1=

(=
v
R R T
PR [R " "R 1)) e
: o o || e L - AT ey
.-‘-- i .:i_‘ E- = 7 ::;. l f;l‘ :‘I-E_ & .| -,;
‘ AP FiH i W 1 i i
| . A - -t 8 4
. -,-H-w e gl 11 B
A Bl e it o
pigiioine B
ke 116 n!‘_ it ain

i :-.-::w:_'
- '--.==.n’-zﬁ
it -'_a !7-!--,-

é bha,m Hli vl Mil ’

| ! ‘l l ’ |H
' ! ‘ | hH“ w “'
‘ li ' *

OpenStack Networking
Essentials

Build and manage networks in OpenStack using Neutron

PACKT

http://www.allitebooks.org

OpenStack Networking
Essentials

Build and manage networks in OpenStack
using Neutron

James Denton

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[FM-1]

[vww allitebooks.cond

http://www.allitebooks.org

OpenStack Networking Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016
Production reference: 1130416

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-327-7

www . packtpub. com

[FM-2]

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
James Denton

Reviewer
Cody Bunch

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Rreshma Raman

Content Development Editor
Mehvash Fatima

Technical Editor
Vishal Mewada

Copy Editor
Madhusudan Uchil

[FM-3]

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

James Denton has more than 15 years of experience in system administration and
networking and has been deploying, operating, and maintaining OpenStack clouds
since late 2012. He is a Principal Architect at Rackspace, and prior to joining the
Rackspace Private Cloud team, he spent 5 years as an enterprise network security
engineer. James has a bachelor's degree in business management, with a focus on
computer information systems, from Texas State University in San Marcos, Texas. In
his spare time, James enjoys spending time with his wife and son and camping in the
Texas hill country.

[FM-4]

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

e On demand and accessible via a web browser

[FM-5]

[vww allitebooks.cond

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface

Chapter 1: OpenStack Networking Components — an Overview

Features of OpenStack Networking
Switching
Routing
Advanced networking features
Load balancing
Firewalling
Virtual private networks
The OpenStack architecture
A reference architecture
Implementing the network
Plugins and drivers
Neutron agents
The DHCP agent
The metadata agent
The network plugin agent

Summary
Chapter 2: Installing OpenStack Using RDO

O ONNNOOOOBRDWWWWNN ==L

-—
-_—

System requirements
The initial network configuration
Example networks
Interface configuration
Connect to the host
Initial steps
Permissions
Install network utilities
Set the hostname
Install Network Time Protocol (NTP)

G G I QL (R (I L S G N
N~NNOOO PR WN=-

[i]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Disable NetworkManager 17
Upgrade the system 18
Install RDO using Packstack 18
Download RDO 18
Configure the answer file 18
Install RDO 20
Verify connectivity to OpenStack 21
Verify connectivity to the dashboard 22
Additional installation tasks 23
Create a security group rule 23
Create a demo project and user 24
Configure the keystone_demo file 25
Upload an image to Glance 25
Summary 26
Chapter 3: Neutron API Basics 27
Networks 29
Network attributes 30
Provider attributes 31
Additional attributes 32
Subnets 32
Ports 34
The Neutron workflow 37
Booting an instance 37
How the logical model is implemented 37
Deleting an instance 39
Summary 39
Chapter 4: Interfacing with Neutron 41
Using the Horizon dashboard 42
Managing resources within a project 42
Creating networks within a project 42
Viewing the network topology 46
Managing resources as an administrator 47
Using the Neutron client 50
Creating and listing networks 51
Creating a network 52
Creating a subnet 53
Summary 54
Chapter 5: Switching 55
The basics of switching in OpenStack 55
Using Linux bridges 56
Using Open vSwitch 56

Lii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Network types 57
Local networks 58
Flat networks 59
VLAN networks 61
VXLAN networks 63
GRE networks 65
A look at our environment 66
Getting a closer look 66
Summary 70
Chapter 6: Routing 71
The basics of routing in Neutron 7
Network namespaces 71
Connectivity through a router 72
Outbound connectivity 74
Inbound connectivity 74
Types of routers 76
Standalone routers 76
Highly available routers 77
Distributed virtual routers 77
Managing routers in the dashboard 78
Creating routers within a project 78
Viewing the network topology 79
Managing routers as an administrator 82
Managing routers with the Neutron client 83
Creating and listing routers 83
Creating a router 83
Adding an interface 84
Listing router interfaces 85
Examining the routers 86
Summary 87
Chapter 7: Building Networks and Routers 89
Using provider networks 89
Creating a provider network 91
Booting an instance 92
Accessing the instance 94
Using a Neutron router 98
External provider networks 100
Attaching the router to an external provider network 101
Booting an instance 103

[iii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Testing connectivity 105
Observing SNAT behavior 109
Assigning a floating IP 110
Testing connectivity via floating IP 113
Multiple routers 114
Advanced networking 115
Summary 116
Chapter 8: Security Group Fundamentals 117
Security groups in OpenStack 118
Using security groups 119
The default security group 121
Managing security groups 122
Using CIDR to control traffic 123
Applying security groups to instances and ports 124
Working with security groups in the dashboard 125
Caveats 128
Port security 129
Allowed address pairs 129
Disabling port security 130
Summary 132
Appendix: Configuring VirtualBox 133
Configuring VirtualBox networking 133
Configuring host-only networks 134
Creating a virtual machine 137
Configuring a virtual machine 141
Installing the CentOS operating system 144
Attaching the ISO to the virtual machine 145
Starting the virtual machine 147
Configuring virtual machine networking 149
Accessing the virtual machine 149
Configuring network interfaces 150
Accessing a virtual machine over SSH 151
Index 153

[iv]

Preface

OpenStack is an open source cloud operating system designed to control pools of
compute, storage, and networking resources. This powerful system fosters rapid
innovation while decreasing operational and capital costs. OpenStack has exploded
in popularity in recent years, thanks to its features, flexibility, and overall maturity.

In this book, we will explore the networking component of OpenStack, known as
Neutron. Neutron provides an API for users to build virtual network resources

such as switches, routers, load balancers, and firewalls. We will walk through the
installation of OpenStack using RDO and will look at the core components of the
API, made up of networks, subnets, and ports. By the end of the book, you will have
harnessed the power of OpenStack and Neutron to create and access virtual network
resources of your own.

What this book covers

Chapter 1, OpenStack Networking Components — an Overview, provides an introduction
to OpenStack Networking features, components, and the basic physical architectures
required to support an OpenStack cloud.

Chapter 2, Installing OpenStack Using RDO, provides instructions for installing the
Liberty release of OpenStack using RDO on the CentOS 7.1 operating system.

Chapter 3, Neutron API Basics, looks at the core components of the Neutron AP,
made up of networks, subnets, and ports, and how they're used to construct
virtual networks.

Chapter 4, Interfacing with Neutron, explores the use of the Horizon dashboard and the
Neutron command-line client to interface with the Neutron APIL

Chapter 5, Switching, looks at how Neutron constructs and implements the virtual
network infrastructure to enable the flow of traffic across the cloud.

[v]

Preface

Chapter 6, Routing, discusses how Neutron implements virtual routers that provide
routing between Neutron networks and the outside world using source network
address translation and floating IPs.

Chapter 7, Building Networks and Routers, covers basic virtual network architectures
and showcases the traffic flow from client workstations to virtual machine instances
via fixed and floating IPs.

Chapter 8, Security Group Fundamentals, examines the use of Neutron security groups
to secure instance traffic at the virtual switch port and walks you through creating
and managing security groups and associated rules.

Appendix, Configuring VirtualBox, is meant to assist with the setup of a virtual
environment using VirtualBox so that many of the examples throughout the
book can be followed.

What you need for this book

For this book, the following is required:

* Operating system:
¢ CentOS Linux 7.1

e Software:

° VirtualBox 5.0 or higher
° RDO (Liberty release)

This book assumes a beginner-to-moderate level of networking experience and
experience with Linux operating systems. While this book will walk you through a
basic installation of OpenStack using RDO, little time will be spent on services other
than Neutron as well as any configuration of OpenStack outside of what's available
via the APL It will be helpful for you have a basic understanding of OpenStack and
its components prior to reading this book.

Internet connectivity is required to install OpenStack packages. An all-in-one
OpenStack deployment will be performed on a single virtual machine within
VirtualBox. CentOS must be installed prior to installing RDO. Alternative

virtualization platforms such as VMware, or physical hardware, are optional.

[vi]

Preface

Major OpenStack releases occur every 6 months, and after the N or O release, Liberty
repositories may no longer be available. In the event that the OpenStack installation
procedure documented in this book no longer functions properly, refer to the
installation guide at http://docs.openstack.org/ or https://www.rdoproject.
org/ for instructions on installing the latest version of OpenStack.

Who this book is for

The book is for those who are new to OpenStack and Neutron and want to learn
OpenStack networking fundamentals. It introduces the reader to OpenStack
networking and related concepts and technologies. Some prior networking and
systems administration experience is recommended. A virtual or physical server
is recommended to follow along with the concepts demonstrated in the book.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"In a reference implementation, a Neutron DHCP agent runs on one or more
infrastructure nodes and spawns a dnsmasgq process for each network where
DHCP is enabled."

A block of code is set as follows:

[generall

Generic config options
CONFIG_UNSUPPORTED=n
CONFIG DEBUG MODE=n
CONFIG PROVISION DEMO=n

Any command-line input or output is written as follows:

$ sudo ifdown enp0s3; sudo ifdown enp0s9;

$ sudo ifup enp0s3; sudo ifup enp0s9;

[vii]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In
addition, controller nodes run the database and messaging servers and are often
the point of management of the cloud via the Horizon dashboard."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

[viii]

Preface

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NS G »N e

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WIinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https: //www.packtpub.
com/sites/default/files/downloads/OpenStackNetworkingEssentials
ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[ix]

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[x]

OpenStack Networking
Components — an Overview

OpenStack Networking, otherwise known as Neutron, is an API-driven system for
managing virtual and physical network resources in an OpenStack cloud. The job of
Neutron is simple: it is meant to provide Networking as a Service (Naa$S) to cloud
environments. Users can leverage the Neutron API to build network architectures in
the cloud that define the availability of their applications. Neutron strips away from
the user much of the complexity of building rich network architectures in the cloud.
In this book, you will learn about some of the basic networking features offered by
Neutron, and you will build a small environment that will expose you to various
methods of interacting with the Neutron API to build simple network configurations.

Features of OpenStack Networking

Many cloud environments rely on virtual compute technologies made available by
hypervisors such as Kernel-based Virtual Machine (KVM), Xen, and Hyper-V,
among many others. Neutron's core purpose is to connect virtual machine instances
to a virtual network spanning the cloud and connect the virtual network to the
physical network infrastructure. The containerization of applications made possible
by Linux Containers (LXC), Docker, and other container technologies means that
Neutron should also be responsible for providing network connectivity and features
to containers in the future.

[11]

OpenStack Networking Component — an Overview

Neutron relies on the use of its pluggable and extensible architecture to construct
and configure virtual and physical network resources. Many physical devices, such
as switches, routers, firewalls, and load balancers, are implemented in software in
reference implementations. A reference implementation is one that relies on the use
of plugins, drivers, and agents made available for free by the Neutron community.
A common reference plugin is the Modular Layer 2 (ML2) plugin, which is used

to define a logical networking framework that agents can use to construct the
virtual network. Common reference agents include the Open vSwitch (OVS) and
Linux bridge agents, which are used to construct their respective virtual switching
infrastructures based on networks that users have defined with the Neutron APL

Switching

In a reference implementation, Neutron relies on virtual bridges and switches to
connect virtual instances, containers, and other network resources to the network.
Neutron includes support for standard Linux bridges and virtual switches created
with OVS. OVS is an open source virtual switch that supports dozens of technologies
and protocols, including NetFlow, Switch port Analyzer (SPAN), Remote SPAN
(RSPAN), Link Aggregation Control Protocol (LACP), and 802.1q VLAN tagging.
However, much of its extended functionality and features are not exposed to users
through the OpenStack APIL. Neutron also supports the use of overlay networking
technologies such as Generic Routing Encapsulation (GRE) and Virtual Extensible
LAN (VXLAN), among others, to connect virtual bridges and switches across

nodes to one another over a common network. More information on how Neutron
leverages virtual switching technologies can be found in Chapter 5, Switching.

Routing

Neutron provides routing and network address translation capabilities that allow
instances and other virtual network devices to access networks other than their

own. When a user creates a virtual network, that network is isolated from all other
networks. Users can create virtual routers and attach one or more virtual networks to
a router. Once attached, devices in the network are capable of communicating with
other attached networks and, in some cases, remote networks such as the Internet.
Neutron also provides inbound connectivity through the use of floating IPs. A
floating IP is a I-to-1 relationship between the instance on the virtual network and

an IP address on a real network. More information on various routing features of
Neutron can be found in Chapter 6, Routing.

[2]

Chapter 1

Advanced networking features

Neutron includes support for networking technologies such as load balancers,
firewalls, and virtual private networks, and has software-based reference
implementations for each of these technologies, using software such as HAProxy,
iptables, StrongSwan, and OpenSwan. The Neutron API can be used to construct
logical models that are then implemented by various plugins and agents across the
cloud. The networking features discussed in this subsection will not be covered in
detail in this book, but they are important features of Neutron networking.

Load balancing

Load Balancing as a Service (LBaaS) provides users with the ability to create and
manage load balancers that balance traffic across multiple virtual machine instances.
Users can create monitors, set connection limits, apply persistence profiles to traffic
traversing a load balancer, and more. The reference plugin uses HAProxy as the
software load balancer, but plugins exist that allow Neutron to interface with
physical load balancers from vendors such as Citrix, F5, Radware, and others.

Firewalling

Firewall as a Service (FWaaS) provides users the ability to create and manage
tirewalls that filter traffic to and from virtual machine instances and other network
devices. The reference plugin implements virtual firewalls inside existing Neutron
routers using iptables, and third-party plugins exist that allow Neutron to interface
with physical firewalls.

Virtual private networks

Virtual Private Network as a Service (VPNaaS) provides users with the ability
to create site-to-site Internet Protocol Security (IPSec) tunnels between Neutron
routers and other VPN gateways. The reference plugin implements IPSec
connections inside existing Neutron routers using software such as StrongSwan
or OpenSwan, and third-party plugins exist that allow Neutron to interface with
physical VPN gateway devices.

[31]

OpenStack Networking Component — an Overview

The OpenStack architecture

Most OpenStack clouds are made up of physical infrastructure nodes that fit into one
of the following four categories:

Controller nodes: These usually run the application programming interface
(API) services for all of the OpenStack components, including Glance, Nova,
Keystone, and Neutron. In addition, controller nodes run the database and
messaging servers and are often the point of management of the cloud via
the Horizon dashboard. Most OpenStack API services can be installed on
multiple controller nodes and can be load balanced to scale the OpenStack
control plane.

Network nodes: These usually run DHCP and metadata services and can
host virtual routers when the Neutron L3 agent is installed. In smaller
environments, it is not uncommon to see controller and network node
services collapsed onto the same server or set of servers. As the cloud grows
in size, most network services can be broken out among other servers or
installed on their own server for optimal performance.

Compute nodes: These usually run a hypervisor, such as KVM, Hyper-V, or
Xen, or container software, such as LXC or Docker. In some cases, a compute
node may also host virtual routers, especially when Distributed Virtual
Routing (DVR) is configured. In proof-of-concept or test environments, it

is not uncommon to see controller, network, and compute node services
collapsed onto the same machine. This is especially common when using
DevStack, a software package designed for developing and testing OpenStack
code. All-in-one installations are not recommended for production use.

Storage nodes: These are usually limited to running software related to
storage, such as Cinder, Ceph, or Swift. Storage nodes do not usually host
any type of Neutron Networking service or agent and will not be discussed
in this book.

When Neutron services are broken out among many hosts, the layout of services
will often resemble the following diagram, though it can vary from environment
to environment:

[4]

Chapter 1

dashboard

database service

messaging service

nova-api

neutron-i3-agent

nova-scheduler

neutron-lbaas-agent

identity service

neutron-plugin-agent

neutron-plugin-agent

neutron-server

neutron-dhcp-agent

image service

Controller Node

neutron-metadata-agent

Network Node

Tratfic

Management

nova-compute

Compute Node(s)

Overlay Provider
Metwork

Networks
(VXLAN/GRE) (FIatVLAN)

In this book, we will build a test environment on a single node that demonstrates

basic OpenStack network functionality. This distribution of services will look

like this:

neutron-l3-agent

Ib: nt
g

neutron-server

image service

neutron-plugin-agent

neutron-dhcp-agent

neutron-metadata-agent

Collapsed Controller/Network/Compute Node

APl & Provider

[51]

OpenStack Networking Component — an Overview

In both of the preceding diagrams, Neutron-related services have been
" highlighted in bold.

A reference architecture

In a reference implementation of Neutron, the following components can be found
installed and running across the cloud infrastructure:

* One or more Neutron API servers

* A core network plug-in and driver

* One or more DHCP agents

* One or more metadata agents

* One or more network plugin agents
The Neutron API is a powerful tool responsible for taking in user-defined network
topologies and passing them to network plugins for implementation. Users can

interface with the Neutron API using command-line utilities, Python libraries, or
directly via HTTP.

Implementing the network

Neutron supports plugins, drivers, and agents that extend network functionality
and implement networks and features defined by users. In this section, we will
cover these concepts.

Plugins and drivers

There are two major plugin types within the Neutron architecture:

* Core plugins: They are responsible for adapting the logical network
described by the API into something that can be implemented by the L2
agent and IP Address Management (IPAM) system running on the host.
The ML2 plugin is used in reference implementations.

* Service plugins: They provide additional network services, such
as routing, load balancing, and firewalling, and are all available in
reference implementations.

[6]

Chapter 1

The ML2 plugin relies on different types of drivers to determine the types of
networks to implement and the mechanisms used to implement them. Type drivers
describe different types of network supported by Neutron, including flat, VLAN,
VXLAN, GRE and local. Mechanism drivers are used to implement the described
networks in software or on physical hardware.

Third-party vendors have implemented support for their respective network
technologies by developing their own plugins that implement the Neutron API and
extend network services. Vendors including Cisco, Arista, Brocade, Radware, F5,
and VMware have created plugins that allow Neutron to interface with OpenFlow
controllers, load balancers, switches, and other physical and virtual network
hardware. While third-party drivers are outside the scope of this book, we will
cover some of the common type and mechanism drivers in Chapter 5, Switching.

Neutron agents

The Neutron server is the centralized controller of the network and is responsible
for providing an API to users and storing information about the network in the
database. However, the actual commands to implement the network are executed on
the compute and network nodes by agents that run on those nodes. Neutron agents
receive messages and instructions from the Neutron server on the message bus and
execute the changes accordingly.

The DHCP agent

The Dynamic Host Configuration Protocol (DHCP) is a protocol used for
dynamically distributing network configuration parameters, such as IP addresses
and routes, to network interfaces. Many cloud instances require the use of DHCP
to acquire their IP address and other network information. Neutron is capable of
providing DHCP services to all networks created in the cloud, and it uses a DHCP
agent to manage those services. In a reference implementation, a Neutron DHCP
agent runs on one or more infrastructure nodes and spawns a dnsmasq process for
each network where DHCP is enabled.

The metadata agent

OpenStack provides metadata services, which enable users to retrieve information
about their instances that can then be used to configure or manage the running
instance. Metadata includes information such as the hostname, fixed and floating IPs,
and public SSH keys. In addition to metadata, users can access user data and scripts
that are provided during the launching of an instance and are executed during the
boot process.

[71

OpenStack Networking Component — an Overview

The Neutron metadata agent proxies requests from instances to the Nova metadata
API, and it is accessible to instances via http://169.254.169.254/metadata.

The network plugin agent

The Neutron plugin agents are services that run on compute and network nodes
and are responsible for configuring and implementing the virtual network on the
local node. Plugin agents listen for messages from the Neutron server and construct
the local network based on information in those messages. An example of how the
agents work together with the Neutron server to build the virtual network can be
observed in the following diagram:

Controller Node
Compute Node

1
H

| | E Data (Guest) Network
=L

Management Network |

o dnsmasq
DHCP Server

Network Node

[l

Chapter 1

In the preceding diagram, the following actions take place among various Neutron
components:

1. Neutron receives a request to connect virtual machine instances to a new
network. The API server invokes the ML2 plugin to process the request.

2. The ML2 plugin passes the request to the OVS mechanism driver, which
creates a message using information available in the request. The message
is cast to the respective OVS agent for processing over the management
network.

3. The OVS agent receives the message and configures the local virtual switch.

Meanwhile, the DHCP agent also receives messages related to this request
and configures the DHCP server on the network node. Once this is done, the
virtual machine instances will interface with the DHCP server and receive
their IP address over the data network.

Summary

Neutron is one of the more complicated OpenStack components to configure and
maintain, and the list of features in this chapter is by no means comprehensive.
The payoff of Neutron's complexity is that users are able to programmatically
build elaborate and consistent network topologies. Neutron provides reference
implementations using open source components for all of the features it supports,
and its extensible framework allows third parties to build plugins and drivers that
can interface with other virtual and physical network devices in order to bring
additional features and functionality to the cloud. To successfully deploy Neutron
and harness all it has to offer, it is important to have a strong understanding of
core networking concepts. In this book, we will cover some fundamental network
concepts of Neutron and build a foundation for deploying instances.

In the next chapter, we will use the RDO OpenStack distribution and its included
installer to configure an all-in-one deployment that will enable us to explore virtual
switching and routing concepts in further detail.

[o]

Installing OpenStack
Using RDO

In the previous chapter, we looked at the various components that make up

Neutron and looked at the networking technologies that Neutron supports. Now,

we will install OpenStack in a virtual machine and take a closer look at creating and
managing network resources. In this chapter, we'll walk through a deployment of
OpenStack called RPM Distribution of OpenStack (RDO) using Packstack. RDO

is an OpenStack distribution packaged by the open source community for users
running Linux distributions based on Red Hat, such as Fedora, CentOS, and Red Hat
Enterprise Linux. RDO is a great alternative to a DevStack deployment, especially for
demonstration purposes.

System requirements

OpenStack components are intended to run on standard hardware that ranges
from desktop machines to enterprise-grade servers. For optimal performance, the
processors of the compute nodes should support virtualization extensions, such as
Intel's VT-x or AMD's AMD-v technologies. When using virtualization software
such as VirtualBox, it may not be possible to extend certain virtualization features
to the virtual machines running inside the OpenStack cloud, which could result in
degraded performance. For demonstration purposes, however, deploying in a
virtual machine can offer a similar experience to deploying on hardware, but

in a simplified manner.

OpenStack currently supports numerous Linux distributions, including CentOS,
Fedora, Red Hat Enterprise Linux, openSUSE, SUSE Linux Enterprise Server, and
Ubuntu. This book assumes that the CentOS 7.1 Server operating system has been
installed prior to the installation of OpenStack using RDO. You can download
CentOS Server from https://www.centos.org/ or from the mirrors listed on
the page at https://www.centos.org/download/mirrors/.

[11]

Installing OpenStack Using RDO

;A minimal ISO is all that is needed to build a fully functioning
environment. At the time of writing this, the latest downloadable ISO
isnamed Cent0S-7-x86 64-Minimal-1511.iso.

In order to support all of the Neutron features discussed in this book, a minimum
kernel version of 3.10.0-229.20.1.e17.x86_64 is recommended.

This book assumes OpenStack will be installed on a single virtual machine that meets
the following minimum requirements:

Server Virtual machine requirements | Software requirements

Single virtual machine | Processor: 64-bit x86 Operating System: CentOS 7
Memory: 4 GB RAM
Disk space: 12 GB

Network: Three virtual 1 GBps
network interface cards (NICs)

The initial network configuration

To understand how networking within the all-in-one virtual machine node hosting
OpenStack will work, refer to the following diagram:

Client Workstation (Managed by VirtualBox)

Management Network Data (Guest)
(Host-Only) (Host-Only)

Open vSwitch
Virtual Switch

Default
- u n y
DHCP
Server Virtual
Router

All-In-One Node (Virtual Machine)

[12]

Chapter 2

In the preceding diagram, three virtual interfaces are cabled to the All-In-One
Node. The etho interface will serve as the management interface for OpenStack
services and API access while eth1 will be used for interfacing with virtual machine
instances over Neutron networks, including using floating IPs. The eth2 interface
will serve as the gateway interface for Internet access from the All-In-One Node and
will not be utilized by OpenStack itself. By configuring host-only networks within
VirtualBox and associating them with the All-In-One Node, you will be able to
interface with the OpenStack API, dashboard, and certain Neutron networks from
your workstation.

For instructions on how to configure VirtualBox to support the aforementioned
networking configuration, refer to Appendix, Configuring VirtualBox.

Example networks

Throughout the book, there will be examples of configuring and using various
OpenStack services. The following table provides the networks used for
those services:

Network CIDR
Management 10.254.254.0/24
External/floating IP pool 10.50.0.0/24

The following tables provide IP addresses and interface configurations for the
OpenStack host:

Interface | IP address Virtual network type Network name
etho 10.254.254.100 Host-only vboxnet0
ethl None Host-only vboxnetl
eth2 DHCP NAT NA

[13]

vww allitebooks.conl

http://www.allitebooks.org

Installing OpenStack Using RDO

Interface configuration

CentOS uses a configuration file for each individual network interface. These

files can be found in the /etc/sysconfig/network-scripts directory. Interface
names may vary between systems, depending on the operating system version, the
underlying hardware, and the type of network interface used. Within my VirtualBox

instance, the following interface mappings can be observed:

Interface Logical Actual

Management etho enp0s3
Data ethl enp0s8
Gateway eth2 enp0s9

If your interface names differ from what is listed here, make a note of the differences

and configure them according to the following layout:

Interface

Actual

Management

First interface

Data

Second interface

Gateway

Third interface

Using a text editor, update the network interface files on your host as follows:

* Management interface (ifcfg-enp0s3):

TYPE=Ethernet
BOOTPROTO=none
DEFROUTE=no

IPV4_ FAILURE_ FATAL=no

IPV6INIT=no
NAME=enpO0s3
DEVICE=enp0s3
ONBOOT=yes

IPADDR=10.254.254.100

PREFIX=24

[14]

Chapter 2

* Gateway interface (ifcfg-enp0s9):

TYPE=Ethernet
BOOTPROTO=dhcp
DEFROUTE=yes

IPV4_ _FAILURE FATAL=no
IPV6INIT=no
NAME=enp0s9
DEVICE=enp0s9
ONBOOT=yes

You can download the example code files for this book from your account
athttp://www.packtpub. com. If you purchased this book elsewhere,
you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

You can download the code files by following these steps:

* Login or register to our website using your e-mail address and
password.

