
www.allitebooks.com

http://www.allitebooks.org

Oracle Database 12c Security
Cookbook

Secure your Oracle Database 12c with this valuable Oracle
support resource, featuring more than 100 solutions to the
challenges of protecting your data

Zoran Pavlović
Maja Veselica

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle Database 12c Security Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1270516

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-212-3

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Zoran Pavlović
Maja Veselica

Project Coordinator
Shweta H. Birwatkar

Reviewers
Gokhan Atil
Dmitri Levin
Osama Mustafa
Arup Nanda
Kenneth Roth

Proofreader
Safis Editing

Commissioning Editor
Kevin Colaco

Indexer
Hemangini Bari

Acquisition Editor
Kevin Colaco

Graphics
Kirk D'Penha

Content Development Editors
Neeshma Ramakrishnan
Deepti Thore

Production Coordinator
Shantanu N. Zagade

Technical Editor
Gaurav Suri

Cover Work
Shantanu N. Zagade

Copy Editor
Dipti Mankame

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Zoran Pavlović has worked on various complex database environments including RAC,
ASM, Data Guard, GoldenGate, and so on. Areas of his expertise are security,
performance/SQL tuning and high availabilty/disaster recovery of Oracle database. He has
been working as an instructor for Oracle University since 2010 and during that time he has
trained more than 200 students in Europe. In the last couple of years, Zoran has also been
working on projects for Oracle Consulting. He is an Oracle ACE and he has been featured
speaker/author at many conferences/magazines. He was actively engaged in beta testing
Oracle Database 12c. Currently, Zoran is working as an Oracle Technical Architect in
Parallel d.o.o. Belgrade.

I would like to take this opportunity to acknowledge some important people in my life who
continuously inspire and support me. First, I want to say thank you to my parents Milenko and
Stanojka Pavlovic, for everything they taught me, and for all the support they gave me during all
these years. Second, I would like to say thank you to my family and my good friends, who helped me
become a better person and a better professional. I am very thankful to our excellent team of technical
reviewers: Arup Nanda, Gokhan Atil, Dmitri Levin, Osama Mustafa, and Kenneth Roth for their
great suggestions and a very helpful feedback. I am also very thankful to Maja Veselica (it was a
pleasure writing this book with you), all the editors, and everyone involved in this book.

www.allitebooks.com

http://www.allitebooks.org

Maja Veselica, MSc in software engineering, is currently working for Parallel d.o.o.,
Belgrade, as an Oracle Database consultant (security, performance tuning, and so on). She
has been working as an instructor for Oracle University since 2010. In the last couple of
years, she has also been working for Oracle Consulting. Also, Maja is a member of Oracle
ACE Program and has more than 20 Oracle certificates. She enjoys (beta) testing Oracle
products and participating in other Oracle-related activities.

This is the first book I've written, and because of that, it will always be special to me. I would like to
thank my entire family and friends for their patience and support. I am especially grateful to my
parents, Mirko and Sanja Veselica, who informally reviewed most parts of the book, and to my uncle
Dušan, aunt Zora, and my best friend Mirjana Marković for very creative suggestions.

I am very thankful to the technical reviewers: Arup Nanda, Gokhan Atil, Dmitri Levin, Osama
Mustafa, and Kenneth Roth for spending their spare time reviewing this book and for providing us
with very valuable feedback (corrections, suggestions, ideas, and opinions). Also, this book couldn't
have been written without the Packt Publishing team - thank you all!

Zoran, I always enjoy working with you. Hopefully someday, we'll write another book together.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers
Gokhan Atil is an Oracle ACE Director and DBA team lead at Bilyoner.com in Istanbul,
Turkey. He has more than 15 years of experience in the IT industry, working with Oracle,
PostgreSQL, Microsoft SQL Server, MySQL, and NoSQL databases. He has a strong
background in software development and UNIX systems. Gokhan is an Oracle Certified
Professional (OCP), and he specializes in high availability solutions, performance tuning,
and monitoring tools.

Gokhan is a founding member and current vice president of Turkish Oracle User Group
(TROUG). He's also a member of Independent Oracle User Group (IOUG). Gokhan has
presented at various conferences, and he is a coauthor of Expert Oracle Enterprise Manager
12c book.

