
www.allitebooks.com

http://www.allitebooks.org

OpenStack
Networking Cookbook

Harness the power of OpenStack Networking for public
and private clouds using 90 hands-on recipes

Sriram Subramanian

Chandan Dutta Chowdhury

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

FM-2

OpenStack Networking Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1030207

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-610-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

FM-3

Credits

Authors
Sriram Subramanian

Chandan Dutta Chowdhury

Reviewers
Daniel Aquino

Yan Haifeng

Sayali Lunkad

Sarath Chandra Mekala

Madhusudan H V

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Divij Kotian

Technical Editor
Bharat Patil

Copy Editor
Tasneem Fatehi

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Jason Monteiro

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

FM-4

About the Authors

Sriram Subramanian is an experienced professional with over 18 years of experience in
building networking and network management products. Since 2011, he has been working
with Juniper Networks leading engineering teams responsible for OpenStack Neutron plugins,
VMware integration, and Network management products. He is a technologist with a passion
for virtualization and cloud networking. He blogs regularly at http://www.innervoice.
in/blogs and loves experimenting with new technologies and programming.

I would like to dedicate this book to my family. I want to thank my wife,
Kala, for her support during this entire project. Her give your best attitude
motivates me to strive harder in managing my time and energy effectively.
I also want to thank Appa and Amma for their patience and blessings, and
a special thank you to my daughter, Navya, and our Labrador, Neige, for the
joie de vivre they bring to my life.

I extend a special thank you to my employer, Juniper Networks, and
specifically my manager, Rakesh Manocha. The leadership team at Juniper
has created an environment where individuals can pursue excellence
through innovation. It has helped me expand my knowledge and capabilities
beyond my imagination.

I would like to express my gratitude to my publishers, Packt Publishing, and
the reviewers who provided invaluable feedback.

Finally, a big thank you to Chandan for being a great coauthor and helping
me learn a whole lot more about OpenStack.

www.allitebooks.com

http://www.innervoice.in/blogs
http://www.innervoice.in/blogs
http://www.allitebooks.org

FM-5

Chandan Dutta Chowdhury is a tech lead at Juniper Networks Pvt. Ltd. working
on OpenStack Neutron plugins. He has over 11 years of experience in the deployment
of Linux-based solutions. In the past, he has been involved in developing Linux-based
clustering and deployment solutions. He has contributed to setting up and maintaining a
private cloud solution in Juniper Networks. He loves to explore technology and writes a blog
at https://chandanduttachowdhury.wordpress.com.

I would like to dedicate this book to my parents, Manju and Kiran Moy
Dutta Chowdhury. They have been a source of inspiration and support
throughout my life.

I am thankful to my coauthor and manager, Sriram, who has motivated me
to pursue challenges that I thought were beyond my reach. He has always
provided me with encouraging and constructive feedback.

I would like to thank Juniper Networks for providing a supportive
environment and great opportunities to learn and explore new technology.

I would like to thank Packt Publishing for their guidance and feedback.

www.allitebooks.com

https://chandanduttachowdhury.wordpress.com
http://www.allitebooks.org

FM-6

About the Reviewers

Daniel Aquino currently holds the position of a system architect at Nasdaq. This
role involves challenging and interesting problems in automation, and the deployment
of infrastructure and applications at scale for both public and private cloud platforms.
OpenStack is one of the cloud computing platforms that he is currently exploring.

Yan Haifeng is a software engineer in HP's Cloud. He has participated in the development
of OpenStack when he was still an undergraduate in a laboratory of South China Agricultural
University. Before HP, he worked for Vipshop (building an enterprise private cloud platform)
and ChinaNetCenter (building a public cloud and managed cloud for customers), both based
on OpenStack.

Haifeng blogs at http://yanheven.github.io/.

Thanks to my first boss, Larf (Chen zhanqi) in Vipshop, who gave me the
chance to participate in building a private cloud for Vipshop, and Chen Shake,
who encouraged me a lot and guided me on the road to cloud computing.

Sayali Lunkad is 23 years old and was born and brought up in India. She is currently living
in Germany. She graduated with a bachelor's degree in computer science in 2014 from the
Pune Institute of Computer Technology. She was a former intern in the Outreach Program for
Women (now known as the Outreachy Program) working with the OpenStack foundation while
still completing her degree course. After completing her bachelor's degree, she was freelancing
for about one year, mainly working on open source projects such as OpenStack. She is a core
reviewer for OpenStack. She is currently working at SUSE Linux as an OpenStack developer.

I would like to thank my family, especially my mother, Smita Lunkad, for
always having faith in me and being extremely supportive.

www.allitebooks.com

http://yanheven.github.io/
http://www.allitebooks.org

FM-7

Sarath Chandra Mekala holds a master's degree in communication systems from the
Indian Institute Of Technology, Madras. He currently works as a technical lead at Juniper
Networks and is responsible for integrating various Juniper devices such as EX and QFX
switches and SRX/VSRX firewall devices with leading Open Source Cloud Orchestration
Solutions such as OpenStack and CloudStack.

Sarath has over 12 years of experience working on Java & J2EE based Network Management
Systems. He has a wide array of skills spanning over web and server side programming, which
he keeps cramming with new technologies and skills all the time.

Sarath is multi-faceted and he prides himself as an intermediate level professional
photographer, an avid sci-fi & fantasy reader, an aquarist, a budding gardener, a blogger,
and a gastronomist.

Sarath blogs at http://sarathblogs.blogspot.in/

I would like to thank my wife, Kalyani, for encouraging me along and my son,
Abhiram, for the joy he brings to my life.

Thanks to Sriram and Chandan for tagging me up for the review and the
team at Packt Publishing for their support.

Madhusudan H V works as a Staff Engineer at Juniper Networks. He has more than 11
years of experience in developing enterprise grade telecom and networking management
applications. He loves coding and focuses on developing new applications that help solve
day-to-day problems of network and datacenter administrators.

Madhusudan is passionate about networking, virtualization, and cloud domains. He is a
VMware Certification Professional (VCP) and Cisco Certified Network Associate (CCNA).

Madhusudan is the author of a cloud-related technical blog at http://fastclouds.net/.

Thanks to Sriram Subramanian for his guidance and support in my
experiments with new technologies. I would also like to thank my wife,
Nanditha, and my son, Alok, for supporting me in reviewing this book.

www.allitebooks.com

http://sarathblogs.blogspot.in/
http://fastclouds.net/
http://www.allitebooks.org

FM-8

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

i

Table of Contents
Preface v
Chapter 1: Getting Started with OpenStack Networking 1

Introduction 1
Creating a Subnet and Network using Horizon 3
Viewing the details of a Network using Horizon 5
Associating a Network to an instance using Horizon 8
Creating a Network using OpenStack CLI 11
Creating a Subnet using OpenStack CLI 14
Creating a Port without an associated instance using the OpenStack CLI 16
Associating a Port to an instance using OpenStack CLI 17
Configuring the networking quota in OpenStack 20

Chapter 2: Using Open vSwitch for VLAN-Based Networks 23
Introduction 23
Configuring Neutron to use the Open vSwitch mechanism driver 24
Configuring Neutron to use the VLAN type driver 26
Configuring the VLAN range to be used for the networks 27
Viewing the VLAN allotted for a Network 29
Creating a Network with a specific VLAN 31
Viewing the virtual interface information on the compute node 36
Viewing the virtual interface information on the Network node 41

Chapter 3: Exploring Other Network Types in Neutron 47
Introduction 48
Configuring Neutron to use the Linux bridge mechanism driver 48
Viewing the virtual interface information for Linux bridge on the
compute node 50
Configuring Neutron to use a Flat network type 56
Creating a Flat Network using Horizon 57
Creating a Shared Network using Horizon 60

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Creating an External Network using Horizon 63
Setting up a simple web application – an introduction 66
Setting up a simple web application – setting up OpenStack Networks 68
Setting up a simple web application – creating instances 73

Chapter 4: Exploring Overlay Networks with Neutron 77
Introduction 77
Configuring Neutron to use a VXLAN type driver 78
Configuring a VNI Range for VXLAN Networks 80
Viewing a VNI assigned to a Neutron Network 81
Creating a Network with a specific VNI 84
Viewing the virtual interface information on the compute node for
VXLAN tunnels 86
Viewing the virtual interface information on the network node for
VXLAN tunnels 89
Configuring Neutron to use a GRE type driver 92
Viewing a virtual interface on the compute node for GRE tunnels 94

Chapter 5: Managing IP Addresses in Neutron 99
Introduction 100
Creating an instance with a specific IP address 100
Configuring multiple IP addresses for a virtual interface 104
Creating a redundant DHCP server per OpenStack Network 107
Starting the DHCP server on a specific network node 108
Increasing the number of IP addresses in a Network using the
Horizon dashboard 111

Chapter 6: Using Routing Services in Neutron 115
Introduction 115
Configuring Neutron for Routing services 116
Creating a Router using the Horizon dashboard and Neutron CLI 118
Enabling instances on different Networks to communicate 120
Allowing the Virtual Machine instances to access the Internet 124
Providing access to a Virtual Machine from an external Network or
the Internet 126
using Horizon 126
Creating and deleting a floating IP address using the Neutron CLI 130
Associating a floating IP address to a virtual machine using the
Neutron CLI 132

Chapter 7: Using Neutron Security and Firewall Services 135
Introduction 135
Creating a security group using Horizon 136
Configuring the security group rules using Horizon 138

iii

Table of Contents

Creating a security group using CLI 144
Configuring the security group rules using CLI 145
Securing the traffic between instances on the same Network 146
Creating the security group rules to allow web traffic 151
Configuring Neutron for the Firewall service 154
Creating the Firewall rules 156
Creating the Firewall policies 159
Creating a Firewall 161
Viewing and verifying the Firewall rules on the Network node 164

Chapter 8: Using HAProxy for Load Balancing 169
Introduction 170
Installing and configuring the Neutron load balancer service plugin 170
Creating a load balancer pool using Horizon 172
Creating a load balancer pool using CLI 176
Adding a load balancer member using Horizon 177
Adding a load balancer member using CLI 181
Adding a load balancer health monitor using Horizon 182
Adding a load balancer health monitor using CLI 185
Creating a Virtual IP using Horizon 186
Creating a Virtual IP using CLI 189
Making the load balancer accessible to the Internet 191
Testing the load balancer 192
Viewing the load balancer on the network node 194

Chapter 9: Monitoring OpenStack Networks 197
Introduction 197
Monitoring the Virtual Machine bandwidth 199
Monitoring the L3 bandwidth 201
Monitoring the load balancer connection statistics 204
Monitoring the per project and per user bandwidth 206
Monitoring the host Network bandwidth 207

Chapter 10: Writing Your Own Neutron ML2 Mechanism Driver 209
Introduction 209
Creating a basic ML2 mechanism driver 210
Registering your ML2 mechanism driver with the Neutron server 212
Processing API requests for a Network 214
Processing API requests for a Subnet 217
Processing API requests for a Port 219

Chapter 11: Troubleshooting Tips for Neutron 223
Introduction 223
Troubleshooting a VM that does not get a DHCP IP address 224

iv

Table of Contents

Troubleshooting a VM that does not get an initial configuration 227
Troubleshooting a VM that does not get external Network access 229
Troubleshooting a VM not reachable from external Networks 231
Checking the status of the Neutron service 232
Checking the MAC address table on a virtual switch 234

Chapter 12: Advanced Topics 237
Introduction 237
Configuring Neutron for VPN as a service 238
Testing VPN as a service on Neutron 240
Using link aggregation on the compute node 249
Integrating networking in a Heat template 251

Index 257

v

Preface
OpenStack is an open source platform that leverages compute, network, and storage solutions
to create private and public clouds. In the last couple of years, the adoption of OpenStack has
increased dramatically and is being embraced by enterprises around the world.

Networking is one of the pillars of OpenStack. A solid understanding of OpenStack Networking
will help you implement a rich suite of services in your OpenStack cloud. This book helps you
develop the practical knowledge of a wide range of OpenStack Networking concepts.

This book starts with building blocks such as Network, Subnet, and Port. It then proceeds to
cover OpenStack Networking technologies, such as Routers, Firewalls, and so on. Advanced
topics such as the configuration of load balancers, VPN service to provide site-to-site
connectivity, and development of a simple ML2 driver are also covered to help you build and
manage the best networks for your OpenStack cloud.

This book will cover you the following topics:

 f How to build and manage virtual switching, routing, and firewall-based networks in
OpenStack using Neutron

 f How to develop plugins and drivers for Neutron to enhance the built-in networking
capabilities

 f How to monitor and automate OpenStack networks using tools such as Ceilometer
and Heat

What this book covers
Chapter 1, Getting Started with OpenStack Networking, introduces you to the building blocks
of OpenStack Networking, namely Network, Subnet, and Port.

Chapter 2, Using Open vSwitch for VLAN-based Networks, shows you how to build and
manage OpenStack networks using VLANs and Open vSwitch.

Preface

vi

Chapter 3, Exploring Other Network Types in Neutrons, takes you through the different types
of OpenStack networks with the help of a practical example.

Chapter 4, Exploring Overlay Networks with Neutron, shows you how to build and manage the
VXLAN-based and GRE-based networks in OpenStack.

Chapter 5, Managing IP Addresses in Neutron, helps you understand the IP address allocation
and DHCP-based address assignment features in OpenStack Neutron.

Chapter 6, Using Routing Services in Neutron, explores how to leverage OpenStack routing
capabilities to connect multiple networks.

Chapter 7, Using Neutron Security and Firewall Services, shows you how to implement
security groups and Firewall as a service in OpenStack in order to secure your cloud networks.

Chapter 8, Using HAProxy for Load Balancing, takes you through the techniques to implement
load balancing as a service in OpenStack using HAProxy.

Chapter 9, Monitoring OpenStack Networks, shows you how to monitor your OpenStack
networks using Ceilometer.

Chapter 10, Writing Your Own ML2 Mechanism Driver, gives you a foundation on how to write
your own custom ML2 mechanism driver for Neutron.

Chapter 11, Troubleshooting Tips for Neutron, highlights the different OpenStack networking
problems that you can run into and their solutions.

Chapter 12, Advanced Topics, covers advanced topics, such as VPN as a Service and
Networking using Heat template.

What you need for this book
To use this book, you will need computers or servers that have hardware virtualization
capabilities.

Kilo is the most recent release of OpenStack and is recommended to try out the recipes in
this book.

OpenStack supports different models of deployment and each chapter provides a high level
setup that is relevant for the corresponding recipes. You can also use DevStack for most of
the recipes, but we recommend creating a distributed OpenStack setup for in-depth learning.

Preface

vii

Who this book is for
This book is aimed at network and system administrators who want to deploy and manage the
OpenStack-based cloud and IT infrastructure. If you have a basic knowledge of OpenStack and
virtualization, this book will help you leverage the rich functionality of OpenStack Networking
in your cloud deployments.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections, as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Preface

viii

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

[ml2]
. . .
dhcp_agents_per_network = 2

Any command-line input or output is written as follows:

openstack@controller:~$ cat author_openrc.sh

export OS_TENANT_NAME=cookbook

export OS_USERNAME=author

export OS_PASSWORD=password

export OS_AUTH_URL=http://controller:35357/v2.0

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In the left navigation menu,
click on Identity and then Projects."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

ix

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/6100OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

x

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

1
Getting Started with

OpenStack Networking

In this chapter, we will show you the following set of recipes covering the different ways to
create and manage the core Neutron entities, namely Network, Subnet, and Port:

 f Creating a Subnet and Network using Horizon

 f Viewing the details of a Network using Horizon

 f Associating a Network to an instance using Horizon

 f Creating a Network using OpenStack CLI

 f Creating a Subnet using OpenStack CLI

 f Creating a Port without an associated instance using OpenStack CLI

 f Associating a Port to an instance using OpenStack CLI

 f Configuring the networking quota in OpenStack

Introduction
Businesses are increasingly adopting cloud-based solutions for their IT requirements. This
move to cloud started with the server virtualization where a hardware server ran as a virtual
machine on a hypervisor.

The server hardware connects to the Network switches using Ethernet and IP to establish
Network connectivity. However, as servers move from physical to virtual, the Network
boundary also moves from the physical network to the virtual network. As the cloud platforms
leverage virtualization, it is important that they support the physical and virtual networking
effectively.

Getting Started with OpenStack Networking

2

OpenStack is an open source cloud platform that helps build public and private clouds
at scale. In OpenStack, the name for the OpenStack networking project is Neutron. The
functionality of Neutron can be classified as core and service. In the rest of the book, the
terms Neutron and OpenStack networking are used interchangeably.

The OpenStack networking core functionality refers to the Layer 2 (L2) Network connectivity
and basic IP address management for virtual machines. Neutron provides the core
functionality using entities such as Network, Subnet, and Port. This chapter will provide you
with recipes about managing these entities. The OpenStack networking service functionality
deals with the Layer 3 (L3) to Layer 7 (L7) capabilities as defined in the OSI Network model.

Neutron also works with the telemetry module called Ceilometer in order to let the cloud
operators monitor the health of the OpenStack Networks.

In order to implement the recipes covered in this chapter, you will need an OpenStack setup,
as described here:

Keystone Service

Nova Service(s) Glance Service

Neutron Server Neutron Agent(s)

eth0 eth0eth1 eth1

Open vSwitch Open vSwitch

Management Network

Data Network

Nova Service

Neutron Agent(s)

Controller and Network Node Compute Node

This setup has one compute node and one node for the controller and networking services.
For this chapter, you can also set up a single all-in-one environment. This book is based on
OpenStack on the Ubuntu platform. For other platforms, such as Red Hat, the dashboard may
have a different theme but there should not be any difference in the functionality.

Chapter 1

3

Creating a Subnet and Network using
Horizon

Network and Subnet are the fundamental networking entities in OpenStack. Using these two
entities, virtual machines or instances are provided with Network connectivity. The creation of a
Subnet and Network go hand in hand. Both OpenStack CLI and Horizon support the creation of
a Subnet and Network. This recipe explains how to create a Subnet and Network using Horizon.

Getting ready
In order to create a Network and Subnet, you will need the following information, minimally:

 f The Network name

 f The Subnet name

 f The IP address range for the Subnet—the range should be in CIDR format

How to do it…
1. Log in to the OpenStack Horizon dashboard.

2. In the left navigation menu, click on Project | Network | Networks.

3. Now click on the + Create Network button. The following screen will be displayed:

4. Enter the Network Name and click Next.

5. The next screen lets you create the Subnet that will be part of the Network.

Getting Started with OpenStack Networking

4

6. Enter the Subnet Name and the address range in CIDR format, as shown in the
following screenshot:

7. Click Next. In the next screen, all the fields are optional, so click on Create.

8. Once the Network and Subnet are created successfully, the entry will appear in the
Networks table, as shown here:

Chapter 1

5

The preceding steps covered the most commonly used workflow to create a Network and
Subnet using Horizon.

How it works…
The Network and Subnet entities represent two basic Networking functionalities. A Network
defines the Layer 2 (L2) boundary for all the instances that are associated with it. All the virtual
machines in a Network are a part of the same L2 broadcast domain. The Subnet, on the other
hand, is the range of IP addresses that are assigned to the virtual machines on the associated
Network. OpenStack Neutron configures the DHCP server with this IP address range and it
starts one DHCP server instance per Network, by default. OpenStack Neutron also allocates
one IP to act as the gateway IP unless the user provides a specific IP address for the gateway.

There's more…
As you can see from the UI, it is possible to create a Network without a Subnet. You can
choose between the IPv4 or IPv6 addressing schemes. The Subnet Details section allows
operators to enable or disable DHCP for the Network. Optionally, you can also specify the DNS
servers and IP pools.

Viewing the details of a Network using
Horizon

Once a Network and Subnet have been created, you can use Horizon to view useful details
such as the ID, Network Type, and Gateway IP. You can also view the topology of the Network
that you just created.

Getting ready
For this recipe, you need to know the name of the Network whose details you want to view.

How to do it…
1. Log in to the OpenStack Horizon dashboard using a user ID with an

administrative role.

2. In the left navigation menu, click on Project | Network | Networks.

Getting Started with OpenStack Networking

6

3. On the right-hand side, you will see a list of all the Networks. In the following
screenshot, you can see two Networks:

4. To view the details of a particular Network, click on the Name of the Network:

5. In the preceding screen, the key fields to note are Network Type, Segmentation ID,
and Gateway IP for the Subnet.

Chapter 1

7

6. To view the topology, click on Network Topology in the left navigation panel:

7. As you can see, the two Networks are shown as vertical color-coded bars. The
Subnets belonging to the Network are indicated at the end of the bars.

How it works…
When you create a Network, the Horizon dashboard makes a REST API call to Neutron to
create a Network. During the installation, the OpenStack administrator configures Neutron
with a tenant Network type. This Network type is used by Neutron to create the Network.

Note that if you create and view the Network with a non-administrative
role, some of the fields may not be displayed.

While creating the Subnet, we did not select any gateway IP, so Neutron will automatically
select the first IP address in the Subnet and configure this as the gateway IP for that Subnet.

Getting Started with OpenStack Networking

8

Associating a Network to an instance
using Horizon

Once the Network and Subnet are created, the next step for the end user is to create an
instance or virtual machine and associate the Network to the virtual machine. This recipe
shows you how to accomplish this.

Getting ready
One of the prerequisites to create an instance is to add a virtual machine image to the
Glance image service. In our example, we will add a CirrOS image and use this image to
create an instance.

How to do it…
1. Log in to the OpenStack Horizon dashboard using the appropriate credentials.

2. In the left navigation menu, click on Project | Compute | Instances.

3. Now click on the Launch Instance action on the right-hand side of the screen. The
wizard to create and start an instance will be displayed:

Chapter 1

9

4. Enter a name for the instance, choose a Flavor, select a source as Boot from image,
and choose the desired image:

Getting Started with OpenStack Networking

10

5. To associate the instance to a Network, click on the Networking tab at the top. You
should see a screen where the Selected networks field is empty:

6. In the Available networks field, click on the + sign next to the Network to which the
instance needs to be associated. Then click on Launch:

Chapter 1

11

7. This should result in the creation and booting up of your instance and the Instances
table is updated to show you the instance that was just created:

This recipe showed you that as a part of instance creation, the Horizon GUI allows users to
choose the Network to which the instance needs to be associated.

How it works…
As part of the instance creation process, the user chooses the Network to which the
instance will be associated. The instance creation and scheduling is the responsibility
of Nova and it sends a create Port request to Neutron in order to associate the instance
to the selected Network.

In response to the create Port request, Neutron will ensure that the virtual Network on the
hypervisor server is configured so as to provide connectivity to the virtual machine. For the
very first instance created on the Network, the Neutron server will also start a DHCP process
on the Network node. This happens when DHCP is enabled on the corresponding Network.
Once a virtual machine boots up, it will send a DHCP request. In response to this request, the
DHCP server for that Network will respond with an IP address.

There's more…
If there is exactly one Network for a given tenant, then the dashboard automatically selects this
Network when an instance is created. Additionally, note that the tenants can associate more
than one Network to an instance. This will create multiple interfaces in the virtual machine.

Creating a Network using OpenStack CLI
We have seen how to use the Horizon dashboard to create a Network. Let's now do the same
with OpenStack CLI. Several CLI commands offer additional capabilities when compared to
the dashboard. So it is good to develop a sound knowledge of the CLI commands.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with OpenStack Networking

12

Getting ready
You will need the following information to create a Network using CLI:

 f The login credentials for SSH to a node where the Neutron client packages are
installed (usually the controller node)

 f A shell RC file that initializes the environment variables for CLI

How to do it…
The next set of steps will show you how to use the Neutron CLI commands to create a Network:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands:
openstack@controller:~$ source author_openrc.sh

3. The contents of a typical shell RC file are as follows:
openstack@controller:~$ cat author_openrc.sh

export OS_TENANT_NAME=cookbook

export OS_USERNAME=author

export OS_PASSWORD=password

export OS_AUTH_URL=http://controller:35357/v2.0

openstack@controller:~$ openstack

4. The command to create a Network is neutron net-create, and in the simplest
form, the only argument required is the Network name:

Chapter 1

13

5. You can view all the Networks created using the neutron net-list command:

6. One of the interesting command-line options for the neutron net-create command
is the --tenant-id option. This option allows users with an administrative role to
create a Network for another tenant. The following screenshot shows you how an
administrative user (for an administrative project or tenant) creates a Network for a
cookbook tenant:

7. The tenant ID argument works only when the user specifies the unique tenant ID.
However, sometimes it is convenient to use the tenant name. The following command
automates the conversion from the tenant to the tenant ID. The keyword, cookbook,
is the tenant name used for this command:

Getting Started with OpenStack Networking

14

How it works…
When the user executes the neutron net-create command, the user name and tenant
name attributes are taken from the shell environment variables that were initialized at the
beginning. Neutron creates the Network with this user and tenant (or project). However,
once the --tenant-id option is used, the Network is created on behalf of the tenant
whose ID is specified.

There's more…
Users can specify several other arguments while creating Networks. These options are
provider:network_type, --provider:segmentation_id, and router:external.
While we will be taking a closer look at these parameters in the subsequent chapters,
it is important to note that some of these options are available only if users have the
administrative privilege.

To view the details of a specific Network, you can use the neutron net-show command.

Creating a Subnet using OpenStack CLI
Similar to the CLI commands to create a Network, the next recipe will explore the CLI
command to create a Subnet. The key aspect of the CLI commands for Subnet creation is that
a Network Name is a mandatory attribute.

Getting ready
You will need the following information to get started:

 f The login credentials for SSH to a node where the Neutron client packages are
installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
The next set of steps will show you how to use Neutron CLI to create a Subnet:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands as seen in the previous recipe.

Chapter 1

15

3. The command to create a Subnet is neutron subnet-create and the mandatory
arguments are the Network name and IP address range in the CIDR format. However,
it is a good practice to specify a name for the Subnet. For simplicity, we will choose
the Network, CookbookNetwork2, that was created earlier because it does not have
any associated Subnet yet:

4. Now, when we execute the neutron net-list command, we will see that
CookbookNetwork2 has an associated Subnet that we just created:

5. Users can view the list of Subnets using the neutron subnet-list command:

How it works…
When the user executes the neutron subnet-create command, Neutron creates a
Subnet with the specified IP address range and other parameters. Neutron also associates
the Subnet with the specified Network.

Getting Started with OpenStack Networking

16

Creating a Port without an associated
instance using the OpenStack CLI

Port is another building block in OpenStack Neutron. You will not find a way to create a Port
using the Horizon dashboard. As we saw earlier in the Associating a Network to an instance
using Horizon recipe, a Port is created implicitly as a part of the create instance operation
from the dashboard. However, using CLI, some advanced networking configuration can be
accomplished. This recipe shows you how to create a Port using OpenStack CLI.

Getting ready
You will need the following information to get started:

 f The login credentials for SSH to a node where the Neutron client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
The next set of steps will show you how to use Neutron CLI to create a Port:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands as seen in the previous recipe.

3. The command to create a Port is neutron port-create and the only mandatory
parameter is the Network name. However, it is a good practice to specify a name
for the Port:

Chapter 1

17

4. Note that the Port has been assigned a MAC address as well as an IP address.

5. You can use the neutron port-list command to view a list of all the Ports
in the system:

How it works…
A Port primarily represents an endpoint in a Network. The most common Ports in an
OpenStack environment are the virtual interfaces in a virtual machine.

When the neutron port-create command is executed, OpenStack Neutron allocates
a unique MAC address to the Port. The Network name argument effectively helps Neutron
in identifying a Subnet and then Neutron assigns an IP address to the Port from the list of
available IP addresses in the Subnet.

The post-create request is also the most common trigger to configure the physical and
virtual Networks using the appropriate drivers.

Associating a Port to an instance using
OpenStack CLI

The previous recipe showed you how to create a Port using CLI. The next recipe shows you
how we can use an existing Port as part of the instance creation command.

Getting ready
For this recipe, you will have to identify the Port that you want to associate with an instance.
For the instance creation itself, the software image needs to be identified.

How to do it…
The next set of steps will show you how to use the Nova and Neutron CLI commands to create
an instance that uses an existing Port:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
and Nova client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands as seen in the earlier recipes.

