing and debugging, changes to the requirements (design)
must occur to make the application more usable for the customer. After the design
requirements and user interface changes are made, the process begins over again.

At some point, the application that everyone has been working so hard on must be
released. Many considerations are taken into account when this happens:

e Cost of development
e Budget
o Stability of the application

e Return on investment

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

There is always the give-and-take between developers and management. Developers
want the app perfect and management wants to start realizing revenue from the
investment as soon as possible. If the release date were left up to the developers, the app
would likely never ship. Developers would continue to tweak the app forever, making
it faster, more efficient, and more usable. At some point, however, the code needs to be
pried from the developers’ hands and released to the end users.

Introducing Object-Oriented Programming

As discussed in detail in the introduction, Alice enables you to focus on object-oriented
programming (OOP) without having to cover all the Objective-C programming syntax
and complex Xcode development environment in one big step. Instead, you can focus on
learning the basic principles of OOP and using those principles quickly to write your first
programs.

For decades, developers have been trying to figure out a better way to develop code
that is reusable, manageable, and easily maintained over the life of a project. OOP was
designed to help achieve code reuse and maintainability while reducing the cost of
software development.

OOP can be viewed as a collection of objects in a program. Actions are performed on
these objects to accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or
screen/view on an iPad can all be objects. You may want to act on the plane by making
the plane bank. You may want the person to walk, or to change the screen color within
an iPad app. Actions are all being applied to these objects; see Figure 1-4.

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

File Edit Project Run Window Help

QB Starting Camera View ¥

Figure 1-4. There are three objects in this Alice application: UFO, Rover, and
Alien. The UFO object can have actions applied: takeoff, landing, turn right, and
turn left.

Alice will run a program, such as the one shown in Figure 1-4, for you if you click the
Run button. When you run your Alice applications, you can apply actions to the objects
in your application. Similarly, Xcode is an integrated development environment (IDE)
that enables you to run your application from within your programming environment.
You can test your applications on your computers first before running them on your iOS
devices by running the apps in Xcode’s iOS simulator, as shown in Figure 1-5.

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

Oranges

Bananas

Milk

Bread

Delete List

Figure 1-5. This sample iPhone app running in the iOS Simulator contains a table
object to organize a list of groceries. Actions such as “rotate left” or “user selected
row 3” can be applied to this view object.

Actions that are performed on objects are called methods. Methods manipulate
objects to accomplish what you want your app to do. For example, for a jet object, you
might have the following methods:

goUp

goDown

bankLeft
turnOnAfterburners

lowerLandingGear

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

The table object in Figure 1-5 is actually called UITableView when you use it in a
program, and it could have the following methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

Most objects have data that describes those objects. This data is defined as
properties. Each property describes the associated object in a specific way. For example,
the jet object’s properties might be as follows:

altitude = 10,000 feet

heading = North

speed = 500 knots

pitch =10 degrees

yaw = 20 degrees

latitude =33.575776

longitude =-111.875766
For the UITableView object in Figure 1-5, the following might be the properties:

backGroundColor = Red

selectedRow=3

animateView =No

An object’s properties can be changed at any time when your program is running,
when the user interacts with the app, or when the programmer designs the app to
accomplish the design requirements. The values stored in the properties of an object at a
specific time are collectively called the state of an object.

10

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

Working with the Alice Interface

Alice offers a great approach in using the concepts just discussed without all the
complexity of learning Xcode and the Objective-C language at the same time. It takes
only a few minutes to familiarize yourself with the Alice interface and begin writing a
program.

The introduction of this book describes how to download Alice. After it’s
downloaded and installed, you need to open Alice. It will look like Figure 1-6.

[he fdit Project Bun Window Help

Figure 1-6. Alice IDE running

Technically speaking, Alice is not a true IDE like Xcode, but it is pretty close and
much easier to learn than Xcode. A true IDE combines code development, user interface
layout, debugging tools, documentation, and simulator/console launching for a single
application; see Figure 1-7. However, Alice offers a similar look, feel, and features to
Xcode. This will serve you well later when you start writing Objective-C code.

11

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

e - L P
v [Lister @import Listerkit;
README.md
. #impor ewlon
w L7 Lister iOS App #impor °. 100% -
¥ [Main App #import L umentController,
Main.storyboard #import “AAPLLis ntroller.h*
Launch.xib TLAOR sy i
#1mport AAPLL tl o.h*
h| AAPLAppDelegate.h Color
m AAPLAppDelegate.m /! Table view cell iers.
¥ [0 View Controllers NSString econst AAP Lo Apples

h| AAPLListDocumentsViewController.h

nterface
m AAPLListDocumentsViewController.m
Oranges

h AAPLNewListDocumentController.h Gproperty (nonatomic,strong) N
m AAPLNewListDocumentController.m
h| AAPLLIstViewControlier.h Gend Bananas
m AAPLLIstViewController.m

LT Views Zimplementation AAPLListDocumentsViewCo Milk

» | Supporting Flles

» [Todey Extension #pragms mark - View Life Cycle Bread

» o] ListerKit Framework (10S) - {void)viewDidLoad {

» L7 Lister OS X App [super v

¥ .| Shared ListerKit Framework Code

» 7] Shared Lister Resources self ran

* | Imported Frameworks - [.

* | Products) F] B
(NS

= (void)viewWillAppear:(BOOL)animated {

[super viewWills r:animated]; Delete List
solf.r
Y;
r sgraylListColor = AAPLI
self.navigationCont ler
salf.navinatine
= 00 o oo

Figure 1-7. The Xcode IDE with the iPhone simulator

In the next chapter, you will go through the Alice interface and write your first

program.

Summary

Congratulations, you have finished the first chapter of this book. It is important that
you have an understanding of the following terms because they will be reinforced
throughout this book:

o Computer program
e Algorithm

e Design requirements

12

CHAPTER 1 BECOMING A GREAT OBJECTIVE-C DEVELOPER

User interface

Bug

Quality assurance (QA)

Debugging

Object-oriented programming (OOP)
Object

Property

Method

State of an object

Integrated development environment (IDE)

Exercises

Answer the following questions:

Why is it so important to spend time on your user requirements?

What is the difference between design requirements and an
algorithm?

What is the difference between a method and a property?
What is a bug?

What is state?

Perform the following tasks:

Write an algorithm for how a soda machine works from the time a
coin is inserted until a soda is dispensed. Assume the price of a soda
is 80 cents.

Write the design requirements for an app that will run the soda
machine.

13

CHAPTER 2

Programming Basics

This chapter will focus on the building blocks that are necessary to become a great
Objective-C programmer. This chapter will go over how to use the Alice user interface,
how to write your first Alice program, and how to write your first Objective-C program.

It will also explore some new OOP terms.

Note We will introduce new concepts in Alice and later, in this chapter, enable
you to use these concepts in Objective-C. We have used this approach for a
number of years, so we know from personal experience that this approach helps
you learn the concepts quickly, without discouragement, and gives you a great
foundation to build upon.

Taking a Tour with Alice

Alice’s 3D programming environment makes it easy to write your first program because
it applies some of the principles that you learned in Chapter 1. First, you need to learn
a little more about Alice’s user interface. When you first launch Alice, you are presented
with a screen that looks like Figure 2-1.

15
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_2

CHAPTER2 PROGRAMMING BASICS

® @
Blank Slates

Select Project

Moon

Mars

Sea Floor

Wonderland Sea Surface

Lagoon Floor Swamp Desert Dirt

| Cancel @
Figure 2-1. Opening screen in Alice

You can start with the blank Grass project or pick another Blank Slate project with
a different background. Feel free to explore and have fun. This is where you will spend
most of your time and write your first Alice application.

The Alice user interface is set up to help you efficiently write your applications.
The user interface is similar in form and function to the Xcode integrated development
environment (IDE). You will now explore the major sections of Alice.

16

CHAPTER2 PROGRAMMING BASICS

Application Menu

The Application Menu, shown in Figure 2-2, enables you to open and close files, set your
application preferences, and view scene statistics. You can also access example projects
and Alice Help from the Application Menu.

Eile Edit Project Rum Window Help

- declare procedure myFirstMethod

n - . do in order
Appllcaon - [drop statement here

| Alien | 's Editable Procedures (0)

| Biped) s Ediable Procedures (0)

—— Methods Panel \

his.alien moveToward targer © 110) . amount.

this.alien maveTo farget < 107
Cthis.alieni place spatialRelation: E70) , target: @]

Cthis.alieni turn direction: EM) , amount:
is.alien roll direction: ©100) , amount. =

e | [[doinorder] | count | whie . for eachin | [if_] [dotogether [eachin_ together) [variable... [assign | | //comment]

Figure 2-2. This shows the main sections of the Alice user interface. Take some
time to explore the user interface. You will see in this chapter how it compares with
Xcode and how it will help you learn Objective-C.

Note It is important that you save your program frequently when using Alice.
If Alice crashes and you haven’t saved your work, you will lose all your code or
changes since you last saved. Additionally, we recommend that you close Alice
completely and reopen it when you want to open a new Alice project.

17

CHAPTER2 PROGRAMMING BASICS

Editing a Scene

One of the most important Alice controls is the Setup Scene button (see Figure 2-3).
When you click the Setup Scene button, you launch Alice’s Scene Editor.

File Edit Project Run Window Help

| (=
declare procedure myFirstMethod

do in order

ldmp statement here

myFirst

‘this.alien

1

; (
Procedures

| group by category |']
‘s Editable Procedures (0)

‘s Editable Procedures (0)

say, think
| Cthis.alien say text:
| Cthis.alien think text:

position

Figure 2-3. The Setup Scene button will launch Alice’s Scene Editor and enable
you to add objects to your Alice scene

It is important to learn how to move the camera around your scene in order to get the
view you want the users to see.

18

CHAPTER 2 PROGRAMMING BASICS

By moving the camera around, you can provide the perspective you want with your
app. See Figure 2-4.

Eile i;:li(Project Run Window Help

QB starting Camera View ¥

[ncisses [v] | apea cases [

i -&-¢

new Teen(... }

Figure 2-4. Use the Camera Controls to control the camera perspective in the
Scene Editor

Take a minute to familiarize yourself with the Scene Editor shown in Figure 2-5. The
Scene Editor enables you to do the following:
o Add objects to your scene from the gallery
e Add objects to your scene from the Internet
o DPosition the objects in your scene

o Adjust the camera view for your scene

19

CHAPTER2 PROGRAMMING BASICS

You will spend a lot of time adding objects and adjusting the camera in your scenes
using the Scene Editor.

Lile Edit Broject Run Window Help

Panel

Figure 2-5. Alice’s Scene Editor

Classes, Objects, and Instances in Alice

A group of objects with the same properties and same methods (actions) are called a
class. For example, you could have a class called Airplane. In this class, you could have
five objects:

boeing747
lockheedSR71
boeing737
citationi0
f18Fighter

20

CHAPTER2 PROGRAMMING BASICS

These objects are nearly identical. They are from the same Airplane class. They all
have the same following methods:

land

takeOff
lowerLandingGear
raiselandingGear
bankRight
bankLeft

The only things that differentiate the objects are the values of their properties. Some
of the properties of the values might be as follows:

winglength = 20 ft
maxThrust = 200,000 lbs
numberOfEngines = 2

In your scene, you may have two objects that are exactly the same. You may want two
Boeing 737s in your view. Each copy of a class is called an instance. Adding an instance
of a class to your program is called instantiation.

Object Tree

The Object Tree (see Figure 2-6) enables you to view all the objects in your Alice scene.
Additionally, if the object has subparts, you can view these subparts by clicking the plus
sign, and you can collapse the subparts by clicking the minus sign.

21

CHAPTER2 PROGRAMMING BASICS

File Edit Project Run Window Help

®& Starting Camera View

Figure 2-6. The Object Tree

Many of the Alice projects come with several built-in objects that you will need for
your apps. The project in Figure 2-6 comes with the camera and ground objects.

Editor

The Editor, the largest area of the Code Editor, is where you write your code. With Alice,
you don’t have to actually type code; you can drag and drop your code to manipulate
your objects and properties.

Note Don’t forget the bottom of the Controls Panel. The panel contains a row of
control and logic tiles for looping, branching, and other logical structures that you
can use to control the behavior of your objects.

22

CHAPTER2 PROGRAMMING BASICS

Methods Panel

The Methods Panel of the Alice Code Editor contains the tabs for procedures and
functions related to the object instance selected in the Object Tree. Refer back to
Figure 2-2.

e Procedures are methods that perform actions upon the object
(such as takeoff and land).

o Functions are methods that either ask a question or return a value.

Creating an Alice App: To the Moon, Alice

You just learned some new terms and concepts, and now it is time to do what
programmers do: write code. It is customary for new developers to write a Hello World
app as their first program. You will do something similar, but Alice makes it more
interesting. You will then follow up your first Alice app with your first Objective-C app.

This Alice app will have three objects on the screen: the UFO object and two Aliens.
One Alien will say, “The Eagle has landed.” The other Alien will say, “That’s one small
step for man, one giant leap for mankind.”

Alice really makes apps like this easy and fun to do. Make sure you follow these steps:

1. Click File and then New.

2. Click the Blank Slates tab.

23

CHAPTER2 PROGRAMMING BASICS

3. Choose the Moon project, and click the OK button. See Figure 2-7.

Mars

[JoN | Select Project

Blank Slates

Sea Floor

Grass

Wonderland Sea Surface

Snow Room

Lagoon Floor Swamp Desert

Figure 2-7. Select the Moon project

4. Now, you need to add your objects. Click Setup Scene. It was the
important button in the Code Editor shown in Figure 2-3.

24

CHAPTER2 PROGRAMMING BASI

5. Inthe Object Gallery, select a new UFO from All Classes >
Transport classes » Aircraft classes. See Figure 2-8.

file Edit Project Run Window Help

R Starting Camera View v/

Add Scene Property From Gallery

[5 mon canes [1)| WoArcat cases v
5| T

o
o

Figure 2-8. Viewing and adding objects to your scene

6. Click OK to add the UFO object to your scene. You can also drag
and drop objects from the gallery to place them within a scene.

CS

Note You can see in this example why an instance is a copy of an object. You are
making a copy of the object and putting it in your scene. Instantiation is a big word
for the process of making a copy of and initializing your object.

25

CHAPTER2 PROGRAMMING BASICS

7. Next, add two Aliens from the Biped classes to your scene.
See Figure 2-9.

file Edit Project Run Window Help

B Starting Camera View v
Add Scene Property From Gallery

1 Lnew | Alien)

Figure 2-9. Adding two Aliens to your scene

8. Use the Camera Controls, shown in Figure 2-10, to achieve the
look and perspective you desire.

Tip Sometimes when you add two objects, Alice places one object over the other.
Drag the top Alien to the side of the other Alien if this occurs. Your world should
look like Figure 2-10.

26

CHAPTER 2 PROGRAMMING BASICS

file Edit Project Run Window Help

S starting Camera View

[cises (v} A soea casses [v]-

174

nm*rm;dlef(o |
Figure 2-10. Use the Camera Controls to adjust the user perspective of the scene

9. Near the top-right corner of the window in the Properties Panel
are the Handle Styles. Hover the mouse over each tile to discover
what each handle style will do to the object.

10. Notice the Object Tree in the top-left corner of the Camera View
in Figure 2-10. The ground, UFO, camera, alien, and alien2 objects
are in the Object Tree.

11. Click the Edit Code button located near the bottom-right corner
of the Camera View. This will return you to the Code Editor.

27

CHAPTER2 PROGRAMMING BASICS

12. Click the left alien in the Camera View. Make sure the Procedures tab
is selected in the Methods Panel. See Figure 2-11.

e R

Figure 2-11. Select the left Alien and the Procedures tab

28

CHAPTER 2 PROGRAMMING BASICS

13. You are now going to make your Aliens say something. Remember,
to apply actions on an object, you need to use methods or
procedures. From the Procedures tab, drag the this.alien|turn tile
from the Methods Panel to your Editor area. Select LEFT, with an
amount of 0.25 from the parameter lists. See Figure 2-12. When
you run your app, the left Alien will turn to the left one-quarter of
arotation and face the other Alien.

TR R

[LEFT]

»
L3
»
»

8858

Custom DecimaiNumber...

[//comment

Figure 2-12. Adding a method instructing the alien to turn to the left

29

CHAPTER2 PROGRAMMING BASICS

14. Let’s do the same thing for the other Alien. Click the right Alien.
Drag the this.alien2|turn tile from the Methods Panel to the
Editor. Select a RIGHT turn with a 0.25 rotation amount from the
parameter lists. See Figure 2-13.

Ble Edn_Project Run Window Help

Figure 2-13. Adding a method instructing the second alien to turn to the right

15. A parameter is the information a method needs to act upon the
object. Some methods may require more than one parameter.

16. Click the left Alien, drag the this.alien|say tile to the Editor, select
Custom TextString, and then type The Eagle has landed. Place
the tile between the other two tiles.

17. Click the right Alien, drag the this.alien2|say tile to the Editor
area, select Custom TextString, and then type That’s one small
step for man, one giant leap for mankind. Your app should look
like Figure 2-14.

30

CHAPTER 2 PROGRAMMING BASICS

File Edt Project Run Window Help

Figure 2-14. Your Editor should contain these methods along with the associated
parameters

18. Run your first program by clicking the Run button. If you have
completed everything correctly, your app should look like
Figure 2-15 when it runs. If not, you have some debugging to do.

[NON | Run
m speed: 1x Q) [restart || = |

That's one small step for man, one giant leap for mankind.

Figure 2-15. From the top portion of Run window, you can play, pause,
and restart your program. You can also speed up or slow down the playback,
depending on how slow or fast your program is running.

31

CHAPTER2 PROGRAMMING BASICS

19. From the main Alice window, select File » Save As to save the
app as toTheMoonAlice.a3p. You will be using this app later.

Your First Objective-C Program

Now that you have learned a little about OOP and you have your first Alice program
completed, it’s time to write your first Objective-C program and begin to understand the
Objective-C language, Xcode, and syntax. First, you must install Xcode. Xcode is the IDE
that you use when developing Objective-C apps. It is equivalent to Alice’s interface.

Launching and Using Xcode

Xcode is available for download from the Mac App Store for free. See Figure 2-16.

32

CHAPTER2 PROGRAMMING BASICS

Xcode

APORAEBYOrOWNGRAT MY

Xcode

ovides

srogramming

ns for Mac, iPhone, iPa

and debugging

...More

What's New in Version 9.1

Xcode 9.1 includes Swift 4 and SDKs for 108 11, watchOS 4, tvOS 11, and macOS High Sierra 101

...More

* TG O O IE

W Simulstor Fie £t Herdware Debog Window Help

simulatesGravity = -7
planethane = **

s gravitySisulatericene: Gr

]
eulimlem
]
t svitrtu
sander -
]

‘mg | -

T R T Ry e]

Figure 2-16. Xcode is available for download from the Mac App Store for free
33

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER2 PROGRAMMING BASICS

Note This package has everything you need to write Objective-C i0S, tvOS,
watchQS, and macOS apps. To submit apps to the App Store and to gain access to
the frequent beta OS and software releases, you will need to apply for the Apple
Developer Program and pay $99 per year. See Figure 2-17.

‘ Developer Discover Design Develop Distribute Support Account Q

Apple Developer Program werview Whatsinciuded How It Works

@ Neode e Go1 View Fd Mavgee Detw Pedet Debup SoumeConsel Window Help
sse » A bt | e b e b By | Voo ot 91 0

o

@ Halt Bome

“ Upper Yosemite Faly

“ Mirror Lake & Tenyya Canyon

9 Lower Yosarnite Fals

From Code to Customer

Join the Apple Developer Program to reach customers around the world on the App Store for iPhone, iPad,
Mac, Apple Watch, Apple TV, and iMessage, and on the Safari Extensions Gallery. You'll also get access to
beta software, advanced app capabilities, extensive beta testing tools, and app analytics.

Figure 2-17. Ifyou pay $99 to join the Apple Developer Program, beta versions of

Xcode and the OS SDKs are available to download. You will also have the ability to
submit apps to the App Store.

34

CHAPTER2 PROGRAMMING BASICS

Now that you have downloaded and installed Xcode, you can begin writing
Objective-C applications, so let’s get started. After launching Xcode, follow these steps:

1. Click Create a new Xcode Project. See Figure 2-18.

Welcome to Xcode

Version 9.1 (€B55)

‘ j\ Get started with a playground

Create a new Xcode project
Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.

’ﬁ_ £oad i
o e AP,

Start working on something from an SCM repository.

5]

s

Figure 2-18. Creating your first Objective-C project

35

CHAPTER2 PROGRAMMING BASICS

2. Select macOS, then the Command Line Tool project template,
and then click the Next button. See Figure 2-19.

Choose a template for your new project:

i0S watchOS tvOS Cross-platform (G)

Application
A ® [
Game Command
Line Tool
Framework & Library

=) (@) ™ 53 ®

Cocoa App

Cocoa Framework Library Metal Library XPC Service Bundle
Other
" g \ _|_J_L‘ oy S :—Ll IJ—_'—L} T
A Lat™, H Ao Ak, 'S Ankinm " 'y ., Aabkinm Oannsin 1 I} Limik
Cancel _ reviou Next

Figure 2-19. Selecting the Command Line Tool project template

36

CHAPTER2 PROGRAMMING BASICS

3. Let’s name the app HelloWorld and select Objective-C as the

language, as shown in Figure 2-20. Then click the Next button and

save your app to a folder of your choice.

Choose options for your new project:

Product Name:

Team:

Organization Name:
Organization Identifier:
Bundile Identifier:

Language:

HelloWorld < mmmm—

The Zonie, LLC
The Zonie, LLC

com.thezonie

com.thezonie.HelloWorld

Objective-C < mm—

Cancel

Figure 2-20. Name your app HelloWorld, and select Objective-C as the language

4. Inthe Project Navigator, select the main.m file.

Xcode does a lot of work for you and creates a directory with files and code ready for

you to use. That is what Xcode templates do: they save you a lot of time.
You need to become familiar with the Xcode IDE. Let’s look at two of the most often

used features (see Figure 2-21):
o The Navigator Area

o The Editor Area

37

CHAPTER2 PROGRAMMING BASICS

e0e » B HelloWorld) || My Mac Helloworld | Clean Succoeded | Today at 2:15 PM = o 00O 30O
B E & Q = o B8 < [E Helloworld | [7) HelloWorld } m main.m) Mo Selection ﬁ——Jump Bar
Z) HelloWorld 7] g e
HelloWrid Run Button-

/f HelloWorld

« I

» . |Products /! Created by Stefan Kaczmarek on 11/12/17.

& ff Copyright © 2017 The Zonie, LLC. All rights reserved.
"

LUt LA U » wimport <Foundation/Foundation.h>

' Editor Area
11 int mainlint arge, const char = argvll) {
Rautoreleasepool {
// ingert code here...
NSLog(@"Hello, World!");
¥
a 16 return @;

Figure 2-21. You can run the app right after creating the project by clicking the
Run button and seeing “Hello, World!” printed out in the console.

These sections should look similar to what you used in Alice. The Navigator Area
contains files needed to build your apps. It will contain your classes, methods, and
resources.

The Editor Area is the business end of the Xcode IDE, where our dreams are turned
into reality. The Editor Area is where you write your code. You will notice that as you
write your code it will change color. Sometimes, Xcode will even try to auto-complete
words for you. The colors have meanings that will become apparent as you use the
IDE. The Editor Area is also where you debug your apps.

Note Even if we’ve mentioned it already, it is worth saying again: you will learn
Objective-C programming by reading this book, but you will really learn Objective-C
by debugging your apps. Debugging is where developers learn and become great
developers.

The Run button turns your code from plain text to an app that your Macs, iPhones,
or iPads know how to execute. With the Alice interface, you used the Run button to run
your Alice app.

To run your first program, simply click the Run button. Xcode checks your code
syntax, compiles your app, and if no errors are found, makes an app file and runs it.

38

CHAPTER2 PROGRAMMING BASICS

When the app runs, it prints out Hello, World! in the Debug Area Console.
Additionally, you can see whether the application terminated and why it terminated.
In this case, it terminated normally. You can see this with the message Program ended
with exit code: 0, which means your app completed without error. See Figure 2-22.

® <000

e0ce p M Hellowerld) || My Mac Finished running HelloWorld : HelloWorld

BE S QMS = o @ 8 < > [B Heloword) [Helloworld } m mainm) No Selection

¥ [Helloworld "
v 7] HelloWorld 2 /f main.m
= 3 // HelloWorld
‘m main.m . 1
> Bl Products 5 /f Crested by Stefan Kaczmarek on 11/12/17.

& ff Copyright & 2017 The Zonie, LLC. All rights reserved.
P

9 #import <Foundation/Foundation.h>
1 int main(int arge, const char = argvl]) {

Fautoreleasepool {
/f insert code here...

NSLog(@"Hello, World!®); Console
1 }
16 return 9;
7o}
1
H =
2017-11-12 14:29:46.000812-6708
HelloWorld[18682:28464386] Hello, Worldl
Debug Area ___» Program ended with exit code: @
+ [® @FE || awtes ® All Qutput & @ gl m ||

Figure 2-22. The app executing in the Debug Area Console

Let’s modify the application to do what you did with the Aliens:
1. Select the main.m file from the Project Navigator.
2. Change lines 14 and 15 to look like Figure 2-23.

3. You are going to intentionally forget to add a semicolon at the end
of line 15. This will cause a compiler error.

4. C(Click the Run button.

39

CHAPTER2 PROGRAMMING BASICS

You can see that something went wrong when you try to compile and run your app.
You have a compiler error and a red error icon indicating where the problem is; see
Figure 2-23.

eoe » W HelloWorld) || My Mac Helloworld | Build Failed | Today at 2:39 PM 0: E o <S030
BBE S QA & & o @ 8 < > [B Heloword) [Helloworld } m mainm) £ main {0>
¥ [& HelloWorld 7
w [Helloworid 2z /f main.m
~ i /! Helloworld
il . I
» |7] Products 5 // Created by Stefan Kaczmarek on 11/12/17.
& ! Copyright ® 2817 The Zonie, LLC. All rights reserved.
i
#import <Foundation/Foundation.h>
int main(int arge, const char = argv(]) {
Fautoreleasepool {
/! insert code here...
. NSLog(@"The Eagle has landed.");
% NSLog(@"That's one small step for man, one giant leap for mankind.”) O Expected ' after exprassion

}
return 9;

% }

+(@

]
&

Figure 2-23. The app with a syntax error caught by the Objective-C compiler

When you write Objective-C code, everything is important, even semicolons,
capitalization, and parentheses. The collection of rules that enable your compiler to
compile your code to an executable app is called syntax.

NSLog is a function that will print out the contents of its parameters to the console.

40

CHAPTER2 PROGRAMMING BASICS

Now, let’s fix the app by adding the semicolon at the end of line 15. Building and
running the app will enable you to see the output in the console. See Figure 2-24.

@ <000

e0e p M Hellowerld) || My Mac Finished running HelloWorld : HelloWorld

BES Q& & & o @ 8 < > B Helowd) [Heloword) m mainm) [main
¥ [B) HelloWorld 1M

v [7] HelloWorld 2 /f main.m
e 3 // HelloWorld
el W ot
> Bl Products 5 /f Crested by Stefan Kaczmarek on 11/12/17.

& ff Copyright & 2017 The Zonie, LLC. All rights reserved.
T

9 #import <Foundation/Foundation.h>

1 int main(int arge, const char = argv(]) {
Bautoreleasepool {
f/ insert code here...
. MSLog(@"The Eagle hos landed.");
15 NSLog(@"That's one small step for man, one giant leap for mankind.”");
}

return 9;

2017-11-12 14:46:53.127)

-B7e8

The Eagle has landed.
2017-11-12 14:46:53.12 ~8708
That's one small step for
man, one giant leap for' mankind.
Program ended with exit code: @

+ |@® OE | Ao ® Al Output & (S W OO

Figure 2-24. The app compiled with no compiler errors, and completion executed
successfully with the output you wanted

Feel free to play around and change the text that is printed out. Have fun!

Summary

In this chapter, you built your first Alice app. You also installed Xcode and compiled,
debugged, and ran your first Objective-C app. You also learned new OOP terms that are
key to your understanding of Objective-C.

The terms that you should understand are as follows:

e Classes
e Objects
e Methods

¢ Parameters
¢ Instances

o Instantiation

41

CHAPTER 2

PROGRAMMING BASICS

Exercises

Perform the following tasks:

42

Extend your toTheMoon.a3p Alice app. Place another object of your
choosing in the world and have the object say something to the two
Aliens when they have finished speaking.

Extend your Objective-C HelloWorld app by adding a third line of
code that prints any text of your choosing to the console.

CHAPTER 3

It’s All About the Data

As you probably know, data is stored as zeros and ones in your computer’s memory.
However, zeros and ones are not very useful to developers or app users, so you need to
know how your program uses data and how data is stored on your computer.

In this chapter, you will look at how data is stored on computers and how you can
manipulate that data. Then you'll write a fun Alice app illustrating data storage and
afterward write the same Alice app in Objective-C. So let’s get started!

Numbering Systems Used in Programming

Computers work with information differently than do humans. This section covers the
various ways information is stored, tallied, and manipulated by devices such as your
Mac, iPhone, and iPad.

Bits

A bit is defined as the basic unit of information used by computers to store and
manipulate data. A bit has a value of either 0 or 1. When computers were first
introduced, transistors and microprocessors didn’t exist. Data was manipulated and
stored by vacuum tubes being turned on or off. If the vacuum tube was on, the value
of the bit was 1, and if the vacuum tube was off, the value was 0. The amount of data a
computer was able to store and manipulate was directly related to how many vacuum
tubes the computer had.

The first recognized computer was called the Electronic Numerical Integrator And
Computer (ENIAC). It took up more than 136 square meters and had 18,000 vacuum
tubes. It was about as powerful as a handheld calculator.

43
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_3

CHAPTER 3 IT’S ALL ABOUT THE DATA

Today, computers use transistors to store and manipulate data. The power of
a computer processor depends on how many transistors are placed on its chip or
CPU. Like the vacuum tube, transistors have an off or on state. When the transistor is off,
its value is 0. If the transistor is on, its value is 1. At the time of this writing, Apple’s A11
Bionic processor, which powers the iPhone 8, iPhone 8 Plus, and iPhone X, is a 6-core
ARM processor with approximately 4.3 billion transistors, up from 149 million transistors
within the A4 from the first iPad. Figure 3-1 shows Apple’s latest iPhone processor, the
Al1 Bionic.

Figure 3-1. Apple’s proprietary Al1 Bionic processor (source: Wikipedia)

Moore’s Law

The number of transistors within your iPhone’s or iPad’s processor is directly related
to your device’s processing speed, memory capacity, and sensors (accelerometer,
gyroscope, compass) available in the device. The more transistors, the more powerful
your device is.

In 1965, Gordon E. Moore, a cofounder of Intel, described the trend of transistors in
a processor. He observed that the number of transistors in a processor doubled every
18 months from 1958 to 1965 and would likely continue “for at least 18 months.” The
observation became famously known as Moore’s Law and has proven accurate for more
than 55 years. See Figure 3-2.

44

CHAPTER 3 IT'S ALL ABOUT THE DATA

Microprocessor Transistor Counts 1971-2011 and Moore's Law

16-Core SPARC T3

Six-Core Core i
2,600,000,0004 Six-Core Xeon 7“00_. M ®10-Core Xeon Westmere-EX
Dual-Core Itanium 2 ﬁm&m’
1 ,OODIOOOIDOOF‘ Ianium 2 with 9MB maﬁ:;:’?E:ﬁ' V'K‘;?;Cmumwm’cg&mziiﬁgmy
\l.‘:ore i7 (Quad)
&p2ow
100,000,000
o Atom
— Curve shows transistor
€ 10,000,000 o oy 1o overy
8 [2AMDKS
s}
@ 1,000,000
w
c
[Q]
e
=
100,000+
680cce
s0s6e #6088
10,000 ﬁ\./ 06809
sosc\l 250
BooE® I @ MOS 6502
2,300~ «004®,/meatace
I 1 1 1 1
1971 1980 1990 2000 2011

Date of introduction

Figure 3-2. Moore’s Law (source: Wikipedia)

Note There is a downside to Moore’s Law, and you have probably felt it in your
pocketbook. The problem with rapidly increasing processing capability is that it
renders technology obsolete quickly. So, when your iPhone’s two-year cell phone
contract is up, the new iPhones on the market will be twice as powerful as the
iPhone you just paid for. How convenient for everyone!

45

CHAPTER 3 IT’S ALL ABOUT THE DATA

Bytes

A byte is another unit used to describe information storage on computers. A byte is
composed of 8 bits. Whereas a bit can represent up to two different values, a byte can
represent up to 2%, or 256, different values. A byte can contain values from 0-255.

The binary number system represents the numerical symbols 0 and 1. To illustrate
how the number 71 would be represented in binary, we will use a simple table of 8 bits
(1 byte), with each bit represented as a power of 2. To convert the byte value 01000111 to
decimal, simply add the “on” bits. See Table 3-1.

Table 3-1. The Number 71 Represented as a Byte (64+4+2+ 1)

Power of 2 27 26 25 24 28 22 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 1 0 0 0 1 1 1

To represent the number 22 in binary, turn on the bits that add up to 22, or
00010110. See Table 3-2.

Table 3-2. The Number 22 Represented as a Byte (16 + 4 + 2)

Power of 2 27 26 25 24 28 22 2 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 1 0 1 1 0

To represent the number 255 in binary, turn on the bits that add up to 255, or
11111111. See Table 3-3.

Table 3-3. The Number 255 Represented as a Byte (128 + 64+ 32+ 16+8+4+2+1)

Power of 2 27 26 25 24 23 2?2 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 1 1 1 1 1 1 1 1

46

CHAPTER 3 IT'S ALL ABOUT THE DATA

To represent the number 0 in binary, turn on the bits that add up to 0, or 00000000.
See Table 3-4.

Table 3-4. The Number 0 Represented as a Byte

Power of 2 27 28 2% 24 23 22 21 20
Value for “on” bit 128 64 32 16 8 4 2 1

Actual bit 0 0 0 0 0 0 0 0

Hexadecimal

Often, it will be necessary to represent characters in another format that is recognized
by computers, namely, a hexadecimal format. Hexadecimal is just an easier (more
compact) way for humans to parse binary data. You will encounter hexadecimal
numbers when you are debugging your apps. The hexadecimal system is a base-16
number system. It uses 16 distinct symbols, 0-9, to represent values 0 to 9, and A, B, C,
D, E, and F to represent values 10 to 15. For example, the hexadecimal number 2AF3 is
equal in decimal to (2 x 16°) + (10 x 16) + (15 x 16') + (3 x 16°), or 10,995.

Figure 3-3 shows the ASCII table of characters. Because 1 byte can represent 256
characters, this works well for Western characters. For example, hexadecimal 20
represents a space. Hexadecimal 7D represents a right curly brace (}). You can also see
this by playing with the Mac Calculator app in Programmer mode because it can convert
numerical values to ASCII.

47

CHAPTER 3 IT’S ALL ABOUT THE DATA

Dec HxOct Char Dec Hx Oct Htrnl Chr |Dec Hx Oct Himl Chr| Dec Hx Oct Himml Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 @:; [| 96 60 140 «#96;
1 1 001 30H (start of heading) 33 21 041 «#33; ! 65 41 101 «#65; A | 97 61 141 «#97; =a
2 Z ooz . (starc of text) 34 22 042 «#34; " 66 42 102 «#66; B | 95 62 142 «#98; b
3 3 003 {end of text) 35 23 043 «#35; ¢ 67 43 103 «#67; C | 99 63 143 «#9%; ©
4 4 004 EOT (end of transmission) 36 24 044 «#36; ¢ 63 44 104 «#68: D |100 64 144 «#100; d
5 5 005 ENO (enquiry) 37 25 045 «#37; = £9 45 105 «#69: E |101 65 145 «#101; =
6 6 006 ACKE (acknowledge) 38 26 046 «#38; « 70 46 106 &«#70; F |102 66 146 «#l02; T
7 7 007 BEL (bell) 39 27 047 «#39; ' 71 47 107 «#71; G |103 67 147 &«£103; o
8 8 010 BS (backspace) 40 28 050 £#40; (92 48 110 #72: H |104 68 150 &§104: h
9 9 011 TAD (horizontal tab) 4l 29 051 «#4l;) 73 49 111 «#73: T |105 69 151 «#105: 1
10 A 012 LF (NL line feed, new line)| 42 24 052 «#42; © 74 4h 112 «874: J |106 6A 152 «f1l06: 7
11 B 013 VT (wertical tab) 43 2B 053 + + 75 4B 113 K K |107 6B 153 &«#107: k
12 € 0l4 FF (NP form feed, new page)| 44 2C 054 «#44; , 76 4C 114 «#76: L |108 6C 154 «#108; L
13 D 015 CR (carriage return) 45 2D 055 «#45; - 77 4D 115 «#77: I |109 6D 155 «#109; u
14 E 016 50 (shift out) 46 ZE 056 «#46; . 78 4E 116 «#78; N |110 6E 156 «#110; n
15 F 017 5I (shift in) 47 2ZF 057 «#47; / 79 4F 117 «#79: 0 |111 6F 157 «#1l11: ©
16 10 020 DLE (data link escape) 45 30 060 0: 0 80 50 120 &«#80: P |112 70 160 &«$112: p
17 11 021 DC1 (device control 1) 49 31 061 «#49; 1 81 51 121 «#81: 0 |113 71 161 «#113: o
15 12 022 DCZ (device control 2) 50 32 062 82 52 122 &«#8Z; R |114 72 162 «#lld: ¢
19 13 023 DC3 {device control 3) 51 33 063 3 83 53 123 &«#83:; 5 |115 73 163 &«#1l15: =
20 14 024 DC4 (device control 4) 52 34 064 «#52: 4 84 54 124 «#84: T |116 74 164 «#ll6; ©
21 15 025 NAK (negative acknowledge) 53 35 065 5 85 55 125 «#85; U |117 75 165 «#ll7; u
22 16 026 5YN (synchronous idle) 54 36 066 86 56 126 «#86: V |118 76 166 «flld: v
23 17 027 ETE (end of trams. block) 55 37 067 §7 57 127 <#87; U |119 77 167 &$119; v
24 18 030 CAN (cancel) 56 38 070 88 58 130 Xo|1z0 78 170 x x
25 19 031 EM (end of medium) §7 39 071 89 59 131 |12l 79 171 &«#lZl; ¥
26 1A 032 5UE (subsctitute) 55 3A 072 90 S5A 132 Z|122 7A 172 «fliZ; =
27 1B 033 ESC (escape) 53 3B 073 91 5B 133 [{123 7B 173 «#123; {
28 1C 034 F5 (file separator) 60 3C 074 «#60; < 92 5C 134 «#92; \ |l124 7C 174 «#lz4: _|
29 1D 035 (group separator) 61 3D 075 «#6l; = 93 5D 135 «#93;] |125 7D 175 «#l25: |
30 1E 036 (record separator) 62 3E 076 > > 94 SE 136 £#94; © 126 TE 176 «fl26: -
31 LF 037 {unit separator) 63 3F 077 «#63; 7 95 SF 137 &«#95; _ |127 7F 177 «#127; DEL
Source: www.LookupTables.com
128 ¢ 144 E 161 1 177 193 L 209 225 B 241 =
129 i 145 = 162 o 178 194 210 226 T 242 =
130 ¢ 146 E 163 4 179 195 211 b 227 «n 243 <
131 & 147 4 164 & 120 196 - 212k 228 % 244
132 & 142 o 165 1 181 197 4 213 229 o 245
133 & 149 o 166 * 182 198 214 230 p 246 -
134 & 150 4 167 ° 183 4 199 |+ 215 4 231 ¢ 247 =
135 ¢ 151 w162, 184 - 0 L 216 4 232 & 243
136 ¢ 152 169 185 4 200 g 217 233 ® 249
137 ¢ 153 0O 170 - 186 || 202 & 218 234 O 250
138 ¢ 154 U 171 % 187 3 203 5 219 | 235 ¢ 251 A
139 1 156 £ 172 % 188 4 204 ¢ 20 m 236 o 252
140 1 157 % 173 189 4 205 = 221 | 237 ¢ 253 ¢
141 i 132 174 « 190 06 4 22 | 238 = 254 W
142 A 159 ¢ 175 » 191 4 207 2 = 239~ 255

143 £ 160 192 L 208 L 224 o 240 =

Source: www.LookupTables.com

-

176

Figure 3-3. ASCII characters (source: www. LookupTables.com)

48

http://www.LookupTables.com

CHAPTER 3 IT'S ALL ABOUT THE DATA

Unicode

Representing characters with a byte worked well for computers until about the 1990s,
when the personal computer became widely adopted in non-Western countries where
languages have more than 256 characters. Instead of a 1-byte character set, Unicode can
have up to a 4-byte character set.

To facilitate faster adoption, the first 256 code points are identical to the ASCII
character table. Unicode can have different character encodings. The most common
encoding used for Western text is called UTF-8. The “8” is how many bits are used per
character, so it’s one byte per character, like ASCII.

As an iPhone developer, you will probably use this character encoding the most.

Data Types

Now that we've discussed how computers manipulate data, we need to cover an
important concept called data types. Humans can generally just look at data and the
context in which it is being used to determine what type of data it is and how it will
be used. Computers need to be told how to do this. The programmer needs to tell the
computer the type of data it is being given. Here’s an example: 2 + 2 = 4.

The computer needs to know you want to add these two numbers together. In this
example, they are integers. You might first believe that adding these numbers is obvious
to even the most casual observer, let alone a sophisticated computer. However, it is
common for users of iOS apps to store data as a series of characters, not a calculation.
For example, a text message might read “Everyone knows that2 + 2 =4

In this case, we are using our previous example in a series of characters called a
string. A data type is simply the declaration to your program that defines the data you
want to store. A variable is used to store your data and is declared with an associated
data type. All data is stored in a variable, and the variable needs to have a variable type.
For example, in Objective-C, the following are variable declarations with their associated
data types:

int x = 10;
inty = 2;
int z = 0;

char prefix = 'c';
NSString *submarineName = @"USS Nevada SSBN-733";

49

CHAPTER 3 IT’S ALL ABOUT THE DATA
Data types cannot be mixed with one another. You cannot do the following:
Z = X + submarineName;

Mixing data types will cause either compiler warnings or compiler errors and your
app will not run.

Most data you will use in your programs can be classified into three different types:
Booleans, numbers, and objects. We will discuss how to work with numbers and object
data types in the remainder of this chapter. In Chapter 4, we will talk more about
Boolean data types when you learn how to write apps with decision making.

Note Localizing your app is the process of writing your app so that when users
buy and use your app they see strings that are in their native language. This
process is too advanced for this book, but it is a relatively simple one to complete
when you plan from the beginning. Localizing your app greatly expands the total
number of potential customers and revenue for your app without you needing to
rewrite it for each language. Be sure to localize your app. It is not hard to do and
can easily double or triple the number of people who buy it.

Using Variable and Data Types with Alice

Now that you have learned about data types, let’s write an Alice app that adds two
numbers and displays the sum using an object and methods.

1. Open Alice to create a new Project.

2. Select the Grass template and click OK. See Figure 3-4.

50

CHAPTER 3 IT'S ALL ABOUT THE DATA

® 0 Select Project

Blank Slates

Moon

Mars

Sea Floor
Snow Room Wonderland Sea Surface
1 - -

Figure 3-4. Choosing the Grass template

cance Lok,

Next, you need to create your variables and select their associated data types.

1. Click and drag the variable tile from the bottom of your editor to
the Editor area, as shown Figure 3-5.

51

CHAPTER 3

FEile Edit Project Run Window Help

group by categary ¥

Cihis.cameral move direction: E£.171) , anmnr.@]
this.cameral moveToward targer: @. amount:
"ﬁg moveAwayFrom wgel._t‘m. amount: ST

W@ moveTo targer @j
~Cthis.camera place spatialRelation: £ %) , target: @

“erientation :
. Cthis.camera turn direction: S, amount:
'ﬁg roll dkemn:l@. amount:
Cihis.camera turnToFace target
 (ihis.camera orientTo rarget:

is.camera orientToUpright
| (his.cameral pointAt targer

IT'S ALL ABOUT THE DATA

decare procedure myFirstMethod

do in arder

Insert Variable

(®) variable
) constant

value type: | WholeNumber h—.
name: El‘lslNunﬂ:el P—

Is variable:

{ doin order| [count | while | foreachin_| [i | [dotogether | each in_together] | nu:ble...m i .'.f:om-nennj

Figure 3-5. Creating a new variable

2. Next, name your first variable firstNumber.

3. Select WholeNumber as the variable’s value type and set its

initial value to 2.

It is always good programming practice to initialize your variables when they are

declared.

52

CHAPTER 3 IT'S ALL ABOUT THE DATA

4. Create another variable called secondNumber, as shown in
Figure 3-6. Set its value type to WholeNumber and its initial
value to 3.

Eile Edit Project Bun Window Help

L BeN) Insert Variable

prevew: " (stomnmie secndinbe) SR ETN)

(®) variable
Is variable: O

¢ (Whoiehumber)" famm—
name: Iil("ﬂﬂﬂNIﬂ“‘lﬂ h—

B/ fcomment

Figure 3-6. Creating the second variable

53

CHAPTER 3 IT’S ALL ABOUT THE DATA

5. Create a third variable called totalSum, as shown in Figure 3-7.
Set the variable’s value type to WholeNumber and set its initial
value to 0. This variable will hold the sum of firstNumber and
secondNumber.

File Edit Project Run Window Help

dectre procedure myFirstMethod
|[do in order
{(itolabmiec & Frniombe) S 2)

| (WholeNumber = secondumben <& &3 |

@ this.camera

Procedures |

Lo oy ey).
position

 Cthis.cameral move direction: @ . amount: @]
~ (ihis.camerd moveToward target: @. amount:
 (this.camera moveAwayFrom urgem . amount:

Insert Variable

preview. | WholeNumber = totalsum <5 =0)

 (this.cameral moveTo target: @j - s variable: & variable
Cihis.cameral place spatialRelation: © 1) , target: @ Q constart -
value type: { WholeNumber |
erenain : R e G —
. Cthis.camera turn direction: ST, amount: mializer: | 55
- (this.camera roll dkeml@. amount: " b

Cihis.camera turnToFace target
 (ihis.camera) orientTo target:
(ithis.cameral orientToUpright
- (this.camera pointAt target:

{ doinorder) [count_| while_| for each in [#_] [dotogether} each in together | | nl;bn...ﬁm { Jicomment]

Figure 3-7. Creating the totalSum variable

54

CHAPTER 3 IT'S ALL ABOUT THE DATA

6. Now to add your two variables together. Drag the totalSum tile to
the last row of the Editor, as shown in Figure 3-8, and select 0 as its

value.

FEile Edit Project Run Window Help

=

]
=)

Custom WholeNumber...

Laroup by category ¥

 (this.camera move direction:), amount E@]
this.cameral moveToward targer: @. ammﬂ%
ﬁg moveAwayFrom wgel.{m. amount: ST
'ﬁ 4 moveTo farget: @j
Cihis.camera) place spatiaRelation & 1) , target: @

 Cihas.camera turn direction: © 1), amount:
C ral roll dkemn:l@. amount:
Cthis.cameral turnToFace target
| (ihis.cameral orientTo target

is.camera orientToUpright
- (this.camera pointAt target:

{ doin order| [count | while | foreachin_| [if | [dotogether)| eachin_together| [variable...| assign] [//comment]

Figure 3-8. Initializing the variable totalSum

55

CHAPTER 3 IT’S ALL ABOUT THE DATA

7. Next, click the totalSum 0 and change it to firstNumber, as shown

in Figure 3-9.

FEile Edit Project Run Window Help

@ this.camera

group by categary ¥

| ths.camera mavedirection =), amount Z170) |
ms .camerd moveToward targer: @ amount:
- (this.camera moveAwayFrom urgel._t‘m . amount:
ﬁg moveTo targer
~Cthis.camera place spatialRelation: £ %) , target: @

“erientation :
. Cthis.camera turn direction: ST, amount:
" this.camera roll direction: ©91) | amount.
Cihis.camera turnToFace target
 (ihis.camera orientTo rarget:
(ithis.cameral orientToUpright
| (his.cameral pointAt targer

decare procedure myFirstMethod
do in order

[mmn«rmr] <=

< secondNumber) -:‘.“-"- =)]

{ mherk—- oabum <= =9

feurrent value)

tBenale

indom L3
Decimal to Whole Number >
Math [3
Custorn WhaleMumber...
SsecondNumber

GhirstNumber]

{ doin order| [count | while | foreachin | [i | [dotogether | each in_together| [variable...| assign { .'.f:om-nennj

Figure 3-9. Setting totalSum equal to firstNumber

8. Now that totalSum is set to firstNumber, click the firstNumber tile.

56

CHAPTER 3 IT'S ALL ABOUT THE DATA

9. Next, select Math to add firstNumber to secondNumber as shown
in Figure 3-10.

File Edit Eroject Bun Window Help

¥ It I-NITO\UII'I'. nm. amount:
Cihis.cameral moveAwayFrom target. <900) , amount

Figure 3-10. Setting totalSum = firstNumber + secondNumber

57

CHAPTER 3 IT’S ALL ABOUT THE DATA

10. totalSum is now set to be the sum of firstNumber and
secondNumber. See Figure 3-11.

