Quick answers to common problems

Oracle Database 12c¢c
Security Cookbook

Secure your Oracle Database 12c with this valuable Oracle
support resource, featuring more than 100 solutions to the
challenges of protecting your data

Zoran Pavlovié Maja Veselica [PACKT]enterprise

PUBLISHING

http://www.allitebooks.org

Oracle Database 12¢ Security
Cookbook

Secure your Oracle Database 12c¢ with this valuable Oracle
support resource, featuring more than 100 solutions to the
challenges of protecting your data

Zoran Pavlovi¢
Maja Veselica

enterprise

0N expartise distiec

FPUBLISHING

BIRMINGHAM - MUMBAI

lvww.allitebooks.cond

http://www.allitebooks.org

Oracle Database 12c Security Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1270516

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-212-3

www.packtpub.com

lvww.allitebooks.cond

http://www.allitebooks.org

Authors
Zoran Pavlovic
Maja Veselica

Reviewers
Gokhan Atil
Dmitri Levin
Osama Mustafa
Arup Nanda
Kenneth Roth

Commissioning Editor
Kevin Colaco

Acquisition Editor
Kevin Colaco

Content Development Editors

Credits

Project Coordinator
Shweta H. Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator

Neeshma Ramakrishnan
Deepti Thore

Technical Editor
Gaurav Suri

Copy Editor
Dipti Mankame

Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

lvww.allitebooks.cond

http://www.allitebooks.org

About the Authors

Zoran Pavlovi¢ has worked on various complex database environments including RAC,
ASM, Data Guard, GoldenGate, and so on. Areas of his expertise are security,
performance/SQL tuning and high availabilty/disaster recovery of Oracle database. He has
been working as an instructor for Oracle University since 2010 and during that time he has
trained more than 200 students in Europe. In the last couple of years, Zoran has also been
working on projects for Oracle Consulting. He is an Oracle ACE and he has been featured
speaker/author at many conferences/magazines. He was actively engaged in beta testing
Oracle Database 12c. Currently, Zoran is working as an Oracle Technical Architect in
Parallel d.o.o. Belgrade.

I would like to take this opportunity to acknowledge some important people in my life who
continuously inspire and support me. First, want to say thank you to my parents Milenko and
Stanojka Pavlovic, for everything they taught me, and for all the support they gave me during all
these years. Second, 1 would like to say thank you to my family and my good friends, who helped me
become a better person and a better professional. I am very thankful to our excellent team of technical
reviewers: Arup Nanda, Gokhan Atil, Dmitri Levin, Osama Mustafa, and Kenneth Roth for their
great suggestions and a very helpful feedback. I am also very thankful to Maja Veselica (it was a
pleasure writing this book with you), all the editors, and everyone involved in this book.

lvww.allitebooks.cond

http://www.allitebooks.org

Maja Veselica, MSc in software engineering, is currently working for Parallel d.o.o.,
Belgrade, as an Oracle Database consultant (security, performance tuning, and so on). She
has been working as an instructor for Oracle University since 2010. In the last couple of
years, she has also been working for Oracle Consulting. Also, Maja is a member of Oracle
ACE Program and has more than 20 Oracle certificates. She enjoys (beta) testing Oracle
products and participating in other Oracle-related activities.

This is the first book I've written, and because of that, it will always be special to me. I would like to
thank my entire family and friends for their patience and support. I am especially grateful to my
parents, Mirko and Sanja Veselica, who informally reviewed most parts of the book, and to my uncle
Dusan, aunt Zora, and my best friend Mirjana Markovic for very creative suggestions.

I am very thankful to the technical reviewers: Arup Nanda, Gokhan Atil, Dmitri Levin, Osama
Mustafa, and Kenneth Roth for spending their spare time reviewing this book and for providing us
with very valuable feedback (corrections, suggestions, ideas, and opinions). Also, this book couldn’t
have been written without the Packt Publishing team - thank you all!

Zoran, I always enjoy working with you. Hopefully someday, we'll write another book together.

lvww.allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Gokhan Atil is an Oracle ACE Director and DBA team lead at Bilyoner.com in Istanbul,
Turkey. He has more than 15 years of experience in the IT industry, working with Oracle,
PostgreSQL, Microsoft SQL Server, MySQL, and NoSQL databases. He has a strong
background in software development and UNIX systems. Gokhan is an Oracle Certified
Professional (OCP), and he specializes in high availability solutions, performance tuning,
and monitoring tools.

Gokhan is a founding member and current vice president of Turkish Oracle User Group
(TROUGQG). He's also a member of Independent Oracle User Group (IOUG). Gokhan has
presented at various conferences, and he is a coauthor of Expert Oracle Enterprise Manager
12¢ book.

Gokhan shares his experience of working with Oracle products by blogging at
www.gokhanatil.com since 2008 and on Twitter with the handle @gokhanatil.

Dmitri Levin has been working as a database administrator for more than 20 years.

His areas of interest include the database design, replication, and performance tuning.
Dmitri has spoken at several national and international conferences.

He is currently working as senior database architect and administrator at alphabroder co.

Dmitri has an MS degree in Mathematics from St. Petersburg University, Russia, Oracle
Database 11g OCA, and MS SQL Server 2012 certified DBA.

He can be reached at d_levin@hotmail.com.

lvww.allitebooks.cond

http://www.gokhanatil.com
http://www.allitebooks.org

Osama Mustafa (Oracle ACE Director) has progressive experience in the Oracle products
community. He recently served as an Oracle DBA team leader and is certified in Oracle
products, such as Fusion middleware, and is a database professional, Oracle Certified
Implementation Specialist, and certified Solaris System Administrator. He loves to share his
learning with the Oracle community, so when he is not delivering an Oracle-related session,
he spends a lot of his time participating in OTN (Oracle Technology Network) discussion
forums.

Osama Mustafa is a popular speaker at many Oracle conferences around the world. He is
also the President and Director of JAOUG (Jordan Amman Oracle User Group, which is the
first group in Jordan). He worked as an Oracle database developer and Oracle database
administrator, and now he is a Fusion middleware security specialist and certified in
multiple oracle products.

In addition to this, Osama is a volunteer in Oracle User Group, an author for Oracle
penetration testing books, and a reviewer for Oracle books such as Oracle Data Guard 11gR2
Administration Beginner’s Guide and Oracle 11g Anti-hacker’s Cookbook. He

also organizes RAC Attack around the world, publishes online articles on his blog
https://osamamustafa.blogspot.com, and his articles are published in Oracle Magazine and
OTech magazine. Osama Mustafa is active on Twitter as @osamaoracle and his blog.

First and foremost, I would like to thank my parents and my family for allowing me to follow my
ambitions throughout my childhood and for standing beside me throughout my career. Special thanks
to the girl who changed my life for the better and taught me a lot of things in life.

They have all been the inspiration and motivation for continuing to improve my knowledge and move
my career forward and having the patience with me for having taken yet another challenge, which
decreases the amount of time I can spend with them, and I hope that one day they can understand
why I spent so much time in front of my computer.

Thanks to my friends and Oracle community friends around the world who support me and guide me
to be the person I am today.

lvww.allitebooks.cond

http://www.allitebooks.org

Arup Nanda has been an Oracle DBA for more than 20 years with experience spanning all
aspects from modeling to performance tuning and Exadata. He gives speeches frequently;
he has authored about 500 articles and coauthored 5 books. He also blogs at
arup.blogspot.com and mentors new and seasoned DBAs. He won the Oracle's DBA of the
Year in 2003 and Enterprise Architect of the Year awards in 2012. He is also an Oracle ACE
director and a member of Oak Table Network.

He is the author of Oracle Privacy Security Auditing, Rampant TechPress (2005), Oracle PL/SQL
for DBAs, O'Reilly (2005), Oracle 10g New Features, Oracle Press (2007), Oracle RMAN Recipes,
Apress (2007 and 2013), Expert Oracle Practices, Apress (2013), and Expert PL/SQL Practices,
Apress (2014). He has reviewed many books but prefers not to mention all of them here due
to lack of space.

To my beautiful wife Anu and son Anish for putting up with me during the review of this book.

Kenneth Roth is an Oracle Certified Professional with over 25 years of IT experience
primarily focused on Oracle database products. Ken has worked in a variety of IT-related
roles and industries, including financial services, transportation, pharmaceutical,
manufacturing, and the public sector. Based in Chicago, he currently enjoys the freedom,
variety, and challenges associated with being an independent technology consultant.

lvww.allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

IB] PACKT

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

lvww.allitebooks.cond

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Basic Database Security 7
Introduction 7
Creating a password profile 8
Getting ready 8
How to do it... 8
How it works... 9
There's more... 9
See also 10
Creating password-authenticated users 10
Getting ready 10
How to do it... 11
How it works... 11
There's more... 12
How to create a user using EM Express 12

See also 16
Changing a user's password 16
Getting ready 17
How to do it... 17
How it works... 18
There's more... 18
See also 18
Creating a user with the same credentials on another database 19
Getting ready 19
How to do it... 19
How it works... 20
There's more... 20
See also 21
Locking a user account 21
Getting ready 21
How to do it... 22
How it works... 22
See also 23
Expiring a user's password 23

Getting ready
How to do it...
How it works...
See also
Creating and using OS-authenticated users
Getting ready
How to do it...
How it works...
There's more...
Creating and using proxy users
Getting ready
How to do it...
How it works...
There's more...
Creating and using database roles
Getting ready
How to do it...
How it works...
There's more...
See also
The sysbackup privilege — how, when, and why span /should
Ispanspanyou/span use it?
Getting ready
How to do it...
Database authentication
OS authentication
How it works...
There's more...
See also
The syskm privilege — how, when, and why span /should
Ispanspanyou/span use it?
Getting ready
How to do it...
Database authentication
OS authentication
How it works...
There's more...
See also
The sysdg privilege — how, when, and why span /should
Ispanspanyou/span use it?

24
24
24
24
25
25
25
26
26
27
27
27
28
29
30
30
30
31
32
33

33
33
33
33
35
35
38
38

38
39
39
39
40
40
41
41

41

[ii]

Getting ready 41
How to do it... 42
Database authentication 42

OS authentication 42

How it works... 43
There's more... 44
See also 44
Chapter 2: Security Considerations in Multitenant Environment 45
Introduction 45
Creating a common user 47
Getting ready 48
How to do it... 48
How it works... 48
Rules/guidelines for creating and managing common users 49
There's more... 49
How to create a common user using OEM 12c 49
Creating a local user 52
Getting ready 52
How to do it... 52
How it works... 52
Rules/guidelines for creating and managing local users 53
There's more... 53
How to create a local user using OEM 12c 53
Creating a common role 54
Getting ready 55
How to do it... 55
How it works... 55
There's more... 56
How to create a common role using OEM 12c¢ 57
Creating a local role 58
Getting ready 58
How to do it... 59
How it works... 59
There's more... 60
How to create a local role using OEM 12c 60
Granting privileges and roles commonly 60
Getting ready 60
How to do it... 61
How it works... 62

[iii]

Granting privileges and roles locally 65
Getting ready 66
How to do it... 66
How it works... 67

Effects of plugging/unplugging operations on users, roles, and

privileges 67
Getting ready 68
How to do it... 68
How it works... 69

Chapter 3: PL/SQL Security 71

Introduction 71

Creating and using definer's rights procedures 72
Getting ready 72
How to do it... 72
How it works... 74

Creating and using invoker's right procedures 74
Getting ready 74
How to do it... 75
How it works... 76
There's more... 77

Using span /code-based access control/span 82
Getting ready 82
How to do it... 82
How it works... 84
There's more... 84

Restricting access to program units by using span /accessible by/span 86
Getting ready 86
How to do it... 86
How it works... 88

Chapter 4: Virtual Private Database 89

Introduction 89

Creating different policy functions 92
Getting ready 92
How to do it... 93
How it works... 97
There's more... 98
See also 99

Creating Oracle Virtual Private Database row-level policies 99

[iv]

Getting ready 99
How to do it... 100
There's more... 102
See also 102
Creating column-level policies 103
Getting ready 103
How to do it... 103
How it works... 106
Creating a driving context 106
Getting ready 106
How to do it... 107
Creating policy groups 107
Getting ready 107
How to do it... 108
Setting context as a driving context 108
Getting ready 108
How to do it... 109
Adding policy to a group 109
Getting ready 109
How to do it... 110
Exempting users from VPD policies 114
Getting ready 114
How to do it... 115
Chapter 5: Data Redaction 116
Introduction 116
Creating a redaction policy when using full redaction 119
Getting ready 119
How to do it... 119
How it works... 122
There's more... 124
How to change the default value 125

See also 127
Creating a redaction policy when using partial redaction 128
How to do it... 128
How it works... 131
There's more... 133
Creating a redaction policy when using random redaction 133
Getting ready 133

How to do it...

134

[v]

How it works... 136
Creating a redaction policy when using regular expression redaction 137
Getting ready 137
How to do it... 137
How it works... 140
Using Oracle Enterprise Manager Cloud Control 12c to manage
redaction policies 140
Getting ready 140
How to do it... 140
Changing the function parameters for a specified column 150
Getting ready 151
How to do it... 151
Add a column to the redaction policy 152
Getting ready 152
How to do it... 153
How it works... 154
See also 154
Enabling, disabling, and dropping redaction policy 154
Getting ready 154
How to do it... 155
See also 160
Exempting users from data redaction policies 161
Getting ready 161
How to do it... 161
How it works... 162
Chapter 6: Transparent Sensitive Data Protection 163
Introduction 163
Creating a sensitive type 164
Getting ready 165
How to do it... 165
How it works... 165
There's more... 166
Determining sensitive columns 166
Getting ready 166
How to do it... 167
How it works... 168
Creating transparent sensitive data protection policy 168
Getting ready 169

How to do it...

169

[vi]

How it works... 169
See also 169
Associating transparent sensitive data protection policy with sensitive
type 170
Getting ready 170
How to do it... 170
There's more... 171
See also 171
Enabling, disabling, and dropping policy 171
Getting ready 171
How to do it... 171
How it works... 176
There's more... 176
Altering transparent sensitive data protection policy 177
Getting ready 177
How to do it... 177
How it works... 179
See also 180
Chapter 7: Privilege Analysis 181
Introduction 181
Creating database analysis policy 183
Getting ready 183
How to do it... 183
How it works... 184
There's more... 184
See also 186
Creating role analysis policy 187
Getting ready 187
How to do it... 187
There's more... 188
See also 189
Creating context analysis policy 189
Getting ready 189
How to do it... 190
There's more... 190
See also 193
Creating combined analysis policy 193
Getting ready 193

How to do it...

194

[vii]

There's more... 194
See also 196
Starting and stopping privilege analysis 196
Getting ready 196
How to do it... 197
How it works... 199
There's more... 200
Reporting on used system privileges 204
Getting ready 205
How to do it... 205
There's more... 206
Reporting on used object privileges 207
Getting ready 207
How to do it... 207
There's more... 208
Reporting on unused system privileges 209
Getting ready 209
How to do it... 209
There's more... 210
Reporting on unused object privileges 210
Getting ready 210
How to do it... 210
There's more... 211
How to revoke unused privileges 212
How to do it... 212
There's more... 215
Dropping the analysis 216
Getting ready 216
How to do it... 216
There's more... 217
Chapter 8: Transparent Data Encryption 218
Introduction 218
Configuring keystore location in sqlnet.ora 221
How to do it... 222
Creating and opening the keystore 222
Getting ready 223
How to do it... 223
How it works... 224
There's more... 224

[viii]

Setting master encryption key in software keystore 225

Getting ready 225
How to do it... 225
There's more... 226
See also 226
Column encryption — adding new encrypted column to table 227
Getting ready 227
How to do it... 227
Column encryption — creating new table that has encrypted column(s) 228
Getting ready 228
How to do it... 228
Using salt and MAC 230
Getting ready 230
How to do it... 230
How it works... 231
There's more... 231
Column encryption — encrypting existing column 233
Getting ready 233
How to do it... 233
There's more... 234
Auto-login keystore 235
Getting ready 235
How to do it... 235
How it works... 236
Encrypting tablespace 236
Getting ready 236
How to do it... 236
How it works... 237
There's more... 238
Rekeying 238
Getting ready 238
How to do it... 238
How it works... 239
Backup and Recovery 240
How to do it... 240
There's more... 241
Chapter 9: Database Vault 242
Introduction 242

Registering Database Vault 243

[ix]

Getting ready
How to do it...
How it works...
There's more...
See also
Preventing users from exercising system privileges on schema
objects
Getting ready
How to do it...
There's more...
See also
Securing roles
Getting ready
How to do it...
There's more...
See also
Preventing users from executing specific command on specific object
How to do it...
How it works...
Creating a rule set
Getting ready
How to do it...
There's more...
Creating a secure application role
How to do it...
There's more...
See also
Using Database Vault to implement that administrators cannot view
data
How to do it...
There's more...
Running Oracle Database Vault reports
How to do it...
Disabling Database Vault
How to do it...
Re-enabling Database Vault
How to do it...

Chapter 10: Unified Auditing

243
244
245
245
246

246
246
247
254
256
256
256
256
260
261
262
262
263
264
264
264
267
268
268
270
272

272
272
275
277
278
280
280
281
282

284

Introduction

284

[x]

Enabling Unified Auditing mode
Getting ready
How to do it...

How it works...
Predefined unified audit policies

There's more...
See also
Configuring whether loss of audit data is acceptable
Getting ready
How to do it...
How it works...
Which roles do you need to have to be able to create audit policies
and to view audit data?
Getting ready
How to do it...
How it works...
There's more...
Auditing RMAN operations
Getting ready
How to do it...
How it works...
See also
Auditing Data Pump operations
Getting ready
How to do it...
See also
Auditing Database Vault operations
Getting ready
How to do it...
How it works...
There's more...
See also
Creating audit policies to audit privileges, actions and roles under
specified conditions
Getting ready
How to do it...
How it works...
See also
Enabling audit policy

286
286
286
287
288
289
289
289
290
290
291

291
291
291
292
293
295
295
295
297
297
298
298
298
299
299
299
299
300
300
300

301
301
301
302
303
303

[xi]

Getting ready 303
How to do it... 304
How it works... 304
Finding information about audit policies and audited data 305
Getting ready 305
How to do it... 305
Auditing application contexts 307
Getting ready 307
How to do it... 307
How it works... 308
There's more... 308
See also 309
Purging audit trail 309
Getting ready 309
How to do it... 309
How it works... 310
There's more... 310
Disabling and dropping audit policies 310
Getting ready 310
How to do it... 310
How it works... 311
See also 311
Chapter 11: Additional Topics 312
Introduction 312
Exporting data using Oracle Data Pump in Oracle Database Vault
environment 312
Getting ready 313
How to do it... 314
How it works... 316
There's more... 317
See also 317
Creating factors in Oracle Database Vault 317
Getting ready 318
How to do it... 319
How it works... 332
There's more... 333
See also 334
Using TDE in a multitenant environment 334
Getting ready 335

[xii]

How to do it... 335
How it works... 342
See also 342
Chapter 12: Appendix — Application Contexts 343
Introduction 343
Exploring and using built-in contexts 344
Getting ready 344
How to do it... 345
How it works... 346
There's more... 347
See also 347
Creating an application context 348
Getting ready 348
How to do it... 348
How it works... 349
Setting application context attributes 349
Getting ready 349
How to do it... 349
How it works... 351
There's more... 351
See also 351
Using an application context 351
Getting ready 352
How to do it... 352
How it works... 353
See also 353

Index

354

[xiii]

Preface

This book covers most of the Oracle Database 12c Security features and solutions that exist
in Oracle Database 12c. Oracle Database 12c Security Cookbook will help you better
understand database security challenges. It will guide you through the process of
implementing appropriate security mechanisms, helping you to ensure that you are taking
proactive steps to keep your data safe. Because the book features solutions for common
security problems in the new Oracle Database 12¢, it will make you confident about
securing your database from a range of different threats and problems.

What this book covers

Chapter 1, Basic Database Security, introduces you to the different authentication methods
supported by Oracle Database 12c and also provides a brief overview about creating and
using database roles.

Chapter 2, Security Considerations in Multitenant Environment, focuses on some of the
security considerations concerning common and local: users, roles, and privileges.

Chapter 3, PL/SQL Security, helps you understand the differences and usages of definer
and invoker rights procedures as well as usages of code-based access control. It gives
required information about authorization.

Chapter 4, Virtual Private Database, introduces you to the Oracle Virtual Private Database,
which is a security feature introduced in Oracle Database 8i, which enables you to have a
more granular control over security of your data.

Chapter 5, Data Redaction, introduces you to the new security feature Oracle Data
Redaction, which helps you mask (hide/redact) some (sensitive) data from end users in a
production environment.

Chapter 6, Transparent Sensitive Data Protection, teaches you ways to create classes of
sensitive data and helps you gain more centralized control over how sensitive data is
protected.

Chapter 7, Privilege Analysis, it shows how to create and enable privilege analysis policies.
It also covers how to generate reports and revoke both used and unused Object/System
privileges.

Preface

Chapter 8, Transparent Data Encryption, explains key concepts and tasks such as: two-key
architecture, key management, message authentication code (MAC), salt, encrypting
columns in a table, encrypting a tablespace, creating an encrypted RMAN backup, and so
on.

Chapter 9, Database Vault, covers basic concepts of Oracle Database Vault. It teaches you
how to create and appropriately use realms, rules, rule sets, command rules, factors, and
secure application roles.

Chapter 10, Unified Auditing, introduces a new auditing architecture.

Chapter 11, Additional Topics, covers more advanced topics and teaches you how to
perform everyday administration tasks in Database Vault environment.

Chapter 12, Appendix - Application Contexts, will cover how to retrieve values from built-in
contexts and to create, set, and use an application context.

What you need for this book

Software required (with version)- Oracle Database 12¢, Enterprise Manager Cloud Control
12c R4, Oracle Enterprise Manager Database Express 12¢

Hardware specifications- OS required- Linux (Preferred Oracle Linux 6.5)

Who this book is for

This book is for DBAs, developers, and architects who are keen to know more about
security in Oracle Database 12c. This book is best suited for beginners and intermediate-
level database security practitioners. Basic knowledge of Oracle Database is expected, but
no prior experience of securing a database is required.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

[2]

Preface

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Create a
local user (for example, mike)."

Any command-line input or output is written as follows:

c##zoran@CDB1> create user c##maja identified by oraclel
container=all;

[3]

Preface

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the Create button."

0 Warnings or important notes appear in a box like this.
8 Tips and tricks appear like this.

For this book we have outlined the shortcuts for the Mac OX platform if you are using the
Windows version you can find the relevant shortcuts on the WebStorm help page https:/
/www.jetbrains.com/webstorm/help/keyboard-shortcuts-by-category.html.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub. com. If you purchased this book elsewhere, you can visit http: //www.packtpu
b.com/support and register to have the files e-mailed directly to you.

[4]

https://www.jetbrains.com/webstorm/help/keyboard-shortcuts-by-category.html
https://www.jetbrains.com/webstorm/help/keyboard-shortcuts-by-category.html
mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk »h =

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPu
blishing/Oracle-Database—-12c-Security-Cookbook. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/Pac
ktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http: //www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Formlink, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

[5]

https://github.com/PacktPublishing/Oracle-Database-12c-Security-Cookbook
https://github.com/PacktPublishing/Oracle-Database-12c-Security-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/con
tent/support and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[6]

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Basic Database Security

In this chapter, we will cover the following tasks:

¢ Creating a password profile

¢ Creating password-authenticated users

¢ Changing a user's password

¢ Creating a user with the same credentials on another database
¢ Locking a user account

e Expiring a user's password

¢ Creating and using OS-authenticated users

¢ Creating and using proxy users

¢ Creating and using database roles

¢ The sysbackup privilege — how, when, and why should you use it?
¢ The syskm privilege — how, when, and why should you use it?
e The sysdg privilege — how, when, and why should you use it?

Introduction

Authentication is a very important process, whose purpose is to determine whether
someone or something is, in fact, who or what it claims to be.

In this chapter, you'll learn basic stuff about some of the different authentication methods
supported by Oracle Database 12¢c. Also, a brief overview about creating and using
database roles will be given.

lvww.allitebooks.cond

http://www.allitebooks.org

Basic Database Security

There are three new administrative privileges introduced in Oracle Database 12c¢
(sysbackup, syskm, and sysdg). Their purpose is to enable better separation of duties and
they are designed in such a way to also enable implementation of the least privilege
principle. Although it may seem that implementation of this principle in systems is easy or
straightforward, usually it's quite tricky.

For all recipes in this chapter, you will use non-CDB 12c. We assume that
the database is up and running and each user has at least the create
session privilege.

In this set of recipes, you will learn to perform, mostly basic, user administration tasks.

Creating a password profile

You can use a profile to implement your password policy.

Getting ready

To complete this recipe, you'll need an existing user who has create profile privilege
(such as an OS-authenticated user who has database administrators (dba) role, for
example, ops$zoran). Also, you'll need an unlocked user account named scott.

Make sure that the resource_limit parameter is set to true.

How to do it...

1. Connect to the database as a user who has create profile privilege:
sqlplus 7/

2. Create a password profile:
create profile userprofile limit
failed_login_attempts 4

password_lock_time 2
password_life_time 180;

[8]

Basic Database Security

3. Alter the user to use a newly created password profile:
alter user scott profile userprofile;
4. Alter the default password profile:

alter profile default limit
failed_login_attempts 4;

How it works...

In step 1, you used OS authentication to connect to the database.

In step 2, you created a password profile with the name userprofile that has the
following restrictions:

¢ The system allows four login attempts before locking a user account
(failed_login_attempts)

¢ After locking a user account, it will remain locked for two days
(password_lock_time)

¢ A password for the user can remain unchanged for 180 days — after which the
password will expire, and the user will have to change the password for his next
login (password_life_time)

In step 3, we assigned a newly created password profile to the user scott. If we don't
assign a password profile to the user, that user uses the default password profile.

In step 4, we altered the default password profile with the failed_login_attempts
restriction.

There's more...

You can create different password profiles for different users in the database. There are a lot
of restrictions that can be applied to a password profile.

In Oracle Database 12¢, there are three password verify functions, out of which, two are
new and improved:

e verify function_11G (carried over)
e oral2c_verify_function (new)

e oral2c_strong_verify_function (new)

[91

Basic Database Security

If password complexity checking is not enabled, and you want to use it, you should run the
utlpwdmg.sql script provided by Oracle. It's located in $ORACLE_HOME/rdbms/admin.
The oral2c_verify_function function is the default function that the ut 1pwdmg. sql
script uses. If you want, you can customize password verify functions.

Password complexity checking, even when enabled, doesn't apply to
sys user.

If you want to choose which verify function will be used in the default profile, you can
achieve that by using the following statement:

alter profile default limit password_verify_function
oral2c_strong_verify_function;

In subsequent recipes, it is assumed that default values are set for the default profile and the
password verify function is not used.

See also

o Creating password-authenticated users
e Locking a user account
e Creating and using OS-authenticated users

Creating password-authenticated users

In this task, you will create several users.

Getting ready

To complete this recipe, you'll need an existing user who has create user privilege (you
may use the OS-authenticated user who has the DBA role).

You'll use Oracle Enterprise Manager Database Express 12c (EM Express). To learn more
about it (for example, how to configure an HTTPS port for EM Express and how to start it),
see the third chapter of the official Oracle guide —Oracle Database 2 Day DBA, 12c Release 1.

[10]

Basic Database Security

How to do it...

1. Connect to the database as a user who has create user privilege:
$ sqglplus 7/

2. Create a password-authenticated user (for example, username: jessica,
password: oracle_1) as follows:

SQL> create user jessica identified by oracle_1;

3. Create a password-authenticated user with a more complex password:
SQL> create user tom identified by "Qax7UnP1123*";

4. Create a user that uses a specific password profile:

SQL> create user mike identified by testl profile
userprofile;

5. Create a user and force it to change password upon the first login:

SQL> create user john identified by passwordl
password expire;

6. Create a user richard, whose default tablespace is users, temporary tablespace
is temp, and who has their quota set to unlimited on the users tablespace:

SQL> create user richard identified by oracle 2 default

tablespace users temporary tablespace temp quota unlimited
on users;

How it works...

In step 1, you used OS authentication to connect to the database.
In step 2, you created a password-authenticated user jessica with simpler password.

In step 3, you created a password-authenticated user t om with more complex password. In
this case (because a password contains special characters), you are using quotation marks
(") to enclose the password.

[11]

Basic Database Security

Both of these users are using the default password profile.

In step 4, you created a password-authenticated user with the assigned password profile
userprofile.

In step 5, you created user john. This user has to change his password at the first database
login.

In step 6, you created the user richard. In the create user statement, quota unlimited
on users means that you want to let the user allocate space in the tablespace without
bound. The quota clause lets you define the maximum amount of space the user can
allocate in the tablespace. You can have multiple quota clauses for multiple tablespaces
within one create user statement. The unlimited tablespace system privilege
enables users to have an unlimited quota on all tablespaces in the database.

If you grant unlimited tablespace system privilege to a user and
afterwards you revoke it, all explicitly granted quotas will also be revoked.

There's more...

You can also create users using Oracle Enterprise Manager Cloud Control 12¢ or Oracle
Enterprise Manager Database Express 12c (EM Express). Oracle Enterprise Manager
Database Control is no longer available in Oracle Database 12c.

How to create a user using EM Express

1. Start EM Express and log in to it using the user that has
either EM_EXPRESS_BASIC or EM_EXPRESS_ALL role (you can use sys or
system users, but that isn't recommended):

[12]

Basic Database Security

Frefox p
[E1EM Express Login

€& @ nitpe192168 584105500 emlogin

ORACLE' Enterprise Manager Database Express 12¢

& @ hitps//192068.84.10:5500 /em, shells/ dbhome/show_regions? 77 7 & - Google

ORACLE Enterprise Manager Heb | 18 SYSTEM | Logout O
Database Express 12¢ - ! '

2l e & B

§ ORCL12 (12.1.0.1.0) /~ Configuration ¥ & Storage ¥ |Z

Database Home Page Refreshed 11:31:30 PM GMT-+0200 Users
| Status |+] v/ Performance Roles

Lip Time ; Activity Class Services

Database Name
Instance Name
Flatform Name Linux x86 64+-bit
HastName dbl121.optimasac,
Qracle Home

IIEPM ISIPM LL:0SPM 11:20PM
Sep 13

--| Resources

[13]

Basic Database Security

3. Click on the Create User tab:

Firefox = i
- E EM Express - Users
€& | B hitps://192.168.84.10:5500/em/shelle/security/ show_users

ORACLE Enterprise Manager

Database Express 12c

E ORCL1? (12.1.0.1.0) A Configuration w €& Storage ¥ 2. Security v [BE Performang
Users Page Refreshed 11:34:26 PM GMT+0200 c,

actors - | [N [Cr=cte X

_| Gpen £ Name

Mame & Account Status |E:pi‘aﬁmDate Default Tablesp, .. | Temporary Tabl,,. | Profle |crea1ed

[+’ : Sat Jul 20, 2013 10 EXAMFLE DEFALLT Sat Jul 20, 2015 10|~
OWMSYS O FriMay 24, 2013 13 USERS DEFALLT FriMay 24, 2013 13
OLAPSYS O& FriMay 24, 2013 13 SYSAUX DEFALLT FriMay 24, 2013 13
OPSSMAIN o USERS DEFALLT Sun Jud 21, 2013 &
ORACLE_OCM ©f FriMay 24, 2013 11 USERS DEFALLT Fri May 24, 2013 11(=
ORDCOATA ©a Fri May 24, 2013 12 SYSALX DEFALLT Fri May 24, 2013 1
ORCPLUGING ©A Fri May 24, 2013 13 SYSALX DEFALLT Fri May 24, 2013 1
ORDEYS G |'f| Fri May 24, 2013 12 SYSAL DEFALLT Fri May 24, 2013 1=

4. Enter user details in the pop-up dialog (for example, username: ted,
password: oracle_123, here you can also choose the authentication method,
password profile, lock account, expire password) leave the default values and
click on the Next button (see image here) as follows:

[14]

Basic Database Security

B
[S] EM Express - Users

€ | @ hrips//192.168.84.10:5500/em/shell/security/s

ORACLE
Enterprise Manager
Database Express 12¢

o E ~ Google

Help =

L sysTEM

Ay & B-

Log Out)

& ORCL12 (12.1.0.1.0)

- i 5 1 - 5
A Configuration v € Storage ¥ £ Security v [§§
Users Page Refreshed 11:34:26 PM GMT+0200 (7,
Actions ~ TR [
Create User [::]
Name ed
L &

e User Account Tablespaces Privilege R
OE 120, 2013

- Name & ted iy 24, 2013

Authentication # (=) p d - 5 W 24, 201
= * s Passwor Xt
OPSEMAJA s o - 121, 2013
ORACLE_OCH RGO -+
ORDDATA Confim Password *‘ xxxxx |
ORDPLUGINS Profile | DEFALLT
ORDSYS
Password Expired [| (@
OUTLN
Accountlocked [|
PM
SCOTT
@
H < | |
L » (O Fri May 24, 2015 SYSAUX TEMP

5. In this step, you can choose default tablespace and temporary tablespace from the
drop-down lists. Leave the default values, as shown in the following screenshot:

Create User =
=] =
User Account Tablespaces Privilege
Default Tablespace | |JSERS v |
Temporary Tablespace | TEMP - |
Le | | | Yok || RCancel || D |

[15]

Basic Database Security

6. In this step, you can grant privileges to user ted by selecting them in the left pane
and moving them to the right pane (use > button). If you want to revoke
privileges, do the opposite (select them in right pane and use < button). When
you are satisfied with the list of privileges in the right pane (the ones you are
going to grant to user ted), click on the OK button as follows:

Create User m
-
User Account Tablespaces Privilege
&, Name Name with Ad...

Name | 1sRole | CREATE TABLE 0|
SPATIAL_WFS_ADMIN v - CREATE SESSION L]
SYSBACKLP Bl

‘ SYSDBA <
SYSDG o
I SYSEM
. SYSOPER
| ¢ .|_;[jslwoux' 5QL | o OK | 3 cancel [l 2 |

7. A pop-up window confirmation should appear with the following message: SQL
statement has been processed successfully.

Click on the OK button to close the window.

See also

e Creating and using OS-authenticated users

Changing a user's password

Changing a user's password is easy. You will practice it by changing passwords for several
users in this recipe.

[16]

Basic Database Security

Getting ready

To complete this recipe, you'll need an existing user who has alter user privilege (you
may use OS-authenticated user who has the DBA role) and other existing users (for
example, jessica and tom).

How to do it...

1. Connect to the database as a user who has alter user privilege:
$ sqglplus /

2. Change the password for user jessica:
SQL> password jessica;

3. Enter a new password (for example, oracle_2) on a command line (note that
typing will not be visible in the command line):

New password:

4. Retype the new password (for example, oracle_2) on the command line (note
that typing will not be visible in the command line):

Retype new password:

5. Connect to the database as any user (for example, tom, to change their own
password):

$ sqlplus tom/"Qax7UnP1123*"
6. Change the password using the following code:
SQL> password

7. Enter the old password (for example, Qax7UnP ! 123*) on the command line (note
that typing will not be visible on the command line):

Old password:

[17]

Basic Database Security

8. Enter the new password (for example, oracle_123) on the command line (note
that typing will not be visible on the command line):

New password:

9. Retype the new password (for example, oracle_123) on the command line (note
that typing will not be visible on the command line):

Retype new password:

How it works...

In step 1, you used OS authentication to connect to the database.

In steps 2 through 4, a privileged user changed jessica's password, where in steps 6 through
9, the user tom changed his own password.

There's more...

There is another way to change the user's password using the alter user statement as
follows:

SQL> alter user jessica identified by oracle_2;

This approach is not recommended because password remains in the
command-line history.

See also

o Creating and using OS-authenticated users

[18]

Basic Database Security

Creating a user with the same credentials on
another database

This recipe explains a way to create a user with the same credentials on another database.

Getting ready

To complete this recipe, you'll need:

¢ An existing user who has dba role in the first database (you can use an OS-
authenticated user)

¢ An existing user in the first database (for example, jessica)

¢ An existing (for example, password-authenticated) user, who has create user
privilege, in the second database (for example, zoran)

How to do it...

1. Connect to the first database as a user who has a DBA role:
$ sqglplus /

2. Find a Data Definition Language (DDL) statement (dd1) that is used for user
creation (for example, user jessica):

SQL> select dbms_metadata.get _ddl("USER", *JESSICA®") from
dual;

3. Connect to the second database as a user who has create user privilege:
$ sqlplus zoran@orcl?2

4. Create a user using the value you found in step 2:
SQL> create user "JESSICA" identified by values
"S:D82EGEF961F2EA7A878BCDDBC7ES5C542BC148C4759D19A7

20A96BBF65658 ;H:F297A50FD538EF4AB119EBO278C9OE72D;
C50B1E9COAAS2EC2* ;

[19]

Basic Database Security

How it works...

In step 1, you used OS authentication to connect to the database.

In step 2, you found a DDL statement that has been used for user creation. This DDL
statement may contain default and temporary tablespace assignments (note that even if
you haven't explicitly assigned these tablespaces during user creation, the system will
assign them implicitly using default values for the database). For instance, output in step 2
may look like this:

SQL> select dbms_metadata.get ddl("USER®, *JESSICA®) from dual;
DBMS_METADATA .GET_DDL("USER", "JESSICA™)

CREATE USER "JESSICA™ IDENTIFIED BY VALUES
"S:D82EGEF961F2EA7A878BCDDBC7ES5C542BC148C4759D19A720A96BBF65658 ;H-F297A50FD
538EF4AB1 19EB0278COE72D;C50B1E9COAAS2EC2*"

DEFAULT TABLESPACE "USERS" TEMPORARY TABLESPACE "'TEMP™

However, we used only the first part of this DDL in step 4 to create a user on the second
database (and let the database decide about default tablespaces).

There's more...

There is another way to accomplish the task.

You can only reveal the hash value of user's password (you cannot reveal
the actual password).

This way requires select on the sys.user$ table:

1. Connect to the first database as a user who has the select privilege on
the sys.user$ table (for example, user who has the sysdba privilege):

$ sqlplus / as sysdba
2. Find the hash value of a user's password (for example, user jessica):
SQL> select spare4

from user$
where name="JESSICA";

[20]

Basic Database Security

3. Connect to the second database as a user who has create user privilege:
$ sqlplus zoran@orcl?2

4. Create a user with the same username (for example, jessica) using the hash
value of the password that you have found in step 2:

SQL> create user jessica identified by values
"S:2724193130FC67E7E23E3E44E33AF143F7A6C36489792B
5856133DCB331D;H:184895E50EA2FBCC2311ED76A3ES5CF35;
T:BECCD5FC6F6E62BC34DF1C826AEE899EC6A6025FA0D5071659DA
7DD1ABB37763483B5C821E5A34C1184A56BE4B1C92CED79639D11101D
61B86ACBEGOA30F19CC277D5753F7D3756DC1B7705COACE81F3*;

See also

e Creating and using OS-authenticated users

Locking a user account

In this recipe, you'll learn to lock and unlock user accounts.

Getting ready

To complete this recipe, you'll need an existing (for example, OS-authenticated) user who
has alter user privilege (you may use user who has a DBA role) and another existing

user (for example, mike).

[21]

Basic Database Security

How to do it...

1. Connect to the database as a user who has alter user privilege:
$ sqglplus 7/

2. Lock the account of user mike:
SQL> alter user mike account lock;

3. Unlock the account of user mike:

SQL> alter user mike account unlock;

How it works...

In step 1, you used OS authentication to connect to the database.

In step 2, you locked the account of user mike. This means that user mike cannot connect to
the database:

SQL> alter user mike account lock;
User altered
SQL> connect mike/welcomel

ERROR: ORA-28000: the account is locked

[22]

Basic Database Security

However, objects in mike's schema are available, so users can access them (considering that
they have necessary privileges):

SQL> select a, b from mike.tablel;

A B
1 3
2 4
4 9

It is recommended that you lock the accounts of users that own your
application objects (application schemas).

In step 3, you unlocked the account of user mike. Now user mike can successfully connect
to the database:

SQL> alter user mike account unlock;
User altered.
SQL> conn mike/welcomel

Connected.

See also

e Creating and using OS-authenticated users

Expiring a user's password

The expiration of user's password is a very easy task.

[23]

Basic Database Security

Getting ready

To complete this recipe, you'll need an existing (for example, OS-authenticated) user who
has the alter user privilege (you may use user who has a DBA role) and another existing
user (for example, mike).

How to do it...

1. Connect to the database as a user who has the alter user privilege:
$ sqglplus /
2. Mike's password expires with the following command:

SQL> alter user mike password expire;

How it works...

In step 1, you used OS authentication to connect to the database.

In step 2, you expired password for the user mike. This means that the password is no
longer valid and user mike must change his password after the next login:

SQL> alter user mike password expire;
User altered.

SQL> conn mike/welcomel

ERROR: ORA-28001: the password has expired
Changing password for mike

New password:

Retype new password:

Password changed

Connected.

See also

o Creating and using OS-authenticated users

[24]

Basic Database Security

Creating and using OS-authenticated users

In this recipe, you'll learn about OS-authenticated users.

Getting ready

To complete this recipe, you'll need an existing user who has a dba role, for example,
johndba. It is assumed that you are working on Linux.

How to do it...

1. Connect to the database as a user who has a DBA role:
$ sqlplus johndba
2. Find the prefix for operating system authentication:

SQL> show parameter os_authent_prefix
NAME TYPE VALUE

os_authent_prefix string ops$
3. Create an OS-authenticated user:

SQL> create user ops$zoran identified externally;
4. Grant this user the create session privilege:

SQL> grant create session to ops$zoran;
5. Log in to the operating system as the user zoran:

$ su - zoran

6. Connect to the database without entering a user name or password:

$ sqglplus 7/

[25]

Basic Database Security

How it works...

In OS authentication, database delegates user authentication to the operating system. This
means that in order for OS authentication to work, user must exist as the user of the
operating system. In database, these users are created with a prefix that is defined in the
os_authent_prefix parameter (default is ops$). If an OS-authenticated user has

the create session privilege, he or she can connect to the database using the following

syntax:

SQL> connect /
Connected.

SQL> show user

USER is "OPS$ZORAN"

Note that you cannot grant a sysdba, sysoper, sysbackup, sysdg, or
syskm privilege to users that are identified externally, using a grant

statement:

SQL> grant sysdba to ops$zoran;
grant sysdba to ops$zoran
ERROR at line 1: ORA-01997: GRANT failed: user
'"OPS$ZORAN' identified externally

If you want to connect as sysdba using OS authentication, you have to add OS user zoran
to OS group DBA:

[root@db121 ~]}# usermod -a -G dba zoran
[root@dbl21 ~]# su - zoran

[zoran@db121 ~]$ sqlplus / as sysdba
SQL*Plus: Release 12.1.0.1.0 Production on Fri Sep 03 20:14:03 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:

Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64 bit
Production With the Partitioning, OLAP, Advanced Analytics and Real

Application Testing options

There's more...

You can change the os_authent_prefix parameter with custom value (or you can leave it
blank if you want OS-authenticated database users to have the same name as OS users).

[26]

Basic Database Security

Creating and using proxy users

In this recipe, you'll learn about proxy users.

Getting ready

To complete this recipe, you'll need an existing (for example, OS-authenticated) user who
has a DBA role and another existing user (for example, mike).

How to do it...

1. Connect to the database as a user who has a DBA role:
$ sqlplus 7/
2. Create a proxy user named appserver:
SQL> create user appserver identified by oracle_1;
3. Grant create session to the user appserver:
SQL> grant create session to appserver;
4. Alter the user to connect through the proxy user:
SQL> alter user mike grant connect through appserver;
5. Connect to the database through proxy user:
SQL> connect appserver[mike]
6. Enter a password for the appserver user (for example, oracle_1):
Enter password:

7. To revoke connection through the proxy user, first connect to the database as a
user who has altered user privilege:

$ sqlplus 7/

[27]

lvww.allitebooks.cond

http://www.allitebooks.org

Basic Database Security

8. Revoke connection through the proxy user appserver from user mike:

SQL> alter user mike revoke connect through appserver;

How it works...

Proxy authentication is best-suited type of authentication for three-tiered environments.
The middle tier is represented as a proxy user in the database and this user can authenticate
end-users in such a way that these end users can be audited by the database.

In the second step, you created a user appserver (to be the proxy user).

In the third step, you granted this user only the create session privilege.

It is recommended that you grant only the create session privilege to
proxy users.

In step 4, you authorized user mike to connect through proxy user appserver. This means
that the user appserver can connect to the database on behalf of user mike:

SQL> connect appserver[mike]

Enter password:
Connected.

SQL> show user
USER is "MIKE"

SQL> select sys_context("USERENV*®, "PROXY_USER") from dual;
SYS_CONTEXT("USERENV*®, "PROXY_USER")

APPSERVER

To see proxy users, you can query the proxy_users view:

SQL> select * from proxy_users;

PROXY CLIENT AUT FLAGS

APPSERVER MIKE NO PROXY MAY ACTIVATE ALL CLIENT ROLES

In the last step, you revoked authorization from user mike to connect through proxy user
appserver. This means that the user appserver can no longer connect to the database on
behalf of user mike.

[28]

Basic Database Security

There's more...

You can control which roles the proxy user can activate for user. By default, all user roles
are activated. If you want the proxy user to activate only particular roles (or no roles) for a
user, you can do that by adding the WITH ROLES <rolel, role2, .., roleN> (or WITH
NO ROLES) clause at the end of the alter user statement.

For instance, if the user mike has many roles (including usr_role), and you want him to
have only usr_role when he is connected through proxy user appserver, statement will
look like this:

SQL> alter user mike grant connect through appserver with roles usr_role;
User altered.
SQL> connect appserver[mike]

Enter password:
Connected.

SQL> select * from session_roles;

USR_ROLE
SQL> connect mike

Enter password:
Connected.

SQL> select count(*) from session_roles;

COUNT(*)

You can request reauthentication of a user to the database. This means that during proxy
authentication, a user's password must be provided. This is done by using the
authentication required clause at the end of alter user statement:

SQL> alter user mike grant connect through appserver authentication
required;
User altered.

[29]

Basic Database Security

Creating and using database roles

In this recipe, you'll learn the basics about database roles.

Roles group together related system and/or object privileges and they can be granted to
users and other roles. They simplify privilege management (for example, rather than
granting the same set of privileges to many users, you can grant those privileges to a role
and then grant that role to users that need those privileges).

Getting ready

For this recipe, you will need an existing (for example, OS-authenticated) user that has a
dba role and another three existing users (for example, mike, tom, and jessica). Itis
assumed that sample schemas are installed.

How to do it...

1. Connect to the database as a user who has a dba role:
$ sqglplus 7/
2. Create the role usr_role:
SQL> create role usr_role;
3. Grant system privilege to usr_role:
SQL> grant create session to usr_role;
4. Grant object privileges to usr_role:
SQL> grant select, insert on hr.employees to usr_role;
5. Create another role as follows:
SQL> create role mgr_role;
6. Grant usr_role tomgr_role:

SQL> grant usr_role to mgr_role;

[30]

Basic Database Security

7. Grant system privileges to mgr_role:
SQL> grant create table to mgr_role;
8. Grant object privileges to mgr_role:
SQL> grant update, delete on hr._employees to mgr_role;
9. Grant usr_role to user (mike):
SQL> grant usr_role to mike;
10. Grant mgr_role to user (tom):

SQL> grant mgr_role to tom;

How it works...

In the first step, you used OS authentication to connect to the database. In steps 2 and 3, you
granted system privileges and object privileges, respectively, to the role usr_role. In the
next steps, you practiced using database roles; you granted the following:

e A role to another role
e System and object privileges to role
e Roles to users

You revoke privileges and roles by using a revoke statement. For example:

SQL> revoke usr_role from mike;

Circular granting of roles is not allowed.

SQL> grant rolel to role2;
Grant succeeded.

SQL> grant role2 to rolel;

grant role2 to rolel
*

ERROR at line 1: ORA-01934: circular role grant detected

[31]

Basic Database Security

There's more...

You should be careful about granting privileges to the PUBLIC role
because then every database user can use these privileges.

Suppose that user mike grants object privilege to user jessica with a grant option and
user jessica grants that privilege to user tom. If user mike revokes that privilege from
jessica, it will be automatically revoked from tom.

Revoking a system privilege will not cascade.

SQL> grant select on hr._employees to jessica with grant option;
Grant succeeded.

SQL> connect jessica
Enter password:
Connected.

SQL> grant select on hr.employees to tom;
Grant succeeded.

SQL> connect tom/oracle_123
Connected.

SQL> select count(*) from hr._employees;
COUNT (™)

SQL> connect mike/welcomel
Connected.

SQL> revoke select on hr._employees from jessica;
Revoke succeeded.

SQL> connect tom/oracle_123
Connected.

SQL> select count(*) from hr._employees;
select count(*) from hr._employees
*

[32]

Basic Database Security

ERROR at line 1:
ORA-00942: table or view does not exist

0 You cannot revoke object privileges you didn't grant.

See also

e If you want to learn more about roles, see the official Oracle
documentation— Oracle Database Security Guide 12¢ Release 1 (refer Chapter 4,
Configuring Privilege and Role Authorization, of this documentation).

The sysbackup privilege — how, when, and
why should you use it?

It is recommended that you use the sysbackup administrative privilege instead of the
sysdba administrative privilege to perform operations related to backup and recovery
tasks.

Getting ready

For this recipe, you'll need:

¢ An existing database user (for example, tom) and a password file in 12c format, if
you want to complete it using a password-authenticated user

¢ An existing OS user (for example, john), who belongs to the backupdba OS
group, in order to connect to the database using OS authentication

How to do it...

Instructions are given in the Database authentication and OS authentication sections.

[33]

Basic Database Security

Database authentication

The instructions for database authentication are as follows:

1. Connect to the database as sysdba (or another user that can grant the sysbackup
privilege):

sqlplus / as sysdba
2. Grant the sysbackup privilege to user tom:
grant sysbackup to tom;

3. Verify that there is an entry in the password file that grants user tom the
sysbackup administrative privilege. Select data from the vSpwfile_users
view:

select * from v$pwfile_users;

The following table is the result of the preceding command:

Username |sysdb |sysop |sysas |sysba |sysdg |syskm |con_id

Sys TRUE |TRUE |[FALSE |FALSE |FALSE |FALSE (0
sysdg FALSE |FALSE |FALSE |FALSE [TRUE |FALSE (0
sysbackup FALSE |FALSE |FALSE |TRUE |FALSE |FALSE (0
syskm FALSE |FALSE |FALSE |FALSE (FALSE | TRUE 0
tom FALSE |FALSE |FALSE |TRUE |FALSE |FALSE (0

4. Test the connection using RMAN:

rman target ""tom/oracle_123 as sysbackup"*

[34]

Basic Database Security

OS authentication

The instructions for OS authentication are as follows:

1. Verify that the OS user (for example, john) is a member of the backupdba OS
group:
$ id john
2. Connect to the database using the sysbackup privilege (SQL*Plus or RMAN):

$> sqlplus / as sysbackup
$> rman target "'/ as sysbackup™®

How it works...

You can use either Oracle Recovery Manager (RMAN) or SQL*Plus to perform the
operations. When you connect to the database as sysbackup, you are connected as a
predefined user sysbackup. If you want to check this, run the following statement:

SQL> select user from dual;

Otherwise, the following statement:

SQL> show user

Using the sysbackup privilege, you can connect to the database even when it is not open.
This privilege enables better separation of duties and the implementation of the least privilege
principle.

From a security perspective, it is recommended that you implement the
least privilege principle. The least privilege principle is an important
security concept that requires that users are given only those privileges
they need to perform their job.