Getting Started with OpenStack Networking

18

3. Execute the neutron port-list command and identify the ID of the Port that
you want to use to create an instance. Make a note of the MAC and IP addresses
assigned to the Port:

4. The CLI command to create an instance is nova boot. This command supports an
argument called --nic that allows us to specify a Port ID that we want to associate
with the instance:
openstack@controller:~$ nova boot --flavor m1.tiny --image cirros-
0.3.3-x86_64 --nic port-id=ee6f30a1-6851-435a-89cd-a8e7390325a4
CLIPortVM

5. Note that the virtual machine name used in the command is CLIPortVM. If we
execute the nova show command now, we can see the details about the instance:

6. In the preceding output, you can see that the IP address of the Port created using CLI
has been assigned to the instance.

7. Log in to the Horizon dashboard and navigate to Network Topology, as discussed
in the Viewing the details of a Network using Horizon recipe. In Network Topology,
move the mouse pointer over the icon representing the instance and click on Open
Console as shown here:

Chapter 1

19

8. In the resulting window, log in to the instance. In our example, we will be using the
CirrOS default username and password for the login.

At the shell prompt of the instance, type ifconfig eth0. This command will show
the virtual interface for this instance. The command output shows the MAC and IP
addresses that are assigned to the virtual interface:

Getting Started with OpenStack Networking

20

This recipe demonstrated how to associate a Port to an instance. At the end of the recipe, we
can see that the MAC and IP addresses for this virtual interface (eth0) match those of the
Port that we used in the nova boot command.

How it works…
We have seen that Neutron assigns an IP address and MAC address to a Port during their
creation. When users execute the nova boot command with the --nic option, then Nova
takes the IP and MAC addresses of the Port and uses this information to configure the virtual
interface of the instance.

There's more…
This technique of creating a Port prior to the instance creation is helpful if a specific IP
address needs to be assigned to an instance or virtual machine. While we will cover this in
another recipe later in the book, it is important to note that this capability is not available
using the Horizon dashboard.

Configuring the networking quota in
OpenStack

Quotas are limits defined in OpenStack to ensure that the system resources and capacity are
used in a systematic manner. Different users can be given different quota limits based on
their requirement and priority. In this recipe, we will show you how to configure a quota related
to networking at a project level and for the whole system.

Getting ready
The setting up and enforcement of the quota are done at the project level. If any user in the
project tries to exceed the allotted quota, the system will reject the corresponding request.
To configure the quota-related parameters, you need to have a good idea about the capacity,
scale, and performance requirements of your OpenStack-based cloud.

How to do it…
The following steps will show you how to configure the networking-related quota:

1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

Chapter 1

21

2. In the left navigation menu, click on Identity and then Projects. In the Actions
column, select Modify Quota for the tenant of your choice, as follows:

3. In the resulting window, the networking-related quotas are defined as shown in the
following screenshot. Make the changes and click Save.

Getting Started with OpenStack Networking

22

4. In order to change the networking-related quota at the whole system level, you need
to change the settings in the Neutron server configuration file.

5. With the appropriate credentials, SSH into the node where the Neutron server
is running.

6. Open the Neutron configuration file using your desired editor. For example, the
command for vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

7. In the configuration file, look for a section starting with [quotas]. All the
quota-related settings start with quota_. Edit these settings as required
and save the file.

8. The Neutron server needs to be restarted for these settings to take effect. Restart the
Neutron server using the following command:
sudo service neutron-server restart

How it works…
All the quota settings are stored on a per project (tenant) basis. During the creation of a
project using CLI or Horizon, OpenStack (Keystone) fetches the system-wide default quotas
from the configuration files and associates them to the project (or tenant). Hereafter, even if
the system-wide quotas are changed, the project-level quotas do not change automatically.
However, the project-level quotas can be changed anytime using Horizon or CLI, and these
changes take effect immediately.

All the OpenStack commands and API calls are checked against the project-level quotas.
If any commands or API calls violate the limits, they will be rejected with an appropriate error.

23

2
Using Open vSwitch for
VLAN-Based Networks

In this chapter, we will demonstrate how Open vSwitch can be used to create and
manage VLAN-based Networks for OpenStack tenants. The following recipes will be
covered in this chapter:

 f Configuring Neutron to use the Open vSwitch mechanism driver

 f Configuring Neutron to use the VLAN type driver

 f Configuring the VLAN range to be used for the Networks

 f Viewing the VLAN allotted for a Network

 f Creating a Network with a specific VLAN

 f Viewing the virtual interface information on the compute node

 f Viewing the virtual interface information on the Network node

Introduction
As discussed in the first chapter, virtualization and cloud computing are pushing the network
boundary from the physical network to the virtual network. The non-virtualized physical
servers are connected to the physical network switches for connectivity. The shift from
physical to virtual networking implies that the virtual machines should be connected to the
virtual switches for connectivity.

In order to allow the multiple networking technologies to interoperate, Neutron uses the
concept of plugins. The Modular Layer 2 (ML2) is a type of core plugin that supports multiple
drivers so that the plugin functionality can be extended and customized. The ML2 plugin
comprises of type drivers and mechanism drivers.

Using Open vSwitch for VLAN-Based Networks

24

Open vSwitch, popularly referred to as OVS, is one of the implementations of the virtual
switches for the Linux platforms. It is an open source, production quality, virtual switch that
supports the rich networking protocols and features.

In order to implement these recipes, you will need an OpenStack setup as described here:

Keystone Service

Nova Service(s) Glance Service

Neutron Server Neutron Agent(s)

eth0 eth0eth1 eth1

Open vSwitch Open vSwitch

Management Network

Data Network

Nova Service

Neutron Agent(s)

Controller and Network Node Compute Node

This setup has one compute node and one node for the controller and networking services.
For this chapter, you can also use a single all-in-one OpenStack setup.

As discussed in the previous chapter, the core functionality of Neutron is to provide Layer 2
(L2) connectivity. Neutron provides this functionality through the use of a core plugin. All the
recipes of this chapter assume that ML2 is the core plugin in the Neutron configuration file.

Configuring Neutron to use the Open
vSwitch mechanism driver

The ML2 plugin can support many mechanisms to provide the core functionality. We will see
how Open vSwitch can act as a mechanism driver for the ML2 plugin.

Getting ready
Using OVS as the mechanism driver requires changes to the ML2 plugin configuration file.
We also have to configure OVS with a tenant network type and physical network alias.

How to do it…
The following steps will show you how to configure Open vSwitch as the mechanism driver for
the ML2 plugin:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

Chapter 2

25

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

3. In the [ml2] section of the file, configure ML2 to use OVS as the mechanism driver:
[ml2]

...

mechanism_drivers = openvswitch

4. In the [ovs] section of the file, configure OVS with the tenant network type and
physical bridge mapping:
[ovs]

...

tenant_network_type = vlan

bridge_mappings = physnet1:br-eth1

5. In the previous step, br-eth1 represents the actual Open vSwitch instance
that is bound to a physical interface and physnet1 represents the alias for the
OVS instance.

6. The OVS instance, br-eth1, can be created using the following steps (assuming that
the eth1 interface is used for the data traffic):
openstack@controller:~$ sudo ovs-vsctl add-br br-eth1

openstack@controller:~$ sudo ovs-vsctl add-port br-eth1 eth1

7. Restart the Neutron and Open vSwitch services on the Controller and Network nodes
of our setup, using the following commands:
openstack@controller:~$ sudo service neutron-server restart

openstack@controller:~$ sudo service openvswitch-switch restart

openstack@controller:~$ sudo service neutron-openvswitch-agent
restart

8. Repeat these steps for the compute node in the setup.

9. The next few steps will show you the changes that are needed on the Network node
so that the Neutron agents can use the OVS-related drivers.

10. Edit the [DEFAULT] section of the DHCP agent configuration file located at /etc/
neutron/dhcp_agent.ini as follows:
[DEFAULT]

...

interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver

Using Open vSwitch for VLAN-Based Networks

26

Edit the [DEFAULT] section of the L3 agent configuration file
located at /etc/neutron/l3_agent.ini as follows:

[DEFAULT]

...

interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver

11. Edit the [securitygroup] section of the ML2 plugin configuration file located
at /etc/neutron/plugins/ml2/ml2_conf.ini as follows:
[securitygroup]

...

firewall_driver =
 neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver

12. Restart the Neutron-related services as mentioned in step 7.

How it works…
As part of its startup, the Neutron server will load the core plugin, which in our case is the
ML2 plugin. As the ML2 plugin allows multiple ways to implement the physical and virtual
networks, it uses the mechanism_drivers attribute to load the desired drivers. The
previous steps showed you how to configure OVS as the mechanism driver for ML2. The
OVS mechanism driver needs additional information such as the bridge name and physical
interface mapping so as to provide network connectivity. Hence, these mappings are also a
part of the mechanism driver configuration.

Configuring Neutron to use the VLAN type
driver

The ML2 plugin needs to be configured in order to use VLAN as the network type for all the
tenant networks.

Getting ready
The ML2 plugin has a configuration file setting that needs to be updated so that the tenants
can use VLAN as the tenant network type.

Chapter 2

27

How to do it…
The following steps will show you how to configure VLAN as the type driver and tenant
network type:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

3. In the [ml2] section of the file, configure VLAN as the type driver and network type:
[ml2]

...

type_drivers = vlan

tenant_network_types = vlan

4. Restart the Neutron and Open vSwitch services on the Controller and Network node
of our setup, using the following commands:
openstack@controller:~$ sudo service neutron-server restart

openstack@controller:~$ sudo service openvswitch-switch restart

openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

5. The first three steps have to be repeated for the compute node in our setup as shown
previously. The command to restart OVS on the compute node is:
openstack@compute:~$ sudo service openvswitch-switch restart

How it works…
During the startup, the Neutron server will load the core plugin, which in our case is the ML2
plugin. As the ML2 plugin allows multiple types of networks, it uses type_drivers to check
which network type drivers to load. Finally, each tenant with a non-administrative role can use
only certain network types. The tenant_network_types attribute indicates the network types.

Configuring the VLAN range to be used for
the networks

In order to use VLAN as the network type, Neutron requires a range of VLAN identifiers. Each
OpenStack Network will be associated with a unique VLAN identifier. This recipe shows you
how to configure this range of VLAN IDs.

Using Open vSwitch for VLAN-Based Networks

28

Getting ready
The valid range for a VLAN ID is 1-4095. However, based on your OpenStack environment and
the physical network, it is possible to use a subset of this range.

How to do it…
Configuring the VLAN ID range is a setting in the plugin configuration file. The following steps
will show you how to set this range:

1. With the appropriate credentials, SSH into the node where the Neutron server
is running.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

3. In the [ml2_type_vlan] section of the file, configure the VLAN range:
[ml2_type_vlan]

...

network_vlan_ranges = physnet1:1001:1200

4. For this recipe, we have used a VLAN ID range of 1001 to 1200.

5. The keyword physnet1 represents the alias for the physical network. This refers to
the OVS bridge that is bound to the physical Network adapter on the node.

6. These steps have to be repeated for all the nodes in your OpenStack setup including
all the compute and Network nodes.

How it works…
When a network is created, Neutron will check the tenant network type first. In the case
of the VLAN networks, Neutron will fetch the first unused VLAN ID from the range that was
configured. This VLAN ID is then associated to the Network and also marked as used.

Chapter 2

29

Viewing the VLAN allotted for a Network
Open vSwitch configures the VLAN ID on the virtual port associated with a virtual machine
instance. The underlying physical network must also be configured so as to allow the data
traffic for the same VLAN ID. Hence, the knowledge of the VLAN ID allotted for a Network is
very useful, especially while troubleshooting networking problems. This recipe shows you how
to view the VLAN ID allotted for a Network.

Getting ready
The VLAN ID information is available only to users with an administrative role. Hence, for this
recipe, you will need the appropriate credentials.

How to do it…
The following steps will show you how to view the VLAN ID allotted for a Network:

1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. In the left navigation menu, click on Admin | System | Networks.

3. On the right-hand side, you will get a list of all the Networks in the setup, as shown in
the following screenshot:

Using Open vSwitch for VLAN-Based Networks

30

4. To view the details of a particular Network, click on the name of the Network.

5. In the preceding screenshot, we can observe that Network Type is vlan.

6. Segmentation ID represents the VLAN ID allotted for this particular Network.
Therefore, we can see that the VLAN ID of 1001 has been assigned to this Network.

7. The same information can be viewed using the neutron net-show command of
the Neutron CLI, as follows:

How it works…
When a Network is created, Neutron computes the first free VLAN ID from the range that
was configured in the configuration file. This VLAN ID is stored as a segmentation ID in the
Neutron database.

Chapter 2

31

Creating a Network with a specific VLAN
When the user creates a Network, the VLAN ID is automatically assigned to it. However, there
can be situations when a Network is required to use a specific VLAN. This can happen when
the physical network is preconfigured to carry a certain type of traffic using a specific VLAN ID.

Getting ready
You will need the following information to create a Network with a specific VLAN:

 f The project (tenant) name for which the Network needs to be created

 f A VLAN ID from the range configured in the ML2 configuration file

How to do it…
The following steps will show you how to create a Network with a specific VLAN ID:

1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. In the left navigation menu, click on Admin | System and Networks.

3. On the right-hand side, we will get a list of all the Networks. As we logged in with an
administrative role, we should be able to view all the networks across all the projects:

www.allitebooks.com

http://www.allitebooks.org

Using Open vSwitch for VLAN-Based Networks

32

4. Click on the + Create Network button to display the Create Network screen for the
administrators. Note that this screen is different from the one shown for tenants,
which is as follows:

Chapter 2

33

5. Enter a name for the Network. Select a Project and select VLAN as Provider Network
Type. Once you choose VLAN as the Network type, the screen will prompt you to
provide more details as shown here:

Using Open vSwitch for VLAN-Based Networks

34

6. Enter physnet1 as the value for Physical Network. This was the alias that was
used when configuring OVS as the mechanism driver in the recipe titled Configuring
Neutron to use the Open vSwitch mechanism driver.

7. In the Segmentation ID field, enter a VLAN ID from the range that was configured for
Neutron. Note that if you enter a VLAN ID that is already in use, the create network
request will fail.

8. Now click on Create Network. Once the network creation succeeds, the network
will show in the list. Note that this mechanism creates a Network without a subnet.
Therefore, you will see that the Subnets Associated column is empty:

9. Click on the Network name of the newly created Network to view its details. You can
see that the Segmentation ID that we entered has been used to create the Network:

Chapter 2

35

Users can use the + Create Subnet button to add a Subnet to this Network. The preceding
steps showed you how a user with an administrative role could create a Network with a
specific VLAN.

How it works…
When a network is created as shown in this recipe, the Neutron server validates the
segmentation ID against the VLAN ID range configured in Neutron. If the segmentation ID falls
within the range, Neutron will check whether the segmentation ID is already in use or not. If
the ID is not in use, then the Network creation will succeed.

Using Open vSwitch for VLAN-Based Networks

36

Viewing the virtual interface information on
the compute node

As tenants, users can create a Network, Subnet, and Instances. However, the underlying physical
and virtual network details are hidden from them. This is important because the tenants should
focus on their business requirements instead of the specific implementation details.

However, the OpenStack administrators need to understand the physical and virtual
networking details. This is required in order to troubleshoot any problems faced by the
tenants. In this recipe, we will show you how an administrator can view the virtual interface
(VIF) information for an instance running on a compute node.

Getting ready
As this recipe is described from the point of view of an administrator troubleshooting a tenant
problem, the following information is required:

 f The Tenant Network name

 f The virtual machine instance whose VIF information is to be identified

How to do it…
The following steps will show you how to find the VIF information on a compute node:

1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. In the left navigation menu, click on Admin | System | Instances. On the right-hand
side, you will see a list of all the virtual machine instances.

3. Click the checkbox next to the virtual machine instance whose VIF details you want to
see. Using the drop-down menu at the end of the row, select Console:

Chapter 2

37

4. This should show the VNC console for the selected instance. Log in to the instance
and execute the following command:
$ ifconfig

5. You should see an output similar to the following screen. Note down the IP address,
70.70.70.2 in this case, and the MAC address (fa:16:3e:76:cb:e5):

Using Open vSwitch for VLAN-Based Networks

38

6. In the left navigation menu, click on Admin | System | Networks. Click on the name
of the Network to which the instance belongs. This will display the Network Detail for
that Network. Note the Segmentation ID (VLAN ID), which is 1002 in our example:

Chapter 2

39

7. You can also see the list of the OpenStack ports for that Network. Our virtual machine
instance had an IP address of 70.70.70.2 and there is a Port corresponding to this
IP address. Click on the Port Name to view the Port Detail. Note that the MAC and IP
addresses match our virtual machine:

8. Pay attention to the ID of the port, especially the first 11 characters, a22f8551-57.

9. Now, log in to the compute node of your setup with the appropriate credentials and
execute the following command:
openstack@compute1:~$ sudo ovs-vsctl show

Using Open vSwitch for VLAN-Based Networks

40

10. You should see an output as follows. The key thing to note is the OVS port named
qvoa22f8551-57. As you can see, this port name matches the ID of the OpenStack
port used for our virtual machine instance:

11. The tag used for our qvoa22f8551-57 port is 3. This is the tag used in OVS.
When OVS forwards the packets from our virtual machine to the outside world, it
must tag it with the VLAN ID of 1002 (Segmentation ID). We can verify this using
the ovs-ofctl dump-flows br-int command. This command prints all the
network flow information for the specific Open vSwitch instance. See the following
highlighted output:

Chapter 2

41

How it works…
The OpenStack entities such as Network, port, and others are assigned a unique ID when they
are created. These unique IDs are reused while configuring the physical and virtual network so
that troubleshooting is easier.

In the preceding example, we identified the port ID for the instance and using this ID, we
were able to view the OVS and VLAN information on the compute node. These are usually the
foremost steps in identifying the networking problems on a compute node.

Viewing the virtual interface information on
the Network node

The previous recipe showed you how to identify the VIF information on the compute node. Now
let's turn our attention to the Network node.

While a virtual machine is instantiated on a compute node, the DHCP server for the entire
tenant Network is started on the Network node. As multiple tenant networks can have
overlapping IP addresses, the Network node uses the concept of namespaces to isolate one
Network from the other.

Getting ready
As this recipe is described from the point of view of an administrator troubleshooting a tenant
problem, the following information is required:

 f The tenant Network name

 f The virtual machine instance whose VIF information is to be identified

How to do it…
The previous recipe showed you how to view the ports associated with a Network on the
Network Detail screen. This recipe shows you how to look for the DHCP-related information
on the Network node:

1. In the left navigation menu, click on Admin | System | Networks. Click on the
name of the Network to view the details of the network to which the virtual machine
instance belongs.

Using Open vSwitch for VLAN-Based Networks

42

2. In the details of the Network, we can see the Ports associated with this Network.
The DHCP Port for the selected network is highlighted as follows:

3. Click on the Port name to view the DHCP Port Detail. Note that the DHCP IP address
is 70.70.70.3 and the Port ID starts with 18cc6f06-2b as highlighted here:

Chapter 2

43

4. Now log in to the network node of your setup (the Controller and Network node
of our setup for this chapter) with the appropriate credentials and execute the
following command:
openstack@controller:~$ ip netns

qdhcp-bd09066a-eafe-4241-a7b4-bc9d8056d82b

5. The output of the ip netns command lists all the Linux namespaces created on
the node. In our setup, we can see a namespace called qdhcp-bd09066a-eafe-
4241-a7b4-bc9d8056d82b. This name is generated by Neutron by adding qdhcp
and the unique ID for the Network.

Using Open vSwitch for VLAN-Based Networks

44

6. To view the networking information and applications running in a namespace, we
will need to start a command shell in the namespace. You can do this using the
following command:
openstack@controller:~$ sudo ip netns exec qdhcp-bd09066a-eafe-
4241-a7b4-bc9d8056d82b /bin/bash

7. Once this command is successful, you will get a new shell prompt. All the commands
executed at this shell prompt are restricted to that namespace. Let's type the
following ifconfig command at the prompt:

8. In the output of the ifconfig command, we can see an interface called
tap18cc6f06-2b. You will notice that 18cc6f06-2b matches the first few
characters of the DHCP port ID that we noted in step 3.

9. Neutron uses dnsmasq to provide DHCP services. We can confirm that the
dnsmasq process is using the tap18cc6f06-2b interface with the ps command
as shown here:

Chapter 2

45

10. Next, we will check how the tap18cc6f06-2b interface is connected to the external
physical network. For this, we will exit the namespace shell prompt and execute the
following ovs-vsctl show command on the controller shell:

11. As seen in the preceding output, the tap18cc6f06-2b interface is bound to the OVS
bridge, br-eth1. This in turn uses the eth1 physical interface of the network node.

12. As seen in the previous recipe, we can execute the ovs-ofctl dump-flows
br-int command to confirm that the DHCP port is also using VLAN 1002 that was
assigned to the tenant network.

Using Open vSwitch for VLAN-Based Networks

46

How it works…
Namespaces are constructs in Linux that allows the users to create a copy of a full TCP/
IP network stack including interfaces and routing tables. In the OpenStack networking, one
DHCP server is started for each Network and an IP address from the corresponding subnet
is assigned to the DHCP server. As the tenant networks can have similar or overlapping IP
addresses, Neutron uses namespaces to isolate each DHCP server.

As we saw in the previous recipe, Neutron uses unique IDs to identify the physical and virtual
network information. The namespace name contained the unique ID of the tenant network.
Moreover, the interface used by the DHCP server contained the unique ID of the Network port.

47

3
Exploring Other
Network Types

in Neutron

OpenStack Networking supports different types of network in order to provide rich
functionality and flexibility. In this chapter, we will show you the following set of recipes that
cover a few specific network types supported in OpenStack:

 f Configuring Neutron to use the Linux bridge mechanism driver

 f Viewing the virtual interface information for Linux bridge on the compute node

 f Configuring Neutron to use a Flat Network type

 f Creating a Flat Network using Horizon

 f Creating a shared Network using Horizon

 f Creating an external Network using Horizon

 f Setting up a simple web application – an introduction

 f Setting up a simple web application – setting up OpenStack Networks

 f Setting up a simple web application – creating instances

Exploring Other Network Types in Neutron

48

Introduction
In the previous chapter, we saw how OpenStack supports Open vSwitch as the mechanism for
a VLAN network type. Similar to Open vSwitch, Linux bridge is a software bridge in a Linux host
that is capable of providing virtual network connectivity to instances.

In this chapter, we will see how to implement a network type called Flat Network. We will also
see how to provide an external (say, the Internet) access to virtual machines (VMs).

Finally, we will apply the concepts learned in this chapter to deploy a simple web application.

In order to implement these recipes, you will need an OpenStack setup as described here:

Keystone Service

Nova Service(s) Glance Service

Neutron Server Neutron Agent(s)

eth0 eth0eth1 eth1

Open vSwitch Open vSwitch

Management Network

Data Network

Nova Service

Neutron Agent(s)

Controller and Network Node Compute Node

This setup has one compute node and one node for controller and networking services. For
this chapter, you can also have a single all-in-one environment.

As discussed in the previous chapter, the core functionality of Neutron is to provide a Layer 2
(L2) connectivity. Neutron provides this functionality through the use of a core plugin. All the
recipes of this chapter assume that ML2 is the core plugin in the Neutron configuration file.

Configuring Neutron to use the Linux bridge
mechanism driver

The ML2 plugin can support many mechanisms in order to provide the core functionality. We
will see how a Linux bridge can act as a mechanism driver for the ML2 plugin. This recipe
shows you how to configure an ML2 plugin with a Linux bridge as the mechanism driver.

Chapter 3

49

Getting ready
Configuring ML2 to use a Linux bridge as the mechanism driver requires changes to the
ML2 plugin configuration file. We will also have to configure the Linux bridge with a tenant
network type and the alias for the Linux bridge that is bound to the physical network adapter
of the node.

How to do it…
The following steps will show you how to configure Linux as the mechanism driver for the
ML2 plugin:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

3. In the [ml2] section of the file, configure ML2 to use the Linux bridge as the
mechanism driver:
[ml2]
. . .
mechanism_drivers = linuxbridge

4. In the [linux_bridge] section of the file, configure the Linux bridge with the
tenant network type and physical interface mapping:
[linux_bridge]
tenant_network_type = vlan
physical_interface_mappings = physnet1:eth1

5. In the previous step, physnet1 represents the alias and eth1 represents the
physical interface that is added to the Linux bridge instance.

6. Restart the Neutron server and Linux bridge agent on Controller and Network node of
our setup using the following commands:
openstack@controller:~$ sudo service neutron-server restart
openstack@controller:~$ sudo service neutron-plugin-linuxbridge-
agent restart

7. Steps 2 to 5 have to be repeated for the compute node in our setup. On the compute
node only the Linux bridge agent needs to be restarted.

8. On the Network node, a few changes are needed so that the Neutron agents can use
Linux bridge-related drivers.

Exploring Other Network Types in Neutron

50

9. Edit the [DEFAULT] section of the DHCP agent configuration file located at
/etc/neutron/dhcp_agent.ini on the network node, as follows:
[DEFAULT]
…
interface_driver = neutron.agent.linux.interface.
BridgeInterfaceDriver

10. Edit the [DEFAULT] section of the L3 agent configuration file located at
/etc/neutron/l3_agent.ini on the network node in the following way:
[DEFAULT]
…
interface_driver = neutron.agent.linux.interface.
BridgeInterfaceDriver

11. Edit the [securitygroup] section of the ML2 plugin configuration file located
at /etc/neutron/plugins/ml2/ml2_conf.ini, as follows:
[securitygroup]
…
firewall_driver = neutron.agent.linux.iptables_firewall.
IptablesFirewallDriver

12. Restart the Linux Bridge agent on the Network node by executing service
neutron-plugin-linuxbridge-agent restart.

How it works…
At the start of the Neutron server, it will load the core plugin, which in our case is ML2. As
the ML2 plugin allows you to implement physical networks in multiple ways, it uses the
mechanism_drivers attribute to load the desired drivers. The preceding steps showed
you how to configure a Linux bridge as the mechanism driver for ML2. The Linux bridge
mechanism driver needs additional information such as the bridge name and physical
interface mapping in order to provide network connectivity. Hence, these mappings are also a
part of the mechanism driver configuration.

Viewing the virtual interface information for
Linux bridge on the compute node

Users can create Networks, Subnets, and instances as tenants. However, the underlying
physical and virtual network details are hidden from them. This is important because tenants
should focus on their business requirements instead of specific implementation details.

However, administrators of the cloud platforms that have been built using OpenStack need to
understand the physical and virtual networking details. This is required in order to troubleshoot
any problems faced by the tenants. In this recipe, we will show you how an administrator can
view the virtual interface (VIF) information for an instance that is running on a compute node.

Chapter 3

51

Getting ready
As this recipe is described from the point of view of an administrator who is troubleshooting a
tenant problem, the following information is required:

 f The tenant network name

 f The VM instance whose VIF information is to be identified

How to do it…
The following steps will show you how to view the VIF information on a compute node when
using the Linux bridge:

1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. In the left navigation menu, navigate to Admin | System | Instances. On the
right-hand side, you will see a list of all the VM instances.

3. Click on the checkbox next to the VM instance whose VIF details you want to see.
Using the drop-down menu at the end of the row, select Console, as follows:

4. This should show the VNC console for the selected instance. Log in to the instance
and execute the following command:
$ ifconfig

Exploring Other Network Types in Neutron

52

5. You should see an output similar to the following screen. Note down the IP address,
70.70.70.2 in this case, and the MAC address, (FA:16:3E:3E:F0:EB), as shown
in the following screenshot:

Chapter 3

53

6. In the left navigation menu, navigate to Project | Admin | Networks. Click on the name
of the Network to which the instance belongs. This will display the Network Detail for
this Network. Note the Segmentation ID (VLAN ID), which is 1002 in our example:

Exploring Other Network Types in Neutron

54

7. You can also see the list of the OpenStack ports for this Network. Our VM instance
has an IP address of 70.70.70.2 and there is a Port corresponding to this IP address.
Click on the Port Name to view the Port Detail. Note that the MAC and IP addresses
match our VM:

8. Pay attention to the ID of the port, especially the first 11 characters: 911185a6-06.

9. Now log in to the compute node of your setup with the appropriate credentials and
execute the following command:
openstack@compute:~$ brctl show

10. You should see an output as follows:

Chapter 3

55

The preceding output shows two important things. The Linux bridge name, brq1e023dc6-7a,
is derived from the ID of the Network and the Tap interface name, tap911185a6-06, is
derived from the OpenStack Port used for our VM. The Tap interface is the entity that connects
the virtual interface on the instance to the Linux bridge.

The output of the brctl command also shows that eth1.1002 is the physical interface on
the Linux bridge. This notation indicates that the traffic on that Linux bridge will be sent out on
the eth1 physical interface with a VLAN tag of 1002.