Eile Edit Project Bun Window Help

Figure 3-11. totalSum is now set

Now you just need to add a character to your world to display your total!

58

CHAPTER 3 IT'S ALL ABOUT THE DATA

11. Click the Setup Scene button in the Camera View and add any
object of your choosing from the Gallery at the bottom of the
screen. (We selected an Alien.) See Figure 3-12.

FEile Edit Eroject Run Window Help

(Ehis ———————=
) _ [- Starting Camera \l"lma J

Figure 3-12. Adding an Alien to your world

You now need to declare a variable of type TextString to hold the text “The sum of
2 + 3 is 5” that the Alien will say.

12. Click the Edit Code button in the bottom right corner of the
Camera View to go back to the Editor.

59

CHAPTER 3 IT’S ALL ABOUT THE DATA

13. With your Alien instance selected, drag the this.alien say text: 22?
tile from the Procedures tab to the Editor. See Figure 3-13.

Eile Edit Project Run Window Help

 do together | each in . together |

Figure 3-13. Adding the “say” procedure (method) to the Editor

60

CHAPTER 3 IT'S ALL ABOUT THE DATA

14. Click Custom TextString and enter the string The sum of 2 + 3 is
(with an extra empty space at the end) as the parameter value.
See Figure 3-14.

Eile Edit Project Run Window Help

Don't:-forget the extra
empty space at the end!

walue: | The sum of 2 + 3 is | _

Figure 3-14. Entering the Custom TextString parameter

61

CHAPTER 3 IT’S ALL ABOUT THE DATA

15. Click OK, then click the first parameter of the “say” procedure,
and append totalSum to the string. See Figure 3-15.

Eile Edit Project Run Window Help

i
' Ghis.aben' say [fThe sumor2 + 315 0 add detail’
text

(current value)
Custom TextString...

sumof2 + 3159 + 7 Jthelio)
* | Custom TextString...

Figure 3-15. Adding totalSum to your custom string to display to the user

Alice did something very nice for you in the last step. It automatically converted the
data type totalSum from a WholeNumber to a TextString when it appended its value to
the “The sum of 2 + 3 is ” string. You will also learn how to do this using Objective-C.

You can run the program by clicking the Run button, but you will notice
the custom string doesn’t display for very long.

62

CHAPTER 3 IT'S ALL ABOUT THE DATA

To increase the display time of your custom string, click the add detail

parameter of the “say” procedure and change the duration to 2.0 seconds,
or any other value you like. See Figure 3-16.

File Edit Project Bun Window Help

dectre proceaire myFirstMethod

do in order

| — r = = = — = = T 0|
| chisaberi say fThesumof 2 + 357 + Ctotabum | [EEEEEEE

group by category | = |

| Alier | 's Edlable Procedures (0)
{Bped | 's Editable Procedures (0}
say, think

position
| (ths.alen move direction ETIT) , amount:
- (this alienl moveToward rarger

Cthis alien moveAwayFrom urger__‘-’@ \ amount

0 n moveTo target <10

Cthis.alienl place spatialRelation: . farger L’m
orientation

17 e alio turn | dirsetion: 700 ameunr =701 |

fontType
bubblePosition
fantColor
bubbleFaiColor
bubbleCutlineColor
textstyle

FYYYYTYY

Custom DecimalNumber,. |

[doinorder| [count_{ whie | for eachin_| [f.| [dotogether [eachin_together| | variable... | assign| [//comment]

Figure 3-16. Increasing the “say” duration to 2.0 seconds

63

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 3 IT’S ALL ABOUT THE DATA

16. Click the Run button, and if you've done everything correctly, your
app should look like Figure 3-17 when it runs.

@00 Run

| 1| speed: 1xQ | restart || o |

The sumof2 +3is5

Figure 3-17. The app has run successfully!

Data Types and Objective-C

Now that we have covered the principles of data types and have written an Alice app to
help show how these principles apply, let’s write an Objective-C app that accomplishes
what you just did in Alice.

64

CHAPTER 3

IT’S ALL ABOUT THE DATA

In Objective-C, you have similar data types as you did in Alice. Some of the most

frequently used data types for storing numbers are integers, doubles, floats, and

longs. Table 3-5 lists several basic data types, many of which will be covered in

later chapters.

Table 3-5. Objective-C Basic Data Types

Type Examples Specifiers
Char 'a','o","\n' %C

Int 42,-42,550 0xCCEO %1, %d
Unsigned int 20u, 101U, OXFEu %U, %X, %0
Long int 13, -2010, Oxfefel %1d,
Unsigned long int 12UL, 100ul, oxffeeUL %1u, %1x, %1o
Long long int oxe5e5e5LL, 50111 %11d

Unsigned long long int
Float

Double

Long double

NSObject

11ull, oxffeeULL

12.30f, 3.2e-5f, 0x2.2p09
3.1415

3.1le-51

Nil

%11u, %11x, %110
%t %e, %g, %a

%t, %e, %g, %a
%LT, %Le, %Lg, %La
%@

65

CHAPTER 3 IT’S ALL ABOUT THE DATA

The Objective-C app will add two integers and display their sum in the console. This
will be fun and easy, so let’s get started!

1. AsiOS developers, Xcode is where you make your living, so open
up Xcode and create a new project. To do this, select File » New
» Project and select macOS and Command Line Tool, as shown
in Figure 3-18, before clicking Next.

Choose a template for your new project:

iOS watchOS tvOS m Cross-platform ®

Application

[& | v - -
o ¥ :

A

Cocoa App Game Command
Line Tool

Framework & Library

£ it N X s
Cocoa Framework Library Metal Library XPC Service Bundle

Other

A At + Aok Onmdanhko Aok ~

WP T e | i LLaik

Cancel Next

Figure 3-18. Creating a new project

66

CHAPTER 3 IT'S ALL ABOUT THE DATA

2. Enter Chapter 3 as the Product Name (see Figure 3-19) and
choose a folder to save your project after clicking Next.

Choose options for your new project:

Product Name: Chapter 3 b

Team: The Zonie, LLC B

Organization Name: The Zonie, LLC
Organization Identifier: com.thezonie

Bundle Identifier: com.thezonie.Chapter-3

Language: Objective-C B

Cancel Previous Next

Figure 3-19. Chapter 3 project settings

67

CHAPTER 3 IT’S ALL ABOUT THE DATA

3. After you create the project, you need to open the source code
file in the Editor. Select the main.m source file to open it
(see Figure 3-20).

[N | =8 M Chapter 3) || My Mac Chapter 3: Ready | Today at 2:22 PM
B E 2 QA & &2 o B8 <€ [& chapter 3) [7] Chapter 3) m main.m) No Selection
v [_g] Chapter 3 I

v |7l Chapter 3 // main.m

f/ Chapter 3

» 7] Products // Created by Stefan Kaczmarek on 11/25/17.
// Copyright e 2017 The Zonie, LLC. All rights reserved.
i

? #import <Foundation/Foundation.h>

int main(int arge, const char *= argv(]) {
@autoreleasepool {
// insert code here...
NSLog(@"Hello, World!");
}

return @;

Figure 3-20. After you create your project and select the main.m file, your Xcode
project should look this

If you haven’t seen // used in computer programming before, it enables the
programmer to comment about the code. Comments are not compiled as part of your
application’s source code, but are instead used as notes for both you as the original
developer and, more importantly, for any other developers who will ultimately review
your code. Comments help both the original developer and any follow-up developers
understand how the app was developed.

Sometimes it is necessary for comments to span several lines or just part of a line.
This can be accomplished with /* and */. All the text between /* and */ is treated as a
comment and is not compiled.

In this example, you first need to declare and initialize your variables fixrstNumber
and secondNumbex. It is good practice to always initialize variables when they are
declared.

68

CHAPTER 3 IT'S ALL ABOUT THE DATA

Your application will then calculate the totalSum of firstNumber and secondNumber

and print the result to the console. See Figure 3-21.

o0®) W Chapter 3) || My Mac
B8 2 Q & © = o BB <
v [§ Chapter 3 L
¥ [Chapter 3 2 I

3 /N
P i | Products s [/

/H
I

Chapter 3 | Build Chapter 3: Succeeded | Today at 2:38 PM

@ Chapter 3 Chapter 3 | m main.m) No Selection

main.m
Chapter 3

Created by Stefan Kaczmarek on 11/25/17.
Copyright e 2017 The Zonie, LLC. All rights reserved.

» #import <Foundation/Foundation.h>

1 int

}

main(int arge, const char % argvl(]) {
Rautoreleasepool {

// insert code here...

int firstNumber = 2;

int secondNumber = 3;

int totalSum = firstNumber + secondNumber;

NSLog(®"The sum of %d and %d is %d", firstNumber, secondNumber, totalSum);
}

return 9;

Figure 3-21. Code for adding two numbers and printing the sum to the console

NSLog is a function that can take one or more parameters. The first parameter is

generally the string that is to be printed to the console. The @ symbol in front of the

string tells the compiler this is an Objective-C type string and not a standard C string.

The @ symbol is typically used in front of all your strings for iOS apps. If you don’t use

the @ symbol, you will probably get a compiler error. NSLog is a helpful function used by

developers to test the execution of their code by logging information to the console.

%d tells the compiler an integer will be printed and to substitute the value of the

integer for the %d. See Table 3-5 for other NSLog format specifiers. Finally, the last three

parameters are the integers to be printed.

69

CHAPTER 3 IT’S ALL ABOUT THE DATA

To compile and run your application, click the Run button in the toolbar. If you typed
your code in correctly, you should see the resulting NSLog string printed to the console as
shown in Figure 3-22.

89 < > [B Chapter3)| | Chapter3) fi main.m) No Selection

/'

// main.m

// Chapter 3

I

// Created by Stefan Kaczmarek on 11/25/17.

// Copyright © 2817 The Zonie, LLC. All rights reserved.
I

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
Rautoreleasepool {
// insert code here...
int firstNumber = 2;
int secondNumber = 3;
int totalSum = firstNumber + secondNumber;
NSLog(@"The sum of %d and %d is %d", firstNumber, secondNumber, totalSum);
}
return @;
20 }
E »
2017-11-25 14:53:56.264213-0700 Chapter 3[16200:20433001 The sum of 2 and 3 is 5)
Program ended with exit code: ©

Figure 3-22. Console log displaying the results of your Objective-C app

Note If your editor doesn’t have the same menus or gutter (the left column that
contains the line numbers of the program) you saw in the previous screenshots,
you can turn these settings on in the Xcode preferences. You can open the Xcode
preferences by clicking the Xcode menu in the menu bar and then selecting
Preferences and then Text Editing and checking the Line numbers checkbox.

70

CHAPTER 3 IT'S ALL ABOUT THE DATA

Identifying Problems

Believe it or not, your program may not run the way you thought you told it to. The
process of hunting down problems with your app is called debugging. To track down
bugs in your apps, you can set breakpoints and inspect your variables to see the
contents. To do this, simply click in the gutter where you want to set a breakpoint

(see Figure 3-23). A breakpoint will stop your application from executing at that line and
enable you to inspect your variables.

88 < > [E chapter3)[| Chapter3) i main.m) No Selection

/!
2 // main.m
3 // Chapter 3
4 [/
// Created by Stefan Kaczmarek on 11/25/17.
// Copyright © 2017 The Zonie, LLC. All rights reserved.
//

#import <Foundation/ ndation.h>

insert code here...

nt firstNumber = 2;

int secondNumber = 3;

6 int totalSum = firstNumber + secondNumber;

2 NSLog(@"The sum of %d and %d is %d", firstNumber, secondNumber, totalSum);
a0 }

return ©;

Figure 3-23. Setting a debugging breakpoint

71

CHAPTER 3 IT’S ALL ABOUT THE DATA

A blue pointer in the gutter of your editor denotes a breakpoint. When you run your
application and your app is about to execute a line of code that contains a breakpoint,
your app will halt and display a green line across that line of code to indicate where it has
stopped (see Figure 3-24). Clicking the Variable view button (also shown in Figure 3-24)
will allow you to inspect the current value of each variable. Additionally, you can inspect
each variable by hovering over it in the code with your mouse cursor.

88 < > [B chapter3)| | Chapter3) m main.m) No Selection

I/

// main.m

f// Chapter 3

1

f/ Created by Stefan Kaczmarek on 11/25/17.

f/ Copyright ¢ 2817 The Zonie, LLC. All rights reserved.
f

#import <Foundation/Foundation.h>

int main(int arge, const char * argv(]) {
Rautoreleasepool {
// insert code here...
int firstNumber = 2;
int secondNumber = 3;
6 int totalSum = firstNumber + secondNumber;
n NSLog(@"The sum of %d and %d is %d“, firstNumber, secondNumber, totalSum); = Thread 1: breakpoint 1.1
}
19 return @;
20)
E ®» > &4 L 2 |M S </ | M chapter3)() Thread1) FT 0main
argc = (int) 1 (11db)
P hesiaiOulifeefoff640
firstNumber = (in1) 2
secondNumber = (in1] 3
totalSum = (In1) 5

Auto &

@

All Output & ® ORI ||

Figure 3-24. Breakpoint hit

We will talk more about debugging your apps in Chapter 13.

Summary

In this chapter, you learned about how data is used by your apps. You saw how to
initialize variables and how to assign data to them. We explained that when variables are
declared, they have a data type associated with them and that only data of the same type
can be assigned to variables.

72

CHAPTER 3 IT'S ALL ABOUT THE DATA

Finally, we showed you how to use variables in your first Alice app and finished by
using variables with an Objective-C app.

Exercises

Perform the following tasks:

e Write an Objective-C console app (command-line tool) that
multiples two integers together and displays the result in the console.

e Write an Objective-C console app that squares a float. Display the
resulting float in the console.

e Write an Objective-C console app that subtracts two floats, with the
result stored as an integer. Note that rounding does not occur.

73

CHAPTER 4

Making Decisions
About and Planning
Program Flow

One of the cool things about being an Objective-C developer is you get to tell your
devices exactly what you want them to do and it will be done—your devices will do tasks
over and over again without getting tired. That’s because iPhones, iPads, and Macs don'’t
care how hard they worked yesterday, and they don’t let feelings get in the way. These
devices don’t need hugs.

There is a downside to being a developer: You have to think of all possible outcomes
when it comes to your apps. Many developers love having this kind of control; they
enjoy focusing on the many details of their apps. However, it can be frustrating having
to handle so many details. As we mentioned in the introduction to this book, there is
a price to pay for developing apps, and that price is time. The more time you spend
developing and debugging, the better you will get with all the details, and the better your
apps will run. You have to pay this price to become a successful developer.

Computers are black and white; there are no shades of gray. Your devices produce
results, many of which are based on true and false conditions.

In this chapter, you will learn about computer logic and controlling the flow of your
apps. Processing information and arriving at results is at the heart of all apps. Your apps
need to process data based on values and conditions. To do this, you need to understand
how computers perform logical operations and execute code based on the information
your apps have acquired.

75
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_4

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Boolean Logic

Boolean logic is a system for logical operations. Boolean logic uses binary operators like
AND, OR, and the unary operator NOT to determine whether your conditions have been
met. Binary operators take two operands. Unary operators take one operand.

We just introduced a couple of new terms that can sound confusing; however, you
probably use Boolean logic every day. Let’s look at a couple of examples of Boolean logic
with the binary operators AND and OR in a conversation parents sometimes have with
their teenage children.

“You can go to the movies tonight if your room is clean AND the dishes are put away.”

“You can go to the movies tonight if your room is clean OR the dishes are put away.”

Boolean operators’ results are either TRUE or FALSE. In Chapter 3, we briefly
introduced the Boolean data type. A variable that is defined as Boolean can only contain
the values TRUE and FALSE. In Objective-C, the equivalent BOOL primitive type can only
contain the more commonly named values YES and NO.

BOOL seeMovies = YES;

In the preceding example, the AND operator takes two operands: one to the left and
one to the right of AND. Each operand can be evaluated independently with a TRUE or
FALSE.

For an AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In
our first example, the teenager has to clean his or her room AND have the dishes done. If
either one of the conditions is FALSE, the result is FALSE—no movies for the teenager.

For an OR operation to yield a TRUE result, only one operand has to be TRUE, or
both conditions can be TRUE to yield a TRUE result. In our second example, just a clean
bedroom will result in the ability to go to the movies.

Note Behind the scenes, your iPhone, iPad, or Mac defines a FALSE as a 0 and a
TRUE as a 1. To be technically correct, a TRUE is defined as any nonzero value; so,
values of 0.1, 1, and 2 will be evaluated as a TRUE when evaluated in a Boolean
expression.

A NOT statement is a unary operator. It takes just one operand to yield a Boolean
result. Here’s an example:
“You can NOT go to the movies.”

76

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

This example takes one operand. The NOT operator turns a TRUE operand to a FALSE
and a FALSE operand to a TRUE. Here, the result is a FALSE.

Note Performing a NOT operation is commonly referred to as flipping the bit, or
negating. A TRUE is defined as a 1, a FALSE is defined as a 0, and zeros and ones
are referred to as bits. A NOT operation turns a TRUE to a FALSE and a FALSE to a
TRUE, hence flipping the bit or negating the result.

AND, OR, and NOT are three common Boolean operators. Occasionally, you need
to use more complex operators. XOR, NAND, and NOR are other common operations for
Objective-C developers.

The Boolean operator XOR means exclusive-or. An easy way to remember how the XOR
operator works is the XOR operator will return a TRUE result if only one argument is TRUE,
not both.

Objective-C does not have the NAND or NOR operators built in, but just know that they
simply mean NOT AND and NOT OR, respectively. After evaluating the AND or the OR
arguments, simply negate the result.

Truth Tables

Let’s use a tool to help you evaluate all the Boolean operators. A truth table is a
mathematical table used in logic to evaluate Boolean operators. They are helpful
when trying to determine all the possibilities of a Boolean operator. Let’s look at some
common truth tables for AND, OR, NOT, XOR, NAND, and NOR.

In an AND truth table, there are four possible combinations of TRUE and FALSE.

o TRUE AND TRUE = TRUE

e TRUE AND FALSE = FALSE

o FALSE AND TRUE = FALSE

o FALSE AND FALSE = FALSE

77

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Placing these combinations in a truth table results in Table 4-1.

Table 4-1. An AND Truth Table

A B AANDB
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

An AND truth table only produces a TRUE result if both of its operands are TRUE.
Table 4-2 illustrates an OR truth table and all possible operands.

Table 4-2. An OR Truth Table

A B AORB
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

An OR truth table produces a TRUE result if one or both of its operands are TRUE.
Table 4-3 illustrates a NOT truth table and all possible operands.

Table 4-3. A NOT Truth Table

NOT RESULT
TRUE FALSE
FALSE TRUE

78

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

ANOT flips the bit or negates the original operand’s Boolean value.
Table 4-4 illustrates an XOR (or exclusive-or) truth table and all possible operands.

Table 4-4. An XOR Truth Table

A B AXORB
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

The operator XOR yields a TRUE result if only one of the operands is TRUE.
Table 4-5 illustrates a NAND truth table and all possible operands.

Table 4-5. A NAND Truth Table

A B A NAND B
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE TRUE

Table 4-6 illustrates a NOR truth table and all possible operands.

Table 4-6. A NOR Truth Table

i B ANORB
TRUE TRUE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE

The easiest way to look at the NAND and NOR operators is to simply negate the results
from the AND and OR truth tables, respectively.

79

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Comparison Operators

In software development, the comparison of different data items is accomplished
with comparison operators. These operators produce a logical TRUE or FALSE result.
Table 4-7 shows the list of comparison operators.

Table 4-7. Comparison Operators

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
== Equal to

= Not equal to

Note If you're constantly forgetting which way the greater-than and less-than
signs go, use a crutch | learned in grade school: If the greater-than and less-than
signs represent the mouth of an alligator, the alligator always eats the bigger value.
It may sound silly, but it works.

Designing Apps

Now that we’ve introduced Boolean logic and comparison operators, you can start
designing your apps. Sometimes it’s important to express all or parts of your apps to
others without having to write the actual code.

Writing out code helps a developer think out loud and brainstorm with other
developers regarding sections of code that are of concern. This helps to analyze
problems and possible solutions before coding begins.

80

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Pseudocode

Pseudocode refers to writing out code that is a high-level description of an algorithm
you are trying to solve. Pseudocode does not contain the necessary programming syntax
for coding; however, it does express the algorithm that is necessary to solve the problem
at hand.

Pseudocode can be written by hand on paper (or a whiteboard) or typed on a
computer.

Using pseudocode, you can apply what you know about Boolean data types, truth
tables, and comparison operators. Refer to Listing 4-1 for pseudocode examples.

Listing 4-1. Pseudocode Examples Using Conditional Operators in If-Then-Else
Code

X = 5;
y =6;
isComplete = TRUE;
if (x <y)
{
// in this example, x is less than y
do stuff;
}
else
{
do other stuff;
}
if (isComplete == TRUE)
{
// in this example, isComplete is equal to TRUE
do stuff;
}
else
{
do other stuff;
}

81

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

// another way to check isComplete == TRUE
if (isComplete)
{
// in this example, 1isComplete is TRUE
do stuff;

}

// one way to check if a value is false
if (isComplete == FALSE)

{

do stuff;
}
else
{

// in this example, isComplete is TRUE so the else block will be

executed

do other stuff;
}

// another way to check isComplete == FALSE
if (!isComplete)

{

do stuff;
}
else
{

// in this example, 1isComplete is TRUE so the else block will be

executed

do other stuff;
}

Note Pseudocode is a programming notation resembling a simplified programming
language, used in program design. Pseudocode will not compile and run. It is for
illustrative purposes only.

82

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Note that the ! switches the value of the Boolean it’s applied to; so, using ! makes
a TRUE value a FALSE and a FALSE value a TRUE. This is the logical NOT operator in
Objective-C.

Often, it is necessary to combine your comparison tests. A compound relationship
test is one or more simple relationship tests joined by either the && or the | | (two pipe
characters).

8& and | | are verbalized as logical AND and logical OR, respectively. The
pseudocode in Listing 4-2 illustrates the logical AND and logical OR operators.

Listing 4-2. Using && and || Logical Operators Pseudocode

X = 5;
y = 6;
isComplete = TRUE;

// using the logical AND
if (x <y && isComplete == TRUE)

{
// in this example, x is less than y and isComplete == TRUE
do stuff;

}

if (x <y || isComplete == FALSE)

{
// in this example, x is less than y.
// Only one operand has to be TRUE for an OR to result in a TRUE.
// See Table 4-2 A OR Truth Table
do stuff;

}

// another way to test for TRUE
if (x <y && isComplete)
{
// in this example, x is less than y and isComplete == TRUE

do stuff;

83

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

// another way to test for FALSE
if (x <y 8& !isComplete)

{

do stuff;
}
else
{

// isComplete == TRUE

do stuff;

}
Flowcharting

After the design requirements discussed in Chapter 1 have been finalized, you can
pseudocode sections of your app to solve complex development issues. Flowcharting
is a common method of diagramming an algorithm. An algorithm is represented

as different types of boxes connected by lines and arrows. Developers often use
flowcharting to express code visually. See Figure 4-1.

84

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Process

Process

Internet
—f " ==

Disk

LA
~N

Process

Figure 4-1. Sample flowchart showing common figures and their associated names

Flowcharts should always have a start and a stop. Branches should never come to an

end without a stop. This helps developers make sure all of the branches in their code are

accounted for and that they cleanly stop execution.

Designing and Flowcharting an Example App

You just learned a lot of information about decision making and program flow. It’s time

to do what programmers do best: write apps!

85

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

The app you have been assigned to write generates a random number between 0 and
100 inclusive and asks users to guess the number. Users have to do this until the number
is guessed. You can use any object from the Alice gallery to ask users for their guess, and
you can also choose any world for your object to be in. The object will provide a visual
queue for each high, low, and correct guess. When users guess the correct answer, they
will be asked if they want to play again. See Figure 4-2.

w speed: 1x restart @

o Guess a number between 0 and 100:

L

s | |
l .

L

[

Hi|w | oo

e

Figure 4-2. A bunny object asking the user to guess a number between 0 and 100

86

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

The App’s Design

Using the design requirements, you can make a flowchart for your app. See Figure 4-3.

Start

I

getRandomNumber

roundRandomNumber
printRandomNumber

H

Ask user to guess
number between (
0-100

)

H

Guess correct? Guess too high ?

Display /
4} “Guess Too High”

Yes Message

Yes No

H

. Display /
Ask user if they want « »
to continue playing Gueﬁzggggtow

p Keep playing ?

Yes

‘%

No

‘7

Figure 4-3. Flowchart for guessing a random number app
87

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Reviewing Figure 4-3, you'll notice that as you approach the end of a block of logic
in your flowchart, there are arrows that go back to a previous section and repeat that
section until some condition is met. This is called looping. It enables you to repeat
sections of programming logic—without having to rewrite those sections of code
over—until a condition is met.

Using Loops to Repeat Program Statements

Aloop is a sequence of program statements that is specified once but can be
repeated several times in succession. A loop can repeat a specified number of times
(count-controlled) or until some condition (condition-controlled) occurs.

In this section, you’ll learn about count-controlled loops and condition-controlled
loops. You will also learn how to control your loops with Boolean logic.

Count-Controlled Loops

A count-controlled loop is a loop that repeats a specified number of times. In
Objective-C and Alice, this is a for loop. A for loop has a counter variable. This variable
enables the developer to specify the number of times the loop will be executed.

See Listing 4-3.

Listing 4-3. A Count-Controlled Loop
int i;
for (i = 0; i < 10; i++)

{

// repeat all code in braces 10 times

}

....continue

The loop in Listing 4-3 will loop ten times. The variable i starts at 0 and increments
at the end of the } by 1. The incrementing is done by the i++ in the for statement; i++,
which is equivalentto i = i + 1.1isthen checked to see whether it is less than 10. This
for loop will exit when i = 9 and the } is reached.

88

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Note It is common for developers to confuse the number of times they think their
loops will repeat. If the loop started at 1 in Listing 4-3, the loop would repeat nine
times instead of ten.

In Objective-C, for loops can have their counter variables declared in the for loop
declaration itself. See Listing 4-4.

Listing 4-4. Counter Variable Is Initialized in the For Loop Declaration

for (int i = 0; 1 < 10; i++)
{

// repeat all code in braces 10 times

}

....continue

Occasionally, you will need to repeat just one line of code in a for loop. This can be
accomplished by not using any { }. The first line of code encountered after the for loop
declaration is repeated, as specified in the for loop declaration. See Listing 4-5.

Listing 4-5. Counter Variable Is Initialized in the For Loop Declaration

for (int i = 0; 1 < 10; i++)
do this line of code 10 times;
....continue

Condition-Controlled Loops

Objective-C and Alice have the ability to repeat a loop until some condition changes.
You may want to repeat a section of your code until a false condition is reached with one
of your variables. This type of loop is called a while loop. A while loop is a control flow
statement that repeats based on a given Boolean condition. A while loop can be thought
of as arepeating if statement. See Listing 4-6.

89

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW
Listing 4-6. An Objective-C While Loop Repeating

BOOL isTrue = TRUE;
while (isTrue)
{
// do something;
isTrue = FALSE; // a condition occurs that sometimes sets isTrue to FALSE

}

....continue

The while loop in Listing 4-6 first checks whether the variable isTrue is TRUE—
which it is—so the {1loop body} is entered where the code is executed. Eventually, some
condition is reached that causes isTrue to become FALSE. After completing all the code
in the loop body, the condition (isTrue) is checked once more, and the loop is repeated
again. This process is repeated until the variable isTrue is set to FALSE.

Infinite Loops

An infinite loop repeats endlessly, either because of the loop not having a condition that
causes termination or because of the loop having a terminating condition that can never
be met.

Generally, infinite loops can cause apps to become unresponsive. They are the result
of a side effect of a bug in either the code or the logic. See Listing 4-7.

Listing 4-7. An Example of an Infinite Loop

X =0,
while (x != 5)
{

do something;
X = X+ 2;

}

....continue

90

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Listing 4-7 is an example of an infinite loop caused by a terminating condition that
can never be met. The variable x will be checked with each iteration through the while
loop but will never be equal to 5. The variable x will always be an even number because
it was initialized to zero and incremented by 2 in the loop. This will cause the loop to
repeat endlessly. See Listing 4-8.

Listing 4-8. An Example of an Infinite Loop Caused by a Terminating Condition
That Can Never Be Met

while (TRUE)
{

do something;

}

....continue

Coding the Example App in Alice

Now that you have your design requirements and flowchart completed and you
understand looping, you're ready to write your Alice application. See Figure 4-4.

File Ednt Project Run Window Help

Y

P Run.. ‘ (myFirstMethod
dectare procedure myFirstMethod
do in order
- Boolean)
while ke
e ost 0 2100
| { Bookean I continueGuessing <=4 Ttrue)'
while TcominueGuessing Is trug
i L‘{ WholeNumber = 33 < 5 (ihis.bunny J{Guess a number berween 0 and 100-] J

wumber| || s true then

|
(aunﬁ}xmmmm !h:!
oo o |(if _:[—_u{ernP“: > SrandomNumiben i true then

unny say JTGH hi* ", duration 2.0 add detail |

say, think : i"‘“'

fo e ol et A | | csBunny ! say sCGuess Too Low'] , duraion 520 add detal]
Cthis.bunny think text S

postion oop”

Cihisbunny move direction: =) , amount:

| ReepPiaying <= (s busy _gewoleanfromuser iy Agun’ ||
(this.bunny moveToward farger ©000) , amount =17 igop = = = ==
(this_bunny moveAwayFrom ramrm . amount:

Cthis.bunay T :
| b mowTe e 0 I8

W

{ doinorder| | count | while | for eachin_] [If .| [dotogether | eachin_together| | variable...| assign) [//comment)

Figure 4-4. Random number generator app

91

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Figure 4-5 shows the entire program listing for your random number generator code.

do in order

[(Boolean):” kesppiaying <<= riwe) |

~ while is true

WholeNumber = randomNumber <= Enex:kandomlntege:meAUp‘foAndlmludingﬂ =07, E{M]

{(Boolean) continueGuessing <= Itrue' |

while IcontinueGuessing " is true

<= = his.bunny getntegerFromUser J(Guess a number between 0 and 100:) |]

if I'SuserGuess == SrandomNumber | s true then

 (this.bunny© say s{Correct!] , duration 52.0/ add detail]

T’ SuserGuess|” > SrandomNumber] is true then
_ Cthisbunny ' say Guess Too High')' , d add detail]

Figure 4-5. Random number generator; complete program listing

Note You can download the complete random number generator app at
http://forum.xcelme.com. The code will be under the Chapter 4 topic.

Coding the Example App in Objective-C

Using the requirements and what you learned with your Alice app, it’s time to write your
random number generator in Objective-C.

Your Objective-C app will run from the command line as it asks the user to guess a
random number.

92

http://forum.xcelme.com/

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

1. Open Xcode and start a new project. Choose Command Line Tool.
See Figure 4-6.

Choose a template for your new project:

()

i0s watchOS tv0Ss Cross-platform

Application

~ (¥
75)
Cocoa App Game Command
Line Tool

Framework & Library

- (&) N X ®)

Cocoa Framework Library Metal Library XPC Service Bundle
Other
|$ =] @ | @] [l
L AmmlalCariot Ave Aubtaseatos Aabion M * b Ambi Poanacia Vasoal I PR B Y

Cancel et]

Figure 4-6. Start a new Command Line Tool project

93

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

2. Call your project RandomNumber (see Figure 4-7). Save the project
anywhere you prefer on your hard drive.

Choose options for your new project:

Product Name: RandomNumber

Team: The Zonie, LLC B
Organization Name: The Zonie, LLC

Organization Identifier: com.thezonie
Bundle Identifier: com.thezonie.RandomNumber

Language: Objective-C B

Cancel Previous m

Figure 4-7. Project options for RandomNumber

Now, you need to open the implementation file in the Source group. This is where
you will write your Objective-C code.

3. Openthemain.mfile. Delete the following line of code:

NSLog(@"Hello, World!");

4. You are ready to write your app. Start writing the code under this:

// insert code here...

94

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

See Figure 4-8.

[BN] > W RandomNumber) || My Mac RandomNumber: Ready | Today at 2:59 PM
B K AN & =2 o B B < [& RandomMumber) [] RandomMNumber | m main.m | No Selection
v [§ RandomNumber 1 I/
v | 1 RandomNumber 2 [/ main.m
-7
» . | Products

// Created by Stefan Kaczmarek on 12/3/17.
// Copyright ® 2817 The Zonie, LLC. All rights reserved.

7 #import <Foundation/Foundation.h>

int main(int argec, const char = argv(]) {
Rautoreleasepcol {
// insert code here...

}
return @;

}

=

Figure 4-8. The Editor

Following your Alice code, you will write your random number generator app. You
will notice that most of the code is similar to your Alice app. See Listing 4-9.

Listing 4-9. Source Code for Your Random Number Generator App

11 int main(int argc, const char * argv[]) {

12 @autoreleasepool {

13 // insert code here...

14 int randomNumber = 1;

15 int userGuess = 1;

16 BOOL continueGuessing = YES;

17 BOOL keepPlaying = YES;

18 char yesNo = ' ';

19

20 while (keepPlaying) {

21 randomNumber = (arc4random() % 101);
22 NSLog(@"The random number to guess is: %d",randomNumber);
23 while (continueGuessing) {

95

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53

96

NSLog (@"Pick a number between 0 and 100. ");
scanf ("%d", 8userGuess);
fgetc(stdin); // remove CR/LF i.e extra character
if (userGuess == randomNumber) {
continueGuessing = NO;
NSLog(@"Correct number!");
}
// nested if statement
else if (userGuess > randomNumber){
// user guessed too high
NSLog(@"Your guess is too high");

}

else {
// no reason to check if userGuess < randomNumber.
It has to be.
NSLog(@"Your guess is too low");

}

// refactored from our Alice app. This way we only have
to code once.
NSLog(@"The user guessed %d",userGuess);
}
NSLog (@"Play Again? Y or N");
yesNo = fgetc(stdin);
if (yesNo == 'N' || yesNo == 'n") {
keepPlaying = FALSE;

}
continueGuessing = TRUE;
}
}
return 0;

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

In Listing 4-9, there is new code that we haven’t discussed before. The first new line
of code (line 21) is

randomNumber = (arc4random() % 101);

This line will produce a random number between 0 and 100; arc4random() is a
function that returns a random number. Although this will not generate a truly random
number, it will work for this example.

The % is called the modulus operator. This operator returns the remainder of its two
operands; in this case, it’s the remainder of arc4random() divided by 101. This is what
will return a number between 0 and 100.

The next line of new code is

scanf ("%d", &userGuess);

The function scanf reads a value from the keyboard and stores it in userGuess.

Note The source code for this Objective-C project is available for download at
http://forum.xcelme.com.

Nested If Statements and Else-If Statements

Sometimes, it is necessary to nest if statements. This means that you need to have

if statements nested inside an existing if statement. Additionally, it is sometimes
necessary to have a comparison as the first step in the else section of the if statement.
This is called an else-if statement. Recall line 32 in Listing 4-9:

else if (userGuess > randomNumber)

Removing Extra Characters
Line 26 is another new line of code:
fgetc(stdin); // remove CR/LF i.e extra character

The function scanf can be difficult to work with. In this case, scanf leaves a remnant
in your input buffer that needs to be flushed, so you canread aY or N from the keyboard
to determine whether the user wants to play again.

97

http://forum.xcelme.com/

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Improving the Code Through Refactoring

Often, after you get your code to work, you will examine it and find more efficient ways to

write it. The process of rewriting your code to make it more efficient, maintainable, and

readable is called code refactoring.

As you were reviewing your code in Objective-C, you may have noticed that you

could eliminate some unnecessary code. Your code had the following line repeated in

the if-else statement:

// refactored from our Alice app. This way we only have to code once.
NSLog(@"The user guessed %d",userGuess);

Note

As developers, we have found that the best line of code you can write is the

line that you don’t write. Less code means less to debug and maintain.

Running the App

Click the Play button in your Objective-C project and run your app. See Figure 4-9.

2017-12-83
2017-12-83
50
2017-12-03
2017-12-83
2017-12-03
49
2017-12-03
2017-12-83
2017-12-83
45
2017-12-03
2017-12-83
2017-12-03
47
2017-12-03
2017-12-83
2017-12-83
46
2017-12-03
2017-12-83
2017-12-03
n

15:
15:

15:
15:
15:

15:
15:
15:

15:
15:
15:

15:
15:
15:

15:
15:
15:

134,
134,

H .
HAN
HAS

148,
148,
148,

:55.
:565.
:656.

:ee.
:88.
:88.

104,
104,
H: 'S

329846-0700
329334-0708

300389-0700
300448-0700
300464-0700

788895-0700
788939-0700
788954-0700

235475-0700
235518-0700
235533-0700

298490-0700
298555-07680
298580-0700

292061-0700
292103-0700
292118-0700

RandomNumber[63321:
RandomNumber[63321:

RandomNumber[63321:
RandomMumber[63321:
RandomNumber[63321:

RandomNumber[63321:
RandomNumber[63321:
RandomNumber[63321:

RandomNumber[63321:
RandomMumber[63321:
RandomNumber[63321:

RandomNumber[63321:
RandomNumber[63321:
RandomNumber[63321:

RandomNumber[63321:
RandomMumber[63321:
RandomNumber[63321:

7253782] The random number to guess 1s: 46
7253782] Pick a number between © and 108.

7253782]
7253782]
7253782]

Your guess is too high
The user guessed 50
Pick a number between © and 10@.

7253782]
7253782]
7253782]

Your guess is too low
The user guessed 40
Pick a number between © and 10@.

7253782]
7253782]
7253782]

Your guess is too low
The user guessed 45
Pick a number between © and 10@.

7253782]
7253782]
7253782]

Your guess is too high
The user guessed 47
Pick a number between © and 10@.

7253782]
7253782]
7253782]

Correct number!
The user guessed 46
Play Again? Y or N

Program ended with exit code: @

Figure 4-9. The console output of the Objective-C random number generator app

98

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Moving Forward Without Alice

You've used Alice to learn object-oriented programming. It has enabled you to focus

on OOP concepts without having to deal with syntax and a compiler; however, it is
necessary to become more familiar with the specifics of the Objective-C language. Alice
has served you well, and you can now focus on using Objective-C and Xcode for the
remainder of the book.

Summary

In this chapter, we covered a lot of important information on how to control your
applications. Program flow and decision making are essential to every iPhone/iPad/Mac
app. Make sure you have completed the Objective-C example in this chapter. You may
review these examples and think you understand everything without having to write
this app. This is a fatal mistake, one that will prevent you from becoming a successful
Objective-C developer. You must spend time coding this example.

The terms in this chapter are important. You should be able to describe the

following:
e AND
e OR
e XOR
o NAND
e NOR
e« NOT

e Truth tables

e Negation

o All comparison operators
o Application requirement
e Logical AND (&8)

o Logical OR (]])

99

CHAPTER 4 MAKING DECISIONS ABOUT AND PLANNING PROGRAM FLOW

Flowchart

Loop

Count-controlled loops

For loop
Condition-controlled loops
Infinite loops

While loops

Nested if statements

Code refactoring

Exercises

Perform the following tasks:

100

Extend the random number generator app to print to the console
how many times the user guessed before he or she guessed the
correct random number. Do this in both Alice and Objective-C.

Extend the random number generator app to print to the console
how many times the user played the app. Print this value when the
user quits the app. Do this in both Alice and Objective-C.

CHAPTER 5

Object-Oriented
Programming
with Objective-C

Over the past 25 years, the programming world has been focusing on the development
paradigm of object-oriented programming (OOP). Most modern development
environments and languages implement OOP. Put simply, OOP forms the basis of
everything you develop today.

You may be asking yourself why we waited until Chapter 5 to present OOP using
Objective-C if it is the primary development style of today. The simple answer is that it
is not an easy concept for new developers. We will spend this chapter going into detail
about the different aspects of OOP and how this will affect your development.

Implementing OOP into your applications correctly will take some up-front
planning, but you will save yourself a lot of time throughout the life of your projects. OOP
has changed the way development is done. In this chapter, we will look at what OOP is.
OOP was initially discussed in the first chapter of this book, but we will go into more
detail here. We will revisit what objects are and how they relate to physical objects we
find in our world. We will look into what classes are and how they relate to objects. We
will also discuss steps you will need to take when planning your classes and some visual
tools you can use to accomplish this. When you have read this chapter and have worked
through the exercises, you will have a better understanding of what OOP is and why it is
necessary for you as a developer.

At first, objects and object-oriented programming may seem difficult to understand,
but the hope is that as you progress through this chapter, it will begin to make sense.

101
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_5

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

The Object

As discussed in Chapter 1, OOP is based on objects. Some of our discussion about
objects will be a review, but we will also go into more depth. An object is anything that
can be acted upon. To better explain what a programming object is, we will first look at
some items in the physical world around us. A physical object can be anything around
you that you can touch or feel. Take, for example, a television. Some characteristics of
a television include type (plasma, LCD, or CRT), size (40 inches), brand (Sony, Vizio),
weight, and cost. Televisions also have functions. They can be turned on or off. You can
change the channel, adjust the volume, and change the brightness.

Some of these characteristics and functions are unique to televisions and some
are not. For example, a couch in your house would probably not have the same
characteristics as a television. You would want different information about a couch, such
as material type, seating capability, and color. A couch might have only a few functions,
such as converting to a bed.

Now let’s talk specifically about objects as they relate to programming. An object is
a specific item. It can describe something physical like a book, or it could be something
such as a window for your application. Objects have properties and methods. Properties
describe certain things about an object such as location, color, or name. Conversely,
methods describe actions the object can perform such as close or recalculate. In our
example, a TV object would have type, size, and brand properties, while a Couch object
would have properties such as color, material, and comfort level.In programming
terms, a property is a variable that is part of an object. For example, a TV would use a
string variable to store the brand and an integer to store the height.

Objects also have commands the programmer can use to control them. The
commands are called methods. Methods are the way that other objects interact with a
certain object. For example, with the television, a method would be any of the buttons
on the remote control. Each of those buttons represents a way you can interact with
your television. Methods can and often are used to change the values of properties, but
methods do not store any values themselves.

As we described in Chapter 1, objects have a state, which is basically a snapshot of
an object at any given point in time. A state would be the values of all the properties at a
specific time.

102

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

In upcoming chapters, we will use the example of a bookstore. A bookstore contains
many different objects. It contains book objects that have properties such as title,
author, page count, and publisher. It also contains magazines with properties such
as title, issue, genre, and publisher. A bookstore also has some nontangible objects
such as a sale. A sale object would contain information about the books purchased,
the customer, the amount paid, and the payment type. A sale object might also have
some methods that calculate tax, print the receipt, or void the sale. A sale object does
not represent a tangible object, but it is still an object and is necessary for creating an
effective bookstore.

Because the object is the basis of OOP, it is important to understand objects and how
to interact with them. We will spend the rest of the chapter describing objects and some
of their characteristics.

What Is a Class?

We cannot discuss OOP without discussing what a class is. A class defines which
properties and methods an object will have. A class is basically a cookie cutter that can
be used to create objects that have similar characteristics. All objects of a certain class
will have the same properties and the same methods. The values of those properties will
change from object to object.

A class is similar to a species in the animal world. A species is not an individual
animal, but it does describe many similar characteristics of the animal. To understand
classes more, let’s look at an example of classes in nature. The Dog class has many
properties that all dogs have in common. For example, a dog may have a name, an age,
an owner, and a favorite activity. An object that is of a certain class is called an instance
of that class. If you look at Figure 5-1, you can see the difference between the class and
the actual objects that are instances of the class. For example, Lassie is an instance
of the Dog class. In Figure 5-1, you can see we have a Dog class that has four properties
(Breed, Age, Owner, Favorite Activity).Inreallife, a dog will have many more
properties, but we decided to use four for this demonstration.

103

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Class Objects

Lassie

Breed: Collie

Age: 5

Owner: Jeff

Favorite Activity: Helping People

Dog -7 Spot
Breed Breed: Dalmation
Age. = feem——- >| Age: 2
Owner I Owner: Fire Department
Favorite Activity RS Favorite Activity: Riding in a Fire Truck

Scooby Doo
Breed: Great Dane
Age: 10
Owner: Shaggy
Favorite Activity: Eating Scooby Snacks

Figure 5-1. An example of a class and individual objects

Planning Classes

Planning your classes is one of the most important steps in your development process.
While it is possible to go back and add properties and methods after the fact (and you
will definitely need to do this), it is important that you know which classes are going
to be used in your application and which basic properties and methods they will have.
Spending time planning your different classes is important at the beginning of the
process.

Planning Properties

Let’s look at the bookstore example and some of the classes you need to create. First, it

is important to create a Bookstore class. A Bookstore class contains the blueprint of the
information each Bookstore object stores, such as the bookstore Name, Address, Phone
Number, and Logo (see Figure 5-2). Placing this information in a class rather than hard-
coding it in your application will allow you to easily make changes to this information in
the future. We will discuss the reasons for using OOP methodologies later in this chapter.
Also, if your bookstore becomes a huge success and you decide to open another one, you
will be prepared because you can create another object of class Bookstore.

104

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Bookstore
Name
Address1
Address2
City
State
Zip
Phone Number
Logo

Figure 5-2. The Bookstore class

Let’s also plan a Customer class (see Figure 5-3). Notice how the name has been
broken into First Name and Last Name. This is important to do. There will be times in
your project when you may want to use only the first name of a customer, and it would
be hard to separate the first name from the last if you didn’t plan ahead. Let’s say you
want to send a letter to a customer letting them know about an upcoming sale. You do
not want your greeting to say “Dear John Doe.” It would look much more personal to say
“Dear John.”

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre

Figure 5-3. The Customer class

You will also notice how we have broken out the address into its different parts
instead of grouping it all together. We separated the Address Line 1,Address Line 2,
City, State, and Zip properties. This is important and will be used in your application.
Let’s go back to the letter you want to send informing your customers of a sale in
your store. You might not want to send it to customers who live in different states. By
separating the address, you can easily filter out those customers you do not want to
include in certain mailings.

105

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

We have also added the attribute of Favorite Book Genre to the Customer class. We
added this to show you how you can keep many different types of information in each
class. This field may come in handy if you have a new mystery title coming out and you
want to send an e-mail alerting customers who are especially interested in mysteries. By
storing this type of information, you will be able to specifically target different portions of
your customer base.

A Book class is also necessary to create your bookstore (see Figure 5-4). You will store
information about the book such as Author, Publisher, Genre, Number of Pages, and

Edition (in case there are multiple editions). The Book class will also have the Price for
the book.

Book
Author
Publisher
Genre
Year Published
Number of Pages
Edition
Price

Figure 5-4. The Book class

We also added another class called the Sale class (see Figure 5-5). This class is more
abstract than the other classes we have discussed because it does not describe a tangible
object. You will notice how we have added a reference to a customer and a book to the
Sale class. Because the Sale class will track sales of books, you will need to know which
book was sold and to which customer.

Sale
Customer
Book
Date
Time
Amount
Payment Type

Figure 5-5. The Sale class

106

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Now that you have planned out the properties of the classes, you will need to look at
some methods that each of the classes will have.

Planning Methods

You will not add all of the methods now, but the more planning you can do at the
beginning, the easier it will be for you down the line. Not all of your classes will have
many methods. Some may not have any methods at all.

Note When planning your methods, remember to have them focus on a specific
task. The more specific the method, the more likely it is that it can be reused.

For the time being, you will not add any methods to the Book class or the Bookstore
class. You will focus on the other two classes.

For the Customer class, you will add methods to list the purchase history of that client.
There may be other methods that you will need to add in the future, but you will add just
that one for now. Your completed Customer class diagram should look like Figure 5-6.
Note the line near the bottom that separates the properties from the methods.

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-6. The completed Customer class
For the Sales class, let’s add three methods: Charge Credit Card, Print Invoice,

and Checkout (see Figure 5-7). For now, you don’t need to know how to implement these
methods, but you need to know that you are planning on adding them to your class.

107

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Sale
Customer
Book
Date
Time
Amount
Payment Type
Charge Credit Card
Print Invoice
Checkout

Figure 5-7. The completed Sale class

Now that you have finished mapping out the classes and the methods you are
going to add to them, you have the beginnings of a Unified Modeling Language (UML)
diagram. Basically, this is a diagram used by developers to plan out their classes,
properties, and methods. Starting your development process by creating such a diagram
will help you significantly in the long run. An in-depth discussion of UML diagrams is
beyond the scope of this book. If you would like more information about this subject,
smartdraw.com has a great in-depth overview of them at https://www.smartdraw.com/
resources/tutorials/uml-diagrams/.

Figure 5-8 shows the complete diagram.

Bookstore Sale
Name Customer
Address1 Book
Address2 Date
City Time
State Amount
Zip Payment Type
Phone Number Charge Credit Card
Logo Print Invoice
Checkout
Book Customer

Author First Name

Publisher Last Name

Genre Address Line 1

Year Published Address Line 2

Number of Pages City

Edition State

Price Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-8. The completed UML diagram for the bookstore

108

https://www.smartdraw.com/resources/tutorials/uml-diagrams/
https://www.smartdraw.com/resources/tutorials/uml-diagrams/

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Implementing the Classes

Now that you understand the objects you are going to be creating, you need to create
your first object. To do so, you will start with a new project.