Gokhan shares his experience of working with Oracle products by blogging at
www.gokhanatil.com since 2008 and on Twitter with the handle @gokhanatil.

Dmitri Levin has been working as a database administrator for more than 20 years.

His areas of interest include the database design, replication, and performance tuning.
Dmitri has spoken at several national and international conferences.

He is currently working as senior database architect and administrator at alphabroder co.

Dmitri has an MS degree in Mathematics from St. Petersburg University, Russia, Oracle
Database 11g OCA, and MS SQL Server 2012 certified DBA.

He can be reached at d_levin@hotmail.com.

www.allitebooks.com

http://www.gokhanatil.com
http://www.allitebooks.org

Osama Mustafa (Oracle ACE Director) has progressive experience in the Oracle products
community. He recently served as an Oracle DBA team leader and is certified in Oracle
products, such as Fusion middleware, and is a database professional, Oracle Certified
Implementation Specialist, and certified Solaris System Administrator. He loves to share his
learning with the Oracle community, so when he is not delivering an Oracle-related session,
he spends a lot of his time participating in OTN (Oracle Technology Network) discussion
forums.

Osama Mustafa is a popular speaker at many Oracle conferences around the world. He is
also the President and Director of JAOUG (Jordan Amman Oracle User Group, which is the
first group in Jordan). He worked as an Oracle database developer and Oracle database
administrator, and now he is a Fusion middleware security specialist and certified in
multiple oracle products.

In addition to this, Osama is a volunteer in Oracle User Group, an author for Oracle
penetration testing books, and a reviewer for Oracle books such as Oracle Data Guard 11gR2
Administration Beginner's Guide and Oracle 11g Anti-hacker's Cookbook. He
also organizes RAC Attack around the world, publishes online articles on his blog
https://osamamustafa.blogspot.com, and his articles are published in Oracle Magazine and
OTech magazine. Osama Mustafa is active on Twitter as @osamaoracle and his blog.

First and foremost, I would like to thank my parents and my family for allowing me to follow my
ambitions throughout my childhood and for standing beside me throughout my career. Special thanks
to the girl who changed my life for the better and taught me a lot of things in life.

They have all been the inspiration and motivation for continuing to improve my knowledge and move
my career forward and having the patience with me for having taken yet another challenge, which
decreases the amount of time I can spend with them, and I hope that one day they can understand
why I spent so much time in front of my computer.

Thanks to my friends and Oracle community friends around the world who support me and guide me
to be the person I am today.

www.allitebooks.com

http://www.allitebooks.org

Arup Nanda has been an Oracle DBA for more than 20 years with experience spanning all
aspects from modeling to performance tuning and Exadata. He gives speeches frequently;
he has authored about 500 articles and coauthored 5 books. He also blogs at
arup.blogspot.com and mentors new and seasoned DBAs. He won the Oracle's DBA of the
Year in 2003 and Enterprise Architect of the Year awards in 2012. He is also an Oracle ACE
director and a member of Oak Table Network.

He is the author of Oracle Privacy Security Auditing, Rampant TechPress (2005), Oracle PL/SQL
for DBAs, O'Reilly (2005), Oracle 10g New Features, Oracle Press (2007), Oracle RMAN Recipes,
Apress (2007 and 2013), Expert Oracle Practices, Apress (2013), and Expert PL/SQL Practices,
Apress (2014). He has reviewed many books but prefers not to mention all of them here due
to lack of space.

To my beautiful wife Anu and son Anish for putting up with me during the review of this book.

Kenneth Roth is an Oracle Certified Professional with over 25 years of IT experience
primarily focused on Oracle database products. Ken has worked in a variety of IT-related
roles and industries, including financial services, transportation, pharmaceutical,
manufacturing, and the public sector. Based in Chicago, he currently enjoys the freedom,
variety, and challenges associated with being an independent technology consultant.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Basic Database Security 7
Introduction 7
Creating a password profile 8

Getting ready 8
How to do it… 8
How it works… 9
There's more… 9
See also 10

Creating password-authenticated users 10
Getting ready 10
How to do it… 11
How it works… 11
There's more… 12

How to create a user using EM Express 12
See also 16

Changing a user's password 16
Getting ready 17
How to do it… 17
How it works… 18
There's more… 18
See also 18

Creating a user with the same credentials on another database 19
Getting ready 19
How to do it… 19
How it works… 20
There's more… 20
See also 21