How it works…
In the preceding example, we identified the Port ID for the instance, and using this ID, we were
able to view the Linux bridge and VLAN information on the compute node. These are usually
the foremost steps in identifying the networking problems on a compute node.

We also saw that the Linux bridge name is derived from the ID of the OpenStack Network. This
implies that when a Linux bridge is used as the mechanism driver, one bridge will be created
for every OpenStack Network. The Linux bridge-based configuration on a compute node is
pictorially depicted here:

Physical Network

Compute 1

eth0

eth0

tapXXXXX

brqXXXXX
eth1.1002Linux Bridge

VM1
Compute 2

eth0

eth0

tapYYYYY

brqXXXXX
eth1.1002 Linux Bridge

VM2

There's more…
This recipe showed you how to identify the virtual interface on the compute node. On the
Network node, there is no change due to the Linux bridge being a mechanism driver. You
can refer to the recipe titled Viewing the virtual interface information on the Network node in
Chapter 2, Using Open vSwitch for VLAN-Based Networks, to view the virtual interface on a
Network node.

Exploring Other Network Types in Neutron

56

Configuring Neutron to use a Flat network
type

A Flat Network is another network type that is supported by the OpenStack Neutron
ML2 plugin. Flat Networks are useful when tenant network isolation is not a mandatory
requirement. Another scenario for a Flat Network type could be the access to centralized
storage for all the instances using a dedicated physical interface.

Getting ready
To use Flat Networks, the ML2 plugin's type driver and related settings need to be updated.
Just as VLAN, the Flat Network type can work with an OVS or Linux bridge mechanism driver.
In our example, we will use the Linux bridge mechanism driver.

How to do it…
The following steps will show you how to configure the Flat Network as the type driver and
tenant network type:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

3. In the [ml2] section of the file, configure the Flat Network as the type driver and
network type:
[ml2]
. . .
type_drivers = flat
tenant_network_types = flat

4. In the [ml2_type_flat] section of the file, configure the physical network names
with the Flat Networks that are created:
[ml2_type_flat]
...
flat_networks = physnet1

5. As we used the Linux bridge as the mechanism driver, ensure that the Linux bridge
physical interface mappings are configured appropriately. Refer to the first recipe of
this chapter.

Chapter 3

57

6. Restart the Neutron server and Linux bridge agent on Controller and Network Node of
our setup using the following commands:
openstack@controller:~$ sudo service neutron-server restart

openstack@controller:~$ sudo service neutron-plugin-linuxbridge-
agent restart

7. Steps 2 to 4 have to be repeated for the compute node in our setup. The command to
restart the networking services on the compute node is as follows:
openstack@controller:~$ sudo service neutron-plugin-linuxbridge-
agent restart

How it works…
At the start of the Neutron server, it will load the core plugin, which in our case is ML2. As the
ML2 plugin allows multiple types of networks, it uses type_drivers to see which network
drivers to be loaded. Finally, each tenant with a non-administrative role can use only certain
network types. The tenant_network_types attribute indicates the network types.

A Flat Network is used when the L2 isolation between different tenant networks is not
required. In this scenario, all the instances are a part of the same network. However, they
can be a part of different subnetworks.

Creating a Flat Network using Horizon
In the case of a VLAN network type, we saw that the physical interface was separated in
logical interfaces such as eth1.1002, eth1.1003, and so on. Moreover, each of these
logical interfaces was placed on a Linux bridge corresponding to the OpenStack network.

In contrast, Flat Networks are created by placing the physical interfaces directly on the Linux
bridge. This means that you can have only one Flat Network per physical interface on the
compute node. Due to this reason, only the users with an administrative role are allowed to
create a Flat Network.

Getting ready
In order to create a Flat Network and Subnet, you will need the following information,
minimally:

 f The Network name

 f The Subnet name and IP address range

 f The physical network name—this information was configured in the ML2 plugin
configuration file

Exploring Other Network Types in Neutron

58

How to do it…
The following steps will show you how to create a Flat Network using Horizon:

1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. In the left navigation menu, navigate to Admin | System | Networks.

3. Click on the + Create Network button to display the following Create Network screen
for administrators:

4. Enter a name for the Network. Select a Project to assign the Network to a
specific tenant.

Chapter 3

59

5. Select Flat as Provider Network Type. Once you choose Flat as the Network type, the
screen will prompt you to provide more details, as shown in the following screenshot:

6. Enter physnet1 as the value for Physical Network. This was the alias used when
configuring the Flat Network as the type driver in the previous recipe.

7. Now click on Create Network. Once the network creation succeeds, the network will
show in the list.

8. Note that this mechanism creates a Network without a Subnet. Therefore, the next
step is to create a Subnet for this Network. This step can be performed as a normal
user associated with the Project to which this Network was added.

Exploring Other Network Types in Neutron

60

How it works…
The preceding steps showed how a user with an administrative role can create a Flat Network
and assign it to a Project. When the tenant creates an instance using this Flat Network,
Neutron will map the physical network name to the corresponding mechanism driver. The
mechanism driver (Linux bridge or Open vSwitch) will then provision the virtual network.

There's more…
If your compute node has additional physical interfaces, then it is possible to create additional
Flat Networks. To do this, the ML2 configuration file needs to be updated as follows:

[ml2_type_flat]
...
flat_networks = physnet1,physnet2
...
[linux_bridge]
...
physical_interface_mappings = physnet1:eth1,physnet2:eth2

In the Create Network window, the administrative user can choose physnet2 for the second
Flat Network. The previous example assumes that the Linux bridge is the mechanism driver
but a similar configuration can be done for OVS as well.

Creating a Shared Network using Horizon
We have already seen situations where only the administrative users can create a Network.
For example, only the administrators can create a Flat Network or a Network with a specific
VLAN ID. In addition, we have seen that the administrative users can assign a Network to a
particular tenant.

OpenStack also allows administrators to share a Network among all the tenants. This recipe
shows you how to accomplish this.

Getting ready
In order to create a shared network, you will need the following information:

 f The Network name

 f The Network type—for this recipe we will use a Flat Network

 f The physical Network name—this information was configured in the ML2 plugin
configuration file

Chapter 3

61

How to do it…
The following steps will show you how to create a Flat Network using Horizon:

1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. In the left navigation menu, navigate to Admin | System | Networks.

3. Click on the + Create Network button to display the following Create Network
screen for administrators:

4. Enter a name for the Network. Select a Project to assign the Network to a
specific tenant.

Exploring Other Network Types in Neutron

62

5. Select Provider Network Type as desired. For this recipe, we will choose Flat
networks as Provider Network Type. Once you choose Flat as the Network type, the
screen will prompt you to provide more details, as shown in the following screenshot:

6. Enter physnet1 as the value for Physical Network. This was the alias used when
configuring the Flat Network as the type driver in the previous recipe.

7. Check the Shared checkbox.

8. Now click on Create Network. Once the network creation has succeeded, the
network will show in the list.

Chapter 3

63

How it works…
A shared network is available to all the tenants independent of the project that was chosen
during creation. All the tenants can use the shared network to create VM instances. However,
only the administrative user of the project that was chosen during creation can edit or delete
the shared Network. Similarly, only the administrative user of the project can add a Subnet to
the shared Network.

Creating an External Network using Horizon
External Networks have a unique role to play with OpenStack Networking. As we have seen,
the DHCP server assigns an IP address from the Subnet to each VM instance. These IP
addresses are reachable only in the Network because tenant isolation is required. However,
many common deployments require that the VM instances have access to outside networks
including the Internet and also be reachable from the outside network.

The main purpose of the external Networks is to allow the VMs to access networks outside the
data center and Internet. They also allow the VMs to be accessed from the outside network.

Getting ready
As the external Networks have a special behavior associated with them, only users with an
administrative role can create them. Besides the standard input such as the Network name
and so on, it is important to identify the IP address range to be used for the external Network.
This recipe assumes that the L3 agent on the Network node has been configured with the
correct bridge information for the External Network access.

How to do it…
The following steps will show you how to create an external Network using Horizon:

1. Log in to the OpenStack Horizon dashboard using a user ID with an administrative role.

2. In the left navigation menu, navigate to Admin | System | Networks.

Exploring Other Network Types in Neutron

64

3. Click on the + Create Network button to display the following Create Network screen
for administrators:

4. Enter a name for the Network. Select a project to assign the Network to a specific tenant.

5. Select Provider Network Type as desired. For this recipe, we will choose Flat
networks as Provider Network Type. Once you choose Flat as the Network type, the
screen will prompt you to provide more details, as shown in the following screenshot:

Chapter 3

65

6. Enter physnet1 as the value for Physical Network. This was the alias used when
configuring the Flat Network as the type driver in the previous recipe.

7. Check the External Network checkbox.

8. Now click on Create Network. Once the network creation has succeeded, the
network will show in the list.

9. The next important step is to create a Subnet for the newly created external Network.

Exploring Other Network Types in Neutron

66

How it works…
As described Earlier, external Networks are used in cases where the VM instances need an
outside network access. External Networks can be used directly to attach the instances, and
in this case, their behavior is the same as any other Network. However, the main use case for
an External Network is in conjunction with the OpenStack router. We will describe this in detail
in Chapter 6, Using Routing Services in Neutron.

In either situation, an important element needs to be kept in mind. While creating a Subnet
for an External Network, the Gateway IP needs to be carefully selected. This is because this
IP address is already configured on the physical routers that will provide Internet access.
Therefore, we cannot let OpenStack choose a Gateway IP arbitrarily.

Setting up a simple web application – an
introduction

Now that we have seen several scenarios to create Networks and instantiate the VMs, let's
take a practical example and apply this knowledge.

In this 3-recipe series, you will learn how to use the OpenStack Networking capabilities to
create a simple web application. In the first recipe, we will just introduce the components of
the web application and desired network connectivity. The next two recipes will show you how
to implement this using OpenStack. For simplicity, we will not focus on the exact software
running in the VMs. We will just name the VMs as per our requirement.

Getting ready
A simple web application consists of a database and web application server. While both the
database and web server are capable of being executed on the same server, for a good scale
and performance, it is better to keep them on different servers.

Chapter 3

67

The following image depicts the networking connections between the VMs in our web
application. The DB-VM runs the database engine and Web-VM runs the web server:

Database

DB-VM Web-VM

Web Server

Web-Internet-Network

DB-Access-Network

Internet
Router

Web-Access-Network

How to do it…
The following steps will show you what kind of OpenStack networks need to be set up in order
to accomplish this:

1. We will create a tenant Network for the Web Server to the Database connection
called DB-Access-Network. The important thing for this Network will be to limit the
number of IP addresses in the Subnet.

2. Next, we will create another tenant network for the Web Server to the Router
called Web-Access-Network. Once again, we will limit the number of IP addresses
in the Subnet.

3. The last network will be an External Network called Web-Internet-Network to provide
Internet access to the Web Server.

Exploring Other Network Types in Neutron

68

How it works…
The database stores critical information. So, the network access to the DB-VM is available
only from the Web-VM using the DB-Access-Network. Moreover, this network will also carry
the database queries from the web application server to the database engine.

In order to connect to the Internet, the Web Server needs to connect to a local router. The
Web-Access-Network provides this connectivity.

Finally, the Web-Internet-Network connects the local router to the Internet.

Setting up a simple web application – setting
up OpenStack Networks

The previous recipe defined the different types of networks that we need to create in order
to set up our web application. This recipe shows you the specific steps that are required to
create the Networks and Subnets. We will refer to the earlier recipes about the Network and
Subnet creation instead of going through it step by step. However, this recipe will highlight the
important steps that are specific for the web application.

Getting ready
We will need to create three networks to connect the database, web application server, and
Internet. The following steps assume that the Linux bridge is the mechanism driver and VLAN
is the type driver configured in Neutron. This is important as the step to create an External
Network requires the type of Network.

For this recipe, we will use the following information to create the networks:

Network name Subnet name Network address
range

Allocation pools

DB-Access-
Network

DB-Access-Subnet 192.168.20.0/29 192.168.20.2,192.168.20.4

Web-Access-
Network

Web-Access-
Subnet

192.168.30.0/29 192.168.30.2,192.168.30.4

Web-Internet-
Network

Web-Internet-
Subnet

10.10.1.0/24 10.10.1.1,10.10.1.2

We will also need the Gateway IP address for the external Network.

Chapter 3

69

How to do it…
The following steps will show you how to create the three networks required for the web
application:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network
using Horizon in Chapter 1, Getting Started with OpenStack Networking. Use the
Network name, Subnet name, and Network address from the preceding table for
DB-Access-Network.

2. Before clicking on the Create button to create the Network, enter
192.168.20.2,192.168.20.4 in the Allocation Pools field, as shown in the
following screenshot. Note that there should not be any space after the comma:

3. Click on the Create button to create DB-Access-Network.

Exploring Other Network Types in Neutron

70

4. Repeat these steps for Web-Access-Network. Once again, use the information in the
preceding table.

5. The next step is to create the external Network called Web-Internet-Network. As this is
an external Network, you will need administrative privileges.

6. Follow the steps mentioned in the recipe titled Creating External Networks using
Horizon in this chapter. Ensure that the Project is the same as that of the previous
two Networks.

7. The next step after the creation of Web-Internet-Network is to add the Subnet. For
this, click on the name of the network to view the details. Then, click on + Create
Subnet as shown here:

Chapter 3

71

8. Enter Subnet Name, Network Address, and Gateway IP for the Subnet, as shown in
the following screenshot. Then click on Next:

Exploring Other Network Types in Neutron

72

9. In the Subnet Detail section, enter Allocation Pools as shown here and click
on Create:

Chapter 3

73

These steps should result in three networks being shown when you select Project |
Network | Networks, as follows:

As mentioned earlier, the External Networks are used in conjunction with the OpenStack
routers. After the creation of the three networks, the next step is to create an OpenStack
router. We need to associate Web-Access-Subnet as an interface on this router and use Web-
Internet-Network as the gateway for this router. This will enable Internet access for the web
application server. The sixth chapter will cover the steps in detail.

How it works…
As a specific tenant creates the web application, he also creates the two tenant networks,
namely DB-Access-Network and Web-Access-Network. Access to the Internet is controlled and
hence, the administrator creates the external Network called Web-Internet-Network on behalf
of the tenant. Thus, the tenant effectively has all the three networks made available to him.

Setting up a simple web application –
creating instances

With all the networks created, the final step is to create the two instances. The main step
during an instance creation is to choose the correct Network for each of the VMs.

Getting ready
You will require the appropriate OS images for the Database VM as well as the Web VM.

Exploring Other Network Types in Neutron

74

How to do it…
The following steps will show you how to create the two VM instances for the web application:

1. Create an instance called DB-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that DB-Access-Network is chosen in the Selected
networks field, as follows:

Chapter 3

75

2. Create another instance called Web-VM by following the steps of the recipe
titled Associating a Network to an instance using Horizon in Chapter 1, Getting
Started with OpenStack Networking. Ensure that both DB-Access-Network and
Web-Access-Network are chosen in the Selected networks field, as shown in the
following screenshot:

Exploring Other Network Types in Neutron

76

3. Once the instances are active, the instances list will look as follows:

These steps complete the setting up of the web application using two VMs and three
OpenStack Networks.

How it works…
DB-VM and Web-VM will exchange the database-related messages over DB-Access-Network.
The web traffic from and to the Internet will travel over Web-Access-Network and
Web-Internet-Network.

77

4
Exploring Overlay

Networks with Neutron

In this chapter, we will cover the following recipes:

 f Configuring Neutron to use a VXLAN type driver

 f Configuring a VNI Range for VXLAN Networks

 f Viewing a VNI assigned to a Neutron Network

 f Creating a Network with a specific VNI

 f Viewing the virtual interface information on the compute node for VXLAN tunnels

 f Viewing the virtual interface information on the network node for VXLAN tunnels

 f Configuring Neutron to use a GRE type driver

 f Viewing a virtual interface on the compute node for GRE tunnels

Introduction
The OpenStack Neutron provides you with various ways to implement virtual networks in order
to connect the virtual machine instances started by tenants. At a broad level, these network
types can be classified in two categories—networks based on VLANs and networks based on
overlays or tunnels.

In the case of overlay networks, the virtual switch on the Hypervisor encapsulates the data
packets from the VM in an IP packet and sends it to the destination Hypervisor. The virtual
switch on the destination Hypervisor then de-encapsulates and delivers the data packet to the
destination VM instance. The encapsulation process adds an identifier or a tunnel key to mark
and identify the packets belonging to different virtual networks.

Exploring Overlay Networks with Neutron

78

The OpenStack Neutron provides two ways to implement the overlay or tunnel-based virtual
networks, namely VXLAN and GRE. In this chapter, we will see how to implement virtual
networks using overlays and the ML2 plugin in Neutron.

In order to implement these recipes, we will be using the following OpenStack setup with two
nodes, one acting as the controller and network node and another as the compute node:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent

eth0 eth0eth1 eth1

Open vSwitch Open vSwitch

Management Network

Data Network

Nova Service

Neutron Agent

Controller and Network Node Compute Node

IP: 10.0.0.1 IP: 10.0.0.2

Configuring Neutron to use a VXLAN type
driver

Virtual eXtensible LAN (VXLAN) is one of the overlaying drivers supported by the Neutron
ML2 plugin. The process of tunneling involves encapsulating the data packets from the VM in
a UDP packet. The VXLAN encapsulation process adds a special key called Virtual Network
Identifier (VNI) in order to identify the network to which the data packet belongs.

The OVS instance on the Hypervisor is responsible for encapsulating the data packets coming
out of the VM. The Neutron ML2 plugin provides the OVS instance with all the information
that is required to implement a virtual network using VXLAN. For example, the plugin provides
information such as the VNI and IP address for the Virtual Tunnel End Point (VTEP) to the
OVS instance. The VTEP IPs on the source and destination compute or network node are used
while encapsulating the VXLAN packet.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for the OpenStack nodes

 f The VTEP IP to be used for the node

Chapter 4

79

How to do it…
The following steps will show you how to configure Neutron to use a VXLAN type driver:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the controller and network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor.
For example, the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

3. In the [ml2] section of the file, configure VXLAN as type_driver and tenant_
network_type:
[ml2]

...

type_drivers = vxlan

tenant_network_types = vxlan

mechanism_drivers = openvswitch

4. In the [ovs] section, set local_ip to the VTEP IP address. OVS uses this IP to carry
all the tunneled traffic. In our setup, the VTEP IP for the controller node is 10.0.0.1:
[ovs]

local_ip = 10.0.0.1

5. In the [agent] section, set tunnel_types to vxlan:
[agent]

tunnel_types = vxlan

6. Restart the Neutron server and Open vSwitch Agent on the controller and network
node of our setup using the following commands:
openstack@controller:~$ sudo service neutron-server restart

openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

7. The first five steps have to be repeated for all the compute and network nodes.
Remember to update local_ip on the compute nodes with the correct value.
Restart the OVS agent on the compute and network nodes:
openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

Exploring Overlay Networks with Neutron

80

How it works…
In this recipe, we configured the Neutron ML2 plugin to create virtual networks with a VXLAN
type. We also configured Neutron to use Open vSwitch to implement the virtual network.

The Neutron OVS L2 agent is responsible for configuring the local OVS instance on the
compute and network nodes. The L2 agent runs as a daemon on the compute and network
nodes. This daemon communicates with the Neutron server using Remote Procedure Call
(RPC) to get the details of the virtual networks, as shown in the following image:

Neutron Server

Open vSwitch

Controller Compute Node

Neutron Agent

RPC
Messages

Local
Configuration

OVS encapsulates the data packets from the VM using an outer UDP and IP packet. The outer
IP packet uses the IP address configured as local_ip in the Neutron configuration file.

There's more…
Due to the encapsulation of the Layer 2 (L2) data packet in a Layer 3 (L3) packet, the size
of the network packet increases. Hence, you may need to adjust the MTU settings on the
underlying physical network.

Configuring a VNI Range for VXLAN
Networks

In this recipe, we will see how to configure Neutron with the ML2 plugin in order to use a
VXLAN Network Identifier (VNI) range. The ML2 plugin allows the customization of the range
of VNI numbers in order to uniquely identify the virtual networks. VXLAN can support up to 16
million unique VNIs.

Chapter 4

81

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for the OpenStack controller node

 f The VNI range to configure for the VXLAN-based virtual networks

How to do it…
The following steps will show you how to configure the VNI range for the ML2 plugin:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the controller and network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

In the [ml2_type_vxlan] section of the file, set vni_ranges to the appropriate
range list. Multiple ranges can be provided using comma-separated values:
[ml2_type_vxlan]

vni_ranges = 1001:2000,3001:4000,5001:6000

3. Finally, restart the Neutron server on the controller node using the following
command:
openstack@controller:~$ sudo service neutron-server restart

How it works…
In this recipe, we configured the ML2 plugin in order to use the given range of VNIs while
creating virtual networks based on VXLAN tunnels. When Neutron receives a request to create
a virtual network, it allocates a VNI from this range to create the VXLAN-based virtual network.
A range is described with the lower value and higher value separated by :.

Viewing a VNI assigned to a Neutron
Network

In this recipe, we will see how to view the VNI assigned to a VXLAN-based virtual network.
Knowing the VNI that is assigned to a virtual network is very useful to troubleshoot
communication problems between the VMs or other network services.

www.allitebooks.com

http://www.allitebooks.org

Exploring Overlay Networks with Neutron

82

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for the node where the Neutron client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
The following steps will show you how you can view the VNI using the OpenStack CLI:

1. Log in to a node with access to OpenStack.

2. Source your RC file to set up access credentials as an administrator.

3. You can view all the Networks created using the neutron net-list command:

4. Use the neutron net-show command to view further details for any network. In
case the Network name is not unique, use its ID instead of the name:

Chapter 4

83

We can also achieve the same using Horizon. The steps are as follows:

1. Log in to Horizon as an administrative user.

2. In the left navigation menu, navigate to Admin | Networks. This will list all the
available virtual networks as shown in the following screenshot:

3. Click on the Network name for the network that you want to view:

4. This will open the network overview screen for the selected Network, which shows
details such as Network Type, Segmentation ID, and so on.

How it works…
When the Neutron server receives a request to create a virtual network, it automatically
allocates a VNI from the configured VNI range to use with the newly created virtual network.
In this recipe, we looked at the ways to find the VNI associated with a virtual network.

Exploring Overlay Networks with Neutron

84

Creating a Network with a specific VNI
In this recipe, we will see how to create a VXLAN-based virtual network using a specific VNI.
Normally, Neutron would automatically allocate a VNI for a VXLAN-based virtual network
from the range of available VNIs, but there are situations when users need a network with
a specific VNI. In such cases, an OpenStack administrator can create a virtual network with
a manually assigned VNI.

Getting ready
For this recipe, you will need to access OpenStack as an administrator. You will also need the
following information:

 f The SSH login credentials for the node where the Neutron client packages are installed

 f An administrative level access to OpenStack

 f The Network name

 f A VNI for the virtual network

How to do it…
The following steps will show you how to create a virtual network with a specific VNI using the
OpenStack CLI:

1. Log in to a node with access to OpenStack.

2. Source your RC file to set up the access credentials as an administrator.

3. Use the following neutron net-create command to create the virtual network
with a specific VNI, for example, using VNI 1010:

Chapter 4

85

We can also achieve the same result using a Horizon interface in the following way:

1. Log in to Horizon as an administrative user.

2. Navigate to Admin | Networks.

3. Click on + Create Network and provide the desired Name. Provider Network Type
should be set to VXLAN and Segmentation ID should be set to the required VNI:

4. Click on Create Network. This should create the virtual network with the provided
VNI. Once it has been created, verify the network details by navigating to the Admin |
Network Name link for the newly created virtual network:

Exploring Overlay Networks with Neutron

86

5. This will open the Network Overview screen for the selected network, which shows
details such as Network Type, Segmentation ID, and so on.

How it works…
In this recipe, we looked at creating a virtual network with a specific VNI. This
procedure overrides the automatic allocation of a VNI for a virtual network and requires
administrative access.

An unused VNI in the range configured as a part of the VXLAN type driver should be used to
create the virtual network.

Viewing the virtual interface information on
the compute node for VXLAN tunnels

When a tenant launches a VM and attaches it to a virtual network, a virtual network interface
is created on the compute node, which connects the VM to the OVS instance.

In this recipe, we will identify the virtual network interface, which attaches a VM to the OVS
instance on the VXLAN network.

We will also look at the OVS configuration, which makes the communication between the VM
and other members on the virtual network possible.

Getting ready
For this recipe, you should have the following information:

 f The SSH login credentials for the node where the Neutron client packages are installed

 f User-level access to OpenStack

 f The name of the VM for which you want to identify the virtual interface

How to do it…
The following steps will show you how to identify an interface connecting a VM to
a virtual network:

1. Log in to a node with access to OpenStack.

2. Import the OpenStack RC file to set up the user-level access credentials.

Chapter 4

87

3. Use the nova list commands to identify the VM instance, virtual network, and
IP associated with it. In this case, the VM is vm1 with an IP of 20.20.20.2 on the
Chapter4_VXLAN_with_VNI virtual network, as shown in the following screenshot:

4. Next, we will use the neutron port-list command to find the port ID for the
virtual interface associated with this VM, based on the VM IP that we determined in
the previous step:

5. Now, we will log in to the compute node and check out the OVS configuration.

6. We can use the ovs-vsctl show command to look at the ports created on the OVS
instance. The OVS port name is composed of a part of the Neutron Port ID. In the
following listing, qvo2d538755-d5 is the port corresponding to our virtual interface
ID of 2d538755-d5f9-49a6-9088-8f07d3e98875. It is connected to the br-int
bridge and is configured with tag: 1 to mark all the packets entering this interface
with VLAN 1:

Exploring Overlay Networks with Neutron

88

7. Next, we will look at the flow configuration on OVS on the br-tun bridge, which
sends the packets to the other Hypervisors through the VXLAN tunnels using the
ovs-ofctl dump-flow br-tun command:

8. In the highlighted section of the output, we can see that the configuration strips the
local VLAN 1 from the packets going out of the compute node and adds a tunnel key
(VNI), 0x3f2. The VNI of 0x3f2 is the hexadecimal equivalent of 1010, which was
used to create the OpenStack network.

Chapter 4

89

How it works…
When a VM is launched, OpenStack creates a virtual interface and attaches it to the OVS
instance on the Hypervisor through a Linux bridge. For this discussion, we will focus on
the OVS connectivity. The OVS instance on the Hypervisor has two bridges, br-int for
communication in the Hypervisor and br-tun, which is used to communicate with the other
Hypervisors using the VXLAN tunnels. Let's have a look at the following screenshot:

OVS

Patch link

Compute Node

VM1

Linux Bridge

VLAN TAG VXLAN VNI

br-tun

NIC

Tunnel to other Compute/
Network node

br-int

The OVS bridge, br-int, uses VLANs to segregate the traffic in the Hypervisors. These VLANs
are locally significant to the Hypervisor. Neutron allocates a unique VNI for every virtual
network. For any packet leaving the Hypervisor, OVS replaces the VLAN tag with the VNI in the
encapsulation header. OVS uses local_ip from the plugin configuration as the source VTEP
IP for the VXLAN packet.

Viewing the virtual interface information on
the network node for VXLAN tunnels

The network node hosts network services such as DHCP, DNS, and so on for each virtual
network. These services need to communicate with the other members on the virtual network.
The network node runs an OVS instance to connect to the virtual network.

In this recipe, we will look at the DHCP service running on the Network node and identify the
virtual network interface, which connects this service to the virtual network.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for the controller and network node

Exploring Overlay Networks with Neutron

90

How to do it…
The following steps will show you how to identify an interface connecting a network service to
the virtual network. In this recipe, we will look at the network interface for the DHCP service:

1. Log in to a node with access to OpenStack.

2. Next, we will find the DHCP server process that is associated with our virtual network.
OpenStack uses dnsmasq to provide the following DNS and DHCP services on the
virtual network:

3. From the previous step, we find that the dnsmasq process is bound to a virtual
interface, tap32a8ae83-27. We can now look at the OVS configuration in order to
identify the virtual interface port:

4. From the OVS configuration, we can see that the virtual network interface,
tap32a8ae83-27, is connected to br-int and configured with tag: 2 to tag all
the incoming packets from the DHCP server with VLAN 2.