1. Please launch Xcode. Click File » New » Project.

2. Selecti0S, and then select Master-Detail App. For what you
are doing in this chapter, you could have selected any of the
application types (see Figure 5-9). Click Next.

Choose a template for your new project:

5 watchos tOS macOS Cross-platiorm @Fi
Application
1) F AR |) -
Single View App Game Augmented Document Based
Reality App App
‘ ; oo ‘ Q
@00 | | % e . o .
Page-Based App Tabbed App Sticker Pack App iMessage App

Framework & Library

TN TN TN
=) (] Ly
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel Next

Figure 5-9. Creating a new project

109

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

3. Enter a product name. For this example, let’s use BookStore. By

default, Xcode will fill in the Organization Name and Organization

Identifier fields. Make sure the Language field is set to
Objective-C. Leave the check boxes on this screen as they appear
by default. You don’t need to worry about these items right now.
Add a Company Identifier if you have not already set one. The

format for the identifier is com.yourcompanyname. Please do not
include spaces in your Company Identifier. Click Next and select a

location to save your project and then save your project.

4. Select the BookStore folder on the left side of the screen (see
Figure 5-10). This is where the majority of your code will reside.

[] ® » +A BoakStore i IPhone B Plus BookStore: Ready | Today at 9:38 PM

B EH S Q & © 2 o @88 < > [sockstore

P
¥ & BookStore M |] A BookStore s General Capabilities Resoures Tags Inte Build Settings Build Phases

h AppDelagate.h ¥ Identity
m AppDelegate.m
h MasterViewController.h
m MasterViawContreller.m
h DetailViewController h
m DetailViewController.m
Main_storyboard

Display Karme
Bundie Identifier com.inne. BookStore
Version 1.0
Build 1
[0 Assets xcassets
LaunchScraen. storyboard
Info.plist
m main.m
¥ BookStoreTests
m BookStoreTests.m
Info.plist A Team MNone B
¥ [BookStorelUliTests Provigioning Profile Xcode Managed Profile
m BookStoreUITests.m A
Info.plist A
¥ L Preducts

¥ Signing

> > B BB BEPEDRDBB

Automatically manage signing
Xcode will create and update profiles, app IDs,

cortificatns.

=

Signing Certificate i05 Developer

Status () Signing for "BookStore” requires a development
team.

Select o development tedm in the project editer.

Figure 5-10. Selecting the BookStore folder

5. Select File » New » File.

6. From the pop-up window, select i0S and then Cocoa Touch Class

(see Figure 5-11). Then click Next.

110

Build Rules

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Choose a template for your new file:

watchOS tvOS macOS GF
Source
) m
Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File
Class Class Class
h C Cr N
Header File C File C++ File Metal File

User Interface

Storyboard View Empty Launch Screen

Figure 5-11. Creating a new Objective-C class

7. On the next screen, you need to select the superclass for your
object. This is what determines what properties and methods your
object will have by default. You will select NSObject for now
(see Figure 5-12).

111

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Choose options for your new file:

Class: | Customer]

Subclass of: NSObject
Language: Objective-C
Cancel Previous " Next

Figure 5-12. Selecting the superclass

Note NSObject is the base class in Objective-C. It contains properties and
methods required for most objects used.

8. You will now be given the opportunity to name your class. For this
exercise, you will create the Customer class. For now, name the
class Customer. Now click Next and then Create.

112

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Note For ease of use and for understanding your code, remember that class
names should always be capitalized in Objective-C. Object names should always
start with a lowercase letter. For example, Book would be an appropriate name for
a class, and book would be a great name for an object based on the Book class.
For a two-word object, such as the book author, an appropriate name would be
bookAuthor. This type of capitalization is called lower camelcase.

9. Now look in your main project folder; you should have two
new files. One is called Customer.h and the other is called
Customer.m. The .h file is the header or interface file that will
contain information about your class. The header file will list all
of the public properties and methods in your class, but it will
not actually contain the code related to them. The .mfile is the
implementation file, which is where you write the code for your
methods.

10. Click the Customer.h file and you will see the window shown
in Figure 5-13. You will notice that it does not contain a lot of
information currently. The first part, with the double slashes (//),
is all comments and is not considered part of the code. Comments
allow you to tell those who might read your code what each
portion of code is meant to accomplish. We will not go into more
detail now about the other portions of the header file, except to
say that all of the instance variables of a class need to be inside the
braces ({}) of the @interface portion.

113

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

BE S Q A © E o B|(3< > he) Y b C h) No Selecti

¥ & BookStore M 1/
v BookStore 2 [/ Customer.h
3 // BookStore
s M
5 [/ Created by Thorn on 12/6/17.
& [// Copyright ¢ 2017 Thorn. All rights reserved.
7

h AppDelegate.h

m AppDelegate.m

h MasterViewContraller.h

m MasterViewController.m

hilataieRCentcher 9 #import <Foundation/Foundation.h>

m DetailViewController.m
Main.storyboard 1 @interface Customer : NSObject

1 Assets.xcassets -

13 @end
LaunchScreen.storyboard
Info.plist

m main.m

I customerh

m Customer.m

tll > » » » » P P T P P P

=

b BookStoreTests
m BookStoreTests.m

> P

! Info.plist
v BookStoreUlTests
m BookStoreUlTests.m A
Info.plist A
» L Products

Figure 5-13. Your empty customer class

Now let’s transfer the properties from your UML diagram to your actual class.

Tip Properties should always start with a lowercase letter. There can be no
spaces in a property name.

For the first property, firstName, you will add this line to your file:

NSString* firstName;

Note NSString is a class that holds and performs actions on a string. A string is
a set of characters. NSString can hold letters, numbers, and punctuation.

This creates a string object in your class called firstName. Because all of the
properties for the Customer class are strings also, you will just need to repeat the same
procedure for the other ones. When that is complete, your @interface portion should
look like Figure 5-14.

114

B MR QA © =

v | BookStore

v

|

BookStare

L AppDelegate.h

m AppDelegate.m

h MasterViewController.h

m MasterViewController.m

h DetailViewController.h

m DetailViewController.m
Main.storyboard

/| Assets.xcassets
LaunchScreen.storyboard
Info.plist

m main.m

h Customer.h

m Customer.m

BookStoreTests

m BookStoreTests.m

Info.plist

BookStoreUITests

m BookStoreUlTests.m
Info.plist

Products

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

> @8 <>

M

» » »P » » »P r >r >»r 3T P rPr

>

14

o m o

21
23

24

1
1
1
1
1
1
1

2 BookStore) || BookStore) I, Customer.h) [E] Customer

Customer.h

BookStore

Created by Thorn on 12/6/17.
Copyright @ 2817 Thorn. All rights reserved.

#import <Foundation/Foundation.h>

@interface Customer : NSObject {

@end

NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString

*firstName;
*lastName;
*addressLinel;
*addresslLine2;
*city;

*state;

*zip;
#phoneNumber;
*emailAddress;
HfavoriteGenre;

Figure 5-14. The Customer class interface with instance variables

Now that the @interface portion is complete, you will need to add your method.

Methods need to go outside the curly brace portion but still inside the @interface

portion of the header file. You will add a new method that returns an NSArray. This code

will look as follows:

- (NSArray *)listPurchaseHistory;

That is all that needs to be done in the header file to create your class. Figure 5-15

shows the final header file. In the next chapter, we will go into more detail about the

implementation file.

115

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

NSString =zip;
NSString #phoneNumber;
¥ BookStoreTests 20 NSString *emailAddress;

B 2 Q AN & = o B3 < > & Bookstore)| BookStore) i) Customer.h) [E] Customer
v E BookStore M 1/
¥ ' BookStore 2 // Customer.h
3 [/ BookStore
h AppDelegate.h A Y.
m AppDelegate.m A 5 // Created by Thorn on 12/6/17.
h MasterViewController.h A 6 // Copyright @ 2017 Thorn. All rights reserved.
m MasterViewController.m M T 1
h)|BetallViewController:h A 9 #import <Foundation/Foundation.h>
m DetailViewController.m A (
Main.storyboard A | @interface Customer : NSObject {
R e e A 12 NSString *firstName;
L hs torvboard N 13 NSString =lastName;
RS Loy Dol 14 NSString #addresslLinel;
Info.plist A 15 NSString *xaddressLine2;
m main.m A NSString *city;
m .. A NSString *state;
A

o o - o

m Customer.m

m BookStoreTests.m A NSString *favoriteGenre;
Info.plist A :‘ }
X o SN 24 —(NSArray *) listPurchaseHistory;
m BookStoreUlTests.m A 25
Info.plist A 26 Qend

P L Products

Figure 5-15. The finished customer class header file

Inheritance

Another major quality of OOP is inheritance. Inheritance in programming is similar to
genetic inheritance. You might have inherited your eye color from your mother or hair
color from your father, or vice versa. Classes can, in a similar way, inherit properties and
methods from their parent classes. In OOP, a parent class is called a superclass and a
child class is called a subclass.

In Objective-C, all classes created by a programmer have a superclass that is similar
in properties and methods to itself. The class will inherit characteristics from that parent
class. So, just as in all other OOP languages, the class is called a subclass of the parent
class. In this chapter, all of your classes are subclasses of the NSObject. In Objective-C,
many classes will be subclasses of NSObject. In the previous example, the Customer class
was a subclass of NSObject.

116

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

You could, for example, create a class of printed materials and use subclasses for
books, magazines, and newspapers. Printed materials can have many things in common,
so you could assign properties to the superclass of printed materials and not have to
redundantly assign them to each individual class. By doing this, you further reduce the
amount of redundant code that is necessary for you to write and debug.

Figure 5-16 shows a layout for the properties of a Printed Material superclass and
how that will affect the subclasses of Book, Magazine, and Newspaper. The properties of
the Printed Material class will be inherited by the subclasses, so there is no need to
define them explicitly in the class. Note that the Book class now has significantly fewer
properties. By using a superclass, you significantly reduce the amount of redundant code
in your programs.

Book
Author
Genre
Edition
Printed Material |
Title
Publish Date Rl
Page Count o Genre
Price
Publisher \
Newspaper
Date

Figure 5-16. Properties of the superclass and its subclasses

Why Use 00P?

Throughout this chapter, we have discussed what OOP is and we have even discussed
how to create classes and objects. However, we think it is important to discuss why you
want to use OOP principles in your development.

If you take a look at the popular programming languages of the day, all of them use
the OOP principles to a certain extent. Objective-C, Swift, C++, Visual Basic, C#, and Java
all require the programmer to understand classes and objects to successfully develop
in those languages. To become a developer in today’s world, you need to understand
OOP. But why use it?

117

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

It Is Everywhere

Just about any development you choose to do today will require you to understand
object-oriented principles. In macOS and iOS, almost everything you interact with will
be an object. For example, simple windows, buttons, and text boxes are all objects and
have properties and methods. If you want to be successful as a programmer, you need to
understand OOP.

Eliminate Redundant Code

By using objects, you can reduce the amount of code you have to retype. If you write
code to print a receipt when a customer checks out, you will want that same code
available when you need to reprint a receipt. If you placed your code to print the receipt
in the Sales class, you will not have to rewrite this code. This not only saves you time

but often helps you eliminate mistakes. If you do not use OOP and there is a change to
the invoice (even something as simple as a graphic change), you have to make sure you
make the change in your desktop application and the mobile application. If you miss one
of them, you run the risk of having the two interfaces behave differently.

Ease of Debugging

By having all the code relating to a book in one class, you know where to look when

there is a problem with the book. This may not sound like such a big deal for a little
application, but when your application gets to hundreds of thousands or even millions of
lines of code, it will save you a lot of time.

Ease of Replacement

If you place all of your code in a class, then as things change in your application, you can
change out classes and give your new class completely different functionality. However,
it can interact with the rest of the application in the same way as your current class. This
is similar to car parts. If you want to replace a muffler on a car, you do not need to get a
new car. If you have code related to your invoice scattered all over the place, it makes it
much more difficult to change items about a class.

118

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Advanced Topics

We have discussed the basics of OOP throughout this chapter, but there are other topics
that are important to your understanding.

Interface

As we have discussed in this chapter, the way the other objects interact through each
other is with methods. We discussed the header files created when you create a class.
This is often called the interface because it tells other objects how they can interact with
your objects. Implementing a standard interface throughout your application will allow
your code to interact with different objects in similar ways. This will significantly reduce
the amount of object-specific code you need to write.

Polymorphism

Polymorphism is the ability of an object of one class to appear and be used as an object
of another class. This is usually done by creating methods and properties that are
similar to those of another class. A great example of polymorphism that we have been
using is the bookstore. In the bookstore, you have three similar classes: Book, Magazine,
and Newspaper. If you wanted to have a big sale for your entire inventory, you could go
through all of the books and mark them down. Then you could go through all of the
magazines and mark them down, and then go through all of the newspapers and mark
them down. That would be a lot of work. It would be better to make sure all of the classes
have a Markdown method. Then you could call it on all of the objects without needing to
know which class they were as long as they were subclasses of a class that contained the
methods needed. This would save a bunch of time and coding.

As you are planning your classes, look for similarities and methods that might apply
to more than one type of class. This will save you time and speed up your application in
the long run.

119

CHAPTER5 OBJECT-ORIENTED PROGRAMMING WITH OBJECTIVE-C

Summary

You've finally reached the end of the chapter! Here is a summary of the things that were
covered:

o Object-oriented programming (OOP): We discussed the importance
of OOP and the reasons why all modern code should use this
methodology.

e Object: You learned about objects and how they correspond to real-
world objects. You learned that many programming objects relate
directly to real-world objects. You also learned about abstract objects
that do not correspond to real-world objects.

e Class: You learned that a class determines the types of data
(properties) and the methods that each object will have. Every object
needs to have a class. It is the blueprint for the object.

e Creating a class: You learned how to map out the properties and
methods of your classes.

¢ You used Xcode to create a class file.

e You edited the class header file to add your properties and
methods.

Exercises

Perform the following tasks:
o Create the class files for the rest of the classes you mapped out.

e Map out an Author class. Choose the kind of information you need to
store about an author.

For the daring and advanced:

o Create a superclass called PrintedMaterials. Map out the properties
that a class might have.

o Create classes for the other types of printed materials a store might carry.

120

CHAPTER 6

Learning Objective-C
and Xcode

For the most part, all computer languages perform the typical tasks any computer needs
to do: store information, compare information, make decisions about that information,
and perform some action based on those decisions. Objective-C is a language that
makes these tasks easier to understand and accomplish. The real trick with Objective-C
(actually, the trick with any C language) is to understand the symbols and keywords used
to accomplish these tasks. This chapter continues our examination of Objective-C and
Xcode so you can become even more familiar with them.

A Brief History of Objective-C

Objective-C is really a combination of two languages: the C language and a lesser-
kwnown language called Smalltalk. In the 1970s, several bright engineers from Bell
Labs created a language named C that made it easy to port their pet project, the

Unix operating system, from one machine to another. Prior to C, people had to write
programs in assembly languages. The problem with assembly languages is that each
is specific to its machine, so moving software from one machine to another was nearly
impossible. The C language, created by Brian Kernighan and Dennis Ritchie, solved this
problem by providing a language that wrote out the assembly language for whatever
machine it supported, a kind of Rosetta Stone for early computer languages. Because
of its portability, C quickly became the de facto language for many types of computers,
especially early PCs.

121
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_6

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Fast-forward to the early 1980s and the C language was on its way to becoming
one of the most popular languages of the decade. Around this time, an engineer from
a company called Stepstone was mixing the C language with another up-and-coming
language called Smalltalk. The C language is typically referred to as a procedural
language, that is, a language that uses procedures to divide up processing steps.
Smalltalk, on the other hand, was something entirely different. It was an object-oriented
programming language. Instead of processing things procedurally, it used programming
objects to get its work done. This new superset of the C language became known as
“C with Objects” or, more commonly, Objective-C.

In 1985, Brad Cox sold the Objective-C language and trademark to NeXT Computer,
Inc. NeXT was the brainchild of Steve Jobs, who had been fired from his own company,
Apple Computer, that same year. NeXT used the Objective-C language to build the
NeXTSTEP operating system and its suite of development tools. In fact, the Objective-C
language gave NeXT a competitive advantage with all of its software. Programmers
using NeXTSTEP and Objective-C could write programs faster than those writing in the
traditional C language. While the hardware part of NeXT computers never really took off,
the operating system and tools did. Quite interestingly, NeXT was purchased by Apple
Computer in late 1996 with the intention of replacing its aging operating system, which
had been in existence since the first Macintosh was developed in 1984. Four years after
the acquisition, what had been NeXTSTEP reemerged as Mac OS X, with Objective-C
still at the heart of the system. In 2014, Apple introduced Swift as its new language for
i0OS/Mac development. However, Objective-C is still the most common language used in
the majority of iOS and Macintosh apps and will continue to be so in the near future.

Understanding the Language Symbols
and Basic Syntax

Even though Objective-C integrates a great deal of object-oriented language, at the
heart of Objective-C is C. Here are some of the symbols and language constructs used in
Objective-C, some of which are part of the C language and most of which you've already
encountered in previous chapters. It’s not important to know which are pure C and
which are not; just know that the old and newer symbols/constructs together make the
Objective-C language.

122

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Pretty much every language shares at least the following concepts:
o Create a variable and assign it a value.
e Begin and end a section of code.
» Signify the end of a line of code.
e Write a comment.
Objective-C has these syntactical differences from other object-oriented languages:
e Define a class.
e Define a method.
e Define an Objective-C variable.

e (Call a method.

Create a Variable

A variable is something that stores a value that can change (i.e., vary). Creating a
variable requires at least two parts.

1 int count;

In this code, a variable is declared. The first word, int, indicates that the variable is
an integer. An integer is a whole number that can range from negative to positive values
(there are other variable types that will be described when Objective-C properties are
descried in Chapter 7).

The second word is the actual variable name, count. It’s always proper form to name
the variable with what it is intended to store. From the looks of the name, it’s going to
store the count of something.

Note As a standard, an integer in most operating systems, including iOS, can
range from -2,147,483,648 10 2,147,483,647.

123

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Begin and End a Section of Code

Every language needs some way to indicate where the code begins and ends.
Objective-C has a few different ways to designate this. The following is the most common
in Objective-C (and standard C as well): { and }, the begin and end braces, which specify
the beginning and ending of a section of code.

A good example is the conditional, or if statement, shown here:

1 if (a ==b) {
2 *** do something cool if a is equal to b ***

3}

First, there is a conditional: if (a == b). This simply tests to see whether the value
of a is equal to the value of b. The block of code for the conditional is surrounded by the
braces ({ and }) and is executed if the conditional is true (conditionals are described in
more detail in Chapter 9).

Signify the End of a Line of Code

C and therefore Objective-C are free-form languages. This means that the code can be
formatted however the programmer likes. This gives the programmer a lot of flexibility as
far as how the code looks. Because of this, Xcode needs to know when there is an end of
aline of code. So ; is used to represent the end of a line of code:

1 cost = 100.0; // Assign a value to something
2 NSLog(@"Hello!"); // Call a function/method (described later)

Note Because Objective-C is a free-form language, it is possible to write
Objective-C as one really loooooooong single line. Yes, it will work and, yes, your
co-workers and everyone on the planet will hate your code.

There is an exception to this general rule, and that is code that requires a block to
define it. Using the example from earlier again, look at this code:

1 if (a ==b) {
2 *** do something cool if a is equal to b ***

124

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

In this code, there is no semicolon after if (a == b) or after any of the braces.
You will see other statements in upcoming chapters that are similar to this one. The
takeaway is that if the code you're writing requires braces, don’t add a semicolon at the
end of the line.

Write a Comment

Comments in any language are useful to document or explain a piece of code. Actually,
you've already seen a comment in some sample code:

1 cost = 100.0; // Assign a value to something
2 NSLog(@”Hello!”); // Call a function/method (described later)

The // characters indicate that the text that follows is a comment and should not be
treated as code. The thing with the // comment is that it is only good until the end of that
line. What if you have a lot to write and want the comment to span multiple lines? In this
case, there are more special characters: /* is used to begin the comment and */ is used
to end the comment. This is referred to as a block comment.

/* This is a block comment

and can span multiple lines.

This is useful if I have a lot to say!
*/

B W N R

Notice that /* or */ can appear on lines all by themselves or be combined with text.
It doesn’t really matter how it’s formatted, even like this: /* This is a block comment
too */. A block comment doesn’t mean that the comment has to span multiple lines.

Note Itis a good habit to write and maintain comments within your code.
Comments are not so much about writing what the code does but why it’s doing it.
This code may seem obvious: cost = 100.0. It’s a variable assignment. What’s
important here is not that there is a variable assignment but why the variable is
being assigned 100.0.

125

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Define a Class

In all object-oriented languages there is the concept of a class. The definition of that
class is also generally different from language to language, and Objective-C is no
exception.

Objective-C divides the definition of a class within two distinct sections. The first
section is what is called the interface. The interface simply defines the methods and
properties that make up the class. It also indicates the superclass to your object. (You'll
learn more about this in Chapter 7.)

1 @interface MyObject : NSObject
2 ¥ Stuff explained in Chapter 7 here
3 @end

The interface to an object is defined by @interface. . .@end. This object has the
unique and creative name of MyObject. The : NSObject part denotes the superclass,
meaning MyObject acts just like NSObject but builds upon it with the methods and
properties defined in MyObject. NSObject is a superclass; conversely, MyObject is a
subclass of NSObject.

1 @implementation MyObject
2 ¥ Stuff explained in Chapter 7 here
3 @end

The implementation as denoted by @implementation...@end is the part of the class
that actually has the code that does all the stuff MyObject is supposed to do. This is where
all the coding of a class really takes place.

It's common to see the @interface...@end part in a separate file from the
@implementation...@end part, but they don’t have to be separate. Also important
to note is that since the @interface and @implementation sections are just like code
blocks, they don’t require a ; at the end of the line (see the “Signify the End of a Line of
Code” section earlier). That said, it is a best practice to put the @interface in an .h file
and the @implementationin an .mfile.

126

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Define a Method

A method is defined in two ways. The first is the definition of the method in the
@interface part of the class.

1 @interface MyObject : NSObject
2 - (int)howMany;
3 @end

Here is the interface to the MyObject class, and what you see on line 2 is the method
definition. It’s called a definition because all it does is define the method’s name
(howMany) and what value it returns, which in this case is an int (as in integer, like used
when defining a variable). And, of course, you need to end the definition of the method
with a semicolon. A return value is like asking an object a question. So, if you ask the
object the question howMany, it responds with a number (int). Methods that don’t need
to return anything would have a (void) in place of the (int).

Chapter 7 will detail the actual code of the howMany method that is found in the
@implementation part of the code.

Define an Objective-C Variable

Objective-C variables aren’t too different from other variables (like you saw earlier in the
“Create a Variable” section) with the exception of a special character.

1 MyObject *myObjectInstance;
While this may look a little odd, it’s not too different than this:
1 int count;

In line 1, you see the Objective-C class name of MyObject being used, but it has an
asterisk (*) character after it. We won’t go into technical details on what * actually does;
just know that when a variable is defined and that variable is an Objective-C object, you
always put an asterisk after it (sometimes * is referred to as a splat or star). If you don’t
do this, Xcode will point it out as an error and you will have to fix it.

127

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Call a Method

Once a class has a method defined, there needs to be a way to actually call it. So, when
you have an instance (or object) of the MyObject class, the count object can be called and
used as such:

1 int value;
2 value = [myObjectInstance howMany];

Line 1 defines a variable that is an integer called value.

Line 2 calls the howMany method from the object named myObjectInstance. Now,
how you define myObjectInstance is shown in the next chapter, but what’s more
important here is the odd-looking [and] characters. These characters are used to
surround Objective-C code that deals with objects calling methods.

Note Technically in Objective-C you don’t call a method but instead send a
message to an object. In the previous example, the howMany message is being
sent to the myObjectInstance object. There are technical details in how
Objective-C has been built as to why there is this difference in semantics. However,
for simplicity’s sake, the term method is used in order to maintain similar terms as
other object-oriented languages.

Putting the “Objective” into Objective-C

The majority of what makes Objective-C, well, objective, is its basis in Smalltalk.
Smalltalk is a 100% object-oriented language, and Objective-C borrows heavily from
Smalltalk concepts and syntax. Here are a few of the high-level concepts borrowed from
Smalltalk. Don’t worry if some of these terms seem unfamiliar; they will be discussed in
later chapters (Chapters 7 and 8 cover the basics).

e Aclass defines an object. That definition is made up of methods and
properties.

e Objects can contain instance variables.
o Instance variables (and variables in general) have a defined scope.
e C(lasses hide details of an implementation.

128

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Note Asyou saw in Chapter 5, the term class is used to represent, generically,
the definition or type of something. An object is what is created from the class. For
example, a recipe is like a class because it defines how to create a certain dish.
The result of following a recipe is the completed meal. You can’t eat a recipe, but
you can eat what that recipe creates, just like you can’t use a class, but you can
use what it creates, and that is an object.!

Let’s look at a simple example of the complete definition of an Objective-C class
called HelloWorld. The following is the interface file (HelloWorld.h):

1 @import Foundation;

2

3 @interface HelloWorld : NSObject
4

5 - (void)printGreeting;

6

7 @end

And this is the implementation file (HelloWorld.m):

8 #import "HelloWorld.h"

10 @implementation HelloWorld
11

12 - (void)printGreeting

13 {

14 NSLog(@"Hello World!");
15 }

16

17 @end

'There are some general exceptions to this. We mean exceptions to the class/object example.
No, you still can’t eat a recipe.

129

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

In this example, a class, HelloWorld, is being defined. This class has only one
method defined: printGreeting. What do all these strange symbols mean? Using the
line numbers as a reference, you can review this code line by line.

Line 1 contains the compiler directive @import Foundation;. For the program
to know about certain other objects (for example, the NSObject on line 3), importing
Foundation defines the objects and interfaces to the Foundation framework. This
framework contains the definition of most non-user-interface base classes of the iOS and
macOS systems. The actual start of the object is on line 3, as follows:

@interface HelloWorld : NSObject

HelloWorld is the object, but what does : NSObject mean? Well, the colon (:) after
the class’s name indicates you plan to derive additional functionality from another class.
In this case, NSObject is that class. HelloWorld is now a subclass of NSObject.

Fun Fact Why the name NSObject and not just Object? Well, as you recall,
Mac OS X actually started out as a port from the NeXTSTEP system. NS is an
abbreviation for NeXTSTEP and is used in many of the base objects in Mac 0S X
and i0S: NSObject, NSString, NSDictionary, and so on.

Line 5 contains a message definition for this class, as follows:
- (void)printGreeting;

When you're defining a method, the definition line must start with either a - or +
character. In the case of the HelloWorld object, you are using - to indicate this message
can be used after the object is created. The + character is used for messages that can be
used before the object is created (more on this in Chapter 7).

On line 7, @end indicates that the definition of the object’s interface is complete.

That'’s the complete description of the interface of the HelloWorld object; there’s
not a whole lot here. More complicated objects simply just have more methods and
properties.

For the implementation, the source code is stored in a different file, Hel1loWoxrd.m.
For starters, line 8 starts with the statement #import "HelloWorld.h". This simply
allows the object to know its own interface. While the separation of the interface and
implementation files might seem a little odd at first, this convention is consistent in
Objective-C programming. Whenever an object is to be used, simply include its interface.

130

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE
Line 10 is the start of the implementation of the object, as follows:
@implementation HelloWorld

Line 12 is the definition of the object’s method, printGreeting. It looks identical to
the method definition in the interface file. The only difference here is that code is being
defined that implements the printGreeting method.

Lines 13-15 form the block of code that implements the method printGreeting. For
this simple method, the function NSLog is called. This base-level function simply takes
in a formatted NSString object and outputs the result to the console. The NSString class
is an Objective-C class that implements the behavior of a string of characters. Why have
a class for this? For one thing, it gives the framework a consistent class for representing
a string. Plus, there is a lot of functionality in NSString that can be used to manipulate,
compare, and convert the actual string.

The NSString object is specified here in a shorthand method. The @"Hello World!"
part is a way of quickly declaring an NSString object. The at sign (@) is the symbol used
to indicate that the text in quotes is an NSString object.

Line 17 indicates to the compiler that the definition of the implementation section is
finished.

But wait, there’s more. Now that you have a new Objective-C class defined, how is it
used? The following is another piece of code that uses the newly created class, the main
program (main.m):

1 #import "HelloWorld.h"

2

3 void main(void)

4 A

5 HelloWorld *myObject = [HelloWorld new];
6 [myObject printGreeting];

7}

In this new file, the program first starts by including the HelloWorld.h file, which
allows this piece of the application access to the HelloWorld object.

In line 3 is the main function. Remember, every Objective-C program must have a
main function.

131

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Line 5 is a complicated one. It defines and creates, or instantiates, a new object
of the HelloWorld class. You first see the text HelloWorld* myObject. This defines a
variable named myObject of the type HelloWorld, which is the new class.

The next part of the line is [Hel1loWorld new]. This creates a new HelloWorld object.
Wait a second; you never defined the message new, so how is this going to work?

Well, when the HelloWorld class was defined, it was defined as a subclass of NSObject.
When you call the new method of the HelloWorld object, the system knows that
HelloWorld doesn’t know that particular message, so it automatically checks the
superclass; in this case, this is the NSObject class.

Now that you've created a new object, you can use it. Line 6, [myObject
printGreeting], puts the object to use. In this piece of code, you use the newly
instantiated object by calling the printGreeting method. The program will output the
textHello World!.

Line 7 ends the code block that defines main and the end of the program.

Note Methods can also accept multiple arguments. Consider, for example,
[myCarObject switchRadioBandTo:FM andTuneToFrequncy:104.7];.
The message here would be switchRadioBandTo:andTuneToFrequency:.
After each colon, the argument values are placed when a message is actually sent.
You might also notice that these messages are named in such a way as to make
interpreting what they actually do easy to understand. Using helpful message
names is an ideal convention to follow when developing classes because it makes
using the classes much more intuitive. Being consistent in naming messages is
also critical.

132

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Writing Another Program in Xcode

When you first open Xcode, you'll see the screen shown in Figure 6-1.

No Recent Projects

Welcome to Xcode

&T] Get started with a playground
Explore new ideas quickly and easily.

\1 Create a new Xcode project

*| Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.
EZ' Clone an existing project
Start working on something from an SCM repository.
Show this window when Xcode launches Open another project...

Figure 6-1. Xcode opening screen

Figure 6-1 shows a great screen to always keep visible at the launch of Xcode.
Until you are more comfortable with Xcode, keep the Show this window when Xcode
launches check box selected. This window allows you to select the most recently created
projects or start a new project.

Creating the Project

You are going to start a new project, so click the Create a new Xcode project icon.
Whenever you want to start a new iOS or macOS application, library, or anything else,
use this icon. Once a project has been started and saved, the project will appear in the
Recents list on the right side of the display.

133

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

For this Xcode project, you're going to choose something simple. Make sure iOS is
chosen. Then select Single View App, as shown in Figure 6-2. Then simply click the Next
button.

Choose a template for your new project:

watchOS tvOS macOS Cross-platform ®
Application
1 & AR =
Single View App Game Augmented Document Based Master-Detail App
Reality App App
(@00 Lk eee _D/ <)
Page-Based App Tabbed App Sticker Pack App iMessage App

Framework & Library

=] by LY
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel " Next

Figure 6-2. Choosing a new project from a list of templates

There are several different types of templates. These templates make it easier to start
a project from scratch in that they provide a starting point by automatically creating
simple source files.

134

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Once the template has been chosen and the Next button clicked, Xcode presents you
with a dialog box asking for the project’s name and some other information, as shown in
Figure 6-3. Type a product name of MyFirstApp. The Company Identifier field needs to
have some value, so just enter MyCompany. Also make sure the Language field is set to
Objective-C.

Choose options for your new project:

Product Name: MyFirstApp
Team: None
Organization Name: MyCompanyI
Organization Identifier: com.mycompany
Bundie Identifier: com.mycompany.MyFirstApp
Language: Objective-C

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 6-3. Setting up the product name, company, and type

The Use Core Data, Include Unit Tests, and Include UI Tests check boxes can be left
as the default. In your example, it doesn’t matter if they are checked or not. Once all
the information has been supplied, click the Next button. Xcode will ask you where to
save the project. You can save it any place, but the desktop is a good choice because it’s

always easy to find.

135

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

When the project is initially created, Xcode will display details about your project
(Figure 6-4). Everything can be left as is except for the devices within the Deployment
Info section. Change the Devices field from Universal to iPhone. Universal apps are
optimized to run on both iPhones and iPads, but for simplicity’s sake, you're just going to

stick to the iPhone.

ece p W A\ ..) W8 iPhone BsPlus MyFirstApp: Ready | Today at 10:15 PM E o o0 O

MyFirstApp.xcodeproj +|
|B R QA ©E o @ (8 & MyFirstapp
v [MyFirstApp (] General Capabilities Resource Tags info Build Settings Bulld Phases Build Rules
v MyFi
yFirstApp PROJECT
h AppDelegate.h N) ¥ Identity
m AppDelegate.m R MyFirstApp
h ViewController.h TARGETS Bundle Identifier com.mycompany.MyFirstApp
m ViewController.m ;-\ version 10
Main.storyboard
[Assets.ucassets Build 1
LaunchScreen.storyboard
s
Info.plist Team None
» [Supporting Files
» [Products ¥ Deployment info
Deployment Target n
Devices iPhone 2]
Main Interface Main n
Device Orientation Partrait
Upside Down
Landscape Left
Landscape Right
Status Bar Style Default a
Hide status bar
Requires full screen
¥ App Icons and Launch Images
App lcons Source Applcon +]
Launch Images Source Use Asset Catalog
+[@ oEll+ - ® Launch Screen File LaunchSereen]

Figure 6-4. The Xcode 9.2 main screen

In the leftmost pane is the list of source files. The main area of the screen is dedicated
to the context-sensitive editor. Click a source file, like an .h or .m, and the editor will
show the source code. Clicking a . storyboard file will show the user interface editor.

136

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Your first app is going to be simple. This iPhone app will simply contain a
pushbutton and a label. When the button is pushed, your name will appear on the
screen. So, let’s start by first looking more closely at some of the stub source code that
Xcode built for you. The nice thing with Xcode is that it will create a stub application that
will execute without any modification. Before you start adding some code, let’s look at
the main toolbar of Xcode, shown in Figure 6-5.

e e » \ MyFirstApp i [Phone B Plus MyFirstAp. Ready | Today at § 56 PM D =

Figure 6-5. The Xcode 9.2 toolbar

At first glance, there are three distinct areas of the toolbar. The left area is used to
run/debug the application. The middle window displays the status as a summary of
compiler errors and/or warnings. The far-right area contains a series of buttons that
customize the editing view.

As shown in Figure 6-6, the left portion of the toolbar contains a Run button (similar
to the iTunes Play button) that will compile and run the application. If the application
is running, the Stop button will not be grayed out. Since it’s grayed out, you know the
application is not running. The last part of the toolbar is the build status. This is where
you can see what application (or target) is being built, in this case MyFirstApp.

& & B «\. MyFirstApp |i§ iPhone 8 Plus MyFirstApp: Ready | Today at 9:56 PM

Figure 6-6. Close-up of the left portion of the Xcode toolbar

The right side of the Xcode toolbar contains buttons that change the editor. The three
buttons represent the Standard Editor (selected), the Assistant Editor, and the Version
Editor. For now, just choose the Standard Editor, as shown in Figure 6-7.

= | © | <opll] |

Figure 6-7. Close-up of the right portion of the Xcode toolbar

137

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Next to the editor choices are a set of View buttons. These buttons represent which
panes of the Xcode workplace are visible: left, bottom, and right. Blue indicates that a
pane is active, and gray indicates that it is inactive. These buttons can be toggled on and
off. Figure 6-8 shows all three panes. Figure 6-9 shows Xcode when no panes are used.

oce p o MyF__tApp | W iPhone B Plus Finished running MyFirstApp on iPhane & Plus = o 20000
%8 < » B MyFirsiapp D ®
¥ I MyFirsiApp R Copabilities Resource Tags Info Build Settings Buld Phases gtk ik
¥ [MyFirstApp — 1 .
h AppDelegate h A No Quick Help
m AppDelegate.m A ¥ Signing _Search Documentation
h ViewControllerh A
m ViewController.m A Automatically manage signing
Nt e and update profiles, spp DS, and
+ Main.storyboard A cert
= A
L ESE15.XCaESOLE M Taam | Hona B
* LaunchScreen.storyboard A
Info.plist A Provisioning Profila Xcode Managed Profile
m main.m A Signing Certificate 05 Developer
¥ [MyFirstAppTests
m MyFirstAppTests.m A Status) Signing for "MyFirstApp” requires a
I pltat A gfc a T:l:e:m" feam in the project editor. H
¥ | MyFirstAppUiTests % : Gk 3 nght Pane
m MyFirstAppUiTests.m A
v
Info.plist A Rovloymeot|sig
¥ {5 Producrs Deployment Target n
Devices iPhone B
Main Interface Main
Left Pane u
Device Orientation @ Portrait D OGO
Upside Down
8 Landscape Left
Landscape Right
Status Bar Style Default B
EH = No Matches
[Message from debupger: Terminated due to
sinzal 16
Bottom Pané
+ (@ OE| | Auto $ ® All Qutput & [C) W00 = (@

Figure 6-8. The three panes of Xcode

138

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

orne p o MyF..tApp) Wl IPhone 8 Plus Finished running MyFirstApp on iPhone 8 Plus = Q@ o030
B < > B MyFirstapp
[0 o MyFirstApp & General Capabilities Resource Tags Infa Bulld Settings Build Phases Build Rules.
¥ identity
Cisplay Name

Bundle identifier com.mycompany.MyFirstApp
Version 1.0

Build 1

¥ Signing

@ Automatically manage signing
Keode will create and update profiles, a

Team None B
Provisioning Profe Xcode Managed Profile
Signing Certificate 105 Developer
Status) Signing for "MyFirstApp® requires a

development team.
Select a dovelogment team in the project editor.

¥ Deployment info

Deployment Target
Devices iPhone

Main Interface Main

Device Orientation @ Portrait
Upsige Down
Landscape Left
1@ Landscape Right

Status Bar Style Detault B

Figure 6-9. No panes selected. Just one big editor!

Generally, when Xcode starts up with a new project, the left and right panes are
selected.
So what are these different panes?

o The left pane is called the Navigator. This is because the pane
contains different “tabs” that allow you to navigate the source (among
other things).

o Theright pane is the Utilities pane. It has all the tools that are used to
configure the app and build the interface, which is what the user sees.

e The bottom pane is the Debug area. It appears when Xcode is
debugging the app.

Let’s now get into your iOS app.

139

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Click the ViewController.h file once, as shown in Figure 6-10.

ee » A\) IPhone 8 Plus Finished running MyFirstApp on iPhone 8 Plus E 9)08 O
B EH 2 Q & © = o BB ¢ > L MyFirstApp) [MyFirstApp) | ViewController.h) No Selection
v & MyFirstApp M 1M
v [MyFirstApp 2 // viewContreller.h
ER FirstA
h AppDelegate.h A Y My PR
m| AppDelegate.m A 5 // Created by Brad Lees on 12/6/17.
h & [/ Copyright = 2817 MyCompany. All rights reserved.
m ViewController.m A T
e e - 9 #import <UIKit/UIKit.h>
1 Assets.xcassets M 1
LaunchScreen.storyboard A 11 @interface ViewController : UIViewController
Info.plist A
m main.m A 1 Gend
¥ || MyFirstAppTests
m MyFirstAppTests.m A
Info.plist A
v MyFirstAppUlTests
m MyFirstAppUITests.m A
Info.plist A
» L Products
+ @ O

Figure 6-10. Looking at the source code in the Xcode editor

Note For now, you’re simply going to add a few lines of code and see what

they do. It’s not expected that you understand what this code means right now.
What’s important is simply going through the motions to become more familiar
with Xcode. Chapter 7 goes into more depth about what makes up an Objective-C
program, and Chapter 10 goes into more depth about building an iPhone interface.

Next, you're going to add two lines of code into this file, as shown in Figure 6-11.
Line 12 defines an iPhone label on the screen where you can put some text. Line 15 tells
the compiler this ViewController object can be sent a message called showName:. You'll
be calling this method to populate the iPhone label. A label is nothing more than an area
on the screen where you can put some text information.

140

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

1 !

2 // ViewController.h

3 // MyFirstApp

4 /]

5 // Created by Thorn| on 12/6/17.

6 // Copyright © 2017 MyCompany. All rights reserved.
7

8

9 #import <UIKit/UIKit.h>

10

11 @interface ViewController : UIViewController

12

O (QEproperty (nonatomic, strong) IBOutlet UILabel *namelLabel;
(O = (IBAction)showName: (id)sender;

17

18 @end

[
o

Figure 6-11. Code added to the ViewController.h interface file

Caution Type the code exactly as shown in the example. For instance, UILabel
can’'t be uilabel or UILABEL. Objective-C is a case-sensitive language, so
UILabel is completely different from uilabel.

141

CHAPTER 6

LEARNING OBJECTIVE-C AND XCODE

Next, you're going to add the code to make the message showName : do something.

First, click the ViewController.m file on the left once. This file is an implementation

file. You can tell it’s an implementation file because of the @implementation Objective-C

directive on line 11, shown in Figure 6-12.

B 2 Q & ©
v & MyFirstApp

v

[

MyFirstApp

h AppDelegate.h

m AppDelegate.m

n ViewController.h

m ViewCentroller.m
Main.storyboard

= Assets.xcassets
LaunchScreen.storyboard
Info.plist

m main.m

MyFirstAppTests

m MyFirstAppTests.m
Infa.plist

MyFirstAppUITests

m MyFirstAppUITests.m
Info.plist

Products

&
M

»» » T > » > > >»

» >

g <
1 4
2 I
ER
a0
s M
& I
70

ViewContreller.m
MyFirstApp

Created by Tharn on 12/6/17.
Copyright e 2817 MyCompany. All rights reserved.

? #import "ViewController.h"

1 @interface ViewController ()

13 Pend

5 @implementation ViewController

17 = {void)viewDidload {

[super viewDidLoadl;

// Do any additional setup after loading the view,

73 = {(void)didReceiveMemoryWarning {

[super didReceiveMemoryWarningl;

// Dispose of any resources that can be recreated.

' RPend

Figure 6-12. The ViewController.m implementation file

» & MyFirstApp) | MyFirstApp) m ViewController.m) No Selection <& >

Method definition for 'showName:' not found

typically from a nib.

Note the warning symbol on line 15. Clicking the warning will show the warning

“Method definition for ‘showName:” not found.” This basically means you've added a

new method in the interface file, but it’s not been added to the implementation file.

What may appear wrong are lines 11-13. This is what is called a class extension and

is meant to be only in the .mfile. This is meant to contain properties that are strictly kept

private to the ViewController class.

142

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Figure 6-13 is the updated implementation file. The warning disappears since the
showName: method is now in the implementation file. Xcode is nice that way. If a method
is defined in the interface file, it will generate a warning if it’s not in the implementation
file. Xcode does make things easier, but it’s still up to the programmer (you) to make any
necessary corrections.

1/
// ViewController.m
// MyFirstApp
41/
5 [/ Created by Thorn on 12/6/17.
// Copyright © 2817 MyCompany. All rights reserved.
1/

9 #import "ViewController.h"
@interface ViewController ()
13 @end

15 @Eimplementation ViewController

(void)viewDidLoad {
18 [super viewDidLoad];
19 // Do any additional setup after loading the view, typically from a nib.

o
1

(void)didReceiveMemoryWarning {
24 [super didReceiveMemoryWarningl;
25 // Dispose of any resources that can be recreated.

O
1

(IBAction)showName: (id)sender {

32 @end

Figure 6-13. Code added to the ViewController.m implementation file

143

CHAPTER 6

LEARNING OBJECTIVE-C AND XCODE

Once lines 27-29, shown in Figure 6-13, have been added, the warning message will

disappear. The nice thing with Xcode is that it will report any warnings or errors with the

code typed in without first having to try to compile and run the program. This immediate

feedback can sometimes be a pain, but it does save time. You now have the necessary

code in place, but you don’t yet have a user interface on the iPhone. Next, you're going to

create the user interface to your app.

To edit the iPhone’s interface, you need to click the Main. storyboard file once. You

will use Xcode’s interface editor to connect a user interface object, such as a label, to the

code you just created. Connecting is as easy as click, drag, and drop.

Note that the right pane is visible, as shown in Figure 6-14. This opens up the Utilities

pane for the interface. Among other things, this Utilities pane shows you the various

interface objects you can use in your app. You're going to be concerned with only two:
Button and Label.

®
B

® »r %) W iPhone 8 Plus
B R Qa0 =

v & MyFirstApp

¥

»>

-+

MyFirstApp

h AppDelegate.h
m AppDelegate.m
R viewController.h
B viewController.m

1 Assets.xcassets
LaunchSecreen.storyboard
Info.plist

m main.m

MyFirstAppTests

m MyFirstAppTests.m
Info.plist

MyFirstAppUlTests

m MyFirstAppUITests.m
Info.plist

& Products

e.

=

M

= Z » » » >

»

©

2|88 < > Bvpp)

>

@

Finished running MyFirstApp on iPhone 8 Plus

Main.storyboard (Base)) No Selection

View Controller Scene

View Contr{

] View as:iPhone 8 («C nR)

o R =
bem ¢ E e

Quick Help

oo

oo

Figure 6-14. The iPhone interface that you're going to modify

144

MNo Quick Help

Search Documentation

0O0eo

\\ View Controller - A controller that

MANages a view,

Storyboard Relerence - Provides
a placeholder for a view controller in
an external storyboard.

. Navigation Controller - A
controller that manages navigation
through a higrarchy of views

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

The first step is to click the Button control once from the Utilities pane; you may
have to scroll the list of controls to find the Button control. Next, drag the object to the
iPhone view, as shown in Figure 6-15. Don’t worry; dragging the object doesn’t remove it
from the list of objects in the Utilities pane. Dragging it out will create a new copy of that
object on your iPhone interface.

| 4 View Controller Scene Quick Help
No Quick Hel
View Controller Q P

Search Documentation

Bu ;c n

DOeo

Button - Intercepts touch events and
Button sends an action message to a target
object when it's tapped.

Bar Button Item - Represents an
Item | item on a UiToolbar or
UlNavigationitem object,

Fixed Space Bar Button Item -
Jrrvunnnny | Represents a lixed space item on a

UlTcolbar object.

—_— Elnuible Cmnnn Das Bt o

® [] View as:iPhone 8 («C nR) E3 12 o] taf | B8 |(® butt (]

Figure 6-15. Adding a Button object to the iPhone interface

145

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Next, double-click the Button that was just added to the iPhone interface. This
allows the title of the button to be changed. So, change the title from Button to Name,
as shown in Figure 6-16. Many different interface objects work just like this. Simply
double-click and the title or text of the object can be changed. Changing the text of a
button can also be done in the actual code, but it’s much simpler doing as much as
possible in the interface editor.

0 ® E |

Figure 6-16. Modifying the button’s title

146

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Once the title has been changed, drag and drop a Label object and place it right
below the button, as shown in Figure 6-17.

¥ | View Controller Scene | Quick Help
v View Controller Declaration @interface UIButton :
w M view l ? B UIContrel <NSCoding>
[Safe Area = — Description A control that executes your
custom code in response to
B Name |

user interactions.

) First Responder When you tap a button, or

[l Exit select a button that has focus,
» Storyboard Entry Poi... the button performs any

actions attached to it. You

| communicate the purpose of a

1 button using a text label, an

| image, or both. The

appearance of buttons is

La :‘E‘ configurable, so you can tint

buttons or format titles to

match the design of your app.

You can add buttons to your

interface programmatically or

using Interface Builder.

When adding a button to your

interface, perform the

N following steps:

« Set the type of the
button at creation time.

« Supply a title string or
imane: size the huttan

DOOD

L.a b I Label - A variably sized amount of
e static text.

Figure 6-17. Adding a Label object to the iPhone interface

147

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

For now, you can leave the label’s title as Label because you're going to make it
change within the program. You also want to leave something in the title so you can
actually see it on the screen. If you clear the label’s text, the object will still be there, but
there is nothing visible to click in order to select. Expand the size of the label by dragging
the center handle ball to the right, as shown in Figure 6-18. You'll also need to drag the
sizing handle to the left to make “My Name is Awesome” fit and match the final centering
of the label.

®» B
Name
I
W: 136.0 §
H: 21.0 |
I
Label o

Figure 6-18. Expanding the label’s size

148

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Now that you have both the button and the label, you can connect these visual
objects to your program. You start by Control-clicking (or right-clicking) the button
control and dragging the blue line to the yellow view controller icon at the top of the
screen, as shown in Figure 6-19.

L view controuer J

Figure 6-19. Start the connection from the button to the view controller

149

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

At this point, just stop dragging and release the mouse button. You will see a list of
things related to the button. In this case, you care only about selecting the showName:
event, as shown in Figure 6-20. It’s called an event because something happens when, in
this case, the button is tapped.