[35]

Basic Database Security

To view the list of privileges a user can exercise when connected to the database using
sysbackup privilege, you can create a user (for example, t om) and grant the user only
sysbackup privileges. The next step is to connect to the database as user tom, using the
sysbackup privilege and the execute statement:

select * from session_privs;

These privileges are shown in the following table:

Privileges (output from

the previous statement)

sysbackup select any select any resumable
transaction dictionary

create any alter database audit any create any

directory cluster

create any table unlimited drop alter
tablespace tablespace tablespace

alter session alter system

This is how you can check enabled roles:

SQL> select * from session_roles;

SELECT_CATALOG_ROLE
HS_ADMIN_SELECT_ROLE

HS_ADMIN_SELECT_ROLEisgnnﬁedtoSELECT_CATALOG_ROLE

[36]

Basic Database Security

If you want to view the roles and privileges granted to sysbackup, you can query
DBA_ROLE_PRIVS and DBA_SYS_PRIVS:

SQL> select * from dba_role_privs where grantee="SYSBACKUP";
SQL> select * from dba_sys privs where grantee="SYSBACKUP";

Also, this new administrative privilege enables you to select, insert, delete, execute, and
perform operations:

SELECT PERFORM operations
X$ tables STARTUP, SHUTDOWN
VS and GV$ views CREATE PFILE, CREATE SPFILE

APPQOSSYS.WLM_CLASSIFIER _PLAN|CREATE CONTROLFILE

SYSTEM.LOGSTDBYSPARAMETERS FLASHBACK DATABASE
INSERT/DELETE DROP DATABASE
SYS.APPLYS_SOURCE_SCHEMA CREATE/DROP RESTORE POINT (including

GUARANTEED restore points)

SYSTEM.LOGSTDBYS$PARAMETERS

EXECUTE

SYS.DBMS_BACKUP_RESTORE SYS.DBMS_DATAPUMP
SYS.DBMS_RCVMAN SYS.DBMS_IR
SYS.DBMS_PIPE SYS.SYS_ERROR
SYS.DBMS_TTS SYS.DBMS_TDB
SYS.DBMS_PLUGTS SYS.DBMS_PLUGTSP

It is important for you to remember that:
When using the sysbackup privilege, you can't view application data.

[37]

Basic Database Security

There's more...

You can't drop user sysbackup.

In a multitenant environment, you can restrict a user to be able to perform backups only for
the PDB it can connect to. You can accomplish that by creating a local user in the PDB and
granting the sysbackup privilege to the user.

When you are connected to the database as the sysbackup, you are connected as
sysbackup user to SYS schema:

SQL> connect / as sysbackup
Connected.

SQL> show user
USER is "SYSBACKUP"

SQL> select sys_context(“userenv®, “current_schema®™) from dual;
SYS_CONTEXT("USERENV™", "CURRENT_SCHEMA™)

See also

o Creating password-authenticated users
o Creating and using OS-authenticated users

The syskm privilege — how, when, and why
should you use it?

It is recommended that you use the syskm administrative privilege instead of the sysdba
administrative privilege to perform operations related to managing the transparent data
encryption (TDE) keystore.

[38]

Basic Database Security

Getting ready

For this recipe, you'll need:

¢ An existing database user (for example, jessica) and a password file in the 12¢c
format, if you want to complete it using a password-authenticated user

¢ An existing OS user (for example, bob), who belongs to the kmdba OS group, in
order to connect to the database using OS authentication

How to do it...

Instructions are split into sections for database authentication and OS authentication.

Database authentication

The instructions for database authentication are as follows:

1. Connect to the database as sysdba (or another user that can grant the syskm
privilege):

sqlplus / as sysdba

2. Grant the syskm privilege to user jessica:
grant syskm to jessica;

3. Connect user jessica to the database as syskm:
SQL> connect jessicaZoracle_1 as syskm

4. View privileges:

SQL> select * from user_tab_privs;
SQL> select * from session_privs;

[39]

Basic Database Security

OS authentication

The instructions for OS authentication are as follows:
1. Verify that an OS user (for example, bob) is a member of the kmdba OS group.
$ id bob
2. Connect to the database using syskm privilege:

$ sqlplus / as syskm

How it works...

When you connect to the database as syskm, you are connected as a predefined

user, syskm. Using the syskm privilege, you can connect to the database even when it is not
open.

In most circumstances when using TDE, you don't have to have syskm administrative
privilege. For a more detailed discussion about TDE operations and which privileges users
need, see recipes in Chapter 8, Transparent Data Encryption.

In the Database authentication section after completing step 3, you can perform operations
related to managing the TDE keystore. Step 4 is not necessary and its sole purpose is to
show you which privileges you can use when connected as syskm. These privileges are:

® ADMINISTER KEY MANAGEMENT

® CREATE SESSION

® SELECT on V$ (and GV$) views:

® SYS.VSENCRYPTED_TABLESPACES
® SYS.VSENCRYPTION_WALLET

® SYS.VSWALLET

® SYS.VSENCRYPTION_KEYS

® SYS.VSCLIENT_SECRETS

® SYS.DBA_ENCRYPTION_KEY_ USAGE
® SYS.DATABASE_KEY_ INFO

It is important for you to remember that:
When using syskm privilege, you can't view the application data.

[40]

Basic Database Security

There's more...

You can't drop user syskm.
When you are connected to the database as syskm, you are connected as the syskm user
to sYS schema:

SQL> connect / as syskm
Connected.

SQL> show user
USER is ""SYSKM"

SQL> select sys _context(“"userenv®, "current_schema®™) from dual;
SYS_CONTEXT("USERENV®, "CURRENT_SCHEMA™)

See also

o Creating password-authenticated users
e Creating and using OS-authenticated users
e Chapter 8, Transparent Data Encryption

The sysdg privilege — how, when, and why
should you use it?

It is recommended that you use the sysdg administrative privilege instead of sysdba
administrative privilege to perform operations related to data guard tasks.

Getting ready

For this recipe, you'll need:

¢ An existing database user (for example, mike) and a password file in the 12¢
format if you want to complete it using a password-authenticated user

¢ An existing OS user (for example, kelly), who belongs to the dgdba OS group in
order to connect to the database using OS authentication

[41]

Basic Database Security

How to do it...

Instructions are split into sections for database authentication and OS authentication.

Database authentication

The instructions for database authentication are as follows:

1. Connect to the database as sysdba (or another user who can grant the sysdg
privilege):

sqlplus / as sysdba
2. Grant SYSDG privilege to user mike:
SQL> grant sysdg to mike;
3. Exit SQL*Plus, connect mike using the dgmgrl command-line interface:
SQL> exit
$ dgmgrl

DGMRRL> connect mike/test_1

OS authentication

The instructions for OS authentication are as follows:
1. Verify that the OS user (for example, kelly) is a member of the dgdba OS group:
$ id kelly
2. Connect using the dgmgr1 utility and OS authentication:
$ dgmgrl

DGMGRL> connect /

[42]

Basic Database Security

How it works...

When you connect to the database as sysdg, you are connected as a predefined
user, sysdg. Using the sysdg privilege, you can connect to the database even when it is not

open.

After completing step 2 successfully in the Database authentication section, user mike, as
expected, can grant/revoke sysdg privilege to/from another existing user. If you want to try

it out, type the statements given here.

After you connect to the database using the sysdg administrative privilege, you can

perform the following operations:

Operations

STARTUP, SHUTDOWN

CREATE SESSION

ALTER SESSION

SELECT ANY DICTIONARY

ALTER DATABASE

FLASHBACK DATABASE

ALTER SYSTEM

EXECUTE SYS.DBMS_DRS

CREATE/DROP RESTORE POINT
(including GUARANTEED restore points)

SELECT X$ tables, VS and GVS views

DELETE
APPQOSSYS.WLM_CLASSIFIER_PLAN

SELECT
APPQOSSYS.WLM_CLASSIFIER_PLAN

It is important for you to remember that:
When using the sysdg administrative privilege, you can't view

application data.

[43]

Basic Database Security

There's more...

You can't drop user sysdg.
When you are connected to the database as sysdg, you are connected as sysdg user to
the sYS schema:

SQL> connect / as sysdg
Connected.

SQL> show user
USER is "'SYSDG"

SQL> select sys _context(“"userenv®, "current_schema®™) from dual;
SYS_CONTEXT("USERENV®, "CURRENT_SCHEMA™)

See also

o Creating password-authenticated users
e Creating and using OS-authenticated users

[44]

Security Considerations in
Multitenant Environment

In this chapter, we will cover the following tasks:

¢ Creating a common user

¢ Creating a local user

e Creating a common role

¢ Creating a local role

¢ Granting privileges commonly

¢ Granting privileges locally

¢ Granting common and local roles

e The effects of plugging/unplugging operations on users, roles, and privileges

Introduction

The Oracle multitenant environment is a new architecture of Oracle Database, introduced
in version 12¢ (12.1.0.1). It brings major changes to the way Oracle Database administrators
think about the concept of databases and how they work (in a multitenant environment).
One of the most significant changes is that many databases (up to 252) can share one
database instance.

This chapter is focused on some of the security considerations concerning common and
local users, roles, and privileges. The prerequisite for understanding recipes in this chapter
is to have at least basic knowledge of fundamental multitenant concepts, such as what is a
container database (CDB), pluggable database (PDB), root container, and seed.

Security Considerations in Multitenant Environment

Figure 1 shows the traditional architecture of Oracle Database.

R I S

Obj$ Tab$ Source$ Obj$ Tab$ Source$

— S—

Instance1 Instance2
SGA SGA

Figure 1 — A traditional architecture

Figure 2 shows the separation of the data dictionary in a multitenant architecture:

System Dictionary User Dictionary

PDB

Obj$ Tab$ Source$ Obj§ Tab$ Source§

et
//

Figure 2 — Data Dictionary separation

[46]

Security Considerations in Multitenant Environment

Figure 3 shows a multitenant architecture. To learn more about it, see the Oracle official
guide, Oracle Database Concepts, 12¢ Release 1 (12.1), Part VI Multitenant Architecture.

System objects User-created objects

\AT CDB

———\

=
\ Instance /

[SGA]

Figure 3 — A multitenant architecture

For all recipes in this chapter, you can use Oracle Database 12c Enterprise
Edition with the multitenant option. All of the concepts presented in this
chapter also apply to the single-tenant architecture (one CDB and one
PDB), which exists in all editions of Oracle Database 12c. Also, for all
recipes in this chapter, it is assumed that a container database (cdb1) is up
and running. Also, the EM Cloud Control version should be 12.1.0.3+.

The default prompt in SQL*Plus is SQL>. In this chapter, the glogin.sgl
script (located under $ORACLE_HOME/sqlplus/admin) is changed so that
the prompt reflects the connected user and the current container. The only
purpose is to make it easier to follow who is doing what and where. You
don't have to change the prompt.

Creating a common user

A common user is a user created in the root container, which has the same identity across
all containers. The main purpose of a common user is to perform “infrastructure”
administrative tasks, such as starting up a CDB, plugging and unplugging PDBs, and
opening PDBs. There are two types of common users: Oracle-supplied (for example, Sys
and SYSTEM) and user-created common users.

[471]

Security Considerations in Multitenant Environment

Getting ready

To complete this recipe, you'll need an existing common user who has create user
privilege granted commonly.

How to do it...

1. Connect to the root container as a common user who has create user privilege
granted commonly (for example, c##zoran or system user):

SQL> connect c##zoran@cdbl
2. Create a common user (for example, c##maja):

c##tzoran@CDB1> create user c##maja identified by oraclel
container=all;

How it works...

c##maja is actually not a single user, but each container has a user named c##maja and the
passwords must be the same.

c#izoran citfmaja c#izoran c##maja cittzoran CH#maja

\f Common user
<

Figure 4

[48]

Security Considerations in Multitenant Environment

Rules/guidelines for creating and managing common
users

There are a few rules you should be aware of:

¢ The name of a common user must be unique across all containers. In version
12.1.0.1, it must begin with c## or C## unless you change the internal parameter
common_user_prefix (which you shouldn't do on a production system without
approval from Oracle Support) and, in version 12.1.0.2, it is best practice to use a
prefix (default value c## or C##). However, you can choose it by changing the
value of the common_user_prefix parameter (this naming convention doesn't
apply to Oracle-supplied users in either version).

¢ A common user can have different privileges in different containers.

e The schemas for a common user may contain different objects in different
containers.

The column oracle_maintained (in DBA_USERS) provides information as to whether a
user is created and maintained by Oracle-supplied scripts:

c#ttzoran@CDB1> select username, oracle_maintained from dba_users where
username="SYSTEM" or username="C##ZORAN";

USERNAME

SYSTEM
C##Z0ORAN

=Zz<1 0

There's more...

You can also create common users by using Oracle Enterprise Manager Cloud Control (OEM)
12c.

How to create a common user using OEM 12c
1. Start OEM 12c and log in using user SYSMAN or SYSTEM

2. From the Databases page, select the root database in which you want to create a
common user. The database home page appears.

[49]

Security Considerations in Multitenant Environment

3. From the Administration menu, select Security (a drop-down menu) and then
Users (see Figure 5):

ORACLE Enterprise Manager Cloud Control 12¢ Setup v Help = | 3 sysMan ~ | Logout I

3 Enterprise v (@) Targets = i Favorites v @ History =

cdbl.challengezoran.com / 4 CDB$ROOT =] @ 3 ordhost.challengezoran.com
Oracle Database + Performance + Avaiabilty + [JEECUNBI Schema + Administration + @ »
Home |
Auto Refresh | Off ™
Reparts
BE o | Perfe L i
ummary o erforn | L
>| Ce i S e Activity
ompliance Summary = vity Roles
. g i
>| Jobs Running [. Frofiles |
»| Patch Recommendation &~ E 5 Audit Settings |
% s Application Data Models 1
w 4
o 3 Configuration Compliance I
E 2 Data Masking l
11— DataRedaction
00— .
aapy TransparentData Encryption N R
Database Vault B:02PM M
Privilege Analysis i .
>/ SQLMO | abel Security [o

Status

————— Virtual Private Database b Session 1D
< ov71tam 87 A
- Application Contexts i v

Figure 5

4. If prompted, log in to the root as a common user who has a create user
privilege (for example, c##zoran; see Figure 6):

ORACLE Enterprise Manager Cloud Control 12c Setup v Helpv | 1 svsman v | Logout O

t? Enterprise v () Targets = * Favorites + @ History +

cdbl.challengezoran.com / 4 cpoB$ROOT @ 5] ordhost.challengezoran.com
Crade Database + Performance » Awailability + Security = Schema + Administration + B3
Database Login
*Datsbase | CDBSROCT Q,

Credential (C) Named

*Usemame | c##zoran
*Password | sssses
Rale |Normal |

|:| Save As

Login Cancel

Figure 6

[50]

Security Considerations in Multitenant Environment

5. Click on the Create button (see Figure 7):

ORACLE Enterprise Manager Cloud Control 12 Setp + Hep ~ | 4 svsman = | Logout ©

€3 Enterprise ~ (@) Targets ~ fif Eavorites = @ History =

cdbl.challengezoran.com [CDB$ROOT [¥] @ Logged in as c##zoran (8 | [F ordhost challengezoran.com
Orade Database ~ Performance ~ Avalabilty = Security ~ Schema ~ Administration

Logged in as C#$ZORAN ™
users

Object Type| User |w
Search

Select an object type and optionally enter an object name to filter the data that s displayed in your results set.

Chject Name Go

By defau, the sasrch racums all upparcass matches baginning with the swing you entered. To run an exact or casa-sensitive match, double
quone the search sying, You can use the wikkard symbol 2 double quoted sting.

Selection Mode | Single | v

Edit | View | Delete |Actions | Create Like v| Go

Pre: 1-250f 38 |v Next13
Account | Expiration Default Temporary
Select | UserName & Status Date Tablespace Tablespace Profile | Created
May 24, 2013 May 24, 2013
(@ ANONYMOUS LE\SPCI:\EEI? & 1:20:02 PM SYSAUX TEMP DEFAULT 12:06:10 PM
CEST CEST v
Figure 7

6. To create a common user, it is enough to fill out the following fields on the
General tab: Name (for example, c##john), Enter Password, and Confirm
Password (see Figure 8) and then click on the OK button:

ORACLE Enterprise Manager Cloud Control 12¢ Setup - Hep v | 2f SYsMAN~ | Legout O

€} Enterprise v (@) Targets = i Favorites ~ @ History =

cdbl.challengezoran.com f 4 CDB$ROOT @

Loggedinas c##zoran (3 | (5 orchost. challengezoran.com
Oracle Database + Performance ~ Avaiabiity = Security ~ Schema v Administration

Users > Create User

Logged in as C£#ZORAN ™
Create User

Execute On Multiple Databases | Show SQL | Cancel | OK

Quotas Consumer Group Priviieges

General Roles SystemPrivieges Object Priviieges

Proxy Users Container Data Access

* Name [C##10HN

Common ser name must begin with °C:

Profile | DEFALLT | w
Authentication | Password | v

* Enter Password [o

* Confirm Passward [o .

For Passward choice, the user is autherized via password,
[Cexpire Password now
Default Tablespace Q,

Temporary Tablespace Q,
status () Locked () Unlocked

Note: Crested user will be 2 common user since you are in CDBSROOT contine

Figure 8

[51]

Security Considerations in Multitenant Environment

Creating a local user

A local user is a user that is created and that exists in only one PDB. A local user can't be
created in the root container.

Getting ready

A pluggable database (in our case, pdb1) should be open. You'll need an existing user
(either common or local) who has create user privilege in that pluggable database.

How to do it...

1. Connect to PDB (for example, pdb1) as a common user or local user who has
create user privilege in that PDB (for example, c##zoran or system user):

SQL> connect c##zoran@pdbl
2. Create a local user (for example, mike):

c##tzoran@PDB1> create user mike identified by pa3t5brii
container=current;

How it works...

Ej) Common user (e.g. c##zoran)

€o

Local user (e.g. mike)

Figure 9

[52]

Security Considerations in Multitenant Environment

Rules/guidelines for creating and managing local users

There are a few rules you should be aware of:

¢ The name of a local user must be unique within its pluggable database and it
must not begin with c## or C##

¢ A local user cannot be created in the root

¢ A local user exists in one and only one PDB and owns a schema in that PDB

There's more...

You can also create local users by using Oracle Enterprise Manager Cloud Control (OEM) 12c.

How to create a local user using OEM 12c

You can follow the steps given in the How to create a common user using OEM 12c section,

except that, in Step 2, you should connect to the pluggable database (for example, pdb1)
instead of the root. Also, you can connect to PDB as a local user who has alocal create

user privilege. If you want to switch container, you should click on Container Switcher
and a drop-down menu will open (see Figure 10):

ORACLE Enterprise Manager Cloud Control 12c Setup v Help | 3L SvsMAN v | Logout O

3 Enterprise = (@) Targets v i Favorites ~ (@ History =

cdbl.challengezoran.com / ‘& CDB$ROO @ B Logged in as c##zoran (4 | d ordhost.challengezoran. com

Oradle Database + Performance = Availability + Securit™ cdb1.challengezoran.com (Container Database) G| »
« COBSROOT oFF »
PDE1 A
~| Summary Sy ~| Performance | By
PDB2
Status Activity Class
Up Time 0 days, & hrs All Containers. ..
Version 12.1.0.1.0 1
Available Space 0.06 GB
Diagnostics

Indidents

Active Sessions

@00, &
™o

Y S

TATAM | TE3AM _ Z06AM _ ZATAM ___ 230, w

Figure 10

[53]

Security Considerations in Multitenant Environment

In Figure 11, it is shown that the common user you created in the previous recipe is created
in the pluggable database (for example, c## john is created in pdb1; the common user is
created in all pluggable databases that reside in the CDB and will be created in all future
PDBs). By clicking on the Create button shown in Figure 11, you can create (only) a local
user:

ORACLE Enterprise Manager Cloud Control 12¢ Setup Help~ | 1 svsMaN -+ | Legout ©
3 Enterprise v (@) Targets » i Favorites » @ History »
Cdbl-Cha“EHQEZl}ran-Cl}m ! ﬁ' PDB1|~] @ Logged in as c#&zoran | ﬂ orchost. challengezoran.com

Orade Database = Performance = Availability = Security + Schema » Administration «

Logged in as C#EZORAN ™

Users
Object Type| User | w
Search
Select an object type and optionally enter an object name to filter the data that is displayed in your results set.
Object Name |C#£I0HN Go

By default, the search returns all uppercase matches beginning with the string you entered, To nun an exact or case-sensitive match, double quote the
search string, You can use the wiklcard symbol (96) in 2 double quoted string,

Selection Mode | Single | w Create
Edit | View | Delete [Actions | Create Like v | Go

Account Default Temporary Comman
Select | UserMame . | Status Expiration Date Tablespace Tablespace Profle |User Created
— Aug 28, 2014 Mar 1, 2014
1) (C==10HM OPEM 10:05:12 PM CEST USERS TEMP DEFALLT YES 10:05:12 PM CET
Figure 11

Creating a common role

Common roles are roles created in the root container and they exist in all containers. These
roles can have a different set of privileges in different containers and they can be granted to
either common or local users or roles.

[54]

Security Considerations in Multitenant Environment

Getting ready

To complete this recipe, you'll need an existing common user who has create role
privilege granted commonly.

How to do it...

1. Connect to the root container as a common user who has create role privilege
granted commonly (for example, c##zoran or system user):

SQL> connect c##zoran@cdbl
2. Create a common role (for example, c##rolel):

SQL> create role c##rolel container=all;

How it works...

When you create a common role, that role exists in all containers in that database (including
a root container and existing and future pluggable databases).

cdb1

| 2/\
(1)

O Common role (e.g. c##role)

Figure 12

[55]

Security Considerations in Multitenant Environment

c##tzoran@CDB1> select * from dba_roles where role="C##ROLEL1";

ROLE PASSWORD AUTHENTICAT COM O
CHHROLEL N NONE YES N
c##tzoran@CDB1> connect c##zoran/oracle@pdbl
Connected.

c##tzoran@PDB1> select * from dba_roles where role="C##ROLEL1";

ROLE PASSWORD AUTHENTICAT COM O

C##ROLE1 NO NONE YES N

c##tzoran@PDB1> connect c##zoran/oracle@pdb2

Connected.

c#tzoran@PDB2> select * from dba_roles where role="C##ROLEL1";

ROLE PASSWORD AUTHENTICAT COM O

C##ROLE1 NO NONE YES N

There's more...

You can also create common roles by using Oracle Enterprise Manager Cloud Control (OEM)
12c.

[56]

Security Considerations in Multitenant Environment

How to create a common role using OEM 12c

You should connect to the root (CDBSROOT) as a common user who has create role
privilege granted commonly (for example, c##zoran or system user). From the
Administration menu, select Security (drop-down menu) and then Roles (see Figure 13):

ORACLE Enterprise Manager Cloud Control 12c Setup ~ Help~ |y svsMan v | Logout O
t; Enterprise = @Zl Targets * Fawvorites @ History

cdbl.challengezoran.com / 4 cpoBsROOT @ @ 5] ordhost.challengszoran. com
Oracle Database = Performance = Availability - m Schema = Administration = Eﬁl

Home
Auto Refresh | Off
Reports
> S iR Perfi iR
] = ok Users =
> |G i S 3w Activil
'ompliance Summary W Roles
Profiles

Audit Settings

> | Jobs Running RS

> | Patch Recommendation & ~
Application Data Madels
Configuration Compliance
Data Masking

Data Redaction

]
=
k=l
(]
"]
o
w
o
=
T
=T

Transparent Data Encryption
Database Vault

L = T o T I |

[
=

3:04 PM 314 PM

Privilege Analysis

Label Security L L

Session [D
Virtual Private Database S |

L0

Application Contexts

Figure 13

[57]

Security Considerations in Multitenant Environment

On the Roles page, click on the Create button and the Create Role page appears (Figure 14):

ORACLE Enterprise Manager Cloud Control 12¢ Setp Hep v | @ svSMAN + | Logout O

ti Enterprise @J Targets v * Favorites + @ History =

cdbl.challengezoran.com / % CDB$ROOT @ Logged in as c##zoran (3 | [ordhost.challengszoran.com
Oracle Database ~ Performance = Awvallability ~ Security = Schema » Administration +

Roles > Create Role Logged in as C#£ZORAN
Create Role

Execute On Multiple Databases | Show SQL | Cancel | oK

General FRoles SystemPrivileges Object Privileges Consumer Group Privileges

*Name [C##ROLE2

Commen role name must begin with "C##",

Authentication I Mone v

There is no authentication.

Note: Created role will be & common role since you are in CDESROOT container,

Execute On Multiple Databases ‘ Show SQL | Cancel | oK

Figure 14

On the Create Role page, you name the role on the General tab (for example, c##role2).
Also, you may grant other roles and privileges to c##role2 (using the tabs Roles, System
Privileges, and Object Privileges). After choosing the options and granting privileges to
the role, click on the OK button to create it.

Creating a local role

Local roles are roles created in PDB and they exist only in that PDB. These roles can be
granted only locally to either common or local users or roles.

Getting ready

For this recipe, a pluggable database (in our case, pdb1) should be open. You'll need an
existing user (either common or local) who has create role privilege in that pluggable
database.

[58]

Security Considerations in Multitenant Environment

How to do it...

1. Connect to PDB (for example, pdb1) as a common or local user who has
create role privilege in that PDB (for example, c##maja):

SQL> connect c##maja@pdbl
2. Create a local role (for example, local_rolel):

c##tmaja@PDB1> create role local_rolel container=current;

How it works...

When you create a local role, that role exists only in the pluggable database in which it is
created. Local roles cannot be created in the root container. These roles are traditional roles.

cdb1

C_pdb1 >

Ch
(]

D Local role (e.g. local_role1)

Figure 15

c##maja@CDB1> select * from dba_roles where role="LOCAL_ROLE1";

no rows selected

c#maja@CDB1> connect c##maja/oracle@pdbl

Connected.

c##maja@PDB1> select * from dba_roles where role="LOCAL_ROLE1";

[59]

Security Considerations in Multitenant Environment

ROLE PASSWORD AUTHENTICAT COM 0

LOCAL_ROLE1 NO NONE NO

c#maja@PDB1> connect c##maja/oracle@pdb2

Connected.

c#tmaja@PDB2> select * from dba_roles where role="LOCAL_ROLE1";

no rows selected

There's more...

You can also create local roles by using Oracle Enterprise Manager Cloud Control (OEM) 12c.

How to create a local role using OEM 12c

You should connect to PDB (for example, pdb1) as a common or local user who has
create role privilege in that PDB (for example, c##maja). All the remaining steps are
done in the same way as in the How to create a common role using OEM 12c section.

Granting privileges and roles commonly

The common privilege is a privilege that can be exercised across all containers in a container
database. Depending only on the way it is granted, a privilege becomes common or local.
When you grant a privilege commonly (across all containers) it becomes a common
privilege. Only common users or roles can have common privileges. Only common role can
be granted commonly.

Getting ready

For this recipe, you will need to connect to the root container as an existing common user
who is able to grant a specific privilege or existing role (in our case, create session,
select any table, c##rolel, c##role2) to another existing common user (c##john). If
you want to try out examples in the How it works section, you should open pdb1 and pdb2.

[60]

Security Considerations in Multitenant Environment

You will use the following;:

e Common users c##maja and c##zoran with the dba role granted commonly
e Common user c##john
e Common roles c##rolel and c##role2

How to do it...

1. You should connect to the root container as a common user who can grant these
privileges and roles (for example, c##maja or system user):

SQL> connect c##maja@cdbl

2. Grant a privilege (for example, create session)toacommon user (for
example, c##john) commonly:

c##tmaja@CDB1> grant create session to c##john container=all;

3. Grant a privilege (for example, select any table)toa common role (for
example, c##rolel) commonly:

c##maja@CDB1> grant select any table to c##rolel container=all;

4. Grant a common role (for example, c##rolel) to a common role (for example,
c##role2) commonly:

c##maja@CDB1> grant c##rolel to c##role2 container=all;

5. Grant a common role (for example, c##role2) to a common user (for example,
c##john) commonly:

c##tmaja@CDB1> grant c##role2 to c##john container=all;

[61]

Security Considerations in Multitenant Environment

How it works...

IE Common privilege (e.g. Select Any Table)

@ Common roles (e.g. cittirole1, ci##role2)

\;l Common user (e.g. c##john)
=

Figure 16

You can grant privileges or common roles commonly only to a common user. You need to
connect to the root container as a common user who is able to grant a specific privilege or
role.

In Step 2, system privilege, create session is granted to the common user

c##john commonly by adding a container=all clause to the grant statement. This means
that the user c##john can connect (create session) to the root or any pluggable
database in this container database (including all pluggable databases that will be plugged
in in the future).

Note that the container = all clause is NOT optional even though you
are connected to the root. Unlike during the creation of common users and
roles (if you omit container=all, the user or role will be created in all
containers commonly), if you omit this clause during the privilege or role
grant, the privilege or role will be granted locally and it can be exercised
only in root container.

SQL> connect c##john/oracle@cdbl

Connected.

c##john@CDB1> connect c##john/oracle@pdbl

[62]

Security Considerations in Multitenant Environment

Connected.

c#john@PDB1> connect c##john/oracle@pdb2

Connected.

c#john@PDB2>

In step 3, system privilege select any table is granted to the common role c##rolel
commonly. This means that the role c##rolel contains the select any table privilege
in all containers (root and pluggable databases):

c##tzoran@CDB1> select * from role_sys privs where role="C##ROLE1";
ROLE PRIVILEGE ADM COM

C##ROLE1 SELECT ANY TABLE NO YES

c##tzoran@CDB1> connect c##zoran/oracle@pdbl

Connected.

c##tzoran@PDB1> select * from role_sys privs where role="C##ROLE1";
ROLE PRIVILEGE ADM COM

C##ROLE1 SELECT ANY TABLE NO YES

c##tzoran@PDB1> connect c##zoran/oracle@pdb2

Connected.

c##tzoran@PDB2> select * from role_sys privs where role="C##ROLE1";

ROLE PRIVILEGE ADM COM

C##ROLE1 SELECT ANY TABLE NO YES

[63]

Security Considerations in Multitenant Environment

In Step 4, the common role c##rolel is granted to another common role c##role2
commonly. This means that the role c##role2 has granted the role c##rolel in all
containers:

c##tzoran@CDB1> select * from role_role_privs where role="C##ROLE2";
ROLE GRANTED_ROLE ADM COM

CH##ROLE2 C##ROLE1 NO YES

c##tzoran@CDB1> connect c##zoran/oracle@pdbl

Connected.

c##tzoran@PDB1> select * from role_role_privs where role="C##ROLE2";
ROLE GRANTED_ROLE ADM COM

C##ROLE2 C##ROLE1 NO YES

c##tzoran@PDB1> connect c##zoran/oracle@pdb2

Connected.

c##tzoran@PDB2> select * from role_role_privs where role="C##ROLE2";

ROLE GRANTED_ROLE ADM COM

C##ROLE2 C##ROLE1 NO YES

In step 5, the common role c##role2 is granted to the common user c##john commonly.
This means that the user c##john has c##role2 in all containers.

[64]

Security Considerations in Multitenant Environment

Consequently, the user c##john can use the select any table privilege in all containers
in this container database:

c##john@CDB1> select count(*) from c##zoran.tl;

COUNT(*)

c##john@CDB1> connect c##john/oracle@pdbl

Connected.

c##john@PDB1> select count(*) from hr.employees;

COUNT(*)

c##john@PDB1> connect c##john/oracle@pdb2

Connected.

c#john@PDB2> select count(*) from sh.sales;

COUNT(*)

918843

Granting privileges and roles locally

A local privilege is a privilege than can be exercised only in a container in which it is
granted. Depending only on the way it is granted, a privilege becomes common or local.
When you grant privilege locally (in the current container), it becomes a local privilege.
Both common and local users or roles can have local privileges.

[65]

Security Considerations in Multitenant Environment

Getting ready

For this recipe, you'll need an existing user (c##maja) who can grant some privileges (for
example, create procedure, create table, create view, and create synonym)and
roles (c##rolel, c#frole2, ch#role3d, c##roled, and local_rolel)in a specific
container (root or PDB; in our case, pdb1) to existing users and roles (c##john, mike,
local_rolel, c##rolel, c##role3, and c##roled).

How to do it...

1. You should connect to the container (root or pluggable database) in which you
want to grant the privilege as a common or local user who can grant that
privilege (for example, c##maja):

SQL> connect c##maja@pdbl

2. Grant a privilege (for example, create synonym)to a common user (for
example, c##john) locally:

c##tmaja@PDB1> grant create synonym to c##john container=current;

3. Grant a privilege (for example, create view) to alocal user (for example, mike)
locally:

c##tmaja@PDB1> grant create view to mike container=current;

4. Grant a privilege (for example, create table)toa common role (for example,
c##rolel)locally:

c##tmaja@PDB1> grant create table to c##rolel container=current;

5. Grant a privilege (for example, create procedure) to alocal role (for example,
local_rolel)locally:

c##maja@PDB1> grant create procedure to local_rolel
container=current;

[66]

Security Considerations in Multitenant Environment

6. Grant a common role (for example, c##role2) to another common role (for
example, c##role3) locally:

c##maja@PDB1> grant c##role2 to c##role3 container=current;

7. Grant a common role (for example, c##role3) to a local role (for example,
local_rolel) locally:

c#ftmaja@PDB1> grant c##role3 to local_rolel container=current;

8. Grant a local role (for example, local_rolel) to a common role (for example,
c##roled) locally:

c##tmaja@PDB1> grant local_rolel to c##role4 container=current;

9. Grant a common role (for example, c##role4) to a common user (for example,
c##3john) locally:

c##tmaja@PDB1> grant c##role4 to c##john container=current;

How it works...

In the previous section, we have seen different types of local grants. Local grants are valid
only in the current container even though the granted user (or role) is common.
Consequently, common users and common roles can have a different set of privileges in
different containers. Steps 3, 5, 7, and 8 can't be done in the root container because there are
no local users and local roles in the root container.

Effects of plugging/unplugging operations
on users, roles, and privileges

The purpose of this recipe is to show what is going to happen to users, roles, and privileges
when you unplug a pluggable database from one container database (cdb1) and plug it into
some other container database (cdb2).

[67]

Security Considerations in Multitenant Environment

Getting ready

To complete this recipe, you will need the following;:

e Two container databases (cdb1 and cdb2)

¢ One pluggable database (pdb1) in the container database cdb1

¢ Local user mike in the pluggable database pdb1 with the local create session
privilege

e The common user c##john with the create session common privilege and
create synonymlocal privilege on the pluggable database pdb1

How to do it...

1. Connect to the root container of cdb1l as user sys:
SQL> connect sys@cdbl as sysdba
2. Unplug pdb1 by creating an XML metadata file:

SQL> alter pluggable database pdbl unplug into
"/u02/oradata/pdbl.xml*;

3. Drop pdb1 and keep the datafiles:
SQL> drop pluggable database pdbl keep datafiles;
4. Connect to the root container of cdb2 as user sys:
SQL> connect sys@cdb2 as sysdba
5. Create (plug) pdb1 to cdb2 by using the previously created metadata file:

SQL> create pluggable database pdbl using "/u02/oradata/pdbl.xml*
nocopy;

[68]

Security Considerations in Multitenant Environment

How it works...

By completing the previous steps, you unplugged pdb1 from cdbl and plugged it into
cdb2. After this operation, all local users and roles (in pdb1) are migrated with the pdb1
database.

The following is how you try to connect to pdb1 as a local user:

SQL> connect mike@pdbl

All local privileges are migrated even if they are granted to common users/roles. However,
if you try to connect to pdb1 as a previously created common user, c##john, you'll get an
error, as follows:

SQL> connect c##john@pdbl

ERROR:
ORA-28000: the account is locked
Warning: You are no longer connected to ORACLE.

This happened because, after migration, common users are migrated in a pluggable
database as locked accounts. You can continue to use objects in these users' schemas, or you
can create these users in a root container of a new CDB. To do this, we first need to close
pdbl:

sys@CDB2> alter pluggable database pdbl close;
Pluggable database altered.

sys@CDB2> create user c##john identified by oracle container=all;
User created.

sys@CDB2> alter pluggable database pdbl open;
Pluggable database altered.

[69]

Security Considerations in Multitenant Environment

If we try to connect to pdb1 as the user c##john, we will get the following error:

SQL> conn c##john/oracle@pdbl

ERROR:
ORA-01045: user C##JOHN lacks CREATE SESSION privilege; logon denied
Warning: You are no longer connected to ORACLE.

Even though c##john had the create session common privilege in cdb1, he cannot
connect to the migrated PDB. This is because common privileges are not migrated! So, we
need to give the create session privilege (either common or local) to the user c##john,
as follows:

sys@CDB2> grant create session to c##john container=all;
Grant succeeded.

In the earlier recipe (Granting privileges and roles locally), we granted a create synonym
local privilege to a user, c##7john. Let's try this privilege on the migrated pdb2:

c##john@PDB1> create synonym emp for hr._employees;
Synonym created.

This proves that local privileges are always migrated.

[70]

PL/SQL Security

In this chapter, we will cover the following tasks:

Creating and using definer's rights procedures

Creating and using invoker's rights procedures

Using code-based access control

Restricting access to program units by using accessible by

Introduction

In this section, you will learn the definitions of concepts that will be used in the rest of the
chapter.

Definer is the owner of a procedure.
Invoker is a user who uses (invokes) a procedure, but is not the definer of the procedure.

Definer's rights procedure is a procedure (or a program unit) that executes with the
privileges of its definer.

Invoker's rights procedure is a procedure (or a program unit) that executes with the
privileges of the invoker.

Another difference between definer's and invoker's rights procedures is
that invoker's rights procedures are not bound to the schema in which
they are located.

PL/SQL Security

Code base access control is a new feature, introduced in Oracle Database 12c. It enables you
to grant database roles to PL/SQL functions, procedures, or packages. You can use it with
definer's and invoker's rights procedures.

The purpose of the accessible by clause is to limit the calling set of program units to be
those in the accessible by clause and the unit itself.

For all the recipes in this chapter, you will use non-CDB 12c. We assume
that the database is up and running.

Creating and using definer's rights
procedures

In this recipe, you'll learn to create and use definer's rights procedures.

Getting ready

To complete this recipe, you'll use a user who has a DBA role.

How to do it...

1. Connect to the database as a user with the DBA role (for example, zoran)
SQL> connect zoran

2. Create two users (procowner and procuser) and grant them appropriate
privileges:

SQL> create user procowner identified by oraclel;

SQL> create user procuser identified by oracle2;

SQL> grant create session, create procedure to procowner;
SQL> grant create session to procuser;

[72]

PL/SQL Security

3. Create a table called zoran.tbl and grant users privileges on this table:

SQL> create table zoran.tbl(a number, b varchar2(40));
SQL> insert into zoran.tbl values(l, "old_value®);
SQL> commit;

SQL> grant select on zoran.tbl to procuser;

SQL> grant update on zoran.tbl to procowner;

4. Connect as a user, procowner, create a procedure to update table zoran.tbl,
and grant execute on this procedure to user procuser:

SQL> connect procowner/oraclel
CREATE OR REPLACE PROCEDURE UpdateTbl (x IN number,
y IN varchar2)

AUTHID DEFINER

AS
BEGIN
UPDATE ZORAN.TBL
SET b =y
WHERE a = Xx;
END;

/
SQL> grant execute on UpdateTbl to procuser;

5. Connect as user procuser and try to directly update table zoran.tbl:
SQL> connect procuser/oracle2
SQL> UPDATE ZORAN.TBL SET B = "valuel®™ WHERE A = 1;
UPDATE ZORAN.TBL SET B = "valuel® WHERE A =1
*

ERROR at line 1:
ORA-01031: insufficient privileges

6. When the previous step fails, update table by using the UpdateTbl procedure:

SQL> EXEC procowner .UpdateTbl (1, "new_value®);
PL/SQL procedure successfully completed.

7. Check whether the table is updated:

SQL> select * from zoran.tbl;

1 new_value

[73]

PL/SQL Security

How it works...

Definer's rights procedures are executed by using privileges that are granted to the owner
of the procedure. In our example, we have two users: procowner - a user who is the owner
of the procedure and has privilege to update table zoran.tbl and procuser - a user who
just executes the procedure. In step 4, procuser creates procedure by using the AUTHID
DEF INER clause, which means that this procedure will be definer's rights procedure. This is
a default behavior (we can omit the AUTHID DEFINER clause). In step 5, procuser tries to
update table zoran.tbl directly, but it gets an error:

SQL> UPDATE ZORAN.TBL SET B = "valuel®™ WHERE A = 1;
UPDATE ZORAN.TBL SET B = "valuel® WHERE A = 1

*

ERROR at line 1:
ORA-01031: insufficient privileges

This is the expected behavior, considering that procuser doesn't have an update privilege
on zoran.tbl. When procuser executes the procedure in step 6, the table is updated
because the privilege of the definer is applied.

Creating and using invoker's right
procedures

In this recipe, you'll learn to create and use invoker's rights procedures. They can be useful
when creating PL/SQL procedures in a highly privileged schema (because in this case, it is
more secure to grant specific privileges to the invoker). Also, when there is no SQL code in
the PL/SQL procedure and the procedure is available to other users, invoker's rights
procedure will be executed more efficiently. There are no changes in the values of current
schema and currently enabled roles during the execution (these changes are not necessary
because without SQL in PL/SQL code, privilege checking is not performed).

Getting ready

To complete this recipe, you'll use a user who has the DBA role.

[74]

PL/SQL Security

How to do it...

1. Connect to the database as a user with the DBA role (for example, zoran):
SQL> connect zoran
2. Create two users (procuserl, procuser?2) and grant them privileges:

SQL> create user procuserl identified by oraclel;
SQL> create user procuser? identified by oracle2;
SQL> grant create session to procuserl;
SQL> grant create session to procuser2;

3. Create the table tablel and grant select and update privileges on that table to
procuserl and only select privilege to procuser2:

SQL> create table tablel(a number, b varchar2(30));
SQL> insert into zoran.tablel values(l, "old_value®);
SQL> commit;

SQL> grant select on zoran.tablel to procuserl;

SQL> grant update on zoran.tablel to procuserl;

SQL> grant select on zoran.tablel to procuser2;

4. Create an invoker's rights procedure to update tablel:
CREATE OR REPLACE PROCEDURE UpdateTablel (x IN number,

y IN varchar2)
AUTHID CURRENT_USER

AS
BEGIN
UPDATE ZORAN.TABLE1
SET b =y
WHERE a = X;
END;
/

5. Grant execute on that procedure to procuserl and procuser2:

SQL> grant execute on zoran.UpdateTablel to procuserl;
SQL> grant execute on zoran.UpdateTablel to procuser2;

[75]

PL/SQL Security

6. Connect as user procuserl and execute the procedure UpdateTablel:

SQL> connect procuserl

SQL> EXEC zoran.UpdateTablel(l, "new_value®);
PL/SQL procedure successfully completed.
SQL> commit;

7. Check whether the table is updated:

SQL> select * from zoran.tablel;

1 new_value

8. Connect as the user procuser2 and try to execute the procedure UpdateTablel:

SQL> connect procuser2
SQL> EXEC zoran.UpdateTablel(l, "newer_value®);
BEGIN zoran.UpdateTablel(1l, "new_value®); END;

*

ERROR at line 1:

ORA-01031: insufficient privileges
ORA-06512: at ""ZORAN.UPDATETABLE1", line 5
ORA-06512: at line 1

How it works...

Invoker's rights procedures are executed by using privileges that are granted to the user
that executes the procedure. In step 4, the user zoran creates an invoker's rights procedure
by specifying the AUTHID CURRENT_USER clause. When procuser! executes that
procedure in step 6, he or she succeeds because update privilege is granted to procuserl,
but when procuser?2 tries to execute it in step 8, he or she gets an error because procuser?2
lacks the update privilege on tablel.

[76]

PL/SQL Security

There's more...

Let's consider this security problem.

1. Connect as a user who has a DBA role (for example, zoran). Create a new user
maluser and grant him the privileges create sessionand create
procedure.

SQL> create user maluser identified by oraclel;
SQL> grant create session, create procedure to maluser;

2. Connect as the user maluser and create the following “malicious” procedure
with the purpose of granting him the DBA role:

SQL> connect maluser/oraclel
create or replace procedure mal_proc

authid current_user

as

begin

execute immediate "grant dba to maluser”;
end;
/

3. Connect as a user who has a DBA role (for example, zoran) and execute the
procedure you created in the previous step:

SQL> connect zoran
SQL> EXEC maluser.mal_proc;
PL/SQL procedure successfully completed.

4. Connect as maluser and check whether the DBA role is granted:

SQL> connect maluser
SQL> select * from session_roles where role= "DBA-";

[771

lvww.allitebooks.cond

http://www.allitebooks.org

PL/SQL Security

In this example, we've seen that a low-privileged user can trick the DBA user to grant him
the DBA role, by tricking the DBA user (in this case, zoran) to execute an invoker's rights
procedure that was created by low-privileged user (in this case, maluser). The user zoran
can avoid this scenario by examining code that he is executing using his own privileges and
specifying users whose procedures he wants to execute using his own privileges. The latter
can be done by granting the INHERIT PRIVILEGE privilege to these users. Remember that
this privilege is granted by default to public user, meaning that zoran can execute
procedures from all users in the database. The first thing zoran can do is to revoke this
privilege from the public user and then grant it only to users whose invoker's rights
procedures he wants to execute. Let's try this:

1. Connect as a user zoran and revoke inherit privileges from public user:

SQL> connect zoran
SQL> revoke inherit privileges on user zoran from public;

Y

zoran

SQL> REVOKE INHERIT PRIVILEGES ON USER ZORAN
FROM PUBLIC;

Figure 1

[781

PL/SQL Security

2. Try to execute mal_proc:

SQL> EXEC maluser.mal_proc;

BEGIN maluser.mal_proc; END;

*

ERROR at line 1:

ORA-06598: insufficient INHERIT PRIVILEGES privilege
ORA-06512: at "MALUSER.MAL_PROC", line 1

ORA-06512: at line 1

SQL> create or replace procedure mal_proc
2 authid current user

3> 3 as
4 begin
5 execute immediate 'grant dba to maluser’;
maluser .
6 end;
77/

\G EXECUTE i
ERROR at line 1:

ORA-06598: insufficient INHERIT PRIVILEGES privilege
Zoran . o, " q

ORA-06512: at “maluser.mal proc", line 1
ORA-06512: at line 1

Figure 2

[791

PL/SQL Security

3. Grant inherit rights privileges to maluser:

SQL> grant inherit privileges on user zoran to maluser;

SQL> create or replace procedure mal_ proc
2 authid current_user
> 3 as

4 begin

5 execute immediate 'grant dba to maluser’ ;
maluser X

6 end;

7/

SQL> GRANT INHERIT PRIVILEGES ON USER zoran TO maluser;

Y

zoran

Figure 3

4. Try again to execute mal_proc:

SQL> EXEC maluser.mal_proc;
PL/SQL procedure successfully completed.

SQL> create or replace procedure mal_proc
2 authid current user
—_— 3 as
4 Dbegin
= execute immediate 'grant dba to maluser’ ;
maluser 6 X
end;
7/

\ EXECUTE
|PL/SQL procedure successfully completed.

zoran

Figure 4

[80]

PL/SQL Security

Users who have the inherit any privileges system privilege are exempted from this
rule, meaning that procedures from these users can be executed by all the users in the
database. For example, we have the following steps:

1. Connect as a user who has a DBA role (for example, zoran), create two users,
and grant them the following privileges:

SQL> connect zoran

SQL> create user super_user identified by oraclel;

SQL> create user regular_user identified by oracle2;

SQL> grant create session, create procedure to super_user;
SQL> grant create session, create procedure to
regular_user;

2. Grant inherit any privileges only to super_user:
SQL> grant inherit any privileges to super_user;
3. Connect as regular_user and create the following procedure:

SQL> connect regular_user
create or replace procedure reg_proc
authid current_user
as
begin
execute Immediate "grant dba to regular_user-®;
end;
/

4. Connect as super_user and create the following procedure:

SQL> connect super_user
create or replace procedure sup_proc
authid current_user
as
begin
execute immediate "grant dba to super_user”;
end;
/

[81]

PL/SQL Security

5. Connect as user zoran and try to execute reg_proc from regular _user
(observe an error because regular_user doesn't have the inherit
privileges privilege on user zoran):

SQL> connect zoran/oracle_4U
Connected.

SQL> EXEC regular_user.reg_proc;
BEGIN regular_user.reg_proc; END;
*

ERROR at line 1:

ORA-06598: iInsufficient INHERIT PRIVILEGES privilege
ORA-06512: at "REGULAR_USER.REG_PROC", line 1
ORA-06512: at line 1

6. Try to execute sup_proc from super_user (this succeeds because, even though
super_user doesn't have inherit privileges privilege on the user zoran, he
has inherited any privileges system privilege, which can be interpreted as
inherit privileges on all users of the database):

SQL> EXEC super_user.sup_proc;
PL/SQL procedure successfully completed.

Using code-based access control

In this recipe, you'll use code base access control with invoker's rights procedure.

Getting ready

To complete this recipe, you'll use a user who has a DBA role.

How to do it...

1. Connect to the database as a user with a DBA role (for example, zoran), create
proc_user, and grant him the create session privilege:

SQL> create user proc_user identified by oraclel;
SQL> grant create session to proc_user;

[82]

PL/SQL Security

2. Create table tb11 and insert test data:

SQL> create table tbll(a number, b varchar2(30));
SQL> insert into tbll values (1, "old_value®);
SQL> commit;

3. Create the invoker's rights procedure UpdateTbl1 and grant execute on that
procedure to proc_user:

CREATE OR REPLACE PROCEDURE UpdateTbll (x IN number,
y IN varchar2)
AUTHID CURRENT_USER

AS
BEGIN
UPDATE ZORAN.TBL1
SET b =y
WHERE a = Xx;
END;
/

SQL> grant execute on zoran.UpdateTbll to proc_user;
4. Create the role proc_role and grant update on tbl1 to proc_role:

SQL> create role proc_role;
SQL> grant update on zoran.tbll to proc_role;

5. Grant proc_role to the procedure UpdateTbl1:

SQL> grant proc_role to procedure zoran.UpdateTbll;
6. Connect as a user proc_user:

SQL> connect proc_user
7. Try to directly update the table:

SQL> update zoran.tbll set b = “valuel® where a = 1;
update zoran.tbll set b = "valuel®™ where a = 1
*x
ERROR at line 1:
ORA-00942: table or view does not exist

8. Execute the procedure UpdateTbl1:

SQL> execute zoran.UpdateTbll1(1l, "new_value®);
PL/SQL procedure successfully completed.

[83]

PL/SQL Security

9. Connect as the user zoran and verify whether the table is updated:

SQL> connect zoran
SQL> select * from tbll;

1 new_value

How it works...

Code-based access control allows us to grant a role to a PL/SQL procedure, function, or
package. It works with both definer's rights and invoker's rights procedures. The scenario in
this example shows one use of this feature. The invoker's rights procedure in step 3 created
by zoran (UpdateTbl1), is used to update the table tb11. Execute on this procedure is
granted to the user proc_user. This is an invoker's rights procedure, meaning that it is
executed by using privileges granted to invoker (in our case, proc_user). However,
proc_user doesn't have update privilege on this table, but he can still execute it
successfully because procedure itself contains update privilege on tb11 table, granted
through the role proc_role in step 5.

There's more...

Remember that, in some cases, privileges granted to users via roles are not active during the
PL/SQL calls. Let's try this:

1. Connect as a user who has a DBA role (for example, zoran), create the user
plsusr, and grant him the create sessionand create procedure
privileges:

SQL> create user plsusr identified by oraclel;
SQL> grant create session, create procedure to plsusr;

2. Create the role plsrolel and grant the create table privilege to it:

SQL> create role plsrolel;
SQL> grant create table to plsrolel;

3. Grantplsrolel to the user plsusr:

SQL> grant plsrolel to plsusr;

[84]

PL/SQL Security

4. Connect as plsusr and create the procedure cr_table:

SQL> connect plsusr
create or replace procedure cr_table
authid definer
as
begin
execute immediate "create table test2(a int)";
end;
/

5. Create the table test 1 to check whether the plsusr user has a create table
privilege:

SQL> create table testl(a int);
Table created.

6. Execute the cr_table procedure and observe the insufficient privileges
error. Even though the user plsusr has a create table privilege, that privilege
is granted via role and roles are not active during this PL/SQL call resulting in the
insufficient privileges error.

