e

&

|.j E:‘ E , gl 7 24 ”

1= 2 _

. g ;2 = 3, 47 ’ LN
Quick ans 0 common problems

OpenStack Networking
Cookbook

Harness the power of OpenStack Networking for public and
private clouds using 90 hands-on recipes

Sriram Subramanian open source

Chandan Dutta ChOWdhury Sl et} community experisnce cistiied
Ivww .allitebooks.con

http://www.allitebooks.org

OpenStack
Networking Cookbook

Harness the power of OpenStack Networking for public
and private clouds using 90 hands-on recipes

Sriram Subramanian

Chandan Dutta Chowdhury

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

OpenStack Networking Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2015
Production reference: 1030207

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-610-0

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Sriram Subramanian

Chandan Dutta Chowdhury

Reviewers
Daniel Aquino

Yan Haifeng

Sayali Lunkad

Sarath Chandra Mekala
Madhusudan H V

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Divij Kotian

Technical Editor
Bharat Patil

Copy Editor
Tasneem Fatehi

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Jason Monteiro

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Sriram Subramanian is an experienced professional with over 18 years of experience in
building networking and network management products. Since 2011, he has been working
with Juniper Networks leading engineering teams responsible for OpenStack Neutron plugins,
VMware integration, and Network management products. He is a technologist with a passion
for virtualization and cloud networking. He blogs regularly at http://www.innervoice.
in/blogs and loves experimenting with new technologies and programming.

I would like to dedicate this book to my family. | want to thank my wife,
Kala, for her support during this entire project. Her give your best attitude
motivates me to strive harder in managing my time and energy effectively.

| also want to thank Appa and Amma for their patience and blessings, and
a special thank you to my daughter, Navya, and our Labrador, Neige, for the
joie de vivre they bring to my life.

| extend a special thank you to my employer, Juniper Networks, and
specifically my manager, Rakesh Manocha. The leadership team at Juniper
has created an environment where individuals can pursue excellence
through innovation. It has helped me expand my knowledge and capabilities
beyond my imagination.

I would like to express my gratitude to my publishers, Packt Publishing, and
the reviewers who provided invaluable feedback.

Finally, a big thank you to Chandan for being a great coauthor and helping
me learn a whole lot more about OpenStack.

FM-4

[vww allitebooks.cond

http://www.innervoice.in/blogs
http://www.innervoice.in/blogs
http://www.allitebooks.org

Chandan Dutta Chowdhury is a tech lead at Juniper Networks Pvt. Ltd. working

on OpenStack Neutron plugins. He has over 11 years of experience in the deployment

of Linux-based solutions. In the past, he has been involved in developing Linux-based
clustering and deployment solutions. He has contributed to setting up and maintaining a
private cloud solution in Juniper Networks. He loves to explore technology and writes a blog
at https://chandanduttachowdhury.wordpress.com.

I would like to dedicate this book to my parents, Manju and Kiran Moy
Dutta Chowdhury. They have been a source of inspiration and support
throughout my life.

I am thankful to my coauthor and manager, Sriram, who has motivated me
to pursue challenges that | thought were beyond my reach. He has always
provided me with encouraging and constructive feedback.

I would like to thank Juniper Networks for providing a supportive
environment and great opportunities to learn and explore new technology.

I would like to thank Packt Publishing for their guidance and feedback.

[vww allitebooks.cond

https://chandanduttachowdhury.wordpress.com
http://www.allitebooks.org

About the Reviewers

Daniel Aquino currently holds the position of a system architect at Nasdag. This
role involves challenging and interesting problems in automation, and the deployment
of infrastructure and applications at scale for both public and private cloud platforms.
OpenStack is one of the cloud computing platforms that he is currently exploring.

Yan Haifeng is a software engineer in HP's Cloud. He has participated in the development
of OpenStack when he was still an undergraduate in a laboratory of South China Agricultural
University. Before HP, he worked for Vipshop (building an enterprise private cloud platform)
and ChinaNetCenter (building a public cloud and managed cloud for customers), both based
on OpenStack.

Haifeng blogs at http://yanheven.github.io/.

Thanks to my first boss, Larf (Chen zhangqi) in Vipshop, who gave me the
chance to participate in building a private cloud for Vipshop, and Chen Shake,
who encouraged me a lot and guided me on the road to cloud computing.

Sayali Lunkad is 23 years old and was born and brought up in India. She is currently living
in Germany. She graduated with a bachelor's degree in computer science in 2014 from the
Pune Institute of Computer Technology. She was a former intern in the Outreach Program for
Women (now known as the Outreachy Program) working with the OpenStack foundation while
still completing her degree course. After completing her bachelor's degree, she was freelancing
for about one year, mainly working on open source projects such as OpenStack. She is a core
reviewer for OpenStack. She is currently working at SUSE Linux as an OpenStack developer.

I would like to thank my family, especially my mother, Smita Lunkad, for
always having faith in me and being extremely supportive.

[vww allitebooks.cond

http://yanheven.github.io/
http://www.allitebooks.org

Sarath Chandra Mekala holds a master's degree in communication systems from the
Indian Institute Of Technology, Madras. He currently works as a technical lead at Juniper
Networks and is responsible for integrating various Juniper devices such as EX and QFX
switches and SRX/VSRX firewall devices with leading Open Source Cloud Orchestration
Solutions such as OpenStack and CloudStack.

Sarath has over 12 years of experience working on Java & J2EE based Network Management
Systems. He has a wide array of skills spanning over web and server side programming, which
he keeps cramming with new technologies and skills all the time.

Sarath is multi-faceted and he prides himself as an intermediate level professional
photographer, an avid sci-fi & fantasy reader, an aquarist, a budding gardener, a blogger,
and a gastronomist.

Sarath blogs at http://sarathblogs.blogspot.in/

I would like to thank my wife, Kalyani, for encouraging me along and my son,
Abhiram, for the joy he brings to my life.

Thanks to Sriram and Chandan for tagging me up for the review and the
team at Packt Publishing for their support.

Madhusudan H V works as a Staff Engineer at Juniper Networks. He has more than 11
years of experience in developing enterprise grade telecom and networking management
applications. He loves coding and focuses on developing new applications that help solve
day-to-day problems of network and datacenter administrators.

Madhusudan is passionate about networking, virtualization, and cloud domains. He is a
VMware Certification Professional (VCP) and Cisco Certified Network Associate (CCNA).

Madhusudan is the author of a cloud-related technical blog at http://fastclouds.net/.

Thanks to Sriram Subramanian for his guidance and support in my
experiments with new technologies. | would also like to thank my wife,
Nanditha, and my son, Alok, for supporting me in reviewing this book.

[vww allitebooks.cond

http://sarathblogs.blogspot.in/
http://fastclouds.net/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.comand as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content
» Ondemand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents

Preface v
Chapter 1: Getting Started with OpenStack Networking 1
Introduction 1
Creating a Subnet and Network using Horizon 3
Viewing the details of a Network using Horizon 5
Associating a Network to an instance using Horizon 8
Creating a Network using OpenStack CLI 11
Creating a Subnet using OpenStack CLI 14
Creating a Port without an associated instance using the OpenStack CLI 16
Associating a Port to an instance using OpenStack CLI 17
Configuring the networking quota in OpenStack 20
Chapter 2: Using Open vSwitch for VLAN-Based Networks 23
Introduction 23
Configuring Neutron to use the Open vSwitch mechanism driver 24
Configuring Neutron to use the VLAN type driver 26
Configuring the VLAN range to be used for the networks 27
Viewing the VLAN allotted for a Network 29
Creating a Network with a specific VLAN 31
Viewing the virtual interface information on the compute node 36
Viewing the virtual interface information on the Network node 41
Chapter 3: Exploring Other Network Types in Neutron 47
Introduction 48
Configuring Neutron to use the Linux bridge mechanism driver 48

Viewing the virtual interface information for Linux bridge on the
compute node 50
Configuring Neutron to use a Flat network type 56
Creating a Flat Network using Horizon 57
Creating a Shared Network using Horizon 60
(i |-

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Creating an External Network using Horizon

Setting up a simple web application - an introduction

Setting up a simple web application - setting up OpenStack Networks
Setting up a simple web application - creating instances

Chapter 4: Exploring Overlay Networks with Neutron

63
66
68
73

77

Introduction

Configuring Neutron to use a VXLAN type driver

Configuring a VNI Range for VXLAN Networks

Viewing a VNI assigned to a Neutron Network

Creating a Network with a specific VNI

Viewing the virtual interface information on the compute node for
VXLAN tunnels

Viewing the virtual interface information on the network node for
VXLAN tunnels

Configuring Neutron to use a GRE type driver

Viewing a virtual interface on the compute node for GRE tunnels

77
78
80
81
84

86

89
92
94

929

Chapter 5: Managing IP Addresses in Neutron
Introduction
Creating an instance with a specific IP address
Configuring multiple IP addresses for a virtual interface
Creating a redundant DHCP server per OpenStack Network
Starting the DHCP server on a specific network node
Increasing the number of IP addresses in a Network using the
Horizon dashboard

Chapter 6: Using Routing Services in Neutron

100
100
104
107
108

111
115

Introduction

Configuring Neutron for Routing services

Creating a Router using the Horizon dashboard and Neutron CLI
Enabling instances on different Networks to communicate
Allowing the Virtual Machine instances to access the Internet
Providing access to a Virtual Machine from an external Network or
the Internet

using Horizon

Creating and deleting a floating IP address using the Neutron CLI
Associating a floating IP address to a virtual machine using the
Neutron CLI

Chapter 7: Using Neutron Security and Firewall Services

115
116
118
120
124

126
126
130

132
135

Introduction
Creating a security group using Horizon
Configuring the security group rules using Horizon

135
136
138

Creating a security group using CLI

Creating the Firewall rules
Creating the Firewall policies
Creating a Firewall

Table of Contents

Introduction

Creating a load balancer pool using CLI

Creating a Virtual IP using Horizon
Creating a Virtual IP using CLI

Testing the load balancer

Introduction

Monitoring the L3 bandwidth

Monitoring the host Network bandwidth

Introduction
Creating a basic ML2 mechanism driver

Processing API requests for a Network
Processing API requests for a Subnet
Processing API requests for a Port

Introduction

144

Configuring the security group rules using CLI 145
Securing the traffic between instances on the same Network 146
Creating the security group rules to allow web traffic 151
Configuring Neutron for the Firewall service 154
156

159

161

Viewing and verifying the Firewall rules on the Network node 164
Chapter 8: Using HAProxy for Load Balancing 169
170

Installing and configuring the Neutron load balancer service plugin 170
Creating a load balancer pool using Horizon 172
176

Adding a load balancer member using Horizon 177
Adding a load balancer member using CLI 181
Adding a load balancer health monitor using Horizon 182
Adding a load balancer health monitor using CLI 185
186

189

Making the load balancer accessible to the Internet 191
192

Viewing the load balancer on the network node 194
Chapter 9: Monitoring OpenStack Networks 197
197

Monitoring the Virtual Machine bandwidth 199
201

Monitoring the load balancer connection statistics 204
Monitoring the per project and per user bandwidth 206
207

Chapter 10: Writing Your Own Neutron ML2 Mechanism Driver 209
209

210

Registering your ML2 mechanism driver with the Neutron server 212
214

217

219

Chapter 11: Troubleshooting Tips for Neutron 223
223

224

Troubleshooting a VM that does not get a DHCP IP address

Table of Contents

Troubleshooting a VM that does not get an initial configuration
Troubleshooting a VM that does not get external Network access
Troubleshooting a VM not reachable from external Networks
Checking the status of the Neutron service

Checking the MAC address table on a virtual switch

Chapter 12: Advanced Topics

227
229
231
232
234

237

Introduction

Configuring Neutron for VPN as a service
Testing VPN as a service on Neutron

Using link aggregation on the compute node
Integrating networking in a Heat template

Index

237
238
240
249
251

257

Preface

OpenStack is an open source platform that leverages compute, network, and storage solutions
to create private and public clouds. In the last couple of years, the adoption of OpenStack has
increased dramatically and is being embraced by enterprises around the world.

Networking is one of the pillars of OpenStack. A solid understanding of OpenStack Networking
will help you implement a rich suite of services in your OpenStack cloud. This book helps you
develop the practical knowledge of a wide range of OpenStack Networking concepts.

This book starts with building blocks such as Network, Subnet, and Port. It then proceeds to
cover OpenStack Networking technologies, such as Routers, Firewalls, and so on. Advanced
topics such as the configuration of load balancers, VPN service to provide site-to-site
connectivity, and development of a simple ML2 driver are also covered to help you build and
manage the best networks for your OpenStack cloud.

This book will cover you the following topics:
» How to build and manage virtual switching, routing, and firewall-based networks in
OpenStack using Neutron

» How to develop plugins and drivers for Neutron to enhance the built-in networking
capabilities

» How to monitor and automate OpenStack networks using tools such as Ceilometer
and Heat

What this book covers

Chapter 1, Getting Started with OpenStack Networking, introduces you to the building blocks
of OpenStack Networking, namely Network, Subnet, and Port.

Chapter 2, Using Open vSwitch for VLAN-based Networks, shows you how to build and
manage OpenStack networks using VLANs and Open vSwitch.

Preface

Chapter 3, Exploring Other Network Types in Neutrons, takes you through the different types
of OpenStack networks with the help of a practical example.

Chapter 4, Exploring Overlay Networks with Neutron, shows you how to build and manage the
VXLAN-based and GRE-based networks in OpenStack.

Chapter 5, Managing IP Addresses in Neutron, helps you understand the IP address allocation
and DHCP-based address assignment features in OpenStack Neutron.

Chapter 6, Using Routing Services in Neutron, explores how to leverage OpenStack routing
capabilities to connect multiple networks.

Chapter 7, Using Neutron Security and Firewall Services, shows you how to implement
security groups and Firewall as a service in OpenStack in order to secure your cloud networks.

Chapter 8, Using HAProxy for Load Balancing, takes you through the techniques to implement
load balancing as a service in OpenStack using HAProxy.

Chapter 9, Monitoring OpenStack Networks, shows you how to monitor your OpenStack
networks using Ceilometer.

Chapter 10, Writing Your Own ML2 Mechanism Driver, gives you a foundation on how to write
your own custom ML2 mechanism driver for Neutron.

Chapter 11, Troubleshooting Tips for Neutron, highlights the different OpenStack networking
problems that you can run into and their solutions.

Chapter 12, Advanced Topics, covers advanced topics, such as VPN as a Service and
Networking using Heat template.

What you need for this book

To use this book, you will need computers or servers that have hardware virtualization
capabilities.

Kilo is the most recent release of OpenStack and is recommended to try out the recipes in
this book.

OpenStack supports different models of deployment and each chapter provides a high level
setup that is relevant for the corresponding recipes. You can also use DevStack for most of
the recipes, but we recommend creating a distributed OpenStack setup for in-depth learning.

—i |

Preface

Who this book is for

This book is aimed at network and system administrators who want to deploy and manage the
OpenStack-based cloud and IT infrastructure. If you have a basic knowledge of OpenStack and
virtualization, this book will help you leverage the rich functionality of OpenStack Networking
in your cloud deployments.

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections, as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous

(2]
D
(o]
=
o
=}

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

[ml2]

dhcp_agents per network = 2
Any command-line input or output is written as follows:

openstack@controller:~$ cat author openrc.sh
export OS TENANT NAME=cookbook

export OS USERNAME=author

export OS PASSWORD=password

export OS AUTH URL=http://controller:35357/v2.0

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In the left navigation menu,
click on Identity and then Projects."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www . packtpub.com/authors.

www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/61000S_ColorImages.pdf.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https: //www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub.com, and we will do our best to address the problem.

Getting Started with

OpenStack Networking

In this chapter, we will show you the following set of recipes covering the different ways to
create and manage the core Neutron entities, namely Network, Subnet, and Port:

>

>

Creating a Subnet and Network using Horizon

Viewing the details of a Network using Horizon

Associating a Network to an instance using Horizon

Creating a Network using OpenStack CLI

Creating a Subnet using OpenStack CLI

Creating a Port without an associated instance using OpenStack CLI
Associating a Port to an instance using OpenStack CLI

Configuring the networking quota in OpenStack

Introduction

Businesses are increasingly adopting cloud-based solutions for their IT requirements. This
move to cloud started with the server virtualization where a hardware server ran as a virtual
machine on a hypervisor.

The server hardware connects to the Network switches using Ethernet and IP to establish
Network connectivity. However, as servers move from physical to virtual, the Network
boundary also moves from the physical network to the virtual network. As the cloud platforms
leverage virtualization, it is important that they support the physical and virtual networking
effectively.

(11

Getting Started with OpenStack Networking

OpenStack is an open source cloud platform that helps build public and private clouds
at scale. In OpenStack, the name for the OpenStack networking project is Neutron. The
functionality of Neutron can be classified as core and service. In the rest of the book, the
terms Neutron and OpenStack networking are used interchangeably.

The OpenStack networking core functionality refers to the Layer 2 (L2) Network connectivity
and basic IP address management for virtual machines. Neutron provides the core
functionality using entities such as Network, Subnet, and Port. This chapter will provide you
with recipes about managing these entities. The OpenStack networking service functionality
deals with the Layer 3 (L3) to Layer 7 (L7) capabilities as defined in the OSI Network model.

Neutron also works with the telemetry module called Ceilometer in order to let the cloud
operators monitor the health of the OpenStack Networks.

In order to implement the recipes covered in this chapter, you will need an OpenStack setup,
as described here:

Controller and Network Node Compute Node

Keystone Service
Nova Service(s) Glance Service Nova Service

Neutron Server Neutron Agent(s) Neutron Agent(s)

Open vSwitch
ethO ——— ethl

Open vSwitch
eth0 —— ethl

Management Network

Data Network

This setup has one compute node and one node for the controller and networking services.
For this chapter, you can also set up a single all-in-one environment. This book is based on
OpenStack on the Ubuntu platform. For other platforms, such as Red Hat, the dashboard may
have a different theme but there should not be any difference in the functionality.

Chapter 1

Creating a Subnet and Network using

Horizon

Network and Subnet are the fundamental networking entities in OpenStack. Using these two

entities, virtual machines or instances are provided with Network connectivity. The creation of a
Subnet and Network go hand in hand. Both OpenStack CLI and Horizon support the creation of
a Subnet and Network. This recipe explains how to create a Subnet and Network using Horizon.

Getting ready

In order to create a Network and Subnet, you will need the following information, minimally:

» The Network name
» The Subnet name
» The IP address range for the Subnet—the range should be in CIDR format

How to do it...

1. Log in to the OpenStack Horizon dashboard.
2. Inthe left navigation menu, click on Project | Network | Networks.

3. Now click on the + Create Network button. The following screen will be displayed:

Create Network

Network

Network Name e .
Create a new network. In addition a subnet associated

CookbookRecipe1 with the network can be created in the next panel.

Admin State * @

up

4. Enter the Network Name and click Next.
5. The next screen lets you create the Subnet that will be part of the Network.

Getting Started with OpenStack Networking

6. Enter the Subnet Name and the address range in CIDR format, as shown in the
following screenshot:
Create Network
o Create Subnet Create a subnet associated with the new network, in
which case "Network Address™ must be specified. IF you
Subnet Name wish to create a network without a subnet, uncheck the
; “Create Subnet” checkbox.
RecipeiSubnet
Network Address @
20.20.20.0/24
IP Version *
IPv4 ¥
Gateway IP @
Disable Gateway
<o
7. Click Next. In the next screen, all the fields are optional, so click on Create.
Once the Network and Subnet are created successfully, the entry will appear in the
Networks table, as shown here:
i Networks
Compute
Network Networks + Create Network
Netwark Topoiagy Name Subnets Associated Shared Status ::::" Actions
Networks . . Recipe1Subnet "
CockbookRecipe 20.20.20.0/24 No ACTIVE UP Edit Network ~
Routers Displaying 1 item
Admin
Identity

Chapter 1

The preceding steps covered the most commonly used workflow to create a Network and
Subnet using Horizon.

The Network and Subnet entities represent two basic Networking functionalities. A Network
defines the Layer 2 (L2) boundary for all the instances that are associated with it. All the virtual
machines in a Network are a part of the same L2 broadcast domain. The Subnet, on the other
hand, is the range of IP addresses that are assigned to the virtual machines on the associated
Network. OpenStack Neutron configures the DHCP server with this IP address range and it
starts one DHCP server instance per Network, by default. OpenStack Neutron also allocates
one IP to act as the gateway IP unless the user provides a specific IP address for the gateway.

There's more...

As you can see from the Ul, it is possible to create a Network without a Subnet. You can
choose between the IPv4 or IPv6 addressing schemes. The Subnet Details section allows
operators to enable or disable DHCP for the Network. Optionally, you can also specify the DNS
servers and IP pools.

Viewing the details of a Network using

Horizon

Once a Network and Subnet have been created, you can use Horizon to view useful details
such as the ID, Network Type, and Gateway IP. You can also view the topology of the Network
that you just created.

Getting ready

For this recipe, you need to know the name of the Network whose details you want to view.

How to do it...

1. Login to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. Inthe left navigation menu, click on Project | Network | Networks.

Getting Started with OpenStack Networking

3. Onthe right-hand side, you will see a list of all the Networks. In the following
screenshot, you can see two Networks:

Project -
Networks
Compute
v ~ Networks oo |
retwark Topology Name Subnets Associsted Shared Status Admin State Actions
Hebwsirks CoskbookRecoe! NewSubnet 30,30.30,0/24 No ACTIVE up
Bidkars NetwarkTest BaseSubnet 40.40.40.0/30 No ACTIVE up Edit Network =
Ditplaniog 2 ftems
Admin
Identity

4. To view the details of a particular Network, click on the Name of the Network:

Brsbet - Network Detail: CookbookRecipe1

Compute

Hetwork Network Overview

Netwark Topology s
CoakboakRecipet
-]
[Hetworks b532asFe-6240-0a24-8710-f1F0d383bE0

Project 1D
E57a315238/046 R8RS A0 96120403
Status
ACTIVE

Admin 4 Admin State
ue

Idantity ’ Shared
No
External Network
ho
Provider Metwork
Nebwark Type: vian
Physical Network: physnet 1
Segmentation ID: 1001

Routers

Subnets

Hame Network Address 1P Version GCateway IP Actiens

MewSubnet 30.30.30.0/24 Pyt 30.30.30.1 Edit Subnet -

Diésliying 1 item

5. Inthe preceding screen, the key fields to note are Network Type, Segmentation ID,
and Gateway IP for the Subnet.

Chapter 1

6. To view the topology, click on Network Topology in the left navigation panel:

Project ' NetWOFk TODOIOQy

Compute

Network Topology
Networks
Routers

Admin

Identity

183 JoMIaN

0Ef00F 0¥ OF
vei0'0e 0E 0E

7. Asyou can see, the two Networks are shown as vertical color-coded bars. The
Subnets belonging to the Network are indicated at the end of the bars.

When you create a Network, the Horizon dashboard makes a REST API call to Neutron to
create a Network. During the installation, the OpenStack administrator configures Neutron
with a tenant Network type. This Network type is used by Neutron to create the Network.

Note that if you create and view the Network with a non-administrative
s role, some of the fields may not be displayed.

While creating the Subnet, we did not select any gateway IP, so Neutron will automatically
select the first IP address in the Subnet and configure this as the gateway IP for that Subnet.

Getting Started with OpenStack Networking

Associating a Network to an instance

using Horizon

Once the Network and Subnet are created, the next step for the end user is to create an
instance or virtual machine and associate the Network to the virtual machine. This recipe
shows you how to accomplish this.

Getting ready

One of the prerequisites to create an instance is to add a virtual machine image to the
Glance image service. In our example, we will add a CirrOS image and use this image to
create an instance.

How to do it...

1. Log into the OpenStack Horizon dashboard using the appropriate credentials.
2. Inthe left navigation menu, click on Project | Compute | Instances.

3. Now click on the Launch Instance action on the right-hand side of the screen. The
wizard to create and start an instance will be displayed:

Launch Instance

Details = Access & Security ® MNetworking ® *gst-Creation ® Advanced Oplions
il o :
Avaitabiiy 2ooe Specify the dezails For launching an instance.
i * | The chart belaw shows the resaurces used by this
project in relation to the project's quotas.
Instance Name *)
Flavor Details
Name m1i.tiny
Flavor * @ VCPUS 1
m.ting "
Root Disk 168
Instance Count * @ Ephemeral Disk 0ce
Total Disk 1GB
Instance Boot Source * @ RAM 512 MB

Select source

Project Limits

MNumber of Instances
Mumber of VCPUs

Total RAM

S . |

Chapter 1

4. Enter a name for the instance, choose a Flavor, select a source as Boot from image,
and choose the desired image:

Launch Instance

Details * Access & Security *

Availability Zone

nova

Instance Name *

Chapter1-VM

Flavor * @

m1.tiny

Instance Count * @

1

Instance Boot Source * @

Boot from image

Image Name

cirros-0.3.3-x86_64 (12.6 MB)

4

a»

“

“

Metworking * Post-Creation * Advanced Options

Specify the details For launching an instance.

The chart below shows the resources used by this
project in relation to the project's guotas.

Flavor Details
Name m.tiny
VCPUs 1
Root Disk 1GB
Ephemeral Disk 0GB
Total Disk 1CB
RAM 512 MB

Project Limits

Number of Instances
Number of VCPUs

Total RAM

Cancel

Getting Started with OpenStack Networking

5. To associate the instance to a Network, click on the Networking tab at the top. You
should see a screen where the Selected networks field is empty:

Launch Instance

Details * Access & Security * Networking * Post-Creation * Advanced Options

Selected networks Choose network from Available networks to Selected
networks by push button or drag and drop, you may
change NIC order by drag and drop as well.

Available networks

. CookbookNetwork2

 CookbookMetwork1

6. Inthe Available networks field, click on the + sign next to the Network to which the
instance needs to be associated. Then click on Launch:

Launch Instance

Details * Access & Security * MNetworking * Post-Creation * Advanced Options
Selected networks Choose network from Available networks to Selected
networks by push button or drag and drop, you may
A CookbookNetwork1 change NIC order by drag and drop as well.

Available networks

. CookbookNetwork2

Chapter 1

7. This should result in the creation and booting up of your instance and the Instances
table is updated to show you the instance that was just created:

Instances

Compute

Instances Instance Name & Filter #» Launch Instance

Instance Mnage Hama Key Status Avallability Jagk Tower Time since

P
{
Name Address = Pailr Zone State created Actane

50.50.50.2 tiry | - Efrar nova Mone MNosState 0 minutes Associate Floating P~ =

Network

Identity

This recipe showed you that as a part of instance creation, the Horizon GUI allows users to
choose the Network to which the instance needs to be associated.

As part of the instance creation process, the user chooses the Network to which the
instance will be associated. The instance creation and scheduling is the responsibility
of Nova and it sends a create Port request to Neutron in order to associate the instance
to the selected Network.

In response to the create Port request, Neutron will ensure that the virtual Network on the
hypervisor server is configured so as to provide connectivity to the virtual machine. For the
very first instance created on the Network, the Neutron server will also start a DHCP process
on the Network node. This happens when DHCP is enabled on the corresponding Network.
Once a virtual machine boots up, it will send a DHCP request. In response to this request, the
DHCP server for that Network will respond with an IP address.

There's more...

If there is exactly one Network for a given tenant, then the dashboard automatically selects this
Network when an instance is created. Additionally, note that the tenants can associate more
than one Network to an instance. This will create multiple interfaces in the virtual machine.

Creating a Network using OpenStack CLI

We have seen how to use the Horizon dashboard to create a Network. Let's now do the same
with OpenStack CLI. Several CLI commands offer additional capabilities when compared to
the dashboard. So it is good to develop a sound knowledge of the CLI commands.

vww allitebooks.conl

http://www.allitebooks.org

Getting Started with OpenStack Networking

Getting ready

You will need the following information to create a Network using CLI:

>

The login credentials for SSH to a node where the Neutron client packages are
installed (usually the controller node)

A shell RC file that initializes the environment variables for CLI

How to do it...

The next set of steps will show you how to use the Neutron CLI commands to create a Network:

1.

Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

Source the shell RC file to initialize the environment variables required for the
CLI commands:

openstack@controller:~$ source author openrc.sh

The contents of a typical shell RC file are as follows:
openstack@controller:~$ cat author openrc.sh
export OS_TENANT NAME=cookbook

export OS_USERNAME=author

export OS_ PASSWORD=password

export OS AUTH URL=http://controller:35357/v2.0

openstack@controller:~$ openstack

The command to create a Network is neutron net-create, and in the simplest
form, the only argument required is the Network name:

openstack@controller:~$ neutron net-create CookbookNetwork2
Created a new network:

Field Value

admin_state_up True

id 3fba8ad2-ef@6-4137-alb9-ed55f6fa4310
name CookbookNetwork2
provider:network_type vlan

provider:segmentation_id 1004

router:external False

shared False

status ACTIVE

subnets

tenant_id 657a315a3af9468aacB8580ec961a0d03

| I |
provider:physical_network	physnetl
I	

5. You can view all the Networks created using the neutron net-1ist command:

Chapter 1

openstack@controller:~% neutron net-list

| id |

name

subnets

aB7d5c3a-785b-42ch-Bb59-B181a05b74da |
20a5d315-6cB6-4654-bTB4-a5d@dc3TIbe2 |
b532a5fe-6240-4a24-87108-Tff@d5E3b6Re |
3fbaBad2-efBb-4137-alb%-ed55f6Tad310 |

CookbookNetworkl
NetworkTest
CookbookRecipel
CookbookNetwork2

3fe0ddBf-aed9-47fdd-bd3b-1340bbc@4055 50.50.50.0/28
16abf572-bdBf-463c-9838-1756e64e556e 40.40.40.0/30
B2dBc23b-eead-4dlb-bfEc-cace7%edaaad 30.30.30.8/24

+————+— +

6. One of the interesting command-line options for the neutron net-create command
is the - -tenant-id option. This option allows users with an administrative role to
create a Network for another tenant. The following screenshot shows you how an
administrative user (for an administrative project or tenant) creates a Network for a

cookbook tenant:

openstack@controller:~% neutron net-create ——tenant-id 195fd245410a4c370eeafeBBf2cd@3T7 AdminCreatedNetwork

Created a new network:
P - -

———+

Value |

| Field |

e — = = — = = — =
admin_state_up	True
id	3BaZb79d-ad471-4ef6-B137-219179d92b39
name	AdminCreatedNetwork
provider:network_type	wlan
provider:physical_network	physnetl
provider:segmentation_id	1885
router:external	False
shared	False
status	ACTIVE
subnets	

| tenant_id | 185fd2454f9ad4c370eeafhBEf2cdB3TY
+———— - - - - - - - -——t

7. The tenant ID argument works only when the user specifies the unique tenant ID.
However, sometimes it is convenient to use the tenant name. The following command
automates the conversion from the tenant to the tenant ID. The keyword, cookbook,

is the tenant name used for this command:

openstack@controller:~$ neutron net-create --tenant-id ‘keystone tenant-list \

| awk '/ cookbook / {print $2}'’ NetCreatedUsingTenantName

Created a new network:

|
|
|
| provider:network_type

| provider:physical_network
| provider:segmentation_id

| router:external

| shared

| status

| subnets

| tenant_id

| Field | Value |
admin_state_up True
id B888697a3-8231-4276-adal-34cbbB8ebbdds
name NetCreatedUsingTenantName

vlan
physnetl
1006
False
False
ACTIVE

195fd2454f9a4c379%eeaf688f2cda3f7

Getting Started with OpenStack Networking

When the user executes the neutron net-create command, the user name and tenant
name attributes are taken from the shell environment variables that were initialized at the
beginning. Neutron creates the Network with this user and tenant (or project). However,
once the --tenant-1id option is used, the Network is created on behalf of the tenant
whose ID is specified.

Users can specify several other arguments while creating Networks. These options are
provider:network type, --provider:segmentation_id, and router:external.
While we will be taking a closer look at these parameters in the subsequent chapters,

it is important to note that some of these options are available only if users have the
administrative privilege.

To view the details of a specific Network, you can use the neutron net-show command.

Creating a Subnet using OpenStack CLI

Similar to the CLI commands to create a Network, the next recipe will explore the CLI
command to create a Subnet. The key aspect of the CLI commands for Subnet creation is that
a Network Name is a mandatory attribute.

Getting ready

You will need the following information to get started:

» The login credentials for SSH to a node where the Neutron client packages are
installed

» Ashell RC file that initializes the environment variables for CLI

How to do it...

The next set of steps will show you how to use Neutron CLI to create a Subnet:
1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands as seen in the previous recipe.

Chapter 1

3. The command to create a Subnet is neutron subnet-create and the mandatory
arguments are the Network name and IP address range in the CIDR format. However,
it is a good practice to specify a name for the Subnet. For simplicity, we will choose
the Network, CookbookNetwork2, that was created earlier because it does not have
any associated Subnet yet:

openstack@controller:~% neutron subnet-create —--name CookbookSubnet CookbookMetwork2 408.408.41.8/24
Created a new subnet:

Fm——————— e ———— Fm— +
| Field | Value |
Fm——————— e ———— Fm— +
| allocation_pools | {"start": "49.48.41.2", "end": "40.40.41.254"}

eidr	48.48.41.8/24
dns_nameservers	
enable_dhecp	True
gateway_ip	49.48.41.1
host_routes	
id	7R4GBEAD-BEA4-4TDd-a901-B32624130466
ip_wersion	4
ipve_address_mode	
ipve_ra_mode	
name	CookbookSubnet

| network_id | 3fbaBad2-ef@6-4137-albS-e@55f6fad31le |
| tenant_id | B57a315a3afl46BaacB580ecibladdn3
- +—— +

4. Now, when we execute the neutron net-1ist command, we will see that
CookbookNetwork2 has an associated Subnet that we just created:

openstack@controller:~% neutron net-list

| id | name subnets |

3feSddBf-ae99-4fd@-bd3b-1345bbc@4@55 50.50.50.0/28 |
B2dBc23b-eead-4d1lb-bfBc—cace7%e4aaad 30.30.30.8/24 |
7049BB00-B644-4TRd-a001-B32624130466 40.40.41.8/24 |

aB7d5c3a-TB5b-42cP-Bb59-8101a%%b74da | CookbookNetworkl
b532a5fe-6240-4a24-8710-fff@d583b6@e | CookbookRecipel
3fbaBad42-ef@6-4137-alb9-eB55f6Ta4310 | CookbookMetwork2

5. Users can view the list of Subnets using the neutron subnet-1ist command:

openstack@controller:~% neutron subnet-list

| id | name cidr | allocation_pools |

3fedddBf-aed9-4fd@-bd3b-1340bbc@4055 | CBSubnetl | 50.50.50.8/28 | {"start": "50.50.508.2", "end": "50.50.50.14"} |
B2dBc23b-eecad-4dlb-bfBc-cace7%edaaad | NewSubnet | 38.30.30.08/24 | {"start": "30.30.30.2", "end": "3@.30.30.254"} |
7R49BBPR-BE44-4T0d-a%01-B32624130466 | CookbookSubnet | 48.40.41.8/24 | {“"start": "40.40.41.2", "end": "40.48.41,254"} |

When the user executes the neutron subnet-create command, Neutron creates a
Subnet with the specified IP address range and other parameters. Neutron also associates
the Subnet with the specified Network.

Getting Started with OpenStack Networking

Creating a Port without an associated

instance using the OpenStack CLI

Port is another building block in OpenStack Neutron. You will not find a way to create a Port
using the Horizon dashboard. As we saw earlier in the Associating a Network to an instance
using Horizon recipe, a Port is created implicitly as a part of the create instance operation
from the dashboard. However, using CLI, some advanced networking configuration can be
accomplished. This recipe shows you how to create a Port using OpenStack CLI.

Getting ready

You will need the following information to get started:

» The login credentials for SSH to a node where the Neutron client packages
are installed

» Ashell RC file that initializes the environment variables for CLI

How to do it...

The next set of steps will show you how to use Neutron CLI to create a Port:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands as seen in the previous recipe.

3. The command to create a Port is neutron port-create and the only mandatory
parameter is the Network name. However, it is a good practice to specify a name
for the Port:

openstack@controller:~% neutron port-create —-—name CLIPortCreate CookbookMetwork2
Created a new port:

S _— _— R _— R _—

fa:16:3e:32:20:84

CLIPortCreate
3fbaBad42-ef@6-4137-albS-e@55F6Ffad4310
a%2b7adc-Baef-4alc-al@@-EB5695a9113c
DOWN
657a315a3af046BaacB580ec961a0da3

mac_address
name

network_id
security_groups
status
tenant_id

| Field | Value |
o _— _— S, _— S, _—

| admin_state_up | True |
| allowed_address_pairs |

| binding:host_id |

| binding:profile | 1}

| binding:vif_details | 4}

binding:vif_type	unbound
bindimg:vnic_type	normal
device_id	
device_owner	

| fixed_ips | {"subnet_id": "7049B8B00-8644-4f@d-a%01-832624130466", "ip_address": "40.40.41.4"}

id	BBOB14d4-3b7a-444B-bd60-1dcabBBEAE3R6D

Chapter 1

4. Note that the Port has been assigned a MAC address as well as an IP address.

5. You can use the neutron port-1list command to view a list of all the Ports
in the system:

openstack@controller:~% neutron port-list
v .

*
| id | name mac_address | fixed_ips

"B2d8c23b-eead-4d1b-bfBc-cace79edanad", "ip_address™: "30.39.38.3"
‘d8c23b-eead-4d1b-bfAc-caceT9edaaad", "ip_address™: .30.308.2"
"16abf572-bdAf-461c-9838-1756e64e556e", “ip_address™: "48.40.408.2"
“70498802-B644-412d-20901-832624130466", “ip_address™: "48.40.41.4"

| 69faeal@-0c35-443d-bd5b-7215e56e280F |
| ®dadSlea-accl-41be-a7f6-2b61acBBSEST |

A Port primarily represents an endpoint in a Network. The most common Ports in an
OpenStack environment are the virtual interfaces in a virtual machine.

’
I

| 581fabdd4-2be5-4dB7-9234-9aB703e17512 | | fa:l6:3e:dd:8d:
I
[

When the neutron port-create command is executed, OpenStack Neutron allocates
a unique MAC address to the Port. The Network name argument effectively helps Neutron
in identifying a Subnet and then Neutron assigns an IP address to the Port from the list of
available IP addresses in the Subnet.

The post-create request is also the most common trigger to configure the physical and
virtual Networks using the appropriate drivers.

Associating a Port to an instance using

OpenStack CLI

The previous recipe showed you how to create a Port using CLI. The next recipe shows you
how we can use an existing Port as part of the instance creation command.

Getting ready

For this recipe, you will have to identify the Port that you want to associate with an instance.
For the instance creation itself, the software image needs to be identified.

How to do it...

The next set of steps will show you how to use the Nova and Neutron CLI commands to create
an instance that uses an existing Port:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
and Nova client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands as seen in the earlier recipes.

[}

Getting Started with OpenStack Networking

3. Execute the neutron port-1list command and identify the ID of the Port that
you want to use to create an instance. Make a note of the MAC and IP addresses
assigned to the Port:

openstack@controlleri~% neutron port-list

| id | nare | mac_address | fixed_ips

|
| e18666b5-a31a-4185-b333-T44962109969 | | fa:16:3e:01:a7:98 | {“subnet_id": "6fldaBra-Belb-4af5-9635-aebdfd43bfB4”, “ip_address™: “48.49.41.2"} |
| ee6138a1-6851-4352-80cd-aBe7390325a4 | (LIPortCreate | fa:16:3e:b3:adief | {"subnet_id": "67182Bca-Belb-4a15-0635-2e0d1d4361B4", "ip_address™: "48.40.41.4"} |
+ ' + + +

4. The CLI command to create an instance is nova boot. This command supports an
argument called - -nic that allows us to specify a Port ID that we want to associate
with the instance:

openstack@controller:~$ nova boot --flavor ml.tiny --image cirros-
0.3.3-x86 64 --nic port-id=ee6f30al-6851-435a-89cd-a8e7390325a4
CLIPortvM

5. Note that the virtual machine name used in the command is CLIPortVM. If we
execute the nova show command now, we can see the details about the instance:

openstack@controller:~% nova show CLIPortvM
| Property | value |
CookbookNetwork2 network 40.40.41.4
05-DCF:diskConfig MANUAL
0S-EXT-AZ:availability_zone nova
0S-EXT-SRV-ATTR:host controller
0S-EXT-SRV-ATTR: hypervisor_hostname controller
OS5-EXT-SRV-ATTR:instance_name	instance-@0@o0887
OS-EXT=5TS:power_state	1
O5-EXT=-5TS:task_state	-
0S-EXT-5TS:vm_state active	
05-5RV-USG: launched_at 2015-82-17T06:29:26.000000	
05-5RV-USG:terminated_at -	
accessIPv4	
accessIPve	
config_drive	
created 2015-82-17T06:29:152Z	
flavor ml.tiny (1)	
hostId 630438cef66fl2cfed2120da%¢c3012a225cB8a498cf8d5b306a6602e4	
id 2d424124-1517-4d00-aB08-5c34c0125623	
image cirrosl (Baala365-15b1-4c19-b@72-f64638d15df7)	
key_name -	
metadata {}	
name CLIPortvM	
os-extended-volumes:volumes_attached	
progress [}	
security_groups default	
status ACTIVE	
tenant_id 8f15f3fea4bB84ebBIb558447a87402e6	
updated	2015-82-17T06:29:26Z
user_id	b3cd9cf9539d47bdb61144chbefedd33z

6. Inthe preceding output, you can see that the IP address of the Port created using CLI
has been assigned to the instance.

7. Log in to the Horizon dashboard and navigate to Network Topology, as discussed
in the Viewing the details of a Network using Horizon recipe. In Network Topology,
move the mouse pointer over the icon representing the instance and click on Open
Console as shown here:

Chapter 1

Project Network TODOlOgy

Compute

Network Topology

Networks CLIPoreVmM
20424124-1517-4d00-aB08-5c34c0125623
ACTIVE
Routers
»View Instance Detalls » Open Console Terminate Instance
Admin
Identity

B2/ LY OF OF

8. In the resulting window, log in to the instance. In our example, we will be using the
CirrOS default username and password for the login.

At the shell prompt of the instance, type ifconfig etho0. This command will show
the virtual interface for this instance. The command output shows the MAC and IP
addresses that are assigned to the virtual interface:

080/vnc_auto.htmi?token=46710785-8fb4-4103-a99d-a423bf2b0f85&title=CLIPortVM(2d424124-1517-4d00-a... %7

(7]

Getting Started with OpenStack Networking

This recipe demonstrated how to associate a Port to an instance. At the end of the recipe, we
can see that the MAC and IP addresses for this virtual interface (etho0) match those of the
Port that we used in the nova boot command.

We have seen that Neutron assigns an IP address and MAC address to a Port during their
creation. When users execute the nova boot command with the - -nic option, then Nova
takes the IP and MAC addresses of the Port and uses this information to configure the virtual
interface of the instance.

There's more...

This technique of creating a Port prior to the instance creation is helpful if a specific IP
address needs to be assighed to an instance or virtual machine. While we will cover this in
another recipe later in the book, it is important to note that this capability is not available
using the Horizon dashboard.

Configuring the networking quota in

OpenStack

Quotas are limits defined in OpenStack to ensure that the system resources and capacity are
used in a systematic manner. Different users can be given different quota limits based on
their requirement and priority. In this recipe, we will show you how to configure a quota related
to networking at a project level and for the whole system.

Getting ready

The setting up and enforcement of the quota are done at the project level. If any user in the
project tries to exceed the allotted quota, the system will reject the corresponding request.
To configure the quota-related parameters, you need to have a good idea about the capacity,
scale, and performance requirements of your OpenStack-based cloud.

How to do it...

The following steps will show you how to configure the networking-related quota:

1. Login to the OpenStack Horizon dashboard using a user ID with an
administrative role.

Chapter 1

2. Inthe left navigation menu, click on Identity and then Projects. In the Actions
column, select Modify Quota for the tenant of your choice, as follows:

Prolect " Projects
Admin »
Identity - Projects Filter Q + Create Project || % Delete Projects
Projects O Name Description Project ID Enabled Actions
O cookbook Project or Tenant for the Book 195fd2454F324c379eeaf688f2cd03f7 True Modify Users B3
Users
1 demo Demo Tenant 29b5e83ced2 14bc69bf379bacadc0d7b True | Edit Project
View Usage
1 service Service Tenant 4be3029425d6466986bbee 62685F2F6 True | Modify Quotas

Delete Project
admin Admin Tenant 657231523af946832c8580ec96120d03 True

Displaying 4 items

3. Inthe resulting window, the networking-related quotas are defined as shown in the
following screenshot. Make the changes and click Save.

51200

Security Groups *

10

Security Group Rules *

100

Floating IPs *

50

Networks *

10

Ports *

50

Routers *

10

Subnets *

10

=]

Getting Started with OpenStack Networking

4. In order to change the networking-related quota at the whole system level, you need
to change the settings in the Neutron server configuration file.

5. With the appropriate credentials, SSH into the node where the Neutron server
is running.

6. Open the Neutron configuration file using your desired editor. For example, the
command for vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

7. Inthe configuration file, look for a section starting with [quotas]. All the
quota-related settings start with quota_. Edit these settings as required
and save the file.

8. The Neutron server needs to be restarted for these settings to take effect. Restart the
Neutron server using the following command:

sudo service neutron-server restart

All the quota settings are stored on a per project (tenant) basis. During the creation of a
project using CLI or Horizon, OpenStack (Keystone) fetches the system-wide default quotas
from the configuration files and associates them to the project (or tenant). Hereafter, even if
the system-wide quotas are changed, the project-level quotas do not change automatically.
However, the project-level quotas can be changed anytime using Horizon or CLI, and these
changes take effect immediately.

All the OpenStack commands and API calls are checked against the project-level quotas.
If any commands or API calls violate the limits, they will be rejected with an appropriate error.