Action Segue
Show
Show Detail
Present Modally
Present As Popover

Custom
Sent Events
showName:
Non-Adaptive Action Segue
Push (deprecated)
Modal (deprecated)

Label

Figure 6-20. Select the showName: event

150

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

What happens once the showName: is selected is that it connects the touch-up inside
button event to the showName: method inside the implementation. The event is called
touch-up inside since the event is sent only when the button is released (touch up) and
only when the touch-up occurs inside the button (versus if you drag your finger outside
the button and then release).

Next, you need to create a connection for the Label object. In this case, you don’t
care about the label events; instead, you want to connect the ViewController’s
nameLabel outlet to the object on the iPhone interface. This connects the label shown on
the iPhone interface to the property in the program.

Start by Control-clicking or right-clicking the Label object on the iPhone interface.
This brings up the connection menu for the label, as shown in Figure 6-21. There are not
as many options for a Label object as there were for the Button object.

Referencing Outlets

New Referencing Outlet O
Referencing Outlet Collections

New Referencing Outlet Collection ©)

Name \

¥ Outlet Collections
gestureRecognizers

¥ Referencing Outlets
New Referencing Outlet

¥ Referencing Outlet Collections
New Referencing Outlet Collection

O

Label - A variably sized amount of
La be static text.

Figure 6-21. Connection menu for the Label object

151

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Note You can control-click and drag from the ViewController icon to the label
and then choose namelLabel.

As mentioned, you are not here to connect an event. Instead, you connect what’s
referred to as a Referencing Outlet. The Outlet is the property in your program. Just
like the Button, drag and drop the connection to the ViewController icon, as shown in
Figure 6-22.

‘ namelabel
view

Figure 6-22. Connecting the Referencing Outlet to the object

Once the connection is dropped on the ViewController icon, a list of possible
outlets in your ViewController object will be displayed, as shown in Figure 6-22. Of
the two choices, you want to choose nameLabel. This is the name of the variable in the
ViewController object you are using.

152

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Lastly, you need to add the code that will put something into your new label. In
Figure 6-23, line 28 sets the text to the nameLabel property. Notice that you're adding
code to the showName: method. If you recall, this is the method that is called during the
touch-up inside event. Don’t worry too much about understanding everything, but some
things should look familiar based upon what you've learned in this chapter.

1/
2 // ViewController.m
3 // MyFirstApp
4 [/
5 [/ Created by Thorn on 12/6/17.
6 [/ Copyright @ 2017 MyCompany. All rights reserved.

1/

9 #import "ViewController.h"
11 @interface ViewController ()
13 Qend

15 @implementation ViewController

17 = (void)viewDidLoad {

18 [super viewDidLoad];

19 // Do any additional setup after loading the view, typically from a nib.
20 }

21

22

23 = (void)didReceiveMemoryWarning {

24 [super didReceiveMemoryWarningl;

25 // Dispose of any resources that can be recreated.
26 }

® - (IBAction)showName: (id)sender {

28 [self.nameLabel setText:Q@"My Name is Awesome"];
29}

30

31

32 Qend|

Figure 6-23. Setting the text to the new label

153

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Now you're ready to run the program. Click the Run button (it looks like a
Play button) at the top-left corner of the Xcode window (see Figure 6-6). This will
automatically save your changes and run the application in the iPhone emulator, as
shown in Figure 6-24.

iPhone 8 Plus - 11.2

Figure 6-24. Your app running, before and after the button is pressed

Click the Name button and the label’s text will change from its default value of
“Label” to “My Name is Awesome” or whatever text you put in. If you want to, go back
into the interface and clear the default label text. Changing the default of “Label” to
something more appropriate will give the user interface a more polished look.

154

CHAPTER 6 LEARNING OBJECTIVE-C AND XCODE

Summary

The examples in this chapter were simple, but we hope they’'ve whetted your appetite

for more complex applications using Objective-C and Xcode. In later chapters, you

can expect to learn more about object-oriented programming and more about what

Objective-C can do. Pat yourself on the back because you've learned a lot already. Here is

a summary of the topics discussed in this chapter:

The origins and brief history of the Objective-C language

Some common language symbols used in Objective-C

An Obijective-C class example

The @interface and @implementation sections of a program

Using Xcode a bit more, including compiling the MyFirstApp project

Connecting visual interface objects with methods and properties in
the ViewController object

Exercises

Perform the following tasks:

Change the size of the Label object on the interface to be smaller in
width. How does that affect the text message?

Delete the Referencing Outlet connection of the label and rerun the
project. What happens?

If you feel you have the hang of this, add a new button and label both
to the ViewController object and to the interface. Change it from
displaying your name to displaying something else.

155

CHAPTER 7

Objective-C Classes,
Objects, and Methods

If you haven'’t already read Chapter 6, please do so before reading this chapter because
it provides a great introduction to some of the basics of Objective-C. This chapter
builds on that foundation. By the end of this chapter, you can expect to have a greater
understanding of the Objective-C language and how to use the basics to write simple
programs. The best way to learn is to take small programs and write (or rewrite) them in
Objective-C just to see how the language works.

This chapter will cover what composes an Objective-C class and how to interact with
Objective-C objects via methods. We will use a SimpleLabelData class as an example
of how an Objective-C class is written. This will impart an understanding of how an
Objective-C class can be used. This chapter will teach you how to formulate a design for
objects that are needed to solve a problem. We'll also touch on how to create custom
objects and how to use existing objects provided in the Foundation classes.

If you're coming from a C-like language, you’ll find that Objective-C shares several
similarities. As described in Chapter 6, Objective-C’s roots are firmly planted in the C
language. This chapter will expand on Chapter 6’s topics and incorporate some of the
concepts described in Chapter 8.

Creating an Objective-C Class

Chapter 6 introduced some of the common elements of the Objective-C language, so
let’s quickly review them.

e An Objective-C class is divided into two parts: a class interface and a
class implementation.

157
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_7

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

o The@interface keyword is used to define an interface to a new
Objective-C class. This is written in an . h, or header, file.

o Methods are the blocks of code defined in the @interface section of a
class and implemented in the @implementation sectionin an .mfile.

e The @implementation keyword is used to define the actual code that
implements the methods defined in the interface. This is written in
an .m, or Objective-C class, file.

As explained in Chapter 6, an Objective-C class consists of an interface and a
corresponding implementation. For now, let’s concentrate on the interface. At the most
basic level, the interface of a class tells you the name of the class, what class it’s derived
from, and what methods the class understands.

Note It was mentioned in Chapter 6 that technically an Objective-C object sends
and receives messages. However, for simplicity sake, we’re going to stick to the
more common term method instead.

Here is a sample of the first line from a class’s interface:
@interface SimplelLabelData : NSObject

Here, the class name is SimpleLabelData. The colon (:) after the class name
indicates that the class is derived from another class; that is, the SimpleLabelData object
inherits functionality from the NSObject class. Put another way, in the example shown
in Figure 7-1, the SimplelLabelData class is derived from the NSObject class, which is the
base class for all classes.

Tip If your object is not inheriting from any other Foundation or UIKit class
(like UILabel), always inherit from NSObject. NSObject provides the base
functions that make new objects behave correctly. NSObject is the base class for
all Foundation classes. So, inheriting from any Foundation or UIKit class is
also fine.

Once the class name is defined, the rest of the interface file contains the main
components of the class (see Figure 7-1).

158

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

//

// SimplelLabelData.h

// MyFirstApp

//

// Created by Thorn on 12/7/17.
6 [/ Copyright ©® 2017 MyCompany. All rights reserved.
7/

#import <Foundation/Foundation.h>
@interface SimplelLabelData : NSObject

@property (nonatomic) NSString *title;
@property (nonatomic) NSString *value;

+ (instancetype)simplelLabelDataWithTitle: (NSString *)title
andValue: (NSString *)value;

19 - (NSString *)combinedString;]

@end

Figure 7-1. An interface file: SimpleLabelData.h

Declaring Interfaces and Properties

An Obijective-C class is defined by its interface. Since objects, for the most part, are
communicated with using methods, the interface of an object defines what methods

the object will respond to. Line 9 imports the Foundation class definitions (more on that
in a bit). Line 11 is the start of the definition of the class’s interface by defining its name
(SimplelLabelData) (sometimes called the type) and the superclass (NSObject). Next are
two @property lines. These are properties of the class that both define the class’ instance
variables and make them publicly accessible from other objects.

Whenever the SimpleLabelData class is instantiated, the resulting SimpleLabelData
object has access to these properties. If there are ten SimpleLabelData objects, each
object has its own properties independent of the other objects. This is also referred to
as scope, in that the object’s properties are specific to that object only. Other objects
manage their own properties and so on.

159

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Calling Methods

Every object has methods. In Objective-C, the common concept to interact with an
object is to call methods, like so:

[aSimpleLabelData combinedString];

The preceding line will call a method of an instance of the SimpleLabelData class
from a variable named aSimplelLabelData. The method (combinedString) is the name of
the method to call.

If a class does not have that method defined, the parent object checks for it, and
its parent object checks for it, and so on, until the method is either found or not. This
behavior is called dynamic binding, which means the method is found at runtime
instead of compile time. Dynamic binding allows an Objective-C program to react to
changes while the program is running; this is one of the huge advantages Objective-C
has over other languages.

Methods can also have parameters passed along with them. Parameters are used to
control behavior or are simply passed to the object to store for later use. So, the following
method accepts some parameters:

someLabelData = [SimplelLabelData simplelLabelDataWithTitle:@"Name"
andValue:@"What's in a name?"];

It's important to understand the method and how it’s structured, especially once you
actually implement the code. In your code, you'll need to make sure you implement the
simpleLabelDataWithTitle:andValue: method; otherwise, the program won’t work.
(Please note that this is the name that this example uses. A method name can be pretty
much any combination of words.)

In the preceding example, the method consists of two parameters: the title and a
title value. What's interesting about Objective-C relative to other languages is that the
methods are essentially named parameters. It’s easy to understand simpleLabelDataWith
Title:andValue: in thatit’s obvious what the method is looking for as input. Here are a
few other examples:

[NSDictionary dictionaryWithContentsOfFile:filename];
[myString characterAtIndex:1];
[myViewController addChildViewController:otherViewController];

160

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Using Class Methods

A class doesn’t always have to be instantiated to be used. In some cases, classes have
methods that can actually perform some simple operations and return values. These
methods are called class methods. In Figure 7-1, the method names that start with a
plus sign (+) are class methods (all class methods must start with a + sign).

Class methods have limitations. One of their biggest limitations is that none of the
properties can be used. Being unable to use properties makes sense since we haven't
instantiated anything. A class method can have its own local variables within the method
itself but can’t use any of the variables defined as properties.

A call to a class method would look like this:

[SimpleLabelData new];

Notice that the call is similar to how a method is passed to an instantiated object.
The big difference is that instead of a class instance, the class name itself is used. Class
methods are used quite extensively in the macOS and iOS frameworks. They are used
mostly for returning some fixed or well-known types or values or for returning a new
instance of an object. These types of class methods are sometimes referred to as factory
methods since, like factories, they create something new (in this case, a new instance of
a class). Here are some factory method examples:

1. [NSDate timeIntervalSinceReferenceDate]; // Returns a number

2. [NSString stringWithFormat:@"%d", 1000]; // Returns a new NSString
object

3. [NSDictionary new]; // Returns a new NSDictionary
object.

All of the preceding methods are class methods being called.

Line 1 simply returns a value that represents the number of seconds since January 1,
2001, which is the reference date.

Line 2 returns a new NSString object that has been formatted and has a value of
1000.

Line 3 is a form that is commonly used because it actually allocates a new object.
Typically, the line is not used by itself but in a line, like this:

NSDictionary *myDict = [NSDictionary new];

161

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

So when would you use a class method? As a general rule, a class method is used in
two ways:

o To create a new instance of the class

e When the method being called does not require an instance of
the class

In our sample class, the second way doesn’t apply but an example would be as
follows:

NSDate *now = [NDate date];

This class method returns the current date/time and doesn’t require an instance of
NSDate.
There are also a few things that are important to note:

o Every class needs a class method to create itself.

o In most cases you don’t have to create one since it’s handled by
NSObject for you.

It would be entirely possible to write the SimplelLabelData class without a class

method, but we’re adding one for instructive purposes.

Using Instance Methods

Instance methods (line 19 in Figure 7-1) are methods that are available only once a class
has been instantiated. Here’s an example:

1. SimplelLabelData *mylLabel;

2. mylLabel = [SimplelLabelData simplelLabelDataWithTitle:@"My Title"
andValue:@"A Value"];

3. NSString *combined = [mylLabel combinedString];

4. NSString *title = mylabel.title;

Line 1 declares the variable to hold the instance of the class.
Line 2 calls the class method to create the object, set its properties, and return it as
an instance to be stored in the myLabel variable.

162

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Line 3 calls an instance method to combine the title/value into a combined string.

Line 4 gets the title property from the instance and stores it into a new variable
called title.

Another thing of note is that the code in the Class method cannot access the
properties, which are the instance variables, until after the class is instantiated. You will
see this when we go over the implementation file.

All instance methods must start with a hyphen (-); this easily distinguishes them
from class methods, which use a plus (+) sign.

Working with the Implementation File

Now that you've seen what an interface file looks like, let’s take a look at
the implementation file. First, the interface file has an . h extension, as in
SimplelLabelData.h. The implementation file has an .m extension, as in
SimplelLabelData.m, as shown in Figure 7-2.

Another important thing to note is that the interface and implementation files
have the same name (excluding the extension). This convention is used universally.
While there is nothing preventing an interface and an implementation file from
having different file names, having different names can cause much confusion.
Moreover, tools like Xcode won’t work as well. For example, the Xcode key sequence
Control+Command+up-arrow key moves between implementation and interface files,
and it will not work if the two file names are not the same.

When Xcode creates a class, it creates a rudimentary stub of an implementation
file. Figure 7-2 starts with the #import statement to your interface file. The #import
statement reads in your interface file for the class. As the compiler goes through your
implementation (.m) file, it needs to know what class it’s implementing, and the interface
file provides all the information that it needs.

Note Class method parameter names initialTitle and initialValue do
not need to match the ones in the interface, title and value. Many times, the
internal variable names used are different than the external ones.

163

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

1 1/

2 // SimplelLabelData.m

3 // MyFirstApp

s 1/

5 // Created by Thorn on 12/7/17.

6 // Copyright @ 2017 MyCompany. All rights reserved.
71/

9 #import "SimplelabelData.h"
@implementation SimplelLabelData
13+ (instancetype)simpleLabelDataWithTitle: (NSString *)initialTitle

14 andValue: (NSString x)initialvValue
15 ¢

16 SimpleLabelData *newLabel = [self new];
17 newLabel.title = initialTitle;

18 newLabel.value = initialValue;

19

20 return newlLabel;

21}

24— (NSString *)combinedString

25 {

26 NSMutableString *newString = [NSMutableString new];
27 [newString appendString:self.titlel;

28 [newString appendString:@": "I1;

29 [newString appendString:self.valuel;

30

A return [NSString stringWithString:newStringl;

32 |}

34 @end

Figure 7-2. Your implementation file

An #import statement tells the compiler to read in the specified file because the
compiler needs to know about certain predefined things. For example, in your interface
file, the SimpleLabelData class is a subclass of NSObject. The NSObject class needs to be
defined for the program to compile successfully. All of these objects are part of the iOS
Foundation framework and are included via line 9 in the interface file from Figure 7-1.

#import <Foundation/Foundation.h>

164

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Note Look at the #import statements: one uses angle brackets (< >)and

the other uses plain double quotation marks (" "). The difference is that a file

in the angle brackets indicates a system-level file, which is located using a
predefined path that Xcode automatically sets up for your project. Any file that
has double quotation marks is searched for in the current project. In this example,
the SimpleLabelData.h interface file is part of the project, so it gets double
quotation marks, whereas the Foundation.h file is a system file and uses the
angle brackets.

Coding Your Methods

Figure 7-2 is a simple example, but it demonstrates what many methods look like in
a class. First, if you look at the implementation and interface files for one of the class
methods, you can see the similarities. The following line is from the interface file:

+ (instancetype)simpleLabelDataWithTitle: (NSString *)initialTitle
andValue: (NSString *)initialValue;

Asyou can seg, it’s a class method because it starts with a +. The next item,
(NSString*), is a parameter called initialTitle, and the second item is initialValue,
another NSString*. These will be used by the instance to set its own title and value.

Listing 7-1 is from the implementation file.

Listing 7-1. The Implementation of a Class Method

1. + (instancetype)simpleLabelDataWithTitle:(NSString *)initialTitle
andValue: (NSString *)initialValue

2. |

3. SimplelLabelData *newLabel = [SimplelLabelData new];
4. newlLabel.title = initialTitle;

5. newLabel.value = initialValue;

6. return newlabel;

7. }

165

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Listing 7-1 represents an implementation of the method defined in the interface. The
word implementation indicates that the method is coded here. It looks almost identical
to the interface file but now contains a block with some code, rather than simply ending
with a semicolon.

Generally, a class has a definition of a method in an interface file and the actual code
of the method in an implementation file.

So what does this class method do?

Line 1 is the class method declaration and is the implementation of the class method
defined in the interface file.

Line 2 and line 7 begin and end the method.

Line 3 looks a little odd. It creates a new instance of the object by calling
[SimpleLabelData new]. The new class method is defined in NSObject and creates a new
instance of a class.

Remember, class methods cannot use the instance variables defined in the class but
in the case of lines 4 and 5, you're using the newLabel variable, which is now the instance
of the new class.

Line 6 returns the instance of the class to the caller.

Now, you will look at the implementation of an instance method (see Listing 7-2).
There are some significant differences between an instance and a class method; for one,
instance methods have the option to use the instance variables defined in the interface
file, in this case two properties that represent the title and value. Also, instance methods
are available only once the class has been instantiated.

Listing 7-2. The Implementation of an Instance Method

- (NSString *)combinedString

{
NSMutableString *newString = [NSMutableString new];

1

2

3

4. [newString appendString:self.title];
5 [newString appendString:@": "];

6 [newString appendString:self.value];

7. return [NSString stringWithString:newString];

166

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Listing 7-2 illustrates the implementation of one of the instance methods of your
SimplelLabelData class. In this case, the instance method combines the title and value
properties with a : between them.

Line 1 is the start of the implementation of the method defined in the interface file.

Line 3 declares a new variable called newString. In this case, it’s a variable that is an
NSMutableString. This is a string that you can modify, as you will see next.

Line 4 appends the instance’s property title to the newString, which is blank
up to now. appendString: simply adds the string in the argument to the newString
variable.

Lines 5 and 6 do the same as line 4 but use different string values.

Line 7 returns a copy of the new string. A copy is returned since you don’t want to
return the modifiable temporary string to the caller since the caller could modify it and
that would be bad.

What's important to mention is the use of the name self in lines 4 and 6. When
working in an instance method, the “instance” of the class is referred to as self.

Using Your New Class

You've created a simple SimplelLabelData class, but by itself, it doesn’t accomplish a
whole lot. In this section, you will create the Radio class and have it maintain a list of

SimplelLabelData classes.

167

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Updating MyFirstApp
Let’s start up Xcode and load the project from Chapter 6, MyFirstApp. See Figure 7-3

1. You may have to click Open another project if the file isn’t listed
(Figure 7-3). Once you've loaded the file, you should see the
project screen (Figure 7-4).

=

Welcome to Xcode

Get started with a playground
Explore new ideas quickly and easily.
Create a new Xcode project
Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.
N
Clone an existing project

Start working on something from an SCM repository.

Show this window when Xcode launches Open another project...

Figure 7-3. Open Xcode so you can load an existing project

2. Ifyou don’t see the project screen shown in Figure 7-4, just click
MyFirstApp with the blue icon at the top of the Project Navigator

window.

168

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

ece » | M My.tApp) I IPhone 8 Plus MyFirstApp | Build Succeeded | Yesterday at 10:26 PM = Qo0 E 0
BER Q&S T o B B <> B wMFistkep) 0 MyFisthop) m mainm) No Selection oo
v & MyFirstApp "REERT | Quick Help
¥ [0 MyFirstApp 4 ;: :a:':"m -
h AppDelegate.h A 1 hFiTstipe Mo Quick Help
m AppDalegate.m L] § /f Created by Brod Lees on 12/6/17. “Seatch Docomentation
k' ViewContrallar.h A & // Copyright © 2017 MyCompany. All rights reserved.
m ViewCornitrollarm A "
by | T = 5 Mimport <UTKit/UIKit.hs
(50 Assers xcassets M #import “AppDelegate.h”
LaunchScrean.storybeard A
Info.plist A 2 int mainfint arge, char = argv(]} {
i i #autoreleasepool {
] TR B return UIApplicationMaintarge, argv, nil,
¥ [MyFirstAppTasts NSStringFromClass([AppDelegate class]));
m MyFirstAppTests.m A 15 }
Info.plist Al 13
¥ [0 MyFirstAppUITosts
m MyFirstAppliTesis.m A
Info.plist A
>) Products
00O
= » Mo Matches
+® OE| Aoz @ 00| @8 e

Figure 7-4. The workspace window in Xcode

Adding Objects

Now you can add your new objects.

1. First, create your SimplelLabelData object. Click the MyFirstApp
group folder and click the + button at the bottom. Next, choose
File (as shown in Figure 7-5).

169

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

¥ & MyFirstApp M
v MyFirstApp
h AppDelegate.h
m AppDelegate.m
1 ViewController.h

> > > P

m ViewController.m
Main.storyboard
y SimpleLabelData.h

m SimpleLabelData.m

. T

1 Assets.xcassets
LaunchScreen.storyboard
Info.plist

> >» » = > >

i m main.m

v MyFirstAppTests

>

m MyFirstAppTests.m
Info.plist A

v MyFirstAppUITests
m MyFirstAppUITests.m A
Info.plist A

» . Products

Figure 7-5. Adding a new file

Note There are a few other ways to add a new file instead of just clicking the +
sign. Alternatively, you can right-click in the MyFirstApp folder and the new file
(or files) will be inserted right below the right-click.

The method shown here is an easy and consistent way to add items to the
Xcode project. There are + signs in other areas where right-clicks don’t work as
expected.

170

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

2. The next screen, shown in Figure 7-6, asks for the new file type.
Simply choose Cocoa Touch Class from the list of templates and
then click Next.

Choose a template for your new file:

(68 watchOS tvOS macOS @
Source
3 m
Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File
Class Class Class
h € Cre N
Header File C File C++ File Metal File

User Interface

Storyboard View Empty Launch Screen

Cance e
Figure 7-6. Selecting the new file type
3. On the next screen, enter SimpleLabelData as the class and select
NSObject (you can just start typing NSO and Xcode will find it)

for “Subclass of” This means your new class will be a subclass of
NSObject, as shown in Figure 7-7.

171

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Choose options for your new file:

Class: SimpleLabelData

Subclass of: | NSObject] ﬁ
Language: Objective-C Q
Cancel Previous

Figure 7-7. Choosing your new object’s subclass

4. Click Next and the next screen will ask you where to put the files.
Simply click the Create button since the location in which Xcode
chooses to save the files is within the current project.

5. Your project window should now look like Figure 7-8. Click
the SimplelLabelData. h file. Notice that the stub of your new
SimplelabelData class is already present. Now, fill in the
empty class so it looks like Figure 7-1, which is the filled-out
SimplelabelData interface file.

172

B

BEREQAO=

v & MyFirstApp

v

-

MyFirstApp

h AppDelegate.h

m AppDelegate.m

h

L1}

ViewController.h

ViewController.m

Main.storyboard
SimpleLabelData.h
SimpleLabelData.m

I

=9 Assets.xcassets
LaunchScreen.storyboard
Info.plist

m main.m

MyFirstAppTests

m MyFirstAppTests.m
Info.plist

MyFirstAppUITests

m MyFirstAppUITests.m
Info.plist

Products

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

c B |8 < 5 MyFirstApp MyFirstApp ; h SimpleLabelData.h ' No Selection
M I
// SimpleLabelData.h
A /! MyFirstApp
I
A 5 // Created by Thorn| on 12/7/17.
A // Copyright © 2617 MyCompany. All rights reserved.
M L
- #import <Foundation/Foundation.h>
A
A Pinterface SimpleLabelData : NSObject
A
Rend
A
A
A
A
A
A
A

Figure 7-8. Your newly created file in the workspace window

Writing the Implementation File

The SimplelLabelData.h file now defines the properties, class methods, and

instance methods of your new class. Let’s move on to the implementation file,
SimplelLabelData.m, which looks quite empty, as in Figure 7-9. Fill out the

implementation file just like Figure 7-2.

173

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

B 2 QA © = B8 <
v g MyFirstApp M 1 b
¥ [] MyFirstApp ; i j
|, AppDelegate.h A /1
m AppDelegate.m A 5 //
h ViewController.h A 6 ff
m ViewController.m M "
Main.storyboard -—
I SimpleLabelData.h A
A

& MyFirstApp MyFirstApp ;| m SimpleLabelData.m) No Selection

SimplelLabelData.m
MyFirstApp

Created by Thorn on 12/7/17.
Copyright @ 2017 MyCompany. All rights reserved.

» #import "SimplelLabelData.h"

Q SimpleLabelData.m 11 @implementation SimpleLabelData

1 Assets.xcassets A
LaunchScreen.storyboard A
Info.plist A

m main.m A

v MyFirstAppTests

m MyFirstAppTests.m A

Info.plist A
v MyFirstAppUITests

m MyFirstAppUITests.m A

Info.plist A

» & Products

@end

Figure 7-9. The SimpleLabelData implementation file template

Note Xcode is intelligent enough to highlight issues in the interface or
implementation file as you type (or soon after you stop typing). Issues can be
warnings or errors and are represented by a yellow or red highlight, respectively.
After filling out the interface and implementation files, there should not be any
errors or warnings. If they are, carefully look at Figures 7-1 and 7-2.

Next, you need to update the storyboard so you can move SimplelLabelData to

some new labels. You're going to be adding two new labels and then hook them up to

instances of your new class.

Updating the User Interface

To start off, click the Main.storyboard file; the screen should now look like Figure 7-10.

This file is the main iPhone screen.

174

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

BES QA CE o B8 <> B MEsnm) D MWE-tAm) 5 Mo) 2 Main Base]) No Do ¢ de
v B MyFirstapp M| p [View Controllor Scons |
¥ [MyFirstApp
I AppDelegatehy
m AppDelegate.m
h ViewContrellerh
m ViewController.m
Main.storyboard
b SimplelabelData.h
m SimpleLabelData.m
0 Assets.xcassels
LaunchScrean.storyboard
Info.plist

Worn Contralier

Label

e Not Applicable

»>»=2®»>» | E»» >

L

m mainm
¥ [] MyFirstApgTests
m MyFirstAppTests.m
Into.plist A
¥ | MyFirstAppUITests
m MyFirstAppUITasts.m A
Info.plist A
® & Products

£

D O0®o

bel Label - A variably sized amount of
static toxt.

| [0 View as: iPhone 8 («C +R)

+ @ ©E || mwes ® 0 | 58 (@b -]
Figure 7-10. The main storyboard

1. Draganew Label from the list of objects (called the Object
Library), as shown in Figure 7-10.

2. Next, you need to resize the label to be the width of the view,
as shown in Figure 7-11. You want to resize all labels to be long
enough to hold some of the text you add. Any text added to the
label will by default truncate with an ellipsis (...) at the end of the
text. Something also to note is that as you drag and get close to the
edge of the view, a blue line will be displayed. This is the default
margin. The label can go further (to the very edge of the display if
you want), but leaving the margin is more aesthetically pleasing
than text that ends right at the edge of the phone’s display.

175

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

® B
Name
Label
I
W: 275.0 }i
H: 21.0
Label m]

Figure 7-11. Resizing the second label

3. Lastly, add the third label to the view, as shown in Figure 7-12, and
resize it just like the previous labels. All three labels should now be
the same width (less the side margins). The spacing between the

176

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

labels isn’t critical, and what is done in the figures is just one way of
spacing out the labels. They could even be stacked on top of each
other, which would make for one messy view! (Don’t do that.)

22 ¢ > [MmyFirstapp) [MyFirstApp)+ M..d) B M.) 0 Vee DO Vier)| View) L Ohe@a ¢ I O

¥ || view Controller Scene Qutlet Collections

@ 3 gestureRecognizers

v View Controller
Referencing Outlets

¥ Viaw Mew Referencing Outlet
0 fe A
Safefiren Referencing Outlet Collections
B |Name New Referencing Outlet Collection
L Name Label
L |Label =
&1 First Responder
[=3 Exit Label
> Storyboard Entry Point !
Label
tabe
D Oe O
B Label - A variably sized amount of
@ Label 5k
&] View as:iPhone 8 («C nR)
EFE =
Auto & ® [0 | 88 @ 1evel o

Figure 7-12. Adding a third and final label

Hooking Up the Code

Now that all the user interface objects are in place, you can begin to hook up these

interface elements to the variables in your program. As you saw in Chapter 6, you do this

by connecting the user interface objects with the objects in your program.

177

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

1.

Let’s start by adding two more variables that represent the

two new labels added. The original MyFirstApp already had a
namelLabel variable that represented the first label. You're going
to change its name to firstlLabel. But before you do that, you
need to disconnect the Name Label item on the storyboard with
the nameLabel variable in the code. To do this, select the Name
Label item on the storyboard and then choose the Connections
Inspector tab on the right, as shown in Figure 7-13.

View Controller Scene) (..) .. B @) < B

i Outlet Collections
® B gestureRecognizers

O

Referencing Outlets
(nameLabel % \ew Controller
New Referencing Outlet

Referencing Outlet Collections
New Referencing Outlet Collection

Name
Gabel = o
Label
Label

0D 1 @ &

Figure 7-13. Viewing the connection of the nameLabel variable

178

o 0O@

1/
2/
3/
i
5 //
6 1/
71/

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Clicking the X in Figure 7-13 will delete the connection between
the storyboard and the variable. Even though you are just
renaming the variable, the storyboard knows it as nameLabel and
not the new name you are going to use.

Next, go into the ViewController.h file and change the variable
namelabel to firstLabel, as shown in Figure 7-14. Also, add two
additional labels, as shown in the figure.

ViewController.h
MyFirstApp

Created by Thorn on 12/6/17.
Copyright ® 2017 MyCompany. All rights reserved.

9 #import <UIKit/UIKit.h>

@Pinterface ViewController : UIViewController

12

(O (@property (nonatomic, strong) IBOutlet UILabel xfirstLabel;
() (@property (nonatomic, strong) IBOutlet UILabel *secondlLabel;
(O (@property (nonatomic, strong) IBOutlet UILabel xthirdLabel;
16

® - (IBAction)showName:(id)sender;

20 (Q@end

Figure 7-14. Adding the additional labels

4.

Now it’s time to connect the variables that you've just defined in
the ViewController.h file to the three labels in the storyboard.
Start by going back to the Main.storyboard to select the first label,
as shown in Figure 7-15. Also make sure that the Connections
Inspector is selected.

179

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

1) B M)) B Ve) © Vi.r)] view) [L] Label D ® T B
: Outlet Collections
[® B] gestureRecognizers

Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

Name
(abel S o
Label
Label

Figure 7-15. Preparing the connection

5. Once the first label is selected, drag a line from the New
Referencing Outlet in the Referencing Outlets section and then
drop it on the View Controller object (represented by the small
yellow square at the top of the view), as shown in Figure 7-16.
Once you drop it, a small menu will display asking what variable
to connect the label to. For this example, you're going to select
firstLabel, as shown in Figure 7-17.

180

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

) B M..e)) [Vvi..e) () View Controller)| View O ® B O

Outlet Collections
- gestureRecognizers

[==] Referencing Outlets

New Referencing Outlet : —

O

Referencing Outlet Collections
New Referencing Outlet Collection

@)

D O @ &

Label - A variably sized amount of
Label seiic o

[0 View as:iPhone 8 (wC nR)

Figure 7-16. Creating a connection

181

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

" firstLabel
' secondLabel
thirdLabel
view
Name
=
Clabel .
Label
Label

Outlet Collections
gestureRecognizers
Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

Figure 7-17. Showing which possible variables you can connect to

6. Repeat steps 4 and 5 for the second and third labels. Of course, the

second label will connect to the variable secondLabel and so on.

7. Next, you're going to add some new code that will create three
SimplelLabelData objects and then place that data into the
labels. Start by selecting ViewController.m, deleting some old

code, and adding some new. Start by deleting line 28 in the
ViewController.mfile. When you open the file, you'll notice an
error on line 28. This error is basically letting you know that the

nameLabel is not a valid variable name because you changed
namelabel to firstLabel. At this point, it doesn’t matter; delete
line 28 since you're going to rewrite this method. See Figure 7-18.

182

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

B3 = Q N & 2= o B B { > & MyFirstApp) | MyFirstApp) m ViewContraller.m) Mo Selection {0 >
v & MyFirstApp M 1/
v MyFirstApp 2 f/ ViewContreoller.m
3/ MyFirstA
h AppDelegate.h A L v PP
m AppDelegate.m A 5 // Created by Thorn on 12/6/17.
L ViewController.h A 6 [/ Copyright ® 2817 MyCompany. All rights reserved.

>
-
-

B ViewController.m

Main.storyboard ,

#import "ViewController.h"

h SimpleLabelData.h A 0
m SimpleLabelData.m A 11 @interface ViewController ()
[Assets.xcassets A 12 fond
P
LaunchScreen.steryboard A - e
Info.plist A 15 @implementation ViewController
m main.m A 16
¥ B MyFirstAppTests 17 = (void)viewDidLoad {
T o, 18 [super viewDidLoad];
i PP . 19 // Do any additional setup after loading the view, typically frem a nib.
Info.plist A 2 }
v MyFirstAppUITests 2
m MyFirstAppUITests.m A “ L .
- A 23 = (veoid)didReceiveMemoryWarning {
o, pist 24 [super didReceiveMemoryWarningl;
> . Products 25 // Dispose of any resources that can be recreated.

%}

LIiBictionleh slidlcandar [
(28 [self.pameLabel setText:@"My Name is Awesome"]:)o Property 'namelLabel’ not fo...

32 @end

Figure 7-18. Cleaning up the old code

8. You can add the new code now; refer to Figure 7-19. The first thing
you need to do is add an import of the SimpleLabelData class so that
the ViewController class knows about it. This is done on line 10.

9. Now that the ViewController knows about the SimpleLabelData
class, you can use it in the showName: method. Lines 29 and 30
define a SimplelLabelData variable called simply one. Also, the
class method you defined in Figure 7-2 (line 13) is called to create
anew instance of the SimpleLabelData class. The object (or
instance) is then stored in the one variable.

183

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

10. Line 31 calls the combinedString instance method, which

combines the title and value and returns it as a new NSString.
That new string is stored directly into the self.firstLabel.text

property. This property sets the text of the label so you can then

see it in the view.

// ViewController.m
/! MyFirstApp

5 [/ Created by Thorn on 12/6/17.
5 [f/ Copyright ® 2817 MyCompany. All rights reserved.
#import "ViewController.h"
#import "SimplelLabelData.h"
Pinterface ViewController ()
Cend
@implementation ViewController
= (void)viewDidLoad {

[super viewDidLoadl;
// Do any additional setup after loading the view, typically from a nib.

= (veoid)didReceiveMemoryWarning {
: [super didReceiveMemoryWarningl;
26 // Dispose of any resources that can be recreated.

® - (IBAction)showName:(id)sender {
SimplelLabelData *one = [SimplelLabelData simpleLabelDataWithTitle:@"First Name"

3 andValue:@"John"];
3 self.firstLabel.text = [one combinedString]ﬂ

Pend

Figure 7-19. Using the SimpleLabelData class

11. Repeatsteps 9 and 10 for the remaining two labels. You can put

your own values in or use what is in the example. Figure 7-20

shows the completed ViewController.mimplementation that sets

all three labels.

184

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

® - (IBAction)showName: (id)sender {

SimplelLabelData *one = [SimplelLabelData simpleLabelDataWithTitle:@"First Name"
andValue:@"John"1;
self,firstLabel.text = [one combinedStringl;

SimplelLabelData *two = [SimpleLabelData simplelLabelDataWithTitle:@"Last Name"
andValue:@"Snow"];
self.secondLabel.text = [two combinedStringl;

SimplelLabelData *three = [SimplelLabelData simplelLabelDataWithTitle:@"Age"
andValue:@"Unknown"1;
self.thirdLabell.text = [three combinedStringl;

Figure 7-20. The completed method

12.

Now you can run your app and see what happens! Click the Build
and Runicon (P) at the top left of the Xcode window, and you
should see something like Figure 7-21. Click the Name button and
you should see the View change to Figure 7-22.

Carrier & 8:24 AM (- #
Name
Label
Label
Label

Figure 7-21. Running the newly updated app

185

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Name

First Name: John

Last Name: Snow

Age: Unknown

Figure 7-22. Click the button!

Now you have a running app that uses a new class (SimpleLabelData) and stores
that data into a label on the screen. While it doesn’t seem like much, this is how a lot of
applications start: very simple and then improved upon. Don’t be afraid to make changes!

Accessing the Xcode Documentation

We cannot emphasize enough the wealth of information provided in the Xcode
Developer Documentation dialog. When a new project is created or an existing project
opened, Xcode shows a Help menu, as shown in Figure 7-23.

_ window [IEET ¥ »

Runnir; Search | ‘
» [Developer Documentation 880
= MyFir
J API Changes L
CUPYyLIYITC
Xcode Help
port "ViewC What’s New in Xcode
port "Simpl Release Notes

Report an Issue
terface Vie

Show Quick Help for Selected Item ~38?
d Search Documentation for Selected Text ~\ 88/

plementation ViewController
Figure 7-23. The Xcode Help menu

186

CHAPTER 7

OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Once you open the Help documentation, you can use the search window to

look up any of the classes you've used in this chapter, including the NSString class

documentation, as shown in Figure 7-24.

o0 ® <

AppKit
1 Foundation
i Chjective-C
1% Swilt Standard Library
i UIKit

Y Y Y VYTVYY

i AddressBook
% AddressBookUl
22 AdSupport

I: ApplicationServices
a2 Callkit

i1 ClockKit

=2 CloudKit

i Contacts

1% ContactsUl

% Core Data

% Core Foundation
=% Core Location
13 Core ML

% Core Motion

I Core Spotlight
+: Core Text

2% DeviceCheck
% EventKit

1% EventKitUi

2 FileProvider

=% FileProviderUl
1% HealthKit

i HealthKitl

i HomeKit

=: lad

2% IdentityLookup

¥ Y ¥ Y ¥YYYYYT YT XYY XYY XYY XYY XYY YN YT TN

i

EI@ oviective-c Other
neworks

1, NSString 1]

I Foundation) = Strings and Text) C NSString

Class
NSString

A static plain-text Unicode string object.

Overview

The NSString class and its mutable subclass, NSMutableString, provide an
extensive set of APIs for working with strings, including methods for comparing,
searching, and modifying strings. NSString objects are used throughout
Foundation and other Cocoa frameworks, serving as the basis for all textual and
linguistic functionality on the platform.

NSString is "toll-free bridged” with its Core Foundation counterpart,
CFStringRef. See “Toll-Free Bridging"” for more information.

String Objects

An NSString object encodes a Unicode-compliant text string, represented as a
sequence of UTF-16 code units. All lengths, character indexes, and ranges are
expressed in terms of 16-bit platform-endian values, with index values starting
at @.

An NSString object can be initialized from or written to a C buffer, an NSData
object, or the contents of an NSURL. It can also be encoded and decoded to and
from ASCII, UTF-8, UTF-16, UTF-32, or any other string encoding represented
by NSStringEncoding.

Note

An immutable string is a text string that is defined when it is created and

Figure 7-24. The developer documentation window

3

=

Language
Swift Objective-C

SDKs

i0S 2.0+
macOS 10.0+
wOS 9.0+
watchQS 2.0+

Framework
Foundation

On This Page
Overview
Topics
Relationships

There are several different things to discover about the NSString class shown in

Figure 7-24. Go through the documentation and the various companion guides that

Apple provides. This will give you a more thorough understanding of the various classes

and the various methods supported by them.

187

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Summary

Here you are at the end of another chapter. Once again, congratulate yourself for being
able to single-handedly stuff your brain with a lot of information! Here is a summary of
what was covered in this chapter:

e Objective-C classes review
o Interface files

e Properties

e Class methods

o Instance methods
o Implementation files

¢ Defining the method’s interface in the interface file and putting
code to that interface in the implementation file

o Limitations of using class methods vs. instance methods
o [Initializing the class and making use of its properties
e Making use of your new SimplelLabelData object
e Building an iPhone app that uses your new object
o Connecting interface classes to properties

o Connecting user interface events to methods in your class

Exercises

Perform the following tasks:

o Change the code that creates your SimplelLabelData class and make
the title and/or value much longer than what can appear on the
screen. What happens?

e Modify the SimpleLabelData class to have a new method, similar to
combinedString, that will do something different with the two strings
instead of combining the two strings with a :.

188

CHAPTER 7 OBJECTIVE-C CLASSES, OBJECTS, AND METHODS

Change the combinedString method to take an NSString* parameter
that will be the separator between the two strings (instead of a hard-
coded colon).

Change the text color or font of a label using the Attributes Inspector.

Clean up the interface a little by making sure that the user doesn’t
see the text “Label” when the iPhone application first starts. You
can either change this in the storyboard (note that you shouldn’t
completely clear the label or it may be difficult to find it on the
screen) or write some new code that will set the .text property of the
label to @"".

189

CHAPTER 8

Programming Basics
in Objective-C

Objective-C is an elegant language. It mixes the efficiency of the C language with

the object-oriented goodness of Smalltalk. This combination was introduced in the
mid-1980s and is still powering the fantastic applications behind the iPhone, iPad,

and Mac. How does a language that is more than 20 years old stay relevant and useful
after all that time? Well, some of its success is because the two languages that make

up Objective-C are well-tested and well-designed. Another reason is less obvious:

the various frameworks available for iOS and macOS make developing full-featured
applications much easier. These frameworks benefit from the fact that they have

been around a long time, which equates to stability and high functionality. Lastly,
Objective-C is highly dynamic. While we won'’t be focusing on that particular feature in
this chapter, the dynamic nature of Objective-C provides a flexibility not found in many
compiled languages. With all of these great features, Objective-C and the corresponding
frameworks provide an excellent palette from which to create a masterpiece!

This chapter will introduce some of the more common concepts of Objective-C, such
as properties and collection classes. This chapter will also show how properties are used
from within Xcode when dealing with user interface elements. This sounds like a lot to
accomplish, but Objective-C, the Foundation framework, and the Xcode tool provide a
wealth of objects and methods and a way to build applications with ease.

Collections

Understanding collections is a fundamental part of learning Objective-C. In fact,
collection objects are fundamental constructs of nearly every modern object-oriented
language library; sometimes they are referred to as containers. Simply put, a collection

191
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_8

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

is a type of class that can hold and manage other objects. The whole purpose of a
collection is that it provides a common way to store and retrieve a collection of objects
efficiently.

There are several different types of collections. While they all fulfill the same purpose
of being able to hold other objects, they differ mostly in the way objects are retrieved.
Here are the most common collections used in Objective-C:

o NSSet

e NSArray

o NSDictionary

o NSMutableSet

o NSMutableArray

e NSMutableDictionary

Notice that, among the collection classes listed, there are several that contain the
word mutable. A mutable (versus nonmutable) class allows the collection object to
change the order and add or remove items. Collection class names without the word
mutable are nonmutable, meaning that the contents of the collection cannot change.
This means that items cannot be added or removed at all. Because of this restriction,
a nonmutable collection, like NSArray, for example, must be initialized with all of its
values at once or initialized to point to an existing array.

Another thing to stress is that the collections store only objects and not simple
values. So, it’s not possible to store the integer value of 10, but it’s possible to store a
number object that represents 10. The notation for this is @(10); this creates an NSNumber
object that represents the number 10.

Using NSSet

The NSSet class is used to store an unordered list of objects. Unordered means exactly
that: the objects are stored in the set without regard to order. The advantage of the
NSSet class is performance; it’s the fastest collection class available. Use NSSet when

it is necessary to store a collection of objects and the order in which they are stored or
retrieved is not crucial.

192

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C
Here is a typical NSSet initialization method:
NSSet *mySet = [NSSet setWithObjects:@"String 1", @"String 2", @"Whatever", nil];

As you can see, the set is initialized with a list of objects, in this case a list of strings.
The last object must be nil to indicate the end of the list of objects. Also, the example
uses strings, but an NSSet can be comprised of any object or even different types of
objects, including other collections!

Tip All collection classes have the ability to store and manage any type of object
at once. However, in typical cases, most programmers tend to store a single type of
object in any one particular collection class to make the code less complicated.

To retrieve data in an NSSet, a few typical methods of accessing the elements within
an NSSet are used. One method, shown in Listing 8-1, is to use what is referred to as a
fast enumerator and retrieve each object one by one. Note that the fast enumeration (in
lines 3-5) works on all collection classes.

Listing 8-1. Iterating Through an NSSet via an Enumerator

1 NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];
2

3 for (id value in mySet) {

4 NSLog(@"%@", value);

5}

Note On line 3, the class of the value is id. Recall that an id is a generic type
that represents any Objective-C class. The reason that id is used is that the value
that you store in the NSSet can be of any type. For example, if the NSSet were
to contain a class called Animal and another class called Zoo, the code would
fail because you don’t have a class that is both a Zoo and an Animal type. On
the other hand, if the NSSet always had the same class, you could substitute that
class for the id on line 3.

Another common method of accessing an NSSet, especially when programming for
an i0S device capturing touches, is to use the code in Listing 8-2.

193

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-2. Selecting Any of the Objects in the NSSet Collection

1 NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];
2
3 NSString *value = [mySet anyObject];

Line 3 calls the method anyObject. This does exactly as it says; it returns any object
from the set. The object returned is determined at the set’s convenience, so there can be
no guarantee that the first item will be returned. Of course, using the anyObject method
assumes that any object will do. As mentioned, when dealing with touches on an iOS
device, sometimes all that’s necessary is to know that at least one finger has touched the
screen. Each touch to the screen is stored as an entry in the NSSet, one for each finger.
Using anyObject will return any one of the touches.

There are many other ways to actually get objects from an NSSet, far too many to
cover in this chapter.! However, there is one particular method that involves the next
collection: the NSArray class.

Using NSArray

The NSArray class is like any other collection, in that it allows the programmer to manage
a group of objects. NSArray differs from NSSet in that NSArray is ordered, allowing an
object to be retrieved by its index into the array. An index is the numeric position that

an object would occupy in the NSArray. For example, if there are three elements in the
NSArray, the objects can be referenced by an index from 0 to 2. As with most things in the
C and Objective-C languages, an index starts at 0.

With NSArray (and NSDictionary covered next), there is a nice feature called a
collection literal. A collection literal allows a collection to be represented by simple
syntax. For NSArray, this syntax is simply @[..., ...]. Whileit’s still possible to
initialize the NSArray class the older, original way, it’s best to use the new collection
literal instead. See examples in Listing 8-3.

'https://developer.apple.com/documentation/foundation/nsset

194

https://developer.apple.com/documentation/foundation/nsset

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-3. Creating an NSArray Object

1 // Old out-of-fashion way of doing things.

NSArray *oldStyle = [NSArray arrayWithObjects: @"Zero", @"One",
@"Two", nil];

// New way is much better:

NSArray *newStyle = @[@"Zero", @"One", @"Two"];

N

// 0ld way of accessing an element of an NSArray
NSLog([oldStyle objectAtIndex:0]);
NSLog([oldStyle objectAtIndex:1]);
NSLog([oldStyle objectAtIndex:2]);

O 00 N O U1 B~ W

10

11 // New way of accessing an element of an NSArray
12 NSLog(newStyle[0]);

13 NSLog(newStyle[1]);

14 NSLog(newStyle[2]);

As you can see, objects within the NSArray can be retrieved via the index. The index
starts at 0 and can’t exceed the size of the array—1. You can find the size of the array by
accessing the count property of the NSArray object.

int entries = myArray.count;

Another thing that is important to know about an array is that it stores the objects
added to the array in the order they were added. This is what'’s called an ordered
collection. So, using the example in Listing 8-3, the NSArray object at the index of 1
(thatis, newStyle[1]) will always be the value of @"One". Collection classes that don’t
specifically mention that they are an ordered collection are unordered collections.
NSDictionary in the next section is an example.

Before you look at NSDictionary, it’s important to take a quick look at how you can
use the NSArray collection literal to initialize an NSSet (Listing 8-4).

195

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-4. Using an NSArray to Create an NSSet

// Not using an NSArray Collection Literal
NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];

1
2
3
4 // Using an NSArray Collection Literal

5 NSSet *anotherSet = [NSSet setWithArray:@[@"One", @"Two", @"Three"]];

NSDictionary

The NSDictionary class is also a useful type of collection class. It allows the storage of
objects, just like NSSet and NSArray, but NSDictionary is different in that it allows a key
to be associated with any value. For example, an NSDictionary could be created to store
alist of Animal objects. A list of animals could be stored in an NSArray, but it’s accessed
by index. Somehow you would, for example, have to know that the Monkey object is
stored in index 2.