* Hover the mouse pointer on the SUPPORT tab at the top.
¢ (lick on Code Downloads & Errata.
*Q ¢ Enter the name of the book in the Search box.

* Select the book for which you're looking to download the code
files.

* Choose from the drop-down menu where you purchased this
book from.

¢ (lick on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

* WinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The enposs interface will be connected to a network bridge and used for VM traffic
and will be configured automatically during the installation of OpenStack. Packstack
should automatically configure the interface and connect it to the bridge, which
means you do not need to configure the file beforehand.

[15]

Installing OpenStack Using RDO

To activate the changes, cycle the interfaces using the following ifdown and ifup
commands from the virtual machine console:

$ sudo ifdown enp0s3; sudo ifdown enp0s9;

$ sudo ifup enp0s3; sudo ifup enp0s9;

Connect to the host

From your workstation, connect to the host using the management address
configured on the etho (enp0s3) interface, as shown in the following screenshot:

workstation:~ james.denton$ ssh jdentongl@.254.254.108

The authenticity of host '1@.254.254.100 (19.254.254.108)' can't be established.
ECDSA key fTingerprint is SHA256: 1nbPTRKG]SZvCbpN+WT /0iyWs2r55Tn5AvAIGRO1Y 0E.

Are you sure you want to continue connecting {(yes/nol? yes

Warning: Permanently added '10.254.254.1088' (ECDSA) to the list of known hosts.
jdenton@l®. 254.254.180"'s password:

Last login: Mon Dec 7 18:38:11 2815 from 19.254.254.1

[jdenton@allinone ~]%

The host will utilize the DHCP interface as its default gateway interface, allowing

it to access the Internet using the NAT established by VirtualBox. The management
interface will be used to interact with the host using SSH as well as the OpenStack
API and the Horizon dashboard. Once connected, proceed with installing OpenStack
using the procedure outlined in the following sections.

Initial steps

Before we can install OpenStack, some work must be done to prepare the system for
a successful installation.

Permissions

RPM Distribution of OpenStack, or RDO, should be installed as a user with sudo
permissions. For tips on configuring sudoers, visit the following URL:

https://wiki.centos.org/TipsAndTricks/BecomingRoot

[16]

Chapter 2

Install network utilities

Various utilities are used throughout this book to assist you in the installation
and troubleshooting of OpenStack. The following command installs the necessary
packages for those:

$ sudo yum install wget curl tcpdump

Set the hostname

Before installing OpenStack, use the hostnamectl command to set the hostname of
the host:

$ sudo hostnamectl set-hostname allinone.learningneutron.com

Install Network Time Protocol (NTP)

A time-synchronization program such as NTP is a requirement in multinode
installations, as OpenStack services depend on consistent and synchronized times
between hosts. For Nova Compute, having synchronized time helps avoid problems
when scheduling VM launches on compute nodes. Other services can experience
similar issues when the time is not synchronized. In an All-In-One installation such
as the one demonstrated here, NTP is recommended but not required.

To install NTP, issue the following command on all nodes in the environment:

$ sudo yum install ntp

Disable NetworkManager

Before installing RDO, disable NetworkManager to avoid issues during the
installation and operation of OpenStack. To stop and disable NetworkManager,
issue the following commands:

$ sudo systemctl stop NetworkManager.service

$ sudo systemctl disable NetworkManager.service

[17]

Installing OpenStack Using RDO

Upgrade the system

Before installing OpenStack, it is imperative that the kernel and other system
packages be upgraded to the latest version of the installed CentOS release. Issue the
following yum command, followed by a reboot via the reboot command to allow the
changes to take place:

$ sudo yum upgrade

$ sudo reboot

Install RDO using Packstack

Packstack is a utility that installs OpenStack using Puppet, a module-based
configuration management tool. Packstack currently supports Fedora, CentOS,
Red Hat Enterprise Linux, and other Linux distributions derived from Red Hat.

Download RDO

To download RDO and other related software, issue the following commands on the
All-In-One node:

$ sudo yum update
$ sudo yum install http://rdo.fedorapeople.org/rdo-release.rpm

Download and install Packstack with the following command:

$ sudo yum install openstack-packstack

Configure the answer file

Packstack relies on an answer file composed of key-value pairs that describe how
various OpenStack and environment settings should be configured. The Packstack
command has a parameter that can be passed to generate an initial answer file that
can then be modified to suit your needs. You can also pass a file containing a subset
of key-value pairs that can then be used during the installation process along with
other defaults that Packstack specifies.

In your home directory, create a file named answers. cfg containing the following
[general] header and subsequent key-value pairs as follows:

[generall

Generic config options
CONFIG_UNSUPPORTED=n

[18]

Chapter 2

CONFIG_DEBUG_MODE=n
CONFIG_PROVISTON DEMO=n

Default password to be used everywhere
CONFIG DEFAULT PASSWORD=openstack

#Install the following services
CONFIG MARIADB INSTALL=y
CONFIG GLANCE INSTALL=y
CONFIG_NOVA INSTALL=y
CONFIG_NEUTRON_ INSTALL=y
CONFIG_HORIZON_ INSTALL=y
CONFIG CLIENT INSTALL=y

Configure networking

EXCLUDE_SERVERS=

CONFIG_NTP_ SERVERS=

CONFIG_CONTROLLER HOST=10.254.254.100
CONFIG_COMPUTE HOSTS=10.254.254.100
CONFIG_NETWORK HOSTS=10.254.254.100
CONFIG_MARIADB HOST=10.254.254.100
CONFIG_AMQP HOST=10.254.254.100
CONFIG_STORAGE HOST=10.254.254.100
CONFIG_SAHARA HOST=10.254.254.100
CONFIG_KEYSTONE_LDAP_URL:ldap://10.254.254.100
CONFIG_MONGODB_ HOST=10.254.254.100
CONFIG _REDIS MASTER HOST=10.254.254.100

Configure Neutron

CONFIG NEUTRON L3 EXT BRIDGE=provider

CONFIG _NEUTRON ML2 MECHANISM DRIVERS=openvswitch
CONFIG NEUTRON ML2 VLAN RANGES=

CONFIG NEUTRON L2 AGENT=openvswitch
CONFIG_NEUTRON ML2 FLAT NETWORKS=*

CONFIG NEUTRON_ OVS BRIDGE MAPPINGS=physnetl:br-ex
CONFIG NEUTRON OVS BRIDGE IFACES=br-ex:enp0s8

#Do not install the following services
CONFIG_CINDER INSTALL=n
CONFIG_MANILA INSTALL=n
CONFIG_SWIFT INSTALL=n
CONFIG_CEILOMETER INSTALL=n
CONFIG_HEAT INSTALL=n
CONFIG_SAHARA INSTALL=n
CONFIG_TROVE INSTALL=n
CONFIG_IRONIC INSTALL=n
CONFIG_NAGIOS INSTALL=n
CONFIG_VMWARE BACKEND=n

[19]

Installing OpenStack Using RDO

If your interface names differ from those listed in the earlier table, replace
enp0s8 in the CONFIG_NEUTRON_OVS_BRIDGE_IFACES configuration

setting with the name of your second interface. The br-ex bridge and
connected interface will be used for Neutron traffic.

Install RDO

Use the following Packstack command to install RDO using the specified answer file:

$ sudo packstack --answer-file=answers.cfg

When you run packstack command and pass an answer file, connectivity to the
hosts specified in the answer file is verified using SSH, and multiple installation
and configuration tasks are executed, as shown in the following screenshot:

Welcome to the Packstack setup utility
The installation log file is available at: fvar/tep/packstack/20168223-230709-NWzM(g/openstack-sq

Installing:

Clean Up [DONE]
Discovering ip protecol version [DONE |
Setting up ssh keys [DONE |
Preparing servers [DONE |
Pre installing Puppet and discovering hests' details [DONE]
Adding pre install manifest entries [DoNE]
Setting up CACERT [DONE |
Adding AMOP manifest entries [Dowe |
Adding MariaDB manifest entries [

DONE]
Fixing Keystone LDAP config parsmeters to be undef if emptyl DOME |

Adding Keystone manifest entries [DONE |
AMdding Glance Keystone manifest entries [DowE |
Adding Glance manifest entries [DONE]
Adding Mova API manifest entries [DONE |
Adding Kova Keystone manifest entries [DONE]
Adding Nova Cert manifest entries [DoNE |
Adding Mova Conductor manifest entries [DONE]
Creating ssh keys for Nova migration [DONE |
Gathering ssh host keys for Nova migration [DONE |
Adding Mova Compute manifest entries [pone |
Adding Mova Scheduler manifest entries [DONE |

Adding Mova WNC Proxy manifest entries [DoneE]
Adding OpenStack Network-related Nova manifest entries| DONE |

Adding Kova Common manifest entries DONE |
Adding Meutron VPNaaS Agent manifest entries [DONE |
Adding Meutron FWaas Agent manifest entries [DONE |
#dding Meutron LBaaS Agent manifest entries [pone |
Adding Meutron API manifest entries [DONE |
Adding Meutron Keystone manifest entries [DONE]
Adding Neutron L3 manifest entries [DONE |
Adding Keutron L2 Agent manifest entries [DONE]
Adding Meutron DHCP Agent manifest entries [DONE |
Adding Meutron Metering Agent manifest entries [DONE |
Adding Meutron Metadata Agent manifest entries [pone |
Mding Meutron SR-I0V Switeh Agent manifest entries [DONE]
Checking if NetwarkManager is enabled and running [DONE |
Adding OpenStack Client manifest entries [DoNE |
Adding Worizon manifest entries [DONE]
Adding post install manifest entries [DONE]
Copying Puppet modules and manifests [DONE |

Applying 10.254.254.188_prescript.pp

18,254,254, 100_prescript.pp: [DONE |
fpplying 19,254, 254.108_anqp.pp

fAgplying 10.254.254.188_nariadb.pp

19,254, 254, 100_amgp. pp: [boNE |
18,254,254, 100_pariadb. pp: [DONE |
Applying 18,254,254, 188_keystone. op

Applying 10.254.254.188_glance.pp

18,254,254, 100_keystone. pp: [DONE |
10,254, 254, 100_glance. pp: [DonNE |
Applying 10.254.254,188_apl_nova.pp

18.254. 254, 108_api_nova. pp: [DONE |
fpplying 10.254.254.188_nova.po

10,254,254, 180_nava.pp: [DONE |
Applying 10.254.254.188_neutron.po

18,254,254, 180_neut ron. pp: [DONE |

Applying 10.254.254. 188 _osclient.pp
Agplying 10.254.254.188_horizon.pp

18,254,254, 1008_osclient . pp: [DoNE |
18.254. 254, 180_harizon. pp: [DoNE]
Applying 10.254.254.189_postscript.pp

18,254,254, 100_pastscript.pp: [DONE |
Applying Puppet manifests [DONE |
Finalizing [DONE |

[20]

Chapter 2

The installation should take anywhere from 10 to 20 minutes
W\l to complete and is dependent on the resources provided by the
~ host workstation, a working Internet connection, and a working
repository. If you have any issues during the installation, including
messages indicating errors downloading packages or issues with
the mirrors, try rerunning the installation.

If all tasks are completed successfully, a success message like this will be provided
along with details on how to connect to the environment:

sk Installation completed successfully sckokoks
Additional information:

% Time synchronization installation was skipped. Please note that unsynchronized time on server
instances might be problem for some OpenStack components.

* File /root/keystonerc_admin has been created on OpenStack client host 1@.254.254.108. To use
the command line tools you need to source the file.

* To access the OpenStack Dashboard browse to http://10.254.254.180/dashboard .
Please, find your login credentials stored in the keystonerc_admin in your home directory.

* The installation log file is available at: /var/tmp/packstack/20160223-238709-NWzMCg/openstack-setup.log
* The generated manifests are available at: fvar/tmp/packstack/20160223-238709-NWzMCg/manifests

Verify connectivity to OpenStack

As part of the installation, a file named keystonerc_admin is generated in the
root user's home directory. The file provides environment variables containing
administrative credentials and URLs for interfacing with the API Log in or sudo
as the root user to view the file:

[jdenton@allinone ~]1$ sudo su

[root@allinone jdenton]#

[root@allinone jdentonl# cat ~/keystonerc_admin
unset OS_SERVICE TOKEN

export OS USERNAME=admin

export OS PASSWORD=openstack

export OS AUTH URL=http://10.254.254.100:5000/v2.0
export PSl='[\u@\h \W(keystone admin)]\$ '

export OS_TENANT NAME=admin

export OS_REGION NAME=RegionOne

[21]

Installing OpenStack Using RDO

Use the source command to load the environment variables from the file. To test
authentication, issue the following commands:

[root@allinone jdenton]l# source ~/keystonerc admin
[root@allinone jdenton(keystone admin)]# openstack user list

For the admin user, keystone should return the user list as requested:

[root@allinone jdenton]# source ~/keystonerc_admin
[root@allinone jdenton(keystone_admin)]l# openstack user list
P + 4

| ID | Mame |
. " +

| 1lcdbe314491948aba@f2283889426573 | nova |

| 3edaf83768e54dc5853dba186Bccadct | admin |

| 7f4aT67b@70847d08ealT132dcee3f8d | neutron

| b43bl76c7deR4e7eBdIb6d91c@Bed59D | glance |
. N +

Verify connectivity to the dashboard

From your workstation, open the following URL in a web browser:
http://10.254.254.100/dashboard/

The following screenshot demonstrates a successful connection to the dashboard.
The username and password can be found in the keystonerc_admin file; the
password was specified in the answers . c£g file in the Configure the answer file section
earlier in this chapter. In this installation, the User Name is admin and the Password
is openstack:

openstack

Log In

User Name

Password

[22]

Chapter 2

When you have successfully logged in as the admin user, the dashboard landing
page defaults to System Overview. From here, Usage statistics about the
environment are provided in a graphical format:

0 openstack

Project

Adrmin

Systam

R admin »
Overview
Usage Summary

Select a period of time to query its usage:

m T 80 8houkd b n FPYY.r<00 format

Active Instances: 0 Active RAM: 0 Bytes This Period's VCPU-Hours: 0 This Period's GB-Hours: 0 This Period"s RAM-Hours: 0

From: 20151201 Tor| 20151207

Usage

Project Name VCPUs Disk RAM Disk GB Hours @
Mo fems to display.

Displaying 0 keens

& admin =

& Downioad CSY Sumimary

Memary M8 Hours &

Network resources can be managed via the Project and Admin sections of the

dashboard and will be discussed in further detail later in this book.

Additional installation tasks

Packstack does a lot of the heavy lifting, but before we can call the installation
complete, there are some additional tasks that must be done to assist with the
examples and exercises found in later chapters.

Create a security group rule

Before we can connect to the instances that will be created in later chapters,
a security group rule must be added to allow that access. Chapter 8, Security
Group Fundamentals, goes into some detail about security group usage and rule
construction, but for now, we'll simply add a rule to the default security group
to allow our connections to work.

[23]

Installing OpenStack Using RDO

Using the neutron security-group-rule-create command, create a security
group rule in the default group that allows connections over the SSH protocol
(TCP port 22), as shown in the following screenshot:

[root@allinone ~(keystone_admin)]# neutron security-group-rule-create default %\
> ——protocol tcp --port-range-min 22 --port-range-max 22

Created a new security_group_rule:

| Field | value |
direction ingress
ethertype IPv4
id 1dfcf2da-f4cb-4d92-88cc-d2932827b69b
port_range_max 22
port_range_min 22
protocol tep

remote_group_id
remote_ip_prefix
security_group_id
tenant_id

454fcbbB-b655-49d7-a793-9de5fd4bda37
496e391ab2eedd92afb2461811a36013

Create a demo project and user

Throughout the book, we will look at different behaviors between users with the
admin role and users without it. Create a new project and user named demo using
the following steps:

1. While authenticated as the c1loud administrator, create a project named demo
using the openstack client:

[root@allinone ~(keystone_admin)]# openstack project create —-description "Demo Project" demo

| Field | Value |

description | Demo Project

| |
enabled	True
id	al5albccb55d40dfbaf@499c2caebfch
name	demo

2. Next, create a user of the same name with the password openstack:

[root@allinone ~(keystone_admin)]# openstack user create demo —-password openstack
Field	Value
email	None
enabled	True
id	f3aa8c94b4cf4a89a0b302228e459¢c3
name	demo
username	demo

[24]

Chapter 2

3. Finally, associate the demo user with the built-in _member_ role:

[root@allinone ~(keystone_admin)]# openstack role add —-project demo —-user demo _member_

| Field | Value |

| id | 9fe2ff9eed384b1894a90878d3e92bab
| name member_ |

Configure the keystone_demo file

The keystonerc_admin file created by Packstack and placed in the /root directory
provides a quick and easy way to authenticate yourself as the cloud administrator

in order to perform tasks using the OpenStack API. The demo user we just created
will be used throughout this book to demonstrate non-administrative tasks. The
following commands should be used to create a file similar to the keystonerc_admin
file. It will allow us to quickly authenticate as the demo user:

1. For consistency, log in or sudo as the root user and create a file named
keystone_demo in the home directory of the root user:

[root@allinone jdentonl# vi ~/keystonerc demo

2. Populate the file with the following content:
unset OS_SERVICE_TOKEN
export OS_USERNAME=demo
export OS_PASSWORD=openstack
export PS1='[\ue\h \W(keystone demo)]\$
export OS_AUTH_URL=http://10.254.254.100:5000/V2.0
export OS_TENANT NAME=demo
export OS_IDENTITY API VERSION=2.0

3. Save and close the file. We will utilize it later in this book.

Upload an image to Glance

Testing network connectivity through networks and routers created in later chapters
will require the use of virtual machine instances. CirrOS is a Linux distribution that
was designed for use as a test image on clouds such as OpenStack and is perfectly
suited for the task.

The latest CirrOS image can be found at the following URL:

http://download.cirros-cloud.net

[25]

Installing OpenStack Using RDO

At the time of writing this, the latest version is cirros 0.3.4. For consistency, log in
or sudo as the root user and download the file to a temporary directory:

wget http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86 64-disk.
img -P /var/tmp

Source the admin credentials and upload the image with the following commands:

source ~/keystone_admin

glance image-create --name "cirros-0.3.4-x86 64" \
--file /var/tmp/cirros-0.3.4-x86 64-disk.img \
--disk-format gcow2 --container-format bare \

--visibility public --progress

Using the Glance image-list or openstack image list commands, verify that
the image is available:

[root@allinone ~(keystone_admin)]# openstack image list

+ t +

| ID | Name |

| 755ab1fb-77b8-4434-93eb-062084b46bBa | cirros-0.3.4-x86_64 |

Take a note of the reported image ID, as it will be used later in this book.

Summary

Using Packstack, a full installation of OpenStack including Keystone, Glance,
Horizon, Nova, and Neutron services was successfully deployed in an All-In-One
Node. Now that you've verified access to the OpenStack dashboard, let's take a
look at how to interface with Neutron to create and manage network resources. In
the next chapter, we will explore the network management section of the Horizon
dashboard and interface with the Neutron API using the Neutron client.

[26]

Neutron API| Basics

Neutron is a virtual networking service that allows users to define network
connectivity and IP addressing for instances and other cloud resources using an
application programmable interface (API). The Neutron API is made up of core
elements that define basic network architectures and extensions that extend base
functionality. Neutron accomplishes this by virtue of its data model, which consists
of networks, subnets, and ports. These objects help define the characteristics of the
network in an easily storable format. These core elements are used to build a logical
network data model using information that corresponds to layer 1 through 3 of the

OSI model, shown here:
E Data Link ‘
E Physical ‘

For more information on the OSI model, check out the Wikipedia article
i athttps://en.wikipedia.org/wiki/OSI_ model.

[27]

Neutron API Basics

Neutron uses plugins and drivers to identify network features and construct the
virtual network infrastructure based on information stored in the database. A core
plugin, such as the ML2 plugin included with Neutron, implements the core Neutron
API and is responsible for adapting the logical network described by networks,
ports, and subnets into something that can be implemented by the L2 agent and IP
address management system running on the hosts. The extension API, provided by
service plugins, allows users to manage the following resources:

* Security groups

* Quotas

* Routers

* Firewalls

* Load balancers

* Virtual private networks

Neutron's extensibility means that new features can be implemented in the form of
extensions and plugins that extend the API without requiring major changes. This
allows vendors to introduce features and functionality that would otherwise not be
available with the base APL

The following diagram demonstrates at a high level how the Neutron API server
interacts with the various plugins and agents responsible for constructing the virtual
and physical network across the cloud:

ProviderNetwork PortBinding Router Quotas SecurityGroups

Resource and Attribute Extension API
Port] AgentScheduler LBaaS FWaaS VPNaaS

Core API
Network Subnet

[NautmnSamr[APl Ser\rer}]-d—b- Message Queue H
[Core Plugins] [Service Plugins] 4 T—-
]

Load Balancer
L3 Services

Vendor Plugins

(TypeDrivers [Mechanism Drivers |

Local
Flat
LAN
LAN
GRE

L2 Population
Open vSwitch
LinuxBridge

[28]

Chapter 3

The figure demonstrates the interaction between the Neutron API service, Neutron
plugins and drivers, and services such as the L2 and L3 agents. As network actions
are performed by users via the API, the Neutron server publishes messages to the
message queue that are consumed by agents. L2 agents build and maintain the
virtual network infrastructure, while L3 agents are responsible for building and
maintaining Neutron routers and associated functionality.

The Neutron API specifications can be found on the OpenStack wiki at https://
wiki.openstack.org/wiki/Neutron/APIv2-specification. In the next few
sections, we will look at some of the core elements of the API and the data models
used to represent those elements.

Networks

A network is the central object of the Neutron v2.0 API data model and describes
an isolated Layer 2 segment. In a traditional infrastructure, machines are connected
to switch ports that are often grouped together into Virtual Local Area Networks
(VLANSs) identified by unique IDs. Machines in the same network or VLAN can
communicate with one another but cannot communicate with other networks in
other VLANSs without the use of a router. The following diagram demonstrates
how networks are isolated from one another in a traditional infrastructure:

Network B
VLAN 200

Network A
VLAN 100

Network C
VLAN 300

e wee e

BREIEN

R——
——
[m=========3

R ——

[29]

Neutron API Basics

Neutron network objects have attributes that describe the network type and the
physical interface used for traffic. The attributes also describe the segmentation ID
used to identify traffic between other networks connected to virtual switches on the
underlying host. The following diagram shows how a Neutron network describes
various Layer 1 and Layer 2 attributes:

A network defines the segmentation ID for
the respective L2 technology (e.g. GRE,
VLAN, VXLAN, etc.)

A network defines the physical server interface/
bridge used for communication between hosts

Traffic between instances on different hosts requires underlying connectivity
between the hosts. This means that the hosts must reside on the same physical
switching infrastructure so that VLAN-tagged traffic can pass between them. Traffic
between hosts can also be encapsulated using L.2-in-L3 technologies such as GRE,
VLAN, or VXLAN. Neutron supports multiple Layer 2 methods of segmenting
traffic, including using 802.1q VLANs, VXLAN, GRE, and others, depending on
the plugin and configured drivers and agents. Devices in the same network are in
the same broadcast domain, even though they may reside on different hosts and
attach to different virtual switches. Neutron network attributes are very important
in defining how traffic between virtual machine instances should be forwarded
between hosts. More information on different Layer 2 segmentation methods and
how they work can be found in Chapter 5, Switching.

Network attributes

The following table describes base attributes associated with network objects;
more details can be found at the Neutron API specifications wiki referenced
earlier in this chapter:

Attribute Type Required Default Notes
id uuid-str | N/A Auto The UUID for the network
generated

name string no None The human-readable name of the
network

admin state_up boolean no True The administrative state of the
network

status string N/A null This indicates whether the network is
currently operational

subnets list no Empty list Subnets associated with the network

[30]

Chapter 3

Attribute Type Required Default Notes

shared boolean no False This specifies whether the network
can be accessed by any tenant

tenant_id uuid-str | no N/A The owner of the network

Networks are typically associated with tenants or projects and are usable by any user
that is a member of the same tenant or project. Networks can also be shared with

all other projects or a subset of projects using Neutron's Role Based Access Control
(RBAC) functionality.

Provider attributes

One of the earliest extensions to the Neutron API is known as the provider
extension. The provider network extension maps virtual networks to physical
networks by adding additional network attributes that describe the network type,
segmentation ID, and physical interface. The following table shows various provider
attributes and their associated values:

Neutron RBAC first became available in the Liberty release of OpenStack.
For more information on using the RBAC features, check out my blog at

% the following URL:
VS
https://developer.rackspace.com/blog/A-First-Look-at-

RBAC-in-the-Liberty-Release-of-Neutron/.

configuration

Attribute Type Required | Options Default Notes
provider:network type string yes vlan, flat, local, Based on the
configuration
vxlan, gre
provider:segmentation_ id int optional Depends on Based on the The
network type configuration segmentation
ID range varies
among L2
technologies
provider:physical_network | string optional Provider label Based on the This specifies

the physical
interface used
for traffic (flat
or vlan only)

[31]

Neutron API Basics

All networks have provider attributes. However, because provider attributes specify
particular network configuration settings and mappings, only users with the admin
role can specify them when creating networks. Users without the admin role can
still create networks, but the Neutron server, not the user, will determine the type

of network created and any corresponding interface or segmentation ID. Provider
attributes will be covered in more detail in Chapter 5, Switching, and Chapter 7,
Building Networks and Routers.

Additional attributes

The external-net extension adds an attribute to networks that is used to determine
whether or not the network can be used as the external, or gateway, network for a
Neutron router. When set to true, the network becomes eligible for use as a floating
IP pool when attached to routers.

Using the Neutron router-gateway-set command, routers can be attached to
external networks. The following table shows the external network attribute and its
associated values:

Attribute Type Required Default Notes

router:external Boolean no false When true, the network
is eligible for use as a
floating IP pool when
attached to a router

External networks will be covered in more detail in Chapter 6, Routing, and Chapter 7,
Building Networks and Routers.