Using Open vSwitch for
VLAN-Based Networks

In this chapter, we will demonstrate how Open vSwitch can be used to create and
manage VLAN-based Networks for OpenStack tenants. The following recipes will be
covered in this chapter:

» Configuring Neutron to use the Open vSwitch mechanism driver

» Configuring Neutron to use the VLAN type driver

» Configuring the VLAN range to be used for the Networks

» Viewing the VLAN allotted for a Network

» Creating a Network with a specific VLAN

» Viewing the virtual interface information on the compute node

» Viewing the virtual interface information on the Network node

Introduction

As discussed in the first chapter, virtualization and cloud computing are pushing the network
boundary from the physical network to the virtual network. The non-virtualized physical
servers are connected to the physical network switches for connectivity. The shift from
physical to virtual networking implies that the virtual machines should be connected to the
virtual switches for connectivity.

In order to allow the multiple networking technologies to interoperate, Neutron uses the
concept of plugins. The Modular Layer 2 (ML2) is a type of core plugin that supports multiple
drivers so that the plugin functionality can be extended and customized. The ML2 plugin
comprises of type drivers and mechanism drivers.

=]

Using Open vSwitch for VLAN-Based Networks

Open vSwitch, popularly referred to as OVS, is one of the implementations of the virtual
switches for the Linux platforms. It is an open source, production quality, virtual switch that
supports the rich networking protocols and features.

In order to implement these recipes, you will need an OpenStack setup as described here:

Controller and Network Node Compute Node

Keystone Service
Nova Service(s) Glance Service Nova Service

Neutron Server Neutron Agent(s) Neutron Agent(s)

Open vSwitch
ethO —— ethl

Open vSwitch
ethO ——— ethl

Management Network

Data Network

This setup has one compute node and one node for the controller and networking services.
For this chapter, you can also use a single all-in-one OpenStack setup.

As discussed in the previous chapter, the core functionality of Neutron is to provide Layer 2
(L2) connectivity. Neutron provides this functionality through the use of a core plugin. All the
recipes of this chapter assume that ML2 is the core plugin in the Neutron configuration file.

Configuring Neutron to use the Open

vSwitch mechanism driver

The ML2 plugin can support many mechanisms to provide the core functionality. We will see
how Open vSwitch can act as a mechanism driver for the ML2 plugin.

Getting ready

Using OVS as the mechanism driver requires changes to the ML2 plugin configuration file.
We also have to configure OVS with a tenant network type and physical network alias.

How to do it...

The following steps will show you how to configure Open vSwitch as the mechanism driver for
the ML2 plugin:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

=

Chapter 2

10.

Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/meutron/plugins/ml2/ml2 conf.
ini

Inthe [m12] section of the file, configure ML2 to use OVS as the mechanism driver:
[ml2]

mechanism drivers = openvswitch

In the [ovs] section of the file, configure OVS with the tenant network type and
physical bridge mapping:

[ovs]

tenant network type = vlan
bridge mappings = physnetl:br-ethl
In the previous step, br-ethil represents the actual Open vSwitch instance

that is bound to a physical interface and physnet1 represents the alias for the
OVS instance.

The OVS instance, br-ethi, can be created using the following steps (assuming that
the ethl interface is used for the data traffic):

openstack@controller:~$ sudo ovs-vsctl add-br br-ethl

openstack@controller:~$ sudo ovs-vsctl add-port br-ethl ethl

Restart the Neutron and Open vSwitch services on the Controller and Network nodes
of our setup, using the following commands:

openstack@controller:~$ sudo service neutron-server restart
openstack@controller:~$ sudo service openvswitch-switch restart
openstack@controller:~$ sudo service neutron-openvswitch-agent
restart

Repeat these steps for the compute node in the setup.

The next few steps will show you the changes that are needed on the Network node
so that the Neutron agents can use the OVS-related drivers.

Edit the [DEFAULT] section of the DHCP agent configuration file located at /etc/
neutron/dhcp agent.ini as follows

[DEFAULT]

interface driver = neutron.agent.linux.interface.
OVSInterfaceDriver

Using Open vSwitch for VLAN-Based Networks

Edit the [DEFAULT] section of the L3 agent configuration file
located at /etc/neutron/13 agent.ini as follows:

[DEFAULT]

interface driver = neutron.agent.linux.interface.
OvSInterfaceDriver

11. Edit the [securitygroup] section of the ML2 plugin configuration file located
at /etc/neutron/plugins/ml2/ml2 conf.ini as follows:

[securitygroupl

firewall driver =
neutron.agent.linux.iptables firewall.
OVSHybridIptablesFirewallDriver

12. Restart the Neutron-related services as mentioned in step 7.

As part of its startup, the Neutron server will load the core plugin, which in our case is the
ML2 plugin. As the ML2 plugin allows multiple ways to implement the physical and virtual
networks, it uses the mechanism_ drivers attribute to load the desired drivers. The
previous steps showed you how to configure OVS as the mechanism driver for ML2. The
OVS mechanism driver needs additional information such as the bridge name and physical
interface mapping so as to provide network connectivity. Hence, these mappings are also a
part of the mechanism driver configuration.

Configuring Neutron to use the VLAN type

driver

The ML2 plugin needs to be configured in order to use VLAN as the network type for all the
tenant networks.

Getting ready

The ML2 plugin has a configuration file setting that needs to be updated so that the tenants
can use VLAN as the tenant network type.

Chapter 2

How to do it...

The following steps will show you how to configure VLAN as the type driver and tenant
network type:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2 conf.
ini

3. Inthe [ml12] section of the file, configure VLAN as the type driver and network type:
[m12]

type drivers = vlan

tenant network types = vlan

4. Restart the Neutron and Open vSwitch services on the Controller and Network node
of our setup, using the following commands:

openstack@controller:~$ sudo service neutron-server restart
openstack@controller:~$ sudo service openvswitch-switch restart
openstack@controller:~$ sudo service neutron-plugin-openvswitch-

agent restart

5. The first three steps have to be repeated for the compute node in our setup as shown
previously. The command to restart OVS on the compute node is:

openstack@compute:~$ sudo service openvswitch-switch restart

During the startup, the Neutron server will load the core plugin, which in our case is the ML2
plugin. As the ML2 plugin allows multiple types of networks, it uses type drivers to check
which network type drivers to load. Finally, each tenant with a non-administrative role can use
only certain network types. The tenant network types attribute indicates the network types.

Configuring the VLAN range to be used for

the networks

In order to use VLAN as the network type, Neutron requires a range of VLAN identifiers. Each
OpenStack Network will be associated with a unique VLAN identifier. This recipe shows you
how to configure this range of VLAN IDs.

(77}

Using Open vSwitch for VLAN-Based Networks

Getting ready

The valid range for a VLAN ID is 1-4095. However, based on your OpenStack environment and
the physical network, it is possible to use a subset of this range.

How to do it...

Configuring the VLAN ID range is a setting in the plugin configuration file. The following steps
will show you how to set this range:

1. With the appropriate credentials, SSH into the node where the Neutron server
is running.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/meutron/plugins/ml2/ml2 conf.
ini

3. Inthe [ml2 type vlan] section of the file, configure the VLAN range:
[ml2 type vlan]

network vlan ranges = physnetl:1001:1200

For this recipe, we have used a VLAN ID range of 1001 to 1200.

5. The keyword physnet1 represents the alias for the physical network. This refers to
the OVS bridge that is bound to the physical Network adapter on the node.

6. These steps have to be repeated for all the nodes in your OpenStack setup including
all the compute and Network nodes.

When a network is created, Neutron will check the tenant network type first. In the case
of the VLAN networks, Neutron will fetch the first unused VLAN ID from the range that was
configured. This VLAN ID is then associated to the Network and also marked as used.

[

Chapter 2

Viewing the VLAN allotted for a Network

Open vSwitch configures the VLAN ID on the virtual port associated with a virtual machine
instance. The underlying physical network must also be configured so as to allow the data
traffic for the same VLAN ID. Hence, the knowledge of the VLAN ID allotted for a Network is
very useful, especially while troubleshooting networking problems. This recipe shows you how
to view the VLAN ID allotted for a Network.

Getting ready

The VLAN ID information is available only to users with an administrative role. Hence, for this
recipe, you will need the appropriate credentials.

How to do it...

The following steps will show you how to view the VLAN ID allotted for a Network:
1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.
2. Inthe left navigation menu, click on Admin | System | Networks.

3. Onthe right-hand side, you will get a list of all the Networks in the setup, as shown in
the following screenshot:

Eass Networks
Admil
System Networks m
P Project Hetwork Hame Subnets Assaclated DHCP Agents Shared Status AdminState Actlons
Riouircs Usage admin Network-Chapler? Subnet-Chapter2 4040 41 0/24 o No ACTVE UP Edit Network =
coakboak Nebwork-Tenant-C LF. Subnet-Tenant-Chapter2 70.70.70.0/28 1 No ACTVE U m
coakbool 0 Mo ACmVE UP ==

]

Using Open vSwitch for VLAN-Based Networks

4. To view the details of a particular Network, click on the name of the Network.

Network Detail: Network-Chapter?2

Admin
. Network Overview
_ Name

Overview MNetwork-Chapter2
=]

Resource Usage 3e966c09-200e-4609-bch8-30fe 18271043
Project ID
7943cec19288426ca0213e592971d973

Hypervisors Status
ACTIVE

Host Aggregates Sf'"i" State
Shared

Instances No

External Network

MNo

Provider Network

Metwork Type: vlan

Images Physical Network: physnet1
Segmentation 1D: 1001

Flavors

Metworks

5. Inthe preceding screenshot, we can observe that Network Type is vian.

6. Segmentation ID represents the VLAN ID allotted for this particular Network.
Therefore, we can see that the VLAN ID of 1001 has been assigned to this Network.

7. The same information can be viewed using the neutron net-show command of
the Neutron CLI, as follows:

openstack@controller:~$ neutron net-show Network-Chapter2

Field	value
admin_state_up	True
id	3e966c@9-e00e-4609-bcb8-30fel8271b43
name	Network-Chapter2
provider:network_type	vlan
provideriphysical_network	physnetl
provider:segmentation_id	1l@@l
router:external	False
shared	False
status	ACTIVE
subnets	449b3ed4f-BBca-4bda-adac-bl3B3efa%9abd
tenant_id	7943cec19288428ca®213e592971d973

When a Network is created, Neutron computes the first free VLAN ID from the range that
was configured in the configuration file. This VLAN ID is stored as a segmentation ID in the
Neutron database.

SED

Chapter 2

Creating a Network with a specific VLAN

When the user creates a Network, the VLAN ID is automatically assigned to it. However, there
can be situations when a Network is required to use a specific VLAN. This can happen when
the physical network is preconfigured to carry a certain type of traffic using a specific VLAN ID.

Getting ready

You will need the following information to create a Network with a specific VLAN:

» The project (tenant) name for which the Network needs to be created

» AVLAN ID from the range configured in the ML2 configuration file

How to do it...

The following steps will show you how to create a Network with a specific VLAN ID:
1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.
2. Inthe left navigation menu, click on Admin | System and Networks.

3. On the right-hand side, we will get a list of all the Networks. As we logged in with an
administrative role, we should be able to view all the networks across all the projects:

— Networks
Admin
Networks
Overview . Network Subnets DHCP Admin .
P {4 Shared Stats Acti
b Name Associated Agents are atus State ceions
Resource Usage W5 re u
Chapter2 40.40.41.0/24
Hypervisors
e Subnet-Tenant-
cookbaook Chapterz 0 No ACTIVE | UP Edit Network =
Host Aggregates 70.70.70.0/28

. Displaying 2 items
nstances

Flavors

mages

Networks

EnS

vww allitebooks.conl

http://www.allitebooks.org

Using Open vSwitch for VLAN-Based Networks

4. Click on the + Create Network button to display the Create Network screen for the
administrators. Note that this screen is different from the one shown for tenants,

which is as follows:

Create Network

Name

Project *

Select a project v

Provider Network Type * @
Local v
Admin State *

upP v

Shared

External Network

Description:
Create a new network for any project as you need.

Provider specified network can be created. You can specify
a physical network type (like Flat, WVLAN, GRE, and VX LAN)
and its segmentation_id or physical network mame for a
new virtual network.

In addition, you can creake an external network or a shared
network by checking the corresponding checkbox.

Cancel Create Network

=

Chapter 2

5. Enter a name for the Network. Select a Project and select VLAN as Provider Network
Type. Once you choose VLAN as the Network type, the screen will prompt you to

provide more details as shown here:

Create Network

Mame

MNetwork-With-WLAN

Project *

cookbook

Provider Nekwork Type * @

VLAN

Physical Network * @

physnet1

Segmentation ID * ©

‘ 1005

Admin Stake *

up

Shared

External Network

Description:
Create a new network for any project as you need.

Provider specified network can be created. You can specify
a physical network type (like Flat, VLAN, GRE, and WXLAM)
and its segmentation_id or physical network name for a
new virtual network.

In addition, you can create an external network or a shared
network by checking the corresponding checkbox.

Cancel Create Metwork

e

Using Open vSwitch for VLAN-Based Networks

6. Enter physnet1 as the value for Physical Network. This was the alias that was
used when configuring OVS as the mechanism driver in the recipe titled Configuring
Neutron to use the Open vSwitch mechanism driver.

7. Inthe Segmentation ID field, enter a VLAN ID from the range that was configured for
Neutron. Note that if you enter a VLAN ID that is already in use, the create network
request will fail.

8. Now click on Create Network. Once the network creation succeeds, the network
will show in the list. Note that this mechanism creates a Network without a subnet.
Therefore, you will see that the Subnets Associated column is empty:

— Networks
Admin
System Networks
Bveniey Project :::nv;ork i::z:ir:ted ::::r.s Shared Status :::;;n Actions
Resource Usage I i;i’::cxi:terz o No ACTIVE | UP
AEEETE Subnet-Tenant-
cookbook Chapter2 0 Mo ACTIVE UP
Host Aggregates 70.70.70.0/28
nstances cookbook 7ﬁ __] 0 No ACTIVE | UP
Flavors Displaying 3 items
mages
Networks

9. Click on the Network name of the newly created Network to view its details. You can
see that the Segmentation ID that we entered has been used to create the Network:

Chapter 2

o Network Detail: Network-With-
etwor eltall. Networ |
VLAN
System
Overview :
s Network Overview
B U Name
source
e Netwark-With-VLAN
[[=]
Hypervisors Tefd5b55-e0a3-42d3-8147-b3a2b73ed2ea
Project ID
cF158e179F78422ba%4385bd967274d3
Host Aggregates Status
ACTIVE
Instances Admin State
up
Shared
Flavors Mo
External Network
Images - -
Provider Network
rk Type: vlan
Networks Y
n ID: 1005
Routers
subnets
X Name CIDR IP Version Gateway IP Actions
System Information
Mo items to display.

Users can use the + Create Subnet button to add a Subnet to this Network. The preceding
steps showed you how a user with an administrative role could create a Network with a
specific VLAN.

When a network is created as shown in this recipe, the Neutron server validates the
segmentation ID against the VLAN ID range configured in Neutron. If the segmentation ID falls
within the range, Neutron will check whether the segmentation ID is already in use or not. If
the ID is not in use, then the Network creation will succeed.

]

Using Open vSwitch for VLAN-Based Networks

Viewing the virtual interface information on

the compute node

As tenants, users can create a Network, Subnet, and Instances. However, the underlying physical
and virtual network details are hidden from them. This is important because the tenants should
focus on their business requirements instead of the specific implementation details.

However, the OpenStack administrators need to understand the physical and virtual
networking details. This is required in order to troubleshoot any problems faced by the
tenants. In this recipe, we will show you how an administrator can view the virtual interface
(VIF) information for an instance running on a compute node.

Getting ready

As this recipe is described from the point of view of an administrator troubleshooting a tenant
problem, the following information is required:

» The Tenant Network name

» The virtual machine instance whose VIF information is to be identified

How to do it...

The following steps will show you how to find the VIF information on a compute node:
1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.

2. In the left navigation menu, click on Admin | System | Instances. On the right-hand
side, you will see a list of all the virtual machine instances.

3. Click the checkbox next to the virtual machine instance whose VIF details you want to
see. Using the drop-down menu at the end of the row, select Console:

SE)

Chapter 2

Project All |
nstances
Admin
Overviev Image IP Power w3
4 Project Host Name z Size Status Task since Actions
Name Address State created

Edit Instance [I&4

Host Aggregates Displaying 1 item

nstances

4. This should show the VNC console for the selected instance. Log in to the instance
and execute the following command:

$ ifconfig

5. You should see an output similar to the following screen. Note down the IP address,
70.70.70.2 in this case, and the MAC address (fa:16:3e:76:cb:e5):

Instance Details: VM1

Send CtdAlDel

ifconfig

eth® Link encap:Ethernet HWaddr FA:16:3E:76:CB:ES
inet addr:70.70.70.2 Bcast:70.70.70.15 Mask:255.255.255.240
inetb addr: fe80::f816:3eff :fe?b:cbe5-64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:17 errors:0 dropped:0 overruns:0 frame:0
TX packets:103 errors:0 dropped:® overruns:@ carrier:0
collisions:@ txqueuelen:1000
RX bytes:1821 (1.7 RiB) TX bytes:5978 (5.8 KiB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

ineth addr: ::1-128 Scope:Host

UP LOOPBACK RUNNING HMTU:16436 Metric:1

RX packets:50 errors:0 dropped:® overruns:® frame:0

TX packets:50 errors:0 dropped:® overruns:@ carrier:0
collisions:@ txqueuelen:®
RX bytes:4640 (4.5 KiB) TX bytes:4640 (4.5 KiB)

Using Open vSwitch for VLAN-Based Networks

6. Inthe left navigation menu, click on Admin | System | Networks. Click on the name
of the Network to which the instance belongs. This will display the Network Detail for
that Network. Note the Segmentation ID (VLAN ID), which is 1002 in our example:

Network Deta

l: Network-Tenant-Chapter2

Network Overview

Name

Metwork-Tenant-Chapter2

ID
bd090663-eafe-4241-37b4-bc9ds056d82b
Project ID
cF158e179fT8422ba%4a85bd9672F4d8
Status

ACTIVE

Admin State

up

Shared

Mo

External Network

MNo

Provider Network

Subnes

MName CIDR IP Version Gateway IP Actions

Subnet-Tenant-Chapter2 70.70.70.0/28 IFud 70.70.70.1 EditSubnet -

Displaying 1item

Pors

Name Fixed IPs Device Attached Status Admin State Actions

70.70.70.3 network:dhcp ACTIVE up EditPort -
(a22fas51 70.70.70.2 compute:nova ACTIVE up Edit Port -
——

SED

Chapter 2

7. You can also see the list of the OpenStack ports for that Network. Our virtual machine
instance had an IP address of 70.70.70.2 and there is a Port corresponding to this
IP address. Click on the Port Name to view the Port Detail. Note that the MAC and IP
addresses match our virtual machine:

Port Detail

8]
i
w

Port Overview
Port

Name
MNane

ID
322f8551-57d6-4c71-b5c2-96001d64fb26

Network 1D

naFaAd7Aq 2 Thd heaAenced

pd0S0&6a-eare-4241-a704-Dc9a8056a0820
Project ID
cF1582179F78422ba%4a85bd9672F4d8

Fixed IP
IP address: 70.70.70.2 [Subnet ID 55645745-543b-4bb0-8376-F0c9239FT3b4

Mac Address
fa:-16:3e:76:ches

Status

ACTIVE

Admin State

Up

Attached Device

Device Owner: compute:nova

Device ID: 4709355b-1167-4e1b-a560-057F48d 72871

Pay attention to the ID of the port, especially the first 11 characters, a22f8551-57.

9. Now, log in to the compute node of your setup with the appropriate credentials and
execute the following command:

openstack@computel:~$ sudo ovs-vsctl show

Using Open vSwitch for VLAN-Based Networks

10. You should see an output as follows. The key thing to note is the OVS port named
gvoa22f8551-57. As you can see, this port name matches the ID of the OpenStack
port used for our virtual machine instance:

openstack@computel:~$ sudo ovs-vsctl show
e2305089-6db0-423e-b2d7-b4200a3c0110
Bridge "br-ethl"
Port "br-ethl"
Interface "br-ethl"
type: internal
Port "phy-br-ethl"
Interface "phy-br-ethl"

type: patch
options: {peer="int-br-ethi"}
Port "p2pl"

Interface "p2pl"
Bridge br-int
fail_mode: secure
Port "int-br-ethl"
Interface "int-br-ethl"
type: patch
options: {peer="phy-br-ethl"}
Port "qvoa22f8551-57"
tag: 3
Interface "qvoa22f8551-57"
Port br-int
Interface br-int
type: internal
ovs_version: "2.1.3"

11. The tag used for our gvoa22£8551-57 port is 3. This is the tag used in OVS.
When OVS forwards the packets from our virtual machine to the outside world, it
must tag it with the VLAN ID of 1002 (Segmentation ID). We can verify this using
the ovs-ofctl dump-flows br-int command. This command prints all the
network flow information for the specific Open vSwitch instance. See the following
highlighted output:

openstack@computel:~$ sudo ovs-ofctl dump-flows br-int

NXST_FLOW reply (xid=0x4):

cookie=0x@, duration=2846589.807s, table=0, n_packets=184, n_bytes=14630,
idle_age=1410, hard_age=65534, priority=1 actions=NORMAL

cookie=0x@, duration=2525.210s, table=0, n_packets=5, n_bytes=909, idle_age=1434,
priority=3,in_port=2,d1l_vlan=1002 actions=mod_vlan_vid:3,NORMAL

cookie=0x0, duration=2846166.773s, table=0, n_packets=329244, n_bytes=32975201,
idle_age=4, hard_age=65534, priority=2,in_port=2 actions=drop

cookie=0x@, duration=2846589.677s, table=23, n_packets=0, n_bytes=0, idle_age=65534,
hard_age=65534, priority=0 actions=drop

-]

Chapter 2

The OpenStack entities such as Network, port, and others are assigned a unique ID when they
are created. These unique IDs are reused while configuring the physical and virtual network so
that troubleshooting is easier.

In the preceding example, we identified the port ID for the instance and using this ID, we
were able to view the OVS and VLAN information on the compute node. These are usually the
foremost steps in identifying the networking problems on a compute node.

Viewing the virtual interface information on

the Network node

The previous recipe showed you how to identify the VIF information on the compute node. Now
let's turn our attention to the Network node.

While a virtual machine is instantiated on a compute node, the DHCP server for the entire
tenant Network is started on the Network node. As multiple tenant networks can have
overlapping IP addresses, the Network node uses the concept of namespaces to isolate one
Network from the other.

Getting ready

As this recipe is described from the point of view of an administrator troubleshooting a tenant
problem, the following information is required:

» The tenant Network name

» The virtual machine instance whose VIF information is to be identified

How to do it...

The previous recipe showed you how to view the ports associated with a Network on the
Network Detail screen. This recipe shows you how to look for the DHCP-related information
on the Network node:

1. Inthe left navigation menu, click on Admin | System | Networks. Click on the
name of the Network to view the details of the network to which the virtual machine
instance belongs.

@

Using Open vSwitch for VLAN-Based Networks

2. Inthe details of the Network, we can see the Ports associated with this Network.
The DHCP Port for the selected network is highlighted as follows:

Network Overview

Name

Metwork-Tenant-Chapter2

ID
bd090663-eafe-4241-37b4-bc9ds056d82b
Project ID
cF158e179fT8422ba%4a85bd9672F4d8
Status

ACTIVE

Admin State

up

Shared

Mo

External Network

MNo

Provider Network

Metwaork Type: vlan

Physical Metwaork: physnet1

Segmentation ID: 1002

Network Detail: Network-Tenant-Chapter?2

Subnets
MName CIDR IP Version Gateway IP Actions
Subnet-Tenant-Chapter2 70.70.70.0/28 Pva 70.70.70.1
Displaying 1item
Pors
Name Fixed IPs Device Attached Status Admin State Actions
(18ccef0s 70.70.70.3 network:dhcp ACTIVE up
(a22fas51 7070702 compute:nova ACTIVE up

3. Click on the Port name to view the DHCP Port Detail. Note that the DHCP IP address
is 70.70.70.3 and the Port ID starts with 18cc6f06-2b as highlighted here:

Chapter 2

Port Detail

i

Port Overview
Port

Name

MNone

1D
18c06f06-2bF7-4633
Network ID

bd0%06&5a-eafe-4241-a7b4-bc9dB056dE2D
Project ID
cF158e179f78422ba94a85bd3672F4d8
Fixed IP

IP address: 70.70.70 3jSubnet ID 55648748-543b-4bb0-8376-f0c92a9F720b4
Mac Address

fa:16:3e:6c:44:46

Status

ACTIVE

Admin Stake

UP

Akttached Device

Device Owner: network-dhco

Device ID: dhcpd3377d3c-a0d1-5d71-9947-F17125

)57 bb-bd09066Fa-cafe-4241-a7b4-bc9dB056d820

4. Now log in to the network node of your setup (the Controller and Network node
of our setup for this chapter) with the appropriate credentials and execute the
following command:

openstack@controller:~$ ip netns

gdhcp-bd09066a-eafe-4241-a7b4-bc9d8056d82b

5. The output of the ip netns command lists all the Linux namespaces created on
the node. In our setup, we can see a namespace called gdhcp-bd09066a-eafe-
4241-a7b4-bc9d8056d82b. This name is generated by Neutron by adding gdhcp
and the unique ID for the Network.

@]

Using Open vSwitch for VLAN-Based Networks

6. To view the networking information and applications running in a namespace, we
will need to start a command shell in the namespace. You can do this using the
following command:

openstack@controller:~$ sudo ip netns exec gdhcp-bd09066a-eafe-
4241-a7b4-bc9d8056d82b /bin/bash

7. Once this command is successful, you will get a new shell prompt. All the commands
executed at this shell prompt are restricted to that namespace. Let's type the
following ifconfig command at the prompt:

root@controller:~# ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:® errors:@ dropped:® overruns:® frame:Q
TX packets:® errors:® dropped:® overruns:@ carrier:@
collisions:@ txqueuelen:@
RX bytes:® (0.0 B) TX bytes:@ (0.8 B)

tapl8cc6f@6-2b Link encap:Ethernet HWaddr fa:16:3e:6c:44:46
inet addr:70.70.70.3 Bcast:70.70.70.15 Mask:255.255.255.240
inet6 addr: fe80::f816:3eff:fe6c:4446/64 Scope:Link
UP BROADCAST RUNNING MTU:1500 Metric:1
RX packets:79 errors:@ dropped:® overruns:® frame:®
TX packets:13 errors:@ dropped:® overruns:® carrier:9
collisions:® txqueuelen:®
RX bytes:5404 (5.4 KB) TX bytes:1575 (1.5 KB)

8. Inthe output of the ifconfig command, we can see an interface called
tapl8cc6£06-2b. You will notice that 18cc6£06-2b matches the first few
characters of the DHCP port ID that we noted in step 3.

9. Neutron uses dnsmasq to provide DHCP services. We can confirm that the
dnsmasqg process is using the tapl8cc6£06-2b interface with the ps command
as shown here:

root@controller:~# ps —-ef | grep dnsmasq

nobody 2776 1 @ 20:57 7 00:00:00 dnsmasg --no-hosts —--no-resolv —-
strict-order ——bind-interfaces --interface=tap18cc6f@6 -2b --except-interface=1lo --
pid-file=/var/lib/neutron/dhcp/bd@9066a-eafe-4241-a7b4-bc9d8056d82b/pid —-dhcp-
hostsfile=/var/lib/neutron/dhcp/bd0@9066a-eafe-4241-a7b4-bc9d8056d82b/host --addn-
hosts=/var/lib/neutron/dhcp/bd@9066a-eafe-4241-a7b4-bc9d8056d82b/addn_hosts --dhcp-
optsfile=/var/lib/neutron/dhcp/bd09066a-eafe-4241-a7b4-bc9d8056d82b/opts —--leasefile-
ro ——dhcp-range=set:tag®,70.70.70.0 ,static,B86400s ——dhcp-lease-max=16 —-conf-file=
——domain=openstacklocal

root 4476 4436 @ 21:12 pts/15 00:00:00 grep —-color=auto dnsmasq

-

Chapter 2

10. Next, we will check how the tap18cc6£06-2b interface is connected to the external
physical network. For this, we will exit the namespace shell prompt and execute the

following ovs-vsctl show command on the controller shell:

622efBaB-c58e-492c-81d@-b95cea7badc®
Bridge "br-ethl"
Port "phy-br-ethl"
Interface "phy-br-ethl"
type: patch

Port "ethl"
Interface "ethl"

Port "br-ethl"
Interface "br-ethl"

type: internal
Bridge br-int

fail_mode: secure

Port "taplB8cc6f@6-2b"
tag: 1

type: internal
Port "int-br-ethl"
Interface "int-br-ethl"
type: patch

Port br-int
Interface br-int
type: internal
Bridge br-ex
Port "eth2"
Interface "eth2"
Port br-ex
Interface br-ex
type: internal
ovs_version: "2.1.3"

openstack@controller:~$% sudo ovs-vsctl show

options: {peer="int-br-ethi"}

Interface "taplBcc6f@6 -2b"

options: {peer="phy-br-ethl"}

11. As seen in the preceding output, the tap18cc6£06-2b interface is bound to the OVS
bridge, br-ethil. This in turn uses the eth1 physical interface of the network node.

12. As seen in the previous recipe, we can execute the ovs-ofctl dump-flows
br-int command to confirm that the DHCP port is also using VLAN 1002 that was

assigned to the tenant network.

Using Open vSwitch for VLAN-Based Networks

Namespaces are constructs in Linux that allows the users to create a copy of a full TCP/

IP network stack including interfaces and routing tables. In the OpenStack networking, one
DHCP server is started for each Network and an IP address from the corresponding subnet
is assigned to the DHCP server. As the tenant networks can have similar or overlapping IP
addresses, Neutron uses hamespaces to isolate each DHCP server.

As we saw in the previous recipe, Neutron uses unique IDs to identify the physical and virtual
network information. The namespace name contained the unique ID of the tenant network.
Moreover, the interface used by the DHCP server contained the unique ID of the Network port.

Exploring Other
Network Types
in Neutron

OpenStack Networking supports different types of network in order to provide rich
functionality and flexibility. In this chapter, we will show you the following set of recipes that
cover a few specific network types supported in OpenStack:

>

>

Configuring Neutron to use the Linux bridge mechanism driver

Viewing the virtual interface information for Linux bridge on the compute node
Configuring Neutron to use a Flat Network type

Creating a Flat Network using Horizon

Creating a shared Network using Horizon

Creating an external Network using Horizon

Setting up a simple web application - an introduction

Setting up a simple web application - setting up OpenStack Networks

Setting up a simple web application - creating instances

[T}

Exploring Other Network Types in Neutron

Introduction

In the previous chapter, we saw how OpenStack supports Open vSwitch as the mechanism for
a VLAN network type. Similar to Open vSwitch, Linux bridge is a software bridge in a Linux host
that is capable of providing virtual network connectivity to instances.

In this chapter, we will see how to implement a network type called Flat Network. We will also
see how to provide an external (say, the Internet) access to virtual machines (VMs).

Finally, we will apply the concepts learned in this chapter to deploy a simple web application.

In order to implement these recipes, you will need an OpenStack setup as described here:

Controller and Network Node Compute Node

Keystone Service
Nova Service(s) Glance Service Nova Service

Neutron Server Neutron Agent(s) Neutron Agent(s)

Open vSwitch
eth0 —— ethl

Open vSwitch
ethO ——— ethl

Management Network

Data Network

This setup has one compute node and one node for controller and networking services. For
this chapter, you can also have a single all-in-one environment.

As discussed in the previous chapter, the core functionality of Neutron is to provide a Layer 2
(L2) connectivity. Neutron provides this functionality through the use of a core plugin. All the
recipes of this chapter assume that ML2 is the core plugin in the Neutron configuration file.

Configuring Neutron to use the Linux bridge

mechanism driver

The ML2 plugin can support many mechanisms in order to provide the core functionality. We
will see how a Linux bridge can act as a mechanism driver for the ML2 plugin. This recipe
shows you how to configure an ML2 plugin with a Linux bridge as the mechanism driver.

Chapter 3

Getting ready

Configuring ML2 to use a Linux bridge as the mechanism driver requires changes to the
ML2 plugin configuration file. We will also have to configure the Linux bridge with a tenant
network type and the alias for the Linux bridge that is bound to the physical network adapter
of the node.

How to do it...

The following steps will show you how to configure Linux as the mechanism driver for the
ML2 plugin:

1.

With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2 conf.
ini

Inthe [m12] section of the file, configure ML2 to use the Linux bridge as the
mechanism driver:

[ml2]

mechanism drivers = linuxbridge

Inthe [1inux bridge] section of the file, configure the Linux bridge with the
tenant network type and physical interface mapping:

[linux bridgel]

tenant network type = vlan

physical interface mappings = physnetl:ethl

In the previous step, physnet1 represents the alias and ethil represents the
physical interface that is added to the Linux bridge instance.

Restart the Neutron server and Linux bridge agent on Controller and Network node of
our setup using the following commands:

openstacke@controller:~$ sudo service neutron-server restart

openstack@controller:~$ sudo service neutron-plugin-linuxbridge-
agent restart

Steps 2 to 5 have to be repeated for the compute node in our setup. On the compute
node only the Linux bridge agent needs to be restarted.

On the Network node, a few changes are needed so that the Neutron agents can use
Linux bridge-related drivers.

@]

Exploring Other Network Types in Neutron

9. Editthe [DEFAULT] section of the DHCP agent configuration file located at
/etc/neutron/dhcp agent.ini on the network node, as follows:

[DEFAULT]

interface driver = neutron.agent.linux.interface.
BridgeInterfaceDriver

10. Editthe [DEFAULT] section of the L3 agent configuration file located at
/etc/neutron/13 agent.ini on the network node in the following way:

[DEFAULT]

interface driver = neutron.agent.linux.interface.
BridgeInterfaceDriver

11. Edit the [securitygroup] section of the ML2 plugin configuration file located
at /etc/neutron/plugins/ml2/ml2_ conf.ini, as follows:

[securitygroup]

firewall driver = neutron.agent.linux.iptables firewall.
IptablesFirewallDriver

12. Restart the Linux Bridge agent on the Network node by executing service
neutron-plugin-linuxbridge-agent restart

At the start of the Neutron server, it will load the core plugin, which in our case is ML2. As

the ML2 plugin allows you to implement physical networks in multiple ways, it uses the
mechanism drivers attribute to load the desired drivers. The preceding steps showed

you how to configure a Linux bridge as the mechanism driver for ML2. The Linux bridge
mechanism driver needs additional information such as the bridge name and physical
interface mapping in order to provide network connectivity. Hence, these mappings are also a
part of the mechanism driver configuration.

Viewing the virtual interface information for

Linux bridge on the compute node

Users can create Networks, Subnets, and instances as tenants. However, the underlying
physical and virtual network details are hidden from them. This is important because tenants
should focus on their business requirements instead of specific implementation details.

However, administrators of the cloud platforms that have been built using OpenStack need to
understand the physical and virtual networking details. This is required in order to troubleshoot
any problems faced by the tenants. In this recipe, we will show you how an administrator can
view the virtual interface (VIF) information for an instance that is running on a compute node.

[

Chapter 3

Getting ready

As this recipe is described from the point of view of an administrator who is troubleshooting a
tenant problem, the following information is required:

» The tenant network name

» The VM instance whose VIF information is to be identified

How to do it...

The following steps will show you how to view the VIF information on a compute node when
using the Linux bridge:

1. Log in to the OpenStack Horizon dashboard using a user ID with an

administrative role.

2. In the left navigation menu, navigate to Admin | System | Instances. On the
right-hand side, you will see a list of all the VM instances.

3. Click on the checkbox next to the VM instance whose VIF details you want to see.
Using the drop-down menu at the end of the row, select Console, as follows:

Project

All Instances

Admin
System Instances Project v | Filter O Terminate Instances
Overview Time
- 5 Power c 5
) Project Host Name L=z i Size Status Task since Actions
Name Address State
created
Resource Usage
cirros- Al
Hypervisors cookbook | computel Wil 033- 7070702 mitiny Active MNone Running -:‘-;u-:‘;: EditInstance &g
%86_64 .

Host Aggregates Displaying 1 item -

Instances

Pause Instance

Flavors Suspend Instance

Images

4. This should show the VNC console for the selected instance. Log in to the instance
and execute the following command:

$ ifconfig

Exploring Other Network Types in Neutron

5. You should see an output similar to the following screen. Note down the IP address,
70.70.70.2 in this case, and the MAC address, (FA:16:3E:3E:F0:EB), as shown
in the following screenshot:

Instance Details; VM1

Console

Instance Console

=

Chapter 3

6. Inthe left navigation menu, navigate to Project | Admin | Networks. Click on the name
of the Network to which the instance belongs. This will display the Network Detail for
this Network. Note the Segmentation ID (VLAN ID), which is 1002 in our example:

Network Detail: Network-Tenant-Chapter-3

Network Overview
Name

Netwaork-Tenart-Chapter-3

[[+]
1e023det-TaB4-43bf-99F5-57a6f0cebf 79
Project ID
abfOSObleBffaca0953254a52ab1 6e2b
Status

ACTIVE

Admin State

up

Shared

Mo

External Network

Mo

Provider Network

MNeowork T van

Physic, physnetl

Subnets + Create Subnet I %00
Name CIoR 1P Version Gateway IP Actions
enant-Chapterd T0.70.70.0/28 rore.ron
o
Ports
Hame Fixed IPs Device Attached Status Admin State Actions
f51118526) 7070702 e up = |
67 dede] 70.70.70.3 necwark:dhep ACTIVE up m

5]

Exploring Other Network Types in Neutron

7. You can also see the list of the OpenStack ports for this Network. Our VM instance
has an IP address of 70.70.70.2 and there is a Port corresponding to this IP address.
Click on the Port Name to view the Port Detail. Note that the MAC and IP addresses
match our VM:

Port Detail

Overview

Port Overview
Port

Name
None

T 1

197 T18526-06(9-4987-8c8c-cFBC6017d316
etwork ID

1e023dc6-7aB4-43bF-99F5-57a6f0cebf79

Project ID

abf050bf68ff4da9953254a52ab16e2b

Fixed IP

IP address: 70.70.70.2 JSubnet ID b46cb923-6b44-4359-af82-63745ebae729

Mac Address

fa:16:3e:3e:f0:eb

Status

ACTIVE

Admin State

UP

Attached Device

Device Owner: compute:nova

Device ID: 84c23615-8456-4d5d-b5da-f484173afdb1

8. Pay attention to the ID of the port, especially the first 11 characters: 911185a6-06.

9. Now log in to the compute node of your setup with the appropriate credentials and
execute the following command:

openstack@compute:~$ brctl show

10. You should see an output as follows:

bridge name bridge id STP enabled interfaces
brqle@23dc6-7a 8000.080027532e74 no ethl.1002
tap911185a6-06

=]

Chapter 3

The preceding output shows two important things. The Linux bridge name, brgle023dcé6-7a,
is derived from the ID of the Network and the Tap interface name, tap911185a6-06, is
derived from the OpenStack Port used for our VM. The Tap interface is the entity that connects
the virtual interface on the instance to the Linux bridge.

The output of the brct1 command also shows that eth1.1002 is the physical interface on
the Linux bridge. This notation indicates that the traffic on that Linux bridge will be sent out on
the eth1 physical interface with a VLAN tag of 1002.

In the preceding example, we identified the Port ID for the instance, and using this ID, we were
able to view the Linux bridge and VLAN information on the compute node. These are usually
the foremost steps in identifying the networking problems on a compute node.

We also saw that the Linux bridge name is derived from the ID of the OpenStack Network. This
implies that when a Linux bridge is used as the mechanism driver, one bridge will be created
for every OpenStack Network. The Linux bridge-based configuration on a compute node is
pictorially depicted here:

Compute 1 VM1 VM2 Compute 2
L___EEJEQ“_' '.__PTQ-_J
T tapXOxX | | fapYYWYY
bropOXXXX bropXXXX
ethO Linux Bridge 1 eth1.1002 1 1 eth1.002 i Linux Bridge ethO

Physical Network

There's more...

This recipe showed you how to identify the virtual interface on the compute node. On the
Network node, there is no change due to the Linux bridge being a mechanism driver. You
can refer to the recipe titled Viewing the virtual interface information on the Network node in
Chapter 2, Using Open vSwitch for VLAN-Based Networks, to view the virtual interface on a
Network node.

]

Exploring Other Network Types in Neutron

Configuring Neutron to use a Flat network

type

A Flat Network is another network type that is supported by the OpenStack Neutron

ML2 plugin. Flat Networks are useful when tenant network isolation is not a mandatory
requirement. Another scenario for a Flat Network type could be the access to centralized
storage for all the instances using a dedicated physical interface.

Getting ready

To use Flat Networks, the ML2 plugin's type driver and related settings need to be updated.
Just as VLAN, the Flat Network type can work with an OVS or Linux bridge mechanism driver.
In our example, we will use the Linux bridge mechanism driver.

How to do it...

The following steps will show you how to configure the Flat Network as the type driver and
tenant network type:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2 conf.
ini

3. Inthe [ml12] section of the file, configure the Flat Network as the type driver and
network type:
[ml2]

type drivers = flat
tenant network types = flat

4. Inthe [ml2 type flat] section of the file, configure the physical network names
with the Flat Networks that are created:

[ml2 type flat]

flat networks = physnetl

5. As we used the Linux bridge as the mechanism driver, ensure that the Linux bridge
physical interface mappings are configured appropriately. Refer to the first recipe of
this chapter.

[

Chapter 3

6. Restart the Neutron server and Linux bridge agent on Controller and Network Node of
our setup using the following commands:

openstack@controller:~$ sudo service neutron-server restart
openstack@controller:~$ sudo service neutron-plugin-linuxbridge-

agent restart

7. Steps 2 to 4 have to be repeated for the compute node in our setup. The command to
restart the networking services on the compute node is as follows:

openstack@controller:~$ sudo service neutron-plugin-linuxbridge-
agent restart

At the start of the Neutron server, it will load the core plugin, which in our case is ML2. As the
ML2 plugin allows multiple types of networks, it uses type drivers to see which network
drivers to be loaded. Finally, each tenant with a non-administrative role can use only certain
network types. The tenant network types attribute indicates the network types.

A Flat Network is used when the L2 isolation between different tenant networks is not
required. In this scenario, all the instances are a part of the same network. However, they
can be a part of different subnetworks.

Creating a Flat Network using Horizon

In the case of a VLAN network type, we saw that the physical interface was separated in
logical interfaces such as eth1.1002, eth1.1003, and so on. Moreover, each of these
logical interfaces was placed on a Linux bridge corresponding to the OpenStack network.

In contrast, Flat Networks are created by placing the physical interfaces directly on the Linux
bridge. This means that you can have only one Flat Network per physical interface on the
compute node. Due to this reason, only the users with an administrative role are allowed to
create a Flat Network.

Getting ready

In order to create a Flat Network and Subnet, you will need the following information,
minimally:

» The Network name

» The Subnet name and IP address range

» The physical network name—this information was configured in the ML2 plugin
configuration file

7]

Exploring Other Network Types in Neutron

How to do it...

The following steps will show you how to create a Flat Network using Horizon:
1. Log in to the OpenStack Horizon dashboard using a user ID with an
administrative role.
2. Inthe left navigation menu, navigate to Admin | System | Networks.

Click on the + Create Network button to display the following Create Network screen
for administrators:

Create Network

Name
Description:
Create a new netwark For any project as you nead.
Project * . .)
Provider specified network can be created. You can specify
Select a project v | aphysical network type (like Flat, VLAN, CRE, and WXLAM)
and its segmentation_id or physical network name for a
. W vi etwork.
Provider Network Type * @ new virtual network
Local v In addition, you can create an external network or a shared
oca

network by checking the correspending checkbox.
Admin State *
up v
Shared

External Network

Cancel Create Network

4. Enter a name for the Network. Select a Project to assign the Network to a
specific tenant.

[

Chapter 3

5. Select Flat as Provider Network Type. Once you choose Flat as the Network type, the
screen will prompt you to provide more details, as shown in the following screenshot:

Create Network

Name

FlatNetwork1

Project *

cookbook

Provider Network Type * @

Flat

Physical Network * @

physnet1

Admin State *

=]

—| Shared

—| External Network

Description:
Create a new network for any project as you need.

Provider specified network can be created. You can specify
a physical netwaork type (like Flat, VLAN, GRE, and VXLAN)
and its segmentation_id or physical metwork name for a
new vircual network.

In addition, you can create an external network or a shared
nebwork by checking the corresponding checkbaox.

Cancel Create Network

6. Enter physnet1 as the value for Physical Network. This was the alias used when
configuring the Flat Network as the type driver in the previous recipe.

7. Now click on Create Network. Once the network creation succeeds, the network will

show in the list.

8. Note that this mechanism creates a Network without a Subnet. Therefore, the next
step is to create a Subnet for this Network. This step can be performed as a normal
user associated with the Project to which this Network was added.

5]

Exploring Other Network Types in Neutron

The preceding steps showed how a user with an administrative role can create a Flat Network
and assign it to a Project. When the tenant creates an instance using this Flat Network,
Neutron will map the physical network name to the corresponding mechanism driver. The
mechanism driver (Linux bridge or Open vSwitch) will then provision the virtual network.

If your compute node has additional physical interfaces, then it is possible to create additional
Flat Networks. To do this, the ML2 configuration file needs to be updated as follows:

[ml2 type flat]
flat networks = physnetl,physnet2
[linux bridgel]

physical interface mappings = physnetl:ethl,physnet2:eth2

In the Create Network window, the administrative user can choose physnet?2 for the second
Flat Network. The previous example assumes that the Linux bridge is the mechanism driver
but a similar configuration can be done for OVS as well.

Creating a Shared Network using Horizon

We have already seen situations where only the administrative users can create a Network.
For example, only the administrators can create a Flat Network or a Network with a specific
VLAN ID. In addition, we have seen that the administrative users can assign a Network to a
particular tenant.

OpenStack also allows administrators to share a Network among all the tenants. This recipe
shows you how to accomplish this.

Getting ready

In order to create a shared network, you will need the following information:

» The Network name
» The Network type—for this recipe we will use a Flat Network

» The physical Network name—this information was configured in the ML2 plugin
configuration file

Chapter 3

How to do it...

The following steps will show you how to create a Flat Network using Horizon:

1. Log in to the OpenStack Horizon dashboard using a user ID with an

administrative role.