With NSDictionary, you are able to store the monkey with some key that is more
descriptive. Because of this, an entry in NSDictionary consists of a key and a value. You
can “look up” the value by simply providing a key. While this seems like just a different
way of simply using an index into an arrayj, it’s actually something completely different
because the key used can be any object that makes sense, like a string. So, you could
store your Monkey object in a dictionary with the key of Monkey instead of an index into
an array. If the monkey were in the array, the program would have to go through each
element of the array searching for the monkey, and the problem becomes even more
complicated if there are tens of thousands of animals.

An NSDictionary Example

Just as with NSArray, there is a way to define (and access) an NSDictionary using a
collection literal. Remember that a dictionary entry consists of a key and a value and is
represented as shown in Listing 8-5.

Listing 8-5. Defining an NSDictionary

@{@"Key": @"Value",
@"Key2": @"Value2"};

196

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

It’s a little different from the NSArray literal. It uses curly braces, { }, instead of
square brackets. Also, the key is separated from the value by a colon, :. Again, this is
much simpler and cleaner than previous older ways. Because of this, we’re only going to
show how to use a dictionary with a literal.

NSDictionary Access, Order, and Uniqueness

An NSDictionary object is an unordered collection object, which means that the order in
which the elements are stored are not guaranteed to be in the order represented in code.
This is generally not a problem since the program will look something up by the key’s
name, like Monkey. It doesn’t matter what order Monkey appears in the dictionary, just
that it can be found or not.

How is an entry looked for in an NSDictionary? It's resembles how elements are
accessed in an NSArray. This similarity makes it easy to remember (Listing 8-6).

Listing 8-6. Accessing an Element of a Dictionary

// Create a simple dictionary:

NSDictionary *animalCountInZoo = @{@"Monkeys": @(10),
@"Birds": @(1199),
@"Fish": @(356)};

// Retrieving a value in the dictionary
NSLog(@"%@", animalCountInZoo[@"Birds"]);

OW 60N O LT & W N B

// Prints the value of 1199

Using the Mutable Container Classes

Up to this point, we've only discussed collection objects that are initialized once and
can never change. While there are definitely places where this is useful, what’s even
more useful is a collection class that can be modified. Each of the collection classes
has a mutable version; we've talked only about the nonmutable classes. The classes
are fundamentally the same except that elements can be added and removed from the
mutable versions.

197

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

NSMutableSet

NSMutableSet can be initialized the same as NSSet or can be initialized without any
values and then values added. Consider the code in Listing 8-7.

Listing 8-7. Adding Objects to an NSMutableSet

NSMutableSet *mySet = [NSMutableSet new];

1

2

3 [mySet addObject:@"One"];
4 [mySet addObject:@"Two"];
5 [mySet addObject:@"Three"];
6

7

8

9

for (id val in mySet) {
NSLog(@"%@", val);
}

The nice thing about any of the mutable classes is that elements can be added and
removed programmatically instead of having to declare the class with all the values at
once. All objects in a set can be removed with the following line:

[mySet removeAllObjects];

A specific object can also be removed from a mutable set, as shown in Listing 8-8.

Listing 8-8. Removing a Specific Object in an NSMutableSet

10 NSString *testString = @"Zero",
11

12 [mySet addObject: testString];
13 [mySet addObject: testString]; // Just a test
14

15 for (id val in mySet) {

16 NSLog(@"%@", val);

17 }

18

19 [mySet removeObject:testString];
20

198

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

21 for (id val in mySet) {
22 NSLog(@"%@", val);
23 '}

In Listing 8-8, line 19 will remove the string "Zero". This brings up another good
point: NSSet and NSMutableSet will store only unique objects. Two objects that are
the same (that is, identical) cannot be added more than once. For example, line 13
effectively does nothing since the testString is added on line 12.

NSMutableArray

As with NSMutableSet, NSMutableArray is similar to its parent, NSArray. In fact, an object
can be added to the NSMutableArray object exactly as it’s done in NSMutableSet, which
is by using the addObject: method. However, unlike NSMutableSet, NSMutableArray can
also insert elements into the array; NSMutableSet can add only objects to the set. Take a
look at Listing 8-9.

Listing 8-9. Adding and Inserting Values into an NSMutableArray
NSMutableArray *myArray = [NSMutableArray new];
[myArray addObject:@"One"];

1

2

3

4 [myArray addObject:@"Two"];
5 [myArray addObject:@"Three"];
6

7

8

9

for (id val in myArray) {
NSLog(@"%@", val);

}
10
11 [myArray insertObject:@"One and a Half" atIndex:1];
12
13 for (id val in myArray) {
14 NSLog(@"%@", val);
15 }

199

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

In Listing 8-9 a new array is created similarly to NSMutableSet. However, on line 11
anew element is being inserted into the array at position 1. Remember, position 0 is the
first element of the array. The contents of the array after the insert would look like this:

Index Value

0 One

1 One and a Half
2 Two

3 Three

Line 11 inserted a new element; the remaining elements were moved up in the array
to make room. This is critical to know, especially if there is a code assumption that a
particular index into an array will have a specific value.

With NSMutableArray, there are several ways to remove an object. The following are
a few of the more commonly used methods:

o removeAllObjects: This method does exactly as advertised. It
removes all objects from a given NSMutableArray.

o removelastObject: This method removes the last object at the end of
the array. The array size is reduced by one.

o removeObjectAtIndex: (NSUInteger)index: This method removes an
object at a given index. The index can be from 0 to the length of the
array—1.

NSMutableDictionary

By this point, it must be pretty obvious to you how the mutable versions of the collection
classes work, and NSMutableDictionary is no different. NSMutableDictionary provides
all the capabilities of NSDictionary, but, of course, elements can be added and removed,
as shown in Listing 8-10.

200

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-10. Adding Objects to an NSMutableDictionary

0O N O U1 bW N

10
11
12
13
14

15

NSMutableDictionary *myDict = [NSMutableDictionary new];

myDict[@"1"] = @"Number One";
myDict[@"2"] = @"Number Two";
myDict[@"3"] = @"Number Three";

for (id val in myDict) {
NSLog(@"key=%@ value=%@", val, [myDict objectForKey:val]);

myDict[@"1.5"] = @"One and a Half";

for (id val in myDict) {
NSLog(@"key=%@ value=%@", val, [myDict objectForKey:val]);

}

In this example, the object @"One and a Half" is being added to the dictionary. It’s

different from an array since an object can’t be inserted into the dictionary at a specific

position, as can be done with NSMutableArray.

Creating the Bookstore Application

Let’s start by creating the base application project. You start by opening Xcode and

creating a new project with the Single View template. In this project, you will create a

few simple objects for what is to become a bookstore application: a Book object and the

Bookstore object itself. You'll visit properties again and see how to get and set the value

of one during this project. Lastly, you'll put your bookstore objects to use, and you’ll

learn how to make use of objects once you've created them.

201

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

1. Fire up Xcode, and start by creating a new project, as shown in

Figure 8-1.

Choose a template for your new project:

watchOS ~ tvOS macOS Cross-platform @)

Application

¥ W B -

Single View App Game Augmented Document Based

Master-Detail App

Reality App App
| | GE O
.\.OO’_ * vee | DD/ L .
Page-Based App Tabbed App Sticker Pack App iMessage App
Framework & Library
= by N
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel

Figure 8-1. Creating the initial project

202

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

2. Click the Next button, and name the project MyBookstore,
as shown in Figure 8-2. The company name is required; any
company name, real or otherwise, can be used. The example uses
com.mycompany, which is perfectly fine.

Choose options for your new project:

Product Name: MyBookstore
Team: Add account...
Organization Name: = MyCompany
Organization Identifier: com.mycompany
Bundle Identifier: com.mycompany.MyBookstore
Language: Objective-C

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous m

Figure 8-2. Selecting the product (application) name and options

3. Once everything is filled out, click the Next button. Xcode will
prompt you to specify a place to save the project. Anywhere you
can remember is fine; the desktop is a good place too.

203

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

4. Once you decide on a location, click the Create button to create
the new project. This will create the boilerplate bookstore project,
as shown in Figure 8-3.

ece p A MyBsckstore | 5 iPhane 8 MyBookstore: Ready | Today at 7:51 AM = o< 000
DOE R Q A & T c @ |8 < > & wsoke 0D @
¥ & MyBookstore M D o General Capabilities Resource Tags Infa Build Settings Build Phases Build Rule Guick Help
¥ [MyBookstore
I AppDolegate.h A v identity No Quick Help
m AppDelegate.m A Sestch Docommriation
b ViewContrallorh A Display Name
m ViewControllerm A)
Bundle identifler com mycom) MyBaokstore
*. Main.storyboard A e
B Assuns.xcassets] Version |10
+ LaunchScreen.storyboard A Build 1
Info.plisy A
m ain.m A
¥ U MyBookstoroTosts T Sinieg
m MyBocksioreTests.m A
Infa.plist A s,
¥ [MyBookstoroUi Tests
m MyBookstorelliTests m A Team Add Account..
Info.plist A Provisioning Profile Xcode Managed Profie
» 1 Products Signing Certificate 105D DO @O
Status Signing for "MyBookstore® requires a
development team.
Select a development team In the project editor.
¥ Deployment Info No Matches
Deployment Target B
Devices Universal B
Main Intertace Main [~]
+[® O E o (@
= Lol Device Orientation &) Portrait =

Figure 8-3. The source listing of the boilerplate project

204

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

5. Click the MyBookstore Folder on the left. Click the plus (+) sign
in the lower left of the screen in the Navigation pane to add a new
object to the project. Choose File and then under the iOS section
on the top choose Cocoa Touch Class, as shown in Figure 8-4. It’s
also possible to right-click in the Navigation area and then select
the New File menu option. There is no difference between this
approach and clicking the plus sign, so do whatever feels more
natural.

Choose a template for your new file:

65N watchOS tvOS macOS ®
Source
3 m
Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File
Class Class Class
h C C‘H' NN\
Header File C File C++ File Metal File

User Interface

Storyboard View Empty Launch Screen

Figure 8-4. Creating a new Cocoa Touch class

205

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

6. Here you're choosing a plain Cocoa Touch class, which will create
a new empty Objective-C object that you're going to use for your
Book class. After selecting this, click the Next button.

7. Xcode will now prompt for the object name and which class it’s
going to be a subclass of. Choose the name Book and make Book
a subclass of NSObject, as shown in Figure 8-5, and then click the
Next button.

Choose options for your new file:

Class: Bcold
Subclass of: NSObject
Language: Objective-C
Cancel Previous

Figure 8-5. Giving your new class a name and parent class

206

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

8. Finally, Xcode will ask to which folder it should save the new class
files. To keep things simple, just add the file to the MyBookstore
subfolder, as shown in Figure 8-6. This is where all the other class

files for the project are stored.

EH] pal= E oot MyBookstore 5 t Q, Searcl
Favorites B MyBookstore @ » MyBookstore o

@ R t MyBookstore.xcodeproj @

ROOMES MyBookstoreTests g

< Dropbox MyBookstoreU|Tests Q-

E All My Files

¢ iCloud Drive

#A; Applications

[Desktop

@ Documents

Group & MyBookstore E

Targets # MyBookstore
MyBookstoreTests
MyBookstoreU|Tests

New Folder Options Cancel Create

Figure 8-6. Choosing the place to save your new class files

Note The Book and Bookstore classes are what are referred to as data model
classes. Data model classes are just used to store information and have nothing to
do with the interface of the app.

9. Click the Create button. You'll see the main edit window for
Xcode and your new class files, Book.m and Book. h, in the
Navigation pane.

207

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

10. Repeat these steps and create a second class called Bookstore.
This will create a Bookstore.m file and a Bookstore.h file, as
shown in Figure 8-7. You'll use this class later in this chapter. For
now, you'll concentrate on the Book class.

v & MyBookstore M 1/
¥ | MyBookstore // Book.h
// MyBookstore
h AppDelegate.h A 7/
i} AppUsiegate,m A § // Created by Thorn on 12/8/17.
 ViewController.h A & [/ Copyright e 2017 MyCompany. All rights reserved.
m ViewController.m A 1
Meln.atoryhoard & 9 #import <Foundation/Foundation.h>
=l Assets.xcassets A
LaunchScreen.storyboard A Rinterface Book : NSObject
Info.plist A z
: 13 @end
m main.m A
I Bock.h A
m Book.m A
Il Bookstore.h A
m Bookstore.m A
v MyBookstoreTests
m MyBookstoreTests.m A
Info.plist M
v MyBookstoreUlTests
m MyBookstoreUlTests.m A
Info.plist A

» i Products

Figure 8-7. Viewing your new class

11. Click the Book.h file and let’s start defining your new class!

Introducing Properties

The class is simply called Book and is a subclass of NSObject. True, you have a class, but
it doesn’t store anything at this point. For this class to be useful, it needs to be able to
hold some information, which is done with properties. When an object is used, it has
to be instantiated. Once the object is instantiated, it has access to its properties. These
variables are available to the object as long as the object stays in scope. As you know
from Chapter 7, scope defines the context in which an object exists. In some cases, an
object’s scope may be the life of the program. In other cases, the scope might be just a
function or method. It all depends on where the object is declared and how it’s used.

208

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Scope will be discussed more later. For now, let’s add some properties to your Book class
to make it more useful. See Listing 8-11.

Listing 8-11. Adding Properties to the Book.h File

1 //

2 // Book.h

3 // MyBookstore

4 //

5 // Created by Thorn on 12/8/17.

6 // Copyright © 2016 MyCompany. All rights reserved.
7 //

8 #import <Foundation/Foundation.h>

9 @interface Book : NSObject

10 @property (nonatomic) NSString *title;

11 @property (nonatomic) NSString *author;

12 @property (nonatomic) NSString *bookDescription;
13 @end

This is the same Book object from before, but now there are three new properties
placed inside the interface, lines 10-12. These are all NSString objects, which means that
they can hold text information for the Book object. So, the Book object now has a place to
store the title, the author, and the book’s description information.

Lines 10-12 may not look familiar. These properties are constructs in Objective-C
uses to store data, in this case NSStrings. Properties are available to the class only once
it'’s instantiated as an object. Instantiating an object is the same as creating an object:
Book *myBook = [Book new];.

Accessing Properties

Now that you have some properties, how can you use them? How are they accessed? As
you learned in previous chapters, Objective-C objects respond to messages. There are

two ways to access these properties:
e One way is, of course, within the Book object.
o The second way is from outside of the object—that is, another part of

the program that uses the Book object.

209

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

If you are writing the code for a method within your Book object, accessing a property
is quite simple. For example, you could simply write the following:

self.title = @"Test Title";

The preceding line is written within the Book class. The variable self represents the
instance of the class (a.k.a. object). When accessed outside of the class instead of self,
you use the variable that holds the object.

1 Book *theBook
2 theBook.title

[Book new];
@"Test Title";

This code pattern should look a little familiar. Line 1 creates a new Book object and
stores it in the variable theBook. Line 2 then uses the variable theBook to access the
title property.

Note You may have noticed that the properties take on a naming convention
called camel case (or camelCase) that uses an uppercase letter to distinguish
different words in a method, variable, or class name. The text is suggestive of a
camel, since the uppercase letters tend to form humps. It makes the label easier
to read. For example, stringhWithContentsOfURL is much easier to read than
stringwithcontentsofurl.

Once a property has been specified in the interface file, using the properties is
straightforward and simple.

myBookObject.title = newTitle; // Setting the property to a value. In this
case the newTitle variable.

Something important to note is that the object access is not within brackets
([...]).Accessing a property does not require them. On the surface, the property
seems just like a variable attached to the object. Internally, it’s a little different. In fact,
the compiler automatically creates two internal methods to manage the property. One
method is called the setter and the other is the getter. Under most circumstances, it’s
not necessary to even have to deal with the getter or setter. But, sometimes it may be
necessary to perform something like validation on what the property is being set to.

210

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Custom Getter and Setter

As mentioned, a property consists of two methods that are normally hidden. But, it’s
possible to override the default behavior of the getter or setter. If you haven’t guessed by
now, a getter returns (or gets) a value from the property. A setter stores (or sets) a value
in the property. Listing 8-12 provides an example of a setter and why it may be necessary.
As an example, in the custom setter shown in Listing 8-12, you cut off the title of a book if
it’s more than 20 letters long.

Listing 8-12. A Custom Setter

1 - (void)setTitle:(NSString *)newTitle
2 {
3 if (newTitle.length > 20) {

4 _title = [newTitle substringToIndex:20];
5 } else {

6 _title = newTitle;

7 }

8 }

In Listing 8-12, you create a setter method that overrides the default one. A setter
always starts with the word set and then is followed by the property name with the
first character capitalized. So, the method setTitle: means that you are overriding the
setter for the property title. Another thing to note is the instance variable _title. This
is important to understand. The “real” property is internally stored in a variable named
the same as the property but with an underscore (_). You might be wondering why you
simply don’t just write self.title = newTitle onlines 4 and 6. If you remember, the
setter is the internal method used to set the property. Calling self.title will then call
the custom setter. So, calling self.title will continue to call the setter until the app
crashes. Using title avoids this problem.

1 Book *theBook = [Book new];
2 theBook.title = @"This is a really long book title.";

211

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

These lines will call your own custom setter instead of the standard one. The same
would be true had you written your own getter method. So, given that new setter, when
you set the theBook title to something that long, the actual book title is shortened (line 4)
to be only 20 characters long. So,

"This is a really long book title."
becomes
"This is a really lon"

Without using a custom setter, your app may end up with a book title that is longer
than you want.

Finishing the MyBookstore Program

With this understanding of instance variables and properties, you are going to now
venture forth to create the actual bookstore program. The idea is simple enough: create a
class called Bookstore that will be stocked with a few Book objects.

When you first created the initial application, it was a plain single-view application.
Choosing that template creates just enough of what you want. The only problem is that
you're going to redo the single-view part. So, you're going to delete a few things from
the MyBookstore project and then create the initial storyboard. A storyboard is just a
collection of views that your app will use. The storyboard allows for all the views to be
displayed in one big canvas.

You first need to clean up the template so you can build your app.

1. You start the cleanup by deleting the ViewController.h and .m
files. This is done by highlighting them in the Project Navigator, as
shown in Figure 8-8, and then pressing the Delete key.

212

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

B XHZQAO D &

v @, MyBookstore
¥ MyBookstore

<

h AppDelegate.h
m AppDelegate.m

ViewController.h
h ViewController.m

. Main.storyboard

> > P

11| Assets.xcassets
. LaunchScreen.storyboard
1 Info.plist
m Mmain.m
h Book.h
m Book.m
. Bookstore.h
m Bookstore.m
¥ MyBookstoreTests

> > P> P> P> P> > P P

>

m MyBookstoreTests.m

£

1 Info.plist
¥ MyBookstoreUlTests
m MyBookstoreUlTests.m A
1 Info.plist A
P . Products

Figure 8-8. Deleting the old ViewController files

2. Once the Delete key is pressed, Xcode will put up a message that
asks if the files should be moved to the trash or if you just want to
remove their references. In this case, it's OK to click the Move to
Trash button since you really don’t want these files anymore, as
shown in Figure 8-9.

213

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Do you want to move the 2 selected items to the Trash, or only
remove the references to them?

Figure 8-9. Prompt to move to trash

3. Next, you want to change the Main.storyboard file. A storyboard
is basically a collection of views that your app consists of. In this
case, you're going to delete the view controller that was created by
the Single View template used when the project was first created.
So, select the Main.storyboard file in the Project Navigator, as
shown in Figure 8-10. Once you've selected it, you will see the
blank View Controller.

n
m

B =3 NS === B S (] . 2B £ > QMyBookstore) | MyBookstore) - Main.st

v & MyBookstore Ll » B view Controller Scene
v MyBookstore '

L AppDelegate.h

m AppDelegate.m
Main.storyboard

1 Assets.xcassets
LaunchScreen.storyboard
Info.plist

m main.m

h Book.h

m Book.m

h Bookstore.h

m Bookstore.m

v MyBookstoreTests

> >» » > > > > P P> P >

b

m MyBookstoreTests.m

=

Info.plist
v MyBookstoreUITests
m MyBookstoreUlTests.m A
Info.plist A
P . | Products

Figure 8-10. The selected Main.storyboard file
214

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

4. From here, select the View Controller Scene and press the Delete
key, as shown in Figure 8-10. Now you’ll have a blank Main.
storyboard from which you can begin your app. Click the Show/
Hide Utilities Pane button so you can add a new view control, as
shown in Figure 8-11.

o8 » A MySockstore | [Phono 8 MyBockstore: Ready | Today at 807 AM = o030

BERQsreECBBER i B wai {Boso) Daeamode
v B MyBockstore M
¥ [MyBoskstore

h AppDelegate

m ApaDelegate.m

Main steeyboard

I Aseots.acassots
LaunchScreen. starybaard
Info.plist

m man.m

> E>EEEE

h Bogkh Mo Selection
m Bookm
b Bockstore.h
m Bookstorem
¥ [MyBookstoreTasts
m MyBookstoreTests.m A
Into.plist (2
¥ [MyBockstore Ui Tosts
m MyBookstoreUiTosts.m A
Into.plist A
» [Products
0D0e6eo
Wiew ControBor - A contreder mat
=ansges & view
Staryboard Reference - Provides
s lecs 8 viow contoler in
oard
Navigation Controlier - &
| conmor nar manager ravgaten
thiough a hierarchy of views.
+ @ QE ||®] Viewas:iPhone8(-CrR) — 100% -+ B foi ko | BR [@

Figure 8-11. A clean slate and the Utilities pane displayed

5. Next, you're going to add a new controller scene with what is
called a Navigation Controller. A Navigation Controller allows
the user to navigate from one view controller to another. Just click
and drag the Navigation Controller object from the Utilities pane
to the empty storyboard canvas, as shown in Figure 8-12. While
you drag and drop, the little icon with an arrow will expand to two
views: one is the base Navigation Controller, and the second one
is an empty View Controller. It can be placed anywhere on the
storyboard window.

215

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

(o B bl b+ Main)

] View as: iPhone

FUAEIG (DEaU) i D

Root View Controller

Prototype Cells

De=mv0e

MNo Selection

ODOeO

HNavigation Controller - A
contreller that manages navigation
through a hierarehy of views.

)
B8 |©@n

e Navigation Bar - Provides a

machanism for displaying a
navigaticn bas just below the status

Navigation ltem - Represents a
stale of the navigation bar, including
a title.

avi

Figure 8-12. Adding the Navigation Controller object from the Utilities pane to

the empty storyboard canvas

6. This step isn’t necessary, but it simplifies things because it makes

the views in your storyboard fit on the screen. To do this, simply

highlight the Navigation Controller. At the bottom of the screen,

make sure iPhone 8 is selected, as show in Figure 8-13.

216

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

B < > & MyBookstore) [My..store) [B) Mai..card } [l Mai._ase)) | Root View Controller Scene) () Root View Controller ¢ [> O ® T 06
Simulated Metries
¥ | Root View Controller Scene D ? B .
¥ (@ Root View Controller) Size Inferred B
| Table View Top Bar Inferred
< Root View Contreller Root View Controller Bottom Bar Inferred
00 First Respender
[Exit Prototype Cells Table View Contraller
v Navigation Controller Scene Selection B Clear on Appearance
¥ (4 Navigation Contraller Refreshing Disabled B
Navigation Bar
&0 First Responder View Contraller
[E3 Exit

Title
Relationship “root view controller”.., AT
Layout B Adjust Scroll View Insets
Hide Battom Bar on Push
Resize View From NIB
Use Full Screen (Deprecated)
Extend Edges [Under Top Bars
[under Bottom Bars
Under Opague Bars

WV

Do e

Navigation Controller - A
< contraller that manages navigation
through a hierarchy of views.

€ Tte Navigation Bar - Provides a
machanism for displaying a
navigation bar just below the status

Navigation Item - Represents a
< state of the navigation bar, including
a title.

® (!j View as: IPhone 8 («C «R) — 32%) + = 1o taf | BR | @ navi Q

Figure 8-13. (Optional) Shrinking the views

7. Next, click the Root View Controller scene, which will then switch
over to that view, as shown in Figure 8-14. This is the view where
you will be starting all your work. You now have something called
a Root View Controller, which is the first screen that will show up
in your app. Initially, this View Controller is completely set up as
the default, meaning that it’s not connected to any of your code.
In the next section you will create a new View Controller class and
associate it with this new view.

217

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

B € > [MyBookstore) | My..store) [l) Mai..card) [l) Mai_ase)) | Root View Controller Scene) | Root View Contraller € [> ODhe@m 0o
Simulated Metrics
v Root View Controller Sceno O D B 3
¥ @ Root View Controller Size | Inferred
(3 Table View Top Bar Inferred

< Root View Controller

- Root View Controller Bottom Bar Inferred
£} First Responder
[E Exit Prototype Cells Table View Contraller
¥ | Navigation Controller Scene Selection @) Clear on Appearance
¥ (£ Navigation Controller Rofreshing Disabled B
Navigation Bar
) First Responder View Controller
E: B Title

Relationship "roct view controller”... e atd Taw o
Layout [Adjust Scroll View Insets
Hide Bottom Bar on Push
& Resize View From NIE
Use Full Screen |Deprecated)
Extend Edges [Under Top Bars
Under Bottom Bars
Under Opague Bars

D ooeo

Navigation Controller - A
< controller that manages navigation
through a hisrarchy of views.

€ Tte Navigation Bar - Provides a
mechanism for displaying a
navigaticn bas just below the status

Navigation ltem - Represents a
< state of the navigation bar, including
a title.

@

{) Viewas:iPhone8(.C-R) — 82% + = 1o baf | BB | @ navi a

Figure 8-14. Start all your work with this view

Creating the Initial View

The first view you will be creating is the view that will contain your list of books. This is
aview called a Table View, and it displays rows of information in a single column. You
have your view in the storyboard, but you now need to create your controller class. The
controller class is responsible for taking information, in this case the list of books, and
placing it into the Table View.

First, you need to create the MainViewController class. Do this by highlighting the
MyBookstore group in the Project Navigator and then clicking the + button to add a new
file, as shown in Figure 8-15. Then, select Cocoa Touch Class, as shown in Figure 8-16,
and click Next.

218

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

L des i al wsh = el =

v Q MyBookstore M
h AppDelegate.h A
m AppDelegate.m A
Main.storyboard —_
' Assets.xcassets A
LaunchScreen.storyboard A
Info.plist A
m main.m A
h Book.h A
m Book.m A
h Bookstore.h A
m Bookstore.m A
v MyBookstoreTests

m MyBookstoreTests.m A
Info.plist M

v MyBookstoreUITests
m MyBookstoreUlTests.m A
Info.plist A

P . | Products

+ ®

File...

New Group
New Group without Folder

Add Files to “MyBookstore"...

Figure 8-15. Adding a new file
219

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Choose a template for your new file:

watchOS tvOS macOS

Source

3 m
Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File
Class Class Class
h c Cw N\
Header File C File C++ File Metal File
User Interface
Storyboard View Empty Launch Screen
Cancl

Figure 8-16. Selecting Cocoa Touch Class

220

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Next, Xcode will prompt you for a file to create. Type MainViewController
as the class name, with this being a subclass of UITableViewController, as shown in
Figure 8-17. From here, click Next. Xcode will then ask you where to save the file. Just

click Create from here.

Choose options for your new file:

Class: MainViewController
Subclass of: UlTableViewController
Also create XIB file

Language: Objective-C B

Cancel Previous Next

Figure 8-17. Creating the MainViewController class

221

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Now that the new file has been created, the Xcode screen should look something like
Figure 8-18. You can ignore the warnings for now. By default, Xcode adds these warnings
because these methods need to be completed.

ene p iy MyBookstors | [IPhone 8 Pl MyBocksiore: Ready | Today a1 5:44 AM A [=l=]i=
BERAA®E o ®M@M>R B Mo @ b e
¥ B wyBockstcen o " \oantity med Troe
#4 vainviewController.s -
¥ [MyBovaton IewContraler m
1 wMyBeskstere e e
b AppDiegate b A 4 Type Cetawst - Oxjoctve-C Sow.. [
m AppDelogaie s A f er by Thesa on 12/8/17,
[TRE—— - #/ Conyright ® 2017 WyCospany. ALl rights reserved. AN Bt Oring. B
b BockDelalviewCentioler h A y e T -
i Pu [UsersbradeesDiepbes
= BockDetaiVieaCensioler.m A Agress OGIC 4/Projectal
B Assets ucassets ™ Chaptr B/MyiBoskstorsy
WyBooistone
LaunchScreen.staryband A MirVmComrolieen O
teto.clist A
2 malem A O Demand Bessurce Tags
b Baskh A theBockstore;
s Bookm K|
4 Bockstoreh A o Target Membarshin
e W 1 eisslesentaticn MainViewontreller © o Mylooton
 MakvawCorarotach A - troiddviewdidiend { MylackaicedTuss.
B LV Corsmberm A n ROoeao
MyBosesaniTeis ¥
. ! Cueoa Touch Class - & Cosea
Lol s A - tvesdldioReceivenemorywarning { Teosh cuss
ko plist A 5 [super didReceiveMesorywarndngl;
MyBosikstormliTes 2 /7 Dispese of any rescurces that can be Teerested.
\ MyBookstorelTests.m A t g U Tast Cane Class - & ci
e st 13t
tnfe.chist A : serenting
' spragea mark - Tablo view data source
Produsts
1 - (Nslategex Taslevion < Rt Tetd Cata Clans - A class
return 13 B perenting ssne e

Figure 8-18. The Xcode screen for the MainViewController class

Note View Controller classes are common and are used to control the flow

of information from the data model to the actual view. They’re also responsible
for handling any view-specific actions, like a user selecting a row in your Table
View. It’s important to keep the data model separate from the View Controller only
because it’s a better way of partitioning programs.

There is a lot of commented-out code in this class because it’s a template. It will
actually work but doesn’t display anything. Before you continue, you need to first let
your storyboard Root View Controller know about this new class. This is done back in
the storyboard. So, select the Main.storyboard file and make sure that the Root View
Controller scene is selected. You should see something like Figure 8-19.

222

ece p
BE Q&8 & HC
v [MyBockstore
¥ [MyBookstona
h AppDelegate.h
m AppDelagate.m
[Main.storyboard
T AsS0IS. XCAESOLE
* LaunchScreen.storyboard
Info. plist
m main.m
h Book.h
m Bock.m
h Bockstore.h
m Bookstore.m
h MainViewContr...ViewControllerh
m MainViewConir...iewController.m
¥ [MyBockstoreTests
m MyBaockstoreTests.m
Info,plist
¥ [MyBooksteralI Tests
m MyBookstoreUITests.m
I plist
» 7 Products

+[@

MyBookstone | il iPhane B
B E<>h

} &

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

MyBooksiore: Ready | Teday a2 8:18 AM 04

Main. . Masin

M (‘v Root View Controller Scane

A
A
A
A
A
A
A
A
A
A
A

oH

B

>

Raot View Controlier
b | | Table View

< Root View Controller
@ First Respander
= exit

Mavigation Controller Scene

I Vviewas:iPhone 8 («C «R) -

Root View Controller Scene

@ -

Root View Controlier

Pretotype Cells

Table View

Figure 8-19. Selecting the Root View Controller

70% +

E o s0000

Root View Contealier < [>

B o ks

Next, change the custom class to be the MainViewController class, as shown in

Figure 8-20.

ece »

BE=RQ & &E o
w [MyBockstore
¥ MyBookstore
I AppDelegate.h
m AppDelegate.m
[Main.storyboard
I Assots.xcassets
* LaunchScrean.storyboard
Info plist
m main.m
h Bookh
m Book.m
h Bookstore.h
m Bookstore.m
h MainViewConir...ViowContralierh
m MainViewContr._lewController.m
¥ [MyBockstoreTests

M

A
A
A
A
A
A
A
A
A
A
A

m MyBookstareTests.m A
= Info.plist ™
¥ [7] MyBooksterali Tests.
m MyBookstoreUiTests.m A
Info.plist A
» 7 Products
+[@ OF

i MyBookstone | i iPhane B
=8| <

¥

®

> [MyBookstore) |

Root View Controller Scene
| Roat View Controlior
> || Table View
€ Root View Contiolles
@ First Respander
B et

Navigation Controller Scene

-2

Figure 8-20. Setting your class as the custom class

MyBoakstare: Rendy | Today at 8119 AM b E QS O0Q00
1 Roat View Contrelier Scene | () Root View Contraller ¢ [\ >] 'O' B @
Qe
Root View Controller
Prototype Cells Identity
Storyboad ID
Restoration ID
Use Storyboand ID
Usar Dafined Buntime Attributos
Key Path Type Value
oo0@ea
. Mavigation Contraller - A
| < condralier that mamages navigation
NN through b heraschy of views.
£ = Mavigation Bar - Provides o
mechanism for displaving &
navigation bar just below the status.
Havigation ltem - Represenis &
< state of the navigation bar, includng
& tle,
] Viewas: iPhone 8 («C «R) B 10 tal | B3 | @ navi o

223

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Now your new class, MainViewController, is the controller for the Root View
Controller. In the next section, you can add the data model to your new Table View
Controller and get it ready to display something.

The Bookstore Object

Before you can display anything on your new view, you will need to create the data
model. In this case, this is the Bookstore object. You've already built the Book object; you
can find it back in the section that introduced properties.

The Bookstore object is a simple data model that is used to store a list of Book
objects. Each Book object contains a title, the author (or the authors), and a brief
description. So, let’s take a look at the heart of the Bookstore object. Note that the line
numbers represent the line number from the source file Bookstore.m in the source code
provided with this book. See Listing 8-13.

Listing 8-13. Setting Up the Bookstore Object

13 -(instancetype)init

14 {

15 self = [super init];

16 if (self) {

17 self.books = [NSMutableArray new];

18

19 //

20 // Add book requires an array of dictionaries. Each element of the
21 // array contains a dictionary that describes a book.
22 //

23 NSArray *arrayOfBooks = @[// This starts the array
24

25 //

26 // This is the first book as a dictionary.

27 // It's the first element in the array

28 //

29 @{@"title": @"Objective-C for Absolute Beginners",
30 @"author": @"Bennett, Fisher and Lees",

31 @"description": @"iOS Programming made easy."},

224

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

32

33 //

34 // Now we're creating the second dictionary as

35 // the second element of the array.

36 //

37 @{@"title": @"A Farewell To Arms",

38 @"author": @"Ernest Hemingway",

39 @"description”: @"The story of an affair between"
40 "an English nurse and an"

41 "American soldier on the Italian"
42 "front during World War I."}

43

44 1; // End of the array

45

46 [self addBooks:arrayOfBooks];

47 }

48

49 return self;

50 }

This method of the Bookstore.m file is called when the Bookstore object is created.
In this method, you set up the data for the model; in this case, you are creating two books
and storing them in an NSArray. Please refer to the “Collections” section if you need a
refresh.

Line 23 begins by creating the NSArray and using the collection literal syntax for an
NSArray, whichis@[...];.The NSArray contains two NSDictionary objects. These
objects are created with the NSDictionary collection literal syntax, whichis@{ ... };.
Lines 29-31 represent the first book, and lines 37-42 are the second book. Remember
that an NSDictionary is stored as a key: value pair.

Line 46 is the call to a method named addBooks : that accepts the newly created
array. Let’s look at that method now; see Listing 8-14.

225

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-14. The addBooks: Method

57 - (void)addBooks:(NSArray *)bookArray

58 {

59 for (NSDictionary *bookInfo in bookArray) {
60 Book *newBook;

61

62 // Create a new book object.

63 newBook = [Book new];

64 newBook.title = bookInfo[@"title"];

65 newBook.author = bookInfo[@"author"];
66 newBook.bookDescription = bookInfo[@"description”];
67

68 [self.books addObject:newBook];

69 }

70 }

This method will go through the array that was created in the init method and
create the number of Book objects that are in the array. While you know that there are
only two in the init method, the addBooks: method is designed to take in as many as
are in the array, making it flexible if more books are added in the init method.

Line 59 is what is called a for-in enumerator in that it goes through the array one
element at a time. You know that the NSArray that is passed to this method is an array of
dictionaries with each dictionary containing information for a book.

for (NSDictionary *bookInfo in bookArray)

The first argument here is an NSDictionary object. This object is assigned the
NSDictionary thatis in each element of the array. So, the first element in the array will
be the dictionary containing the Objective-C for Absolute Beginners book information.

Now that you have the dictionary, lines 63-66 create the Book object and set the Book
object’s properties to the values from the dictionary.

Line 68 takes the newly created Book object and adds it to the self.books property,
which is an NSMutableArray. Remember a mutable object is one that can be modified. In
this case, you're adding new elements to what is initially an empty array. Once the for-in
enumerator has gone through all the elements in the array, the addBooks : method finishes
and returns. In this case, it returns to line 46 in the init method of the Bookstore class.

226

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

The last part of this class is the method shown in Listing 8-15.

Listing 8-15. The numberOfBooks Method

52 - (NSInteger)numberOfBooks

53 {
54 return self.books.count;
55 }

This method simply returns the number of books stored in the self.books array.

Using the Bookstore Object

Now that you have a view set up, you can start adding in your data model. As mentioned,
the data model manages your data: the bookstore and the books in that bookstore. In
Listing 8-16, you add a property to hold the Bookstore object. The numbers to the side
represent the line numbers that can be found in the MainViewController.m file provided
in the source code for this book.

Listing 8-16. Setting Up the Bookstore Object

9 #import "MainViewController.h"
10 #import "Bookstore.h" // <-- This is our Bookstore object include file.
11 #import "BookDetailViewController.h"
12
13 @interface MainViewController ()
14 @property (nonatomic) Bookstore *theBookstore;
15 @end

This snippet of code is at the top of the MainViewContoller.mfile. Line 10 imports
the information for your Bookstore class. That allows MainViewController to use the
Bookstore class. If it’s not included, Xcode will flag line 13 in error. Speaking of line 13,
this line is where you create a property to hold the Bookstore object.

Listing 8-17 shows the viewDidLoad method. This method is called whenever the
view is starting up and loaded by iOS.

227

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-17. Setting Up the Bookstore Object

18 - (void)viewDidLoad {

19 [super viewDidlLoad];

20 self.theBookstore = [Bookstore new];

21 self.title = @"My Bookstore"; // This is the title of our main view.
22}

Line 20 creates a new Bookstore object and stores it in the property that you
defined on line 13. After this method is done, you're all set. Another method that’s
important to your Table View is to return the number of rows you have to display. The
method tableView:numberOfRowsInSection: is called by the Table View to get this
number (Listing 8-18). This number becomes more important in the following section.

Listing 8-18. Returning the Number of Rows to Display

39 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(

NSInteger)section
40 A
41 //
42 // you want to return the number of books we have in the bookstore.
43 // you don't care about the section since there is only one!
44 //
return self.theBookstore.numberOfBooks;
45 ..}

Preparing the Table View

One thing that you need to do is to set up the Table View in the storyboard. In this case,
you're going to give a row in the Table View an identifier. In the storyboard, the Table
View has just a single row shown. This is a template row that will be used for each row
in the Table View. To help manage multiple rows, the Table View uses this identifier, as
shown in Figure 8-21.

228

®
B

® i MyBocistore

BERQLH©BEO

v B MyBookstom

L4

MyBooistore

h AppDelegateh

m AppDologate.m

* Main.steryboard

BN Assats.xcassots
LourehSereon.storyboard
infaplist

m mainm

1 Book.h

m Bock.m

4 Bookstare

m Dockstane.m

b MalrViewContr._ViewContralier.h

= Mair¥iewContr, sewControlier,m

MyBooistoreTasts

m MyBockatoraToste.m
Info.plist

MyBookstoreUTests

m MyBookstoreUlTests.m
Inta.plist

» i Procuets.

+ |@

=

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

W IPhone 8 Plus

B8 ¢ [MyBooksioco
¥ | Reot View Centrolier Scene
v Root View Controller
¥ | Table View Coll
€ Aoot verw Cortralion
@) Fiest Rospandor
[Exit

» [Navigation Contraller Seone

OH|||@

M_ore

Buwid

M_ord

M5

o)

12/8/17 31 8:26 AM 5 = @ < D0Q0
Ro_ne) () Ro_tier) || Table View) || Toble View Cel € 0 > oD ® H@U @
Tabile View Call

Style Custom

Roat View Controller Selection Delowly

L |

Prototype Cells Accessory Mone
Eaiting Acc. Mone
Focus Style Default

[ool <2

Indontation 9l w0z
Leved Width

9 Indont Whie Editing
Shows Re-order Controls
Sepaator bael Automatic

DO0@O
View Controlier - & contiolier that
it

masmages

Storyboard Reforence - Fovdos
& placenclae: for & view conraier in

an extarnsl viorybostd

1 Viewas:iPhone8(-CR) — 70% -+ ot B|@

Figure 8-21. Setting up the Table View Row

This identifier, BookTitleRow, now needs to be added in the MainViewController

class so that the Table View knows what identifier to look for.
In Listing 8-19, lines 60-61 dequeue the cell. This is the way that the Table View
manages and reuses rows. The important part of this line is the BookTitleRow identifier

being used. It’s important that the name that is use here is the same as the one added to

the Table View Row in the storyboard, as shown in Figure 8-21.

Listing 8-19. Reusing the Row and Getting a Book Title

48
49
50
51
52
53
54
55
56
57
58
59

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath

{
/1

// A UITableViewCell is a row in the UITableView. We want to display
// a book title in each row. This method is called for every book
// in the bookstore (see tableView:numberOfRowsInSection:). That method
// returns the number of rows that the UITableView should show - this
// is the number of books in the Bookstore object.

//

// We start by getting the cell from our Main.storyboard file. This is
// the UITableViewCell "Identifier" found in the Storyboard.

229

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

60 UITableViewCell *cell =

61 [tableView dequeueReusableCellWithIdentifier:@"BookTitleRow"];

62

63 //

64 // Get the book in the Bookstore. The indexPath.row is set to the

TOoW

65 // we are going to display.

66 Book *book = self.theBookstore.books[indexPath.row];

67

68 //

69 // Once we have the book, we want to show its title in the
UITableViewCell.

70 // There is a titlelabel already built in to the UITableViewCell so
we use

71 // that. The titlelabel has a text attribute we can set to an NSString.

72 cell.textLabel.text = book.title;

73

74 //

75 // Return the cell that has been setup for this row.

76 return cell;

77 '}

Line 66 gets a Book object from the Bookstore object stored in the self.
theBookstore property. The Bookstore object has a property named books that
represents the NSArray of Book objects that were created when you loaded your Table
View. If you look back at Listing 8-15, you can see that the Table View knows the number
of rows to display based upon the number of books in your Bookstore object. This
count applies directly here. In the method from Listing 8-16, the NSIndexPath object
will contain a row number. This row number will be from 0 to self.theBookstore.
numberOfBooks-1 (refer to Listing 8-15). This makes indexPath.row a direct correlation
between a row in the Table View and a row in the Bookstore object.

Line 72 sets the title of the cell (which is a row in a Table View) to the title of the book.

230

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

The Book Detail View

Now that you have the list of books in the Table View complete, it’s time to go to the next
step and create the Detail View. This is a view that displays more information about the
book when the user taps it.

1. The first step is to add a new view controller to the storyboard
(Figure 8-22).

¥ & MyBockstore ¥ | Root View Contraller Scane
¥ MySooksiceo ¥ Root View Controlier

I ApaDelegate.h A » |1 Tuble View
m AppDelegate.m) < Root View Contrsiler
Msin.storyboard = @ First Respondar mew
10 Assots xcassels " E e o
+ LaunchScroen.storyboard A Srorybosed Emry Point ey Mot Applicable
Info.piist A | [Navigation Controlior Scane
m mainm A
h Bockh A
m Bock.m A
h Bookstore.h A
m Bodkstora.m A
A
A

h MainViewContr_ViewCcontrolierh

m MainViewContr lewControllarm ¥ Tabile View =
¥ [MyBocksceTons " [TR I
m MyDoakstoieTasts.m
Wiew Controlber - & contolie that
Info.plist A ey

»

¥) MyBockstorelUtTests

m MyBoo T A
b Storyboard Retorance - Proides
Into,piit A B placenelde: fae & view contialies in
» B Prodicts &n axtemal sioryboand
G Mavigation Cantraller - &
< conirolles hat manages navigaiion
' thecwgh & hiormchy of views
+ | & O ® [Viewas: iPhone B («C nR) — S0% E ol B @

Figure 8-22. Adding in the details view controller

231

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

2. Dragthe new View Controller around the canvas until things look
like Figure 8-23.

[XON T 3 I #% M) @ iPhone BPlus Finished running MyBookstore on iPhone 8 Plus 2 @2 = ® < O8O
B EZ QA AN S T o B 8 ¢ > Lwmbooksore) .. B - B -~) RootView Controller Scene } () Root View Comroller < @ >
¥ [& MyBookstore M| w [Root View Controller Scene
¥ 25 MyBookstore ¥ || Root View Controller
I AppDelegate.h A ¥ | Table View
m AppDelegate.m A > BookTitleRow
< Root View Controller
| Assets.xcassels M) First Responder O=* & [P——
LaunchScreen.storyboard A [E Exit
= Info.plist A > Storyboard Entry Point oot View Contralier
m main.m A | ¥ [View Controller Scene PrOTenps Gole
h Book.h A v (] View Controller
m Book.m A » View
I Bookstore.h A) First Responder
m Bookstore.m A Bixil
h ontr...ViewC h A | » [Navigation Controller Scene
m MainViewContr.iewController.m A N
¥] MyBookstoreTests ~ Table View
m MyBockstoreTests.m A
Infe.plist A
¥ [| MyBookstoreUITests
m MyBookstoreUlTests.m A
Info.plist A
» i Products
+ | @ ® @] View as:iPhone 8 {«C nR) = bof had

Figure 8-23. The newly added View Controller

232

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

3. You will notice that there is a new scene in the storyboard; it’s
just called the View Controller scene, and it represents the view
you just added to the storyboard. The next step for you to do is
to link this new View Controller to be displayed whenever you
click the Table View Row. You do this by Control-dragging from
the BookTitleRow to the blank area of the new View Controller,
as shown in Figure 8-24. This means you press and hold the
Control key on the keyboard and click and drag the mouse from

the BookTitleRow to anywhere on the empty area of the new View
Controller.

22 ¢ » [MyBookstore) .. > @ ..)@ ..) RootView Controller Scene) () Root View Controller < @ >

¥ |~ Root View Controller Scene
¥ @ Root View Controller

v Table View
» [*l=qokTitleRow
< Root View C=

QT’] First Responder

Exit

—> Storyboard Entry Point

D » B View Controller

Root View Controller
v [View Controller Scene Prototype Cews
v View Controller
> View
- .
[§§) First Responder
Exit

» | Navigation Controller Scene

J

N—

Figure 8-24. Connecting the Table View to the Detail View

233

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

4. Once the mouse reaches the new area, release it. What you're
doing here is creating a link between the Table View Row to the
new View Controller, which will become your Book Details View.
This link will make it so that when the user taps one of the books
from the main view, the details view will be shown.

5. Once the drop on the view occurs, a menu will be displayed. This
menu contains, among other things, items for what is called the
selection segue, as shown in Figure 8-25. First, a segue is basically a
transition from one thing to another. In this case, it’s a transition from
the main Root View Controller Scene to the View Controller Scene.

Selection Segue
Show
Show Detail
Present Modally
Present As Popover
Custom
Accessory Action
Show
Show Detail
Present Modally
Present As Popover
Custom
Non-Adaptive Selection Segue
Push (deprecated)
Modal (deprecated)
Non-Adaptive Accessory Action

Push (deprecated)
v

Figure 8-25. The Selection Segue menu

234

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

6. The Selection Segue menu is the only thing you are concerned
with here. It deals with transitioning between two scenes because
of a selection. In this case, it’s the user selecting a row in the Table
View. Click the Show option in the Selection Segue menu, and
you will see something like Figure 8-26. You can move the View
Controller around so that it matches Figure 8-26 just to keep the
lines straight, but this is completely optional.

Root View Controller D » B

Root View Controller < Root View Controller

Prototype Cells

Figure 8-26. The segue is now connecting the two views

235

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

7.

At this point, you can run the application to see how things are
shaping up. Just click the Run button (or press Command-R)
to build and run the application. It should look something like
Figure 8-27. And by tapping one of the titles, the view should
transition from the main view to what is now a blank view.

Carrier = 8:04 AM -

Objective-C for Abso

A Farewell To Arms

Figure 8-27. A first look at your app

236

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

8. So, the next step is to make the details view actually do a little
more work. First, you need to give the segue you created earlier
an identifier. Before you do this, make sure the application that
is running is stopped. To do this, just click the Stop button in
the Xcode window. Next, click the segue so the identifier can be
added.

9. Name the segue identifier BookDetailsSegue, as shown in
Figure 8-28. The identifier can be anything, but it’s best to make
the segue identifier meaningful. While you have just one segue
in this example, you can create an app that has many segues.
Naming is very important.

Storyboard Segue
(jentitier BookDetai)

Class IS

Module il

= 5 Kind Show (e.g. Push) <

¥ Animates
Root View Controller < Root View Controlier Peek & Pop Preview & Commit Segues
O 6

i View Controller - A controller that
{1/ manages a view.