SQL> exec cr_table;
BEGIN cr_table; END;

*

ERROR at line 1:

ORA-01031: insufficient privileges
ORA-06512: at "PLSUSR.CR_TABLE™, line 5
ORA-06512: at line 1

7. Connect as a user who has the DBA role and grant the create table privilege
directly to the user plsusr:

SQL> connect zoran
SQL> grant create table to plsusr;

8. Connect as the user plsusr and try to execute the procedure cr_table again.
This time, the create table privilege is granted directly; thus, it is active
during the PL/SQL call, resulting in successful completion:

SQL> connect plsusr/oraclel
SQL> exec cr_table;
PL/SQL procedure successfully completed.

[85]

PL/SQL Security

Restricting access to program units by
using accessible by

In this recipe, you'll learn about the effects of using the accessible by clause.

Getting ready

To complete this recipe, you'll use a user who has the create procedure privilege.

How to do it...

1. Connect as a user who has the create procedure privilege (for example,
zoran):

SQL> connect zoran
2. Create the protected_pkg package that is only accessible by public_pkg:

CREATE OR REPLACE PACKAGE protected_pkg
ACCESSIBLE BY (public_pkg)
IS
PROCEDURE protected_proc;
END;
/
CREATE OR REPLACE PACKAGE BODY protected_pkg
IS
PROCEDURE protected_proc
IS
BEGIN
DBMS_OUTPUT.PUT_LINE ("This is a Protected Procedure
that can only be accessed from Public Package®);
END;
END;
/

[86]

PL/SQL Security

3. Create the public_pkg package:

CREATE OR REPLACE PACKAGE public_pkg
IS
PROCEDURE public_proc;
END;
/
CREATE OR REPLACE PACKAGE BODY public_pkg
IS
PROCEDURE public_proc
IS
BEGIN
DBMS_OUTPUT.PUT_LINE ("This is Public Procedure from
Public Package!");
protected_pkg.protected_proc;
END;
END;
/

4. Execute the public_proc procedure from public_pkg:

SQL> set serveroutput on

SQL> EXEC public_pkg.public_proc;

This is Public Procedure from Public Package!

This is a Protected Procedure that can only be accessed from
Public Package

PL/SQL procedure successfully completed.

5. Try to directly execute protected_proc from protected_pkg and observe the
erTor:

SQL> EXEC protected_pkg.protected_proc;
BEGIN protected_pkg.protected_proc; END;

ERROR at line 1:

ORA-06550: line 1, column 7:

PLS-00904: insufficient privilege to access object
PROTECTED_PKG

ORA-06550: line 1, column 7:

PL/SQL: Statement ignored

[87]

PL/SQL Security

6. Try to create another package that accesses protected_proc from
protected_pkg

CREATE OR REPLACE PACKAGE other_pkg
IS
PROCEDURE other_proc;
END;
/
CREATE OR REPLACE PACKAGE BODY other_pkg
IS
PROCEDURE other_proc
1S
BEGIN
DBMS_OUTPUT.PUT_LINE ("This is Other Procedure from
Other Package!");
protected_pkg.protected_proc;
END;
END;
/
Warning: Package Body created with compilation errors.

7. Find the compilation errors, as follows:

SQL> show errors
Errors for PACKAGE BODY OTHER_PKG:
LINE/COL ERROR

7/7 PL/SQL: Statement ignored
7/7 PLS-00904: insufficient privilege to access object
PROTECTED_PKG

How it works...

An accessible by clause enables us to specify which packages can access procedures and
functions of another package. This process is called white listing. In step 2, we created the
protected_pkg package and we specified that procedures and functions of this package
can be accessed only by procedures and functions of public_pkg package. In step 4, we
executed the public_proc procedure from the public_pkg package and, in output, we
can observe that the protected_proc procedure has been successfully executed. However,
if we try to execute protected_proc directly, we get an insufficient privileges
error because the accessible by clause restricts execution of this procedure (step 5). Even
if we try to create a new package with the procedure that calls the protected_proc
procedure, we get an insufficient privileges error (steps 6 and 7).

[88]

Virtual Private Database

In this chapter, we will cover the following tasks:

Creating different policy functions
Creating Oracle Virtual Private Database row-level policies
Creating column-level policies

Creating a driving context
¢ Creating policy groups

Setting context as a driving context

Adding a policy to a group

Exempting users from VPD policies

Introduction

Oracle Virtual Private Database (VPD) is a security feature, introduced in Oracle Database
8i. It is available only in Enterprise Edition of Oracle Database. Discretionary access control
(DAC) grants/restricts access to data at an object level (for example, table level). This means
that a user can access either the entire data in a table or no data. VPD enables you more
granular control over security of your data. Using VPD, you can restrict access to data at
row level or column level.

further restrict access to users who have been given access to data by

VPD doesn't replace DAC, but it is complimentary to DAC. VPD can
0 DAC.

Virtual Private Database

There are five types of policies based on how often a policy function is evaluated:

e DBMS_RLS.DYNAMIC

e DMBS_RLS.STATIC

e DBMS_RLS.SHARED_STATIC

e DBMS_RLS.CONTEXT_SENSITIVE

e DBMS_RLS.SHARED_CONTEXT_SENSITIVE

DBMS_RLS .DYNAMIC is default.

Although it is not necessary to use application contexts when implementing VPD policies, it
is a common practice. Figure 1 shows usual steps that you will need to complete to
implement the VPD policy on protected objects, such as table or view:

Create a PL/SQL package that set lication context

Create an a I I..'.HI teatiorn covtlext

Create a policy fimction

Create a VPD polcy

Figure 1 — Steps to implement the VPD policy

A driving context is an application context that has at least one attribute and its purpose is
to determine which group of policies will be applied. The driving context is set by an
application that is trying to access the data.

[90]

Virtual Private Database

The default VPD behavior is that all policies defined on a table or a view are enforced for all
SQL statements regardless of the application that executes them. If multiple applications
share a table or a view, it is highly likely that you will either need to establish more complex
logic to handle security requirements (to determine in which case, which predicate should
be returned) or change the default VPD behavior by creating and using policy groups. If
policies are already defined, you should identify which policies should be in effect when
each application accesses the table or view. Each object has a predefined default policy
group (SYS_DEFAULT), and the policies defined in this group are always applied for that
particular object. A driving context determines which other policy group will also be
applied at that time.

Suppose that there are two applications (A and B) that access data in table
HR.EMP_VPD_TEST. Their specific policies are defined in two policy groups (HR_GRP_A and
HR_GRP_B), and policies that should be enforced in any case are defined in the default
group (SYS_DEFAULT). When application A accesses the data, policies that belong to
HR_GRP_A and SYS_DEFAULT groups are applied, and when application B accesses the data,
polices that belong to HR_GRP_B and SYS_DEFAULT groups are applied (it is assumed that
the driving context is properly set).

Steps to implement policy groups are shown in Figure 2:

Determine the default policies

Create and sef the driving context

Create a policy group for each application

Add policies to the appropniate policy groups

Figure 2 — Steps to implement policy groups

[91]

Virtual Private Database

Creating different policy functions

The purpose of a policy function is to return a predicate that will be applied in WHERE clause
of the statement (except for INSERT operation). In this recipe, you'll create several simple
policy functions, based on different business and security requirements.

Getting ready

To complete this recipe, you'll need to create the table hr.emp_vpd_test, insert several
values into that table, and create several users (in our case, susan, joel, emma, maja, and
zoran already exist).

SQL> CREATE TABLE hr.emp vpd test (
emp id NUMBER(6) NOT NULL,

first mame VARCHARZ2(38) NOT NULL,
last name VARCHARZ2(38) NOT NULL,
email VARCHARZ(36) NOT NULL,
salary NUMBER(8,2),

comm pct NUMBER (2,2),

mgr id NUMBER(6));

00~ O LN & W

Table created.

Figure 3 — A test table

[92]

Virtual Private Database

If you won't use the same data as shown in Figure 4, then keep in mind to accordingly make
changes in the How to do it section and the rest of the recipes in this chapter.

El oracle@dbhost: ~/Desktop - 0O x
Eile Edit View Search Terminal Help

SQL> INSERT INTO hr.emp_vpd test VALUES (1,'Haja','Veselica','maja@company.examE]
ple.com’,11000,0.085,3);

1 row created.

SQL> INSERT INTO hr.emp vpd test VALUES (2,'Zoran','Pavlovic',’zoran@company.ex
ample.com®,115600,0.02,3);

1 row created.

SQL> INSERT INTO hr.emp vpd test VALUES (3,'Joel’,'Adams’,'joel@company.example
.com*,15000,0.04,NULL);

1 row created.

SQL> INSERT INTO hr.emp vpd test VALUES (4,'Emma‘,’Cole’,’emma@company.example.
com® ,8000,0.1,5);

1 row created.

SQL> INSERT INTO hr.emp vpd test VALUES (5,'Susan’,'Smith’,*susan@company.examp
le.com®,16000,0,NULL);

1 row created.
SQL> commit;

Commit complete.

saL> |

Figure 4 — Test data in the table hr.emp_vpd_test

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
user maja):

$ sqlplus maja

[93]

Virtual Private Database

2. Create a policy function that satisfies this condition: The user susan can't access

data in a table (for example, hr.emp_vpd_test) and other users can access entire
data in the table.

Worksheet Query Builder

= CREATE OR REPLACE FUNCTION no_access (
achema_wvar IN VARCHARZ,
table_var IN VARCHARZ)
RETURN VARCHAR2
Is
return_value VARCHAR2 (400};
BEGIN

= IF (5YS_CONTEXT('USERENV','SESSICN_USER')) = 'SUSAN' THEN
return_value := '1=2';
ELSE
return_walue := '1=1';
END IF:

RETUEN return value;
END ne access;
!

. 4
[El script output =
f é E E @ Task completed in 0.47 seconds

Function NO _ACCESS compiled

Figure 5

3. Create an application context that has the emp_id attribute and the value is
emp_id (from the hr.emp_vpd_test) of the connected user or if the connected
user is not employee. See Chapter 12, Appendix — Application Contexts for

detailed explanation (recipes: Creating an application context and Setting application
context attributes) and make appropriate changes.

¢ Create an application context

SQL> connect maja

Enter password:

Connected.

SQL> create context hremp ctx using hremp ctx pkog;

Context created.

[94]

Virtual Private Database

¢ Create a PL/SQL package

Worksheet Query Builder

[l CREATE OR REPLACE PACKAGE hremp ctx pkg

I

E
!

s
PROCEDURE set_emp_id;
D

[l CREATE OR REPLACE PACEAGE BODY hremp_ctx pkg

L
=

5
PROCEDURE set_emp id
Is
v_emp_id NUMBER;
BEGIN
SELECT emp_id
INTO v_emp id
FROM hr.emp vpd test
WHERE UPPER(email) = (SYS_CONTEXT ('USERENV','SESSION USER') || '@COMPANY.EXRMPLE.COM'):
DBMS_SESSION.SET_CONIEXT ('hremp_ctx','emp id',v_emp_id);
EXCEPTION
WHEN no_data_found THEN
DBMS_SESSION.SET_CONTEXT ('hremp_ctx','emp_id',0):
END;

END;

!

AW

[Elsaipt output x
,f é E 5 El Task completed in 0. 115 seconds

Package HREMF CTE_PKEG compiled

¢ Create a logon trigger

SQL> CREATE OR REPLACE TRIGGER hremp ctx logon
2 AFTER LOGOM OMN DATABASE

BEGIN
hremp ctx pkg.set emp id();

END;

/

(=R ¥ R -)

Trigger created.

[95]

Virtual Private Database

4. Create a policy function (for example, emp_access) that satisfies this condition: a
“regular” employee can access only his or her data in a table (for example,

hr.emp_vpd_test) and manager users can access his or her data in the table and
data for employees he or she directly manages.

Worksheet Query Builder

=/ CREATE OR REPLACE FUNCTION emp_access(
schema_wvar IN VARCHARZ,
table_var IN VARCHARZ)
RETURN WARCHAR2
Is

return_value VARCHARD (400);
BEGIN

return value:= '({emp id = SY5_CONIEXT(''hremp ctx'',"''emp id""')) OR (mgr_id = SY5_CONTEXT(''hremp ctx'',''emp_id'"))"
BETURN return_value;
END emp_access;

/

avw

[El seript output x

f # E E E| Task completed in 0, 123 seconds
Function EMF_ACCESS compiled

Figure 9 — The emp_access policy function

5. Create a role (for example, HREMP_TEST).

SOL> create role HREMP_TEST;

Role created.

[96]

Virtual Private Database

6. Create a policy function that satisfies this condition: Only users who have the
HREMP_TEST role can view data in a table (for example, hr.emp_vpd_test).

Waorksheet Query Builder

= CREATE OR REPLACE FUNCTION role_access|(
schema wvar IN VARCHARZ,
table_wvar IN VARCHARZ)
RETURN VARCHAR2
Is

return_value VARCHAR2 (400);
BEGIN

=

IF (5YS_CONIEXT ('SY¥S_SESSION ROLES', "HREMP TEST')) = "IRUE’
return_walue:= '1=1";

THEH
ELSE

return_value := 'l1=2';
END IE;

RETUEN return_wvalue;

END role_acceas:

/
..
B script output x
f 0 = E % Task completed in 0.014 seconds
Function ROLE_ACCESS compiled

Figure 11 — The role_access policy function

How it works...

In step 4, you created a policy function that uses the application context you created, where
as other policy functions you created use built-in application contexts.

A policy function can be part of a package or is standalone.

[97]

Virtual Private Database

There's more...

To test whether the function defined in step 2 works properly, perform the following tasks:

1. Connect to the database as the user maja and execute the following statement:

S0L> select no access('a','b') from dual;

NO_ACCESS('A",'B')

Figure 12 — Maja can access data

2. Grant the user susan execute on no_access function and connect to the
database as the user susan.

SOL= grant execute om no_access to susan;
Grant succeeded.
SQL> connect susan

Enter password:
Connected.

Figure 13 — Temporary grant the susan privilege

3. Execute the following statement:

select maja.no_access("a","b") from dual;

50L> select maja.no access('a’,"b') from dual;

MAJA.NO ACCESS('A",'B")

Figure 14 — Susan can't access data

[98]

Virtual Private Database

4. Connect to the database as the user maja and revoke execute on no_access
function from the user susan.

S0L> connect maja

Enter password:

Connected.

S0L> revoke execute on no access from susan;

Revoke succeeded.

Figure 15 — Clean up environment (revoke privilege)

See also

e All recipes of Chapter 12, Appendix — Application Contexts

Creating Oracle Virtual Private Database
row-level policies

Oracle VPD row-level policies restrict users' access per row for a protected object. This
means that two users who execute the same query against, for example, a table may, as a
result, receive different number of rows.

Getting ready

See the Getting ready section of the recipe Creating different policy functions.

[99]

Virtual Private Database

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
the user maja):

$ sqlplus maja

2. Create a VPD policy (for example, test_pol1) that protects the
hr.emp_vpd_test table in the following way: it restricts SELECT operation
based on a policy function (for example, no_access).

SQL> exec DBMS RLS.ADD POLICY('HR','EMP VPD TEST','TEST POL1','MAJA','NO ACCESS'
, 'SELECT')

PL/SQL procedure successfully completed.

3. To test VPD policy created in the previous step, connect as the user susan to the
database (keep in mind that she has the SELECT ANY TABLE privilege) and try to
access data in the table hr .emp_vpd_test.

SOL> connect susan

Enter password:

Connected.

SQL> SELECT * FROM HR.EMP_VPD_TEST;

no rows selected

Figure 17 — Susan can't access data

[100]

Virtual Private Database

4. Connect to the database as a user who can create a VPD policy (for example, user
maja). Create a VPD policy (for example, test_pol2) that additionally protects
the hr.emp_vpd_test table in the following way: it restricts the SELECT and
DELETE operations based on a policy function (for example, emp_access).

SQL> connect maja

SQL> exec DBMS RLS.ADD POLICY('HR','EMP VPD TEST','TEST POL2', 'MAJA','EMP ACCESS
', "SELECT,DELETE")

PL/SQL procedure successfully completed.

Figure 18 — The VPD policy TEST_POL2

5. Connect to the database as the user joel and execute the following query:
SELECT * FROM HR.EMP_VPD_TEST;

The result will show 3 rows, because joel can view his data and data for his
direct employees (policy function emp_access).

SQL= connect joel

Enter password:

Connected.

SQL> select * from hr.emp vpd test;

EMP_ID FIRST NAME LAST NAME

EMAIL SALARY COMM PCT MGR_ID
1 Maja Veselica

maja@company.example.com 11000 .85 3
2 Zoran Pavlovic

zoran@company . example.com 11500 .02 3
3 Joel Adams

joel@company.example.com 150080 .04

Figure 19 — Joel can view his data and data for his direct employees

[101]

Virtual Private Database

6. Connect to the database as the user emma and execute the following query:
SELECT * FROM HR.EMP_VPD_TEST;

The result will show only 1 row, because emma is a “regular” employee, so
she can view only her own data (policy function emp_access).

SQL= connect emma

Enter password:

Connected.

SQL> select * from hr.emp vpd test;

EMP _ID FIRST NAME LAST NAME
EMAIL SALARY COMM PCT MGR ID
4 Emma Cole
emma@company . example. com 8000 .1 5

Figure 20 — Emma can only view her own data

There's more...

You defined two VPD policies on the same table, and they are both enabled. The first one
only restricts the user susan from accessing the table, whereas the other one affects all users
connected to the database (with some exceptions, see the recipe Exempting users from VPD
policies). If susan connects to the database, both policies will determine whether she can
access the data and if yes, which data. The way the policies are defined, she won't be able
to view data in the table.

See also

o The recipe Exempting users from VPD policies

[102]

Virtual Private Database

Creating column-level policies

When you create a column-level VPD policy, you define sensitive columns, and if those
columns are referenced in a query, statement will be rewritten. To create a column-level
VPD policy, you also use the DBMS_RLS . ADD_POLICY procedure.

Getting ready

See the Getting ready section for the first recipe in this chapter. Results shown in this recipe
assume that you completed previous recipes in this chapter.

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
the user maja):

$ sqglplus maja

2. Create a VPD policy (for example, test_col) that protects the
hr.emp_vpd_test table in the following way: it defines that salary and
comm_pct are sensitive columns and a user can access them only if he or she has
the HREMP_TEST role (the role_access policy function).

Worksheet Queery Builder
= BEGIN

DBMS_RLS.ADD_POLICY (cbject_schema => 'HR',
object_name =» 'E r*
policy name =» °
function_schema
policy function
statement_types 5
sec_relevant_cola => '35

sec_relevant_cols_opt =

v
;IScnpt Output =
a é = g_, El Task completed in 0.15 seconds

FL/SQL procedure succesafully completed.

[103]

Virtual Private Database

3. Grant the role HREMP_TEST to user zoran:
SQL> grant HREMP_TEST to zoran;

4. Connect to the database as the user zoran and view data in the table
hr.emp_vpd_test.

S0L= grant HREMP_TEST to zoran;
Grant succeeded.

S0L> connect zoran

Enter password:

Connected.

SQL= select * from hr.emp vpd test;

EMP_ID FIRST NAME LAST_NAME
EMATL SALARY COMM_PCT MGR_ID

2 Zoran Pavlovic
zoran@company .example.com 11500 .62 3

5. Connect to the database as the user maja and disable the VPD policy TEST_POL2.

SQL= connect maja

Enter password:

Connected.

5QL> exec DBMS RLS.EMABLE POLICY('HR','EMP VPD TEST','TEST POL2',FALSE);

PL/SOL procedure successfully completed.

[104]

Virtual Private Database

6. Repeat step 4.

SQL> connect zoran

Enter password:

Connected.

SQL> select * from hr.emp vpd test;

EMP_ID FIRST_NAME LAST_NAME
EMAIL SALARY COMM_PCT MGR_ID
1 Maja Veselica
naja@company.example. com 11000 .83 3
2 Zoran Pavlovic
zoran@company .example. com 11500 .02 3
3 Joel Adams
joel@company.example.com 15000 .04
EMP_ID FIRST NAME LAST_NAME

4 Emma Cole

emma@company . example. com 8000 .1 5
5 Susan smith

susan@company . example. com 16000 e

ey |

7. Connect to the database as the user joel and execute the same statement as in
the previous step.

SQL> connect joel

Enter password:

Connected.

SQL> select * from hr.emp_vpd test;

EMP_ID FIRST MAME LAST_NAME

EMAIL SALARY| COMM_PCT MGR_ID
1 Maja Veselica

maja@company .example.com 3
2 Zoran Pavlovic

zoran@company . example. com 3
3 Joel Adams

joel@company.example.com

EMP_ID FIRST NAME LAST_NAME
EMAIL SALARY| COMM_PCT MGR
4 Emma Cole
emma@company . example. com 5
5 Susan smith
susan@company . example.com

ey |

[105]

Virtual Private Database

How it works...

In step 2, the test_col VPD policy is created. In step 3, the user zoran is granted the role
(HREMP_TEST) that will allow him to view entire data in step 6 (after test_pol2is
disabled). In step 4, displayed rows are restricted by TEST_POL2, so user zoran can view
only his data. In step 5, you disabled the TEST_POL2 policy using the

DBMS_RLS .ENABLE_POLICY procedure (to disable the policy, you set enable parameter to
false). The syntax is:

DBMS_RLS.ENABLE_POLICY (
object_schema IN VARCHAR2 NULL,
object_name IN VARCHARZ2,
policy_name IN VARCHARZ2,
enable IN BOOLEAN TRUE)

In step 7, the user joel can view all rows, but cannot view salary and comm_pct, because
he doesn't have the HREMP_TEST role.

Creating a driving context

In the previous recipe, you saw that having multiple VPD policies (most probably created
because multiple application use that same table) is harder to manage, and it can lead to
unexpected/unwanted results.

For example, you have two applications and want to create two policy groups. If the first
application accesses the table, the test_pol1l and test_col policies should be enforced,
and if second application accesses the table, the test_pol2 policies should be applied.
There will be no default policies.

In this recipe, you'll create an application context and set it.

Getting ready

To complete this recipe, you'll need an existing user who can create an application context
(for example, the user maja).

[106]

Virtual Private Database

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
the user maja):

$ sqglplus maja
2. Create a driving context (for example, driver_ctx):

SQL> CREATE CONTEXT driver_ctx using driver_ctx_pkg;
3. Set the driving context:

SQL> CREATE OR REPLACE PACKAGE driver_ctx_pkg IS
PROCEDURE set_driver (p_group varchar2);
END;
/
SQL> CREATE OR REPLACE PACKAGE BODY driver_ctx_pkg IS
PROCEDURE set_driver (p_group varchar2)
IS
BEGIN
DBMS_SESSION.SET_CONTEXT("driver_ctx","ACTIVE",p_group);
END;
END;
/

Creating policy groups

In this recipe, you'll create two policy groups that will be applied to table
hr.emp_vpd_test.

Getting ready

To complete this recipe, you'll need an existing user who has appropriate privileges (for
example, the user maja).

[107]

Virtual Private Database

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
the user maja):

$ sqlplus maja
2. Create the first policy group (for example, pol_grp_2):

SQL> BEGIN
DBMS_RLS.CREATE_POLICY_GROUP(
object_schema => "HR",
object_name => "EMP_VPD_TEST",
policy_group => "pol_grp_A");
END;

/

3. Create the second policy group (for example, pol_grp_B):

SQL> BEGIN
DBMS_RLS.CREATE_POLICY_GROUP(
object_schema => "HR",

object _name => "EMP_VPD_TEST",

policy _group => "pol_grp B");
END;
/

Setting context as a driving context

In this recipe, you'll make an existing application context a driving context (you'll associate
it with the protected object).

Getting ready

To complete this recipe, you'll need an existing application context (for example,
driver_ctx) and an existing user who has appropriate privileges (for example, maja).

[108]

Virtual Private Database

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
the user maja):

$ sqlplus maja

2. Make an existing application context a driving context.

SQL= connect maja

Enter password:

Connected.

SQL= BEGIN
2 DBMS RLS.ADD POLICY CONTEXT('HR','EMP VPD TEST','DRIVER CTX','ACTIVE');
3 END;
4/

PL/SQL procedure successfully completed.

Adding policy to a group

In this recipe, create VPD policies as part of a policy group.

Getting ready

To complete this recipe, you'll need an existing user who has appropriate privileges (for
example, maja). If you completed previous recipes, drop all VPD policies using the
DBMS_RLS.DROP_POLICYFEOCGdUIe

SQL= BEGIN
2 DBMS RLS.DROP_POLICY('HR','EMP_VPD TEST','TEST POL1');

3 DBMS RLS.DROP POLICY('HR','EMP VPD TEST','TEST POL2');
4 DBMS RLS.DROP POLICY('HR','EMP VPD TEST','TEST COL');
5 END;

6 /

PL/SQL procedure successfully completed.

Figure 27 — Drop policies

[109]

Virtual Private Database

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
the user maja):

$ sqlplus maja

2. Add TEST_POL1 to policy group pol_grp_A.

Worksheet Query Builder

=l BEGIN
DBMS RLS.ADD GROUPED POLICY(
object schema => 'HR',
object_name => "EMP VPD TEST',
policy group => 'pol_grp_A',
policy name => 'TEST POL1",
function_schema => '"MAJA',

policy function => 'HO ACCESS',
statement types => '3SELECT"):
END;
!

FS

] script Cutput x

a é = E @ Task completed in 0.103 seconds
PL/SCL procedure succesafully completed.

[110]

Virtual Private Database

3. Add TEST_COL to policy group pol_grp_A.

Worksheet Query Builder

El BEGIN
[DBM5_RLS.ADD GROUPED POLICY(
object_schema =»> 'HR',
ocbject_name => 'EMP VFD_TEST',
policy group =» 'pol grp RA',
policy name => 'TEST_COL',
function_schema => 'MAJL',
policy_function => 'ROLE_ACCESS',
statement_types => 'SELECT',
sec_relevant_cols => 'SRLARY,CCMM FCT',
gec_relevant_cols_opt => DBMS_RLS.ALL ROWS);
END;
!

-

Bl script output =
& ¢ 3 B B | Taskcompletedin 0.008 seconds

FL/SQL procedure successfully completed.

4. Add TEST_POL2 to policy group pol_grp_B.

Workshest Query Buider
= BEGIN
DEMS_RLS.ADD GROUTPED_POLICY (
cbject_schema => "HR',
cbject_name => '"EMP VPD TEST',
pelicy group => 'pol_grp B',
policy name => "TESI_POL2',
function schema => 'MRLJL',
policy function =»> 'EMP ACCESS®,
statement_types =» 'SELECT, DELETE'):

END;
!
F, 4
=l script output =

& H 5 5 | raskcompleted in 0.008 seconds

FL/SQ0L procedure succesafully completed.

[111]

Virtual Private Database

5. Create a logon trigger.

Worksheet Query Builder

= CREATE OR REPLACE TRIGGER driver ctx_logon
AFTER LOGON ON DATABASE
= BEGIN
=] IF (SYS_CONTEXT ('USERENV','CLIENT PROGREM NAME')) = '30L Develocper'
THEN CRIVER_CTX PEG.set driver('pocl grp A');
else DRIVER_CTX_PKG.SET DRIVER('pol grp B'):
end if;
END;
/

% 4

ElnScript Output * | [Query Result *
o é =] E El Task completed in 0,209 seconds

Trigger DRIVER CTX LOGON compiled

6. Connect to the database as the user joel using SQL*Plus and execute the SELECT
statement, as shown in Figure 32.

S0L> select sys context('driver ctx®, "ACTIVE'] from dual;

SYS5S CONTEXT("DRIVER CTX®, 'ACTIVE']

pal grp B

Figure 32

[112]

Virtual Private Database

7. View data in the table hr.emp_vpd_test.

S0L> connect joel
Enter password:
Connected.

5QL> select * from hr.emp vpd test;

8. Connect to the database as the user susan using SQL*Plus and view data in the

table hr.emp_vpd_test:

SQL> connect susan

EMP_ID FIRST_NAME LAST_NAME

EMAIL SALARY COMM_PCT MGR_ID
1 Maja Veselica

maja@company .example.com 11800 .05 3
2 Zoran Pavlovic

zoran@company .example. com 11560 .82 3
3 Joel Adams

joel@company .example.com 15800 .04

Figure 33

EMP_ID FIRST_ NAME

4 Emma
emma@company . example. com

5 Susan
susan@company.example.com

SQL> select * from hr.emp vpd test;

LAST NAME

[113]

Virtual Private Database

9. Connect as the user emma using SQL Developer and view data in the table
hr.emp_vpd_test.

Worksheet Query Builder
Iselect * from hr.emp vpd test;

. 4
[Query Result %
i 3 ,E, @[ﬂ @ SOL | All Rows Fetched: 5in 0.022 seconds

§} EMP_ID |{} FIRST_NAME |{} LAST_NAME |{} EMALL |4 savary [{ comm_pcT [{; MeR_ID |
1 1Maja Veselica majafcompany.example. com {mull) {null) 3
2 2 Zoran Pavlovic zoranfcompany.example.com (null) {null) 3
3 3 Joel Adams joel@company.example. com {null) {null) {null)
4 4 Emma Cole ermalcorpany . example. com {null) {null) 5
5 5 Susan Smith guzanfcompany.example.com (null) {null) {null)

Exempting users from VPD policies

VPD policies are not enforced for users who connect as sysdba, during direct path export,
and for users who have the EXEMPT ACCESS POLICY privilege.

Getting ready

To complete this recipe, you'll connect to the database as sYS user and grant EXEMPT
ACCESS POLICY to an existing user.

[114]

Virtual Private Database

How to do it...

1. Connect to the database as sYS user:
$ sqlplus / as sysdba

2. Grant the EXEMPT ACCESS POLICY privilege to an existing user (for example,
susan):

SQL> grant EXEMPT ACCESS POLICY to susan;

3. Connect to the database as the user susan and verify that now she can access
data in the hr.emp_vpd_test table.

S0L= connect susan
Enter password:
Connected.
SQL> select * from hr.emp vpd test;
EMP_ID FIRST_NAME LAST NAME
EMAIL SALARY COMM_PCT MGR_ID
1 Maja Veselica
maja@company . example.com 116008 .85 3
2 Zoran Pavlovic
zoran@company.example. com 11500 .02 3
3 Joel Adams
joel@company . example.com 15608 .04
EMP_ID FIRST NAME LAST NAME
EMAIL SALARY COMM PCT MGR ID
4 Emma Cole
emma@company . example. com 8000 1 5
5 susan smith
susan@company.example.com 16000]

[115]

Data Redaction

In this chapter, we will cover the following tasks:

¢ Creating a redaction policy when using full redaction

¢ Creating a redaction policy when using partial redaction

¢ Creating a redaction policy when using random redaction

¢ Creating a redaction policy when using regular expression redaction

¢ Using Oracle Enterprise Manager Cloud Control 12c to manage redaction policies
¢ Changing the function parameters for a specified column

¢ Adding a column to the redaction policy

¢ Enabling, disabling, and dropping a redaction policy

¢ Exempting users from data redaction policies

Introduction

Oracle Data Redaction is a new security feature, introduced in Oracle Database 12c. From a
licensing viewpoint, it is part of the Advanced Security Option (only available as an option
for Oracle Database Enterprise Edition). However, afterwards, Oracle decided to make it
available in Oracle Database 11g as well (only in version 11.2.0.4). The main idea behind this
feature is to mask (hide/redact) some (sensitive) data from end-users. Having this in mind, it
is logical that you will primarily use this security solution in a production environment.

Data Redaction

Oracle Data Redaction and Oracle Data Masking are both used to mask
sensitive data, but these solutions are completely different—from the way
they are designed (how they work) to their target implementation use
cases. Oracle Data Masking enables organizations to use production data
in development and test environments by changing production data with
realistic data (transformation is done by using masking rules).

Oracle Data Redaction masks sensitive data just before the results of the SQL query are
returned to the application that issued the query. Data stored in the database is NOT
changed in any way.

When you implement Oracle Data Redaction, you have to decide the following;:

e What data should be redacted
e Which redaction method is most suitable for the identified data
¢ In which situations the redaction should take place

You define all these decisions by creating a redaction policy (Figure 1), and they are
enforced as long as the policy is enabled.

Redaction policy

WHAT - schema, object,
column

HOW - redaction type,
required parameters

- WHEN - 5QL exprassion

Figure 1 — The parts of a redaction policy

[117]

Data Redaction

Different types of redaction are shown in Figure 2.

N
* Redaction is + Columns + User- + Pattern for * Preserves
NOT are specified matching data types
applied redacted to positions and
constant are replaced replacing is - Randomizes
values by a user- defined and output
depending specified used for
on column character redaction
data type

Figure 2 — The types of redaction

You can define only one redaction policy on a table (or view).

To view which data redaction policies are defined and whether they are enabled, you can
query the redaction_policies view. Also, it is very useful to query

the redaction_columns view, which shows which columns will be masked and what type
of redaction will be used. Note that the names of those two views do not have any prefix
(such as DBA_, USER_, or ALL_).

Although Oracle Data Redaction as a concept is fantastic, you should keep
in mind that there are some implementation limitations (for example,
unsupported data types) and unexpected behavior (most likely bugs)
observed in Oracle Database 12.1.0.2.

For all recipes in this chapter, we assume that database is up and running, and each user
has atleast a create session privilege. Recipes are tested on Oracle Database 12.1.0.2.

[118]

Data Redaction

Creating a redaction policy when using full
redaction

In this recipe, you will create a redaction policy on the income_level column (on

the income_level column on the CUSTOMERS table in the sample schema OE), find the
default values (for full redaction) for different data types, and change the default value for
the varchar2 data type.

You may consider data about customer address to be sensitive.
Unfortunately, you can't create a redaction policy on the CUST_ADDRESS
column (the table CUSTOMERS in the sample schema OE) because its data

0 type is not supported (its data type is TYPE, which is not a literal value, so
it can't be redacted). If you try to create a redaction policy, you will receive
the following error: ORA-28073. The column CUST_ADDRESS has an
unsupported data type.

Getting ready

To complete this recipe, you'll need the following:

¢ An existing user who can view data in OE . CUSTOMERS sample table but doesn't
have exempt redaction policy privilege (for example, oe)

¢ To connect as a SYS user to the database
e To restart the database (There’s more... section of the recipe)

How to do it...

1. Connect to the database as a user who has the SELECT privilege on
the OE.CUSTOMERS table or the SELECT ANY TABLE privilege (for example, the
oe user):

$ sqglplus oe

[119]

Data Redaction

2. Verify that the user (for example, the user oe) can view data by executing the
following query:

select customer_id, cust_last name, income_ level from

oe.customers order by customer_id fetch Ffirst 10 rows
only;

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

SQL> select customer id,cust last name, income_level from oe.customers
2 order by customer_id
3 fetch first 10 rows only;

CUSTOMER_ID CUST LAST_ NAME INCOME_LEVEL

161 wWelles B: 30,000 - 49,999
102 Pacino I: 170,000 - 189,999
103 Taylor H: 150,000 - 169,999
104 Sutherland H: 150,000 - 169,999
185 MacGraw C: 50,000 - 69,999
106 Hannah F: 110,000 - 129,999
107 Cruise G: 130,000 - 149,999
188 Mason H: 150,000 - 169,999
109 Cage F: 110,000 - 129,999
1160 Sutherland G: 130,000 - 149,999 []

10 rows selected.

Figure 3 — Data in the clear text format (before redaction) in the OE.CUSTOMERS table

3. Connect to the database as a user who can create the user secmgr (who will be
responsible for managing redaction policies) and grant him appropriate
privileges (for example, SYS):

SQL> create user secmgr identified by oracle;
SQL> grant create session to secmgr;

SQL> grant execute on dbms_redact to secmgr;

[120]

Data Redaction

4. Connect to the database as the secmgr user:
SQL> connect secmgr/oracle

5. Create the redaction policy CUST_POL in such a manner that data in the
column income_level (the table oe.customers) is redacted using full

redaction:
SQL> begin

2 dbms_redact.add_policy

3 (object_schema => "0OE",

4 object _name => "CUSTOMERS",

5 policy_name => "CUST_POL",

6 column_name => "INCOME_LEVEL",
7 function_type => DBMS_REDACT.FULL,
8 expression => "1=17);

9 end;
10 7/

PL/SQL procedure successfully completed.

6. Connect to the database as the same user as in step 1 (for example, oe) and
execute the same query as in step 2.

oracle@dbhost:~/Desktop

Eile Edit View Search Terminal Help
SQL> connect oe (=]
Enter password:
Connected.
SQL> select customer id,cust_last_name, income_level from oe.customers
2 order by customer_id
3 fetch first 18 rows only;

CUSTOMER_ID CUST LAST_NAME INCOME_LEVEL
101 Welles
182 Pacino
103 Taylor
104 sutherland
105 MacGraw
106 Hannah
107 Cruise
108 Mason
109 Cage
110 Sutherland

10 rows selected. Ll

e |

Figure 4 — After applying the redaction policy

[121]

Data Redaction

How it works...

In order to manage redaction policies, you need to connect to a database as a user who has
an execute privilege on the doms_redact package (in this recipe, that user is created in step
3 —the secmgr user). In step 5, you defined redaction policy CUST_POL. Let's examine that
step in more detail. Creating a new redaction policy is done by using the ADD_POLICY
procedure in the DBMS_REDACT package (line 2). A policy consists of several distinct
sections (see Figure 1). In step 5, lines 3-6 are part of the WHAT section in Figure 1. Lines 3,
4, and 6 define on which the column redaction policy (whose name is defined on line 5)
should be applied. Line 7 is part of the HOW section in Figure 1. It defines the redaction
type (in this case, full redaction). Line 8 is a part of the WHEN section in Figure 1. It defines
the conditions when protected data will be masked (in situations when the expression is
evaluated to TRUE, the data is masked). In this case, the expression is always TRUE (1=1),
meaning that data in column INCOME_LEVEL will always* be masked. Defining different,
more complex expressions (using application contexts, and roles) will be done in the next
few recipes in this chapter.

* Assume that the redaction policy CUST_POL is enabled and user doesn't
have strong privileges. For more information about for which
users/operations the data redaction policy doesn't have any effect, see the
recipe Exempting users from data redaction policies.

In Figure 4, the result of applying the data redaction policy to the column INCOME_LEVEL
(whose data type is varchar2) is shown, and as you can see, data in the column is masked.
Every row is masked with the same value, in this case, whitespace (the default value when
masking column whose data type is varchar2).

Keep in mind that whitespace is exactly one blank space and that it is
different from NULL.

[122]

Data Redaction

Figure 5 shows the example of creating a redaction policy (SAL_POLICY) using a full
redaction method on a column (SALARY in table EMPLOYEES in schema GLDB) whose
data type is a number. As you can see, the masked value is .

_//
EMPLOYEES
SQL> SELECT * FROM EMPLOYEES; ‘ m
frank 8800
emily 9600
grace 11300

emily 0

DBEMS REDACT.ADD POLICY
grace 0 (object schema => ‘GLDB’,

object name => ‘EMPLOYEES',

policy name => ‘SAL POLICY',
column name => ‘SATARY',

function type => DBMS REDACT.FULL,
expression => ‘7=7");

Figure 5 — An example of the redaction policy applied on the column whose data type is a number

To find out default values (for full redaction) for other data types, query
REDACTION_VALUES_FOR_TYPE_FULL. Finding the default value for DATE data type is
depicted in Figure 6.

[123]

Data Redaction

oracle@dbhost:~/Desktop

Eile Edit View Search Terminal Help
SO0L> connect / as sysdba (=]
Connected.
SQL> desc REDACTION_VALUES FOR TYPE_FULL
Name Null? Type
NUMBER_VALUE NOT NULL NUMBER
BINARY_FLOAT VALUE NOT NULL BINARY_FLOAT
BINARY_DOUBLE_VALUE NOT NULL BINARY_DOUBLE
CHAR_VALUE VARCHARZ (1)
VARCHAR_VALUE VARCHAR2 (1)
NCHAR_VALUE NCHAR(1)
NVARCHAR VALUE NVARCHAR2 (1)
DATE_VALUE NOT NULL DATE
TIMESTAMP VALUE NOT NULL TIMESTAMP(6)
TIMESTAMP WITH TIME ZONE VALUE NOT NULL TIMESTAMP(6) WITH TIME ZONE
BLOB_VALUE BLOB
CLOB_VALUE CLOB
NCLOB_VALUE NCLOB
S0L> select date value from redaction values for type full;
ATE VALU EI
01-JAN-81
=

Figure 6 — The default value for full redaction

At the time when you define data redaction policy, you can specify
redaction for only one column. If you want to redact more than one column
in a table, you can later modify the policy. For more information, see the
recipe Changing redaction policy.

There's more...

In the following section, you will learn to change default value for full redaction type. Step-
by-step instructions are given on how to change default value from whitespace to T for
varchar2 data type.

It is important to remember that changing default value for full redaction
will affect ALL the defined redaction policies in a database (that use full
redaction type).

[124]

Data Redaction

How to change the default value

You will use the update_full_redaction_values procedure to change the default value
from whitespace to T for the varchar2 data type. Note that you can create a redaction
policy (for example, as you have already done in step 5 in the beginning of the recipe), but
you can't change the default value (Figure 7) even though the user secmgr has been
granted EXECUTE on the DBMS_REDACT package.

oracle@dbhost:~/Desktop
File Edit View Search Terminal Help
50L> connect secmgr ~

nter password:
onnected.

S0L> exec dbms_redact.update full redaction values (varchar val == 'T')
BEGIN dbms redact.update full redaction values (varchar val == 'T"); END;

RROR at line 1:

ORA-00942: table or view does not exist
ORA-06512: at "SYS.DBMS REDACT", line 363
DRA-06512: at line 1

Figure 7 — An unsuccessful change of default value

Connect to the database as the SYs user and change the default value.

SQL> exec dbms redact.update full redaction values (varchar val => 'T')

PL/SOL procedure successfully completed.

Figure 8 — A successful change of the default value

[125]

Data Redaction

Optionally, verify that the default value is changed and that there is no effect before you
restart the database. (Figure 9).

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

50L= select varchar_value from redaction values for type full;

5QL= connect oe

Enter password:

Connected.

5QL> select customer id, cust last name, income level from oe.customers
2 order by customer id
3 fetch first 10 rows only;

CUSTOMER ID CUST LAST NAME TNCOME LEVEL
181 welles
182 Pacino
183 Taylor
184 Sutherland
105 MacGraw
186 Hannah
187 Cruise
168 Mason
109 Cage
118 Sutherland

18 rows selected.

soL> i

Figure 9 — The changed default value still has no effect on the displayed value in the column income_level

[126]

Data Redaction

Restart the database and verify that the modified default value is displayed (Figure 10).

oracle@dbhost:~/Desktop
File Edit View Search Terminal Help

SQL= connect / as sysdba
Connected.

Database closed.
Database dismounted.
JORACLE instance shut down.

ORACLE 1instance started.

Total System Global Area 1073741824 bytes
Fixed Size 2932632 bytes
Variable Size 692060264 bytes
Database Buffers 3732930856 bytes
Redo Buffers 5455872 bytes
Database mounted.
Database opened.
Enter password:
Connected.
QL> select customer_1id, cust last name, income_level from oe.customers
2 order by customer_ id
3 fetch first 10 rows only;

CUSTOMER_ID CUST LAST_ NAME INCOME_LEVEL
181 welles
182 Pacino
183 Taylor
104 Sutherland
105 MacGraw
106 Hannah
187 Cruise
108 Mason
109 Cage
118 Sutherland

S A A A A A A

10 rows selected.

(<]

Figure 10 — A new default value is displayed

See also

o Changing redaction policy
e Exempting users from data redaction policies

[127]

Data Redaction

Creating a redaction policy when using
partial redaction

In this recipe, you will implement partial redaction on columns of two different types:
Number and Varchar2. Partial redaction means that only part (hence the name partial) of
the data in a specified column will be masked (redacted), whereas the other part of the data
will be visible to the user — for instance, the first 12 digits of credit card number will be
redacted, whereas other 4 digits will be visible.

How to do it...

1. Log in to database as a user who has a DBA role (for instance, zoran):

$ sqglplus zoran/oracle

2. Create a test table and insert some data in it:

SQL>
SQL>
SQL>
SQL>

SQL>

create table tbl (a number);

insert into tbl values (123456);
insert into tbl values (234567);
insert into tbl values (345678);

commit;

3. Create role (that is going to be used in redaction policy) and user usr1 as the first
test user:

SQL>
SQL>

SQL>

create role myrole;
create user usrl identified by oraclel;

grant create session to usril;

4. Grant the select privilege and role to usr1:

SQL>

SQL>

grant select on zoran.tbl to usril;

grant myrole to usril;

[128]

Data Redaction

5. Create the second test user and grant him create session and select
privilege, but don 't grant him the role myrole:

SQL> create user usr2 identified by oracle2;
SQL> grant create session to usr2;
SQL> grant select on zoran.tbl to usr2;

6. Create redaction policy to redact column a of the type Number using partial
redaction (first four digits will be redacted and won't be seen at all). This
redaction policy will be applied only to users that don't have role myrole and
don't have the EXEMPT REDACTION POLICY privilege:

SQL> BEGIN

2 DBMS_REDACT.ADD_POLICY(

3 object_schema => "zoran",

4 object_name = "tbl",

5 column_name => "a",

6 column_description => "Sensitive column A",

7 policy_name => "a_tbl_partial”,

8 policy_description => "Redact column A of tbl",

9 function_type => DBMS_REDACT.PARTIAL,

10 function_parameters = "0,1,4%,

11 expression => "SYS_CONTEXT(
""SYS_SESSION_ROLES*®*,
""MYROLE" ") =
""FALSE""");

12 END;

13 7/

7. Connect to database as the user usr1 and select from the table tb1 in the
schema zoran:

SQL> connect usrl/oraclel

SQL> select a from zoran.tbl;

123456
234567
345678

[129]

Data Redaction

8. Now, connect to database as the user usr2 and again select from the table tb1 in
the schema zoran:

SQL> connect usr2/oracle2

usr2@ORA12CR1> select a from zoran.tbl;

9. Log in to database as a user who has a DBA role (for instance, zoran):
$ sqglplus zoran/oracle
10. Create the test table to store credit cards data and insert some data in it:

SQL> create table customers (name varchar2(20 CHAR),
credit_card varchar2(20 CHAR));

SQL> insert into customers values ("tom",
"3455647456589132");

SQL> insert into customers values ("mike",
"3734982321225691");

SQL> insert into customers values ("john",
"3472586894975806") ;

SQL> commit;
11. Grant select privilege on table customers in the schema zoran to usri:

SQL> grant select on zoran.customers to usrl;

[130]

Data Redaction

12. Create a redaction policy to redact column credit_card of type Varchar2 using
partial redaction (first 12 values will be redacted with #sign). This redaction
policy will be applied to all users, except those who have the EXEMPT REDACTION
POLICY privilege (see the Exempting users from data redaction policies recipe):

SQL> BEGIN

2 DBMS_REDACT.ADD_POLICY(

3 object_schema => "zoran",

4 object_name => "customers”,

5 column_name => "credit_card",

6 column_description => "Credit Card numbers®,

7 policy_name => "CCN_POLICY",

8 policy_description => "Redact column
credit_card of table
customers”,

9 function_type => DBMS_REDACT .PARTIAL,

10 function_parameters => "VVVVVVVVVWVWVVWWVWV,
VVWVVVWWVVWWWVWWWYVY, #, 1,
12+,

11 expression => "1=1%);

12 END;

13 7/

13. Connect to database as the user usr1 and select from the table customers in the
schema zoran:

SQL> connect usrl/oraclel

SQL> select * from zoran.customers;

NAME CREDIT_CARD

tom HHHHHHAHAR#9132
mike HHHHHAAHHHH#569 1
john HHHHHAAHAHHH#5806

How it works...

In order to manage redaction policies and also to create some test tables, you can connect to
a database as a user who has a dba role (for example, zoran). If you just need to manage
redaction policies, you can connect with user who has the execute privilege on

the dbms_redact package.

[131]

Data Redaction

The previous section is divided into two parts. The first part shows the creation of redaction
policy for number type column, in such a way that redaction should only be applied to
users that don't have a particular role. The second part shows the creation of a redaction
policy for Varchar2 type column.

In step 6, you created a redaction policy named a_tbl_partial. Creating a new redaction
policy is done by using the ADD_POLICY procedure in the DBMS_REDACT package (line 2). A
policy consists of several distinct sections (see Figure 1). Lines 3, 4, and 5 define on which
column our redaction policy should be applied. Line 9 defines redaction type (in this case,
partial redaction). Line 10 is used for function parameters (in our case, it is defined that first
four digits will be redacted to 0). In line 11, you defined condition when protected data will
be masked (in our case, it is when user doesn't have role myrole), and it is evaluated using
the following expression: SYS_CONTEXT (''SYS_SESSION_ROLES'', ''MYROLE'') =

' 'FALSE' '. In this case, expression is true only if user doesn't have role myrole, and in this
case, data in column a will be redacted (which is a case with the user usr2, whereas the
user usr1, who has the role myrole, can see the unmasked data).

Step 12 shows the creation of redaction policy for the Varchar2 column type. The
difference is on line 10- function parameters (in our case, the first 12 values will be redacted
or changed with symbol #, so only last four digits will be visible) and on line 11-condition
is always TRUE.

CUSTOMERS

g Bl = | cReomoaRd |
i 3455647456589132

I tom

i mike 3734982321225691
1
i john 3472586894975806
1
]

m CREDIT_CARD

tom HHHHRRRHHA#9132 1

. DBMS REDACT.ADD POLICY
mike HHHHH#569] e e oz

. object name => ‘CUSTOMERS’,
John RSB0 policy name => ‘CCN_POLICY’,

column name => ‘CREDIT CARD’,
function_type => DBMS_REDACT.PARTIAL,
function parameters => ‘VVVVVVVVVVVVVVVV,
VVVVVVVVVVVVVVVV, #,1,12/

expression => ‘1=1’);

Figure 11 — Partial redaction

[132]

Data Redaction

There's more...

Even though users can't see unmasked data, they can use redacted columns in where
clause:

SQL> select * from zoran.customers;

NAME CREDIT_CARD

tom HIHHHHHH #9132

mike HHHHHHH #5691

john HIHHHHHHH #5806

SQL> select * from zoran.customers where credit_card like
"34%" ;

NAME CREDIT_CARD

tom HHHHHHHH #9132

john HIHHHHHH #5806

Creating a redaction policy when using
random redaction

Random redaction type is usually used for the number and date-time data types because for
these data types, it is hard to make a distinction between the redacted (random) and real
data. In this recipe, you will create redaction policy EMP_POL using random redaction type
on hr.employees table, column salary, by using SQL*Plus. In the Changing redaction

policy recipe, you will modify the EMP_POL redaction policy.

Getting ready

To complete this recipe, you'll need:

¢ An existing user who can view data in the HR. EMPLOYEES sample table but
doesn't have an exempt redaction policy privilege (for example, hr)

e The secmgr user created in the Creating a redaction policy using full redaction
recipe or another user who can create redaction policies (has execute on
the dbms_redact package)

[133]

Data Redaction

How to do it...

1. Connect to the database as a user who has the SELECT privilege on
the HR.EMPLOYEES table or the SELECT ANY TABLE privilege (for example, hr
user):

$ sqglplus hr

2. Verify that the user (for example, hr user) can view data by executing the
following query:

select employee_id, salary, commission_pct from
hr_employees where commission_pct IS NOT NULL order by
employee_id fetch Ffirst 10 rows only;

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

S0L> select employee id, salary, commission pct from hr.employees (]
2 where commission pct IS NOT NULL
3 order by employee id
4 fetch first 10 rows only;

EMPLOYEE ID SALARY |COMMISSION PCT
145 14000 .4
146 13500 .3
147 12000 .3
148 11000 .3
149 18500 .2
158 16000 .3
151 9500 .25
152 9080 .25
153 8060 .2
154 7500 .2

18 rows selected.

soL= i

Figure 12 — Data in the clear text format in the HR.EMPOYEES table

[134]

Data Redaction

3. Connect to the database as the secmgr user:

SQL> connect secmgr/oracle

4. Create the redaction policy EMP_POL in such a way that data in column salary
(the table hr.employees) is redacted using random redaction only when user in
step 1 (for example, hr) tries to view it. If you don't use the hr user, modify line 8

to reflect that change:
SQL> begin
2 dbms_redact.add_policy
3 (object_schema => "HR",
4 object_name => "EMPLOYEES",
5 policy_name => "EMP_POL",
6 column_name => "SALARY",
7 function_type => DBMS_REDACT.RANDOM,
8 expression => "SYS_CONTEXT(" "USERENV" ",
""SESSION_USER"") = ""HR""");
9 end;
10 7/

PL/SQL procedure successfully completed.