Locking a user account 21
Getting ready 21
How to do it… 22
How it works… 22
See also 23

Expiring a user's password 23

[ii]

Getting ready 24
How to do it… 24
How it works… 24
See also 24

Creating and using OS-authenticated users 25
Getting ready 25
How to do it… 25
How it works… 26
There's more… 26

Creating and using proxy users 27
Getting ready 27
How to do it… 27
How it works… 28
There's more… 29

Creating and using database roles 30
Getting ready 30
How to do it… 30
How it works… 31
There's more… 32
See also 33

The sysbackup privilege – how, when, and why span /should
/spanspanyou/span use it? 33

Getting ready 33
How to do it… 33

Database authentication 33
OS authentication 35

How it works… 35
There's more… 38
See also 38

The syskm privilege – how, when, and why span /should
/spanspanyou/span use it? 38

Getting ready 39
How to do it… 39

Database authentication 39
OS authentication 40

How it works… 40
There's more… 41
See also 41

The sysdg privilege – how, when, and why span /should
/spanspanyou/span use it? 41

[iii]

Getting ready 41
How to do it… 42

Database authentication 42
OS authentication 42

How it works… 43
There's more… 44
See also 44

Chapter 2: Security Considerations in Multitenant Environment 45
Introduction 45
Creating a common user 47

Getting ready 48
How to do it… 48
How it works… 48

Rules/guidelines for creating and managing common users 49
There's more… 49

How to create a common user using OEM 12c 49
Creating a local user 52

Getting ready 52
How to do it… 52
How it works… 52

Rules/guidelines for creating and managing local users 53
There's more… 53

How to create a local user using OEM 12c 53
Creating a common role 54

Getting ready 55
How to do it… 55
How it works… 55
There's more… 56

How to create a common role using OEM 12c 57
Creating a local role 58

Getting ready 58
How to do it… 59
How it works… 59
There's more… 60

How to create a local role using OEM 12c 60
Granting privileges and roles commonly 60

Getting ready 60
How to do it… 61
How it works… 62

[iv]

Granting privileges and roles locally 65
Getting ready 66
How to do it… 66
How it works… 67

Effects of plugging/unplugging operations on users, roles, and
privileges 67

Getting ready 68
How to do it… 68
How it works… 69

Chapter 3: PL/SQL Security 71
Introduction 71
Creating and using definer's rights procedures 72

Getting ready 72
How to do it… 72
How it works… 74

Creating and using invoker's right procedures 74
Getting ready 74
How to do it… 75
How it works… 76
There's more… 77

Using span /code-based access control/span 82
Getting ready 82
How to do it… 82
How it works… 84
There's more… 84

Restricting access to program units by using span /accessible by/span 86
Getting ready 86
How to do it… 86
How it works… 88

Chapter 4: Virtual Private Database 89
Introduction 89
Creating different policy functions 92

Getting ready 92
How to do it… 93
How it works… 97
There's more… 98
See also 99

Creating Oracle Virtual Private Database row-level policies 99

[v]

Getting ready 99
How to do it… 100
There's more… 102
See also 102

Creating column-level policies 103
Getting ready 103
How to do it… 103
How it works… 106

Creating a driving context 106
Getting ready 106
How to do it… 107

Creating policy groups 107
Getting ready 107
How to do it… 108

Setting context as a driving context 108
Getting ready 108
How to do it… 109

Adding policy to a group 109
Getting ready 109
How to do it… 110

Exempting users from VPD policies 114
Getting ready 114
How to do it… 115

Chapter 5: Data Redaction 116
Introduction 116
Creating a redaction policy when using full redaction 119

Getting ready 119
How to do it… 119
How it works… 122
There's more… 124

How to change the default value 125
See also 127

Creating a redaction policy when using partial redaction 128
How to do it… 128
How it works… 131
There's more… 133

Creating a redaction policy when using random redaction 133
Getting ready 133
How to do it… 134

[vi]

How it works… 136
Creating a redaction policy when using regular expression redaction 137

Getting ready 137
How to do it… 137
How it works… 140

Using Oracle Enterprise Manager Cloud Control 12c to manage
redaction policies 140

Getting ready 140
How to do it… 140

Changing the function parameters for a specified column 150
Getting ready 151
How to do it… 151