2. In the left navigation menu, navigate to Admin | System | Networks.

Click on the + Create Network button to display the following Create Network

screen for administrators:

Create Network

Mame

Project *

Select a project
Provider Network Type * @
Local

Admin State *

up

Shared

External Network

Description:
Create a new network For any project as you need.

Provider specified network can be created. You can specify
a physical network type (like Flat, VLAN, CRE, and WVXLAN)
and its segmentation_id or physical netwaork name for a
new virtual network.

In addition, you can creake an external network or a shared
network by checking the correspending checkbox.

Cancel Create Network

4. Enter a name for the Network. Select a Project to assign the Network to a

specific tenant.

&1

Exploring Other Network Types in Neutron

5. Select Provider Network Type as desired. For this recipe, we will choose Flat
networks as Provider Network Type. Once you choose Flat as the Network type, the
screen will prompt you to provide more details, as shown in the following screenshot:

Create Network

Name
FlatShareNetwork DESCI'Iptlon.
Create a new network for any project as you need.
Project *
rojec Provider specified network can be created. You can specify
cookbook 4 aphysical network type {like Flat, VLAN, CRE, and WXLAN)

and its segmentation_id or physical network name for a

Provider Network Type * @ new virtual network.

Im addition, you cam creake an external network or a shared
network by checking the corresponding checkbox.

Flat

Physical Network * @

physnet1

Admin State *

up

Shared

—| External Network

Cancel Create Network

6. Enter physnet1 as the value for Physical Network. This was the alias used when
configuring the Flat Network as the type driver in the previous recipe.

7. Check the Shared checkbox.

Now click on Create Network. Once the network creation has succeeded, the
network will show in the list.

[z

Chapter 3

A shared network is available to all the tenants independent of the project that was chosen
during creation. All the tenants can use the shared network to create VM instances. However,
only the administrative user of the project that was chosen during creation can edit or delete
the shared Network. Similarly, only the administrative user of the project can add a Subnet to
the shared Network.

Creating an External Network using Horizon

External Networks have a unique role to play with OpenStack Networking. As we have seen,
the DHCP server assigns an IP address from the Subnet to each VM instance. These IP
addresses are reachable only in the Network because tenant isolation is required. However,
many common deployments require that the VM instances have access to outside networks
including the Internet and also be reachable from the outside network.

The main purpose of the external Networks is to allow the VMs to access networks outside the
data center and Internet. They also allow the VMs to be accessed from the outside network.

Getting ready

As the external Networks have a special behavior associated with them, only users with an
administrative role can create them. Besides the standard input such as the Network name
and so on, it is important to identify the IP address range to be used for the external Network.
This recipe assumes that the L3 agent on the Network node has been configured with the
correct bridge information for the External Network access.

How to do it...

The following steps will show you how to create an external Network using Horizon:

1. Loginto the OpenStack Horizon dashboard using a user ID with an administrative role.
2. Inthe left navigation menu, navigate to Admin | System | Networks.

Exploring Other Network Types in Neutron

3. Click on the + Create Network button to display the following Create Network screen

for administrators:

Create Network

Name

Project *

Admin State *

Shared

External Network

Description:

new virtual network.

In addition, you can create an external network or a shared

network by checking the corresponding checkbox.

Cancel Create Network

Enter a name for the Network. Select a project to assign the Network to a specific tenant.

5. Select Provider Network Type as desired. For this recipe, we will choose Flat
networks as Provider Network Type. Once you choose Flat as the Network type, the
screen will prompt you to provide more details, as shown in the following screenshot:

&)

Chapter 3

Create Network

Name

FlatExternalMebwaork

Project *

cookbook

Provider Network Type * @

Flat

Physical Network * @

physnet1

Admin State *

up

—| Shared

External Metwork

ap

a

a

Description:

Create a new netwaork for any project as you nead.

Provider specified network can be created. You can specify
a physical network type {like Flat, VLAN, GRE, and VXLAN)
and its segmentation_id or physical network name for a
new virtual network.

In addition, you can create an external network or a shared
network by checking the corresponding checkbox.

6. Enter physnet1 as the value for Physical Network. This was the alias used when
configuring the Flat Network as the type driver in the previous recipe.

7. Check the External Network checkbox.

Now click on Create Network. Once the network creation has succeeded, the

network will show in the list.

9. The next important step is to create a Subnet for the newly created external Network.

(&)

Exploring Other Network Types in Neutron

As described Earlier, external Networks are used in cases where the VM instances need an
outside network access. External Networks can be used directly to attach the instances, and
in this case, their behavior is the same as any other Network. However, the main use case for
an External Network is in conjunction with the OpenStack router. We will describe this in detail
in Chapter 6, Using Routing Services in Neutron.

In either situation, an important element needs to be kept in mind. While creating a Subnet
for an External Network, the Gateway IP needs to be carefully selected. This is because this
IP address is already configured on the physical routers that will provide Internet access.
Therefore, we cannot let OpenStack choose a Gateway IP arbitrarily.

Setting up a simple web application - an

introduction

Now that we have seen several scenarios to create Networks and instantiate the VMs, let's
take a practical example and apply this knowledge.

In this 3-recipe series, you will learn how to use the OpenStack Networking capabilities to
create a simple web application. In the first recipe, we will just introduce the components of
the web application and desired network connectivity. The next two recipes will show you how
to implement this using OpenStack. For simplicity, we will not focus on the exact software
running in the VMs. We will just name the VMs as per our requirement.

Getting ready

A simple web application consists of a database and web application server. While both the
database and web server are capable of being executed on the same server, for a good scale
and performance, it is better to keep them on different servers.

Chapter 3

The following image depicts the networking connections between the VMs in our web
application. The DB-VM runs the database engine and Web-VM runs the web server:

DB-VM Web-VM

Database

DB-Access-Network ‘

Web-Access-Network

Router

Web-Internet-Network :

How to do it...

The following steps will show you what kind of OpenStack networks need to be set up in order
to accomplish this:

1. We will create a tenant Network for the Web Server to the Database connection
called DB-Access-Network. The important thing for this Network will be to limit the
number of IP addresses in the Subnet.

2. Next, we will create another tenant network for the Web Server to the Router
called Web-Access-Network. Once again, we will limit the number of IP addresses
in the Subnet.

3. The last network will be an External Network called Web-Internet-Network to provide
Internet access to the Web Server.

i

Exploring Other Network Types in Neutron

The database stores critical information. So, the network access to the DB-VM is available
only from the Web-VM using the DB-Access-Network. Moreover, this network will also carry
the database queries from the web application server to the database engine.

In order to connect to the Internet, the Web Server needs to connect to a local router. The
Web-Access-Network provides this connectivity.

Finally, the Web-Internet-Network connects the local router to the Internet.

Setting up a simple web application - setting

up OpenStack Networks

The previous recipe defined the different types of networks that we need to create in order

to set up our web application. This recipe shows you the specific steps that are required to
create the Networks and Subnets. We will refer to the earlier recipes about the Network and
Subnet creation instead of going through it step by step. However, this recipe will highlight the
important steps that are specific for the web application.

Getting ready

We will need to create three networks to connect the database, web application server, and
Internet. The following steps assume that the Linux bridge is the mechanism driver and VLAN
is the type driver configured in Neutron. This is important as the step to create an External
Network requires the type of Network.

For this recipe, we will use the following information to create the networks:

Network name | Subnet name Network address Allocation pools

range
DB-Access- DB-Access-Subnet | 192.168.20.0/29 192.168.20.2,192.168.20.4
Network
Web-Access- Web-Access- 192.168.30.0/29 192.168.30.2,192.168.30.4
Network Subnet
Web-Internet- Web-Internet- 10.10.1.0/24 10.10.1.1,10.10.1.2
Network Subnet

We will also need the Gateway IP address for the external Network.

Chapter 3

How to do it...

The following steps will show you how to create the three networks required for the web
application:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network
using Horizon in Chapter 1, Getting Started with OpenStack Networking. Use the
Network name, Subnet name, and Network address from the preceding table for
DB-Access-Network.

2. Before clicking on the Create button to create the Network, enter
192.168.20.2,192.168.20.4 in the Allocation Pools field, as shown in the
following screenshot. Note that there should not be any space after the comma:

Create Network

Enable DHCP Specify additional attributes for the subnet.

Allocation Pools @

192.168.20.2,192.168.20.4

DNS Name Servers @

Host Routes @

3. Click on the Create button to create DB-Access-Network.

Exploring Other Network Types in Neutron

4. Repeat these steps for Web-Access-Network. Once again, use the information in the
preceding table.

5. The next step is to create the external Network called Web-Internet-Network. As this is
an external Network, you will need administrative privileges.

6. Follow the steps mentioned in the recipe titled Creating External Networks using
Horizon in this chapter. Ensure that the Project is the same as that of the previous
two Networks.

7. The next step after the creation of Web-Internet-Network is to add the Subnet. For
this, click on the name of the network to view the details. Then, click on + Create
Subnet as shown here:

Network Detail: Web-Internet-Network

Network Overview

Name

ACTIVE

Admin State

[V

Shared

Mo

External Network

Subnets

Name CIDR IP Version Gateway IP Actions
No items to display.

Displaying 0 items

Chapter 3

8. Enter Subnet Name, Network Address, and Gateway IP for the Subnet, as shown in
the following screenshot. Then click on Next:

Create Subnet

Subnet Name Create a subnet associated with the network. Advanced

Web-Internet-Subnet configuration is available by clicking on the "Subnet
Detail" tab.

Network Address @

10.10.1.0/24

IP Version *

el

IPva

Gateway IP @

10.10.1.254

Disable Gateway

7]

Exploring Other Network Types in Neutron

9. In the Subnet Detail section, enter Allocation Pools as shown here and click

on Create:

Create Subnet

- Subnet Detail

Enable DHCP

Allocation Pools @

10.10.1.1,10.10.1.2

DNS Name Servers @

Host Routes @

Specify additional attributes For the subnet.

B

™

Chapter 3

These steps should result in three networks being shown when you select Project |
Network | Networks, as follows:

Networks + Create Network

MName Subnets Associated Shared Status Admin State Actions

DB-Access-Netwark DB-Access-Subnet 192.168.20.0/29 No ACTIVE UP m
Web-Access-Metwork Web-Access-5ubnet 192.158.30.0/29 No ACTIVE UP m

Web-Internet-Network Web-Internet-Subnet 10.10.1.0/24 No ACTIVE UP Edit Network =

Displaying 3 items

As mentioned earlier, the External Networks are used in conjunction with the OpenStack
routers. After the creation of the three networks, the next step is to create an OpenStack
router. We need to associate Web-Access-Subnet as an interface on this router and use Web-
Internet-Network as the gateway for this router. This will enable Internet access for the web
application server. The sixth chapter will cover the steps in detail.

As a specific tenant creates the web application, he also creates the two tenant networks,
namely DB-Access-Network and Web-Access-Network. Access to the Internet is controlled and
hence, the administrator creates the external Network called Web-Internet-Network on behalf
of the tenant. Thus, the tenant effectively has all the three networks made available to him.

Setting up a simple web application -

creating instances

With all the networks created, the final step is to create the two instances. The main step
during an instance creation is to choose the correct Network for each of the VMs.

Getting ready

You will require the appropriate OS images for the Database VM as well as the Web VM.

Exploring Other Network Types in Neutron

How to do it...

The following steps will show you how to create the two VM instances for the web application:

1. Create an instance called DB-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that DB-Access-Network is chosen in the Selected
networks field, as follows:

Launch Instance

Details * Access & Security * Metworking * Post-Creation * Advanced Options
Selected networks Choose network from Available networks to Selected
networks by push button or drag and drop, you may
el DB-Access-MNetwork change NIC order by drag and drop as well.
¥ [

Available networks

A Web-Access-Metwork
s

A Web-nternat-Natwork
<

Sz

Chapter 3

2. Create another instance called web-VM by following the steps of the recipe
titled Associating a Network to an instance using Horizon in Chapter 1, Getting
Started with OpenStack Networking. Ensure that both DB-Access-Network and
Web-Access-Network are chosen in the Selected networks field, as shown in the
following screenshot:

Launch Instance

Selected networks

BT, oB-AccessNetwork change NIC order by drag and drop as well.
¢

mc Web-Access-Network B

Available networks

. Web-nternet-Metwork

¢

7]

Exploring Other Network Types in Neutron

3. Once the instances are active, the instances list will look as follows:

Instances
Instance Name + Filter #» Launch Instance
Instance Image AL Size Key Stat Avallability T Power :::: Actions
Name Name = Pair U5 Zone K state < o
created
DB-Access-
Network
192.168.20.4
Web-VM | CirrosvVM Web- mitiny - Active nova None Running O minutes Create Snapshot -
Access-
Network
192.168.30.2
DE-VM CirrosvM 192.168.20.2 m.tiny Active nova None Running 0O minutes Create Snapshot ~
Displaying 2 kems

These steps complete the setting up of the web application using two VMs and three
OpenStack Networks.

DB-VM and Web-VM will exchange the database-related messages over DB-Access-Network.
The web traffic from and to the Internet will travel over Web-Access-Network and
Web-Internet-Network.

[

Exploring Overlay
Networks with Neutron

In this chapter, we will cover the following recipes:

» Configuring Neutron to use a VXLAN type driver

» Configuring a VNI Range for VXLAN Networks

» Viewing a VNI assigned to a Neutron Network

» Creating a Network with a specific VNI

» Viewing the virtual interface information on the compute node for VXLAN tunnels
» Viewing the virtual interface information on the network node for VXLAN tunnels
» Configuring Neutron to use a GRE type driver

» Viewing a virtual interface on the compute node for GRE tunnels

Introduction

The OpenStack Neutron provides you with various ways to implement virtual networks in order
to connect the virtual machine instances started by tenants. At a broad level, these network
types can be classified in two categories—networks based on VLANs and networks based on
overlays or tunnels.

In the case of overlay networks, the virtual switch on the Hypervisor encapsulates the data
packets from the VM in an IP packet and sends it to the destination Hypervisor. The virtual
switch on the destination Hypervisor then de-encapsulates and delivers the data packet to the
destination VM instance. The encapsulation process adds an identifier or a tunnel key to mark
and identify the packets belonging to different virtual networks.

(77}

Exploring Overlay Networks with Neutron

The OpenStack Neutron provides two ways to implement the overlay or tunnel-based virtual
networks, namely VXLAN and GRE. In this chapter, we will see how to implement virtual
networks using overlays and the ML2 plugin in Neutron.

In order to implement these recipes, we will be using the following OpenStack setup with two
nodes, one acting as the controller and network node and another as the compute node:

Controller and Network Node Compute Node

Keystone Service

Nova Service Glance Service Nova Service

Neutron Server Neutron Agent Neutron Agent

Open vSwitch
ethO —— ethl

Open vSwitch
P 10001 eho el 70.0.0.2
Management Network

Data Network

Configuring Neutron to use a VXLAN type

driver

Virtual eXtensible LAN (VXLAN) is one of the overlaying drivers supported by the Neutron
ML2 plugin. The process of tunneling involves encapsulating the data packets from the VM in
a UDP packet. The VXLAN encapsulation process adds a special key called Virtual Network
Identifier (VNI) in order to identify the network to which the data packet belongs.

The OVS instance on the Hypervisor is responsible for encapsulating the data packets coming
out of the VM. The Neutron ML2 plugin provides the OVS instance with all the information
that is required to implement a virtual network using VXLAN. For example, the plugin provides
information such as the VNI and IP address for the Virtual Tunnel End Point (VTEP) to the
OVS instance. The VTEP IPs on the source and destination compute or network node are used
while encapsulating the VXLAN packet.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for the OpenStack nodes
» The VTEP IP to be used for the node

[

Chapter 4

How to do it...

The following steps will show you how to configure Neutron to use a VXLAN type driver:

1.

With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the controller and network node.

Open the Neutron ML2 plugin configuration file using your desired editor.
For example, the command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2 conf.
ini

Inthe [m12] section of the file, configure VXLAN as type driver and tenant
network_ type:

[m12]

type drivers = vxlan
tenant network types = vxlan
mechanism drivers = openvswitch

In the [ovs] section, set local ip to the VTEP IP address. OVS uses this IP to carry
all the tunneled traffic. In our setup, the VTEP IP for the controller node is 10.0.0.1:

[ovs]

local ip = 10.0.0.1

In the [agent] section, set tunnel types to vxlan:
[agent]

tunnel types = vxlan

Restart the Neutron server and Open vSwitch Agent on the controller and network
node of our setup using the following commands:

openstack@controller:~$ sudo service neutron-server restart
openstack@controller:~$ sudo service neutron-plugin-openvswitch-

agent restart

The first five steps have to be repeated for all the compute and network nodes.
Remember to update 1local ip on the compute nodes with the correct value.
Restart the OVS agent on the compute and network nodes:

openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

Exploring Overlay Networks with Neutron

In this recipe, we configured the Neutron ML2 plugin to create virtual networks with a VXLAN
type. We also configured Neutron to use Open vSwitch to implement the virtual network.

The Neutron OVS L2 agent is responsible for configuring the local OVS instance on the
compute and network nodes. The L2 agent runs as a daemon on the compute and network
nodes. This daemon communicates with the Neutron server using Remote Procedure Call
(RPC) to get the details of the virtual networks, as shown in the following image:

Controller RPC Compute Node
Messages
Neutron Server €-------=---q---=------ > Neutron Agent
Local
Configuration

Open vSwitch

OVS encapsulates the data packets from the VM using an outer UDP and IP packet. The outer
IP packet uses the IP address configured as local_ip in the Neutron configuration file.

There's more...

Due to the encapsulation of the Layer 2 (L2) data packet in a Layer 3 (L3) packet, the size
of the network packet increases. Hence, you may need to adjust the MTU settings on the
underlying physical network.

Configuring a VNI Range for VXLAN

Networks

In this recipe, we will see how to configure Neutron with the ML2 plugin in order to use a
VXLAN Network Identifier (VNI) range. The ML2 plugin allows the customization of the range
of VNI numbers in order to uniquely identify the virtual networks. VXLAN can support up to 16
million unique VNIs.

—[E9)

Chapter 4

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for the OpenStack controller node
» The VNI range to configure for the VXLAN-based virtual networks

How to do it...

The following steps will show you how to configure the VNI range for the ML2 plugin:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the controller and network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2 conf.
ini
Inthe [ml2 type wvxlan] section of the file, set vni ranges to the appropriate
range list. Multiple ranges can be provided using comma-separated values:
[ml2 type vxlan]
vni_ranges = 1001:2000,3001:4000,5001:6000

3. Finally, restart the Neutron server on the controller node using the following
command:

openstack@controller:~$ sudo service neutron-server restart

In this recipe, we configured the ML2 plugin in order to use the given range of VNIs while
creating virtual networks based on VXLAN tunnels. When Neutron receives a request to create
a virtual network, it allocates a VNI from this range to create the VXLAN-based virtual network.
A range is described with the lower value and higher value separated by :.

Viewing a VNI assigned to a Neutron

Network

In this recipe, we will see how to view the VNI assigned to a VXLAN-based virtual network.
Knowing the VNI that is assigned to a virtual network is very useful to troubleshoot
communication problems between the VMs or other network services.

vww allitebooks.conl

http://www.allitebooks.org

Exploring Overlay Networks with Neutron

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for the node where the Neutron client packages
are installed

» Ashell RC file that initializes the environment variables for CLI

How to do it...

The following steps will show you how you can view the VNI using the OpenStack CLI:

1. Loginto a node with access to OpenStack.
2. Source your RC file to set up access credentials as an administrator.

3. You can view all the Networks created using the neutron net-1ist command:

ppenstack@controller:~$ neutron net-list -c id -c name

| 0048b37d-916h-4aeh-h95a-9630d270¢cf85 | private |
| d6288489-bc92-4345-8b99-a5a5badedf5f | public |
rm oo T +

4. Use the neutron net-show command to view further details for any network. In
case the Network name is not unique, use its ID instead of the name:

ppenstack@controller:~$ neutron net-show public

e L PR T L R +
| Field | value |
L E R L e L R e L R R R L +
| admin state u | True

| |id | d6288489-bc92-4345-8b99-a5a5bade9f5f

| Iname public |
| [provider:network type vxlan |

|

|

|

|

| provider:physical network |
| [provider:segmentation_id 1002 | |
|

|

I

I

I

| router:external True

| shared | False

| status | ACTIVE

| subnets | 6d23f27c-4805-47cf-a3e2-dc43cc8f0990

| tenant_id | 25135fe4f33941abaf2f5d545a716b2c
Ho-emeecceccccccccccceacaaa. 4em-ceeeememceecsesessscsesssesss-se-aa E

Chapter 4

We can also achieve the same using Horizon. The steps are as follows:

1. Log into Horizon as an administrative user.

2. In the left navigation menu, navigate to Admin | Networks. This will list all the
available virtual networks as shown in the following screenshot:

3 openstack = admin & admin ~
Project . Networks
Admin -
Flltar Q + Creale Natwork

System -

0] | Project | o0k Subnets Associated Lt Shared Stals O™ Actions

varview Name Agents State
O demo private Poteai et 0 No ACTIVE UP Edit Network
10.10.10.0/24
: public-subnel 3
min publ 0 ACTIV P Edit Network =
O = : 192.168.0.0/24 o ETER D

Displaying 2 tems

3. Click on the Network name for the network that you want to view:

Network Overview

Syslem -
Name privale
Overview D 0048037d-916b-4aeb-b95a-9630d270c185
Project ID 32c4ct 31
Slalus ACTIVE
Admin State up
Hosl Shared MNo
External Natwork Na
Provider Network Metwark Type: vxlan

Instances

Physical Network: -
Segmentation 1D: 1001

Images
Subnets + Create Subnet
Network
[0 Name CIDR IP Version Gateway IP Actlons
Aol
Detayi [0 prive 10.10.10.0:24 IPva 10.10.10.1 Edit Subnat
Defaulls
D=playing 1 fem
Matadata Definitlons

4. This will open the network overview screen for the selected Network, which shows
details such as Network Type, Segmentation ID, and so on.

When the Neutron server receives a request to create a virtual network, it automatically
allocates a VNI from the configured VNI range to use with the newly created virtual network.
In this recipe, we looked at the ways to find the VNI associated with a virtual network.

[E5]-

Exploring Overlay Networks with Neutron

Creating a Network with a specific VNI

In this recipe, we will see how to create a VXLAN-based virtual network using a specific VNI.
Normally, Neutron would automatically allocate a VNI for a VXLAN-based virtual network
from the range of available VNIs, but there are situations when users need a network with
a specific VNI. In such cases, an OpenStack administrator can create a virtual network with
a manually assigned VNI.

Getting ready

For this recipe, you will need to access OpenStack as an administrator. You will also need the
following information:
» The SSH login credentials for the node where the Neutron client packages are installed
» An administrative level access to OpenStack
» The Network name

» A VNI for the virtual network

How to do it...

The following steps will show you how to create a virtual network with a specific VNI using the
OpenStack CLI:

1. Log into a node with access to OpenStack.

2. Source your RC file to set up the access credentials as an administrator.

3. Use the following neutron net-create command to create the virtual network
with a specific VNI, for example, using VNI 1010:

openstack@controller:~$ neutron net-create --provider:network_type=vxlan\
- -provider:segmentation_id=1818 Chapter4 VXLAN with_ VNI

Created a new network:

L e T LT PP R e T T P -
| Field | value |
2 T T +
admin_state up	True
id	2fad8b41-77a2-4049-951c-7bfbbfb6adf7
name	Chapter4 VXLAN with_ VNI
provider:network_type	vxlan
provider:physical network	
provider:segmentation_id	1616
router:external	False
shared	False
status	ACTIVE
subnets	
tenant_id	feaff9c5a32c4c15b98b4cd315a88000
L ettt R L T TP +

We can also achieve the same result using a Horizon interface in the following way:

1. Log into Horizon as an administrative user.

2. Navigate to Admin | Networks.

Chapter 4

3. Click on + Create Network and provide the desired Name. Provider Network Type
should be set to VXLAN and Segmentation ID should be set to the required VNI:

Create Network

Name

Chapterd VXLAN_with_WVNI

Description:

Project *

demo

Provider Network Type * @

Create a new network for any project as you need.

Provider specified network can be created. You can
specily a physical network type (like Flal, VLAN, GRE,
and VXLAN) and its segmentation_id or physical
network name for a new virtual network.

VXLAN

In addition, you can create an external network or a
shared network by checking the corresponding

Segmentation ID * @

checkbox

1010

Admin State *

up

[Shared

[External Network

Cancel Create Network

4. Click on Create Network. This should create the virtual network with the provided
VNI. Once it has been created, verify the network details by navigating to the Admin |
Network Name link for the newly created virtual network:

Edit Network =

Network Overview

Chapterd VXLAN_with_VNI
2a05effc-4037-4bf3-aa46-28842d3bl 11e

Project ¥

Admin A

System
Name
1D
Project ID

Hypenviso Status

Admin State
Shared

External Network

aa15e2d9f86041a9be33cd983f041551
ACTIVE

up

No

No

Provider Network

Metwork Type: vxlan
Physical Network: -
Segmentation 1D: 1010

&)

Exploring Overlay Networks with Neutron

5. This will open the Network Overview screen for the selected network, which shows
details such as Network Type, Segmentation ID, and so on.

In this recipe, we looked at creating a virtual network with a specific VNI. This
procedure overrides the automatic allocation of a VNI for a virtual network and requires
administrative access.

An unused VNI in the range configured as a part of the VXLAN type driver should be used to
create the virtual network.

Viewing the virtual interface information on

the compute node for VXLAN tunnels

When a tenant launches a VM and attaches it to a virtual network, a virtual network interface
is created on the compute node, which connects the VM to the OVS instance.

In this recipe, we will identify the virtual network interface, which attaches a VM to the OVS
instance on the VXLAN network.

We will also look at the OVS configuration, which makes the communication between the VM
and other members on the virtual network possible.

Getting ready

For this recipe, you should have the following information:

» The SSH login credentials for the node where the Neutron client packages are installed
» User-level access to OpenStack

» The name of the VM for which you want to identify the virtual interface

How to do it...

The following steps will show you how to identify an interface connecting a VM to
a virtual network:

1. Login to a node with access to OpenStack.

2. Import the OpenStack RC file to set up the user-level access credentials.

Chapter 4

3. Usethenova 1list commands to identify the VM instance, virtual network, and
IP associated with it. In this case, the VM is vm1 with an IP of 20.20.20.2 on the
Chapter4 VXLAN with VNI virtual network, as shown in the following screenshot:

openstack@controller:~$ nova list
+

-------------------------------------- e e T ettt
| ID | Mame | Status | Task State | Power State | Metworks |
T Frmmmmn L LTS Frrrmrn s Frrresmm R e +
| fea2267c-8b96-467d-9f42-bfael7a3edee | vml | ACTIVE | - | Running | Chapterd_VXLAN with_VNI=20.20.20.2 |
R #emmnnn dommnmann ommmnemaanan #rmmmemeaaaaa. R e Rttt +

4. Next, we will use the neutron port-1list command to find the port ID for the
virtual interface associated with this VM, based on the VM IP that we determined in

the previous step:

openstack@controller:~$ neutron port-list |grep 20.20.20.2| cut -f2 -d" *
2d538755-d5f9-49a6-9088-8f07d3e98875

5. Now, we will log in to the compute node and check out the OVS configuration.

6. We can use the ovs-vsctl show command to look at the ports created on the OVS
instance. The OVS port name is composed of a part of the Neutron Port ID. In the
following listing, gvo2d538755-d5 is the port corresponding to our virtual interface
ID of 2d538755-d5£9-49a6-9088-8f07d3e98875. It is connected to the br-int
bridge and is configured with tag: 1 to mark all the packets entering this interface

with VLAN 1:

openstack@computel:~$ sudo ovs-vsctl show
8f159554-44fe-4003-b2dl-e6fo281ledbdc
Bridge br-int

fail mode: secure

Port "qvo2d538755-d5"
tag: 1
Interface "qvo2d538755-d5"

Port br-int
Interface br-int
type: internal
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}

Exploring Overlay Networks with Neutron

7. Next, we will look at the flow configuration on OVS on the br-tun bridge, which
sends the packets to the other Hypervisors through the VXLAN tunnels using the
ovs-ofctl dump-flow br-tuncommand:

openstack@computel:~$ sudo ovs-ofctl dump-TLows br-tun

NXST_FLOW reply (xid=0x4):

cookie=0x8, duration=3340.706s, table=08, n_packets=189, n_bytes=6867,
idle_age=2948, priority=1,in_port=1 actions=resubmit(,2)

cookie=0x0, duration=3339.526s, table=0, n_packets=17, n_bytes=1958,
idle_age=2948, priority=1,in_port=2 actions=resubmit(,4)

cookie=8x8, duration=3340.636s, table=8, n_packets=5, n_bytes=3960,
idle_age=3332, priority=0 actions=drop

cookie=0x08, duration=3340.569s, table=2, n_packets=12, n_bytes=1842,
idle_age=2948, priority=0,dl dst=00:00:00:00:00:00/01:00:00:00:00:00
actions=resubmit(,20)

cookie=0x0, duration=3340.502s, table=2, n_packets=97, n_bytes=5825,
idle _age=2962, priority=0,dl dst=01:00:00:00:00:00/01:00:00:00:00:00
actions=resubmit(,22)

cookie=0x08, duration=3340.435s, table=3, n_packets=0, n_bytes=8,

idle age=3340, priority=0 actions=drop

cookie=0x08, duration=3109.941s, table=4, n_packets=17, n_bytes=1958,
idle_age=2948, priority=1,tun_id=0x3f2 actions=mod_vlan_vid:1,resubmit
(,10)

cookie=0x0, duration=3340.368s, table=4, n_packets=0, n_bytes=8,
idle_age=334e8, priority=0 actions=drop

cookie=0x0, duration=3340.301s, table=10, n_packets=17, n_bytes=1958,
idle_age=2948, priority=1 actions=learn
(table=28,hard_timeout=300,priority=1,NXM OF VLAN TCI
[@..11],NXM_OF_ETH_DST[]=NXM _OF ETH_SRC[],load:0->NXM_OF_VLAN_TCI
[1,load:NXM NX TUN ID[]->NXM NX TUN ID[],output:NXM OF IN PORT
[1),output:1

cookie=0x0, duration=3340.234s, table=20, n_packets=8, n_bytes=0,
idle age=3346, priority=0 actions=resubmit(,22)

cookie=0x0, duration=3110.008s, table=22, n_packets=85, n_bytes=4628,
idle age=2962, dl vlan=1 actions=strip vlan,set tunnel:8x3f2,output:2
cookie=8x8, duration=33408.167s, table=22, n_packets=12, n_bytes=1197,
idle age=3118, priority=6 actions=drop

8. Inthe highlighted section of the output, we can see that the configuration strips the

local VLAN 1 from the packets going out of the compute node and adds a tunnel key
(VNI), 0x3£2. The VNI of 0x3£2 is the hexadecimal equivalent of 1010, which was
used to create the OpenStack network.

Chapter 4

When a VM is launched, OpenStack creates a virtual interface and attaches it to the OVS
instance on the Hypervisor through a Linux bridge. For this discussion, we will focus on

the OVS connectivity. The OVS instance on the Hypervisor has two bridges, br-int for
communication in the Hypervisor and br-tun, which is used to communicate with the other
Hypervisors using the VXLAN tunnels. Let's have a look at the following screenshot:

/ ovs \
Patch link
br-int br-tun |

A A

Tunnel to other Compute/
VLAN TAG VXLAN VNI Network node

NIC |[¢—»

K Compute Node J

The OVS bridge, br-int, uses VLANSs to segregate the traffic in the Hypervisors. These VLANs
are locally significant to the Hypervisor. Neutron allocates a unique VNI for every virtual
network. For any packet leaving the Hypervisor, OVS replaces the VLAN tag with the VNI in the
encapsulation header. OVS uses 1local_ip from the plugin configuration as the source VTEP
IP for the VXLAN packet.

Viewing the virtual interface information on

the network node for VXLAN tunnels

The network node hosts network services such as DHCP, DNS, and so on for each virtual
network. These services need to communicate with the other members on the virtual network.
The network node runs an OVS instance to connect to the virtual network.

In this recipe, we will look at the DHCP service running on the Network node and identify the
virtual network interface, which connects this service to the virtual network.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for the controller and network node

@]

Exploring Overlay Networks with Neutron

How to do it...

The following steps will show you how to identify an interface connecting a network service to
the virtual network. In this recipe, we will look at the network interface for the DHCP service:

1. Loginto a node with access to OpenStack.

2. Next, we will find the DHCP server process that is associated with our virtual network.
OpenStack uses dnsmasq to provide the following DNS and DHCP services on the
virtual network:

openstack@controller:~$ ps aux|grep dnsmasqg|grep [2fadBba1-77a2-40849-951c-7bTbbTb6aaty |

nobody 26450 0.8 0.8 28204 1040 ? S 00:87 0:080 dnsmasq --no-hosts
--no-resolv --strict-order --bind-interfaces |[--interface=tap32a8ae83-27]| --except-interface=lo
--pid-file=/opt/stack/data/neutron/dhcp/2fad8b4l-77a2-4049-951c-7bfbbfh6adf7/pid
--dhcp-hostsfile=/opt/stack/data/neutron/dhcp/2fad8b4l-77a2-4049-951c-7hfbbfb6adf7/host
--addn-hosts=/opt/stack/data/neutron/dhcp/2fad8b41-77a2-4049-951c-7bfbbfb6ad4f7/addn_hosts
--dhcp-optsfile=/opt/stack/data/neutron/dhcp/2fad8b4l-77a2-4049-951c-7hfbbfb6adf7 /opts
--leasefile-ro --dhcp-authoritative --dhcp-range=set:tag0,20.20.20.0,static,86400s
--dhcp-lease-max=256 --conf-file= --domain=openstacklocal

3. From the previous step, we find that the dnsmasq process is bound to a virtual
interface, tap32a8ae83-27. We can now look at the OVS configuration in order to
identify the virtual interface port:

openstack@controller:~$ sudo ovs-vsctl show
0f159554-44fe-4003-b2d1-e6f0281ledbdc
Bridge br-int
fail _mode: secure
Port "qr-3458162c-e5"
tag: 1
Interface "qr-3458162c-e5"
type: internal
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port "tap32aBae83-27"
tag: 2
Interface "tap32a8ae83-27"
type: internal
Port br-int
Interface br-int
type: internal

4. From the OVS configuration, we can see that the virtual network interface,
tap32a8ae83-27,is connected to br-int and configured with tag: 2 to tag all
the incoming packets from the DHCP server with VLAN 2.

59

Chapter 4

5. Next, we will look at the flow configuration on OVS on the br-tun bridge, which
sends the packets to the other Hypervisors through the VXLAN tunnels using the
ovs-ofctl dump-flow br-tuncommand:

openstack@controller:~$ sudo ovs-ofctl dump-flows br-tun
NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=35681.277s, table=0, n_packets=38, n_bytes=3676,
idle_age=31287, priority=1,in_port=1 actions=resubmit(,2)

cookie=0x0, duration=31677.968s, table=8, n_packets=91, n_hytes=5150,
idle_age=31287, priority=1,in_port=2 actions=resubmit(,4)

cookie=0x8, duration=35681.202s, table=8, n_packets=8, n_bytes=8,
idle_age=35681, priority=8 actions=drop

cookie=0x0, duration=35681.128s, table=2, n packets=15, n bytes=1818,
idle age=31287, priority=0,dl dst=00:00:00:00:00:00/01:00:00:00:00:00
actions=resubmit(,20)

cookie=0x0, duration=35681.059s, table=2, n_packets=23, n_bytes=1858,
idle_age=31441, priority=6,dl dst=01:00:00:00:00:00/01:00:00:00:00:00
actions=resubmit(,22)

cookie=0x0, duration=35680.991s, table=3, n_packets=08, n_bytes=80,
idle_age=35680, priority=8 actions=drop

cookie=0x0, duration=35665.028s, table=4, n_packets=0, n_bytes=80,
idle_age=35665, priority=1,tun_id=0x3e9 actions=mod vlan_vid:1,resubmit
(,10)

cookie=0x0, duration=31449.234s, table=4, n_packets=91, n_bytes=5150,
idle_age=31287, priority=1,tun_id=0x3f2 actions=mod vlan_vid:2, resubmit
(,10)

cookie=0x0, duration=35680.922s, table=4, n_packets=08, n_bytes=0,
idle_age=35680, priority=8 actions=drop

cookie=0x0, duration=35680.853s, table=10, n_packets=91, n_bytes=5150,
idle_age=31287, priority=1 actions=Llearn
(table=26,hard_timeout=300,priority=1,NXM_OF VLAN_TCI
[6..11],NXM_OF ETH DST[]=NXM_OF ETH_SRC[],load:8->NXM OF VLAN TCI
[1,load:NXM_NX_TUN_ID[]->NXM_NX_TUN_ID[],output:NXM_OF IN_PORT
[1),output:1

cookie=0x0, duration=35680.782s, table=20, n_packets=0, n_bytes=0,
idle_age=35680, priority=0 actions=resubmit(,22)

cookie=0x0, duration=31449.306s, table=22, n_packets=2, n_bytes=148,
idle age=31441, dl vlan=2 actions=strip vlan,set tunnel:0x3f2,output:2
cookile=0x0, duration=31677.895s, table=22, n_packets=0, n_bytes=0,
idle age=31677, dl vlan=1 actions=strip_vlan,set tunnel:0x3e9,output:2

idle_age=31449, priority=6 actions=drop

6. From the flow configuration, we can see that when the packet is sent out through the
VXLAN tunnel, OVS strips the local VLAN tag and instead uses a tunnel ID to identify
the virtual network.

Exploring Overlay Networks with Neutron

Network services such as the DHCP server are started for each virtual network as soon as the
first VM that is attached to the virtual network is launched. To provide the DHCP service, the
DHCP agent node attaches a dnsmasq process to a virtual network interface attached to an OVS
instance running on the network node. The OVS instance uses two bridges, br-int and br-tun,
as described in the previous recipe, to connect the network service to the virtual network.

Configuring Neutron to use a GRE type drive

As described earlier, tunneled networks can also be implemented using the Generic

Routing Encapsulation (GRE) protocol. GRE is a general-purpose point-to-point encapsulation
protocol. The GRE header contains a 32-bit key which is used to identify a flow or virtual
network in a tunnel.

This recipe shows you how to configure the OpenStack Neutron in order to use GRE for
virtual networking.

Getting ready

For this recipe, we will need the following information:

» An SSH-based access to the OpenStack controller node
» The IP address for the tunnel endpoint
» Arange of tunnel IDs

How to do it...

The following steps will show you how to configure the GRE type driver for the ML2 plugin:
1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the controller and network node.

2. Open the Neutron ML2 plugin configuration file using your desired editor. For
example, the command for the vi editor will be as follows:
openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2 conf.
ini

3. Inthe [m12] section of the file, configure GRE as the type driver and tenant network
type:

[m12]

type drivers = gre

[z

Chapter 4

tenant network types = gre

mechanism drivers = openvswitch

4. Inthe [ml2 type gre] section, update tunnel id_ range to the range of the
tunnel IDs that can be used for the virtual networks:

[ml2 type grel
tunnel id ranges = 1:1000
5. Inthe [ovs] section, set local ip to the IP address of the network card that you
want to use in order to carry the tenant data traffic:
[ove]

local ip = 10.0.0.1

6. Inthe [agent] section, set tunnel types to gre:
[agent]
tunnel types = gre

7. Restart the Neutron and Open vSwitch Agent on the controller and network node of
our setup using the following commands:
openstack@controller:~$ sudo service neutron-server restart
openstack@controller:~$ sudo service openvswitch-switch restart
openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

8. Repeat the first six steps for the compute node.

9. Restart the Neutron OVS L2 agent on the compute node:

openstack@controller:~$ sudo service neutron-plugin-openvswitch-
agent restart

In this recipe, we configured the ML2 plugin to create virtual networks with the GRE tunnels.

The Neutron OVS L2 agent runs as a daemon on each Compute and Network node and
is responsible for configuring the OVS instance for the GRE-based virtual network on the
local Hypervisor.

GRE is a general-purpose encapsulation protocol; in comparison, VXLAN was designed
keeping in mind the requirements of virtual networking and multitenancy.

Exploring Overlay Networks with Neutron

Viewing a virtual interface on the compute

node for GRE tunnels

This recipe shows you how to identify the virtual network interface used by a VM for a GRE-
based virtual network. Viewing the network interface can be useful to troubleshoot the
connectivity problems between the VMs and network services.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for the node where the Neutron client packages
are installed

» User-level access to OpenStack
» The name of the VM for which you want to identify the virtual interface

How to do it...

1. Log into a node with access to OpenStack.
2. Import the OpenStack RC file to set up the user-level access credentials.

3. Usethe nova list commands to identify the VM instance, virtual network, and
IP associated with it. In this case, the VM is vm1 with an IP of 20.20.20.2 on the
Chapter4 GRE virtual network:

bpenstack@controller ~$ nova list

-------------------------------------- e L e T Y
| ID | Name | Status | Task State | Power State | Networks |
teseceeccccccececscecesssscsssesesaaaae temenan Fomenaeaa Foeemmmemaaaaa teecmmecanaaaa tesemecececcecccscacenaaa +
| 225861c2-992f-4e52-93a3-ch53f593feea | vml | ACTIVE | - | Running | Chapterd_GRE=20.20.20.2 |
-------------------------------------- B L LT s L T L T T

Chapter 4

4. Next, we will use the neutron port-1list command to find the port ID for
the virtual interface that is associated with this VM, based on the VM IP that we
determined in the previous step:

openstack@controller:~$ neutron port-list |grep 20.20.20.2| cut -f2 -d" "

deedf043-5928-4a99-aaba-c24248238aed

We will now log in to the compute node and check out the OVS configuration.

We can use the ovs-vsctl show command to look at the ports created on the OVS

instance. The OVS instance has two bridges, br-int to communicate with the VMs
on this Hypervisor and br-tun to send the tunnel traffic to the other Hypervisors.
In the following listing, gvod0ed£f043-59 is the port corresponding to our virtual
interface ID of d0edf043-5928-4a99-aaba-c24248238aed and is configured

1 in order to mark all the packets entering this interface with VLAN 1:

with tag:

openstack@computel:~/devstack$ sudo ovs-vsctl show

0f159554-44fe-4003-b2d1-e6f0281ledbdc
Bridge br-tun
Port "gre-faeeeeel”
Interface "gre-0a0eeeel”
type: gre

options: {df default="true", in_keys

Port br-tun
Interface br-tun
type: internal
Port patch-int
Interface patch-int
type: patch
options: {peer=patch-tun}
Bridge br-int
fail_mode: secure
Port br-int
Interface br-int
type: internal
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port "qvodeedfe43-59"
tag: 1
Interface "gqvoddedf843-59"
ovs version: "2.8.2 “

Exploring Overlay Networks with Neutron

7. Next, we will look at the flow configuration on OVS on the br-tun bridge, which
sends the packets to the other Hypervisors through the VXLAN tunnels using the
ovs-ofctl dump-flow br-tuncommand:

openstack@computel:~/devstack$ sudo ovs-ofctl dump-flows br-tun
NXST_FLOW reply (xid=8x4):

cookie=0x0, duration=125.858s, table=0, n_packets=5, n_bytes=964,

idle age=32, priority=1,in port=3 actions=resubmit(,3)

cookie=0x0, duration=127.13s, table=8, n_packets=48, n_bytes=3627,
idle age=0, priority=1,in_port=2 actions=resubmit(,2)

cookie=0x0, duration=127.054s, table=8, n_packets=8, n_bytes=0,
idle_age=127, priority=0 actions=drop

cookie=0x0, duration=126.983s, table=2, n_packets=8, n_bytes=8,

idle age=126, priority=0,dl dst=00:00:00:00:00:00,/01:00:00:00:00:00
actions=resubmit(,20)

cookie=0x0, duration=126.911s, table=2, n_packets=48, n_bytes=3627,
idle_age=0, priority=0,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00
actions=resubmit(,22)

cookie=0x0, duration=90.614s, table=3, n_packets=4, n_bytes=874,
idle_age=32, priority=1,tun_id=06x1 actions=mod_vlan_vid:1, resubmit(,10)
cookie=0x0, duration=126.838s, table=3, n_packets=1, n_bytes=96,
idle_age=91, priority=0 actions=drop

cookie=0x0, duration=126.765s, table=4, n_packets=0, n_bytes=0,
idle age=126, priority=0 actions=drop

cookie=0x0, duration=126.693s, table=18, n_packets=4, n_bytes=874,
idle_age=32, priority=1 actions=learn
(table=20,hard_timeout=300,priority=1,NXM_OF VLAN_ TCI
[6..11],NXM_OF _ETH DST[]=NXM_OF_ETH _SRC[],load:0->NXM OF VLAN TCI
[1,load:NXM_NX_TUN_ID[]->NXM_NX_TUN_ID[],output:NXM OF IN_PORT
[1),output:2

cookie=8x8, duration=88.613s, table=28, n_packets=8, n_bytes=8,
hard timeout=3688, idle age=88, hard age=32,
priority=1,vlan_tci=0x0001/0x0fff,dl_dst=fa:16:3e:fe:cc:d3
actions=load:0->NXM_OF_VLAN_TCI[],load:@x1->NXM_NX_TUN_ID[],output:3
cookie=0x0, duration=126.62s, table=28, n_packets=8, n_bytes=0,
idle age=126, priority=0 actions=resubmit(,22)

cookie=0x0, duration=98.686s, table=22, n_packets=35, n_bytes=2308,
idle age=0, dl_vlan=1 actions=strip vlan,set tunnel:0x1l,output:3
COOKie-bx0, duration=120.5495, table=22, N _packets=13, n_Dytes= X
idle age=90, priority=6 actions=drop

8. In the highlighted section of the output, we can see that the configuration strips the
local VLAN 1 from the packets going out of the compute node and adds a tunnel key,
0x1. The GRE tunnel key 1 was allocated by Neutron for the Chapter4 GRE network.

58]

Chapter 4

The OVS configuration for the GRE-based virtual network is similar to those for the VXLAN
networks. The OVS instance on the Hypervisor has two bridges, br-int for communication in
the Hypervisor and br-tun, which is used to communicate with the other Hypervisors.