5. Connect to the database as the same user as in step 1 (for example, hr) and
execute the same query, as in step 2, twice.

[135]

Data Redaction

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

S0L= connect hr I E

Connected.

S0L= select employee_id, salary, commission_pct from hr.employees
2 where commission pct IS NOT NULL
3 order by employee id
4 fetch first 18 rows only;

EMPLOYEE ID SALARY JCOMMISSION PCT
145 4756 4
146 12122 3
147 le27@ 3
148 412 3
149 7371 2
158 2197 3
151 2478 .25
152 4422 .25
153 4453 2
154 1731 2

10 rows selected.

S0L= select employee id, salary, commission pct from hr.employees
2 where commission pct IS NOT NULL
3 order by employee id
4 fetch first 10 rows only;

EMPLOYEE_TD SALARY | COMMISSTION _PCT
145 1729 4
146 54 3
147 2311 3
148 9038 3
149 3040 .2
158 9835 3
151 7076 .25
152 6991 .25
153 2474 2
154 1050 2

10 rows selected.

(<]

Figure 13 — After applying redaction policy

How it works...

In step 4, you created the redaction policy EMP_POL by using the procedure ADD_POLICY in
the DBMS_REDACT package. Line 7 defines that random redaction type will be used to redact
data. Line 8 (policy expression) in this case specifies the blacklist (which contains only user
HR). This means only the hr user is not allowed to view data in the column salary. To define
a whitelist (for example, list only users who are allowed to view data, range of only those IP
addresses from which access is allowed, and so on) change operator = to operator <> and
define left and right operand according to your needs.

[136]

Data Redaction

8 When defining security policies, it is a good practice to create whitelists.

When the number data type is redacted using random redaction type, the redacted value
will belong to the interval [0, I721], where Inl is the absolute value of the original data.
According to the official Oracle documentation (Database Advanced Security Guide, Chapter
9), the only exception to this rule is when original data is an integer between -1 and 9, and
in that case, the redacted value will belong to the interval [0, 9].

Creating a redaction policy when using
regular expression redaction

A regular expression redaction type enables you to create and implement flexible redaction
rules. You define patterns that will be used in order to match and replace data, as well as
some other parameters of the search. In this recipe, you will create the redaction policy
SHORT_POL, which will be used to mask customers' phone numbers.

Getting ready

To complete this recipe, you'll need:

¢ An existing user who can view data in the SH. CUSTOMERS sample table but
doesn't have an exempt redaction policy privilege (for example, sh)

e The secmgr user you created in the Creating redaction policy using full redaction
recipe or another user who can create redaction policies (has execute
on doms_redact package)

How to do it...

1. Connect to the database as a user who has the SELECT privilege on
the SH.CUSTOMERS table or the SELECT ANY TABLE privilege (for example,
the sh user):

$ sqlplus sh

[137]

Data Redaction

2. Verify that the user (for example, the user sh) can view data by executing the
following query:

select cust_id, cust_main_phone_number from sh.customers
order by cust_id fetch first 10 rows only;

oracle@dbhost:~/Desktop

File Edit Wiew Search Terminal Help

SOL> select cust id, cust main phone number from sh.customers (~]
2 order by cust id
3 fetch first 10 rows only;

CUST ID CUST MAIN PHONE NUMBER
127-379-8954
680-327-1419
115-589-3391
577-104-2792
563-667-7731
(682) 732-7268
(648) 272-6181
(234) 693-8728
(697) 702-2618
(681) 207-4699

W00~ SN bWk

=

18 rows selected.

S |

Figure 14 — Data in the clear text format (before redaction) in the SH.CUSTOMERS table

3. Connect to the database as the secmgr user:

SQL> connect secmgr/oracle

[138]

Data Redaction

4. Create the redaction policy SHORT_POL in such a manner that data in the
column cust_main_phone_number (the table sh.customers) is redacted using
regular expression redaction:

SQL> begin
dbms_redact.add_policy
(object_schema => "SH",
object_name => "CUSTOMERS",
policy_name => "SHORT_POL",
column_name => "CUST_MAIN_PHONE_NUMBER",
function_type => DBMS_REDACT.REGEXP,
expression => "1=1°",
regexp_pattern => DBMS_REDACT.RE_PATTERN_US_ PHONE,
0 regexp_replace_string => DBMS_REDACT.
RE_REDACT_US_PHONE_L7,
11 regexp_position => DBMS_REDACT.RE_BEGINNING,
12 regexp_occurrence => DBMS_REDACT.RE_FIRST);
13 end;
14 /

POoO~NOOR~WN

PL/SQL procedure successfully completed.

5. Connect to the database as the same user as in step 1 (for example, sh) and
execute the same query as in step 2.

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help
SQL> col cust_main_phone number format A22 [~}
SQL> select cust_id, cust_main_phone_number from sh.customers
2 order by cust_id
3 fetch first 18 rows only;

CUST_ID|CUST MAIN_ PHONE_ NUMBER

= - R o

—

18 rows selected.

soL> i

Figure 15 — After applying the redaction policy

[139]

Data Redaction

How it works...

When creating redaction policies that use regular expression redaction type, you can choose
between redaction shortcuts (they exist for commonly redacted data, such as e-mail
address, social security number, and postal code) and the creation of custom regular
expressions. In this recipe, in step 4, lines 9-12, you used redaction shortcuts.

expression didn't find a match and because of that full redaction was
applied to them. With this kind of implementation, Oracle prevented
accidental exposure of sensitive data.

0 In Figure 15, the value T is displayed in the places where regular

Using Oracle Enterprise Manager Cloud
Control 12c to manage redaction policies

In this recipe, you will perform several tasks with Data Redaction policies using Oracle
Enterprise Manager Cloud Control 12¢, including creation, modification, and deletion.

Many tasks from other recipes, described in this chapter, can be done very easily using
Enterprise Manager.

Getting ready

To complete this recipe, you need Enterprise Manager Cloud Control 12¢ and HR sample
schema in the database.

How to do it...

1. Log in to Oracle Enterprise Manager Cloud Control
at https://hostname:port/em.

2. Go to a Database home page (if it is a container database, you should go to a
home page of PDB that contains sample schemas).

[140]

Data Redaction

3. On menu, select Security | Data Redaction (see Figure 16).

Enterprise Manager Cloud Control 12c

*s Enterprise > (B Targets ~ fp Favorites * &) History

dbm / # cusT2[x @

E Oracle Database * Performance ¥ Availability * | Security ™ Schema ™ Administration =

Summary

Status
UpTime 1days, 13 hrs
Version 12.1.0.2.0
Available Space MfA
Diagnostics
Incidents eu @ 0 LU P~ 0

Compliance Summary (Brief)
[View Trends
Compliance Standard
F Mo data to display

Home

Reports

Users

Roles

Profiles

Audit Settings

Enterprise Data Governance

Application Data Models

Configuration Compliance
Data Masking

Data Redaction

Transparent Data Encryption
Database Vault

Privilege Analysis

Label Security

Virtual Private Database By

Application Contexts

Enterprise User Security [——

Figure 16 — Select Data Redaction

[141]

Data Redaction

4. On the Data Redaction screen, select Create (Figure 17).

Enterprise Manager Cloud Confrol 12¢

fs Enterprise ¥ Targets ~ i Favorites ~ (8 History ~

dbm / & cusT2 = @

E COracle Database * Performance ¥ Availsbility * Seourity = Schema > Administration *

Data Redaction

Oracle Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications

Search Data Redaction Policies

Schema %
Table Niew %

Palicy Name | %o
Data Redaction Policies

[RCreate | 7 Edit &oView (PEnable (@ Disable $¢ Delete
Schema TableView Policy Name Enabled

Redacted Columns

Figure 17 — Creating a redaction policy

[142]

Data Redaction

5. Set Schema as HR and the table as EMPLOYEES. Enter SAL_POLICY as a policy

name. Click on the Add button, to add column that is going to be redacted.
(Figure 18).

Enterprise Manager Cloud Control 12c

l"} Enterprise * IE) Targets « * Favorites = @ History ~

dbm / 9 cusT2 @
Ea Oracle Database * Performance ™ Availability = Security ™ Schema * Administration

Create Data Redaction Policy: SAL_POLICY

* Schema HR. Ck
* TablefView EmpLOYEES Q&.
*Policy Name sAl_POLICY
1=1 2?

* palicy
Expression

0Object Columns

o Add | o Modify 3£ Remove

Column Column Datatype Redaction Function Function Attributes

Figure 18 — The addition of a column

[143]

Data Redaction

6. Select the SALARY column and specify RANDOM as a Redaction Function.
Click on OK. (Figure 19). On the next screen, click on OK at the top-right corner

Add ®
* Column SALARY v |
* Column Datatype NUMBER.
Redaction Template Custom W
*Redaction Function ~ RANDOM | w
Random Redactio:

n. The redacted data presented to the querying user appears as randomly-
generated values each time itis displayed, depending on the data type of the column.

OK Cancel

Figure 19 — Choose random redaction type

7. To edit SAL_POLICY, select it and click on Edit (you can search for policies by
specifying schema, table, or policy name) (Figure 20).

Enterprise Manager Cloud Control 12¢c

l'g Enterprise ¥ (@) Targets ™ * Favorites * @ History *
dbm / & cusT2F1 @

% Orade Database * Performance = Awvailability ¥ Security ¥ Schema ¥ Administration ~
Data Redaction

Orade Data Redaction provides an easy way to quiddy redact sensitive information that iz displayed in applications|
Search Data Redaction Policies

Schema %
TableView %

Folicy Name %o

Go
Data Redaction Policies
Create g Edit &dView (DEnable (@Disable 3§ Delete
Schema Table/View Policy Name Enabled Redacted Columns
HR EMPLOYEES SAL_POLICY o 1

Figure 20 — Alter policy

[144]

Data Redaction

8. Select the SALARY column and click on Modify (Figure 21).

Enterprise Manager Cloud Control 12¢c

t; Enterprise *) Targets * * Favorites * @ History *

dbm / 4 cusT2 @
E Orade Database ¥ Performance ¥ Awvailability = Security Schema ¥ Administration *

Edit Data Redaction Policy: SAL_POLICY

* Schema HR
* TableView EMPLOYEES
*Policy Name SAL_POLICY

1=1 E‘f’

* Policy
Expression
Object Columns
e Add | 2 Modify 3§ Remove
Column Column Datatype Redaction Function Function Attributes
SALARY MNUMBER. RANDOM

Figure 21 — Modifying a column

9. Change Redaction Function from RANDOM to FULL. Click on OK (Figure 22).

Modify
*Column SALARY
* Column Datatype NUMBER.

Redaction Template Custom W

* Redaction Function FULL w

Full Redaction. Redact all the contents of the column data. The redacted value returned to
the guerying user depends on the data type of the column. For example, columns of the
MUMBER. data type are redacted with a zero (0) and character data types are redacted with a
blank space. These default values can be changed if necessary.

OK. Cancel

Figure 22 — Changing redaction type for salary column

[145]

Data Redaction

10. Click on Add in order to add one more column to the redaction policy. (Figure
23).

Enterprise Manager Cloud Control

t? Enterprise * (G Targets = * Favorites « @- History =

dbm / & cusT2 @
E Orade Database ™ Performance ¥ Awvailability ™ Security ™ Schema ¥ Administration ™

Create Data Redaction Policy: SAL_POLICY

* Schema HR. C&
*TablefView EMPLOYEES Ck
*policy Name saL_poOLICY

1=1 2?

* Palicy
Expression

0Object Columns

o Add | Modify 3§ Remove
Column Column Datatype Redaction Function Function Attributes
SALARY MUMBER. FLLL

Figure 23 — Adding a column to the redaction policy

[146]

Data Redaction

11. Select the EMAIL column, and as Redaction Template. select Email Address.
You can see that this pattern uses Regular expression type of Data Redaction.
You can also change any of the parameters. Click on OK. (Figure 24).

Add x

*Column EMAIL v|HE
* Column Datatype YARCHARZ2

Redaction Template Email Address w

* Redaction Function REGEX | w

Regular Expression Based Redaction. Specifies a regular expression that represents the
column data that will be redacted.

Function Attributes
*Pattern ([A-Z0-9. _%+]+) @([A-Z0-9.] +\,

Spedfies the regular expression pattern to be searched.
Example: "d'\d\d\d\d\d&78' for number like '012345578'

*Replace String soom@\2
Example: Use 200000043" (replace string) to redact '012345678" (actual value) which matches
‘(\d\d\d) (\d'd\d) (\d\d'\d)' (regexp pattern) to "WXOOOXETE' (redacted results).
Mote that the "\3' in the replace string preserves the actual data in the third set of parentheses
in the pattern.

* Position 1

Spedifies the starting position of the string search. The defaultis 1, meaning it begins the
search from the first character of column data.

*Ocourrence 1

Spedfies how to perform the search and replace operation. Zero means it replaces all
occurrences, Positive integer 'n' would replace nth occurrence of the string.

Match Parameter Ignore case hd

Specifies the matching parameters for the REGEX redaction function.

CK Cancel

Figure 24 — Defining redaction type for email column

[147]

Data Redaction

12. On next page you can change Policy Expression.
corner.

Click OK on the top right

Enterprise Manager Cloud Control 12c

€% Enterprise ¥ (@ Targets > i Favorites ¥ @ History +
dbm / & cusT2 ®
[, Orade Database ~ Performance ¥ Availabiity > Security ¥ Schema ~ Administration =
Edit Data Redaction Policy: SAL_POLICY
* Schema HR
* Table View EMPLOYEES
* Policy Name SAL_POLICY
1=1 2?
* Palicy
Expression
Object Columns
e Add 7 Modify 3¢ Remove
Column Column Datatype Redaction Function Function Attributes
SALARY MNUMBER FULL
EMAIL VARCHAR2 REGEX ([A-20-3. _%+] +) @([A-Z0-3.] +\ [A-Z] {2, 4} poooe@\2, 1, 1,1

Figure 25 — You can change the policy expression

13. To disable SAL_POLICY, select it and click on Disable. (Figure 26).

Enterprise Manager Cloud Control 12¢c

7 Enterprise ¥ () Targets ¥ i Favorites * & History =
dbm / € cusT20 @

@ Orade Database ~ Performance ¥ Availability ~ Security * Schema ~ Administration ~
Data Redaction

Orade Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications
Search Data Redaction Policies
Schema %

TablefView %

Policy Name %

Go
Data Redaction Policies
Create 7 Edit &QView () Enable | () Disable 3§ Delete
Schema TableView Policy MName Enabled Redacted Columns
HR EMPLOYEES SAL_POLICY Q 2

Figure 26 — Disabling the sal_policy redaction policy

[148]

Data Redaction

14. To enable SAL_POLICY, select it and click on Enable.

Enterprise Manager Cloud Control 12¢

(Figure 27).

% Enterprise ™ (B Targets = ol Eavorites ~ (&) History ~
dbm / & cusT2[@ ®

[, Cracle Database * Performance ¥ Availabiity * Security > Schema ~ Administration =
&> confirmation

Policy SAL_POLICY is dizabled.

Data Redaction

Schema | %
Table/View | %

Policy Name | %

Data Redaction Policies

[ffcreate 2 Edit baView (@Enable | Q) Disable 3§ Delete
Schema Tablefiew
R

| EMPLOYEES

Policy Name:

| SAL_POLICY.

2

Oracle Data Redaction provides an easy way to quickly redact sensitive infarmation that is displayed in applications
Search Data Redaction Policies

Redacted Columns.

Figure 27 — Enabling the sal_policy redaction policy

15. To delete SAL_POLICY, select it and click on Delete. (Figure 28).

Enterprise Manager Cloud Control 12¢

l'; Enterprise ¥ IE) Targets * Favorites * @ History *

dbm / & cusT2[11 @

@ Oradle Database ¥ Performance Avallability ¥ Security ¥ Schema * Administration *
Data Redaction

Orade Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications|
Search Data Redaction Policies

Schema %
Table/View %

Policy Name %

Go
Data Redaction Policies
Create A Edit GdView (JEnsble (@ Disable 3¢ Delete
Schema Table/View Policy Mame Enabled Redacted Columns
HR. EMPLOYEES SAL_POLICY Q 73

Figure 28 — Deleting the sal_policy redaction policy

[149]

Data Redaction

16. You should see the Confirmation message (Figure 29).

Enterprise Manager Cloud Control 12c

t: Enterprise * (B Targets * Eavorites = @ History *

dbm / @& cusT2[~] @
@ Oracle Database ¥ Performance * Availability = Security = Schema » Administration

% Confirmation
Policy SAL_POLICY has been deleted successfully.

Data Redaction
Oradle Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications with|

Search Data Redaction Policies

Schema | %
Table/View %
Policy Mame | %

Go

Data Redaction Policies

[Bfcreate S Edt 60View (PEnable (QDisable 3¢ Delete
Schema TableView Palicy Mame Enabled Redacted Columns

Figure 29 — The SAL_POLICY policy has been successfully deleted

Changing the function parameters for a
specified column

There are several ways in which you can change an existing redaction policy. In this recipe
and the next one, you will:

¢ Change the function parameters for a specified column (the a_tbl_partial
policy, which you created in the recipe Creating a redaction policy when using partial
redaction)

¢ Add a column (commission_pct in the hr.employees table) to the redaction
policy EMP_POL (you defined it in the Creating a redaction policy when using random
redaction recipe)

[150]

Data Redaction

Also, it is possible to remove column from the redaction policy, alter the policy expression,
and modify the type of redaction for a specified column.

You concluded that the a_tbl_partial redaction policy doesn't satisfy the requirements
for your application anymore because it redacts first four digits with 0 and leading zeros are
not displayed in the application. You decide to alter the a_tbl_partial policy. You want
all digits to be displayed and to have them redacted with some value (for example, 9).

Getting ready

Before doing this recipe, you should have completed the Creating a redaction policy when
using partial redaction recipe. You will use the secmgr user you created in the Creating a
redaction policy when using full redaction recipe .

How to do it...

1. Connect to the database as the secmgr user and alter the policy EMP_POL:

$ sqglplus secmgr

SQL> BEGIN
2 DBMS_REDACT.ALTER_POLICY(
3 object_schema => "zoran",
4 object_name => "tbl",
5 policy_name => "a_tbl_partial”*,
6 action => DBMS_REDACT.MODIFY_COLUMN,
7 column_name = "a",
8 function_type => DBMS_REDACT.PARTIAL,
9 Tfunction_parameters => "9,1,4%);
10 END;
11 7/

[151]

Data Redaction

2. Connect as the user usr2 to the database and view data in column A in
the zoran.tbl table:

SQL> connect usr2/oracle2
Connected.

SQL> select a from zoran.tbl;

999956
999967
999978

Add a column to the redaction policy

You have to modify the existing redaction policy in order to redact more than one column
in the table. In the table HR.EMPLOYEES, besides the column SALARY, you want to redact the
column COMMISSION_PCT. You will modify the redaction policy EMP_POL. You decide that
you want to use full redaction type for the column COMMISSION_PCT.

Note that in the same redaction policy (in this case, EMP_POL) the different
“protected” columns can use different redaction types (in this case,
random and full redaction).

Getting ready

Before doing this recipe, you should have completed the Creating redaction policy when using
random redaction recipe. You will use the secmgr user you created in the Creating redaction
policy when using full redaction recipe.

[152]

Data Redaction

How to do it...

1. Connect to the database as the secmgr user and alter the EMP_POL policy:

$ sqlplus secmgr

SQL> BEGIN
2 DBMS_REDACT.ALTER_POLICY(
3 object_schema => "HR",
4 object_name => "EMPLOYEES",
5 policy_name => "EMP_POL",
6 action => DBMS_REDACT.ADD_COLUMN,
7 column_name => "COMMISSION_PCT",
8 function_type => DBMS_REDACT.FULL);
9 END;
10 7/

PL/SQL procedure successfully completed.
2. Connect the user hr to the database and execute the following query:
select employee_id, salary, commission_pct from hr_employees

where commission_pct IS NOT NULL order by employee_id fetch
first 10 rows only;

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help
SQL> connect hr [~]
Enter password:
Connected.
SOL> select employee id, salary, commission pct from hr.employees

2 where commission pct IS NOT NULL

3 order by employee id

4 fetch first 10 rows only;

EMPLOYEE_ID SALARY COMMISSION_PCT
145 12359 4]
146 11913 4]
147 3375 4]
148 3489 2}
149 1320 7]
150 5932 4]
151 7726 4]
152 5400 0]
153 835 0]
154 6766 4]

10 rows selected.

soL> i

Figure 30 — Two columns are redacted

[153]

Data Redaction

How it works...

You used the procedure ALTER_POLICY in the PL/SQL package DMBS_REDACT to change
redaction policies. On line 6 (in both examples), you specified value for the ACTION
parameter, which defines what kind of change will happen.

See also

e Using Oracle Enterprise Manager Cloud Control 12¢ to manage redaction policies

Enabling, disabling, and dropping redaction
policy

In this recipe, you will perform the three basic tasks: enabling, disabling, and dropping the
same redaction policy (CUST_POL), which you defined in the Creating a redaction policy when
using full redaction recipe using SQL*Plus. Also, you will check which redaction policies
exist in the database and whether they are enforced (enabled).

To minimize dependence on the previous recipes in this chapter, a result shown after
querying data dictionary view is equivalent to the one you would get if you completed only
the Creating a redaction policy when using full redaction recipe before starting to do this recipe.
The only difference you may see in the result is the number of existing redaction policies in
the database.

Getting ready

Before doing this recipe, you should have completed the Creating a redaction policy when
using full redaction recipe.

[154]

Data Redaction

How to do it...

To complete the tasks, you will use procedures in the dbms_redact package
(disable_policy, enable_policy, and drop_policy).

1. Connect to the database as a user who has an execute privilege on dbms_redact
package and select_catalog_role role (for example, secmgr user):

$ sqlplus secmgr

2. Find out which redaction policies exist in the database by querying
the redaction_policies view:

SQL> col policy_name format A20
select policy_name, enable from redaction_policies;

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

SQL> col policy name format A28 A
SQL> select policy name, enable from redaction policies;

POLICY NAME ENABLE
CUST POL YES H
I |

Figure 31 — Finding defined redaction policies

3. Connect to the database as the oe user and grant the SELECT privilege
on OE .CUSTOMERS to the secmgr user. Connect to the database as the secmgr
user. Verify that the secmgr user can't see original data in the
column INCOME_LEVEL:

SQL> connect oe

SQL> grant select on oe.customers to secmgr;

SQL> connect secmgr

SQL> select customer_id, cust_last_name, income_level
from oe.customers

2 order by customer_id
3 fetch first 10 rows only;

[155]

Data Redaction

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

50L> connect oe

Enter password:

Connected.

0L=> grant select on oe.customers to secmgr;

Grant succeeded.

S0L> connect secmgr

Enter password:

Connected.

5QL> select customer_id, cust last name, income level from oce.customers
2 order by customer_id
3 fetch first 18 rows only;

CUSTOMER_ID CUST LAST_NAME INCOME_LEVEL
181 welles
182 Pacino
103 Taylor
184 Sutherland
105 MacGraw
186 Hannah
187 Cruise
108 Mason
109 Cage
118 Sutherland

i

18 rows selected.

JE |

Figure 32 — Redacted data is displayed even to the user who created the policy

4. Disable the redaction policy CUST_POL (as the secmgr user):

SQL> begin
2 dbms_redact.disable_policy
3 (object_schema => "OE",
4 object_name => "CUSTOMERS",
5 policy_name => "CUST_POL");
6 end;
7/

PL/SQL procedure successfully completed.

[156]

Data Redaction

5. Verify that now the secmgr user can view original data in the
column INCOME_LEVEL and query the redaction_policies view by executing
the following statements:

e select customer_id, cust_last_name, income_level from
oe.customers order by customer_id fetch first 10 rows
only;

e col policy_name format A20

e select policy_name, enable from redaction_policies;

oracle@dbhost:~/Desktop
File Edit View Search Terminal Help

SQL> select customer_id, cust last_name, income_level from oe.customers
2 order by customer_id
3 fetch first 10 rows only;

CUSTOMER_ID CUST LAST NAME INCOME_LEVEL
101 Welles
102 Pacino
103 Taylor
104 sutherland

B: 30,000 - 49,999
I: 170,000 - 189,999
H: 150,000 - 169,999
H: 150,000 - 169,999
105 MacGraw C: 50,000 - 69,999
106 Hannah F: 110,000 - 129,999
107 Cruise G: 130,000 - 149,999
108 Mason H: 150,000 - 169,999
109 Cage F: 110,000 - 129,999
110 Sutherland G: 130,000 - 149,999

10 rows selected.

50L> col policy name format A20
S0L> select policy name, enable from redaction policies;

POLICY NAME ENABLE
CUST_PoL NO .
saL> i

Figure 33 — secmgr can view unmasked data in the column income_level, because the cust_pol policy is disabled

[157]

Data Redaction

¢ Enable the redaction policy CUST_POL

SQL> begin
2 dbms_redact.enable_policy
3 (object_schema => "OE",
4 object_name => "CUSTOMERS®,
5 policy_name => "CUST_POL");
6 end;
7/

PL/SQL procedure successfully completed.

6. Verify that redaction is working properly by executing the following statements:

e select customer_id, cust_last_name, income_level from
oe.customers order by customer_id fetch first 10 rows
only;

e col policy name format A20

e select policy_name, enable from redaction_policies;

[158]

Data Redaction

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

EOL> select customer id, cust last name, income level from oe.customers
2 order by customer id
3 fetch first 1@ rows only;

CUSTOMER_ID CUST_LAST NAME INCOME_LEVEL
101 Welles
182 Pacino
103 Taylor
104 Sutherland
185 MacGraw
106 Hannah
107 Cruise
188 Mason
189 Cage
118 Sutherland

S g

10 rows selected.

EOL> col policy name format A20
EOL> select policy name, enable from redaction policies;

POLICY NAME ENABLE
CUST POL YES 3
e |

Figure 34 — Redacted data is displayed to the secmgr user because the cust_pol redaction policy is enabled

e Drop the redaction policy CUST_POL:

SQL> begin
2 dbms_redact.drop_policy
3 (object_schema => "OE",
4 object_name => "CUSTOMERS®,
5 policy_name => "CUST_POL");
6 end;
7/

PL/SQL procedure successfully completed.

[159]

Data Redaction

7. Verify that the redaction policy CUST_POL doesn't exist in the database by
executing the following statements:

See also

e select customer_id, cust last name, income_level from
oe._customers order by customer_id fetch first 10 rows
only;

e col policy _name format A20

e select policy_name, enable from redaction_policies;

El oracle@dbhost:~/Desktop - ox
File Edit View Search Terminal Help

SQL> select customer_id, cust last name, income_level from oe.customers [~}
2 order by customer id

3 fetch first 10 rows only;

CUSTOMER ID CUST LAST NAME INCOME LEVEL

101 welles B: 38,000 - 49,999

102 Pacino I: 170,000 - 189,999
1083 Taylor H: 158,000 - 169,999
104 Sutherland H: 158,000 - 169,999
105 MacGraw C: 50,000 - 69,999

106 Hannah F: 110,000 - 129,999
107 Cruise G: 130,000 - 149,999
108 Mason H: 150,000 - 169,999
169 Cage F: 110,000 - 129,999
118 Sutherland G: 130,000 - 149,999

10 rows selected.

SQL> col policy name format A20
SQL> select policy name, enable from redaction_policies;

o rows selected

S |

Figure 35 — The redaction policy cust_pol doesn't exist anymore

o Creating a redaction policy when using full redaction

e Using Oracle Enterprise Manager Cloud Control 12¢ to manage redaction policies

[160]

Data Redaction

Exempting users from data redaction
policies

In this recipe, you will create a user and then exempt that user from Data Redaction. This
user will be exempted from all redaction policies in the database.

Getting ready

Before doing this recipe, you should have completed the Creating a redaction policy when
using the partial redaction recipe.

How to do it...

1. Connect to the database as a user who has a DBA role (for example, user zoran):
$ sqlplus zoran/oracle

2. Create a new user (for example, vipuser) and grant him the create session
privilege and select privilege on table customers in schema zoran:

SQL> create user vipuser identified by oracle;
SQL> grant create session to vipuser;
SQL> grant select on zoran.customers to vipuser;

3. Connect as a newly created user and try to select from the zoran.customers
table:

SQL> connect vipuser/oracle

SQL> select * from zoran.customers;

NAME CREDIT_CARD

tom HHHHHHAHAR#O9132
mike HHHHHAAHHAHH#569 1
john HHHHAHAHAHH#5806

[161]

Data Redaction

4. Connect again as the user zoran, and grant the EXEMPT REDACTION POLICY
privilege to the vipuser user:

SQL> connect zoran/oracle
SQL> grant exempt redaction policy to vipuser;

5. As the user vipuser, now try to select from the table zoran.customers:
SQL> connect vipuser/oracle

SQL> select * from zoran.customers;

NAME CREDIT_CARD

tom 3455647456589132
mike 3734982321225691
john 3472586894975806

How it works...

There is a new system privilege that is used to control which users will be exempted from
data redaction in Oracle Database. This privilege is EXEMPT REDACTION POLICY. Users
who are granted this privilege will be able to see clear (unmasked) data in the whole
database if they have (select) privilege to access that data. This means that all redaction
policies in the database will not be applied to these users. The DBA and
EXP_FULL_DATABASE roles both contain this privilege, so any user that has either of these
roles is exempt from data redaction.

Backup/restore as well as import and export operations are not subject to data redaction.
However, data redaction policies are included in export and import operations.

[162]

Transparent Sensitive Data
Protection

In this chapter, we will cover the following tasks:

¢ Creating a sensitive type

¢ Determining sensitive columns

¢ Creating transparent sensitive data protection policy

¢ Associating transparent sensitive data protection policy with sensitive type
Enabling, disabling, and dropping policy

Altering transparent sensitive data protection policy

Introduction

Oracle Transparent Sensitive Data Protection (TSDP) is a new security feature, introduced
in Oracle Database 12c (available only in Enterprise Edition). TSDP provides a way to create
classes of sensitive data and enables more centralized control of how sensitive data is
protected. In database versions 12.1.0.1 and 12.1.0.2, it leverages two Oracle security
mechanisms:

¢ QOracle Virtual Private Database (VPD), described in Chapter 4, Virtual Private
Database
¢ Oracle Data Redaction, explained in Chapter 5, Data Redaction

Transparent Sensitive Data Protection

To implement TSDP, you should complete steps shown in Figure 1:

Cregte a sensitive data e

icite SERsiti Jummns with that type

Figure 1 — Steps to implement TSDP

For all recipes in this chapter, we assume that the database is up and running and each user
has at least a create session privilege. In this chapter, it is assumed that user c##zoran hasa
DBA role and it executes privileges on the following packages:

DBMS_TSDP_MANAGE
DBMS_TSDP_PROTECT
DBMS_RLS

e DBMS_REDACT

Recipes are tested on Oracle Database 12.1.0.2 in multitenant and non-CDB environment. If
you use non-CDB, connect to that database instead of pdb1 (as is done in recipes).

Creating a sensitive type

To create a sensitive type, you can use Oracle Enterprise Manager or a command-line
interface. In this recipe, you'll use the command-line interface to execute a PL/SQL
procedure. You decided that you want to protect e-mail addresses stored in your database,
so first you are going to create sensitive type email_type.

[164]

Transparent Sensitive Data Protection

Getting ready

To complete this recipe, you'll need an existing user who can create a sensitive type (for
example, c##zoran).

How to do it...

1. Connect to the database (for example, pdb1) as a user who has appropriate
privileges (for example, c##zoran):

$ sqglplus c##zoran@pdbl
2. Create a sensitive type (for example, email_type):

SQL> BEGIN
DBMS_TSDP_MANAGE .ADD_SENSITIVE_TYPE (
sensitive_type => "<your_type>",
user_comment=> "<description>");
END;
/

S0L= BEGIM
2 DEMS_TSDP_MAMAGE . ADD_SENSITIVE_TYPE (
3 sensitive_type == ‘email_type’,
4 user_comment=:"Type for email redaction");
5 END;
[._."

PL/S0OL procedure successfully completed.

SOL >

Figure 2 — Creating a sensitive type

How it works...

In step 2, you created a sensitive type (for example, email_type), which you can use to
consistently mask (protect), in our case, e-mail information throughout the database. By
creating a sensitive type, you only define that in the database, there exists a class of
sensitive data and you name it. In later recipes in this chapter, you'll define where that
sensitive data resides (in which columns) and the way that data will be protected.

[165]

Transparent Sensitive Data Protection

The name of a sensitive type (for example, email_type) is case-sensitive.

There's more...

To view existing sensitive types, execute the following query:

select name from DBA_SENSITIVE_COLUMN_TYPES;

50L> SELECT NAME FROM DBA_SENSITIVE_COLUMN_TYPES;

email_type

5QL>

Figure 3 — Finding information about defined sensitive types

Determining sensitive columns

After you decide which data is sensitive, you'll need to find all places where that data is
stored. Once you do that, you'll classify the data (associate sensitive columns with sensitive
types). In this recipe, you'll associate two sensitive columns (from two tables) with sensitive
type you created in the previous recipe.

Getting ready

To complete this recipe, create a user challengezoran, create table T1, and insert several
values into the table (see Figure 1) or use your own table. Also, you'll need an existing user
who has an execute privilege on dbms_t sdp_manage package (for example, c##zoran).

[1661

Transparent Sensitive Data Protection

SQL> CREATE TABLE CHALLENGEZORAN.T1 (NAME VARCHARZ(30), EMAIL_ADDRESS VARCHAR2(40));

Table created.

SQL> INSERT INTO CHALLENGEZORAN.T1 VALUES ('ZORAN PAVLOVIC', 'ZORAN.PAVLOVIC@CHALLENGEZORAN.COM');
1 row created.

SQL> INSERT INTO CHALLENGEZORAN.T1 VALUES ('MAJA VESELICA', "MAJA.VESELICAGCHALLENGEZORAN.COM');
1 row created.

SQL> COMMIT,

Commit complete.

5QL> SELECT * FROM CHALLENGEZORAN.TI1;

NAME EMAIL_ADDRESS
ZORAN PAVLOVIC ZORAN. PAVLOVIC@CHAL L ENGEZORAN . COM

MAJA VESELICA MAJA. VESELTCA@CHALLENGEZORAN . COM

soLs il

Figure 4 — Creating table T1

How to do it...

1. Connect to the database (for example, pdb1) as a user who has appropriate
privileges (for example, c##zoran user):

$ sqglplus c##zoran@pdbl

2. Associate a sensitive column (for example, schema CHALLENGEZORAN, table T1,
column EMAIL_ADDRESS) with sensitive type you created in the previous recipe
(for example, email_type)

S0L> BEGIN
? DBMS_TSDP_MANAGE . ADD_SENSTTIVE_COLUMN (
3 schema_name =» "CHALLENGEZORAN',
4 table_name => 'T1',
5 column_name => "EMAIL_ADDRESS',
6 sensitive_type => 'email_type');
7 END;
8/
PL/S0L procedure successfully completed.

Figure 5 — Adding sensitive column email_address to email_type sensitive type

[167]

Transparent Sensitive Data Protection

3. Associate another sensitive column (for example, schema HR, table EMPLOYEES,
column EMAIL) with the same sensitive data type (for example, email_type).

S0L= BEGIN

DEMS_TSDP_MANAGE . ADD_SENSITIVE_COLUMN (
schema_name == "HR",

table_name => "EMPLOYEES',

column_name == 'EMAIL',

sensitive_type =» “email_type’);

END;

8/

PL/S0OL procedure successfully completed.

ol S e P

SQL=

Figure 6 — Adding sensitive column email to sensitive type email_type

How it works...

In step 2 and 3, you defined where sensitive data resides and associated it with previously
created sensitive data type.

You can associate a column with only one sensitive type. If you try to
associate it with another type, you'll receive ORA-45607.

Creating transparent sensitive data
protection policy

This step defines the way you want to protect sensitive data. You can use Data Redaction or
VPD settings for your TSDP policy. In this recipe, you'll use regular expression redaction to
protect previously defined sensitive data.

[168]

Transparent Sensitive Data Protection

Getting ready

To complete this recipe, you'll need an existing user who has the execute privilege on
the dbms_tsdp_protect package (for example, c##zoran).

How to do it...

1. Connect to the database (for example, pdb1) as a user who has appropriate
privileges (for example, c##zoran user):

$ sqglplus c##zoran@pdbl

2. Create TSDP policy using Data Redaction.

5QL> DECLARE
redact_feature_options DBMS_TSDP_PROTECT.FEATURE_OPTIONS;

3 policy_conditions DBMS_TSDP_PROTECT.POLICY_CONDITIONS;

4 BEGIN

5 redact_feature_options('expression’) :="1=1";
6 redact_feature_options (' function_type') :='DBMS_REDACT.REGEXP';
7
8

redact_feature_options('regexp_pattern'):="([A-Za-z0-9. %+ 1+)@([A-Za-z0-9.-1+\.[A-Za-2]{2,4})";
redact_feature_options (' regexp_replace_string'):="\1@xxxx.com";
9 policy_conditions (DBMS_TSDP_PROTECT.DATATYPE) := 'VARCHARZ';
10 DBMS_TSDP_PROTECT.ADD_POLICY ('redact regexp email’,DBMS_TSDP_PROTECT.REDACT,
11 redact_feature_options, policy_conditions);
12 END;
/

PL/SQL procedure successfully completed.

SOL=

Figure 7 — TSDP policy using Oracle Data Redaction

How it works...

In step 2, lines 2 and 3 define variables redact_features_options

and policy_conditions. Data redaction settings, for TSPD policy, are defined by

using redact_features_options variable that holds parameter-value pairs that
correspond with the parameters in DBMS_REDACT . ADD_POLICY procedure (lines 4-8). Line 9
specifies that data type of protected columns should be VARCHAR?2 in order for redaction
settings to be applied on the column.

[169]

Transparent Sensitive Data Protection

See also

® You can see Chapter 5, Data Redaction.

Associating transparent sensitive data
protection policy with sensitive type

In this recipe, you'll associate TSDP policy and sensitive type you created in the previous
recipes.

Getting ready

To complete this recipe, you'll need an existing user who has the execute privilege on
the dbms_tsdp_protect package (for example, c##zoran).

How to do it...

1. Connect to the database as a user (for example, pdb1) who has appropriate
privileges (for example, c##zoran user):

$ sqglplus c##zoran@pdbl

2. Associate TSDP policy with sensitive type:

SOL> BEGIN
2 DBMS_TSDP_PROTECT.ASSOCIATE_POLICY (
3 policy_name == "redact_regexp_email",
4 sensitive_type == 'email_type’,
5 associate => true);
6 END;
7 _.:"

PL/50L procedure successfully completed.

SO =

[170]

Transparent Sensitive Data Protection

There's more...

To verify that you successfully associated the TSDP policy and the sensitive type, execute
the following query:

SQL> SELECT POLICY_NAME, SENSITIVE_TYPE FROM DBA_TSDP_POLICY_TYPE;

See also

o Creating a sensitive type
e Determining sensitive columns
o Creating transparent sensitive data protection policy

Enabling, disabling, and dropping policy

In this recipe, you'll learn to enable, disable, and drop transparent sensitive data protection
policies.

Getting ready

To complete this recipe, you'll need two existing users-one to manage TSDP policies and the
other to view sensitive data.

How to do it...

1. Connect to the database (for example, pdb1) as a user who has the SELECT
privilege on the HR. EMPLOYEES table and the CHALLENGEZORAN. T1 table or
the SELECT ANY TABLE privilege (for example, maja).

$ sqglplus maja@pdbl

[171]

Transparent Sensitive Data Protection

2. View sensitive data by executing the following two queries:

SELECT EMAIL FROM HR.EMPLOYEES FETCH FIRST 10 ROWS ONLY;

P> SELECT EMAIL FROM WR.EMPLOYEES FETCH FIRST 10 ROWS OMLY;

ARINDL O
AHUTTON
AKHOD
AMCEWEN
ANAL SH

10 rows selected.

S il

Figure 9 — Before enabling the policy

SELECT EMAIL_ADDRESS FROM CHALLENGEZORAN.T1;

SOL> connect majasoracle@pdbl
Connected,
SOL> select email_address fros challengezoran.tl;

EMAIL_ADDRESS

ZORAN . PAVLOVICBCHALLENGEZORAN . COM
MAJA, VESEL ICARCHALLENGEZORAN , COM

soL>- |

Figure 10 — Before enabling the policy

[172]

Transparent Sensitive Data Protection

3. Connect to the database (for example, pdb1) as a user who can manage TSDP
policies (for example, c##zoran). Enable the TSDP policy:

S0L> connect c#fzoran/oracledpdbl
Connected.
S0OL> BEGIN
2 DEMS_TSDP_PROTECT.ENAELE_PROTECTION_TYPE
3 sensitive_type == "email_type');
4 EMD;
5 F

PL/SOL procedure successfully completed.

s0L= B

4. Repeat step 2 as user maja.

SOl seleck email from hr.esployess Fetch First 10 rows only;

10 rows selected,

Figure 12 — Sensitive data is protected

5. Result of the second query is shown in Figure 13:

SOl connect malaloraclefpibl
Conpes Ted)
S0L> select emall_address from challengezoran. il

EMALL _ADDRESS

DORAN . PAVLOVIC@axx . Com
HAJA. VESELICAGxN®N . cOm

so- i

Figure 13 — After enabling the policy

[173]

Transparent Sensitive Data Protection

6. Connect to the database (for example, pdb1) as a user who can manage TSDP
policies (for example, c##zoran). Disable the TSDP policy.

S0L> BEGIN
2 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_TYPE (
3 sensitive_type == "email_type');
4 END;
5 /

|PL/sL procedure successfully completed.

saL= W

7. Repeat step 2 as user maja.

SOL> SELECT EMATL FROM WR.EMPLOYEES FETCH FIRST 10 ROWS OMLY

AHUNDLD
ARUTTON
AKHOD
AMCEWEN
ANALSH

10 rows selected.

S i

Figure 15 — After the policy was disabled

8. In Figure 16, the result of the second query is shown:

S0L> connect maja/oracledpdbl
Connected.
5S> select email_address from challengezoran, tl;

EMATL _ADDRESS

ZORAN. PAVLOVICRCHAL LENGEZORAN . COM
MATA, VESEL TCARCHAL LENGEZ GRAN . COM

sL= N

Figure 16 — After the policy was disabled

[174]

Transparent Sensitive Data Protection

9. Connect to the database (for example, pdb1) as a user who can manage TSDP
policies (for example, c##zoran). Drop both sensitive columns.

SHL> BEGIM

DEMS_TSOP_MAMAGE . DROP_SENSITIVE _COLUMN (
schema_name =x "CHALLEMGEZORAN',
table_mame == "T1",

column_name => "EMAIL_ADDRESS');

EMD;

-1 3 LA

PL/50L procedure successfully completed.

SOL= BEGIN
DEMS_TSDP_MAMAGE . DROP_SENSITIVE COLUMN
schema_name => "HR",

table_name => "EMPLOYEES",

column_name == "EMAIL");

END;

F

e LN e L

PL/50L procedure successfully completed.

10. Drop the sensitive type.

SOL= BEGIN
4 DEMS_TSDPF_MANAGE . DROP_SENSITIVE_TYPE ([
3 sensitive_type == "email_type'):

4 END;

5 F

PL/S0L procedure successTully completed

11. Drop the TSDP policy.

SOL= BEGIN
2 DBMS_TSDP_PROTECT.DROMF_POLICY
3 policy_nawe == 'redact_regexp_semail’');
4 END;
3 F

PL/20L procedure successfully completed.

so = [l

[175]

Transparent Sensitive Data Protection

How it works...

In step 4, you got correct result-column email_address in schema challengezoran was
masked like specified in the policy and full redaction was applied on all values in column
email in schema HR where data wasn't matched to the specified pattern. For more
information about redaction policies, see Chapter 5, Data Redaction (the recipe Creating
redaction policy when using regular expression redaction).

Before you drop the policy, you don't have to disable it.

There's more...

Another way to enable/disable protection is to use procedures
enable_protection_column (disable_protection_column):

SQL> begin
DBMS_TSDP_PROTECT . ENABLE_PROTECT I10ON_COLUMN(
schema_name =>"CHALLENGEZORAN®,
table_name =>"T1",
column_name =>"EMAIL_ADDRESS",
policy => "redact_regexp_email®);
end;

/

SQL> begin
DBMS_TSDP_PROTECT . ENABLE_PROTECT I10N_COLUMN(
schema_name =>"HR",
table_name =>"EMPLOYEES",
column_name =>"EMAIL",
policy => "redact_regexp_email®);
end;

/

SQL> begin
DBMS_TSDP_PROTECT .DISABLE_PROTECT ION_COLUMN(
schema_name =>"CHALLENGEZORAN®,
table_name =>"T1",
column_name =>"EMAIL_ADDRESS",
policy => "redact_regexp_email®);
end;

/

SQL> begin
DBMS_TSDP_PROTECT .DISABLE_PROTECT ION_COLUMN(
schema_name =>"HR",
table_name =>"EMPLOYEES",
column_name =>"EMAIL",
policy => "redact_regexp_email®);

[176]

Transparent Sensitive Data Protection

end;
/

Altering transparent sensitive data
protection policy

In this recipe, you'll alter policy you created in recipe Creating transparent sensitive data
protection policy and enable it.

Getting ready

To complete this recipe, you'll need two existing users (for example, c##zoran and maja).
Also, update the table hr.employees, as shown in Figure 20:

SQL> UPDATE HR.EMPLOYEES SET EMAIL = EMAIL || "@example.com' WHERE 1=1;
107 rows updated.
SQL> commit;

Commit complete.

SQL>

Figure 20 — Set new e-mail addresses in the hr.employees table

How to do it...

1. Connect to the database (for example, pdb1) as a user who can manage TSDP
policies (for example, c##zoran):

$ sqlplus c##zoran@pdbl

2. If the policy is enabled, disable it for all columns (for instructions how to disable
the TSDP policy, see recipe Enabling, disabling, and dropping policy).

[177]

Transparent Sensitive Data Protection

3. Connect to the database (for example, pdb1) as a user who can view sensitive
data (for example, maja) . Execute the following queries:

SELECT EMAIL FROM HR.EMPLOYEES FETCH FIRST 10 ROWS ONLY;

SQL> SELECT EMAIL FROM HR.EMPLOYEES FETCH FIRST 10 ROWS ONLY;

ABANDA@example. com
ABULL@example.com
ACABRIDEGexample.com
AERRAZUR@example.com
AFRIPP@example.com
AHUNOLD@example. com
AHUTTONGexample. com
AKHOO@example. com
AMCEWENGexamp le. com
AWAL SHE@examp le. com

10 rows selected.

SOL>

Figure 21 — Before altering and enabling the policy

SELECT EMAIL_ADDRESS FROM CHALLENGEZORAN.T1;

S0L> SELECT EMAIL_ADDRESS FROM CHALLENGEZORAN.TL;
EMATL _ADDRESS

ZORAN . PAVLOVICACHALLENGEZORAN . COM
MAJA, VESEL ICABCHALLENGEZORAN . COM

SOL=

Figure 22 — Before altering and enabling the policy

4. Connect to the database (for example, pdb1) as a user who can manage TSDP
policies (for example, c##zoran). Alter the TSDP policy and enable it.

[178]

Transparent Sensitive Data Protection

SQL= connect c#fzoran/oracleGpdbl

Connected.

SQL> DECLARE
redact_feature_options DBMS_TSDP_PROTECT.FEATURE_OPTIONS;
policy_conditions DBMS_TSDP_PROTECT.POLICY_CONDITIONS;
BEGIN
redact_feature_options ('
redact_feature_options : unction_type) =" DBMS_REDACT . REGEXP'

4
5 { expressmn) '7'1 1'

6 (

7 redact_feature_options ('regexp_pattern’) ([A Za-z0-9._%+-]+)@([A—Za—20—9.—]+\. [A-Za-z]{2,4})";
8 C

9

redact_feature options ('regexp_replace_. str1ng) "\ 1@mydomain.com’;
redact_feature_options ('regexp_position'):=
10 redact_feature_options ('regexp_occurrence')

DBMS,REDACT .RE_FIRST';

11 policy_conditions(DBEMS_TSDP_PROTECT.DATATYPE) := 'VARCHARZ';

12 DBMS_TSDP_PROTECT.ALTER_POLICY ('redact_regexp_email',redact_feature_options, policy_conditions);
13 END;

14 /

PL/SQL procedure successfully completed.

SQL> BEGIN

DBMS_TSDP_PROTECT. ENABLE_PROTECTION_TYPE (
sensitive_type => 'email_type');

END;

/

S VN

PL/sQL procedure successfully completed.

saLs il

Figure 23 — Alter the TSDP policy

5. View sensitive data as the user maja (repeat step 3).

sOL= connect maja/oracle@pdbl
Connected.
SQL> SELECT EMATL FROM HR.EMPLOYEES FETCH FIRST 10 ROWS ONLY;

ABANDA@mydomain . com
ABULL@mydomain. com
ACABRIO@mydomain. com
AERRAZUR@mydomain. com
AFRIPP@mydomain.com
AHUNOLD@mydomain. com
AHUTTON@mydomain. com
AKHOO@mydomain. com
AMCEWEN@mydomain. com
AWAL SH@&mydomain. com

10 rows selected.
SQL> SELECT EMAIL_ADDRESS FROM CHALLENGEZORAN.TI1;
EMATIL _ADDRESS

ZORAN. PAVLOVIC@mydomain. com
MAJA. VESEL ICA@mydomain. com

sqL>

Figure 24 — After altering TSDP policy

[179]

Transparent Sensitive Data Protection

How it works...

After you alter the policy, you have to manually enable it (it isn't automatically enabled).

See also

o Creating transparent sensitive data protection policy, from this chapter

[180]

Privilege Analysis

In this chapter, we will cover the following tasks:

¢ Creating a database analysis policy

¢ Creating a role analysis policy

¢ Creating a context analysis policy

¢ Creating a combined analysis policy

e Starting and stopping privilege analysis
¢ Reporting on used system privileges

¢ Reporting on used object privileges

¢ Reporting on unused system privileges
¢ Reporting on unused object privileges
e How to revoke unused privileges

¢ Dropping the analysis

Introduction

Privilege analysis is a new security feature, introduced in Oracle Database 12c. It is only
available in Oracle Database Enterprise Edition, and from licensing viewpoint, it is part of
Oracle Database Vault option.

Privilege analysis is very useful to implement and maintain the least privilege principle by
identifying both privileges that users are actually using (used privileges) and those that are
only granted to them (unused privileges).

Privilege Analysis

General steps to analyze privileges using this feature are shown in Figure 1.

Generate report

Figure 1 — The steps to analyzethe used and unused privileges

In this chapter, it is assumed that all users have a create session privilege, and in the
following table, other privileges and roles granted to the users and roles are listed:

USER/ROLE | HR. EMPLOYEES OE.ORDERS ROLES/SYS.PRIVS.
BARBARA P1_ROLE
NICK DBA
ALAN SELECT, INSERT,
UPDATE, DELETE
STEVE P2_ROLE
P1_ROLE SELECT
P2_ROLE SELECT, INSERT, |[SELECT ANY TABLE, CREATE

UPDATE, DELETE TABLE

Depending on your needs, you can create and use four different types of privilege analysis
policies that differ in the scope of the analysis. This scope can be:

¢ An entire database

e Role-based

¢ Context-based

¢ Role- and context-based

[182]

Privilege Analysis

Creating database analysis policy

In this recipe, you'll learn to create database privilege analysis policy. It analyzes privileges
in the whole database (except privileges used by Sys user). You can use SQL*Plus and
Enterprise Manager Cloud Control 12.1.0.3+ (in our case, EM12cR4) to create privilege
analysis policies.