Storyboard Reference - Provides
a placeholder for a view controller in
an external storyboard.,

/ Navigation Controller - A
(| controller that manages navigation
through a hierarchy of views,

[] View as:iPhone 8 («C rR) — 50% + (= = TS

MyBookstore oo @

Figure 8-28. Setting the segue identifier

237

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

10. Next, you need to create a new ViewController class that will be
used for the details view, which is the blank View Controller. To
do this, click the + in the Project Navigator and add a new Cocoa
Touch class to the project named BookDetailViewController, as
shown in Figure 8-29.

Choose options for your new file:

Class: BookDetailViewController

Subclass of: UIViewCorltrcllerl n

Also create XIB file

©

Language: Objective-C

Cancel Previous

Figure 8-29. Adding the BookDetailViewController class

238

Next

11.

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Make sure that the new file is a subclass of UIViewController.

12. Next, you are going to add some Label views to your detail view so

you can see more of the information of the book. But, before you
can do this, the detail View Controller needs to be set to use the

new BookDetailViewController class, as shown in Figure 8-30.
Make sure that the Main.storyboard file is selected in the Project

Navigator.

B < » B MyBookstore)
¥ [Root View Controller Scene
» Root View Centroller
0 First Responder
[E Exit
—> Storyboard Eniry Foint
. Show segue “BookDetailsSegue™ t...
¥ | Boock Detall View Controller Scene
L2 Book Detail View Controller
@) First Responder
Exit

¥ | Navigation Contraller Scene

@ » 0 W %

MyB..tore) [Mal.oard) [Mal..ase))

L] View as: iPhone B (wC rR)

MyBookstore

| Viaw Controller Scene |

50% +

Book Detall View Contraller € [>

B ko had

bDe@aeIe

Custom Class

Class | BookDetal

GLEViewController
MainViewControllerTableVie...
| QUPreviewController
o SFSafariViewCentroller

Idontity

Restoration 1D
Use Storyboard ID

User Defined Runtime Attributes

Key Path Type Value
+
Document

bO0eo

| View Controller - A contraller that
J manages a view.

Storyboard Reference - Provides
a placeholder for a view contraller in
0 external storyboard.

/7, Mavigation Controller - A
< cantroller that manages navigation
' through a higrarchy of views.

B e

Figure 8-30. Setting the BookDetailViewController

239

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

13. Now that you have the class assigned, you need to add some
labels so that you can display the title, authors, and description of
the book. To start this, drag and drop some Label views from the
Object Library to the Book Details View Controller, as shown in
Figure 8-31.

Custom Class

Class BookDetailViewContro... ©

Module ™ n

Inherit Module From Target

591 View Contrulier 0= e Identity
Steryboard ID
1t View Controller « Root View Controller
s Restoration ID
" Use Storyboard ID
Label
User Defined Runtime Attributes
Key Path Type Value
[+
Document
Lahal
0D O0e
Lab I Label - A variably sized amount of
€l siatic text.
] View as:iPhone 8 («C nR) — B0% -+ = o] baq
MyBookstore 82 ©® label (]

Figure 8-31. Adding your first label

240

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

14. Expand the label’s size by dragging the “handles” so that it is
roughly 3/4 the width of the view, as shown in Figure 8-32.

{ W w = J

< Root View Controller

W: 285.0
H: 21.0

Label 0

/A \
Figure 8-32. Expanding the label

241

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

15. 'This will provide enough room for the titles of the fields. Repeat
this process until your view looks like Figure 8-33.

< Root View Controller

Label
Label

Label

Figure 8-33. Three labels

242

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

16. Next, change the titles of these labels to be Title, Author(s),
and Description. To do this, click a label and change the text, as
shown in Figure 8-34.

{ ® B J Label

Text Plain
(el
< Root View Controller ' AL

Font System 17.0 M

Dynamic Type Automatically Adjusts Font
pignment = = = = [

Lines 1)lv
a.abel O Behavior [Enabled
= o Highlighted
Baseline Align Baselines ka
Label i
Line Break Truncate Tail B
Autoshrink Fixed Font Size
Label : 5
Tighten Letter Spacing
“ Highlighted EEEEE Default ki
Shadnw 1 Nefault | A]

m_j?/%, | D 0O

Label - A variably sized amount of
Label saic tent

Figure 8-34. Changing the label text

243

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

17. After changing all the labels, they should now contain all of the
titles (Title, Author(s), and Description), as shown in Figure 8-35.

@ B

< Root View Controller

Title
Author(s)

Description

Figure 8-35. Changing the label text

244

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

18. Repeat the steps of creating and sizing labels and add them to
the view so there are three more labels that are sized as shown
in Figure 8-36. You also want to expand the bottom label to be
slightly larger, as shown in Figure 8-37.

< Root View Controller

Title
Label

Author(s)
Label

Description
Label

Figure 8-36. Adding the remaining labels

245

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

< Root View Controller

Title
Label

Author(s)
Label

Description
O

0
O

Clabel O

0) |

Figure 8-37. Making the description label larger

Setting Up the Outlets

Now that the view is all set up, it needs to have real book data. It just has a bunch of
placeholder labels. To do this, you need to dive back into the code. Go into the Project
Navigator and select the BookDetailViewController.h file. You are going to add three
properties that will hold the book details but also show this detail information

(Listing 8-20).

246

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C
Listing 8-20. Adding Outlets to Show the Information

//

// BookDetailViewController.h

// MyBookstore

//

// Created by Thorn on 12/10/17.

// Copyright © 2017 MyCompany. All rights reserved.
//

OW 60N O U1 B W N B

#import <UIKit/UIKit.h>

[N
R O

@interface BookDetailViewController : UIViewController

TR
W N

@property (nonatomic, weak) IBOutlet UILabel *bookTitle;
@property (nonatomic, weak) IBOutlet UILabel *bookAuthor;
@property (nonatomic, weak) IBOutlet UILabel *bookInfo;

[S G Y
SRS

@end

=
~

BookDetailViewController doesn’t contain much at this point, but you need to
add something that will link the actual book data with the labels that are shown on the
screen. To do this, you add three new properties, as shown in Listing 8-20’s lines 12-14.

These properties look almost like other properties that you have created except for
two items: IBOutlet and UILabel. Put simply, the IBOutlet lets Xcode know that this
property is an outlet for an element on the view. The UILabel is the class that represents
a Label object; you're really only concerned with three labels that you added to the Book
Details View Controller.

247

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Also, when looking at Xcode, there are three empty circles to the left of the property
declarations, as shown in Figure 8-38. These circles represent that these are items that
can be hooked up to something on the storyboard. Since they’re empty, it means they
haven’t been connected to anything. Let’s do that next.

11 @interface BookDetailViewController : UIViewController

(O (QEproperty (nonatomic, weak) IBOutlet UILabel xbookTitle;
O Cproperty (nonatomic, weak) IBOutlet UILabel *bookAuthor;
(O (@Eproperty (nonatomic, weak) IBOutlet UILabel xbookInfo;
16

17 (@end

18

Figure 8-38. Empty outlet circles

248

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

From the Book Detail View Controller, Control-drag from the first icon (which
represents the BookDetailViewController class) to the first label, as shown in
Figure 8-39. When dropped, the outlet menu is displayed as shown in Figure 8-40. For
the label under “Title,” choose the bookTitle outlet. Repeat this same process for the
other labels, choosing bookAuthor for the second label and bookInfo for the third label.

< Root View Chntroller

Title

Label L

| (Lo
Author(s) Ne—r—
Label
Description
Label

Figure 8-39. Connecting up the first label

249

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Hue

Labg

Outlets
Aut bookAuthor

bookinfo
bookTitle

Lab

Figure 8-40. Available outlets

Going back to the BookDetailViewController.h file, the connection circles should
now be filled in, as shown in Figure 8-41.

11 @Einterface BookDetailViewController : UIViewController

> @@®S

@property (nonatomic, weak) IBOutlet UILabel *bookTitle;
@property (nonatomic, weak) IBOutlet UILabel xbookAuthor;
@property (nonatomic, weak) IBOutlet UILabel xbookInfo;

17 @end

Figure 8-41. The outlets are now connected.

Plugging in the Book Details

Now that the outlets are all connected, you can add the necessary code that will put
the book information into the labels you added in the previous steps. To start, go to the
Project Navigator and select the MainViewController.mfile.

You need to add the code that will determine which book the user selected and then
store that into the details view. To accomplish this, you implement a method called
prepareForSegue:. This method is called whenever a segue is chosen (Listing 8-21).

250

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Listing 8-21. Plugging in the Book Details

80 - (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
81 {

82 if ([segue.identifier isEqualToString:@"BookDetailsSegue"]) {

83 BookDetailViewController *detailViewController = segue.
destinationViewController;

84 [detailViewController view];

85 NSIndexPath *selectedRow = [self.tableView indexPathForSelectedRow];

86

87 Book *selectedBook = self.theBookstore.books[selectedRow.row];

88

89 detailViewController.bookTitle.text = selectedBook.title;

90 detailViewController.bookAuthor.text = selectedBook.author;

91 detailViewController.bookInfo.text = selectedBook.bookDescription;

92

93 detailViewController.bookInfo.numberOfLines = 0;

94 }

95 }

The lines of importance are really lines 89-91. These lines put the fields from the
Book object to the labels on the details view via the outlets you created earlier. When you
see detailViewController.bookTitle.text, the .text represents the property of the
UILabel that you need to set in order to see the value in the actual label on the view. You
assign the label’s text property to selectedBook.title, author, or bookDescription.

Line 93 is used to let the UILabel know that it can span multiple lines. This is
necessary so you can see the information of a book that is too long. Otherwise, the label
will simply keep it to one line and not display the remainder of the information.

251

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

So now, when the app is run, you should see Figure 8-42 and then Figure 8-43.
Selecting a row will transition to the detail view as seen in Figure 8-43.

7:01 AM

My Bookstore

Objective-C for Abso

A Farewell To Arms

Phone 8 Plus - 112

Figure 8-42. The main view

252

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Carrier ¥

(I’.’.‘,- Bookstore

Title
A Farewell To Arms

Author(s)

Ernest Hemingway
Description

The story of an affair between an English

nurse and an American soldier on the Italian
front during World War 1.

Figure 8-43. A Farewell to Arms detail

Summary

You've finally reached the end of this chapter! Here is a summary of the things we covered:

Understanding collection classes: Collection classes are a powerful set
of classes that come with the Foundation and allow you to store and

retrieve information efficiently.

Using properties: Properties are variables that are defined in the interface
file of the class and are accessible once the class has been instantiated.

Working with properties: Properties are short ways of creating
getters and/or setters. Getters and setters get or set the values of the

underlying instance variable.

253

CHAPTER 8 PROGRAMMING BASICS IN OBJECTIVE-C

Looping with for-in: This feature offers a new way to iterate through
an enumerated list of items.

Using a storyboard to build an interface: The storyboard is nothing
more than a collection of views that makes it easy to create an app.

A simple data model: Using the Collection classes you learned
about, you used an NSMutableArray to construct a Bookstore object
and used it as a data source in your bookstore program.

Connect data to the view: You connected your Book object’s data to
the interface fields using Xcode.

Exercises

Perform the following tasks:

Add more books to the bookstore using the original program as a guide.

Enhance the Book class so it can store another attribute, such as a
price or ISBN number.

Modify BookDetailViewController so that the new fields are
displayed. Remember to connect an interface control to an outlet.

Change the Bookstore object so that a separate method is called to
initialize the list of Book objects (instead of putting them all in the
init method).

There is another attribute of a UITableViewCell called the
detailTextLabel. Make use of this by setting its text property to
something.

Using Xcode to modify the interface, play with changing the
background color of the DetailViewController.xib file.

For a tougher challenge:

254

Sort the books in the Bookstore object so they appear in ascending
order on the MasterDetailView.

CHAPTER 9

Comparing Data

In this chapter, we will discuss one of the most basic and frequent operations you will
perform as you program: comparing data. In the bookstore example, you may need to
compare book titles if your clients are looking for specific books. You may also need to
compare authors if your clients are interested in purchasing books by specific authors.
Comparing data is a common task performed by developers. Many of the loops you
learned about in the previous chapter will require you to compare data so that you know
when your code should stop looping.

Comparing data in programming is like using a scale. You have one value on one
side and another value on the other side. In the middle is an operator. The operator
determines what kind of comparison is being done. Examples of operators are “greater
than,” “less than,” and “equal to.”

The values on either side of the scale are usually variables. You learned about
the different types of variables in Chapter 3. In general, the comparison functions for
different variables will be slightly different. It is imperative that you become familiar with
the functions and syntax to compare data, as this will form a basis for your development.

For the purpose of this chapter, we’ll use the bookstore application. This application
will allow users to log into the application, search for books, and purchase them. We will
relate the different ways of comparing data to show how they would be used in this type
of application.

Revisiting Boolean Logic

In a previous chapter, we introduced Boolean logic. Because of its prevalence in
programming, we will revisit this subject in this chapter and go into more detail.

255
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_9

CHAPTER9 COMPARING DATA

The most common comparison that you will program your application to perform is
Boolean logic. Boolean logic usually comes in the form of if then statements. Boolean
logic can have only one of two answers: yes or no. The following are some good examples
of Boolean questions that you will use in your applications:

e Is5larger than 3?
e Does “now” have more than five letters?
o Is6/1/2010 later than today?

Notice that there are only two possible answers to these questions: yes and no. If you
are asking a question that could have more than two answers, that question will need to
be worded differently for programming.

Each of these questions will be represented by an if then statement (for example,
if 5 is greater than 3, then print a message to the user). Each if statement is required
to have some sort of relational operator. A relational operator can be something like “is
greater than” or “is equal to.”

To start using these types of questions in your programs, you will first need to
become familiar with the different relational operators available to you in the C and
Objective-C languages. We will cover them first. After that, we will look into how different
variables can behave with these operators.

Using Relational Operators

Objective-C uses six standard relational operators. These are the standard algebraic
operators with only one real change: in the Objective-C language, as in most other
programming languages, the “equal to” operator is made by two equal signs (==). In
Chapter 4, Table 4-7, we described the different operators available to you as a developer.

Note A single equal sign (=) is used to assign a value to a variable. Two equal
signs (==) are needed to compare two values. For example, if(x=9) will assign
the value of 9 to the variable x and return “yes” if 9 is successfully assigned

to x, which will be in most, if not all, of the cases. if(x==9) will actually do a
comparison to see if x equals 9.

256

https://doi.org/10.1007/978-1-4842-3429-7_4#Tab7

CHAPTER9 COMPARING DATA

Comparing Numbers

One of the difficulties developers had in the past was dealing with different data types in
comparisons. Earlier in this book, we discussed the different types of variables. You may
remember that 1 is an integer. If you want to compare an integer with a float such as 1.2,
this could cause some issues. Thankfully, Objective-C helps with this. In Objective-C,
you can compare any two numeric data types without having to typecast (typecasting is
still sometimes needed when dealing with other data types, and we cover this later in the
chapter). This allows you to write code without worrying about the numeric data types
that need to be compared.

Note Typecasting is the conversion of a variable from one type to another.

In the bookstore application, you will need to compare numbers in many ways. For
example, let’s say that the bookstore offers a discount for people who spend more than
$30 in a single transaction. You will need to add the total amount the person is spending
and then compare this to $30. If the amount spent is larger than $30, you will need to
calculate the discount. See the following example:

float totalSpent;
int discountThreshold;
int discountPercent;

discountThreshold = 30;
discountPercent = 0;
totalSpent = calculateTotalSpent();

if (totalSpent > discountThreshold) {
discountPercent = 10;

Let’s walk through the code. First, you declare the variables (totalSpent,
discountThreshold, and discountPercent). As discussed in Chapter 3, if the number
can contain decimals, you should declare it as a float rather than as an int. You know
that discountThreshold and the discountPercent will not contain decimals, so you
can declare these as ints. In this example, let’s assume that you have a function called
calculateTotalSpent, which will calculate the total spent in this current order. You then
simply check to see whether the total spent is larger than the discount threshold; if it

257

CHAPTER9 COMPARING DATA

is, you set the discount percent. Also notice that it was not necessary to tell the code to
convert the data when comparing the different numeric data types. As mentioned, this is
all handled by Objective-C.

Another action that requires the comparison of numbers is looping. As discussed in
Chapter 4, looping is a core action in development, and many loop types require some
sort of comparison to determine when to stop. Let’s take a look at a for loop:

int numberOfBooks;
numberOfBooks = 50;

for (int y = 1; y <= numberOfBooks; y++) {
doSomething();

In this example, you iterate, or loop, through the total number of books that you have
in the bookstore. The for statement is where the interesting stuff starts to happen. Let’s
break it down.

inty = 1;

This portion of the code is declaring y as an int and then assigning it a starting value
of 1.

y <= numberOfBooks;

This portion is telling the computer to check to see whether the counting variable y is
less than or equal to the total number of books you have in the store. If y becomes larger
than the number of books, the loop will no longer run.

y++

This portion of code increases y by 1 every time the loop is run.

258

CHAPTER9 COMPARING DATA

Creating an Example Xcode App

Now let’s create an Xcode application so that you can start comparing numeric data.
1. Launch Xcode. From Finder, go to the Applications folder.

2. Click Create a New Xcode project to open a new window. On the left side
of that window, under iOS, select Single View App. Click Next (Figure 9-1).

Note The Single View App template is the most generic and basic of the i0S
application types.

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform G|

Application

1] 3

h

R (=) -

Single View App Game Augmented Document Based Master-Detail App
Reality App App
. . .) - . g‘ .
e0 0_" % ..._‘ \.DD._ .. _>.'
Page-Based App Tabbed App Sticker Pack App iMessage App

Framework & Library

= gy LY
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library

Figure 9-1. Creating a new project

259

CHAPTER9 COMPARING DATA

3. On the next page, enter the name of your application. We used
Comparison as the name, but you can choose any name you like.

See Figure 9-2.

Choose options for your new project:

Product Name: Comparison

Team: Add account...
Organization Name: MyCompany
Organization Identifier: com.mycompany
Bundle Identifier: com.mycompany.Comparison
Language: Objective-C E

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 9-2. Entering the project name

Note Xcode projects, by default, are saved in the Documents folder in your
user home.

4. Click Next and choose a location to save your project. Once the
new project is created, you will see the standard Xcode window.
In the Comparison folder, you will see several files including
AppDelegate.mand AppDelegate.h. The .hfile is a header file,
and you will not be changing anything in that file at this moment.
For these examples, you will focus on the AppDelegate.mfile.

260

CHAPTER9 COMPARING DATA
5. Click the AppDelegate.mfile and you will see the following code:
#import "AppDelegate.h"
@interface AppDelegate ()
@end
@implementation AppDelegate

- (BOOL)application: (UIApplication *)application didFinishLaunching
WithOptions:(NSDictionary *)launchOptions {
// Override point for customization after application launch.
return YES;

6. Atthis point, the application will just launch and display a
window. You are going to add a little “Hello World” to your
application. After the line // Override point for customization
after application launch, add the following code:

NSLog(@"Hello World");

This line creates a new NSString with the contents "Hello World" and passes it to
the NSLog function that is used for debugging.

Let’s run the application to see how it works.
1. Click the Run button in the default toolbar.

2. The iOS simulator will launch. This will just display a window.
Back in Xcode, a debug window will appear at the bottom of the
screen, as shown in Figure 9-3. You can always toggle this window
by selecting View » Debug Area » Activate Console.

261

CHAPTER9 COMPARING DATA

was inactive. If the application was previously in the background, optionally refresh the user interface.

See also applicationDidEnterBackground:.

2017-12-1@ ©9:36:06.238502-8700 Comparison[7274:791@05] Hello World

All Output & ® iy | 100
Figure 9-3. Debugger window

Most of the information in this window will mean very little to you. The most
important line is the bold section that shows the output of your application. The first part
of the line shows the date, time, and name of the application. The “Hello World” part was
generated by the NSLog line that you added before.

1. Go backto the AppDelegate.mfile.

2. Go to the beginning of the line that begins with NSLog. This is the
line that is responsible for printing the “Hello World” section. You
are going to comment out this line by placing two forward slashes
(//) in front of the line of code. Commenting out code tells Xcode
to ignore it when it builds and runs the application. Code that is
commented out will not run.

3. Once you comment out the line of code, you will no longer see the
line in bold if you run the program because the application is no
longer outputting that text.

4. For the application to output the results of the comparisons, you
will have to add one line:

NSLog(@"The result is %@", (6>5 ? @"True" : @"False"));

Note The code snippet of (655 ? @"True" : @"False");is called a ternary
operation. It is essentially just a simplified way of writing an if/else statement.

262

CHAPTER9 COMPARING DATA

5. Place this line into your code. This line is telling your application
to print out “The result is.” Then it will print “True” if 6 is greater
than 5, or “False” if 5 is greater than 6. Because 6 is greater than 5,
it will print out “True.”

You can change this line to test any of the examples you have put together thus far in
this chapter, or any of the examples you will see later.
Let’s try another example:

int i = 5;
int y = 6;
NSLog(@"The result is %@", (y>i ? @"True" : @"False"));

In this example, you create an integer variable and assigned its value to 5. You then
create another integer variable and assigned the value to 6. You then changed the NSLog
example to compare the variables i and y instead of using actual numbers. When you
run this example, you will get the result shown in Figure 9-4.

2017-12-1@ 09:39:01.541734-0700 Comparison[7439:796646] The result is True

All Output & ® i |0

Figure 9-4. NSLog output

Let’s explore other kinds of comparisons, and then you will come back to the
application and test some of them.

Using Boolean Expressions

A Boolean expression is the easiest of all comparisons. Boolean expressions are used
to determine whether a value is true or false. False is defined as 0 and true as non-zero.
Here’s an example:

int j = 5;
if (3) {

some_code();

263

CHAPTER9 COMPARING DATA

The if statement will always evaluate to true because the variable j is not equal to
zero. Because of that, the program will run the some_code() method:

int j = 0;
if (3) {

some_code();

If you change the value of j, the statement will evaluate to false because j is now 0.
This can be used with BOOL and number variables.

int j = 0;
if (13) {
some_code();

Placing an exclamation point in front of a Boolean expression will change it to the
opposite value (a false becomes a true and a true becomes a false). This line now
asks “if not j,” which, in this case, is true because j is equal to 0. This is an example of
using an integer to act as a Boolean variable. As discussed earlier, Objective-C also has
variables called BOOL that have only two possible values: YES or NO.

Note Many programming languages use the terms TRUE and FALSE instead of
YES and NO used by Objective-C.

Let’s look at an example related to the bookstore. Say you have a frequent buyers
club that entitles all members to a 15 percent discount on all books they purchase. This
is easy to check. You simply set the variable clubMember to YES if they are a member and
NO if they are not. The following code will apply the discount only to club members:

int discountPercent;
BOOL clubMember;

clubMember = NO;

discountPercent = 0;

if (clubMember) {
discountPercent = 15;

264

CHAPTER9 COMPARING DATA

Comparing Strings

Strings are a difficult data type for most C languages. In ANSI C (or standard C), a string
is just an array of characters. Objective-C has taken the development of the string even
further and made it an object called the NSString. Many more properties and methods
are available when working with an object. Fortunately, NSString has many methods for
comparing data, which makes your job much easier.

While developing for the Mac, iPad, Apple TV, and iPhone, you will be able to use
both NSStrings and standard C strings. For the purposes of this book, you will focus
on comparing the NSString objects. If you have C type strings in your application, they
will need to be converted to NSStrings in order to use the code included in this book.
Fortunately, this conversion is simple:

char *myCString;
NSString *myNSString;

myCString = "testing a string";
myNSString = [NSString stringWithUTF8String: myCString];

The first two lines are code you have seen before. They are your variable
declarations. You are declaring a standard C string called myCString and an NSString
called myNSString. The third line is just a simple initialization of your standard C string.
You are assigning a value to it.

The last line is where everything happens. You are assigning your NSString object to
be equal to creating a new NSString object, with the value coming from the standard C
string you created. Once you have converted all of your standard C strings to NSStrings,
you can take advantage of the powerful comparison features provided by the class.

Let’s look at another example. This is a much easier and cleaner way to create an
NSString. Here, you will compare passwords to see whether you should allow a user to log in:

NSString *enteredPassword, *myPassword;

myPassword = @"duck";
enteredPassword = @"Duck";
BOOL continuelLogin = NO;

if ([enteredPassword isEqualToString:myPassword]) {
continuelogin = YES;

265

CHAPTER9 COMPARING DATA

The first line just declares two NSStrings. The next two lines initialize the strings.
Remember, before you use any objects, they need to be initialized. In your actual code,
you will need to get the enteredPassword string from the user. These lines use a shortcut.
Notice the @ symbol before the C-style string. The @ symbol creates a new NSString
from the C-style string that follows it.

The next line is the part of the code that actually does the work. You are sending a
message to the enteredPassword object asking it if it is equal to the myPassword string.
The method always needs to have an NSString passed to it. The example code will
always be false because of the capital D on the enteredPassword versus the lowercase d
on the myPassword.

Note If you need to compare two NSStrings, regardless of case, you simply use
the caseInsensitiveCompare method instead of the isEqualToString to
see if the result of this method is NSOrderedSame.

There are many other different comparisons you might have to perform on strings.
For example, you may want to check the length of a certain string. This is easily done,
like so:

NSString *enteredPassword;
NSString *myPassword;
myPassword = @"duck";
enteredPassword = @"Duck";
BOOL continuelogin = NO;

if ([enteredPassword length] > 5) {
continuelogin = YES;

This code checks to see whether the entered password is longer than five characters.
There will be other times when you will have to search within a string for some
data. Fortunately, Objective-C makes this easy to do. NSString provides a function
called rangeOfString, which allows you to search within a string for another string. The
function range0fString takes only one argument, which is the string for which you are
searching.

266

CHAPTER9 COMPARING DATA

NSString *searchTitle, *bookTitle;
searchTitle = @"Sea";
bookTitle = @"2000 Leagues Under the Sea";

if ([bookTitle rangeOfString:searchTitle].location != NSNotFound) {
// Calling a method to add it to results
//Do Something Here

This code is similar to other examples you have examined. This example takes a
search term and checks to see whether the book title has that same search term in it. If
it does, it adds the book to the results. This can be adapted to allow users to search for
specific terms in book titles, authors, or even descriptions.

Note All string searches are case sensitive by default. If you want to search
inside of a string, regardless of the case, you can change the preceding call from

[bookTitle rangeOfString:searchTitle];
to

[bookTitle rangeOfString:searchTitle options:NSCaseInsensitiv
eSearch];

For a complete listing of the methods supported by NSString, see the Apple
documentation at https://developer.apple.com/documentation/foundation/
nsstring.

Comparing Dates

Dates are a fairly complicated variable type in any language; unfortunately, depending
on the type of application you are writing, they are common. Objective-C previously
used the NSCalendarDate class, but it has been replaced with the more up-to-date
NSDate. The NSDate has a lot of nice methods that make comparing dates easy. We will
focus on the compare function. The compare function returns an NSComparisonResult,
which has three possible values: NSOrderedSame, NSOrderedDescending, or
NSOrderedAscending. See Listing 9-1 for an example.

267

https://developer.apple.com/documentation/foundation/nsstring
https://developer.apple.com/documentation/foundation/nsstring

CHAPTER9 COMPARING DATA

Listing 9-1. The Compare Function
NSDate *today = [NSDate date];

// Sale Date as of 10/15/2016

NSString *saleDateString = @"2016-10-15";

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateFormat:@"yyyy-MM-dd"];

NSDate *saleDate = [dateFormatter dateFromString:saleDateString];

NSComparisonResult result;
BOOL saleStarted;

result = [today compare:saleDate];

if (result == NSOrderedAscending) {
// Sale Date is in the future
saleStarted = NO;

} else if (result == NSOrderedDescending) {
// Sale Date is in the past
saleStarted = YES;

} else {
// Sale Date and Today are the same
saleStarted = YES;

This may seem like a lot of work just to compare some dates. Let’s walk through the
code to make sense of it.

NSDate *today = [NSDate date];

NSString *saleDateString = @"2016-10-15";

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateFormat:@"yyyy-MM-dd"];

NSDate *saleDate = [dateFormatter dateFromString:saleDateString];

Here, you declare two different NSDate objects. The first one, named today, is
initialized with the system date or your computer or iPad date. (For the purpose of this
example, let’s pretend today is July 4, 2016.) The second one, named saleDate, is created
from an NSDateFormatter with a date sometime in the future. You will use this date to

268

CHAPTER9 COMPARING DATA

see whether this sale has begun. We will not go into detail about the initialization of
NSDates, but they can be initialized using the NSDateFormatter class similar to what you
saw previously.

Note In most programming languages, dates are dealt with in a specific pattern.
They usually start out with the four-digit year followed by a hyphen, then a two-
digit month followed by a hyphen, then a two-digit day. If you are using a data
format with a time, this data is usually presented in a similar manner. Times are
usually presented with the hour, minute, and second, each separated by a colon.
Objective-C also has time zone support. The -0700 tells Objective-C that the time
is seven hours less than Greenwich Mean Time or Mountain Standard Time.

NSComparisonResult result;

The results of using the compare function of an NSDate object is an
NSComparisonResult. You have to declare an NSComparisonResult to capture the output

from the compare function.
result = [today compare:saleDate];

This simple line runs the comparison of the two dates. It places the resulting
NSComparisonResult into the variable called result

if(result == NSOrderedAscending) {
// Sale Date is in the future
saleStarted = NO;

} else if (result == NSOrderedDescending) {
// Sale Date is in the past
saleStarted = YES;

} else {
// Sale Date and Today are the same
saleStarted= YES;

Now you need to find out what value is in the variable result. To accomplish this,
you perform an if statement that compares the result to the three different options for
the NSComparisonResult. The first line finds out if the sale date is greater than today’s

269

CHAPTER9 COMPARING DATA

date. This means that the sale date is in the future, and thus the sale has not started. You
then set the variable saleStarted to NO. The next line finds out whether the sale date is
less than today. If it is, then the sale has started and you set the saleStarted variable to
YES. The next line just says else. This captures all other options. You know, though, that
the only other option is NSOrderedSame. This means that the two dates are the same, and
thus the sale is just beginning.

There are other methods that you can use to compare NSDate objects. Each of these
methods will be more efficient at certain tasks. We chose the compare method because it
can handle most of your basic date comparison needs.

Note Remember that an NSDate holds both a date and a time. This can affect
your comparisons with dates because it not only compares the date but the time.

Combining Comparisons

As discussed in Chapter 4, sometimes something more complex than a single
comparison is needed. This is where logical operators come in. Logical operators enable
you to check for more than one different requirement. For example, if you have a special
discount for people who are members of your book club and who spend more than $30,
you can write one statement to check this, like so:

float totalSpent;

int discountThreshold;
int discountPercent;
BOOL clubMember = YES;

discountThreshold = 30;
discountPercent = 0;
totalSpent = calculateTotalSpent();

if (totalSpent > discountThreshold && clubMember) {
discountPercent = 15;

This is a combination of two of the examples from earlier. The new comparison line
reads as follows: if totalSpent is greater than discountThreshold AND clubMember is

270

CHAPTER9 COMPARING DATA

true, then you set the discountPercent to 15. For this if statement to return YES, both
items need to be true. | | can be used instead of && to signify “or” You can change the
earlier line to this:

if (totalSpent > discountThreshhold || clubMember) {
discountPercent=15;

Now this reads as follows: if totalSpent is greater than discountThreshold OR
clubMember is true, then set the discount percent. This will return YES if either of the
options is true.

You can continue to use the logical operations to string as many comparisons
together as you need. In some cases, you may need to group comparisons together using
parentheses. This can be more complicated and is beyond the scope of this book.

Using the switch Statement

Up to this point, you've seen several examples of comparing data by simply using the if
statement or the if/else statements:

if (someValue == SOME_CONSTANT) {
} else if (someValue == SOME_OTHER_CONSTANT) {

} else if (someValue == YET _SOME_OTHER CONSTANT) {

If you need to compare a specific ordinal type to several constant values, you can use
a different method that can simplify the comparison code: the switch statement.

Note An ordinal type is a built-in C data type that can be ordered. Examples are
int, long, char, and BOOL.

The switch statement allows the comparison of one or more constant values against
the ordinal data type. This is important to understand. The switch statement does not

271

CHAPTER9 COMPARING DATA

allow the comparison of the ordinal type to a variable. Listing 9-2 shows an example of a
proper switch statement.

Listing 9-2. A Proper switch Statement

char value;
value = 'd’';

switch (value)

{ // The switch statement followed by a begin brace

case 'a': // Equivalent to if (value == 'a")
// Call functions and put any other statements here after the
case.

break; // This indicates that this is the end of the “case 'a':"
case 'b':

break;
case 'c': // If there is a case without a break, the program continues.
case 'd': // If value is a 'c' or a 'd', this code will be executed.

break;

default: // Default is optional and is only used if there is no case
statement
// for 'value'. So, if value was equal to 'x', the default part
of the switch
// statement will be executed since there is no “case 'x':"
present.

break;

} // End of the switch statement.

The switch statement is powerful, and it simplifies and streamlines comparisons
of an ordinal type to several possible constants. That said, this is also the limiting factor
of the switch statement. It is not possible, for example, to use the switch statement
to compare an NSString variable to a series of string constants. This is because an

272

CHAPTER9 COMPARING DATA

NSString value is not an ordinal type. The switch statement also must compare an
ordinal type to a constant. Therefore, it is not possible to write this:

switch (value) {
case variable: // case must be a constant, not a variable.

break;

While it does seem that these are severe limitations to the switch statement, the
switch statement is still a powerful statement that can be used to simplify certain
if/else statements.

Summary

You've reached the end of the chapter! Here is a summary of the key things that were
covered:

o Comparisons: Comparing data is an integral part of any application.

o Integers: Integers are the easiest pieces of information to compare.
You learned how comparison of integers will be used in your
programs and how to implement it.

e Examples: You created a sample application where you could test
your comparisons and make sure that you are correct in your logic.
You also learned how to change the application to add different types
of comparisons.

e Boolean: You learned how to check Boolean values.

o Strings: You learned how strings behave differently from other pieces
of information you have tested. You learned some of the pitfalls of
comparing strings.

273

CHAPTER9 COMPARING DATA

Exercises

Perform the following tasks:

e Modify the example application to compare some string information.
This can be in the form of either a variable or a literal.

e Create a loop in your application to display a number using the
methods you learned in the Boolean portion of the chapter.

e Write an Objective-C app that determines whether the following
years are leap years: 1800, 1801, 1899, 1900, 2000, 2001, 2003, and
2010. Output should be written to the console in the following format:
“The year 2000 is a leap year.” or “The year 2001 is not a leap year.”

274

CHAPTER 10

Creating User Interfaces

Interface Builder is the part of the Xcode application that enables iOS and macOS
developers to easily create their user interfaces. It provides the ability to build user
interfaces by simply dragging objects from Interface Builder’s library to use within your app.

Interface Builder stores your user interface design in one or more resource files. The
two types of user interface resource files are storyboards and XIBs. These resource files
represent your app’s interface objects and their relationships.

To build a user interface, simply drag objects from Interface Builder’s Library pane
onto your views. To connect these user interface objects to your app’s code, you will
use two key components of Interface Builder that help you streamline the development
processes: actions and outlets.

Actions are events (like button clicks) that your view objects trigger that are
connected to methods in your app’s code. Outlets (data pointers) declared in your

object’s interface file are connected to specific property data members. See Figure 10-1.

275
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_10

CHAPTER 10 CREATING USER INTERFACES

e » Ay RancomMumber | [Phons X Firashed running RandamNumnber on iPhone X
BERQ © B o BB < B Randoebumber RardomNumber Main orybosns Man wiorybosed (Basel | No Selection
¥ [@ Randombhumbar v [View Controlier Scene
¥ Sl Randcrihambas w) View Controlier =
v [Controliors v [view » B
H ViewContreesh Safe rea
m ViewContrater.m L] Randiom Nusbor Labe!
» I Views & Generate Random Number
¥ (1] Models T First fresponder
Eea
S20ryboard Entry Foint
Generate Random Mumber
Label
O View ax iPhone 8 [~ C R) wes 4

Figure 10-1. Interface Builder

Understanding Interface Builder

O(eao
View Controller - & comobes that
Storyboard Reference - Froviades &
paceraide for a view coarioler I 3

L]

Navigatien Cantrefler - &
CONFOBEN (3t MANIQRE Naviganisn
1hrough 3 hisrarchry of views

Table View Contraller - &
CONIPSBe! INAT MANaes 4 1abie vw

Collection View Contraller - &

ONtTOser 1Rt Manages 3 cobecton

Page View Controller - Prasents 3
ERIUENCE O Wiew CONLIONBIE 3

GLRR View Controlber - A
CONMPoBer (3t Manages 3 GLIK view

Interface Builder saves the user interface files as one or more bundles that contain the

interface objects and relationships used in the application. These bundles have the file

extension .storyboard or .XIB.

Unlike most other graphical user interface applications, storyboards and XIBs are

often referred to as “freeze-dried” because they contain the archived objects themselves

and are ready to run.

Storyboards and XIBs utilize the XML file format in order to better facilitate storage

with source control systems like Subversion and Git.

In the next section, we'll discuss an app design pattern called Model-View-Controller.

This design pattern enables developers to easily maintain code and reuse objects over

the life of an app.

276

CHAPTER 10 CREATING USER INTERFACES

The Model-View-Controller

Model-View-Controller (MVC) is the most prevalent design pattern used in iOS and
macOS development, and learning about it will make your life as a developer much
easier. MVC is used in various other types of software development and is known as an
architectural pattern.

Architectural patterns describe solutions to software design problems that
developers can use in their code. The MVC pattern is not unique to Apple OOP
developers; it has been adopted by many makers of IDEs, including those running on
Windows and Linux platforms.

Software development is considered an expensive and risky venture for businesses.
Frequently, apps take longer than expected to write, come in over budget, and don'’t
work as promised. OOP produced a lot of hype and gave the impression that companies
would realize savings if they adopted its methodology, primarily because of the
reusability of objects and easier maintainability of the code. Initially, this didn’t happen.

As engineers looked at why OOP wasn'’t living up to these expectations, they
discovered a key shortcoming with how developers were designing their objects:
developers were frequently mixing objects together in such a way that the code became
difficult to maintain as the application matured, as the application moved to different
platforms, or as hardware displays changed.

Objects were often designed so that, if any of the following changed, it was difficult to
isolate the objects that were impacted:

¢ Business rules
e User interface
¢ Client-server communication

Objects can be broken down into three task-related categories. It is the responsibility
of the developer to ensure that each of these categories keeps their objects from drifting
across to other categories.

e Models: Data objects
e Views: User interface objects

e Controllers: Objects that communicate with both the models and

the views

277

CHAPTER 10 CREATING USER INTERFACES

As objects are categorized in these groups, apps can be developed and maintained
more easily over time. The following are examples of objects and their associated MVC
category for an iPhone banking application:

Model:
e Account balances
e User encryption
e Account transfers
e Accountlogin
View:
e Account balances table cell
e Accountlogin spinner control
Controller:
e Account balance view controller
e Account transfer view controller
e Logon view controller

The easiest way to remember and classify your objects in the MVC paradigm is the
following:

Model: Unique business or application rules or data that represent
the real world

View: Unique user interface code

Controller: Anything that controls or communicates with the
model or view objects

278

CHAPTER 10 CREATING USER INTERFACES

Figure 10-2 represents the MVC paradigm.

View

N/

Controller

Figure 10-2. MVC paradigm

Neither Xcode nor Interface Builder force developers to use the MVC design pattern.
It is up to the developer to organize their objects in such a way to use this design pattern.
It is worth mentioning that Apple strongly embraces the MVC design pattern and all
of the frameworks are designed to work in an MVC world. This means that if you also
embrace the MVC design pattern, working with Apple’s classes will be much easier.
If you don’t, you'll be swimming upstream.

Human Interface Guidelines

Before you get too excited and begin designing dynamic user interfaces for your app, you
need to learn some of the ground rules. Apple has developed one of the most advanced
operating systems in the world with the iOS operating system. Additionally, Apple’s
products are known for being intuitive and user-friendly. Apple wants users to have the
same experience from one app to the next.

To ensure a consistent user experience, Apple provides developers guidelines on
how their apps should look and feel. These guidelines, called the Human Interface
Guidelines (HIG), are available for iOS, macOS, watchOS, tvOS, and CarPlay. You can
download these docs at https://developer.apple.com/design/. See Figure 10-3.

279

https://developer.apple.com/design/

CHAPTER 10 CREATING USER INTERFACES

& Developer [Bsign Durerirs Dintritrate Sappen sccmunt 1 & Developer Dibceve e [Dbttt E— e

Human Interface Guidelines es- Human Interface Guidelines

macOS Design Themes
Faur primary thimes Stierentate macOS spps from 08, 1vOS, sad witehOS appd. Kes the:ve Mermes i mind il you

iOS Design Themes g e s e,

25,301 400 desgner,

4 that risss 0 the 1op of e Aap Siore

Expansive
L

arge, high-reschatior

Figure 10-3. Apple’s HIGs for iOS and macOS

p

Note Apple’s HIG is more than recommendations or suggestions. Apple
takes it very seriously. While the HIG doesn’t describe how to implement your
user interface designs in code, it is great for understanding the proper way to
implement your views and controls.

The following are the top reasons apps are rejected in Apple’s iTunes App Store:
e The app crashes.

It violates the HIG.

It uses Apple’s private APIs.

It doesn’t function as advertised on iTunes App Store.

You can read, learn, and follow the HIG before you develop your app, or you can
read, learn, and follow the HIG after your app gets rejected by Apple and you have to
rewrite part or all of it. Either way, all iOS developers end up becoming familiar with
the HIG.

Many new iOS developers find this out the hard way, but if you follow the HIG from
day one, your iOS development will be a far more pleasurable experience.

280

CHAPTER 10 CREATING USER INTERFACES

Creating an Example iPhone App with
Interface Builder

Let’s get started by building an iPhone app that generates and displays a random
number. See Figure 10-4. This app will be similar to the app you created in Chapter 4,
but you’ll see how much more interesting the app becomes with an iOS user
interface (UI).

Generate Random Number

Figure 10-4. Completed iOS random number generator app

281

CHAPTER 10 CREATING USER INTERFACES

1. Open Xcode and select Create a new Xcode project.

Make sure you select a Single View App for iOS. See Figure 10-5.

Choose a template for your new project:

m watchOS tOS macOS Cross-platform I @

Application

Tl

%«}

&

000 | 4 wes

Page-Based App Tabbed App

Framework & Library

= o
Cocoa Touch Cocoa Touch
Framework Static Library
Cancel

AR = -

Augmented Document Master-Detail App
Reality App Based App
oo N
ao i
Sticker Pack App iMessage App
Metal Library

Figure 10-5. Selecting the iOS Single View App template

282

CHAPTER 10 CREATING USER INTERFACES

2. Name your project RandomNumber, select the language as

Objective-C, and save the project. See Figure 10-6.

Chaanse antions for vour new project:
Your new product’s name

Cancel

Product Name:
Team:
Organization Name:

Organization identifier:

Bundle Identifier:

Language:

RandomNumber b—

The Zonie, LLC
The Zonie, LLC

com.thezonie
com.thezonie.RandomNumber

Objective-C F— o

Use Core Data
Include Unit Tests
Include Ul Tests

Previous

Figure 10-6. Naming your iOS project

Next

283

CHAPTER 10 CREATING USER INTERFACES

3. Your project files and settings are created and displayed.
See Figure 10-7.

ece » o Rancombumber | [l iPhane X Randombumber: Ready | Today at 5:16 A = 2 <00 00
BERR QA B o @|HE B Ramscmbumoer [)
¥ [Rendombumbar [m] Ganera Capabinies Resource Tags infs Buid Sattings Buid Prases B Aues Sk el
- -~
e PROKET T
o AceCelegute v identity o Quic
B Rarcomburiber
= AopDurgslen Search Documentaricn
I ViewControlier.n TARDETS Bisplay Marews
= Buncie identifier com thezorie. RancomNumber
Main storytoscd
[Assets wcassess Verslon |10
LaunenSeroen storytaarg Buld 1
o plst
m man.m EE
» L Proguces ¥ Wmng
 Deployment info
Deployment Target B
Devicor _ Univeres B
M Wnacticn [ungin]
Duvice Origmation) Porrait
Upwide Dewe
B Lardgscann Lett
B Larascape Right
Status Bar Style Default B
Hide status bar
Aisgquires full sereen
¥ App leans and Launch Images
Agp kons Source Appicon Be
Lawrch Images Source Use Asset Catwiog
Launch Screen File LaunchSereen -] 00 @:

¥ Embedded Binaries

¥ Linked Frameworks and Librarios

Figure 10-7. Source files

Although you have only one controller in this project, it's good programming practice
to make your MVC groups at the beginning of your development. This helps remind
developers to keep to the MVC paradigm and not put all of their code unnecessarily in
their controller.

284

CHAPTER 10 CREATING USER INTERFACES

4. Right-click the RandomNumber project and then select New
Group. See Figure 10-8.

ece » | % RandomNumber | Ji§ iPhone X RondomNumber: Ready | Today at 5:17 AM
B EHR QAC =o B B » B RandomNumber
¥ [£) RancomNumber [} General Capabiities Resource Tags Info Build Settings Bui'd Phases. Build Rules

Show in Finder

h| AppDelegate.t ¥ Identity

o Open with External Editor Roer

m AppDelegate.n Open As > .

h) ViewControlel o ow File Inspector = Display Name

= 5 F Bundle Identifier | com.thezonie.RandomNumber

| Mainstoryboal New File...

|55 Assets.xcassel Add Files to “RandomNumber .. Version 1.0

| LaunchScreen Delete Build 1

m main.m New Group .)

» . Products New Group without Folder Signing
= ¥ Deployment Info
Sort by Name
Sort by Type Deployment Target n
Find in Selected Groups... Owices. | towacesl B
Source Control - Main Interface Main
Project Navigator Help Device Orientation @ Portrait
Upside Down
Landscape Left
Landscape Right
Status Bar Style Default 2]

Hide status bar
| Requires full screen

Figure 10-8. Creating new groups

5. Create a Models Group, a Views Group, and a Controllers Group.

285

CHAPTER 10 CREATING USER INTERFACES

6. Dragthe ViewController.mand .h files into the Controllers
Group. See Figure 10-9.

B &8 Q& © 2 o B

v B RandomNumber

¥ | | RandomNumber

v | | Controllers
h ViewController.h
m ViewController.m
| | Views
v | | Models
Main.storyboard
LaunchScreen.storyboard
h AppDelegate.h
m AppDelegate.m
|55 Assets.xcassets
Info.plist
m main.m
P . | Products

Figure 10-9. MVC groups with controller and storyboard files organized

Developers have found it helpful to keep their storyboard and XIB files
with their controllers as their projects grow. It is not uncommon to have
dozens of controllers, storyboards, and XIB files in your project. Keeping
them together helps keep everything organized.

7. Click the Main.storyboard file to open Interface Builder.

286

CHAPTER 10 CREATING USER INTERFACES

Using Interface Builder

The most common way to launch Interface Builder and begin working on your view is to
click the storyboard or XIB file related to the view. See Figure 10-10.

- R é RandomNumber Ran...mber Mai...card Mai..ase) View Controller Scene View Controller 0O E ¢ 0 &
v View Controller Scene Custom Class
¥ () View Controlier | Class ViewControlier o
> View Module n

(i First Responder Inherit Module From Target

2o D=
Storyboard Entry Pol.. Identity
Steryboard ID
Restoration ID
Use Storyboard 1D
User Defined Runtime Attributes
Key Path Type Value
+
Decument
Label
x
Object ID BYZ-38-t0r
Lock | Inherited - (Nothing) B
3 Notes B - [@ .
f— M
0O 0OeDO
View Controller - A contralier that
manages a view.
Storyboard Reference - Provides a
placehoider for 3 view controller in an
external storyboard.
Navigation Controller - &
< contraller that manages navigation
through a hierarchy of views
Table View Controller - &
controller that manages a table view.
Collection View Controller - &
controller that manages a collection
view,
E [Viewas:iPhone8 («CrR) — 100% -+ = o tal| B3 |@®

Figure 10-10. Interface Builder window

When Interface Builder opens, you can see your view displayed in the canvas. You
are now able to design your user interface. First, you must understand some of the
subwindows within Interface Builder.

287

CHAPTER 10 CREATING USER INTERFACES

The Document Outline

The Document window shows all the objects that your view contains. Here are some
examples of these objects:

e Buttons

o Labels

o Textfields

e Web views

o Map views

o Picker views

e Table views

Note You can expand the width of the Document Outline to see a detailed list of
all your objects. See Figure 10-11. To get more real estate for the canvas, you can
shrink or remove your file list window.

B < [RandomNumber Ran..mber) [Mal.oarg Mal_ase) Wigw Controlier Scene. Vigw Contralier

v View Controlior Scone
v | viow
©]] Sate Arca
T First Rospander D
E et

Storyboard Entry Point

@
c]

0 View as: Phone 8 (.C »R} 100% -+ =, o kel
Figure 10-11. The Document window'’s width is expanded to show a detailed
view of all the objects in your scene
288

CHAPTER 10 CREATING USER INTERFACES

The Object Library

The Object Library is where you can exploit your creativity. It’s a smorgasbord of objects
that you can drag and drop into the view window. Note that the Object Library pane can
grow and shrink by moving the window splitter. See Figure 10-12.