Add a column to the redaction policy 152
Getting ready 152
How to do it… 153
How it works… 154
See also 154

Enabling, disabling, and dropping redaction policy 154
Getting ready 154
How to do it… 155
See also 160

Exempting users from data redaction policies 161
Getting ready 161
How to do it… 161
How it works… 162

Chapter 6: Transparent Sensitive Data Protection 163
Introduction 163
Creating a sensitive type 164

Getting ready 165
How to do it… 165
How it works… 165
There's more… 166

Determining sensitive columns 166
Getting ready 166
How to do it… 167
How it works… 168

Creating transparent sensitive data protection policy 168
Getting ready 169
How to do it… 169

[vii]

How it works… 169
See also 169

Associating transparent sensitive data protection policy with sensitive
type 170

Getting ready 170
How to do it… 170
There's more… 171
See also 171

Enabling, disabling, and dropping policy 171
Getting ready 171
How to do it… 171
How it works… 176
There's more… 176

Altering transparent sensitive data protection policy 177
Getting ready 177
How to do it… 177
How it works… 179
See also 180

Chapter 7: Privilege Analysis 181
Introduction 181
Creating database analysis policy 183

Getting ready 183
How to do it… 183
How it works… 184
There's more… 184
See also 186

Creating role analysis policy 187
Getting ready 187
How to do it… 187
There's more… 188
See also 189

Creating context analysis policy 189
Getting ready 189
How to do it… 190
There's more… 190
See also 193

Creating combined analysis policy 193
Getting ready 193
How to do it… 194

[viii]

There's more… 194
See also 196

Starting and stopping privilege analysis 196
Getting ready 196
How to do it… 197
How it works… 199
There's more… 200

Reporting on used system privileges 204
Getting ready 205
How to do it… 205
There's more… 206

Reporting on used object privileges 207
Getting ready 207
How to do it… 207
There's more… 208

Reporting on unused system privileges 209
Getting ready 209
How to do it… 209
There's more… 210

Reporting on unused object privileges 210
Getting ready 210
How to do it… 210
There's more… 211

How to revoke unused privileges 212
How to do it… 212
There's more… 215

Dropping the analysis 216
Getting ready 216
How to do it… 216
There's more… 217

Chapter 8: Transparent Data Encryption 218
Introduction 218
Configuring keystore location in sqlnet.ora 221

How to do it… 222
Creating and opening the keystore 222

Getting ready 223
How to do it… 223
How it works… 224
There's more… 224

[ix]

Setting master encryption key in software keystore 225
Getting ready 225
How to do it… 225
There's more… 226
See also 226

Column encryption – adding new encrypted column to table 227
Getting ready 227
How to do it… 227

Column encryption – creating new table that has encrypted column(s) 228
Getting ready 228
How to do it… 228

Using salt and MAC 230
Getting ready 230
How to do it… 230
How it works… 231
There's more… 231

Column encryption – encrypting existing column 233
Getting ready 233
How to do it… 233
There's more… 234

Auto-login keystore 235
Getting ready 235
How to do it… 235
How it works… 236

Encrypting tablespace 236
Getting ready 236
How to do it… 236
How it works… 237
There's more… 238

Rekeying 238
Getting ready 238
How to do it… 238
How it works… 239

Backup and Recovery 240
How to do it… 240
There's more… 241

Chapter 9: Database Vault 242
Introduction 242
Registering Database Vault 243

[x]

Getting ready 243
How to do it… 244
How it works… 245
There's more… 245
See also 246

Preventing users from exercising system privileges on schema
objects 246

Getting ready 246
How to do it… 247
There's more… 254
See also 256

Securing roles 256
Getting ready 256
How to do it… 256
There's more… 260
See also 261

Preventing users from executing specific command on specific object 262
How to do it… 262
How it works… 263

Creating a rule set 264
Getting ready 264
How to do it… 264
There's more… 267

Creating a secure application role 268
How to do it… 268
There's more… 270
See also 272

Using Database Vault to implement that administrators cannot view
data 272

How to do it… 272
There's more… 275

Running Oracle Database Vault reports 277
How to do it… 278

Disabling Database Vault 280
How to do it… 280

Re-enabling Database Vault 281
How to do it… 282

Chapter 10: Unified Auditing 284
Introduction 284

[xi]