Getting ready

You'll need an existing user who can create a privilege analysis policy (has CAPTURE_ADMIN
role and SELECT ANY DICTIONARY privilege), for example, SYSTEM user.

How to do it...

1. Connect to the database as system or a user who has appropriate privilege:
$ sglplus system

2. Create a privilege analysis policy that captures all the used privileges in the
database:

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
name => "<policy_name>",
description => "<your_desc>",
type => DBMS_PRIVILEGE_CAPTURE.G_DATABASE);
END;

/

SQL= BEGIN

2 SYS.DBMS PRIVILEGE CAPTURE.CREATE CAPTURE(
name => 'ALL PRIV POL',
description => 'All privileges',
type == DBMS PRIVILEGE CAPTURE.G DATABASE);
END;
/

oUW

PL/SQL procedure successfully completed.

Figure 2 — Database (unconditional) analysis policy

[183]

Privilege Analysis

How it works...

In step 2, you created database-wide policy that will capture privileges, which are used
(and which are granted, but are unused) by users (except the sYs user). However, to start
gathering data about privilege usage, you have to enable the policy (see recipe Starting and
stopping privilege analysis).

There's more...

Another way to create the same policy is to use Enterprise Manager Cloud Control 12c
(EM).

1. Login to EM as a user who has appropriate privileges and select Privilege
Analysis from Security drop-down menu (see Figure 3):

Security ¥ | Schema ¥ Administration ¥/
Home
Reports
Users
Roles
Profiles
Audit Settings
Enterprise Data Governance
Application Data Models
Configuration Compliance
Data Masking
Data Redaction
Transparent Data Encryption
Database Vault
Privilege Analysis
Label Security
Virtual Private Database
Application Contexts

Enterprise User Security

Figure 3 — The choose privilege analysis

[184]

Privilege Analysis

2. Log in to the database as SYSTEM user or a user who has appropriate privileges
(CAPTURE_ADMIN role and SELECT ANY DICTIONARY privilege).

Enterprise Manager Cloud Control 12¢

*¢ Enterprise ¥ (@) Targets ¥ g Favorites ¥ (@ History ~

i orddb.challengezoran.com @
[orade Database * Performance * Availabiity ¥ Security * Schema ¥ Administration =

Database Login

* Username
* Password
Role Mormal |w

[save as

Login Cancel

Figure 4 — The login screen

3. Click on the Create button in the Policy section (see Figure 5):

Policies
Actions = View = Create | [J Start Capture Stop Capture {-3-} Generate Report 2@ Delete
. . Capture Scope
Policy Active =
Type First Start Time Last End Time
ORASDEPEMDENCY Database

Figure 5 — Start the process of creating a privilege analysis policy

[185]

Privilege Analysis

4. To create a database policy, choose that scope is Database, name the policy, and
optionally write a description (see Figure 6). Click on the OK button:

Privilege Analysis: Create Policy Show 5QL Cancel oK

Instructions

*Policy | ALL_PRIV_POL To create a Privilege Analysis policy :

All privileges » "Database” scope captures al privilege use in the database, except
privileges used by the SYS user
» "Role” scope captures the use of a privilege if the privilege is part of a

Description specified role or list of roles.

+ "Context” scope captures the use of a privilege if the context specified by
the condition parameter evaluates to true.

+ "Role and Context” scope captures the use of a privilege if the privilege is
part of the spedified list of roles and when the condition specified by the
condition parameter is true,

*5cope Database ~

Policy Name can not be mare than 30 bytes long. Deseription should be up to 1024
characters only.

PL/SQL boolean expression containing up to 4000 characters and can only
contain 5YS_CONTEXT

If you want to modify the policy later on, you must disable and delete the policy,
and then re-greate it.

Figure 6 — The create policy

5. You should receive a confirmation message and see your newly created policy
listed in the table (see Figure 7):

& confirmation]
Privilege Analysis policy ALL_PRIV_POL has been created successfuly.

Privilege Analysis

Privilege Analysis enables you to find information about priviege usage for 2 database acrording to a specified condition, such as privieges to run an application module or
privileges used in a given user session.It analyzes both system privieges and object privileges. To monitor the privileges used for a user's action, you must create and enable a
Privilege Analysis policy. Afterward, you can generate a report that describes the used and unused privileges and then from there, revoke (and regrant) priviieges as necessary.
However, you cannot use privilege analysis to analyze the use of 5Y5 user privileges. Privilege analysis is licensed as part of Orade Database Vault, but you do not need to enabld]
Database Vault to use it.

Policies
Actions ~ View ~ Creats [[J] Start Capture Stop Capture §5% Generate Report $§ Delets
§ Capture Scope
Policy Active = =
Type First Start Time Last End Time Total Capture Duration Us

ALL_PRIV_POL Datsbase

ORASDEPENDENCY Database

< >

Figure 7 — A successful message

See also

* You can see the Starting and stopping privilege analysis recipe.

[186]

Privilege Analysis

Creating role analysis policy

In this recipe, you'll create a role analysis policy using SQL*Plus and Enterprise Manager
Cloud Control 12c (EM). The usage of directly and indirectly granted privileges to the roles
listed in the policy, will be captured if the roles are active for the session.

Getting ready

You'll need an existing user who can create a privilege analysis policy (has a
CAPTURE_ADMIN role and a SELECT ANY DICTIONARY privilege), for example, SYSTEM
user.

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:
$ sglplus system

2. Create a privilege analysis policy that captures all the used privileges granted
through roles DBA and P1_ROLE:

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
name => "<policy_name>",
description => "<your_desc>",
type => DBMS_PRIVILEGE_CAPTURE.G_ROLE,
roles => role_name_list (<"rolel",...,"rolel0">));
END;
/

SOL= BEGIN
2 SYS.DBMS PRIVILEGE CAPTURE.CREATE CAPTURE(

3 npame == 'ROLE PRIV POL',

4 description == 'Usage of privileges granted through listed roles’,
5 type == DBMS PRIVILEGE CAPTURE.G ROLE,

6 roles == role name list (°'DBA','P1l ROLE"));

7 END;

8 /

PL/SQL procedure successfully completed.

Figure 8 — The role analysis policy

[187]

Privilege Analysis

There's more...

Another way to create a role privilege analysis policy is to use EM12c. Repeat steps 1, 2, and
3 from the There’s more... section in the previous recipe. Name the policy, select roles,
optionally write a description, and click on OK button (see Figure 9):

Privilege Analysis: Create Policy

* Policy ROLE_PRIV_POL

Usage of privileges granted through listed roles

Description

* Scope Role "]

Available Roles Selected Roles
LWV _PUBLIC ~ DEA
DV_PATCH_ADMIM P1_ROLE
DV_STREAMS_ADMIM >
DV _GOLDENGATE_ADMIN
DV_XSTREAM_ADMIN S»
DV_GOLDEMGATE_REDO_ACCESS
DV _AUDIT_CLEANUP 2
DV_DATAPUMP _MNETWORK_LIMK
DV_REALM_RESOURCE &

DV _REALM_OWMNER.
P2_ROLE he

* Roles

Figure 9 — Creating a role policy

You should receive a confirmation message and see your newly created policy listed in the
table (see Figure 10):

[188]

Privilege Analysis

% Confirmation
Privilege Analysis policy ROLE_PRIV_POL has been created successfully.

Privilege Analysis

Privilege Analysis enables you to find information about privilege usage for a database according to a spedified condition, such as privileges to run
an application medule or privileges used in a given user session.It analyzes both system privileges and object privileges. To monitor the privileges
used for a user's action, you must create and enable a Privilege Analysis policy. Afterward, you can generate a report that describes the used and
unused privileges and then from there, revoke (and regrant) privileges as necessary. However, you cannot use privilege analysis to analyze the
use of 5Y5 user privileges. Privilege analysis is licensed as part of Orade Database Vault, but you do not need to enable Database Vault to use it

Policies
Actions = \View = Create [Start Capture Stop Capture -;-;::-} Generate Report 2@ Delete
. . Capture Scope
Palicy Active N
Type First Start Time Last End Time T
ALL_PRIV_POL Database
ORASDEPENDENCY Database
ROLE_PRIV_POL Role
£ >

Figure 10 — The successful creation of the policy

See also

* You can refer to the Starting and stopping privilege analysis recipe.

Creating context analysis policy

In this recipe, you'll create a context analysis policy. After the policy is enabled, it will
capture privileges when the condition specified in the policy evaluates to true.

Getting ready

You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

[189]

Privilege Analysis

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:
$ sqlplus system

2. Create a privilege analysis policy that captures all the used (and unused)
privileges by Steve:

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
name => "<policy_name>",
description => "<your_desc>",
type => DBMS_PRIVILEGE_CAPTURE.G_CONTEXT,
condition => "<your_condition>");

END;
/

5QL> BEGIN
2 SYS.DBMS_PRIVILEGE CAPTURE.CREATE CAPTURE(

3 name => 'CONT_PRIV POL',

4 description => 'Privileges used by Steve',

5 type == DBMS PRIVILEGE CAPTURE.G_CONTEXT,

& condition == 'SYS CONTEXT(''USERENV'',''SESSION USER'')="'STEVE''');
7 END;

g /

PL/SQL procedure successfully completed.

Figure 11 — The context analysis policy

There's more...

Another way to create a context privilege analysis policy is to use EM12c. Repeat steps 1, 2,
and 3 from the There’s more... section in the Creating database analysis policy recipe. Name the
policy and optionally write a description (see Figure 12):

[190]

Privilege Analysis

Privilege Analysis: Create Policy

*Policy CONT_PRIV_POL

Privileges used by Steve

Description
* Scope Context W
SYS_CONTEXT (USERENY','CURRENT _SCHEMA') = 'SYSTEM'
* Condition 2?
Examples:

SYS_CONTEXT (USERENV
SYS_CONTEXT (USERENY',

'HOST) NOT IM ('sales_24,'sales_127)
CURRENT_SCHEMA") = 'SYS'

Figure 12 — The create context policy

Click on the Build Context Expression button (a pencil icon; see Figure 13). You can enter
expression manually (select Edit checkbox) or use the built-in help (select the checkbox

Policy is in effect when select appropriate options from drop-down menus, click on the
Add button). Click on the OK button.

Policy Expression Builder
Oracle Database Environment
[WIPalicy is in effect when session user v | is v | STEVE () [w]| Add

Policy Expression Edit
5Y5_CONTEXT(USERENY', 'SESSION_USER') = 'STEVE' U

OK || Cancel

Figure 13 — The Expression Builder

[191]

Privilege Analysis

Make sure that you chose options you wanted (see Figure 14) and then click on the OK
button:

Privilege Analysis: Create Policy

*policy CONT_PRIV_POL

Privileges used by Steve

Description

*Scope Context W
SYS_CONTEXT(USERENV', 'SESSIOM_USER') = 'STEVE'

* Condition E}i

Examples:
SYS_CONTEXT (USERENY', 'HOST) NOT IN (sales_24,'sales_127)
SYS_CONTEXT (USERENV', CURRENT _SCHEMA') = 'SYS'

Figure 14 — Checking the filled-out context policy

You should receive a confirmation message and see your newly created policy listed in the
table (see Figure 15):

[192]

Privilege Analysis

@ Confirmation
Privilege Analysis policy CONT_PRIV_POL has been created successfully.

Privilege Analysis

Privilege Analysis enables you to find information about privilege usage for a database according to a spedified condition,
such as privileges to run an application module or privileges used in a given user session. It analyzes both system
privileges and object privileges. To monitor the privileges used for a user's action, you must create and enable a Privilege
Analysis policy. Afterward, you can generate a report that describes the used and unused privileges and then from
there, revoke (and regrant) privileges as necessary. However, you cannot use privilege analysis to analyze the use of
SYS user privileges. Privilege analysis is licensed as part of Oradle Database Vault, but you do not need to enable
Database Vault to use it.

Policies
Actions * View Create 2 Start Capture Stop Capture {6} Generate Report 3§ Delete

§ . Capture

Palicy Active
Type First Start Time Last End

ALL_PRIV_POL Database
CONT_PRIV_POL Context
ORASDEPENDENCY Database
ROLE_PRIV_POL Role
< >

Figure 15 — The context policy has been successfully created

See also

* You can refer to the Starting and stopping privilege analysis recipe. For more
information about application contexts, see Chapter 12, Appendix — Application
Contexts.

Creating combined analysis policy

In this recipe, you'll create a combined analysis policy. This type of policy defines that the
usage of directly and indirectly granted privilege to specified roles will be gathered if roles
are enabled in the session and the context condition is satisfied. The context condition can
consist of one or more conditions (you can use the AND or OR Boolean operators).

Getting ready

You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

[193]

Privilege Analysis

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:
$ sqlplus system

2. Create a privilege analysis policy that captures the usage of privileges, when
using SQL Developer, which are granted through the role P2_ROLE:

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
name => "<policy_name>",
description => "<your_desc>",
type => DBMS_PRIVILEGE_CAPTURE.G_ROLE_AND_ CONTEXT,
roles => role_name_list (<"rolel",...,"rolel0">),
condition => "<your_condition>");
END;
/

SQL= BEGIN

2 5YS.DBMS_PRIVILEGE_CAPTURE.CREATE CAPTURE(

3 name == 'COM PRIV POL',

4 description == 'Usage of privileges when using SQL Developer that are grante
d through role P2 ROLE ',

5 type == DBMS_PRIVILEGE CAPTURE.G_ROLE_AND_CONTEXT,

6 roles == role name list ('P2_ROLE'},

7 condition => 'SYS CONTEXT(''USERENV'',''CLIENT PROGRAM NAME'')=''SQL Develop
er''');

8 END;

9 7/

PL/SOL procedure successfully completed.

Figure 16 — The combined analysis policy

There's more...

Another way to create a context privilege analysis policy is to use EM12c. Repeat steps 1, 2,
and 3 from the There’s more... section in the recipe Creating database analysis policy. Name the
policy, select roles, and optionally write a description. Click on Build Context Expression
(see Figure 17).

[194]

Privilege Analysis

Privilege Analysis: Create Policy

* Palicy COM_PRIV_POL

Usage of privileges when using SQL Developer that are granted
through role P2_ROLE

Description

* Scope Role and Context | w

Available Roles Selected Roles
LV_PUBLIC
DV_PATCH_ADMIN
DV_STREAMS_ADMIN
DV_GOLDEMGATE_ADMIN
DV_XSTREAM_ADMIN
DV_GOLDEMGATE_REDO_ACCESS
DV_AUDIT_CLEANUP
DV_DATAPUMP_METWORK_LINK
DV_REALM_RESOURCE
DV_REALM_OWNER
P1 ROLE w

"~ P2_ROLE

*Roles

B ae 8 v

SYS_CONTEXT (USERENV','CURRENT_SCHEMA') = 'SYSTEM'

o

* Condition .?
Build Context Expression

Examples:
SYS_CONTEXT (USERENV', 'HOST) NOT IN (sales_24','sales_12)
SYS_CONTEXT (USERENV','CURRENT _SCHEMA") ='"5YS'

Figure 17 — Creating the combined policy

Manually write the policy expression. Click on the Validate button and then on the OK
button (see Figure 18):

Policy Expression Builder *®

Oracle Database Environment
@ Information: Valid Condition.

Valid Condition.

Policy is in effect when session user 3 SCOTT AND Add

Policy Expression Lys_CONTEXT{USERENY, 'CLIENT PROGRAM_NAME') = 'SQL Developer' Edit
Validate

OK || Cancel

Figure 18 — Manually write expression in the Policy Expression Builder

[195]

Privilege Analysis

You should receive a confirmation message and see your newly created policy listed in the
table (see Figure 19).

% Confirmation El
Privilege Analysis policy COM_PRIV_POL has been created successfully,

Privilege Analysis

Privilege Analysis enables you to find information about privilege usage for a database according to a spedfied condition,
such as privileges to run an application module or privieges used in a given user session Tt analyzes both system
privileges and object privileges. To monitor the privileges used for a user's action, you must create and enable a Privilege
Analysis policy. Afterward, you can generate a report that describes the used and unused privileges and then from
there, revoke (and regrant) privileges as necessary. However, you cannot use privilege analysis to analyze the use of
SYS user privileges. Privilege analysis is licensed as part of Orade Database Vault, but you do not need to enable
Database Vault to use it.

Policies

Actions * View = [Create

Stop Capture

rate Report 3¢ Delete

Capture
Policy Active
Type First Start Time Last End
ALL_PRIV_POL Database
COM_PRIV_POL Role and Context
CONT_PRIV_POL Context
ORASDEPENDENCY Database
ROLE_PRIV_POL Role
< >

Figure 19 — The successful message

See also

¢ You can refer to the Starting and stopping privilege analysis recipe. For more
information about application contexts, see Chapter 12, Appendix — Application
Contexts.

Starting and stopping privilege analysis

To start capturing privileges, you'll enable privilege analysis policies you created in the
previous recipes.

Getting ready

You'll need an existing user who can manage privilege analysis policies (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

[196]

Privilege Analysis

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:
$ sqlplus system

2. List all existing privilege analysis policies by querying DBA_PRIV_CAPTURES.

S0L> column name format A2@
SQL> select name, type, enabled
2 from DBA PRIV CAPTURES;

NAME TYPE E
ROLE PRIV POL ROLE N
ALL PRIV POL DATABASE N
CONT PRIV _POL CONTEXT N
COM_PRIV POL ROLE_AND CONTEXT N
ORASDEPENDENCY DATABASE N

Figure 20 — Finding all defined policies

3. Enable a privilege analysis (for example, ALL_PRIV_POL, which you created in
the first recipe in this chapter):

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE(
name => "<policy_name>");

END;

S0L= BEGIN
2 5YS.DBMS PRIVILEGE CAPTURE.ENABLE CAPTURE(
3 name == 'ALL PRIV POL');
4 END;
3/

PL/SOL procedure successfully completed.

Figure 21 — Start capturing all privileges

[197]

Privilege Analysis

4. Connect to the database as the user alan and view the first names of employees
who have salary less than 1000:

SQL= connect alan

Enter password:

Connected.

SQL= select first name from HR.EMPLOYEES
2 WHERE SALARY < 1000;

no rows selected

Figure 22 — the first test of select privilege

5. Find first names of employees who earn less than 3 000.

SOL=> select first name from HR.EMPLOYEES
2 WHERE SALARY < 3000;

Figure 23 — The second test of select privilege

6. Try to delete all employees whose first name is Karen.

SQL> DELETE FROM HR.EMPLOYEES
2 WHERE FIRST_NAME = 'Karen';
DELETE FROM HR.EMPLOYEES

ERROR at line 1:
ORA-02292: integrity constraint (HR.EMP_MANAGER FK) violated - child record
found

Figure 24 — The test of delete privilege: integrity constraint violation

7. Connect to the database as system or a user who has appropriate privileges. Stop
collecting data about privileges:

SQL> connect system

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE(
name => "<policy_name>");
END;
/

[198]

Privilege Analysis

SQL> BEGIN
2 SYS.DBMS PRIVILEGE CAPTURE.DISABLE CAPTURE(
3 name => "ALL PRIV POL");
4 END;
5 7

PL/SQL procedure successfully completed.

Figure 25 — Stop capturing
8. Generate the result:

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE .GENERATE_RESULT(
name => "<policy_name>");
END;
/

SOL= BEGIN
2 SYS.DBMS PRIVILEGE CAPTURE.GENERATE RESULT(
3 name == 'ALL PRIV POL');
4 END;
5/

PL/SOL procedure successfully completed.

Figure 26 — Generating the report

How it works...

In step 3, you started capturing privileges according to the policy ALL_PRIV_POL. Then,
you executed several statements as the user ALAN. The point of those statements is to
generate records, you'll see in the next recipes.

Delete operation wasn't able to delete row(s) because of integrity
constraint violation, but you will see in the next recipes it generated record
that DELETE privilege was used.

In step 7, you stopped capturing the privilege usage. In step 8, you populated
DBA_USED_XXX and DBA_UNUSED_XXX data dictionary views. You can see how to use the
results of capture later in this chapter.

[199]

Privilege Analysis

There's more...

You can also use Enterprise Manager Cloud Control 12c to manage privilege analysis
policies. Repeat steps 1 and 2 from the There’s more... section in the recipe Creating database
analysis policy.

Select the database policy and click on the Start Capture button (see Figure 27):

Policies

Actions = View * Create [} Start Capture [J) Stop Capture Generate Report $€ Delete

Policy Active = Cap
Type First Start Time Lastt

ALL_PRIV_POL Database

COM_FRIV_POL Role and Context

CONT_PRIV_POL Context

ORASDEPENDENCY Database

ROLE_PRIV_POL Role

£ >

Figure 27 — Enabling a policy

You can either start capture immediately or schedule it. Leave the defaults and click on the
OK button (see Figure 28):

Privilege Analysis: Start Capture =
Policy Name ALL_PRIV_POL
Run (® Immediate () Later
Date B/4/2015

Hr Min Sec
Target Time Aug 04, 2015 22:58:25 (UTC +2:00)

CK Cancel

Figure 28 — Start capture immediately

[200]

Privilege Analysis

You should receive a confirmation message and see that your policy is active (see Figure
29).

% Confirmation =

Started capture for Privilege Analysis palicy ALL_PRIV_PCL,

Privilege Analysis

Privilege Analysis enables you to find information about privilege usage for a database according to a spedified condition, such as
privileges to run an application module or privileges used in a given user session. It analyzes both system privileges and object
privileges.To monitor the privileges used for a user's action, you must create and enable a Privilege Analysis policy. Afterward, you can
generate a report that describes the used and unused privieges and then from there, revoke (and regrant) privileges as necessary,
However, you cannot use privilege analysis to analyze the use of S5YS user privileges. Privilege analysis is licensed as part of Crade
Database Vault, but you do not need to enable Database Vault to use it.

Policies

Actions * View * Create [StertCapture [] Stop Capture 48} Generate Report 3§ Delet=

Capture Scope
Palicy Active
Type First Start Time | a5t End Time
IALLj—‘RI\u',POL { Database Aug 04, 2015 11:00 PM I
TOM_PRIV_POLC Tole and Context
CONT_PRIV_POL Context
ORASDEPENDENCY Database
ROLE_PRIV_POL Role
< >
Figure 29 — An active capture
Select the role policy and click on Start Capture (see Figure 30):
Privilege Analysis: Start Capture *

Policy Mame ROLE_PRIV_POL

Run

Date &/4/2015
Hr 12 Min 00 Sec
Target Time Aug 04, 2015 23:13:03 (UTC +2:00)

CK Cancel

Figure 30 — Enabling role policy

[201]

Privilege Analysis

You should see under the Policies section that both policies are active (see Figure 31):

Policies

Actions v View v | [Create [[J Start Capture []] Stop Capture {5} Generate Report 3§ Delete

Policy Active Capture Scope
Type First Start Time Last End Time

ALL_PRIV_POL < Database Aug 04, 2015 11:00 PM

ROLE_PRIV_POL Iy Rale Aug D4, 2015 11:13PM

COM_FRIV_POL Role and Context

COMT_PRIV_POL Context

ORASDEPENDEMCY Database

<

Figure 31 — Active policies

Keep in mind that only one policy whose type is Database and one policy
whose type is not Database could be active at any given time.

Verify that you can't enable another non-database policy while role policy is active. Select
CONT_PRIV_POL and click on the Start Capture button. You'll receive warning message,
and you'll only be able to schedule job to run at later point in time (see Figure 32).

Privilege Analysis: Start Capture

A ‘Warning
There is another active non database type policy.

Policy Name CONT_PRIV_POL
Run () Immediate (@) Later

Dste 8/4/2015 By

v 12[w] Min 00[v] Sec oav]

TargetTime Aug 04, 2015 23:15:23 (UTC +2:00)

Lo | cancel

Figure 32 — Warning message

[202]

Privilege Analysis

To disable capture, select an active policy (for example, ALL_PRIV_POL) and click on the
button Stop Capture (see Figure 33):

Policies

Actions * View ¥ Create [[J)Start Capture | [J Stop Capture Generate Report 3§ Delete

Pl oot Capture Scope
olic ctive
¥ Type Stop Capture me Last End Time Total Capture Duration

ALL_PRIV_POL i Database Aug 04, 2015 11:00 PM THr 26Min
ROLE_PRIV_POL & Role Aug 04, 2015 11:13PM Hr 13Min
COM_PRIV_POL Role and Context

CONT_PRIV_POL Context

ORASDEPEMDEMNCY Database

£ >

Figure 33 — Stop capture

Choose to immediately stop capture and tick generate report checkbox. Click on the OK
button (see Figure 34).

Privilege Analysis: Stop Capture =

Policy Mame ALL_PRIV_PCL
Run (® Immediate () Later
Date 8/5/2015
Hr Min Sec
Target Time Aug 05, 2015 06:28:58 (UTC +2:00)
Generate Report

0K Cancel

Figure 34 — Stop capture and generate report

[203]

Privilege Analysis

You should receive confirmation message that capture has been stopped and that job has
been submitted (see Figure 35):

E Confirmation @
Capture for Privilege Analysis policy ALL_PRIV_POL has been stopped and Orade Scheduler Job “I_ALL_PRIV_POL" has been submitted to generate repaort.

Privilege Analysis

Privilege Analysis enables you to find information about priviege usage for a database according to a spedfied condition, such as privieges to run an application module or
privileges used in a given user session. It analyzes both system privileges and object privileges. To monitor the privileges used for a user's action, you must areate and
enable & Privilege Analysis policy. Afterward, you can generate a report that describes the used and unused privileges and then from there, revoke (and regrant)
privileges as necessary. However, you cannot use privilege analysis to analyze the use of SYS user privileges. Privilege analysis is licensed as part of Orade Database
Wault, but you do not need to enable Database Vault to use it.

Policies
Actions v View « Create ([Start Capture Stop Capture {3} Generate Report $§ Delete
X § Capture Scope
Policy Active
Type First Start Time Last End Time Total Capture Duration
ROLE_PRIV_POL (1] Role Aug 04, 2015 11:13PM FHr 17Min
COM_PRIV_POL Role and Context
CONT_PRIV_POL Context
ORASDEPENDENCY Database
ALL_PRIV_POL Database Aug 04, 2015 11:00PM Aug 05, 2015 05:30 AM FHr 30Min
< b3

Figure 35 — Confirmation

Refresh page (it may take up to several minutes to complete). You should receive result
similar to the one shown in Figure 36.

Policies
Actions + View Create [StartCapture [Stop Capture {3 Generate Report 9 Delete
oty Actve Capture Scope ! Unused Privieges N Most Recent Job
Type First Start Time Last End Time Totsl Capture Duration Users System Object Public Status Type
ROLE_FRIV_FOL & Rok Aug 04, 2015 11:13PM THr 18Min
CoM_PRIV_POL Role and Context
CONT_PRIV_POL Context
ORASDEPENDENCY Database 19
ALL_PRIV_POL Database Aug 04, 2015 11:00PM Aug 05, 2015 06:30 AM THr 30Min 0 €2 13683 @ Report Generation

Figure 36 — The generated report

Test all policies you have created in the previous recipes.

Reporting on used system privileges

In this recipe, you'll view collected data about the usage of system privileges during a
capture interval.

[204]

Privilege Analysis

Getting ready

You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it...
1. Connect to the database as system or a user who has appropriate privileges:
$ sglplus system

2. View system privileges that the user ALAN used:

SQL> select username, sys priv
2 from DBA USED SYSPRIVS
3 where username="ALAN';

USERNAME 5YS PRIV

Figure 37 — The used system privileges

3. View grant path for the used system privileges generated by ALL_PRIV_POL for
the user ALAN:

SQL> column path format A20
S0L= select sys priv, path
2 from DBA USED SYSPRIVS PATH
3 where capture="ALL PRIV POL' and username="ALAN';

SY5_PRIV PATH

CREATE SESSION GRANT PATH('ALAN")

Figure 38 — The Grant path

[205]

Privilege Analysis

There's more...

In EM 12¢, after you have generated the report, select the policy and from Actions drop-
down menu, select Reports. The Usage Summary report will open (see Figure 39).

Privilege Analysis: Reports

Usage Summary Unused | Used

The usage report provides a hierarchical representation of each unused and used privilege, and the grant path. From here, you can revoke and regrant priviieges and roles to and from users as necessary.

Search
Policy | ALL_PRIV_POL v| =Grantee ALAN v [+
3¢ Revoke Regrant
System Privieges Object Privileges
= A3 Used Unused Used Unused Used
ALAN Ussr 1 2 7
[Z3 Object Privileges Folder 2 2
HR Schema 2 2
(25 System Privileges Folder 1
CREATE SESSION System Priviege M

ALAN -> System Privieges -> CREATE SESSION

Figure 39 — Usage Summary

Click on the tab Used and choose All for Match radio button, Policy: ALL_PRIV_POL, User
Name: ALAN, and click on the Search button. Results are shown in Figure 40:

Privilege Analysis: Reports Return
Usage Summary Unused Used
Used Privileges
Search Advanced Saved Search | UsedPrevsVOCriteria | v
Match) Any
Policy | ALL_PRIV_POL
User Name | ALAN
System Privieges
Object Name:
Search | Reset | Save...
< >
View v | ExporttoSpreadsheet | [
Syster -~
L% Policy User Name UsedRole - oo Path Admin/Grant Option
Privileges
1 ALL_PRIV_POL ALAN ALAN CREATE SESSION ALAN False
2 ALL_PRIV_POL ALAN PUBLIC PUELIC False
3 ALL_PRIV_POL ALAN PUBLIC PUELIC False
4 ALL_PRIV_POL ALAN PUBLIC PUBLIC False
5 ALL_PRIV_POL ALAN PUBLIC PUBLIC False
& ALL_PRIV_POL ALAN ALAN ALAN False
7 ALL_PRIV_POL ALAN PUBLIC PUBLIC False
& ALL_PRIV_POL ALAN ALAN ALAN False
< >
Columns Hidden 10

Figure 40 — Report the used privileges recorded for the user Alan based on the database policy

[2061

Privilege Analysis

If you haven't generated report for the role policy, do it now and return to this tab (the Used
tab). Find all records generated by ROLE_PRIV_POL for user Nick (who has a DBA role).

Results are presented in Figure 41:

Privilege Analysis: Reports
Usage Summary Unused Used
Used Privileges
Search
Match (@) &l O) Any
Policy
User Name NICK

System Privileges

ROLE_PRIV_POL

Advanced

Saved Search

Return

UsedPrevsVOCriteria | v

Object Name
Search || Reset || Save...
View = | Export to Spreadsheet | [
or Object
SL# Policy User Name Used Role Fath System Priviieges orer Obiect Name
1ROLEPRIVPOL NICK EM_EXPRES5_BASIC NICK,DEA,EM_EXPRESS_ALL,EM_EXPRESS_BASIC CREATE SESSION
2ROLE PRIV POL NICK DATAPUMP_EXP_FULL DATABASE NICK,DBA,DATAPUMP_EXP_FULL DATABASE,EXP_FULL D... CREATE TABLE
3ROLE PRIV POL NICK DATARUMP_EXP_FULL_DATABASE NICK,DEA,DATAPUMP_EXP_FULL_DATABASE CREATE TABLE
4ROLEPRIVPOL NICK OLAP_DBA NICK,DEA, OLAP_DBA SELECTANYTABLE ~ OE CUSTOMERS

Columns Hidden 9

Figure 41 — The used privileges recorded for the user Nick based on role policy

Reporting on used object privileges

In this recipe, you'll view collected data about the usage of object privileges during the
capture interval.

Getting ready

You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:

$ sqglplus system

[207]

Privilege Analysis

2. View which object privileges the user Alan has used while database policy

ALL_PRIV_POL has been active.

SQL> select username, object owner, object name, obj priv
2 from DBA_USED_OBJPRIVS
3 where username='ALAN";

6 rows selected.

USERNAME ~ OBJECT_OWN OBJECT NAME 0BJ_PRIV
[ALAN 5YS DUAL SELECT
[ALAN 5YS DUAL SELECT
[ALAN 5YS DBMS APPLICATION INF EXECUTE
0
LAN HR. EMPLOYEES DELETE
LAN HR EMPLOYEES SELECT
[ALAN SYSTEM PRODUCT_PRIVS SELECT

Figure 42 — The used object privileges

3. View grant path by querying DBA_USED_OBJPRIVS_PATH:

ALAN HR
ALAN SYS
ALAN SYS
ALAN SYS
ALAN SYSTEM
ALAN HR

6 rows selected.

USERNAME ~ OBJECT_OWN OBJECT_NAME

0BJ_PRIV

EMPLOYEES DELETE
DUAL SELECT
DUAL SELECT
DBMS_APPLICATION INF EXECUTE
0

PRODUCT_PRIVS SELECT
EMPLOYEES SELECT

S0L> select username, object owner, object name, obj priv, path
2 from DBA_USED_OBJPRIVS_PATH
3 where capture='ALL PRIV POL' and username='ALAN';

GRANT_PATH
GRANT_PATH
GRANT_PATH
GRANT_PATH

"ALAN")

'"PUBLIC")
'"PUBLIC")
'"PUBLIC")

GRANT _PATH('PUBLIC")
GRANT _PATH('ALAN")

There's more...

In EM 12c, after you have generated the report, select the policy, and from Actions drop-
down menu, select Reports. The Usage Summary report will open. Click on the Used tab
and verify that the user Alan has used the SELECT and DELETE privileges while

Figure 43 — Object privileges grant path

ALL_PRIV_POL has been active (see Figure 44):

[208]

Privilege Analysis

Privilege Analysis: Reports Return
Usage Summary Unused = Used
Used Privileges
Search Advanced Saved Search | UsedPrevsVOCriteria | v

Match (2 Al O Any
Policy | ALL_PRIV_POL
User Name ALAN
System Privileges
Object Name
Search Reset Save...

< >
View Export to Spreadshest ﬁ

SL# Policy User Name Object Privieges Used Role Path gs\ﬁfw Object Mame
1 ALL_PRIV_POL ALAN SELECT ALAM ALAM HR EMPLOYEES
2 ALL_PRIV_POL ALAN DELETE ALAN ALAN HR EMPLOYEES
3 ALL_PRIV_POL ALAN SELECT PUBLIC PUBLIC 5Y5 DUAL
4 ALL_PRIV_POL ALAN SELECT PUBLIC PUBLIC 5YS DUAL
5 ALL_PRIV_POL ALAN EXECUTE PUBLIC PUBLIC 5Y5 DBMS_APPLICATION_INFO
& ALL_PRIV_POL ALAN EXECUTE PUBLIC PUBLIC 5YS DBMS_OUTPUT
7 ALL_PRIV_POL ALAN SELECT PUBLIC PUBLIC SYSTEM PRODUCT_PRIVS
8 ALL_PRIV_POL ALAN ALAN ALAN

Columns Hidden 9

Figure 44 — Reports

Reporting on unused system privileges

In this recipe, you'll view the collected data about the unused system privileges during the
capture interval.

Getting ready

You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:

$ sglplus system

[209]

Privilege Analysis

2. View that the user Alan has used all system privileges that have been granted to
him (there are no unused system privileges):

50L> select username, sys priv
2 from DBA UNUSED SYSPRIVS
3 where username="ALAN";

no rows selected

Figure 45 — The unused system privileges for the user Alan during the database policy ALL_PRIV_POL capture interval

There's more...

To view report about the unused system privileges in EM12c, see instructions to view the
used system privileges and under Privilege Analysis: Reports, choose the Unused tab
instead of the Used tab.

Reporting on unused object privileges

In this recipe, you'll view collected data about the unused object privileges during the
capture interval.

Getting ready

You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:
$ sqglplus system

2. View which object privileges the user Alan has used during the database policy
capture interval:

[210]

Privilege Analysis

SQL> select username, object owner, object name, obj priv
2 from DBA UNUSED OBJPRIVS
3 where username="'ALAN';

USERNAME OBJECT OWN OBJECT NAME 0BJ PRIV
ALAN HR EMPLOYEES UPDATE
ALAN HR EMPLOYEES INSERT

Figure 46 — The unused object privileges

There's more...

In EM 12c, after you have generated the report, select the policy, and from Actions drop-
down menu, select Reports. The Usage Summary report will open. Click on the Unused tab
and verify that the user Alan hasn't used the INSERT and UPDATE privileges while
ALL_PRIV_POL has been active.

Privilege Analysis: Reports Return
Usage Summary Unused Used

Unused Privileges

Search Advanced Saved Search DbaUnusedPrivsVOCriteria |

Match (@) Al Any
Policy ALL_PRIV_POL
Grantee ALAN
System Privileges
Object Owner

Object Name
Search Resst Save...
< >
View » Export to Spreadsheet E

P, System . L Object .
5L# Policy Grantee Grantee Type Privileges Object Privileges Owner Object Mame Object Type Path
1 ALL_PRIV_POL ALAM USER INSERT HR EMPLOYEES TAELE ALAM
2 ALL_PRIV_POL ALAM USER UPDATE HR EMPLOYEES TABELE ALAM
£ >

Columns Hidden 3

Figure 47 — The Unused object privileges report

[211]

Privilege Analysis

How to revoke unused privileges

You can manually revoke unused privileges one by one from users, write your own scripts
to complete that task, or use Enterprise Manager Cloud Control 12c. In this recipe, you'll
use EM12c to efficiently revoke unused privileges based on reports you generated in the
previous recipes.

How to do it...

1. Select policy, and from Actions drop-down menu, choose Revoke Scripts (see
Figure 48):

Policies
Actions = | View « Create [[J) StartCapture [Stop Capture Generate Report $ Delete
R Capture 5
eports Actve . apture Scope
Revoke Scripts Type First Start Time Last End Time
Create Role i Role Aug 04, 2015 11:13PM
Role and Context
Create Like
Context
Show Database
Job History Database Aug 04, 2015 11:00 PM Aug 05, 2015 06:30 AM
Scheduled Jobs

Figure 48 — Create revoke scripts

2. You'll see a message about required privileges (see Figure 49). Click on the OK
button.

Privilege Analysis: Set up for revoke scripts *
Enterprise Manager stores the revoke scripts in DBSMMP schema. As a one time set up, below configurations will be done:

1. Create package DBSNMP.EM_DBSEC_PA.
2. Create table DBSNMP . PRIV_ANALYSIS_SCRIPTS,
3. Grant object privileges to role CAPTURE_ADMIN.

To be able to do the configuration changes, user should have CREATE [ANY] PROCEDURE and EXECUTE [ANY] PROCEDURE privileges.
Additionally, if the database orddb.challengezoran.com is protected by Database Vault, then user should be a participant to the Realms that are protecting the DBESMMP schema.

OK || Cancel

Figure 49 — The info message

[212]

Privilege Analysis

3. Select policy (Policy Name) and click on the Generate button (see Figure 50):

Privilege Analysis: Revoke Scripts
This page lists down privilege revoke and regrant scripts generated and saved based on Privilege Analysis results.

Search

Policy Name ALL_PRIV_POL W

Revoke Scripts

Generate | 3§ Delete

Palicy Mame Seript Name Revoke Saript Regrant Script ScriptCreated By Saript Generated Time Description
Mo data found

Figure 50 — Generating a script

4. Generate script to revoke all the unused object privileges from the user Alan. Fill
out form as shown in Figure 51 and click on the Next button:

8—
Script Details Select Grantes

Generate Revoke Script: Script Details Back | Step 10f6| Next | Done Cancel

Create a SQL script to revoke directly granted unused system/object privilege, and roles.
*Policy Name | ALL_PRIV_POL ™
* ScriptName ALAN_OBI_PRIV_REV

Revoke all unused object privileges from Alan.

Description

Grantee (user/role) (O All @) Customize
Unused System Privileges (O All (@ None () Customize
Unused Ohject Priviieges @ All (CiNone () Customize

Unused Roles () All (@ None () Customize

Figure 51 — Revoking the script configuration

[213]

Privilege Analysis

5. Click on the Select None link and tick revoke checkbox for the user Alan (see
Figure 52):

— =

SoiptDetais Select Grantee Revigw

Generate Revoke Script: Select Grantee Back |step 20f6| Next || Cancel
Following grantees wil be incuded in the reveke script.

Select Users.
Select All - Select None
Revoke Name
DVF
APEX_040200
MDSYS
OLAPSYS
CTXSYS
ORACLE_OCM
DVSYS
ALAN
SYSTEM
ORDPLUGINS
PM
ORDSYS
DBSNMP
GSMADMIN_INTERNAL
OE
I
ORDDATA
XDB
LBACSYS
WMSYS

Ooooooooooooo”ooooooo

Rows Selected 1

Figure 52 — Choose to revoke privilege only from the user Alan

Click on the Next button. Review your choices and click on the Save button
(see Figure 53):

— —a
Script Details Select Grantee Review
Generate Revoke Script: Review Back Steptofs Mext | Save || Cancel
Policy Name ALL_PRIV_POL
ScriptMame ALAN_OB]_PRIV_REV
Desaription Revoke all unused object privileges from Alan.
Directly Granted Unused Object Privileges
Policy Name Grantes Name Grantee Type Object Privieges Object Owner Object Name Column Name Object Type Grant Option
ALL_PRIV_POL ALAN USER: INSERT HR EMPLOYEES TABLE
ALL_PRIV_POL ALAN USER UPDATE HR EMPLOYEES TABLE

Figure 53 — Review

[214]

Privilege Analysis

You should receive confirmation similar to the one shown in Figure 54:

% Confirmation
Script ALAN_OBJ_PRIV_REV has been generated successfully.

Privilege Analysis: Revoke Scripts Return
This page lists down privilege revoke and regrant scripts generated and saved based on Privilege Analysis results.

Search

Policy Name | % v

Revoke Scripts
Generate $§ Delete

Policy Name Seript Name Rewvoke Script Regrant Script | Script Created By Script Generated Time Description
ALL_PRIV_POL ALAN_OBJ_PRIV_.. i i SYSTEM Aug 05, 2015 07:35 AM Revoke all unused object privileges from Alan.

Figure 54- The confirmation message

6. Click on the green arrow in the Revoke Script column (Figure 54) to download
the generated revoke script. Note that Regrant Script has also been generated.

7. View the generated revoke script- ALAN_OBJ_PRIV_REV_revokeScript.sql
(see Figure 55):

—— REVCEE SCRIPT GENERATED BY S¥STEM AT Aug 05, 2013 07:35 2M.
—— SCRIPT FOR REVOEING DIRECTLY GRANTED UNUSED CBJECT
PRIVILEGES :

REVCEE INSERT CN HR.EMPLCYEES FRECM ATLN;
EEVCEE UFPDATE ON HE.EMPLCYEES FECOM ATLN;

Figure 55 — The generated revoke script

There's more...

In EM 12¢, there is another excellent option to create a new role based on privilege analysis
results. This way, you won't change an existing role (and affect other users and roles who
have that role), but create a new one and afterwards revoke the old role and grant a newly
created one.

[215]

Privilege Analysis

You can select it from the Actions menu (Create Role). In Figure 56, the configuration part
of a process for creating a new role is shown:

Privilege Analysis: Create Role Cancel oK
Use this feature to create a new role from Privilege Analysis results. The role can have used or unused system fobject privileges and
roles.

Mote: If the logged in user does not have sufficent privieges, then the user will be prompted to provide SYSDBA credentials,

* Policy Mame ALL_PRIV_POL W
* Role Mame
Unused []
Used

Directly Granted System Privileges (@) All () None () Customize

Directly Granted Object Privilege: Al CyNone () Customize

Directly Granted Roles (@)

Al CiNone () Customize

Figure 56 — Create a new role based on policy

Dropping the analysis

In this recipe, you'll drop an existing privilege analysis policy. It has to be disabled before
dropping; otherwise, you'll receive an error.

Getting ready

You'll need an existing user who can manage privilege analysis policies (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user and an existing privilege analysis policy.

How to do it...

1. Connect to the database as system or a user who has appropriate privileges:

$ sqglplus system

[216]

Privilege Analysis

2. Drop a privilege analysis policy (for example, ALL_PRIV_POL, which you created
in the first recipe in this chapter):

SQL> BEGIN
SYS.DBMS_PRIVILEGE_CAPTURE .DROP_CAPTURE(
name => “<policy_name>");
END;
/

SQL> BEGIN
2 SYS.DBMS PRIVILEGE CAPTURE.DROP CAPTURE(
3 name => 'ALL PRIV POL');
4 END;
5 /

PL/SQL procedure successfully completed.

Figure 57 — Drop policy

3. Verify that all the records about the used and unused privileges, which have been
gathered according to the policy, are also dropped:

SQL> SELECT username, sys priv, obj priv, object_owner,
object_name

FROM DBA_USED_PRIVS

WHERE capture="<policy_name>";

S0L= select username, sys priv, obj priv, object owner, object name
2 from DBA USED PRIVS
3 where capture='ALL PRIV POL';

no rows selected

Figure 58 — Records doesn't exist anymore

There's more...

In EM 12c under the Policies section, select policy you want to drop and click on the Delete
button.

[217]

Transparent Data Encryption

In this chapter, we will cover the following tasks:

¢ Configuring a keystore location in sqlnet.ora

¢ Creating and opening the keystore

¢ Setting a master encryption key in a software keystore

¢ Column encryption — adding a new encrypted column to a table
¢ Column encryption — creating a new table that has encrypted column(s)
¢ Using salt and MAC

e Column encryption — encrypting the existing column

¢ Autologin keystore

¢ Encrypting tablespace

e Rekeying

e Backup and recovery

Introduction

Encryption is a very important security mechanism used to enforce confidentiality of data.
There are two types of encryption that can be used in the Oracle Database. The first type is
application-based encryption, which is implemented using the DBMS_CRYPTO PL/SQL
package (this type is not covered in this book), and the second type is Transparent Data
Encryption (TDE). TDE is a part of Advanced Security option of Oracle Database Enterprise
Edition. It can be used to encrypt data in rest (table columns and tablespaces inside the
database) and in transit (network, Recovery Manager (RMAN) backups, and Data Pump
Exports).

Transparent Data Encryption

The word transparent in Transparent Data Encryption means that application is not aware
that data is encrypted in any way. In other words, application will never see the encrypted
data-if user is not authorized to see the data, error (for example, insufficient privileges,
table, or view does not exist) will be shown. The only way that a user will see encrypted
data is if he or she tries to avoid Oracle Database Access Controls, by reading data files
directly.

TDE should never be used as a mechanism of access control. For this
purpose, there is a large portfolio of access control mechanisms in Oracle
Database (standard Discretionary Access Control, Mandatory Access
Control-Oracle Label Security, Virtual Private Database, Database Vault,
and so on).

There are two types of TDE: column and tablespace.

In column encryption, only user-selected columns (in user-selected tables) are encrypted.
This encryption type is more suitable for systems with small number of columns that need
to be encrypted. Encrypting large number of columns can lead to significant performance
degradation. This type even encrypts data in memory, which prevents cold boot attacks.
There are several encryption algorithms that can be chosen from: AES128, AES192, AES256,
and 3DES168. The default one is AES192. Because these are block cyphers, each row that is
going to be encrypted need to be padded to a multiple of 16 bytes (for example, if the size of
value in row is 11 bytes, additional 5 bytes of storage is needed to encrypt this row). By
default, salt and MAC are used (salt and MAC are covered in the Using salt and MAC
recipe). There are several restrictions of column encryption:

¢ Foreign key constraints are not supported because each table has a different table
key

B-Tree indexes are not supported when using salt

Bitmap indexes are not supported

Transportable tablespaces are not supported

Synchronous Change Data Capture (CDC) is not supported

External Large Objects (LOBs) are not supported

SYs schema objects cannot be encrypted

[219]

Transparent Data Encryption

Tablespace encryption is the second type of TDE, which has better performance and has
fewer restrictions. This type of TDE is usually more suitable for systems that need to
encrypt large portion of data in the database. Using this type, all data that resides inside
encrypted tablespace is encrypted (no restrictions on data types). Encryption/decryption is
performed on the I/O level, so performance overhead can be expected to be seen on that
level. Tablespace encryption doesn't require additional storage. Unlike column encryption,
tablespace encryption supports the following:

e Foreign keys
¢ Bitmap indexes

e Transportable tablespaces (as long as platforms are of the same endian and the
same keystore exists on both locations)

¢ All data types

However, there are still some limitations. Following things are not supported in tablespace
encryption:

¢ BFILE cannot be encrypted

External tables cannot be encrypted

UNDO tablespace cannot be encrypted

TEMP tablespace cannot be encrypted

SYSTEM tablespace cannot be encrypted

Key for tablespace cannot be rekeyed (workaround is to create another encrypted
tablespace and move all data to this newly created tablespace)

[220]

Transparent Data Encryption

TDE uses two-tier key architecture. For column encryption, columns are encrypted using
column (also known as table) keys. There is only one key per table regardless of number of
columns that are encrypted in that particular table. For tablespace encryption, tablespaces
are encrypted using tablespace keys. Both table and tablespace keys are stored in data
dictionary inside Oracle Database. These keys are encrypted using a master key. There is
only one master key per database (in Oracle multitenant environment, there is one master
key per pluggable database). This master key is stored in a keystore outside the Oracle
Database. This keystore can be a software keystore (in previous versions of Oracle
Database, it's been named Oracle Wallet) or a hardware keystore (for example, Hardware
Security Module). There is only one keystore per database (in Oracle Multitenant
environment, there is only one keystore per whole container database). This means that in
Oracle Multitenant, there will be one keystore (software or hardware) per container
database, which contains multiple master keys (one for each pluggable database that is
plugged in that particular container database). A keystore is secured by a password, which
is used during maintenance operations (keystore opening and closing, rekeying master key,
and so on).

0 Keystore's password is not the same as the master key.

Configuring keystore location in sqglnet.ora

In this recipe, you're going to configure the location of a software keystore in a regular file
system. If you want to use Hardware Security Module (HSM), see the official Oracle
documentation (Chapter 3 in Oracle Advanced Security Guide, part named Configuring
Hardware Keystore).

[221]

Transparent Data Encryption

How to do it...

1. Create a directory, to hold a keystore, that is accessible to the owner of Oracle
software (for example, SORACLE_BASE/admin/oral2cR1/wallet). See Figure 1:

oracle@dbhost:~/Desktop

File Edit View Search Terminal Help

[oracle@dbhost Desktop]$. oraenv
ORACLE SID = [oracle] ? oral2cRl
The Oracle base has been set to /u@l/app/oracle

[oracle@dbhost Desktop]s’mkdir SORACLE BASEgadminx_’oralchl,a_'wa'Llet|
[oracle@dbhost Desktop]$|[vi SORACLE HOME/network/admin/sqlnet.ora

Figure 1 — Create a directory and edit sqlnet.ora

2. Edit sglnet.ora and add entry to specify the location of the keystore (see Figure
1 and 2). This step is optional if you are using default location for the wallet,
which is $ORACLE_HOME/admin/<db_name>/wallet.

oracle@dbhost:~/Desktop
File Edit View Search Terminal Help

4 sqlnet.ora Network Configuration File: /uBl/app/oracle/product/12.1.8/dbhome 1[-]
/network/admin/sqlnet.ora
Generated by Oracle configuration tools.

MAMES . DIF F 'ATH= (TNSMAMES, ONAMES, HOSTNAME)

ENCRYPTI
Bsourc

WALLET LOCATION=

D=FILE)

(. =/uBl/app/oracle/adnin/oral2cRl/wallet})]

Figure 2 — Define ENCRYPTION_WALLET_LOCATION parameter

Creating and opening the keystore

In this recipe, you're going to create a password-based keystore. Open it and learn to check
its status.

[222]

Transparent Data Encryption

Getting ready

It is assumed that the keystore location is already configured (instructions are given in the
recipe Configuring keystore location in sqlnet.ora). In this recipe, you'll grant, as the sys user,
administer key management privilege, or SYSKM administrative privilege to an existing user
(for example, maja).

How to do it...

1. Connect to the database as a user who can grant administer key management
privilege (for example, sYS) and grant the privilege to an existing user (for
example, maja).

2. To create a password-based software keystore, connect to the database as the user
in the previous step (for example, maja) and execute the following statement
(after you change parameters so that they are appropriate for your environment)
(an example is shown in Figure 3):

SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE “keystore_location*
IDENTIFIED BY keystore_password;

SQL> grant administer key management to maja;
Grant succeeded.

SQL> connect maja

Enter password:

Connected.

SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/u@l/app/oracle/admin/oral2cR1/w|
allet' identified by welcomel;

keystore altered.