The OVS bridge, br-int, uses VLANs to segregate the traffic in the Hypervisors. These VLANs
are locally significant to the Hypervisor.

OVS connects to the other Hypervisors using br-tun using GRE tunnels. It replaces the VLAN
for any packet destined to a different Hypervisor with a GRE header, which contains a unique
tunnel key that is allocated by the Neutron server for each virtual network.

o7}

Managing IP Addresses

in Neutron

We have seen that Subnet is a part of the core functionality in OpenStack Networking. The
Subnet entity drives the IP address assignment and DHCP servers for the virtual machine

instances. In this chapter, we will share the following recipes that will cover the IP address
management capabilities in Neutron:

>

>

>

Creating an instance with a specific IP address

Configuring multiple IP addresses for a virtual interface
Creating a redundant DHCP server per OpenStack Network
Starting the DHCP server on a specific network node

Increasing the number of IP addresses in a Network using the Horizon dashboard

&}

Managing IP Addresses in Neutron

Introduction

The DHCP servers and IP address management go hand in hand. The DHCP servers run
on the network nodes in OpenStack. In order to implement the recipes, you will need an
OpenStack setup, as shown here:

Controller and Network Node

Compute Node

Network Node

Keystone Service

Nova Service Glance Service Nova Service Neutron DHCP Agent
Neutron Server Neutron Agent(s) Neutron Agent Neutron OVS Agent
Open vSwitch Open vSwitch Open vSwitch
ethO ——— ethl ethO ——— ethl ethO ——— ethl

Management Network

Data Network

This setup has one Compute Node, one dedicated Network Node, and one node for the
controller and networking services. Some of the recipes require redundant network nodes in
order to run redundant DHCP services. Therefore, a single all-in-one setup will not be sufficient.

As mentioned earlier, a Subnet is part of the core services in the OpenStack Neutron. All
the recipes of this chapter assume that ML2 is the core plugin in the Neutron configuration
file. The recipes also assume that OVS is configured as the mechanism driver and VLAN is
configured as the type driver as a part of the ML2 configuration.

Creating an instance with a specific IP

address

The VM instances are typically used to host IT applications. Some applications require that
a particular VM server should have a specific, fixed IP address. When DHCP is enabled, the
virtual machine gets an IP address dynamically. This recipe shows you how we can assign a
specific IP address to an instance.

100

Chapter 5

Getting ready

A VM with a specific IP address can only be created using the OpenStack CLI. It involves a Port
creation followed by an instance creation. As a prerequisite, ensure that a Network is created
with the following attributes:

» Network name: Cookbook-Network-5

» Subnet name: Cookbook-Subnet-5

» Subnet IP address range: 20.20.20.0/28

How to do it...

The following steps will show you how to create a VM instance with a specific IP address:

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands.

3. The command to create a Port is neutron port-create, as follows:
openstack@controller:~$ neutron port-create \
--name PortWithSpecificIP \

--fixed-ip subnet id=£03d74bl-£fc69-49cl-bda798c53ecbdl83,ip
address=20.20.20.5 Cookbook-Network-5

4. Inthe preceding command, we used the UUID of the Subnet and assigned
20.20.20.5 as the IP address for the Port. You can confirm that this port
uses the specific IP address using the neutron port-1list command:

openstack@controller:~§ neutron port-list -F id -F name -F fixed_ips

id	name	fixed_ips
Ba4656ba-Bb21-4f62-a741-80bc@137Fd1E		{"subnet_id": "f@3d74bl-fc69-49cl-bda7-98c53echd183”, "ip_address": “20.20.20.2"}
9badd396-e95b-4c80-bEd2-cP140c186f91	PortWithSpecificIP	{"subnet_id": "f@3d74bl-fc69-49cl-bda7-98c53echd183", "ip_address": "20.20.20.5"}

openstackicontroller:~$ I

5. The CLI command to create an instance is nova boot. This command supports an
argument called - -nic that allows us to specify a Port ID that we want to associate
with the instance:

openstack@controller:~$ nova boot --flavor ml.tiny \
--image cirros-0.3.3-x86 64 \
--nic port-id=9badd396-e95b-4c80-b6d2-c0140c1l86£f91 CLIPortVM

6. Oncethe nova boot command is successful, the instance will also be visible in the
Horizon dashboard.

101

Managing IP Addresses in Neutron

7. Login to the Horizon dashboard and navigate to Project | Network | Network
Topology. In the Network Topology, move the mouse pointer over the icon
representing the instance and click on Open Console, as shown in the

following screenshot:

"~ Network Topology

Compute

Network Topology

CLIPortvm

Network:
it sl deBalfa-T77b-43c4-97h4-FhT0503FefM
E @ ACTIVE
Routers
»View Instance Detalls » Open Console m

Identity

SHOMIBN-HOOGH00T

20020202

8. Inthe resulting window, log in to the instance. In our example, we will be using the
CirrOS default username and password for the login.

102

Chapter 5

9. Atthe shell prompt of the instance, type ifconfig etho. This command will show
the virtual interface for this instance. You can see that the IP address for this virtual
interface (etho) matches that of the Port that we used in the nova boot command:

Overview og Console Action Log

Instance Console

crypted) to: GEMU (instance-0000000 Send CtriAltDe

Link encap:Local Loopback
o

ped:
dropped : 0 carrier:0
len:®
iX bytes:4192 (4.9 KiB) TX bytes:419Z (4.0 KiB)

These steps showed you how to create a VM instance with a fixed IP address.

When a Network is created, a DHCP port is automatically created. However, the ports
associated with the VM instances are created as and when the instances are created using
Horizon, but the Neutron CLI allows Ports to be created independent of an instance. The CLI
also allows users to boot an instance using an existing port. In this recipe, we first created a
Port and specified the IP address that it will use. This IP address must be in the range of the
Subnet and must be unassigned. Once the Port is successfully created, we use the Port ID to
boot an instance using the Nova CLI. This step ensures that the instance uses the specific IP
address for the virtual interface.

103

Managing IP Addresses in Neutron

Configuring multiple IP addresses for a

virtual interface

IP aliasing is a concept where multiple IP addresses are assigned to the same physical
network interface. IP aliasing is useful in several scenarios. When multiple small applications
running on different servers need to be consolidated into a single large server, the individual
IP address for each application needs to be mapped to the same physical interface. As the
physical servers get virtualized, there is a need to support IP aliasing for the virtual machine
instances also. In Linux, IP aliasing is accomplished by creating subinterfaces on a real
interface.

In this recipe, we will see how multiple IP addresses can be allotted to a single virtual interface.

Getting ready

The different IP addresses for the same virtual interface can be a part of the same Subnet or
two different Subnets. However, OpenStack does not allow a virtual interface to be associated
with two different networks. Therefore, the different Subnets should be a part of the same
OpenStack Network.

How to do it...

The following steps will show you how to configure multiple IP addresses for a single
virtual interface:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network using
Horizon in Chapter 1, Getting Started with OpenStack Networking. Use Cookbook -
Network-5 as the Network name, Cookbook-Subnet-1 as the Subnet name, and
20.20.20.0/28 as the Network address range:

Networks

Name Subnets Associated Shared Status AdminState Actions
Cookbook-Metwork-5 Cookbook-Subnet-1 20.20.20.0/28 Mo ACTIVE UP Edit Network -

Displaying 1 item

104

Chapter 5

2. Open the drop-down menu under the Actions column and click on Add Subnet:

Networks X |

Name Subnets Associated Shared Status AdminState Actions
Cookbook-Network-5 Cookbook-Subnet-1 20.20.20.0/28 No ACTIVE UP Edit Network &3
Add Subnet

Displaying 1 item
Delete Network

3. Using a Subnet name as Cookbook-Subnet -2 and a Network address range of
30.30.30.0/28, create the second Subnet on the same network:

Networks |

Name Subnets Associated Shared Status Admin State Actions
o Cookbook-Subnet-230.30.30.0/28
Cookbook-Netwark-5 Cookbook-Subnet-1 20.20.20.0/28 Mo ACTIVE UP Edit Network

Displaying 1 item

4. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

5. Source the shell RC file to initialize the environment variables required for the
CLI commands.

105

Managing IP Addresses in Neutron

6. Create a Port using the neutron port-create CLI, as follows:

openstack@controller:~$ neutron port-create —name PortWithTwoIP —fixed-ip subnet_id=f7cd93e1-9870-4elb-bd2e-41d9742535d8,
ip_address=20.20.20.8 ——fixed-ip subnet_id=e1278169-0863-4603-956b-38e5276ffdcc, ip_address=30.30.30.8 Cookbook-Network-5
Created a new port:

| Field | Value |

| admin_state_up True |

| allowed_address_pairs |

| binding:vnic_type normal |

| device_id |

| device_owner |

| fixed_ips {"subnet_id": “f7cd93el-9878-4elb-b@2e-41d9742535d@", “ip_address": "20.208.20.8"} |

| {"subnet_id": “e1270169-0063-4603-956b-38e5276ff9cc", "ip_address": "30.30.30.8"} |

| id 9b24a25b-1bb1-4909-8a13-9a82994464%e |

| mac_address fa:16:3e:51:00:de |

| name PortWithTwoIP |

| network_id 4ca7fcfl-1706-4cfa-84fd-a71125587fd2 |

| security_groups T741d3c6-7465-420e-94cd-0074ce79110e |

| status DOWN |

| tenant_id 3f1171f34bab4dfc950572141aaf96e5 |
openstack@controller:~$ I

7. Inthe preceding command, we specified two fixed IP addresses for the same port
(hence, the same virtual interface). Also note that the neutron port-create
command takes only one Network name as the parameter.

8. Asshown in the previous recipe, create a VM instance using the nova boot
command and specify the previous Port, as follows:
openstack@controller:~$ nova boot --flavor ml.tiny \

--image cirros-0.3.3-x86 64 \
--nic port-id=9b24a25b-1bb1-4909-8al3-9a829944649e CLIPortVvM

9. Once the VM boots up, you will notice that one of the IP addresses is assigned to
the virtual interface. This is the limitation when using a DHCP server. The second
IP address needs to be manually assigned to a subinterface on the same virtual
interface.

A single OpenStack Port maps to a single virtual interface in the VM instance. While the

Port has multiple IP addresses, when the instance is booted, only one virtual interface is
created and Neutron automatically picks one of the IP addresses and assigns it to the virtual
interface. The second IP address has to be manually assigned to a subinterface using the
ifconfig command. The additional benefit of this recipe is that the allocated IP address is
stored on the DHCP server and will not be assigned to any other VM instance.

106

Chapter 5

Creating a redundant DHCP server per

OpenStack Network

The DHCP server plays a critical role in the IP address management and initial network
connectivity for a VM instance. The DHCP server is enabled via an agent on the network node.
As it is a critical component, it is a good idea to have a redundant DHCP server per OpenStack
Network. This recipe shows you how to configure Neutron to start more than one DHCP agent
for each OpenStack Network.

Getting ready

In order to create more than one DHCP agent for each OpenStack Network, we will need to
update a setting in the Neutron configuration file.

How to do it...

The following steps will show you how to configure multiple DHCP agents per
OpenStack Network:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Open the Neutron configuration file using your desired editor. For example, the
command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

3. Inthe [DEFAULT] section of the file, configure the number of DHCP agents
per Network:

[ml2]

dhcp agents per network = 2

4. The previous step configured two DHCP agents per OpenStack network.

When the first VM instance is created on a Network, Neutron creates the DHCP agents for
the network. The number of the DHCP servers for a Network is based on the configuration file
setting. If more than one DHCP agent is required for every Network, then Neutron will create
the DHCP agents across the various Network nodes available in the OpenStack setup.

107

Managing IP Addresses in Neutron

Starting the DHCP server on a specific

network node

OpenStack allows multiple Network nodes in a setup. By default, only one DHCP agent (or
server) is associated per Network. In case there are multiple Network nodes, the Neutron
server automatically schedules a DHCP agent for each Network. However, there could be
situations when a particular Network requires a DHCP agent on a specific Network node. For
example, for a Network with critical VMs, the user may request for the DHCP server to run on a
more responsive Network node.

Getting ready

We will use the Horizon dashboard to show you how to ensure that the DHCP server for a
given Network is started on a specific network node. This recipe requires a setup with two
Network nodes as shown in the beginning of this chapter.

We will use the Network named Cookbook-Network-5 for this recipe.

How to do it...

The following steps will show you how to add an additional DHCP agent to an existing Network:

1. Loginto the OpenStack Horizon dashboard using a user ID with an administrative role.
2. Navigate to Admin | System | Network to view the list of Networks:

Networks
Project Network Name Subnets Associated PHCE Shared Status Aamen Actlons
Agents State

Cookbook-Subnet-5
20.20.20.0/28

Co
cookbook 0 No ACTIVE UP Edit Network -

Displaying 1 item

3. As no instances have been created, you will notice that the number of DHCP
agents is 0.

108

Chapter 5

4. Click on the name of the Network—Cookbook-Network-5 in this case.

5. The Network Detail page includes information such as Subnets, Ports, and DHCP
Agents, as shown in the following screenshot:

Flavors Ne
External Network
Ne

s Provider Network
Network Type: vian
Metworks Physical Network: physnet
Segmentation ID: 1001
Routers
Defaults Subnets
Name
Systemn Information
Cookbook-Subnet-5
Identity
Displaying 1 item
Ports
Name Fixed IPs

Displaying D items.

DHCP Agents

Host Status

Displaying 0 iters

CIDR IP Version
20.20.20.0/28 Pvd
Device Attached

No tems Lo display,

Admin State

No items to display.

Updated At

[+ covesone |O&

Gateway IP Actions

20.20.20.1

Admin State

Edit Subnet

Actions

+ Create Port

Actions

Add DHCP Agent

6. Click on the Add DHCP Agent button and select the Host that will run the DHCP
agent. For this recipe, we will choose the networknode of our setup in order to run

the DHCP agent:

Add DHCP Agent

Network Name *

Cookbook-Network-5

New DHCP Agent * @

Description:
From here you can add a DHCP agent for the network.

v Select a new agent
controller
networknode

Cancel Add DHCP Agent

109

Managing IP Addresses in Neutron

7. Once the DHCP agent is successfully added to the Network, you will notice that a new
DHCP port (representing the DHCP server) has now been created for the Network:

Metwork Type: vlan
MNetworks Physical Netwerk: physnet1
Segmentation 1D: 1001

Routers

= Create Subnet
sl Subnets [+ createsutnec |
Name CIDR IP Version Gateway IP Actions
System Information
Cockbock-Subnet-5 20.20.20.0/28 Pud 20.20.20.1 EditSubnet =
Hentity
Displaying 1 dem
Ports + Create Fort
Name Fixed IPs Device Attached Status Admin State Actions
(6ce16b95) 2020.20.2 networkidhco ACTVE UP E=
Displaying 1 item
DHCP Agents Add DHCP Agent [% Delete DHCP Agents |
Host Status Admin State Updated At Actions
netwaorknode Enabled Up 0 minutes Delete DHCP Agent
Displaying 1 tem

The preceding steps showed you how to start the DHCP agent on a specific network node.

The OpenStack Neutron automatically chooses a DHCP agent in order to create a DHCP port.
This step happens internally when the first VM instance is created on a Network. The DHCP
agent on the first registered network node is selected. The DHCP agent then proceeds to
create the DHCP server (dnsmasq) as part of the DHCP Port creation. This recipe shows you
how administrative users can force the DHCP agent on a specific network node to be used for
a Network.

There's more...

This selection of a specific network node to run the DHCP server can also be performed using
the Neutron CLI. The Neutron CLI command, neutron dhcp-agent-network-add, can be
used for this purpose.

110

Chapter 5

Increasing the number of IP addresses in a

Network using the Horizon dashboard

We have seen that, as a part of the Network creation, the user also creates a Subnet, which
is essentially an IP address range. Consider a situation where a user creates a Subnet with
a set of IP addresses. Once all the IP addresses of this Subnet are assigned to instances,
any new instance created will not get an appropriate network connectivity. To increase the
IP addresses in the same Network, the user will have to create another Subnet on the same
Network. This recipe will show you how to do this.

Getting ready

To create another Subnet, the inputs that you will need are as follows:

» Arange of IP addresses
» A name for the Subnet

How to do it...

The following steps will show you how to add another Subnet to a Network:

1. Log into the OpenStack Horizon dashboard using the appropriate credentials.
2. Inthe left navigation menu, click on Project, then Network | Networks.

3. Now, click on the drop-down icon (triangle) next to the Edit Network button for the
Network to which you want to add another Subnet:

R Networks
Compute
Network Networks
Network Topology Name Subnets Associated Shared Status AdminState Actions
Networks CookbookNetwork? CookbookSubnet1 40.40.41.0/28 No ACTIVE | UP -
Displaying 1 item Add Subnet
Router:
Identity

111

Managing IP Addresses in Neutron

4. Now, clicking on the Add Subnet option will show you a window, as follows:

Create Subnet

-:-E::I:_:E

Subnet Name o - : .
Create a subnet associated with the network. Advanced

ation is available by clicking on the "Subnet

L8

| config

Detail"

Network Address @
IP Version *
Pd v

Gateway IP©

Disable Cateway

5. Enter the Subnet Name and Network Address (IP range in a CIDR format) and click
on Next. Then click on Create.

112

Chapter 5

6. You can see that the Network now has a second Subnet (IP range) associated with it.

—— Network Detail: CookbookNetwork?2

Compute

Netwerk Network Overview

Name

CookbookNetwork2

=]

Networks 68074126-7Ta05-4cF7-8d2b-cbbc2dF58aFT
Project ID
cf158e179F78422ba94a85bd9672f4d8

Routers Skatus

ACTIVE

Admin State

upP

Shared

No

External Network

No

MNetwork Topology

Identity

Subnets

Name Network Address IP Version Gateway IP Actions
Cookbooksubnet 40.40.41.0/28 Pv4 40.40.41.1 EditSubnet -

CookbookSubnet2 3030310/28 1Pvd 3030311 Edit Subnet ~ |

Displaying 2 items

This recipe showed you how to add multiple Subnets to a particular Network. This flexibility to
add more IP addresses helps in cases where more VMs are created than initially planned.

Neutron supports the multiple Subnets to be associated with each Network but such Subnets
cannot have overlapping IP addresses. Using multiple Subnets, more instances can be part of
a single Network. However, communication between the instances is limited to the instances
that have an IP address in the same Subnet. In order for the instances across a Subnet to
communicate, a Neutron router will be required.

Using the Horizon dashboard, users can choose a Network only during the instance creation.
Neutron will automatically assign the instance to the first Subnet in the Network. CLI allows
users to force an instance onto a particular Subnet.

113

Using Routing Services
in Neutron

The first five chapters focused on the OpenStack Networking capabilities available as part of
a Network. Now, we will delve deeper into OpenStack Networking and discuss the following
recipes related to IP Routing:

» Configuring Neutron for Routing services

» Creating a Router using the Horizon dashboard and Neutron CLI

» Enabling instances on different Networks to communicate

» Allowing the Virtual Machine instances to access the Internet

» Providing access to a virtual machine from an external Network or the Internet
using Horizon

» Creating and deleting a floating IP address using the Neutron CLI

» Associating a floating IP address to a virtual machine using the Neutron CLI

Introduction

We saw that the Network provides tenants with an isolated Layer 2 domain in which virtual
machines can communicate with one another. However, in real-life deployment, you will find many
scenarios where two or more networks need to communicate with each other. This connectivity
between virtual machines across two different Layer 2 Networks is accomplished using a Router.
The Router object in OpenStack provides VMs with Layer 3-based IP Routing services.

115

Using Routing Services in Neutron

The OpenStack default Router runs on the Network nodes in OpenStack. In order to
implement the recipes, you will need an OpenStack setup as described in the following figure:

Controller and Network Node Compute Node 1

Keystone Service

Compute Node 2

Nova Service Glance Service Nova Service Nova Service
Neutron Server | Neutron Agent(s) Neutron Agent Neutron Agent
br-int br-ex br-int br-int
ethO ethl eth2 ethO ——— ethl eth) ——— ethl

Management Network
Data Network

External Network (Internet)

This setup has two compute nodes and one node for the controller and networking services.
For this chapter, you can also use a setup with just one compute node. Compared to the earlier
chapters, this setup has an additional Network called External Network. This Network allows
the Network node to carry traffic from the VM instances to an external Network and vice versa.

Configuring Neutron for Routing services

As mentioned earlier, the OpenStack Networking functionalities can be classified as core and
service. Routing or L3 networking is part of the service functionality and Neutron needs to be
configured in order to support it.

Getting ready

We will configure the Neutron server as well as the Neutron L3 agent in order to enable
the Routing functionality in OpenStack. For this chapter, we will assume that the Neutron
ML2 plugin has been configured to use VLAN as the type driver and Open vSwitch as the
mechanism driver.

How to do it...

The following steps will show you how to configure Neutron to provide Routing services in
OpenStack:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network Node.

Chapter 6
2. Openthe neutron.conf configuration file using your desired editor.
For example, the command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

3. Inthe [DEFAULT] section of the file, configure router as the service plugin
for Neutron:

[DEFAULT]

service plugins = router

4. Openthe 13 agent. ini file using your desired editor. For example, the command
for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/meutron/13 agent.ini

5. As we are using Open vSwitch as the mechanism driver, in the [DEFAULT] section
of the file, we will configure interface driver accordingly:

[DEFAULT]

interface driver =
neutron.agent.linux.interface.OVSInterfaceDriver

6. The final step is to configure external network bridgeinthe 13 _agent.ini
file:

[DEFAULT]

external network bridge = br-ex

Once router is added to the list of service plugins in the Neutron configuration file, the support
for Router is enabled in OpenStack. You will see that the Horizon dashboard now has an
option called Router when you navigate to Project | Network.

The external Network bridge name is important when using the Open vSwitch mechanism
driver. For a Linux bridge, the corresponding bridge is created automatically. This bridge
is bound to the Ethernet interface that allows the traffic to be routed to networks that are
external to OpenStack.

117

Using Routing Services in Neutron

Creating a Router using the Horizon

dashboard and Neutron CLI

Once OpenStack is configured in order to support the Routing services, the next step is to
create a Router. Similar to a Network, Subnet, and Port, a Router is a logical entity that is used
by Neutron to provide connectivity between two different OpenStack Networks or Subnets.

In this recipe, we will see how to create a Router using the Horizon dashboard and Neutron CLI.

Getting ready

The only information required to create a Router is the name of the Router.

How to do it...

The following steps will show you how to create a Router in OpenStack:

1. Log into the OpenStack Horizon dashboard using the appropriate credentials.
2. Inthe left navigation menu, navigate to Projects | Network | Router.

i Routers
Compute
Network Routers + Create Router
Network Topology Name Status External Network Actions
No items to display.
Networks e
Displaying 0 items
Routers
Identity

3. Now click on + Create Router. In the resulting screen, enter the Router Name and
click on the Create Router button:

Create Router

Router Name *

Cookbook-Router-1

Cancel Create Router

118

Chapter 6

4. The newly created Router should now appear in the Routers table:

st ~ Routers
Compute
Network Routers + Create Router I €
Metwork Topology Name Status External Network Actions
Networks Cookbook-Router-1 Active - Set Cateway =~
Displaying 1 item
Routers
Identity

5. We will now create another Router named Cookbook-Router-2 using the Neutron
CLI. The command to create a Router using CLI is neutron router-create. If the
command was successful, it should show you the following output:

openstack@controller:~% neutron router-create Cookbook-Router-2
Created a new router:

| Field | Value |

admin_state_up True

external_gateway_info

id d1340404-b7f5-41ce-bc2f-2cff65513e63
routes

status ACTIVE

tenant_id abf@50bf68ff4da9953254a52abl6e2b

I
I
I
name | Cookbook-Router-2
I
I
I

penstack@controller:~% neutron router-list

e e e () o c———————

id | name | external_gateway_info |
a67b%acf-1fe4-4463-9fdf-595356eaa9fe | Cookbook-Router-1 | null |
d1340404-b7f5-41ce-bc2f-2cff65513e63 | Cookbook-Router-2 | null |

openstack@controller:~$ [

6. You can delete this Router using the neutron router-delete command by
specifying the Router name.

As mentioned earlier, an OpenStack Router is the entity that represents Layer 3 IP Routing in
OpenStack. A Router needs to be associated with subnetworks in order to provide a Routing
functionality between these subnetworks.

119

Using Routing Services in Neutron

OpenStack supports IP Routing using the Linux namespaces and iptables on the network
node. This is a centralized model for Routing where the VM traffic that needs to go out of
a Network is first sent to the network node and then the OpenStack Router on the network
node routes it further.

There's more...

In the newer releases, OpenStack supports Distributed Virtual Routing (DVR) that allows
each Hypervisor to support routing for a better scale and performance.

Enabling instances on different Networks to

communicate

In order to make use of the OpenStack IP Routing capabilities, a Router needs to be
associated with the desired subnetworks. Once this step is completed, the data traffic from
one VM in a Subnet will be able to communicate with another VM in another Subnet.

This recipe shows you how to associate subnetworks to a Router. While VMs will be able to
communicate with one another, the VMs will not yet have access to the Internet.

Getting ready

First, we will create two Networks and a Router and then we will associate the two Networks (or
the corresponding Subnet) to the Router. We will also create one VM in each of the Networks.

For this recipe, we will use the following information to create the Networks:

Network Name Subnet Name Network Address Range | VM Instance
Cookbook-Network-1 Cookbook-Subnet-1 20.20.20.0/28 Network-1-VM
Cookbook-Network-2 Cookbook-Subnet-2 30.30.30.0/28 Network-2-VM

How to do it...

The following steps will show you how to create two Networks and one Router and then
associate them together:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network
using the Horizon in Chapter 1, Getting Started with OpenStack Networking. Use the
Network Name, Subnet Name, and Network Address from the preceding table for
Cookbook-Network-1.

120

Chapter 6

2. Repeat the previous steps for Cookbook-Network-2. Once again, use the
information in the table. You should see a list of Networks as follows:

Project k
Networks
Compute
Network Networks + Create Network || 3¢ Delete
Metwork Topology Name Subnets Associated Shared Status AdminState Actions
) Coockbook-MNetwork-1 Cookbook-Subnet-1 20.20.20.0/28 No ACTIWVE UP Edit Network =
Networks
Coockbook ? Cookbook-Subnet-230.30.30.0/28 No ACTIVE UP Edit Network =
Routers
Displaying 2 tems
Identity

3. Create an instance called Network-1-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that Cookbook-Network-1 is chosen in the Selected
networks field.

4. Create an instance called Network-2-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that Cookbook-Network-2 is chosen in the Selected
networks field.

5. At this stage, you should see a list of instances, as follows:

Project
Instances
Compute
Oierew INSEANCES instance Name ¢ Filter m # Launch instance [Soft Rsbook instanc
Instance (14 . Key Avallabiliy Power Time since
nstances Nisas Image Name Fr— Size Pair Status = Task ki el Actions
- Network-2- cirres-0.3.3- L 2
Images P 8664 30.30.30.2 miting - Active nova Mone Running 0 minutes Create Snapshot -
Access & Securit ros0.3.3
. igﬁ":f""‘ 2020202 mitiny - Active nova Mome Running O minutes Create Snapshot ~
Network Displaying 2 2ems
Identity

Note that the two instances cannot ping each other as yet.

7. The next step is to create a Router called Cookbook-Router-1. Follow the steps
mentioned in the recipe titled Creating a Router using the Horizon dashboard and
Neutron CLI earlier in this chapter.

121

Using Routing Services in Neutron

8. Click on the name of the Router to view the details of the Router:

p—— - =
ol Router Details
Compute
Petwok Router Overview: Cookbook-Router-1
Name
Network Topology Cockbook-Router-1
[»]
Netwarks c31d6712-1F50-4957-87F2-d4cc733c91b6
Status
ACTIVE
Routers Admin State
up

Identity

nterfaces

Interfaces

Name Fixed IPs Status Type Admin State Actions
Mo items to display.

Displaying 0 items

9. To associate the Networks to the Router, click on + Add Interface:

Add Interface

Subnet *

v Select Subnet '.Cl'lpl:lon:
Cookbook-Network-2: 30.30.30.0/28 (Cookbook-Subnet-2) | onoact 5 specified subnet to the router.

Cookbook-Network-1: 20.20.20.0/28 (Cookbook-Subnet-1)
mewefault IP address of the interface created is a gateway

of the selected subnet. You can specify another IP address
of the interface here. You must select a subnet to which
the specified IP address belongs to from the above list.

Router Name *

Cookbook-Router-1

Router ID *

a67b9acf-1fed-4463-9Fdf-595356eaa9fe

Cancel Add interface

10. Select Cookbook-Network-1 (and its associated Subnet) and then click on
Add Interface.

122

Chapter 6

11. Repeat this step to add Cookbook-Network-2 as the second interface in the Router.

12. Navigate to Project | Networks | Network Topology. Here, you will see that the two
Networks are now connected via the Router:

Project - Network Topology

Compute

Network Small Normal m =+ Create Network < Create Router

Metwork Topology
Metworks
Routers

Identity

82/00E'DEOE
8210020202

13. At this stage, both the Networks are connected to each other via the Router. You
can now execute the ping command from one VM to another. You will notice that
the ping command succeeds. Note that you may have to check the security group
settings in order to ensure that ICMP (ping) traffic is allowed.

When a VM is created on a Network, we know that OpenStack creates a namespace with a
prefix of gdhcp. Similarly, when the first interface is added to the Router, Neutron (using the
L3 agent) creates a namespace with a prefix of grouter. You can view these namespaces
using the ip netns command on the Network node.

The grouter namespace represents the OpenStack Router. You can run the ifconfig
command in the namespace and see that the Router has one interface on each of the
Networks. The IP address assigned to these Router interfaces will be added as the default
gateway on the respective VMs. This is how the Router provides an IP Routing service between
the two Networks.

123

Using Routing Services in Neutron

There's more...

In case you use VXLAN as the overlay Network technology, then ensure that the TCP Maximum
Transmission Unit (MTU) settings are configured appropriately on the DHCP server (dnsmasq).
This will ensure that the VM instances have enough space for the Network protocols to carry
all the header information. Without a proper MTU configuration, you may find that the ping
commands between the VMs might fail.

Another useful thing to note is that Routers can be used to route traffic between two
Subnetworks in the same Network as well.

Allowing the Virtual Machine instances to

access the Internet

Routers allow VMs across different Networks to communicate with each other. They also play
another crucial role. Routers allow VMs to communicate with entities outside the OpenStack
Network such as the Internet. In Chapter 3, Exploring Other Network Types in Neutron, we
introduced the concept of an external Network. External Networks, when used with a Router,
allow the VM instances to access the Internet.

Getting ready

In order to allow VMs to access the Internet, we will need two types of Networks. A tenant
Network will be used to create an instance and associate it to a Router. Next, the Router
needs to be connected to an External Network that has access to the Internet. Note that an
OpenStack user with the administrator's privilege can create the External Network.

This recipe assumes that the OpenStack administrator has followed the steps mentioned in
the recipe titled Creating an External Networks using Horizon in Chapter 3, Exploring Other
Network Types in Neutron and created an External Network called External -Network.

How to do it...

The following steps will show you how to allow VMs to access the Internet:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network using
the Horizon in Chapter 1, Getting Started with OpenStack Networking to create a
Network named Cookbook-Network-1 and a Subnet IP range of 20.20.20.0/24:

124

Chapter 6

Project

i Networks
Compute
Networks ES
Netwerk Topology Name Subnets Associated Shared Status AdminState Actions

Networks

Routers

Identity

External-Network External-Subnet 192.168.57.0/24 No ACTIVE UP m
Cockbook-Network-1 Cookbook-Subnet-120.20.20.0/24 No ACTIVE UP m

Displaying 2 items

Create an instance called Network-1-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started with
OpenStack Networking. Ensure that Cookbook-Network-1 is chosen in the Selected
networks field.

The next step is to create a Router called Cookbook-Router-1. Follow the steps
mentioned in the recipe titled Creating a Router using the Horizon dashboard and
Neutron CLI earlier in this chapter.

As shown in the recipe titled Enabling instances on different Networks to
communicate in this chapter, add Cookbook-Network-1 as an interface to
Cookbook-Router-1.

Navigate to Project | Network | Routers. Click on Set Gateway under the actions
column for the Router named Cookbook-Router-1:

Set Gateway

External Metwork *

v Select network
External-Network

Router Name * router. The external network is regarded as a default route

Cookbook-Router-1

Router ID *

aB16687c-9F5a-4F78-9439-34ac619e1574

Description:

You can connect a specified external network to the

of the router and the router acts as a gateway for external
connectivity.

Cancel Set Gateway

125

Using Routing Services in Neutron

6. Inthe Set Gateway window, select the external Network that the administrator has
created for you. Click on the Set Gateway button.

7. At this stage, the VM instance, Network-1-VM, should be able to communicate with
the IP addresses on the external Network Subnet.

As discussed in Chapter 3, Exploring Other Network Types in Neutron, the external network
is critical in order to provide you with Internet access. In the External Network, the Subnet IP
range plays a crucial role.

We know that a Router connects two Networks. When a Network is added as an interface

to a Router, a Router port is created. The gateway IP addresses from the Network are then
assigned to this Router port. Similarly, for the second Network, another Router port is created
and associated with the gateway IP address of that Network. The OpenStack Router is
implemented using the Linux namespaces.

In the case of Internet access, a Router port is created using the External Network and is
assigned an IP address from the corresponding Subnet. Neutron uses iptables to configure
the SNAT rules for all the traffic trying to access the external network. The Router is then

able to provide IP Routing between a VM on a tenant Network to a port on the external
Network. This ensures that the VM traffic can reach the Internet while the VMs are not directly
accessible from the Internet.

There's more...

This recipe showed you how to perform a Set Gateway operation using the Horizon dashboard.
The same can also be accomplished using the OpenStack Neutron CLI. The command to set
the gateway using an external Network is neutron router-gateway-set.

A user can also clear the gateway using Horizon and the Neutron CLI (neutron router-
gateway-clear).

Providing access to a Virtual Machine

from an external Network or the Internet
using Horizon

As mentioned in the previous recipe, Routers along with an external network can be used to
provide VMs with access to the Internet. With the External Network set as a gateway on the
Router, the VMs can access the Internet from their private IP address. However, the VM cannot
be reached from the Internet using the private IP address.

126

Chapter 6

What happens if you are running a web server in your VM? It may be important to allow the
users to access the web server from the Internet. OpenStack extends the concept of the
Router and external Network and supports the floating IP addresses that can be used to
connect to a VM from the Internet.

Getting ready

Similar to the previous recipe, we will need two Networks and a Router to enable Internet
access to the VM. This recipe also assumes that the OpenStack administrator has followed
the steps mentioned in the recipe titled Creating an External Networks using Horizon in
Chapter 3, Exploring Other Network Types in Neutron and created an External Network called
External-Network.

How to do it...

The following steps will show you how to allow a VM to be accessible from the Internet:

1. Follow the steps mentioned in the recipe titled Creating a Subnet and Network using
Horizon in Chapter 1, Getting Started with OpenStack Networking to create a Network
named Cookbook-Network-1 and a Subnet IP range of 20.20.20.0/24:

Project v k
Networks
Compute
Network Networks + Create Newwork [% Delete N
Netwerk Topology Name Subnets Associated Shared Status AdminState Actions
, External-Network External-Subnet192.168.57.0/24 No ACTVE UP | edinework - |
Networks
Cockbook-Network-1 Cookbook-Subnet-120.20.20.0/24 No ACTIVE UP m
Routers
Displaying 2 items
Identity

2. The next step is to create a Router called Cookbook-Router-1. Follow the steps
mentioned in the recipe titled Creating a Router using the Horizon dashboard and
Neutron CLI earlier in this chapter.

3. Asshown in the recipe titled Enabling instances on different Networks to
communicate in this chapter, add Cookbook-Network-1 as an interface to
Cookbook-Router-1.

4. As shown in the previous recipe, set the gateway on Cookbook-Router-1 using the
External-Network.

5. Create an instance called Network-1-VM by following the steps of the recipe titled
Associating a Network to an instance using Horizon in Chapter 1, Getting Started
with OpenStack Networking. Ensure that Cookbook -Network-1 is chosen in the
Selected networks field.

127

Using Routing Services in Neutron

6. Inthe Actions column for the instance, select the Associate Floating IP action, as
shown in the following screenshot:

Project -
Instances
Compute
Slervian INSEANCES instanceName ¢ Filter [Fier | Ex SRy
Instance P Eay Availability Power Time since
Instances iria Image Name Address Size Pair Status s Task State SR Actions
Images Network-3- | cirros-0.3.3- S o 5 . unning | | 99 = "
it 6,4 2020208 m1.tiny Active nova None | Running % Create Snapshot
Access & Security Displaying 1 Rem Associate Floating 1P
3 IF
Network Edit Inszance
Identity ¥ Edit Security Groups
Consale
View Log

Pause Instance
Suspend Instance

Hesize Instance

7. Inthe resulting window, you will need to select a floating IP Address. If you did not
allocate any floating IP address earlier, the window will say No floating IP addresses
allocated. Click on the + symbol, as follows:

Manage Floating IP Associations

IP Address *
IP Add *
— Select the IP address you wish to associate with the
No floating IP addresses allocated $ selected instance.

Port to be associated *

Network-3-VM: 20.20.20.8

ap

128

Chapter 6

8. Once you click on the + symbol, the Allocate Floating IP screen will be displayed.
This screen will let you choose the appropriate external Network. Select Pool and
click on Allocate IP:

Allocate Floating IP

Pool *

.| Description:

Allocate a floating IP from a given Floating IP pool.

External-Metwork

Project Quotas
Floating IP (0)

9. You will be taken back to the Manage Floating IP Associations screen once again.
This time, an IP address will have been selected for the instance. Click on the
Associate button to complete the assignment of the floating IP to an instance:

Manage Floating IP Associations

IP Address *
P Address Select the IP address you wish to associate with the
192.168.57.6 B+ selected instance.

Port to be associated *

ap

Network-3-VM: 20.20.20.8

Note that if your instance has multiple virtual network interfaces, you will be able to choose a
floating IP address for each virtual interface.

129

Using Routing Services in Neutron

We have seen that access to the Internet requires an external network. The Router uses
an IP address from the Subnet of the external Network in order to provide an instance with
Internet access.

In the same fashion, when we need to access a VM from the Internet, we need an IP address
from the External Network Subnet. This mechanism is referred to as assigning a floating IP
address to the VM. The Manage Floating IP Associations screen shown in this recipe results
in an additional IP address being assigned to the VM. Using this additional IP address, we can
access the VM from the Internet.

Creating and deleting a floating IP address

using the Neutron CLI

As seen in the previous recipe, we first selected an instance in order to create and associate a
floating IP. For better planning, it may be required to create a set of floating IP addresses even
if instances have not yet been created. We will now show you how a floating IP address can be
created and deleted using the Neutron CLI.

Getting ready

As we have seen, floating IP addresses are chosen automatically from the specified external
Network. Therefore, you will need the following information to create a Network using CLI:
» The name of the external Network—in our case, it will be External -Network

» The login credentials for SSH to a node where the Neutron client packages
are installed

» Ashell RC file that initializes the environment variables for CLI

How to do it...

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands, as follows:

openstack@controller:~$ source author openrc.sh

130

Chapter 6

3. The command to create a floating IP address is neutron floatingip-create,
as shown here:

openstackl@controller:~% neutron floatingip-create External-Network
Created a new floatingip:

e e +
| Field | Value |
e e e et P +
fixed ip address	
floating ip address	152.1&8.57.8
floating network id	22050ae9-4f3e-4ca4-8769-cb59ci0bed5f
id	60abfT7ee-8043-484a-924b-bf2073726cab
porc_id	
router id	
status	DOWH
tenant_id	86f0760ab47945ceae2bbcho3842E3cE
e e e et P +
openstack@controller:~%

4. Asyou can see, the floating IP address of 192.168.57.8 was automatically selected
by Neutron.

5. You can view all the floating IP addresses currently in the system by using the
neutron floatingip-1list command:

openstack@controller:~$ neutron floatingip-list

+.

id	fixed_ip_address	floating_ip_address	port_id
6@abf7ee-8043-484a-924b-bf2073726cab		192.168.57.8	
dda3e@41-4ac7-4cld-a322-f57a34a6037c		192.168.57.6	

openstack@controller:~$ I

6. You can delete a floating IP address using the neutron floatingip-delete
command by specifying the ID of the floating IP, as follows:

openstack@controller:~$% neutron floatingip-delete 6@abf7ee-80843-484a-924b-bT2073726cab
Deleted floatingip: 6@abf7ee-8043-484a-924b-bf2073726cab
openstack@controller:~$% neutron floatingip-list

+ +.

fixed_ip_address | floating_ip_address

port_id

| id
|

+—+— 4
+—+— 4+

|
dda3e@41-4ac7-4cld-a322-f57a34a6037c | | 192.168.57.6

openstack@controller:~$ |

We have now seen the different CLI commands related to the floating IP addresses.

131

Using Routing Services in Neutron

When the neutron floatingip-create command is executed, Neutron takes the Subnet
information of the specified External Network and automatically selects an IP address to be
used as a floating IP address for an instance.

This IP address can then be associated with an instance using the Horizon dashboard as
shown in the previous recipe. This IP address can also be used with the Neutron CLI.

There's more...

Users can also create independent floating IP addresses using the Horizon GUI. This is done
by selecting Project | Access & Security | Floating IPs on the GUI.

Associating a floating IP address to a virtual

machine using the Neutron CLI

We have seen that the Neutron CLI allows users to create a floating IP address independent of
the existence of an instance. We will now show you how to associate a floating IP address to
an instance using CLI.

Getting ready

For this recipe, you will need to know the virtual interface or the Port of the instance to which
you need to bind the floating IP address. You will also need the following information:

» The login credentials for SSH to a node where the Neutron client packages
are installed

» Ashell RC file that initializes the environment variables for CLI

How to do it...

1. Using the appropriate credentials, SSH into the OpenStack node where the Neutron
client software packages are installed.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

132

Chapter 6

3. We will first execute the neutron port-1ist command to identify the ID of the
virtual interface port to which the floating IP will be assigned. In our case, we will need
to look for a port with an IP address of 20.20.20.9 (which is an internal IP address):

openstack@controller:~$ neutron port-list -c id -c fixed_ips

| id | fixed_ips [

6B71ff7e-6c52-4999-9a03-20dfabf392be	{"subnet_id": “fbSe3a3f-157a-4cba-adf3-4fbce85e7dd7", “ip_address": "192.168.57.4"}
8d5dbSad-e58b-499a-ae9d-d5d005489344	{"subnet_id": "fBc7e508-fce5-4307-9af2-6d9bBb11f24f", "ip_address": "20.20.20.9"}
da8fea5-5923-4214-985c-133dcB9147ca	{"subnet_id": "fBc7e50@-fceS5-4307-9af2-6d9bBb11f24f", "ip_address": “20.20.20.3"}
ffc23807-791c-4dfd-al43-3cf160463034	{"subnet_id": "fBc7e590-fce5-4307-9af2-6d9bBb11724f", "ip_address": "20.20.20.1"}

openstack@controller:~s |

4. The next step is to identify the ID of the floating IP address. We will use the neutron
floatingip-1ist command for this. Note that the selected floating IP does not
have any fixed IP address assigned:

openstack@controller:~$% neutron floatingip-list

+. +. +

| id | fixed_ip_address | floating_ip_address | port_id |

| dda3e@4l-4ac7-4cld-a322-f57a34a6037c | | 192.168.57.6 | |

-+ +

openstack@controller:~$ |

5. The command to associate a floating IP address to the virtual interface of an instance
isneutron floatingip-associate, as follows:

openstack@controller:~$ neutron floatingip-associate dda3e@d4l-dac7-4cld-a322-f57a34a6037c BdSdbSad-e5Bb-499a-ae9d-d5d005489344
Associated floating IP dda3e@41-4ac7-4cld-a322-f57a34a6037¢
openstack@contraller:~$ I

6. Once the command is successful, you can execute the neutron floatingip-
list command again and verify that the floating IP address has been associated to
a fixed (internal) IP address:

openstack@controller:~% neutron floatingip-list

| id | fixed_ip_address | floating_ip_address | port_id |

| dda3e@4l-dac7-4cld-a322-f57a34a6037c | 20.20.20.9 | 192.168.57.6 | 8dSdbSad-e58b-499a-ae9d-d5de05489344 |

openstack@controller:~$ I

The preceding steps showed you how to associate a floating IP address to an instance using
the Neutron CLI.

133

Using Routing Services in Neutron

As discussed earlier, a floating IP address is an IP address from the Subnet of the External
Network. A VM instance normally has a fixed (internal) IP address that is a part of the Subnet
of the tenant Network. The CLI commands seen in this recipe allow us to associate and
disassociate these two IP addresses (fixed and floating) from one another.

There's more...

You can use the neutron floatingip-disassociate command to remove the fixed IP to
a floating IP mapping.

134

Using Neutron Security
and Firewall Services

In this chapter, we will look at the following recipes to create and manage the security rules
with Neutron Security Groups and Firewalls:

» Creating a security group using Horizon

» Configuring the security group rules using Horizon

» Creating a security group using CLI

» Configuring the security group rules using CLI

» Securing the traffic between instances on the same Network

» Creating the security group rules to allow web traffic

» Configuring Neutron for the Firewall service

» Creating the Firewall rules

» Creating the Firewall policies

» Creating a Firewall

» Viewing and verifying the Firewall rules on the network node

Introduction

The OpenStack Neutron provides a comprehensive set of features to secure access to the
network resources. Neutron provides two levels of security restrictions. Security groups control
the traffic flow between two ports in a Network by applying security rules on the ports. Firewalls
secure the traffic flowing across the Networks by applying security rules on the Router.

135

Using Neutron Security and Firewall Services

To implement these recipes, we will use an OpenStack setup as described in the
following image:

Controller and Network Node Compute Node 1

Keystone Service

Compute Node 2

Nova Service Glance Service Nova Service Nova Service
Neutron Server Neutron Agent(s) Neutron Agent Neutron Agent
br-int br-ex br-int br-int
ethO ethl eth2 ethO —— ethl ethO ——— ethl

Management Network
Data Network

External Network (Internet)

This setup has two compute nodes and one node for the controller and networking services.