Subnets

In the Neutron data model, a subnet is an IPv4 or IPv6 address block from which IP
addresses can be assigned to virtual machine instances and other network resources.
Each subnet must have a subnet mask represented by a Classless Inter-Domain
Routing (CIDR) and must be associated with a network, as seen here:

[32]

Chapter 3

s W ewono]
] 4 Subn 2.16.0.0/2 S ! 0.0.0.0/24
. v \ J . J

In the preceding diagram, three isolated VLAN networks each have a corresponding
subnet. Instances and other devices cannot be attached to networks without an
associated subnet. Instances connected to a network can communicate among one
another, but they are unable to connect to other networks or subnets without the

use of a router. More information on routers can be found in Chapter 6, Routing. The
following diagram shows how a Neutron subnet describes various Layer 3 attributes

in the OSI model:
A subnet defines the IPv4 or IPv6 CIDR
associated with the network
Data Link

LAYER 3

A
|

netwarks

Physical

When creating subnets, users can specify IP allocation pools that limit which
addresses in the subnet are available for allocation. Users can also define a custom
gateway address, a list of DNS servers, and individual host routes that can be
pushed to virtual machine instances using DHCP.

The following table describes attributes associated with subnet objects:

Attribute Type Required | Default Notes
id uuid- n/a Auto The UUID of the subnet

str generated
network_id uuid- Yes N/A The UUID of the associated

str network
name string no None The human-readable name of the

subnet
ip_version int Yes 4 IP version 4 or 6
[33]

vww .allitebooks.cond

http://www.allitebooks.org

Neutron API Basics

Attribute Type Required | Default Notes
cidr string Yes N/A The CIDR representing the IP
address range for the subnet
gateway ip string or | no First address The default gateway used by
null in CIDR devices in the subnet
dns_ list(str) no None The DNS name servers used by
nameservers hosts in the subnet.
allocation_ list(dict) | no Every address | Subranges of the CIDR available
pools in the CIDR for dynamic allocation.
(excluding the
gateway)
tenant_id uuid- no N/A The owner of the subnet
str
enable_dhcp Boolean | no True This indicates whether or not
DHCP is enabled for the subnet
host_routes list(dict) | no N/A Additional static routes

Ports

In the Neutron data model, a port represents a switch port on a logical switch that
spans the entire cloud and contains information about connected devices. Virtual
machine interfaces (VIFs) and other network objects such as router and DHCP
server interfaces are mapped to Neutron ports. The ports define both the MAC
address and the IP address to be assigned to the devices associated with them.
Each port must be associated with a Neutron network.

The following diagram shows how a port describes various Layer 2 attributes in the

OSI model:

A port provides the ethernet MAC address and IP
address used by the instance or network resource

[34]

Chapter 3

The following table describes attributes associated with port objects:

Attribute Type Required | Default Notes
id uuid- n/a Auto generated | The UUID of the subnet
str
network_id uuid- Yes N/A The UUID of the associated
str network
name string no None The human-readable name of the
subnet
admin_state_ | boolean | no True The administrative state of the
up port
status string N/A N/A The current status of the port
(for example, ACTIVE, BUILD, or
DOWN)
mac_address string no Auto generated | The MAC address of the port
fixed_ips list(dict) | no Auto allocated | IP address(es) associated with
the port
device_id string no None The instance ID or other resource
associated with the port
device_owner | string no None
tenant_id uuid- no ID of tenant The owner of the port
str adding resource

When Neutron is first installed, no ports exist in the database. As networks and
subnets are created, ports may be created for each of the DHCP servers reflected
by the logical switch model seen here:

Port

(DHCP)

Port

(DHCP)

Logical Switch

[35]

Neutron API Basics

As instances are created, a single port is created for each network interface attached

to the instance:

Port

(DHCP)

Port

(DHCP)

Port

VM 1)

Port

VM 2)

Logical Switch

A port can only be associated with a single network. Therefore, if an instance

is connected to multiple networks, it will be associated with multiple ports. As
instances and other cloud resources are created, the logical switch may scale to
hundreds or thousands of ports over time, as shown in the following diagram:

Port Port Fon Port Port Fon Pont Port For Pont Port
-w

Port Port Por Port Port Port Port Port Port Port Port
T

Port Part Port Port Port Port Port Port Paort Port Port
"

Port Port Pont Port Port Pont Port Port Port Pont Port
(L

_ Logical Switch

There is no limit to the number of ports that can be created in Neutron. However,
quotas exist that limit the number of ports that a tenant can create. As the number
of Neutron ports scale out, the performance of the Neutron API server and the
implementation of networking across the cloud may degrade over time. It's a good
idea to keep quotas in place to ensure a high-performing cloud, but the defaults and

subsequent quota increases should be kept reasonable.

[36]

Chapter 3

The Neutron workflow

In the standard Neutron workflow, networks must be created first, followed by
subnets and then ports. The following subsections describe the workflows involved
in booting and deleting instances.

Booting an instance

Before an instance can be created, it must be associated with a network that has a
corresponding subnet or a precreated port that is associated with a network. The
following process documents the steps involved in booting an instance and attaching
it to a network:

The user creates a network.

The user creates a subnet and associates it with the network.

The user boots a virtual machine instance and specifies the network.

Nova interfaces with Neutron to create a port on the network.

SUE

Neutron assigns a MAC address and IP address to the newly created port
using attributes defined by the subnet.

6. Nova builds the instance's 1ibvirt XML file, which contains local network
bridge and MAC address information, and starts the instance.

7. The instance sends a DHCP request during boot, at which point, the DHCP
server responds with the IP address corresponding to the MAC address of
the instance.

If multiple network interfaces are attached to an instance, each network interface
will be associated with a unique Neutron port and may send out DHCP requests
to retrieve their respective network information.

How the logical model is implemented

Neutron agents are services that run on network and compute nodes and are
responsible for taking information described by networks, subnets, and ports
and using it to implement the virtual and physical network infrastructure.

[37]

Neutron API Basics

In the Neutron database, the relationship between networks, subnets, and ports can
be seen in the following diagram:

Port
D OO XX XXX Network

Network YYYY-YYYY-YYYY > D YYYY-YYYY-YYYY

Host Compute01 Name Internal Subnet

Type Bridge Subnet 7777.7777-7777 > D 7777-77277-7777

MAC fa:16:3e:3d:91:4a Type VLAN Name Internal_Subnet
IP Addr 192.168.1.100 SeglD 100 CIDR 192.168.1.0/24

Physical eth1 Gateway 192.168.1.1
DHCP True
Network YYYY-YYYY-YYYY

The information is then implemented on the compute node by way of virtual
network interfaces, virtual switches or bridges, and IP addresses, as shown in
the following diagram:

VM eth1.100

eth0
fa:16:3e:3d:91:4a
I I

192.168.1.100/24
=.|-a =.|-!

Virtual Switch (Linux Bridge)

In the preceding example, the instance was connected to a network bridge on

a compute node that provides connectivity from the instance to the physical
network. Chapter 5, Switching, will go into further detail about the virtual switching
infrastructure that is managed by Neutron as a result of operations executed by
users. For now, it's only necessary to know how the data model is implemented

as something that is usable.

[38]

Chapter 3

Deleting an instance

The following process documents the steps involved in deleting an instance:

1. The user destroys the virtual machine instance.

2. Nova interfaces with Neutron to destroy the ports associated with
the instances.

Nova deletes local instance data.
The allocated IP and MAC addresses are returned to the pool.

When instances are deleted, Neutron removes all virtual network connections
from the respective compute node and removes the corresponding port information
from the database.

Summary

In this chapter, we looked at the basics of the Neutron API and its data model, made
up of networks, subnets, and ports. Those objects were used to describe in a logical
way how the virtual network is architected and implemented across the cloud.

Now that we've covered the fundamentals, let's take a look at the various ways

in which users can interface with Neutron. In the next chapter, we will explore

the use of the Neutron CLI client and Horizon dashboard to create and manage
Neutron resources.

[39]

Interfacing with Neutron

In the previous chapter, we discovered the core elements of networks, subnets, and
ports, which make up the Neutron API data model. In this chapter, we'll take a look
at the common ways in which users can interface with Neutron to build and manage
those virtual network resources.

Users can interface with Neutron to create and manage network resources in a
variety of ways, including:

* The Horizon dashboard

* The Neutron client

* The Nova client

* cURL

* Software Development Kits (SDKs)

Depending on the operation, not all methods provide the same capabilities and
access to various Neutron features. Many casual users prefer to interface with
OpenStack via the Horizon dashboard or command-line clients, while developers
may rely on SDKs related to their programming language of choice. Network
resources can be managed in the dashboard in a limited fashion, while the Neutron
client offers many features that are not yet, and may never be, available with
Horizon. For information on using SDKs to interface with OpenStack, take a look at
the official OpenStack SDK wiki at https://wiki.openstack.org/wiki/SDKs. In
this chapter, we'll look at two of the most common ways of interfacing with
Neutron and OpenStack in general: the Horizon dashboard and the Neutron
command-line client.

[41]

Interfacing with Neutron

Using the Horizon dashboard

Users of the Horizon dashboard can manage network resources within their own
projects. If a user has the admin role, he or she can also manage resources across
all projects.

Managing resources within a project

When managing network resources associated with one's own project, the Network
menu under the Project section should be used, as shown here:

83 openstack

Project

Compute

Network

Network Topology

Networks

Routers

Admin b

Identity

At a minimum, users should find that networks and subnets can be managed within
the Project section, and a Network Topology can be dynamically generated based on
the network resources managed within the project. Other resources, such as routers,
tirewalls, load balancers, and VPNs, can be managed within the same area when the
respective services are enabled.

Creating networks within a project

Use the following steps to create a network within a project:

1. To create a Network, navigate to the Networks section of the Horizon
dashboard under Project | Network and click on the Create Network
button in the upper right-hand corner of the screen, as shown here:

[42]

Chapter 4

B openstack admin - & admin~
[projc - | Networks
‘ Nabanik - l Name Subnets Assoclated Shared Status Admin State Actions

Network Topology No items to display.
‘ Networks ‘ Eepierying [Revrn
Routers
Admin
Identity

2. A multi-step network creation wizard, Create Network, will appear.
Start by naming the network in the Network Name field, as shown
in the following screenshot:

Create Network

Subnet Subnet Detalls

Matwork Name Create a new network. In addition, a subnet associated

MySimpleNetwork with the network can be created in the next panel.

Admin State @

upP v

Create Subnet

Cancel « Back

By default, the network will be marked as UP and will be available once it
has been created.

[43]

Interfacing with Neutron

3. With the Create Subnet button checked, click on the Next button to proceed.
Next, specify a subnet in the Network Address field in Classless Inter-
Domain Routing (CIDR) notation, as shown here:

Create Network

-m I;..::.I I r.l":“..

Subnet N S
ubnet Name Create a subnet associated with the network. Advanced

configuration is available by clicking on the "Subnet
Details® tab.

Network Address @

192.168.1.0/24

IP Version

IPvd

ar

Gateway IP @

The Subnet Name and Gateway IP are optional and do not need to

be specified. Neutron will automatically assign the first address in the
network as the Gateway IP, as long as the Disable Gateway button remains
unchecked. Click on the Next button to proceed.

4. Lastly, provide additional details for the subnet, including allocation
pools, DNS Name Servers, and Host Routes to be pushed to instances via
DHCP. The allocation pool is the range of addresses within the subnet that
is available to be allocated to instances. Neutron automatically reserves
the gateway address and the first and last addresses in the network as the
network and broadcast addresses, respectively. In this example, we will use
8.8.8.8 for the DNS Name Server.

[44]

Chapter 4

Create Network

@ Enab

Subnet Details

Specily additional attributes for the subnet.

Allocation Pools @

DNS Name Servers @

B8.8.8

Host Routes @

Gancel « Back Create

8.8.8.8and 8.8.4.4 are the IP addresses of public DNS servers
~>

provided by Google and are free to use.

5. Click on the Create button to complete the wizard and return to the
Networks screen, as shown in the following screenshot:

I openstack admin » & admin =
project - Networks

Compute > Q <+ Craate Network

Network Name Subnets Associated Shared Status Admin State Actions

Network Topology MySimpleNetwork 192.168.1.0/24 No Active UP Edit Network =
MNetworks Displaying 1 itam
Routers

Admin

Identity

[45]

Interfacing with Neutron

Congratulations, you just created a software-defined network! Behind the

scenes, Neutron has chosen a Layer 2 networking technology, assigned a unique
segmentation ID, and created a DHCP server that is ready to hand out addresses
to instances placed in the network. Luckily for us, it did this without any manual
intervention on the part of the user or the administrator. In Chapter 5, Switching,
we'll take a closer look at the common Layer 2 networking technologies supported
by Neutron, the virtual switching infrastructure, and why this dynamic behavior is
useful. For now, relish your accomplishment!

Viewing the network topology

Now that we have created a network, let's view the resulting Network Topology.
From the Project | Network menu, choose Network Topology. The result is a single
network object, shown in the following screenshot:

D cpenstack = admin = & admin =

projoct Network Topology

Fasize the canvas by scrolling up/down with your meusa/trackpad on the topalogy. Pan around the canvas by clicking and dragging the space behind the tepology

B2 Toggle abets 25 Toggle Network Collapse & Launch instance + Croate Network + Croats Rauter

Admin

identity

MySimpleNetwark
ABOEISES-00 el 4200-bI5c- TedhaT 491368

@ ® ACTIVE
Subnats + Create Subnat

ecime-s0. TBE1BS10E4

Considering our limited use of the environment so far, the topology is pretty
simple and consists of a single network object. From the Network Topology screen,
additional networks and routers can be created, which will in turn increase the
complexity of the network and resulting diagram.

[46]

Chapter 4

For now, let's learn more about interfacing with Neutron and save more complex
network topologies for later chapters.

Generating a network topology is a unique feature of Horizon and is not
s available from the Neutron CLL

Managing resources as an administrator

Users with the admin role have additional capabilities and are exposed to an Admin
panel within the Horizon dashboard:

0 openstack
Project
Admin
System
Overview
Hypervisors
Host Aggregates
Instances
Flavors
Images
Networks
Routers
Defaults
Metadata Definitions
System Information
Identity

[47]

Interfacing with Neutron

Within the Admin panel, administrators can view and manage not only certain
Neutron resources such as Networks and Routers, but other OpenStack resources

such as host aggregates, instances, flavors, and images.

From the Networks window under Admin | System, administrators can view all the
networks in the cloud as well as create and delete selected networks, as shown here:

Identity

I3 openstack 1 admin ~ & admin -
profoct Networks
Admin
Q +Create Netwark

Systam

Project Network Name Subnets Associated DHGP Agents Shared Statlus Admin State Actions

O
admin 192.168.1.0/24 1 Ne Active ue Edit Natwork =
Hy
Displaying 1 item

Here, we can see the previously created network, MySimpleNetwork. Clicking on
the network name reveals details about the network not available to ordinary users,
including provider attributes, related ports, and associated agents:

[48]

Chapter 4

Network Details: MySimpleNetwork
Edit Network =
Network Overview
Name MySimplhetwork
™ 4B0B268E-02c4-42db-b25c-TebbaT 454368
Project 1D 138342 Badad4129T e S e85a3ac b5
Status Active
Admin State up
Shared o
External Network Ko
MTU Unknown
Provider Network Metwork Type: wxlan |
Prysical Networkc - —— Provider Attributes
Segmentation ID: 99 |
Subnets + Create Subnot
Name CIDR IP Vorsion Gatoway IP Actions.
380d] 162.168.1.0/24 Pvd 19216811 Eci Subnet | =
Disgirying 1 zem
Ports + Create Post
Name Fiwed IPs Attached Device Status Admin State Actions
192.168.1.2 ratwork:dhep Active up EdnPort | =
Disgirying 1 item
DHCP Agents + Add DHC Agant
Host Status Admin State Updated At Actions
allinana.Jearmingneutron, com Enabiec Up 0 minutes Datgte DHCP Agaett
Disgiaying 1 e

From the Network Details window, administrators can create additional subnets
and ports as well as associate the network with multiple DHCP agents, when
available, for DHCP service redundancy. Various resources can be deleted, but
only when other resources that depend on them have been deleted first. This means
that before a network or subnet is deleted, any instance attached to the network
must be detached or deleted first. In addition, any router attached to a subnet must
be detached before the subnet or network can be deleted. Certain ports cannot be
deleted manually, especially when associated with routers or DHCP servers. These
checks are in place to ensure data consistency, and they require users to follow
particular workflows when creating or deleting network objects.

While the Horizon dashboard allows users to manage high-level network resources
such as networks, subnets, and routers, it lacks some of the advanced functionality of
the Neutron client. In the next few sections, we will take a look at the Neutron client
in further detail.

[49]

Interfacing with Neutron

Using the Neutron client

Neutron provides a command-line client for interfacing with its API. It is typically
installed as part of the OpenStack distribution.

The Neutron client can also be installed on your local workstation,
provided you have a supported operating system. For more information
on installing the client locally, refer to the OpenStack documentation

at http://docs.openstack.org/user-guide/common/cli
install openstack command line clients.html.

When authenticated, Neutron commands can be run directly from the Linux command
line, or the Neutron shell can be invoked by issuing the neut ron command, like this:

[root@allinone ~(keystone admin)]# neutron

(neutron)

The neutron shell provides commands that can be used to create, read, update,
and delete the networking configuration within the OpenStack cloud. By typing » or
help within the Neutron shell, a list of commands available within the client can be
found, as shown here:

[root@allinone ~(keystone_admin}]# neutron

{neutron) 7

shell commands (type help <topic=):

edit hi

crdenvironment
ed help history

Undocumented commands:

EOF ecof exit q quit

list pause r
laad py run

save

u set

[Application commands (type help <topic=}:

address-scope-create
address-scope-delete
address-scope-list
address-scope-shaw
address-scope-update
agent-gelete

agent-list

agent-show

agent-update

bash-completion
cisco-credential-create
cisco-credential-delete
cisco-credential-list
cisco-credent ial-show
cisco-network-prafile-create
eisco-network-profile-delete
cisco-network-profile-1ist
eiseo-network-prafile-show

floatingip-associate
Tleatingip-create
floatingip-delete
floatingip-disassociate
floatingip-list
floatingip-show
gateway-device-create
gateway-device-delete
gateway-device-1ist
gateway-device-show
Gateway-device-update
help
ipsec-site-connection-create

shell
sharteuts

show

lancer

0 "
ibaas-healthmonitor-create

e tition-create
Auage-netpartition-delete

ibaas-healthmonitor-1ist
baas-healthmonitor-show
baas-healthmonitor-update
lbans-listener-create
lbaas-listener-delete
lbaas-listener-1ist
lbaas-listener-show
ibaas~listener-update
lbaas-loadbalancer-create
1bans-loadba lancer-delete

ipsec-sit

ge tition-list
AUBGE-netpart it ion-show
port-treate
port-delete

security-group-create
security-group-delete
security-group-list
security-group-rule-creste
security-group-rule-delete
security-group-rule-list

~list

port-list security-group-rule-show

port-show security-group-show

port-update security-group-update

gos-available-rul ¥P ser P

qos-bandwidth-limit-rule-create subnet-create
Limit-rule-del bret-del

gos-bandwidth-linit-rule-list

subnet-1ist

1 Ibass—1loadbal -list gos-bandwidth—Limit-rule-show subnet-—show
ipsec-site-connection-list bans-Loadbal -1 g q init-rule-up et-update
ipsec-site-connection-show \bans-loadbalancer-show qos-policy-create subnetpool-create

pd baas-1 1 ~update qos-policy-delete subnetpool-delete

ipsec-s

L3-agent-list-hosting-router
—add

k-prafile-up
cisco-policy-profile-list
cisco-policy-profile-show
cisco-policy-profile-update
[dhep-agent-List-hosting-net
dncp-agent-network-add
dhep-agent-netwerk-remove
ext-list
ext-show
firewall-create
firewall-delete
firewall-list
Tirewall-policy-create
firewall-policy-delete
tirewall-policy-insert=rule
firewall-policy-list
firewall-policy-remove-rule
firewall-palicy-show
firewall-policy-update
firewall-rule-create
firewall-rule-delete
tirewall-rule-list
firewall-rule-show
firewall-rule-update
firewsll-show
firewall-update

g
L3-agent-router-remove
Lb-agent-hosting-poal
Lb-healthmonitor-associste
Llb-healthmonitor—create
Lb=healthmonitor-delete
Ib-healthnoniter—disassociate
Lb-healthmonitor-list
Lb-healthmonitor-show
Lb-healthnanitor-update
Lb-menber-create
Lb-menber-delete
\b-meaber-1ist

Lb-menber—show
\b-menber-update
Ib-pool-create

Lb-pool-delete

lb-poal-list

Lb-poal-1

baas-mesber-create
Ibaas-menber-delete
ibass-menber-list
baas-menber—show
bans-menber-update
Ibass—pool-create
baas-pool-delete
lbans-poal-14
1baas-pool-show
Ibass-poal-update
meter-label-create
reter-label-delete
meter-label-list
meter-label-rule-create
meter-label-rule—delete
meter-label-rule-list
meter-label-rule-show
meter-Llabel-show
net-create

Lb-poal-show
Lb-pool-stats
Lb-pool-update
lb-vip-create
Lb=vip=delete
b-vip-list
Lb-vip-show
Lb=vip-update

net-external=1ist
net-gateway-connect
net-gateway-create
net-gateway-delete
net-gateway-disconnect
net-gatewsy-list
net-gateway-show
net-gateway-update
net-list
net-list-en-dncp-agent
net-show

net-update

gos-policy-list
qos—policy-show
qos=palicy-update
queve-treate
queue-delete
queve-list
queue-show
quota-delete
quota-list
quota-shew
quota-update
rbac-create
rbac-delete
rbac-1list

rbac-show
rbac-update
router-create
router-delete
router-gateway-clear
router-gateway-set
router-interface-add
router-interface-delete
router-1ist
router-list-on-13-agent
router-port-list
router-show
router-update

subnetpool-list
subnetpool-show
subnetpool-update
wpn-ikepolicy-create
vpn-ikepolicy-delete
wpn-ikepolicy-list
vpn=ikepoLicy=-show
vpn-ikepolicy-update
vpn-ipsecpolicy-create
vpr-ipsecpolicy-delete
vpn-ipsecpolicy-list
vpn-ipsecpolicy-show
wpn-ipsecpolicy-update
vpn-service-create
wpn-service-delete
vpn=service-1ist
vpR-serviee-show
vpn-service-update

[50]

Chapter 4

Running the neutron help command from the Linux command line provides a
brief description of each command's function. The returned list of commands does
not imply that the respective features are available, however. Some commands
require third-party plugins to be installed, such as the commands related to cisco
and nuage. Other commands, such as the 1oad balancer and VPN commands,
require their respective drivers and service plugins to be installed and configured.
Attempting to use commands related to features that have not been configured or
installed may result in an HTTP 404 error:

(neutron) 1lb-pool-list
404 Not Found

The resource could not be found

(neutron) vpn-ikepolicy-list
404 Not Found

The resource could not be found.

All users of the Neutron client have access to the same commands, but depending
on the user and their role, the Neutron API server may limit or restrict their use.
Examples of this would include the inability of users to specify provider attributes
when creating networks, specify other tenant IDs when creating objects, and more.

Creating and listing networks

Listing networks with the Neutron client is as easy as using the Neutron net-1list
command, as shown here:

[root@allinone ~(keystone_admin)]# neutron net-list

| id | name | subnets |

| 468b2688-02c4-42db-b25c~-7e9ba749d368 | MySimpleNetwork | @4cl2ff9-380d-4ade-aBaa-f31536406ad4 192.168.1.0/24 |

Running the net-1ist command as an administrator will return all networks
known to Neutron, while running the command as an ordinary user will only
return networks associated with the user's tenant or project. As an example, let's
authenticate as the demo user and run the same command to see what is returned:

[root@allinone ~(keystone_admin)]l# source keystonerc_demo
[root@allinone ~(keystone_demo)l# neutron net-list

[root@allinone ~(keystone_demo)]#

[51]

Interfacing with Neutron

As expected, no networks were returned. Networks, like other OpenStack resources,
are associated with a single tenant or project and can only be viewed or managed by
the respective users of those projects. In some cases, networks can be shared with one
or more projects, but that functionality won't be discussed here. What's important to
know is that in most cases, ordinary users are restricted to only seeing and managing
network objects directly associated with their respective projects.

Creating a network

Creating a network with the Neutron client can be accomplished with the Neutron
net-create command. In this example, the demo user is logged in and the network
to be created is named MyDemoNetwork:

[root@allinone ~(keystone demo)]# neutron net-create MyDemoNetwork

The operation returns a response that can be seen in the following output:

Created a new network:

Field	Value
admin_state_up	True
id	c8cde907-9a30-4e86-8c31-11d11f56ch2c
mtu	@
name	MyDemoNetwork
router:external	False
shared	False
status	ACTIVE
subnets	
tenant_id	

b8e@562dab644c87aa693abT48d3040d

Notice that the output did not return information regarding the network type,
segmentation ID, or physical interface. As an ordinary user, that information is not
exposed by Neutron and is only available to users with the admin role.

In most cases, users should not be concerned with network provider
attributes and should simply require connectivity between instances
*+across hypervisors without caring what the underlying technology is,
% be it VLAN, VXLAN, or something else. In some cases, revealing that
’ information can even be seen as a security risk. Just like Nova does not
reveal hypervisor information to users, Neutron does not, and should not,
reveal certain network information.

[52]

Chapter 4

Copy the id and name values from the output. You will use the network ID when
you create a subnet, provision a virtual machine instance, or perform certain other
network activities. In some cases, the network name can be used in lieu of the ID,
but only when the name is unique. In this example, the ID is c8cde907-9a30-4e86-
8c31-11d11f56cb2c, but the value will be unique in your response.

Creating a subnet

Creating a subnet with the Neutron client can be accomplished with the Neutron
subnet-create command. To create a subnet, you must specify a CIDR and
associated network ID or name. Other attributes are optional, including the
subnet name, IP allocation pools, and gateway IP.