Figure 3 — Creating a password-based software keystore

[223]

Transparent Data Encryption

3. Open the keystore you created in the previous step by executing the following
statement (see Figure 4):

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY welcomel;

keystore altered.

Figure 4 — Opening the password-based keystore

How it works...

In step 2, you create a new wallet, which is a file with .p12 extension, in a wallet directory.

In step 3, you opened the keystore. It will remain open until you manually close it.

There's more...

Verify that the keystore has been successfully created in step 2 by checking that the file
ewallet.pl2 exists in the directory you specified as a keystore location
(ENCRYPTION_WALLET_LOCATION parameter in sqlnet.ora). You should get the similar
result to the one shown in Figure 5.

[oracle@dbhost Desktop]$ 1ls -1 /uB@l/app/oracle/admin/oral2cRl/wallet
total 4
-rW-r--r--. 1 oracle oinstall 2488 Oct 11 23:54|ewa11et.012|

Figure 5
To view the status of the keystore execute the following statements:

$ sqlplus / as syskm
SQL> SELECT STATUS, WALLET_TYPE FROM V$ENCRYPTION_WALLET;

[224]

Transparent Data Encryption

You should receive the same result as shown in Figure 6. The OPEN_NO_MASTER_KEY status
means that the keystore is opened, but a master key hasn't been generated yet.

SQL> select status, wallet type from v$encryption wallet;
STATUS WALLET_TYPE
OPEN_NO_MASTER_KEY PASSWORD

Figure 6

Setting master encryption key in software
keystore

In this recipe, you're going to create the first master key for the password-based software
keystore you created and opened in the previous recipe.

Getting ready

It is assumed that software keystore is already opened. To complete this recipe, you'll need
an existing user who has the sySkM administrative or administer key management privilege
(for example, maja).

How to do it...

1. Connect to the database as a user who has the sYSKM administrative or
administer key management privilege (for example, maja):

$ sqglplus maja

[225]

Transparent Data Encryption

2. Create a master key for the password-based keystore (Figure 7 shows the creation
of master key for the keystore you created in the recipe Creating and opening the
keystore):

SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY
keystore_password

WITH BACKUP

USING "desc_purpose-;

SOL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY welcomel WITH BACKUP USING
‘transparent’;

keystore altered.

Figure 7

There's more...

The WITH BACKUP clause in step 2 instructs Oracle Database to create a backup of a
keystore before the creation of a master key. This backup is created in the same directory
where keystore resides and is created in the form ewallet_timestamp.pl12 (where
timestamp represents timestamp of backup creation).

Verify the status of the keystore (Figure 8):

SQL> select status, wallet type from v$encryption wallet;

STATUS WALLET_TYPE

OPEN PASSWORD

Figure 8 — The status of the keystore after master key was created

See also

e If you want to learn to change a master key, see the Rekeying recipe.

[226]

Transparent Data Encryption

Column encryption — adding new encrypted
column to table

In this recipe, you'll add a new column, which will be encrypted using a nondefault
encryption algorithm, to an existing table.

Getting ready

It is assumed that a keystore is opened and a master key is created.

How to do it...

1. Connect to the database as a user who has administer key privilege or SYSKM
privilege (for example, maja) and verify that the keystore is in the OPEN status.
You should get the result similar to the one depicted in Figure 9:

$ sqglplus maja

SQL> SELECT WRL PARAMETER, STATUS, WALLET TYPE FROM VSENCRYPTION WALLET;

WRL PARAMETER STATUS WALLET TYPE

JuBl/app/oracle/admin/oral2cRl/wallet/ OPEN PASSWORD
Figure 9

2. Add a column (for example, bonus) to a table (for example, hr.employees),
encrypted using the AES 256 algorithm.

5QL> ALTER TABLE HR.EMPLOYEES ADD (BONUS WUMBER(1@) ENCRYPT USING 'AES256');

Table altered.

Figure 10 — Adding the new encrypted column to the table

[227]

Transparent Data Encryption

Column encryption — creating new table that
has encrypted column(s)

In this recipe, you're going to learn to use TDE column encryption to encrypt columns in a
newly created table.

Getting ready

It is assumed that a keystore is opened and a master key is created.

How to do it...

1. Connect to the database as a user who has administer key privilege or SYSKM
privilege (for example, maja):

$ sqlplus maja

2. Create a new table (for example, table enc_cols in schema hr) that has, for
example, the following structure:

Column name Column type Encrypted
NAME VARCHAR2 (50) No
CREDIT_LIMIT NUMBER (10) Yes, AES192
SALARY NUMBER (10) Yes, AES192

SQL> CREATE TABLE HR.ENC COLS (
2 NAME VARCHAR2(58),
3 CREDIT LIMIT NUMBER(1®) EMNCRYPT,
4 SALARY MUMBER(1®) ENCRYPT);

Table created.

Figure 11 — A syntax to create the table hr.enc_cols

[228]

Transparent Data Encryption

3. Connect to the database as a user who can insert and view data in the table (for
example, hr user):

SQL> connect hr

4. Insert several arbitrary values into the table HR.ENC_COLS.

5QL> INSERT INTO HR.ENC_COLS VALUES ('Debra’',50000,20000);
1 row created.

SQL> INSERT INTO HR.ENC_COLS VALUES ('Sarah',480080,18500);
1 row created.

SQL> INSERT INTO HR.ENC COLS VALUES ('Tim',45000,14800);

1 row created.

5QL> INSERT INTO HR.ENC_COLS VALUES ('Alex’',649000,23000);

1 row created.

Figure 12 — Test values

5. Verify that the user can view unencrypted values in all columns.

SQL= SET LINESIZE 3080
SQL= COLUMN NAME FORMAT AlG
SQL= select * from hr.enc_cols;

NAME CREDIT LIMIT SALARY
Debra 50000 20000
Sarah 48000 18500
Tim 45000 14800
Alex 49000 23000

Figure 13- Encryption is transparent

[229]

Transparent Data Encryption

6. Connect to the database as a user who can't view data in the table (for example,
james) and try to view data in all columns:

SQL> connect james
SQL> select * from hr.enc_cols;

S0L= connect james

Enter password:

Connected.

50L= select * from hr.enc cols;

select * from hr.enc cols

ERROR at line 1:

ORA-08942: table or view does not exist

Figure 14 — User who doesn't have “view” privilege(s) won't see encrypted values

Using salt and MAC

In this recipe, you'll understand when you should use salt and MAC.

Getting ready

It is assumed that a keystore is opened and a master key is created.

How to do it...

1. Connect to the database as a user who has administer key privilege or SYSKM
privilege (for example, maja):

$ connect maja

[230]

Transparent Data Encryption

2. Encrypt two columns in an existing table (for example, sh.customers)

SQL> ALTER TABLE SH.CUSTOMERS MODIFY (
2 CUST_LAST_NAME ENCRYPT USING "AES256',
3 CUST STREET ADDRESS EMCRYPT USING 'AES256' NO SALT);

Table altered.

Figure 15 — Using salt and MAC

How it works...
In step 2:

¢ You encrypted the 1ast_name column using the AES256 algorithm with salt and
used MAC

* You encrypted the cust_street_address column using the AES256 algorithm
with no salt and used MAC

In general, you have to use same encryption algorithm for all encrypted columns at the
same time. You can choose a SALT option on the encrypted column level in a table, but you
have to choose either the MAC or NOMAC option on a table level (meaning that all encryption
columns in a table must use the same option).

There's more...

To understand why salt is important, let's consider a basic scenario that doesn't use salt. For
example, if we have 100 rows and they contain only values A, B, C, and D, this will mean
that there are only 4 different values in 100 rows. If we know that value A exists in 3 rows,
value B exists in 20, value C exists in 30, and value D exists in 47 rows, we can then check
cyphertexts (because there will be only 4 different values in cyphertext as well). By
evaluating it, we can find that one cyphertext that exists in 3 rows will be value A, one that
exists in 20 rows will be value B, and so on. In order to avoid this problem, we can
introduce salt. Salt is used to ensure that each encrypted row has different cyphertext
regardless of number of same values in plaintext rows. In our previous example, if we used
salt, even though there were only 4 different plaintext values in 100 rows, there will be 100
different cyphertext values in 100 rows, which will be almost impossible for attacker to
presume which value corresponds to which row. Consequently, there is no need for salt if
plaintext values are unique. There is additional storage cost of 16 bytes per row for salt.

[231]

Transparent Data Encryption

Salt cannot be used on indexed columns.

MAC (short for Message Authentication Code) is a hash value computed on encrypted
data, which is used for data integrity verification. There is the additional storage cost of 20
bytes per row.

By default, both salt and MAC are used.

SQL> alter table hr.test modify (ID ENCRYPT);
alter table hr.test modify (ID ENCRYPT)

ERROR at line 1:
ORA-28338: Column(s) cannot be both indexed and encrypted with salt

Figure 16 — TDE column restriction

S0L> alter table hr.test modify (ID ENCRYPT NO SALT);

Table altered.

Figure 17 — Encrypted primary key with no salt

It is not possible to have salt on indexed column. In Figure 16, it is shown that column ID
(which is primary key) cannot be encrypted with salt. In Figure 17 is shown that after
changing attribute to NOSALT, the primary key column is successfully encrypted.

[232]

Transparent Data Encryption

Column encryption — encrypting existing
column

It is common case that organizations first create database and later decide that they want to
implement encryption. In this recipe, you're going to encrypt an existing column using TDE
column encryption.

Getting ready

It is assumed that a keystore is opened and a master key is created.

How to do it...

1. Connect to the database as a user who can read data from the OE . CUSTOMERS
table (for example, the oe user):

$ sqglplus oe

2. Select data from column you want to encrypt (for example, cust_email), just to
verify that the user can view it.

SQL= SELECT CUST EMAIL FROM OE.CUSTOMERS
2 WHERE CUST EMAIL LIKE 'Am%';

CUST EMAIL

Amanda . Brown@THRASHER . EXAMPLE . COM
Amanda.Finney@STILT.EXAMPLE . COM
Amanda.Tanner@TEAL . EXAMPLE . COM
Amrish.Palin@EIDER.EXAMPLE.COM

Figure 18 — A test query

3. Connect to the database as a user who has administer key privilege or SYSKM
privilege (for example, maja):

SQL> connect maja

[233]

Transparent Data Encryption

4. Encrypt the cust_email column in the oe.customers table using the default
encryption algorithm (AES192) and no salt.

SOL> ALTER TABLE OE.CUSTOMERS MODIFY (CUST EMAIL ENCRYPT NO SALT);

Table altered.

Figure 19 — Encrypting an existing column, which has an index

5. Execute steps 1 and 2 again to verify that there is no change in the way
user/application views data after TDE column encryption is applied.

There's more...

This example demonstrates that you can't use TDE column encryption to encrypt column,
which is a foreign key. If you need to encrypt that kind of column, use TDE tablespace
encryption.

1. Connect to the database as a user who can select data from a table, for example,
OE . ORDERS (for example, the oe user):

$ sqlplus oe

2. Select data from the foreign key column you want to encrypt (for example,
customer_id), just to verify the user can view it.

S0L= select distinct(customer_id) from oe.orders
2 order by order total desc
3 fetch first & rows only;

CUSTOMER_ID

104

8 rows selected.

Figure 20 — A simple test query

[234]

Transparent Data Encryption

3. Connect to the database as a user who has administer key privilege or SYSKM
privilege (for example, maja):

SQL> connect maja

4. Encrypt the customer_id column in the oe.orders table using the default
encryption algorithm (AES192).

SQL> ALTER TABLE OE.ORDERS MODIFY (CUSTOMER ID ENCRYPT);
ALTER TABLE OE.ORDERS MODIFY (CUSTOMER ID ENCRYPT)

ERROR at line 1:
ORA-28335: referenced or referencing FK constraint column cannot be encrypted

Figure 21 — A TDE column encryption restriction

Auto-login keystore

Autologin keystore is a type of keystore that doesn't need to be manually opened. The local
autologin keystore can be opened only from computer where it has been created. Autologin
keystores have system-generated passwords. They are less secure than password-based
keystores. They are created from password-based software keystores.

Getting ready

It is assumed that password-based software keystore is created.

How to do it...

1. Connect to the database as a user who has administer key privilege or SYSKM
privilege (for example, maja):

$ sqglplus maja

[235]

Transparent Data Encryption

2. Create (local) an autologin keystore. In our case, keystore_location is
/u0l/app/oracle/admin/oral2cRl/wallet and keystore_passwordis

welcomel:

SQL> ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM
KEYSTORE “keystore_location® IDENTIFIED BY keystore_ password;

OR
SQL> ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM
KEYSTORE "keystore_location®™ IDENTIFIED BY keystore_ password;

How it works...

After you executed statement in step 2, in directory that holds password-based keystore, the
cwallet.sso file was created. That file represents autologin keystore.

Encrypting tablespace

It is not possible to encrypt an existing tablespace using TDE tablespace encryption. In this
recipe, you'll create a new encrypted tablespace.

Getting ready

It is assumed that a keystore is opened and a master key is created.

How to do it...

1. Connect to the database as a user who has a create tablespace privilege (for
example, zoran):

$ sqglplus zoran

[236]

Transparent Data Encryption

2. Create encrypted tablespace (for example, TEST_ENC) using AES192 encryption
algorithm:

SQL> CREATE TABLESPACE TEST_ENC

DATAFILE "/uOl1/app/oracle/oradata/ORA12CR1/datafile/testencOl.dbf*
SIZE 20M

ENCRYPTION USING "AES192*

DEFAULT STORAGE (ENCRYPT);

SQL> CREATE TABLESPACE TEST_ENC
2 DATAFILE '/uBl/app/oracle/oradata/ORA12CR1/datafile/testencOl.dbf' SIZE 268M
3 ENCRYPTION USING 'AES192'
4 DEFAULT STORAGE (ENCRYPT);

Tablespace created.

Figure 22 — Encrypting tablespace

How it works...

In step 2, you create an encrypted tablespace TEST_ENC. To find information about
encrypted tablespaces, you can query the VSENCRYPTED_TABLESPACES view.

SQL> connect / as sysdba

Connected.

SQL> desc v$encrypted tablespaces
Name Null? Type
TS# NUMBER
ENCRYPTIONALG VARCHAR2(7)
ENCRYPTEDTS VARCHARZ2(3)
ENCRYTPEDKEY RAW(32)
MASTERKEYID RAW(16)
BLOCKS_ENCRYPTED NUMBER
BLOCKS_DECRYPTED NUMBER
CON_ID NUMBER

SQL> select encryptedts, encryptionalg from véencrypted tablespaces;

ENC ENCRYPT

[YES AES192

Figure 23 — Finding information about encrypted tablespace

[237]

Transparent Data Encryption

There's more...

You can import existing tables into encrypted tablespace using Oracle Data Pump. Another
option is to use SQL statements, for example, CTAS (short for CREATE TABLE AS).

Rekeying

You can change (rekey) a master key and table keys. You cannot rekey tablespace keys.

Getting ready

It is assumed that a keystore is opened and a master key is created.

How to do it...

1. Connect to the database as a user who has administer key privilege or SYSKM
privilege (for example, maja):

$ sqlplus maja

2. To rekey a table (for example, the oe . customer) using a different encryption
algorithm (for example, AES128), execute the following statement:

SQL= ALTER TABLE OE.CUSTOMERS REKEY USING 'AES128';

Table altered.

Figure 24 — Rekeying a table key

[238]

Transparent Data Encryption

3. Change a master key by executing the following statement (in our example,
keystore_passwordis welcomel):

SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY

keystore_password
WITH BACKUP;

SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY welcomel
2 WITH BACKUP;

keystore altered.

Figure 25 — Rekeying a master key

How it works...

When you changed a table key, in step 2, all encrypted data in the oe.customers table were
decrypted and then encrypted using the new table key and the new encryption algorithm. If
you just want to change key and use the same algorithm as before, syntax for rekeying is:

ALTER TABLE table_name REKEY;

In step 3, you created a backup of the keystore and created a new master key in the
keystore. Old master keys are held in the keystore.

It is extremely important to have backup of the keystore.

[239]

Transparent Data Encryption

Backup and Recovery

RMAN supports three encryption modes:

¢ Transparent mode
e Password mode
e Dual mode

In this recipe, you're going to learn to create encrypted backups using RMAN.

How to do it...

1. Connect to the RMAN as user who has the sysbackup privilege:
$ rman target ""zoran@orcl as sysbackup™®
2. Configure encryption on a database level:
RMAN> CONFIGURE ENCRYPTION FOR DATABASE ON;
3. Backup a tablespace example in transparent mode:
RMAN> BACKUP TABLESPACE EXAMPLE tag "tran_mode~;
4. Enable dual mode encryption and backup tablespace example in dual mode:

RMAN> SET ENCRYPTION ON IDENTIFIED BY '‘password_1";
RMAN> BACKUP TABLESPACE EXAMPLE tag “dual_mode®;

5. Enable password mode and backup tablespace example in password mode:

RMAN> SET ENCRYPTION ON IDENTIFIED BY *password_2" ONLY;
RMAN> BACKUP TABLESPACE EXAMPLE tag "pass_mode-;

[240]

Transparent Data Encryption

There's more...

If a backup is created in transparent mode, it can be restored only by using a key that is
used to create the backup (stored in the external keystore).

If the backup is created in password mode, it can be restored only by using a password that
is provided during the backup.

If the backup is created in dual mode, it can be restored by either key that is stored in the
external keystore or the password that is provided during the backup.

[241]

Database Vault

In this chapter, we will cover the following tasks:

¢ Registering Database Vault

e Preventing users from exercising system privileges on schema objects

e Securing roles

¢ Preventing users from executing a specific command on a specific object
¢ Creating a rule set

¢ Creating a secure application role

¢ Using Database Vault to implement that administrators cannot view data
e Running Oracle Database Vault reports

¢ Disabling Database Vault

¢ Re-enabling Database Vault

Introduction

Introduction of Oracle Database Vault in 2005 brought a major change in the way security is
enforced. Today, 10 years after it was introduced, it remains the most significant tool to
control data access and enforce separation of duties in Oracle Database.

From licensing viewpoint, it is only available as an option for Oracle Database Enterprise
Edition.

Database Vault

You need to understand how, when, why, and which component of Database Vault you
should implement in order to successfully protect your database. In this chapter, you are
going to learn to create and appropriately use realms, rules, rule sets, command rules,
factors, and secure application roles. Basic concepts are covered in this chapter, whereas
doing everyday administration tasks in Database Vault environment, more advanced
topics, and security in more complex environments are explained in Chapter 11,
Additional Topics.

For all recipes in this chapter, we assume that database is up and running, and each user
has at least a create session privilege. Also, you will use Oracle Enterprise Manager
Cloud Control 12c.

A sYs user, because he is the most powerful user, will be used to test that
security is correctly enforced (even for him).

Recipes are tested on Oracle Database 12.1.0.2 in multitenant environment.

Registering Database Vaulit

In Oracle Database 12¢ process of configuring and enabling Database Vault is different than
in Oracle Database 11g. In this recipe, you will learn to register Oracle Database Vault in
multitenant environment in two situations:

e When Oracle Database 12c is already installed
¢ During the installation of Oracle Database 12¢c

Getting ready

To complete this recipe, you'll need an existing common user who has a privilege to create
users and grant create sessionand set container privileges (for example, c##maja).

[243]

Database Vault

How to do it...

To register Database Vault with Oracle Database 12c when the database is already installed,
perform the following steps:

1. Connect to the root container as a user who has privileges to create users and
grant create sessionand set container privileges (for example, c##maja):

$ sqlplus c##maja

2. Create two users (for example, c##dbv_owner and c##dbv_acctmgr) and grant
them create sessionand set container privileges:

SQL> create user c##dbv_owner identified by orabv0123 CONTAINER =

ALL;
SQL> grant create session, set container to c##dbv_owner CONTAINER =

ALL;
SQL> create user c##dbv_acctmgr identified by oraDVA123 CONTAINER =

ALL;
SQL> grant create session, set container to c##dbv_acctmgr CONTAINER

= ALL;

3. Connect to the root as a SYS user:
SQL> connect sys as sysdba

4. Configure the Database Vault users:
SQL> begin
DVSYS.CONFIGURE_DV (
dvowner_uname => "c##dbv_owner",
dvacctmgr_uname => "c##dbv_acctmgr®);
end;
/

5. Execute the ut1lrp.sql script:

SQL> @?/rdbms/admin/utlrp.sql

[244]

Database Vault

6. Connect to the root as the Database Vault Owner user that you just configured
(for example, the c##dbv_owner):

SQL> connect c##dbv_owner/orabVv0123
7. Enable Oracle Database Vault:

SQL> exec DBMS_MACADM.ENABLE_DV
8. Connect as a SYS user:

SQL> CONNECT / AS SYSDBA

9. Restart the database.

For each PDB, perform step 3 through step 8 and then close and reopen the pluggable
database (for example, PDB1).

SQL> alter pluggable database pdbl close immediate;

SQL> alter pluggable database pdbl open;

How it works...

After you register Oracle Database Vault with Oracle Database 12¢, there are number of
changes in the Oracle Database. Some database parameters change values, separation of
duties is enabled by revoking privileges from some roles and by creating new users.

There's more...

You use Database Configuration Assistant (DBCA) when you configure Database Vault
during the database installation. When you get to step 9 (Database Options), click on tab
Database Vault & Label Security. Select both available checkboxes and fill out text fields to
create users: Database Vault Owner and Account Manager (see Figure 1). You should
complete the rest of the installation in the same way you usually do.

[245]

Database Vault

&

Database Options

Database Configuration Assistant - Create Database - Step 9 of 15

ORACLE

DATABASE

- 0 x

12°

[(Sample Schemas | Database Vault & Label Security
Specify the Database Vault Guner and Password

Configure Database Vault

Database Vault Owner: [c##dby_owner

Create a Separate Account Manager

| Storage Locations Account Manager: |c##dby_acctmar

¥

i

| -
v Initialization Parameters

Select Label Security configuration options

<Back || Next>

Cancel

See also

Figure 1 — Using DBCA to register Oracle Database Vault

e Disabling Database Vault
o Re-enabling Database Vault

Preventing users from exercising system

privileges on schema objects

In this recipe, to prevent users to exercise system privileges (such as select any table),
you are going to first create a realm and then you are going to change it to a mandatory
realm. The mandatory realm further restricts access to protected objects. Schema owners
and users with object privileges cannot access mandatory realm-secured objects if they are
not authorized in realm.

[246]

Database Vault

Getting ready

To complete this recipe, you'll need an existing common user who has a DBA role in the
pluggable database PDB1 (for example, c##zoran).

How to do it...

1.

Connect to a pluggable database (for example, pdb1) as a Database Vault account
manager (for example, c##dbv_acctmgr):

SQL> connect c##dbv_acctmgr@pdbl
Create a new local user in the pluggable database (for example, usr1):
SQL> create user usrl identified by oracle;

Connect to the pluggable database as a common user who has a DBA role in
pdbl (for example, c##zoran):

SQL> connect c##zoran@pdbl

Grant the select privilege on the table HR.EMPLOYEES and the create
session privilege to the user usri:

SQL> grant select on hr._employees to usril;
SQL> grant create session to usril;

Connect to the Enterprise Manager Cloud Control 12c (EM) as a privileged user
(sYSMAN or some other privileged user, for example, zoran). From Security drop-
down menu, choose Database Vault (see Figure 2).

[247]

Database Vault

@ Oracle Database ¥ Performance ™ Availability * | Security * | Schema * Administration =

Home
Reports
Summary = Users
Status Roles
Up Time 0 days, 22 hrs Profiles
Version 12,1.0.2.0 " .
Audit Settings

Available Space 0.07 GB
Enterprise Data Governance

Diagnostics
Incidents ° 0 @ 0 i o r 0 Application Data Models
Configuration Compliance
Data Masking
Data Redaction
Transparent Data Encryption 9,6
Database Vault
Frivilege Analysis "
~ Label Security]
Compliance Summary =
I Virtual Private Database
- View Trends
Compliance Standard Average 5c Appiication Contexts
Mo data to display Enterprise User Security

Figure 2 — Selecting Database Vault

6. Log in to the pluggable database PDB1 as a user who is the Database Vault Owner
(see Figure 3).

Database Login
*Database PDEL Q,

*Username c#dbv_owner
*Password eeeese
Role Mormal |w
Save As CDB1_DBV_OWNER

[iset As Preferred Credentials

Login Cancel

[248]

Database Vault

7. On the next page, click on the Administration tab (see Figure 4).

Logged in as C:##DEV_OWNER)
Oracle Database Vault

Home | Administration

Page Refreshed Jun 13, 2015 9:43:48 PM CEST Refresh

General Attempted Violations
E Status Enabled Disable Time Series | View Datal Last 24 hours | w
5] reams @7 Qg Top 5 Attempted Violations Top 5 Attempted Violators

Command Rules @g Qg Type | Realms v Type | Users v

Attempted Violations 4 (Last 24 Hours)

Database Vault Policy Changes 0 (Last 24 Hours)
Loggedin as C##DBY_OWNER. Change Password
Database Vault Policy Propagation
Database Vault Policy Propagation
(Use this festure 1 securshy propagate Datsbase Vauk Policies w mukiple databases)
Database Vault Reports
Configuration Issues Reports

Enforcement Audit Reports
Configuration Changes Audit Reparts

W HR_Realm(3) W svs(3)
™ Oracle System Privilege and Role Management W c#70RAN(T)
Realm(1)
Alerts
Severity Category ‘ Name Message | Alert Triggered

(Mg slerts)

Figure 4 — Switching to the Administration tab

8. Create HR_Realm, as shown in the following figures (Figure 5 — 8). First, click on
the Create button.

Oracle Database Vault

Home Page Administration

Database Vault Components Realms
Realms Oracle Database Vault realms provide the ability to create protection zones around database objects that pi
Command Rules
Rules Search
Rule Sets
Realm Mame Go
Factors

The search returns all matches beginning with the string you enter. You can use the wildcard symbol (3) in
Factor Types —
View - Create | &0 View 7 Edt 3¢ Delete []Show Orade defined realms
Realm Name Audit Options
no data found

Secure Application Roles
OLS Integration
Database Vault Roles

[249]

Database Vault

9. Name the realm (for example, HR_Realm) and leave default values for other parts
of the form.

L r

General Realm Secured Objects Realm Authorizations Review

Create Realm: General

Back Step1of4 | Next

Define a Realm to control access to protected objects. If vou mark a realm as mandatory, objects are protected from object owners accessing the data and other users exerdising system or object privileges,

* Name HR_RaaIm\

Description

Mandatory Realm []
Status (®) Enabled
() Disabled
Audit Options () Audit Disabled
() Audit on Success
(®) audit on Failure
() Audit on Success or Failure

10. Securing all tables in HR schema.

Add Secured Object

*Owner HR

* Object Type | TABLE

* Object Name %

Figure 7 — Adding secured objects

[250]

Database Vault

11. Add realm participant (for example, C##ZORAN).

Add Authorization

* Realm Authorization Grantee C##ZORAN

* Realm Authorization Type Particpant E

Realm Authorization Rule Set

Figure 8 — Adding authorized user(s)

12. After you make sure that you chose the options you wanted, click on the Finish
button.

G—e—a—=a
General Realm Secured Objects Realm Autherizations Review

Create Realm: Review

Steu4uf4 Next
Review

General
Name HR_Realm
Description
Mandatory Realm No
Status Enabled
Audit Options Audit on Failure
Realm Secured Objects
View ™
Owner Object Name Cbiect Type
R % TABLE
Realm Authorizations
View ¥
Realm Authorization Grantee Realm Authorization Rule Set Realm Autherization Type
C##20RAN Participant
Show sQL
4 Hide

[begin DVSYS DEMS_MACADM.CREATE_REALM(reaim_name =3 HR_Realm', description =3, enabled => 'f', audit_options =>'I', realm_type =>10);

DVSY5.DBMS_MACADM,ADD_OBJECT_TO_REALM(realm_name =>HR_Realm, obiect_owner =>DBMS_ASSERT.ENQUOTE_NAME(HR',FALSE), cbject name => ‘%', object_type => TABLE');
DVSYS.DBMS_MACADM. ADD_AUTH_TO_REALM(realm_name = ‘HR_Realm', grantee =3 DBMS_ASSERT ENQUOTE_NAME(C3##ZORAN,FALSE), rule_set_name =>", auth_options =>'0'); end;]

Figure 9 — Reviewing and clicking on the Finish button

[251]

Database Vault

13. Verify that the usr1 and hr users can view data in the HR. EMPLOYEES table:
SQL> connect usrl@pdbl
SQL> select count(*) from hr.employees;
COUNT(*)
SQL> connect hr@pdbl
SQL> select count(*) from hr.employees;
COUNT(*)

14. To provide better security, edit the realm HR_Realm and select the checkbox
Mandatory Realm (see Figure 10 — Figure 12).

Oracle Database Vault
Home Page Administration
Database Vault Components Realms

Realms Orade Database Vault realms provide the ability to create protection zones around database objects that prevent users from exerdising system
Command Rules privileges to access data. Additionally, mandatory realms also prevent users from exercising object privileges to access data and object owners from
accessing data in their own schemas.

Rules

Rule Sets Search

Factors

Factor Types Realm Name Go

Secure Application Roles The search returns all matches beginning with the string you enter. You can use the wildcard symbol (%6) in the search string.

OLS Integration View - Create &3 View |7 Edit| 3@ Delete []Show Orade defined realms
Database Vault Roles Realm MName Audit Options Enabled Mandatory Realm
N HR_Realm; Audit on Failure v
<

Rows Selected 1

Figure 10 — Editing HR_Realm

[252]

Database Vault

General Realm Secured Objects

Back Step 1of4 | Next Cancel

Edit Realm : HR_Realm: General

Define a Realm to control access to protected objects.If you mark a realm as mandatory, objects are protected from object owners accessing the data and other users exercising system or object privileges.

*Mame HR_Realm

Description

Mandatory Realm

Enabled

Disabled

Audit Disabled

Audit on Success

Audit on Failure

Audit on Success or Failure

Status

Audit Options

Figure 11 — Mandatory Realm checkbox

15. Clicking on the Finish button.

General

Back |Step4of4 Mext Cancel

Edit Realm : HR_Realm: Review

Review
General
Hame HR_Realm
Description
Mandatory Realm Yes
Status Enabled
Audit Options Audit on Failure

Realm Secured Objects

View ¥
Qwner Object Name Object Type
HR % TABLE
Realm Authorizations
View ¥
Realm Authorization Grantee Realm Authorization Rule Set Realm Authorization Type
C##Z0RAN Participant
Show SQL

Hide
[begin DVSYS.DBMS_MACADM, UPDATE_REALM(realm_name =>'HR_Realm', description == "', enabled == "', audit_options == '1', realm_type =>'1'); end;]

Figure 12 — Leaving other settings as they were and clicking on the Finish button

[253]

Database Vault

There's more...

The difference between participant and owner of the realm is that a realm
participant can only exercise system privileges on realm-secured objects,
whereas an owner besides that can grant object privileges on realm-
secured objects to other users and roles.

Verify that the SYS user can't create a user, after Database Vault is registered:
SQL> connect sys@pdbl as sysdba

Enter password:
Connected.

SQL> create user usrl identified by oracle;
create user usrl identified by oracle
*

ERROR at line 1:
ORA-01031: insufficient privileges

Verify that after you created realm HR_Realm, the SYS user can't access data in the table
HR.EMPLOYEES.

SQL> connect sys@pdbl as sysdba

Enter password:
Connected.

SQL> select count(*) from hr.employees;
select count(*) from hr.employees
*

ERROR at line 1:
ORA-01031: insufficient privileges

This is the expected behavior because realm protects secured objects from
users who try to use their system privileges. In our example, sYS tried to
use SELECT ANY TABLE, and because he doesn't have direct object
privilege (SELECT on HR.EMPLOYEES), he is restricted from selecting data
in the table HR . EMPLOYEES.

SQL> conn c##zoran@pdbl

Enter password:
Connected.

[254]

Database Vault

SQL> select count(*) from hr._employees;
COUNT (™)

After mandatory realm is created, the user usr1 can't access data in the table
HR.EMPLOYEES because he/she is not authorized in the realm.

SQL> connect usrl@pdbl

Enter password:
Connected.

usrl@CbB1l> select count(*) from hr.employees;
select count(*) from hr._.employees
*

ERROR at line 1:
ORA-01031: insufficient privileges

The same principle applies even to the schema owner (HR).
SQL> connect hr@pdbl

Enter password:
Connected.

SQL> select count(*) from hr._employees;
select count(*) from hr._employees
*

ERROR at line 1:
ORA-01031: insufficient privileges

[255]

Database Vault

See also

o Securing roles

Securing roles

In the recipe Preventing users from exercising system privileges on schema objects, you secured
the table HR . EMPLOYEES by creating the HR_Realm realm, and afterwards, you edit it and

made it mandatory. In this recipe, you'll learn to protect roles using a realm and a
mandatory realm.

Getting ready

To complete this recipe, you'll need to use a SYS user.

How to do it...

1. Connect to the pluggable database PDB1 as a SYS user:
SQL> connect sys@pdbl as sysdba
2. Create the role rolel:
SQL> create role rolel;
3. Grant the create sessionand select any table privileges to the role:

SQL> grant create session, select any table to rolel;

[256]

Database Vault

4. Create realm ROLE1_Realmin Enterprise Manager Cloud Control 12c (see Figure
13).

General Realm Secured Objects Realm Authorizations Revie

Back Step 10f 4 Done Cancel

Create Realm: General

Define a Realm to contral access to protected objects.If you mark a realm as mandatory, objects are protected from object owners accessing the data and other users exerdsing system or object privileges.

*MName ROLE1 Realm

Desaription

Mandatory Realm []
Status (

Enabled

Disabled

Audit Disabled

Audit on Success

Audit on Failure

) Audit on Success or Failure

Audit Options (

Figure 13 — Creating ROLE1_Realm

5. Add realm-secured objects (see Figure 14).

m
1}

General Realm Secured Objects Realm Authorizations Fevie

Create Realm: Realm Secured Objects Back | Step 20f4- Dore | | Cancel

Spedify schema objects or database roles that should be protected by the realm. When spedifying & role, please enter %&in the Owner field.

View ¥ S Edit 3¢ Remove
Owner Object Name Object Type
SY5 ROLEL ROLE

Figure 14 — Adding secured objects

[257]

Database Vault

6. Add realm authorizations and click on the Next button (see Figure 15).

[1
L

General Realm Secured Objects Realm Authorizations Review

Create Realm: Realm Authorizations Back Shep30f4- Done | | Cancel

Select a database account or database role as either & realm owner or realm participant, Realm owners and realm participants can use their system and object privileges to access realm secured objects, Only

authorized realm owners can grant or revoke realm-protected database roles,

View ¥ A Edt 3 Remove
Realm Autharization Grantee Realm Authorization Rule Set Realm Authorization Type
C#2I0RAN Owner

Figure 15 — Realm authorizations

7. Review and click on the Finish button (see Figure 16).

m
=

General Realm Secured Objects Realm Authorizations Review

Back |Step4of4 Mext Cancel

Create Realm: Review
Review
General

Mame ROLE1 Realm
Description

Mandatory Realm No
Status Enabled

Audit Options Audit on Failure

Realm Secured Objects

View ¥
Owner Object Name Object Type
5YS ROLE1 ROLE
Realm Authorizations
iew ™
Realm Authorization Grantee Realm Authorization Rule Set Realm Authorization Type
C##ZORAN Qwner
Show SQL
Hide

[begin DVSYS.DBMS_MACADM.CREATE_REALM(realm_name =>'ROLE1 Realm', description =="", enabled == "Y', audit_options =>'1', realm_type =>");
DVSYS.DBMS_MACADM.ADD_OBJECT_TO_REALM({realm_name => 'ROLE1_Realm', object_owner =3 DBMS_ASSERT.ENQUOTE_MAME(SYS',FALSE), object_name == 'ROLEY', object_type => ROLE'
J; DYSYS,DEMS_MACADM,ADD_ALTH_TC_REALM(realm_name => ROLE1_Realm', grantee = DBMS_ASSERT ENQUOTE_NAME(C ##ZORAN',FALSE), rule_set_name =", auth_options =>'1'};

end;]

Figure 16

[258]

Database Vault

8. Connect to the pluggable database PDB1 as a SYS user:

SQL> connect sys@pdbl as sysdba

9. Verify that sys still can revoke/grant privileges from/to role role1, even though

rolel is protected by the realm:

SQL> revoke select any table from rolel;

SQL> grant drop any synonym to rolel;

10. Edit the realm ROLE1_Realm and make it mandatory (select the Mandatory

Realm checkbox).

—

General Reslm Secured Objects

Edit Realm : ROLE1_Realm: General

*MName ROLE1 Realm

Description

Mandatory Realm

Mandatory Realm [}

udit on Success

udit on Failure
() Audit on Success or Failure

Back Step 1of 4| MNext Cancel

Define a Realm to control access to protected objects. If you mark a realm as mandatory, objects are protected from object owners accessing the data and other users exerdising system or object privileges.

Figure 17 — Editing realm

[259]

Database Vault

11. Review and confirm the change of ROLE1_Realm.

—a

General Review

Edit Realm : ROLE1_Realm: Review Back |Stzp4of4 Mext Cancel
Review
General

Name ROLE1_Realm
Description

Mandatory Realm Yes
Status Enabled

Audit Options Audit on Failure

Realm Secured Objects
View ¥

Owner Object Name Object Type
% ROLE1 ROLE

Realm Authorizations

View ¥

Realm Authorization Grantee Realm Authorization Rule Set
C##ZORAN

Realm Authorization Type
Qwner

Show SQL
Hide
[begin DVSYS.DBMS_MACADM.UPDATE_REALM(realm_name => ROLE1_Realm’, description => ', enabled => 'Y, audit_options => '1', realm_type =>'1"); end;]

Figure 18

There's more...

After we created a realm, the SYS user (or any user that is not authorized in realm) cannot
grant the realm-protected role:

SQL> connect sys@pdbl as sysdba

Enter password:
Connected.

SQL> grant rolel to usril;

grant rolel to usrl

*

ERROR at line 1:
ORA-47410: Realm violation for GRANT on ROLE1

[260]

Database Vault

However, user c##zoran is authorized in realm as owner, so he can grant this role:

SQL> connect c##zoran@pdbl

Enter password:
Connected.

SQL> grant rolel to usrl;
Grant succeeded.

In step 9, we've seen that the SYS user can grant or revoke privileges from role even though
the role is protected by realm. After we make the realm mandatory (steps 10 and 11), this is
no longer possible:

SQL> connect sys@pdbl as sysdba

Enter password:
Connected.

SQL> revoke drop any synonym from rolel;
revoke drop any synonym from rolel
*

ERROR at line 1:
ORA-47410: Realm violation for REVOKE on ROLE1

SQL> grant update any table to rolel;
grant update any table to rolel
*

ERROR at line 1:
ORA-47410: Realm violation for GRANT on ROLE1l

See also

e Preventing users from exercising system privileges on schema objects

[261]

Database Vault

Preventing users from executing specific
command on specific object

In this recipe, you'll learn to create command rules. A command rule defines a protected
database operation on a specific database object (for example, UPDATE on all tables in HR
schema). The evaluation of associated rule set determines if statement will be allowed

(executed) or blocked.

How to do it...

Create a command rule by following these steps depicted in Figures 19 and 20.

Oracle Database Vault
Home Page Administration
Database Vault Components

Realms

Rules

Rule Sets

Factors

Factor Types

Secure Application Roles
OLS Integration

Database Vault Roles

Command Rules

Command Rules control the ability to process Data Definition Language (DDL), Data Manipulation Language (DML), SELECT statements and special
database operations. Command Rules determine whether or not to allow the statement to succeed based on the evaluation of a Database Vault rule set.

Search

Rule Set Name
Go
Command

The search returns all matches beginning with the string you enter. You can use the wildcard symbol (%) in the search string.

View ¥ Create | 6o view # Edit Delete] Show Oradle defined Command Rules

Command Object Owner Object Name Rule Set Name Enabled Last Updated Date

Y o data fourd

Figure 19 — Creating a command rule

[262]

Database Vault

In the Command field, write UPDATE; in the Applicable Object Owner field, write OE; in
the Applicable Object Name field, write ORDERS; and select Disabled for Rule Set (see
Figure 20).

Create Command Rule Show 5QL Cancel I

This page allows you to create or edit a command rule that can be assodated with an existing Database Vault rule set.

*Command | UPDATE Q,
Status (@) Enabled
() Disabled
* Applicable Object Owner Qg
* Applicable Object Mame ORDERS

*Rule Set pisabled

Figure 20 — A Command rule to secure the UPDATE operation on OE.Orders

How it works...

Command rules can be understood this way: In order to execute command
X on object Y in schema Z, rule set with name A needs to evaluate TRUE.

In our case, it can be understood this way: In order to execute UPDATE on the table ORDERS
in schema OE, rule set Disabled needs to evaluate TRUE. However, because rule set
DISABLED will evaluate FALSE always, consequently, this command is disabled for all
users in the database:

SQL> connect sys@pdbl as sysdba

Enter password:
Connected.

SQL> UPDATE OE.ORDERS SET ORDER_MODE = "TEST" WHERE ORDER_ID < 3000;

UPDATE OE.ORDERS SET ORDER_MODE = *TEST" WHERE ORDER_ID < 3000
*

ERROR at line 1:

ORA-01031: insufficient privileges

[263]

Database Vault

Creating a rule set

A rule set is a group of rules, which will be evaluated as a whole, using only AND or only OrR
operator. The Boolean result of logical evaluation is used in other Oracle Database Vault
components to grant or deny certain actions (for example, deleting data from a table). In
this recipe, you'll learn to create rules and rule sets.

Getting ready

In this recipe, you are going to use Enterprise Manager Cloud Control 12c.

How to do it...

1. Go to Rule Sets component and then click on Create (Figure 21).

Orade Database Vault
Home Page Administration
Database Vault Components Rule Sets
Realms A Rule Setis a collection of one or more rules that you can assodate with a Realm Authorization, Command Rule, Factor Assignment, or Secure Application

Command Rules Role, The Rule Set evaluates to true or false based on the evaluation of each rule it contains and the evaluation type (All True or Any True). A Rule Set
can be static so thatitis evaluated only once during a user session.

Rules

Rule Sets Search

Factors Rule Set Name Go

Factor Types The search returns all matches beginning with the string you enter, You can use the wildcard symbol {36) in the search string.

Secure Application Roles
OLS Integration View ¥ Create | &3 View #Edit 3¢ Delete []Show Oracle defined Rule Sets

Database Vault Roles Rule Set Name Static Rule Set Error Handling Audit Options Evaluation Options Enabled Last Updated Date
no data found
i ¢ >

Figure 21

[264]

Database Vault

2. As aname, enter Working Hours and click on Next (Figure 22). For Evaluation
Options, choose All True.

—

General Assodate with Rules

Create Rule Set: General Back Step 1uf4 Dane Cancel

Enter the general information required to create a Rule Set.

* Rule SetName Working Hours

Description

Static Rule Set []
Status (@) Enabled
(_J Disabled
Evaluation Options (@) All True
(_) Any True

Figure 22 — Our rule set “Working Hours”

3. Add tworules (Is Working Day and Is Working Hour) by clicking on Create
Rule before adding each of them. Enter the details in Rule Name and Rule
Expression as shown in Figure 23. After you added both rules, click on Next.

o
=

General Associate with Rules Error Handling and Audit Options

Create Rule Set: Associate with Rules Back |Step 20f4| Next || Done Cancel

Add existing rules to the Rule Set or create new rules for the Rule Set.

View ¥ b Add Existing Rule G Edit 3§ Remove

Rule Name Rule Expression
Iz Working Day to_char (sysdate,'d’) between '2 and ‘6’
Is Working Hour to_char (sysdate, hh24) between '09' and '17'

Figure 23 — Create two rules

[265]

Database Vault

4. Leave all options on defaults and click on Next.

General Associate with Rules Error Handling and Audit Options Review

Back

Create Rule Set: Error Handling and Audit Options

Add existing rules to the Rule Set or create new rules for the Rule Set.

Show Error Message
Do Not Shaw Error Message

Errar Handing

Fai Code

Fail Message
Handler Disabled

Execute on Faiure

Execute on Success

Execute on Success or Failre

Custom Event Handler Options

Custom Event Handler Logic

) Audit Disabled
Audit on Success

Audit on Failure

Audit on Success or Falure

Audit Options (

Done Cancel

Figure 24 — Error handling and audit options

5. Click on Finish.

General Assodate with Rules Error Handling and Audit Options Review

Back |Step4of4 Next

Create Rule Set: Review

Review
This review screen shows the data and options that are selected, If everything is correct, dick “Finish™ to create the Rule Set. Use the “Back” button if you want to change any data or option.
General
n ;
Rule Set Name Working Static Rule Set No Evaluation Options All True
Hours Status ¥
Description
Rules Associated
View ¥
Mame Expression

to_char (sysdate,'d) between 2 and '8

Is Working Day
to_char (sysdate,hh24) between '09' and '17

Is Working Hour

Error Handling and Audit Options
Custom Event Handler Logic

Fail Message
Audit Options Audit on Failure

Custom Event Handler Handler Disabled
Options

Error Handing Show Error Message
Fail Code

Show SQL
Hide
[begin DECLARE x VARCHAR 2(40);static_option BOOLEAN : = FALSE; BEGIN x:

Working Hours!, description
static_option); END; DVSYS.DBMS_MACADM.ADD_RULE_TO_RULE_SET(rule_set_name =

. L ic
=1, enabled =>"'); DVSYS.| DBMS MACADM ADD_RULE_TO_RULE_SET(rule_set_name => 'Working Houre', rule_name =3 'Ts Working Hour', rule_order =

JIFx =" THEN static_option : = TRUE; ELSE static_option := FALSE; END IF;
*, enabled => "Y', eval_options => 1, audit_options => 1, fail_options => 1, fail_message

Day', rule_order
end;]

"Working Hours', rule_name => s Wurkmg
>'1', enabled => v);

Cancel

Figure 25 — Finish

[2661

Database Vault

There's more...

To use rule set you have created in this recipe, create command rule for UPDATE operation
on schema SCOTT, table EMP, and choose that condition for evaluation whether update
operation will be executed is defined by rule set Working Hours.

Create Command Rule Show SQL Cancel | K

This page allows you to create or edit a command rule that can be assodated with an existing Database Vault rule set.

* Command UPDATE Q
Status (@) Enabled
(C) Disabled

* Applicable Object Owner scoTT
* Applicable Cbject Mame EMP

*Rule Set working Hours Q

Figure 26 — Create command rule using your rule set

Check time and day (your result will be different). In this case, it's NOT a work day, so rule
set will evaluate to false.

SQL> !ldate
Sun Jun 14 02:12:02 CEST 2015

Try to increase salary by 300 for the employee whose empno is 7902.

SQL> UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE EMPNO = 7902;

UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE EMPNO = 7902

*

ERROR at line 1:
ORA-01031: insufficient privileges

[267]

Database Vault

Check time and day (your result will be different). In this case, it is a work day and it is
during working hours, so rule set will evaluate to t rue.

SQL> !date
Mon Jun 15 14:27:24 CEST 2015

SQL> UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE EMPNO = 7902;

1 row updated.

Creating a secure application role

A secure application role is a database role whose enablement depends on the evaluation of
a specified condition. In this recipe, you'll learn to create secure application role using
Oracle Database Vault. The condition that determines whether the role will be enabled is
specified by rule set (you can use built-in rule set or create your own).

How to do it...

1. Create rule set with name Can Access Customer Data and with rule
DVF .F$MACHINE = <your host name> (for example, name it: Is Local
Machine). In our case, hostname is host01.challengezoran.com (see Figure
27). Refer to the recipe Creating rule sets for full explanation.

General Associate with Rules Error Handling and Audit Options

Create Rule Set: Associate with Rules Back | Step 251’4 Done Cancel

Add existing rules to the Rule Set or create new rules for the Rule Set.

Edit $% Remove

View v o Add Existing Rule | §
Rule Expression

Rule Name
I Is Local Machine DVF.FSMACHIME = 'host01. challengezoran.com' I

Figure 27 — Is a Local Machine rule

[268]

Database Vault

2. In the Database Vault Components panel, click on the Secure Application Roles
link and then click on the Create button (see Figure 28).

Oracle Database Vault
Home Page Administration
Database Vault Components Secure Application Role

Realms

A secure application role is a database role that is enabled based on the evaluation of a Database Vault rule set.
Command Rules

Rules Search

Rule Sets Role Name Go

Factors The search returns all matches beginning with the string you enter. You can use the wildcard symbol (%) in the search string.
Factor Types

OLS Integration Role Name Rule Set Enabled Last Updated Date

Database Vauit Roles e

Figure 28 — Create a secure application role

3. Define secure application role settings. In our case, we secure the role cust_role
and condition for enablement is defined by the Can Access Customer
Data rule set (see Figure 29).

Create Secure Application Role Show 5QL Cancel
Define the Database Vault secure application role settings.

I‘Role Mame cust_role I
Status (@) Enabled

(") Disabled

| *Rule Set | Can Access Customer Data q |

Figure 29 — Define secure application role

[269]

Database Vault

There's more...

Now, you are going to test behavior of the secure application role.

Connect to pluggable database pdb1 as a user who has the Oracle Database Vault Account
Manager role and create the user usr2.

SQL> connect c##dbv_acctmgr/oraDVA123@pdbl
Connected.
SQL> create user usr2 identified by oraclel;

User created.

Connect to the pluggable database pdb1 as a SYS user and grant a create session
privilege to usr2 and select and update privileges to the role cust_role.

SQL> connect sys/oracle@pdbl as sysdba
Connected.

SQL> grant create session to usr2.

Grant succeeded.

SQL> grant select on oe.customers to cust_role;
Grant succeeded.

SQL> grant update on oe.customers to cust_role;
Grant succeeded.

Connect to pluggable database pdb1 as usr2 and view information about machine you are
accessing the database from. In this example, we are using a built-in factor to get that
information. If you want to learn more about factors in Oracle Database Vault, see Chapter
11, Additional Topics.

SQL> connect usr2/oraclel@pdbl
SQL> select dvf.f$machine from dual;
FSMACHINE

host01.challengezoran.com

[270]

Database Vault

Set cust_role by using the PL/SQL package DBMS_MACSEC_ROLES:

SQL> EXEC DBMS_MACSEC_ROLES.SET_ROLE("CUST_ROLE®);

PL/SQL procedure successfully completed.

View number of rows in the table OE . CUSTOMERS:

SQL> select count(*) from oe.customers;

COUNT(*)

When the same user tries to connect from another machine, he or she won't be able to set
the role, which in turn means that he or she won't be able to view data in the table

OE .CUSTOMERS:

SQL> connect usr2/oraclel@pdbl

Connected.

SQL> select dvf.f$machine from dual;

F$MACHINE

host02.chal lengezoran.com

SQL> EXEC DBMS_MACSEC_ROLES.SET ROLE("CUST_ROLE");

BEGIN DBMS_MACSEC_ROLES.SET ROLE("CUST_ROLE"); END;

*

ERROR at line

1:

ORA-47305: Rule Set violation on SET ROLE (CUST_ROLE)

ORA-06512: at
ORA-06512: at
ORA-06512: at
ORA-06512: at
ORA-06512: at
ORA-06512: at

"DVSYS

line 1

SQL> select count(*)

select count(*) from

ERROR at line

1:

.DBMS_MACUTL", line 49
"DVSYS.
"DVSYS.
"DVSYS.
"DVSYS.

DBMS_MACUTL™, line 398
DBMS_MACSEC™, line 306
ROLE_IS_ENABLED", line 4
DBMS_MACSEC_ROLES'™, line 55

from oe.customers;

oe.customers

*

ORA-00942: table or view does not exist

[271]

Database Vault

See also

e Chapter 11, Additional topics

Using Database Vault to implement that
administrators cannot view data

In this recipe, you will use multiple components (realms, command rules, and rule sets) to
secure data in database from administrators.

How to do it...