%) < B [Main.storyboard Main.storyboard (Base) | No Selection DeR@AvI o
¥ [View Controller Scene
¥ L) View Controller No Sefpction
v || View
o Safe Area L |
- - TH |
0 First Responder P B O 16 O
= exit

Storyboard Entry Point .
S B View Contrafler - A controller that

manages a v

Storyboard Reference - Provides a
placehoider for a view controller in an
ex1ernal storyboard.

controlier that manages navigation

(Navigation Controller - &
through a hlerarchy of views.

Table View Controller - &
controlier that Manages a table view.

Collection View Controller - 4
controller that manages a collection
view.

1 Tab Bar Controller - A controlier
tNat manages 3 set of view conirollers
that represent tab bar items.

N/

Split View Controller - &
composite view controller that
manages left and right view controlle

Page View Controller - Prasents a
sequence of view controliers as
pages.

GLKit View Controller - 4
controller that manages a GLKIT view.

AVKit Player View Controller - &
View controller that manages a
AVPlayer object.

Object - Provides a template for
objects and controliers not airectly
avallable in Interface Builder,

b I Label - A variably sized amount of
La e static text.

&] Viewas:iPhone8 («CsR) — 100% -+ = o tal| B8 |®

Figure 10-12. Expand the Object Library pane to see more controls. Slide the
splitter with the mouse to resize the window.

289

CHAPTER 10 CREATING USER INTERFACES

Creating the View

The random number generator will have two objects in the view: one Label object and
one Button object. The button will generate the random number, and the label will show
the random number generated by the app.

1. Drag a Label object from the Object Library pane to the View window.
2. Draga Button object from the Object Library pane to the View window.

3. Double-click the button and change the name of it to Generate
Random Number. See Figure 10-13.

Generate Random Number

Label

Figure 10-13. Placing objects in the view

290

CHAPTER 10 CREATING USER INTERFACES

You now have the ability to quickly and easy connect your outlets and actions to your
code. All you have to do is drag and drop.

4. Click the Assistant Editor icon at the top right of the screen.
This will display the .m file for the scene you are working on.
See Figure 10-14.

B Randomtumber RangomMumbor | [Main.gterybosrd Main storyboord (Base] | Mo Solection - T Marugi + [RandomNumber | (1] Randemsmber Cortralion | m ViewContralonm | No Solection

crmarek on 13/9/17.
The Zeie, LLC. ALl rights reserved.

Label

[supar didReceiveMen:
/1 Dispose of any resources

¥

Figure 10-14. Using the Assistant Editor to display the .m file for the scene you are
working with.

Using Outlets

Now you can connect your label to your code by creating an outlet.

1. Control-drag from the label in the view to inside the @interface.
See Figure 10-15.

291

CHAPTER 10 CREATING USER INTERFACES

/"
] 2 [/ viewController.m

3 // RandomNumber

& I

5 f/ Created by Stefan Kaczmarek on 12/9/17.
¢ [/ Copyright ® 2017 The Zonie, LLC. All rights reserved.
7 I

9 #import "ViewController.h"

Generate Random Number 11 _@interface ViewController ()

P Insert Outlet or Outlet Collection

end

@implementation ViewController

7 = (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typ

// Dispose of any resources that can be recreated.

71 = (void)didReceiveMemoryWarning {
%; [super didReceiveMemoryWarningl;

7 Pend

Figure 10-15. Control-drag and drop to create the code for the
randomNumberLabel outlet

A pop-up window will appear. This enables you to name and specify the type of outlet.

2. Complete the pop-up as shown in Figure 10-16 and click the

Connect button.
1/
2 // ViewController.m
[3 E] 3 // RandomNumber
& 1
5 // Created by Stefan Kaczmarek on 12/9/17.
& // Copyright ® 2817 The Zonie, LLC. All rights reserved.
I
o T

object (@ View Controller ; #import "ViewController.h"

Generate Ran Name | randomNumberLobe! < TERTTemreneont 1ol 1eT ()

Type |UlLabe!

E% Rend
Storage | Weak - =

[
M Cancel [Connect | & @implementation ViewController
~0—o 16

- (void)viewDidLoad {
18 [super viewDidLoad];
// Do any additional setup after loading the view, typ

Figure 10-16. Pop-up for randomNumber outlet

292

CHAPTER 10 CREATING USER INTERFACES

This creates a private property, accessible from only the class.

The code is now created for the outlet, and the outlet is now connected to the Label
object in the storyboard file. The shaded circle next to line number 12 indicates the
outlet is connected to an object in the storyboard file. See Figure 10-17.

/I ViewController.m
RandomNumber

&
(0]
g

// Created by Stefan Kaczmarek on 12/9/17.
// Copyright ¢ 2817 The Zonie, LLC. All rights reserved.

*viewContreoller.h®
Generate Random Number nterface ViewController ()
® @property (weak, nonatomic) IBOutlet UILabel »randomMumberLabel;

Label @implementation ViewController

- (void)viewDidLoad {

[super viewDidLoad);

// Do any additional setup after loading the view, typically from a nib.
}

Figure 10-17. Outlet property code generated and connected to the Label object

There is also a declaration that may be new to you called an IBOutlet, commonly
referred to as an outlet. Qutlets signal to your controller that this property is a pointer
to another object that is set up in Interface Builder. IBOutlet will enable Interface
Builder to see the outlet and enable you to connect the property to the object in
Interface Builder.

Using the analogy of an electrical wall outlet, these outlets are connected to objects.
Using Interface Builder, you can connect these properties to the appropriate object.

293

CHAPTER 10 CREATING USER INTERFACES

Connecting Actions and Objects

User interface object events, also known as actions, trigger methods.
Now you need to connect the object actions to the buttons.

1. Control-drag from the Generate Random Number button to
above the @end and drop. Complete the pop-up as indicated in
Figure 10-18 and click the Connect button.

2 ff ViewController.m

®» B // RandomNumber
'
// Created by Stefan Kaczmarek on 12/9/17.
/f Copyright & 2017 The Zonie, LLC. All rights reserved.
i
#import "ViewController.h®
(=) o Q
g;er-:-'alc- -%nlldon: N.:n‘l:c—ﬁ @interface ViewController ()
& @property (weak, nonatomic) IBOutlet UlLabel srandomNumberLabel;
Send
Label 2implementation ViewController
= (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typicaelly from a nib.
}
% = (void)didReceiveMemoryWarning {
Cennection | Action L [super didReceiveMemorywarningl;

Object View Controlier 2| B /f Dispose of any resources that can be recreated.

Name | generate -

Type | UiButton

Event | Touch Up Inside 0 @end

Arguments | Sender a
Cancel Connect

|
Figure 10-18. Complete the pop-up for the generate: method.

Implementation File

All that is left is to complete the code for your outlet and actions in the implementation
file for the controller.

Open the ViewController.mfile and complete the generate: method. See
Figure 10-19.

294

CHAPTER 10 CREATING USER INTERFACES

® =~ (IBAction)generate:(UIButton *x)sender {
int randomNumber = (arc4random() % 100) + 1;
self.randomNumberLabel.text = [NSString stringWithFormat:@"%i", randomNumber);

}

Figure 10-19. The generate: method is complete

The generate: method generates a random number between 1 and 101 inclusive.

The method setText: sets the UILabel text in your view. The connections you
established in Interface Builder from your outlet to the Label object do all the work
for you.

That’s it!

To run your iPhone app, click the Run button, and your app should launch in the
simulator. See Figure 10-20.

Generate Random Number

Figure 10-20. The completed random number generator app running in the
iPhone simulator

To generate the random number, tap Generate Random Number.

295

CHAPTER 10 CREATING USER INTERFACES

Summary

Great job! Interface Builder saves you a lot of time when creating user interfaces. You
have a powerful set of objects to use in your application and are responsible for a
minimal amount of coding. Interface Builder handles many of the details you would
normally have to deal with.

You should be familiar with the following terms:

e Storyboard files

e Model-View-Controller

e Architectural pattern

e Human Interface Guidelines
e Outlets

e Actions

Exercises

Perform the following tasks:

o Extend the random number generator app to show a date and time in
a Label object when the app starts.

o After showing a date and time label, add a button to update the data
and time label with the new time.

296

CHAPTER 11

Storing Information

As a developer, there will be many different situations in which you will need to store
data. Users will expect your application to remember preferences and other information
each time they launch it. Previous chapters discussed the MyBookstore app. With this
app, users will expect your application to remember all of the books in the bookstore.
Your application will need a way to store this information, retrieve it, and possibly search
and sort this data. Working with data can sometimes be difficult. Fortunately, Apple
provides methods and frameworks to make this process easier.

This chapter will discuss two different formats in which data will need to be stored.
It will discuss how to save a preference file for an iOS device and then discuss how to use
a SQLite database in your application to store and retrieve data.

Storage Considerations

There are some major storage differences between the Mac and the iPhone, and these
differences will affect how you work with data. Let’s start by discussing the Mac and how
you will need to develop for it.

On the Mac, by default, applications are stored in the Applications folder. Each user
has their own home folder where preferences and information related to that user are
stored. Not all of the users will have access to write to the Applications folder or to the
application bundle itself.

On the iPhone and iPad, developers do not need to deal with different users. Every
person who uses the iPhone has the same permissions and the same folders. There are
some other factors to consider with the iPhone, though. Every application on an iOS
device is in its own sandbox. This means that files written by an application can be seen
and used only by that individual application. This makes for a more secure environment
for the iPhone, but it also presents some changes in the way you work with data storage.

297
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_11

CHAPTER 11 STORING INFORMATION

Preferences

There are some things to consider when deciding where to store certain kinds of
information. The easiest way to store information is within the preferences file, but this
method has some downsides.

o All of the data is both read and written at the same time. If you are
going to be writing often or writing and reading large amounts
of data, this could take time and slow down your application. As
a general rule, your preferences file should never be larger than
100KB. If your preferences file starts to become larger than 100KB,
consider using Core Data as a way to store your information.

o The preferences file does not provide many options when it comes to

searching and ordering information.

The preferences file is really nothing more than a standardized XML file
with accompanying classes and methods to store application-specific
information. A preference would be, for example, the sorting column and direction
(ascending/descending) of a list. Anything that is generally customizable within an app
should be stored in a preferences file.

Note Sensitive data should not be stored in the preferences file or in a database
without additional encryption. Luckily, Apple does provide a way to store sensitive
information. It is called the keychain. Securing data in the keychain is beyond the
scope of this book.

Writing Preferences

Apple has provided developers with the NSUserDefaults class; this class makes it easy
to read and write preferences for iOS and macOS. The great thing is that, in this case,
you can use the same code for iOS and macOS. The only difference between the two
implementations is the location of the preferences file.

298

CHAPTER 11 STORING INFORMATION

Note For macOS, the preferences file is named com.yourcompany.
applicationname.plist and is located in the /Users/username/Library/
Preferences folder. On i0S, the preferences file is located in your application
bundle in the /Library/Preferences folder.

All you need to do to write preferences is to create an NSUserDefaults object. This is
done with the following line:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

This instantiates the prefs object so you can use it to set preference values. Once you
have instantiated the prefs object, you need to set the preference keys for the values that
you want to save. The MyBookstore app example will be used to demonstrate specific
instructions throughout this chapter. When running a bookstore, you might want to
save a username in the preferences. You also might want to save things such as a default
book category or recent searches. The preferences file is a great place to store this type of
information because this is the kind of information that needs to be read-only when the
application is launched.

Also, on i0S, it is often necessary to save your current state. If a person is using your
application and then gets a phone call, you want to be able to bring them back to the
exact place they were in your application when they are done with their phone call. This
is less necessary now with the implementation of multitasking, but your users will still
appreciate it if your application remembers what they were doing the next time they
launch it.

Once you have instantiated the object, you can just call setObject:forKey: to set
an object. If you want to save the username of sherlock.holmes, you call the following
line of code:

[prefs setObject:@"sherlock.holmes" forKey:@"username"];

You can use setInteger, setDouble, setBool, setFloat, and setURL instead of
setObject, depending on the type of information you are storing in the preferences file.
Let’s say you store the number of books a user wants to see in the list. Here is an example
of using setInteger to store this preference:

[prefs setInteger:10 forKey:@"booksInList"];

299

CHAPTER 11 STORING INFORMATION

After a certain period of time, your app will automatically write changes to
the preferences file. You can force your app to save the preferences by calling the
synchronize method, but this is not necessary in most cases. To call the synchronize
method, you write the following line:

[prefs synchronize];

With just three lines of code, you are able to create a preference object, set two
preference values, and write the preferences file. It is an easy and clean process. Here is
all of the code:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];
[prefs setObject:@"sherlock.holmes” forKey:@"username"];
[prefs setInteger:10 forKey:@"booksInList"];

Reading Preferences

Reading preferences is similar to writing preferences. Just like with writing, the first step
is to obtain the NSUserDefaults object. This is done in the same way as it was done in
the writing process:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

Now that you have the object, you are able to access the preference values that are
set. For writing, you use the setObject syntax; for reading, you use the stringForKey
method. You use the stringForKey method because the value you put in the preference
was an NSString. In the writing example, you set preferences for the username and for
the number of books in the list to display. You can read those preferences by using the
following simple lines of code:

NSString *username = [prefs stringForKey:@"username"];
NSInteger booksInList = [prefs integerForKey:@"booksInList"];

Pay close attention to what is happening in each of these lines. You start by declaring
the variable username, which is an NSString. This variable will be used to store the
preference value of the username you stored in the preferences. Then, you just assign it
to the value of the preference username. You will notice that in the read example you do
not use the synchronize function. This is because you have not changed the values of
the preferences; therefore, you do not need to make sure they are written to a disk.

300

CHAPTER 11 STORING INFORMATION

Databases

You learned how to store some small pieces of information and retrieve them at a later
point. What if you have more information that needs to be stored? What if you need to
conduct a search within this information or put it in some sort of order? These kinds of
situations call for a database.

A database is a tool for storing a significant amount of information in a way that it
can be easily searched or retrieved. When using a database, usually small chunks of the
data are retrieved at a time rather than the entire file. Many applications you use in your
daily life are based on databases of some sort. Your online banking application retrieves
your account activity from a database. Your supermarket uses a database to retrieve
prices for different items.

A simple example of a database is a spreadsheet. You may have many columns and
many rows in your spreadsheet. The columns in your spreadsheet represent different
types of information you want to store. In a database, these are considered attributes.
The rows in your spreadsheet would be considered different records in your database.

Storing Information in a Database

Databases are usually an intimidating subject for a developer; most developers associate
databases with enterprise database servers such as Microsoft SQL Server or Oracle.
These applications can take time to set up and require constant management. For most
developers, a database system like Oracle would be too much to handle. Luckily, Apple
has included a small database engine called SQLite in iOS and macOS. This allows you to
gain many of the features of complex database servers without the overhead.

SQLite provides you with a lot of flexibility in storing information for your
application. It stores the entire database in a single file. It is fast, reliable, and easy to
implement in your application. The best thing about the SQLite database is that there is
no need to install any software; Apple has taken care of that for you.

301

CHAPTER 11 STORING INFORMATION

However, SQLite does have some limitations that, as a developer, you should be
aware of:

e SQLite was designed to be used as a single-user database. You will
not want to use SQLite in an environment where more than one
person will be accessing the same database. This could lead to data
loss or corruption.

o Inthe business world, databases can grow to become very large. It is
not surprising for a database manager to handle databases as large
as half a terabyte, and in some cases databases can become much
larger than that. SQLite should be able to handle smaller databases
without any issues, but you will begin to see performance issues if
your database starts to get too large.

e SQLite lacks some of the backup and data restore features of the
enterprise database solutions.

For the purposes of this chapter, you will use SQLite as your database engine. If any
of the mentioned limitations are present in the application you are developing, you may
need to look into an enterprise database solution, which is beyond the scope of this book.

Note SQLite (pronounced “sequel-lite”) gets its name from Structured Query
Language (SQL, pronounced “sequel”). SQL is the language used to enter, search,
and retrieve data from a database.

Apple has worked hard to iron out a lot of the challenges of database development.
As a developer, you will not need to become familiar with SQL because Apple has taken
care of the direct database interaction for you through a framework called Core Data that
makes interacting with the database much easier. Core Data has been adapted by Apple
from a NeXT product called Enterprise Object Framework, and working with Core Data
is a lot easier than interfacing directly with the SQLite database. Directly accessing a
database via SQL is beyond the scope of this book.

302

Getting Started with Core Data

Let’s start by creating a new Core Data project.

CHAPTER 11 STORING INFORMATION

1. Open Xcode and select File » New » Project. To create an iOS

Core Data project, select Single View App under i0S, as shown in

Figure 11-1.

Choose a template for your new project:

watchOS

Application

1)

Single View App

®0O0O

Page-Based App

Cocoa Touch
Framework

Cancel

tvOS macOS

Game

K eee

Tabbed App

Framework & Library

oy

Cocoa Touch
Static Library

Cross-platform

| AR

Augmented
Reality App

o)
|00

Sticker Pack App

Metal Library

Figure 11-1. Creating a new project

Document Based Master-Detail App

App
O)

iMessage App

2. Click the Next button when done. The next screen will allow

you to enter the name you want to use. For the purposes of this

chapter, you will use the name BookStore.

303

CHAPTER 11 STORING INFORMATION

3. Make sure the Language field is set to Objective-C. Near the
bottom, you will see the Use Core Data check box. Make sure this
is checked and then click Next, as shown in Figure 11-2.

Choose options for your new project:

Product Name: = BookStore|

Team: Add account...
Organization Name: MyCompany
Organization Identifier: com.mycompany
Bundle Identifier: com.mycompany.BookStore
Language: Objective-C @

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous [LEd

Figure 11-2. Including Core Data

Note Core Data can be added to any project at any point. Checking that box
when creating a project will add the Core Data frameworks and a default data

model to your application.

4. Select alocation to save the project and click Create.

Once you are done with that, your new project will open. It will look similar to a
standard application, except now you will have a BookStore.xcdatamodeld file. This file
is called a data model and will contain the information about the data that you will be

storing in Core Data.

304

CHAPTER 11 STORING INFORMATION

The Model

In your BookStore folder on the left, you will see a file called BookStore.xcdatamodeld.
This file will contain information about the data you want stored in the database. Click
the model file to open it. You will see a window similar to the one shown in Figure 11-3.

8| < & Books Book i d deld) & Books d del) (@ Default

ENTITIES

¥ Entities
FETCH REQUESTS =

Entity ~ Abstract Class
CONFIGURATIONS

Outline Style Add Entity Add Attribute Editor Style

Figure 11-3. The blank model

305

CHAPTER 11 STORING INFORMATION
Let’s create an entity.

1. Click the plus sign in the bottom-left corner of the window, or select
Editor » Add Entity from the menu, as shown in Figure 11-4.

B < -] i B I3 entity
ENTITIES

@ emity

FETCH REQUESTS

¥ Attributes

CONFIGURATIONS
@ Detault

¥ Relationships

¥ Fetched Properties

[= I . .
Qutline Style Add Entity

Add Attribute Editor Style

Figure 11-4. Adding a new entity

The window is divided into four sections. On the left are your entities. In more
common terms, these are the objects or items that you want to store in the database.
The top-right window contains the attributes. Attributes are pieces of information

about the entities. For example, a book would be an entity, and the title of the book
would be an attribute of that entity.

Note In database terms, entities are your tables and the attributes of the entities

are called columns. The objects created from those entities are referred to as
rows.

306

CHAPTER 11 STORING INFORMATION

The other sections of the Data Model view will only be visible once you have an
entity defined. The middle window on the right will show you all the relationships of
an entity. A relationship connects one entity to another. For example, you will create a
Book entity and an Author entity. You will then relate them so that every book can have
an author. The bottom-right portion of the screen deals with fetched properties. Fetched
properties are beyond the scope of this book, but they allow you to create filters for your
data.

2. On the left side, double-click your new entity and rename it Book.

Note It is required to capitalize the names of your entities.

3. Now let’s add some attributes. Attributes would be considered
the details of a book, so you will store the title, author, price, and
year the book was published. Obviously, in your own applications,
you may want to store more information, such as the publisher,
page count, and genre, but let’s start simple here. Select the Book
entity and click the Add Attribute plus sign at the bottom right of
the window, or select Editor » Add Attribute, and a new attribute
will be created, as shown in Figure 11-5.

307

CHAPTER 11 STORING INFORMATION

88 ¢ B BookStore) [Book)i B dold) B Books del) [@ Book
ENTITIES
& Book

FETCH REQUESTS

¥ Attributes

Entity Attribute Type

CONFIGURATIONS

Default
+
¥ Relationships
Entity Relationship ., @ Des
+
¥ Fetched Properties
Entity Fetched Property ., Predicate
+
Qutline Style Add Entity Add Attribute

Figure 11-5. Adding a new attribute

4. You will be given only two options for your attribute: the name
and the data type. Let’s call this attribute title. Unlike entities,
attribute names must start with a lowercase letter.

5. Now, you will need to select a data type. Selecting the correct
data type is important. It will affect how your data is stored and
retrieved from the database. The list has 14 items in it and can be
daunting. We will discuss the most common options and, as you
become more familiar with Core Data, you can experiment with
the other options. The most common options are String, Integer
32, Decimal, and Date. For the title of the book, select String.

String: This is the type of attribute used to store text. This generally
should be used to store any kind of information that is not a
number or a date. In this example, the book title and author will
be strings.

308

<0>

Bock @R

Editor Style

CHAPTER 11 STORING INFORMATION

Integer 32: There are three different integer values possible for an
attribute. Each of the integer types differs only in the minimum
and maximum values possible. Integer 32 should cover most

of your needs when storing an integer. An integer is a number
without a decimal. If you try to save a decimal in an integer
attribute, the decimal portion will be truncated. In this example,
the year published will be an integer.

Decimal: A decimal is a type of attribute that can store numbers
with decimals. A decimal is similar to a double attribute, but they
differ in their minimum and maximum values and precision. A
decimal should be able to handle any currency values. In this
example, you will use a decimal to store the price of the book.

Date: A date attribute is exactly what it sounds like. It allows you
to store a date and time and then performs searches and lookups
based on these values. You will not use this type in this example.

Let’s create the rest of the attributes for the book. Now, add price.
It should be a decimal type. Add the year the book was published.
For two-word attributes, it is standard to make the first word
lowercase and the second word start with a capital letter. For
example, an ideal name for the attribute for the year the book
was published would be yearPublished. Select Integer 32 as the
attribute type. Once you have added all of your attributes, your
screen should look like Figure 11-6.

309

CHAPTER 11 STORING INFORMATION

Note Attribute names cannot contain spaces.

oo

e
o

@ Book) [yearPublished

TIES
ENTITIES v Attributes

I3 Book
-
FETCH REQUESTS
N yearPublished Integer 32
CONFIGURATIONS B0 price Decimal ¢
@ Default title String ¢
¥ Relationships
hip .
_‘.
¥ Fetched Properties
~
= - (+] (+]
Outline Style Add Entity Add Attribute Editor Style

Figure 11-6. The finished Book entity

Note If you are used to working with databases, you will notice that you did
not add a primary key. A primary key is a field (usually a number) that is used to
uniquely identify each record in a database. In Core Data databases, there is no
need to create primary keys. The framework will manage all of that for you.

Now that you have finished the Book entity, let’s add an Author entity.
1. Add anew entity and call it Author.

2. To this entity, add 1astName and firstName as attributes, both of
which are strings.

310

CHAPTER 11 STORING INFORMATION

Once this is done, you should have two entities in your attributes list. Now you need
to add the relationships.

1. Click the Book entity, and then click and hold on the plus sign
that is located on the bottom right of the screen. Select Add
Relationship and a new relationship will be created, as shown in
Figure 11-7. (You can also click the plus under the Relationships
section of the Core Data model.)

B B B @ Book <0>
RHITES ¥ Attributes
& author
I3 Book el VP o
7l ish o
FETCH REQUESTS mye.a Fublihe g 2 4
1 price Decimal >
CONFIGURATIONS B tite String 2
@ Default 3
¥ Relationships
Relationship .,
m relationship No Value HNo Inverse

1

¥ Fetched Properties

+

Figure 11-7. Adding a new relationship

2. You will be given the opportunity to name your relationship. You
usually give a relationship the same name as the entity to which it
derived from. Type in author as the name and select Author from
the Destination drop-down menu.

3. You have created one half of your relationship. To create the other
half, click the Author entity. Click the plus sign located at the
bottom right of the screen and select Add Relationship. You will
use the entity name that you are connecting to as the name of
this relationship, so you will call it books. (You are adding an s to
the relationship name because an author can have many books.)
Under Destination, select Book, and under Inverse, select the

311

CHAPTER 11 STORING INFORMATION

author relationship you made in the previous step. In the Utilities
window on the right side of the screen, select the Data Model
Inspector. Select To Many for the type of the relationship. Your
model should now look like Figure 11-8.

Relationship

A ¥ Attributes
G Author Namo books
Attribute Vo
3 Book . Propertios | Tranglant Optional
FETCH REQUESTS g::"t::mc String ¥, Destination Book B
stName String b
CONFIGURATIONS Inverse author E
@ Default + Delete Rule Nullify B
Type To Many B
¥ Relationships Arrangement Qrdered
lationship Count T Miinimum
¥ bocks Book author Maximum
Advanced Index in Spotlight
Deprecated
+ - Spatiight Store in External Recard File
¥ Fetched Properties User Info
: Key ~ Vil
Fetched Property .
} Versioning

Figure 11-8. The final relationship

Note Sometimes in Xcode, when working with models, it is necessary to hit the
Tab key for the names of entities, attributes, and relationships to update. This little
quirk can be traced all the way back to WebObjects tools.

Core Data has two ways code can be generated for your entities. If you do not plan
on customizing anything about the entity, Xcode can automatically generate the code
for you. For this example, you will manually generate the code to see how Core Data is
working. To do this, you need to tell Core Data not to automatically generate the code.
Click the Author entity. On the right-hand side, set Codegen to Manual/None, as shown
in Figure 11-9. Repeat this step for the Book entity.

312

CHAPTER 11 STORING INFORMATION

Entity

Name Book
Abstract Entity
Parent Entity No Parent Entity

Class

Name Book

Codegen Manual/None

No Content
+ —
Spotlight
Display Name
User Info
Key ~ Value
+ —

Figure 11-9. Turning off codegen

313

CHAPTER 11 STORING INFORMATION

Now you need to tell your code about your new entity. To do this, hold down Shift
and select both the Book entity and the Author entity and then select Editor » Create
NSManagedObject Subclass from the Application menu. Your screen should look like
Figure 11-10.

Select the data models with entities you would like to manage

Select Data Model

v BookStore

Cancel Next

Figure 11-10. Adding the managed objects to your project

This screen allows you to select the data model you would like to create managed
objects for. In this case, you have only a single data model. In some complicated
applications, you may have more than one. Managed objects represent instances of an
entity from your data model. Make sure the BookStore data model is checked and hit Next.

314

CHAPTER 11 STORING INFORMATION

You will now be presented with a screen to select the entities to create managed
objects, as shown in Figure 11-11. Make sure both are checked and click Next.

Select the entities you would like to manage

Select Entity

Book
Author

Cancel Previous Next

Figure 11-11. Selecting the entities to create managed objects

Select the storage location and add it to your project. Then click Create. You will
notice that eight files have been added to your project. Book+CoreDataProperties
and Author+CoreDataProperties .hand .mfiles contain the information about
your books and authors entities you just created. Book+CoreDataClass.h and
Author+CoreDataClass.h will be used for logic relating to your new entities. These files
will need to be used to access the entities and the attributes you added to your data
model. These files are fairly simple because Core Data will do most of the work with
them. You should also notice that if you go back to your model and click Book, it will
have a new class in the Data Model Inspector. Instead of an NSManagedObject, it will
have a Book class.

315

CHAPTER 11 STORING INFORMATION
Let’s look at some of the contents of Book+CoreDataProperties.h
#import "Book+CoreDataClass.h"
NS_ASSUME NONNULL BEGIN
@interface Book (CoreDataProperties)
+ (NSFetchRequest<Book *> *)fetchRequest;

@property (nullable, nonatomic, copy) NSString *title;
@property (nullable, nonatomic, copy) NSDecimalNumber *price;
@property (nullable, nonatomic, copy) int32_t yearPublished;
@property (nullable, nonatomic, retain) Author *author;

@end
NS_ASSUME_NONNULL_END

You will see that the file starts by including Book+CoreDataClass.h, which includes
the Core Data framework. This allows Core Data to manage your information. This file
contains an extension to the Book class. An extension allows you to add new properties
and functionality to an existing class. By creating the Book+CoreDataClass and the
Book+CoreDataProperties extension files, Xcode allows the developer to separate the
attributes from the basic logic. The superclass for the new Book object is NSManagedObject.
NSManagedObject is an object that handles all of the Core Data database interaction. It
provides the methods and properties you will be using in this example. Later in the file, you
will see the three attributes and the one relationship you created.

Managed Object Context

You have created a managed object class called Book. The nice thing with Xcode is that
it will generate the necessary code to manage these new data objects. In Core Data,
every managed object should exist within a managed object context. The context is
responsible for tracking changes to objects, carrying out undo operations, and writing
the data to the database. This is helpful because you can now save a bunch of changes at
once rather than saving each individual change. This speeds up the process of saving the
records. As a developer, you do not need to track when an object has been changed. The
managed object context will handle all of that for you.

316

CHAPTER 11 STORING INFORMATION

Setting Up the Interface

The following steps will assist you in setting up your user interface:

1. Inthe BookStore folder in your project, you should have a
Main.storyboard file. Click this file and Xcode will open it in the
editing window, as shown in Figure 11-12.

29 < » 2 BookStore) | BookStore Main.storyboard | Main.storyboard (Base)) No Selection

v View Controller Scens Wiew Controlier

> View Controller
@3 First Responder
[=] Exit

» Storyboard Entry Point

®] View as:iPhone 8 («C R) — 63% -+ = o kad

Figure 11-12. Creating the interface

317

CHAPTER 11 STORING INFORMATION
2. There should be a blank view. To add some functionality to your
app, you are going to need to add some objects from the Object
Library. Type table into the search field on the bottom right of the
screen. This should narrow the objects, and you should see Table
View Controller and Table View. Drag the Table View to the scene,
as shown in Figure 11-13. The Table View may need to be resized
to fill the entire View.
D —— Simulated Metrics B
Size Inferred
Top Bar Inferred
Bottom Bar Inferred
View Controller
Title
Is Initial View Controller
Layout 3 Adjust Scroll View Insets
Hide Bottom Bar on Push
Resize View From NIB
Use Full Screen (Deprecated)
D0 e
| Table View Controller - A
/ controller that manages a table view.
Table View - Displays data in a list
of plain, sectioned, or grouped rows.
C Table View Cell - Defines the
t attributes and behavior of cells (rows)
| ina table view.
o
[1 View as:iPhone 8 («C rR) = tof taf | BB |@ table (]

Figure 11-13. Adding the Table View

318

CHAPTER 11 STORING INFORMATION

3. Younow have a Table View. To create cells in your Table View, you
need to add a Table View Cell, search for the Table View Cell,
and drag a Table View Cell to your table. You now have a table and
a cell on your view, as shown in Figure 11-14.

Prototype Cells

No Selection

DO @@

Table View Controller - A
/ controller that manages a table view.

Table View - Displays data in a list
of plain, sectioned, or grouped rows.

| | Table View Cell - Defines the
| | attributes and behavior of cells (rows)
in a table view.

[] View as:iPhone 8 («C nR) = tof tad | B [@)table (<]

Figure 11-14. Adding the Table View Cell

319

CHAPTER 11

4.

STORING INFORMATION

Select the cell, and in the Attributes Inspector on the right side,
set Style to Basic. Also, set the Identifier to Cell. The identifier is
used when your Table View contains multiple styles of cells. You
will need to differentiate them with unique identifiers. For most
of your projects, you can set this to Cell and not worry about it, as
shown in Figure 11-15.

[E|E) O B O
Table View Cell

Style Basic

L (] O

Image
Identifier Cell

Selection Default
Accessory None

Editing Acc. None

ofofolo

Focus Style Default

<>
—
o
<

Indentation 0
Level Width

Indent While Editing

Figure 11-15. Changing the style of the cell

320

CHAPTER 11 STORING INFORMATION

5. When using a Table View, it is usually a good idea to putitin a

Navigation Controller. You will use the Navigation Controller to
give you space to put an Add button on your Table View. To add

a Navigation Controller, select your View Controller in the Scene
box, which is the window to the left of your storyboard that shows

your View Controllers (your View Controller will have a yellow
icon next to it). From the Application menu, select Editor »
Embed In » Navigation Controller, as shown in Figure 11-16.

View Find Navigate WGIM Product Debug Source Control Window Help

Canvas
Zoom

Layout

References

Show Document Outline
ete » I Reveal in Document Outline .ISW«a:Roadr | Today at 5:07 PM

iE BE 2 Q& ¢ Align p | BookStore) [l Main_board) [} Main..Base)) || View Controller Scene

Q- NSCaselnsensitiveSearch

= In Project 25 = Prototype Cells
v/ Snap to Guides Title
Guides >
Localization Locking > < View
+ Automatically Refresh Views Navigation Controller

Refresh All Views Tab Bar Controller

Debua © Y ”) ' \
N d

Resolve Auto Layout Issues >

Refactor to Storyboard...

® ® 1 View as: iPhone 8 («C «R)

Figure 11-16. Embedding in a Navigation Controller

> % &

View Controller

2 ol had

321

CHAPTER 11 STORING INFORMATION

6. You will have a navigation bar at the top of your view. You will
now add a button to the bar. This type of button is called a
UIBarButtonItem. Search for bar button in your Object Library
and drag a Bar Button Item to the top right of your view on the
navigation bar, as shown in Figure 11-17.

View Controller
Prototype Cells
Title -
No Selection
E/;- o
3 ®
Button - Intercepts touch events and
: Button sends an action message to a target
object when it's tapped.
Bar Button Item - Represents an
Item | item on a UlToolbar or
UINavigationltem object.
Fixed Space Bar Button Item -
[s=ssss0s] Represents a fixed space item on a
UlToolbar object.
sk - T =]
8 (wC nR) = to{ taf | BE |® button ()

Figure 11-17. Adding a Bar Button Item to the navigation bar

322

CHAPTER 11 STORING INFORMATION

7. Select the Bar Button Item and change the System Item from
Custom to Add as shown in (Figure 11-18.). This will change the
look of your Bar Button Item from the word Item to a plus icon.

D ® BB U E ©

Bar Button Item

Style Bordered

System Ite ¥ Custom
o+ Ti

Drag and Drc Edit

. B | Done
Bar Item Cancel
Tit Save
Undo
Ima¢ Redo
Landscag
Compose
Accessibili Reply
_T: Action B
Organize
Trash —

Bu

Button se Bookmarks
ob Search

L | Refresh
B: Stop
ltem | ite c
ull amera
 Play
Fii Pause

Figure 11-18. Changing the Bar Button Item

323

CHAPTER 11 STORING INFORMATION

8. Now thatyou have the interface created, you need to hook it up to
your code. Hold down the Control key and drag your Table View to the
View Controller in the Document Outline, as shown in Figure 11-19.

v View Controller Scene

(v« View Controller)
v View
[l Safe Area
v Table View
v Cell
> Content View

¥ < Navigation Item
Left Bar Button Items
¥ ' Right Bar Button Items

@}J First Responder
Exit

Figure 11-19. Connecting the Table View

9. Apop-up will appear, allowing you to select either the dataSource or
delegate outlet, as shown in Figure 11-20. You will need to assign both
to the View Controller. The order in which you select the items does
not matter, but you will have to Control-drag the Table View twice.

MY Outlets
dataSource
delegate
prefetchDataSource
v = cell

> Content View
¥ < Navigation Item

<

Left Bar Button Items
¥ | Right Bar Button Items

Figure 11-20. Hooking up the Table View
324

CHAPTER 11 STORING INFORMATION

10. Now your Table View should be ready to go. You need to hook
up your button to make it do something. In the top right of your
Xcode window, click the Assistant Editor icon (it looks like
two circles). This will open your code on the right side and your
storyboard on the left side. Now Control-drag your Add button to
the View Controller code on the right, as shown in Figure 11-21.

BookStore: Ready | Today at 11:32 AM o N g
B P B)] | rightBnitems = Add |BE < > | @ Automatic) L) ViewController.swift | Mo Selection + X 0O ® T 0 3
W7l | Bar Button Item
atrollor Scene I — 2 47 ViewController,swift Aol
Controlier 3 // BookStore Style Bordered B
= s
P Leyout Guide =) ¢ // Created by Brad Lees on B/8/15. Sysueer e | Add B
ittom Layout Guide & /¢ Copyright © 2015 Inn. ALl rights reserved. Tint =1 Default B
W _?.. 1A
I % 8
g—r_?‘n-.nmw LW 7 ieport UIKit Bar Ivem
[E] cen 18
Lb- Content View \ 1 class ViewController: UlViewController { Title
wigation ltem \\ iE override func viewDidload{) { Remge n
Left Bar Button ltems 1% super.viewdidLoad() T 0ls
T N\ s /4 Do any additional setup after loading the view, e
Right Bar Button items \\ typically from a nib. Enabled
I:‘Mtt iy
17N
Responder] \‘ override func didReceiveMeroryWarning() {
1w ! super.didRece iveMemoryWarning()
. // Dispose of any resocurces that can be recreated.
ion Controller Scene
iation Controller Insert Outlot, Action, ar Outlat Collaction
wigatien Bar
Fesponder
board Entry Point
anghip “root view controller_.

Figure 11-21. Adding an action for your Button object

11. Tt does not matter where you place the Add button in your code as
long as it is within your class definition and outside of any methods.
When you let go, you will be prompted for the type of connection
you are creating. Set Connection to Action. Then add a name for
your new method, such as addNew, as shown in Figure 11-22.

Connection = Action 5
Object View Controller < | 6

Name = addNew :8

Type id a 19

Cancel Connect ’

Figure 11-22. Setting the type and name of the connection

325

CHAPTER 11 STORING INFORMATION

12. The UITableView that was added previously will need to
be accessible through code. To accomplish this, drag the
UITableView from the left pane to the top of the code on the right
and create an outlet named tableView. You will need to drag it to
the class extension interface block.

The interface is complete now, but you still need to add the code to make
the interface do something. Go back to the Standard editor (click the list icon to
the left of the two circles icon in the top right of the Xcode toolbar) and select the
ViewController.h file from the file list on the left side. Because you now have a Table
View you have to worry about, you need to tell your class that it can handle a Table View.
Change your class declaration at the top of your file to the following:

@interface ViewController : UIViewController <UITableViewDataSource,
UITableViewDelegate>

You added UITableViewDelegate and UITableViewDataSource to your declaration.
This tells your controller that it can act as a Table View Delegate and Data Source. These
are called protocols. Protocols tell an object that they must implement certain methods
to interact with other objects. For example, to conform to the UITableViewDataSource
protocol, you need to implement the following method in the ViewController.m file:

- (NSInteger)tableView: (UITableView *)tableView
numberOfRowsInSection: (NSInteger)section;

Without this method, the Table View will not know how many rows to draw.

Before continuing, you need to tell your ViewController.h file about Core Data.
To do this, add the following line to the top of the file just under the #import <UIKit/
UIKit.h> statement:

#import <CoreData/CoreData.h>

You also need to add a managed object context to your ViewController class. Add
the following line right after the class ViewController line:

@interface ViewController : UIViewController <UITableViewDataSource,
UITableViewDelegate> {
NSManagedObjectContext *managedObjectContext;

326

CHAPTER 11 STORING INFORMATION

Notice that you also must add the curly braces. Now that you have a variable to
hold your NSManagedObjectContext, you need to instantiate it so you can add objects
to it. To do this, you need to add the following lines to your viewDidLoad method in the
ViewController.mfile:

AppDelegate *appDelegate = (AppDelegate *)[[UIApplication
sharedApplication] delegate];
managedObjectContext = appDelegate.persistentContainer.viewContext;

The first line creates a variable that points to your application delegate. The
second line points your managedObjectContext variable to the application delegate’s
managedObjectContext. It is usually a good idea to use the same managed object context
throughout your app. Also, at the top of ViewController.m, add the following line under
the #import "ViewController.h" line:

#import "AppDelegate.h"
#import "Book+CoreDataClass.h"

The first new method you are going to add is one to query your database records.
Call this method loadBooks.

32 - (NSArray *)loadBooks {

33 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]
initWithEntityName:@"Book"];

34 NSArray *bookArray = [[managedObjectContext executeFetchRequest:fet
chRequest error:nil] mutableCopy];

35

36 return bookArray;

37

38 }

This code is a little more complex than what you have seen before, so let’s walk
through it. Line 32 declares a new function called loadBooks, which returns an NSArray.
This means you will receive an array that can contain any type of objects you want. In
this case, the objects will be Books. You then return the array once you have it loaded.

327

CHAPTER 11 STORING INFORMATION

You now need to add the data source methods for your Table View. These methods
tell your Table View how many sections there are, how many rows are in each section, and
what each cell should look like. Add the following code to your ViewController.mfile:

41 - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

42 return 1;

43 '}

44

45 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(
NSInteger)section {

46

47 return [[self loadBooks] count] ;

48 }

49

50 - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtInd
exPath: (NSIndexPath *)indexPath {

51

52 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifie
r:@"Cell"];

53 if (cell == nil) {

54 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellSty

leDefault reuseldentifier:@"Cell"];

55 }

56

57 Book *myBook = [[self loadBooks] objectAtIndex:indexPath.row];

58

59 cell.textLabel.text = myBook.title;

60

61 return cell;

62 }

In line 42, you tell your Table View that it will contain only a single section.
In line 47, you call a count on your array of Books for the number of rows in your Table
View. In lines 51 to 61, you create your cell and return it. Line 52 creates a cell for you
to use. This is standard code for creating a cell. The identifier allows you to have more
than one type of cell in a Table View, but that is more complex. Line 57 grabs your Book

328

CHAPTER 11 STORING INFORMATION

object from your loadBooks () array. Line 59 assigns the book title to your textLabel
in the cell. The textLabel is the default label in the cell. This is all you need to do to be
able to display the results of your loadBooks method in the table view. You still have one
problem. You do not have any books in your database yet.

To fix this issue, you will add code to the addNew method you created earlier. Add the
following code inside the addNew method you created:

66 - (IBAction)addNew:(id)sender {

67 Book *myBook = [NSEntityDescription insertNewObjectForEntityForName
:@"Book" inManagedObjectContext:managedObjectContext];

68 myBook.title = [NSMutableString stringllithFormat:@"My Book%lu",
(unsigned long)[self loadBooks].count];

69 [managedObjectContext save:nil];

70 [self.tableView reloadData];

71}

Line 67 creates a new Book object for your book in the database from the entity name
and inserts that object into the managedObjectContext you created before. Remember
that once it is inserted into the managed object context, its changes are tracked, and it
can be saved. Line 68 sets the book title to My Book and then sets the number of items
in the array. Obviously, in real life, you would want to set this to a name either given by
the user or from some other list. Line 69 saves the managed object context. Line 70 tells
the UITableView to reload itself to display the newly added Book. Now build and run
the application. Click the + button several times. You will add new Book objects to your
object store, as shown in Figure 11-23. If you quit the app and relaunch it, you will notice
that the data is still there.

329

CHAPTER 11 STORING INFORMATION

My Book1
My Book2

My Book3

My Bookd

My Books
My BookB
My Book?
My Book8
My Book9
My Book10
My Book11
My Bookl2
My Bookl3

My Book14

Phone 8 Plus - 11.2

Figure 11-23. The final app

This was a cursory introduction to Core Data for iOS. Core Data is a powerful API,
but it can also take a lot of time to master.

330

CHAPTER 11 STORING INFORMATION

Summary

Here is a summary of the topics this chapter covered:

Preferences: You learned to use NSUserDefaults to save and read
preferences from a file, on both iOS and macOS.

Databases: You learned what a database is and why using one can
be preferable to saving information in a preferences file. You also
learned about the database engine that Apple integrated into macOS
and iOS and the advantages and limitations of this database engine.

Core Data: Apple provides a framework for interfacing with the
SQLite database. This framework makes the interface much easier
to use.

Bookstore application: You created a simple Core Data application.
You used Xcode to create a data model for your bookstore. You
learned how to create a relationship between two entities. You used
Xcode to create a simple interface for your Core Data model.

Exercises

Perform the following tasks:

Add a new view to the app for allowing the user to enter the name of
a book.

Provide a way to remove a book from the list.

Create an Author object and add it to a Book object.

331

CHAPTER 12

Protocols and Delegates

Congratulations, you are acquiring the skills to become an iOS developer! However,

there are two additional topics that iOS developers need to understand to be successful:
protocols and delegates. It is not uncommon for new developers to get overwhelmed by
these topics, so we thought it best to introduce the foundation topics of the Objective-C

language first.

Multiple Inheritance

We discussed object inheritance in Chapter 1. In a nutshell, object inheritance means
that a child can inherit all the characteristics of its parent. See Figure 12-1.

ObjectA

Object B

Figure 12-1. Typical Objective-C inheritance

333
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_12

CHAPTER 12 PROTOCOLS AND DELEGATES

C++, Perl, and Python each have a feature called multiple inheritance. Multiple
inheritance enables a class to inherit behaviors and features from more than one parent.
See Figure 12-2.

Object A

Object B Object D

Figure 12-2. Multiple inheritance

However, problems can arise with multiple inheritance because it allows for
ambiguities to occur. Because of this, Objective-C does not implement multiple
inheritance. Instead, it implements something called a protocol.

Understanding Protocols

Apple defines a protocol simply as a list of method declarations, unattached to a class
definition. A protocol is similar to a class interface with the exception that it does not
define a particular class. For example, the methods that report user actions for the
mouse on your Mac could be placed into a protocol.

Any class that wants to respond to mouse events could adopt the protocol and
implement its methods. Protocols are easy to use since they are not related to the class
hierarchy and any class can implement them.

334

CHAPTER 12 PROTOCOLS AND DELEGATES

Throughout the book, we have used the example of a bookstore. Previously,
we discussed the fact that this bookstore may sell different types of media and how
inheritance would help in that situation. For the purpose of explaining protocols,
let’s say that the bookstore also sells gum and candy. You would want to create a class
for those items. Call it EdibleItem. It would not make sense to have Gum inherit the
same methods as a Book or Magazine, but all of the items would need to be sold, and
the inventory would need to be tracked. In this case, it would make sense to add the
methods to a protocol that could be shared by each of the items.

Note A protocol is much different than inheritance. When a class inherits from
another class, it not only receives the method declarations, but it also receives the
methods themselves. When using a protocol, the declarations are brought over, but
the methods themselves need to be written.

Protocol Syntax

The interface example for a protocol is

@protocol InventoryItem

- (void)removeFromInventory;
- (void)addToInventory;

@end

The interface file for a class that implemented this protocol example would be:

@interface MyClass : SomeSuperClass <InventoryItem>
@end

Any class that wants to implement the InventoryItem protocol would include
<InventoryItem> after the class definition.
For example, you could create this interface for the edible objects that you sell.

@interface Edible : NSObject <InventoryItem>
@end

335

CHAPTER 12 PROTOCOLS AND DELEGATES

It is not uncommon for iOS developers to have multiple protocols for their objects.
This adds real power to your objects when needed. Additional protocols are placed after
the first one followed by a comma, like so:

@interface EditbleItem : UITableViewController <InventoryItem, SaleItem>
@end

This example illustrates the power of protocols. Class EditableItem now must
implement all of the required method declarations from the InventoryItemand
SaleItem protocols.

Understanding Delegates

Delegates are helper objects. They enable you to control the behavior of your objects.
The methods listed in the delegate protocol become helpers to your class.

Note The key to understanding delegates is to know that a delegate is a separate
object consulted in order to augment the behavior of a host object. Thus, you can
create an application delegate object that can affect the behavior of the i0S
UIApplication object without subclassing or changing the UIApplication class.
The object you create is the delegate object, and the messages that UIApplication
will send your object are called delegate methods. These are typically defined in

a protocol (UIApplicationDelegate) that your class must adopt. To work, a
delegate object must be set as the delegate property of the host object.

You can now use these methods in your object. For example, implementing the
CLLocationManagerDelegate protocol in your MyClass interface definition enables
your object to be notified by the iPhone’s GPS of your new location. The following
example shows the method that you will include and define inside your object’s
implementation file:

- (void)locationManager: (CLLocationManager *)manager
didUpdatelocations: (NSArray<CLLocation *> *)locations

CHAPTER 12 PROTOCOLS AND DELEGATES

The locationManager delegate method automatically gets called as your GPS
location changes, allowing your code to process coordinates.

Next Steps

You will be well prepared to begin writing your own iOS apps. Don't take time off! Keep
moving forward! The faster you begin using what you have learned, the better you will
get. Whatever you do, don'’t stop now!

Summary

In this chapter, we covered why multiple inheritance is not used in Objective-C and how
protocols and delegates work. There is still a lot to learn and know on your journey. Keep
it up and help others along their way.

You should be familiar with the following terms:

e Multiple inheritance
e Protocol

e Delegate

Exercises

o Create anew iOS app project, and take a look at the AppDelegate.h
file that is automatically generated for you. Note how the
AppDelegate class implements the UIApplicationDelegate protocol.

e AddNSLog statements to each of the generated methods in the
AppDelegate.mimplementation file to monitor which methods are
called when the application is launched in the simulator.

e Press the simulator’s “Home” button while the app is running to see
which methods are called as the app enters the background. This will
give you a good understanding of how you can monitor how your
app’s state changes during its execution lifecycle.