In this example, the CIDR is 192.168.8.0/24, the associated network name is
MyDemoNetwork, and the subnet name is MyDemoSubnet:

[root@allinone ~(keystone demo)]# neutron subnet-create MyDemoNetwork
192.168.8.0/24 --name MyDemoSubnet

The operation returns a response that can be seen in the following output:

Created a new subnet:

Field Value |

{"start": "192.168.8.2", "end": "192.168.8.254"}
192.168.8.08/24

allocation_pools
cidr
dns_nameservers
enable_dhcp
gateway_ip
host_routes

id

ip_version
ipv6_address_mode
ipv6_ra_mode

True
192.168.8.1

4

|
|
|
|
|
|
6ee10d34-4d82-4901-9627-22a758096e52
|
|
|
|
|
|
|

name MyDemoSubnet

network_id c8cde9B7-9a30-4e86-8c31-11d11f56¢ch2e
subnetpool_id

tenant_id b8e@562dab644c87aab93abf48d3040d

You will use the subnet ID when you attach a router to the subnet or, in some cases,
manually create a port. In this example, the ID is 6ee10d34-4d82-4901-9627-
22a758096e52, but the value will be unique in your response.

To list subnets, use the Neutron subnet-1ist command:

[root@allinone ~(keystone demo)]# neutron subnet-list

[53]

Interfacing with Neutron

The operation returns a response that can be seen in the following output:

| id | name | cidr | allocation_pools |

| 6eel@d34-4d82-4901-9627-22a758096e52 | MyDemoSubnet | 192.168.8.0/24 | {"start": "192.168.8.2", “end": "192.168.8.254"} |

Additional details of the subnet can be revealed using the Neutron subnet - show
command with the ID or unique name, as shown here:

[root@allinone ~(keystone_demo)]# neutron subnet-—show MyDemoSubnet

Field Value |

{"start": "192,168.8.2", "end": "192.168.8.254"}
192.168.8.08/24

allocation_pools
cidr
dns_nameservers
enable_dhcp
gateway_ip
host_routes

id

ip_version
ipv6_address_mode
ipv6_ra_mode

True
192.168.8.1

Geeldd34-4d82-4901-9627-22a758096e52
4

name MyDemoSubnet

network_id c8cde997-9a30-4e86-8c31-11d11f56cb2c
subnetpool_id

tenant_id b8ed562dab644c87aab93abf48d3040d

By default, users can see subnets associated with their tenant or project as well as
subnets associated with networks that are shared. Users with the admin role can see
all subnets known to Neutron.

Summary

In this chapter, we looked at the two most common ways of interfacing with
Neutron: the Horizon dashboard and the Neutron command-line client. The
Horizon dashboard offers a straightforward method of managing project-level
network objects such as networks, subnets, and routers. The command-line client is
recommended, and sometimes required, to access and manage advanced networking
features or other functionality not yet available in the dashboard.

In the next chapter, we will take a closer look at how Neutron implements
networks and the virtual switching infrastructure. The focus will be on the use of
Open vSwitch since it is installed by default with RDO, but we will also look at
an alternative to OVS known as Linux bridge to see how they compare with one
another for simple network configurations. In subsequent chapters, we will revisit
the dashboard and command-line client when managing routers, floating IPs, and
other resources that we have yet to discuss.

[54]

Switching

In the previous chapter, we learned that users can interact with Neutron in a variety
of ways to build virtual networks that connect virtual machine instances to one
another and to the network at large. In this chapter, we'll take a closer look at how
Neutron implements the virtual network infrastructure to enable the flow of traffic
across the cloud.

When users create and connect virtual machine instances to networks, Neutron
automatically creates and configures virtual switches on the physical infrastructure
nodes. Ordinary users of OpenStack are not exposed to any of the underlying
infrastructure, be it physical or virtual, and must rely on the magic of Neutron to
ensure traffic gets to where it needs to go. Operators, on the other hand, may have
access to the infrastructure and may be asked to troubleshoot issues from time to
time. Understanding how Neutron plumbs everything together is a fundamental
requirement for operating and supporting OpenStack clouds.

The basics of switching in OpenStack

In the context of computer networking, a switch is defined as a device that connects
multiple devices together and uses packet switching techniques to receive, process,
and forward data from one device to another. Traditionally, switches have been
physical in nature and range in size from that of a physical network rack or

larger to the switch built into our home routers, or even smaller. In a reference
implementation, Neutron relies on the use of virtual switches to forward packets

to virtual machine instances and other virtualized devices hosted on infrastructure
nodes. Those nodes, in turn, are connected to physical switches that forward traffic
between nodes and other physical devices such as routers and firewalls. How
Neutron configures these virtual switches depends on the virtual switching platform
in use within the environment and the type of network requested by the user. In
the following sections, we'll take a look at the two most popular virtual switching
platforms: Open vSwitch and LinuxBridge.

[55]

Switching

Using Linux bridges

A bridge in Linux is analogous to a virtual switch, and the terms are used
interchangeably throughout this book and other OpenStack documentation. It has
ports, a Forwarding Database (FDB) table that is akin to a CAM or MAC address
table, and operates at Layer 2 of the OSI model. Network segmentation with the
LinuxBridge driver is handled by the creation of a single virtual switch per network
on every host.

When Neutron is configured to utilize the Modular Layer 2 (ML2) plugin and
LinuxBridge driver, a service known as the LinuxBridge agent runs on each host
and is responsible for using the 8021q, and vxlan kernel modules and the brectl
and bridge commands to create and connect virtual switches to instances and the
physical network.

Using Open vSwitch

Open vSwitch, also known as OVS, is an open source multilayer switch. Much like
a physical switch, a virtual switch implemented with Open vSwitch utilizes the
concepts of switch ports, uplinks, cross-connects, and more. These virtual switches
support technologies such as 802.1q, SPAN, RSPAN, sFlow, and more, but not all
features are supported or leveraged by Neutron.

Open vSwitch virtual switches can operate in two modes: normal mode and flow
mode. In normal mode, an OVS virtual switch acts like a regular Layer 2 learning
switch. As frames are forwarded through the virtual switch, the switch builds a table
of source MAC address and port relationships for future lookups. If a destination
MAC address is not in the table, the switch floods the traffic out of all ports until it
discovers the correct port.

In flow mode, a flow table is used that consists of a set of rules or actions to perform
on a packet. Actions typically result in packet manipulation of some kind, such as
stripping or modifying existing VLAN tags or forwarding the traffic to a particular
port. Neutron, as a source of truth for the state of networking in the cloud, is
responsible for programming flow rules on virtual switches since it knows which
virtual machine instances exist on particular nodes and is aware of all virtual networks
and physical network mappings. A lot of the magic of advanced Neutron services is
handled by manipulating packets using flow rules on OVS virtual switches. The use

of software to program forwarding logic and manipulate traffic is a key element of

the idea of Software-Defined Networking (SDN).

[56]

Chapter 5

With OVS, Neutron implements one or more virtual switches on each host,
depending on the type of networks used. In most cases, a single virtual switch,
called the integration bridge, is used to connect virtual machine instances to the
network. Network segmentation is handled by the creation of a unique local VLAN,
per network, on every host. The integration bridge is then cross-connected to one or
more virtual switches, known as provider bridges. A provider bridge is connected
to a single physical interface and provides connectivity to the physical network. The
cross-connect between switches means that traffic can flow from an instance to the
physical network, and vice versa, through both sets of switches. Neutron creates and
maintains flow rules that dictate how and where traffic is forwarded; whether the
traffic should be tagged, untagged, or dropped; and more.

When the network is configured to utilize the ML2 plugin and Open vSwitch
driver, a service known as the Open vSwitch agent runs on each host. The agent
is responsible for using the openvswitch kernel modules along with userspace
utilities such as ovs-vsctl and ovs-ofctl to properly manage the Open vSwitch
database and flow tables and to connect instances and other network resources to
virtual switches and the physical network.

Network types

Neutron network types are used to define the technology used to segment traffic
between networks and describe, at a glance, how virtual switches are connected
between hosts. Neutron supports a variety of network types, including:

* Local

* Flat

* VLAN

* VXLAN
* GRE

Remember, ordinary users often do not have the ability to specify the type of
network they are creating. In fact, users are not expected to know anything about the
infrastructure other than what is represented by the API. Instead, the administrator
is responsible for choosing a default type of network based on physical limitations
and/or virtual network requirements. On the other hand, users with the admin role
are able to create any type of network, whether or not it is a good idea and is actually
supportable by the underlying infrastructure. As you read the following network
type descriptions, keep in mind their strengths and weaknesses as you look to build
or administrate your own cloud in the future.

[571]

Switching

As we talk about these network types and the architectural differences
between Open vSwitch and LinuxBridge deployments, keep your hands
off the keyboard! There is nothing to do in your test environment just yet.

Local networks

A local network is a network that Neutron does not connect to the physical network
in any way. By its very nature, it is the simplest type of network to implement. On

a host using the LinuxBridge driver, Neutron implements a virtual switch for each
local network. Devices connected to the local network can communicate with one
another but not with any other network:

Compute Node

=
N N I

TR IR

ethl

|
i

In the preceding diagram, the virtual switches are not connected to the physical
interface. As a result, traffic from the virtual machine instances is limited to their
respective virtual switches.

The use of dedicated virtual switches per network differs greatly from an Open
vSwitch implementation. With Open vSwitch, there is a single virtual switch for all
instances on a host. Each local network corresponds to a local VLAN on every node.
Neutron does not create any flow rules for local networks. This means that traffic
between instances in the same local network, or local VLAN, can communicate with
one another but not with anything else across the virtual or physical network:

[58]

Chapter 5

Compute Node

[~ 3
W W W ==
™ mof VM L VM

[pd | igs

T
VLAN 1 VLAN 1 VLAN 2 VLANZ VLAN 3 VLAN 3
H H H H

-

Pseudo-Flow Rules:
None

In the preceding diagram, instances in the same local VLAN are able to communicate
with one another. The lack of flow rules for those virtual switch ports means that
traffic from those ports is isolated to the virtual switch and will not be forwarded to
the provider bridge and onto the physical network infrastructure. The inability of
instances connected to local networks to communicate with instances and services on
other hosts or networks means that local networks are not very useful in production
and are recommended for testing purposes only.

Flat networks

A flat network in Neutron is analogous to an untagged network. This means that
Neutron does not tag the traffic as it leaves a virtual switch and hits the physical
network. Since the traffic is untagged, the physical switch port must be configured as
an access or untagged port, or a native (default) VLAN should be used if the port is
configured as a trunk or tagged port. A consequence of this configuration is that only
a single flat network can exist per bridge and corresponding physical interface.

[59]

Switching

On a host using the LinuxBridge driver, when a flat network is created, an untagged
interface is attached to the virtual switch or bridge. The following diagram shows
these connections:

Compute Node

M1 M2

In the preceding diagram, eth1 is connected directly to the virtual switch on the
left. Traffic in and out of the bridge is untagged. The main eth1 interface cannot be
connected to any other bridge, but tagged sub-interfaces off eth1 may be connected
to other virtual switches. This will be demonstrated when we look at VLAN
networks.

Using the brctl show command, we can see how a single flat network is
represented on the host:

brctl show

bridge name bridge id STP enabled interfaces
brgXXXXXX <MAC Address> no VM1

VM2

ethl

With Open vSwitch and flat networks, we can begin to see how flow rules are
used to manipulate traffic as it traverses the virtual switches. Each flat network
corresponds to a local VLAN on each host. In the following diagram, local VLAN 1
corresponds to a flat Neutron network:

[60]

Chapter 5

Compute Node = -
eth1

]
[ius

pome
! 3 | patch cable |
VM |

I
T L
\-"LANIVLA.NI \l'LﬁILNE‘VLﬁILNE'

T -

VM

M
I

{_l.-

Pseudo-Flow Rules:

QUTBOUND: As traffic from VLAN 1 leaves the
integration bridge, strip the VLAN tag and drop on
ethl untagged.

INBOUND: As untagged traffic enters ethl towards
the integration bridge, add a VLAN tag of 1 and
forward to the appropriate VM.

In the preceding diagram, outbound traffic from a virtual machine instance
connected to the integration bridge in VLAN 1 will have its local VLAN tag stripped
as it traverses the virtual switches and goes into the physical network. The physical
switch will treat the traffic as untagged and forward the traffic accordingly to other
devices in the network. Likewise, as untagged traffic enters the provider bridge
from the physical network, OVS will add a VLAN tag of 1 and forward it to the
appropriate host in VLAN 1 on the integration bridge. The Open vSwitch agent on
each node is responsible for programming flow rules based on the information in the
Neutron database and the local OVS database.

VLAN networks

A VLAN network in Neutron is analogous to a tagged network. This means that
Neutron will tag the traffic as it leaves a virtual switch and hits the physical network.
Since the traffic is tagged, the physical switch port connected to the server's interface
must be configured as a trunk port.

[61]

Switching

On a host using the LinuxBridge driver, when a VLAN network is created, a
tagged interface is attached to the virtual switch or bridge, as shown in the
following diagram:

Compute Node

1
=
|

[
(55

[R
B

In the preceding diagram, the sub-interface eth1.100 is connected to the virtual
switch on the left. As traffic leaves the bridge, a VLAN tag of 100 is added to each
packet and it is sent out eth1 to the physical network. Likewise, as tagged traffic
enters the eth1 interface and respective virtual switch from the physical network,
the kernel strips the tag and forwards the traffic to the appropriate virtual machine
instance connected to the bridge.

Using the brct1l show command, we can see how a VLAN network is represented
on a host:

brctl show
bridge name bridge id STP enabled interfaces
brgXXXXXxX <MAC Address> no VM1
VM2
ethl.100
brgYYYYYY <MAC Address> no VM3
VM4
ethl.200

With Open vSwitch and VLAN networks, every real VLAN corresponds to a local
VLAN on each host. In the following diagram, local VLAN 1 corresponds to real
VLAN 100, and local VLAN 2 corresponds to real VLAN 200:

[62]

Chapter 5

Compute Node
ethi

-

VM : w [T ‘i | patch cable
| VM]__ VM
N T
VLAN Mapping VLAN 1 VLAN 1 VLAN 2 VLAN 2
|

Local Real

100

Pseudo-Flow Rules:

QUTBOUND: As traffic from VLAN 1 leaves the integration bridge,
change the VLAN tag from 1 to 100 and forward out ethl.

INBOUND: As traffic tagged as VLAN 100 enters ethl towards the
integration bridge, change the VLAN tag from 100 to 1 and
forward to the appropriate VM.

In the preceding diagram, outbound traffic from a virtual machine instance
connected to the integration bridge in VLAN 1 will have its VLAN tag modified

as it traverses the virtual switches and enters the physical network. The physical
switch will treat the traffic as tagged and forward it accordingly. Likewise, as tagged
traffic enters the provider bridge from the physical network, OVS will modify the
real VLAN ID to the local VLAN ID and forward the traffic to the appropriate host
connected to the integration bridge.

VXLAN networks

Virtual eXtensible Local Area Network (VXLAN), is an overlay network technology
that helps address scalability issues seen with VLANs. Where the maximum number
of VLAN networks is 4,096 for a single switching layer, up to 16 million VXLAN
networks can exist per VXLAN Tunnel End Point (VTEP). VXLAN encapsulates
Layer 2 Ethernet frames inside Layer 4 UDP packets that can be forwarded or routed
between hosts. This means that a virtual network can be transparently extended
across a large network, such as the Internet, without any changes to the end hosts.
However, in the case of Neutron, a VXLAN mesh network is commonly constructed
only between infrastructure nodes that exist in the same general location.

[63]

Switching

Rather than using VLAN IDs to differentiate networks, VXLAN uses a VXLAN
Network Identifier (VNI) to function as the unique network identifier on a link that
potentially carries traffic for tens of thousands, or millions, of different networks.
With Neutron, virtual machine instances are unaware that VXLAN is used to connect
traffic between hosts. The VTEP on the physical node handles the encapsulation and
decapsulation of traffic without the instance ever knowing.

On a host using the LinuxBridge driver, when a Neutron VXLAN network is
created, an interface is created on each host and is responsible for encapsulating
and decapsulating traffic for that particular network:

Compute Node Compute Node
1 T I 1
CIC T -
reeeeeeeeeeeeeeeeed yxian-1 VEian-] [e——

| |
- -

In the preceding diagram, the virtual interface vxlan-1 is connected to the

virtual switch. Created by Neutron, the vxlan-1 interface is tied to the interface
configured with the vTEP address. As traffic leaves the bridge, the vxlan-1 interface
encapsulates the traffic within a UDP packet and forwards it out the physical
network to the other compute node's VTEP address, 192.168.100.51, where the
traffic is decapsulated and forwarded to the respective virtual machine instance.

Using the brct1l show command, we can see how a VXLAN network is represented
on a host:

brctl show

bridge name bridge id STP enabled interfaces
brgXXXXXX <MAC Address> no VM1

VM2

vxlan-1

With Open vSwitch, the process of encapsulating and decapsulating VXLAN traffic
is accomplished with flow rules rather than virtual interfaces. Neutron implements a
dedicated virtual switch for overlay traffic, known as the tunnel bridge.

[64]

Chapter 5

The tunnel bridge connects the integration bridge to the overlay network that exists
between VTEPs rather than the physical network, like the provider bridge does. In
the following diagram, traffic from VM1 on Compute Node A to VM2 on Compute
Node B is forwarded over the overlay network:

'Ir''! Compute Node i’_'{f]g‘ Computs Node
-

- - [(.
| |
[rer wwaross Jooc] [aswarmsr Jooc]

|| ||
i -

Pseudo-Flow Rules: Pseudo-Flow Rules:
QUTBOUND: As traffic from VM1 on INBOUND: As traffic from Compute MNode
Compute Node A heads to VM4 on Compute A VTEP 192.168.100.50 enters tunnel

Node B, forward to the tunnel bridge bridge, decapsulate the packet, add

and strip the local VLAN ID. local VLAN ID that corresponds to

Encapsulate packet with network- network-specific VNI, and forward to
i send to remote VTEP VM2 on integratien bridge.

In the preceding diagram, each host has a VTEP that is used for VXLAN overlay
network traffic. Traffic between virtual machine instances in VXLAN networks on
different hosts is all forwarded through the same tunnel endpoint and differentiated
by VNIs that correspond to each Neutron network. OVS agents on each host keep
track of the VNI-to-local VLAN mappings and maintain the flow rules that ensure
traffic gets forwarded appropriately.

While not as well-performing as VLAN or flat networks on certain hardware, the
use of VXLAN is becoming more popular in cloud network architectures, where
scalability and self service are major drivers.

GRE networks

A GRE network is similar to a VXLAN network in that traffic from one instance

to another is encapsulated and sent over an existing Layer 3 network. A unique
segmentation ID is used to differentiate traffic from other GRE networks. Rather than
use UDP as the transport mechanism, GRE traffic uses IP protocol 47. For various
reasons, including performance, the use of GRE for encapsulating tenant network
traffic has fallen out of favor now that VXLAN is supported by both Open vSwitch
and LinuxBridge network driver.

[65]

Switching

More information on how GRE encapsulation works is described in RFC 2784,
available at https://tools.ietf.org/html/rfc2784.

As of the Liberty release of OpenStack, the LinuxBridge driver does not
s implement GRE networks.

A look at our environment

In the previous chapter, we created multiple Neutron networks that launched a
series of automated events, including;:

* The creation of network namespaces

* The startup of DHCP services for each network

* The connecting of each namespace to the virtual switch

* The configuration of virtual switch ports

The following commands are useful in seeing how the virtual network infrastructure
is represented on the host:

Command Purpose
ovs-vsctl show Shows all virtual switches on the host
ovs-vsctl dump-flows <bridges> Shows the flow rules for the specified bridge
ovs-vsctl add-br <bridges> Creates a virtual switch
ovs-vsctl add-port <bridges> Adds an interface to a virtual switch
<interface>
ovs-vsctl list-ports <bridges Lists the ports of a virtual switch
ovs-ofctl show <bridge> Lists the ports of a virtual switch with details
M There is a lot of useful information for each of these commands hidden in
Q their respective man pages. Use the man <command> command to find
out more.

Getting a closer look

As the admin user, let's use the Neutron net-1ist and net-show commands from
the CLI to review the details of the networks we created in the previous chapter:

[66]

Chapter 5

[root@allinone ~]# source keystonerc_admin
[root@allinone ~(keystone_admin)]# neutron net-list

| id | name | subnets |

| cBcde907-9a30-4e86-8c31-11d11f56cb2c | MyDemoNetwork | 6eel@d34-4d82-4991-9627-22a758096e52 192.168.8.0/24 |
| 460b2688-02c4-42db-b25c-7e9ba749d368 | MySimpleNetwork | @4cl12ff9-380d-4ade-aBaa-f31536406ad4 192.168.1.0/24 |

Using the Neutron net - show command, take a look at the details of each network:

[root@allinone ~(keystone_admin)]# neutron net-show MyDemoNetwork

Field Value |
admin_state_up	True
id	cB8cde907-9a30-4e86-8c31-11d11f56cb2c
mtu	@
name	MyDemoNetwork
provider:network_type	vxlan
provider:physical_network	
provider:segmentation_id	38
router:external	False
shared	False
status	ACTIVE
subnets	6eeldd34-4dB82-4901-9627-22a758096e52
tenant_id	bBe@562dab644cB87aab93abf48d3040d

[root@allinone ~(keystone_admin)]# neutron net-show MySimpleNetwork

Field Value |
admin_state_up	True
id	460b2688-02c4-42db-b25c-7e9ba749d368
mtu	@
name	MySimpleNetwork
provider:network_type	vxlan
provider:physical_network	
provider:segmentation_id	99
router:external	False
shared	False
status	ACTIVE
subnets	84cl2ff9-380d-4ade-aBaa-T31536406ad4
tenant_id	©51a93428adad44f297e5feb5a3ac3bof

In the output, we can see that the network MyDemoNetwork is a VXLAN network with
a segmentation ID of 38. The other network, MySimpleNetwork, is also a VXLAN
network, but with a segmentation ID of 99. Both segmentation IDs were chosen by
Neutron at random and will be different in your environment.

% The segmentation ID of a VXLAN network is synonymous with the VNI
= used when encapsulating the packet.

[67]

Switching

Using the ovs-vsctl show command, we can see the virtual switches configured on
the host:

[root@allinone ~(keystone_admin) |# ovs-vsctl show
3295cabc-23cf-4b55-9edB-f5elefc39a30
Bridge br-ex
Port br-ex
Interface br-ex
type: intermal
Port "enp@s8"
Interface "enp@sg”
Port phy-br-ex
Interface phy-br-ex
type: patch
options: {peer=int-br-ex}
Bridge br=tun
fail_mode: secure
Port br-tun
Interface br-tun
type: internal
Port patch-int
Interface patch-int
type: patch
cptions: {peer=patch-tun}
Bridge br-int
fail_mode: secure
Port br-int
Interface br-int
type: internal
Port int-br-ex
Interface int-br-ex
type: patch
options: {peer=phy-br-ex}
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port "tap34c668d7-5a"
tag: 1
Interface "tap94c668d7-5a"
type: internal
Port "tap9a237a63-df"
tag: 2
Interface "tap9a23Ta63-df"
type: internal
ovs_version: "2.4.0"

The first switch listed, br-ex, is the provider bridge that is connected to the
physical network:

Bridge br-ex
Port br-ex
Interface br-ex
type: internal
Port "enpOs8"
Interface "enp0s8"
Port phy-br-ex
Interface phy-br-ex
type: patch
options: {peer=int-br-ex}

In this example, the provider bridge is connected to the enpos8 interface of the host.
In most cases, provider bridges across hosts in the cloud will be connected to one
another through the physical infrastructure.

[68]

Chapter 5

. Onareal server, the enp0s8 interface would likely be connected to
% a switch port configured as a trunk and capable of handling tagged
s traffic. For the purposes of this book, the interface should be considered
untagged.

The next switch, br-tun, is the tunnel bridge that establishes the overlay network
between hosts:

Bridge br-tun
fail mode: secure
Port br-tun
Interface br-tun
type: internal
Port patch-int
Interface patch-int
type: patch
options: {peer=patch-tun}

Last but not least, the integration bridge, br-int, is connected to all virtual network
devices on the host and cross-connected to the provider and tunnel bridges:

Bridge br-int
fail mode: secure
Port br-int
Interface br-int
type: internal
Port int-br-ex
Interface int-br-ex
type: patch
options: {peer=phy-br-ex}
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port "tap94cee68d7-5a"
tag: 1
Interface "tap94ce68d7-5a"
type: internal
Port "tap9a237a63-df"
tag: 2
Interface "tap9a237a63-df"
type: internal

[69]

Switching

Take a look at the last two ports listed: tap94c668d7-5a and tap9a237a63-df. Each
of these virtual switch ports corresponds to a logical Neutron port that is connected
to some virtual device. In this example, the two ports correspond to the two DHCP
servers living in network namespaces that were created automatically when we
created MyDemoNetwork and MySimpleNetworks in the previous chapter.

These virtual switches and their connections are represented in the
following diagram:

VANt b VLAN 2
| onng
ar ... | All-In-One Node
' 1
H J
SapdchBadT S

e ‘8630,

(]

B
0|

[

¥
B

kY Workstation
VTEP: 10.254.254.100 [ﬂgﬂ‘s% ;
o b,
I T °
I I

In this environment, the tunnel bridge will go unused since there is only one host. As
we continue to build the environment in the following chapters, the diagram will be
updated to show connections to Neutron routers and virtual machine instances.

Summary

In this chapter, we covered the two most popular open source virtual switching
platforms for OpenStack, known as Open vSwitch and LinuxBridge. If you're an
ordinary user without access to the underlying infrastructure, much of what has
been covered and represented in this chapter will not be directly observable by you.
For administrators and operators, though, understanding how the virtual switching
infrastructure interacts with the physical infrastructure is crucial to understanding,
operating, and supporting OpenStack clouds. In the next chapter, we will take a look
at how Neutron implements virtual routers that provide routing between Neutron
networks. Concepts that will be covered include network namespaces, Source
Network Address Translation (SNAT), and floating IPs.

[70]

Routing

In the previous chapter, we discovered how Neutron builds out logical networks
using two of the most popular open source virtual switching platforms for
OpenStack: Open vSwitch and LinuxBridge. In this chapter, we will take a look at
how Neutron implements virtual routers that provide routing between Neutron
networks and the outside world. Concepts that will be covered include network
namespaces, Source Network Address Translation (SNAT), and floating IPs.

The basics of routing in Neutron

If you recall from the previous chapter, users can create and manage networks
known as tenant networks within their respective project without any knowledge of
the underlying infrastructure. By default, instances connected to tenant networks are
isolated from other networks and are unable to access external resources such as the
Internet. Neutron provides connectivity to instances in tenant networks by way of
virtual routers.