Chapter 4

91

5. Next, we will look at the flow configuration on OVS on the br-tun bridge, which
sends the packets to the other Hypervisors through the VXLAN tunnels using the
ovs-ofctl dump-flow br-tun command:

6. From the flow configuration, we can see that when the packet is sent out through the
VXLAN tunnel, OVS strips the local VLAN tag and instead uses a tunnel ID to identify
the virtual network.

Exploring Overlay Networks with Neutron

92

How it works…
Network services such as the DHCP server are started for each virtual network as soon as the
first VM that is attached to the virtual network is launched. To provide the DHCP service, the
DHCP agent node attaches a dnsmasq process to a virtual network interface attached to an OVS
instance running on the network node. The OVS instance uses two bridges, br-int and br-tun,
as described in the previous recipe, to connect the network service to the virtual network.

Configuring Neutron to use a GRE type driver
As described earlier, tunneled networks can also be implemented using the Generic
Routing Encapsulation (GRE) protocol. GRE is a general-purpose point-to-point encapsulation
protocol. The GRE header contains a 32-bit key which is used to identify a flow or virtual
network in a tunnel.

This recipe shows you how to configure the OpenStack Neutron in order to use GRE for
virtual networking.

Getting ready
For this recipe, we will need the following information:

 f An SSH-based access to the OpenStack controller node

 f The IP address for the tunnel endpoint

 f A range of tunnel IDs

How to do it…
The following steps will show you how to configure the GRE type driver for the ML2 plugin:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the controller and network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

3. In the [ml2] section of the file, configure GRE as the type driver and tenant network
type:
[ml2]

...

type_drivers = gre

Chapter 4

93

tenant_network_types = gre

mechanism_drivers = openvswitch

4. In the [ml2_type_gre] section, update tunnel_id_range to the range of the
tunnel IDs that can be used for the virtual networks:
[ml2_type_gre]

tunnel_id_ranges = 1:1000

5. In the [ovs] section, set local_ip to the IP address of the network card that you
want to use in order to carry the tenant data traffic:
[ovs]

local_ip = 10.0.0.1

6. In the [agent] section, set tunnel_types to gre:
[agent]

tunnel_types = gre

7. Restart the Neutron and Open vSwitch Agent on the controller and network node of
our setup using the following commands:
openstack@controller:~$ sudo service neutron-server restart

openstack@controller:~$ sudo service openvswitch-switch restart

openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

8. Repeat the first six steps for the compute node.

9. Restart the Neutron OVS L2 agent on the compute node:
openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

How it works…
In this recipe, we configured the ML2 plugin to create virtual networks with the GRE tunnels.

The Neutron OVS L2 agent runs as a daemon on each Compute and Network node and
is responsible for configuring the OVS instance for the GRE-based virtual network on the
local Hypervisor.

GRE is a general-purpose encapsulation protocol; in comparison, VXLAN was designed
keeping in mind the requirements of virtual networking and multitenancy.

Exploring Overlay Networks with Neutron

94

Viewing a virtual interface on the compute
node for GRE tunnels

This recipe shows you how to identify the virtual network interface used by a VM for a GRE-
based virtual network. Viewing the network interface can be useful to troubleshoot the
connectivity problems between the VMs and network services.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for the node where the Neutron client packages
are installed

 f User-level access to OpenStack

 f The name of the VM for which you want to identify the virtual interface

How to do it…
1. Log in to a node with access to OpenStack.

2. Import the OpenStack RC file to set up the user-level access credentials.

3. Use the nova list commands to identify the VM instance, virtual network, and
IP associated with it. In this case, the VM is vm1 with an IP of 20.20.20.2 on the
Chapter4_GRE virtual network:

Chapter 4

95

4. Next, we will use the neutron port-list command to find the port ID for
the virtual interface that is associated with this VM, based on the VM IP that we
determined in the previous step:

5. We will now log in to the compute node and check out the OVS configuration.

6. We can use the ovs-vsctl show command to look at the ports created on the OVS
instance. The OVS instance has two bridges, br-int to communicate with the VMs
on this Hypervisor and br-tun to send the tunnel traffic to the other Hypervisors.
In the following listing, qvod0edf043-59 is the port corresponding to our virtual
interface ID of d0edf043-5928-4a99-aaba-c24248238aed and is configured
with tag: 1 in order to mark all the packets entering this interface with VLAN 1:

Exploring Overlay Networks with Neutron

96

7. Next, we will look at the flow configuration on OVS on the br-tun bridge, which
sends the packets to the other Hypervisors through the VXLAN tunnels using the
ovs-ofctl dump-flow br-tun command:

8. In the highlighted section of the output, we can see that the configuration strips the
local VLAN 1 from the packets going out of the compute node and adds a tunnel key,
0x1. The GRE tunnel key 1 was allocated by Neutron for the Chapter4_GRE network.

Chapter 4

97

How it works…
The OVS configuration for the GRE-based virtual network is similar to those for the VXLAN
networks. The OVS instance on the Hypervisor has two bridges, br-int for communication in
the Hypervisor and br-tun, which is used to communicate with the other Hypervisors.

The OVS bridge, br-int, uses VLANs to segregate the traffic in the Hypervisors. These VLANs
are locally significant to the Hypervisor.

OVS connects to the other Hypervisors using br-tun using GRE tunnels. It replaces the VLAN
for any packet destined to a different Hypervisor with a GRE header, which contains a unique
tunnel key that is allocated by the Neutron server for each virtual network.

99

Managing IP Addresses
in Neutron

We have seen that Subnet is a part of the core functionality in OpenStack Networking. The
Subnet entity drives the IP address assignment and DHCP servers for the virtual machine
instances. In this chapter, we will share the following recipes that will cover the IP address
management capabilities in Neutron:

 f Creating an instance with a specific IP address

 f Configuring multiple IP addresses for a virtual interface

 f Creating a redundant DHCP server per OpenStack Network

 f Starting the DHCP server on a specific network node

 f Increasing the number of IP addresses in a Network using the Horizon dashboard

5

Managing IP Addresses in Neutron

100

Introduction
The DHCP servers and IP address management go hand in hand. The DHCP servers run
on the network nodes in OpenStack. In order to implement the recipes, you will need an
OpenStack setup, as shown here:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent(s)

eth0 eth1

Open vSwitch

Management Network

Data Network

Nova Service

Neutron Agent

Neutron DHCP Agent

Neutron OVS Agent

Open vSwitch Open vSwitch

eth0 eth0eth1 eth1

Controller and Network Node Compute Node Network Node

This setup has one Compute Node, one dedicated Network Node, and one node for the
controller and networking services. Some of the recipes require redundant network nodes in
order to run redundant DHCP services. Therefore, a single all-in-one setup will not be sufficient.

As mentioned earlier, a Subnet is part of the core services in the OpenStack Neutron. All
the recipes of this chapter assume that ML2 is the core plugin in the Neutron configuration
file. The recipes also assume that OVS is configured as the mechanism driver and VLAN is
configured as the type driver as a part of the ML2 configuration.

Creating an instance with a specific IP
address

The VM instances are typically used to host IT applications. Some applications require that
a particular VM server should have a specific, fixed IP address. When DHCP is enabled, the
virtual machine gets an IP address dynamically. This recipe shows you how we can assign a
specific IP address to an instance.

Chapter 5

101

Getting ready
A VM with a specific IP address can only be created using the OpenStack CLI. It involves a Port
creation followed by an instance creation. As a prerequisite, ensure that a Network is created
with the following attributes:

 f Network name: Cookbook-Network-5

 f Subnet name: Cookbook-Subnet-5

 f Subnet IP address range: 20.20.20.0/28

How to do it…
The following steps will show you how to create a VM instance with a specific IP address:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands.

3. The command to create a Port is neutron port-create, as follows:
openstack@controller:~$ neutron port-create \
--name PortWithSpecificIP \
--fixed-ip subnet_id=f03d74b1-fc69-49c1-bda798c53ecbd183,ip_
address=20.20.20.5 Cookbook-Network-5

4. In the preceding command, we used the UUID of the Subnet and assigned
20.20.20.5 as the IP address for the Port. You can confirm that this port
uses the specific IP address using the neutron port-list command:

5. The CLI command to create an instance is nova boot. This command supports an
argument called --nic that allows us to specify a Port ID that we want to associate
with the instance:
openstack@controller:~$ nova boot --flavor m1.tiny \
--image cirros-0.3.3-x86_64 \
--nic port-id=9badd396-e95b-4c80-b6d2-c0140c186f91 CLIPortVM

6. Once the nova boot command is successful, the instance will also be visible in the
Horizon dashboard.

Managing IP Addresses in Neutron

102

7. Log in to the Horizon dashboard and navigate to Project | Network | Network
Topology. In the Network Topology, move the mouse pointer over the icon
representing the instance and click on Open Console, as shown in the
following screenshot:

8. In the resulting window, log in to the instance. In our example, we will be using the
CirrOS default username and password for the login.

Chapter 5

103

9. At the shell prompt of the instance, type ifconfig eth0. This command will show
the virtual interface for this instance. You can see that the IP address for this virtual
interface (eth0) matches that of the Port that we used in the nova boot command:

These steps showed you how to create a VM instance with a fixed IP address.

How it works…
When a Network is created, a DHCP port is automatically created. However, the ports
associated with the VM instances are created as and when the instances are created using
Horizon, but the Neutron CLI allows Ports to be created independent of an instance. The CLI
also allows users to boot an instance using an existing port. In this recipe, we first created a
Port and specified the IP address that it will use. This IP address must be in the range of the
Subnet and must be unassigned. Once the Port is successfully created, we use the Port ID to
boot an instance using the Nova CLI. This step ensures that the instance uses the specific IP
address for the virtual interface.

Managing IP Addresses in Neutron

104

Configuring multiple IP addresses for a
virtual interface

IP aliasing is a concept where multiple IP addresses are assigned to the same physical
network interface. IP aliasing is useful in several scenarios. When multiple small applications
running on different servers need to be consolidated into a single large server, the individual
IP address for each application needs to be mapped to the same physical interface. As the
physical servers get virtualized, there is a need to support IP aliasing for the virtual machine
instances also. In Linux, IP aliasing is accomplished by creating subinterfaces on a real
interface.

In this recipe, we will see how multiple IP addresses can be allotted to a single virtual interface.

Getting ready
The different IP addresses for the same virtual interface can be a part of the same Subnet or
two different Subnets. However, OpenStack does not allow a virtual interface to be associated
with two different networks. Therefore, the different Subnets should be a part of the same
OpenStack Network.

How to do it…
The following steps will show you how to configure multiple IP addresses for a single
virtual interface:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network using
Horizon in Chapter 1, Getting Started with OpenStack Networking. Use Cookbook-
Network-5 as the Network name, Cookbook-Subnet-1 as the Subnet name, and
20.20.20.0/28 as the Network address range:

Chapter 5

105

2. Open the drop-down menu under the Actions column and click on Add Subnet:

3. Using a Subnet name as Cookbook-Subnet-2 and a Network address range of
30.30.30.0/28, create the second Subnet on the same network:

4. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

5. Source the shell RC file to initialize the environment variables required for the
CLI commands.

Managing IP Addresses in Neutron

106

6. Create a Port using the neutron port-create CLI, as follows:

7. In the preceding command, we specified two fixed IP addresses for the same port
(hence, the same virtual interface). Also note that the neutron port-create
command takes only one Network name as the parameter.

8. As shown in the previous recipe, create a VM instance using the nova boot
command and specify the previous Port, as follows:
openstack@controller:~$ nova boot --flavor m1.tiny \
--image cirros-0.3.3-x86_64 \
--nic port-id=9b24a25b-1bb1-4909-8a13-9a829944649e CLIPortVM

9. Once the VM boots up, you will notice that one of the IP addresses is assigned to
the virtual interface. This is the limitation when using a DHCP server. The second
IP address needs to be manually assigned to a subinterface on the same virtual
interface.

How it works…
A single OpenStack Port maps to a single virtual interface in the VM instance. While the
Port has multiple IP addresses, when the instance is booted, only one virtual interface is
created and Neutron automatically picks one of the IP addresses and assigns it to the virtual
interface. The second IP address has to be manually assigned to a subinterface using the
ifconfig command. The additional benefit of this recipe is that the allocated IP address is
stored on the DHCP server and will not be assigned to any other VM instance.

Chapter 5

107

Creating a redundant DHCP server per
OpenStack Network

The DHCP server plays a critical role in the IP address management and initial network
connectivity for a VM instance. The DHCP server is enabled via an agent on the network node.
As it is a critical component, it is a good idea to have a redundant DHCP server per OpenStack
Network. This recipe shows you how to configure Neutron to start more than one DHCP agent
for each OpenStack Network.

Getting ready
In order to create more than one DHCP agent for each OpenStack Network, we will need to
update a setting in the Neutron configuration file.

How to do it…
The following steps will show you how to configure multiple DHCP agents per
OpenStack Network:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the Neutron configuration file using your desired editor. For example, the
command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

3. In the [DEFAULT] section of the file, configure the number of DHCP agents
per Network:
[ml2]
. . .
dhcp_agents_per_network = 2

4. The previous step configured two DHCP agents per OpenStack network.

How it works…
When the first VM instance is created on a Network, Neutron creates the DHCP agents for
the network. The number of the DHCP servers for a Network is based on the configuration file
setting. If more than one DHCP agent is required for every Network, then Neutron will create
the DHCP agents across the various Network nodes available in the OpenStack setup.

Managing IP Addresses in Neutron

108

Starting the DHCP server on a specific
network node

OpenStack allows multiple Network nodes in a setup. By default, only one DHCP agent (or
server) is associated per Network. In case there are multiple Network nodes, the Neutron
server automatically schedules a DHCP agent for each Network. However, there could be
situations when a particular Network requires a DHCP agent on a specific Network node. For
example, for a Network with critical VMs, the user may request for the DHCP server to run on a
more responsive Network node.

Getting ready
We will use the Horizon dashboard to show you how to ensure that the DHCP server for a
given Network is started on a specific network node. This recipe requires a setup with two
Network nodes as shown in the beginning of this chapter.

We will use the Network named Cookbook-Network-5 for this recipe.

How to do it…
The following steps will show you how to add an additional DHCP agent to an existing Network:

1. Log in to the OpenStack Horizon dashboard using a user ID with an administrative role.

2. Navigate to Admin | System | Network to view the list of Networks:

3. As no instances have been created, you will notice that the number of DHCP
agents is 0.

Chapter 5

109

4. Click on the name of the Network—Cookbook-Network-5 in this case.

5. The Network Detail page includes information such as Subnets, Ports, and DHCP
Agents, as shown in the following screenshot:

6. Click on the Add DHCP Agent button and select the Host that will run the DHCP
agent. For this recipe, we will choose the networknode of our setup in order to run
the DHCP agent:

Managing IP Addresses in Neutron

110

7. Once the DHCP agent is successfully added to the Network, you will notice that a new
DHCP port (representing the DHCP server) has now been created for the Network:

The preceding steps showed you how to start the DHCP agent on a specific network node.

How it works…
The OpenStack Neutron automatically chooses a DHCP agent in order to create a DHCP port.
This step happens internally when the first VM instance is created on a Network. The DHCP
agent on the first registered network node is selected. The DHCP agent then proceeds to
create the DHCP server (dnsmasq) as part of the DHCP Port creation. This recipe shows you
how administrative users can force the DHCP agent on a specific network node to be used for
a Network.

There's more…
This selection of a specific network node to run the DHCP server can also be performed using
the Neutron CLI. The Neutron CLI command, neutron dhcp-agent-network-add, can be
used for this purpose.

Chapter 5

111

Increasing the number of IP addresses in a
Network using the Horizon dashboard

We have seen that, as a part of the Network creation, the user also creates a Subnet, which
is essentially an IP address range. Consider a situation where a user creates a Subnet with
a set of IP addresses. Once all the IP addresses of this Subnet are assigned to instances,
any new instance created will not get an appropriate network connectivity. To increase the
IP addresses in the same Network, the user will have to create another Subnet on the same
Network. This recipe will show you how to do this.

Getting ready
To create another Subnet, the inputs that you will need are as follows:

 f A range of IP addresses

 f A name for the Subnet

How to do it…
The following steps will show you how to add another Subnet to a Network:

1. Log in to the OpenStack Horizon dashboard using the appropriate credentials.

2. In the left navigation menu, click on Project, then Network | Networks.

3. Now, click on the drop-down icon (triangle) next to the Edit Network button for the
Network to which you want to add another Subnet:

Managing IP Addresses in Neutron

112

4. Now, clicking on the Add Subnet option will show you a window, as follows:

5. Enter the Subnet Name and Network Address (IP range in a CIDR format) and click
on Next. Then click on Create.

Chapter 5

113

6. You can see that the Network now has a second Subnet (IP range) associated with it.

This recipe showed you how to add multiple Subnets to a particular Network. This flexibility to
add more IP addresses helps in cases where more VMs are created than initially planned.

How it works…
Neutron supports the multiple Subnets to be associated with each Network but such Subnets
cannot have overlapping IP addresses. Using multiple Subnets, more instances can be part of
a single Network. However, communication between the instances is limited to the instances
that have an IP address in the same Subnet. In order for the instances across a Subnet to
communicate, a Neutron router will be required.

Using the Horizon dashboard, users can choose a Network only during the instance creation.
Neutron will automatically assign the instance to the first Subnet in the Network. CLI allows
users to force an instance onto a particular Subnet.

115

6
Using Routing Services

in Neutron

The first five chapters focused on the OpenStack Networking capabilities available as part of
a Network. Now, we will delve deeper into OpenStack Networking and discuss the following
recipes related to IP Routing:

 f Configuring Neutron for Routing services

 f Creating a Router using the Horizon dashboard and Neutron CLI

 f Enabling instances on different Networks to communicate

 f Allowing the Virtual Machine instances to access the Internet

 f Providing access to a virtual machine from an external Network or the Internet
using Horizon

 f Creating and deleting a floating IP address using the Neutron CLI

 f Associating a floating IP address to a virtual machine using the Neutron CLI

Introduction
We saw that the Network provides tenants with an isolated Layer 2 domain in which virtual
machines can communicate with one another. However, in real-life deployment, you will find many
scenarios where two or more networks need to communicate with each other. This connectivity
between virtual machines across two different Layer 2 Networks is accomplished using a Router.
The Router object in OpenStack provides VMs with Layer 3-based IP Routing services.

Using Routing Services in Neutron

116

The OpenStack default Router runs on the Network nodes in OpenStack. In order to
implement the recipes, you will need an OpenStack setup as described in the following figure:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent(s)

eth2eth1

Nova Service Nova Service

Neutron Agent Neutron Agent

eth0 eth0eth1 eth1eth0

Controller and Network Node Compute Node 1 Compute Node 2

Management Network

Data Network

External Network (Internet)

br-int br-int br-intbr-ex

This setup has two compute nodes and one node for the controller and networking services.
For this chapter, you can also use a setup with just one compute node. Compared to the earlier
chapters, this setup has an additional Network called External Network. This Network allows
the Network node to carry traffic from the VM instances to an external Network and vice versa.

Configuring Neutron for Routing services
As mentioned earlier, the OpenStack Networking functionalities can be classified as core and
service. Routing or L3 networking is part of the service functionality and Neutron needs to be
configured in order to support it.

Getting ready
We will configure the Neutron server as well as the Neutron L3 agent in order to enable
the Routing functionality in OpenStack. For this chapter, we will assume that the Neutron
ML2 plugin has been configured to use VLAN as the type driver and Open vSwitch as the
mechanism driver.

How to do it…
The following steps will show you how to configure Neutron to provide Routing services in
OpenStack:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network Node.

Chapter 6

117

2. Open the neutron.conf configuration file using your desired editor.
For example, the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

3. In the [DEFAULT] section of the file, configure router as the service plugin
for Neutron:
[DEFAULT]
...
service_plugins = router

4. Open the l3_agent.ini file using your desired editor. For example, the command
for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/l3_agent.ini

5. As we are using Open vSwitch as the mechanism driver, in the [DEFAULT] section
of the file, we will configure interface_driver accordingly:
[DEFAULT]
...
interface_driver =
 neutron.agent.linux.interface.OVSInterfaceDriver

6. The final step is to configure external_network_bridge in the l3_agent.ini
file:
[DEFAULT]
...
external_network_bridge = br-ex

How it works…
Once router is added to the list of service plugins in the Neutron configuration file, the support
for Router is enabled in OpenStack. You will see that the Horizon dashboard now has an
option called Router when you navigate to Project | Network.

The external Network bridge name is important when using the Open vSwitch mechanism
driver. For a Linux bridge, the corresponding bridge is created automatically. This bridge
is bound to the Ethernet interface that allows the traffic to be routed to networks that are
external to OpenStack.

Using Routing Services in Neutron

118

Creating a Router using the Horizon
dashboard and Neutron CLI

Once OpenStack is configured in order to support the Routing services, the next step is to
create a Router. Similar to a Network, Subnet, and Port, a Router is a logical entity that is used
by Neutron to provide connectivity between two different OpenStack Networks or Subnets.

In this recipe, we will see how to create a Router using the Horizon dashboard and Neutron CLI.

Getting ready
The only information required to create a Router is the name of the Router.

How to do it…
The following steps will show you how to create a Router in OpenStack:

1. Log in to the OpenStack Horizon dashboard using the appropriate credentials.
2. In the left navigation menu, navigate to Projects | Network | Router.

3. Now click on + Create Router. In the resulting screen, enter the Router Name and
click on the Create Router button:

Chapter 6

119

4. The newly created Router should now appear in the Routers table:

5. We will now create another Router named Cookbook-Router-2 using the Neutron
CLI. The command to create a Router using CLI is neutron router-create. If the
command was successful, it should show you the following output:

6. You can delete this Router using the neutron router-delete command by
specifying the Router name.

How it works…
As mentioned earlier, an OpenStack Router is the entity that represents Layer 3 IP Routing in
OpenStack. A Router needs to be associated with subnetworks in order to provide a Routing
functionality between these subnetworks.

Using Routing Services in Neutron

120

OpenStack supports IP Routing using the Linux namespaces and iptables on the network
node. This is a centralized model for Routing where the VM traffic that needs to go out of
a Network is first sent to the network node and then the OpenStack Router on the network
node routes it further.

There's more…
In the newer releases, OpenStack supports Distributed Virtual Routing (DVR) that allows
each Hypervisor to support routing for a better scale and performance.

Enabling instances on different Networks to
communicate

In order to make use of the OpenStack IP Routing capabilities, a Router needs to be
associated with the desired subnetworks. Once this step is completed, the data traffic from
one VM in a Subnet will be able to communicate with another VM in another Subnet.

This recipe shows you how to associate subnetworks to a Router. While VMs will be able to
communicate with one another, the VMs will not yet have access to the Internet.

Getting ready
First, we will create two Networks and a Router and then we will associate the two Networks (or
the corresponding Subnet) to the Router. We will also create one VM in each of the Networks.

For this recipe, we will use the following information to create the Networks:

Network Name Subnet Name Network Address Range VM Instance
Cookbook-Network-1 Cookbook-Subnet-1 20.20.20.0/28 Network-1-VM
Cookbook-Network-2 Cookbook-Subnet-2 30.30.30.0/28 Network-2-VM

How to do it…
The following steps will show you how to create two Networks and one Router and then
associate them together:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network
using the Horizon in Chapter 1, Getting Started with OpenStack Networking. Use the
Network Name, Subnet Name, and Network Address from the preceding table for
Cookbook-Network-1.

Chapter 6

121

2. Repeat the previous steps for Cookbook-Network-2. Once again, use the
information in the table. You should see a list of Networks as follows:

3. Create an instance called Network-1-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that Cookbook-Network-1 is chosen in the Selected
networks field.

4. Create an instance called Network-2-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that Cookbook-Network-2 is chosen in the Selected
networks field.

5. At this stage, you should see a list of instances, as follows:

6. Note that the two instances cannot ping each other as yet.

7. The next step is to create a Router called Cookbook-Router-1. Follow the steps
mentioned in the recipe titled Creating a Router using the Horizon dashboard and
Neutron CLI earlier in this chapter.

Using Routing Services in Neutron

122

8. Click on the name of the Router to view the details of the Router:

9. To associate the Networks to the Router, click on + Add Interface:

10. Select Cookbook-Network-1 (and its associated Subnet) and then click on
Add Interface.

Chapter 6

123

11. Repeat this step to add Cookbook-Network-2 as the second interface in the Router.

12. Navigate to Project | Networks | Network Topology. Here, you will see that the two
Networks are now connected via the Router:

13. At this stage, both the Networks are connected to each other via the Router. You
can now execute the ping command from one VM to another. You will notice that
the ping command succeeds. Note that you may have to check the security group
settings in order to ensure that ICMP (ping) traffic is allowed.

How it works…
When a VM is created on a Network, we know that OpenStack creates a namespace with a
prefix of qdhcp. Similarly, when the first interface is added to the Router, Neutron (using the
L3 agent) creates a namespace with a prefix of qrouter. You can view these namespaces
using the ip netns command on the Network node.

The qrouter namespace represents the OpenStack Router. You can run the ifconfig
command in the namespace and see that the Router has one interface on each of the
Networks. The IP address assigned to these Router interfaces will be added as the default
gateway on the respective VMs. This is how the Router provides an IP Routing service between
the two Networks.

Using Routing Services in Neutron

124

There's more…
In case you use VXLAN as the overlay Network technology, then ensure that the TCP Maximum
Transmission Unit (MTU) settings are configured appropriately on the DHCP server (dnsmasq).
This will ensure that the VM instances have enough space for the Network protocols to carry
all the header information. Without a proper MTU configuration, you may find that the ping
commands between the VMs might fail.

Another useful thing to note is that Routers can be used to route traffic between two
Subnetworks in the same Network as well.

Allowing the Virtual Machine instances to
access the Internet

Routers allow VMs across different Networks to communicate with each other. They also play
another crucial role. Routers allow VMs to communicate with entities outside the OpenStack
Network such as the Internet. In Chapter 3, Exploring Other Network Types in Neutron, we
introduced the concept of an external Network. External Networks, when used with a Router,
allow the VM instances to access the Internet.

Getting ready
In order to allow VMs to access the Internet, we will need two types of Networks. A tenant
Network will be used to create an instance and associate it to a Router. Next, the Router
needs to be connected to an External Network that has access to the Internet. Note that an
OpenStack user with the administrator's privilege can create the External Network.

This recipe assumes that the OpenStack administrator has followed the steps mentioned in
the recipe titled Creating an External Networks using Horizon in Chapter 3, Exploring Other
Network Types in Neutron and created an External Network called External-Network.

How to do it…
The following steps will show you how to allow VMs to access the Internet:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network using
the Horizon in Chapter 1, Getting Started with OpenStack Networking to create a
Network named Cookbook-Network-1 and a Subnet IP range of 20.20.20.0/24:

Chapter 6

125

2. Create an instance called Network-1-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that Cookbook-Network-1 is chosen in the Selected
networks field.

3. The next step is to create a Router called Cookbook-Router-1. Follow the steps
mentioned in the recipe titled Creating a Router using the Horizon dashboard and
Neutron CLI earlier in this chapter.

4. As shown in the recipe titled Enabling instances on different Networks to
communicate in this chapter, add Cookbook-Network-1 as an interface to
Cookbook-Router-1.

5. Navigate to Project | Network | Routers. Click on Set Gateway under the actions
column for the Router named Cookbook-Router-1:

Using Routing Services in Neutron

126

6. In the Set Gateway window, select the external Network that the administrator has
created for you. Click on the Set Gateway button.

7. At this stage, the VM instance, Network-1-VM, should be able to communicate with
the IP addresses on the external Network Subnet.

How it works…
As discussed in Chapter 3, Exploring Other Network Types in Neutron, the external network
is critical in order to provide you with Internet access. In the External Network, the Subnet IP
range plays a crucial role.

We know that a Router connects two Networks. When a Network is added as an interface
to a Router, a Router port is created. The gateway IP addresses from the Network are then
assigned to this Router port. Similarly, for the second Network, another Router port is created
and associated with the gateway IP address of that Network. The OpenStack Router is
implemented using the Linux namespaces.

In the case of Internet access, a Router port is created using the External Network and is
assigned an IP address from the corresponding Subnet. Neutron uses iptables to configure
the SNAT rules for all the traffic trying to access the external network. The Router is then
able to provide IP Routing between a VM on a tenant Network to a port on the external
Network. This ensures that the VM traffic can reach the Internet while the VMs are not directly
accessible from the Internet.

There's more…
This recipe showed you how to perform a Set Gateway operation using the Horizon dashboard.
The same can also be accomplished using the OpenStack Neutron CLI. The command to set
the gateway using an external Network is neutron router-gateway-set.