337

CHAPTER 13

Introducing the Xcode
Debugger

Xcode is fantastic! Not only is this tool provided free of charge from Apple, but it is
actually really good. Aside from being able to create the next great Mac, iPhone, or
iPad app, Xcode has a fantastic debugger built right into the tool.

So, what exactly is a debugger? First, let’s get something straight: programs do
exactly what they are written to do. Sometimes what is written isn’t exactly what the
program is really meant to do. Sometimes this means the program crashes or just doesn’t
do something that is expected. Whatever the case, when a program doesn’t work as
planned, the program is said to have bugs. The process of going through the code and
fixing these problems is called debugging.

There is still some debate as to the real origin of the term “bug,” but one well-
documented case from 1947 involved the late Rear Admiral Grace Hopper, a Naval
reservist and programmer at the time. Hopper and her team were trying to solve a
problem with the Harvard Mark II computer. One team member found a moth in the
circuitry that was causing the problem with one of the relays. Hooper was later quoted as
saying, “From then on, when anything went wrong with a computer, we said it had bugs
in it

Regardless of the origin, the term stuck, and programmers all over the world use
debuggers, such as Xcode, to help find bugs in programs. People are the real debuggers;
debugging tools merely help programmers locate problems. No debugger, whatever the
name might imply, fixes problems all on its own.

'Michael Moritz, Alexander L. Taylor III, and Peter Stoler, “The Wizard Inside the Machine,” Time,
Vol.123, no. 16: pp. 56-63.

339
© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018

S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7_13

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

This chapter will highlight some of the more important features of the Xcode
debugger and will explain how to use them. Once you have finished this chapter, you
should have a good enough understanding of the Xcode debugger and of the debugging
process in general to allow you to search for and fix the majority of programming issues.

Getting Started with Debugging

If you've ever watched a movie in slow motion just so you can catch a detail you can’t
see when the movie is played at full speed, you've used a tool to do something a little
like debugging. The idea that playing the movie frame by frame will reveal the detail
you are looking for is the same sort of idea you apply when debugging a program. With
a program, sometimes it becomes necessary to slow things down a bit to see what'’s
happening. The debugger allows you to do this using two main features: setting a
breakpoint and stepping through the program line by line (more on these two features in
a bit). Let’s first look at how to get to the debugger and what it looks like.
First, you need to load an existing program. The examples in this chapter use the
MyBookstore project from Chapter 8, so open Xcode and load the MyBookstore project.
Second, a debug device needs to be selected. Xcode provides several device
simulators for debugging purposes. So, it’s possible to test the app on an iPad, iPhone 8,
iPhone X, and so on—basically on whatever iOS device you want (Figure 13-1).

340

CHAPTER 13

File Edit View Find Navigate E— Wi
I 1 D No devices connected to ‘My Mac'... =
de-e » /A MyBooks | Build
! I
B 2 Q A O @ o /" Generic 10S Device

Ar

| ¥ & MyBookstore
v MyBookstore

h

AppDelegate.h

m AppDelegate.m

Main.storyboard
BookDetailViewController.h
BookDetailViewController.m

9 Assels.xcassets

w...trolle

8 iPad (5th generation)

8 1Pad Alr

W iPad Air 2

B iPad Pro (3.7-inch)

& iPad Pro (10.5-inch)

8 iPad Pro (12.9-inch)

B iPad Pro (12.9-inch) (2nd generation)

INTRODUCING THE XCODE DEBUGGER

a LaunchScreen.storyboard 4§ iPhone 5s
Info.plist 8 iPhone 6
m main.m 8 iPhone 6 Plus
Al h Book.h 8§ Phone 63
m Book.m @ iPhone 6s Plus
| h Bookstore.h 4§ iPhone 7
ap m Bookstore.m 8 iPhone 7 Plus
h MainViewContr..ViewController.h W iPhone 8
m MainViewContr..iewControllerm | v W8 iPhone 8 Plus
. MyBookstoreTests 4§ iPhone SE
| m MyBookstoreTests.m @ iPhone X
1at Info.plist 3
Add Additional Simulators...
YW !yBoostarsuilests Download Simulators...
B m MyBookstoreUlTests.m A
Info.plist A
J » i Products
B
5
v

Figure 13-1. Selecting the iOS simulator

A simulator works just like the actual device and has the correct screen size based
upon the chosen device. It's even possible to rotate and simulate a touch! The examples
use the iPhone 8 Plus, but any iOS simulator can be used.

Setting Breakpoints

To see what’s going on in a program, you need to make the program pause at certain
points that you as a programmer are interested in. A breakpoint allows you to do this.
Figure 13-2 shows a breakpoint set on line 22 of the MainViewControllerTableViewCont
roller.mfile. To do this, simply place the cursor over the line number (not the program
text but the number 22 to the left of the program text) and click once.

341

CHAPTER 13

If line numbers are not being displayed, simply choose Xcode » Preferences from
the main menu, click the Text Editing tab, and check the Line Numbers check box.

INTRODUCING THE XCODE DEBUGGER

"0 »r ¢ ..) iPhone B Plus ¥ | Build

BERAMNES T o
¥ & MyBookstore
v MyBookstore
h AppDelegate.h
m AppDelegate.m
* Main.storyboard
h BookDetallViewController.h
m BookDetallViewController.m
I Assels.xcassets
*. LaunchScreen.storyboard
Info.plist
m main.m
h Book.h
m Book.m
h Bookstore.h
m Bookstore.m
h MainViewCentr...ViewCaontroller.h
m

v MyBookstoraTests

Today a1 8:31 AM

3 B8 < > B MyBool) m MainVi Tablevi No
m a7

// MainViewContrellerTableViesController.m
~ /f MyBookstore

1
A // Created by Thorn on 12/8/17.
- /! Copyright e 2017 MyCompany. All rights reserved.
A 1"
a #import “MainViewControllerTableviewController.h"
M #import "Bookstore.h®
A #import “"Book.h"
A #import “BookDetailviewController.h®
o @interface MainViewControllerTableViewController ()
A @property (nonatomic, strong) Bookstore stheBookstore;
A 16 Qend
A : : : . :
A @implementation MainViewControllerTableViewController
A - (void)viewDidLoad {

m MyBookstoreTests.m A
Info._plist A
b MyBookstoreUI Tests
m MyBookstoreU|Tests.m A
Info.plist A
» i Products
+|® (O] =4

[super viewDidLoad]l;

self.theBookstore = [Bookstore newl;
self.title = @"My Bookstore®; // This is the title of our main view.

}

= (veoid)didReceiveMemorywarning {

[super didReceiveMemoryWarningl;
// Dispose of any resources that can be recreated.

}

#pragma mark - Table view data source

= (NSInteger)number0fSectionsInTableView: (UITableView =)tableView {

Figure 13-2. Your first breakpoint

342

L4

Iy R |
h >

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

You can also remove the breakpoint by simply dragging the breakpoint to the right
of the line number column and then dropping it. In Figure 13-3, the breakpoint has
been dragged to the right of the column and dropped. This will delete the breakpoint.
Breakpoints can also be disabled by clicking the breakpoint once. The breakpoint will
turn from dark blue (enabled) to light, translucent blue (disabled). Clicking again will
reenable the breakpoint.

A , @interface MainViewControllerTableViewController ()

A 15 @property (nonatomic, strong) Bookstore *theBookstore;

A 16 @end

A ...I - - - - -

- 18 @implementation MainViewControllerTableViewController
rh A - (void)viewDidLoad {
m A [super viewDidlLoad];

self.theBookstore = [Bookstore newl;
- 1f.title = @"My Bookstore"; // This is the title of our main view.
A 5
26}
a hl 3 = = =
- 26 = (void)didReceiveMemoryWarning {

[super didReceiveMemorvWarninal:

Figure 13-3. Deleting a breakpoint

343

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Setting and deleting breakpoints are pretty straightforward tasks.

Using the Breakpoint Navigator

With small projects, knowing where all the breakpoints are isn’t necessarily hard.
However, once a project gets larger than, say, our small MyBookstore application,
managing all the breakpoints could be a little more difficult. Fortunately, Xcode provides
a simple method to list all the breakpoints in an application called the Breakpoint
Navigator. This can be found by clicking the Breakpoint Navigator icon in the navigation

selection bar, as shown in Figure 13-4.

® ®) /N ..) | iPhone 8 Plus
s ERQA o0 =01 |8 <
v Q MyBookstore 3 Breakpoints Y
¥ m MainViewControllerTableViewControll... “ x
[-viewDidLoad line 22 — _' /)
¥ m BookDetailViewController.m 5 J/
m -viewDidLoad line 19 = Y
¥ m Bookstore.m i
0 -init line 28 — #ime
#img
@img

14 -(ir

Figure 13-4. Accessing the Breakpoint Navigator in Xcode

Once clicked, it will list all the breakpoints currently defined in the application. From
here, clicking a breakpoint will take you to the source file with the breakpoint. You can
also easily delete and disable/enable breakpoints from here.

344

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

To disable/enable a breakpoint, simply click the blue breakpoint icon in the list (or
wherever it appears). Don’t click the line; it has to be the little blue icon, as shown in
Figure 13-5.

© ®) /N ..) | iPhone 8 Plus
= m Q AN © == Db B |5 <
v Q MyBookstore 3 Breakpoints 1 Y/
¥ m MainViewControllerTableViewCo “ x
[-viewDidLoad line 22 .
¥ m BookDetailViewController.m 5 //
[-viewDidLoad line 19 & [
¥ m Bookstore.m /1
D -init line 28 o #ing
0 #img
12 @img

14 —(ir

Figure 13-5. Using the Breakpoint Navigator to enable/disable a breakpoint

It is sometimes handy to disable a breakpoint instead of deleting it, especially if you
plan to put the breakpoint back in the same place again. The debugger will not stop on
these faded breakpoints, but they remain in place so they can be conveniently enabled
and act as a marker to an important area in the code.

It’s also possible to delete breakpoints from the Breakpoint Navigator. Simply select
one or more breakpoints and press the Delete key. Make sure you select the correct
breakpoints to delete since there is no undo feature.

It’s also possible to select the file associated with the breakpoints. In this case, if you
delete the file listed in the Breakpoint Navigator and press Delete, all breakpoints in that
file will be deleted.

345

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Please note that breakpoints are the lines with the small breakpoint icon, as shown
in Figure 13-5. The file is outdented from the breakpoint; in Figure 13-5, the files are
MainViewTableViewController.m, BookDetailViewController.m, and Bookstore.m.
Figure 13-6 shows an example of what a file looks like with more than a single
breakpoint.

B wm Q A © E D B
V_Q‘ MyBookstore 5 Breakpoints

¥ m MainViewControllerTableViewControll...
[-viewDidLoad line 22 —
¥ m BookDetailViewController.m
[-viewDidLoad line 19
[-didReceiveMemoryW... line
— BookDetailViewContro... line A2

¥ m Bookstore.m

[0 -init line 28)

Figure 13-6. A file with several breakpoints

Debugging Basics

Set a breakpoint on the statement shown in Figure 13-2, line 22. Next, as shown in
Figure 13-7, click the Run button to compile the project and start running it within the
Xcode debugger.

ene » A .) S iPhone 8Plus MyBook Build Today at 8:31 AM 1 E Qo oS0 Q0

Figure 13-7. The Build and Debug buttons in the Xcode toolbar

346

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Once the project builds, the debugger will start; the screen will show the debugging
windows, and the program will stop execution on the line statement, as shown in
Figure 13-8.

ene » B A MyBookstore) i IPhone SE Funning MyBecksicre on iPhene S& ' = o a0 0
BERQCAOSEDc D RCC B m MV .m | Na Selection {a> D@
- #impert “Seskstore.h”
¥ MyBookstore FID 4137 @ @ Ewpoct *Bok.hS
@ cru o% 7 #isport "SookDetailViesController.h”
£ Memary 51.1M8 @interface MainvienCantroller ()
L Gproperty {nonatomic, stromg)
o) ik Zero KBS fend
(o ekl Gisplonentaticn MainviewController
¥ (@ Tneead 1 Queus: com.a.thread (serial]
- - e 3 - (void)viewDidioad {
B O > (M Viewet.coroles viewDidl o (super viewbidioad); No Selection
1 = [UVien tor leagviewitite.. BB self.theBeokstors = [Bockstore new); Thread 1: breakpeint 1.1
. a solf.title = P*My Bockstore™; [/ This is the title of cur rain view.
.]
a7
» @ Theead 2 @ = (void)didieceiverezoryWarning {

[super didReceiveMomorywarningl;

» @ Thvesc 3 /f Dispose of any rescurces that can be recreated.
» @ oo 4 "
») Thread 5
» @ Theeac & ;
» @ com.apple.ukit.sventtatch-thread (7) MyBookstore | () Thread 1) [0 -[MainViewCantroller viewDidLoad) DO@en
2018-01-12 05151148, 469929-0700
MyBookstore[4137:505438] Unknown class main in Cocoa Touch Class - & Cocoa
Interface Builder file. E Touth claty
(11d5)
Stack
i Console g Ul Tost Caso Clags - Acliss
Variables B msiomenting a o e
5" Unit Test Case Class - A class
implementing & urit test
® ERE e ® All Qutput & & OO

Figure 13-8. The debugger view with execution

The debugger view adds some additional windows. Let’s go over the different parts of
the debugger shown in Figure 13-8:

e Debugger controls (highlighted within the red oval): The debugging
controls can pause, continue, step over, step into, and step out of
statements in the program. The stepping controls are used most
often. The first button on the left is used to show or hide the Debug
area. In Figure 13-8, the Debug area is shown.

o Variables: The Variables window displays the variables currently in
scope. Clicking the little triangle just to the left of a variable name will
expand it.

e Console window: The Output window will show useful information in
the event of a crash or exception. Also, any NSLog output goes here.

347

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

o Stack trace: The stack shows the object stack as well as all the
threads currently active in the program. The stack is a hierarchical
view of what methods are being called. For example, main
calls UIApplicationMain, and UIApplicationMain calls the
UIViewController class. These method calls “stack” up until they
finally return, which is where it gets its name.

Working with the Debugger Controls

As mentioned, once the debugger starts, the view will change. The debugging controls
appear in Figure 13-8. The controls are fairly straightforward and are explained in
Table 13-1.

Table 13-1. Xcode Debugging Controls

Control Description

Clicking the Stop button will stop the execution of the program. Clicking
’ C the Run button starts debugging. If the application is currently in

debug mode, clicking the Run button again will restart debugging the

application from the beginning; it’s like stopping and then starting again.

Clicking the Pause or Gontinue button causes the program to pause or
[l D continue execution. The program will continue running until it ends, the
Stop button is clicked, or the program runs into another breakpoint.

(Continued)

348

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Table 13-1. (Continued)

Control Description

When the debugger stops on a breakpoint, clicking the Step Over button
/\ will cause the debugger to execute the current line of code and stop
— at the next line of code. If the debugger encounters a breakpoint while
stepping over code, the debugger will go to the breakpoint instead of
skipping over it (Figure 13-9). Clicking this icon will cause the debugger
1o go to the next line.

Clicking the Step Into button will cause the debugger to go into the
\l, specified function or method (Figure 13-10). This is important if there is a
— need to follow code into specific methods or functions. Only methods for
which the project has source code can be stepped into.

The Step Out button will cause the current method to finish executing
1\ and the debugger will go back to the caller (Figure 13-10). For example,
— if you were to step into a line and then immediately click Step Out, the
init method would finish executing, and the debugger would then go
back to the original line, effectively finishing the current method (init)
and stepping back out.

349

CHAPTER 13

Using the Step Controls

INTRODUCING THE XCODE DEBUGGER

To practice using the step controls, let’s step into a function. As the name implies, the

Step Into button follows program execution into the method that is highlighted. Make
sure there is a breakpoint set on the line statement shown in Figure 13-8 (line 22 of the

example; yours may be different) of the MainViewControllerTableViewController.m

file and click the Run button. Your screen should look similar to Figure 13-9.

ace » B A MyBookstore | W iPhome SE Running MyBocksice on IPhons SE 1
BER QA Eco @D|HEC B Mo Selection CAD
¥ . MyBockstors Pl 4355 Q® & /4 Copyright ® 2817 MyCompany. ALl rights reserved.

i H
(& cru o%
3 #import *MainViesController.h*
1 Mamery E1.2M8

F wirport “Backstore.h®

=1 Diek 352 KBfs 1 wisport *Back.h*

! Wimpart "BockDetailViewCentroller.h”

@ Network Zero KBIs

Binterface MainViewController ()
¥ 0“’"!“1 Qusmin: Co hraad [serial) Soroperty (nomatomic, strong) Bookstore stheBookstore;
viewDidLoa_ send

firplesentation MainViewController

= (void)viewDidioas {
[super viesDidLoad];

¥

= [void)didRecoiveMemoryWarning {

» () com.apple.uikit.eventisich-thread (7)

1}

1 #pragma mark - Table view data source

self.theloskstore = [[Bookstore alloc] dnit);
self.title = @g*My Bookstore®; // This is the title of our sain view.

[super didReceiveMesorywarningl;
f/ Dispose of any rescurces that can be recrested.

Theead 1: breakpoint 2.1

= [N3IntegerinunberOfSecti
3 return 17
W)
B e il
» [seif = (MaivienCantroter *) Ox7I7I02616210
* [_cend = (55L) “viewDicLoad”

Tabloview a)tableview {

MyBookstors | () Thread 1) 71 0 - [MainviewControlier viewDldLoad]

2018-01-12 06:04:04.650739-0700
MyBookstoral4355:526179] Unknown class main in
Intar;ul Builder file.

{11cb;

Al Qutput 3 ®

Figure 13-9. The debugger stopped on line 22

v00|=

| igentity and Type

Hame MaitViewControBerm
Type Defouls - Otjective-C Sou.. [

Location _Relative to Group 2]
MuinViewControlier.m =
Full Path fUsers/bradiees/Dropbos/
Apress OSIC &/Projects/
Chapter 13MdyBookstoral
tore/

MyBooks:
MainviewControlier.m 1+]

On Demand Resowrcs Tags

Target Membership
oy MyBoskstone
MyBoakstoneTosts

MyBookstoneliTests
Text Settings
Test Greoding No Explicit Ercoding B
Uine Encings | Mo Explicit Line €ndings [
Ingant Using Spaces B
Widthe. a4 4y
Tab indert
18 Wrap lines
DO @ o

Cocoa Touch Class - A Cocoa
Tawch class

g Ul TestCase Closs - A class

imlamenting a unit test

g Unit Tost Cose Class - A class
inplsmenting s unt 63t

@ .

Click the Step Into button i. ; this will cause the debugger to go into the property

definition of the Bookstore object. The screen should look like Figure 13-10.

350

® e > [| ¢% .. @ iPhone B Plus Running MyBookstore on iPhone 8 Plus 1 = @
BEHRAMASEC B RC>RB b ' ye) m B m) No
v [MyBookstore PID 6798 Q@@ 7
m| CPU 0% 2 /¢ This is the first book as a dictionary.
3 /1 It's the first element in the array
(2] Memery 35.9MB "
. = 25 @{@"title": @*Objective-C for Absolute Beginners®,
— o 36 KAe 8 ®@"author": @"Bennett, Lees, and Kaczmarek"®,
7 @ description”: @"i AR : asy."},
® Network Zero KBjs @"description”: @"i0S Programming made easy."}
¥ (@ Thread 1 Queue: com....-thread [serial) 2 '
I/ Now we're creating the second dictionary as
/'] 0 -[Bookstore init]
' // the second element of the array.
1 1 -[MainViewControllerTableViewC... 1
2 -[UIviewController loadViewliRe @{@"title": Q@A Farewell To Arms”,
1 34 UlapplicationMain @"author": @"Ernest Hemingway",
19 35 ma @"description”: @"The story of an affair between"
2 . * an English nurse and an®
36 start * American soldier on the Italian"
37 start * front during World War I.*}
» (@) Thread 2 e i
- En g 4 arra’
» @ Thread 3 SR R ISR
> (@) Thread 4 [self addBooks:arrayOfBooksl;
» () Thread 5 }
13 @ com.apple. uikit.eventfetch-thread (6)
return self;
E ®» il o 2 2|0 % < MyBookstere | () Thread 1) [0 -[Bookstore init)
> [self = (Bookstare *) Ox600000006120 (11ldb)
» B emd = ¢ init*
» [0 arrayOIBooks = (NSAmay *) Oxt
® | Auto & [C] NI Qutput & ®

Figure 13-10. Stepping into the init method of the Bookstore object

INTRODUCING THE XCODE DEBUGGER

<0 -g O
Lh>

= Thread 1: breakpaint 3.1

It’s important to note that not only is the debugger in the Bookstore object, but the
debugger has also moved to the Bookstore.mfile (it used to be in the MainViewControll
erTableViewController.mfile).

The Step Over control 2 continues execution of the program but doesn’t go into a

method. It simply executes the method and continues to the next line. The Step Out

1k

control

is a little like the opposite of Step Into. If the Step Out button is clicked, the

current method continues execution until it finishes. The debugger then returns to the
line before Step Into was clicked. For example, if the Step Into button is clicked on the
line shown in Figure 13-9 and then the Step Out button is clicked, the debugger will
return to the MainViewControllerTableViewController.mfile on the statement shown
in Figure 13-9 (line 23 in the example), the line where the Step Into was made.

351

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Looking at the Thread Window and Call Stack

As mentioned, the Thread window displays the current thread (there is only one

in the example program). However, it also displays the call stack. If you look at the
difference between Figures 13-9 and 13-10 as far as the Thread window goes, you

can see that Figure 13-10 now has the [Bookstore init] method listed because
[MainViewControllerTableViewController viewDidLoad] calls the [Bookstore init]
method.

Now, the call stack is not simply a list of functions that have been called; rather, it’s a
list of functions that are currently being called. That’s an important distinction. Once the
init method is finished and returns (line 22), [Bookstore init] will no longer appear
in the call stack. You can think of a call stack almost like a breadcrumb trail. The trail
shows you how to get back to where you started.

352

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Debugging Variables

It is possible to view information about a variable by hovering over the variable as well
as by viewing it in the variables section. Let’s do this by starting from scratch. To do this,
click the Stop icon to stop debugging the app and then clear all breakpoints by going to
the Breakpoint Navigator (see Figure 13-11), highlighting the project, and then pressing
the Delete button on the keyboard. (Note that you may not see as many breakpoints; we
added more to demonstrate how it would look in a real project.)

BE R QA O =[O |8|<>

v @ MyBookstore 5 Breakpoints

¥ m MainViewControllerTableViewControll... ?l
v [-viewDidLoad line 22 [jj
23 -[MainViewControll... line 22 [l = 2

¥ m BookDetailViewController.m 25 e{
v [-viewDidLoad line 19) 26

= line 20 m

line 24 1 29 //

= line25 I | 30 /7

— BookDetailViewContro... line 29 [llD fl /1

¥ m Bookstore.m ;; éi
v [@ -init line 28 B
53] -[Bookstore init] line 33 — 35
36
37

Figure 13-11. Deleting all breakpoints

353

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

So, now let’s add a new breakpoint so you can see some variables. Change to the
Project Navigator by clicking the Folder icon. Select the Bookstore.mfile and set the
breakpoint on line 42, as shown in Figure 13-12.

o9 p ¢\ ..) iPhone B Plus Finished running MyBookstore on iPhone 8 Plus 1 = @ <03
BERQMASGEc B B -] . Y8 m B m) No i <hDd
v g MyBookstore M f"description": @"i05 Programming made easy."F,
v MyBookstore 1/
h AppDelegate.h A // Now we're creating the second dictionary as
m AppDelegate.m A f/ the second element of the array.
Main.storyboard - I 3
@{e~title*: @"A Farewell To Arms",
h BookDetallViewController.h A @ author®: @*Ernest Hemingway",
m| BookDetallViewController.m A @"description": @"The story of an affair between®
W Assels.xcassets M * an English nurse and an"
LaunchScreen.storyboard A * American soldier on the Italian®
® front during World War I."}
Info.plist A
m main.m A 1; // End of the array
h Book.h A J
~ ook » D y [self addBooks:array0fBooksl;
h Bookstore.h A
m; - return self;

h MainViewCentr..ViewController.h ¥

m MainViewContr_.iewControllerm A

>

v MyBookstoraTests

m MyBookstoreTests.m A
Info._plist A
¥ [MyBookstareUi Tests : (NSInteger)numberOfBooks
m MyBookstoreUlTests.m A 3 return self.books.count;
Info.plist A 5 }
» 7 Products
= (void)addBooks: (NSArray =)bookArray
{
for (NSDictionary =bookInfo in bookArray) {
Book *newBook;
- | ® CH

Figure 13-12. Setting the new breakpoint

Next, run the application. When the debugger stops on line 42, hover the mouse over
arrayOfBooks in the code. There will be a small pop-up, as shown in Figure 13-13.

> @'2 elements" © (i)

Figure 13-13. Initial variable pop-up. You need to expand this!

354

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Next, click the disclosure arrow (the arrow in Figure 13-13). The two items contained
in the array will be shown. Click each of the book’s disclosure arrows again. What will
be displayed are the variables associated with the Books stored in the array, as shown in
Figure 13-14.

ey LSELT 300L00KS:aIrayuTsooKs); inreaa i: oI
nain f }
stz ¥ @"2 elements” 0
¥ [0] = (_NSDictionaryl *) 3 key/value pairs
1 » [0] = @"title” : @"Objective-C for Absolute Beginners”

13 ¥ [1] = @"author” : @"Bennett, Lees, and Kaczmarek®
» [2] = @"description” : @"I0S Programming made easy.”
¥ [1] = (_NSDictionaryl *) 3 key/value pairs
» [0] = @"title” : @"A Farewell To Arms"
» [1] = @"author” : @"Ernest Hemingway"
» [2] = @"description” : @"The story of an affair between an English nurse and an American soldier on the Italian front during World War .*

» [self = (Bookstore *) Ox600000016a30 (11db)

Figure 13-14. List of Book properties

Dealing with Code Errors and Warnings

While coding errors and warnings aren’t really part of the Xcode debugger, fixing them

is part of the entire debugging process. Before a program can be run (with or without the

debugger), all errors must be fixed. Warnings won’t stop a program from building, but

they could cause issues during program execution. It’s best not to have any warnings at all.
Let’s take a look at a couple of different types of warnings/errors. To start, let’s add an

error to your code. On line 22 of the MainViewControllerTableViewController.mfile,

change
self.theBookstore = [Bookstore new];
to
self.theBookstore = [Bookstore newBookStore];

355

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Xcode will display a small red exclamation point (stop sign) indicating that there
is an error on that line. Next, click the exclamation point to see the error, as shown in
Figure 13-15.

- (void)viewDidLoad {
2 [super viewDidLoad];
22 self,.theBookstore = [Bookstore newBookStorel; © No known class method for selector 'newBookStore'
self.title = @"My Bookstore"; // This is the title of our main view.

Figure 13-15. Viewing the error in Xcode

Generally, the error points to the real problem. In the previous case, the BookStore
object doesn’t know about a method called newBookStore.

Tip Encountering this error when building a project generally means the method
name is misspelled or perhaps the proper header file hasn’t been included to let
the compiler know about this method. If you know the method exists, then check to
see whether the header is included. Otherwise, it might just be a typo.

Let’s fix the error by changing the word newBookStore back to new on line 22. Xcode

will remove the error, and it will look fine again.

Warnings

Warnings indicate potential problems with the program. As mentioned, warnings
won'’t stop a program from building but may cause issues during program execution.
It’s outside the scope of this book to cover those warnings that may or may not cause
problems during program execution; however, it’s good practice to eliminate all
warnings from a program.

Let’s pick on line 22 again. This time, remove [Bookstore new]; altogether
and replace it with just a@""; as shown in Figure 13-16. This time, instead of a red
exclamation point, you now see a warning triangle. When clicked, the warning is

displayed, just like it did for the error.

356

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

= (void)viewDidLoad {
[super viewDidlLoad];
self.theBookstore = @"*; Incompatible pointer types assigning to 'Bookstore *' from ‘NSString *'
self.title = @"My Bookstore"; // This is the title of our main view.

2% }
Figure 13-16. Viewing an Xcode warning

It may not be convenient to always click an error or warning in this way. A more
convenient way is to view all the errors and warnings across the entire app. To do this,
you use the Issue Navigator. To get to the Issue Navigator, just choose the triangle from
the Navigator panel. Figure 13-17 is an example of viewing all the errors and warnings.

@ ®) B /A ..) ugiPhone8Plus Running MyBookstore on iPhone 8 Plus 2

i = Q © = o B |8 < & MyB...store)) . MainViewControllerTableViewControlle

GG A Runtime
#import "MainViewControllerTableViewController.h"

v g\:l(MyBookstore 2 issues 10 #import "Bookstore.h"

v Unsupported Configuration 11 #import "Book.h"

“Navigation Controller” is #import "BookDetailViewController.h"

unreachable because it has no entry

points, and no identifier for runtim... 14 @interface MainViewControllerTableViewController ()
Main.storyboard 15 Q@property (nonatomic, strong) Bookstore *theBookstore;

¥ /. Semantic Issue 16 @end

Incompatible pointer types

assigning to 'Bookstore *' from @implementation MainViewControllerTableViewController

‘NSString *'
MainViewControllerTableView... 20 = ({void)viewDidLoad {
2 [super viewDidLoadl;
self.theBookstore = P""; Incompatibl

self.title = @"My Bookstore"; // This is the title c

Figure 13-17. Errors and warnings in the Issue Navigator

Clicking each line in the Issue Navigator will go to the file and location of the error or
warning. This is a fast and easy way to find and navigate to all the errors in the build.
Now, just either undo all of these changes or go back and fix these issue so there
are no longer any warnings or errors. Now, play around with running the app; setting
breakpoints; and stepping over, into, and out of code. Just have fun. Xcode definitely
provides a lot of features to help debug a program and make finding warnings and errors
easy to do.

357

CHAPTER 13 INTRODUCING THE XCODE DEBUGGER

Summary

In this chapter, we covered the high-level features of the free Apple Xcode debugger.
Regardless of price, Xcode is an excellent debugger. Specifically, in this chapter, you
learned the following:

e The origins of the term “bug” and what a debugger is
o The high-level features of the Xcode debugger
e Breakpoints
e Stepping through a program
o How to use the debugging controls
¢ Restart and continue (pause)
e Step over
e Stepinto
o Stepout
e Working with the various debugger views
e Variables
e Console
e Looking at program variables

o Dealing with errors and warnings

Exercise

Perform the following task:

o Change the Device Type field from iPhone 8 Plus to something else.
Just have fun playing around with the different simulator sizes.

358

Index

A

Alice application, 91
Alice interface, 15

application menu, 17

classes, 20

data
firstnumber, 56
Grass template, 50
increasing duration, 63
math selection, 57
procedure method, 60
Run button, 64
secondNumber, 53
setup scene button, 59
TextString, 59
TextString parameter, 61
totalSum variable, 54-55, 58, 62
variable creation, 52, 53

download option, 11

editor, 22

edit scene control
camera controls, 19
objects and adjusting option, 20
scene editor, 19
setup screen button, 18

IDE running, 11

instance, 21

methods panel, 21, 23

Moon project
Biped classes, 26

camera controls, 26, 27
edit code button, 27
handle styles, 27
Hello World app, 23
instantiation, 25
method instruction, 29-30
parameters, 30-31
procedures tab, 28
run window, 31
selection, 24
setup scene, 24
steps, 23
view and add objects, 25

objects, 20

object tree, 21

opening screen, 16

properties, 21

user interface, 15

Xcode IDE, 12

ASCII characters, 48
Attributes, 301

B

Binary number system, 46
Book detail view, 231
BookDetailsSegue, 237
BookDetailViewController
class, 238-239
BookTitleRow method, 233
details view controller, 231

359

© Stefan Kaczmarek, Brad Lees, Gary Bennett, Mitch Fisher 2018
S. Kaczmarek et al., Objective-C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3429-7

https://doi.org/10.1007/978-1-4842-3429-7

INDEX

Book detail view (cont.)

detail view, 253
label view
adding label, 240
changing text, 243-244
description, 246
expanding label, 241
labels, 242
remane, 245
Main.storyboard file, 239
main view, 252
outlets
available, 250
BookDetailViewController.h
file, 246, 247, 250
connection, 250
empty outlet circles, 248
label creation, 249
prepareForSegue method, 250
run button, 236
segue identifier, 237
Segue menu selection, 234
show option, 235
table view/detail view, 233
view controller, 232

Bookstore application, 201, 331

boilerplate project, 204

Book.h file, 208

class files, 207

Cocoa Touch class, 205

initial project, 202

name and parent class, 206
product name and options, 203
view class, 208

BookStore.xcdatamodeld

attributes, 306, 308
date, 309
decimal, 309

360

integer 32, 309
string, 308
author entity, 312
book entities, 310
Data Model Inspector, 312
entity, 306-307, 315
fetched properties, 307
interface creation, 317
addNew method, 329
Attributes Inspector, 320
Bar Button Item, 323
code implementation, 326
connection setup, 325
Document Outline, 324
final app, 330
hook up, 324
identifier, 320
loadBooks method, 327
managedObjectContext, 329
Navigation Controller, 321
Table View, 318
UlBarButtonltem, 322
UlTableViewCell, 319
ViewController.m file, 326-328
viewDidLoad method, 327
managed objects, 314, 316
NSManagedObiject, 314-315
relationships, 307, 311

Boolean expression, 263

clubMember variable, 264
if statement, 264
some_code() method, 264

Boolean logic operator, 255

AND and OR, 76

NOT, 76

TRUE/FALSE, 76

XOR, NAND, and NOR, 77

Bugs, 5

INDEX

C debugger window, 262
NSLog function, 261
NSLog output, 263
project creation, 259

caselnsensitiveCompare method, 266
Code errors and warnings, 355

Code refactoring, 98

Collections, 191

containers, 191
enumerator, 193
mutable, 192

NSArray, 194
NSDictionary, 196
NSSet class, 192
ordered collection, 195
types of, 192
unordered, 192

Comparing data, 255

Boolean expression, 263
clubMember variable, 264
If statement, 264
some_code() method, 264
variable, 264

Boolean logic, 255

combination, 270

dates, 267
compare function, 268
NSComparisonResult, 269
NSDate objects, 268
source code, 268

relational operators, 256, 257

strings, 265
enteredPassword object, 266
NSString object, 265
rangeOfString method, 266

switch statement, 271

Xcode application

AppDelegate.m and AppDelegate.h

file, 260, 262
comparison, 260
creation, 259

D

Data

Alice interface, 50
firstNumber, 56
Grass template, 50
increasing duration, 63
Math seletion, 57
procedure method, 60
run button, 64
secondNumber, 53
setup scene button, 59
TextString parameter, 59, 61
totalSum variable, 54-55, 58, 62
variable creation, 52-53

Boolean data type, 50

debugging, 71

numbering systems, 43
bits, 43
bytes, 46
hexadecimal system, 47
unicode, 49

Objective-C app
console log display, 70
main.m source file, 68
NSLog function, 69
product name, 67
project creation, 66
totalSum, 69
types, 64, 66

strings, 49

types, 49

variables, 49

361

INDEX

Data storage

applications folder, 297
database
definition, 301
SQLite (see SQLite)
preferences file, 298
reading preferences, 300
writing preferences, 298

Debugging, 6, 71

breakpoints, 341
delete key, 343, 345
enable/disable, 345
file option, 346
navigator icon, 344
build and debug buttons, 346
code errors and warnings, 355
console window, 347
controls, 348
definition, 339
debugger controls, 347
errors, 357
execution process, 347
iOS simulator selection, 341
MyBookstore project, 340
Pause/Continue button, 348
stack trace, 348
step controls, 350
Bookstore object, 351
init method, 351
Step Into button, 350
Step Into button, 349
Step Out button, 349
Step Over button, 349
Stop button, 348
thread window and call
stack, 352
variables, 347
Bookstore.m file, 354

362

breakpoint navigator, 353

delete, 353

initial variable pop-up, 354

properties, 355
warnings, 356

E

Electronic Numerical Integrator And

Computer (ENIAC), 43

F

Flowchart, 84

G

Getter method, 212
Grass template, 51

H

Hookup, 177
app updation, 185
cleaning up, 183
connection, 180-181
firstLabel selection, 180
labels, 179
method completion, 185
nameLabel variable, 178
run option, 185-186
secondLabel, 182
SimpleLabelData class, 184
user interface objects, 177
variables, 182
ViewController.h file, 179
Human interface
guidelines (HIG), 279

|, J

Infinite loop, 90

Inheritance, 116

Instance methods, 162, 166

Instantiation, 21

Integrated development

environment (IDE), 8

Interface, 119, 159

iPhone app
actions and objects, 294
controller and XIB files, 286
document outline, 288
groups creation, 285
implementation file, 294
interface builder, 281, 287
iOS random number, 281
Main.storyboard file, 286
object library, 289
outlet property code, 293
outlets, 291
project, 283

randomNumberLabel outlet, 292

randomNumber outlet, 292

single view app template, 282

source files, 284
storyboard and XIB files, 286
view creation, 290

K

Keychain, 298

L

locationManager delegate method, 337

Looping
count-controlled loops, 88
definition, 88

for loop, 88
infinite loop, 90
while loop, 89

MasterViewController.m file, 350, 355
Model-View-Controller (MVC)

pattern, 277

architectural pattern, 277
banking application, 278
categories, 277
objects, 277
paradigm, 278
representation, 279
Moore, Gordon E., 44
Moore’s Law, 44
Mutable container classes, 197
non-mutable classes, 197
NSMutableArray, 199
NSMutableDictionary, 200
NSMutableSet, 198
unique objects, 199
MyBookstore program, 212
Bookstore object, 212, 224
addBooks method, 226

Bookstore.m file, 224-225
MainViewController.m file, 227
NSDictionary object, 226
numberOfBooks Method, 227
table view, 228

viewDidLoad method, 227

delete key, 213
initial view, 218

adding files, 219

cocoa touch class, 218

custom class, 223
MainViewController class, 218,

INDEX

221

363

INDEX

MyBookstore program (cont.)
root view controller selection, 223
selection, 220
Xcode screen, 222
Main.storyboard file, 214
navigation controller, 215-216
root view controller, 217-218
shrinking view, 217
single-view application, 212
template, 212
trash, 214
utilities pane, 215
ViewController.h and .m files, 212, 213
MyFirstApp project, 168
workspace window, 169
Xcode screen, 168

N

NSArray, 194
NSDictionary class, 196, 197
NSMutableArray, 199
NSMutableDictionary, 200
NSMutableSet, 198
NSOrderedSame method, 266
NSSet class, 192
Numbering systems

bits, 43

bytes, 46

hexadecimal system, 47

unicode, 49

O

Objective-C, 32
Alice interface
download option, 11
IDE running, 11

364

Xcode IDE, 12
class
calling methods, 160
class methods, 161
creation, 157
dynamic binding, 160
factory methods, 161
foundation class, 159
implementation file, 163
@implementation keyword, 158
instance methods, 162, 166
interface file, 159, 165
@interface keyword, 158
methods, 158
MyFirstApp (see MyFirstApp
project)
NSObiject class, 158
SimpleLabelData class, 157
SimpleLabelData object, 158
SimpleLabelData.h file, 158-159
concepts of, 191
data
console log display, 70
main.m source file, 68
NSLog function, 69
product name, 67
project creation, 66
totalSum, 69
types, 64, 66
developer view
algorithm, 2
computer program, 2
design requirements, 3
OmniGraffle, 4
process of, 2
user interface (UI) design, 3
Woodforest mobile banking, 5
development cycle, 5

bugs, 5
considerations, 6
debugging, 6
flowchart design, 6
quality assurance (QA), 5
testing, 5
HelloWorld.h interface file, 129
histroy of, 121
hook up (see Hook up)
implementation file, 129, 173
language symbols and syntax
call a method, 128
class definition, 126
code begins and ends, 124
comments, 125
concepts, 122
end of a line of code, 124
interface, 126
method definition, 127
syntactical differences, 123
variable creation, 123
variables definition, 127
main.m file, 131
Main.storyboard file, 174
NSObject, 130
NSString object, 131
objective, 128
objects, 169
adding file, 170
file type selection, 171
SimpleLabelData interface file, 172
subclass, 172
workspace window, 172-173
OOP (see Object oriented
programming (OOP))
planning program flow, 92
code refactoring, 98
command line tool project, 93

INDEX

console output, 98
editor, 95
else-if statement, 97
main.m file, 94
modulus operator, 97
nest if statements, 97
RandomNumber, 94
scanf function, 97
source code, 95
printGreeting method, 131-132
SimpleLabelData.h file, 173
Smalltalk, 122, 128
user interface, 174
Xcode (see Xcode)

Object oriented programming (OOP), 101

Alice application, 8

benefits of, 117-118

classes, 103, 104
BookStore folder, 110
Customer.h file, 113
empty customer class, 114
header file, 116
inheritance, 116
instance variables, 115
Objective-C class, 111
project creation, 109
superclass selection, 112

couch object, 102

debugging, 118

design requirements, 7

Dog class, 103

instance, 103

integrated development environment, 8

interface, 119

methods, 9, 102, 107
Customer class, 107
Sale class, 108
UML diagram, 108

365

INDEX

Object oriented programming (OOP) (cont.)

object, 7, 102
polymorphism, 119
principles, 7
properties, 10, 102, 104
Book class, 106
Bookstore class, 105
Customer class, 105
Sale class, 106
redundant code, 118
replacement, 118
UlTableView, 10
Xcode’s i0S Simulator, 8-9
Object tree, 21

P

Protocols
delegate methods, 336
Edibleltem, 335
inheritance
behaviors and features, 334
definition, 333-334
Inventoryltem, 335
method declarations, 334
syntax, 335
Planning program flow
boolean logic, 76

decision making and program flow, 85
design requirements and flowchart, 84,

87,91

loop (see Looping)
Objective-C, 92
Pseudocode, 81
truth tables

AND, 77-78

comparison operators, 80

NAND, 79

NOR, 79

366

NOT, 78
OR, 78
XOR, 79
Polymorphism, 119
Preferences file, 298
reading preferences
integerForKey method, 300
stringForKey method, 300
synchronize function, 300
writing preferences
multitasking, 299
NSUserDefaults object, 299
synchronize function, 300
Properties, 208
access, 209
Book.h file, 208-209
camel case, 210
getter and setter method, 211
NSString objects, 209
stringWithContentsOfURL, 210
Pseudocode, 81
&& and || logical operators, 83-84
If-Then-Else code, 81-83

Q, R

Quality assurance (QA), 5

S

Sensitive data, 298
Setter method, 212
SQLite
backup loss, 302
Core Data, iOS, 303, 330
database manager, 302
single-user database, 302
switch Statement, 271

T

Table view
BookTitleRow, 229
identifier, 228
MainViewController class, 229
NSIndexPath object, 230
Ternary operation, 262
Truth tables
AND, 77-78
comparison operators, 80
NAND, 79
NOR, 79
NOT, 78
OR, 78
XOR, 79
Typecasting, 257

uv
User interfaces (UI), 3, 174
actions, 275
human interface guidelines, 279
interface builder, 276
iPhone (see iPhone app)
MVC pattern, 277
architectural pattern, 277
banking application, 278
categories, 277
objects, 277
paradigm, 278
representation, 279
storyboards and XIBs, 275
outlets, 275

w

Woodforest mobile banking, 5

INDEX

X,Y,Z

Xcode

beta versions, 34
command line tool template, 36
creation, 35
debug area console, 39
debugger (see Debugging)
documentation
developer window, 187
dialog, 186
help menu, 186
NSString class, 187
editor area, 38
error message, 40
executing completion, 41
HelloWorld, 37
Mac App Store, 33
navigator area, 38
NSLog function, 40
project creation, 133
Button control, 145
Button object, 145
class extension, 142
connection menu, 149, 151
debug area, 139
implementation file, 142-143
iPhone interface, 144
label object, 147
label size, 148
left portion, 137
list of templates, 134
main screen, 136
navigator, 139
no panes, 139
panes, 138
product name, company,
and type, 135

367

INDEX

Xcode (cont.) toolbar, 137
referencing outlet, 152 utilities pane, 139
right portion, 137 ViewController.h file, 140
run button, 154 ViewController.h
standard editor, 137 interface, 141
showName, 150 ViewController object, 152
source code, 140 ViewController.xib file, 144
.storyboard file, 136 run button, 38
text option, 153 syntax, 40
title modification, 146 welcome screen, 133

368

	Table of Contents
	About the Authors
	Introduction
	Chapter 1: Becoming a Great Objective-C Developer
	Thinking Like a Developer
	Completing the Development Cycle
	Introducing Object-Oriented Programming
	Working with the Alice Interface
	Summary
	Exercises

	Chapter 2: Programming Basics
	Taking a Tour with Alice
	Application Menu
	Editing a Scene
	Classes, Objects, and Instances in Alice
	Object Tree
	Editor
	Methods Panel

	Creating an Alice App: To the Moon, Alice
	Your First Objective-C Program
	Launching and Using Xcode

	Summary
	Exercises

	Chapter 3: It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Moore’s Law

	Bytes
	Hexadecimal
	Unicode

	Data Types
	Using Variable and Data Types with Alice
	Data Types and Objective-C
	Identifying Problems
	Summary
	Exercises

	Chapter 4: Making Decisions About and Planning Program Flow
	Boolean Logic
	Truth Tables
	Comparison Operators

	Designing Apps
	Pseudocode
	Flowcharting
	Designing and Flowcharting an Example App
	The App’s Design
	Using Loops to Repeat Program Statements
	Count-Controlled Loops
	Condition-Controlled Loops
	Infinite Loops

	Coding the Example App in Alice
	Coding the Example App in Objective-C
	Nested If Statements and Else-If Statements
	Removing Extra Characters
	Improving the Code Through Refactoring
	Running the App

	Moving Forward Without Alice
	Summary
	Exercises

	Chapter 5: Object-Oriented Programming with Objective-C
	The Object
	What Is a Class?
	Planning Classes
	Planning Properties
	Planning Methods
	Implementing the Classes

	Inheritance
	Why Use OOP?
	It Is Everywhere
	Eliminate Redundant Code
	Ease of Debugging
	Ease of Replacement

	Advanced Topics
	Interface
	Polymorphism

	Summary
	Exercises

	Chapter 6: Learning Objective-C and Xcode
	A Brief History of Objective-C
	Understanding the Language Symbols and Basic Syntax
	Create a Variable
	Begin and End a Section of Code
	Signify the End of a Line of Code
	Write a Comment
	Define a Class
	Define a Method
	Define an Objective-C Variable
	Call a Method

	Putting the “Objective” into Objective-C
	Writing Another Program in Xcode
	Creating the Project

	Summary
	Exercises

	Chapter 7: Objective-C Classes, Objects, and Methods
	Creating an Objective-C Class
	Declaring Interfaces and Properties
	Calling Methods
	Using Class Methods
	Using Instance Methods

	Working with the Implementation File
	Coding Your Methods

	Using Your New Class
	Updating MyFirstApp
	Adding Objects
	Writing the Implementation File
	Updating the User Interface
	Hooking Up the Code

	Accessing the Xcode Documentation
	Summary
	Exercises

	Chapter 8: Programming Basics in Objective-C
	Collections
	Using NSSet
	Using NSArray
	NSDictionary
	An NSDictionary Example
	NSDictionary Access, Order, and Uniqueness

	Using the Mutable Container Classes
	NSMutableSet
	NSMutableArray
	NSMutableDictionary

	Creating the Bookstore Application
	Introducing Properties
	Accessing Properties
	Custom Getter and Setter

	Finishing the MyBookstore Program
	Creating the Initial View
	The Bookstore Object
	Using the Bookstore Object

	Preparing the Table View
	The Book Detail View
	Setting Up the Outlets
	Plugging in the Book Details

	Summary
	Exercises

	Chapter 9: Comparing Data
	Revisiting Boolean Logic
	Using Relational Operators
	Comparing Numbers
	Creating an Example Xcode App

	Using Boolean Expressions
	Comparing Strings
	Comparing Dates
	Combining Comparisons

	Using the switch Statement
	Summary
	Exercises

	Chapter 10: Creating User Interfaces
	Understanding Interface Builder
	The Model-View-Controller
	Human Interface Guidelines
	Creating an Example iPhone App with Interface Builder
	Using Interface Builder
	The Document Outline
	The Object Library
	Creating the View
	Using Outlets
	Connecting Actions and Objects
	Implementation File

	Summary
	Exercises

	Chapter 11: Storing Information
	Storage Considerations
	Preferences
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context
	Setting Up the Interface

	Summary
	Exercises

	Chapter 12: Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	Protocol Syntax

	Understanding Delegates
	Next Steps
	Summary
	Exercises

	Chapter 13: Introducing the Xcode Debugger
	Getting Started with Debugging
	Setting Breakpoints
	Using the Breakpoint Navigator
	Debugging Basics
	Working with the Debugger Controls
	Using the Step Controls
	Looking at the Thread Window and Call Stack
	Debugging Variables

	Dealing with Code Errors and Warnings
	Warnings

	Summary
	Exercise

	Index