Network namespaces

In a reference implementation, virtual routers created in Neutron are implemented
as network namespaces that reside on nodes running the Neutron L3 agent service.
Network namespaces are similar in function to Virtual Routing and Forwarding
(VRF) domains, where multiple instances of a routing table exist to provide
complete network segregation in a single device. The use of network namespaces
allows Neutron to support overlapping subnets across networks. In Linux, network
namespaces can be managed using the ip netns command as the root user or a
user with sudo privileges. Router namespaces follow the grouter-<router_id>
naming convention.

[71]

Routing

In addition to providing dedicated routing tables to each namespace,

+ Linux allows processes like dnsmasg to be run and contained within
namespaces. Neutron uses network namespaces to isolate DHCP services
’ between networks. DHCP namespaces follow the gdhcp-<network

id> naming convention.

The Neutron L3 agent service usually runs on controller nodes or dedicated network
nodes, but as we'll see later, the service can also run on compute nodes to help
provide a smaller failure zone when using distributed virtual routers.

Connectivity through a router

At its most basic level, a Neutron router acts as a default gateway for one or more
connected tenant networks, as shown in the following diagram:

———

10.0.1.2/24 172.16.0.2/24

Instances in Tenant Network A can use the Neutron router as their default
gateway to communicate with instances in Tenant Network B, and vice versa.
When an external provider network is attached to the Neutron router, the router
can route traffic upstream to its respective gateway device. In most cases, a physical
routing device will be the gateway for a Neutron router. The following diagram
demonstrates a physical gateway and the Neutron router connected to a common
provider network:

[72]

Chapter 6

Physical
Router

L]

i,

VM1

Mz

) ’
172.16.0.2/24

In the diagram, a Neutron router is connected to multiple tenant networks and

serves as the default gateway for those networks. The Neutron router is also
connected to a provider network that provides access to external networks,

including the Internet.

[73]

Routing

Outbound connectivity

By default, Neutron routers will apply Source Network Address Translation
(SNAT) to all outbound traffic from connected tenant networks. This means that, as
traffic exits the virtual router and heads upstream, the router modifies each packet
and changes the source IP address to that of its own external interface. This ensures
that return traffic gets directed back to the virtual router, where the destination

IP address is modified from the router's address back to the original client.

The following diagram demonstrates a router performing SNAT for a virtual
machine instance:

Source LT T T Destination
y N
[\
VM1 F m
1]
Fixed IP: 10.0.1.2 Inside IP: N +/ Outside IP:
10041 TE=U=F “ 192.0.2.254 8.8.8.8
NAT
10.0.1.2 —>8.8.8.8 > 192.0.2.254 —>8.8.8.8
Original Request Translated Request
8.8.8.8 —>10.0.1.2 8.8.8.8 —>192.0.2.254
Translated Response Original Response
NAT

In the diagram, the outbound traffic from VM 1 is modified as it traverses the
Neutron router towards its destination. As each packet leaves the router, the
source address is modified. As the inbound response traffic enters and traverses
the router, the destination address is changed from that of the router to that of the
virtual machine.

Inbound connectivity

In a SNAT scenario, all traffic leaving the router appears to come from the same
address. In addition, inbound connections cannot be made directly to a SNAT
address, which means that that address cannot be used to reach the instance directly.

[74]

Chapter 6

A floating IP is an address that is used to provide a 1:1 static NAT mapping to

a single fixed IP. In Nova/Neutron-speak, a fixed IP is an IP address associated
with an instance and, by definition, a Neutron port. Floating IPs provide a unique
outbound and inbound address; this allows clients to reach individual virtual
machine instances and other devices. The following diagram demonstrates

a router performing an address translation using a floating IP:

Source pre Ty Destination
.
A
w1 m ! C
J
Fixed IP: 10.0.1.2 Inside IP: ‘ - 0utSIde IP:
Floating IP: 192.0.2.202 10.0.1.1 ~-=-="" 192.0.2.254 8.8.8.8
NAT

10.0.1.2 —>8.8.88 192.0.2.202 —> 8.8.8.8

Original Request

Translated Request

8.8.8.8 —>10.0.1.2 8.8.8.8 —> 192.0.2.202

Translated Response Original Response

NAT

In the diagram, the outbound traffic from VM 1 is modified as it traverses the
Neutron router towards its destination. As each packet leaves the router, the source
address is modified to that of the floating IP. As the inbound response traffic enters
and traverses the router, the destination address is changed from that of the router to
that of the virtual machine. This is similar in operation to the earlier SNAT example.
Rather than using a shared address, however, the floating IP is dedicated to traffic
associated with the fixed IP of the instance. Inbound connections to the floating IP
from an external network are translated to the respective fixed IP and directed to the
appropriate resource or instance.

[75]

Routing

Types of routers

Neutron routers act as the default gateway for connected tenant networks
and provide outbound and inbound connectivity to the instances they service.
Neutron provides three types of routers to users:

e Standalone
* Highly available
e Distributed

Routers can be created in both the Horizon dashboard and via the Neutron CLI.
As an ordinary user, the type of router that is created via the API is predetermined,
based on a combination of settings found in the Neutron server and L3 agent
configuration files. Users with the admin role are free to define the type of router

to be created using the router-create command, using the following flags:

--distributed {true | false}
--ha {true | false}

Neutron does not expose the router type to users via the API, even with the
router-show command. Users with the admin role, however, can see those details.
The Horizon dashboard limits all users, including administrative users, to the
default router type specified in the configuration. This behavior may change

in future releases.

Standalone routers

A standalone router is a single logical router that is implemented as a single network
namespace on a host running the Neutron L3 agent. Most often, the L3 agent runs

on dedicated network nodes or the controller nodes themselves. By its very nature,

a standalone router is a single point of failure for directly connected networks. If

the node hosting the network namespace experiences issues, connectivity through
the namespace can become limited or completely unavailable. Needless to say, the
failure of a standalone router can result in an unhappy user experience.

Standalone routers have been the default router type since the Folsom release
of OpenStack and are supported by both the Open vSwitch and LinuxBridge
mechanism drivers and agents.

[76]

Chapter 6

Highly available routers

A Highly Available (HA) router is a single logical router that is implemented as

two or more network namespaces on hosts running the Neutron L3 agent. Like its
standalone counterpart, an HA router is likely to be spread across dedicated network
or controller nodes. An HA router utilizes the keepalived service and the Virtual
Routing Redundancy Protocol (VRRP) between network namespaces to provide
high availability. Only one of the network namespaces acts as a master virtual router
at any given time while the others remain in a backup state awaiting a failover event.
If the active router fails, a backup router will take over quickly. While HA routers
provide redundancy not found with standalone routers, pushing all traffic through

a subset of nodes may still be seen as a bottleneck that can result in poor network
performance.

Highly available routers have been available since the Juno release of OpenStack
and are supported by both the Open vSwitch and LinuxBridge mechanism drivers
and agents.

Distributed virtual routers

A Distributed Virtual Router (DVR) is a single logical router that is implemented
as multiple network namespaces on network and compute nodes. The model

of distributing virtual routers across compute nodes is similar to the multihost
functionality of Nova Network. It offers high availability of networking by limiting
single points of failure to individual compute nodes rather than network nodes.

Distributed virtual routers have been available since the Juno release of OpenStack
and, as of the Liberty release, are supported only by the Open vSwitch mechanism
driver and agent.

Highly available and distributed virtual routers require the use of more
than one host and won't be created as part of the exercises demonstrated
* in this book. For a more in-depth look at HA and distributed virtual
% routers, check out Learning OpenStack Networking (Neutron), Second Edition,
available through Packt Publishing at https: //www.packtpub.
com/virtualization-and-cloud/learning-openstack-
networking-neutron-second-edition.

[771]

Routing

Managing routers in the dashboard

Like networks, virtual routers can be created and managed within the Horizon
dashboard and by using the Neutron command-line client.

Creating routers within a project
To create a router, follow these steps:
1. Navigate to the Project | Network | Routers section of the Horizon

dashboard and click on the Create Router button in the upper right-hand
corner of the screen, as shown here:

2 openstack H admin = & admin =

Routers
Compute Q | + Create Aouter

Name Status External Network Admin State Actions.
No fterns 1o display.

Dizpiaying 0 items.

2. A single-step router creation wizard will appear. Name the router in the
Router Name field, as shown here:

Create Router

Router Name *
MySimpleRouter] Description:

Creates a router with specified parameters.
Admin State

UP

ar

Cancel Create Router

3. Click on the Create Router button to complete the wizard and return to the
Routers screen, as shown in the following screenshot:

[78]

Chapter 6

0 openstack 2 admin - & arimin.x
| Succes
Projact - Routers
Compaste Q ||+ Crasse Rouser
MNetwork Name Status External Network Admin State Actions
Nty MySimplaRouter Active - ur Set Gateway =
Disgilarying 1 om

Admin

Identity

Congratulations, you just created a virtual router! Behind the scenes, Neutron has
determined the type of router to create and may have implemented one or more
network namespaces as a result. In this environment, the default router type is
standalone, which means a single network namespace will be created that will
serve as the virtual router. In Chapter 7, Building Networks and Routers, we'll

build some common network topologies and observe traffic flow through a
Neutron router.

Viewing the network topology

Now that we have created a router, let's view the resulting network topology. Here
are the steps:

1. From the Project | Network menu, choose Network Topology:

3 openstack ® admin = & admin >
Project Network Topology
Camputs Resize the canvas by scrolling up/down with your mouse/trackpad on the topolegy. Pan around the canvas by clicking and

dragging the space behind the topology.

Network 83 Toggle labels 15 Toggie Network Collapse @ Launch instance |+ Create Network + Create Router

Network Topalogy

Networks
Routers
MySimpleRouter
P 28551 48-Dadd-44te-Bekd-d
@ ACTIVE
bdentit:
L ® Interfaces + Add Interfaca
View Router Detalls

@

[79]

Routing

2. Right now, the topology consists of a single network object and a single
router object. Notice that the router and network are not connected. To
connect the router to the network, click on the Add Interface button,
shown here:

MySimpleRouter x
d2a55148-0edd-44fe-8e82-d12690c29bce
® ACTIVE

Interfaces <+ Add Interface

» Vliew Router Details Delete Router

3. Aninterface wizard will appear. From the Subnet menu, select the subnet to
attach the router to:

Add Interface

Subnet *

. P R S
¥ Select Subnet

MySimpleNetwork: 192.168.1.0/24 (04c12f{9-380d-4ade-aBaa-f31536406add) UGeRlCUILICAULEE S

T AUUTESS [UPUUNE] W The default IP address of the interface created is a

gateway of the selected subnet. You can specify
another IP address of the interface here. You must
. select a subnet to which the specified IP address
Router Name

belongs to from the above list.
MySimpleRouter

Router ID *

d2a55148-0edd-44fe-8e82-d12690c29bce

Cancel Add interface

[80]

Chapter 6

4. When adding an interface to a router, the router will take on the IP address
defined in the gateway_ip attribute of the selected subnet. Instead, you can
specify a different IP in the IP Address field. Click on the Add interface
button to complete the wizard and return to the network topology screen
pictured here:

MySimpleRouter
d2a55148-0edd-44fe-8e82-d12690c29bce

@ ® ACTIVE
Interfaces + Add Interface

2525501 -5f 192.168.1.1 router_interface ACTIVE BnfEGEN(E] = le:]

» View Router Details Delete Router

The router is now connected to the network! This means that an instance in the
MySimpleNetwork network can use the router as its default gateway.

Additional interfaces can be added to the router, but only from other
networks. A Neutron router should not be connected to the same network
' more than once.

[81]

Routing

Managing routers as an administrator

From the Admin | System | Routers window, administrators can view all routers in
the cloud as well as edit and delete selected routers, as shown here:

3 openstack B admin = & admin =
- Routers
Admin
Q
System
Name Status External Network Admin State Project Actions

Active - up admin Edit Router =

Diaplaying 1 am

Identity

Here, we can see the previously created router, MysimpleRouter. Clicking on the
router name provides a limited subset of the actions that are available through the
Project | Network | Routers pane:

Router Details

Edit Router =
Overview nterfaces Static Routes
Name MySimpleRouter
[+] d2a55148-0edd-44fe-8e82-d12690c29bce
Project ID ©51a93428ada44f297e5fe65a3ac3baf
Status Active
Admin State uF
External Gateway None

Administrators can only delete routers, mark their administrative state UP
or DOWN, view static routes, and add or delete interfaces. All other router
management functions must be done from within the respective Project panel.

[82]

Chapter 6

Managing routers with the Neutron client

The Neutron command-line client provides additional functionality not found in the
Horizon dashboard, including the ability to specify the type of router to create.

Creating and listing routers

Listing networks with the Neutron client is as easy as using the neutron router-
list command, shown here:

[root@allinone ~(keystone_admin)]# neutron router-list

| id | name | external_gateway_info | distributed | ha |

| d2a55148-Redd-44fe-8eB82-d12690c29%bce | MySimpleRouter | null | False | False |

Running the router-1ist command as an administrator will return all routers
known to Neutron, while running the command as an ordinary user will only return
routers associated with the user's tenant or project. As an example, let's authenticate
as the demo user and run the same command to see what is returned:

[root@allinone ~(keystone_admin)l# source keystonerc_demo
[root@allinone ~(keystone_demo)]# neutron router-list

[root@allinone ~(keystone_demo)]#

As expected, no routers were returned. Routers, like other OpenStack resources, are
associated with a single tenant or project and can only be viewed or managed by the
respective users of those projects or by administrators.

Creating a router

Creating a router with the Neutron client can be accomplished with the neutron
router-create command. In this example, the demo user is logged in and the router
to be created is named MyDemoRouter:

[root@allinone ~(keystone demo)]# neutron router-create MyDemoRouter

[83]

[vww allitebooks.cond

http://www.allitebooks.org

Routing

The operation returns a response that can be seen in the following output:

Created a new router:

| Field | Value |

admin_state_up True

external_gateway_info

id	dfa6l7ad-3ded-4962-9484-a5e9cel38172
name	MyDemoRouter
routes	
status	ACTIVE
tenant_id	b8e@562dab644c87aa693abf48d3040d

Notice that the output did not return information regarding the router type. As an
ordinary user, that information is not exposed by Neutron and is only available to
users with the admin role.

Copy the id and name values from the output. You will use the router ID when you
add an interface to the router or perform certain other network activities. In some
cases, the router name can be used in lieu of the ID, but only when the name is
unique. In this example, the ID is dfa617ad-3ded-4962-9484-a5e9cel38172,

but the value will be unique in your response.

Adding an interface

Adding an interface to a router with the Neutron client can be accomplished with the
neutron router-interface-add command. To add an interface, you must specify
the router and subnet name or ID.

Users who consume all available addresses in a subnet may find it
necessary to add additional subnets to a network. Neutron allows
% multiple subnets to be associated with a single network, and routers
should be connected to each subnet using the router-interface-add
command.

[84]

Chapter 6

If you recall from Chapter 4, Interfacing with Neutron, we created a network and
subnet as the demo user, named MyDemoNetwork and MyDemoSubnet, respectively. As
the demo user, perform a neutron net-1list command to retrieve a list of networks
and associated subnets, like this:

[root@allinone ~(keystone_demo)]# neutron net-list

| id | name | subnets |

| c8cde907-9a30-4e86-8c¢31-11d11f56cb2c | MyDemoNetwork | Geel@d34-4d82-4901-9627-22a758096e52 192.168.8.0/24 |

Using the neutron router-interface-add command, add an interface to the
router and attach it to the MyDemoSubnet subnet:

[root@allinone ~(keystone_demo)]# neutron router-interface-add MyDemoRouter MyDemoSubnet
Added interface 9fff8744-fd64-4e34-b55b-ecd9ff482eba to router MyDemoRouter.

That's it! As a result of adding an interface to the router via the API, Neutron created
a logical Neutron port for the virtual network interface used by the router, created
the virtual interface inside the respective network namespace, attached the interface
to the virtual switch or bridge, and configured an IP address on the virtual interface
that corresponds with the address defined by the gateway_ip attribute of the subnet.
Thanks, Neutron!

Listing router interfaces

To obtain a list of the Neutron ports associated with a router, use the neutron
router-port-1list command, seen here:

[root@allinone ~(keystone_demo)1# neutron router-port-list MyDemoRouter

| id | name | mac_address | fixed_ips I

| 9fffarad-fded—de34-b55h-ecddf fad2eba | | fa:16:3e:86:5@:2b | {"subnet_id": “6eelBd34-4dB2-4991-9627-22a758096e52", "ip_address": “192.168.8.1"} |

All ports currently associated with the router will be listed in the output.
As expected, the fixed IP of the port corresponds to the gateway_ip of the
MyDemoSubnet subnet.

[85]

Routing

Examining the routers

Virtual routers are implemented as network namespaces on one or more nodes. In
our single-node environment, the two routers that have been created so far can both
be found on the same node. Using the ip netns command as root or a user with
sudo privileges, you can list all network namespaces on a host, like so:

[root@allinone ~(keystone_admin)]# ip netns
qrouter—-dfa6l7ad-3ded-4962-9484-a5e9cel38172
qrouter-d2a55148-0edd-44fe-8e82-d12690c29bce
qdhcp-460b2688-02c4-42db-b25c-7e9ba749d368
qdhcp-c8cde907-9a30-4e86-8¢c31-11d11f56ch2c

The two grouter namespaces in the list correspond to the two routers we've created
so far:

[root@allinone ~(keystone_admin)]# neutron router-list

| id | name | external_gateway_info | distributed | ha
| |[d2a55148-0edd-44fe-8eB82-d12690c29bce | | MySimpleRouter | null | False | False |
| |dfabl7ad-3ded-4962-9484-a5e9ce138172 | | MyDemoRouter | null | False | False |

Using the ip netns exec <namespace>command, you can specify a command to
execute within the specified namespace. Useful commands such as ip, netstat, ps,
and iptables provide details within the scope of the namespace they're executed in.
A quick look at the MysimpleRouter network namespace shows the virtual interface
created by Neutron when we attached the router to the MySimpleSubnet subnet
earlier in this chapter:

[root@allinone ~(keystone_admin)]# ip netns exec qrouter-d2a55148-@edd-44fe-8e82-d1269@8c29%bce ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
14: qr-2e525501-5f: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 158@ gdisc nogueue state UNKNOWN
link/ether fa:16:3e:c5:b6:dB brd ff:ffiffiffiff:ff
inet 192.168.1.1/24 brd 192.168.1.255 scope global qr-2e525501-5f
valid_1ft forever preferred_lft forever
inet6 feB@::f816:3eff:fec5:b6d8/64 scope link
valid_1ft forever preferred_lft forever

Using the ovs-vsctl show command, we can see the gr-2e525501-5f interface
attached to the integration bridge in a local VLAN mapped to MySimpleNetwork:

[86]

Chapter 6

[root@allinone ~({keystone_admin)]# ovs-vsctl show
3295cabc-23cf-4b55-0ed8-f5ele6c30a30
Bridge br-ex
<snip>
Bridge br-tun
<snip>
Bridge br-int
fail_mode: secure
Port br-int

Interface br-int
type: internal
Port "gr-2e525501-5f"
tag: 1
Interface “qr-2e525501-51"
type: internal

Port "tapBa237a63-df"
tag: 2
Interface "tap9a237a63-df"
type: internal
Port int-br-ex
Interface int-br-ex
type: patch
options: {peersphy-br-ex}
Port “qr-9fffe8744-fg"
tag: 2
Interface "qr-9fff8744-fd"
type: internal
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port “tap94c668d7-5a"
tag: 1
Interface "tap94c668d7-5a"
type: internal
ovs_version: "2.4.0"

Additional router interfaces will be connected to the same integration bridge, but
they will be tagged with different local VLAN tags and names based on the network,
subnet, and port the interfaces are associated with.

Summary

In this chapter, we learned that Neutron routers can route between directly
connected tenant networks and external networks using network address translation.
Neutron routers can be configured in a redundant or distributed manner, and

they trade simplicity in their implementation for high availability. Like the virtual
switching infrastructure covered in the previous chapter, users without access to the
underlying infrastructure will be unable to observe how Neutron implements virtual
routers and their respective features. The logical network diagram provided within
the Horizon dashboard, coupled with an understanding of the concepts outlined in
this book, will help you understand what is happening behind the scenes.

In the next chapter, we will take a look at some common virtual network
architectures that can be built by users and will showcase the traffic flow from
client workstations to virtual machine instances using floating IPs.

[87]

Building Networks
and Routers

In the previous chapter, we learned that Neutron routers provide connectivity
between user-created tenant networks and external networks such as the Internet
using network address translation. In this chapter, we will take a look at some
basic virtual network architectures and will showcase the traffic flow from client
workstation to virtual machine instance via fixed and floating IPs.

Basic network architectures and functions that will be covered include:

* Single-homed instances connected to provider networks
* Single-homed instances behind Neutron routers

* Source NAT

* Floating IP

So sit back, get comfortable, and let's take a look at some networks and routers.

Using provider networks

If you recall from Chapter 3, Neutron API Basics, administrators, or users with the
admin role, can create and manage networks known as provider networks that
map a logical Neutron network to a physical network in the data center. Creating a
provider network requires knowledge of the physical infrastructure, such as 802.1q
VLAN IDs and server interfaces used to forward traffic.

[89]

Building Networks and Routers

Connecting instances to provider networks gives users the ability to access their
instances directly by their fixed IP addresses with no hops through a virtual router.
The following logical diagram represents a virtual machine instance connected to a
provider network:

Physical
Router

Gateway:
10.50.0.1

L]
»

Fixed IP:
10.50.0.3

In the diagram, an instance is directly accessible from the upstream router via its
fixed IP address. The fixed IP address is the address configured within the virtual
machine. The compute node bridges the physical and virtual network and allows
the virtual machine instance to be in the same Layer 2 broadcast domain and Layer 3
network as the physical gateway device.

M The actual implementation of provider or tenant networks will vary
Q between network drivers configured on the infrastructure nodes, but the
logical model should be consistent between all of them.

Connecting instances directly to provider networks exposes instances directly to the
physical network, so to speak. It can often result in higher performance compared to
using overlay networking technologies, such as GRE or VXLAN, depending on the
hardware used. One downside to this configuration, though, is that it limits users

to using predefined networks and address space that may be better used for other
purposes such as floating IPs, and it requires more administrative overhead.

[90]

Chapter 7

Creating a provider network

Provider networks can be created using the neutron net-create command or from
the Horizon dashboard within the Admin | Networks pane. Creating provider
networks requires knowledge of the following network details:

* Network type

* Segmentation ID (if applicable to network type, for example, VLAN, VXLAN,
or GRE)

* Physical interface mapping (if applicable to network type, for example, flat
and VLAN)

> Based on the network infrastructure laid out in Chapter 2, Installing
OpenStack Using RDO, we are limited to the creation of a single flat
(untagged) provider network in this All-In-One environment.

Using the neutron net-create command, create a flat provider network named
MyExternalProviderNetwork and map it to the physnet1 interface, as shown in
the following screenshot:

[root@allinone ~(keystone_admin)]l# neutron net-create —-provider:network_type=flat \
= ——provider:physical_network=physnetl MyExternalProviderNetwork

Created a new network:

| Field | Value |
| admin_state_up | True

| id | 52550637-519f-496d-afd1-75ab7ff51ledd |
| mtu | @ |
| name | MyExternalProviderNetwork

| provider:network_type | flat

| provider:physical_network | physnetl |
| provider:segmentation_id | |
| router:external | False

| shared | False |
| status | ACTIVE

| subnets | |
| tenant_id | €51a93428adad44f297e5feb5a3ac3bof

[91]

Building Networks and Routers

Remember, physnet1 is just a label that represents a particular physical
interface or bridge on the host. In this environment, physnet1 maps to a
a bridge named br-ex that contains the interface enp0s8. The bridge
L br-ex is known as the provider bridge, since it is connected to the
physical network by way of the connected interface. It is meant to bridge
virtual and physical networks in an Open vSwitch-based environment.

Using the neutron subnet-create command, create a subnet and associate it with
the MyExternalProviderNetwork network, as shown in the following screenshot:

[root@allinone ~(keystone_admin)]# neutron subnet-create MyExternalProviderNetwork 10.58.08.8/24 \
> ——name=MyExternalProviderSubnet --gateway_ip=10.50.0.1

Created a new subnet:

| Field | value |

allocation_pools {"start": "10.50.0.2", "end": "10.50.0.254"}

cidr 10.50.0.8/24

dns_nameservers

enable_dhcp True

gateway_ip 10.50.0.1

host_routes

id fe581964-41b0-42c6-b@8e-b@9ca254d631

ipv6_address_mode

|

|

|

|

|

|

|
ip_version | 4

|

ipv6_ra_mode |

|

|

|

|

name MyExternalProviderSubnet

network_id 52550637-519f-496d-afd1-75ab7ff51edq
subnetpool_id

tenant_id c51a93428adad4f297e5fe65a3ac3b9f

* The subnet we've defined, 10.50.0.0/24, corresponds to a network
created within VirtualBox that will allow us to access virtual machine
T instances and other OpenStack objects from our client workstation.

Booting an instance

To test the network, boot an instance using the nova boot command or the Horizon
dashboard. Requirements for booting an instance include:

* Image

e Flavor

[92]

Chapter 7

* Network interface (network or port ID)

¢ Name

- For simple connectivity tests, the CirrOS image has been included as part

of the RDO installation. CirrOS is a free, lightweight Linux operating

system.