Creating a security group using Horizon

Security groups provide you with ways to control the Network traffic between ports in an
OpenStack Network. Security group rules are applied at a Network port level. To apply port
level security, we will start by creating a security group and then adding security rules to this
group. The security groups are attached to the instances when they are launched.

Getting ready

For creating a security group, you will need the following information:

» The security group hame

» A description for the security group

How to do it...

The following recipe will show you how to create a security group using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. Inthe left navigation menu, navigate to Project | Compute | Access & Security:

Chapter 7

B8 openstack demo - & admin~

project . Access & Security

£rvorneny + Crete Security Group | JERIETEE

O hame Description Actions

[0 defoait Dedault security group Manage Rules

3. Inthe Security Groups tab, click on + Create Security Group.
4. Fillin an appropriate security group Name and Description:

Create Security Group

Name *
Chapter7_SecurityGroup1 DeSCrlptIOH.
Security groups are sets of IP filter rules that are applied
Description to the network settings for the VM. After the security

oup is created, you can add rules to the security group.
Security Group for Chapter7 recipe e Y T

Cancel Create Security Group

5. Click the Create Security Group button. Once the security group has been created
successfully, it should be listed in the table, as shown in the following screenshot:

Project . Access & Securit

Compute - Saocurlty Groups Ky Pairn Floating IPa API Accens

Overview + Create Securlty Group

[0 MName Description Actions

O oetaur Deetaull securily group Manage Rules

D Chagter7 SecurityGroup! Security Group for Chapler7 recipe Manage Ruies ~
Network -

Displaying 2 éoms

137

Using Neutron Security and Firewall Services

In the subsequent recipes, we will see how rules can be added to the security group in order
to allow traffic.

In this recipe, we created a security group. The security group bundles a set of rules, which
can be associated to a Network port, and by default denies all access to the associated ports.

Configuring the security group rules using

Horizon

Once a security group has been created, access to all the ports associated with the security
group is denied. Security rules are then added to the group in order to allow only certain
type of traffic, thereby securing the Network. The rules are defined using Network traffic
attributes such as protocol (TCP, UDP, or ICMP), the direction of traffic flow, for example,
entering the port (ingress) or exiting the port (egress), and the application port, that is, the
UDP or TCP socket ports.

Getting ready

For this recipe, you will need the following information:

» The name of the security group to which the rules will be added
» The type of protocol to be allowed

» The direction of the traffic, that is, originating from the port (egress) or destined to the
port (ingress)

» The protocol port or port range that should be allowed

How to do it...

The following steps will show you how to create the security group rules using Horizon:

1. Log in to Horizon with the appropriate credentials.
2. Inthe left navigation menu, navigate to Project | Compute | Access & Security.

3. Select the entry in the security group table, and in the Actions column, select
Manage Rules. For this example, we will use the default security group.

4. This will open the screen to manage the rules for a selected security group:

138

Chapter 7

Manage Security Group Rules: default (d12bd8c8-g9d27-4afa-
820c-30448630d4b1)

o
O Orection Etner Type P protocor port Rangs Remote Actons
O | woress Py ary - cetau EX
[Eoess Pve Ary : 40 (CIDR)
O | Eoress P Ary . 00000 (CIOR) =3
S

5. Add a new security rule by clicking +Add Rule.

Security rules can be added using the predefined templates by choosing application
names in the Rule drop-down menu (for example, HTTP or SSH) or providing a custom
port, protocol, and remote address combination:

Add Rule

Rule *
‘ {Custom TCP Rule i Descrlptlon:

Custom TCP Rule y Rules define which traffic is allowed to instances
Custom UDP Rule assigned to the security group. A security group rule
| Custom ICMP Rule consists of three main parts:
| Other Protocol
| Al icMP Rule: You can specify the desired rule template or use
iA“ Tcp custom rules. the options are Custom TCP Rule, Custom
| All UDP UDP Rule, or Custom ICMP Rule.
DNS Open Port/Port Range: For TCP and UDP rules you
|HTTP may choose to open either a single port or a range of
(TIPS ports. Selecting the “Port Range™ option will provide you
IMAP with space to provide both the starting and ending ports
:_'\;)J:F;S for the range. For ICMP rules you instead specify an
| s saL ICMP type and code in the spaces provided.
[MYsaL Remote: You must specify the source of the traffic to be
| POP3 allowed via this rule. You may do so either in the form of
| POP3s an IP address block (CIDR) or via a source group
ERDP || (Security Group), Selecting a security group as the
| SMTP J source will allow any other instance in that security group
E_SMTPS :J access to any other instance via this rule.

Cancel

139

Using Neutron Security and Firewall Services

7. Select the rule type from the drop-down menu titled Rule. For this recipe, we will add
a Custom TCP Rule.

8. Select the direction of the traffic flow in the menu, Direction:

Add Rule

Rule *
Custom TCP Rule - Description:
Rules define which traffic is allowed to instances
Direction assigned to the security group. A security group rule
[i consists of three main parts:
iIngress P

Rule: You can specify the desired rule template or use
custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

Port -
J Open Port/Port Range: For TCP and UDP rules you
may choose to open either a single port or a range of

Egress

Port® ports. Selecting the "Port Range” option will provide you
with space to provide both the starting and ending ports
for the range. For ICMP rules you instead specify an

Remote * @ ICMP type and code in the spaces provided.

Remote: You must specify the source of the traffic to be
CIDR -

allowed via this rule. You may do so either in the form of
an IP address block (CIDR) or via a source group
CIDR@ {Security Group). Selecting a security group as the
source will allow any other instance in that security group
access to any other instance via this rule.

0.0.0.00

140

Chapter 7

9. Next, select whether you want to open a single port or multiple ports using the Open
Port menu. In this example, we will open a single port:

Add Rule
Rule *
Custom TCP Rule - Description:
Rules define which traffic is allowed to instances
Direction assigned to the security group. A security group rule
J consists of three main parts:
Ingress -

Rule: You can specify the desired rule template or use
Open Port * custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

iPort B

Open Port/Port Range: For TCP and UDP rules you
may choose to open either a single port or a range of
Port Range ports. Selecting the "Port Range” option will provide you
with space to provide both the starting and ending ports
for the range. For ICMP rules you instead specify an
ICMP type and code in the spaces provided.

Remote * @
Remote: You must specify the source of the traffic to be
j allowed via this rule. You may do so either in the form of
an P address block (CIDR) or via a source group
CIDR@ (Security Group). Selecting a security group as the
source will allow any other instance in that security group
access to any other instance via this rule.

CIDR

0.0.0.0:0

10. In the Port textbox, enter the protocol port number to open it. For this example, we
will use port 22.

11. In the Remote menu, choose a method of identifying the remote address; it can be
either a CIDR type network address or the name of another security group. We will
use CIDR for this example.

141

Using Neutron Security and Firewall Services

12. In the CIDR menu, mention the Network address with a mask from which to

allow traffic:
Add Rule

Rule *

Custom TCP Rule - Description:

Rules define which traffic is allowed to instances
Direction assigned to the security group. A security group rule
J consists of three main parts:
Ingress -

Rule: You can specify the desired rule template or use
Open Port * custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

g
=l Open Port/Port Range: For TCP and UDP rules you

may choose to open either a single port or a range of
Port@ ports. Selecting the "Port Range™ option will provide you
[24 ‘ with space to provide both the starting and ending ports

for the range. For ICMP rules you instead specify an
ICMP type and code in the spaces provided.

Remote " @
Remote: ¥ou must specify the source of the traffic to be
cioe '| allowed via this rule. You may do so either in the form of
an IP address block (CIDR) or via a source group
CIDR@ {Security Group). Selecting a security group as the
source will allow any other instance in that security group
access to any other instance via this rule.

- -

0.0.0.0/0

142

Chapter 7

13. Click Add to create the security group rule:

Manage Security Group Rules: default (d12bd8c8-gd27-4afa-
820c-30448630d4b1)

(] Direction Ether Type IP Protocol Port Range Remote Actions

T | igress Pvé o . defalt
O e - | i
T

The new rule is now a part of the security group. In this example, we added a rule to allow
access to port 22, which is used for SSH from any remote IP.

A security group by default blocks all the traffic to and from the Network port that is associated
with it. The user can then define the rules to open up the port for specific types of traffic.

Each security group rule opens up a certain type of traffic on the Network port. In this recipe,
we created a Custom rule to open a TCP port for the incoming (ingress) traffic.

The rule can allow traffic based on its origin. The origin can be either a Classless Inter-Domain
Routing (CIDR) Network or another security group. The IP address, 0.0.0.0/0, matches any
source address.

The reference implementation of security groups in OpenStack is provided using the iptables.

In case a security group name is used as the origin, the packet trying to reach the associated
port will be matched against both the security groups one after another. Either of these
security groups may explicitly allow the packet. If the packet does not match any of the rules,
it will be dropped.

143

Using Neutron Security and Firewall Services

Creating a security group using CLI

We have seen how to create a security group using Horizon; this recipe shows you how to
create a security group using the CLI.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the Neutron client packages are installed
» Ashell RCfile that initializes the environment variables for CLI

» The name and description of the security group

How to do it...

The following steps will show you how to create a security group using the Neutron CLI:
1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the CLI
commands.

3. Execute the neutron security-group-create command to create a security
group with the desired name and description:

openstack@controller:~$ neutron security-group-create Chapter7_SecurityGroup2 \
--description "Security Group 2 for Chapter7 recipe"

4. To list the security groups defined for the tenant, use the security-group-1list

command:

openstack@controller:~$ neutron security-group-list

L L L T TR T L L L L L E T T R L L L L +
| id | name | description |
L T T T T T T 4mcesmmeccsescsescmemaanan 4emsmmscscsssmssssssssssssssssssssaaa=an +
| 149b60627-eBed-4cd5-9d54-dec3ece54331 | Chapter7_SecurityGroup2 | Security Group 2 for Chapter7 recipe |
| d12bd8c8-9d27-4afa-820c-30448630d4bl | default | Default security group

| f162e97b-486c-45cd4-91ed-18a03003397d | Chapter7_SecurityGroupl | Security Group for Chapter7 recipe |
T T T L L LT T Fmmeccmeceecsmcesssema——- L L L LT T T T +

144

Chapter 7

5. To see the details of the security group that has been created, use the security-
group-show command with the name or ID of the security group:

openstack@controller:~$ neutron security-group-show Chapter7_SecurityGroup2 -c name -c id -c description -c
tenant_id

Hommmmneaana. 4esmmeesscssescssssecssssesassmesesnene +

| Field | value |

Hommmmneaana 4esmmemssessessssssecssssesessmessnena +

| description | Security Group 2 for Chapter? recipe |

| id | 149b6027-e8ed-4cd5-9d54-dec3ece54331 |

| name | chapter7 SecurityGroup2 |

| tenant_id | 588dcd43ecdld4B863875del33cabe3c2s |

Hommmmneaana. 4emmmemssmssessssssesssssesesssesesnene +

The security group rules can also be deleted using the Neutron CLI command
security-group-delete.

In this recipe, we created a security group using the Neutron CLI. We can also list and view the
newly created security group using the CLI commands. In case multiple security groups with
the same name are present, use the security group ID with the delete or show commands.

In the following recipes, we will learn about populating this security group with rules in order to
allow specific traffic packets using the CLI commands.

Configuring the security group rules

using CLI

In the previous section, we saw the creation of a security group using the Neutron CLI. In this
recipe, we will see how to create the security group rules using the Neutron CLI.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the Neutron client packages are installed
» Ashell RC file that initializes the environment variables for CLI

» The name of the security group, protocol, direction of the traffic flow, protocol port,
and a remote CIDR network

145

Using Neutron Security and Firewall Services

How to do it...

The following steps will show you how to create a security group rule using the Neutron CLI:
1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. To create a security group rule, use neutron security-group-rule-create,

as follows:
openstack@controller:~$ neutron security-group-rule-create --protocol tcp \
--port-range-min 8880 --port-range-max 8080 --direction ingress --remote-ip-prefix 0.0.0.8/8 \
Chapter7_SecurityGroup2
Created a new security group rule:
e e e +
| Field | value
L L L LT T T D L L T T +
direction	ingress
ethertype	IPv4
id	d7a3861c-63e4-4881-9848-4ed4fabaaedfo
port_range_max	8ese
port_range_min	sese
protocol	tep
remote_group_id	
remote ip prefix	0.08.8.0/0
security group_id	149b6027-eBed-4cd5-9d54-dec3ece54331
tenant_id	588dcd43ec014863875del33cale3c25
. I~ +

The Neutron CLI commands can also be used to list, view, and delete the security group rules.

The security group rules open the associated port for certain type of traffic packets. To specify
the type of traffic, we can provide parameters such as protocol, application port, direction

of the traffic flow, source of traffic, and so on. When a packet arrives at the port that is
associated with the security group, its parameters are matched against each security group
rule. If the packet matches the traffic pattern defined in any of the rules, it is allowed to pass
through the port. If none of the rules match the packet, the security group drops the packet.

Securing the traffic between instances on

the same Network

In this recipe, we will see how to use security groups to secure the instances on the same
Network. We will create a Network and launch two instances connected to the Network. We
will then use security groups in order to restrict the traffic between VMs.

146

Chapter 7

Getting ready

For this recipe, you will need the following information:

» The name for the Network

» The name for the security group

How to do it...

1. Log in to Horizon with the appropriate credentials.

2. Follow the recipe titled Creating a Subnet and Network using Horizon in Chapter 1,
Getting Started with OpenStack Networking to create a Network and its Subnet. For
this recipe, we will create a Network called Chapter7 Networkl with a Subnet IP
range of 70.70.70.0/24:

Netwaorks

Filter PN | = oeetcetvors |

O Name ‘Subnets Associated ‘Shared Status ‘Admin State Actions

|D Chapter?_Network1 Chapter7_Subnet1 70.70.70.024 No Active up Edit Network | ~ |

Dispizying 1 ftam

3. Next, we will launch two VM instances named Chapter7 VM1 and Chapter7 VM2
on the Network, Chapter7 Networkl, and associate them with the security group,
Chapter7_SecurityGroupl, that was created in the previous recipe:

Launch Instance

Details * Access & Security Metworking * Post-Creation Advanced Options
Key Pair @

Control access to your instance via key pairs, security
No key pairs available j + groups, and other mechanisms.

Security Groups @

[defaut

= Chapter7_SecurityGroup1

Using Neutron Security and Firewall Services

4. Once the VMs are active, verify the security group and Network associated with them
by selecting the VM from the Network list by clicking on the instance name such as
Chapter7_ VM1 and looking in the Overview tab:

Instance Details: Chapter7_VM1
m Log Console Action Log

Instance Overview

Information

Name Chapter7_VM1

D 91fbecBt-a030-4cc6-9911-8e337915e22a

Status Active

Availability Zone nova

Created April 20, 2015, 620 a.m.

Time Since Created 13 minutes

Host computel

Specs

Flavor m1 timy

Flavor ID 1

RAM 512MB

VCPUs 1 WCPU

Disk 1GB

IP Addresses

Chapter7_Network1 70.70.70.4

Security Groups

Chapter7_SecurityGroupl ALLOW IPv4 to 0.0.0.000

ALLOW IPVE to 220

148

Chapter 7

5. We will now log in to one of the VMs and try to ping the IP of the second VM:

§ ifconfig
ethe Link encap:Ethernet Hwaddr FA:16:3E:D0:9B:D8
|inet addr:76.70.70.5| Bcast:70.70.70.255 Mask:255.255.255.0
1net6 addr: fe80::f816:3eff:fed0:9bd8/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:85 errors:0 dropped:0 overruns:0 frame:@
TX packets:99 errors:0 dropped:® overruns:® carrier:0
collisions:® txqueuelen:1000
RX bytes:5374 (5.2 KiB) TX bytes:5863 (5.7 KiB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:46 errors:0 dropped:0 overruns:0 frame:@
TX packets:46 errors:0 dropped:® overruns:® carrier:@
collisions:® txqueuelen:®
RX bytes:4192 (4.8 KiB) TX bytes:4192 (4.0 KiB)

$

Slplng 70.70.70.4 !
P .70.70. .70.70.4): 56 data bytes
.- i statistics ---
1 packets transmitted, 0 packets received, 100% packet loss

6. As discussed earlier, specific security group rules are required in order to allow
specific types of traffic. As we have not created any rule for ping (ICMP) traffic, pinging
between the VMs fail.

7. Now, we will add rules to the security group in order to allow pings from any source. To
do this, we will navigate to the security group list and click on Manage Rules for the
security group, Chapter7_ SecurityGroupl:

+ Create Security Group

Description Actions
Default security group Manage Rules
Security Group for Chapter? recipe Manage Rules | -

149

Using Neutron Security and Firewall Services

8. We will then add a rule to allow all incoming ICMP traffic to the port from any source
CIDR network:

Add Rule
Rule *
All ICMP J Description:
Rules define which traffic is allowed to instances
Direction assigned to the security group. A security group rule
J consists of three main parts:
Ingress -
Rule: Y¥ou can specify the desired rule template or use

Remote * @ custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

cioR j Open Port/Port Range: For TCP and UDP rules you
may choose to open either a single port or a range of
CIDR @ ports. Selecting the "Port Range™ opticn will provide you
0.0.0.0/0 with space to provide both the starting and ending ports

for the range. For ICMP rules you instead specify an
ICMP type and code in the spaces provided.

Remote: ¥ou must specify the source of the traffic to be
allowed via this rule. You may do so either in the form of
an IP address block (CIDR) or via a source group
(Security Group). Selecting a security group as the
source will allow any other instance in that security group
access to any other instance via this rule.

Cancel

9. We can now repeat the following test to verify that pinging from one VM to another
will work:

$ ping 70.70.70.4

PING 70.70.70.4 (70.70.70.4): 56 data bytes

64 bytes from 70.70.70.4: seq=0 ttl=64 time=0.177 ms
64 bytes from 70.70.70.4: seq=1 ttl=64 time=0.159 ms
64 bytes from 70.70.70.4: seq=2 ttl=64 time=0.133 ms
64 bytes from 70.70.70.4: seq=3 ttl=64 time=0.123 ms
64 bytes from 70.70.70.4: seq=4 ttl=64 time=0.161 ms

--- 70.70.70.4 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.123/0.150/0.177 ms

With the security group rule in place, pinging from one VM to another is now allowed.

i)

Chapter 7

The security group drops all the packets by default. In this case, ping (ICPM) traffic between
the instances was blocked initially as there was no explicit rule to allow the traffic. Once rules
were added to allow all the ICMP packets, pinging between the VMs was allowed. Note that
rules can also be defined with specific criteria such as the source address of the packet in
order to provide more security.

Creating the security group rules to allow

web traffic

In this recipe, you will learn how to allow web traffic. We will create rules to allow the traffic
destined only to a web server running in a VM. Web traffic is associated with TCP ports 80 for
HTTP and 443 for HTTPS.

Getting ready

For this recipe, you will need the following information:

» The name of the Network
» The name for the security group

For this recipe, we will use the Chapter7 Networkl Network and the Chapter7
SecurityGroupl security group that we created in the previous recipe.

How to do it...

The following steps will show you how to open specific application-related protocol ports in a
security group:

1. Log into Horizon with the appropriate credentials.
2. Navigate to Project | Compute | Access & Security.

151

Using Neutron Security and Firewall Services

3. Click on Manage Rules for the Chapter7 SecurityGroupl security group to go to
the security group management page:

Manage Security Group Rules: Chapter7_SecurityGroupi (f162e97b-486c-45c4-91ed-
18203003397d)

[J Direction Ether Type IP Protocol Port Range Remote Actions

O Egress 1Pv4 Any - 0.0.0.000 (CIDR) Delete Ruls
O Egress IPvE Any - =0 (CIDR) Delete Rule
[0 Ingress 1Pv4 IcMP - 0.0.0.0:0 (CIDR) Delete Ruls
Displaying 3 flems

4. Click on +Add Rule to add a new rule. We will select the rule type HTTP in the Rule
menu and CIDR as 0.0.0.0/0 to allow HTTP traffic from all remote locations:

Add Rule
Rule *
HTTP [| Description:
Rules define which traffic is allowed to instances
Remote * @ assigned to the security group. A security group rule
consists of three main parts:
CIDR -

— Rule: ¥ou can specify the desired rule template or use
CIDR© custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

0.0.0.0/0
Open Port/Port Range: For TGP and UDP rules you

may choose to open either a single port or a range of
ports. Selecting the "Port Range”™ option will provide you
with space to provide both the starting and ending ports
for the range. For ICMP rules you instead specify an
ICMP type and code in the spaces provided.

Remote: ¥ou must specify the source of the traffic to be
allowed via this rule. You may do so either in the form of
an IP address block (CIDR) or via a source group
(Security Group). Selecting a security group as the
source will allow amy other instance in that security group
access to any other instance via this rule.

152

Chapter 7

5. We will follow the same process to add a rule for HTTPS traffic:

Add Rule
Rule *
RS |l Description:
Rules define which traffic is allowed to instances
Remote * @ assigned to the security group. A security group rule
consists of three main parts:
CIDR -

Rule: ¥ou can specify the desired rule template or use
CIDR @ custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

0.0.0.0/0

Open Port/Port Range: For TCP and UDP rules you
may choose to open either a single port or a range of
ports. Selecting the "Port Range™ option will provide you
with space to provide both the starting and ending ports
for the range. For ICMP rules you instead specify an
ICMP type and code in the spaces provided.

Remote: You must specify the source of the traffic to be
allowed via this rule. You may do so either in the form of
an |P address block (CIDR) or via a source group
(Security Group). Selecting a security group as the
source will allow any other instance in that security group
access to any other instance via this rule.

Cancel

6. On completing these steps, the Chapter7 SecurityGroupl security group will
show the rules to allow the web traffic of HTTP and HTTPS from all locations:

Manage Security Group Rules: Chapter7_SecurityGroupi (f162e97b-4¢
18a03003397d)

[Direction Ether Type IP Protocol Port Range Remote

O | e s : 00000 (GIoRY
0 | s ey 20000 CIoR)
O | roras ws oS 00000 CIoR
———

With the preceding security group rules in place, web access on the ports associated with the
Chapter7_ SecurityGroupl security group is allowed from any source.

153

Using Neutron Security and Firewall Services

In this recipe, we saw the creation of security group rules to allow web access on the associated
port. The associated port can be a VM, which is running a web application. To allow the traffic to
reach the web server, we will need to open TCP port 80 and 443, which are the well-known ports
for HTTP and HTTPS protocol, respectively. With this rule added, all the ports associated to the
Chapter7_SecurityGroupl security group will allow the passing of the web access traffic.

Configuring Neutron for the Firewall service

The OpenStack Networking functionalities can be classified as core and service. Firewall is
part of the service functionality and Neutron needs to be configured in order to support it.

In this recipe, we will configure the Neutron server as well as the Neutron FWaa$S agent in
order to enable the Firewall functionality in OpenStack.

Getting ready

For this recipe, we will assume that the Neutron ML2 plugin has been configured to use VLAN
as the type driver and Open vSwitch as the mechanism driver.

How to do it...

The following steps will show you how to configure Neutron to provide a Firewall service in
OpenStack:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Openthe neutron.conf configuration file using your desired editor. For example,
the command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

3. Inthe [DEFAULT] section of the file, configure firewall as the service plugin for
Neutron. If service plugins is already configured, add firewall to the list,
separated by a comma:

[DEFAULT]

service plugins = firewall

154

Chapter 7

Inthe [service providers] section of the file, add FIREWALL as a service
provider. If service provider is already configured, add FIREWALL to the list,
separated by a comma:

[service providers]

service provider = FIREWALL:Iptables:neutron.agent.linux.iptables
firewall.OVSHybridIptablesFirewallDriver:default
Add a [fwaas] section of the file, as shown here:

[fwaas]

driver = neutron fwaas.services.firewall.drivers.linux.iptables
fwaas.IptablesFwaasDriver
enabled = True

Open the 13_agent . ini file using your desired editor. For example, the command
for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/meutron/13 agent.ini

As we are using Open vSwitch as the mechanism driver, in the [DEFAULT] section of
the file, we will configure interface driver accordingly:

[DEFAULT]

interface driver = neutron.agent.linux.interface.
OvSInterfaceDriver

To configure the Horizon dashboard for Firewall, open the /usr/share/openstack-
dashboard/openstack dashboard/local/local settings.py file and setan
enable firewall option in the OPENSTACK NEUTRON NETWORK setting:

'enable firewall' = True

Once the changes are done, restart neutron-server, neutron-13-agent, and
horizon for the changes to take effect.

Once Firewall is added to the list of service plugins in the Neutron configuration file and the
Horizon dashboard has been configured, the support for Firewall is enabled in OpenStack.
You will see that Horizon now has an option called Firewall when you navigate to Project |
Network. The configuration of Neutron with an iptables-based FWaa$S plugin is now complete.
In the following recipes, we will use the Firewall service in order to secure the network access.

155

Using Neutron Security and Firewall Services

Creating the Firewall rules

In OpenStack Neutron, Firewall provides security by configuring the access control at the
Network Router, in contrast to the security group, which provided the access control at the
Network port. The Firewall policies provide you with the access control over the traffic crossing
the Network boundary.

In Neutron, a Firewall service is composed of a Firewall policy, which in turn is composed of
many Firewall rules. We will start exploring Firewall as a service by first looking at the Firewall
rules. We will then create a Firewall policy by grouping these rules. Finally, we will define a
Firewall that will use the Firewall policy that we created.

Getting ready

In this recipe, we will go through the process of creating a Firewall rule using Horizon. For this
recipe, you will need the following information:

» The Firewall rule name

» The rule description

» The protocol to define the type of traffic, for example, TCP, UDP, or ICMP

» The type of action that the rule will add, for example, allow or deny a traffic type

» The source and destination of the traffic and their port or port-range

How to do it...

The following steps will show you how to create a Firewall from Horizon:

1. Log in to Horizon with the appropriate credentials.

2. Navigate to Project | Network | Firewall and click on the Firewall Rules tab:

Project . Firewalls
Sompin . S i, hadioes
Network -
it T Name Policy
Metworks Mo
Routers Displaying 0 tems

3. Click on Add Rules to open the menu.

156

Chapter 7

4. Inthe Add Rule menu, provide the rule Name, Description, Protocol, Action, Source,
Destination IP, and Port or Port Range:

Add Rule

AddRule *

Name
Create a firewall rule.

Chapter7_FW_Rul ifi i
hapter7_FW_Rulet Protocol and action must be specified. Other fields are

optional.
Description

Firewall Rule1

Protocol *

TCP -

Action *

ALLOW v

Source IP Address/Subnet

0.0.0.0/0

Destination IP Address/Subnet

70.70.70.0/24

Source Port/Port Range

Destination Port/Port Range

22
"] Shared

(& Enabled

5. Click Add to create the Firewall rule:

Foew Firew Frewnl Rules

Name Protecol Source IP Source Port Destination IP Destinagion Port Action Enabled
ce 00000 = 70.70.70.024 2 ALLOW Yes

Oapiaprg 1 e

157

Using Neutron Security and Firewall Services
The Firewall rules can also be created using the CLI commands, as follows:
1. Using the appropriate credentials, SSH into the OpenStack node installed with the

Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Tocreate a Firewall rule, use the neutron firewall-rule-create command:

openstack@controller:~/devstack$ neutron firewall-rule-create --name Chapter7_FW_Rule3\
--description "Chapter7 Firewall Rule 3" --source-ip-address 0.0.0.0/0\
--destination-ip-address 70.70.70.8/24 --destination-port 22 --protocol tcp\
--action allow

Created a new firewall_rule:

o e +

| Field | value |
$ecccccccccccccnncccanana $eccccccccmcccccscscaccccsnacccnsananana +

| action | allow]

| description | chapter? Firewall Rule 3 |

| destination_ip_address | 70.70.70.0/24 |

| destination_port | 22]

| enabled | True |

| firewall policy id |]

| id | 8a911621-a6de-43f9-998c-db22f675385b |

| ip_version | 4 |

| name | Chapter7_Fw_Rule3]

| position | |

| protocol | tep]

| shared | False |

| source_ip_address | e.0.0.08/0 |

| source_port | |

| tenant_id | 7b9c44cd4b2ab4Bb48c688ab33419be7b]

T L LT LT T L LTT T . -

Once the rule has been created, the rule details are displayed.

The Firewall rule consists of two parts. The first part is the match condition. When a packet
arrives at the Network, the Firewall uses the match condition to select a packet for an action.
The second part in the rule is the action to take when a packet matches the condition. In this
recipe, we created a rule to allow the matching traffic on port 22 for a destination network
with the 70.70.70.0/24 address, and once this condition matches, the rule defines the
action to allow the packet.

158

Chapter 7

Creating the Firewall policies

A Firewall policy is a grouping of the Firewall rules. We will now create a Firewall policy and
add the Firewall rules that we created earlier. The order of the rules in a Firewall policy is
important and a different ordering may give you a different result.

A Firewall policy may also be shared between tenants.

Getting ready

We will create the Firewall policy using Horizon. For this recipe, we will need the
following information:

» The Firewall policy name
» The Firewall policy description

» Names of the Firewall rules to be added to the policy

How to do it...

The following steps will show you how to create a Firewall policy and add the Firewall
rules to it:

1. Log in to Horizon with the appropriate credentials.

2. Navigate to Project | Network | Firewalls and click on Firewall Policies.

3. Inthe Add Policy menu, provide Policy Name and Description:

Add Policy
AddPaolicy * Rules
Name *

Create a firewall policy with an ordered list of firewall rules.

5 7 I Policy . . .
Chapter?_FW_Policy1 A name must be given. Firewall rules are added in the order

placed under the Rules tab.
Description

Chapter? Firewall Palicy 1

[] Shared

[Audited

Of‘l-cel m

159

Using Neutron Security and Firewall Services

4. Inthe Rules tab in the Add Policy menu, choose and add the Firewall rules in
Available Rules to Selected Rules. Dragging them up or down can reorder the rules:

Add Policy

AddPolicy * Rules

Selected Rules

[EED. Chapter? FW Rule2
W

Choose rule(s) from Available Rules to Selected Rule by push button or drag and
drop, you may change their order by drag and drop as well.

[EEE). chapter? FW_Rulet
v

Available Rules

Cancel

5. Click Add to create the Firewall policy:

Firewalls

Firewalls Firewall Policies Firewall Rules

Add Poiicy
[0 Name Rules Audited Actions

[0 | Chapter7 FW_Policy1 Chapter7 FW_Rule2, Chapter7 FW_Rule1 False Edit Policy | ~

Disglaying 1tem

We can also use the Neutron CLI to create the Firewall policy using the following steps:
1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

160

Chapter 7

3. To create a Firewall policy, use the neutron firewall-policy-create command:

openstack@controller:~/devstack$ neutron firewall-policy-create --firewall-rules \
"Chapter7_FW_Ruled4 Chapter7_FW_Rule3" --description "Chapter7 Firewall Policy 2" \
Chapter7_FW_Policy2

Created a new firewall_policy:

decsnencsnsnnnnnn Fecesssnssnnnsnn RS a S E RS +

| Field | value |

Hommmmmaas R T TP +

| audited | False |

| description | Chapter? Firewall Policy 2

| firewall rules | 9788a775-84cb-437e-a246-728a2961cdb2 |

| | 8a911621-a6de-43f9-998c-db22f675385b |

| id | 6d64800f-c1b9-4930-a647-907303b%e28 |

| name | Chapter7 FW Policy2 |

| shared | False |

| tenant_id | 7b9c44c4b2absob48c688ab33419be7b |

$=ccccccacacmasa= feccscsccssssssssssssssssssssssssss==a= +

In the preceding command, the Firewall rules should be provided as an ordered list. The ordering
of the rules in the list determines the order in which the Network packets will be matched.

A Firewall policy is composed of rules, which match a traffic packet based on parameters
such as the protocol, application port, and so on. The rules can either allow or deny the
traffic that matches the rule. This makes the ordering of the rules in a policy significant. For
example, if a rule that allows SSH traffic from any location is placed before a rule that denies
any traffic from CIDR 20.20.20.0/24, an attempt to connect to a VM using SSH from CIDR
20.20.20.0/24 will still be allowed.

Creating a Firewall

A Firewall is associated with a Firewall policy. In the previous two recipes, you learned how to
create Firewall rules and a policy. We will now create a Firewall and associate it with the policy
that we created in the previous section.

Getting ready

We will create the Firewall using Horizon. For this recipe, we will need the following information:

» The Firewall policy name
» The Firewall name

» The Firewall description

161

Using Neutron Security and Firewall Services

How to do it...

The following steps will show you how to create a firewall using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. Navigate to Project | Network | Firewalls and click on the Firewalls tab and click on
Create Firewalls.

3. Inthe Add Firewall menu, provide Name and Description and choose the Policy of
the Firewall from the drop-down menu:

Add Firewall
AddFirewall *
Name))
Create a firewall based on a policy.
Chapter?_Fw1 A policy must be selected, Other fields are optional.
Description

Chapter? Firewall 1

Palicy *

Chapter?_FW_Palicy1 j
[shared

Admin State *

e M
Cancel

4. Click Add to create the Firewall:

Firewalls
Firewall Policies Firewall Rules
» rone reovet | [

O Name Policy Status Actions
[0 Chapter7_FW1 Chagter?_FW_Palicy1 ACTIVE Edit Firewall | ~
Dispiaying 1 ftem

162

Chapter 7

We can also create the Firewall with the Neutron CLI using the following steps:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. To create a Firewall, use the neutron firewall-create command and provide
the Firewall policy that should be associated with this Firewall:

openstack@controller:~/devstackS neutron firewall-create --name Chapter7_FW2 \
|--description "Chapter7 Firewall 2" Chapter7_FW_Policy2
Created a new firewall:

L N L +
| Field | value |
Fommmmm e B L T Ll +
admin_state_up	True
description	Chapter7 Firewall 2
firewall policy id	8d64866f-c1b9-4936-a647-907303b%ae28
id	6bfbld38-b966-45db-a850-6eae23608564
name	Chapter7_ Fwz
router_ids	7dff588c-942d-407a-a325-3afcal3d7hc24
status	PENDING_CREATE

| tenant_id | 7b9c44c4b2ab4ob4Bc688ab33419be7b |
#ocommomemmem———- #m-emmemeemeeccmeeeeeeeeeeeeee—e———-- +

Once a Firewall has been created using a predefined policy, all the Firewall policy rules are
automatically applied to the Routers that already exist or those that will be created later. The
reference implementation of FWaaS applies the Firewall rules as an iptables configuration in
the Router's namespace. The Firewall policy of a tenant is applied to all the Routers that the
tenant owns. This behavior will change in the future version of Neutron and allow the user to
associate the Firewall policy to the chosen Routers.

In the next recipe, we will explore the iptables configuration in detail.

163

Using Neutron Security and Firewall Services

Viewing and verifying the Firewall rules on

the Network node

We created a Firewall and its policies and rules in the previous recipes. The Neutron reference
implementation uses iptables to provide FWaaS. As discussed earlier, FWaa$S policies are
implemented at the Routers. Neutron uses the Network's namespace to implement the
Routers. In this recipe, we will fnd out how the Firewall policies and rules are converted to the
iptables configuration by Neutron.

Getting ready

For this recipe, you will need the following information:

» An administrative user access to OpenStack
» Aroot or equivalent sudo access to the Network node

How to do it...

The following steps will show you how to view the Firewall rules on the Network node:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Use the CLI commands to list the Firewall, Firewall policy, Firewall rule, and Routers.
Note the Router ID in the following image. We will use this ID to find the namespace
corresponding to this Router on the Network node:

164

Chapter 7

openstack@controller:~$ neutron firewall-rule-list

| 8a911621-a6de-43f9-998c-db22f675385b | Chapter7_FW_Rule3 | 0d64800f-c1b9-4930-a647-907303b%ae28 | TCP,

| | source: 0.0.6.8/8(none),
| | | | | dest: 70.70.70.70/24(22),
| | | allow
| 9788a775-84cb-437e-a246-728a2961cdb2 | Chapter?_FW_Rule4 | 0d64800f-c1b9-4330-a647-907303b%ae28 | TCP, True
| | source: 6.06.6.8/8(none),
| dest: 70.70.70.70/24(80),
| allow

p——— %

8de48eef-clb9-4930-a647-907303b%ae28	Chapter?_FW_Policy2	[9788a775-84ch-437e-a246-728a2961cdb2,
		B8a911621-a6da-43f9-998c-db22f675385b]
7ac444ed-adde-4bfo-a67d-38ecf7e90234	Chapter?_FW_Policyl	[259e5b06-0665-4b4f-9742-ed4db7370bazf,
		8d8274ac-ed4f-4e5a-9f2e-bla3a4fboe2f]

B T Ao e e +
openstack@controller:~$§ neutron firewall-list

B R LR T T T T PP R S R T L L P +

| id | name | firewall_policy_id |

B L E TR R R PP PP S ERTT TR e +

| 6bfb1d38-b966-45db-a850-6eae23608564 | Chapter7_FuW2 | 0d64800T-c1b3-4930-a647-307303b9%ae28 |

4. Login to the network node as the root user (or an equivalent sudo user) account
using SSH.

5. Use the ip netns command to locate the namespace for the Router. Neutron
creates the Router's namespace using a grouter prefix with the Router ID.

6. Start a shell in the Router's namespace using the ip netns exec command:

openstack@controller:~$ sudo ip netns

qrouter-7dTT588c- 942--437a a325 3a cal37hc2d
qdhcp-28 4

openstack@controller:~$ sudo ip netns exec qrouter-7dff588c-942d-407a-a325-3afcal37bc24 bash

165

Using Neutron Security and Firewall Services

7. List the iptables rules in this namespace using iptables -L -n -v, as follows:

Chain FORWARD (policy ACCEPT)

target prot opt source destination
neutron-filter-top all -- 8.0.0.8/8 8.0.8.8/8
neutron-13-agent-FORWARD all -- 0.0.0.0/0 B.6.6.8/8 |
Chain OUTPUT (policy ACCEPT)

target prot opt source destination
neutron-filter-top all -- 0.0.08.8/0 6.0.8.8/0
neutren-13-agent-0UTPUT all -- 6.0.08.8/0 6.0.8.8/0
Chain neutren-filter-top (2 references)

target prot opt source destination
neutren-13-agent-local all -- 0.0.8.8/8 6.0.8.8/0
Chain neutron-13-agent-FORWARD (1 references) |

neutren-13-agent-fwaas-defau all --
neutren-13-agent-fwaas-defau all --

target rot opt source destination
neutron-13-agent-iv46bfbld38 all -- 0.0.8.8/0 6.0.8.8/0
neutron-13-agent-ov4ebfbld3d all -- 6.08.8.8/8 B8.0.8.8/0
i] 6.0.8.8
] 6.0.8.8

Chain neutren-13-agent-INPUT (1 references)

target prot opt source destination
ACCEPT all -- 0.8.0.8/0 8.8.8.8/9 mark match Bx1
DROP tecp -- 0.0.0.8/0 8.8.8.8/9 tcp dpt:9697

Chain neutren-13-agent-0UTPUT (1 references)
target prot opt source destination

Chain neutren-13-agent-fwaas-defau (2 references)

target prot opt source destination

DROP all -- 0.8.0.8/0 8.8.8.8/9

Chain neutren-13-agent-iv46bfbld38 (1 references)

target prot opt source destination

DROP all -- 0.8.0.8/0 8.8.8.8/9 state INVALID

ACCEPT all -- 6.8.0.8/0 8.6.8.68/8 state RELATED, ESTABLISHED
CCEPT tecp -- 70.70.70.8/24 8.6.8.8/9 tcp dpt:86
CCEPT tcp -- 70.70.70.68/24 B8.0.8.6/0 tcp dpt:22

Chain neutren-13-agent-local (1 references)

target prot opt source destination

Chain neutren-13-agent-ov46bfbld3d (1 references)

target prot opt source destination
DROP all -- 0.8.0.8/0 8.8.8.8/9 state INVALID
ACCEPT all -- 0.8.0.8/8 8.6.8.8/9 state RELATED,ESTABLISHED
EEEEPT tcp -- 70.70.70.8/24 8.6.8.8/9 tcp dpt:86
CCEPT tcp -- 78.70.70.8/24 8.6.8.8/9 tcp dpt:22

You can see that the Firewall rules have been converted to the iptables configuration and
applied in the Router's namespace.

166

Chapter 7

Linux network namespace is used by Neutron to implement a Router. When the Firewall
rules are created, Neutron configures iptables in the Router's namespace to implement the
Firewall rules. In this example, we can see that the Router ID, 7dff588c-942d-407a-
a325-3afcal37bc24, is used to create the grouter-7df£588c-942d-407a-a325-
3afcal37bc24 hamespace.

Neutron then creates the iptables configuration in this namespace in order to implement

the Firewall rules. For every Firewall that is created by the tenant, Neutron creates a pair of
the iptables chains and names them using a prefix of the Firewall's ID. In this example, the
chains are named as neutron-13-agent-iv46bfb1d38 and neutron-13-agent-
ov46bfb1d38 and represent the ingress (input) and egress (output) direction of the match,
respectively. In the chains, the individual rule configuration matches the Firewall rules created
by the user.

167

Using HAProxy
for Load Balancing

OpenStack Neutron provides Load Balancer as a Service to distribute traffic to your
application that is running on the virtual machines. In this chapter, we will explore the Neutron
load balancer service plugin with the following recipes:

» Installing and configuring the Neutron load balancer service plugin

» Creating a load balancer pool using Horizon

» Creating a load balancer pool using CLI

» Adding a load balancer member using Horizon

» Adding a load balancer member using CLI

» Adding a load balancer health monitor using Horizon

» Adding a load balancer health monitor using CLI

» Creating a Virtual IP using Horizon

» Creating a Virtual IP using CLI

» Making the load balancer accessible to the Internet

» Testing the load balancer

» Viewing the load balancer on the network node

169

Using HAProxy for Load Balancing

Introduction

Critical applications and services need to be resilient to failures and capable of handling high
network traffic. One of the strategies to achieve the scale and high availability is using a load
balancer. A load balancer distributes an incoming service request to a pool of servers, which
process the request, thus providing a higher throughput. If one of the servers in the pool
fails, the load balancer removes it from the pool and the subsequent service requests are
distributed among the remaining servers. The load balancer acts as a frontend to a cluster of
worker nodes, which provide the actual service.

To implement these recipes, we will use an OpenStack setup, as described in the
following image:

Controller and Network Node Compute Node 1

Keystone Service

Compute Node 2

Nova Service Glance Service Nova Service Nova Service
Neutron Server Neutron Agent(s) Neutron Agent Neutron Agent
br-int br-ex br-int br-int
ethO ethl eth2 ethO ——— ethl ethO ——— ethl

Management Network
Data Network

External Network (Internet)

This setup has two compute nodes and one node for the controller and networking services.

Installing and configuring the Neutron load

balancer service plugin

This recipe shows you how to install and configure the Load Balancer as a Service (LBaaS)
plugin in Neutron.

The reference implementation of LBaaS in Neutron uses HAProxy along with the network
namespace.

Getting ready

For this recipe, you will need the following information:

» The login credentials to the Controller and Network node

170

Chapter 8

How to do it...

The following steps will show you how to install the load balancer service with Neutron:

1.

With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

Install the packages required to provide the load balancer services using a package
manager such as yum or apt on the Network node, as follows:
openstack@controller:~$ sudo apt-get install python-neutron-lbaas

neutron-lbaas-agent haproxy

Open the neutron. conf configuration file using your desired editor. For example,
the command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

Inthe [DEFAULT] section of the file, configure load balancer as the service plugin
for Neutron. If service plugins is already configured, add the load balancer
configuration to the list, separated by a comma:

[DEFAULT]

service plugins = lbaas

Inthe [service providers] section of the file, add LOADBALANCER as a service
provider. If service provider is already configured, add LOADBALANCER to the
list, separated by a comma:

[service providers]

service provider = LOADBALANCER:Haproxy:neutron.services.
loadbalancer.drivers.haproxy.plugin driver.HaproxyOnHostPluginDriv
er:default

Open the /etc/neutron/lbaas_agent.ini configuration file and update the
device driver and interface_ driver settings:

interface driver = neutron.agent.linux.interface.
OvSInterfaceDriver

device driver = neutron.services.loadbalancer.drivers.haproxy.
namespace driver.HaproxyNSDriver

To configure Horizon for the load balancer, open the /usr/share/openstack-
dashboard/openstack dashboard/local/local settings.py file and set
an enable_1b option in the OPENSTACK NEUTRON NETWORK setting:

'enable 1b' = True

171

Using HAProxy for Load Balancing

8. Restart neutron-server, neutron-lbaas-agent, and apache?2 or the httpd server for the
changes to take effect.

The load balancer service in Neutron is supported using a service plugin. The reference
implementation of the load balancer uses HAProxy as the service provider. The plugin spawns
the instances of HAProxy in a Linux network namespace on the network node in order to act
as a load balancer node.

Creating a load balancer pool using Horizon

A typical load balancer installation consists of a pool of servers called members, each of
which will run an instance of the application. All the clients will connect to the service using a
Virtual IP that is configured on the load balancer node, as shown in the following image:

/ Subnet \
Clientl

Load Balancer Node Memberl
-~
)

Member2

Client2 \ \ /»

The load balancer node then forwards the traffic transparently to the member servers.
To accomplish this, it can adopt various strategies in order to distribute the traffic load to
member servers such as round robin, least connected, and so on.

To configure the load balancer, we would need some member servers connected to a virtual
network. For this recipe, we will host a web server on each member server. These servers will
be connected to a virtual network on the same subnet.

We will then use Neutron to configure the load balancer to distribute traffic to the
member servers.

Follow the Creating Network and Subnet using Horizon recipe in Chapter 1, Getting Started
with OpenStack Networking to create a LoadBalancer Netl Network and its Subnet with a
network address of 20.20.20.0/24.

172

Chapter 8

The following table shows you the VM details:

Virtual Machine name Role IP address
Chapter8 vml A load balancer member | 20.20.20.3
Chapter8 vm2 Aload balancer member | 20.20.20.4

Getting ready

In this recipe, we will use Horizon to create a load balancer pool. A load balancer pool defines
a group of servers on a Subnet to be used to process the service requests. The pool also
defines the strategy of distributing the load among the member servers.