Enabling Unified Auditing mode 286
Getting ready 286
How to do it… 286
How it works… 287

Predefined unified audit policies 288
There's more… 289
See also 289

Configuring whether loss of audit data is acceptable 289
Getting ready 290
How to do it… 290
How it works… 291

Which roles do you need to have to be able to create audit policies
and to view audit data? 291

Getting ready 291
How to do it… 291
How it works… 292
There's more… 293

Auditing RMAN operations 295
Getting ready 295
How to do it… 295
How it works… 297
See also 297

Auditing Data Pump operations 298
Getting ready 298
How to do it… 298
See also 299

Auditing Database Vault operations 299
Getting ready 299
How to do it… 299
How it works… 300
There's more… 300
See also 300

Creating audit policies to audit privileges, actions and roles under
specified conditions 301

Getting ready 301
How to do it… 301
How it works… 302
See also 303

Enabling audit policy 303

[xii]

Getting ready 303
How to do it… 304
How it works… 304

Finding information about audit policies and audited data 305
Getting ready 305
How to do it… 305

Auditing application contexts 307
Getting ready 307
How to do it… 307
How it works… 308
There's more… 308
See also 309

Purging audit trail 309
Getting ready 309
How to do it… 309
How it works… 310
There's more… 310

Disabling and dropping audit policies 310
Getting ready 310
How to do it… 310
How it works… 311
See also 311

Chapter 11: Additional Topics 312
Introduction 312
Exporting data using Oracle Data Pump in Oracle Database Vault
environment 312

Getting ready 313
How to do it… 314
How it works… 316
There's more… 317
See also 317

Creating factors in Oracle Database Vault 317
Getting ready 318
How to do it… 319
How it works… 332
There's more… 333
See also 334

Using TDE in a multitenant environment 334
Getting ready 335

[xiii]

How to do it… 335
How it works… 342
See also 342

Chapter 12: Appendix – Application Contexts 343
Introduction 343
Exploring and using built-in contexts 344

Getting ready 344
How to do it… 345
How it works… 346
There's more… 347
See also 347

Creating an application context 348
Getting ready 348
How to do it… 348
How it works… 349

Setting application context attributes 349
Getting ready 349
How to do it… 349
How it works… 351
There's more… 351
See also 351

Using an application context 351
Getting ready 352
How to do it… 352
How it works… 353
See also 353

Index 354

Preface
This book covers most of the Oracle Database 12c Security features and solutions that exist
in Oracle Database 12c. Oracle Database 12c Security Cookbook will help you better
understand database security challenges. It will guide you through the process of
implementing appropriate security mechanisms, helping you to ensure that you are taking
proactive steps to keep your data safe. Because the book features solutions for common
security problems in the new Oracle Database 12c, it will make you confident about
securing your database from a range of different threats and problems.

What this book covers
Chapter 1, Basic Database Security, introduces you to the different authentication methods
supported by Oracle Database 12c and also provides a brief overview about creating and
using database roles.

Chapter 2, Security Considerations in Multitenant Environment, focuses on some of the
security considerations concerning common and local: users, roles, and privileges.

Chapter 3, PL/SQL Security, helps you understand the differences and usages of definer
and invoker rights procedures as well as usages of code-based access control. It gives
required information about authorization.

Chapter 4, Virtual Private Database, introduces you to the Oracle Virtual Private Database,
which is a security feature introduced in Oracle Database 8i, which enables you to have a
more granular control over security of your data.

Chapter 5, Data Redaction, introduces you to the new security feature Oracle Data
Redaction, which helps you mask (hide/redact) some (sensitive) data from end users in a
production environment.

Chapter 6, Transparent Sensitive Data Protection, teaches you ways to create classes of
sensitive data and helps you gain more centralized control over how sensitive data is
protected.

Chapter 7, Privilege Analysis, it shows how to create and enable privilege analysis policies.
It also covers how to generate reports and revoke both used and unused Object/System
privileges.

Preface

[2]

Chapter 8, Transparent Data Encryption, explains key concepts and tasks such as: two-key
architecture, key management, message authentication code (MAC), salt, encrypting
columns in a table, encrypting a tablespace, creating an encrypted RMAN backup, and so
on.

Chapter 9, Database Vault, covers basic concepts of Oracle Database Vault. It teaches you
how to create and appropriately use realms, rules, rule sets, command rules, factors, and
secure application roles.