The following screenshot shows an instance named MyDirectInstance booting on
the MyExternalProviderNetwork network:

[root@allinone ~(keystone_admin)]# nova boot --image="cirros-0.3.4-x86_64" --flavor="ml.tiny" \

—-nic net-id=52550637-5197-496d-afdl-75ab7ff51e44 MyDirectInstance

| Property

Value

0S-DCF:diskConfig

0S-EXT-SRV-ATTR:host

0S-EXT-STS:power_state
0S-EXT-STS: task_state
0S-EXT-5TS:vm_state
05-SRV-USG: Launched_at
05-SRV-USG: terminated_at
accessIPv4

accessIPvb

adminPass

config_drive

created

flavor

hostId

id

image

key_name

metadata

name

progress
security_groups
status
tenant_id
updated

user_id

0S-EXT-AZ:availability_zone

0S-EXT-SRV-ATTR:hypervisor_hostname
0S-EXT-SRV-ATTR: instance_name

os-extended-volumes:volumes_attached

MANUAL

instance-00000002
@

scheduling
building

h8pcM2pxLFrg

2016-01-31T16:34:152
ml.tiny (1)

5b535f1e-1fbe-47f1-a527-3c4b56d38589
cirros-08.3.4-x86_64 (952c8431-1534-4c5f-bc@6-c61221112232)

{}

MyDirectInstance
[1

[

default

BUILD

c51a93428adad4f297e5feb5a3ac3b9f

2016-01-31T16:34:162

£3596d7861514f92aae527babdec3e25

[93]

Building Networks and Routers

Use the nova list command to view a list of instances associated with your tenant
or project. If you know the name or the ID of the instance, use the nova show
command to provide additional details about the instance. Instances can also be
viewed from the Project | Compute | Instances page in Horizon dashboard, as
shown in the following screenshot:

D openstack = aamin - & admin

Project Instances

Computs Instance Name * Fiter 4 Launch Instance Mare Actions =
instance Name Image Name IP Address Size Kay Pair Status Availability Zone Task Powaer State Time since created Actions.

ciros-0.3.4-286 64 10.50.0.3 by - Active rava Kone Aurmning 4 minutes Grate Snapshot =

Disgiaying 1 ftem

Accessing the instance

Once the virtual machine instance has been created, navigate to the Project |
Compute | Instances page and select Console from the Actions menu of the
MyDirectInstance instance:

Instance Name & Fitee & Launch instance . More Actions =
Instance Name Image Name IP Address Size Key Pair Status Availability Zone Task Power State Time since created Actions
ciros-0.3.4-x86_64 10.50.0.3 . tiny - Active nova MNona Running 4 minutes Create Snapshat =

Dispiaying 1 Aom Associate Floating 1P

Astach Intertace

Edit Instance

Edit Secusity Groups

Consale

View Log

As long as the virtual machine is in the Active state, a virtual console will load
within the browser window that will allow you to interface with the virtual machine:

[94]

Chapter 7

ladder
* me

key type
sion 1

stem clock to 2016-01-: } :14 UTC (

data:
il

written

login as "cir 5 r. default pe ird : 43 e "sudo’ for root.
cirros login:

Depending on the specifications of the client workstation hosting this
* environment, booting and using virtual machine instances within
& the virtual machine hosting the OpenStack environment may be a bit
e .
sluggish. If the console appears to be stalled, take a break and grab a cup
of coffee!

Once the login prompt appears, authenticate using the following credentials:

e Username: cirros

e Password: cubswin:)

[95]

Building Networks and Routers

Using the ip addr and ip route commands, verify that the instance received its IP
address and routes from the DHCP server created and managed by Neutron:

sc pfifo_fast glen 1

In this example, the instance was assigned the fixed IP 10.50.0.3 upon boot, and
that's exactly what the Neutron DHCP server handed out to the instance. The default
gateway is 10.50.0.1, an external gateway device not managed by Neutron or
OpenStack.

+ In this VirtualBox-based environment, 10.50. 0.1 is an IP address
automatically configured on the workstation hosting VirtualBox. For the
sake of these exercises, just pretend it's a physical routing device.

[96]

Chapter 7

From the console window, issue a ping to the gateway address to verify outbound
connectivity from the instance to the gateway:

ping
5 pac t it ack racket loss
round-trip mi 2

A response from the gateway indicates that Neutron has properly configured

the network plumbing on our host based on the network driver in use. In this
environment, using Open vSwitch, Nova has attached the instance to the integration
bridge and Neutron has created OpenFlow rules that help bridge the virtual network
to the physical network. Neutron has also created security rules on the node to allow
outbound access, which will be looked at in further detail in Chapter 8, Security Group
Fundamentals.

Because the instance is connected directly to the provider network, our client
workstation should be able to connect to the instance directly via its fixed IP, thanks
in part to a security group rule allowing SSH access that we added back in Chapter
2, Installing OpenStack Using RDO. Using an SSH client, connect to the instance and
authenticate using the following credentials:

e Username: cirros

e Password: cubswin:)

[97]

Building Networks and Routers

The following screenshot demonstrates a connection from my local workstation to
the fixed IP of the virtual machine instance:

retina-imac:~ jdenton$ ssh cirros@l®.50.0.3

The authenticity of host '10.50.0.3 (10.50.0.3)' can't be established.

RSA key fingerprint is SHA256:xvpZI+nz/K1tSqU2dChNSeEdWOVtQpIK7Naa%o/MKxY.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.50.0.3' (RSA) to the list of known hosts.
cirros@l10.50.0.3's password:

$ exit

Connection to 10.50.0.3 closed.

. Inareal environment, provider networks should be routable within the
corporate network. In this test environment, the client workstation has
i an interface in the provider network by way of the VirtualBox network
configuration.

Using a Neutron router

If you recall from Chapter 3, Neutron API Basics, users can create and manage
networks known as tenant networks that are completely isolated from other
networks and tenants via Layer 2 segregation. Users do not require any knowledge
of the physical infrastructure when creating tenant networks and are not aware of
the underlying Layer 2 technology that provides connectivity between hosts, be it
VLAN, VXLAN, GRE, or some other technology.

Users can use Neutron routers to provide flexibility in networking by connecting
user-created tenant networks to one another and to the physical network. Neutron
routers act as NAT gateways in an effort to provide connectivity to and from virtual
machine instances in tenant networks. In the following diagram, a Neutron router is
connected to both a provider network and a user-created tenant network:

[98]

Chapter 7

Physical
Router

Gateway:
10.50.0.1

Fixed IP
192.168.1.y

When instances are placed behind a Neutron router, users can no longer access them
directly by their fixed IP. Instead, users must create Network Address Translations
(NATSs) using floating IPs or utilize virtual private networks by way of VPN as a
Service (VPNaaS).

Future releases of OpenStack Neutron will support the use of BGP to
advertise tenant network address space rather than relying completely
. on NAT. In some advanced configurations, tenant networks may be
routed from upstream routers to Neutron routers using static routes.

s For this configuration to work, SNAT must be disabled on the Neutron
router using the - -disable-snat flag with the router-gateway-set
command. This is not a common configuration, but it has to be mentioned
nonetheless.

[99]

Building Networks and Routers

External provider networks

Neutron routers look and act much like traditional routers in that they have what can
be considered a Wide Area Network (WAN) interface known as a gateway interface
and one or more Local Area Network (LAN) interfaces known as internal or router
interfaces. In Neutron-speak, the WAN (or gateway) interface connects to a provider
network and the LAN (or router) interfaces connect to tenant networks.

So far, we've learned that instances connected to tenant networks behind a Neutron
router are not directly accessible without the use of a floating IP or NAT. External
provider networks are unique in that they act as the floating IP pool for attached
routers. What makes a provider network an external provider network, you ask?
Why, the external attribute provided by the external-net extension, that's what!

In the previous section, we created a provider network and attached instances
directly to it. Before a router can be attached to a provider network, however,
the network's external attribute must be set to True. A Neutron router must be
connected to an external provider network to provide a path for traffic into,

or out of, connected tenant networks.

1
‘Q Only a user with the admin role can set the external

attribute of a network.

Using the neutron net-update command, update the provider network
accordingly:

[root@allinone ~(keystone_admin)]# neutron net-update MyExternalProviderNetwork ——-router:external=true
Updated network: MyExternalProviderNetwork

[root@allinone ~(keystone_admin)]# neutron net-show MyExternalProviderNetwork

Field | value |

True
52550637-519f-496d-afd1-75ab7ff51edd
4]

MyExternalProviderNetwork

admin_state_up
id

mtu

name

provider:network_type flat

provider:physical_network | physnetl

provider:segmentation_id

router:external True

shared False

status ACTIVE

subnets fe581964-41b0-42c6-bBBe-bB9ca254d631
tenant_id c51a93428adad4f297e5feb5a3ac3bof

[100]

Chapter 7

Attaching the router to an external provider network

There are two Neutron CLI commands used to attach Neutron routers to networks.
They are:

* router-gateway-set: This connects a Neutron router to a provider network

* router-interface-add: This connects a Neutron router to a tenant network

The router-gateway-set command requires two pieces of information: the router
name or ID and the external provider network name or ID. Once it is issued, Neutron
creates a port and allocates an IP address to the router's external interface from

the allocation pool of the network's subnet. The Neutron L3 agent then configures
the interface inside the network namespace and sets the default gateway to that
specified by the respective subnet.

Within Horizon dashboard, Neutron routers can be connected to provider networks
from the Project | Network | Routers page, seen here:

3 openstack 1 actin + & acmin =

Routers
Q + Create Router
Name Status External Network Admin State Actions

Active - ur Sot Gatewzy

Diapimying 1 tem

[101]

Building Networks and Routers

To set a gateway, perform the following steps:

1. Click on the Set Gateway button from the Actions menu next to the router.
Doing so will bring up the Set Gateway wizard, seen here:

Set Gateway

External Network *
Description:

You can connect a specified external network to the
router. The external network is regarded as a default
route of the router and the router acts as a gateway for
MySimpleRouter external connectivity.

a

MyExternalProviderNetwork

Router Name *

Router ID *

d2a55148-0edd-44fe-8e82-d12690c29bce

Cancel Set Gateway

2. Choose a provider network from the list; this will serve as the external
network for the router.

Only provider networks whose external attribute is set to true

will appear in the list, so don't worry if you don't see any other

networks. In addition, external provider networks are visible to all
tenants, regardless of whether or not the shared attribute is set.

3. Click on the blue Set Gateway button to complete the wizard and return to
the Routers page. The external network will be listed next to the router:

Routers

a + Create Router

Name Status External Network. Admin State Actions

e PR—— " :

4. To clear the gateway, click on the red Clear Gateway button.

[102]

Chapter 7

M Neutron will not allow you to clear the gateway of a router if floating
Q IPs have been assigned to instances behind the router. The floating
IPs must be unallocated first before the gateway can be cleared.

Booting an instance

Using the nova boot command or the Horizon dashboard, boot an instance and
connect it to the MySimpleNetwork network created in the previous chapter. To boot
the instance in Horizon dashboard, complete the following steps:

1. From the Project | Compute | Instances page, click on the Add Instance
button to launch the wizard:

Launch Instance

Details * Acc

55 & Security Networking * Post-Creation Advanced Options

Auaitability Zons Specify the details for launching an instance.

a

naya The chart below shows the resources used by this project

in relation to the project’s quotas.

Instance Name * .
Flavor Details

MylnstanceBehindRouter

Name m1.tiny
Flavor * @ VCPUs 1
m1.tiny : :
Root Disk 1GB
Instance Count * @ Ephemeral Disk 0GB
. Total Disk 1GB
Instance Boot Source * @ RAM 512 MB
Boot from image v
Project Limits
Image Name * Number of Instances

cirros-0.3.4-x86_64 (12.7 MB)

ar

Number of VCPUs

Total RAM

[103]

Building Networks and Routers

2. Name the instance, choose the image and flavor, and hit the Access &
Security tab to continue.

3. From the Access & Security tab, choose the default security group and click
on the Networking tab to continue:

— —

Launch Instance

Details * Access & Security Metworking * Post-Creation Advanced Options

Key Pair @ Control access to your instance via key pairs, security

groups, and other mechanisms.

a»
+

No key pairs available

Security Groups @
default

4. From the Networking tab, move the MysimpleNetwork network to the
Selected networks box using the blue plus (+) sign:

Launch Instance

Details * Access & Security Networking * Post-Creation Advanced Options
Selected networks Choose network from Available networks to Selected
networks by push button or drag and drop, you may
MySimpleNetwork change NIC order by drag and drop as well.

Available networks

_ MyExternalProviderNetwork

[104]

Chapter 7

5. Click on the blue Launch button to complete the wizard. The instance should
begin the boot process and will be reflected in the instance list:

Instances
Instance Name & Fiter || & Launch Instance EE‘@W‘EH Moee Actions =
Instance Name Image Name WP Addross Size Koy Palr Status Avallability Zono Task PowerState Time since created Actions
MyinstanceBehindFlouler cimos-0.3.4-x86_64 19216814 mitny - Active nova Mone Funning 0 minutes Creato Snapshot ~
MyDireciinstance cimos-0.3.4-x06_84 10.50.0.3 miltiy - Active nova None Running 35 minutes Create Snapshot =
Displaying 2 Sems

Testing connectivity

So far, we have built a network that resembles the following logical diagram:

Gateway:
10.50.0.1

Physical
Router

-.:u

10.50

Qutside IP:

.0.2

Gateway IP:
192.168.1.1

VM1

Fixed IP
192.168.1.4

[105]

Building Networks and Routers

In the logical diagram, the Neutron router, known as MySimpleRouter, serves as the
gateway for the virtual machine instance known as MyInstanceBehindRouter. The
physical router, in turn, serves as the gateway for the Neutron router.

Unlike the MyDirectInstance virtual machine created earlier in this chapter, the
virtual machine known as MyInstanceBehindRouter cannot be reached directly
via its fixed IP. Any attempt to connect to the virtual machine from the client
workstation via its fixed IP address in this configuration will be unsuccessful:

retina-imac:~ jdenton$ ssh cirros@l92.168.1.4
ssh: connect to host 192.168.1.4 port 22: Operation timed out

At this point, the only way to manage the instance is through the console in Horizon.
To access the instance, perform the following steps:

1. From the Project | Compute | Instances page, select Console from the
Actions menu of the MyInstanceBehindRouter instance to open a
virtual console:

puidle:
FI Variab

family 10

fe ly 17
ey tuype

m clock t h-01-3 7:11:49 UTC ¢

6d3 not
Jun-25, lev found

928k freed

1t k f
1184k free«

further output written to sdevs/ttyso

login as ’"cirrx & . def ’ word: ’‘cubswin:)’. use ’'sudo’ for root.
myinstancebe

[106]

Chapter 7

2. Once the login prompt appears, authenticate using the following credentials:

° Username: cirros

° Password: cubswin:)

3. Using the ip addr and ip route commands, verify that the instance
received its IP address and routes from the DHCP server created and
managed by Neutron:

further output written to ~d

. default sord: ’'cubswin:)’. use 'sudo’ for root.
login: c

30 brd

1

.168.1.1 dev ethd
v via 19
dev ethO

[107]

Building Networks and Routers

In this example, the instance was assigned the fixed IP 192.168.1.4 upon boot, and
the etho interface has been configured accordingly using DHCP. The default route
directs traffic to 192.168.1.1, an address owned by and configured on the Neutron
router. To test routing capabilities through the Neutron router, issue a ping to the
external gateway device at 10.50.0.1:

from
from

In this VirtualBox-based environment, 10.50.0.1 is an IP address
automatically configured on the workstation hosting VirtualBox. For the
sake of these exercises, we'll just pretend it's a physical router.

In this example, the ping from the virtual machine instance has been routed through
the Neutron router to the external gateway device at 10.50.0.1. A response from
10.50.0.1 indicates that Neutron has properly configured the virtual switches

and the virtual router. In this environment, using Open vSwitch, Nova attached the
instance to the integration bridge and Neutron created OpenFlow rules that helped
bridge the virtual network to the physical network. In addition, Neutron configured
the virtual router with a source NAT rule to ensure return traffic can make it back to
our instance. We'll take a look at this in the next section.

[108]

Chapter 7

Observing SNAT behavior

Using tcpdump on our external gateway device (a.k.a. the client workstation), we can
confirm that the ping from the instance was received and responded to:

retina-imac:~ jdenton$ sudo tcpdump -i any host 10.50.0.1 and icmp

Password:

tcpdump: data link type PKTAP

tcpdump: verbose output suppressed, use —v or -vv for full protocol decode

listening on any, link-type PKTAP (Packet Tap), capture size 262144 bytes
11:12:42.218610 IP 10.50.0.2 > 10.50.0.1: ICMP echo request, id 12033, seq @, length 64
11:12:42.218641 IP 10.50.90.1 > 10.50.8.2: ICMP echo reply, id 12833, seq @, length 64
11:12:43,.219151 IP 10.50.0.2 > 10.50.0.1: ICMP echo request, id 12033, seq 1, length 64
11:12:43.21918@ IP 10.50.0.1 > 10.50.0.2: ICMP echo reply, id 12033, seq 1, length 64
11:12:44.219544 IP 10.50.0.2 = 10.50.0.1: ICMP echo request, id 12833, seq 2, length 64
11:12:44,219566 IP 10.50.0.1 > 10.50.0.2: ICMP echo reply, id 12033, seq 2, length 64
11:12:45.219875 IP 18.50.90.2 = 18.50.0.1: ICMP echo request, id 12833, seq 3, length 64
11:12:45.219985 IP 18.50.0.1 = 18.50.8.2: ICMP echo reply, id 12833, seq 3, length 64
11:12:46.220583 IP 10.50.0.2 > 10.50.0.1: ICMP echo request, id 12033, seq 4, length 64
11:12:46.220612 IP 10.50.0.1 > 10.50.0.2: ICMP echo reply, id 12033, seq 4, length 64

Rather than coming from the instance's fixed IP address, however, the source of
the ping appears to be 10.50.0.2. If you recall from Chapter 6, Routing, the source
address of all outbound traffic from instances behind a Neutron router without
floating IPs is modified to use the router's external address. To determine the
external address of a router, use the neutron router-show command. The
external address can be found in the external gateway info field, seen here:

[root@allinone ~(keystone_admin)]# neutron router-show MySimpleRouter -c external_gateway_info

| Field | Value

| external_gateway_info | {"network_id": "52550637-519f-496d-afd1-75ab7ff51ed44", "enable_snat": true,
"external_fixed_ips": [{"subnet_id": "fe581964-41b@-42c6-bB8e-bB9ca254d631", "ip_address": "10.50.0.2"}1} |

The use of source NAT to dynamically allow outbound access is extremely handy,
but it is not at all useful for connecting inbound traffic to instances. For that to
happen, we'll need a 1:1 network address translation, known as a floating IP.

[109]

Building Networks and Routers

Assigning a floating IP

If you recall from the previous chapter, a floating IP is an address that is used to
provide a 1:1 static NAT to a single fixed IP. Floating IPs provide clients the ability
to reach individual virtual machine instances and other devices that are attached to
networks behind Neutron routers using a unique, routable address.

There are four Neutron CLI commands used to manage floating IPs. They are:

* floatingip-create: This creates a floating IP
* floatingip-associate: This associates a floating IP with a Neutron port

* floatingip-disassociate: This disassociates a floating IP from a
Neutron port

* floatingip-delete: This deletes a floating IP

The floatingip-create command requires the external network name or ID to
procure the address from. The floatingip-associate command requires the ID of
both the floating IP and the Neutron port. Once it is issued, Neutron automatically
determines the router to apply the NAT rule to. The Neutron L3 agent will configure
the NAT using iptables inside the respective router network namespace.

Within Horizon, floating IPs can be associated with instances from the Project |
Compute | Instance page, seen here:

Instance Mame § Fiter & Launch Instance More Actions =
Instance Name Image Name IP Address Size Key Pair Status Avallability Zone Task PowerStale Time since created Actions
cimos-0.3.4-x86_64 192.168.1.4 Mty - Active nova Nona Running 9 4 minutes Create Snapshct | =
= Associate Floating IP
cirros-0.3.4-xB6_64 10.50.03 .ty - Active RovE None Running 39 minutes
Attach interface
Dispiayng 2 feems Detixch Intertace
Edtt Instance
Edit Security Groups
Caonscia

[110]

Chapter 7

To create and assign a floating IP, perform the following steps:

1. Click on the Associate Floating IP button from the Actions menu next to the
instance to bring up the Manage Floating IP Associations wizard, seen here:

Manage Floating IP Associations

IP Address *

IP Address Select the IP address you wish to associate with the

No floating IP addresses allocated ' selected instance or port.

Port to be associated *

MyinstanceBehindRouter: 192.168.1.4

2. Existing floating IP allocations are listed in the IP Address menu. Select an
available address from the IP Address menu or, if none are available, click on
the plus (+) sign to create a new floating IP. The Allocate Floating IP wizard
will appear:

Allocate Floating IP

Pool *

Description:

Allocate a floating IP from a given floating IP pool.

ar

| MyExternalProviderNetwork

Project Quotas
Floating IP (0)

Cancel Allocate IP

[111]

Building Networks and Routers

3. Choose the pool from which the floating IP address will be sourced. The only
eligible network is the external network attached to the Neutron router. Click
on the blue Allocate IP button to allocate a new floating IP and return to the
previous wizard:

Manage Floating IP Associations

IP Address *
i Select the IP address you wish to associate with the
10.50.0.5 s 4 selected instance or port.

Port to be associated *

MylnstanceBehindRouter: 192.168.1.4

ar

Cancel Associate

4. The newly allocated floating IP address should appear in the IP Addresses
menu. Click on the blue Associate button to associate the floating IP
with the port listed in the Port to be associated menu and return to the
Instances page:

Instances
Instance Mame 3 Fiter | Launchinstance | | Mere Actions =
Instance Nama Imaga Name IP Address Size Kay Pair Status Avallability Zone Task Power State Time since created Actions
182.168.1.4
MyinstanceBohindRouter ciros-0.3.4-x86_64 Floating IPs: ~ mltiny - Active nova Mona Running 5 minutos. Croate Snapshot | =
10.50.0.5
MyDiroctinstance ciros-0.34-xB6 B4 105003 miginy - Active nova Mone Funning 40 mimdes Create Snapshct | =
Dispiaying 2 foms

[112]

Chapter 7

Testing connectivity via floating IP

Now that a floating IP has been associated with the instance, connecting to the
instance should be quick and easy, provided the appropriate access is permitted.

From the client workstation, SSH to the floating IP address assigned in the
previous section:

retina-imac:~ jdenton$ ssh cirros@l0.50.0.5
The authenticity of host '10.50.0.5 (10.50.0.5)' can't be established.
RSA key fingerprint is SHA256:vkHKLrnBdy29h8vt0ZGPo5XvK3bvU2c9uRyNoRyJ4x8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.58.0.5' (RSA) to the list of known hosts.
cirros@l®.50.0.5's password:
$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 20:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_L1ft forever preferred_Llft forever

link/ether fa:16:3e:1c:14:15 brd ff:ffiff:ff:ff:ff
inet 192.168.1.4/24 brd 192.168.1.255 scope global eth@
inet6 fe8@::fB816:3eff:felc:1415/64 scope link

valid_1ft forever preferred_lft forever

2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc pfifo_fast qlen 1000

A quick look at the interfaces within the instance shows the fixed IP configured on
etho0. Given that we were able to SSH to the instance from the client workstation,
pinging the external gateway address at 10.50.0.1 should prove successful as well:

$ ping 10.50.0.1 —c 5

PING 10.50.0.1 (10.50.0.1): 56 data bytes

64 bytes from 10.50.0.1: seq=0 tt1=63 time=1.144 ms
64 bytes from 10.50.0.1: seq=1 tt1=63 time=0.685 ms
64 bytes from 10.50.0.1: seq=2 tt1=63 time=0.657 ms
64 bytes from 10.50.0.1: seq=3 tt1=63 time=0.616 ms
64 bytes from 10.50.0.1: seq=4 tt1=63 time=0.655 ms

—- 10.50.0.1 ping statistics ——
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.616/0.751/1.144 ms

[113]

Building Networks and Routers

Another packet capture on the external gateway device (a.k.a. the client workstation)
reflects the source of the ping as the floating IP address, proving that the Neutron
router is performing the 1:1 NAT as expected:

retina-imac:~ jdenton$ sudo tcpdump -i any host 10.50.0.1 and icmp

Password:

tcpdump: data link type PKTAP

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on any, link-type PKTAP (Packet Tap), capture size 262144 bytes
11:15:48.799275 IP 10.50.0.5 > 10.50.0.1: ICMP echo request, id 14081, seq @, length 64
11:15:48.799286 IP 10.50.08.1 > 10.50.8.5: ICMP echo reply, id 14881, seq @, length 64
11:15:49.799741 IP 10.50.08.5 > 10.50.8.1: ICMP echo reguest, id 14881, seg 1, length 64
11:15:49,.799771 IP 10.50.0.1 > 10.50.0.5: ICMP echo reply, id 14081, seq 1, length 64
11:15:50.800333 IP 10.50.0.5 > 10.50.0.1: ICMP echo request, id 14081, seq 2, length 64
11:15:50.800366 IP 10.50.0.1 > 10.50.8.5: ICMP echo reply, id 14081, seq 2, length 64
11:15:51.8088756 IP 10.50.8.5 > 10.50.8.1: ICMP echo reguest, id 14881, seg 3, length 64
11:15:51.800789 IP 10.50.0.1 > 10.50.8.5: ICMP echo reply, id 14881, seq 3, length 64
11:15:52.801375 IP 10.50.0.5 = 10.50.8.1: ICMP echo regquest, id 14881, seqg 4, length 64
11:15:52.801403 IP 10.50.0.1 > 10.50.8.5: ICMP echo reply, id 14081, seq 4, length 64

Floating IP addresses can only be associated with a single port and

fixed IP at a time, meaning that identifying traffic on upstream
S

devices from naughty virtual machine instances is much simpler
than the SNAT scenario.

Multiple routers

Multiple routers can be attached to the same provider network in a logical
configuration similar to the one pictured here:

[114]

Chapter 7

Physical

Router

Gateway:
10.50.0.1

) (]
/

e=m===eaan,
[l

B
0

Outside IP:
10.50.0.x
'/' ~_
£ Y
I ‘\
i]
1 y
.\ ;
~ -

Gateway IP:
192.168.1.1

.
5

Fixed IP
192.168.1.y

Outside IP:
10.50.0.w

Neutron
Router

Gateway IP:
192.168.8.1

Fixed IP
192.168.8.z

Communication between instances behind different Neutron routers must be done
using floating IPs, since the tenant networks themselves are not routable outside of

their respective routers.

Advanced networking

Virtual machine instances can be multi-homed, meaning they can have more

than one network interface that connects to different networks. A combination

of admin-defined provider networks and user-defined tenant networks can be

used to build advanced network architectures. Using multiple network interfaces
on the physical nodes, provider networks can be created that leverage different
switching infrastructures with capabilities that range from 1/10/40 Gigabit Ethernet
to InfiniBand and more. If you specify multiple provider bridge mappings in the
Neutron configuration file and create the respective networks using the API, the sky

really is the limit.