To create a load balancer pool, you will need the following information:

» The name of the load balancer pool

» The description of the pool

» The Subnet associated with the pool

» An application protocol for the load balancer

» The method used to spread the load to the pool members

How to do it...

The following steps will show you how to create a load balancer pool using Horizon:

1. Log into Horizon with the appropriate credentials.

2. Inthe left navigation menu, navigate to Project | Network | Load Balancers:

T Load Balancer

Name Description Provider Subnat Protocol Status viP Aztions

3. Click on +Add Pool.

4. In the Add Pool screen, provide a Name for this pool.

173

Using HAProxy for Load Balancing

5. Add a Description for the pool.
6. Select haproxy as Provider for this pool.

7. Select Subnet for this load balancer pool. For our example, we will use the
20.20.20.0/24 Subnet on LoadBalancer Net1 as the CIDR.

8. Select the application Protocol for this pool. For our example, we will use HTTP
as the protocol:

Add Pool

Add New Pool ©

Mame * .
Create Pool for current project.

Chapter_LE_Pool1 Assign a name and description for the pool. Choose one

subnet where all members of this pool must be on. Select
the protocol and load balancing method for this pool. Admin
State is UP (checked) by default.

Description

Chapters LB pooll

Provider

haproxy (default) j
Subnet *

20.20.20.0/24 j
Protocol *

| (HTTP j

Select a Protocol

HTTPS

TCP

Admin State *

we M
Cancel m

9. Select Method used by the load balancer in order to select a server for the new
request traffic. We will use the ROUND_ROBIN method:

174

Chapter 8

Add Pool

Add New Pool *

Mame *

Chapter8_LE_Pool1

Description

Chapters LB pooll

Provider

haproxy (default) j
Subnet *

20.20.20.0/24 j
Protocol *

HTTP j

Load Balancing Method *

{ROUND_ROBIM j

Select a Method
ROUND_ROBIN

LEAST CONMECTIONS
SOURCE_IP

Create Pool for current project.

Assign a name and description for the pool. Choose one
subnet where all members of this pool must be on. Select
the protocol and load balancing method for this pool. Admin

State is UP (checked) by default.

10. Click on Add to create the pool:

Load Balancer

Pools Members Monitors

[Name Description

[J | Chapter8_LB_Pooll Chapterd LB Pool1

Displaying 1 item

Provider

haproxy

‘Subnet

20.20.20.0/24

Protocol

HTTP

The load balancer pool that you created should now be listed in the Pools table.

175

Using HAProxy for Load Balancing

The load balancer pool in Neutron defines the attributes of the load balancer such as the
Subnet and load distribution method. The pool is associated with a protocol such as HTTP,
HTTPS, or TCP. The following load distribution methods are supported:

» Least Connection: This forwards a request to the member having the least number
of client requests

» Round Robin: This evenly distributes the service request between the members but
does not take into account the current load on a member

» Source IP: This always forwards the requests from a client to a certain member

Creating a load balancer pool using CLI

In the previous recipe, we saw how to create a load balancer pool using Horizon. In this recipe,
we will use the Neutron CLI to create a load balancer pool.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the Neutron client packages are installed
» Ashell RC file that initializes the environment variables for CLI

» The name of the load balancer pool

» The Subnet ID for the load balancer

» The method to use for the load balancing

» The protocol that needs to be load balanced

How to do it...

The following steps will show you how to create a load balancer pool using the Neutron CLI:
1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron lb-pool-create command to create the load
balancer pool:

176

Chapter 8

openstack@controller:~$% neutron lb-pool-create --name Chapterd_LB_Pool2\
--protocol HTTP --subnet-id 7c870ec9-7222-4954-b1f4-815432e9ca95)
--provider haproxy --lb-method ROUND ROBIN

Created a new pool:

g g g +
| Field | value |
R R C T T e +
admin_state_up	True
description	
health monitors	
health_monitors_status	
id	88¢35213-d6b4-4018-a8d2-ad3fo9eecs5fs
1b _method	ROUND ROBIN
members	
name	Chapterd_ LB Pool2
protocol	HTTP
provider	haproxy
status	PENDING_CREATE
status_description	
subnet id	7c870ec9-7222-4954-b1f4-815432e9ca%5
tenant_id	6d39c84e59a84425bedbcebdf674e2c9

| vip_id | |
T N +

4. Once created, Neutron will display the details of the load balancer pool.

The load balancer pool defines the protocol, Subnet, and method used to distribute the
requests among the load balancer members.

Adding a load balancer member using

Horizon

When a load balancer receives a service request from the client, it forwards the request to
one of the load balancer members running the application and the application does the
actual request processing.

In this recipe, we will use Horizon to add members to the load balancer pool that we
created earlier.

Getting ready

To add a member to a load balancer pool, you will need the following information:

» The name of the load balancer pool

» The VM name or IP to add as the pool member

177

Using HAProxy for Load Balancing

» The weight associated with the pool member
» The port on the VM to which the traffic would be redirected by the load balancer

How to do it...

The following steps will show you how to add a load balancer pool member using Horizon:

1. Log in to Horizon with the appropriate credentials.

2. Inthe left navigation menu, navigate to Project | Network | Load Balancers.

3. Select the Members tab.

4. Click on +Add Member.

5. Inthe Add Member screen, select the name of the load balancer pool in the Pool field:
Add Member

Add New Member *

Pool *
Add memberis) to the selected poal.

| iSelectaigonl Choose one or more listed instances to be added to the pool

. as member(s). Assign a numeric weight and port number
Chapter8_LE_Pool1 for the selected member(s) to operate(s) on: e.g., B0.

Select from active instances j Only one port can be associated with each instance.

Member|(s) ©

Chapterg8_wm
Chapter8_wm2

Weight @

B

Protocol Port * @

(B

Admin State *

w M
Cancel

178

Chapter 8

6. Set Member Source as Select from active instances. It is also possible to add a
member based on the IP address. The IP address of the member must be in the
Subnet that is associated with the pool.

7. Inthe Member(s) field, select the VM instance to be added:

Add Member

Add Mew Member *

Poal *
Add member(s) to the selected pool.
Chapter8 LB_Poolt j Choose one or more listed instances to be added to the pool
as memberis). Assign a numeric weight and port number
Member Source for the selected member(s) to operate(s) on; e.g., B0,
Select from active instances j Only one port can be associated with each instance.
Member(s) @

Chapter8 wvmz2

Weight @

1

[a]=

Protocol Port * @

8O

Kl

Admin State *

e M
Cancel

8. Inthe Weight text box, provide the member's weight. This is an indicator of the
relative load handling capacity of the member with respect to the other members in
the pool. A higher weight of a member indicates a higher request handling capability.

179

Using HAProxy for Load Balancing

9. In Protocol Port, provide the port on the VM to which the traffic should be redirected:

Add Member

Add New Member *

Pool *

Chapter8_LE_Pooll

Member Source

Specify member IP address

Member address @

20.20.20.4

Weight @

1

Protocol Port * @

80

Admin State *

P

K

K

Add member(s) to the selected pool.

Choose one or more listed instances to be added to the pool
as member(s). Assign a numeric weight and port number
for the selected memberis) to operate(s) on; e.g., 80.

Only one port can be associated with each instance.

Cancel

10. Click Add to create the member:

Load Balancer

Pool

Is Members Manitors

[IP Address Protocol Port
[| 2020204 80
O | 2020203 80

Weight

Pool

Chapter8 LB Pooll

Chapter8 LB Pooll

+ Add Member

Status

Active

Active

The newly added member is now displayed in the Members tab.

180

Chapter 8

The load balancer member runs the application that processes the client requests. In this
recipe, we added two members to the load balancer pool. The load balancer distributes the
client request to these two member servers, which do the actual request processing.

Adding a load balancer member using CLI

In this recipe, we will add a load balancer member using the Neutron CLI.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the Neutron client packages are installed
» Ashell RC file that initializes the environment variables for CLI

» The IP address of the member

» The protocol port of the application running in the member

» The name of the load balancer pool where this member will be added

How to do it...

The following steps will show you how to add a load balancer member using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron lb-member-create command to add the member to the
load balancer pool. Optionally, you can also provide a weight for this member:

openstack@controller:~$ neutron lb-member-create --address 20.208.20.6)\
--protocol-port 80 --weight 1 Chapter8 LB Pool2

Created a new member:

Frmmmmmmme e —————— e e eemeeeeeeeeee e e —————— ks
| Field | value |
T T T -
address	20.20.20.6
admin_state_up	True
id	2fa7c388-9e38-4704-b98e-301bf89bd8%e
pool_id	88c35213-d6b4-4018-a8d2-ad3fe9eec5f8
protocol_port	8@
status	PENDING_CREATE
status description	
tenant_id	6d39cB84e59a84425bedbcebdf674e2c9
weight	1
Frmmmme e —————— e e e — e ——————— 4

181

Using HAProxy for Load Balancing

The weight of the member is a relative value that decides the ratio of requests that can be
handled by a member. If one of the members in the pool is a more powerful machine, it can
be given a higher weight. The load balancer will distribute a bigger percentage of the requests
to the member with the higher weight.

Adding a load balancer health monitor using

Horizon

In this recipe, you will learn how to create a heath monitor for the load balancer that monitors
the health of the applications that are running on the member servers.

Getting ready

To create a health monitor for our load balancer, we will need the following information:

» The type of monitor

» The time interval between consecutive health check request sent by the monitor
» The amount of time to wait for a reply from the application

» The number of times the monitor will try to get a reply from the application

How to do it...

The following steps will show you how to add a heath monitor for the load balancer:

1. Login to Horizon with the appropriate credentials.

2. Inthe left navigation menu, navigate to Project | Network | Load Balancers.
3. Select the Monitors tab and click on Add New Monitor.
4

In the monitor screen, add the monitor Type. For our example, we will use HTTP
as the monitor type.

5. Inthe Delay field, provide the time interval between consecutive health check
request sent by the monitor.

6. Inthe Timeout field, enter the amount of time to wait for a reply from the application.

In the Max Retries field, enter the number of times that the monitor will try to get a
reply from the application.

182

Chapter 8

8. In case you selected an HTTP or HTTPS type monitor, you should provide the type
of HTTP Method that the monitor should invoke in order to check the health of the
application. For our example, we will use the GET method.

9. Foran HTTP/HTTPS type monitor, you should also provide a URL for the application
and Expected HTTP Status Code for a healthy application. We will use the URL / and
a status code of 200:

Add Monitor

Add MNew Monitor

kL .
ype Create a monitor template.
HTTR j Select type of monitoring. Specify delay, timeout, and retry
limits required by the monitor. Specify method, URL path,
Delay * L2} and expected HT TP codes upon success.
10 =
Timeout * @

Max Retries (1-~10) * @

3 -

HTTP Method @

GET j

URL

Expected HTTP Status Codes @

200

Admin State *

e -
Cancel m

10. Click on Add to create the monitor.
11. Click on the Pool tab to go back to the load balancer pool list.

183

Using HAProxy for Load Balancing

12. In the Actions column, click on the drop-down menu and select Associate Monitor:

Protocol Status VIP Actions

HTTP Active VIP_LE_Pooll Edit Pool | -

Edit VIP

Delete VIP

Associate Monitor

13. In the Associate Monitor screen, select the monitor that you want to associate with
the load balancer pool and click on Associate:

Associate Monitor

Association Details *

Select a monitor template for Chapter8_LB_Pooll *) . .
Associate a health monitor with target pool.

HTTP: url: method:GET codes 200 delay:10 retriesé j

Select a Monitor
HTTP: wrl: method:GET codes 200 delay:10 retries:3 timeout:5

Cancel Associate

Now the health monitor is associated with the load balancer pool.

The load balancer needs to keep a track of the health of the application that is running on
its member servers. The health monitor associated with the load balancer is responsible

for monitoring the application on the member servers and making sure that in case the
application on a member fails, it is excluded from the pool and no further client requests are
forwarded to that failed member.

184

Chapter 8

Adding a load balancer health monitor

using CLI

In this recipe, we will create a health monitor to watch the health of the application that is
running on the load balancer members using the Neutron CLI.

Getting ready

For this recipe, you will need the following information:

>

>

The SSH login credentials for a node where the Neutron client packages are installed
A shell RC file that initializes the environment variables for CLI

The type of monitor

The time interval between consecutive health check request sent by the monitor

The amount of time to wait for a reply from the application

The number of times the monitor will try to get a reply from the application

How to do it...

The following steps will show you how to create and associate a health monitor with a load
balancer pool:

1.

Using the appropriate credentials, SSH into the OpenStack node installed with
the Neutron client packages.

Source the shell RC file to initialize the environment variables required for the
CLI commands.

Execute the neutron lb-healthmonitor-create command to create a load
balancer health monitor:

openstack@controller:~$§ neutron lb-healthmonitor-create --type HTTP\
--delay 10 --timeout 5 --max-retries 3 --http-method GET --url-path /
Created a new health_monitor:

L T —— T +

| Field | value |
Frmmmm Frmmmmmmmme e s e ee e ————— +

| admin_state up | True |

| delay | 10 |

| expected_codes | 200 |

| http_method | GET |

| id | bee54dad-aa%0-46a5-bb87-bf3ed8132320 |

| max_retries | 3 |

| pools | |

| tenant_ id | 6d39c84e59a84425bedbcebdf674e2c9 |

| timeout | 5 |

| type | HTTP |

| url_path | 7/ |

R L L E T R L L T L L =

185

Using HAProxy for Load Balancing

4. Execute the neutron lb-healthmonitor-associate command to associate the
health monitor that we created in the previous step with the load balancer pool:

openstack@controller:~$ neutron lb-healthmonitor-associate bee54dad-aa90-46a5-bb87-bf3ed8132320 Chapters_LB Pool2
Associated health monitor bee54dad-aa%0-46a5-bb87-bf3ed8132320

stack@controller:~$ neutron lb-healthmonitor-show beeSd4dad-aa9e-46aS-bb87-bf3ed8132320
Freececasncnccnsceteccncasncaancee s sees s sessesAssesessssssssssssessAsssessssssssssssssssssssesssssssssssssssssssseesst
| Field | value |
R e TP TS o
admin_state up	True
delay	18
expected_codes	200
http_method	GET
id	beesadad-aa9e-46as-bba7-bf3eds132320
max_retries	3
pools	{"status": "ACTIVE", "status_description": null, "pool id": "88c35213-d6b4-4018-aBd2-ad3fo%eec5fa"}
tenant_id	6d39c84e59a84425bedbcebdf674e2c9
timeout (]	
type	HTTP
url_path	7
R e e e T LS o

The Neutron CLI can be used to create a load balancer health monitor. The health monitor
continuously checks the health of the member instances. The health monitor consists of

a method to test the application health and an expected result. If the health test fails for a
member, the load balancer excludes this member from the pool. If a previously failed member
becomes healthy, it is added again to the load balancer pool.

Creating a Virtual IP using Horizon

The final step in the creation of the load balancer is to provide it with a Virtual IP address
(VIP). The clients connect to the load balanced application using the VIP. In this recipe, we will
associate a VIP to the load balancer pool using Horizon.

Getting ready

To create a VIP, you will need the following information:

» A name to identify the VIP

» The name of the load balancer pool

» The Subnet CIDR associated with this pool

» Afree IP address in the Subnet for the VIP configuration

» The protocol port on which the load balancer will listen for the client request
» The protocol type

» The method of session persistence

» The connection limit for the load balancer

186

Chapter 8

How to do it...

The following steps will show you how to attach a VIP to a load balancer:

1. Loginto Horizon with the appropriate credentials.
2. Inthe left navigation menu, navigate to Project | Network | Load Balancers.

3. Click on the Actions drop-down menu for a specific load balancer pool and select
Add VIP:

Load Balancer

+ Add Pool

Name Description Provider Subnet Protocol Status VIP Actions

pi
[0 | Chapters_LB_Pooll Chapter LB pool1 haproxy 20.20.20.0/24 HTTP Active - Edit Pool | -
Displaying 1 item Add VIP

Associate Maonitor

Delete Poo

In the Add VIP screen, provide Name for the VIP.
5. Add Description for the VIP.

Select the Subnet for the VIP; this should be the same Subnet that was used by the
VM instance running the application that will use the load balancer.

7. Next, provide a free IP address in the Subnet that will be used at the VIP
address by the load balancer. The clients connecting to the application will
use this IP address.

8. Specify the port in the Protocol Port field. For our example, we will use port 80.
9. Specify the protocol in the Protocol list. We will use HTTP for our example.

10. Next, in Session Persistence, choose the method used to maintain the client
sessions while balancing a service request. We will use SOURCE_IP to persist
the session.

187

Using HAProxy for Load Balancing

11. In the Connection Limit field, provide the maximum number of clients that the
load balancer can handle. We will use -1 so that no limit is set for the number of
client connections:

Add VIP

Specify VIP ™

Name *)) o
Create a VIP for this pool. Assign a name, description, [P

VIP_LE_ Pocli address, port, and maximum connections allowed for the
WIP. Choose the protocol and session persistence method

Description for the VIP. Admin State is UP (checked) by default.

VIP for LB_Pooll

VIP Subnet

20.20.20.0/24 j

Specify a free IP address from the selected subnet

20.20.20.50

Protocol Port * @

80 —

Protocal *

HTTP -

Session Persistence

SOURCE_IP j

Connection Limit @
1 %

Admin State *

ue E

Cancel

188

Chapter 8

12. Click Add to create the VIP:

Load Balancer

+ Add Pool

[0 Name Description Provider Subnet Protocol Status v

P Actions
[0 | Chapters LB_Poolt Chapter8 LB pooll haproxy 20.20.20.024 HTTP Active VIP_LB_Pooll Edit Pool

Displaying 1 item

The VIP is then displayed in the corresponding column of the Pools table.

The clients connect to the VIP in order to access the application running on the load balancer
members. For the client, it appears as though the application is running on a port on the VIP.
The client is unaware of the existence of a load balancer and the two member servers.

The VIP creation also defines the session persistence method in order to determine how the
client session is maintained. Sessions can be maintained using the source IP, which uses the
source IP of the request to determine the member that handles a service request. Session
persistence can also be based on HTTP or application cookies.

It is also possible to limit the number of connections that the load balancer will handle using
the connection limit setting.

Creating a Virtual IP using CLI

In this recipe, we will use the Neutron CLI to create and associate a VIP with a load balancer pool.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the Neutron client packages are installed
» Ashell RC file that initializes the environment variables for CLI

» The name of the VIP

» The name of the load balancer pool

» The Subnet CIDR associated with this pool

» Afree IP address in the Subnet for the VIP configuration

» The protocol port

» The protocol type

189

Using HAProxy for Load Balancing

How to do it...

The following steps will show you how to create a VIP and associate it with a load balancer
pool using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron 1lb-vip-create command to create a VIP for the load
balancer pool:

openstack@controller:~$ neutron lb-vip-create --name VIP LB Pool2\
--protocol-port 80 --protocol HTTP\

--subnet-id 7c¢870ec9-7222-4954-b1f4-015432e9ca95 Chapter8 LB Pool2
Created a new vip:

4ecsscmccsasscsncnnc=s 4ucsscsscsscsscsssscsscascsmmancansnnas +
| Field | value |
R LT e +
address	20.20.20.51
admin_state up	True
connection_limit	-1
description [
id	85beabd9-cdad-46f2-abe3-3c88fclellad
name	VIP_LB_Pool2
pool_id	88c35213-d6b4-4018-a8d2-ad3f89%eec5f8
port_id	7¢606516-5abe-4195-8dch-39cc4fech9Be
protocol	HTTP
protocol_port	8o
session_persistence	
status	PENDING CREATE
status_description	
subnet_id	7c87Pec9-7222-4954-b1f4-0815432e9cagd5
tenant_id	6d39c84e59a84425bedbcebdf674e2c9
R E LT L T T +

To create the VIP, the Neutron CLI creates a Port on the associated Subnet. The IP address
of this Port is used as the VIP for the load balancer pool. The load balancer will distribute
any request that it receives on the VIP and configured protocol port to the pool members
to be processed.

190

Chapter 8

Making the load balancer accessible to the

Internet

In this recipe, we will make our load balancer accessible to the Internet.

Getting ready

In the previous recipe, we created a VIP for our load balancer. The clients will access the
service available behind the load balancer using this VIP. To make the service accessible
through the Internet, the VIP must be reachable from the external Networks.

In this recipe, we will associate a floating IP to the VIP of the load balancer. We will need the
Neutron port ID of the load balancer's VIP. Use the neutron port-1list command to look
for the port associated with the address of the VIP.

For this recipe, you will need the following information:

» The SSH login credentials for a node where the Neutron client packages are installed
» Ashell RC file that initializes the environment variables for CLI
» The Neutron port ID for the load balancer's VIP

How to do it...

The following steps will show you how to create a VIP and associate it with a load balancer
pool using the Neutron CLI:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Execute the neutron floatingip-create command to make the VIP for the
load balancer pool accessible from the external world:

openstack@controller:~$ neutron floatingip-create
--port-id 7c¢686516-5abe-4195-8dcb-39cc4fechdBe public
Created a new floatingip:

4mmmemmccssccccmananan 4meememcmsscsssssssssssssssssssssssse== +
| Field | value |
) L T) +
fixed ip address	20.20.20.51
floating_ip address	192.168.0.3
floating_network id	5507d585-ch44-45¢5-a53c-3850869e2b5bl
id	de3f4923-2f6e-4271-b23a-98815ea4f324
port_id	7c606516-5abe-4195-8dcb-39cc4fech98e
router_id	1994ec2b-9f74-4407-a515-2c2¢c6464ded7
status	ACTIVE
tenant_id	bfde2b5c180f4765b6ff2a4ba3636413
o i +

191

Using HAProxy for Load Balancing

With the floating IP associated with the load balancer's VIP, the clients can now access the
application behind the load balancer over the Internet.

The load balancer uses the VIP address to redirect the service requests to the member nodes.
To make the services that are running on the member node available to the external world,
the VIP address must be reachable from the Internet. This can be achieved by associating a
floating IP with the VIP of the load balancer.

Testing the load balancer

We added two servers as the load balancer members. We also created a health monitor in
order to keep a track of the health of the application that is running on the member servers
and also associated a VIP with the load balancer.

The following table summarizes our example setup:

Virtual Machine name Role IP address
Chapter8_vml A load balancer member | 20.20.20.3
Chapter8_vm2 A load balancer member | 20.20.20.4

The load balancer configuration is as follows:

Resource IP address

Subnet CIDR 20.20.20.0/24
Network name LoadBalancer_net1
Virtual IP 20.20.20.50
Application port 80

In this recipe, we will test the load balancer setup by connecting to its VIP and sending a
request to the application.

Getting ready

For this recipe, you will need the following information:

» The VIP of the load balancer

» The protocol port of the load balancer

192

Chapter 8

How to do it...

The following steps will show you how to test the load balancer:

1. Loginto Horizon with the appropriate credentials.

2. Launch a VM on the LoadBalancer netl Network. This instance will act as
the client machine to test the load balancer. We already added the load balancer
member VMs in the previous recipe.

3. Inthe left navigation menu, navigate to Project | Network | Load Balancers and
click on the Members tab:

Load Balancer
Pools Members Monitors
[0 IP Address Protocol Port Weight Pool Status
O | 2020204 80 1 Chapter8_LB_Pool1 Inactive
[| 2020203 80 1 Chapterg LB_Pooll Inactive

4. The monitor associated with the load balancer has put the members in an inactive
state as the application health test is failing currently.

5. Login to each member VM and start a web server. For our test, we will use the
following simple script to simulate a web server. Update the echo statement with the
correct hostname when launching the script:

while true; do echo -e 'HTTP/1.0 200 OK\r\n\r\nChapter8 vml' |
sudo nc -1 -p 80 ; domne

6. Once the scripts are running on both the members, the health monitor will update the
status of the members to active:

Load Balancer

IP Address Profocol Port Waelght Poaol Status

193

Using HAProxy for Load Balancing

7. Login to the client VM on LoadBalancer netl and use the curl command to
send an HTTP request to the VIP address:

$ ifconfig

ethe i : HWaddr FA:16:3E:20:30:B4
Bcast:20.20.20.255 Mask:255.255.255.0

1net6 addr: i 816 3eff:fe20:30b4/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1580 Metric:1

RX packets:76 errors:® dropped:@ overruns:® frame:@

TX packets:157 errors:0 dropped:® overruns:® carrier:@

collisions:® txgqueuelen:1000

RX bytes:6386 (6.2 KiB) TX bytes:11484 (11.2 KiB)

lo Link encap:Local Loopback
inet addr:127.8.8.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:l
RX packets:46 errors:® dropped:® overruns:® frame:@
TX packets:46 errors:® dropped:08 overruns:@ carrier:e
culllslons 8 txqueuelen:d
KiB) TX bytes:4192 (4.8 KiB)|
$ curl http.ffZB.ZB.ZB.5B
Chaptersd_wvml
$ curl http://20.20.20.50
Chapterd_wvm2
$ curl http://20.20.20.50
Chaptersd_wvml
$ curl http://20.20.20.50
Chapterd wvm2

For the purpose of this example, we updated the VIP configuration in order to disable the
session persistence. Due to this, the client requests are distributed in a Round-Robin fashion
among the load balancer members.

In this recipe, we saw the load balancer in action. The health monitor checks the status of the
application running on the member nodes continuously and distributes the client requests

to only the active members in the pool. In case a failed member becomes healthy, its status
changes to active and it starts processing the client requests.

Viewing the load balancer on the network

node

In the earlier recipes of this chapter, we configured the load balancer using both Horizon and
the Neutron CLI. In this recipe, we will learn how Neutron implements the load balancer on the
Network node.

194

Getting ready

For this recipe, you need the following information:

» An administrative user access to OpenStack

» Aroot or equivalent sudo access to the Network node

How to do it...

Chapter 8

The following steps will show you how to view the load balancer on the Network node:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the

Neutron client packages.

2. Source the shell RC file to initialize the environment variables required for the

CLI commands.

3. Use the Neutron CLI commands to list the load balancer. Note the load balancer ID.

4. Next, use the ip netns command and find the network namespace that matches
the pool ID. The load balancer plugin has configured this namespace as the load

balancer node:

opensta:k@controller ~% neutron lb pnol l:st

L e ST R TP TR T
| provider [b | protocol | a

openstack@controller:~$ ip netns|grep [a711d27h-285d-4b65-b090-4fa72ab22059]

qlbaas-a711d27b-285d-4b65-bo90-4fa72ab22059

-
n_state_up | status |

5. Next, we will find the VIP that has been associated with the load balancer pool.
Note the VIP assigned with the load balancer:

| address

| admin_state up

| connection_limit

| description

| id

| name

| pool id

| port_id

| protocol

| protocol_port

| session_persistence
| status

| status description
| subnet_id

| tenant_id

openstack@controller:~$ neutron lb-vip-show VIP_LB Pooll

T r e +
| Value |
...................................... +
| 20.20.20.560 |

| True

| VIP for LB_Pooll

| 649d8559-1ebl-4d74-a7d7-7a5bfebobfdd
| VIP LB Pooll I
|[a711d27b-285d-4b85-h090-4fa72ab22059] |
50941290-Ta35-42e5-9e7a-1601447d5048 |
HTTP |
80

|
|
| -1 |
|
|

ACTIVE

7c070ec9-7222-4954-b1f4-015432e9ca95
1bdec15637584058875b0e302d00ccE3

195

Using HAProxy for Load Balancing

6. Use the ip netns command to verify that the VIP is configured in the namespace
acting as the load balancer node:

openstack@controller:~$ sudo ip netns exec qlbaas-a711d27b-285d-4b085-hb896-4fa72ab22059 ifconfig
lo Link encap:Local Loopback

inet addr:127.0.6.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:® errors:® dropped:® overruns:® frame:@

TX packets:@ errors:0 dropped:@ overruns:@ carrier:0

collisions:@ txqueuelen:®

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

tap50941290-fa Link encap:Ethernet HWaddr fa:16:3e:96:2e:3a
Enet adcr:ze.ze.ze.se] Bcast:20.20.20.255 Mask:255.255.255.0
inet6 addr: fe80::f816:3eff:fe96:2e3a/64 Scope:Link
UP BROADCAST RUNNING MTU:1568 Metric:1
RX packets:192798 errors:0 dropped:0 overruns:® frame:@
TX packets:198014 errors:0 dropped:® overruns:® carrier:@
collisions:@ txqueuelen:o@
RX bytes:11525832 (11.5 MB) TX bytes:13154322 (13.1 MB)

7. Next, use the ip netns command to verify that the HAProxy process is bound to the
VIP and is listening for traffic on the application port:

openstack@controller:~$ sudo ip netns exec glbaas-a711d27b-285d-4b85-b890-4fa72ab22059 netstat -tan
Active Internet connections (servers and established)

Proto Recv-0 Send-Q Local Address Foreign Address State
tcp [:] 0 20.20.20.506:80 6.0.8.0:% LISTEN

Neutron uses the Linux network namespace as the load balancer node. The namespace is
named using a prefix of glbaas, the ID of the load balancer pool a711d27b-285d-4b05-
b090-4fa72ab22059. The namespace is configured with the load balancer's VIP. In our
example, the VIP address of 20.20.20.50 is used. The load balancer plugin starts a HAProxy
process in this namespace that binds the VIP on the protocol port, 80, receives the client
requests, and distributes them to the pool members.

196

Monitoring OpenStack
Networks

The recipes in this chapter will explore the various means to monitor the network resource
utilization using Ceilometer. We will cover the following topics:

» Monitoring the Virtual Machine bandwidth

» Monitoring the L3 bandwidth

» Monitoring the load balancer connection statistics
» Monitoring the per project and per user bandwidth
» Monitoring the host Network bandwidth

Introduction

Due to the dynamic nature of virtual infrastructure and multiple users sharing the same cloud
platform, the OpenStack administrator needs to track how the tenants use the resources.

In this chapter, we will look at ways to monitor the usage of virtual and physical networking
resources. The resource utilization data can be used to bill the users of a public cloud and to
debug infrastructure-related problems. The data can also help in capacity planning by giving
an estimate of the capacity of the physical devices and trends of resource usage.

OpenStack Ceilometer project provides you with telemetry service. It can measure the
usage of resources by collecting statistics across the various OpenStack components.
The resource utilization data is collected over the message bus or by polling the various
components. OpenStack Neutron provides Ceilometer with the statistics that are related
to the virtual networks.

197

Monitoring OpenStack Networks

The following figure shows you how Ceilometer interacts with the Neutron and Nova services:

Compute Node

Polling Ceilometer
Central Agent

|

Ceilometer
Collector

v

N

Ceilometer Network Usage Data
Compute Agent

\'4

Network Node Ceilometer APl <-— - Client Node
1
1
i
Ceilometer Controller ! Ceilometer
Components il Client
Neutron
Metering Agent

To implement these recipes, we will use an OpenStack setup as described in the
following image:

Controller and Network Node Compute Node 1

Keystone Service

Compute Node 2

Nova Service Glance Service Nova Service Nova Service
Neutron Server Neutron Agent(s) Neutron Agent Neutron Agent
br-int br-ex br-int br-int
ethO ethl eth2 ethO —— ethl ethO —— ethl

Management Network
Data Network

External Network (Internet)

This setup has two compute nodes and one node for the controller and networking services.

198

Chapter 9

Monitoring the Virtual Machine bandwidth

OpenStack Ceilometer collects the resource utilization of the VMs by running a Ceilometer
compute agent on all the compute nodes. These agents collect the various metrics that are
related to each VM running on the compute node. The data that is collected is periodically
sent to the Ceilometer collector over the message bus.

In this recipe, we will learn how to use the Ceilometer client to check the bandwidth utilization
by a VM.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the OpenStack client packages
are installed

» Ashell RC file that initializes the environment variables for CLI

How to do it...

The following steps will show you how to determine the bandwidth utilization of a VM:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Usethenova 1list command to find the ID of the VM instance that you
want to monitor:

openstack@controller:~$ nova list

Fememsmeceessasscssesscessssesseesmne. Hommann Femmnmaan Hommmmmmmaaaa Homcnemennnaa. $osmcmcmcscsceannena. +
| ID | Name | Status | Task State | Power State | Networks |
4emecececccssascecsesscessesesseeesas-- Hommann Fommnmaan Hommmmmmnnana Heomcnemannnaa. R +
|IdﬁBleeIT-dBCI-Abel-bﬂa-9946f79e96ce|| vml | ACTIVE | - | Running | private=10.10.10.3 |
LTy RIS dmmmmm Hmmmnmaa $ommmmmmnaaa- dommmmmma———a D LT +

199

Monitoring OpenStack Networks

4. Usethe ceilometer resource-list|grep <virtual-machine-id>
command to find the resource ID of the network port associated with the VM. Note
down the resource ID for the virtual port associated to the VM for use in the later
commands. The virtual port resource ID is a combination of the VM ID and name
of the tap interface for the virtual port, which is named instance-<virtual-
machine-ids>-<tap-interface-names:

openstack@controller:~$ ceilometer resource-list|grep déeloel?-d3cl-d4bel-b71la-9346179e36ce

| d6@816el7-d3cl-4bel-bT1la-9546179es6ce | K | 97814bl6858ad | fSd27bBad2d74459bblcbdBEll5adBtf |
||!ns“n(! 60006002 -d6010¢17-03c1-abel-b)1a-3546179edbce- ta&asiﬂss ~1c]| op K | 978f4bl6858ad | fSd27bBad2d74459bblcbdBbllSadatf |

5. Use ceilometer meter-list -g resource=<virtual-port-resource-
id> to find the meters associated with the network port on the VM:

openstack@cnntroller -5 teLIonzter meter- llst[q resource-1nstance 00000002-d6010e17-d3c1-4bel-b7la-9946179e96ce- -tap9a5b4358- 1c|
+

instance-80000002-d6010el17-d3c1-4bel-b71a-9946f79e96ce-tap9a5bd358-1c
instance-00000002-d6010el7-d3cl-4bel-b71a-9946f79e36¢ce-tap9asba358-1c
instance-00000002-d6010el7-d3cl-4bel-b71a-9946f79%e96¢ce-tap9asbd358-1c

|

+

cumulative | B |
|

|

gauge packet/s | instance-80000002-d6010el7-d3cl-4bel-b71a-9946f7%e96ce-tap9as5be3sa-1c |
|

|

|

|

gauge | Bfs

| network.incoming.bytes
network.incoming.bytes.rate

|

| s

| network.incoming.packets.rate
| network.outgoing.bytes

| netwerk.outgoing.bytes.rate instance-00800002-d6010e17-d3cl-4bel-b71a-994617%e96ce- tap9ash43sa-1c
| instance-00000002-d6010el7-d3cl-4bel-b71a-9946f79%e36ce-tap9asbd35s-1c
|

instance-00000002-d6010e17-d3cl-4bel-b71a-9946f79e96ce-tap9ash4358-1c

gauge | B/s
cumulative | packet

I
|
|
|
cumulative | B | instance-60060002-d6010el7-d3cl-4bel-b71a-9946f79e96ce-tap9asba35s-1c
|
|
packet/s |

network.outgoing.packets
network.outgoing.packets.rate

I
+
|
|
network.incoming.packets | cumulative | packet
|
|
|
|

gauge

b —

6. Next, use ceilometer statistics -m <meter-name> -gq
resource=<virtual-port-resource-ids> to view the network usage statistics.
Use the meters that we discovered in the previous step in order to view the
associated data:

open:tlck@controller -5 :eiloneter stati:tics -m netuﬂrk incoling bytes| q resources; inltance 08000002 -di010el7-d3cl-4bel-b7la- 9946f79e96:e tapsasbﬂ:sa lc

| @ | 2015-87-83T06:04:24 | 2015-07-04TE8:14:25 | 13423.0 | 12693.0 | 12924.0126582 | 2041994.0 | 158 | 94201.8 | 2015-07-03706:04:24 | 2015-07-847|
dbosssassadsssssssassrasssassssadssassasssasssasssyassdsssssssssdessassassdysassssssassssadssasssassaadessssssdssasssasssdesssasssassssssssassadesasssasssyol

Ceilometer stores the port bandwidth data for the incoming and outgoing packets and the
bytes and their rates.

The OpenStack Ceilometer compute agent collects the statistics related to the network port
connected to the VMs and posts them on the message bus. These statistics are collected by
the Ceilometer collector daemon. Ceilometer client can be used to query a meter and filter the
statistical data based on the resource ID.

200

Chapter 9

Monitoring the L3 bandwidth

The OpenStack Neutron provides you with metering commands in order to enable the
monitoring of the Layer 3 (L3) traffic. The metering commands create a label that can hold a
list of the packet matching rules. Neutron counts and associates any L3 packet that matches
these rules with the metering label. In this recipe, we will learn how to use the L3 traffic
monitoring commands of Neutron to enable packet counting.

Getting ready

For this recipe, we will use a VM connected to a network that in turn is connected to a router.
The following figure describes the topology:

Network Topology

22 small &8 Normal

@ rZ/oo'a9r'zel
¥2/0°0T°0T°0T

201

Monitoring OpenStack Networks

We will use a network called private with a CIDR of 10.10.10.0/24.
For this recipe, you will need the following information:
» The SSH login credentials for a node where the OpenStack client packages
are installed
» Ashell RCfile that initializes the environment variables for CLI
» The name of the L3 metering label

» The CIDR for which the traffic needs to be measured

How to do it...

The following steps will show you how to enable the monitoring of the traffic to or from any
L3 network:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Usethe neutron meter-label-create command to create a metering label.
Note the label ID as this will be used later with the Ceilometer commands:

openstack@controller:~$ neutron meter-label-create Chapter9-labell
Created a new metering_label:

Fecccnnccnnaa- e +
| Field | value |
Ry S S Sy +
description		
id		3f8a2d88-d7db-43fe-8058-5c195b25bed1]
name	Chapter9-labell	
shared	False	
tenant_id	f5d27b0ad42d74459bblcbd86115ad8ff	
rmmmmmmneana- Fesmemmsemesemsssssssssssssssmssssm=ean- +

202

Chapter 9

4. Use the neutron meter-label-rule-create command to create a rule that
associates a network address to the label that we created in the previous step.
In our case, we will count any packet that reaches the gateway from the CIDR
10.10.10.0/24 network to which the VM is connected:

openstack@controller:~$ neutron meter-label-rule-create Chapter9-labell 10.10.10.0/24 --direction egress
Created a new rneter:.ng_lahe'l. rule:
+esssesscssassssssssstasancssansssnancnsssanansanananannnnnn +
| Field | Value |
4escsascnssssscnanas 4esecsssssacsssscsnssasasnananassnnnnns +
direction	egress
excluded	False
id	e3228350-778b-4183-8be8-e7f9172bf1led
metering_label_id	9f8a2d88-d7db-43fe-8050-5c195b25bedl
remote_ip prefix	10.10.10.8/24
temmemesmccscesaaaaa temeseesecesssssssscsssssssssmssese—aa +

5. Usethe ceilometer meter-1list command with a resource filter in order to find
the meters associated with the label resource:

npenstack@:untrcller ~$ ceilometer meter-list -q resource=9f8a2d88-d7db-43fe-8050-5c195b25bedl

$ecccccccccatecccnns $esscas Frccccsscccsssnnsssnnsssssnssssssssnnnnnns $ecccccncs Feccsssssscsssnscssnssssssssssnsnnnnnn +
| Name | Type | Unit | Resource ID | User ID | Project ID |
#ecenccscncs $eecence #onenen #occsccscncascusacesccsencsccscacasccsabencananne #erescesaccscasencscasancnsacananns +
| bandwidth | delta | B |I9fﬁa2d83 d7db-43fe-8050- 5:195h25hedl|| None | 15d27b0ad42d74459bblcbd86115ad8 T |
#ememecnaaas s $ommann 4omssooeeoeeooiooooeooososeeoseoosoertedesecescacdececcscscssssssesssssssessssesesss +

6. Usethe ceilometer statistics command to view the number of packets
matching the metering label:

openstack@controller:~§ ceilometer statistics -m bandwidth -q resource=9f8a2d8s-d7db-43fe-8058-5c195b25bedl

R - 4emmeeemmmaceeeccaessseseeeaa 4emmeemmececesccassseeseeaa- S - S S S S —— S - - +
| Period | Peried Start | Period End | Max | Min | Avg | Sum | Count | Duration |
Frmemmea R L LT T E T Frmmmmmmmmmmmmmmme e e Fommmmmes Foeeme Fommmmn Fommmmnns Femmmmes R T T +
| @ | 2015-07-04T08:51:48.208668 | 2015-07-04T09:14:48.229038 | 5040.0 | 0.0 | 374.5 | 8988.0 | 24 | 1380.02037 |
Fomemmean L TR TR R R Hoeeen Homeooan R EEEE RS E EEE T LR H

The packet counting has now been enabled and the bandwidth statistics can be viewed
using Ceilometer.

The Neutron monitoring agent implements the packet counting meter in the L3 router.

It uses iptables to implement a packet counter. The Neutron L3 agent collects the counter
statistics periodically and posts on the message bus, which is collected by the Ceilometer
collector daemon.

203

Monitoring OpenStack Networks

Monitoring the load balancer connection

statistics

We have seen earlier that the OpenStack Neutron provides a load balancer as a service.
The load balancer service provides you with the statistics of the utilization for each instance
created in the load balancer cluster. In this recipe, we will view the load balancer-related
usage data collected by OpenStack Ceilometer.

Getting ready

For this recipe, we will need to create a load balancer setup. Use the recipes described in
Chapter 8, Using HAProxy for Load Balancing to create a load balancer with two members in
the pool. We will also create a virtual IP and health monitor as described in the chapter. The
following table describes our load balancer setup:

Virtual Machine Role IP address
vm1l Member 20.20.20.3
vm2 Member 20.20.20.4
Virtual IP Virtual IP 20.20.20.50
Client-1 Client 20.20.20.51

For this recipe, you will need the following information:

» The SSH login credentials for a node where the OpenStack client packages
are installed

» A shell RC file that initializes the environment variables for CLI

How to do it...

The following steps will show you how to view the statistics available for a load balancer instance:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

204

Chapter 9

3. Usethe ceilometer statistics command to find the number of load balancer
members and pools. The meters associated with the load balancer instances use the
prefix, network.services. 1b:

openstack@controuer ~§ ceilometer statistics -m network.services.lb.member
———————————————————————————————————— B T S T R e TR 3
| Period | Period Start | Period End | Max | Min | Avg | Sum | Count | Duration |
Fmm Fmm - Frm Fmmm R e Fmmm Fmmm Frmm - +
|8 | 2015-87-84T10:42:52.312525 | 2015-87-04T10:46:54.242365 | 1.6 | 8.8 | 0.5 | 2.8 | 4 | 241.92984 |
e Fmm - Frm Fmmm e e dmmmm Fmmm L +
openstack@control‘ler ~-% ceilometer statistics -m network.services.lb.pool
T ———- R $ennan tonnan tecnas Fecaes L TP TR Fescssscnnnas
| Period | Period Start | Period End | Max | Min | Avg | Sum | Count | Duration
Fececnaan R R Feomeaa Fennna Fecens Feeeana e Fececnnnnnann
| o | 2015-07-04T10:39:08.003635 | 2015-07-04T10:46:54.279411 | 1.0 | 1.0 | 1.0 | 2.0 | 2 | 466.275776
Feocennnan Fecmcsnsscs st st s st s st s n e R Femaan Fenens Fecnna Femana Focmnnan e

4. Next, use the ceilometer statistics command with the network.services.
1b.total.connections meter in order to find the number of total connections
served by the load balancer. Use the pool ID to query the connection per load
balancer instance:

DpEnSta(k@(unlrlﬂlEF ~$ (EilumEtEI‘ statistics -m network.services.lb.total.connections quEEI]IJI‘ ?74235-9276-41(2-aﬂﬂ?-]ﬂe'}!*lzal]l' I

-- T T T T T PR s

[Period \ Period Start | Period End | Max | Min | Avg i Sum | Count | Duration \ Duration Start | Duration End |
... +
[] \ 2015-07-084T10:46:54 | 2015-07-84T11:06:54 | 291.0 | 0.0 | 97.0 i 291.0 | 3 | 1200.90 \ 2015-07-04T10:46:54 | 2015-07-84T11:06:54 |
T Tty R S Fommmen Fommmann S T

5. Usethe ceilometer statistic command with the network.services.
1b. incoming.bytes meter to find the number of bytes received by the load balancer:

openstackzcanlrnller -5 cel'lmter statistics -m nemrk services.lb. mcommg hytes

. ssss sass sssssadsssssdesannnsesshe [T AR e ssssssbssssssssssssssnssnsand
| Per.wd | Perwd Start | l’brlod Eml | Hax | Min | ﬁvg | Sul | Count | Duratmn | I}urauon Start | buration End |
Brozssnsadezzane snadesasags aa e B — -+
| 0 | 2015-87-04T | “2015-07-04T12 | “202760.0 | 8.0 | 11488520 | “1143520.8 | 18 | 5400.0 | 2015-07-0 |
— N . EP—- aaaa -+

You can use the ceilometer meter-1list command to find out the other metering data
available for the load balancer.

The Neutron load balancer agent collects the statistics for each instance of the load balancer
that is created; the usage data is periodically reported to Ceilometer. The Ceilometer client
can then be used to track the various metrics associated with the load balancer instances.

205

Monitoring OpenStack Networks

Monitoring the per project and per user

bandwidth

In the first recipe, we looked at the monitoring of resource utilization for a VM. In a cloud
shared by multiple tenants and users, it is important to gather information about the
utilization of the resources by a user or by the whole project. In this recipe, you will learn how
to use the Ceilometer client to monitor the network bandwidth utilization by a tenant or project
and an individual user of OpenStack.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the OpenStack client packages
are installed

» Ashell RC file that initializes the environment variables for CLI
» The ID of the OpenStack tenant and user

How to do it...