Chapter 10, Unified Auditing, introduces a new auditing architecture.

Chapter 11, Additional Topics, covers more advanced topics and teaches you how to
perform everyday administration tasks in Database Vault environment.

Chapter 12, Appendix - Application Contexts, will cover how to retrieve values from built-in
contexts and to create, set, and use an application context.

What you need for this book
Software required (with version)- Oracle Database 12c, Enterprise Manager Cloud Control
12c R4, Oracle Enterprise Manager Database Express 12c

Hardware specifications- OS required- Linux (Preferred Oracle Linux 6.5)

Who this book is for
This book is for DBAs, developers, and architects who are keen to know more about
security in Oracle Database 12c. This book is best suited for beginners and intermediate-
level database security practitioners. Basic knowledge of Oracle Database is expected, but
no prior experience of securing a database is required.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

Preface

[3]

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Create a
local user (for example, mike)."

Any command-line input or output is written as follows:

 c##zoran@CDB1> create user c##maja identified by oracle1
 container=all;

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the Create button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

For this book we have outlined the shortcuts for the Mac OX platform if you are using the
Windows version you can find the relevant shortcuts on the WebStorm help page h t t p s : /
/ w w w . j e t b r a i n s . c o m / w e b s t o r m / h e l p / k e y b o a r d - s h o r t c u t s - b y - c a t e g o r y . h t m l.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

 Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

https://www.jetbrains.com/webstorm/help/keyboard-shortcuts-by-category.html
https://www.jetbrains.com/webstorm/help/keyboard-shortcuts-by-category.html
mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / O r a c l e - D a t a b a s e - 1 2 c - S e c u r i t y - C o o k b o o k. We also have other code
bundles from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c
k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

https://github.com/PacktPublishing/Oracle-Database-12c-Security-Cookbook
https://github.com/PacktPublishing/Oracle-Database-12c-Security-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

Preface

[6]

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Basic Database Security

In this chapter, we will cover the following tasks:

Creating a password profile
Creating password-authenticated users
Changing a user's password
Creating a user with the same credentials on another database
Locking a user account
Expiring a user's password
Creating and using OS-authenticated users
Creating and using proxy users
Creating and using database roles
The sysbackup privilege – how, when, and why should you use it?
The syskm privilege – how, when, and why should you use it?
The sysdg privilege – how, when, and why should you use it?

Introduction
Authentication is a very important process, whose purpose is to determine whether
someone or something is, in fact, who or what it claims to be.

In this chapter, you'll learn basic stuff about some of the different authentication methods
supported by Oracle Database 12c. Also, a brief overview about creating and using
database roles will be given.

www.allitebooks.com

http://www.allitebooks.org

Basic Database Security

[8]

There are three new administrative privileges introduced in Oracle Database 12c
(sysbackup, syskm, and sysdg). Their purpose is to enable better separation of duties and
they are designed in such a way to also enable implementation of the least privilege
principle. Although it may seem that implementation of this principle in systems is easy or
straightforward, usually it's quite tricky.

For all recipes in this chapter, you will use non-CDB 12c. We assume that
the database is up and running and each user has at least the create
session privilege.

In this set of recipes, you will learn to perform, mostly basic, user administration tasks.

Creating a password profile
You can use a profile to implement your password policy.

Getting ready
To complete this recipe, you'll need an existing user who has create profile privilege
(such as an OS-authenticated user who has database administrators (dba) role, for
example, ops$zoran). Also, you'll need an unlocked user account named scott.

Make sure that the resource_limit parameter is set to true.

How to do it…
Connect to the database as a user who has create profile privilege:1.

 sqlplus /

Create a password profile:2.

 create profile userprofile limit
 failed_login_attempts 4
 password_lock_time 2
 password_life_time 180;

Basic Database Security

[9]

Alter the user to use a newly created password profile:3.

 alter user scott profile userprofile;

Alter the default password profile:4.

 alter profile default limit
 failed_login_attempts 4;

How it works…
In step 1, you used OS authentication to connect to the database.

In step 2, you created a password profile with the name userprofile that has the
following restrictions:

The system allows four login attempts before locking a user account
(failed_login_attempts)
After locking a user account, it will remain locked for two days
(password_lock_time)
A password for the user can remain unchanged for 180 days – after which the
password will expire, and the user will have to change the password for his next
login (password_life_time)

In step 3, we assigned a newly created password profile to the user scott. If we don't
assign a password profile to the user, that user uses the default password profile.