1. Connect to the pluggable database PDB1 as the user c##dbv_acctmgr:

SQL> connect c##dbv_acctmgr@pdbl
SQL> create user orders_dba identified by oraclel;
SQL> create user orders_user identified by oracle2;

2. Connect to the pluggable database PDB1 as a SYS user and execute the following
statements:

SQL> connect sys@pdbl as sysdba

SQL> grant dba to orders_dba;

SQL> grant create session to orders_user;

SQL> grant select on oe.orders to orders_user;
SQL> grant update on oe.orders to orders_user;
SQL> create role ord_usr_role;

SQL> grant ord_usr_role to orders_user;

[272]

Database Vault

3. Create a realm that protects all objects in OE schema and authorize user
orders_dba as owner (for detailed explanation on creating realms, see recipe
Preventing users from exercising system privileges on schema objects) — Figure 30.

Create Realm: Review Back Step4of4 Mext | Finish || Cancel

Review
General
Name OF Reaim
Description
Mandatory Realm No
Status Enabled
Audit Options Auit on Faire

Realm Secured Objects

View
‘Owner Object Name Object Type.
o % o%

Realm Authorizations

view ¥
Reaim Authorization Grantee. Realm Authorization Rule Set Realm Authorization Type
ORDERS_DBA Owner

Figure 30 — Create realm OE_Realm

4. Create realm that protects the ORD_USR_ROLE role and authorize the user
c##zoran as owner (for detailed explanation on creating realms, see recipe
Preventing users from exercising system privileges on schema objects) — Figure
31.

General Realm Secured Objects Realm Authorizations Review
Create Realm: Review Back |Step 40f4 MNext | Finish || Cancel

Review
General

Name Orders_Role_Reaim
Des:rlntmn

Im No
Slalus Enamed
Auditon Faiure

Realm Secured Objects

View
Owner ObjectName Object Type
% ORD_USR_ROLE ROLE

Realm Authorizations

View ~.

Realm Authorization Grantee: Realm Authorization Rule Set. Realm Authorization Type
CEEZORAN Quner
‘Show SQL

[bEg\rv DVSYS.DBMS_MACADM.CREATE REALM(reaim_name => ‘Orders_Role_Reair, desmunnn >, enabled =>Y', cudit_options => "1, reaim_type =>10'); DVSYS.DBMS_MACADM. ADD_OBJECT_TO, REALM[rEaIm nome =>
s _Role_Realm', object_owner => DBMS_ASSERT.ENQUOTE_NAME(%'FALSE), object_name => 'ORD_USR_ROLE', object_type => ROLE'); DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM{realn_name => ‘Orders_Role_Reain,
Qrarmee Db _ASSERT ENQUOTE NAVE(G #20RAT, FALSE), e.set rame =" aum _optionss => "1); end;]

Figure 31 — Create realm Orders_Role_Realm

[273]

Database Vault

5. Create rule set (exp. role check) that has one rule with name Has ORD_USR_ROLE
and expression DBMS_MACUTL . USER_HAS_ROLE_VARCHAR ('ORD_USER_ROLE")

= 'Y' (for detailed explanation on how to create rule sets see the recipe Creating
a rule set) — Figure 32.

General Assodiate with Rules Error Handing and Audit Options ~ Rewview

Create Rule Set: Review Back |Step4of4 Mext | Finish | Cancel

Review

This review sareen shows the data and options that are selected. If everything is correct, dick Finish™ to create the Rule Set. Use the "Back” button if you want to change any data or option.
General

Rule SetName Role check Static Rule Set Mo Evaluation Options Al True
Description Status Y

Rules Associated

View ¥

Name Expression
Has ORD_USR_ROLE DBMS_MACUTL.USER_HAS_ROLE_VARCHAR(ORD_USR_ROLE) ="

Error Handling and Audit Options

Error Handing Show Error Message Fail Message Custom Event Handler Logic
Fail Code Custom Event Handler Hander Disabled Audit Gptions Audit on Failure
Options
Show SQL
Hide

[begin DECLARE x VARCHAR 2(40);static_option BOOLEAN := FALSE; BEGIN x:='N; IF x ="¥' THEN static_option := TRUE; ELSE static_option := FALSE; END IF; DVSYS.DBMS_MACADM. CREATE_RULE_SET(rule_set_name => Role check’,
description =3 ', enabled => *f", eval_options => 1, audit_options => 1, fai_options => 1, fail_message => ", fail_code =3 ", handler_options => 0, handler =3 ",s_static => static_option); END;
DVSYS.DEMS_MACADM. ADD_RULE_TO_RULE_SET(rule_set_name => Role check', rule_name => 'Has ORD_USR_ROLE, rule_order => ', enabled => '¥); end;]

Figure 32 — Create Rule Set Role check

6. Create a command rule for Select on all objects in OE schema, and as rule set,
select one that you created in previous step (exp role check) (for detailed
explanation on how to create command rules, see recipe Preventing users from
executing a specific command on a specific object) — Figure 33.

Create Command Rule

Show SQL Cancel oK
This page allows you to create or edit 3 command rule that can be associated with an existing Database Vaul rule set.

| * Command | SELECT Q |
Status (®) Enabled
() Disabled
| * Applicable Object Onner OF Q |

* Applcable Object Name %

*Rule Set Role check Q |

Figure 33 — Create a command rule

[274]

Database Vault

There's more...

We can show that the user orders_dba in fact can manage objects in OE schema (for
instance, he can create and drop a table test) — this is because he is authorized in realm that
protects oe schema:

SQL> connect orders_dba@pdbl

Enter password:
Connected.

SQL> create table oe.test(a int);
Table created.

SQL> drop table oe.test;

Table dropped.

However, the user orders_dba cannot view data that resides inside objects in OE schema —
select on objects in this schema is restricted to users that have the role ORD_USR_ROLE using
command rule:

SQL> select count(*) from oe.orders;
select count(*) from oe.orders
*

ERROR at line 1:
ORA-01031: insufficient privileges

The user orders_user has the role ORD_USER_ROLE and he or she can select data from
table in OE schema:

SQL> connect orders_user@pdbl

Enter password:
Connected.

SQL> select count(*) from oe.orders;

COUNT(*)

[275]

Database Vault

An example of adding a new user to the system and authorizing him to access the data:

Because separation of duties is implemented, there are several users that need to grant
certain privileges.

Only account manager can create users in database:
SQL> connect c##dbv_acctmgr@pdbl

Enter password:
Connected.

SQL> create user orders_user2 identified by oracle3;
User created.

The SYs user is one of the few users who are authorized to grant a create session
privilege (after Database Vault is implemented, users with the DBA role cannot grant the
create session privilege, unless they are authorized in Database Vault)

SQL> connect sys@pdbl as sysdba

Enter password:
Connected.

SQL> grant create session to orders_user2;
Grant succeeded.

Because c##zoran is the only authorized user in realm that protects the role
ORD_USR_ROLE; he is the only user that can grant that role:

SQL> connect c##zoran@pdbl

Enter password:
Connected.

SQL> grant ord_usr_role to orders_user2;

Grant succeeded.

[276]

Database Vault

Orders_dba is the only user that is authorized in realm that protects OE schema, so he is the
only user that can grant object privileges on objects in OE schema.

SQL> connect orders_dba@pdbl

Enter password:
Connected.

SQL> grant select on oe.orders to orders_user2;
Grant succeeded.
SQL> grant update on oe.orders to orders_user2;
Grant succeeded.

After a user is granted all necessary privileges, he or she is able to connect to the database
and select data from table in secured schema.

SQL> connect orders_user2@pdbl

Enter password:
Connected.

SQL> select count(*) from oe.orders;

COUNT(*)

Running Oracle Database Vault reports

In this recipe, you will intentionally violate some security controls in order to have data for
reports.

[277]

Database Vault

How to do it...

Let's connect as user system and violate some restrictions. First, we are going to select from
hr schema, which is going to violate HR realm, and second, we are going to update sal in
the scott.emp table, which is going to violate the command rule (we are updating it
outside of working hours).

1. SQL> connect system@pdbl

2. SQL> select count(*) from hr.employees;

3. SQL> update scott.emp set sal = sal*1.20 where empno = 7839;

Let's see reports for these violations:

1. Go to Database Vault home page (See Figure 2).

2. Click on Enforcement Audit Reports (See Figure 34).

Logged in as C#2DBV_OWNER
Oracle Database Vault

Home | Adminstration

Page Refreched Jun 15, 2015 1:22:24 AM CEST Refresh

General Attempted Violations
@ Status Enabled Disable Time Series | - View Data| Last 24 hours [v.
& o Top 5 Attempted Violations Top 5 Attempted Violators
CommandRes @g9 O Type [Redms ° Type [Users [
s A o)

NER Change Password
Database Vault Policy Propagation

Database Vault Poiicy Propagation

(Use this feature to securely propagate Database Vaulk Polices o multipe databases)

Database Vault Reports

Wsvs()
ZORAN(2)

B Oracke System Priviege and Role Management Reaim(1) M OROERS _DBA(?)

MusR2(1)
C#570RAN(Y)

Severity Category Name Message | Alert Triggered
(o srts)

Figure 34

[278]

Database Vault

3. Click on Realm Audit Report (see Figure 35). Observe the line marked in red

(violation from step 2 is audited).

Orade Database Vault Reports
> Configuration Issues Reports

Realm Audit Report

ok | A
Enforcement Audit Reports
The Reaim Aucit Report shows auditrecords generated by the ream protection and realm authorization operations. You can Use this nformation to inves tgate attempts to break securty
Command Rule Audt Report
Search
Factor Audit Repart
Label Security Integration Audit Match @AIO Ay
Core Database Vault Audit Tral Tinestamp v)
Secure Application Role Audit Account v
User Host v
Reaim Name v
Rule Set v
Command v
Search || Reset
View~ | Bxportio Spreadshect | [l Detoch
Return Instance
Timestamp Account o™ Userost Nrence ResimName Rule set Command vilation
[201506-1501:31:51.0 SYSTEM 1031 hostD1chalengez.. 0 HR Ream SELECT COUNT(*) FROM HR EMPLOYEES Realm Violation Audt_|
1506150055010 ORDERS DBA #7901 hostiLdlengez. 0 GE Ream GRANT SELECT ON OF ORDERS T0 OR . Realm Vioaton ALGT
201506-1500:55:07.0 47810 host Lchallngez... 0 Orders Role_Reaim GRANT ORD_USR_ROLETO ORDERS_U... Realm Violation Aucdt
01506-14 17:26:54.0 810 hostoLehallengez... 0 Oradie System Priviege and Role Mana GRANT CREATESESSIONTOUSR2 Realm Violation Audt

Figure 35

4. Next, click on Command Rule Audit Report (see Figure 36). Observe the line
marked in red (violation from step 3 is audited).

Oracle Database Vault Reports

> Configuration Issues Reports

Command Rule Audit Report

[279]

ok
Enforcement Audit Reports
Resin AudtReport The Command Rule Aucit Report shows audit records generated by command rule processing operations VWhen you configure a command rule, you can set it to audt the rule set processing resuls,
Search
Factor AU Report
Label Security Integration Audit Match @AICQ Any
Core Database Vault Audit Tral Timestamp Y, L
‘Secure Application Rale Audit User Host v
Account v
Rule Set v
Command v
Search || Reset
View > | Exportto Spreadsheet | i Detach
Timestamp RN ser ost Account N2 Commang Rule Set Command Viiation
2015-06-15 01:35:35.0 1031 hostdi.chalengezors... SYSTEM [} UPDATE Warking Hours UPDATE SCOTT.EMP SET SAL = SAL™1, 20 WHERE ... Command Falure AL
Do TS 0058 0 057 Tos L. chalengezora . ORDERG DBA 0 SEECT 7ol ek SELECT COUNT (") FROM OF ORDERS. A
20150614 17:26:00.0 1031 hostd1.chalengezora... ZORAN 0 CREATE USER Can Maintain Accounts/Profles CREATE USER USR2 IDENTIFIED BY = Command Faiure Audit
0150614 15:15:04.0 1031 hostoLchalengezora... SYS 0 UPDATE Working Hours UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE... Command Faiure Audit
20150514 19:22:50.0 1031 hostdLchalengezor... SYS 0 UPDATE Working Hours UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE... Command Falure Audit
Figure 36

Database Vault

Disabling Database Vaulit

In this recipe, you will disable Database Vault in two ways: Using Enterprise Manager 12¢

Cloud Control and command line.

How to do it...

1. Go to Database Vault home page of your database or pluggable database and

click on Disable (see Figure 37):

Orade Database Vault

Home | Admnistaton

General Attempted Violations
Top 5 Attempted Violations Top 5 Attempted Violators
Tyoe [Reains v Type [Users v

Change Passnord

Database Vault Reports
Configuraton lssues Reports
Enforcement Audit Reports
Canfiguration Changes Audit Reports

M Orcers_Role_Resim(1)

HR_Reakn(1)
M 0E _Reakn(1) 2
I Oradle system Priviece and Rale Mznagement Reahi(1)
Musk2()
M others(1)
Rlerts
Severty Category Name: Message Alert Triggered

(o alerts)

Logged in as C208Y_OWNER

Page Refieshed Jun 15, 2015 1:45:52 AM CEST Refresh

v seres | ew af LAz o]

Figure 37

2. Click on continue in a small pop-up window (see Figure 38)

Disable Database Vault

Confirmation
Are you sure you want to disable Database Vault? Note:This operation requires database restart.

Cancel | Continue

Cancel |

Continue

Figure 38

[280]

Database Vault

Or

Connect to the database as Database Vault owner and disable it through
command line:

SQL> EXEC DBMS_MACADM.DISABLE_DV;
3. Connect to your database or pluggable database and restart it:

SQL> connect / as sysdba
SQL> alter pluggable database pdbl close immediate;
SQL> alter pluggable database pdbl open;

4. Confirm that Database Vault is disabled:

SQL> connect c##dbv_owner@pdbl

SQL> SELECT PARAMETER, VALUE FROM V$OPTION WHERE PARAMETER = "Oracle
Database Vault-;

PARAMETER VALUE

Oracle Database Vault FALSE

Re-enabling Database Vault

In this recipe, you will enable previously disabled Database Vault in two ways: Using
Enterprise Manager 12c Cloud Control and command line.

[281]

Database Vault

How to do it...

1. Go to Database Vault home page of your database or pluggable database and
click on Enable, then click on continue in a small pop-up window (see Figures 39,
40).

Loooed i as C# 208V _OWHER
Oradle Database Vault
Home | Admristration

Page Refieshed Jun 15, 2015 1:S1:10 AM CEST Refresh
Attempted Violations

Tme Seies | iew Data Last 2 hours | v
Top 5 Attemptad Vilations Top's Attempted Violators
Type [Reaims v Type [Uss v

= Reports

Configuratan Changes AudtReparts Worsca
STSTEM()

M OR0ERS DBACT)

. Prviege and Role Management Rearm(1) Wzorany

Wz
M Others(i)
Nerts
Sevestty | Cotegory Name Message | At Triggered
Figure 39
Enable Database Vault
Cancel | Continue

Confirmation

Are you sure you want to enable Database Vault? Note:This operation requires database restart,

Cancel | Continue I

Figure 40

[282]

Database Vault

Or

Connect to the database as Database Vault owner and enable it through command
line:

SQL> EXEC DBMS_MACADM.ENABLE_DV;
2. Connect to your database or pluggable database and restart it:
SQL> connect / as sysdba
SQL> alter pluggable database pdbl close immediate;
SQL> alter pluggable database pdbl open;
3. Confirm that Database Vault is enabled:
SQL> connect c##dbv_owner@pdbl
SQL> SELECT PARAMETER, VALUE FROM V$OPTION WHERE PARAMETER = "Oracle

Database Vault-;
PARAMETER VALUE

Oracle Database Vault TRUE

[283]

10

Unified Auditing

In this chapter, we will cover the following tasks:

¢ Enabling the Unified Auditing mode
¢ Configuring whether loss of audit data is acceptable

e Which roles do you need to have to be able to create audit policies and to view
audit data?

¢ Auditing RMAN operations
¢ Auditing Data Pump operations
¢ Auditing Database Vault operations

¢ Creating audit policies to audit privileges, actions, and roles under specified
conditions

¢ Enabling an audit policy

¢ Finding information about audit policies and audited data
¢ Auditing application contexts

¢ Purging audit trail

¢ Disabling and dropping audit policies

Introduction

Unified Auditing is a new feature in Oracle Database 12c, and it introduces new auditing
architecture. Some of the characteristics of unified auditing are:

¢ A single audit trail
¢ Being based on a read-only table

Unified Auditing

e Extensible Audit Framework for additional columns
¢ The separation of audit administration with new roles
¢ Auditing performance is better, especially when used in the queued-write mode

Figure 1 depicts that in preunified auditing architecture, there were many audit trails. Now,
there is one consolidated unified audit trail, which simplifies management, and auditors
can more easily find audited data they are looking for.

Traditional Audit Trails Unified Audit Trail
SYS.AUDS
SYS.FGA_LOGS
V$XML_AUDIT_TRAIL SYS.UNIFIED AUDIT TRAIL

DBA_COMMON AUDIT TRAIL
DVSYS.AUDIT TRAILS$
0S files

Figure 1

In Figure 2, a new architecture is shown:

TN
S

Audit Policies ~.__

~—
=

SELECT, UPDATE, INSERT, .. SYS.UNIFIED_AUDIT_TRAIL
Database Vault Realm
actions 7

DataPump operations
RMAN Operations

READ-ONLY TABLE

7

PN —

Figure 2 — Unified Auditing Architecture

[285]

Unified Auditing

Enabling Unified Auditing mode

In Oracle Database 12c¢, unified auditing is not enabled by default. The process of enabling it
is simple and equivalent to enabling of other database options.

Getting ready

To complete this recipe, you'll need to shut down the database.

How to do it...

The process of enabling unified auditing is depicted in Figure 3.

1. Shutdown all
processes & DB

instances in
ORACLE_HOM%////

2. Enable the

Unified Audit OPV

3. Restart
everything which

was stopped in
Step 1

Figure 3

[286]

Unified Auditing

1. In our case, there is only one database instance. Connect to the instance as
sysoper and shut it down. Also, stop the listener:

$ sqlplus / as sysoper
SQL> shutdown immediate

SQL> exit
$ Isnrctl stop

2. Relink Oracle binaries with the uniaud_on option:
$ cd $ORACLE_HOME/rdbms/lib
$ make -f ins_rdbms.mk uniaud_on ioracle

3. Start the listener and the database instance:
$ Isnrctl start

$ sqlplus / as sysoper
SQL> startup

To verify that unified auditing is enabled, issue the following SQL statement:

SQL> SELECT PARAMETER, VALUE
2 from v$option
3 where PARAMETER = "Unified Auditing”;

You should see that value for Unified Auditing parameter is true:

PARAMETER VALUE

Unified Auditing TRUE

How it works...

When database is upgraded to 12¢, by default, it uses the traditional way of auditing
(everything like it was in previous versions). However, when you directly install a new
database 12¢, default auditing is set to mixed auditing mode. In both cases, the procedure
to enable the unified auditing mode is the same.

[287]

Unified Auditing

After you enable the unified auditing mode, traditional auditing doesn't work anymore.
Old audit instance parameters (AUDIT_TRAIL, AUDIT_FILE_DEST, AUDIT_SYSLOG_LEVEL,
and AUDIT_SYS_OPERATIONS) are disregarded. Also, using syslog and writing audit
records to OS are not supported. Predefined unified audit policies that are enabled by
default are:

e ORA_SECURECONFIG (database versions:12.1.0.1, 12.1.0.2)
® ORA_LOGON_FAILURES (Oracle Database 12.1.0.2)

Predefined unified audit policies

A predefined unified audit policy is a named set of commonly used and recommended
audit settings, which already exists in Oracle Database 12c. In Oracle Database 12.1.0.1,
there are five predefined unified audit policies, whereas there are eight predefined audit
policies in Oracle Database 12.1.0.2. Table 1 lists predefined audit policies.

Predefined audit policy Oracle Database 12.1.0.1 | Oracle Database 12.1.0.2
ORA_RAS_POLICY_MGMT Yes Yes
ORA_DATABASE_PARAMETER |Yes Yes
ORA_RAS_SESSION_MGMT Yes Yes
ORA_ACCOUNT_MGMT Yes Yes
ORA_SECURECONFIG Yes Yes
ORA_LOGON_FAILURES No Yes
ORA_CIS_RECOMMENDATIONS | No Yes
ORA_DV_AUDPOL No Yes

Table 1 — The list of predefined unified audit policies

Even though predefined audit policies have the same name in different
versions of Oracle Database, it doesn't necessarily mean that they are
always identical.

[288]

Unified Auditing

If you execute the following statement in both 12.1.0.1 and 12.1.0.2 database versions, as a
user who has the audit_admin or dba role:

SQL> select audit_option from audit_unified_policies
where policy_name="0RA_SECURECONFIG"
order by 1;

You will note that the ORA_SECURECONF IG predefined unified audit policy is slightly
different (for example, audit_options: LOGON, LOGOFF that existin 12.1.0.1 are
removed from the policy in 12.1.0.2 and LOGON is part of ORA_LOGON_FAILURES policy; also
some audit options are added in ORA_SECURECONFIG in 12.1.0.2 such as ALTER PLUGGABLE
DATABASE).

There's more...

In Oracle Database 12cR1 Standard Edition (SE), when you enable unified auditing mode
and query the v$option view to verify that it's enabled you may see the following:

PARAMETER VALUE

Unified Auditing FALSE

This bug has been reported in My Oracle Support (17466854) and patch has been released.

See also

e Finding information about audit policies and audited data
e Create audit policies to audit privileges, actions, and roles under specified conditions
e Enabling audit policy

Configuring whether loss of audit data is
acceptable

In this recipe, you'll learn to set whether audit data is queued in memory or is immediately
written to audit trail.

[289]

Unified Auditing

Getting ready

To complete this recipe, you'll need an existing user who has the audit_admin role (for
example, jack).

How to do it...

1. Connect to the database as user who has the audit_admin role (for example,

jack):
SQL> connect jack

2. If you want audit records to be immediately written to the unified audit trail set
immediate-write mode:

SQL> EXEC DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY
(DBMS_AUDIT_MGMT .AUDIT_TRAIL_UNIFIED,DBMS_AUDIT_MGMT.
AUDIT_TRAIL_WRITE_MODE,
DBMS_AUDIT_MGMT.AUDIT_TRAIL_IMMEDIATE_WRITE);

3. Check that the mode is set to immediate-write:

SQL> select * from dba_audit_mgmt_config_params
where parameter_name="AUDIT WRITE MODE";

You should see that the value for the AUDIT WRITE MODE parameter is IMMEDIATE WRITE
MODE:

PARAMETER_NAME PARAMETER_VALUE AUDIT_TRAIL

AUDIT WRITE MODE IMMEDIATE WRITE MODE UNIFIED AUDIT TRAIL

If you want audit records to be queued in memory and at later time persisted, then set the
queued-write mode. Instead of step 2, execute:

SQL> EXEC DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY
(DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,DBMS_AUDIT_MGMT.AUDIT_TRAIL_WRITE_MODE
, DBMS_AUDIT_MGMT.AUDIT_TRAIL_QUEUED_WRITE);

[290]

Unified Auditing

How it works...

The default value for a write mode is the queued-write mode. In this mode, audit data is
stored in SGA queues and later automatically persisted in the read-only table in the AUDSYS
schema in the SYSAUX tablespace. You can also manually flush content of memory queues
to the disk:

SQL>EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;
You'll achieve better performance by using the queued-write mode, but in an event of

instance crash, you may lose some audit records.

It is recommended that you use the queued-write mode in case that
8 possibility of some audit data loss is acceptable.

Which roles do you need to have to be able
to create audit policies and to view audit
data?

In this recipe, you're going to create two users (for example, jack and jil1l). Jack'sjob is to
implement auditing requirements and to make sure that auditing is functioning properly.
Jill is an auditor and her job is to analyze audit data.

Getting ready

To complete this recipe, you'll need an existing user who has the DBA role (for example,
maja).

How to do it...

1. Connect to the database as a user who has the dba role (for example, maja):

$ sqglplus maja

[291]

Unified Auditing

2. Create the user jack and grant him the create session privilege and the

audit_admin role.

SQL> create user jack identified by pQ3s7adw2;

SQL> grant create session, audit_admin to jack;

3. Create the user jill and grant her the create session privilege and the

audit_viewer role.

SQL> create user jill identified by tim5_R2f3;

SQL> grant create session, audit_viewer to jill;

How it works...

In Oracle Database 12c, there are two new roles: AUDIT_ADMIN and AUDIT_VIEWER (Figure

4).

\J

AUDIT_ADMIN

Manages audit
configuration
&
audit trail

AUDIT_VIEWER

Analysis audit
data

Figure 4

They enable the separation of duties in the auditing process. To configure auditing, you no
longer need to have the dba role or connect as sysdba. From the security perspective, this is

a significant improvement.

[292]

Unified Auditing

In step 2, you granted the AUDIT_ADMIN role to the newly created user jack because that
role enables him to create, alter, enable, disable, and drop audit policies, view audit data,
and manage the unified audit trail. In step 3, you granted the AUDIT_VIEWER role to the
user jill because that role enables her to view audit data. You may wonder why the
AUDIT_ADMIN role is designed in such a way that it enables a user to view audit data. One
of the reasons could be that when you configure auditing (for example, create and enable
audit policies), you have to be able to verify that audit records are generated in a way you
have expected they would.

There's more...

To test what can and can't be done as a user who has the audit_viewer role, connect to the
database as ji11 and try to create the unified audit policy jill_policy:

SQL> connect jill

SQL> create audit policy jill_policy
actions delete on oe.orders;

actions delete on oe.orders
*

ERROR at line 2:
ORA-00942: table or view does not exist

Even if you grant object privileges on the oe.orders table to ji11, she won't be able to
create unified audit policy because she doesn't have the audit_admin role or the AUDIT
SYSTEM system privilege:

SQL> conn maja
SQL> grant select,delete on oe.orders to jill;
SQL> connect jill

SQL> create audit policy jill_policy
actions delete on oe.orders;

actions delete on oe.orders

*

ERROR at line 2:

ORA-01031: insufficient privileges

[293]

Unified Auditing

Revoke select and delete on the oe.orders table from Jill:
SQL> connect maja
SQL> revoke select,delete on oe.orders from jill;
Revoke succeeded.

Grant the AUDIT SYSTEM privilege to jill and again try to create the audit policy
jill_policy:

SQL> grant audit system to jill;
SQL> connect jill

SQL> create audit policy jill_policy
actions delete on oe.orders;

Audit policy created.

Drop the unified audit policy jill_policy and revoke the AUDIT SYSTEM privilege from
SERBE

SQL> drop audit policy jill_policy;
Audit Policy dropped.

SQL> connect maja

SQL> revoke audit system from jill;

View audit data:
SQL> connect jill

SQL> select dbusername, action_name from unified _audit_trail
where unified_audit _policies="0RA_SECURECONFIG";

Also, a user who has the audit_viewer role can access information about defined and
enabled unified audit policies.

[294]

Unified Auditing

Throughout this chapter, you'll use a user who has the audit_admin role (for example,
jack), so only test you'll do right now is to enable the predefined audit policy
ORA_ACCOUNT_MGMT and then to disable it:

SQL> connect jack
SQL> audit policy ora_account_mgmt;
Audit succeeded.

SQL> noaudit policy ora_account_mgmt;
Noaudit succeeded.

Auditing RMAN operations

In this recipe, you'll see that RMAN operations are audited by default.

Getting ready

In this recipe, we assume that database is in the ARCHIVELOG mode. To complete this recipe,
you'll need an existing user who has the SYSBACKUP privilege (for example, t om) and an
existing user who has the dba role (for example, maja).

How to do it...

1. Connect to the target database as a user who has the SYSBACKUP privilege (for
example, tom).

$ rman target ""tom@oral2cR1 AS SYSBACKUP'*

2. Backup the EXAMPLE tablespace and view information about backups:
RMAN> backup tablespace EXAMPLE;
RMAN> list backup;

RMAN> exit

[295]

Unified Auditing

3. Connect to the database as a user who has the DBA role (for example, maja):
$ sqlplus maja

4. Find the location of datafile for EXAMPLE tablespace:
SQL> select File name from dba data files where

tablespace_name="EXAMPLE";
FILE_NAME

/u0l1/app/oracle/oradata/ORA12CR1/datafile/
ol _mf_example_9z79vpcj_.dbf

5. Remove the EXAMPLE tablespace datafile:

SQL> 'rm /uOl/app/oracle/oradata/ORA12CR1/datafile/
ol_mf_example_9z79vpcj_.dbFf

6. Put the EXAMPLE tablespace offline:
SQL> alter tablespace example offline immediate;
SQL> exit
7. Restore the EXAMPLE tablespace datafile:
$ rman target ""tom@oral2cR1 AS SYSBACKUP™"*
RMAN> restore tablespace EXAMPLE;
8. Recover the EXAMPLE tablespace datafile:
RMAN> recover tablespace EXAMPLE;
RMAN> exit
9. Put tablespace back online:
$ sqglplus maja

SQL> alter tablespace EXAMPLE online;

[2961

Unified Auditing

10. To verify that RMAN operations were successfully audited, execute the following
statements:

SQL> connect jack
SQL> EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;

SQL> select dbusername, rman_operation
from unified_audit_trail
where rman_operation is not null;

How it works...

When the mixed or unified auditing mode is enabled, RMAN operations are automatically
audited. This means that you don't create audit policies, but you view and manage audit
data in the same way as for other components.

In step 2, you performed the backup of the tablespace EXAMPLE. Then, in step 5, you
intentionally caused a problem by removing the datafile. Afterwards, you performed
restore and recover RMAN operations. The whole point of the example is to execute several
RMAN operations. In the unified_audit_trail data dictionary view, there are several
columns that contain data pertaining to the RMAN events. Their names start with RMAN,
so it's easy to find them.

In step 10, you should get similar result to this one:

DBUSERNAME RMAN_OPERAT ION

TOM Backup

TOM List

TOM Restore

TOM Recover
See also

e The sysbackup privilege — How, when, and why you should use it? (Chapter 1, Basic
Database Security)
e Finding information about audit policies and audited data

[297]

Unified Auditing

Auditing Data Pump operations

You can audit Data Pump export, import, or both export and import operations by creating
audit policies.

Getting ready

To complete this recipe, you'll need an existing user who has the audit_admin role (for
example, jack). Also, it is assumed that directory for export operations (for example,
my_dir) is created and a user (for example, maja) who is going to perform the Data Pump
export has read and write privileges on the directory.

SQL> CREATE DIRECTORY my_dir AS "/u0Ol1/app/oracle/oradata/export”;

SQL> grant read, write ON DIRECTORY my_dir to maja;

How to do it...

1. Connect to the database as a user who has the audit_admin role (for example,
jack):

$ sqlplus jack
2. Create an audit policy to audit Data Pump export operations:

SQL> CREATE AUDIT POLICY DP_POLICY ACTIONS
COMPONENT=datapump export;

3. Enable the audit policy:
SQL> AUDIT POLICY DP_POLICY;
4. Export the table hr.departments:

$ expdp maja@oral2cR1l dumpfile=test tables=hr._departments
DIRECTORY=my dir

[298]

Unified Auditing

5. Verify that the export operation was successfully audited:
SQL> connect jack
SQL> select DP_TEXT_PARAMETERS1,DP_BOOLEAN_PARAMETERS1

from unified_audit_trail
where audit_type="Datapump” and dbusername="MAJA";

See also

o Enabling audit policy
e Finding information about audit policies and audited data

Auditing Database Vault operations

In this recipe, you'll learn to audit Oracle Database Vault events.

Getting ready

To complete this recipe, you'll need to use Oracle Database 12¢, which has Oracle Database
Vault enabled and at least some of the components configured (for example, the realm

HR realm and rule set Working Hours). Also, you'll need an existing user who has the
audit_admin role (for example, jack).

How to do it...

1. Connect to the database as a user who has the audit_admin role (for example,
jack) :

$ connect jack
2. Create the audit policy dbv_policy:
SQL> CREATE AUDIT POLICY dbv_policy

ACTIONS COMPONENT = DV Rule Set Failure on "Working Hours",realm
violation on "HR Realm";

[2991]

Unified Auditing

3. Enable the audit policy dbv_policy:
SQL> audit policy dbv_policy;

4. Execute several statements that will cause generation of audit records:
SQL> select * from oe.orders;

SQL> update hr.employees set salary=30000 where salary=24000;

How it works...

To create an audit policy that captures Oracle Database Vault events, specify ACTIONS
COMPONENT = DV <action> ON <object>.In step 2, you defined the audit policy
dbv_policy that encapsulates the rules: audit records should be generated when
somebody tries to access protected objects during nonworking hours or when unauthorized
person tries to access objects secured by HR Realm.

In the unified audit trail, Oracle Database Vault-specific audit data is stored in the columns
whose name starts with Dv_.

There's more...

When you are using Oracle Database Vault, you can also additionally secure your auditing
infrastructure by creating a realm around the AUDIT_ADMIN and AUDIT_VIEWER roles. This
allows you to control who can grant those roles.

See also

o Re-enabling Database Vault (Chapter 9, Database Vault)
e Creating a rule set (Chapter 9, Database Vault)

[300]

Unified Auditing

Creating audit policies to audit privileges,
actions and roles under specified conditions

In this recipe, you will create several unified audit policies.

Getting ready

To complete this recipe, you'll need two existing users:

¢ A user who has the audit_admin role (for example, jack)
e A user who has the create session privilege (for example, john)

Also, you should create the roles hr_role and oe_role as stated here and grant hr_role
to the user john.

SQL> create role hr_role;

SQL> grant select any table, create table to hr_role;
SQL> grant insert on hr.departments to hr_role;

SQL> create role oe_role;

SQL> grant drop any table to oe_role;

SQL> grant select, update on oe.orders to oe_role;
SQL> grant oe_role to hr_role;

SQL> grant hr_role to john;

How to do it...

1. Connect to the database as a user who has the audit_admin role (for example,
jack):

$ sqglplus jack
2. Create audit policy my_policy1l:
SQL> CREATE AUDIT POLICY MY_POLICY1

PRIVILEGES SELECT ANY TABLE
ACTIONS CREATE TABLE, DROP TABLE;

[301]

Unified Auditing

3. Create the audit policy role_con_policy:

SQL> CREATE AUDIT POLICY ROLE_CON_POLICY

ROLES HR_ROLE

WHEN "SYS_CONTEXT(""USERENV*® ", " "HOST" *")=""dbhost.orapassion.com”"*
EVALUATE PER SESSION;

4. Create the audit policy hr_policy:

SQL> CREATE AUDIT POLICY HR_POLICY
ACTIONS SELECT, INSERT ,UPDATE,DELETE ON HR.DEPARTMENTS;

5. Create the audit policy oe_policy:

SQL> CREATE AUDIT POLICY OE_POLICY
ACTIONS ALL ON OE.ORDERS;

How it works...

When you create a unified audit policy, it is stored in the first-class object owned by sys
schema (According to the official Oracle documentation, Oracle Database Security Guide
12c, E48135-09, p.22-4).

Audit records generation, as defined in a unified audit policy, starts after
you enable the policy.

In step 2, you created the audit policy my_policyl.

In step 3, you created the audit policy role_con_policy, which defines that audit records
will be generated when a user is connected to the database from the specified host

(dbhost .orapassion.com) and system privileges that are directly granted to HR_ROLE are
used. The Role HR_ROLE has to exist at the time audit policy role_con_policy is created
because if it doesn't exist you will get an error message:

ERROR at line 2:
ORA-01919: role "HR_ROLE" does not exist

[302]

Unified Auditing

In step 4, you created the audit policy hr_policy, the way it is written, audit records will
be generated for select, insert, and update operations on all objects and for delete
operations on hr.departments.

A common pitfall: People often define object-wise audit policies, the way
you did in step 4 (<object_action_1>, <object_action_2>,
...,<object_action_n> ON <object>). However, in most cases, the
behavior they really want to get should be defined by writing
<object_action_1> ON <object>, <object_action_2> ON
<object>,...,<object_action_n> ON <object>.

In step 5, you created the audit policy oe_policy, which will be used in order to audit all
actions on table orders in oe schema. In Oracle Database 12.1.0.1 due to the bug, audit
records for this policy are not generated (16714031- Audit policy using actions all does
not record audit trails (MOS)). Workaround is to specify one by one actions instead of using
keyword ALL. The bug is fixed in Oracle Database 12.1.0.2.

See also

o Enabling audit policy

Enabling audit policy

In this recipe, you will learn to use different options to enable unified audit policies.

Getting ready

To complete this recipe, you'll need an existing user who has the audit_admin role (for
example, jack) and several other existing users (for example, john, maja, and zoran).

[303]

Unified Auditing

How to do it...

1. Connect to the database as a user who has audit_admin role (for example, jack)
SQL> connect jack

2. Enable audit policy oe_policy in such way that it applies only to user JOHN
SQL> audit policy OE_POLICY BY JOHN;

3. Enable audit policy hr_policy to capture only successful events.
SQL> AUDIT POLICY HR_POLICY WHENEVER SUCCESSFUL;

4. Enable policy my_policyl to audit unsuccessful events for all users except maja

and zoran.

SQL> audit policy my policyl EXCEPT MAJA, ZORAN WHENEVER NOT
SUCCESSFUL ;

5. Enable audit policy role_con_policy using default options.

SQL> audit policy role_con_policy;

How it works...

In step 2, you defined BY list, which means that only user(s) listed on that list will be
affected by the policy.

In step 3, you defined that audit policy hr_policy is applied to all users, but only
successful operations will generate audit records.

In step 4, you defined EXCEPT list, which means that listed users will not be affected by
audit policy. Also, audit records will be generated only for the failed operations.

[304]

Unified Auditing

In step 5, you enabled audit policy using default options, which means that
role_con_policy will affect all users for both successful and unsuccessful events.

You can't use both BY and EXCEPT lists for the same policy statement.

Finding information about audit policies and
audited data

In this recipe, you will view audited data and find information about unified audit policies.

Getting ready

To complete this recipe, you'll need three existing users:

¢ A user who has audit_admin role (for example, jack)

e A user who has hr_role and oe_role (for example, john), created in recipe
Creating audit policies to audit privileges, actions and roles under specified conditions

e A user who has admin_viewer role (for example, ji11)

Also, you'll need to connect to the database as SYs user.

How to do it...

1. Connect to the database as a user who has the audit_admin role (for example,
jack):

$ connect jack
2. Find which unified audit policies are defined (exist in the database):
SQL> select distinct policy_name

from audit_unified_policies;
SQL> desc audit_unified_policies

[305]

Unified Auditing

3. View which unified audit policies are enabled:

SQL> select * from audit_unified_enabled policies;
4. Connect to the database as the user john:

SQL> connect john

5. Execute several statements on the tables HR . EMPLOYEES, HR.DEPARTMENTS, and
OE .ORDERS:

SQL> create table t(a number(10));

SQL> select count(*) from oe.orders;

SQL> select first_name from hr.employees;

SQL> drop table t;

SQL> connect sys / as sysdba

SQL> create table hr.my_table(b varchar2(10));
SQL> connect john

SQL> drop table hr.my_table;

6. Connect to the database as a user who has the audit_viewer role (for example,
Jill):

SQL> connect jill
7. View audit records:

SQL> set linesize 250

SQL> col event_timestamp format a30

SQL> col action_name format a20

SQL> col unified_audit_policies format a20

SQL> col sql_text format a80

SQL> select event_timestamp,
action_name,unified_audit_policies, sql_text from
unified_audit_trail where DBUSERNAME = "SYS"and
ACTION_NAME NOT IN ("LOGON","LOGOFF™)

ORDER BY EVENT_TIMESTAMP DESC;

SQL> select event_timestamp,

action_name, unified_audit_policies, sqgl_text

from unified_audit_trail where DBUSERNAME = "JONH"and
ACTION_NAME NOT IN ("LOGON","LOGOFF") ORDER BY EVENT_TIMESTAMP
DESC;

[3061

Unified Auditing

Auditing application contexts

In this recipe, you will configure auditing of information contained in an application
context.

Getting ready

To complete this recipe, you'll need an existing (or predefined) application context and a
user who has the audit_admin role (for example, jack).

How to do it...

1. Connect to the database as a user who has the audit_admin role (for example,
jack):

$ sqlplus jack
2. Configure application context auditing:

SQL> AUDIT CONTEXT NAMESPACE USERENV
ATTRIBUTES SESSION_USER, SERVICE_NAME;

Audit succeeded.
SQL> AUDIT CONTEXT NAMESPACE USERENV
ATTRIBUTES HOST BY jill;
Audit succeeded.
3. View for which application contexts audit data is going to be captured:
SQL> set linesize 180
SQL> column namespace format A30
SQL> collumn attribute format A30
SQL> collumn user_name format A30
SQL> select * from audit_unified contexts;

4. Connect user jil1 as follows:

SQL> connect jill

[3071]

Unified Auditing

5. View audit records:

SQL> SELECT APPLICATION_CONTEXTS FROM UNIFIED_AUDIT_TRAIL
WHERE APPLICATION_CONTEXTS 1S NOT NULL;

How it works...

The result of the statements in step3:

NAMESPACE ATTRIBUTE USER_NAME
USERENV HOST JILL
USERENV SERVICE_NAME ALL USERS
USERENV SESSION_USER ALL USERS

You can audit custom application contexts (for example, the ones you
created) in the same way.

If needed, execute the following statement as the user jack:

SQL>EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;

Result after step 5:

APPLICATION_CONTEXTS

(USERENV, SERVICE_NAME=SYSS$USERS) ; (USERENV,SESSION_USER=JACK)
(USERENV, SERVICE_NAME=SYSS$USERS) ; (USERENV,SESSION_USER=JILL);
(USERENV,HOST= dbhost.orapassion.com)

There's more...

To disable auditing of application contexts, you should use the NOAUDIT command:
SQL> connect jack

SQL> NOAUDIT CONTEXT NAMESPACE USERENV
ATTRIBUTES HOST BY jill;

[308]

Unified Auditing

See also

e Chapter 12, Appendix — Application Contexts

Purging audit trail

You can clean up audit data manually or by scheduling clean up job.

Getting ready

To complete this recipe, you'll need a user who has the audit_admin role (for example,
jack).

How to do it...

1. Connect to the database as a user who has the audit_admin role (for example,
jack):

$ sqlplus jack
2. View number of audit records in the unified audit trail before the cleanup:
SQL> select count (*) from unified_audit_trail;
¢ To perform the manual cleanup, execute:

SQL> exec DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED)

e To create a purge job:

SQL> exec DBMS_AUDIT_MGMT .CREATE_PURGE_JOB
(AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
AUDIT_TRAIL_PURGE_INTERVAL => 24,

AUDIT_TRAIL_PURGE_NAME => "My Job",
USE_LAST_ARCH_TIMESTAMP => TRUE)

[3091

Unified Auditing

3. View number of audit records in the unified audit trail after the cleanup:

SQL> select count (*) from unified_audit_trail;

How it works...

By default, USE_LAST_ARCH_TIMESTAMP is set to TRUE. It means that only records created
before that time will be deleted. If you set that parameter to FALSE, all records will be
deleted. It is recommended to use the default value.

There's more...

In multitenant environment, use CONTAINER clause as well (CONTAINER =>
DBMS_AUDIT_MGMT.CONTAINER_CURRENT or DBMS_AUDIT_MGMT.CONTAINER_ALL).

Disabling and dropping audit policies

In this recipe, you will learn to disable and drop audit policies.

Getting ready

To complete this recipe, you'll need an enabled unified audit policy (for example,
oe_policy) and a user who has the audit_admin role (for example, jack).

How to do it...

1. Connect to the database as a user who has the audit_admin role (for example,
jack):

$ sqlplus jack

[310]

Unified Auditing

2. Verify that the policy is enabled:
SQL> SELECT POLICY_NAME, ENABLED_OPT, USER_NAME,
SUCCESS, FAILURE
FROM AUDIT_UNIFIED_ENABLED_POLICIES;
3. Disable the policy oe_policy:
SQL> NOAUDIT policy oe_policy BY JOHN;
4. Verify that oe_policy is disabled:
SQL> select * from AUDIT_UNIFIED_ENABLED_POLICIES;

5. Drop the policy oe_policy:

SQL> drop audit policy oe_ policy;

How it works...
In step 2, you checked that the audit policy oe_policy is enabled. In step 3, you disabled it.

When you disable audit policy, make sure that in the NOAUDIT statement,
a list of users (BY or EXCEPT) is the same as it was in the AUDIT statement.
If in step 3, you omit BY JOHN, audit records will continue to be
generated.

To be able to drop audit policy, you have to disable it first. In step 5, you dropped the audit
policy oce_policy.

See also

e Enabling audit policy

[311]

11

Additional Topics

In this chapter, we will cover the following tasks:

¢ Exporting data using Oracle Data Pump in the Oracle Database Vault
environment

¢ Creating factors in Oracle Database Vault
e Using TDE in a multitenant environment

Introduction

An Oracle Database Vault component factor is a named variable, which can have one or
more values, assigned in several ways. The actual value of factor is named identity. Each
factor has a factor type. A factor type is used only for classification purposes. Factors are
building blocks for configuring security policies. They can be used in rules/rule sets. You
can configure factors by using Oracle Enterprise Manager or the Database Vault APL

Exporting data using Oracle Data Pump in
Oracle Database Vault environment

In Oracle Database 12c, it is possible to perform Oracle Data Pump regular and
transportable export and import operations in the Oracle Database Vault environment.

bit different than in Oracle Database 11g. The default rule set Allow Oracle

The process of exporting and importing data in Oracle Database 12c is a
0 Data Pump Operation is deprecated.

Additional Topics

In this recipe, you'll export data that resides in a schema that is protected by a realm.

Getting ready

It is assumed that:

¢ You are using Oracle Database 12.1.0.2 (the traditional architecture) on Linux
e Sample schemas are installed (you'll use HR schema in this recipe)

¢ Database Vault is enabled and configured (a Database Vault owner is user
dbv_owner, account manager is user dov_acctmgr, and realm that protects HR
schema is created). This is one way how you can create HR realm:

SQL> connect dbv_owner

SQL> BEGIN
DBMS_MACADM.CREATE_REALM(
realm_name => "HR Realm",
description => "Protects HR schema”,
enabled => DBMS_ MACUTL.G_VYES,
audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
realm_type => 0);
END;
/

PL/SQL procedure successfully completed.

The parameter realm_type specifies whether realm is a mandatory realm
or not. Allowed values, for the parameter, are (realm) and 1 (mandatory

realm).
SQL> BEGIN
DBMS_MACADM.ADD_OBJECT_TO_REALM(
realm_name => "HR Realm®,

object_owner => "HR",
object_name => %",
object_type => *"%");
END;
/

PL/SQL procedure successfully completed.

[313]

Additional Topics

e A directory for export operations (for example, dp_dir) is created and a user (for
example, piter) who is going to perform Data Pump export has read and write
privileges on the directory. Also, the DATAPUMP_EXP_FULL_DATABASE role and
the CREATE TABLE and UNLIMITED TABLESPACE privileges have been granted
to the user:

SQL>
SQL>
SQL>
SQL>
SQL>
SQL>
SQL>
SQL>
SQL>

connect system

CREATE DIRECTORY dp_dir AS "/uOl/app/oracle/oradata/dp_exp~;
connect dbv_acctmgr

create user piter identified by T2abc_4z1;

grant create session to piter;

connect / as sysdba

grant create table, unlimited tablespace to piter;

grant read, write ON DIRECTORY dp_dir to piter;

grant DATAPUMP_EXP_FULL_DATABASE to piter;

How to do it...

1. Connect to the database as a user who has the DV_OWNER or DV_ADMIN role (for
example, dbv_owner):

$ sqglplus dbv_owner

2. Verify that the user piter has the DATAPUMP_EXP_FULL_DATABASE role:

SQL>

SELECT GRANTED_ROLE FROM DBA_ROLE_PRIVS WHERE

GRANTED_ROLE LIKE "%FULL%" AND GRANTEE="PITER";

GRANTED ROLE

DATAPUMP EXP FULL DATABASE

Figure 1 — Prerequisite role

3. Authorize the user piter to perform Data Pump operations on HR schema
(execute the DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure):

SQL>

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER ("PITER", “HR");

PL/SQL procedure successfully completed.

[314]

Additional Topics

4. Query the DVSYS.DBA_DV_DATAPUMP_AUTH view to confirm that the user piter
is authorized to perform export and import operations only on HR schema:

SQL> column grantee format A10
SQL> column schema format A1l5
SQL> column object format Al5
SQL> SELECT * FROM DVSYS.DBA_DV_DATAPUMP_AUTH WHERE GRANTEE =

"PITER";
GRANTEE SCHEMA OBIECT
PITER HR %

Figure 2 - Authorized for all database object in schema HR
5. Export the HR.EMPLOYEES and HR.DEPARTMENTS tables:

$ expdp piter DIRECTORY=dp_dir DUMPFILE= exptables.dmp TABLES=
hr.employees, hr.departments

Connected to: Oracle Database 12c Enterprise Edition Release 12.1.8.2.8 - &4bit Producti
on
With the Partitioning, Oracle Label Security, OLAP, Advanced Analytics,
Oracle Database Vault, Real Application Testing and Unified Auditing options
Starting "PITER"."SYS EXPORT TABLE 81": piter/##++#+++ DIRECTORY=dp dir DUMPFILE=exptab
ES=hr.emplovees, hr. departments
RA-39327: Oracle Database Vault data is being stored unencrypted in dump file set.l
Estimate in progress using BLOCKS method...
Processing object type TABLE EXPORT/TABLE/TABLE DATA
Total estimation using BLOCKS method: 128 KB
Processing object type TABLE EXPORT/TABLE/TABLE
Processing object type TABLE EXPORT/TABLE/GRANT/OWNER GRANT/OBJECT GRANT
Processing object type TABLE EXPORT/TABLE/COMMENT
Processing object type TABLE EXPORT/TABLE/INDEX/INDEX
Processing object type TABLE EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type TABLE EXPORT/TABLE/INDEX/STATISTICS/INDEX STATISTICS
Processing object type TABLE EXPORT/TABLE/CONSTRAINT/REF CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/TRIGGER
Processing object type TABLE EXPORT/TABLE/STATISTICS/TABLE STATISTICS
Processing object type TABLE EXPORT/TABLE/STATISTICS/MARKER
. exported "HR"."DEPARTMENTS" 7.125 KB 27 rows
. exported "HR"."EMPLOYEES" 17.08 KB 107 rows
IHaster table "PITER"."SYS EXPORT TABLE 01" successfully loaded/unloaded

Figure 3 — The warning message

[315]

Additional Topics

6. Export HR schema in an unencrypted format:

$ expdp piter DIRECTORY=dp_dir DUMPFILE=expsh.dmp SCHEMAS=hr
ENCRYPT ION=NONE

You'll receive the same message as in the previous step (ORA-39327), even though you
explicitly stated that you don't want to encrypt export. At the end of the job, you'll see that
it completed with one error (Figure 4) meaning that one warning:

Dump file set for PITER.SYS EXPORT SCHEMA 81 is:
Ju@l/app/oracle/oradata/dp exp/expsh.dmp
Job "PITER"."SYS EXPORT SCHEMA 81" completed with 1 error(s)

Figure 4 — Successful export with warning

How it works...

To be able to export data that is protected by Database Vault mechanisms, user has to be
authorized (besides having appropriate privileges to perform Data Pump operations, for
example, the role). You can authorize a user to perform export and import operations:

¢ On specific database object in a schema, such as table. For example, it authorizes
the user amy to export the table HR . EMPLOYEES:

SQL> EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER ("AMY®, "HR",
"EMPLOYEES™);

¢ On specific schema (you authorized the user piter to perform export and import
operations on HR schema in step 3).

e For entire database. For example, it authorizes the user kim to export and import
database object for the entire database:

SQL> EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER ("KIM®);

SQL> grant DV_OWNER to kim;

[316]

Additional Topics

There's more...

According to Oracle Database Licensing Information, 12¢ Release 1 (12.1),If you want to encrypt
Oracle Data Pump export, using its encryption features, Oracle Advanced Security option
has to be enabled.

To encrypt export, specify appropriate value for ENCRYPTION parameter (instead of NONE
which was shown in step 6 in the How to do it section). These are allowed values for the
parameter:

ENCRYPTION=[ALL|DATA_ONLY |ENCRYPTED_COLUMNS_ONLY | METADATA_ONLY | NONE]

Also, before starting an export operation, make sure that the keystore is open.