The following steps will show you how to determine the bandwidth utilization of a VM:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

3. Use ceilometer statistics with the network meters to view the network
resource utilization. Use user=<user-id> and project=<tenant-id> to filter
the utilization by the user ID and tenant ID, respectively. The tenant and project IDs
are the same:

apensta(h@cmuoller ~% ceilometer s(ellstics -m netwnrk nntgoxng nytes [-q users!) adledddc a

——n - s e o o S, smmmemante

| Fbrlud | Fcrnd start Period End I Max I Min | Mlﬂ | Sum | Count | Duration | Duration Start | Duration End
o H

| B | 2ﬂ15 n} SSTM 94 2! 2015 D? ﬂnﬂDﬂ 1‘ 15 | 1342! 0 | 1269! ﬂ | 12!24 0126532 | 2041994 n | 158 | !lZSl n 2015 D? ﬂl‘lDb ﬂ‘ 14 | 2915 0? mﬂns Ld 25

. e semessssdesssssssatansasssnsbassassansnnsansbassasnnnsnabrnannsedannnsnnnnads -

s!ackl contrnLLet s ceilometer statisucs -B network, nutgninq bytes| q nro)ecl ?5521503123?4459aE.\cEauLsaae??[
- . e eresannbe R ——

I Ftrwd | Fcrnd Start Ptrlou End I Hax I Min | »wq | Sum | Count | Duranun Duratwn Start I Duration End |
+- + -+

-+
!
-+
I
-+

| B | 2ﬂ15 n} SSTM 04: 2! 2015 D? ﬂnﬂDﬂ 14: 15 | 1342! 0 | 1269! ﬂ | 12!24 0126532 | 2041994 n | 158 1 !lZSl n 2015 D? ﬂl‘lDb 04:24 | 2015-07-04T08:14: 25 |

#eszmsmmabasmaanas ade - samsassadmaazanes samseaad

The other meters can also be queried in a similar manner in order to find the resources used
by a user or project.

206

Chapter 9

All the usage data stored by Ceilometer is associated with a user and project. So, it is possible
to retrieve the monitoring data for a given user or tenant (project).

Monitoring the host Network bandwidth

In the previous recipes, we looked at monitoring the virtual infrastructure resources. For the
cloud administrator, it is also very important to know about the utilization of the physical
resources. In this recipe, you will learn about monitoring the Network utilization statistics for a
compute or network node.

Ceilometer can collect the physical network statistics for the compute or network node using a
central agent and SNMP. The Ceilometer central agent must be configured in order to collect
the physical resource utilization data from the compute and network nodes. On the Compute
and Network nodes, the SNMP daemon must be configured to provide the physical resource
utilization data that is queried by the Ceilometer central agent.

In this recipe, you will learn how to use the Ceilometer commands in order to view the physical
network statistics of the Compute and Network nodes. For this recipe, we will view the
statistics collected for the Compute node, computel.

Getting ready

For this recipe, you will need the following information:

» The SSH login credentials for a node where the OpenStack client packages
are installed

» Ashell RC file that initializes the environment variables for CLI

How to do it...

The following steps will show you how to view the physical network utilization data for a
Compute or Network Node:

1. Using the appropriate credentials, SSH into the OpenStack node installed with the
OpenStack client packages.

2. Source the shell RC file to initialize the environment variables required for the
CLI commands.

207

Monitoring OpenStack Networks

3. Usethe ceilometer meter-1list command to query all the meters associated
with the OpenStack node. For our example, we will use the node, computel:

openstack@controller:~$ ceilometer meter-list -q resource=computel

B T e E T T $rmmommmnaaaa e L +

| Name | Type | unit | Resource ID | User ID | Project ID

T it it T i L e et +

| hardware.cpu.load.l5min | gauge | process | computel | None | MNone |

| hardware.cpu.load.lmin | gauge | process | computel | None | None

| hardware.cpu.load.5min | gauge | process | computel | None | None

| hardware.disk.size.total | gauge | B | computel | None | None

| hardware.disk.size.used | gauge | B | computel | None | None

| hardware.memory.swap.avail | gauge | B | computel | None | None

| hardware.memory.swap.total | gauge | B | computel | None | MNene

| hardware.memory.total | gauge | B | computel | None | None

| hardware.memory.used | gauge | B | computel | None | None

| hardware.network.ip.incoming.datagrams | cumulative | datagrams | computel | None | None |

| hardware.network.ip.outgoing.datagrams | cumulative | datagrams | computel | None | None |

| hardware.system stats.cpu,idle | gauge | % | computel | None | None |

| hardware.system_stats.io.incoming.blocks | cumulative | blocks | computel | None | None |

| hardware.system stats.io.outgoing.blocks | cumulative | blocks | computel | None | Nane

e emececcceccccicccccscscsssoaoan $ommomonooans Hommmmmnnaan R T Femenaaann Hommmeimiann +

4. Next, use the ceilometer statistics command to view any of the meters

associated with the node. For this example, we will view the incoming network
packets, as follows:

openstack@controller:~§ ceilometer statistics -m hardware.metwork.ip.i] ams QT]

| Count | Durat.

- H—

6| 293

R

| Min
+

Use the Ceilometer commands with the other hardware meters to view the associated data for
the node.

The Ceilometer central agent periodically polls the SNMP agent on the OpenStack nodes and
collects the hardware-related statistics. The hardware status data is then stored by Ceilometer
and can be queried using the client.

208

10

Writing Your Own
Neutron ML2
Mechanism Driver

In this chapter, we will learn how to develop a custom ML2 mechanism driver for Neutron
using the following recipes:

>

>

>

>

>

Creating a basic ML2 mechanism driver

Registering your ML2 mechanism driver with the Neutron server
Processing API requests for a Network

Processing API requests for a Subnet

Processing API requests for a Port

Introduction

This chapter is targeted towards developers and we will use DevStack to develop the driver
for the ML2 plugin. DevStack is a tool to install an all-in-one OpenStack node. DevStack
also provides you with a development environment for OpenStack-related programming.
Knowledge of the Python programming language is a prerequisite for this chapter.

Before we dive into the recipes, let's understand how the plugin works.

209

Writing Your Own Neutron ML2 Mechanism Driver

As discussed in the first chapter, Neutron supports the core networking features using entities
such as Network, Subnet, and Port. These entities are implemented using virtual and physical
networking technologies. In order to allow multiple networking technologies to interoperate,
Neutron uses the concept of plugins. The following image shows the Neutron plugin model:

Neutron Server

i ; . | 13 ! ! LBaaS ! ! Firewall |
| Core Plugin (Type: ML2) | | Senice | | Semvice | | Senice |
! i ¢ Plugin ! 1 Plugn | ! Plugin !
i Type Driver: g:jg?gi?n i i E i E i E
i el vSwit(;h Linux i i | i | i |
i VXLAN, GRE Bridge i i L L !

As shown here, Neutron supports one core plugin. The Modular Layer 2 (ML2) is a type of a
core plugin that supports multiple drivers so that the plugin functionality can be extended and
customized. The ML2 plugin comprises of type drivers and mechanism drivers.

Type drivers represent different types of networking technologies that provide the
segmentation of Networks, for example, VLAN or VXLAN-based segmentation. The mechanism
drivers on the other hand are software and hardware solutions that implement one or more of
the Network type.

In this chapter, we will see how to write a custom ML2 mechanism driver from scratch. We will
implement a simple driver that logs the key Neutron API calls in a log file. We will also see how
to extract crucial information that has been passed to the Neutron API.

The source code used in this chapter is available on GitHub at https://github.com/
reachsrirams/packt-openstack-networking-cookbook. You will need all the files
from the GitHub repository. The repository also contains a reference 1ocal . conf file that
may be useful in your DevStack installation.

Creating a basic ML2 mechanism driver

The first step in the journey to write an ML2 mechanism driver is to create a basic driver class.
This will also help us understand the code structure.

210

https://github.com/reachsrirams/packt-openstack-networking-cookbook
https://github.com/reachsrirams/packt-openstack-networking-cookbook

Chapter 10

Getting ready

As mentioned earlier, we will use DevStack in order to write and test our plugin. So, ensure
that the DevStack environment is up and running successfully.

How to do it...

1. With the appropriate credentials, SSH into your DevStack setup.

2. Ensure that all the driver files from the GitHub repository are copied to /opt/stack/
neutron/neutron/plugins/ml2/drivers

3. Thechl0 ml2 mech driver.py file will be our main mechanism driver file,
as follows:

Import Neutron Database API

from neutron.db import api as db

from oslo_log import log as logger

from neutron.plugins.ml2 import driver_api as api

driver_logger = logger.getLogger(__name__)

class CookbookMechanismDriver(api.MechanismDriver):

def initialize(self):
driver_logger.info("Inside Mech Driver Initialize")

4. The CookbookMechanismDriver class extends the MechanismDriver class of
the Neutron APl and overrides only the initialize method for now.

5. You can view the MechanismDriver class defined in the /opt/stack/
neutron/neutron/plugins/ml2/driver_api.py file. You will notice that the

MechanismDriver class supports many methods related to the Network, Subnet,
and Port.

As ML2 is a core plugin, the driver is intended to support operations on the core objects,
namely Network, Subnet, and Port.

As seen in the MechanismDriver class, there are Python methods to create, delete, and
update these core entities. These operations result in the addition, removal, and updates to
the Neutron database.

211

Writing Your Own Neutron ML2 Mechanism Driver

Registering your ML2 mechanism driver with

the Neutron server

Once the driver code is added, the next step is to register the driver with Neutron. In this
recipe, we will see how to register the new mechanism driver with Neutron. We will also check
whether our mechanism driver has been loaded and initialized successfully as we restart the
Neutron server.

Getting ready

The previous recipe is the prerequisite for this recipe. The basic ML2 driver code is required to
be placed at the location mentioned in the previous recipe.

How to do it...

1. With the appropriate credentials, SSH into your DevStack setup.

2. Openthe /etc/neutron/plugins/ml2/ml2 conf.ini configuration file using
your desired editor. For example, the command for the vi editor will be as follows:

openstack@devstack:~%
openstack@devstack:~$ vi /etc/neutron/plugins/ml2/ml2_conf.ini

3. Inthe [ml2] section of the file, configure mechanism drivers, as follows:

[m12]
tenant_network_types = vlan
type drivers = local, flat,vlan,gre,vxlan

mechanism drivers = openvswitch,cookbook |

(ListOpt) List of network type driver entrypoints to be loaded from
the neutron.ml2.type_drivers namespace.

#

4. Next, open the /opt/stack/neutron/neutron.egg-info/entry points.
txt file using your desired editor. For example, the command for the vi editor will be
as follows:

openstack@devstack:~$%
openstack@devstack:~$ vi /opt/stack/neutron/neutron.egg-info/entry_points.txt

212

Chapter 10

5. Inthe [neutron.ml2.mechanism drivers] section of the file, configure the
Python class that needs to be loaded for the mechanism driver named cookbook.
Note that the mechanism driver name must match the one that is used in the
ml2 conf.ini file as shown in step 3:

[neutron.ml2.mechanism_drivers]

arista = neutron.plugins.ml2.drivers.arista.mechanism_arista:AristaDriver

bigswitch = neutron.plugins.ml2.drivers.mech_bigswitch.driver:BigSwitchMechanismDriver

brocade = networking_brocade.vdx.ml2driver.mechanism_brocade:BrocadeMechanism

brocade_fi_ni = neutron.plugins.ml2.drivers.brocade.fi_ni.mechanism_brocade_fi_ni:BrocadeFiNiMechanism
cisco_apic = neutron.plugins.ml2.drivers.cisco.apic.mechanism_apic:APICMechanismDriver
cisco_nlkv = neutron.plugins.ml2.drivers.cisco.nlkv.mech_cisco_nlkv:N1KVMechanismDriver
cisco_ncs = neutron.plugins.ml2.drivers.cisco.ncs.driver:NCSMechanismDriver

cisco_nexus = neutron.plugins.ml2.drivers.cisco.nexus.mech_cisco_nexus:CiscoNexusMechanismDriver
cisco_ucsm = neutron.plugins.ml2.drivers.cisco.ucsm.mech_cisco_ucsm:CiscolUcsmMechanismDriver
fake_agent = neutron.tests.unit.plugins.ml2.drivers.mech_fake_agent:FakeAgentMechanismDriver
fslsdn = neutron.plugins.ml2.drivers.freescale.mechanism_fslsdn:FslsdnMechanismDriver

hyperv = neutron.plugins.ml2.drivers.hyperv.mech_hyperv:HypervMechanismDriver

12population = neutron.plugins.ml2.drivers.12pop.mech_driver:L2populationMechanismDriver
linuxbridge = neutron.plugins.ml2.drivers.mech_linuxbridge:LinuxbridgeMechanismDriver

logger = neutron.tests.unit.plugins.ml2.drivers.mechanism_logger:LoggerMechanismDriver

mlnx = neutron.plugins.ml2.drivers.mlnx.mech_mlnx:MlnxMechanismDriver

ncs = neutron.plugins.ml2.drivers.cisco.ncs.driver:NCSMechanismDriver

nuage = neutron.plugins.ml2.drivers.mech_nuage.driver:NuageMechanismDriver

ofagent = neutron.plugins.ml2.drivers.ofagent.driver:0fagentMechanismDriver

opendaylight = neutron.plugins.ml2.drivers.opendaylight.driver:0OpenDaylightMechanismDriver
openvswitch = neutron.plugins.ml2.drivers.mech_openvswitch:OpenvswitchMechanismDriver

ovsvapp = neutron.plugins.ml2.drivers.ovsvapp.mech_driver:0VSvAppAgentMechanismDriver

sdnve = neutron.plugins.ml2.drivers. ibm.mechanism_sdnve:SdnveMechanismDriver

sriovnicswitch = neutron.plugins.ml2.drivers.mech_sriov.mech_driver:SriowNicSwitchMechanismDriver
test = neutron.tests.unit.plugins.ml2.drivers.mechanism_test:TestMechanismDriver

Fo_okbook = neutron.plugins.ml2.drivers.ch1®_ml2_mech_driver:CookbookMechanismDriver]

6. Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance of your DevStack setup to run this operation.

7. Once the Neutron services have been restarted, we will verify that our basic
mechanism driver has been loaded and initialized. To do this, open the Neutron
server log file in your DevStack setup. In our DevStack setup, the corresponding
fileis /opt/stack/logs/g-svc. log.

8. Inthis file, search for the words Inside Mech. This will show the corresponding
record in the Neutron server log file, as shown in the following screenshot:

INFO neutron.plugins.ml2.drivers.type_vlan [-] VlanTypeDriver initialization complete
INFO neutron.plugins.ml2.managers [-] Initializing driver for type 'local’

INFO neutron.plugins.ml2.managers [=] Initializing driver for type ‘gre’

INFO neutron.plugins.ml2.drivers.type_tunnel [-] gre ID ranges: [(1, 18@@)]

INFO neutron.plugins.ml2.managers (-] Initializing driver for type 'wxlan'

INFO neutmn.plugms ml2. dri\rers type_tunnel I l vxl.an pis} _ranges: [rm1 ZSM]I

neutron.plugins.mi2. nanagers =l Imtialumg mechanisn driver cuDkbunk'

neutron.plugins.ml2.drivers.ch18_ml2_mech_driver [-] Inside Mech Driver Initialize

neutron.plugins.ml2.plugin [-] Medular L2 Plugin initialization complete

DEBUG neutron.manager [-] Loading services supported by the core plugin n_core_plugin fopt/stack/neu

tron/neutron, nunager‘py: E
2015-87-26 23:30:10.875 18669 INFO neutron.extensions.vlantransparent [-] Disabled vlantransparent extension,
2815-87-26 23:30:10.875 18669 DEBUG neutron.manager [-] Loading service plugins: [’neutron.services.13_router.13_router_plugin.L3RouterPlugin'] _loa
d_service_plugins fopt/stack/neutron/neutron/manager.py:168
2815-87-26 23:30:10.875 18669 INFO neutron.manager [-] Loading Plugin: neutron.services.13_router.13_router_plugin. L3RouterPlugin
2815-07-26 23:30:10.885 18669 DEBUG neutron.callbacks.manager [-] Subscribe: <function _prevent_l3_port_delete_callback at @x7f77d8e65328> port befo
re_delete subscribe /fopt/stack/neutron/neutron/callbacks/manager.py:43

213

Writing Your Own Neutron ML2 Mechanism Driver

The presence of the Inside Mech Driver Initialize shows that our minimal
mechanism driver was loaded successfully and it was also initialized by invoking the
initialize () method of the driver.

Downloading the example code

You can download the example code files for all Packt

~ books you have purchased from your account at
http://www.packtpub.com. If you purchased

this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
L files e-mailed directly to you. -

During the startup, the Neutron server loads the core plugin based on the configuration in
the neutron. conf file. In our example, we will use the ML2 plugin as the core plugin.

The ML2 plugin, in turn, loads the ML2 type and mechanism drivers as specified in the

ml2 conf.ini file. In this recipe, the ML2 plugin will attempt to load the mechanism drivers
named openvswitch and cookbook. The ML2 plugin uses the entry points.txt file in
order to identify and load the Python class corresponding to the driver name specified in the
ML2 configuration.

There's more...

As we are using the DevStack setup for the recipes in this chapter, it is better to include
cookbook as the mechanism driver in the 1ocal . conf file. This will ensure that cookbook
is added to the m12_ conf . ini file every time DevStack is restarted. You can find a reference
local.conf file in the GitHub repository.

Processing API requests for a Network

Vendors and third-party application developers write custom ML2 mechanism drivers in

order to integrate their products and applications with OpenStack. The main aspect of writing
mechanism drivers is the implementation of specific methods related to the Network, Subnet,
and Port. In this recipe, we will see how to process API requests specifically for a Network.

Getting ready

In this recipe, we will enhance our basic mechanism driver code and add two new methods
in order to process API requests for a Network. Ensure that your DevStack setup is up and
running, with cookbook as one of the mechanism drivers, as shown in the previous recipe.

214

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 10

How to do it...

1.

4.

With the appropriate credentials, SSH into your DevStack setup.

Open /opt/stack/neutron/neutron/plugins/ml2/drivers/ chl0 ml2
mech driver.py using an editor.

Add a new import statement, as highlighted in the following screenshot:

from neutron.plugins.ml2 import driver_api as api |

import chl@_ml2_mech_driver_network as cookbook_network_driver ||

driver_logger = logger.getLogger(__name_) |

Update the class declaration statement, as follows:

class CookbookMechanismDriver(cookbook_network_driver.CookbookNetworkMechanismDriver):

def initialize(self):

driver_logger.error("Inside Mech Driver Initialize")

5.

CookbookMechanismDriver now extends the
CookbookNetworkMechanismDriver class and as a result,
inherits the following methods:

class CookbookNetworkMechanismDriver(api.MechanismDriver):

def

def

def

log_network_information(self, method_name, current_context, prev_context):
driver_logger. info(skt %5 soee % (method_name))

Print the Network Name using the context

driver_logger.info{"Current Network Name: %s" % (current_context['name']))

For create operation prev_context will be None.

if prev_context is not None:

driver_logger.info("Previous Network Name: %s" % (prev_context['name']})

Print the Network Type
driver_logger. info("Current Metwork Type: %s" % current_context['provider:network_type'])
driver_logger. info("#++ %s #+++" % (method_name))

create_network_postcommit(self, context):

Extract the current and the previous network context

current_network_context = context.current

previous_network_context = context.original

self._log_network_information("Create Network PostCommit", current_network_context, previous_network_context)

update_network_postcommit{self, context):

Extract the current and the previous network context

current_network_context = context.current

previous_network_context = context.original

self._log_network_information{"Update Network PostCommit", current_network_context, previous_network_context)

6.

We will implement only create network postcommit and update network
post_commit in this driver code. As shown in the code, we will log the Network
name and Network type values.

215

Writing Your Own Neutron ML2 Mechanism Driver

7. Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance to run this operation.

8. Once the Neutron services have been restarted, create an OpenStack Network
using the neutron net-create CookbookNetworkl CLI command where
CookbookNetworkl is the Network name.

9. To verify that our mechanism driver code was executed, open the DevStack log file for
Neutron. In our DevStack setup, the log file was /opt/stack/log/qg-svc. log.

10. This log file should contain the specific log messages as per the create network
postcommit method in our mechanism driver. Note that the previous Network name
is not printed in the logs as of now:

2015-87-26 23:51:38.565 INFO neutron.plugins.ml2.drivers.chl8_ml2_mech_driver_network [req-bBc7382f-119a-4967-96c9-44cdbbd25a6c admin admin]
#xsx Create Network PostCommit sscer

[2015-87-26 23:51:38,565 INFO neutron,plugihs.ml2.drivers,ch18_ml2_mech_driver_network [req-bBc7382f-119a-4967-96c9-44cdbbd25abe admin admin]
Current Network Mame: CookbookNetworkl

[2015-87-26 23:51:38,565 INFO neutron.plugips.ml2.drivers,chl8_ml2_mech_driver_network [reg-bBc7382f-119a-4967-96c9-44cdbbd25a6c admin admin]
Current Metwork Type: vlan
915-87-26 23:51:38.565 INFO neutron,plugins.ml2.drivers.chl@_ml2_mech_driver_network [req-b8c7382f-119a-4967-96c9-44cdbb425a6¢ admin admin]
e (reate Network PostCommit sk

11. Now, change the Network name using neutron net-update
CookbookNetworkl --name CookbookNetwork2 where CookbookNetwork? is
the new name of the Network. This will trigger the update network post commit
method of our mechanism driver.

12. Once the operation is successful, you will see that the DevStack log file contains a log
message for the update network post commit method:

2015-87-26 23:54:23.211 INFO neutron.plugins.ml2.drivers.chl@_ml2_mech_driver_network [req-fd4fa3cd9-134e-daZe-8ela-2e57c83bf573 admin admin]
#eex pdate Network PostCommit sewses
2015-87-26 23:54:23.211 INFO neutron.pluging.ml2.drivers.chl@_ml2_mech_driver_network [req-f4fa3cd9-134e-daZe-8ela-2e57c83bf573 admin admin]
Current Network Name: CookbookNetwork2
2815-87-26 23:54:23.211 INFO neutron.pluging.ml2.drivers.chl®_ml2_mech_driver_network [regq-f4fa3dcd9-134e-4aZe-8ela-2e57c83bf573 admin admin]
Previous Network Name: CookbookNetworkl
2015-07-26 23:54:23.212 INFO neutron.pluging.ml2.drivers.chl@_ml2_mech_driver_network [req-fdfa3cd9-134e-4aZe-8ela-2e57c83bf573 admin admin]
Current Network Type: vlan
2015-07-26 23:54:23.212 INFO neutron.pluging.ml2.drivers.chl1@_ml2_mech_driver_network [req-fdfalcd9-134e-daZe-8ela-2e57c83bf573 admin admin]

e Uwate Network PostCommit sss

As you can see, this time the log message contain the previous and current Network names.

In this recipe, we implemented two methods related to a Network. The ML2 mechanism
driver API consists of the create, update and delete operations for the OpenStack Network.

In addition, the API also supports methods to handle DB commit related triggers. Once

the Network object has been committed to the database, the method xxxxx network
postcommit operation is invoked. In this recipe, we extracted and printed the Network name
and Network type in the Neutron log file.

216

Chapter 10

Each of these methods can also pass a context parameter. The context parameter is very
important as it contains the details of the Network being created or updated. In the case of an
update operation, context also contains the Network information prior to the current update.

In this recipe, we saw how to extract the Network name and Network type as a part of
handling the API requests. It is possible to fetch additional attributes of a Network such
as the Segmentation ID along similar lines.

Processing APl requests for a Subnet

The previous recipe showed you how Neutron invokes methods in a mechanism driver for
Network-related operations. In this recipe, we will see how to process API requests for Subnets.

Getting ready

In this recipe, we will enhance our driver and implement the methods that will process API
requests for a Subnet. Ensure that your DevStack setup is up and running, with cookbook as
one of the mechanism drivers, as shown in the earlier recipe.

How to do it...

1. With the appropriate credentials, SSH into your DevStack setup.

2. Open /opt/stack/neutron/neutron/plugins/ml2/drivers/ chl0 ml2_
mech driver.py using an editor.

3. Add a new import statement, as highlighted in the following image:

from neutron.plugins.ml2 import driver_api as api

import ch1@_ml2_mech_driver_network as cookbook_network_driver
import ch1@_ml2_mech_driver_subnet as cookbook_subnet_driver

driver_logger = logger.getLogger(__name__)

4. Update the class declaration statement to include the Subnet driver class, as follows:

class CookbookMechanismDriver(cookbook_network_driver.CookbookNetworkMechanismDriver,
cookbook_subnet_driver.CookbookSubnetMechanismDriver):

def initialize(self):
driver_logger.error(“Inside Mech Driver Initialize")

217

Writing Your Own Neutron ML2 Mechanism Driver

5. CookbookMechanismDriver nhow extends the CookbookSubnetMechanismDriver
and CookbookNetworkMechanismDriver classes. Hence, it inherits the following
additional methods:

Import Neutron Database API
from oslo_log import log as logger
from neutron.plugins.ml2 import driver_api as api

Import ML2 Database API
from neutron.plugins.ml2 import db as ml2_db

driver_logger = logger.getlLogger(__name__)

class (api.MechanismDriver):

def (self, method_name, current_context, prev_context, full_context):
driver_logger.info("sskk %5 sk’ % (method_name))
driver_logger.info("Current Subnet Name: %s" % (current_context['name']))
driver_logger.info("Current Subnet CIDR: %s" % (current_context['cidr'l})
Extract the Network ID from the Subnet Context
network_id = current_context['network_id']
Get the Neutron DB Session Handle
session = full_context._plugin_context.session
Using MLZ DB API, fetch the Metwork that matches the Network ID
networks = ml2_db.get_network_segments(session, network_id)
driver_logger.info("Network associated to the Subnet: %s" % (networks))
driver_logger.info("s#kk %s sk % (method_name))

def (self, context):
Extract the current and the previous Subnet context
current_subnet_context = context.current
previous_subnet_context = context.original
self._log_subnet_information("Create Subnet PostCommit", current_subnet_context,
previous_subnet_context, context)

6. We will implement only create subnet postcommit method in this driver code.
As shown in the code, we will log the Subnet name, its CIDR, and the Network that it
belongs to.

7. Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance to run this operation.

8. Once the Neutron services have been restarted, create a Subnet using neutron
subnet-create --name CookbookSubnet2 CookbookNetwork?2
10.20.30.0/24.

9. Here, CookbookSubnet?2 refers to the Subnet name, CookbookNetwork?2 refers to
the Network, and 10.20.30.0/24 refers to the CIDR or IP address range.

10. To verify that our mechanism driver code was executed, open the DevStack log file for
Neutron. In our DevStack setup, the log file was /opt/stack/log/g-svc. log.

218

Chapter 10

11. This log file should contain the specific log messages as per the create subnet
postcommit method in our mechanism driver:

Q7 247 .ml2.drivers.chl®_ml2_mech_driver_subnet [req-f62ade88-dd97-43d9-8348-36a5d2c60f6f admin admin]
sk (reate Subnet PostCommit s
2015-97-25 80:47:19,377 INFO neutron.pluging.ml2.drivers,chl@_ml2_mech_driver_subnet [reg-f62a9e88-dd97-43d9-8348-36a5d2c60f6f admin admin]
Current Subnet Name: CookbookSubnet2
2015-87-25 8@:47:19,377 INFO neutron,pluging.ml2.drivers,chl@_ml2_mech_driver_subnet [req-f62afeB8-dd97-43d9-8348-36a5d2c60f6f admin admin]
Current Subnet CIDR: 18.20.308.0/24
2015-97-25 80:47:19.380 INFO neutron.pluging.ml2.drivers.chl@_ml2_mech_driver_subnet [reg-f62adeB8-dd97-43d9-8348-36a5d2c60f6f admin admin]
MNetwork associated to the Subnet: [{'segmenfation_id': 1829L, 'physical_network®': u'physnetl’', "id': u'75a9628c-d6d6-4668-9979-ffef2cdc@bSa’
, 'network_type': u'vlan'}]
2015-87-25 80:47:19.380 INFO neutron.plugink.ml2.drivers.chl@®_ml2_mech_driver_subnet [req-f62a9¢88-dd97-43d9-8348-36a5d2c60f6f admin admin]
sk (reate Subnet PostCommit s

As seen in the log file, the create subnet postcommit method of our mechanism driver
was executed.

In this recipe, we implemented a method related to the Subnet entity. Therefore, context that
was passed to the driver methods contains information about the Subnet. In this recipe, we
first logged the Subnet name and its CIDR. The Subnet entity has only the ID of the Network
that it belongs to. We have to query the ML2 plugin database in order to fetch the details of
the Network. The code in this recipe shows you how to access the ML2 plugin database and
query it for the Network entity.

Processing API requests for a Port

We will conclude this chapter with a recipe that shows you how to process API requests for a
Port. In real-world applications, the Port-related operations are used more frequently when
compared to a Network or Subnet. As there are different types of Ports, this recipe will show
you how to identify the Port type from the API requests.

Getting ready

Ensure that your DevStack setup is up and running, with cookbook as one of the mechanism
drivers, as shown in the earlier recipe.

How to do it...

1. With the appropriate credentials, SSH into your DevStack setup.

2. Open /opt/stack/neutron/neutron/plugins/ml2/drivers/ chl0 ml2_
mech driver.py using an editor.

219

Writing Your Own Neutron ML2 Mechanism Driver

3.

4.

Add a new import statement, as highlighted in the following image:

from neutron.plugins.ml2 import driver_api as api

import chl1@_ml2_mech_driver_network as cookbook_network_driver
import chl@ ml2 mech driver subnet as cookbook subnet driver
|import ch1@_ml2_mech_driver_port as cookbook_port_driver |

driver_logger = logger.getLogger(__name__)

Update the class declaration statement to include the Port mechanism driver class,
as follows:

driver_logger = logger.getLogger(__name_)

class CookbookMechanismDriver(cookbook_network_driver.CookbookNetworkMechanismDriver,

cookbook_subnet_driver.CookbookSubnetMechanismDriver,
cookbook_port_driver.CookbookPortMechanismDriver):

def initialize(self):
driver_logger.error("Inside Mech Driver Initialize")

5.

CookbookMechanismDriver now extends the CookbookPortMechanismDriver,
CookbookSubnetMechanismDriver, and CookbookNetworkMechanismDriver
classes. Hence, it inherits the following additional methods:

ae

class CookbookPo

tHechanismDriver(api.MechanismDriver):

_log_port_information{self, method_name, context):
driver. 1ogger info(sk %5 sk % (method_name))
Extract the current Port context
current_port_context = context,current
Extract the associated Network Context
network_context = context.network
driver_logger.info("Port Type: %s" % (current_port_context['device_owner']})
driver_logger.info("IP Address of the Port: %s" % ({current_port_context['fixed_ips']1[8]1)('ip_address']))
driver_logger.info("Network name for the Port: %s" % (network_context.current('name']))
driver_logger.info("Network type for the Port: %s" % (network_context.current['provider:network_type'l))
driver_logger.info("Segmentation ID for the Port: %s" % (network_context.current['provider:segmentation_id']))
driver_logger.info(" sseek %s s’ % (method_name))

create_port_pc nit(self, context):
seLf 1ng_port infornationl Create Port PostCommit", context)

220

We will implement only create port postcommit method in this driver code. In
this recipe, we will log the Port type, its IP address, and the Network that it belongs to.

Restart the Neutron services in your DevStack setup. You will have to use the correct
screen instance to run this operation.

Chapter 10

8. Once the Neutron services have been restarted, create a Router and add an interface
to it using the neutron router-create and neutron router-interface-

add CLI commands:

Created a new router:

openstack@devstack:~/devstack$ neutron router-create CookbookRouter

| Field Value

admin_state_up	True
distributed	False
external_gateway_info	
ha	False
id	23blad6l-629a-4f@e-b565-07ec5f6baedb
name	CookbookRouter
routes	
status	ACTIVE
tenant_id	3161941967014dfeab5b15933c3aed02

+ t

openstack@devstack:~/devstacks$ I

openstack@devstack:~/devstack$ neutron router-interface-add CookbookRouter CookbookSubnet2
Added interface 3f3eeBc2-3e30-4b35-bf82-4c997877@ebl to router CookbookRouter.

9. To verify that our mechanism driver code was executed, open the DevStack log file for

Neutron. In our DevStack setup, the log file was /opt/stack/log/g-svec. log.

10. This log file should contain the specific log messages as per the create port
postcommit method in our mechanism driver:

2015-87-25 80:58:48.980 INFO neutron.
sk Create Port PostCommit sk
2815-87-25 @@:58:48.980 INFO neutron.plugins.m
Port Type: network:router_interface

2015-87-25 80:58:48.981 INFO neutron.plugins.m
IP Address of the Port: 18.20.30.1

20815-87-25 2@:58:48.981 INFD neutron.plugins.m
Network name for the Port: CookbookNetwork2
2015-87-25 @0:58:48.981 INFO neutron.plugins.m
Network type for the Port: vlan

2015-97-25 00:58:48.981 INFO neutron,plugins.m
Segmentation ID for the Port: 1829

2815-87-25 @@:58:48.981 INFD neutron.plugins.m
s Create Port PostCommit seeer

lugins.ml2.

drivers.

.drivers.
.drivers.
.drivers.
.drivers.
«drivers.

.drivers.

ch1@_ml2_mech_driver_port
ch1@_ml2_mech_driver_port
ch1@_ml2_mech_driver_port
ch1@_ml2_mech_driver_port
ch1@_m12_mech_driver_port
ch1@_ml2_mech_driver_port

ch1@_ml2_mech_driver_port

[reg-258e37db-abe3-4672-a7f2-47b2lefaesTh
[req-25@e37db-a6e3-4672-a7f2-47b21efae57b
[req-258e37db-a6e3-4672-a7f2-47b21efaes7h
[req-258e37db-a6e3-4672-a7f2-47b21efae57b
[req-258e37db-abe3-4672-a7f2-47b21efae57b
[reg-258e37db-abe3-4672-a7f2-47b2lefaesTh

[req-258e37db-a6e3-4672-a7f2-47b21efae57h

admin
admin
admin
admin
admin
admin

admin

admin]
admin]
admin]
admin]
admin]
admin]

admin]

When we add an interface to a Router, it triggers a Create Port method on the mechanism
driver. As we can see from the logs, the Port type is network:router interface. The log
also shows the Network-related information for the Port.

In this recipe, we implemented a mechanism driver related to the Port entity. Therefore,
context that was passed to the driver methods contains information about the Port. However,
unlike a Subnet, context also contains the corresponding Network information.

221

Writing Your Own Neutron ML2 Mechanism Driver

In this recipe, we saw that you can extract the Port type information from the current Port
context using the device owner field. The Port type is useful in case different actions are
required for the DHCP port, a VM instance port, or a Router Port. We also saw how to extract the
IP address assigned to the Port. This is another useful attribute while building applications.

Finally, we saw how to extract the Network information from the Port context. Mechanism
drivers from the Network device vendors often use the Network type and Segmentation ID in
order to configure the underlying physical network.

222

11

Troubleshooting Tips
for Neutron

In this chapter, we will cover the following recipes:

» Troubleshooting a VM that does not get a DHCP IP address

» Troubleshooting a VM that does not get an initial configuration

» Troubleshooting a VM that does not get External Network access
» Troubleshooting a VM not reachable from External Networks

» Checking the status of the Neutron service

» Checking the MAC address table on a virtual switch

Introduction

OpenStack provides users with lots of configuration options, but at the same time, it is up to
the OpenStack administrator to make sure that the correct combination of runtime options
has been configured. A large number of deployment options for OpenStack makes it very
flexible, but at the same time, it can lead to errors and misconfiguration. In this chapter, we
will look at systematic ways to troubleshoot an OpenStack setup for networking-related issues.

223

Troubleshooting Tips for Neutron

We will use the following topology in order to implement various debugging recipes:

/{ Controller and Network Node }\\ /,74{ Compute Node 1 }7\\ e Compute Node 2 ~

Keystone Service

Nova Service Glance Service Nova Service Nova Service
Neutron Server Neutron Agent(s) Neutron Agent Neutron Agent
\ br-int br-ex /A br-int)\ br-int
S etho ethd eth2—" - letho et~ - etho et}

Management Network

Data Network

External Network (Internet)

Troubleshooting a VM that does not get a

DHCP IP address

In this recipe, we will troubleshoot a scenario where a VM on OpenStack that is connected to
a DHCP enabled virtual network is unable to obtain an IP address.

When a tenant attaches the first VM to a DHCP enabled virtual network in OpenStack, Neutron
automatically starts a DHCP server for the virtual network. This DHCP server is responsible for
providing an IP address to the VM instances created on the virtual network.

Once a VM instance attached to a virtual network boots up, it is assigned an IP address from
the DHCP server. In this recipe, we will see some of the possible reasons for a VM instance
failing to receive an IP address.

Getting ready

The following information is required for this recipe:

» SSH-based login credentials for the Controller and Network node
» SSH-based login credentials for the Compute node

How to do it...

The following steps will show you how to troubleshoot your setup when the VM does not get an
IP address:

1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Make sure that the DHCP agent is running on the Network node using the
following command:

service neutron-dhcp-agent status

Chapter 11

3. Change the DHCP agent configuration in the /etc/neutron/dhcp agent. ini file
in order to enable verbose and debug level logging:

verbose = True
debug = True

The DHCP agent log files are present in the /var/log/neutron directory.

4. Restart the DHCP agent with the new configuration changes using the following
command:
service neutron-dhcp-agent restart

5. Verify that the DHCP service process provided by dnsmasq is started on the virtual

network. Use the ps command along with the Network ID in order to find the DHCP
processes and DHCP interface:

openstack@controller:~5 [ps aux |grep ch/bb367-bBeb-4552-a2b2-45ebcchatlan |
nobody 15485 ©.0 0.6 282088 1820 7 H 88:26 0:00 dnsmasq --no-hosts --no-resolv

--strict-order --bind-interfaces|--interface=tap6c77174e-28 |--except-interface=lo
--pid-file=/opt/stack/data/neutron/dhcp/cb766367-bBeb-4552-a202-45ebcch4flas/pid
--dhcp-hostsfile=/opt/stack/data/neutron/dhcp/cb766367-boeb-4552-a202-45ebcc8dflas /host
--addn-hosts=/opt/stack/data/neutron/dhcp/cb766367-bBeb-4552-a202-45ebcco4fla5/addn_hosts
--dhcp-optsfile=/opt/stack/data/neutron/dhcp/ch766367-hBeb-4552-a202-45ebccB4flas/opts
--dhcp-leasefile=/opt/stack/data/neutron/dhcp/cb766367-bbeb-4552-a202-45ebccod4flas/leases
--dhcp-range=set:tag6,20.20.21,0,static,86400s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal

6. Make sure that the Network node is connected to the data Network. On an Open
vSwitch-based setup, use the ovs-vsctl show command to view the bridges
created. The br-int bridge is the integration bridge and all the devices on the
network, such as the VMs, DHCP server, Routers, and so on, connect to it. This bridge
is connected to the tunnel bridge; br-tun in the case of overlay networks or physical
networks such as br-ethl in the case of VLAN-based networks using a patch port. In
case the patch port is not configured, restarting the Open vSwitch agent will create it:

service neutron-plugin-openvswitch-agent restart

openstack@controller:~$ sudo ovs-vsctl show
b81ldc65a-aab6-4e85-87a3-9ca7cdeb683f
Bridge "br-eth1l™
Port "ethl"
Interface "ethl”
Port "br-ethl"
Interface "br-ethl”
type: internal
[Fort "phy-br-ethi®
Interface "phy-br-ethl”
type: patch
options: {peer="int-br-ethl"}
Bridge br-int
fail mode: secure
[Fort patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port br-int
Interface br-int
type: internal

225

Troubleshooting Tips for Neutron

In case of overlay-based networking such as VXLAN or GRE, make sure that the
tunnel endpoints on the hypervisors are configured with the proper IP address and
are reachable from the Network node, and the tunnels ports are created on the OVS

In a VLAN-based setup, make sure that the physical network bridges, such as br-
ethil, are connected to the actual physical interface, ethi, and the physical network

The preceding steps need to be repeated for the compute node that is hosting the
VM instance. As an administrative user, log in to the Horizon dashboard and navigate
to Admin | System | Instances. View the instances table to identify the compute
node that is hosting a VM. Then, follow the same steps mentioned earlier to make
sure that the VM has network connectivity through the integration bridge and physical

7.

bridge, br-tun.
8.

interface is up.
9.

network interface.
10.

You can capture the Network packets using the t cpdump command on the physical
network interface connecting the Network or Compute node in order to verify that the
packets from the VM are able to reach the DHCP server. For example, if your tenant
network is connected using eth1, use the following command to start a packet capture:

tecpdump -i ethl -n -v

A packet flowing out of the VM goes through br-int and the patch port to br-ethN
(the bridge connecting to the physical interface, ethN) for a VLAN-based Network

or to br-tun for a tunnel-based Network. Finally, the packet flows to the physical
interface used for the tenant Network. You can start a packet trace to troubleshoot
the flow using tcpdump or wireshark at various points on the data path, such as
br-int, br-ethi, or br-tun. The following figure shows you the various interfaces
where a packet trace can be started for troubleshooting:

VLAN based networks Tunnel based networks

-~

br-int

Local VLAN TAG

\ Interfaces for packet tracing
| /

br-int

~

ovs ovs

Patch link Patch link

br-eth1 br-tun
Tunnel to other
Compute/Network

Nodes

Connects to
Top-Of-Rack

Switch VXLAN VNI

Global VLAN TAG Local VLAN TAG

Linux Bridge

VM1
\ Compute Node

_

|
|
|
|
|
|
|
|
|
ethl |
|
|
|
I
|
|
|
|

Linux Bridge

VM1
\ Compute Node

_

NIC

226

Chapter 11

11. DHCP communication happens over the UDP ports 67 and 68 for the DHCP server
and client, respectively. Make sure that the security group rules attached to the
VM are not preventing the DHCP communication. Please look at Chapter 7, Using
Neutron Security and Firewall Services to learn about security groups in Neutron.

12. In case the VM gets attached to multiple virtual networks, make sure that the DHCP
client is running for all the network cards that you want to configure the DHCP-provided
IP address. Most of the cloud images configure the VM for the first network only. You
will have to look at the documentation of the operating system to learn about the
available DHCP client. On Ubuntu and RHEL-based distributions, you should be able
to use the dhclient command with the interface name, while the CirrOS image uses
udhcpc as a DHCP client.

For every virtual network created by the tenant, Neutron starts at least one DHCP server.
When the VM boots, it sends a DHCPDISCOVER broadcast message to request the DHCP
server for its IP address. The DHCP server then allocates an IP address to the VM. In case the
VM does not receive the DHCPOFFER message, we must make sure that the DHCP server is
running, network connectivity between the VM and DHCP server is working, and no security
group rule is preventing communication between the VM and DHCP server.

Troubleshooting a VM that does not get an

initial configuration

Once the VM boots up, it receives its IP address from the DHCP server. The VM then queries
the metadata service in order to get additional configuration data for its initial configuration.
During its first boot, the VM tries to receive its configuration by connecting to the metadata
server at a well-known IP address of 169.254.169.254 on Port 80. In this recipe, we will learn
how to troubleshoot metadata service related problems.

Getting ready

For this recipe, you will need the following information:

» SSH-based login credentials for the Controller and Network node

» SSH-based login credentials for the Compute node

227

Troubleshooting Tips for Neutron

How to do it...

The following steps will show you how to check the health of the metadata service for
a virtual network:

1. With the appropriate credentials, SSH into the Network node. In our setup, it will be
the Controller and Network node.

2. Make sure that the metadata agent is running on the Network node using the
following command:

service neutron-metadata-agent status

3. Change the metadata agent configuration in the /etc/neutron/metadata
agent.ini file in order to enable verbose and debug level logging. The metadata
agent log files are present in the /var/log/neutron directory.

4. Restart the metadata agent with the new configuration changes using the
following command:

service neutron-metadata-service restart

5. The metadata service requires the metadata proxy to be started. The proxy service
can be started either as a part of the DHCP namespace using neutron-dhcp-
agent or as a part of the Router namespace using neutron-13-agent. Make sure
that the metadata proxy option is enabled in one of the configuration files, /etc/
neutron/dhcp_agent.ini or /etc/neutron/13 agent.ini:

enable metadata proxy = True

6. For this example, we enabled the metadata proxy as a part of neutron-13-agent.
Connect a shell to the Router namespace using the ip netns exec grouter-
<routers_ids> exec bash command. Checking the iptables rules with iptables
-t nat -n -Lin the Router's namespace should show the configuration that is
related to the metadata service, similar to the one shown in the following image:

Chain neutron-13-agent-PREROUTING (1 references)
target prot opt source destination
REDIRECT tcp -- 0.0.0.68/0 169.254.169.254 tcp dpt:80 redir ports 9697

The traffic trying to reach the metadata service at the IP address of 169.254.169.254 on
Port 80 is redirected to the Router's IP on Port 9697.

Once a VM instance gets its IP address, it tries to retrieve further configuration by contacting
the metadata service provided by OpenStack. The cloud-enabled VM images are installed with
the cloud-init service, which is used to download an additional configuration from the metadata
service. The metadata service is available at the well-known IP address of 169.254.169.254.

228

Chapter 11

The Neutron metadata agent is responsible for starting this service. The metadata service
provides the VM instance with configuration data, such as the hostname, SSH keys, and so
on. The cloud-init service provides a host of other configuration options such as installing
extra packages, running custom scripts, and others.

Troubleshooting a VM that does not get

external Network access

In this recipe, we will look at some of the reasons where the VM might not get external
Network access in OpenStack.

To provide external access to your VM, you must fulfill the following prerequisites:

» Your VM must be connected to a Router

» The Router must have its external gateway set

Getting ready

The following information is required for this recipe:

» OpenStack Horizon access as an administrator
» SSH-based login credentials for the Controller and Network node

» SSH-based login credentials for the Compute node

How to do it...

The following steps will show you how to troubleshoot the VMs that are unable to access the
external Networks:

1. Log in to Horizon and make sure that the VM is connected to a Router through the
internal Network. This can be seen by navigating to Project | Network | Network
Topology.

2. On Horizon, navigate to Project | Network | Router and make sure that the Router
has its gateway set. Note the ID for this Router on the Router details screen; it will be
used in the subsequent steps of debugging.

3. With the appropriate credentials, SSH into the Network node. In our setup, it will be
the Controller and Network node.

4. Start a shell that is connected to the namespace for the Router using the
following command:

ip netns exec grouter-<routers id> exec bash.