A user can also clear the gateway using Horizon and the Neutron CLI (neutron router-
gateway-clear).

Providing access to a Virtual Machine
from an external Network or the Internet
using Horizon

As mentioned in the previous recipe, Routers along with an external network can be used to
provide VMs with access to the Internet. With the External Network set as a gateway on the
Router, the VMs can access the Internet from their private IP address. However, the VM cannot
be reached from the Internet using the private IP address.

Chapter 6

127

What happens if you are running a web server in your VM? It may be important to allow the
users to access the web server from the Internet. OpenStack extends the concept of the
Router and external Network and supports the floating IP addresses that can be used to
connect to a VM from the Internet.

Getting ready
Similar to the previous recipe, we will need two Networks and a Router to enable Internet
access to the VM. This recipe also assumes that the OpenStack administrator has followed
the steps mentioned in the recipe titled Creating an External Networks using Horizon in
Chapter 3, Exploring Other Network Types in Neutron and created an External Network called
External-Network.

How to do it…
The following steps will show you how to allow a VM to be accessible from the Internet:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network using
Horizon in Chapter 1, Getting Started with OpenStack Networking to create a Network
named Cookbook-Network-1 and a Subnet IP range of 20.20.20.0/24:

2. The next step is to create a Router called Cookbook-Router-1. Follow the steps
mentioned in the recipe titled Creating a Router using the Horizon dashboard and
Neutron CLI earlier in this chapter.

3. As shown in the recipe titled Enabling instances on different Networks to
communicate in this chapter, add Cookbook-Network-1 as an interface to
Cookbook-Router-1.

4. As shown in the previous recipe, set the gateway on Cookbook-Router-1 using the
External-Network.

5. Create an instance called Network-1-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started
with OpenStack Networking. Ensure that Cookbook-Network-1 is chosen in the
Selected networks field.

Using Routing Services in Neutron

128

6. In the Actions column for the instance, select the Associate Floating IP action, as
shown in the following screenshot:

7. In the resulting window, you will need to select a floating IP Address. If you did not
allocate any floating IP address earlier, the window will say No floating IP addresses
allocated. Click on the + symbol, as follows:

Chapter 6

129

8. Once you click on the + symbol, the Allocate Floating IP screen will be displayed.
This screen will let you choose the appropriate external Network. Select Pool and
click on Allocate IP:

9. You will be taken back to the Manage Floating IP Associations screen once again.
This time, an IP address will have been selected for the instance. Click on the
Associate button to complete the assignment of the floating IP to an instance:

Note that if your instance has multiple virtual network interfaces, you will be able to choose a
floating IP address for each virtual interface.

Using Routing Services in Neutron

130

How it works…
We have seen that access to the Internet requires an external network. The Router uses
an IP address from the Subnet of the external Network in order to provide an instance with
Internet access.

In the same fashion, when we need to access a VM from the Internet, we need an IP address
from the External Network Subnet. This mechanism is referred to as assigning a floating IP
address to the VM. The Manage Floating IP Associations screen shown in this recipe results
in an additional IP address being assigned to the VM. Using this additional IP address, we can
access the VM from the Internet.

Creating and deleting a floating IP address
using the Neutron CLI

As seen in the previous recipe, we first selected an instance in order to create and associate a
floating IP. For better planning, it may be required to create a set of floating IP addresses even
if instances have not yet been created. We will now show you how a floating IP address can be
created and deleted using the Neutron CLI.

Getting ready
As we have seen, floating IP addresses are chosen automatically from the specified external
Network. Therefore, you will need the following information to create a Network using CLI:

 f The name of the external Network—in our case, it will be External-Network

 f The login credentials for SSH to a node where the Neutron client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron

client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands, as follows:
openstack@controller:~$ source author_openrc.sh

Chapter 6

131

3. The command to create a floating IP address is neutron floatingip-create,
as shown here:

4. As you can see, the floating IP address of 192.168.57.8 was automatically selected
by Neutron.

5. You can view all the floating IP addresses currently in the system by using the
neutron floatingip-list command:

6. You can delete a floating IP address using the neutron floatingip-delete
command by specifying the ID of the floating IP, as follows:

We have now seen the different CLI commands related to the floating IP addresses.

Using Routing Services in Neutron

132

How it works…
When the neutron floatingip-create command is executed, Neutron takes the Subnet
information of the specified External Network and automatically selects an IP address to be
used as a floating IP address for an instance.

This IP address can then be associated with an instance using the Horizon dashboard as
shown in the previous recipe. This IP address can also be used with the Neutron CLI.

There's more…
Users can also create independent floating IP addresses using the Horizon GUI. This is done
by selecting Project | Access & Security | Floating IPs on the GUI.

Associating a floating IP address to a virtual
machine using the Neutron CLI

We have seen that the Neutron CLI allows users to create a floating IP address independent of
the existence of an instance. We will now show you how to associate a floating IP address to
an instance using CLI.

Getting ready
For this recipe, you will need to know the virtual interface or the Port of the instance to which
you need to bind the floating IP address. You will also need the following information:

 f The login credentials for SSH to a node where the Neutron client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron

client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

Chapter 6

133

3. We will first execute the neutron port-list command to identify the ID of the
virtual interface port to which the floating IP will be assigned. In our case, we will need
to look for a port with an IP address of 20.20.20.9 (which is an internal IP address):

4. The next step is to identify the ID of the floating IP address. We will use the neutron
floatingip-list command for this. Note that the selected floating IP does not
have any fixed IP address assigned:

5. The command to associate a floating IP address to the virtual interface of an instance
is neutron floatingip-associate, as follows:

6. Once the command is successful, you can execute the neutron floatingip-
list command again and verify that the floating IP address has been associated to
a fixed (internal) IP address:

The preceding steps showed you how to associate a floating IP address to an instance using
the Neutron CLI.

Using Routing Services in Neutron

134

How it works…
As discussed earlier, a floating IP address is an IP address from the Subnet of the External
Network. A VM instance normally has a fixed (internal) IP address that is a part of the Subnet
of the tenant Network. The CLI commands seen in this recipe allow us to associate and
disassociate these two IP addresses (fixed and floating) from one another.

There's more…
You can use the neutron floatingip-disassociate command to remove the fixed IP to
a floating IP mapping.

135

7
Using Neutron Security

and Firewall Services

In this chapter, we will look at the following recipes to create and manage the security rules
with Neutron Security Groups and Firewalls:

 f Creating a security group using Horizon

 f Configuring the security group rules using Horizon

 f Creating a security group using CLI

 f Configuring the security group rules using CLI

 f Securing the traffic between instances on the same Network

 f Creating the security group rules to allow web traffic

 f Configuring Neutron for the Firewall service

 f Creating the Firewall rules

 f Creating the Firewall policies

 f Creating a Firewall

 f Viewing and verifying the Firewall rules on the network node

Introduction
The OpenStack Neutron provides a comprehensive set of features to secure access to the
network resources. Neutron provides two levels of security restrictions. Security groups control
the traffic flow between two ports in a Network by applying security rules on the ports. Firewalls
secure the traffic flowing across the Networks by applying security rules on the Router.

Using Neutron Security and Firewall Services

136

To implement these recipes, we will use an OpenStack setup as described in the
following image:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent(s)

eth2eth1

Nova Service Nova Service

Neutron Agent Neutron Agent

eth0 eth0eth1 eth1eth0

Controller and Network Node Compute Node 1 Compute Node 2

Management Network

Data Network

External Network (Internet)

br-int br-int br-intbr-ex

This setup has two compute nodes and one node for the controller and networking services.

Creating a security group using Horizon
Security groups provide you with ways to control the Network traffic between ports in an
OpenStack Network. Security group rules are applied at a Network port level. To apply port
level security, we will start by creating a security group and then adding security rules to this
group. The security groups are attached to the instances when they are launched.

Getting ready
For creating a security group, you will need the following information:

 f The security group name

 f A description for the security group

How to do it…
The following recipe will show you how to create a security group using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Compute | Access & Security:

Chapter 7

137

3. In the Security Groups tab, click on + Create Security Group.

4. Fill in an appropriate security group Name and Description:

5. Click the Create Security Group button. Once the security group has been created
successfully, it should be listed in the table, as shown in the following screenshot:

Using Neutron Security and Firewall Services

138

In the subsequent recipes, we will see how rules can be added to the security group in order
to allow traffic.

How it works…
In this recipe, we created a security group. The security group bundles a set of rules, which
can be associated to a Network port, and by default denies all access to the associated ports.

Configuring the security group rules using
Horizon

Once a security group has been created, access to all the ports associated with the security
group is denied. Security rules are then added to the group in order to allow only certain
type of traffic, thereby securing the Network. The rules are defined using Network traffic
attributes such as protocol (TCP, UDP, or ICMP), the direction of traffic flow, for example,
entering the port (ingress) or exiting the port (egress), and the application port, that is, the
UDP or TCP socket ports.

Getting ready
For this recipe, you will need the following information:

 f The name of the security group to which the rules will be added

 f The type of protocol to be allowed

 f The direction of the traffic, that is, originating from the port (egress) or destined to the
port (ingress)

 f The protocol port or port range that should be allowed

How to do it…
The following steps will show you how to create the security group rules using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Compute | Access & Security.

3. Select the entry in the security group table, and in the Actions column, select
Manage Rules. For this example, we will use the default security group.

4. This will open the screen to manage the rules for a selected security group:

Chapter 7

139

5. Add a new security rule by clicking +Add Rule.

6. Security rules can be added using the predefined templates by choosing application
names in the Rule drop-down menu (for example, HTTP or SSH) or providing a custom
port, protocol, and remote address combination:

Using Neutron Security and Firewall Services

140

7. Select the rule type from the drop-down menu titled Rule. For this recipe, we will add
a Custom TCP Rule.

8. Select the direction of the traffic flow in the menu, Direction:

Chapter 7

141

9. Next, select whether you want to open a single port or multiple ports using the Open
Port menu. In this example, we will open a single port:

10. In the Port textbox, enter the protocol port number to open it. For this example, we
will use port 22.

11. In the Remote menu, choose a method of identifying the remote address; it can be
either a CIDR type network address or the name of another security group. We will
use CIDR for this example.

Using Neutron Security and Firewall Services

142

12. In the CIDR menu, mention the Network address with a mask from which to
allow traffic:

Chapter 7

143

13. Click Add to create the security group rule:

The new rule is now a part of the security group. In this example, we added a rule to allow
access to port 22, which is used for SSH from any remote IP.

How it works…
A security group by default blocks all the traffic to and from the Network port that is associated
with it. The user can then define the rules to open up the port for specific types of traffic.

Each security group rule opens up a certain type of traffic on the Network port. In this recipe,
we created a Custom rule to open a TCP port for the incoming (ingress) traffic.

The rule can allow traffic based on its origin. The origin can be either a Classless Inter-Domain
Routing (CIDR) Network or another security group. The IP address, 0.0.0.0/0, matches any
source address.

The reference implementation of security groups in OpenStack is provided using the iptables.

In case a security group name is used as the origin, the packet trying to reach the associated
port will be matched against both the security groups one after another. Either of these
security groups may explicitly allow the packet. If the packet does not match any of the rules,
it will be dropped.

Using Neutron Security and Firewall Services

144

Creating a security group using CLI
We have seen how to create a security group using Horizon; this recipe shows you how to
create a security group using the CLI.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the Neutron client packages are installed

 f A shell RC file that initializes the environment variables for CLI

 f The name and description of the security group

How to do it…
The following steps will show you how to create a security group using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands.

3. Execute the neutron security-group-create command to create a security
group with the desired name and description:

4. To list the security groups defined for the tenant, use the security-group-list
command:

Chapter 7

145

5. To see the details of the security group that has been created, use the security-
group-show command with the name or ID of the security group:

The security group rules can also be deleted using the Neutron CLI command
security-group-delete.

How it works…
In this recipe, we created a security group using the Neutron CLI. We can also list and view the
newly created security group using the CLI commands. In case multiple security groups with
the same name are present, use the security group ID with the delete or show commands.

In the following recipes, we will learn about populating this security group with rules in order to
allow specific traffic packets using the CLI commands.

Configuring the security group rules
using CLI

In the previous section, we saw the creation of a security group using the Neutron CLI. In this
recipe, we will see how to create the security group rules using the Neutron CLI.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the Neutron client packages are installed

 f A shell RC file that initializes the environment variables for CLI

 f The name of the security group, protocol, direction of the traffic flow, protocol port,
and a remote CIDR network

Using Neutron Security and Firewall Services

146

How to do it…
The following steps will show you how to create a security group rule using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. To create a security group rule, use neutron security-group-rule-create,
as follows:

The Neutron CLI commands can also be used to list, view, and delete the security group rules.

How it works…
The security group rules open the associated port for certain type of traffic packets. To specify
the type of traffic, we can provide parameters such as protocol, application port, direction
of the traffic flow, source of traffic, and so on. When a packet arrives at the port that is
associated with the security group, its parameters are matched against each security group
rule. If the packet matches the traffic pattern defined in any of the rules, it is allowed to pass
through the port. If none of the rules match the packet, the security group drops the packet.

Securing the traffic between instances on
the same Network

In this recipe, we will see how to use security groups to secure the instances on the same
Network. We will create a Network and launch two instances connected to the Network. We
will then use security groups in order to restrict the traffic between VMs.

Chapter 7

147

Getting ready
For this recipe, you will need the following information:

 f The name for the Network

 f The name for the security group

How to do it…
1. Log in to Horizon with the appropriate credentials.

2. Follow the recipe titled Creating a Subnet and Network using Horizon in Chapter 1,
Getting Started with OpenStack Networking to create a Network and its Subnet. For
this recipe, we will create a Network called Chapter7_Network1 with a Subnet IP
range of 70.70.70.0/24:

3. Next, we will launch two VM instances named Chapter7_VM1 and Chapter7_VM2
on the Network, Chapter7_Network1, and associate them with the security group,
Chapter7_SecurityGroup1, that was created in the previous recipe:

Using Neutron Security and Firewall Services

148

4. Once the VMs are active, verify the security group and Network associated with them
by selecting the VM from the Network list by clicking on the instance name such as
Chapter7_VM1 and looking in the Overview tab:

Chapter 7

149

5. We will now log in to one of the VMs and try to ping the IP of the second VM:

6. As discussed earlier, specific security group rules are required in order to allow
specific types of traffic. As we have not created any rule for ping (ICMP) traffic, pinging
between the VMs fail.

7. Now, we will add rules to the security group in order to allow pings from any source. To
do this, we will navigate to the security group list and click on Manage Rules for the
security group, Chapter7_SecurityGroup1:

Using Neutron Security and Firewall Services

150

8. We will then add a rule to allow all incoming ICMP traffic to the port from any source
CIDR network:

9. We can now repeat the following test to verify that pinging from one VM to another
will work:

With the security group rule in place, pinging from one VM to another is now allowed.

Chapter 7

151

How it works…
The security group drops all the packets by default. In this case, ping (ICPM) traffic between
the instances was blocked initially as there was no explicit rule to allow the traffic. Once rules
were added to allow all the ICMP packets, pinging between the VMs was allowed. Note that
rules can also be defined with specific criteria such as the source address of the packet in
order to provide more security.

Creating the security group rules to allow
web traffic

In this recipe, you will learn how to allow web traffic. We will create rules to allow the traffic
destined only to a web server running in a VM. Web traffic is associated with TCP ports 80 for
HTTP and 443 for HTTPS.

Getting ready
For this recipe, you will need the following information:

 f The name of the Network

 f The name for the security group

For this recipe, we will use the Chapter7_Network1 Network and the Chapter7_
SecurityGroup1 security group that we created in the previous recipe.

How to do it…
The following steps will show you how to open specific application-related protocol ports in a
security group:

1. Log in to Horizon with the appropriate credentials.

2. Navigate to Project | Compute | Access & Security.

Using Neutron Security and Firewall Services

152

3. Click on Manage Rules for the Chapter7_SecurityGroup1 security group to go to
the security group management page:

4. Click on +Add Rule to add a new rule. We will select the rule type HTTP in the Rule
menu and CIDR as 0.0.0.0/0 to allow HTTP traffic from all remote locations:

Chapter 7

153

5. We will follow the same process to add a rule for HTTPS traffic:

6. On completing these steps, the Chapter7_SecurityGroup1 security group will
show the rules to allow the web traffic of HTTP and HTTPS from all locations:

With the preceding security group rules in place, web access on the ports associated with the
Chapter7_SecurityGroup1 security group is allowed from any source.

Using Neutron Security and Firewall Services

154

How it works…
In this recipe, we saw the creation of security group rules to allow web access on the associated
port. The associated port can be a VM, which is running a web application. To allow the traffic to
reach the web server, we will need to open TCP port 80 and 443, which are the well-known ports
for HTTP and HTTPS protocol, respectively. With this rule added, all the ports associated to the
Chapter7_SecurityGroup1 security group will allow the passing of the web access traffic.

Configuring Neutron for the Firewall service
The OpenStack Networking functionalities can be classified as core and service. Firewall is
part of the service functionality and Neutron needs to be configured in order to support it.

In this recipe, we will configure the Neutron server as well as the Neutron FWaaS agent in
order to enable the Firewall functionality in OpenStack.

Getting ready
For this recipe, we will assume that the Neutron ML2 plugin has been configured to use VLAN
as the type driver and Open vSwitch as the mechanism driver.

How to do it…
The following steps will show you how to configure Neutron to provide a Firewall service in
OpenStack:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the neutron.conf configuration file using your desired editor. For example,
the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

3. In the [DEFAULT] section of the file, configure firewall as the service plugin for
Neutron. If service_plugins is already configured, add firewall to the list,
separated by a comma:
[DEFAULT]
...
service_plugins = firewall

Chapter 7

155

4. In the [service_providers] section of the file, add FIREWALL as a service
provider. If service_provider is already configured, add FIREWALL to the list,
separated by a comma:
[service_providers]
...
service_provider = FIREWALL:Iptables:neutron.agent.linux.iptables_
firewall.OVSHybridIptablesFirewallDriver:default

5. Add a [fwaas] section of the file, as shown here:
[fwaas]
driver = neutron_fwaas.services.firewall.drivers.linux.iptables_
fwaas.IptablesFwaasDriver
enabled = True

6. Open the l3_agent.ini file using your desired editor. For example, the command
for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/l3_agent.ini

7. As we are using Open vSwitch as the mechanism driver, in the [DEFAULT] section of
the file, we will configure interface_driver accordingly:
[DEFAULT]
...
interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver

8. To configure the Horizon dashboard for Firewall, open the /usr/share/openstack-
dashboard/openstack_dashboard/local/local_settings.py file and set an
enable_firewall option in the OPENSTACK_NEUTRON_NETWORK setting:
'enable_firewall' = True

9. Once the changes are done, restart neutron-server, neutron-l3-agent, and
horizon for the changes to take effect.

How it works…
Once Firewall is added to the list of service plugins in the Neutron configuration file and the
Horizon dashboard has been configured, the support for Firewall is enabled in OpenStack.
You will see that Horizon now has an option called Firewall when you navigate to Project |
Network. The configuration of Neutron with an iptables-based FWaaS plugin is now complete.
In the following recipes, we will use the Firewall service in order to secure the network access.

Using Neutron Security and Firewall Services

156

Creating the Firewall rules
In OpenStack Neutron, Firewall provides security by configuring the access control at the
Network Router, in contrast to the security group, which provided the access control at the
Network port. The Firewall policies provide you with the access control over the traffic crossing
the Network boundary.

In Neutron, a Firewall service is composed of a Firewall policy, which in turn is composed of
many Firewall rules. We will start exploring Firewall as a service by first looking at the Firewall
rules. We will then create a Firewall policy by grouping these rules. Finally, we will define a
Firewall that will use the Firewall policy that we created.

Getting ready
In this recipe, we will go through the process of creating a Firewall rule using Horizon. For this
recipe, you will need the following information:

 f The Firewall rule name

 f The rule description

 f The protocol to define the type of traffic, for example, TCP, UDP, or ICMP

 f The type of action that the rule will add, for example, allow or deny a traffic type

 f The source and destination of the traffic and their port or port-range

How to do it…
The following steps will show you how to create a Firewall from Horizon:

1. Log in to Horizon with the appropriate credentials.

2. Navigate to Project | Network | Firewall and click on the Firewall Rules tab:

3. Click on Add Rules to open the menu.

Chapter 7

157

4. In the Add Rule menu, provide the rule Name, Description, Protocol, Action, Source,
Destination IP, and Port or Port Range:

5. Click Add to create the Firewall rule:

Using Neutron Security and Firewall Services

158

The Firewall rules can also be created using the CLI commands, as follows:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. To create a Firewall rule, use the neutron firewall-rule-create command:

Once the rule has been created, the rule details are displayed.

How it works…
The Firewall rule consists of two parts. The first part is the match condition. When a packet
arrives at the Network, the Firewall uses the match condition to select a packet for an action.
The second part in the rule is the action to take when a packet matches the condition. In this
recipe, we created a rule to allow the matching traffic on port 22 for a destination network
with the 70.70.70.0/24 address, and once this condition matches, the rule defines the
action to allow the packet.

Chapter 7

159

Creating the Firewall policies
A Firewall policy is a grouping of the Firewall rules. We will now create a Firewall policy and
add the Firewall rules that we created earlier. The order of the rules in a Firewall policy is
important and a different ordering may give you a different result.

A Firewall policy may also be shared between tenants.

Getting ready
We will create the Firewall policy using Horizon. For this recipe, we will need the
following information:

 f The Firewall policy name

 f The Firewall policy description

 f Names of the Firewall rules to be added to the policy

How to do it…
The following steps will show you how to create a Firewall policy and add the Firewall
rules to it:

1. Log in to Horizon with the appropriate credentials.

2. Navigate to Project | Network | Firewalls and click on Firewall Policies.

3. In the Add Policy menu, provide Policy Name and Description:

Using Neutron Security and Firewall Services

160

4. In the Rules tab in the Add Policy menu, choose and add the Firewall rules in
Available Rules to Selected Rules. Dragging them up or down can reorder the rules:

5. Click Add to create the Firewall policy:

We can also use the Neutron CLI to create the Firewall policy using the following steps:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

Chapter 7

161

3. To create a Firewall policy, use the neutron firewall-policy-create command:

In the preceding command, the Firewall rules should be provided as an ordered list. The ordering
of the rules in the list determines the order in which the Network packets will be matched.

How it works…
A Firewall policy is composed of rules, which match a traffic packet based on parameters
such as the protocol, application port, and so on. The rules can either allow or deny the
traffic that matches the rule. This makes the ordering of the rules in a policy significant. For
example, if a rule that allows SSH traffic from any location is placed before a rule that denies
any traffic from CIDR 20.20.20.0/24, an attempt to connect to a VM using SSH from CIDR
20.20.20.0/24 will still be allowed.

Creating a Firewall
A Firewall is associated with a Firewall policy. In the previous two recipes, you learned how to
create Firewall rules and a policy. We will now create a Firewall and associate it with the policy
that we created in the previous section.

Getting ready
We will create the Firewall using Horizon. For this recipe, we will need the following information:

 f The Firewall policy name

 f The Firewall name

 f The Firewall description

Using Neutron Security and Firewall Services

162

How to do it…
The following steps will show you how to create a firewall using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. Navigate to Project | Network | Firewalls and click on the Firewalls tab and click on
Create Firewalls.

3. In the Add Firewall menu, provide Name and Description and choose the Policy of
the Firewall from the drop-down menu:

4. Click Add to create the Firewall:

Chapter 7

163

We can also create the Firewall with the Neutron CLI using the following steps:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. To create a Firewall, use the neutron firewall-create command and provide
the Firewall policy that should be associated with this Firewall:

How it works…
Once a Firewall has been created using a predefined policy, all the Firewall policy rules are
automatically applied to the Routers that already exist or those that will be created later. The
reference implementation of FWaaS applies the Firewall rules as an iptables configuration in
the Router's namespace. The Firewall policy of a tenant is applied to all the Routers that the
tenant owns. This behavior will change in the future version of Neutron and allow the user to
associate the Firewall policy to the chosen Routers.

In the next recipe, we will explore the iptables configuration in detail.

Using Neutron Security and Firewall Services

164

Viewing and verifying the Firewall rules on
the Network node

We created a Firewall and its policies and rules in the previous recipes. The Neutron reference
implementation uses iptables to provide FWaaS. As discussed earlier, FWaaS policies are
implemented at the Routers. Neutron uses the Network's namespace to implement the
Routers. In this recipe, we will fnd out how the Firewall policies and rules are converted to the
iptables configuration by Neutron.

Getting ready
For this recipe, you will need the following information:

 f An administrative user access to OpenStack

 f A root or equivalent sudo access to the Network node

How to do it…
The following steps will show you how to view the Firewall rules on the Network node:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Use the CLI commands to list the Firewall, Firewall policy, Firewall rule, and Routers.
Note the Router ID in the following image. We will use this ID to find the namespace
corresponding to this Router on the Network node:

Chapter 7

165

4. Log in to the network node as the root user (or an equivalent sudo user) account
using SSH.

5. Use the ip netns command to locate the namespace for the Router. Neutron
creates the Router's namespace using a qrouter prefix with the Router ID.

6. Start a shell in the Router's namespace using the ip netns exec command:

Using Neutron Security and Firewall Services

166

7. List the iptables rules in this namespace using iptables –L –n –v, as follows:

You can see that the Firewall rules have been converted to the iptables configuration and
applied in the Router's namespace.

Chapter 7

167

How it works…
Linux network namespace is used by Neutron to implement a Router. When the Firewall
rules are created, Neutron configures iptables in the Router's namespace to implement the
Firewall rules. In this example, we can see that the Router ID, 7dff588c-942d-407a-
a325-3afca137bc24, is used to create the qrouter-7dff588c-942d-407a-a325-
3afca137bc24 namespace.

Neutron then creates the iptables configuration in this namespace in order to implement
the Firewall rules. For every Firewall that is created by the tenant, Neutron creates a pair of
the iptables chains and names them using a prefix of the Firewall's ID. In this example, the
chains are named as neutron-l3-agent-iv46bfb1d38 and neutron-l3-agent-
ov46bfb1d38 and represent the ingress (input) and egress (output) direction of the match,
respectively. In the chains, the individual rule configuration matches the Firewall rules created
by the user.

169

8
Using HAProxy

for Load Balancing

OpenStack Neutron provides Load Balancer as a Service to distribute traffic to your
application that is running on the virtual machines. In this chapter, we will explore the Neutron
load balancer service plugin with the following recipes:

 f Installing and configuring the Neutron load balancer service plugin

 f Creating a load balancer pool using Horizon

 f Creating a load balancer pool using CLI

 f Adding a load balancer member using Horizon

 f Adding a load balancer member using CLI

 f Adding a load balancer health monitor using Horizon

 f Adding a load balancer health monitor using CLI

 f Creating a Virtual IP using Horizon

 f Creating a Virtual IP using CLI

 f Making the load balancer accessible to the Internet

 f Testing the load balancer

 f Viewing the load balancer on the network node

Using HAProxy for Load Balancing

170

Introduction
Critical applications and services need to be resilient to failures and capable of handling high
network traffic. One of the strategies to achieve the scale and high availability is using a load
balancer. A load balancer distributes an incoming service request to a pool of servers, which
process the request, thus providing a higher throughput. If one of the servers in the pool
fails, the load balancer removes it from the pool and the subsequent service requests are
distributed among the remaining servers. The load balancer acts as a frontend to a cluster of
worker nodes, which provide the actual service.

To implement these recipes, we will use an OpenStack setup, as described in the
following image:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent(s)

eth2eth1

Nova Service Nova Service

Neutron Agent Neutron Agent

eth0 eth0eth1 eth1eth0

Controller and Network Node Compute Node 1 Compute Node 2

Management Network

Data Network

External Network (Internet)

br-int br-int br-intbr-ex

This setup has two compute nodes and one node for the controller and networking services.

Installing and configuring the Neutron load
balancer service plugin

This recipe shows you how to install and configure the Load Balancer as a Service (LBaaS)
plugin in Neutron.

The reference implementation of LBaaS in Neutron uses HAProxy along with the network
namespace.