[115]

Building Networks and Routers

Looking ahead to future releases, users connecting to instances behind Neutron
routers won't be limited to using floating IPs. Instead, users will be able to leverage
BGP configured in Neutron routers to automatically announce routes to tenant
networks to upstream routers, simplifying connectivity to those instances across
the network.

For more information on the future use of BGP and address scopes
with Neutron routers, check out the following resources:

https://www.openstack.org/summit/tokyo-2015/videos/
% presentation/neutron-and-bgp-dynamic-routing.
L

https://www.youtube.com/watch?v=QqP8yBUUXBM&t=6ml2s.

http://docs.openstack.org/developer/neutron/devref/
address_scopes.html.

Summary

In this chapter, we looked at some basic network architectures found in many
OpenStack clouds that utilize Neutron networking. For performance and simplicity
in operations and troubleshooting, many users find connecting instances directly
to provider networks the best option when available. For users who want to have
a hand in the overall network architecture in order to meet complex network
requirements, using tenant networks and Neutron routers provides features and
functionality above and beyond what provider networks alone can do. Not to
mention, Neutron routers are a requirement for advanced Neutron services, such
as Firewall as a Service, Load Balancer as a Service, and VPN as a Service in a
reference implementation. When building a network architecture to support your
application, try drawing a logical diagram similar to the ones pictured in this
chapter to get a good idea of traffic flow between networks and instances before
implementing the networks in Neutron.

In the next chapter, we will look at securing traffic between instances and external
networks using Neutron security groups. While drawing the traffic flow, keep in
mind security requirements, including access to ports and protocols, as we work
through a few exercises in the next chapter.

[116]

Security Group
Fundamentals

So far, we've looked at some common basic network architectures and even managed
to build some virtual networks and routers of our own along the way. But what
about security? You'll be happy to know that Neutron does its best to protect you
from yourself and other users out of the box, but like many things, some tweaking
and coordination may be involved in order to provide a strong security posture for
instances and the applications hosted within them.

Neutron includes two methods of providing network-level security to instances:
security groups and virtual firewalls. Security group functionality predates Neutron
and provides traffic filtering at the individual virtual network interface level on
compute nodes using iptables. Virtual firewalls, on the other hand, are provided by
the advanced Neutron service known as Firewall as a Service (FWaa$S), which relies
on iptables to filter traffic at the perimeter of the network within a Neutron router. In
either case, it is important to know that Neutron is not responsible for implementing
security rules on the instances themselves.

In this chapter, we will focus on securing network traffic to instances by covering
such topics as:

* Security group fundamentals

* Default security group behavior

* Creating and managing security groups in the CLI and Horizon dashboard

* Disabling port security

[117]

Security Group Fundamentals

Security groups in OpenStack

Think back to Chapter 3, Neutron API Basics, where we looked at the logical Neutron
data model that consists of networks, subnets, and ports. Every logical Neutron port
related to a virtual machine instance equates to a virtual network interface

on a compute node that gets connected to a virtual switch, similar to what is
pictured here:

Port

1D 3333-3333-3333
Network YYYY-YYYY-YYYY
Port
Security WEB
[+] 1111-1111-1111 Group(s) default
Network YYYY-YYYY-YYYY M M MAC fa:16:3e:3d:91:4¢
Security WEB IP Addr 192.168.1.102
Group(s) default
MAC fa:16:3e:3d:91:4a | |

IP Addr 192.168.1.100 []]] t‘j

Virtual Switch
eth1.100
= _*i q
D 222022022222 "’M_I

Network FYYY-YYYY-YYYY

Security WEB
Group(s) default
MAC fa:16:3e:3d:91:4b
IP Addr 192.168.1.101

In traditional environments, users rely on traffic filtering performed at the edge of
the network on a physical firewall device or within the guest operating system using
a software-based firewall such as iptables or Windows Firewall. In an OpenStack-
based cloud, Neutron provides an API for applying OS-agnostic traffic filters at

each port as it connects to the virtual switch rather than applying them within the
guest OS, or anywhere else for that matter, using what are called security groups. A
security group is a collection of network access rules known as security group rules
applied to Neutron ports, and these limit the types of traffic an instance or, more
specifically, a particular network interface can send or receive.

[118]

Chapter 8

The basics characteristics of Neutron security groups are as follows:

Security groups are tenant or project-owned objects and cannot be shared or
referenced across projects

For ingress traffic (traffic to an instance):

o

Only traffic that matches a security group rule is allowed
° All other inbound traffic that does not match a rule is dropped
For egress traffic (traffic from an instance)

[e]

Only traffic that matches a security group rule is allowed

o

All other outbound traffic that does not match a rule is dropped

Security groups require port security to be enabled on a particular port

Newly-created security groups include rules that allow all egress traffic and
no ingress traffic

Security group rules can reference other security groups rather than IP
addresses or networks

Each project has a default security group that gets applied to every port by
default:

o

The default security group allows all egress traffic and includes an
ingress rule that references the default group

As a result, intercommunication between instances in the default
group is allowed

Using security groups

There are multiple ways in which security groups can be used. For example, one or
more instances, usually of similar functionality or role, can be placed in a security
group. Security group rules can reference IPv4 and IPv6 hosts and networks as

well as security groups themselves. Referencing a particular security group in a

rule, rather than a particular host or network, frees the user from having to specify
individual addresses. Neutron will automatically construct the filtering rules applied
on the host, based on network information in the Neutron database.

[119]

Security Group Fundamentals

Security group management can get a bit unruly, especially for a port associated
with multiple security groups. A simple example of ports each belonging to a single
security group can be seen in the following diagram:

r ™ r N
Compute Node A Compute Node B
Virtual Switch Virtual Switch
1] sl (G
: APP Security Group

HCN

AN

\’
A [. DB Security Group [- | .
v r ALLOW IN from APP Group v J
ALLOW IN from DB Group
ALLOW OUT to WEB,APP

DENY ALL

APP Security Group
ALLOW IN from WEB Group
WEB Security Group
ALLOW IN from 0.0.0.0/0 gtﬁw},ﬁ” toALL
ALLOW OUT to ALL
DENY ALL

In the diagram, ports connected to the virtual switch belong to one of three security
groups: WEB, DB, or APP. When a change is made to a security group, such as
adding or removing group rules, corresponding filter rule changes are made
automatically on the compute nodes for every port associated with the

security group.

Another way security groups get used is for describing certain types of rules that
should be applied to a particular instance port. For example, a security group can
be used to categorize multiple hosts or subnets that are allowed access to a port.
Multiple security groups can be applied to a port, and all rules defined in those
groups are applied to the port.

Remember, all traffic though a port is implicitly denied. Security group
. rules can only define the traffic that should be allowed through a port.
% Because of this, there is no chance of a rule in one security group applied
L to a port counteracting or overriding a rule in another security group
applied to the same port. There is no order in which the rules should be
applied since they are all ALLOW rules.

The following example demonstrates the use of security groups to categorize traffic
that is allowed access through a port:

[120]

Chapter 8

s ™\ s ™\
Compute Node A Compute Node B
Virtual Switch Virtual Switch
Port
Port Port Port Port Sperr—-
— - —— ————mmmm=a ==
(" AopAccessGrp 3 | | (7 Web Access Grp) Wb Access G) | | (DBAcoessGm) | | 1] WebAccess G)
] [! 1
1 i I |
\ 1 I J \ ! { y,
Remote Office Grp Web Access Grp DB Access Grp
ALLOW IN from 10.0.0.0/8 ALLOW IN from 0.0.0.0/0 on TGP port 80,443 ALLOW IN from APP grp on TGP port 3306
ALLOW OUT to 10.0.0.0/8 ALLOW OUT to ALL ALLOW IN from D8 group
App Access Grp Syslog Group
ALLOW IN from APP group ALLOW IN from WEB,APF.DB on UDP port 514
ALLOW IN from WEE group

When a port is created in Neutron, it is associated with a default security group
unless a specific one is specified. The default security group drops all ingress traffic
and allows all egress traffic from instances. Rules can be added to or removed from
the default security group to change its behavior. In addition, standard rules are
applied to every instance that prohibit IP, DHCP, and MAC address spoofing. This
behavior can be changed and will be discussed later in this chapter.

The default security group

The default security group that is created automatically by Neutron for each project
contains four rules:

D openstack 2 demo = & demo =
Project Manage Security Group Rules: default (bdaf26c4-ac20-
Compite 4c0d-8d95-ea354c7afe13)
- T
Ins Direction Ether Type IP Protocol Port Ranga Remste IF Prefix Remote Security Group Actions
Ingress 1Pvé Any Ay - default
i & Ingress Pt Any Ay 2 default m
Notwork
Egress 1P Any Any 0.0.0.00

Dispiaying 4 ibems

* Ingress | IPv6 | Any | default: This is a rule that states that any port
associated with the default group is an allowed source of traffic

[121]

Security Group Fundamentals

* Ingress | IPv4 | Any | default: This is a rule that states that any port
associated with the default group is an allowed source of traffic

* Egress | IPv6 | Any: This is a rule that allows all outbound traffic to any
remote IPv6 address

* Egress | IPv4 | Any: This is a rule that allows all outbound traffic to any
remote IPv4 address

Subsequent security groups created within a project will only contain the two
egress rules.

Back in Chapter 2, Installing OpenStack Using RDO, we created a security group rule
that allowed SSH access to instances over TCP port 22 and applied it to the default
security group in the admin project, as shown here:

Manage Security Group Rules: default (63d2210d-0853-41e6-8905-5caa50724a29)

+ A Fua

Direction Ether Type P Protocol Port Range Remote IP Profix Remote Security Group Acticns.

Egress 1Pvd Any Any 0.0.000 m
Ingress 1Pud Any Any - default m
Egross IPvE Any Any 0 m
Ingress IPvE Any Any 2 default m
Ingress IPvd. TCP 22 (S5H) 0.0.0.00 m

Dispiaying 5 items.

The result is that clients from any location can access SSH services on every instance
spun up in the admin project, unless a user specifies otherwise by removing the
default security group and applying another. As you build out security groups and
associate rules, keep in mind some of the workflows and caveats described later in
this chapter to maintain a proper security posture in your environment.

Managing security groups
Security groups can be managed using the Neutron CLI or the Horizon dashboard.
From within the Neutron command-line client, a number of commands can be used
to manage security groups, including:

® security-group-create

® security-group-delete

® security-group-list

[122]

Chapter 8

® security-group-rule-create
® security-group-rule-delete
® security-group-rule-list

® security-group-rule-show

® security-group-show

® security-group-update

From the Horizon dashboard, security groups and rules are managed from the
Compute | Access & Security panel.

Using CIDR to control traffic

Understanding how to properly subnet networks using the Classless Inter-Domain
Routing (CIDR) notation is important for controlling access to instances. Using the
wrong CIDR notation in a security group rule can expose your application and your
environment to the Bad Guys™, a situation we'd like to prevent.

The following are some examples of networks using CIDR notation:

® 0.0.0.0/0 - This would allow traffic from all IP addresses

* 192.0.2.0/0 - This would still allow traffic from all IP addresses

* 192.0.2.0/8 - This would restrict traffic to IP addresses starting with
192.x.X.X

* 192.0.2.0/16 - This would restrict traffic to IP addresses starting with
192.0.%x.xX

* 192.0.2.0/24 - This would restrict traffic to IP addresses starting with
192.0.2.x

* 192.0.2.1/32 - This would restrict traffic to a single host with IP address
192.0.2.1

In many cases, instances exposed to the Internet will require looser security group
rules to allow traffic from all over the world compared to instances that serve
backend functions and don't require access to anything other than other groups or
networks in the cloud. Limiting access to instances using security groups and other
hardening techniques is a highly recommended security practice in either case.

[123]

Security Group Fundamentals

Applying security groups to instances and
ports

Security groups can be applied to instances using the Nova CLI, Neutron CLI,
or Horizon dashboard. Many users find themselves applying security groups to
instances at instance creation using the nova boot command, like this:

nova boot .. --security-group <SECURITY GROUP ID> INSTANCE NAME

Applying multiple security groups to an instance can be accomplished using a
comma-separated list, as shown here:

nova boot .. --security-group <SG 1>,<SG 2>,<SG 3> INSTANCE NAME

When a security group is not specified, the default group that corresponds to the
project or tenant creating the instance is used. Security groups can also be applied to
running instances by using either the neutron port-update command or the nova
add-secgroup command. The following example demonstrates the use of port-
update to apply security groups to a port:

neutron port-update <PORT ID> --security-group <SECURITY GROUP_ID>

% Using port -update to assign security groups to a port will overwrite
s existing security group associations.

Multiple security groups can be associated with a Neutron port simultaneously. To
apply multiple security groups to a port, use the - -security-group flag before each
security group:

neutron port-update <PORT ID> \

--security-group <SECURITY GROUP ID1> \

--security-group <SECURITY GROUP_ ID2> \

--security-group <SECURITY GROUP ID3>

The following example demonstrates the use of the nova add-secgroup command
to apply a security group to all ports connected to an instance:

nova add-secgroup <INSTANCE ID> <SECURITY GROUP_ID>

The add- secgroup command should be run once for each security group rule
being added.

[124]

Chapter 8

To remove security group rules from a port, use the neutron port-update
command with the - -no-security-group flag, as shown here:

neutron port-update <PORT ID> --no-security-group

Working with security groups in the dashboard

Within the Horizon dashboard, security groups are managed within the Access &
Security section under the Compute tab, shown here:

3 openstack = admin + & admin »
Proect . Access & Security
Ovarview Q| +Creals Security Group
Instances
Name Description Actions
default Default security group Manage Rules
Displaying 1 fem
Natwork
Admin
Iebentity

Creating a security group
To create a Security Group, click on the Create Security Group button in the upper
right-hand corner of the screen. A window will appear that will allow you to create a

security group:

Create Security Group

Name *
Description:

Security groups are sets of IP filter rules that are applied
to the network settings for the VM. After the security
group is created, you can add rules to the security group.

MANAGEMENT]|

Description

Cancel Create Security Group

[125]

Security Group Fundamentals

The Name field is required. When you are ready to proceed, click on the blue Create
Security Group button to create the security group and return to the Access &
Security page.

Managing security group rules

From the Access & Security page, you can add rules to a security group by clicking
on the Manage Rules button of the corresponding group:

Access & Security

Security Groups Kaey Pairs Floating IPs APl Access
Q + Create Security Group
Name Description Actions
MANAGEMENT
default Default security group Manage Rules

Displaying 2 items

All the rules for the security group will be listed. By default, the security group will
contain only egress rules. To add a rule, click on the Add Rule button in the upper
right-hand corner, as shown here:

Manage Security Group Rules: MANAGEMENT (422d44f3-
f37c-449d-8f2f-ed0c27c74539)

Direction Ether Type IP Protocol Port Range Remote IP Prefix Remote Security Group Actions

Egress IPvE Any Any =0 -
Egress 1Pva Any Any 0.0.0.0/0 -

Displaying 2 items

A window will appear that will allow you to create rules. Within the rule list,
you can choose from a predefined list of protocols or create a custom rule. In the
following example, we will create a rule that allows SSH access from networks
matching the 10.0.0.0/8 CIDR, which includes our client workstation:

[126]

Chapter 8

Add Rule
Rule *
SSH

Remote * @

CIDR

CIDR @

10.0.0.0/8]

ar

Description:

Rules define which traffic is allowed to instances
assigned to the security group. A security group rule
consists of three main parts:

Rule: You can specify the desired rule template or use
custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

Open Port/Part Range: For TCP and UDP rules you may
choose to open either a single port or a range of ports.
Selecting the “Port Range® option will provide you with
space to provide both the starting and ending ports for
the range. For ICMP rules you instead specify an ICMP
type and code in the spaces provided.

Remote: You must spacify the source of the traffic to be
allowed via this rule. You may do so either in the form of
an IP address block (CIDR) or via a source group
(Security Group). Selecting a security group as the source
will allow any other instance in that security group access
to any other instance via this rule,

Cancel Add

To complete the rule creation, click on the blue Add button.

Applying security groups to instances

To apply a security group to an instance, return to the Instances section of the
Compute tab and perform the following steps:

1. Click on the arrow under the Actions menu next to the instance and choose
Edit Security Groups:

Instances

Instance Name image
Name
clrros=

MyDirectinstance 0.3.4-
xBB_B4
clrros-

MylnstanceBehindRouter 0.3.4-
xB6_

Digplaying 2 items

instance Name >

IP Address

10.50.0.3

192.168.1.4

Floating
IPs:

10.50.0.5

Fiter & Launch Instance More Actions =
Time
Size P-K?: Status ::a“:abilﬂv Task Pwser since Actions
created
2 week:
mitiny - Active nova None Running 5::\.@5' Create Snapshot =
mitiny - Active nova None Running :daysﬁl Create Snapshot | =
Disassociate Floating 1P
Attach Interface
Detach Interface
Edit Instance
Edit Security Groups
Consale

[127]

Security Group Fundamentals

2. A window will appear that allows you to apply or remove security groups
from an instance. Remove any existing security group from the instance and
apply the MANAGEMENT group only:

Edit Instance

nformation * Security Groups

Add and remove security groups to this instance from the list of available security groups.

All Security Groups Q Instance Security Groups Q

default MANAGEMENT I:l

Cancel Save

3. Click on the blue Save button to apply the changes and return to the
Instances screen.

Caveats

Many workflows involve using the nova boot command or the Horizon dashboard
to create instances with multiple network interfaces and security groups. When
security groups are applied to an instance in the ways, there is no way of specifying
which security group gets applied to a particular interface. The result is that all
security groups passed to the command are applied to all of the interfaces. In most
cases, this is an undesirable behavior.

When multi-homing an instance, it's best to adopt a workflow that involves creating
Neutron ports first, applying the respective security groups to those ports, and then
booting the instance with the nova boot command and specifying port IDs rather
than network IDs, as shown here:

nova boot .. --nic port-id=<PORT1> --nic port-id=<PORT2> <INSTANCE NAME>

[128]

Chapter 8

When using this method, it is important to remember to delete the ports
M after deleting the instance, as Nova will not automatically perform this
Q function when attaching ports manually to instances. If you forget to
delete the ports, expect to prematurely run out of IP addresses in the
network!

Port security

In addition to providing users with a mechanism to allow inbound and outbound
traffic to and from instances, Neutron also applies anti-spoofing rules to all ports to
ensure that unexpected or undesired traffic cannot originate from, or pass through, a
port. This includes rules that prohibit instances from acting as DHCP servers, acting
as routers, or sourcing traffic from an IP address that is not its fixed IP. The latter is
most often seen when setting up high availability between instances using Virtual
Router Redundancy Protocol (VRRP), keepalived, or some other method. These
security mechanisms are implemented by default for every port. However, there are
two methods that can be used to work around or remove these security restrictions.
They are:

e The allowed-address-pairs extension

* Disabling port security

Allowed address pairs

The allowed-address-pairs extension can be used to allow additional subnets
and MAC addresses, other than the fixed IP and MAC address associated with the
port, to act as source addresses for traffic leaving the port or virtual interface. This is
useful when treating an instance as a routing device or VPN concentrator or when
implementing high availability between multiple instances using addresses that
need to "float" between them.

Existing allowed address pairs can be found in the details of each port using the
neutron port-show command. For every network and/or MAC address that
should be allowed, the neutron port-update command should be used with
the --allowed-address-pair flag, as shown here:

neutron port-update <PORT_ID> \
--allowed-address-pairs type=dict list=true \

ip address=<IP ADDR>,mac_address=<MAC ADDR>

[129]

Security Group Fundamentals

The MAC address value is optional. If a MAC address is not specified, the
= MAC address of the port is used.

Multiple allowed address pairs can be associated with a Neutron port
simultaneously. To apply multiple allowed address pairs to a port, simply specify
multiple ip_address and mac_address key/value pairs, as shown here:

neutron port-update <PORT_ID> \
--allowed-address-pairs type=dict list=true \
ip address=<IP_ADDR>,mac_address=<MAC ADDR> \
ip address=<IP ADDR>,mac_ address=<MAC ADDR>

Using port -update to assign allowed address pairs to a port will
" overwrite existing address pairs.

Disabling port security

In Kilo, the port security extension was introduced for the M2 plugin. It allows
all packet filtering to be disabled on a port. Port security can be disabled at the
individual port level or at the network level, which means that any port associated
with a network will have port security disabled automatically. When port security is
disabled, anti-spoofing rules are not applied. This is useful in cases such as Network
Functions Virtualization (NFV), where an instance may serve as a virtual appliance
that needs to perform network functions such as routing, firewalling, or more
without being inhibited by standard port restrictions. On the flip side, disabling
port security altogether means that instances can steal other instance IPs in the same
network or act as rogue DHCP servers, resulting in issues that may take a while to
troubleshoot and debug.

The port security extension requires additional configuration that
% will not be discussed in this book, and it is not enabled by default in this
’ RDO installation.

When the port security extension is enabled, port security can be disabled on
all ports connected to a particular network by setting the port_security enabled
attribute to false during network creation, like so:

[130]

Chapter 8

[root@allinone jdenton(keystone_admin)l# neutron net-create TestNet-NoSecurity --port_security_enabled=false
Created a new network:

Field	value
admin_state_up	True
id	f83b53ff-7d62-48fb-Baae-b713dfa3986e
mtu	@
name	TestNet-NoSecurity
[port_security_enabled	False
provider:network_type [vxlan	
provider:physical_network	
provider:segmentation_id	27
router:external	False
shared	False
status	ACTIVE
subnets	
tenant_id	€51a93428adad4f297e5fe65a3ac3baf

Port security can be disabled on an individual port by setting the port_security_
enabled attribute to false while creating or updating a port, as shown here:

[root@allinone jdentonikeystone_admin)]# neutron port-create ——port-security-enabled=false MyDemoNetwork
Created a new port:

| Field Value |
| admin_state_up True

| allowed_address_pairs

| binding:host_id

| binding:profile {}

| binding:vif_details {}

| binding:vif_type unbound

| device_id
| device_owner

| dns_assignment

|
|
|
|
|
|
|
| binding:vnic_type | normal
|
|
| {"hostname": "host-192-168-8-3", "ip_address": "192,168.8.3", "fgdn": "host-192-168-8-3.openstacklocal."}
|
|
|
|
|

| dns_name

| fixed_ips {"subnet_id": "6eel@d34-4d82-4901-9627-22a758096e52", "ip_address": "192.168.8.3"}
| id GlGedaZc-6788-413d-abcE-6bBebBe9ab? 7

| mac_address fa:16:3e:d2:5a:e7

| name

| network_id cBcded87-9a30-4e86-Bc31-11d11F56ch2c

| I port_security_enabled | False

| security_groups

| status DOWN
| tenant_id | c51a93428adadaf297e5fe65a3ac3baf
_— L

Neutron does not allow port security to be disabled on a port
associated with one or more security groups. Before disabling port
% security, be sure to remove all security groups from a port using
L the port -update command with the - -no-security-groups flag.
Disabling port security means that any filtering must be implemented
within the guest operating system.

[131]

Security Group Fundamentals

Summary

Security groups are fundamental for controlling access to instances by allowing
users to create inbound and outbound rules that limit traffic to and from instances
based on specific addresses, ports, protocols, and even other security groups. Default
security groups are created by Neutron for every tenant or project, and these allow
all outbound communication and restrict inbound communication to instances in

the same default security group. Subsequent security groups are locked down even
further, allowing only outbound communication and not allowing any inbound
traffic at all unless modified by the user.

Security group rules are implemented on the compute nodes themselves and are
triggered when traffic enters or leaves a virtual network interface belonging to an
instance. Users are free to implement additional firewalls within the guest operating
system, but they may find managing rules in both places a bit cumbersome. Many
organizations still utilize and rely on physical firewall devices to provide additional
filtering at the edge of the network, which may mean that coordination is required
between users of the cloud and traditional security teams to ensure proper rules
and actions are in place in all locations.

Networking is one of the most important components of OpenStack. In fact, I would
argue that it is the most important component. After all, what good is a car without
roads to take you where you need to go? In this book, we looked at core Neutron API
objects consisting of networks, subnets, and ports, as well as all the essential features
provided by OpenStack Networking, including switching, routing, and security.
Development in OpenStack and, by extension, the Neutron project, moves very
quickly, with a new release seen every 6 months. The core components and features
of Neutron covered in this book should not be expected to change much in the near
future, but extensions to the API are being added at a feverish pace and will provide
welcome features and functionality. For up-to-date information on features, bugs, and
other Neutron-related topics, be sure to subscribe to the OpenStack mailing lists at
http://lists.openstack.org. You can also subscribe to bug notices on LaunchPad
at https://bugs.launchpad.net/neutron. For more in-depth coverage of the topics
found in this book, check out Learning OpenStack Networking (Neutron), Second Edition,
available through Packt Publishing at http: //www.packtpub. com.

[132]

Configuring VirtualBox

The examples provided in this book rely on an installation of OpenStack on a single
virtual machine connected to three virtual networks built out in VirtualBox. This
appendix is meant to assist with the setup of a virtual environment using VirtualBox
so that many of the examples throughout the book can be followed. This appendix
covers VirtualBox 5.0.x configuration on Mac OS X 10.11 (El Capitan).

Configuring VirtualBox networking

When configuring the OpenStack environment within VirtualBox, the following
networks are required:

Network Type | Name Network Adapter Address DHCP
NAT <default> <default> <default> Yes
Host—only vboxnet0 10.254.254.0/24 | 10.254.254.1 No
Host—only vboxnetl 10.50.0.0/24 10.50.0.1 No

The host-only networks will be configured within the Preferences window of the
VirtualBox application, while the NAT network is a default network provided by
VirtualBox that uses the host machine to provide outbound connectivity through
the use of Network Address Translation (NAT). The configuration of the host-only
networks is covered in the following sections.