229

Troubleshooting Tips for Neutron

The IP address configured on the external Network for this Router is 192.168.0.5,
which is shown in the following screenshot:

root@controller:~# ifconfig
lo Link encap:Local Loopback
inet addr:127.0.8.1 Mask:255.0.0.8
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:® errors:® dropped:® overruns:0 frame:@
TX packets:0 errors:0 dropped:® overruns:® carrier:0
collisions:® txgueuelen:®
RX bytes:@ (0.0 B) TX bytes:0 (0.0 B)

qg-7b2664a2-79 Link encap:Ethernet Hwaddr fa:16:3e:f4:d7:76
inet [addr:192.168.0.5| Bcast:192.168.0.255 Mask:255.255.255.0
inett addr: Teg@ B16:3eff:fef4:d776/64 Scope:Link
UP BROADCAST RUNNING MTU:1500 Metric:1
RX packets:® errors:® dropped:® overruns:® frame:@
TX packets:17 errors:® dropped:® overruns:® carrier:@
collisions:0 txqueuelen:®
RX bytes:® (6.0 B) TX bytes:1218 (1.2 KB)

qr-fce5f263-bl Link encap:Ethernet HWaddr fa:16:3e:a6:c2:23
inet addr:20.20.21.1 Bcast:20.20.21.255 Mask:255.255.255.0
inet6 addr: fe88::f816:3eff:feab:c223/64 Scope:Link
UP BROADCAST RUNNING MTU:15080 Metric:1
RX packets:® errors:® dropped:® overruns:0 frame:@
TX packets:11 errors:® dropped:® overruns:® carrier:@
collisions:® txgqueuelen:®
RX bytes:® (0.0 B) TX bytes:874 (874.0 B)

5. Usethe iptables -t nat -L -ncommand to view the Source Network Address
Translation (SNAT) configuration:

neutron-13-agent-float-snat all -- 0.0.0.8/0 0.0.0.8/0
SNAT all -- ©.9.9.8/8 0.0.0.8/0 to:[192.168.0.5
SNAT all -- e.0.0.0/0 0.0.0.0/0 mark match ! ex2 ctstate DNAT to:192.168.60.5

You should be able to see the SNAT rules similar to the one in the preceding figure. When any
VM connected to this Router tries to communicate with the outside world, the iptables rules
use the external IP address on the Router to replace the source address of the packets going
out. In this example, the external IP on the Routeris 192.168.0.5 and it is used as the
external IP for SNAT.

The default L3 plugin on OpenStack provides external access to the VM instances using SNAT.
It implements SNAT using iptables rules in the virtual Router. To enable SNAT on the Router,
the tenant must set a gateway on the Router by connecting it to an external Network.

The gateway IP of the virtual Router is used to translate packets going out to the
external world.

230

Chapter 11

Troubleshooting a VM not reachable from

external Networks

A tenant can associate a floating IP address to a VM in order to make it externally reachable.
In this recipe, we will look at the possible reasons that block the access to the VM from
external Networks.

External access to the VM works by providing Destination Network Address Translation
(DNAT) at the virtual Router. To accomplish this, the following points must be taken care of:

» Your VM must be connected to a virtual Router
» You must have an external Network available to provide a floating IP
» You must associate a floating IP to your VM

Getting ready

The following information is required for this recipe:

» SSH-based login credentials for the Controller and Network node
» SSH-based login credentials for the Compute node

How to do it...

The following steps will show you how to troubleshoot a VM that is not accessible from the
external Networks:

1. On Horizon, navigate to Project | Network | Router and make sure that the Router
has its gateway set.

2. 0On Horizon, navigate to Project | Compute | Instances and find the floating
IP associated to the VM. For this example, we have associated a floating IP of
192.168.0.4 to the VM instance with an internal IP of 20.20.21.6:

Instance Mame Image Mame IP Address Size
2020216
cimos-0.3.2-xB6_64-rootfs Floating IPs:
192.168.0.4
Displaying 1 fiem

231

Troubleshooting Tips for Neutron

3. With the appropriate credentials, SSH into the Network node. In our setup, it will be
the Controller and Network node.

4. Start a shell connected to the Router's namespace using the ip netns exec
grouter-<routers_ id> exec bash command and check the iptables
configuration for the NAT rules in the namespace with the following command:

Iptables -t nat -L -n

You should be able to see the NAT rules for the floating IP association:

Chain neutron-13-agent-float-snat (1 references)

target prot opt source destination

ISNAT all -- 20.20.21.6 0.0.0.0/0 t0:192.168.0.4|

Chain neutron-13-agent-PREROUTING (1 references)

target prot opt source destination

REDIRECT tcp -- ©.0.0.8/0 169.254.169.254 tcp dpt:86 redir ports 9697
DNAT all -- 0.0.0.0/0 192.168.0.4 10:20.20.21.6 |

5. If the VM has multiple network interfaces, make sure that the default route is set to
the Network gateway for the interface that has the floating IP associated.

The NAT rules redirect the traffic arriving at the floating IP of 192.168.0.4 to the internal IP
of 20.20.21.6. It also changes the source IP of any packet from the VM to the outside world
to the floating IP 192.168.0.4.

To make a VM externally accessible, a floating IP must be associated with it. A floating IP is an
externally accessible IP address and is allocated from an external Network of the tenant.

When a floating IP is associated with a VM, Neutron configures the virtual Router to map
the destination address of the incoming traffic on the floating IP to the VM's internal IP.
Configuring the DNAT rules using iptables on the virtual Router can accomplish this.

Checking the status of the Neutron service

The first step towards troubleshooting OpenStack Networks would be to make sure that the
Neutron service is running. In this recipe, we will look at ways to make sure that the Neutron
server is running without any errors.

Getting ready

For this recipe, you will need the following information:

» SSH-based login credentials for the Controller and Network node

232

Chapter 11

How to do it...

The following steps will show you how to check whether the Neutron service is running with
the proper configurations:

1.

With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

Inthe /etc/neutron/neutron.conf file, make sure that you have correct
core_pluginand service plugins configured. For example, in the case
of the ML2 plugin, the Neutron configuration is as follows:

core plugin = ml2

The service plugins should include a list of advanced services such as a Router,
Firewall, and Ibaas, depending on your deployment:

service plugins = router, firewall, lbaas
Make sure that the packages for these service plugins are installed and configured.

You may wish to enable verbose and debug level logging for the Neutron server in the
neutron. conf file for troubleshooting. Keep in mind that enabling the debug and
verbose log will produce extensive logging, which will use the disk space. Therefore,
it is best to enable it only for the required duration of troubleshooting:

verbose = True
debug = True

If you are using the ML2 plugin, check the ML2 configuration files in the /etc/
neutron/plugins/ml2 directory as well. The m12_ conf . ini file is the main
configuration file that includes the type and mechanism driver settings.

Depending on your ML2 driver setting, you may need to review the configuration file
that is specific to the driver. All the ML2 configuration files are located in the /etc/
neutron/plugins/ml2 directory. Please refer to previous chapters to learn more
about the configuration of the ML2 type and mechanism drivers that are appropriate
for your deployment.

Execute the following command to find out the status of the Neutron server:

service neutron-server status

If you have made any changes to the configuration files, restart the Neutron server in
order to load the new configuration by executing the following command:

service neutron-server restart

The Neutron server logs are present in /var/log/neutron/server. log. In case
the Neutron server fails to start, the Neutron logs can help in troubleshooting.

233

Troubleshooting Tips for Neutron

The Neutron server configuration allows verbose logging that can help in troubleshooting. The
main configuration file for Neutron is neutron. conf and it contains the core and service plugin
configurations. The Neutron server runs as a Linux service on the OpenStack Controller node
and you can use the service commands to restart them if any configuration has been changed.

Checking the MAC address table on

a virtual switch

As the devices connected to the virtual Network start to communicate with each other, the
virtual switch on the Compute node learns the MAC addresses of the network interfaces.
In this recipe, we will learn how to view the MAC address table of a virtual switch on an
OpenStack Compute node.

Getting ready

For this recipe, you will require the following information:

» SSH-based login credentials for the Compute node

How to do it...

The following steps will show you how to check the MAC address table on the virtual switch:

1. With the appropriate credentials, SSH into the Compute node.

2. Usethe ovs-appctl f£db/show command to view the MAC addresses learned by
the Open vSwitch instance:

ovs-appctl fdb/show br-int

openstack@controller:~$ sudo ovs-appctl fdb/show br-int
port VLAN MAC Age

4 2 fa:16:3e:e2:a8:14 43

6 2 52:f4:cc:65:d3:56 35

6 2 1la:44:73:4b:8b:59 35

6 2 fa:16:3e:dp:33:58 1

234

Chapter 11

3. For a Linux bridge-based deployment, follow the recipe Viewing virtual interface
information on the Compute node in Chapter 2, Using Open vSwitch for VLAN-Based
Networks to find the bridge name for the virtual Network. Use the brct1l showmacs
command with the bridge name to view the MAC addresses learned by a Linux bridge
instance, for example, for a bridge, brgle023dcé6-7a, use the following command:

brctl showmacs brgle023dc6-7a

openstack@computel:~/devstack$S brctl show

bridge name bridge id STP enabled interfaces
gbr4adb838e-11 8000.1a44734b8b59 no ethl.1002
tap4adb838e-11

stack@computel:~/devstack$ brctl showmacs gqbrd4adb83ge-11
port no mac addr is local? ageing timer

2 1a:44:73:4b:8b:59 yes 06.00

1 52:f4:cc:65:d3:56 yes 8.00

2 fa:16:3e:d0:33:58 no 35.32

The MAC address on the virtual switch corresponds to the MAC address of the network
interface in the attached VMs.

When the devices on the OpenStack Network communicate with each other, the virtual
switches such as the Open vSwitch or Linux bridge will start learning the Layer 2 address
(MAC address) of the devices connected to the Ports of the virtual Network by looking at
the packets that traverse the switch. Learning how to view these MAC addresses on the
virtual switch can help in understanding the flow of packets between devices such as the
VM instances, Virtual Routers, and so on that the OpenStack tenants create.

235

12

Advanced Topics

In this chapter, we will look at some of the advanced networking concepts in OpenStack
Neutron in the following recipes:

» Configuring Neutron for VPN as a service

» Testing VPN as a service on Neutron

» Using link aggregation on the compute node

» Integrating networking in a Heat template

Introduction

We will discuss VPN, link aggregation on the compute node, and integration with OpenStack
Heat project in this chapter. The Heat project in OpenStack provides you with an orchestration
service to spawn resources such as VMs, Routers, and load balancers along with their
Network connectivity.

To implement these recipes, we will use an OpenStack setup as described in the following image:

{ Controller and Network Node } P —{ Compute Node 1 }— ~ 1 Compute Node 2 |—

Keystone Service

Nova Service Glance Service Nova Service Nova Service
Neutron Server Neutron Agent(s) Neutron Agent Neutron Agent
br-int br-ex /] \ br-int /] \ br-int
S etho ethl eth2 — - eth0 ——Jetht — - eth0——fethl -~

Management Network

Data Network

External Network (Internet)

This setup has two compute nodes and one node for the controller and networking services.

237

Advanced Topics

Configuring Neutron for VPN as a service

A Virtual Private Network (VPN) connects two endpoints on different Networks over a public
Internet connection in such a way that the endpoints appear to be directly connected to each
other. VPNs also provide you with the confidentiality and integrity of the transmitted data.

VPN connectivity between two Networks can be implemented at different layers of an OSI
stack. A VPN that connects the endpoints at Layer 2 is called L2 VPN while a VPN that
connects the endpoints at Layer 3 (for example, an IP layer) is called L3 VPN.

Neutron provides a service plugin that enables OpenStack users to connect two Networks
using a VPN. The reference implementation of the VPN plugin in Neutron uses Openswan to
create an IPSEC based L3 VPN. IPSEC is a suite of protocols that provides a secure connection
between two endpoints by encrypting each IP packet transferred between them. An IPSEC
endpoint consists of the following two parts:

» A daemon to negotiate session keys between the peer endpoints

» A component that uses the session keys to encrypt/decrypt the packets
IPSEC uses the Internet Key Exchange (IKE) protocol in order to establish an authenticated

session key. IPSEC can use various techniques for the authentication; OpenStack VPNaaS
uses Pre-Shared Keys (PSK) as the authentication mechanism.

Getting ready

In this recipe, we will configure Neutron to use the reference VPNaa$S plugin. For this recipe,
you will need the following information:

» SSH-based login to the Controller and Network node

How to do it...

The following steps will show you how to install the VPN service plugin with Neutron:
1. With the appropriate credentials, SSH into the node where the Neutron server is
running. In our setup, it will be the Controller and Network node.

2. Install the packages required to provide VPN services using a package manager such
as yum Or apt:

openstack@controller:~$ sudo apt-get install python-neutron-vpnaas
neutron-vpn-agent openswan

3. Openthe neutron.conf configuration file using your desired editor. For example,
the command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/neutron.conf

238

Chapter 12

4. Inthe [DEFAULT] section of the file, configure vpnaas as the service plugin
for Neutron. If service plugins is already configured, add the VPN service
configuration to the list separated by a comma:

[DEFAULT]

service plugins = vpnaas

5. Openthe /etc/neutron/vpnaas_agent.ini configuration file and update the
device driver and interface driver settings:

interface driver =
neutron.agent.linux.interface.OVSInterfaceDriver

vpn device driver=neutron.services.vpn.device drivers.ipsec.
OpenSwanDriver

6. To configure the Horizon dashboard for VPNaaS, open the /usr/share/
openstack-dashboard/openstack dashboard/local/local settings.py
file and set the enable vpn option in the OPENSTACK NEUTRON NETWORK setting:

'enable vpn' = True
7. Restart neutron-server, neutron-vpn-agent, and apache2 or http server
for the changes to take effect:

service neutron-server restart

service neutron-vpn-agent restart

On a RedHat- or CentOS-based system, restart apache, as follows:

service httpd restart

On Ubuntu, the following command restarts apache:

service apache2 restart

Once the changes take effect, log in to Horizon and verify that the VPN support has been
enabled by navigating to Project | Network | VPN.

OpenStack Neutron provides VPN as a service. To enable this feature, the VPN plugin must
be installed and configured on the Controller and Network node. The configuration of Horizon
must also be updated in order to enable support for the VPN service.

239

Advanced Topics

Testing VPN as a service on Neutron

This recipe simulates a VPN connection between two data center sites connected over a
public Network. We will create a private Network connected to a Router to simulate a data
center. The VPN service provided by Neutron will be configured between two such Routers in
order to connect the two private Networks.

Getting ready

The following table describes the infrastructure required for testing the VPN service:

Router Private Network | Subnet CIDR VM Location
Chapterl2 Chapterl2 Chapterl2 | 10.10.10.0/24 | VM1 Sitel
Routerl Networkl SubNet1

Chapterl2 Chapterl2 Chapterl2 | 10.10.20.0/24 | VM2 | Site2
Router2 Network2 SubNet?2

In addition to this, we will use an external Network called public in order to simulate the
Internet. The VPN connection will be made over the Internet (the public Network in this recipe)
to connect the two Routers.

The external Network, public, uses a CIDR of 192.168.0.0/24.

The virtual Network components are connected in a topology described in the following figure:

%%

Sitel Site2

VPN EP1 VPN EP2

Networkl Network2

VM1 VM2

240

Chapter 12

Follow the Creating Network and Subnet using Horizon recipe in Chapter 1, Getting Started
with OpenStack Networking to create the Networks Chapter12 Networkl and Chapterl2
Network2 with Subnets and CIDR as described in the preceding table. Launch two VMs, VM1
and VM2, connected to Chapterl2 Networkl and Chapterl2 network2, respectively.

Follow the recipes in Chapter 6, Using Routing Services in Neutron to create the two Routers,
Chapterl2 Routerl and Chapterl2 Router2.The Networks, Chapterl2 Networkl
and Chapterl2 network2, are added to the Routers, Chapterl2 Routerl and
Chapterl2 Router2, respectively.

Next, set the gateway on both the Routers. Setting a gateway on the Routers will connect the
Routers to the public Network and assign an IP address to the Router interface connected to
the public Network. Once these steps have been completed, the Network Topology should
look as follows:

Network Topology

2 Small 22 Nomal

+Z/0°0Z°0T'0T

B rZ/00'B9TZ6T
FZ/O0T 0T 0T

Note the IP addresses assigned to VM1 and VM2 once they have booted.

241

Advanced Topics

The Router's public IP addresses are used to set up the VPN. The external IP of the Routers
must be noted. To find the external IP of the Router, navigate to Project | Network | Router
and click on the desired Router. The external IP of the Router can be found in the Router
Details tab:

Router Details

Cvernview Intedaces
Name Chapteri2_Routerl
D 1b883al02-0472-4ead-bbad-dod 77 asdc3cl
Project |D bfd02b5c1 B0i4 76506 2adbaldtic413
Status ACTIVE
Admin State up

External Gateway

Network Name public

Metwerk 1D 5507d585-chb44-45c5-a53¢-385069e2b5b1

External Fixed IPs Subnet ID 1c9a1620-6849-4fbb-bd92-bea531919809
[P Address 19276804 |

SMAT Enabled

The following table shows the IP addresses allocated to the Routers in our setup:

Router Public IP address
Chapterl2_ Routerl 192.168.0.4
Chapterl2 Router2 192.168.0.5

How to do it...

The following steps will show you how to create a VPN service in order to test the VPN
service plugin:

1. Log in to Horizon with the appropriate credentials.
2. Inthe left navigation menu, navigate to Project | Network | VPN.
3. Inthe IKE Policies tab, click Add IKE Policy.

242

Chapter 12

4. On the Add IKE Policy screen, add Name and Description for the policy:

Add IKE Policy

Add New IKE Policy *

Name *) :
Create IKE Paolicy for current project.

Chapteri2_IKE_Policy1 Assign a name and description for the IKE Policy.

Description

Chapter12 IKE Policy |

Authorization algorithm *

shal ¥
Encryption algorithm *

aes-128 b
IKE verslon *

vi -

Lifetime units for IKE keys *

seconds -

Lifetime value for IKE keys " @

3600 -

Perfect Forward Secrecy *

group5 *

IKE Phase1 negotiation mode *

main o

5. The Add IKE Policy screen also allows changing the IKE options such as Encryption,
Authorization, and so on. We will use the default settings.

243

Advanced Topics

6. Click Add to create the IKE policy:

Virtual Private Network

IKE Policies PSec Policies VPN Services PSec Site Connections
O Name Authorization algorithm Encryption algorithm
O Chapter12_IKE_Policy1 shal aes-128

Displaying 1 tem

7. Inthe IPSec Policies tab, click Add IPSec Policy.
8. Onthe Add IPSec Policy screen, provide Name and Description for the IPSEC policy:

Add IPSec Policy

Add New IPSec Policy *

Name *
Create IPSec Policy for current project.
Chapter12_IPSec_Policy1 Assign a name and description for the IPSec Policy.
Description
Chapter12 IPSec Policy1

Authorization algorithm *

shal v

Encapsulation mode *

tunnel 4 \

9. We will use the default settings for the rest of the options.

244

Chapter 12

10. Click Add to create the IPSEC policy:

Virtual Private Network

KE Policies IPSec Policies VPN Services PSec Site Connections
a Name Authorization algorithm Encryption algorithm
Chapteri2_IPSec_Policy1 shat aes-128

Displaying 1 item

11. Next, we will create the VPN service.
12. In the VPN Services tab, click +Add VPN Service.
13. On the VPN Service screen, provide Name and Description for the VPN service:

Add VPN Service

Add New VPN Service *

Name *))
Create VPN Service for current project.

Chapter12 VPN1 Specify a name, description, router, and subnet for the

VPN Service. Admin State is Up (checked) by default.
Description

Chapter12 VPN1

Router *

Chapter12_Router1 j
Subnet *

10.10.10.0/24 j

Admin State * @

up j

Cancel

14. In the Router drop-down menu, select the first Router, that is, Chapteri2_Routerl.

15. In the Subnet selection menu, choose the Subnet that has been added to the first
Router, that is, Chapter12 SubNet1l with a CIDR of 10.10.10.0/24.

245

Advanced Topics

16.

Click Add to create the VPN service:

Virtual Private Network

KE Policies

PSec Policies VPN Services PSec Site Connections

Name Description Subnet Router
Chapteri2 VPN Chapter12 VPN1 10.10.10.0/24 Chapter12_Router1
17. Repeat these steps to create another VPN service for the second Router with the

Subnet, Chapter12 SubNet2, with a CIDR of 10.10.20.0/24:

pter12_VPN2 Chapter12 VPN2 10.10.20.0/24 Chapter12_Router2

Chapter12_VPN1 Chapter12 VPN1 10.10.10.0v24 Chapter12_Router1

PSec Policies VPN Services PSec Site Connections

Description Subnet Router

18.
19.

20.

21.

22.

23.

246

In the IPSec Site Connections tab, click +Add IPSec Site Connection.

On the IPSec Site Connection screen, provide Name and Description for the
connection; we will use Chapter12 IPSec Connectionl and Chapterl2 IPSec
Connectionl, respectively.

Choose VPN Service associated with this connection from the drop-down menu;
we will choose Chapter12_VPN1.

Choose IKE Policy associated with this connection and IPSec Policy associated
with this connection as Chapter12_IKE_policyl and Chapter12_IPSec_Policyl.

In Peer Gateway public IPv4/IPv6 Address or FQDN and Peer Router Identity for
authentication (Peer ID), provide the external IP of the peer Router. For our example,
the external IP for the peer Router Chapterl2 Router2 is 192.168.0.5.

In Remote peer subnet(s), provide the target Subnet that this VPN will connect to; for
our example, we will use this VPN to connect to Chapter12 SubNet2, which hasa
CIDRof 10.10.20.0/24.

Chapter 12

24. Finally, we will need to provide Pre-Shared Key (PSK) string that will be used by the
connection; for this example, we will use Chapterl2 Secret:

Add IPSec Site Connection

Add New IPSec Site Connection * Optional Parameters *

Name *)))
Create IPSec Site Connection for current project.

Chapter12_IPSec_Connectiont Assign a name and description for the IPSec Site

Connection. All fields in this tab are required.
Description

Chapter12 IPSec Connection1

VPN Service associated with this connection *

Chapteri2_VPN1 j

IKE Policy associated with this connection *

Chapter12_IKE_Policy1 j

IPSec Policy associated with this connection *

Chapter12_IPSec_Policy1 j

Peer gateway public IPv4/IPv6 Address or FGDN * @

192.168.0.5

Peer router identity for authentication (Peer I1D) * @

192.168.0.5

Remote peer subnet(s) * @

10.10.20.0/24

Pre-Shared Key (PSK) string *

Chapter12_Secret

Cancel

247

Advanced Topics

25. Create another IPSEC site connection for the second Router. Choose Chapter12_VPN2
as the VPN service and Chapterl2_IKE_policyl and Chapter12_IPSec_Policyl for
the IKE and IPSEC policy, respectively. (As we will use the same cloud installation
to implement the VPN connections, we can share the policies between the two VPN
configurations.) Provide the external IP of Chapter12 Routerl for the peer Router's
external IP or FQDN and 10.10.10.0/24 (the CIDR of Chapter12 SubNetl)as the
remote peer Subnet(s):

KE Palicies PSec Policies VPN Services IPSec Site Connections

[Name VPN Service IKE Policy IPSec Policy
[0 Chaptert2_IPSec_Connection2 Chapter2_VPN2 Chapter12_IKE_Policy1 Chapter12_IPSec_Policy1
[J Chapteri2_IPSec_Connectiont Chapteri2_VPN1 Chapter12_IKE_Policy1 Chapter12_IPSec_Policy1

26. Test the VPN connections by executing a ping command to the instances across the
VPN connection. In this example, our VMs have an IP address of 10.10.10. 3 for
VM1and 10.10.20.3 for VM2:

login as 'cirros’ user. default password: 'cubswin:)'. use 'sudo’ for root.
chapterl2-vml login: cirros
Password:
$ ifconfig
etho Link encap:Ethernet HWaddr FA:16:3E:00:5C:66
inet addr:16.16.10,3 Bcast:16,10.10.255 Mask:255.255.255.0
inet6 addr: fe8e::f816:3eff:feb0:5c66/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1580 Metric:1
RX packets:91 errors:® dropped:® overruns:® frame:e
TX packets:123 errors:0 dropped:® overruns:® carrier:@
collisions:0 txqueuelen:18688
RX bytes:9381 (9.1 KiB) TX bytes:11992 (11.7 KiB)

lo Link encap:Local Loopback
inet addr:127.6.8.1 Mask:255.0.0.0
ineté addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:® overruns:® frame:®
TX packets:@ errors:0 dropped:0 overruns:0 carrier:@
collisions:0 txqueuelen:@
RX bytes:8 (6.6 B) TX bytes:0 (6.0 B)
$ ping 10.10.20.1
PING 10.10.208.1 (10.10.20.1): 56 data bytes
64 bytes from 10.10.20.1: seq=0 ttl=63 time=2.579 ms
64 bytes from 10.10.20.1: seq=1 ttl=63 time=1.839 ms

--- 10.10.20.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 1.039/1.809/2.579 ms

$ ping 10.10.20.3

PING 160.10.20.3 (10.10.20.3): 56 data bytes

64 bytes from 10.10.20.3: seq=0 ttl=62 time=4.529 ms
64 bytes from 10.10.20.3: seq=1 ttl=62 time=3.858 ms
64 bytes from 10.10.20.3: seqg=2 tt1=62 time=3.946 ms

248

Chapter 12

The VPN connections are now functional between the two Routers and the instances on the
two Networks can communicate with each other.

The private networks, Chapter12 Networkl and Chapterl2 network2, are connected
to their respective Routers. The Routers are assignhed a public IP address by executing a set
gateway operation. In our case, the Routers get a public IP from the CIDR 192.168.0.0/24
associated with the external Network, public.

In this recipe, we configured an IPSEC-based VPN and connected the private Networks,
Chapterl2 Networkl and Chapterl2 Network2. The Routers act as the VPN endpoints.
While creating VPN site connections, information about the peer Router and the remote Subnet
must be provided. The VPN service and site connection should be created for both the endpoints.

The VPN service configuration uses a secret key, PSK, that is shared by both the peers.

Using link aggregation on the compute node

Link aggregation or bonding is a way to combine multiple physical network links to a
logical link.

Link aggregation is used as a means to provide higher bandwidth and redundancy against
link failure. In this recipe, we will see how to configure link aggregation in order to connect the
virtual switch on an OpenStack node to the physical switch.

We will assume that the virtual switch used on the OpenStack node is Open vSwitch and
configure link aggregation with Link Aggregation Control Protocol (LACP):

SWITCH

Hypervisorl Hypervisor2

249

Advanced Topics

Getting ready

For this recipe, we will need the following information:

» SSH-based login for the Compute and Network node
» Details of the Network interface to use for link aggregation

How to do it...

The following steps will show you how to configure link aggregation on a Compute or a Network
node and update Neutron to use the bonded interface for the tenant data traffic:

1. With the appropriate credentials, SSH into the Compute node.

2. Add a bridge on the Open vSwitch using the ovs-vsctl add-br command:
ovs-vsctl add-br br-bond0

3. Next, we will create the bonded interface on this bridge with the ovs-vsctl add-
bond command:

ovs-vsctl add-bond br-bond0 bond0 ethl eth2

4. Then, enable LACP on the bonded interface:

ovs-vsctl set port bond0 lacp=active

5. Update the physical switch configuration to enable the LACP-based link aggregation
interface. Consult your switch documentation to get the exact configuration.

6. Openthe /etc/neutron/plugins/ml2/ml2 conf.ini configuration file using
your desired editor. For example, the command for the vi editor will be as follows:

openstack@controller:~$ sudo vi /etc/neutron/plugins/ml2/ml2 conf.
ini

7. Inthe [ovs] section, update bridge mappings in order to use the newly created
bridge for the tenant traffic:
[ovs]

bridge mappings = physnetl:br-bondo0

8. Restart the Open vSwitch L2 agent for the configuration change to take effect:

service neutron-plugin-openvswitch-agent restart

9. Repeat these steps on all the Compute and Network nodes that need to use link
aggregation.

Link aggregation provides both redundancy and a higher bandwidth by combining multiple
physical Network links in a logical link.

250

Chapter 12

Integrating networking in a Heat template

Nowadays, the installation of any nontrivial application spans more than one machine.
Different machines provide specialized functions such as database servers, web servers,
and many more. Heat is an OpenStack project that provides the users of OpenStack with the
ability to start a group of connected resources such as VMs, Networks, Routers, and so on in
order to create a complete infrastructure for deploying applications.

The tenant communicates with the orchestration system using the Heat client. A Heat
template describes the stack of infrastructure resources requested by the user. A template
consists of the following sections:

» Version: This provides a version of the template format

» Description: This describes the purpose of the template

» Parameters: This section describes the user-defined parameters that are used in the
template; it can describe the parameter type and validation logic for the parameters

» Resources: The resources section describes the resources that the template tries
to create

» Outputs: The output section describes the output to be printed after the orchestration
is complete

The client submits the orchestration request using the Heat API on behalf of the user. The Heat
engine parses, validates, and assigns user-specified values to the variables in the template. It
then creates the resources defined in the template using various OpenStack clients in order to
interact with individual services, as described in the following figure:

Keystone
Glance
NATIVE
API Cinder
Others...
Heat HEAT OpenStack OpenStack
Client ENGINE Clients APIs

CFN Others...
API Neutron
Nova

In this recipe, we will learn about the Heat template constructs to manage the Network resources.

251

Advanced Topics

Getting ready

The following steps will show you how to use Heat to create a simple stack consisting of a
newly created Network attached to a Router. To deploy this topology, we will need a Heat
template. We will use the following template for our example:

heat_template version: 2013-85-23

description: >

Heat template to create a new neutron network, a router and adding the network to the router.

parameters:
My_netl_name:
type: string
description: Name of the network to be created
My_netl_cidr:
type: string
description: Network address (CIDR notation)

resources:
Chapterl2_netl:
type: 0S::Neutron::Net
properties:
name: { get_param: My_netl_name }

Chapterl2_subnetl:
type: 0S::Neutron::Subnet
properties:
network_id: { get_resource: Chapter1l2_netl }
cidr: { get_param: My_netl_cidr }

Chapterl2_router:
type: 0S::Neutron::Router

Chapterl2_router_interface:
type: 0S::Neutron::RouterInterface
properties:
router_id: { get_resource: Chapterl2_router }
subnet_id: { get_resource: Chapterl2_subnetl }

outputs:

This file is available on GitHub at https://github.com/reachsrirams/packt-
openstack-networking-cookbook/blob/master/Chapterl2/Chapterl2 Stackl.
yaml. Clone this repository to your local machine. We will be using the Chapter12 Stackl.
yaml file for our recipe.

252

https://github.com/reachsrirams/packt-openstack-networking-cookbook/blob/master/Chapter12/Chapter12_Stack1.yaml
https://github.com/reachsrirams/packt-openstack-networking-cookbook/blob/master/Chapter12/Chapter12_Stack1.yaml
https://github.com/reachsrirams/packt-openstack-networking-cookbook/blob/master/Chapter12/Chapter12_Stack1.yaml

Chapter 12

How to do it...

The following steps will show you how to create a simple stack of infrastructure using a
Heat template:

1. Log in to Horizon with the appropriate credentials.
2. Inthe left navigation menu, navigate to Project | Orchestration | Stacks:

I3 openstack = admin ~
Project s S ta C kS
Compute
Netwark =

|| Stack Mame

Orchestration

Stacks Cisplaying 0 flems

Rasource Types

3. Click on +Launch Stack.

4. On the Select Template screen, select Template Source as File. Templates can
be provided as a direct input, as a URL or file. For this example, we will use a
File-based input:

Select Template

Template Source *

Fie J Description:
Use one of the available template source options to
Template File @ specify the template to be used in creating this stack.

|. Browse... _| Chapter1i2_Template1.yaml|

Environment Source

File J

Environment File @

Browse... | No file selected.

Cancel Next

253

Advanced Topics
5. Next, click on Browse to locate and upload the Heat template file,
Chapterl2 Stackl.yaml, that we created earlier.
Click Next.

The Launch Stack screen is created based on the parameters described in the
template file:

Launch Stack

Stack Name " @
Chapter12_Stacki DESCFipTiDI"I:

Create a new stack with the provided values.
Creation Timeout (minutes) * @

60

4

| Rollback On Failure @

Passweord for user "admin” * @

- -

My_neti_cidr * @

40.40.40.0/24

My_neti_name * @

| stack_net1|

8. Click Launch to start the orchestration process:

Stacks
[[] Stack Name Created
[] | Chapter12_Stacki 0 minutes

9. Click on Stack Name to see the details of the stack.
10. The Topology tab shows the OpenStack resources created by Heat.

254

Chapter 12

11. The Overview tab shows details such as Status of the stack, Stack Parameters,
Outputs, and so on:

Stack Details: Chapter12_Stacki

Topology Resources Events Template

Stack Overview

Information

Mame Chapteri2_Stacki

D Be00d77d-f689-4e51-bi62-356ea4a1ef58

Description Heat template to create a new neutron network, a router and adding the netwaork to the router.
Status

Created 0 minutes

Last Updated Never

Status Create_Complete: Stack CREATE completed successfully

Outputs

Stack Parameters

My_neti_cidr 40.40.40.0/24

OS:project_id 06d8970c26624c1688ea5d18af212aBe
0OS::stack_name Chapteri2_Stacki

OSstack_id B8e00d77d-f689-4e51-bi62-356eadalefs8
My_netl_name stack netl

Launch Parameters

Timeout 60 Minutes
Rellback Disabled

12. The Resources tab shows the resources used by the stack.

The Heat engine parses, validates, and assigns values to the attributes in the template. Once
the Heat template completes the validation process, the engine uses the OpenStack project
clients to create the resources described in it. For example, for the Network-related resources,
Heat uses the Neutron client in order to create the appropriate resources.

255

A

allotted VLAN
viewing, for Network 29, 30

API requests
processing, for Network 214-217
processing, for Port 219-221
processing, for Subnet 217-219

C

Ceilometer 2
Classless Inter-Domain Routing (CIDR) 143
CLI
used, for adding load balancer health
monitor 185, 186
used, for configuring security group
rules 145, 146
used, for creating load balancer pool 176
used, for creating security group 144, 145
used, for creating Virtual IP 189, 190
Compute node
link aggregation, using 249, 250
virtual interface, viewing for GRE
tunnels 94-97
virtual interface information, viewing 50-55
virtual interface information, viewing for
VXLAN tunnels 86-89
virtual interface information, viewing 36-41

D

DB-Access-Network 67, 68
DB-VM 67, 68
DHCP server
starting, on specific Network node 108-110
Distributed Virtual Routing (DVR) 120

Index

External Network
about 116
creating, Horizon used 63-66

F

Firewall
creating 161-163
Neutron, configuring 154, 155
policies, creating 159-161
rules, creating 156-158
rules, verifying on Network node 164-167
rules, viewing on Network node 164-167
Flat Network
about 48
creating, Horizon used 57-60
Neutron, configuring 56, 57
floating IP address
associating, to virtual machine 132-134
creating, Neutron CLI used 130-132
deleting, Neutron CLI used 130-132

G

Generic Routing Encapsulation (GRE) 92
GRE tunnels
virtual interface, viewing on Compute
node 94-97
GRE type driver
Neutron, configuring 92, 93

H

Heat template
networking, integrating 251-255

291

Horizon
used, for accessing virtual machine from
External Network 126-129
used, for adding load balancer health
monitor 182-184
used, for adding load balancer
member 177-182
used, for associating network to
instance 8-11
used, for configuring security group
rules 138-143
used, for creating External Network 63-66
used, for creating Flat Network 57-60
used, for creating load balancer pool 172-176
used, for creating Network 3-5
used, for creating Router 118, 119
used, for creating security group 136-138
used, for creating Shared Network 60-63
used, for creating Subnet 3-5
used, for creating Virtual IP 186-189
used, for increasing IP addresses 111-113
used, for viewing details of Network 5-7
host Network bandwidth
monitoring 207, 208

Internet
virtual machine instances,
accessing 124-126
Internet Key Exchange (IKE) 238
IP addresses
increasing in Network, Horizon dashboard
used 111-113

L

Layer 3 (L3) bandwidth
monitoring 201-203
link aggregation
about 249
using, on Compute node 249, 250
Link Aggregation Control Protocol
(LACP) 249
Linux bridge
virtual interface information, viewing on
Compute node 50-55

258

load balancer
about 170
connection statistics, monitoring 204, 205
internet accessibility 191, 192
health monitor, adding with CLI 185, 186
health monitor, adding with Horizon 182-184
testing 192-194
viewing, on Network mode 194-196
Load Balancer as a Service (LBaaS)
plugin 170
load balancer member
adding, CLl used 181, 182
adding, Horizon used 177-181
load balancer pool
creating, CLI used 176
creating, Horizon used 172-176
load balancer service plugin
configuring 170-172
installing 170-172

MAC address table

checking, on virtual switch 234, 235
ML2 mechanism driver

about 209, 210

creating 210, 211

registering, with Neutron server 212-214
Modular Layer 2 (ML2) 23
multiple IP addresses

configuring, for virtual interface 104-106

Network
allotted VLAN, viewing 29, 30
API requests, processing for 214-217
associating to instance, with Horizon 8-11
creating, Horizon used 3-5
creating, OpenStack CLI used 11-14
creating, with specific VLAN 31-35
creating, with specific VNI 84-86
details viewing, with Horizon 5-7
VLAN range, configuring 27, 28
Network node
DHCP server, starting 108-110
Firewall rules, verifying 164-166
Firewall rules, viewing 164-166

load balancer, viewing on 194-196
virtual interface information, viewing 41-46
virtual interface information, viewing for
VXLAN tunnels 89-92
Neutron
about 2
configuring, for Firewall service 154, 155
configuring, for Flat Network 56, 57
configuring, for GRE type driver 92, 93
configuring, for Linux bridge mechanism
driver 48-50
configuring, for Open vSwitch mechanism
driver 24-26
configuring, for Routing services 116, 117
configuring, for VLAN type driver 26, 27
configuring, for VPN as a service 238, 239
configuring, for VXLAN type driver 78-80
status, checking 232, 234
VPN as a service, testing 240-249
Neutron CLI
used, for associating floating IP
address 132-134
used, for creating floating IP
address 130-132
used, for creating Router 118, 119
used, for deleting floating IP
address 130-132
Neutron Network
VNI, viewing 82, 83

0

OpenStack
about 2,223
networking quota, configuring 20-22
setting up 2
OpenStack CLI
Port, associating to instance 17-20
Port, creating 16, 17
used, for creating Network 11-14
used, for creating Subnet 14, 15
OpenStack Network
redundant DHCP server, creating 107
Open vSwitch mechanism driver
Neutron, configuring 24-26

per project bandwidth
monitoring 206
per user bandwidth
monitoring 206
Port
API requests, processing for 219-222
associating, to instance with
OpenStack CLI 17-20
creating, with OpenStack CLI 16, 17
Pre-Shared Keys (PSK) 238

Q

quotas 20

redundant DHCP server per
OpenStack Network
creating 107
Remote Procedure Call (RPC) 80
Router
creating, Horizon dashboard used 118, 119
creating, Neutron CLI used 118, 119
instances, enabling on different
Networks 120-124
virtual machine instances, accessing
Internet 124-126

S

security group
creating, CLI used 144, 145
creating, Horizon used 136-138
rules configuring, CLI used 145, 146
rules configuring, Horizon used 138-143
rules, creating for web traffic 151-154
used, for securing traffic between

instances 146-150

Shared Network
creating, Horizon used 60-63

simple web application
instances, creating 73-76
OpenStack Networks, setting up 68-73
setting up 66-68

259

specific IP address

VM instance, creating with 100-103
specific VLAN

Network, creating with 31-35
specific VNI

used, for creating Network 84-86
Subnet

API requests, processing for 217-219

creating, Horizon used 3-5

creating, OpenStack CLI used 14, 15

Vv

Virtual eXtensible LAN (VXLAN) 78
virtual interface
multiple IP addresses, configuring 104-106
viewing, on Compute node for GRE
tunnels 94-97
virtual interface (VIF) information
viewing, on Compute node 36-41
viewing, on Compute node for Linux
bridge 50-55
viewing, on Compute node for VXLAN
tunnels 86-89
viewing, on Network node 41-46
viewing, on Network node for VXLAN
tunnels 89-92
Virtual IP
creating, CLI used 189, 190
creating, Horizon used 186-189
virtual machine
accessing from external Network, Horizon
used 126-129
bandwidth, monitoring 199, 200
floating IP address, associatingto 132-134

260

Virtual Network Identifier (VNI)

about 78-80
range configuring, for VXLAN Networks 81
viewing 81-83

Virtual Private Network (VPN) 238
virtual switch

MAC address table, checking 234, 235

Virtual Tunnel End Point (VTEP) 78
VLAN range

configuring, for networks 27, 28

VLAN type driver

Neutron, configuring 26, 27

VM, troubleshooting

access from external Network,
providing 231, 232
DHCP IP address, getting 224-227
external Network access, providing 229, 230
initial configuration, getting 227, 228

VPN as a service

Neutron, configuring 238, 239
testing, on Neutron 240-249

VXLAN tunnels

virtual interface information, viewing on
Compute node 86-89

virtual interface information, viewing on
Network node 89-92

VXLAN type driver

Neutron, configuring 78-80

w

Web-Access-Network 67, 68
Web-Internet-Network 67, 68
Web-VM 67, 68

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OpenStack Networking
	Introduction
	Creating a Subnet and Network using Horizon
	Viewing the details of a Network using Horizon
	Associating a Network to an instance
using Horizon
	Creating a Network using OpenStack CLI
	Creating a Subnet using OpenStack CLI
	Creating a Port without an associated instance using the OpenStack CLI
	Associating a Port to an instance using OpenStack CLI
	Configuring the networking quota in OpenStack

	Chapter 2: Using Open vSwitch for VLAN-Based Networks
	Introduction
	Configuring Neutron to use the Open vSwitch mechanism driver
	Configuring Neutron to use the VLAN type driver
	Configuring the VLAN range to be used for the networks
	Viewing the VLAN allotted for a Network
	Creating a Network with a specific VLAN
	Viewing the virtual interface information on the compute node
	Viewing the virtual interface information on the Network node

	Chapter 3: Exploring Other Network Types
in Neutron
	Introduction
	Configuring Neutron to use the Linux bridge mechanism driver
	Viewing the Virtual Interface information for Linux bridge on the compute node
	Configuring Neutron to use a Flat network type
	Creating a Flat Network using Horizon
	Creating a Shared Network using Horizon
	Creating an External Network using Horizon
	Setting up a simple web application – an introduction
	Setting up a simple web application – setting up OpenStack Networks
	Setting up a simple web application – creating instances

	Chapter 4: Exploring Overlay Networks with Neutron
	Introduction
	Configuring Neutron to use a VXLAN type driver
	Configuring a VNI Range for VXLAN Networks
	Viewing a VNI assigned to a Neutron Network
	Creating a Network with a specific VNI
	Viewing the Virtual Interface information on the compute node for VXLAN tunnels
	Viewing the Virtual Interface information on the network node for VXLAN tunnels
	Configuring Neutron to use a GRE type driver
	Viewing a Virtual Interface on the compute node for GRE tunnels

	Chapter 5: Managing IP Addresses in Neutron
	Introduction
	Creating an instance with a specific IP address
	Configuring multiple IP addresses for a virtual interface
	Creating a redundant DHCP server per OpenStack Network
	Starting the DHCP server on a specific network node
	Increasing the number of IP addresses in a Network using the Horizon dashboard

	Chapter 6: Using Routing Services in Neutron
	Introduction
	Configuring Neutron for Routing services
	Creating a Router using the Horizon dashboard and Neutron CLI
	Enabling instances on different Networks to communicate
	Allowing the Virtual Machine instances to access the Internet
	Providing access to a Virtual Machine
from an external Network or the Internet
	using Horizon
	Creating and deleting a floating IP address using the Neutron CLI
	Associating a floating IP address to a virtual machine using the Neutron CLI

	Chapter 7: Using Neutron Security and Firewall Services
	Introduction
	Creating a security group using Horizon
	Configuring the security group rules using Horizon
	Creating a security group using CLI
	Configuring the security group rules
using CLI
	Securing the traffic between instances on the same Network
	Creating the security group rules to allow web traffic
	Configuring Neutron for the Firewall service
	Creating the Firewall rules
	Creating the Firewall policies
	Creating a Firewall
	Viewing and verifying the Firewall rules on the Network node

	Chapter 8: Using HAProxy
for Load Balancing
	Introduction
	Installing and configuring the Neutron load balancer service plugin
	Creating a load balancer pool using Horizon
	Creating a load balancer pool using CLI
	Adding a load balancer member using Horizon
	Adding a load balancer member using CLI
	Adding a load balancer health monitor using Horizon
	Adding a load balancer health monitor
using CLI
	Creating a Virtual IP using Horizon
	Creating a Virtual IP using CLI
	Making the load balancer accessible to the Internet
	Testing the load balancer
	Viewing the load balancer on the network node

	Chapter 9: Monitoring OpenStack Networks
	Introduction
	Monitoring the Virtual Machine bandwidth
	Monitoring the L3 bandwidth
	Monitoring the load balancer connection statistics
	Monitoring the per project and per user bandwidth
	Monitoring the host Network bandwidth

	Chapter 10: Writing Your Own Neutron ML2 Mechanism Driver
	Introduction
	Creating a basic ML2 mechanism driver
	Registering your ML2 mechanism driver with the Neutron server
	Processing API requests for a Network
	Processing API requests for a Subnet
	Processing API requests for a Port

	Chapter 11: Troubleshooting Tips for Neutron
	Introduction
	Troubleshooting a VM that does not get a DHCP IP address
	Troubleshooting a VM that does not get an initial configuration
	Troubleshooting a VM that does not get external Network access
	Troubleshooting a VM not reachable from external Networks
	Checking the status of the Neutron service
	Checking the MAC address table on
a virtual switch

	Chapter 12: Advanced Topics
	Introduction
	Configuring Neutron for VPN as a service
	Testing VPN as a service on Neutron
	Using link aggregation on the compute node
	Integrating networking in a Heat template

	Index