Getting ready
For this recipe, you will need the following information:

 f The login credentials to the Controller and Network node

Chapter 8

171

How to do it…
The following steps will show you how to install the load balancer service with Neutron:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Install the packages required to provide the load balancer services using a package
manager such as yum or apt on the Network node, as follows:
openstack@controller:~$ sudo apt-get install python-neutron-lbaas
neutron-lbaas-agent haproxy

3. Open the neutron.conf configuration file using your desired editor. For example,
the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

4. In the [DEFAULT] section of the file, configure load balancer as the service plugin
for Neutron. If service_plugins is already configured, add the load balancer
configuration to the list, separated by a comma:
[DEFAULT]
...
service_plugins = lbaas

5. In the [service_providers] section of the file, add LOADBALANCER as a service
provider. If service_provider is already configured, add LOADBALANCER to the
list, separated by a comma:
[service_providers]
...
service_provider = LOADBALANCER:Haproxy:neutron.services.
loadbalancer.drivers.haproxy.plugin_driver.HaproxyOnHostPluginDriv
er:default

6. Open the /etc/neutron/lbaas_agent.ini configuration file and update the
device_driver and interface_driver settings:
interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver

device_driver = neutron.services.loadbalancer.drivers.haproxy.
namespace_driver.HaproxyNSDriver

7. To configure Horizon for the load balancer, open the /usr/share/openstack-
dashboard/openstack_dashboard/local/local_settings.py file and set
an enable_lb option in the OPENSTACK_NEUTRON_NETWORK setting:
'enable_lb' = True

Using HAProxy for Load Balancing

172

8. Restart neutron-server, neutron-lbaas-agent, and apache2 or the httpd server for the
changes to take effect.

How it works…
The load balancer service in Neutron is supported using a service plugin. The reference
implementation of the load balancer uses HAProxy as the service provider. The plugin spawns
the instances of HAProxy in a Linux network namespace on the network node in order to act
as a load balancer node.

Creating a load balancer pool using Horizon
A typical load balancer installation consists of a pool of servers called members, each of
which will run an instance of the application. All the clients will connect to the service using a
Virtual IP that is configured on the load balancer node, as shown in the following image:

Client1

Client2

Subnet

Member1

Member2

Load Balancer Node

Virtual IP

The load balancer node then forwards the traffic transparently to the member servers.
To accomplish this, it can adopt various strategies in order to distribute the traffic load to
member servers such as round robin, least connected, and so on.

To configure the load balancer, we would need some member servers connected to a virtual
network. For this recipe, we will host a web server on each member server. These servers will
be connected to a virtual network on the same subnet.

We will then use Neutron to configure the load balancer to distribute traffic to the
member servers.

Follow the Creating Network and Subnet using Horizon recipe in Chapter 1, Getting Started
with OpenStack Networking to create a LoadBalancer_Net1 Network and its Subnet with a
network address of 20.20.20.0/24.

Chapter 8

173

The following table shows you the VM details:

Virtual Machine name Role IP address

Chapter8_vm1 A load balancer member 20.20.20.3

Chapter8_vm2 A load balancer member 20.20.20.4

Getting ready
In this recipe, we will use Horizon to create a load balancer pool. A load balancer pool defines
a group of servers on a Subnet to be used to process the service requests. The pool also
defines the strategy of distributing the load among the member servers.

To create a load balancer pool, you will need the following information:

 f The name of the load balancer pool

 f The description of the pool

 f The Subnet associated with the pool

 f An application protocol for the load balancer

 f The method used to spread the load to the pool members

How to do it…
The following steps will show you how to create a load balancer pool using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Network | Load Balancers:

3. Click on +Add Pool.

4. In the Add Pool screen, provide a Name for this pool.

Using HAProxy for Load Balancing

174

5. Add a Description for the pool.

6. Select haproxy as Provider for this pool.

7. Select Subnet for this load balancer pool. For our example, we will use the
20.20.20.0/24 Subnet on LoadBalancer_Net1 as the CIDR.

8. Select the application Protocol for this pool. For our example, we will use HTTP
as the protocol:

9. Select Method used by the load balancer in order to select a server for the new
request traffic. We will use the ROUND_ROBIN method:

Chapter 8

175

10. Click on Add to create the pool:

The load balancer pool that you created should now be listed in the Pools table.

Using HAProxy for Load Balancing

176

How it works…
The load balancer pool in Neutron defines the attributes of the load balancer such as the
Subnet and load distribution method. The pool is associated with a protocol such as HTTP,
HTTPS, or TCP. The following load distribution methods are supported:

 f Least Connection: This forwards a request to the member having the least number
of client requests

 f Round Robin: This evenly distributes the service request between the members but
does not take into account the current load on a member

 f Source IP: This always forwards the requests from a client to a certain member

Creating a load balancer pool using CLI
In the previous recipe, we saw how to create a load balancer pool using Horizon. In this recipe,
we will use the Neutron CLI to create a load balancer pool.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the Neutron client packages are installed

 f A shell RC file that initializes the environment variables for CLI

 f The name of the load balancer pool

 f The Subnet ID for the load balancer

 f The method to use for the load balancing

 f The protocol that needs to be load balanced

How to do it…
The following steps will show you how to create a load balancer pool using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron lb-pool-create command to create the load
balancer pool:

Chapter 8

177

4. Once created, Neutron will display the details of the load balancer pool.

How it works…
The load balancer pool defines the protocol, Subnet, and method used to distribute the
requests among the load balancer members.

Adding a load balancer member using
Horizon

When a load balancer receives a service request from the client, it forwards the request to
one of the load balancer members running the application and the application does the
actual request processing.

In this recipe, we will use Horizon to add members to the load balancer pool that we
created earlier.

Getting ready
To add a member to a load balancer pool, you will need the following information:

 f The name of the load balancer pool

 f The VM name or IP to add as the pool member

Using HAProxy for Load Balancing

178

 f The weight associated with the pool member

 f The port on the VM to which the traffic would be redirected by the load balancer

How to do it…
The following steps will show you how to add a load balancer pool member using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Network | Load Balancers.

3. Select the Members tab.

4. Click on +Add Member.

5. In the Add Member screen, select the name of the load balancer pool in the Pool field:

Chapter 8

179

6. Set Member Source as Select from active instances. It is also possible to add a
member based on the IP address. The IP address of the member must be in the
Subnet that is associated with the pool.

7. In the Member(s) field, select the VM instance to be added:

8. In the Weight text box, provide the member's weight. This is an indicator of the
relative load handling capacity of the member with respect to the other members in
the pool. A higher weight of a member indicates a higher request handling capability.

Using HAProxy for Load Balancing

180

9. In Protocol Port, provide the port on the VM to which the traffic should be redirected:

10. Click Add to create the member:

The newly added member is now displayed in the Members tab.

Chapter 8

181

How it works…
The load balancer member runs the application that processes the client requests. In this
recipe, we added two members to the load balancer pool. The load balancer distributes the
client request to these two member servers, which do the actual request processing.

Adding a load balancer member using CLI
In this recipe, we will add a load balancer member using the Neutron CLI.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the Neutron client packages are installed
 f A shell RC file that initializes the environment variables for CLI
 f The IP address of the member
 f The protocol port of the application running in the member
 f The name of the load balancer pool where this member will be added

How to do it…
The following steps will show you how to add a load balancer member using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron lb-member-create command to add the member to the
load balancer pool. Optionally, you can also provide a weight for this member:

Using HAProxy for Load Balancing

182

How it works…
The weight of the member is a relative value that decides the ratio of requests that can be
handled by a member. If one of the members in the pool is a more powerful machine, it can
be given a higher weight. The load balancer will distribute a bigger percentage of the requests
to the member with the higher weight.

Adding a load balancer health monitor using
Horizon

In this recipe, you will learn how to create a heath monitor for the load balancer that monitors
the health of the applications that are running on the member servers.

Getting ready
To create a health monitor for our load balancer, we will need the following information:

 f The type of monitor

 f The time interval between consecutive health check request sent by the monitor

 f The amount of time to wait for a reply from the application

 f The number of times the monitor will try to get a reply from the application

How to do it…
The following steps will show you how to add a heath monitor for the load balancer:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Network | Load Balancers.

3. Select the Monitors tab and click on Add New Monitor.

4. In the monitor screen, add the monitor Type. For our example, we will use HTTP
as the monitor type.

5. In the Delay field, provide the time interval between consecutive health check
request sent by the monitor.

6. In the Timeout field, enter the amount of time to wait for a reply from the application.

7. In the Max Retries field, enter the number of times that the monitor will try to get a
reply from the application.

Chapter 8

183

8. In case you selected an HTTP or HTTPS type monitor, you should provide the type
of HTTP Method that the monitor should invoke in order to check the health of the
application. For our example, we will use the GET method.

9. For an HTTP/HTTPS type monitor, you should also provide a URL for the application
and Expected HTTP Status Code for a healthy application. We will use the URL / and
a status code of 200:

10. Click on Add to create the monitor.

11. Click on the Pool tab to go back to the load balancer pool list.

Using HAProxy for Load Balancing

184

12. In the Actions column, click on the drop-down menu and select Associate Monitor:

13. In the Associate Monitor screen, select the monitor that you want to associate with
the load balancer pool and click on Associate:

Now the health monitor is associated with the load balancer pool.

How it works…
The load balancer needs to keep a track of the health of the application that is running on
its member servers. The health monitor associated with the load balancer is responsible
for monitoring the application on the member servers and making sure that in case the
application on a member fails, it is excluded from the pool and no further client requests are
forwarded to that failed member.

Chapter 8

185

Adding a load balancer health monitor
using CLI

In this recipe, we will create a health monitor to watch the health of the application that is
running on the load balancer members using the Neutron CLI.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the Neutron client packages are installed
 f A shell RC file that initializes the environment variables for CLI
 f The type of monitor
 f The time interval between consecutive health check request sent by the monitor
 f The amount of time to wait for a reply from the application
 f The number of times the monitor will try to get a reply from the application

How to do it…
The following steps will show you how to create and associate a health monitor with a load
balancer pool:

1. Using the appropriate credentials, SSH into the OpenStack node installed with
the Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron lb-healthmonitor-create command to create a load
balancer health monitor:

Using HAProxy for Load Balancing

186

4. Execute the neutron lb-healthmonitor-associate command to associate the
health monitor that we created in the previous step with the load balancer pool:

How it works…
The Neutron CLI can be used to create a load balancer health monitor. The health monitor
continuously checks the health of the member instances. The health monitor consists of
a method to test the application health and an expected result. If the health test fails for a
member, the load balancer excludes this member from the pool. If a previously failed member
becomes healthy, it is added again to the load balancer pool.

Creating a Virtual IP using Horizon
The final step in the creation of the load balancer is to provide it with a Virtual IP address
(VIP). The clients connect to the load balanced application using the VIP. In this recipe, we will
associate a VIP to the load balancer pool using Horizon.

Getting ready
To create a VIP, you will need the following information:

 f A name to identify the VIP

 f The name of the load balancer pool

 f The Subnet CIDR associated with this pool

 f A free IP address in the Subnet for the VIP configuration

 f The protocol port on which the load balancer will listen for the client request

 f The protocol type

 f The method of session persistence

 f The connection limit for the load balancer

Chapter 8

187

How to do it…
The following steps will show you how to attach a VIP to a load balancer:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Network | Load Balancers.

3. Click on the Actions drop-down menu for a specific load balancer pool and select
Add VIP:

4. In the Add VIP screen, provide Name for the VIP.

5. Add Description for the VIP.

6. Select the Subnet for the VIP; this should be the same Subnet that was used by the
VM instance running the application that will use the load balancer.

7. Next, provide a free IP address in the Subnet that will be used at the VIP
address by the load balancer. The clients connecting to the application will
use this IP address.

8. Specify the port in the Protocol Port field. For our example, we will use port 80.

9. Specify the protocol in the Protocol list. We will use HTTP for our example.

10. Next, in Session Persistence, choose the method used to maintain the client
sessions while balancing a service request. We will use SOURCE_IP to persist
the session.

Using HAProxy for Load Balancing

188

11. In the Connection Limit field, provide the maximum number of clients that the
load balancer can handle. We will use -1 so that no limit is set for the number of
client connections:

Chapter 8

189

12. Click Add to create the VIP:

The VIP is then displayed in the corresponding column of the Pools table.

How it works…
The clients connect to the VIP in order to access the application running on the load balancer
members. For the client, it appears as though the application is running on a port on the VIP.
The client is unaware of the existence of a load balancer and the two member servers.

The VIP creation also defines the session persistence method in order to determine how the
client session is maintained. Sessions can be maintained using the source IP, which uses the
source IP of the request to determine the member that handles a service request. Session
persistence can also be based on HTTP or application cookies.

It is also possible to limit the number of connections that the load balancer will handle using
the connection limit setting.

Creating a Virtual IP using CLI
In this recipe, we will use the Neutron CLI to create and associate a VIP with a load balancer pool.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the Neutron client packages are installed
 f A shell RC file that initializes the environment variables for CLI
 f The name of the VIP
 f The name of the load balancer pool
 f The Subnet CIDR associated with this pool
 f A free IP address in the Subnet for the VIP configuration
 f The protocol port
 f The protocol type

Using HAProxy for Load Balancing

190

How to do it…
The following steps will show you how to create a VIP and associate it with a load balancer
pool using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron lb-vip-create command to create a VIP for the load
balancer pool:

How it works…
To create the VIP, the Neutron CLI creates a Port on the associated Subnet. The IP address
of this Port is used as the VIP for the load balancer pool. The load balancer will distribute
any request that it receives on the VIP and configured protocol port to the pool members
to be processed.

Chapter 8

191

Making the load balancer accessible to the
Internet

In this recipe, we will make our load balancer accessible to the Internet.

Getting ready
In the previous recipe, we created a VIP for our load balancer. The clients will access the
service available behind the load balancer using this VIP. To make the service accessible
through the Internet, the VIP must be reachable from the external Networks.

In this recipe, we will associate a floating IP to the VIP of the load balancer. We will need the
Neutron port ID of the load balancer's VIP. Use the neutron port-list command to look
for the port associated with the address of the VIP.

For this recipe, you will need the following information:

 f The SSH login credentials for a node where the Neutron client packages are installed
 f A shell RC file that initializes the environment variables for CLI
 f The Neutron port ID for the load balancer's VIP

How to do it…
The following steps will show you how to create a VIP and associate it with a load balancer
pool using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron floatingip-create command to make the VIP for the
load balancer pool accessible from the external world:

Using HAProxy for Load Balancing

192

With the floating IP associated with the load balancer's VIP, the clients can now access the
application behind the load balancer over the Internet.

How it works…
The load balancer uses the VIP address to redirect the service requests to the member nodes.
To make the services that are running on the member node available to the external world,
the VIP address must be reachable from the Internet. This can be achieved by associating a
floating IP with the VIP of the load balancer.

Testing the load balancer
We added two servers as the load balancer members. We also created a health monitor in
order to keep a track of the health of the application that is running on the member servers
and also associated a VIP with the load balancer.

The following table summarizes our example setup:

Virtual Machine name Role IP address

Chapter8_vm1 A load balancer member 20.20.20.3

Chapter8_vm2 A load balancer member 20.20.20.4

The load balancer configuration is as follows:

Resource IP address

Subnet CIDR 20.20.20.0/24

Network name LoadBalancer_net1

Virtual IP 20.20.20.50

Application port 80

In this recipe, we will test the load balancer setup by connecting to its VIP and sending a
request to the application.

Getting ready
For this recipe, you will need the following information:

 f The VIP of the load balancer

 f The protocol port of the load balancer

Chapter 8

193

How to do it…
The following steps will show you how to test the load balancer:

1. Log in to Horizon with the appropriate credentials.

2. Launch a VM on the LoadBalancer_net1 Network. This instance will act as
the client machine to test the load balancer. We already added the load balancer
member VMs in the previous recipe.

3. In the left navigation menu, navigate to Project | Network | Load Balancers and
click on the Members tab:

4. The monitor associated with the load balancer has put the members in an inactive
state as the application health test is failing currently.

5. Log in to each member VM and start a web server. For our test, we will use the
following simple script to simulate a web server. Update the echo statement with the
correct hostname when launching the script:
while true; do echo -e 'HTTP/1.0 200 OK\r\n\r\nChapter8_vm1' |
sudo nc -l -p 80 ; done

6. Once the scripts are running on both the members, the health monitor will update the
status of the members to active:

Using HAProxy for Load Balancing

194

7. Log in to the client VM on LoadBalancer_net1 and use the curl command to
send an HTTP request to the VIP address:

For the purpose of this example, we updated the VIP configuration in order to disable the
session persistence. Due to this, the client requests are distributed in a Round-Robin fashion
among the load balancer members.

How it works…
In this recipe, we saw the load balancer in action. The health monitor checks the status of the
application running on the member nodes continuously and distributes the client requests
to only the active members in the pool. In case a failed member becomes healthy, its status
changes to active and it starts processing the client requests.

Viewing the load balancer on the network
node

In the earlier recipes of this chapter, we configured the load balancer using both Horizon and
the Neutron CLI. In this recipe, we will learn how Neutron implements the load balancer on the
Network node.

Chapter 8

195

Getting ready
For this recipe, you need the following information:

 f An administrative user access to OpenStack

 f A root or equivalent sudo access to the Network node

How to do it…
The following steps will show you how to view the load balancer on the Network node:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Use the Neutron CLI commands to list the load balancer. Note the load balancer ID.

4. Next, use the ip netns command and find the network namespace that matches
the pool ID. The load balancer plugin has configured this namespace as the load
balancer node:

5. Next, we will find the VIP that has been associated with the load balancer pool.
Note the VIP assigned with the load balancer:

Using HAProxy for Load Balancing

196

6. Use the ip netns command to verify that the VIP is configured in the namespace
acting as the load balancer node:

7. Next, use the ip netns command to verify that the HAProxy process is bound to the
VIP and is listening for traffic on the application port:

How it works…
Neutron uses the Linux network namespace as the load balancer node. The namespace is
named using a prefix of qlbaas, the ID of the load balancer pool a711d27b-285d-4b05-
b090-4fa72ab22059. The namespace is configured with the load balancer's VIP. In our
example, the VIP address of 20.20.20.50 is used. The load balancer plugin starts a HAProxy
process in this namespace that binds the VIP on the protocol port, 80, receives the client
requests, and distributes them to the pool members.

197

9
Monitoring OpenStack

Networks

The recipes in this chapter will explore the various means to monitor the network resource
utilization using Ceilometer. We will cover the following topics:

 f Monitoring the Virtual Machine bandwidth

 f Monitoring the L3 bandwidth

 f Monitoring the load balancer connection statistics

 f Monitoring the per project and per user bandwidth

 f Monitoring the host Network bandwidth

Introduction
Due to the dynamic nature of virtual infrastructure and multiple users sharing the same cloud
platform, the OpenStack administrator needs to track how the tenants use the resources.
In this chapter, we will look at ways to monitor the usage of virtual and physical networking
resources. The resource utilization data can be used to bill the users of a public cloud and to
debug infrastructure-related problems. The data can also help in capacity planning by giving
an estimate of the capacity of the physical devices and trends of resource usage.

OpenStack Ceilometer project provides you with telemetry service. It can measure the
usage of resources by collecting statistics across the various OpenStack components.
The resource utilization data is collected over the message bus or by polling the various
components. OpenStack Neutron provides Ceilometer with the statistics that are related
to the virtual networks.

Monitoring OpenStack Networks

198

The following figure shows you how Ceilometer interacts with the Neutron and Nova services:

Compute Node

Polling

Network Usage DataCeilometer
Compute Agent

Network Node

Neutron
Metering Agent

Neu
tro

n
M

et
er

ing
Da

ta

Ceilometer
Central Agent

Ceilometer
Collector

Ceilometer API

Ceilometer Controller
Components

Client Node

Ceilometer
Client

Database

To implement these recipes, we will use an OpenStack setup as described in the
following image:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent(s)

eth2eth1

Nova Service Nova Service

Neutron Agent Neutron Agent

eth0 eth0eth1 eth1eth0

Controller and Network Node Compute Node 1 Compute Node 2

Management Network

Data Network

External Network (Internet)

br-int br-int br-intbr-ex

This setup has two compute nodes and one node for the controller and networking services.

Chapter 9

199

Monitoring the Virtual Machine bandwidth
OpenStack Ceilometer collects the resource utilization of the VMs by running a Ceilometer
compute agent on all the compute nodes. These agents collect the various metrics that are
related to each VM running on the compute node. The data that is collected is periodically
sent to the Ceilometer collector over the message bus.

In this recipe, we will learn how to use the Ceilometer client to check the bandwidth utilization
by a VM.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the OpenStack client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
The following steps will show you how to determine the bandwidth utilization of a VM:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Use the nova list command to find the ID of the VM instance that you
want to monitor:

Monitoring OpenStack Networks

200

4. Use the ceilometer resource-list|grep <virtual-machine-id>
command to find the resource ID of the network port associated with the VM. Note
down the resource ID for the virtual port associated to the VM for use in the later
commands. The virtual port resource ID is a combination of the VM ID and name
of the tap interface for the virtual port, which is named instance-<virtual-
machine-id>-<tap-interface-name>:

5. Use ceilometer meter-list –q resource=<virtual-port-resource-
id> to find the meters associated with the network port on the VM:

6. Next, use ceilometer statistics –m <meter-name> –q
resource=<virtual-port-resource-id> to view the network usage statistics.
Use the meters that we discovered in the previous step in order to view the
associated data:

Ceilometer stores the port bandwidth data for the incoming and outgoing packets and the
bytes and their rates.

How it works…
The OpenStack Ceilometer compute agent collects the statistics related to the network port
connected to the VMs and posts them on the message bus. These statistics are collected by
the Ceilometer collector daemon. Ceilometer client can be used to query a meter and filter the
statistical data based on the resource ID.

Chapter 9

201

Monitoring the L3 bandwidth
The OpenStack Neutron provides you with metering commands in order to enable the
monitoring of the Layer 3 (L3) traffic. The metering commands create a label that can hold a
list of the packet matching rules. Neutron counts and associates any L3 packet that matches
these rules with the metering label. In this recipe, we will learn how to use the L3 traffic
monitoring commands of Neutron to enable packet counting.

Getting ready
For this recipe, we will use a VM connected to a network that in turn is connected to a router.
The following figure describes the topology:

Monitoring OpenStack Networks

202

We will use a network called private with a CIDR of 10.10.10.0/24.

For this recipe, you will need the following information:

 f The SSH login credentials for a node where the OpenStack client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

 f The name of the L3 metering label

 f The CIDR for which the traffic needs to be measured

How to do it…
The following steps will show you how to enable the monitoring of the traffic to or from any
L3 network:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Use the neutron meter-label-create command to create a metering label.
Note the label ID as this will be used later with the Ceilometer commands:

Chapter 9

203

4. Use the neutron meter-label-rule-create command to create a rule that
associates a network address to the label that we created in the previous step.
In our case, we will count any packet that reaches the gateway from the CIDR
10.10.10.0/24 network to which the VM is connected:

5. Use the ceilometer meter-list command with a resource filter in order to find
the meters associated with the label resource:

6. Use the ceilometer statistics command to view the number of packets
matching the metering label:

The packet counting has now been enabled and the bandwidth statistics can be viewed
using Ceilometer.

How it works…
The Neutron monitoring agent implements the packet counting meter in the L3 router.
It uses iptables to implement a packet counter. The Neutron L3 agent collects the counter
statistics periodically and posts on the message bus, which is collected by the Ceilometer
collector daemon.

Monitoring OpenStack Networks

204

Monitoring the load balancer connection
statistics

We have seen earlier that the OpenStack Neutron provides a load balancer as a service.
The load balancer service provides you with the statistics of the utilization for each instance
created in the load balancer cluster. In this recipe, we will view the load balancer-related
usage data collected by OpenStack Ceilometer.

Getting ready
For this recipe, we will need to create a load balancer setup. Use the recipes described in
Chapter 8, Using HAProxy for Load Balancing to create a load balancer with two members in
the pool. We will also create a virtual IP and health monitor as described in the chapter. The
following table describes our load balancer setup:

Virtual Machine Role IP address
vm1 Member 20.20.20.3
vm2 Member 20.20.20.4
Virtual IP Virtual IP 20.20.20.50
Client-1 Client 20.20.20.51

For this recipe, you will need the following information:

 f The SSH login credentials for a node where the OpenStack client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
The following steps will show you how to view the statistics available for a load balancer instance:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

Chapter 9

205

3. Use the ceilometer statistics command to find the number of load balancer
members and pools. The meters associated with the load balancer instances use the
prefix, network.services.lb:

4. Next, use the ceilometer statistics command with the network.services.
lb.total.connections meter in order to find the number of total connections
served by the load balancer. Use the pool ID to query the connection per load
balancer instance:

5. Use the ceilometer statistic command with the network.services.
lb.incoming.bytes meter to find the number of bytes received by the load balancer:

You can use the ceilometer meter-list command to find out the other metering data
available for the load balancer.

How it works…
The Neutron load balancer agent collects the statistics for each instance of the load balancer
that is created; the usage data is periodically reported to Ceilometer. The Ceilometer client
can then be used to track the various metrics associated with the load balancer instances.

Monitoring OpenStack Networks

206

Monitoring the per project and per user
bandwidth

In the first recipe, we looked at the monitoring of resource utilization for a VM. In a cloud
shared by multiple tenants and users, it is important to gather information about the
utilization of the resources by a user or by the whole project. In this recipe, you will learn how
to use the Ceilometer client to monitor the network bandwidth utilization by a tenant or project
and an individual user of OpenStack.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the OpenStack client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

 f The ID of the OpenStack tenant and user

How to do it…
The following steps will show you how to determine the bandwidth utilization of a VM:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Use ceilometer statistics with the network meters to view the network
resource utilization. Use user=<user-id> and project=<tenant-id> to filter
the utilization by the user ID and tenant ID, respectively. The tenant and project IDs
are the same:

The other meters can also be queried in a similar manner in order to find the resources used
by a user or project.

Chapter 9

207

How it works…
All the usage data stored by Ceilometer is associated with a user and project. So, it is possible
to retrieve the monitoring data for a given user or tenant (project).

Monitoring the host Network bandwidth
In the previous recipes, we looked at monitoring the virtual infrastructure resources. For the
cloud administrator, it is also very important to know about the utilization of the physical
resources. In this recipe, you will learn about monitoring the Network utilization statistics for a
compute or network node.

Ceilometer can collect the physical network statistics for the compute or network node using a
central agent and SNMP. The Ceilometer central agent must be configured in order to collect
the physical resource utilization data from the compute and network nodes. On the Compute
and Network nodes, the SNMP daemon must be configured to provide the physical resource
utilization data that is queried by the Ceilometer central agent.

In this recipe, you will learn how to use the Ceilometer commands in order to view the physical
network statistics of the Compute and Network nodes. For this recipe, we will view the
statistics collected for the Compute node, compute1.

Getting ready
For this recipe, you will need the following information:

 f The SSH login credentials for a node where the OpenStack client packages
are installed

 f A shell RC file that initializes the environment variables for CLI

How to do it…
The following steps will show you how to view the physical network utilization data for a
Compute or Network Node:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

Monitoring OpenStack Networks

208

3. Use the ceilometer meter-list command to query all the meters associated
with the OpenStack node. For our example, we will use the node, compute1:

4. Next, use the ceilometer statistics command to view any of the meters
associated with the node. For this example, we will view the incoming network
packets, as follows:

Use the Ceilometer commands with the other hardware meters to view the associated data for
the node.

How it works…
The Ceilometer central agent periodically polls the SNMP agent on the OpenStack nodes and
collects the hardware-related statistics. The hardware status data is then stored by Ceilometer
and can be queried using the client.

209

10
Writing Your Own

Neutron ML2
Mechanism Driver

In this chapter, we will learn how to develop a custom ML2 mechanism driver for Neutron
using the following recipes:

 f Creating a basic ML2 mechanism driver

 f Registering your ML2 mechanism driver with the Neutron server

 f Processing API requests for a Network

 f Processing API requests for a Subnet

 f Processing API requests for a Port

Introduction
This chapter is targeted towards developers and we will use DevStack to develop the driver
for the ML2 plugin. DevStack is a tool to install an all-in-one OpenStack node. DevStack
also provides you with a development environment for OpenStack-related programming.
Knowledge of the Python programming language is a prerequisite for this chapter.

Before we dive into the recipes, let's understand how the plugin works.

Writing Your Own Neutron ML2 Mechanism Driver

210

As discussed in the first chapter, Neutron supports the core networking features using entities
such as Network, Subnet, and Port. These entities are implemented using virtual and physical
networking technologies. In order to allow multiple networking technologies to interoperate,
Neutron uses the concept of plugins. The following image shows the Neutron plugin model:

Neutron Server

Core Plugin (Type: ML2)

Type Driver:
VLAN,
VXLAN, GRE

Mechanism
Driver: Open
vSwitch, Linux
Bridge

L3
Service
Plugin

LBaaS
Service
Plugin

Firewall
Service
Plugin

... ...