[133]

Configuring VirtualBox

Configuring host-only networks

To configure host-only networks within VirtualBox, open up the Preferences
window. On a Mac OS X machine, this can be found under the VirtualBox menu. On
a Windows machine, this can be found under the File menu. By default, the General

settings window will appear:

=

Gemral‘ Input Update

Default Machine Folder:

VRDP Authentication Library:

Language

VirtualBox - General

@ = &

Network Extensions

/Users/jdenton/VirtualBox VMs

VBoxAuth

Cancel

5
e
e -

1. Click on the Host-only Networks button to reveal existing host-only

networks:

VirtualBox - Network

. S /- A T [- .
. & 5 @ = oy
General Ge':'_?ﬁl. Update Lanquage Display Network = Extensions
NAT Networks |

Cancel

2. There are no Host-only Networks defined by default. On the right-hand side
of the window, click on the icon shaped like a PCI card with a plus sign to

add a new network:

[134]

Appendix

VirtualBox - Network
& . = ; i
General Input Update Lanquage Display Network Extensions Iz’}b'i(\r
LLLEHE S DHCP Server
IPv4 Address: 10.254.254.1
IPv4 Network Mask: 255.255.255.0
IPv6 Address:
IPv6 Network Mask Length: 0
Cancel |

This network will be used as the management and OpenStack API network.
Our client machine, in this case, the workstation running VirtualBox,

needs an IP address from the network in order to communicate with the
virtual machine hosting the OpenStack environment. Specify the address

10.254.254.1 and a netmask of 255.255.255. 0. Be sure

to disable DHCP

in the DHCP Server section and click on the OK button to save the changes.
Once the changes have been saved, the network will appear in the list:

VirtualBox - Network
BV e L
General Input Update Language Drsn!av Extensions
General
WEYEN T Host-only Networks

 vooxneto [
)
&

2 s S ——

[135]

Configuring VirtualBox

4. Click on the PCI card icon again to add an additional network that will be
used to communicate with the external provider network created in this book:

-

VirtualBox - Network

-y
Network

5 \/-' s N
General Input Update Language Display

DHCP Server

IPv4 Address: 10.50.0.1|

Extensions PrDXV

IPv4 Network Mask: 255.255.255.0
IPv6 Address:

IPv6 Network Mask Length: 0

Cancel | (N

5. Click on OK to save the changes. Once they have been saved, both networks
will be listed under Host-only Networks:

VirtualBox - Network

" o9 @ = @& L

General Input Update Language Display Emnsmns Proxy

NAT Networks ||sleael AN

]
vboxnet1 best
0&'}

? Cancel ﬁ

6. Click on OK to save the networks.

[136]

Appendix

Creating a virtual machine

To create a virtual machine, follow these steps:

1. To create a virtual machine, click on the New icon in Oracle VM VirtualBox

Manager:

Oracle VM VirtualBox Manager

[N
."-I- - l(. N l'.\ :
¥+ Details &0 Snapshots

W e 5

g
New Settings Discard Start

&7 Windows 10 = General

=)
R0, @ Powerd OO Name: Windows 10 .
)7 Ubuntu Server Operating System: Windows 10 (64-bit)

@ Powered Off 1] System

= Preview

In the wizard, name the virtual machine, specify the operating system

2.
version (or something close to it), and click on Continue:

Name and operating system

Please choose a descriptive name for the new virtual machine
and select the type of operating system you intend to install
on it. The name you choose will be used throughout

VirtualBox to identify this machine.

Name: OpenStack Networking Essentials

Type: Linux il E(ag

Version: = Red Hat (64-bit) [V |

Expert Mode Go Back M Cancel

[137]

Configuring VirtualBox

3. In the next window, specify the amount of memory to allocate to the
virtual machine and click on Continue. A minimum of 4096 MB of
RAM is recommended.

Memory size

Select the amount of memory (RAM) in megabytes to
be allocated to the virtual machine.

The recommended memory size is 768 MB.
4096 - MB

4 MB 32768 MB

Go Back m Cancel

4. In the next window, click on Continue to create a virtual hard disk:

Hard disk

If you wish you can add a virtual hard disk to the new
machine. You can either create a new hard disk file or
select one from the list or from another location using
the folder icon.

If you need a more complex storage set-up you can skip
this step and make the changes to the machine settings
once the machine is created.
The recommended size of the hard disk is 8.00 GB.

Do not add a virtual hard disk

° Create a virtual hard disk now
Use an existing virtual hard disk file

Windows 10.vdi (Normal, 32.00 GB)

Go Back M Cancel

[138]

Appendix

5. A hard disk wizard will appear that will allow you to specify the virtual hard
disk type. Choose the default VDI image type and click on Continue:

Hard disk file type

Please choose the type of file that you would like to use for the new
virtual hard disk. If you do not need to use it with other virtualization
software you can leave this setting unchanged. |

() VDI (VirtualBox Disk Image)
VMDK (Virtual Machine Disk)
VHD (Virtual Hard Disk)

HDD (Parallels Hard Disk)
QED (QEMU enhanced disk)
QCOW (QEMU Copy-On-Write)

Expert Mode Go Back m Cancel

6. The next step of the wizard allows you to specify whether the disk should
grow dynamically up to the maximum size as data is added or be fully
allocated at creation. Choose your preference and click on Continue:

Storage on physical hard disk

Please choose whether the new virtual hard disk file should grow as
it is used (dynamically allocated) or if it should be created at its
maximum size (fixed size).

A dynamically allocated hard disk file will only use space on your
physical hard disk as it fills up (up to a maximum fixed size),
?iéggugh it will not shrink again automatically when space on it is
reed.

A fixed size hard disk file may take longer to create on some
systems but is often faster to use.

o Dynamically allocated
Fixed size

Go Back m Cancel

[139]

Configuring VirtualBox

7. Lastly, provide a name for the virtual hard disk file and set the size of the
disk to be created. For the examples in this book, a minimum of 12 GB is
recommended.

File location and size
Please type the name of the new virtual hard disk file into the box below or
click on the folder icon to select a different folder to create the file in.
OpenStack Networking Essentials A
Select the size of the virtual hard disk in megabytes. This size is the limit on

the amount of file data that a virtual machine will be able to store on the hard
disk.

12.00 GB

4.00 MB 2.00TB

Go Back m Cancel

8. Click on the Create button to complete the creation of the virtual machine.
The virtual machine will be listed in Oracle VM VirtualBox Manager:

® ® Oracle VM VirtualBox Manager
H "f’ \ﬂ:N _»/ &) snapshots
N‘:« Settings Discard Start b4 m
ETT5 Windows 10 = General = Preview
10- i Powered Off
e e Narne: OpenStack Networking Essentials
‘."a\, Ubuntu Server Operating System: Red Hat (84-bit)
/@ Powered Off
- o m .
— Systs OpenStack Networking
8 platworkg Base Memory: 4096 MB .
@) Powered Off v Essentials

Boot Order: Floppy, Optical, Hard Disk

[140]

Appendix

Configuring a virtual machine

Before the operating system is installed on the virtual machine, it is a good idea to
configure the virtual network interfaces available to the machine. Follow these steps

to configure the virtual machine:

1. From Oracle VM VirtualBox Manager, choose the virtual machine and click
on the Settings icon. A window will appear that defaults to the General

settings:

OpenStack Networking Essentials - General

By EH = Qe @S W

System Display Storage Audio Network Ports Shared Folders User Interface

m Advanced Description Encryption

Name: OpenStack Networking Essentials

]
‘*-..

Type: Linux

(O <>

Version: Red Hat (64-bit)

? Cancel | (I

[141]

Configuring VirtualBox

2. Click on the Network icon to modify the network interfaces presented to the
virtual machine. The first adapter available, Adapter 1, should be enabled
and attached to the vboxnet 0 host-only network created earlier:

OpenStack Networking Essentials - Netwark

Qo |Eye = E

Storage Audioc | Network Ports Shared Folders User Interface

=

General System Display

ICESEER Adapter 2

Enable Network Adapter

Adapter 3 Adapter 4

Attached to: Host-only Adapter H
Name: vboxnet0 H
« Advanced

Adapter Type: Intel PRO/1000 MT Desktop (82540EM) H
Promiscuous Mode: Deny H
MAC Address: 080027AEF339 ®

Cable Connected

Port Forwarding

? Cancel [LLOK

[142]

Appendix

3. Adapter 2 should be enabled and attached to the vboxnet1 host-only

network created earlier. The Promiscuous Mode setting should be changed

to Allow All:

OpenStack Networking Essentials - Network

B EE gy o

General System Display Storage Audio

Adapter 1 Adapter 3 Adapter 4
Enable Network Adapter
Attached to: Host-only Adapter E
Name: vboxneti
v Advanced
Adapter Type: Intel PRO/1000 MT Desktop (82540EM)

Promiscuous Mode: | Allow All

Ports Shared Folders User Interface

MAC Address: 08002749F6D3
Cable Connected

Port Forwarding

Cancel

[N <> <> <>

[143]

Configuring VirtualBox

4. Adapter 3 should be enabled and attached to the NAT network:

OpenStack Networking Essentials - Network
L [e (s - | @ a
o EE g Py » o |
General System Display Storage Audio | Network Ports Shared Folders User Interface
Adapter 1 Adapter 2 Adapter 4
4 Enable Network Adapter
Attached to: NAT <
Name: =
[» Advanced
? Cancel | i

By default, VirtualBox provides a NAT network that allows virtual

machines to use the host machine for outbound network access. This
" network is required for the virtual OpenStack node to download the

OpenStack software.

5. Click on the OK button to complete the network adapter configuration
process and close the settings window.

Installing the CentOS operating system

Before an operating system can be installed, an ISO image must be downloaded
from the Internet and attached to the virtual machine as a CD. The CentOS Server
operating system can be downloaded from the following location:

https://www.centos.org/download/.

The minimal ISO is all that is required for a successful installation.

[144]

Appendix

Attaching the ISO to the virtual machine

To attach ISO file to the virtual machine, follow these steps:

1. Once the ISO has been downloaded, choose the virtual machine in the Oracle
VM VirtualBox Manager and click the Settings icon. Click on the Storage
icon to manage storage options:

OpenStack Networking Essentials - Storage
m oG OE |G @D [T
General System Display | Storage Audio Network Ports Shared Folders User Interface
Storage Tree Attributes
&> Controller: IDE Optical Drive: IDE Secondary Master ﬂ @)
- @ Empty Live CD/DVD
4* Controller; SATA
; . . Information
izl OpenStack Networking Essentials.v...
Type: --
Size: --
Location: --
Attached to: --
(=R
? Cancel (OKIN

[145]

Configuring VirtualBox

2. Click the first CD icon labeled Empty to modify the optical drive. Click the
CD icon attach the downloaded ISO to the virtual machine. When prompted,
click Choose Virtual Optical Disk File to find the ISO on the local machine:

mr s e . = 7 T
P OpenStack Networking Essentials - Storage
| B iy v
f General System Display | Storage | Audio Network Ports Shared Folders User Interface
F O HHI = E &mE . Application Installers £ th < Q 1
. & Cent0S-7-x..1-1503-01.iso

P=)cent0s-7-x86_64-Minimal-1511.iso

F $ Dropbox
& icloud Drive — |

I /A Applications .

) Desktop

g R Cent0S-7-x86_64-Minimal-1511.iso |
i Downloads I

k Image - 632.3 MB

=1 Application Installers S0 r
February 23, 2016 at 8:28 PM

[5 BoxSync M December 9, 2015 at 5:03 PM |
- December 9, 2015 at 5:03 PM ||
Add Tags...
Devices

1;:_] retina-imac

Files of type: All virtual optical disk files (*.dmg... @

MNew Folder Options Cancel Open

3. Select the ISO and click Open to attach the image. Once attached, the image
will be listed under the IDE controller:

[146]

Appendix

Storage Tree

N Controller: IDE

OpenStack Networking Essentials - Storage

General System Display | Storage Audio Network Ports Shared Folders User Interface

@ Cent0S-7-x86_64-Minimal-1511.is...
£ Controller: SATA
2 OpenStack Networking Essentials.v...

_| H

Attributes
Optical Drive: IDE Secondary Master < @)
Live CD/DVD
Information
Type: Image

Size: 603.00 MB
Location: /Application Installers/CentOS-7-x86...
Attached to: -

Cancel (NOKIN

4. Click OK to close the settings window.

Starting the virtual machine
From the Oracle VM VirtualBox Manager, choose the virtual machine and click the

Start icon:

[] ®

H S0l p
W Ty
New Sefings Discand Start

#77 Windows 10

L 104 & Powered Off
4 ~| Ubuntu Server
/| & Powered Off

“=n OpenStack Networking Essentials
W Powered Off

Oracle VM VirtualBox Manager

£ General = Preview

Name: OpenStack Networking Essentials
Operating System: Red Hat (64-bit)

o OpenStack Networking

Base Memory: 4096 MB
Boot Order: Floppy, Optical, Hard Disk Essentials

[147]

Configuring VirtualBox

The virtual machine will boot off the CD image and present you with the
installation screen:

OpenStack Networking Essentials [Running]

CentDS 7

Install CentOS 7
Test this media & install CentDS 7

Troubleshoot ing

Choose Install CentOS 7 from the menu. Installing the guest operating system is
outside the scope of this book. However, there are plenty of guides available on the
Internet, including the following from HowtoForge:

https://www.howtoforge.com/centos-7-server.

It is safe to ignore prompts to configure networking, as those tasks will be completed
once the virtual machine is up and running,.

[148]

Appendix

Configuring virtual machine networking

Once the guest operating system has been installed, it is time to configure the
networking within the virtual machine. This includes the setup of the management
and NAT networks.

Accessing the virtual machine

Before networking has been configured, access to the virtual machine will be limited
to the console. From the virtual machine console, enter the credentials specified
during the installation process. A successful login should result in a screen similar
to the following;:

OpenStack Networking Essentials [Running]

CentDS Linux 7 (Core)
Kernel 3.18.8-327.el7.x86_64 on an x86_64

localhost login: jdenton
rd:
[jdenton@localhost ~15 _

[149]

Configuring VirtualBox

Use the sudo command to login as root:

OpenStack Networking Essentials [Running]

6_64 on an xB6_64

localhost login: jdenton

[jdentonRlocalhost 1§ sudo su

‘ust you have received the usual lecture from the local
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudol password for jdenton:
[root@localhost jdentonl#t _

2SS i (0 G [V Left 88

Configuring network interfaces

Using the ip addr command, verify that three network interfaces are attached
to the virtual machine. The name of the network interfaces may vary from
environment to environment:

[150]

Appendix

OpenStack Metworking Essentials [Running]
e trust you have received the usual lecture from the local
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for jdenton:
[rootPlocalhost jdentonl#t ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc nogqueue state UNKNOWN
link-/loopback BB:88:88:88:88:88 brd BH:68:80:80:00:808
inet 127.8.8.1-8 ope host lo
valid_1ft forever preferred_1ft forever
inetb ::1-128 scope hos
valid_1ft forever preferred_Ift forever
: <BROADCAST ,MULTICAST,UP,LOWER_UP> mtu 1588 gdisc pfifo_fast

‘ether BB:88:27:ae:f3:39 brd ff:ff:ff:ff:FF:FF
<BROADCAST ,MULTICAST,UP,LOWER_UP> mtu 1588 gdisc pfifo_fast

‘ether B8:88:27:49:f6:43 brd fE:ff:ff:ff:FF:FF
: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1588 gdisc pfifo_fast

linksether B8:88:27:a6:4e:84 brd ff:ff:ff:ff:fF:fF
[root@localhost jdentonl#t _

G s o . i {0} (9 [¥) Left 36

In this environment, the interfaces are named enp0s3, enp0s8, and enp0s9. Using

a text editor, edit the network interface files found at /etc/sysconfig/network-
scripts/ifcfg-* with the configuration provided in Chapter 2, Installing OpenStack
Using RDO. Once configured, bring up the interfaces using the i fup command.

Accessing a virtual machine over SSH

Once networking has been configured on the virtual machine, it should be possible
to access it over the management network via SSH from your client workstation.
Within a terminal, SSH to the virtual machine using the username and password
provided during installation:

retina—imac:~ jdenton$ ssh jdenton@l®.254.254.100

The authenticity of host '10.254.254.100 (10.254.254.1@0)' can't be established.
ECDSA key fingerprint is SHA256:CvnFum06vR46AgVX3xGoMa51CeMz5eWMKGk2HBZcnGg.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.254.254.100' (ECDSA) to the list of known hosts.
jdenton@l®.254.254,100's password:

Last login: Sun Mar 20 13:09:10 2016

[jdenton@localhost ~1%

[151]

Configuring VirtualBox

Use the ping command within the virtual machine to verify outbound connectivity
to the Internet:

[jdenton@localhost ~]$ ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 tt1=63 time=32.9 ms

~C

——— 8.8.8.8 ping statistics —

1 packets transmitted, 1 received, 0% packet loss, time @ms
rtt min/avg/max/mdev = 32.990/32.990/32.990/0.000 ms

Once connectivity has been verified, you may proceed with the installation of
OpenStack documented in Chapter 2, Installing OpenStack Using RDO.

[152]

A

additional attributes 32
additional installation tasks
about 23
demo project and user, creating
image, uploading to Glance 25, 26
keystone_demo file, configuring 25
security group rule, creating 23, 24
advanced networking features
about 3
firewalling 3
load balancing 3
virtual private networks 3
AMD-v technology 11

C

CentOS operating system
installing 144
ISO, attaching to virtual machine 145-147
URL 144
virtual machine, starting 147, 148
CentOS Server
download link 11
Classless Inter-Domain Routing
(CIDR) notation
about 44,123
for controlling traffic 123
connectivity, through router
about 72,73
inbound connectivity 74, 75
outbound connectivity 74
core plugins 6

Index

D

default security group 121,122

DHCP agent 7

Distributed Virtual Router (DVR) 77

Dynamic Host Configuration Protocol
(DHCP) 7

E

egress traffic 121

F

Firewall as a Service (FWaaS) 3,117
flat network 59-61

floating IP 109

Forwarding Database (FDB) table 56

G

gateway interface 100
Generic Routing Encapsulation (GRE) 2
GRE network 65

H

Highly Available (HA) router 77

Horizon dashboard
networks, creating within project 42-46
network topology, viewing 46
resources, managing as administrator 47-49
resources, managing within project 42
using 42

[153]

inbound connectivity 74, 75
initial network configuration
about 12,13
example networks 13
host, connecting to 16
interface configuration 14-16
initial steps, OpenStack installation
about 16
hostname, setting 17
NetworkManager, disabling 17
Network Time Protocol (NTP), installing 17
network utilities, installing 17
permissions 16
system upgrade 18
internal interface 100
Internet Protocol Security (IPSec) 3
IP Address Management (IPAM) system 6

K

Kernel-based Virtual Machine (KVM) 1

L

Link Aggregation Control Protocol
(LACP) 2

LinuxBridge platform 55
LinuxBridge agent 56
LinuxBridge driver 56
Linux bridges

using 56
Linux Containers (LXC) 1
Load Balancing as a Service (LBaaS) 3
Local Area Network (LAN) interface 100
local network 58, 59

mechanism drivers 7
metadata agent 7
Modular Layer 2 (ML2) plugin 2, 56

N

net-list command
using 66-70

net-show command
using 67-70
Network Address Translation (NAT) 133
network attributes
about 30
additional attributes 32
provider attributes 31
Network Functions Virtualization
(NFV) 130
network, implementing
about 6
DHCP agent 7
metadata agent 7
network plugin agent 8, 9
Neutron agents 7
plugins and drivers 6
Networking as a Service (NaaS) 1
networks 29, 30
network types 57
Neutron
about 1,27
routing 71
Neutron agents 7
Neutron API
about 27-29
reference 29
Neutron client
networks, creating 52
networks, listing 51
subnet, creating 53, 54
using 50, 51
Neutron L3 agent 4
Neutron RBAC 31
Neutron router
advanced networking 115,116
attaching, to external provider
network 101, 102
connectivity, testing 105-108
connectivity, testing via floating IP 113, 114
external provider networks 100
floating IP, assigning 110-112
instance, booting 103, 104
multiple routers 114, 115
SNAT behavior, observing 109
using 98, 99
Neutron security groups
characteristics 119

[154]

Neutron workflow
about 37
instance, booting 37
instance, deleting 39

logical model, implementing 37, 38

Nova Network 77

(0

OpenStack
security groups 118
switching 55
system requirements 11, 12
OpenStack architecture
about 4,5
compute nodes 4
controller nodes 4
network nodes 4
storage nodes 4
OpenStack documentation
reference 50
OpenStack Networking
about 1
advanced networking features 3
features 1,2
routing 2
switching 2
OpenStack SDK
reference 41
Open vSwitch
about 55
flow mode 56
normal mode 56
using 56
outbound connectivity 74
ovs-vsctl show command
using 68

P

Packstack
about 18
used, for installing RDO
ports 34-36
port security
about 129
allowed address pairs 129
disabling 130

provider attributes 31
provider bridge 57, 92
provider extension 31
provider networks
creating 91, 92
instance, accessing 94-97
instance, booting 92-94
using 89, 90

R

RDO
answer file, configuring 18
connectivity to dashboard, verifying 22, 23
connectivity to OpenStack, verifying 21, 22
downloading 18
installing 20, 21
installing, Packstack used 18
reference architecture
about 6
network, implementing 6
Remote SPAN (RSPAN) 2
Role Based Access Control
(RBAC) functionality 31
router-gateway-set 101
router interface 100
router-interface-add 101
routers
about 76
Distributed Virtual Router (DVR) 77
examining 86, 87
Highly Available (HA) router 77
standalone router 76
types 76
routers, managing in dashboard
about 78
network topology, viewing 79-81
routers, as administrator 82
routers, creating within project 78, 79
routers, managing with Neutron client
about 83
interface, adding 84, 85
router interfaces, listing 85
routers, creating 83, 84
routers, listing 83

[155]

routing
about 71
connectivity, through router 72, 73
network namespaces 71, 72
RPM Distribution of OpenStack
(RDO) 11

S

security groups
about 118

applying, to instances 127
applying, to instances and ports 124
caveats 128
CIDR, used for controlling traffic 123
creating 125
default security group 121, 122
managing 122
rules, managing 126
using 119-121
working with, in dashboard 125
service plugins 6
Software-Defined Networking (SDN) 56
Source Network Address Translation
(SNAT) 71,74
standalone router 76
subnets 32, 33
switching
basics 55
flat networks 59-61
GRE networks 65
Linux bridges, using 56
local networks 58, 59
network types 57
Open vSwitch, using 56, 57
VLAN networks 61-63
VXLAN networks 63-65
Switch port Analyzer (SPAN) 2
system requirements 11

T

tenant networks 71
tunnel bridge 64
type drivers 7

\'

VirtualBox networking
configuring 133
host-only networks, configuring 134-136
Virtual Extensible LAN (VXLAN) 2
Virtual eXtensible Local Area Network
(VXLAN) 63
Virtual Local Area Networks (VLANSs) 29
virtual machine
accessing, over SSH 151
configuring 141-144
creating 137-140
virtual machine interfaces (VIFs) 34
virtual machine networking
configuring 149
network interfaces, configuring 150, 151
virtual machine, accessing 149
virtual network infrastructure
about 66
commands, using 66
Virtual Private Network as a Service
(VPNaaS) 3
Virtual Router Redundancy Protocol
(VRRP) 129
Virtual Routing and Forwarding (VRF)
domains 71
VLAN network 61-63
VT-x technology 11
VXLAN Network Identifier (VNI) 64
VXLAN networks 63-65
VXLAN Tunnel End Point (VTEP) 63

w

Wide Area Network (WAN) interface 100

[156]

	Cover

	Copyright
	Credits
	About the Author
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: OpenStack Networking Components – an Overview

	Features of OpenStack Networking
	Switching
	Routing
	Advanced networking features
	Load balancing
	Firewalling
	Virtual private networks

	The OpenStack architecture
	A reference architecture
	Implementing the network
	Plugins and drivers
	Neutron agents
	The DHCP agent
	The metadata agent
	The network plugin agent

	Summary

	Chapter 2: Installing OpenStack
Using RDO

	System requirements
	The initial network configuration
	Example networks
	Interface configuration
	Connect to the host

	Initial steps
	Permissions
	Install network utilities
	Set the hostname
	Install Network Time Protocol (NTP)
	Disable NetworkManager
	Upgrade the system

	Install RDO using Packstack
	Download RDO
	Configure the answer file
	Install RDO
	Verify connectivity to OpenStack
	Verify connectivity to the dashboard

	Additional installation tasks
	Create a security group rule
	Create a demo project and user
	Configure the keystone_demo file
	Upload an image to Glance

	Summary

	Chapter 3: Neutron API Basics

	Networks
	Network attributes
	Provider attributes
	Additional attributes

	Subnets
	Ports
	The Neutron workflow
	Booting an instance
	How the logical model is implemented

	Deleting an instance

	Summary

	Chapter 4: Interfacing with Neutron

	Using the Horizon dashboard
	Managing resources within a project
	Creating networks within a project
	Viewing the network topology

	Managing resources as an administrator

	Using the Neutron client
	Creating and listing networks
	Creating a network

	Creating a subnet

	Summary

	Chapter 5
: Switching
	The basics of switching in OpenStack
	Using Linux bridges
	Using Open vSwitch
	Network types
	Local networks
	Flat networks
	VLAN networks
	VXLAN networks
	GRE networks

	A look at our environment
	Getting a closer look

	Summary

	Chapter 6
: Routing
	The basics of routing in Neutron
	Network namespaces
	Connectivity through a router
	Outbound connectivity
	Inbound connectivity

	Types of routers
	Standalone routers
	Highly available routers
	Distributed virtual routers

	Managing routers in the dashboard
	Creating routers within a project
	Viewing the network topology
	Managing routers as an administrator

	Managing routers with the Neutron client
	Creating and listing routers
	Creating a router

	Adding an interface
	Listing router interfaces

	Examining the routers
	Summary

	Chapter 7: Building Networks
and Routers

	Using provider networks
	Creating a provider network
	Booting an instance
	Accessing the instance

	Using a Neutron router
	External provider networks
	Attaching the router to an external provider network

	Booting an instance
	Testing connectivity
	Observing SNAT behavior

	Assigning a floating IP
	Testing connectivity via floating IP

	Multiple routers
	Advanced networking

	Summary

	Chapter 8: Security Group Fundamentals

	Security groups in OpenStack
	Using security groups
	The default security group

	Managing security groups
	Using CIDR to control traffic
	Applying security groups to instances and ports
	Working with security groups in the dashboard
	Caveats

	Port security
	Allowed address pairs
	Disabling port security

	Summary

	Appendix: Configuring VirtualBox

	Configuring VirtualBox networking
	Configuring host-only networks

	Creating a virtual machine
	Configuring a virtual machine
	Installing the CentOS operating system
	Attaching the ISO to the virtual machine
	Starting the virtual machine

	Configuring virtual machine networking
	Accessing the virtual machine
	Configuring network interfaces

	Accessing a virtual machine over SSH

	Index