See also

¢ A good reference to learn about Oracle Data Pump is official Oracle
documentation — Oracle Database Utilities, 12c Release 1 (12.1.0.2), Part I.

Creating factors in Oracle Database Vaulit

In this recipe, you'll create three factors (Day, Holiday, and NonWorkingDay). The factor
Day will return name of the day based on sysdate. The factor Holiday will return TRUE if
it is a company nonworking holiday (for example, 1-JAN, 4-JUL, and 15-NOV) and FALSE
otherwise. The factor NonWorkingDay will return whether it's a nonworking day (No,
WEEKEND, and COMPANY_HOLIDAY). We'll assume that a day is a nonworking day if it is a
weekend or a company nonworking holiday (in case it is both weekend and holiday, it
should resolve it to COMPANY_HOLIDAY).

[317]

Additional Topics

Getting ready

It is assumed that:

¢ You are using Oracle Database 12.1.0.2 (the traditional architecture) on Linux and
Oracle Enterprise Manager Cloud Control 12¢

e Database Vault is enabled and configured (the Database Vault owner is the user
dbv_owner and account manager is the user dbv_acctmgr).

¢ The user dbv_owner has been granted the SELECT ANY DICTIONARY privilege

e The user piter exists, the function piter.get_function has been created, and
DVSYS has been granted the EXECUTE privilege on the function:

SQL> connect system
SQL> create or replace function piter.get_holiday

2 return varchar2

3 1S

4 holiday varchar2(10);
5 begin

6

IF (RTRIM(TO_CHAR(SYSDATE, "DD-MON")) IN ("1-JAN", =4-JuL",
15-NOV™)) THEN
7 holiday := "TRUE";

8 ELSE

9 holiday := "FALSE";
10 END IF;

11 RETURN holiday;

12 end;

13 7/

Function created.
SQL> grant execute on piter.get_holiday to dvsys;
Grant succeeded.

¢ Results in this recipe are shown for the situation that, at the same time, it is
SUNDAY and it is a holiday.

[318]

Additional Topics

How to do it...

1. Log in to EM12c as a SYSMAN or some other privileged user. Select your database.
Then, from Security drop-down menu, choose Database Vault (Figure 5).

Security = | Schema « Administra
Home
Reports
Users
Roles
Profiles
Audit Settings
Enterprise Data Governance
Application Data Models
Configuration Compliance
Data Masking
Data Redaction
Transparent Data Encryption
Database Vault
Privilege Analysis
Label Security
Virtual Private Database
Application Contexts

Enterprise User Security

Figure 5

2. Log in as the dbv_owner user (Figure 6).

Database Login

*Username dby_owner
*Password sssssssess
Role Mormal |~

[Osave as

Login Cancel

Figure 6

[319]

Additional Topics

3. Choose the Administration tab and click on the Factors link (Figure 7).

Oracle Database Vault
Home Page Administration
Database Vault Components

Realms

Command Rules

Rules

Rule Sets

Factors

Factor Types

Secure Application Raoles
OLS Integration
Database Vault Roles

Figure 7

4. Click on the Create button to create your first custom factor (see Figure 8).

Orade Database Vault
Home Page | Administration
Database Vault Components Factors
Realms Database Vault factor is a context that you define and use in rules that are attached to a rule set which, in turn, can be attached to Realm
Command Rules Authorizations, Command Rules, and Database Vault Secure Application Roles. After you define the factor, the value can be checked using
the function DVF.DF$ (factor_name).
Rules
Rule Sets Search
Factors ——
Factor Types Factor Name
The search returns all matches beginning with the string you enter. You can use the wideard symbal (%) in the search string.
Seaure Application Roles —]
OLS Integration View » Create |ogView 7 Edit 3§ Delete [[]Show Oradle defined factors
Datzbase Vault Roles Factor Name Factor Type Evaluation Options Identified By Audit Options FalOptons |Lastug]
no data found
< I >

Columns Hidden 1

Figure 8

[320]

Additional Topics

5. The name of the factor will be Day, the description will be The name of day,
and Factor Type will be Time (shown in Figure 9). After you enter that
information, click on the button Next.

C = —

General Configurations Options Identiies Review

Create Factor: General

Enter the general information required to create a factor.

* Name | Day

Desaiption | The name of day

* Factor Type | Time

Figure 9

6. Enter these configuration details for the factor and click on the button Next. It
will appear as shown in this figure :

[, L O -
General Configurations Opfions Identiies Review

Create Factor: Configurations
Enter the configuration details for the factor.
* Factor Identification | By Method

* Evaluation | By Access

* Factor Labeling | By Self
Retrieval Methed | TO_cHAR (sysdate, DAY

Validation Method

Figure 10

[321]

Additional Topics

7. For Audit Options, choose Never. Leave other default values and click the button
Next (see Figure 11).

—

L
General Configurations Options Identites Review

Create Factor: Options
Enter the rule set, error options and audit options,

Assignment Rule Set

Error Options () Show Error Message
(O Do Mot Show Error Message
Audit Options (@) Never
O Always
(O Valdation False
O Retrieval Error
O TrustLevel NULL
(ORetrieval NULL
(O Trust Level Less Than Zero
O validation Error

Figure 11

8. You won't create new identities at this moment, so just click on the button Next.
After you finish reviewing the configuration, click on the Finish button . You
should receive a confirmation message and see the newly created factor Day
(result is shown in Figure 12).

@ Confirmation @
Factor areated successfully
Oracle Database Vault
Home Page || Administration
[Database Vault Components } Factors
Realms Database Vault factor is a context that you define and use in rules that are attached to a rule set which, in turn, can be attached to Realm Authorizations, Command Rules, and
Command Rules Database Yault Secure Application Roles. After you define the factor, the value can be chedked using the function DVF.DF$ (factor_name).
Rules
Search
Rule Sets
Factors Factor Mame
Factor Types The search returns all matches beginning with the string you enter. You can use the wildcard symbol (%) in the search string.
Seaure Application Roles View ¥ | [Bfcreate taview #edt $§ Delete []how Orade defined factors
OLS Integration _|Factor Name Factor Type Evaluation Options | Identified By Audit Options. Fail Options Last Updated Date
Database Vault Roles Day Time By Access By Method Mewer Show Error Message ‘

‘ Columns Hidden 1 ‘

[> Database Operation Authorj

Figure 12

[322]

Additional Topics

9. Click on Link Day (in the column Factor Name, as shown in Figure 12). You will
see that factor Day will get value SUNDAY (see figure 13). Click on the OK button.

View Factor
Evaluation Results

Evaluated Value SUNDAY

General

Mame Day
Descaiption The name of day
Factor Type Time

Configurations

Factor Identification By Method

Evaluation By Access

Factor Labeling By Self

Retrieval Method TO_CHAR(sysdate, DAY")
Validation Method

Options

Assignment Rule Set
Error Options Show Error Message
Audit Options Never

Figure 13

Now create the new factor NonWorkingDay (Factor Type: Time) which will,
for the beginning, be based only on the factor Day and test it. After you create
the factor Holiday, you'll edit the factor NonWorkingDay in such a way that
it is based on both factors (Day and Holiday).

10. Repeat steps 4 and 5.

11. Enter these configuration details for the factor and click on the button Next:

Factor Identification: By Factors
Evaluation: By Access
Factor Labeling: By Self

12. Leave the default values and click on the Next button.

[323]

Additional Topics

13. Click on the green plus button — Add New Identity (see Figure 14).

o1 T
L L ™
General Configurations Options Identities Review

Create Factor: Identities

(] s v [() (]

Define an identity for the factor, An identity is the actual value of a factor, A factor can have several identities depending on the retrleval method of the factor or the way in which it is identified,

View ~ | _‘f Edit 3@ Remove |] Detach

| value _ TrustLevel
no data found

Figure 14

14. On the tab Identity, enter Value as TRUE and select Untrusted for Trust Level
(see Figure 15).

Add New Identity

Identity = Map Identity
*value
TRUE

Trust Level

Untrusted

Label Identity
Available OLS Policies Selected OLS Policies

S

0K || Cancel

Figure 15

[324]

Additional Topics

15. Click on the Map Identity tab . Click on the green plus button — Add Mapping
(see Figure 16).

Add New Identity =

Identity ~ Map Identity

View = | AddMapping 7 Edit 3% Delete
Child Factor Mame — Operator Min Value Max Value
no data found

OK || Cancel
Figure 16
16. Select the following values and click on the OK button:
Child Factor Name Day
Operator Like
Min Value S%

[325]

Additional Topics

17. You should see that identity is added (Figure 17).

W, ., L} L ™)

General Configurations Options Identities Review

Create Factor: Identities Step 4of 5| Mext | | Dane Cancel

Define an identity for the factor. An identity is the actual value of a factor. A factor can have several identities depending on the retrieval
method of the factor or the way in which it is identified.

View ¥ | op Add New Identity # Edit 3% Remove | i Detach

|value | Trust Level
TRUE -1

Figure 17

18. Add the new identity FALSE. Repeat steps from 13 to 16 with appropriate values
(for example, the value FALSE, Trust Level as Somewhat trusted; instead of the
Like operator, choose Not Like).

19. Click on the Next button. Review the configuration and click on the Finish
button. You should see confirmation message.

[326]

Additional Topics

20. Click on the link NonWorkingDay (in the column Factor Name). You will see that
the factor NonWorkingDay will get value TRUE (see Figure 18). Click on the OK
button.

View Factor
Evaluation Results
Evaluated Value TRUE

General

MName MNonWorkingDay
Description
Factor Type Time

Configurations

Facter Identification By Factors
Evaluation By Access

Facter Labeling By Self
Retrizval Methed

Validation Method

Options

Assignment Rule Set

Error Options Show Error Message
Audit Options Always

Identities
Value Trust Level
> TRUE 1
> FALSE 5

Figure 18

21. On the Factors page (see Figure 12), in the table select row in which Day factor is
displayed and click on the Edit button (pencil icon). Click on the Next button.

22. Change Retrieval Method to RTRIM (TO_CHAR (sysdate, 'DAY')) and click on
the Done button.

23. Create the new factor Holiday (Factor Type: Time).

[327]

Additional Topics

24. Enter these configuration details for the factor and click on the Done button:

Factor Identification: By Method
Evaluation: By Access

Factor Labeling;: By Self

Retrieval Method: PITER.GET_HOLIDAY

It will appear as shown in this figure :

E——

General Configurations Options

Create Factor: Configurations Back |Step2of5| Mext || Done Cancel
Enter the configuration details for the factor.
* Factor Identification By Method |+
*Evaluation By Access |w

* Factor Labeling By Self ~

Retrieval Method PITER.GET_HOLIDAY

Validation Method

Figure 19

25. Edit the factor NonWorkingDay so that it has three identities (NO, WEEKEND, and
COMPANY_HOLIDAY) and click on OK.

[328]

melliott
Sticky Note
Marked set by melliott

melliott
Sticky Note
Marked set by melliott

melliott
Sticky Note
Marked set by melliott

Additional Topics

26. a. Edit the FALSE identity (change value to NO, add mapping in the Map
Identity — Child Factor Name: Holiday, Operator: Like, Min Value: F%). Click

on the OK button.

Edit Identity

Identity

View
Child Factor Name
Day
Holiday

Map Identity

‘i‘ Add Mapping / Edit

Operator
MNOT LIKE
LIKE

Min Value
5%
F%

Max Value

COK

Cancel

Figure 20

26. b. Edit the TRUE identity and click on the OK button (change value to WEEKEND,
change mapping to have two rows:

Child Factor Name Operator Min Value Max Value
Day Equal SATURDAY
Day Equal SUNDAY

26. c. Add the new cCOMPANY_HOLIDAY identity (Trust Level: Untrusted). On the
Map Identity tab, click on Add Mapping. Set the following values and click on

OK:

Child Factor Name

Operator

Min Value

Max Value

Holiday

Equal

TRUE

[329]

Additional Topics

This will appear as shown in this figure:

Add New Identity Mapping

* Child Factor Name Holiday
* Operator Equal
*Min Value TRUE

Max Value

Figure 21

27. View evaluated value for factor Day (repeat step 9). The result is shown in Figure
22.

View Factor
Evaluation Results
Evaluated Value SUNDAY

General

Mame Day
Description The name of day
Factor Type Time

Configurations

Factor Identification By Method

Evaluation By Access

Factor Labeling By Self

Retrieval Method RTRIM{TO_CHAR.(sysdate, DAY"))
Validation Method

Figure 22

[330]

Additional Topics

28. View evaluated value for factor Holiday. The result is shown in figure.

View Factor
Evaluation Results
Evaluated Value TRUE

General

Mame Holiday
Description
Factor Type Time

Configurations

Factor Identification By Method
Evaluation By Access

Factor Labeling By Self

Retrieval Method PITER.GET_HOLIDAY
Validation Method

Figure 23

29. View an evaluated value for factor NonWorkingDay. The result is shown in
Figure 24.

View Factor
Evaluation Results
Evaluated Value COMPANY_HOLIDAY

General

I Mame MonWorkingDiay I
Description
Factor Type Time

Configurations

Factor Identification By Factors
Evaluation By Access

Factor Labeling By Self
Retrieval Method

Validation Method

Figure 24

[331]

Additional Topics

How it works...
The identity of a factor can be assigned by:

e Method
e Constant
e Factors

The process of assigning identity to a factor is named factor identification.

In this recipe, you created two factors (Day and Holiday) whose identities were assigned
by methods and one factor (NonWorkingDay) whose identity was assigned by factors.

Factors can be evaluated when database session is created (By Session), each time factor is
accessed (By Access), and when a database session starts (On Startup). Because you
created factors that can change during a session, you chose evaluation by access.

Factor labeling is relevant for integration with Oracle Label Security.

In step 28, you verified that the factor NonWorkingDay got the value COMPANY_HOLIDAY (in
case when it is SUNDAY and a holiday at the same time). That happened because factors that
are based on other factors get actual value by evaluating identities in the order of their
sorted ASCII identity values and first one that matches is assigned (evaluation stops). In our
case, COMPANY_HOLIDAY was matched, so WEEKEND wasn't evaluated. in general, it is better
to try to avoid overlapping conditions (if possible) because maintenance is easier and the
risk of making a mistake is smaller.

[332]

Additional Topics

There's more...

From Factors page in EM12c verify that you can't delete the factor Holiday because you
use it to resolve identities for the factor NonWorkingDay (error ORA-47030: Factor Holiday
is referred by one or more factor links).

1. Select the factor Holiday and click on the Delete button (see Figure 25).

Factors
Database Vault factor is a context that you define and use in rules that are attached to a rule set which, in turn, can be attached to R
Rules, and Database Vault Secure Application Roles, After you define the factor, the value can be checked using the function DVF.DF$]

Search

Factor Name
The search returns all matches beginning with the string you enter. You can use the wildcard symbol (%) in the search string.

View = Create &g View g7 Edit |$@ Delete []Show Orade defined factors

Factor Name Factor Type Evaluation Options Identified By Audit Options Fail Options

NonWorkingDay Time By Access By Factaors Always Show Error Message
.I-lih'y Time By Access By Method Always Show Error Message

Day Time By Access By Method Never Show Error Message

Rows Selected 1 Columns Hidden 1

Figure 25

2. Click on the button Yes (see Figure 26).

/1, Confirmation

Are you sure you want to delete the selected factor?
Factor Holiday is selected for deletion
e (16

Figure 26

[333]

Additional Topics

3. You will receive an error message (see Figure 27).

@ Error

CRA-47023: error deleting Factor Holiday, ORA-47030: Factor Holiday is referred by one or more factor links.
ORA-06512; at "DVSYS.DBMS_MACUTL™, line 42

ORA-06512; at "DVSYS.DBMS_MACUTL", line 398

ORA-06512; at "DVSYS.DBMS_MACADM®, line 1071

CRA-47030: Factor Holiday is referred by one or mare factor links.

ORA-06512; at line 1

CRA-47023: error deleting Factor Holiday, ORA-47030: Factor Holiday is referred by one or more factor links.
ORA-06512; at "DVSYS.DBMS_MACUTL™, line 42

ORA-06512; at "DVSYS.DBMS_MACUTL", line 398

ORA-06512; at "DVSYS.DBMS_MACADM®, line 1071

ORA-47030: Factor Holiday is referred by one or more factor links.

ORA-06512: at line 1

orade.sysman.emSDK. app. exception. EMSystemException

Close

Figure 27

When you create the factor PL/SQL, a function is created in schema DVF with the name
F$<factor_name>.

See also

¢ An Oracle official guide Database Vault Administrator’s Guide - Chapters: 8, 16, and
19.

Using TDE in a multitenant environment

In this recipe, you will perform different operations using Transparent Data Encryption in a
multitenant environment.

[334]

Additional Topics

Getting ready

It is assumed that:

¢ You have two container databases (the multitenant architecture), version 12.1.0.2
in the same host.

* You have at least one pluggable database in each container database
¢ You have sample schemes installed.

How to do it...

1. Enter the following text into your sqglnet .ora file located in a network/admin
directory of your oracle home (for example,
/ul0l/app/oracle/product/12.1.0/dbhome_1)

ENCRYPTION_WALLET_LOCATION=
(SOURCE=
(METHOD=FILE)
(METHOD_DATA=
(DIRECTORY=/u01/app/oracle/admin/$ORACLE_SID/wallet)))
2. Change your environment to the first container database (for example, cdb1):

[oracle@host01 ~]$. oraenv
ORACLE_SID = [oracle] ? cdbl

3. Connect as a user with the DBA role (for example, system), create a new user (for
example, c##tdedba) to manage key management administration, and grant him
appropriate privileges:

$ sglplus system
SQL> create user c##tdedba identified by oraclel23 container=all;

SQL> grant administer key management to c##tdedba container=all;
SQL> grant create session to c##tdedba container=all;
SQL> grant select any dictionary to c##tdedba container=all;

SQL> grant set container to c##tdedba container=all;

[335]

Additional Topics

4. Connect as a user c##tdedba and create a keystore:

SQL> connect c##tdedba/oraclel23
SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
"/u0l/app/oracle/admin/cdbl/wallet” identified by oraclel;

5. See information about the previously created keystore and open it:
SQL> select wallet_type,wrl_type,status from v$encryption_wallet;
WALLET_TYPE WRL_TYPE STATUS
UNKNOWN FILE cLoseo
SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
oraclel;
SQL> select wallet_type,wrl_type,status from v$encryption_wallet;
WALLET_TYPE WRL_TYPE STATUS
PASSWORD FILE OPEN_NO_MASTER_KEY
SQL> select con_id, tag, key id from v$encryption_keys;
no rows selected

6. Create a new master key for root container:

SQL> ADMINISTER KEY MANAGEMENT SET KEY USING TAG “description:
root key" IDENTIFIED BY oraclel WITH BACKUP;

SQL> select con_id, tag, key_ id from v$encryption_keys;

CON_ID TAG KEY_ID

@ description: root key AQInxR2++E8yvZhvZVrcSaQAAAAAAMMAAAAAAAAAAAAAANAAAAAA

Figure 28

SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

WALLET_TYPE WRL_TYPE STATUS

Additional Topics

7. Connect to a pluggable database (for example, pdb11) inside the first container
database and check availability of a keystore:

SQL> alter session set container=pdbll;
SQL> select wallet_type,wrl_type,status from v$encryption_wallet;
WALLET_TYPE WRL_TYPE STATUS

UNKNOWN FILE CLOSED
8. Open a keystore, check availability of a master key, and create one:
SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED
BY oraclel;
SQL> select wallet_type,wrl_type,status from v$encryption_wallet;
WALLET_TYPE WRL_TYPE STATUS

PASSWORD FILE OPEN_NO_MASTER_KEY

SQL> select con_id, tag, key_ id from v$encryption_keys;
no rows selected

SQL> ADMINISTER KEY MANAGEMENT SET KEY USING TAG “"description:
pdbll key® IDENTIFIED BY oraclel WITH BACKUP;

SQL> select con_id, tag, key_ id from v$encryption_keys;

CON_ID TAG KEY_ID

description: pdbll key AeC4mgHSWU+mvx]EMBNK71CAAAMAAAAAAAAAAANAAAAAANAAAAAA

Figure 29

SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

WALLET_TYPE WRL_TYPE STATUS

[3371]

Additional Topics

9. Change environment for the second container database (for example, cdb2):

[oracle@hostO01l ~]$. oraenv
ORACLE_SID = [cdbl] ? cdb2

10. Connect as a user with the sysdba privileges, create a new user (for example,
c##tdedba), and grant him appropriate privileges:

$ sqglplus / as sysdba
SQL> create user c##tdedba identified by oracle321 container=all;
SQL> grant syskm to c##tdedba container=all;

11. Connect as a user c##tdedba (as syskm), create a keystore, and open it for all
pluggable databases:

SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
"/u0l/app/oracle/admin/cdb2/wallet”™ identified by oracle2;

SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

WALLET_TYPE WRL_TYPE STATUS

UNKNOWN FILE CLOSED

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
oracle2 container=all;

SQL> select wallet_type,wrl_type,status from v$encryption_wallet;
WALLET_TYPE WRL_TYPE STATUS

PASSWORD FILE OPEN_NO_MASTER_KEY
12. Create new master keys for all pdbs:
SQL> ADMINISTER KEY MANAGEMENT SET KEY USING TAG “description:

all pdbs® IDENTIFIED BY oracle2 WITH BACKUP container=all;
SQL> select con_id, tag, key_id from v$encryption_keys;

CON_ID TAG KEY_ID

@ description: all pdbs AZ@71jU0QUEcv/wWRUUgzoBEAAAAAAAAAAAAAAAAAAAAAAAAANAAN
® description: all pdbs AbwHF8tkj@+ov9/HG430Y1UAAAAAAAAAAAAAAAAAAAAANAAANAAN

Figure 30

[338]

Additional Topics

13. Connect to a pluggable database as a SYS user and check keystore and masterkey:
SQL> connect / as sysdba
SQL> alter session set container=pdb21;
SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

WALLET_TYPE WRL_TYPE STATUS

@ description: all pdbs AZ@71jUOQUBcv/WRUUGgZzOBEAAAAANNAAAAAMAAANAAAAANANAAANN

Figure 31
14. Change your environment to the first container database (for example, cdb1):

[oracle@host01l ~]$. oraenv
ORACLE_SID = [cdb2] ? cdbl

15. Connect to the pluggable database as a user who has the DBA role (for example,
c##zoran), create a test table with one encrypted column, and insert some data:

$ sqglplus c##zoran@pdbl1l

SQL> create table hr.enc_tbl(a int, b varchar2(20) encrypt);
SQL> insert into hr.enc_tbl values (1, “valuel®);

SQL> insert into hr.enc_tbl values (2, “value2®);

SQL> commit;

SQL> select * from hr.enc_tbl;

A B
1 valuel
2 value2

[339]

Additional Topics

16. Export a master key:

SQL> ADMINISTER KEY MANAGEMENT EXPORT KEYS WITH SECRET "secretl™
to "/home/oracle/keys.exp™ IDENTIFIED BY oraclel;

17. Close the pluggable database pdb11 and unplug it:
SQL> alter pluggable database pdbll close immediate;
SQL> alter pluggable database pdbll unplug into
"/home/oracle/pdbll._xml*;
SQL> drop pluggable database pdbll keep datafiles;

18. Change your environment to the second container database (for example, cdb2):

[oracle@host01l ~]$. oraenv
ORACLE_SID = [cdbl] ? cdb2

19. Connect to the second container database (for example, cdb2) as a sys user and
plug the previously unplugged database (pdb11):

$ sqglplus / as sysdba
SQL> create pluggable database pdbll using "/home/oracle/pdbll._xml*;

20. Open the pluggable database:
SQL> alter pluggable database pdbll open;
Warning: PDB altered with errors.

SQL> show pdbs

CON_ID CON_NAME OPEN MODE RESTRICTED
2 PDB$SEED READ ONLY NO
3 PDB21 READ WRITE NO
4 PDB11 READ WRITE YES

[340]

Additional Topics

21. Connect to pdb11, as a SYS user, open the keystore, and try to select from table
with encrypted column:

SQL> alter session set container=pdbll;
SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
oracle?;
SQL> select * from hr.enc_tbl;
select * from hr.enc_tbl
*
ERROR at line 1:
ORA-28362: master key not found

22. Import the master key for this pluggable database and restart it:
SQL> ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET
"secretl" FROM "/home/oracle/keys.exp®™ IDENTIFIED BY oracle2 WITH
BACKUP;
SQL> alter pluggable database pdbll close immediate;
SQL> alter pluggable database pdbll open;

SQL> show pdbs

CON_ID CON_NAME OPEN MODE RESTRICTED
2 PDBS$SEED READ ONLY NO
3 PDB21 READ WRITE NO
4 PDB11 READ WRITE NO

23. Connect to the pluggable database (pdb11), open the keystore, and select from
table with encrypted column:

SQL> alter session set container=pdbll;

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
oracle?;

SQL> select * from hr.enc_tbl;

A B
1 valuel
2 value2

[341]

Additional Topics

How it works...

In steps 1-6, the creation of keystore and master key in root container is shown. In step 7-8,
the opening and creation of master key in the pluggable database is shown. There is only
one keystore per entire container database, but that keystore contains multiple master keys
(root container has its own master key, as well as every pluggable database in which
transparent data encryption is used). In steps 9-13, another way of creation of the keystore
and master key is shown (in the second container database). The user with the sYSkKM
system privilege is used, and opening of keystore as well as the creation of master keys are
done by using container=all clause. This way, we are opening a keystore and creating
master keys in all pluggable databases.

Because there is only one keystore per container database but multiple master keys, if
database needs to be unplugged and plugged into another container database, a master key
needs to be exported and imported into the target database also. In steps 16 and 17, we are
exporting a master key and unplugging the database. In steps 18-20, we are plugging this
database into another container database (cdb2). When we try to open the pluggable
database in step 20, we get an error (because the master key is missing). The pluggable
database is opened but in restricted mode. We can ignore this error for now and connect to
that pluggable database as SYs user, but if we try to select from table that has encrypted
columns, we get an error because the master key is missing. In step 22, we are importing a
master key (that we exported in step 16). After importing a master key, we are restarting
that pluggable database (now we can see that it can be opened without errors). And when
we try to select from table that has encrypted columns, everything works perfectly.

See also

e Chapter 8, Transparent Data Encryption (in this book) and official Oracle
documentation Oracle Advanced Security Guide.

[342]

12

Appendix — Application
Contexts

In this chapter, we will cover the following tasks:

¢ Exploring and using built-in contexts
¢ Creating an application context

e Setting application context attributes
¢ Using an application context

Introduction

An application context is a memory container that holds a set of key-value pairs. You can
think of an application context as an array of attributes where every attribute has a name
(key) and value. Also, an application context is a namespace because in different application
contexts, attributes that have the same name can exist (and there is no correlation between
those attributes; they can store the same or different value).

Appendix — Application Contexts

To implement a local application context, you should complete steps shown in Figure 1 (the
order of steps 1 and 2 is not important).

Create an application context

Create a PL/SQL package that sets the context

Set application context attributes by calling the package

Use application context attributes in your application

Figure 1 — The steps to implement a local application context

Exploring and using built-in contexts

The USERENV application context is a built-in context that contains information about the
current session. In this recipe, you'll learn to retrieve values from built-in contexts.

Getting ready

To complete this recipe, you'll need an existing user who can get values from built-in
namespaces by using the sYS_CONTEXT function (for example, user maja).

[344]

Appendix — Application Contexts

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
user maja):

$ sqlplus maja

2. Find the name of host machine from which the client has connected to the
database.

50L> select sys_context('USERENV','HOST') from dual;

SYS CONTEXT('USERENV', 'HOST')

dbhost.orapassion.com

Figure 2 — The name of the client host machine

3. Find the name of the user who logged on to the database.

S0L= select sys context('USERENV','SESSION_USER') from dual;

SYS_CONTEXT('USERENV', 'SESSION USER')

Figure 3 — The name of the session user

4. Find the name of the program used for the database session.

SQL> SELECT sys_context('USERENV', 'CLIENT_PROGRAM NAME') FROM dual;

SYS_CONTEXT('USERENV','CLIENT PROGRAM_ NAME')

sqlplus@dbhost.orapassion.com (TNS V1-V3)

Figure 4 — The name of the client program

[345]

Appendix — Application Contexts

5. Find unified audit session ID.

S0L= select sys_context ('USERENV','UNIFIED_AUDIT SESSIONID') from dual;

SYS CONTEXT('USERENV',"UNIFIED AUDIT SESSIONID')

2303811715

Figure 5 — A unified audit session ID

How it works...

In steps 2-5, you used the sYS_CONTEXT function to get values of several parameters from
the USERENV context. You can use that function in both SQL and PL/SQL statements. It is
expected that your results will differ from those shown in Figures 2-5, because they are
system-specific.

The UNIFIED_AUDIT_SESSIONID attribute (parameter) is introduced in Oracle Database
12.1.0.2. The value of that parameter is unified audit session ID if the database uses
unified auditing mode or mixed auditing mode, and NULL if the database uses traditional
auditing (see Figure 6).

ATTTRIBUTE VALUE

unified audit session 1D, unified or mixed
auditing mode

UNIFIED_AUDIT_SESSIONID = —

NULL, traditional auditing mode

Figure 6 — The value of the UNIFIED_AUDIT_SESSIONID

Note that in mixed auditing mode, the UNIFIED_AUDIT_SESSIONID value
in the USERENV context is different from the SESSTIONID value.

[346]

Appendix — Application Contexts

There's more...

Another built-in context is SYS_SESSION_ROLES. You can use it to check whether a
specified role is currently enabled for the session. For example, you'll create the test_role
role, grant select privilege on hr.employees table, and grant the role to an existing user
(for example, zoran). Afterwards, you'll verify that zoran has the test_role role by using
the sYS_CONTEXT function. The example is shown in Figure 7.

SO0L> create role test role;

Role created.

S0L> grant select on hr.employees to test role;

Grant succeeded.

SOL> grant test role to zoran;

Grant succeeded.

SQL> select sys context('SYS SESSION ROLES','TEST ROLE') from dual;
SYS CONTEXT('SYS SESSION ROLES','TEST ROLE')

SQL= connect zoran

Enter password:

Connected.

SQL> select sys context('SYS SESSION ROLES','TEST ROLE') from dual;

SYS CONTEXT('SYS SESSION ROLES','TEST ROLE')

Figure 7 — Using the SYS_SESSION_ROLES namespace

When working in the multitenant environment, some useful attributes are CON_ID,
CON_NAME, and CDB_NAME.

See also

¢ The full list of attributes that exist in the USERENV namespace is available in the
official Oracle documentation-Oracle Database SQL Language Reference, Chapter 7,
The SYS_CONTEXT function.

[347]

Appendix — Application Contexts

Creating an application context

In this recipe, you'll create a local application context (for example, sh_client). In the next
recipes, you will use it to store clients' identifiers.

Getting ready

To complete this recipe, you'll need an existing user who can create an application context
(it needs the CREATE ANY CONTEXT privilege or a DBA role), for example, the user maja.

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
user maja).

$ sqlplus maja
2. Create a local application context (for example, sh_client).

The PL/SQL package that will be used to set application context attributes
doesn't have to exist at this time, but you have to specify its name.

SQL> CREATE CONTEXT <context_name> USING <PL/SQL_package_name>;

SQOL> CREATE CONTEXT sh client USING sh ctx pkg;

Context created.

Figure 8 — Creating an application context

[348]

Appendix — Application Contexts

How it works...

In step 2, you created application context sh_client and defined that the PL/SQL package
sh_ctx_pkg will be used to create and set application context attributes. At this moment,
attributes aren't set in the application context.

Context names must be unique within the database.

Setting application context attributes

In this recipe, you'll create the PL/SQL package (for example, sh_ctx_pkg) that will set
application context attributes for the application context you created in the previous recipe
(for example, sh_client). Also, you'll create a logon trigger.

Getting ready

To complete this recipe, you'll need an existing user who can create sh_ctx_pkg. Make
sure that the user has direct privileges on the sh.customers table (even if he/she has a
DBA role) so that you don't receive this message in SQL*Plus: Warning: Package Body
created with compilation errors. orerror Table or view doesn't exist in
SQL Developer (for more information, see Chapter 3, PL/SQL Security).

How to do it...

1. Connect to the database as a user who has appropriate privileges (for example,
user maja):

$ sqlplus maja

[349]

Appendix — Application Contexts

2. Create the PL/SQL package that will set the cust_id attribute with the value,
which is equal to the value of the cust_id column when the following statement
is evaluated: UPPER (cust_email) = (SYS_CONTEXT ('USERENV',
"SESSION_USER') || '@COMPANY.EXAMPLE.COM').In case session user is not
a customer, set the value for cust_id attribute in the application context to .

SOL> CREATE OR REPLACE PACKAGE sh ctx pkg IS
2 PROCEDURE set cust_id;
3 END;
4/

Package created.

SOL> CREATE OR REPLACE PACKAGE BODY sh ctx pkg IS
2 PROCEDURE set cust_id

3 IS

4 v cust id NUMBER;

5 BEGIN

6 SELECT cust_id INTO v_cust_id FROM sh.customers

7 WHERE UPPER(cust_email) = (SYS_CONTEXT('USERENV','SESSION USER') || '@COMPANY.EXAMPLE.COM');

8 DBMS SESSION.SET CONTEXT('sh client','cust id',v cust id};

9 EXCEPTION

10 WHEN no_data found THEN

11 DBMS SESSION.SET CONTEXT('sh client’,'cust id',0);

12 END;

13 END;

14

Package body created.

Figure 9 — Creating a PL/SQL package

3. Create a logon trigger that calls the sh_ctx_pkg.set_cust_id procedure.

SOL> CREATE OR REPLACE TRIGGER sh_ctx logon
2 AFTER LOGON ON DATABASE

3 BEGIN

4 sh ctx pkg.set cust id();

5 END;

6 /

Trigger created.

Figure 10 — A logon trigger

[350]

Appendix — Application Contexts

How it works...

In step 3, you created a logon trigger so that every user who connects to the database is
going to have an application context set. This step is optional because your application can
set the application context by calling the same procedure.

There's more...

It is very important to note that if you try to set or change key-value pairs outside the
package you specified when you created application context, you will receive the error
insufficient privileges (see Figure 11).

SQL> exec DBMS SESSION.SET CONTEXT('sh client®,'cust id',101)
BEGIN DBMS SESSION.SET CONTEXT('sh client','cust id',181); END;

ERROR at line 1:

ORA-81831: insufficient privileges
ORA-06512: at "SYS.DBMS SESSION", line 122
ORA-86512: at line 1

Figure 11 — An error message

See also

® You can see Chapter 3, PL/SQL Security.

Using an application context

In this recipe, you'll see one possible usage (in SQL) of the application contexts. Some other
usages are shown in other parts of the book, and their references are given in the See
also section of this recipe.

[351]

Appendix — Application Contexts

Getting ready

Create a new user (for example, sofia). Make sure that his or her e-mail in the format
user@company .example.comis unique. Grant him or her privileges: create session
and select on sh.customers table.

SQL= create user sofia identified by Ql4be7NP;
User created.

SQL= grant create session to sofia;

Grant succeeded.

SQL> grant select on sh.customers to sofia;

Grant succeeded.

Figure 12 — New user

Insert data about him or her into the sh.customers table.

S0L= insert into sh.customers values (8@@e@,'Sofia’,'smith','F',1979, 'Married','Albert Em
bankment 19',°SE1 7HD', 'London',11111,'England’,'1111',5279@,'1111111",'12",3@, 'Sofia@com
pany.example.com',16008,1,1,sysdate,sysdate,'T");

1 row created.

SQL> commit;

Figure 13 — The new data in sh.customers

How to do it...

1. Connect to the database as a newly created user (for example, user sofia):

$ sqlplus sofia

[352]

Appendix — Application Contexts

2. Verify that the user (for example, sofia) can access all data in the

sh.customers table.

SQL> SELECT COUNT(*) FROM SH.CUSTOMERS;

COUNT(*)

Figure 14 — The entire data in sh.customers

3. Verify that when executing the following statement, he or she (for example,
sofia) can view only his or her data.

SQL> SELECT COUNT(*) FROM SH.CUSTOMERS
2 WHERE cust id = sys context('sh client','cust id'};

COUNT (*)

Figure 15 — Only data about newly created user

How it works...
In step 3, a simple way how an application can leverage application contexts in SQL
statements was shown.

See also

® You can refer to Chapter 4, Virtual Private Database, Chapter 5, Data Redaction,
and Chapter 10, Unified Auditing.

[3531]

A

accessible by
used, for restricting access to Program Units 86,
87,88
application context attributes
setting 349, 350, 351
application context
about 343
auditing 307, 308
creating 348, 349
implementing 344
using 351, 352, 353
audit policies
audited data, viewing 305, 306
creating 301, 302, 303
disabling 310, 311
dropping 310, 311
enabling 303, 304, 305
information, finding 305, 306
audit trail
purging 309, 310
authentication 7
auto-login keystore 235, 236

B

built-in context
using 344, 345, 346, 347

C

code base access control
about 72
using 82, 83, 84, 85
working 84
column encryption
existing column, encrypting 235
existing column, encrypting 233, 234

Index

new column, adding 227

new table, creating 228,229, 230
column-level VPD policy

about 103

creating 103, 104, 105

working 106
combined analysis policy

creating 193,194
common privilege

about 60

creating 62

granting 60, 61, 65
common role

creating 54, 55

creating, OEM 12c 57, 58

granting 60, 61, 62, 65
common user

creating 47, 48

creating, OEM 12c used 49, 50, 51

rules 49
container database (CDB) 45
context analysis policy

creating 189, 190, 191,192
context

setting, as driving context 108, 109
cyphertexts 231

D

data dictionary seperation 46
data guard tasks 41
Data Pump operations
auditing 298,299
Data Redaction 168
data redaction policies
users, exempting from 161, 162
data
exporting in Oracle Database Vault environment,

Oracle Data Pump used 312, 313, 314, 315,
316
database administrators (dba) role 8
database analysis policy
creating 183, 185
Database Configuration Assistant (DBCA) 245
database roles
creating 30
using 30
working 31
Database Vault operations
auditing 299, 300
Database Vault reports
running 277,278,279
Database Vault
about 242,243
disabling 280, 281
for implementing, administrators cannot view
data 272,273,274,275,276,277
re-enabling 281, 282, 283
registering 243,244, 245
DBMS_CRYPTO PL/SQL package 218
definer 71
definer's rights procedure
about 71
creating 72, 73
using 73
working 74
Discretionary access control (DAC) 89
driving context
about 90
creating 106, 107

E

EM Express

for creating user 12, 13,14, 15,16
encrypted backups

creating, RMAN used 240, 241
encryption 218

F

factor type 312
factors
creating, in Oracle Database Vault 317, 318,
319, 320, 321, 322,323,324, 325, 326,

[3551

327,328,329,330,331,332,333,334
function parameters
changing, for specified column 150, 151, 152

H

Hardware Security Module (HSM) 221

immediate-write mode 290
invoker 71
invoker's right procedure
about 71
creating 74, 75,76
using 77, 78,79, 80, 81, 82
working 76

K

keystore location

configuring, in sqlnet.ora 221, 222
keystore

creating 222,223,224

opening 222,223,224

L

local privilege
about 65
granting 66, 67
local role
creating 58, 59
creating, OEM 12c used 60
granting 66, 67
local user
creating 52
creating, OEM 12c used 53, 54
rules 53
loss of audit data
checking 289, 290, 291

MAC

about 232

using 230, 231
mandatory realm 246
master encryption key

setting, in software keystore 225, 226
mixed auditing mode 287

O

object privileges, usage
reportingon 207, 208
OEM 12c
used, for creating common user 49, 50, 51
used, for creating local role 60
used, for creating local user 53, 54
Oracle Data Masking 117
Oracle Data Redaction 116, 117
Oracle Database 12¢ 7
Oracle Database 12cR1 Standard Edition (SE)
289
Oracle Database Vault option 181
Oracle Database
multitenant architecture 47
traditional architecture 46
Oracle Enterprise Manager Cloud Control 12¢
used, for managing redaction policies 140, 143,
144
Oracle Enterprise Manager Database Express 12c
(EM Express) 10
Oracle multitenant environment 45
Oracle VPD row-level policies
about 99
creating 99,100, 101,102
Oracle Walllet 221
OS-authenticated users
creating 25, 26
using 25,26

P

partial redaction 128
password profile

creating 8, 9, 10
password-authenticated users

creating 10, 11,12
pluggable database (PDB) 45
policy function

about 90

creating 92, 93, 94, 96, 97

testing 98, 99

working 97

[3561

policy groups
creating 107, 108
policy
adding, togroup 109,110,111,112,113,
114
predefined unified audit policy 288
privilege analysis
about 181
dropping 216
starting 196, 198,199, 202, 204
stopping 196, 198,199,202,204
privileges
effects, of plugging/unplugging operations 67,
68, 69
Program Units
access restricting, with accessible by 86, 87, 88
proxy authentication 28
proxy users
creating 27, 28
using 27, 28

Q

queued-write mode 290

R

random redaction type 133
realm 246
Recovery Manager (RMAN) backups 218
redaction policy
column, adding 152, 153, 154
creating, when using full redaction 119, 120,
121,122,123,124
creating, when using partial redaction 128, 129,
130,131,132,133
creating, when using random redaction 133,
134,135,136, 137
creating, when using regular expression
redaction 137,138,139, 140
default value, changing 125, 126
disabling 154, 155,156,157, 158,159, 160
dropping 154, 155,156, 157,158,159, 160
enabling 154, 155,156,157, 158,159, 160
managing, with Oracle Enterprise Manager Cloud
Control 12c 140, 142,144, 146,147,148,
149,150

redaction
types 118
regular expression redaction 137
rekeying 238, 239
RMAN operations
auditing 295, 296, 297
working 297
RMAN
encryption modes 240
used, for backup and recovery 240,241
role analysis policy
creating 187, 188
roles
effects, of plugging/unplugging operations 67,
68,69
securing 256,257,258, 259, 260, 261
root container 45
rule set
about 264
creating 264, 265, 266
using 267, 268

S

salt
about 232
using 230, 231
secure application role
about 268
behavior, testing 270, 271
creating 268,269
seed 45
sensitive columns
determining 166, 167, 168
sensitive type
creating 164,165,166
sysbackup privilege
about 33
instructions, for database authentication 34
instructions, for OS authentication 35
using 33
working 35, 36, 37
sysdg privilege
about 41
instructions, for database authentication 42
instructions, for OS authentication 42

using 41
working 43
syskm privilege
about 38
instructions, for database authentication 39
instructions, for OS authentication 40
using 39
working 40
system privileges, usage
reportingon 204, 205, 206

T

tablespace encryption 220
tablespace
encrypting 236, 237
transparent data encryption (TDE) keystore 38
Transparent Data Encryption (TDE)
about 218
architecture 221
column 219
tablespace 220
types 219
using, in multitenant environment 334, 335,
336,337,338,339, 340, 341, 342
Transparent Sensitive Data Protection (TSDP)
about 163
implementing 164
transparent sensitive data protection policy
altering 177,178,179
associating, with sensitive type 170, 171
creating 168,169
disabling 171,172,173,174,175,176
dropping 171,172,173,174,175,176
enabling 171,172,173,174,175,176

U

unified auditing

about 284

characteristics 284, 285

enabling 286, 287, 288

predefined unified audit policy 288, 289
unused object privileges

reportingon 210,211
unused privileges

revoking 212,213,215,216

[3571]

unused system privileges
reportingon 209
user account
locking 21, 22,23
user's password
changing 16, 17,18
expiring 23, 24
users
creating, EM Express used 12, 13,14, 15,16
creating, with same credentials on another
database 19, 20, 21
effects, of plugging/unplugging operations 67,
68, 69
exempting, from data redaction policies 161,
162

for creating audit policies 291, 292, 293, 294,
295

for viewing audit data 291, 292,293, 294,
295

preventing, from executing specific command on
specific object 262, 263

preventing, from exercising system privileges on
schema objects 246,248,249, 250, 251,
252,253,254

\'

Virtual Private Database (VPD) 89
VPD policies
users, exempting from 114, 115

	Cover

	Copyright

	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basic Database Security

	Introduction
	Creating a password profile
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating password-authenticated users
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to create a user using EM Express

	See also

	Changing a user's password
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a user with the same credentials on another database
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Locking a user account
	Getting ready
	How to do it…
	How it works…
	See also

	Expiring a user's password
	Getting ready
	How to do it…
	How it works…
	See also

	Creating and using OS-authenticated users
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating and using proxy users
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating and using database roles
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	The sysbackup privilege – how, when, and why span /should /spanspanyou/span use it?
	Getting ready
	How to do it…
	Database authentication
	OS authentication

	How it works…
	There's more…
	See also

	The syskm privilege – how, when, and why span /should /spanspanyou/span use it?
	Getting ready
	How to do it…
	Database authentication
	OS authentication

	How it works…
	There's more…
	See also

	The sysdg privilege – how, when, and why span /should /spanspanyou/span use it?
	Getting ready
	How to do it…
	Database authentication
	OS authentication

	How it works…
	There's more…
	See also

	Chapter 2: Security Considerations in Multitenant Environment

	Introduction
	Creating a common user
	Getting ready
	How to do it…
	How it works…
	Rules/guidelines for creating and managing common users

	There's more…
	How to create a common user using OEM 12c

	Creating a local user
	Getting ready
	How to do it…
	How it works…
	Rules/guidelines for creating and managing local users

	There's more…
	How to create a local user using OEM 12c

	Creating a common role
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to create a common role using OEM 12c

	Creating a local role
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to create a local role using OEM 12c

	Granting privileges and roles commonly
	Getting ready
	How to do it…
	How it works…

	Granting privileges and roles locally
	Getting ready
	How to do it…
	How it works…

	Effects of plugging/unplugging operations on users, roles, and privileges
	Getting ready
	How to do it…
	How it works…

	Chapter 3: PL/SQL Security

	Introduction
	Creating and using definer's rights procedures
	Getting ready
	How to do it…
	How it works…

	Creating and using invoker's right procedures
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using span /code-based access control/span
	Getting ready
	How to do it…
	How it works…
	There's more…

	Restricting access to program units by using span /accessible by/span
	Getting ready
	How to do it…
	How it works…

	Chapter 4: Virtual Private Database

	Introduction
	Creating different policy functions
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating Oracle Virtual Private Database row-level policies
	Getting ready
	How to do it…
	There's more…
	See also

	Creating column-level policies
	Getting ready
	How to do it…
	How it works…

	Creating a driving context
	Getting ready
	How to do it…

	Creating policy groups
	Getting ready
	How to do it…

	Setting context as a driving context
	Getting ready
	How to do it…

	Adding policy to a group
	Getting ready
	How to do it…

	Exempting users from VPD policies
	Getting ready
	How to do it…

	Chapter 5: Data Redaction

	Introduction
	Creating a redaction policy when using full redaction
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to change the default value

	See also

	Creating a redaction policy when using partial redaction
	How to do it…
	How it works…
	There's more…

	Creating a redaction policy when using random redaction
	Getting ready
	How to do it…
	How it works…

	Creating a redaction policy when using regular expression redaction
	Getting ready
	How to do it…
	How it works…

	Using Oracle Enterprise Manager Cloud Control 12c to manage redaction policies
	Getting ready
	How to do it…

	Changing the function parameters for a specified column
	Getting ready
	How to do it…

	Add a column to the redaction policy
	Getting ready
	How to do it…
	How it works…
	See also

	Enabling, disabling, and dropping redaction policy
	Getting ready
	How to do it…
	See also

	Exempting users from data redaction policies
	Getting ready
	How to do it…
	How it works…

	Chapter 6: Transparent Sensitive Data Protection

	Introduction
	Creating a sensitive type
	Getting ready
	How to do it…
	How it works…
	There's more…

	Determining sensitive columns
	Getting ready
	How to do it…
	How it works…

	Creating transparent sensitive data protection policy
	Getting ready
	How to do it…
	How it works…
	See also

	Associating transparent sensitive data protection policy with sensitive type
	Getting ready
	How to do it…
	There's more…
	See also

	Enabling, disabling, and dropping policy
	Getting ready
	How to do it…
	How it works…
	There's more…

	Altering transparent sensitive data protection policy
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 7: Privilege Analysis

	Introduction
	Creating database analysis policy
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating role analysis policy
	Getting ready
	How to do it…
	There's more…
	See also

	Creating context analysis policy
	Getting ready
	How to do it…
	There's more…
	See also

	Creating combined analysis policy
	Getting ready
	How to do it…
	There's more…
	See also

	Starting and stopping privilege analysis
	Getting ready
	How to do it…
	How it works…
	There's more…

	Reporting on used system privileges
	Getting ready
	How to do it…
	There's more…

	Reporting on used object privileges
	Getting ready
	How to do it…
	There's more…

	Reporting on unused system privileges
	Getting ready
	How to do it…
	There's more…

	Reporting on unused object privileges
	Getting ready
	How to do it…
	There's more…

	How to revoke unused privileges
	How to do it…
	There's more…

	Dropping the analysis
	Getting ready
	How to do it…
	There's more…

	Chapter 8: Transparent Data Encryption

	Introduction
	Configuring keystore location in sqlnet.ora
	How to do it…

	Creating and opening the keystore
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting master encryption key in software keystore
	Getting ready
	How to do it…
	There's more…
	See also

	Column encryption – adding new encrypted column to table
	Getting ready
	How to do it…

	Column encryption – creating new table that has encrypted column(s)
	Getting ready
	How to do it…

	Using salt and MAC
	Getting ready
	How to do it…
	How it works…
	There's more…

	Column encryption – encrypting existing column
	Getting ready
	How to do it…
	There's more…

	Auto-login keystore
	Getting ready
	How to do it…
	How it works…

	Encrypting tablespace
	Getting ready
	How to do it…
	How it works…
	There's more…

	Rekeying
	Getting ready
	How to do it…
	How it works…

	Backup and Recovery
	How to do it…
	There's more…

	Chapter 9: Database Vault

	Introduction
	Registering Database Vault
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Preventing users from exercising system privileges on schema objects
	Getting ready
	How to do it…
	There's more…
	See also

	Securing roles
	Getting ready
	How to do it…
	There's more…
	See also

	Preventing users from executing specific command on specific object
	How to do it…
	How it works…

	Creating a rule set
	Getting ready
	How to do it…
	There's more…

	Creating a secure application role
	How to do it…
	There's more…
	See also

	Using Database Vault to implement that administrators cannot view data
	How to do it…
	There's more…

	Running Oracle Database Vault reports
	How to do it…

	Disabling Database Vault
	How to do it…

	Re-enabling Database Vault
	How to do it…

	Chapter 10
: Unified Auditing
	Introduction
	Enabling Unified Auditing mode
	Getting ready
	How to do it…
	How it works…
	Predefined unified audit policies

	There's more…
	See also

	Configuring whether loss of audit data is acceptable
	Getting ready
	How to do it…
	How it works…

	Which roles do you need to have to be able to create audit policies and to view audit data?
	Getting ready
	How to do it…
	How it works…
	There's more…

	Auditing RMAN operations
	Getting ready
	How to do it…
	How it works…
	See also

	Auditing Data Pump operations
	Getting ready
	How to do it…
	See also

	Auditing Database Vault operations
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating audit policies to audit privileges, actions and roles under specified conditions
	Getting ready
	How to do it…
	How it works…
	See also

	Enabling audit policy
	Getting ready
	How to do it…
	How it works…

	Finding information about audit policies and audited data
	Getting ready
	How to do it…

	Auditing application contexts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Purging audit trail
	Getting ready
	How to do it…
	How it works…
	There's more…

	Disabling and dropping audit policies
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 11
: Additional Topics
	Introduction
	Exporting data using Oracle Data Pump in Oracle Database Vault environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating factors in Oracle Database Vault
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using TDE in a multitenant environment
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 12: Appendix – Application Contexts

	Introduction
	Exploring and using built-in contexts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating an application context
	Getting ready
	How to do it…
	How it works…

	Setting application context attributes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using an application context
	Getting ready
	How to do it…
	How it works…
	See also

	Index