As shown here, Neutron supports one core plugin. The Modular Layer 2 (ML2) is a type of a
core plugin that supports multiple drivers so that the plugin functionality can be extended and
customized. The ML2 plugin comprises of type drivers and mechanism drivers.

Type drivers represent different types of networking technologies that provide the
segmentation of Networks, for example, VLAN or VXLAN-based segmentation. The mechanism
drivers on the other hand are software and hardware solutions that implement one or more of
the Network type.

In this chapter, we will see how to write a custom ML2 mechanism driver from scratch. We will
implement a simple driver that logs the key Neutron API calls in a log file. We will also see how
to extract crucial information that has been passed to the Neutron API.

The source code used in this chapter is available on GitHub at https://github.com/
reachsrirams/packt-openstack-networking-cookbook. You will need all the files
from the GitHub repository. The repository also contains a reference local.conf file that
may be useful in your DevStack installation.

Creating a basic ML2 mechanism driver
The first step in the journey to write an ML2 mechanism driver is to create a basic driver class.
This will also help us understand the code structure.

https://github.com/reachsrirams/packt-openstack-networking-cookbook
https://github.com/reachsrirams/packt-openstack-networking-cookbook

Chapter 10

211

Getting ready
As mentioned earlier, we will use DevStack in order to write and test our plugin. So, ensure
that the DevStack environment is up and running successfully.

How to do it…
1. With the appropriate credentials, SSH into your DevStack setup.

2. Ensure that all the driver files from the GitHub repository are copied to /opt/stack/
neutron/neutron/plugins/ml2/drivers.

3. The ch10_ml2_mech_driver.py file will be our main mechanism driver file,
as follows:

4. The CookbookMechanismDriver class extends the MechanismDriver class of
the Neutron API and overrides only the initialize method for now.

5. You can view the MechanismDriver class defined in the /opt/stack/
neutron/neutron/plugins/ml2/driver_api.py file. You will notice that the
MechanismDriver class supports many methods related to the Network, Subnet,
and Port.

How it works…
As ML2 is a core plugin, the driver is intended to support operations on the core objects,
namely Network, Subnet, and Port.

As seen in the MechanismDriver class, there are Python methods to create, delete, and
update these core entities. These operations result in the addition, removal, and updates to
the Neutron database.

Writing Your Own Neutron ML2 Mechanism Driver

212

Registering your ML2 mechanism driver with
the Neutron server

Once the driver code is added, the next step is to register the driver with Neutron. In this
recipe, we will see how to register the new mechanism driver with Neutron. We will also check
whether our mechanism driver has been loaded and initialized successfully as we restart the
Neutron server.

Getting ready
The previous recipe is the prerequisite for this recipe. The basic ML2 driver code is required to
be placed at the location mentioned in the previous recipe.

How to do it…
1. With the appropriate credentials, SSH into your DevStack setup.

2. Open the /etc/neutron/plugins/ml2/ml2_conf.ini configuration file using
your desired editor. For example, the command for the vi editor will be as follows:

3. In the [ml2] section of the file, configure mechanism_drivers, as follows:

4. Next, open the /opt/stack/neutron/neutron.egg-info/entry_points.
txt file using your desired editor. For example, the command for the vi editor will be
as follows:

Chapter 10

213

5. In the [neutron.ml2.mechanism_drivers] section of the file, configure the
Python class that needs to be loaded for the mechanism driver named cookbook.
Note that the mechanism driver name must match the one that is used in the
ml2_conf.ini file as shown in step 3:

6. Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance of your DevStack setup to run this operation.

7. Once the Neutron services have been restarted, we will verify that our basic
mechanism driver has been loaded and initialized. To do this, open the Neutron
server log file in your DevStack setup. In our DevStack setup, the corresponding
file is /opt/stack/logs/q-svc.log.

8. In this file, search for the words Inside Mech. This will show the corresponding
record in the Neutron server log file, as shown in the following screenshot:

Writing Your Own Neutron ML2 Mechanism Driver

214

The presence of the Inside Mech Driver Initialize shows that our minimal
mechanism driver was loaded successfully and it was also initialized by invoking the
initialize() method of the driver.

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

How it works…
During the startup, the Neutron server loads the core plugin based on the configuration in
the neutron.conf file. In our example, we will use the ML2 plugin as the core plugin.
The ML2 plugin, in turn, loads the ML2 type and mechanism drivers as specified in the
ml2_conf.ini file. In this recipe, the ML2 plugin will attempt to load the mechanism drivers
named openvswitch and cookbook. The ML2 plugin uses the entry_points.txt file in
order to identify and load the Python class corresponding to the driver name specified in the
ML2 configuration.

There's more…
As we are using the DevStack setup for the recipes in this chapter, it is better to include
cookbook as the mechanism driver in the local.conf file. This will ensure that cookbook
is added to the ml2_conf.ini file every time DevStack is restarted. You can find a reference
local.conf file in the GitHub repository.

Processing API requests for a Network
Vendors and third-party application developers write custom ML2 mechanism drivers in
order to integrate their products and applications with OpenStack. The main aspect of writing
mechanism drivers is the implementation of specific methods related to the Network, Subnet,
and Port. In this recipe, we will see how to process API requests specifically for a Network.

Getting ready
In this recipe, we will enhance our basic mechanism driver code and add two new methods
in order to process API requests for a Network. Ensure that your DevStack setup is up and
running, with cookbook as one of the mechanism drivers, as shown in the previous recipe.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 10

215

How to do it…
1. With the appropriate credentials, SSH into your DevStack setup.

2. Open /opt/stack/neutron/neutron/plugins/ml2/drivers/ ch10_ml2_
mech_driver.py using an editor.

3. Add a new import statement, as highlighted in the following screenshot:

4. Update the class declaration statement, as follows:

5. CookbookMechanismDriver now extends the
CookbookNetworkMechanismDriver class and as a result,
inherits the following methods:

6. We will implement only create_network_postcommit and update_network_
post_commit in this driver code. As shown in the code, we will log the Network
name and Network type values.

Writing Your Own Neutron ML2 Mechanism Driver

216

7. Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance to run this operation.

8. Once the Neutron services have been restarted, create an OpenStack Network
using the neutron net-create CookbookNetwork1 CLI command where
CookbookNetwork1 is the Network name.

9. To verify that our mechanism driver code was executed, open the DevStack log file for
Neutron. In our DevStack setup, the log file was /opt/stack/log/q-svc.log.

10. This log file should contain the specific log messages as per the create_network_
postcommit method in our mechanism driver. Note that the previous Network name
is not printed in the logs as of now:

11. Now, change the Network name using neutron net-update
CookbookNetwork1 --name CookbookNetwork2 where CookbookNetwork2 is
the new name of the Network. This will trigger the update_network_post_commit
method of our mechanism driver.

12. Once the operation is successful, you will see that the DevStack log file contains a log
message for the update_network_post_commit method:

As you can see, this time the log message contain the previous and current Network names.

How it works…
In this recipe, we implemented two methods related to a Network. The ML2 mechanism
driver API consists of the create, update and delete operations for the OpenStack Network.
In addition, the API also supports methods to handle DB commit related triggers. Once
the Network object has been committed to the database, the method xxxxx_network_
postcommit operation is invoked. In this recipe, we extracted and printed the Network name
and Network type in the Neutron log file.

Chapter 10

217

Each of these methods can also pass a context parameter. The context parameter is very
important as it contains the details of the Network being created or updated. In the case of an
update operation, context also contains the Network information prior to the current update.

In this recipe, we saw how to extract the Network name and Network type as a part of
handling the API requests. It is possible to fetch additional attributes of a Network such
as the Segmentation ID along similar lines.

Processing API requests for a Subnet
The previous recipe showed you how Neutron invokes methods in a mechanism driver for
Network-related operations. In this recipe, we will see how to process API requests for Subnets.

Getting ready
In this recipe, we will enhance our driver and implement the methods that will process API
requests for a Subnet. Ensure that your DevStack setup is up and running, with cookbook as
one of the mechanism drivers, as shown in the earlier recipe.

How to do it…
1. With the appropriate credentials, SSH into your DevStack setup.

2. Open /opt/stack/neutron/neutron/plugins/ml2/drivers/ ch10_ml2_
mech_driver.py using an editor.

3. Add a new import statement, as highlighted in the following image:

4. Update the class declaration statement to include the Subnet driver class, as follows:

Writing Your Own Neutron ML2 Mechanism Driver

218

5. CookbookMechanismDriver now extends the CookbookSubnetMechanismDriver
and CookbookNetworkMechanismDriver classes. Hence, it inherits the following
additional methods:

6. We will implement only create_subnet_postcommit method in this driver code.
As shown in the code, we will log the Subnet name, its CIDR, and the Network that it
belongs to.

7. Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance to run this operation.

8. Once the Neutron services have been restarted, create a Subnet using neutron
subnet-create --name CookbookSubnet2 CookbookNetwork2
10.20.30.0/24.

9. Here, CookbookSubnet2 refers to the Subnet name, CookbookNetwork2 refers to
the Network, and 10.20.30.0/24 refers to the CIDR or IP address range.

10. To verify that our mechanism driver code was executed, open the DevStack log file for
Neutron. In our DevStack setup, the log file was /opt/stack/log/q-svc.log.

Chapter 10

219

11. This log file should contain the specific log messages as per the create_subnet_
postcommit method in our mechanism driver:

As seen in the log file, the create_subnet_postcommit method of our mechanism driver
was executed.

How it works…
In this recipe, we implemented a method related to the Subnet entity. Therefore, context that
was passed to the driver methods contains information about the Subnet. In this recipe, we
first logged the Subnet name and its CIDR. The Subnet entity has only the ID of the Network
that it belongs to. We have to query the ML2 plugin database in order to fetch the details of
the Network. The code in this recipe shows you how to access the ML2 plugin database and
query it for the Network entity.

Processing API requests for a Port
We will conclude this chapter with a recipe that shows you how to process API requests for a
Port. In real-world applications, the Port-related operations are used more frequently when
compared to a Network or Subnet. As there are different types of Ports, this recipe will show
you how to identify the Port type from the API requests.

Getting ready
Ensure that your DevStack setup is up and running, with cookbook as one of the mechanism
drivers, as shown in the earlier recipe.

How to do it…
1. With the appropriate credentials, SSH into your DevStack setup.

2. Open /opt/stack/neutron/neutron/plugins/ml2/drivers/ ch10_ml2_
mech_driver.py using an editor.

Writing Your Own Neutron ML2 Mechanism Driver

220

3. Add a new import statement, as highlighted in the following image:

4. Update the class declaration statement to include the Port mechanism driver class,
as follows:

5. CookbookMechanismDriver now extends the CookbookPortMechanismDriver,
CookbookSubnetMechanismDriver, and CookbookNetworkMechanismDriver
classes. Hence, it inherits the following additional methods:

6. We will implement only create_port_postcommit method in this driver code. In
this recipe, we will log the Port type, its IP address, and the Network that it belongs to.

7. Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance to run this operation.

Chapter 10

221

8. Once the Neutron services have been restarted, create a Router and add an interface
to it using the neutron router-create and neutron router-interface-
add CLI commands:

9. To verify that our mechanism driver code was executed, open the DevStack log file for
Neutron. In our DevStack setup, the log file was /opt/stack/log/q-svc.log.

10. This log file should contain the specific log messages as per the create_port_
postcommit method in our mechanism driver:

When we add an interface to a Router, it triggers a Create Port method on the mechanism
driver. As we can see from the logs, the Port type is network:router_interface. The log
also shows the Network-related information for the Port.

How it works…
In this recipe, we implemented a mechanism driver related to the Port entity. Therefore,
context that was passed to the driver methods contains information about the Port. However,
unlike a Subnet, context also contains the corresponding Network information.

Writing Your Own Neutron ML2 Mechanism Driver

222

In this recipe, we saw that you can extract the Port type information from the current Port
context using the device_owner field. The Port type is useful in case different actions are
required for the DHCP port, a VM instance port, or a Router Port. We also saw how to extract the
IP address assigned to the Port. This is another useful attribute while building applications.

Finally, we saw how to extract the Network information from the Port context. Mechanism
drivers from the Network device vendors often use the Network type and Segmentation ID in
order to configure the underlying physical network.

223

11
Troubleshooting Tips

for Neutron

In this chapter, we will cover the following recipes:

 f Troubleshooting a VM that does not get a DHCP IP address

 f Troubleshooting a VM that does not get an initial configuration

 f Troubleshooting a VM that does not get External Network access

 f Troubleshooting a VM not reachable from External Networks

 f Checking the status of the Neutron service

 f Checking the MAC address table on a virtual switch

Introduction
OpenStack provides users with lots of configuration options, but at the same time, it is up to
the OpenStack administrator to make sure that the correct combination of runtime options
has been configured. A large number of deployment options for OpenStack makes it very
flexible, but at the same time, it can lead to errors and misconfiguration. In this chapter, we
will look at systematic ways to troubleshoot an OpenStack setup for networking-related issues.

Troubleshooting Tips for Neutron

224

We will use the following topology in order to implement various debugging recipes:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent(s)

eth2eth1

Nova Service Nova Service

Neutron Agent Neutron Agent

eth0 eth0eth1 eth1eth0

Controller and Network Node Compute Node 1 Compute Node 2

Management Network

Data Network

External Network (Internet)

br-int br-int br-intbr-ex

Troubleshooting a VM that does not get a
DHCP IP address

In this recipe, we will troubleshoot a scenario where a VM on OpenStack that is connected to
a DHCP enabled virtual network is unable to obtain an IP address.

When a tenant attaches the first VM to a DHCP enabled virtual network in OpenStack, Neutron
automatically starts a DHCP server for the virtual network. This DHCP server is responsible for
providing an IP address to the VM instances created on the virtual network.

Once a VM instance attached to a virtual network boots up, it is assigned an IP address from
the DHCP server. In this recipe, we will see some of the possible reasons for a VM instance
failing to receive an IP address.

Getting ready
The following information is required for this recipe:

 f SSH-based login credentials for the Controller and Network node
 f SSH-based login credentials for the Compute node

How to do it…
The following steps will show you how to troubleshoot your setup when the VM does not get an
IP address:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Make sure that the DHCP agent is running on the Network node using the
following command:
service neutron-dhcp-agent status

Chapter 11

225

3. Change the DHCP agent configuration in the /etc/neutron/dhcp_agent.ini file
in order to enable verbose and debug level logging:
verbose = True
debug = True

The DHCP agent log files are present in the /var/log/neutron directory.

4. Restart the DHCP agent with the new configuration changes using the following
command:
service neutron-dhcp-agent restart

5. Verify that the DHCP service process provided by dnsmasq is started on the virtual
network. Use the ps command along with the Network ID in order to find the DHCP
processes and DHCP interface:

6. Make sure that the Network node is connected to the data Network. On an Open
vSwitch-based setup, use the ovs-vsctl show command to view the bridges
created. The br-int bridge is the integration bridge and all the devices on the
network, such as the VMs, DHCP server, Routers, and so on, connect to it. This bridge
is connected to the tunnel bridge; br-tun in the case of overlay networks or physical
networks such as br-eth1 in the case of VLAN-based networks using a patch port. In
case the patch port is not configured, restarting the Open vSwitch agent will create it:
service neutron-plugin-openvswitch-agent restart

Troubleshooting Tips for Neutron

226

7. In case of overlay-based networking such as VXLAN or GRE, make sure that the
tunnel endpoints on the hypervisors are configured with the proper IP address and
are reachable from the Network node, and the tunnels ports are created on the OVS
bridge, br-tun.

8. In a VLAN-based setup, make sure that the physical network bridges, such as br-
eth1, are connected to the actual physical interface, eth1, and the physical network
interface is up.

9. The preceding steps need to be repeated for the compute node that is hosting the
VM instance. As an administrative user, log in to the Horizon dashboard and navigate
to Admin | System | Instances. View the instances table to identify the compute
node that is hosting a VM. Then, follow the same steps mentioned earlier to make
sure that the VM has network connectivity through the integration bridge and physical
network interface.

10. You can capture the Network packets using the tcpdump command on the physical
network interface connecting the Network or Compute node in order to verify that the
packets from the VM are able to reach the DHCP server. For example, if your tenant
network is connected using eth1, use the following command to start a packet capture:
tcpdump –i eth1 –n -v

A packet flowing out of the VM goes through br-int and the patch port to br-ethN
(the bridge connecting to the physical interface, ethN) for a VLAN-based Network
or to br-tun for a tunnel-based Network. Finally, the packet flows to the physical
interface used for the tenant Network. You can start a packet trace to troubleshoot
the flow using tcpdump or wireshark at various points on the data path, such as
br-int, br-eth1, or br-tun. The following figure shows you the various interfaces
where a packet trace can be started for troubleshooting:

OVS OVS

Patch link Patch link
br-eth1 br-tun

Global VLAN TAG VXLAN VNI

br-int br-int

Local VLAN TAG Local VLAN TAG

Linux Bridge Linux Bridge

VM1 VM1

Compute Node Compute Node

VLAN based networks Tunnel based networks

eth1 NIC

Connects to
Top-Of-Rack
Switch

Tunnel to other
Compute/Network
Nodes

Interfaces for packet tracing

Chapter 11

227

11. DHCP communication happens over the UDP ports 67 and 68 for the DHCP server
and client, respectively. Make sure that the security group rules attached to the
VM are not preventing the DHCP communication. Please look at Chapter 7, Using
Neutron Security and Firewall Services to learn about security groups in Neutron.

12. In case the VM gets attached to multiple virtual networks, make sure that the DHCP
client is running for all the network cards that you want to configure the DHCP-provided
IP address. Most of the cloud images configure the VM for the first network only. You
will have to look at the documentation of the operating system to learn about the
available DHCP client. On Ubuntu and RHEL-based distributions, you should be able
to use the dhclient command with the interface name, while the CirrOS image uses
udhcpc as a DHCP client.

How it works…
For every virtual network created by the tenant, Neutron starts at least one DHCP server.
When the VM boots, it sends a DHCPDISCOVER broadcast message to request the DHCP
server for its IP address. The DHCP server then allocates an IP address to the VM. In case the
VM does not receive the DHCPOFFER message, we must make sure that the DHCP server is
running, network connectivity between the VM and DHCP server is working, and no security
group rule is preventing communication between the VM and DHCP server.

Troubleshooting a VM that does not get an
initial configuration

Once the VM boots up, it receives its IP address from the DHCP server. The VM then queries
the metadata service in order to get additional configuration data for its initial configuration.
During its first boot, the VM tries to receive its configuration by connecting to the metadata
server at a well-known IP address of 169.254.169.254 on Port 80. In this recipe, we will learn
how to troubleshoot metadata service related problems.

Getting ready
For this recipe, you will need the following information:

 f SSH-based login credentials for the Controller and Network node

 f SSH-based login credentials for the Compute node

Troubleshooting Tips for Neutron

228

How to do it…
The following steps will show you how to check the health of the metadata service for
a virtual network:

1. With the appropriate credentials, SSH into the Network node. In our setup, it will be
the Controller and Network node.

2. Make sure that the metadata agent is running on the Network node using the
following command:
service neutron-metadata-agent status

3. Change the metadata agent configuration in the /etc/neutron/metadata_
agent.ini file in order to enable verbose and debug level logging. The metadata
agent log files are present in the /var/log/neutron directory.

4. Restart the metadata agent with the new configuration changes using the
following command:
service neutron-metadata-service restart

5. The metadata service requires the metadata proxy to be started. The proxy service
can be started either as a part of the DHCP namespace using neutron-dhcp-
agent or as a part of the Router namespace using neutron-l3-agent. Make sure
that the metadata proxy option is enabled in one of the configuration files, /etc/
neutron/dhcp_agent.ini or /etc/neutron/l3_agent.ini:
enable_metadata_proxy = True

6. For this example, we enabled the metadata proxy as a part of neutron-l3-agent.
Connect a shell to the Router namespace using the ip netns exec qrouter-
<routers_id> exec bash command. Checking the iptables rules with iptables
–t nat –n –L in the Router's namespace should show the configuration that is
related to the metadata service, similar to the one shown in the following image:

The traffic trying to reach the metadata service at the IP address of 169.254.169.254 on
Port 80 is redirected to the Router's IP on Port 9697.

How it works…
Once a VM instance gets its IP address, it tries to retrieve further configuration by contacting
the metadata service provided by OpenStack. The cloud-enabled VM images are installed with
the cloud-init service, which is used to download an additional configuration from the metadata
service. The metadata service is available at the well-known IP address of 169.254.169.254.

Chapter 11

229

The Neutron metadata agent is responsible for starting this service. The metadata service
provides the VM instance with configuration data, such as the hostname, SSH keys, and so
on. The cloud-init service provides a host of other configuration options such as installing
extra packages, running custom scripts, and others.

Troubleshooting a VM that does not get
external Network access

In this recipe, we will look at some of the reasons where the VM might not get external
Network access in OpenStack.

To provide external access to your VM, you must fulfill the following prerequisites:

 f Your VM must be connected to a Router

 f The Router must have its external gateway set

Getting ready
The following information is required for this recipe:

 f OpenStack Horizon access as an administrator

 f SSH-based login credentials for the Controller and Network node

 f SSH-based login credentials for the Compute node

How to do it…
The following steps will show you how to troubleshoot the VMs that are unable to access the
external Networks:

1. Log in to Horizon and make sure that the VM is connected to a Router through the
internal Network. This can be seen by navigating to Project | Network | Network
Topology.

2. On Horizon, navigate to Project | Network | Router and make sure that the Router
has its gateway set. Note the ID for this Router on the Router details screen; it will be
used in the subsequent steps of debugging.

3. With the appropriate credentials, SSH into the Network node. In our setup, it will be
the Controller and Network node.

4. Start a shell that is connected to the namespace for the Router using the
following command:
ip netns exec qrouter-<routers_id> exec bash.

Troubleshooting Tips for Neutron

230

The IP address configured on the external Network for this Router is 192.168.0.5,
which is shown in the following screenshot:

5. Use the iptables –t nat –L –n command to view the Source Network Address
Translation (SNAT) configuration:

You should be able to see the SNAT rules similar to the one in the preceding figure. When any
VM connected to this Router tries to communicate with the outside world, the iptables rules
use the external IP address on the Router to replace the source address of the packets going
out. In this example, the external IP on the Router is 192.168.0.5 and it is used as the
external IP for SNAT.

How it works…
The default L3 plugin on OpenStack provides external access to the VM instances using SNAT.
It implements SNAT using iptables rules in the virtual Router. To enable SNAT on the Router,
the tenant must set a gateway on the Router by connecting it to an external Network.

The gateway IP of the virtual Router is used to translate packets going out to the
external world.

Chapter 11

231

Troubleshooting a VM not reachable from
external Networks

A tenant can associate a floating IP address to a VM in order to make it externally reachable.
In this recipe, we will look at the possible reasons that block the access to the VM from
external Networks.

External access to the VM works by providing Destination Network Address Translation
(DNAT) at the virtual Router. To accomplish this, the following points must be taken care of:

 f Your VM must be connected to a virtual Router

 f You must have an external Network available to provide a floating IP

 f You must associate a floating IP to your VM

Getting ready
The following information is required for this recipe:

 f SSH-based login credentials for the Controller and Network node

 f SSH-based login credentials for the Compute node

How to do it…
The following steps will show you how to troubleshoot a VM that is not accessible from the
external Networks:

1. On Horizon, navigate to Project | Network | Router and make sure that the Router
has its gateway set.

2. On Horizon, navigate to Project | Compute | Instances and find the floating
IP associated to the VM. For this example, we have associated a floating IP of
192.168.0.4 to the VM instance with an internal IP of 20.20.21.6:

Troubleshooting Tips for Neutron

232

3. With the appropriate credentials, SSH into the Network node. In our setup, it will be
the Controller and Network node.

4. Start a shell connected to the Router's namespace using the ip netns exec
qrouter-<routers_id> exec bash command and check the iptables
configuration for the NAT rules in the namespace with the following command:
Iptables –t nat –L –n

You should be able to see the NAT rules for the floating IP association:

5. If the VM has multiple network interfaces, make sure that the default route is set to
the Network gateway for the interface that has the floating IP associated.

The NAT rules redirect the traffic arriving at the floating IP of 192.168.0.4 to the internal IP
of 20.20.21.6. It also changes the source IP of any packet from the VM to the outside world
to the floating IP 192.168.0.4.

How it works…
To make a VM externally accessible, a floating IP must be associated with it. A floating IP is an
externally accessible IP address and is allocated from an external Network of the tenant.

When a floating IP is associated with a VM, Neutron configures the virtual Router to map
the destination address of the incoming traffic on the floating IP to the VM's internal IP.
Configuring the DNAT rules using iptables on the virtual Router can accomplish this.

Checking the status of the Neutron service
The first step towards troubleshooting OpenStack Networks would be to make sure that the
Neutron service is running. In this recipe, we will look at ways to make sure that the Neutron
server is running without any errors.

Getting ready
For this recipe, you will need the following information:

 f SSH-based login credentials for the Controller and Network node

Chapter 11

233

How to do it…
The following steps will show you how to check whether the Neutron service is running with
the proper configurations:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. In the /etc/neutron/neutron.conf file, make sure that you have correct
core_plugin and service_plugins configured. For example, in the case
of the ML2 plugin, the Neutron configuration is as follows:
core_plugin = ml2

The service_plugins should include a list of advanced services such as a Router,
Firewall, and lbaas, depending on your deployment:

service_plugins = router,firewall,lbaas

Make sure that the packages for these service plugins are installed and configured.

3. You may wish to enable verbose and debug level logging for the Neutron server in the
neutron.conf file for troubleshooting. Keep in mind that enabling the debug and
verbose log will produce extensive logging, which will use the disk space. Therefore,
it is best to enable it only for the required duration of troubleshooting:
verbose = True
debug = True

4. If you are using the ML2 plugin, check the ML2 configuration files in the /etc/
neutron/plugins/ml2 directory as well. The ml2_conf.ini file is the main
configuration file that includes the type and mechanism driver settings.

5. Depending on your ML2 driver setting, you may need to review the configuration file
that is specific to the driver. All the ML2 configuration files are located in the /etc/
neutron/plugins/ml2 directory. Please refer to previous chapters to learn more
about the configuration of the ML2 type and mechanism drivers that are appropriate
for your deployment.

6. Execute the following command to find out the status of the Neutron server:
service neutron-server status

7. If you have made any changes to the configuration files, restart the Neutron server in
order to load the new configuration by executing the following command:
service neutron-server restart

8. The Neutron server logs are present in /var/log/neutron/server.log. In case
the Neutron server fails to start, the Neutron logs can help in troubleshooting.

Troubleshooting Tips for Neutron

234

How it works…
The Neutron server configuration allows verbose logging that can help in troubleshooting. The
main configuration file for Neutron is neutron.conf and it contains the core and service plugin
configurations. The Neutron server runs as a Linux service on the OpenStack Controller node
and you can use the service commands to restart them if any configuration has been changed.

Checking the MAC address table on
a virtual switch

As the devices connected to the virtual Network start to communicate with each other, the
virtual switch on the Compute node learns the MAC addresses of the network interfaces.
In this recipe, we will learn how to view the MAC address table of a virtual switch on an
OpenStack Compute node.

Getting ready
For this recipe, you will require the following information:

 f SSH-based login credentials for the Compute node

How to do it…
The following steps will show you how to check the MAC address table on the virtual switch:

1. With the appropriate credentials, SSH into the Compute node.

2. Use the ovs-appctl fdb/show command to view the MAC addresses learned by
the Open vSwitch instance:
ovs-appctl fdb/show br-int

Chapter 11

235

3. For a Linux bridge-based deployment, follow the recipe Viewing virtual interface
information on the Compute node in Chapter 2, Using Open vSwitch for VLAN-Based
Networks to find the bridge name for the virtual Network. Use the brctl showmacs
command with the bridge name to view the MAC addresses learned by a Linux bridge
instance, for example, for a bridge, brq1e023dc6-7a, use the following command:
brctl showmacs brq1e023dc6-7a

The MAC address on the virtual switch corresponds to the MAC address of the network
interface in the attached VMs.