In step 4, we altered the default password profile with the failed_login_attempts
restriction.

There's more…
You can create different password profiles for different users in the database. There are a lot
of restrictions that can be applied to a password profile.

In Oracle Database 12c, there are three password verify functions, out of which, two are
new and improved:

verify_function_11G (carried over)
ora12c_verify_function (new)
ora12c_strong_verify_function (new)

Basic Database Security

[10]

If password complexity checking is not enabled, and you want to use it, you should run the
utlpwdmg.sql script provided by Oracle. It's located in $ORACLE_HOME/rdbms/admin.
The ora12c_verify_function function is the default function that the utlpwdmg.sql
script uses. If you want, you can customize password verify functions.

Password complexity checking, even when enabled, doesn't apply to
sys user.

If you want to choose which verify function will be used in the default profile, you can
achieve that by using the following statement:

alter profile default limit password_verify_function
ora12c_strong_verify_function;

In subsequent recipes, it is assumed that default values are set for the default profile and the
password verify function is not used.

See also
Creating password-authenticated users
Locking a user account
Creating and using OS-authenticated users

Creating password-authenticated users
In this task, you will create several users.

Getting ready
To complete this recipe, you'll need an existing user who has create user privilege (you
may use the OS-authenticated user who has the DBA role).

You'll use Oracle Enterprise Manager Database Express 12c (EM Express). To learn more
about it (for example, how to configure an HTTPS port for EM Express and how to start it),
see the third chapter of the official Oracle guide –Oracle Database 2 Day DBA, 12c Release 1.

Basic Database Security

[11]

How to do it…
Connect to the database as a user who has create user privilege:1.

 $ sqlplus /

Create a password-authenticated user (for example, username: jessica,2.
password: oracle_1) as follows:

 SQL> create user jessica identified by oracle_1;

Create a password-authenticated user with a more complex password:3.

 SQL> create user tom identified by "Qax7UnP!123*";

Create a user that uses a specific password profile:4.

 SQL> create user mike identified by test1 profile
 userprofile;

Create a user and force it to change password upon the first login:5.

 SQL> create user john identified by password1
 password expire;

Create a user richard, whose default tablespace is users, temporary tablespace6.
is temp, and who has their quota set to unlimited on the users tablespace:

 SQL> create user richard identified by oracle_2 default
 tablespace users temporary tablespace temp quota unlimited
 on users;

How it works…
In step 1, you used OS authentication to connect to the database.

In step 2, you created a password-authenticated user jessica with simpler password.

In step 3, you created a password-authenticated user tom with more complex password. In
this case (because a password contains special characters), you are using quotation marks
(") to enclose the password.

Basic Database Security

[12]

Both of these users are using the default password profile.

In step 4, you created a password-authenticated user with the assigned password profile
userprofile.

In step 5, you created user john. This user has to change his password at the first database
login.

In step 6, you created the user richard. In the create user statement, quota unlimited
on users means that you want to let the user allocate space in the tablespace without
bound. The quota clause lets you define the maximum amount of space the user can
allocate in the tablespace. You can have multiple quota clauses for multiple tablespaces
within one create user statement. The unlimited tablespace system privilege
enables users to have an unlimited quota on all tablespaces in the database.

If you grant unlimited tablespace system privilege to a user and
afterwards you revoke it, all explicitly granted quotas will also be revoked.

There's more…
You can also create users using Oracle Enterprise Manager Cloud Control 12c or Oracle
Enterprise Manager Database Express 12c (EM Express). Oracle Enterprise Manager
Database Control is no longer available in Oracle Database 12c.

How to create a user using EM Express
Start EM Express and log in to it using the user that has1.
either EM_EXPRESS_BASIC or EM_EXPRESS_ALL role (you can use sys or
system users, but that isn't recommended):

Basic Database Security

[13]

Select Users from the Security drop-down menu:2.

Basic Database Security

[14]

Click on the Create User tab:3.