How it works…
When the devices on the OpenStack Network communicate with each other, the virtual
switches such as the Open vSwitch or Linux bridge will start learning the Layer 2 address
(MAC address) of the devices connected to the Ports of the virtual Network by looking at
the packets that traverse the switch. Learning how to view these MAC addresses on the
virtual switch can help in understanding the flow of packets between devices such as the
VM instances, Virtual Routers, and so on that the OpenStack tenants create.

237

12
Advanced Topics

In this chapter, we will look at some of the advanced networking concepts in OpenStack
Neutron in the following recipes:

 f Configuring Neutron for VPN as a service
 f Testing VPN as a service on Neutron
 f Using link aggregation on the compute node
 f Integrating networking in a Heat template

Introduction
We will discuss VPN, link aggregation on the compute node, and integration with OpenStack
Heat project in this chapter. The Heat project in OpenStack provides you with an orchestration
service to spawn resources such as VMs, Routers, and load balancers along with their
Network connectivity.

To implement these recipes, we will use an OpenStack setup as described in the following image:

Keystone Service

Nova Service Glance Service

Neutron Server Neutron Agent(s)

eth2eth1

Nova Service Nova Service

Neutron Agent Neutron Agent

eth0 eth0eth1 eth1eth0

Controller and Network Node Compute Node 1 Compute Node 2

Management Network

Data Network

External Network (Internet)

br-int br-int br-intbr-ex

This setup has two compute nodes and one node for the controller and networking services.

Advanced Topics

238

Configuring Neutron for VPN as a service
A Virtual Private Network (VPN) connects two endpoints on different Networks over a public
Internet connection in such a way that the endpoints appear to be directly connected to each
other. VPNs also provide you with the confidentiality and integrity of the transmitted data.

VPN connectivity between two Networks can be implemented at different layers of an OSI
stack. A VPN that connects the endpoints at Layer 2 is called L2 VPN while a VPN that
connects the endpoints at Layer 3 (for example, an IP layer) is called L3 VPN.

Neutron provides a service plugin that enables OpenStack users to connect two Networks
using a VPN. The reference implementation of the VPN plugin in Neutron uses Openswan to
create an IPSEC based L3 VPN. IPSEC is a suite of protocols that provides a secure connection
between two endpoints by encrypting each IP packet transferred between them. An IPSEC
endpoint consists of the following two parts:

 f A daemon to negotiate session keys between the peer endpoints

 f A component that uses the session keys to encrypt/decrypt the packets

IPSEC uses the Internet Key Exchange (IKE) protocol in order to establish an authenticated
session key. IPSEC can use various techniques for the authentication; OpenStack VPNaaS
uses Pre-Shared Keys (PSK) as the authentication mechanism.

Getting ready
In this recipe, we will configure Neutron to use the reference VPNaaS plugin. For this recipe,
you will need the following information:

 f SSH-based login to the Controller and Network node

How to do it…
The following steps will show you how to install the VPN service plugin with Neutron:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Install the packages required to provide VPN services using a package manager such
as yum or apt:
openstack@controller:~$ sudo apt-get install python-neutron-vpnaas
neutron-vpn-agent openswan

3. Open the neutron.conf configuration file using your desired editor. For example,
the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

Chapter 12

239

4. In the [DEFAULT] section of the file, configure vpnaas as the service plugin
for Neutron. If service_plugins is already configured, add the VPN service
configuration to the list separated by a comma:
[DEFAULT]
...
service_plugins = vpnaas

5. Open the /etc/neutron/vpnaas_agent.ini configuration file and update the
device_driver and interface_driver settings:
interface_driver =
 neutron.agent.linux.interface.OVSInterfaceDriver
vpn_device_driver=neutron.services.vpn.device_drivers.ipsec.
OpenSwanDriver

6. To configure the Horizon dashboard for VPNaaS, open the /usr/share/
openstack-dashboard/openstack_dashboard/local/local_settings.py
file and set the enable_vpn option in the OPENSTACK_NEUTRON_NETWORK setting:
'enable_vpn' = True

7. Restart neutron-server, neutron-vpn-agent, and apache2 or http server
for the changes to take effect:
service neutron-server restart

service neutron-vpn-agent restart

On a RedHat- or CentOS-based system, restart apache, as follows:
service httpd restart

On Ubuntu, the following command restarts apache:
service apache2 restart

Once the changes take effect, log in to Horizon and verify that the VPN support has been
enabled by navigating to Project | Network | VPN.

How it works…
OpenStack Neutron provides VPN as a service. To enable this feature, the VPN plugin must
be installed and configured on the Controller and Network node. The configuration of Horizon
must also be updated in order to enable support for the VPN service.

Advanced Topics

240

Testing VPN as a service on Neutron
This recipe simulates a VPN connection between two data center sites connected over a
public Network. We will create a private Network connected to a Router to simulate a data
center. The VPN service provided by Neutron will be configured between two such Routers in
order to connect the two private Networks.

Getting ready
The following table describes the infrastructure required for testing the VPN service:

Router Private Network Subnet CIDR VM Location
Chapter12_
Router1

Chapter12_
Network1

Chapter12_
SubNet1

10.10.10.0/24 VM1 Site1

Chapter12_
Router2

Chapter12_
Network2

Chapter12_
SubNet2

10.10.20.0/24 VM2 Site2

In addition to this, we will use an external Network called public in order to simulate the
Internet. The VPN connection will be made over the Internet (the public Network in this recipe)
to connect the two Routers.

The external Network, public, uses a CIDR of 192.168.0.0/24.

The virtual Network components are connected in a topology described in the following figure:

Site1

Network1

VM1

VPN EP1Router1

Site2

Network2

VM2

VPN EP2 Router2

Internet

Chapter 12

241

Follow the Creating Network and Subnet using Horizon recipe in Chapter 1, Getting Started
with OpenStack Networking to create the Networks Chapter12_Network1 and Chapter12_
Network2 with Subnets and CIDR as described in the preceding table. Launch two VMs, VM1
and VM2, connected to Chapter12_Network1 and Chapter12_network2, respectively.

Follow the recipes in Chapter 6, Using Routing Services in Neutron to create the two Routers,
Chapter12_Router1 and Chapter12_Router2. The Networks, Chapter12_Network1
and Chapter12_network2, are added to the Routers, Chapter12_Router1 and
Chapter12_Router2, respectively.

Next, set the gateway on both the Routers. Setting a gateway on the Routers will connect the
Routers to the public Network and assign an IP address to the Router interface connected to
the public Network. Once these steps have been completed, the Network Topology should
look as follows:

Note the IP addresses assigned to VM1 and VM2 once they have booted.

Advanced Topics

242

The Router's public IP addresses are used to set up the VPN. The external IP of the Routers
must be noted. To find the external IP of the Router, navigate to Project | Network | Router
and click on the desired Router. The external IP of the Router can be found in the Router
Details tab:

The following table shows the IP addresses allocated to the Routers in our setup:

Router Public IP address
Chapter12_Router1 192.168.0.4

Chapter12_Router2 192.168.0.5

How to do it…
The following steps will show you how to create a VPN service in order to test the VPN
service plugin:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Network | VPN.

3. In the IKE Policies tab, click Add IKE Policy.

Chapter 12

243

4. On the Add IKE Policy screen, add Name and Description for the policy:

5. The Add IKE Policy screen also allows changing the IKE options such as Encryption,
Authorization, and so on. We will use the default settings.

Advanced Topics

244

6. Click Add to create the IKE policy:

7. In the IPSec Policies tab, click Add IPSec Policy.

8. On the Add IPSec Policy screen, provide Name and Description for the IPSEC policy:

9. We will use the default settings for the rest of the options.

Chapter 12

245

10. Click Add to create the IPSEC policy:

11. Next, we will create the VPN service.

12. In the VPN Services tab, click +Add VPN Service.

13. On the VPN Service screen, provide Name and Description for the VPN service:

14. In the Router drop-down menu, select the first Router, that is, Chapter12_Router1.

15. In the Subnet selection menu, choose the Subnet that has been added to the first
Router, that is, Chapter12_SubNet1 with a CIDR of 10.10.10.0/24.

Advanced Topics

246

16. Click Add to create the VPN service:

17. Repeat these steps to create another VPN service for the second Router with the
Subnet, Chapter12_SubNet2, with a CIDR of 10.10.20.0/24:

18. In the IPSec Site Connections tab, click +Add IPSec Site Connection.

19. On the IPSec Site Connection screen, provide Name and Description for the
connection; we will use Chapter12_IPSec_Connection1 and Chapter12 IPSec
Connection1, respectively.

20. Choose VPN Service associated with this connection from the drop-down menu;
we will choose Chapter12_VPN1.

21. Choose IKE Policy associated with this connection and IPSec Policy associated
with this connection as Chapter12_IKE_policy1 and Chapter12_IPSec_Policy1.

22. In Peer Gateway public IPv4/IPv6 Address or FQDN and Peer Router Identity for
authentication (Peer ID), provide the external IP of the peer Router. For our example,
the external IP for the peer Router Chapter12_Router2 is 192.168.0.5.

23. In Remote peer subnet(s), provide the target Subnet that this VPN will connect to; for
our example, we will use this VPN to connect to Chapter12_SubNet2, which has a
CIDR of 10.10.20.0/24.

Chapter 12

247

24. Finally, we will need to provide Pre-Shared Key (PSK) string that will be used by the
connection; for this example, we will use Chapter12_Secret:

Advanced Topics

248

25. Create another IPSEC site connection for the second Router. Choose Chapter12_VPN2
as the VPN service and Chapter12_IKE_policy1 and Chapter12_IPSec_Policy1 for
the IKE and IPSEC policy, respectively. (As we will use the same cloud installation
to implement the VPN connections, we can share the policies between the two VPN
configurations.) Provide the external IP of Chapter12_Router1 for the peer Router's
external IP or FQDN and 10.10.10.0/24 (the CIDR of Chapter12_SubNet1) as the
remote peer Subnet(s):

26. Test the VPN connections by executing a ping command to the instances across the
VPN connection. In this example, our VMs have an IP address of 10.10.10.3 for
VM1 and 10.10.20.3 for VM2:

Chapter 12

249

The VPN connections are now functional between the two Routers and the instances on the
two Networks can communicate with each other.

How it works…
The private networks, Chapter12_Network1 and Chapter12_network2, are connected
to their respective Routers. The Routers are assigned a public IP address by executing a set
gateway operation. In our case, the Routers get a public IP from the CIDR 192.168.0.0/24
associated with the external Network, public.

In this recipe, we configured an IPSEC-based VPN and connected the private Networks,
Chapter12_Network1 and Chapter12_Network2. The Routers act as the VPN endpoints.
While creating VPN site connections, information about the peer Router and the remote Subnet
must be provided. The VPN service and site connection should be created for both the endpoints.

The VPN service configuration uses a secret key, PSK, that is shared by both the peers.

Using link aggregation on the compute node
Link aggregation or bonding is a way to combine multiple physical network links to a
logical link.

Link aggregation is used as a means to provide higher bandwidth and redundancy against
link failure. In this recipe, we will see how to configure link aggregation in order to connect the
virtual switch on an OpenStack node to the physical switch.

We will assume that the virtual switch used on the OpenStack node is Open vSwitch and
configure link aggregation with Link Aggregation Control Protocol (LACP):

SWITCH

Hypervisor1 Hypervisor2

br-int br-int

VM VM

br-bond0 br-bond0

Advanced Topics

250

Getting ready
For this recipe, we will need the following information:

 f SSH-based login for the Compute and Network node

 f Details of the Network interface to use for link aggregation

How to do it…
The following steps will show you how to configure link aggregation on a Compute or a Network
node and update Neutron to use the bonded interface for the tenant data traffic:

1. With the appropriate credentials, SSH into the Compute node.
2. Add a bridge on the Open vSwitch using the ovs-vsctl add-br command:

ovs-vsctl add-br br-bond0

3. Next, we will create the bonded interface on this bridge with the ovs-vsctl add-
bond command:
ovs-vsctl add-bond br-bond0 bond0 eth1 eth2

4. Then, enable LACP on the bonded interface:
ovs-vsctl set port bond0 lacp=active

5. Update the physical switch configuration to enable the LACP-based link aggregation
interface. Consult your switch documentation to get the exact configuration.

6. Open the /etc/neutron/plugins/ml2/ml2_conf.ini configuration file using
your desired editor. For example, the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2_conf.
ini

7. In the [ovs] section, update bridge_mappings in order to use the newly created
bridge for the tenant traffic:
[ovs]
bridge_mappings = physnet1:br-bond0

8. Restart the Open vSwitch L2 agent for the configuration change to take effect:
service neutron-plugin-openvswitch-agent restart

9. Repeat these steps on all the Compute and Network nodes that need to use link
aggregation.

How it works…
Link aggregation provides both redundancy and a higher bandwidth by combining multiple
physical Network links in a logical link.

Chapter 12

251

Integrating networking in a Heat template
Nowadays, the installation of any nontrivial application spans more than one machine.
Different machines provide specialized functions such as database servers, web servers,
and many more. Heat is an OpenStack project that provides the users of OpenStack with the
ability to start a group of connected resources such as VMs, Networks, Routers, and so on in
order to create a complete infrastructure for deploying applications.

The tenant communicates with the orchestration system using the Heat client. A Heat
template describes the stack of infrastructure resources requested by the user. A template
consists of the following sections:

 f Version: This provides a version of the template format

 f Description: This describes the purpose of the template

 f Parameters: This section describes the user-defined parameters that are used in the
template; it can describe the parameter type and validation logic for the parameters

 f Resources: The resources section describes the resources that the template tries
to create

 f Outputs: The output section describes the output to be printed after the orchestration
is complete

The client submits the orchestration request using the Heat API on behalf of the user. The Heat
engine parses, validates, and assigns user-specified values to the variables in the template. It
then creates the resources defined in the template using various OpenStack clients in order to
interact with individual services, as described in the following figure:

CFN
API

NATIVE
API

CFN
Templates

HOT
Templates

HEAT
ENGINE

OpenStack
APIs

Neutron
Nova

Others...

OpenStack
Clients

Heat
Client

Keystone
Glance
Cinder

Others...

In this recipe, we will learn about the Heat template constructs to manage the Network resources.

Advanced Topics

252

Getting ready
The following steps will show you how to use Heat to create a simple stack consisting of a
newly created Network attached to a Router. To deploy this topology, we will need a Heat
template. We will use the following template for our example:

This file is available on GitHub at https://github.com/reachsrirams/packt-
openstack-networking-cookbook/blob/master/Chapter12/Chapter12_Stack1.
yaml. Clone this repository to your local machine. We will be using the Chapter12_Stack1.
yaml file for our recipe.

https://github.com/reachsrirams/packt-openstack-networking-cookbook/blob/master/Chapter12/Chapter12_Stack1.yaml
https://github.com/reachsrirams/packt-openstack-networking-cookbook/blob/master/Chapter12/Chapter12_Stack1.yaml
https://github.com/reachsrirams/packt-openstack-networking-cookbook/blob/master/Chapter12/Chapter12_Stack1.yaml

Chapter 12

253

How to do it…
The following steps will show you how to create a simple stack of infrastructure using a
Heat template:

1. Log in to Horizon with the appropriate credentials.

2. In the left navigation menu, navigate to Project | Orchestration | Stacks:

3. Click on +Launch Stack.

4. On the Select Template screen, select Template Source as File. Templates can
be provided as a direct input, as a URL or file. For this example, we will use a
File-based input:

Advanced Topics

254

5. Next, click on Browse to locate and upload the Heat template file,
Chapter12_Stack1.yaml, that we created earlier.

6. Click Next.

7. The Launch Stack screen is created based on the parameters described in the
template file:

8. Click Launch to start the orchestration process:

9. Click on Stack Name to see the details of the stack.

10. The Topology tab shows the OpenStack resources created by Heat.

Chapter 12

255

11. The Overview tab shows details such as Status of the stack, Stack Parameters,
Outputs, and so on:

12. The Resources tab shows the resources used by the stack.

How it works…
The Heat engine parses, validates, and assigns values to the attributes in the template. Once
the Heat template completes the validation process, the engine uses the OpenStack project
clients to create the resources described in it. For example, for the Network-related resources,
Heat uses the Neutron client in order to create the appropriate resources.

257

Index
A
allotted VLAN

viewing, for Network 29, 30
API requests

processing, for Network 214-217
processing, for Port 219-221
processing, for Subnet 217-219

C
Ceilometer 2
Classless Inter-Domain Routing (CIDR) 143
CLI

used, for adding load balancer health
monitor 185, 186

used, for configuring security group
rules 145, 146

used, for creating load balancer pool 176
used, for creating security group 144, 145
used, for creating Virtual IP 189, 190

Compute node
link aggregation, using 249, 250
virtual interface, viewing for GRE

tunnels 94-97
virtual interface information, viewing 50-55
virtual interface information, viewing for

VXLAN tunnels 86-89
virtual interface information, viewing 36-41

D
DB-Access-Network 67, 68
DB-VM 67, 68
DHCP server

starting, on specific Network node 108-110
Distributed Virtual Routing (DVR) 120

E
External Network

about 116
creating, Horizon used 63-66

F
Firewall

creating 161-163
Neutron, configuring 154, 155
policies, creating 159-161
rules, creating 156-158
rules, verifying on Network node 164-167
rules, viewing on Network node 164-167

Flat Network
about 48
creating, Horizon used 57-60
Neutron, configuring 56, 57

floating IP address
associating, to virtual machine 132-134
creating, Neutron CLI used 130-132
deleting, Neutron CLI used 130-132

G
Generic Routing Encapsulation (GRE) 92
GRE tunnels

virtual interface, viewing on Compute
node 94-97

GRE type driver
Neutron, configuring 92, 93

H
Heat template

networking, integrating 251-255

258

Horizon
used, for accessing virtual machine from

External Network 126-129
used, for adding load balancer health

monitor 182-184
used, for adding load balancer

member 177-182
used, for associating network to

instance 8-11
used, for configuring security group

rules 138-143
used, for creating External Network 63-66
used, for creating Flat Network 57-60
used, for creating load balancer pool 172-176
used, for creating Network 3-5
used, for creating Router 118, 119
used, for creating security group 136-138
used, for creating Shared Network 60-63
used, for creating Subnet 3-5
used, for creating Virtual IP 186-189
used, for increasing IP addresses 111-113
used, for viewing details of Network 5-7

host Network bandwidth
monitoring 207, 208

I
Internet

virtual machine instances,
accessing 124-126

Internet Key Exchange (IKE) 238
IP addresses

increasing in Network, Horizon dashboard
used 111-113

L
Layer 3 (L3) bandwidth

monitoring 201-203
link aggregation

about 249
using, on Compute node 249, 250

Link Aggregation Control Protocol
(LACP) 249

Linux bridge
virtual interface information, viewing on

Compute node 50-55

load balancer
about 170
connection statistics, monitoring 204, 205
internet accessibility 191, 192
health monitor, adding with CLI 185, 186
health monitor, adding with Horizon 182-184
testing 192-194
viewing, on Network mode 194-196

Load Balancer as a Service (LBaaS)
plugin 170

load balancer member
adding, CLI used 181, 182
adding, Horizon used 177-181

load balancer pool
creating, CLI used 176
creating, Horizon used 172-176

load balancer service plugin
configuring 170-172
installing 170-172

M
MAC address table

checking, on virtual switch 234, 235
ML2 mechanism driver

about 209, 210
creating 210, 211
registering, with Neutron server 212-214

Modular Layer 2 (ML2) 23
multiple IP addresses

configuring, for virtual interface 104-106

N
Network

allotted VLAN, viewing 29, 30
API requests, processing for 214-217
associating to instance, with Horizon 8-11
creating, Horizon used 3-5
creating, OpenStack CLI used 11-14
creating, with specific VLAN 31-35
creating, with specific VNI 84-86
details viewing, with Horizon 5-7
VLAN range, configuring 27, 28

Network node
DHCP server, starting 108-110
Firewall rules, verifying 164-166
Firewall rules, viewing 164-166

259

load balancer, viewing on 194-196
virtual interface information, viewing 41-46
virtual interface information, viewing for

VXLAN tunnels 89-92
Neutron

about 2
configuring, for Firewall service 154, 155
configuring, for Flat Network 56, 57
configuring, for GRE type driver 92, 93
configuring, for Linux bridge mechanism

driver 48-50
configuring, for Open vSwitch mechanism

driver 24-26
configuring, for Routing services 116, 117
configuring, for VLAN type driver 26, 27
configuring, for VPN as a service 238, 239
configuring, for VXLAN type driver 78-80
status, checking 232, 234
VPN as a service, testing 240-249

Neutron CLI
used, for associating floating IP

address 132-134
used, for creating floating IP

address 130-132
used, for creating Router 118, 119
used, for deleting floating IP

address 130-132
Neutron Network

VNI, viewing 82, 83

O
OpenStack

about 2, 223
networking quota, configuring 20-22
setting up 2

OpenStack CLI
Port, associating to instance 17-20
Port, creating 16, 17
used, for creating Network 11-14
used, for creating Subnet 14, 15

OpenStack Network
redundant DHCP server, creating 107

Open vSwitch mechanism driver
Neutron, configuring 24-26

P
per project bandwidth

monitoring 206
per user bandwidth

monitoring 206
Port

API requests, processing for 219-222
associating, to instance with

OpenStack CLI 17-20
creating, with OpenStack CLI 16, 17

Pre-Shared Keys (PSK) 238

Q
quotas 20

R
redundant DHCP server per

OpenStack Network
creating 107

Remote Procedure Call (RPC) 80
Router

creating, Horizon dashboard used 118, 119
creating, Neutron CLI used 118, 119
instances, enabling on different

Networks 120-124
virtual machine instances, accessing

Internet 124-126

S
security group

creating, CLI used 144, 145
creating, Horizon used 136-138
rules configuring, CLI used 145, 146
rules configuring, Horizon used 138-143
rules, creating for web traffic 151-154
used, for securing traffic between

instances 146-150
Shared Network

creating, Horizon used 60-63
simple web application

instances, creating 73-76
OpenStack Networks, setting up 68-73
setting up 66-68

260

specific IP address
VM instance, creating with 100-103

specific VLAN
Network, creating with 31-35

specific VNI
used, for creating Network 84-86

Subnet
API requests, processing for 217-219
creating, Horizon used 3-5
creating, OpenStack CLI used 14, 15

V
Virtual eXtensible LAN (VXLAN) 78
virtual interface

multiple IP addresses, configuring 104-106
viewing, on Compute node for GRE

tunnels 94-97
virtual interface (VIF) information

viewing, on Compute node 36-41
viewing, on Compute node for Linux

bridge 50-55
viewing, on Compute node for VXLAN

tunnels 86-89
viewing, on Network node 41-46
viewing, on Network node for VXLAN

tunnels 89-92
Virtual IP

creating, CLI used 189, 190
creating, Horizon used 186-189

virtual machine
accessing from external Network, Horizon

used 126-129
bandwidth, monitoring 199, 200
floating IP address, associating to 132-134

Virtual Network Identifier (VNI)
about 78-80
range configuring, for VXLAN Networks 81
viewing 81-83

Virtual Private Network (VPN) 238
virtual switch

MAC address table, checking 234, 235
Virtual Tunnel End Point (VTEP) 78
VLAN range

configuring, for networks 27, 28
VLAN type driver

Neutron, configuring 26, 27
VM, troubleshooting

access from external Network,
providing 231, 232

DHCP IP address, getting 224-227
external Network access, providing 229, 230
initial configuration, getting 227, 228

VPN as a service
Neutron, configuring 238, 239
testing, on Neutron 240-249

VXLAN tunnels
virtual interface information, viewing on

Compute node 86-89
virtual interface information, viewing on

Network node 89-92
VXLAN type driver

Neutron, configuring 78-80

W
Web-Access-Network 67, 68
Web-Internet-Network 67, 68
Web-VM 67, 68

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OpenStack Networking
	Introduction
	Creating a Subnet and Network using Horizon
	Viewing the details of a Network using Horizon
	Associating a Network to an instance
using Horizon
	Creating a Network using OpenStack CLI
	Creating a Subnet using OpenStack CLI
	Creating a Port without an associated instance using the OpenStack CLI
	Associating a Port to an instance using OpenStack CLI
	Configuring the networking quota in OpenStack

	Chapter 2: Using Open vSwitch for VLAN-Based Networks
	Introduction
	Configuring Neutron to use the Open vSwitch mechanism driver
	Configuring Neutron to use the VLAN type driver
	Configuring the VLAN range to be used for the networks
	Viewing the VLAN allotted for a Network
	Creating a Network with a specific VLAN
	Viewing the virtual interface information on the compute node
	Viewing the virtual interface information on the Network node

	Chapter 3: Exploring Other Network Types
in Neutron
	Introduction
	Configuring Neutron to use the Linux bridge mechanism driver
	Viewing the Virtual Interface information for Linux bridge on the compute node
	Configuring Neutron to use a Flat network type
	Creating a Flat Network using Horizon
	Creating a Shared Network using Horizon
	Creating an External Network using Horizon
	Setting up a simple web application – an introduction
	Setting up a simple web application – setting up OpenStack Networks
	Setting up a simple web application – creating instances

	Chapter 4: Exploring Overlay Networks with Neutron
	Introduction
	Configuring Neutron to use a VXLAN type driver
	Configuring a VNI Range for VXLAN Networks
	Viewing a VNI assigned to a Neutron Network
	Creating a Network with a specific VNI
	Viewing the Virtual Interface information on the compute node for VXLAN tunnels
	Viewing the Virtual Interface information on the network node for VXLAN tunnels
	Configuring Neutron to use a GRE type driver
	Viewing a Virtual Interface on the compute node for GRE tunnels

	Chapter 5: Managing IP Addresses in Neutron
	Introduction
	Creating an instance with a specific IP address
	Configuring multiple IP addresses for a virtual interface
	Creating a redundant DHCP server per OpenStack Network
	Starting the DHCP server on a specific network node
	Increasing the number of IP addresses in a Network using the Horizon dashboard

	Chapter 6: Using Routing Services in Neutron
	Introduction
	Configuring Neutron for Routing services
	Creating a Router using the Horizon dashboard and Neutron CLI
	Enabling instances on different Networks to communicate
	Allowing the Virtual Machine instances to access the Internet
	Providing access to a Virtual Machine
from an external Network or the Internet
	using Horizon
	Creating and deleting a floating IP address using the Neutron CLI
	Associating a floating IP address to a virtual machine using the Neutron CLI

	Chapter 7: Using Neutron Security and Firewall Services
	Introduction
	Creating a security group using Horizon
	Configuring the security group rules using Horizon
	Creating a security group using CLI
	Configuring the security group rules
using CLI
	Securing the traffic between instances on the same Network
	Creating the security group rules to allow web traffic
	Configuring Neutron for the Firewall service
	Creating the Firewall rules
	Creating the Firewall policies
	Creating a Firewall
	Viewing and verifying the Firewall rules on the Network node

	Chapter 8: Using HAProxy
for Load Balancing
	Introduction
	Installing and configuring the Neutron load balancer service plugin
	Creating a load balancer pool using Horizon
	Creating a load balancer pool using CLI
	Adding a load balancer member using Horizon
	Adding a load balancer member using CLI
	Adding a load balancer health monitor using Horizon
	Adding a load balancer health monitor
using CLI
	Creating a Virtual IP using Horizon
	Creating a Virtual IP using CLI
	Making the load balancer accessible to the Internet
	Testing the load balancer
	Viewing the load balancer on the network node

	Chapter 9: Monitoring OpenStack Networks
	Introduction
	Monitoring the Virtual Machine bandwidth
	Monitoring the L3 bandwidth
	Monitoring the load balancer connection statistics
	Monitoring the per project and per user bandwidth
	Monitoring the host Network bandwidth

	Chapter 10: Writing Your Own Neutron ML2 Mechanism Driver
	Introduction
	Creating a basic ML2 mechanism driver
	Registering your ML2 mechanism driver with the Neutron server
	Processing API requests for a Network
	Processing API requests for a Subnet
	Processing API requests for a Port

	Chapter 11: Troubleshooting Tips for Neutron
	Introduction
	Troubleshooting a VM that does not get a DHCP IP address
	Troubleshooting a VM that does not get an initial configuration
	Troubleshooting a VM that does not get external Network access
	Troubleshooting a VM not reachable from external Networks
	Checking the status of the Neutron service
	Checking the MAC address table on
a virtual switch

	Chapter 12: Advanced Topics
	Introduction
	Configuring Neutron for VPN as a service
	Testing VPN as a service on Neutron
	Using link aggregation on the compute node
	Integrating networking in a Heat template

	Index