Enter user details in the pop-up dialog (for example, username: ted,4.
password: oracle_123, here you can also choose the authentication method,
password profile, lock account, expire password) leave the default values and
click on the Next button (see image here) as follows:

Basic Database Security

[15]

In this step, you can choose default tablespace and temporary tablespace from the5.
drop-down lists. Leave the default values, as shown in the following screenshot:

Basic Database Security

[16]

In this step, you can grant privileges to user ted by selecting them in the left pane6.
and moving them to the right pane (use > button). If you want to revoke
privileges, do the opposite (select them in right pane and use < button). When
you are satisfied with the list of privileges in the right pane (the ones you are
going to grant to user ted), click on the OK button as follows:

A pop-up window confirmation should appear with the following message: SQL7.
statement has been processed successfully.

Click on the OK button to close the window.

See also
Creating and using OS-authenticated users

Changing a user's password
Changing a user's password is easy. You will practice it by changing passwords for several
users in this recipe.

Basic Database Security

[17]

Getting ready
To complete this recipe, you'll need an existing user who has alter user privilege (you
may use OS-authenticated user who has the DBA role) and other existing users (for
example, jessica and tom).

How to do it…
Connect to the database as a user who has alter user privilege:1.

 $ sqlplus /

Change the password for user jessica:2.

 SQL> password jessica;

Enter a new password (for example, oracle_2) on a command line (note that3.
typing will not be visible in the command line):

 New password:

Retype the new password (for example, oracle_2) on the command line (note4.
that typing will not be visible in the command line):

 Retype new password:

Connect to the database as any user (for example, tom, to change their own5.
password):

 $ sqlplus tom/"Qax7UnP!123*"

Change the password using the following code:6.

 SQL> password

Enter the old password (for example, Qax7UnP!123*) on the command line (note7.
that typing will not be visible on the command line):

 Old password:

Basic Database Security

[18]

Enter the new password (for example, oracle_123) on the command line (note8.
that typing will not be visible on the command line):

 New password:

Retype the new password (for example, oracle_123) on the command line (note9.
that typing will not be visible on the command line):

 Retype new password:

How it works…
In step 1, you used OS authentication to connect to the database.

In steps 2 through 4, a privileged user changed jessica's password, where in steps 6 through
9, the user tom changed his own password.

There's more…
There is another way to change the user's password using the alter user statement as
follows:

SQL> alter user jessica identified by oracle_2;

This approach is not recommended because password remains in the
command-line history.

See also
Creating and using OS-authenticated users

Basic Database Security

[19]

Creating a user with the same credentials on
another database
This recipe explains a way to create a user with the same credentials on another database.

Getting ready
To complete this recipe, you'll need:

An existing user who has dba role in the first database (you can use an OS-
authenticated user)
An existing user in the first database (for example, jessica)
An existing (for example, password-authenticated) user, who has create user
privilege, in the second database (for example, zoran)

How to do it…
Connect to the first database as a user who has a DBA role:1.

 $ sqlplus /

Find a Data Definition Language (DDL) statement (ddl) that is used for user2.
creation (for example, user jessica):

 SQL> select dbms_metadata.get_ddl('USER', 'JESSICA') from
 dual;

Connect to the second database as a user who has create user privilege:3.

 $ sqlplus zoran@orcl2

Create a user using the value you found in step 2:4.

 SQL> create user "JESSICA" identified by values
 'S:D82E6EF961F2EA7A878BCDDBC7E5C542BC148C4759D19A7
 20A96BBF65658;H:F297A50FD538EF4AB119EB0278C9E72D;
 C50B1E9C9AA52EC2';

Basic Database Security

[20]

How it works…
In step 1, you used OS authentication to connect to the database.

In step 2, you found a DDL statement that has been used for user creation. This DDL
statement may contain default and temporary tablespace assignments (note that even if
you haven't explicitly assigned these tablespaces during user creation, the system will
assign them implicitly using default values for the database). For instance, output in step 2
may look like this:

SQL> select dbms_metadata.get_ddl('USER', 'JESSICA') from dual;
DBMS_METADATA.GET_DDL('USER','JESSICA')
--
CREATE USER "JESSICA" IDENTIFIED BY VALUES
'S:D82E6EF961F2EA7A878BCDDBC7E5C542BC148C4759D19A720A96BBF65658;H:F297A50FD
538EF4AB1 19EB0278C9E72D;C50B1E9C9AA52EC2'
DEFAULT TABLESPACE "USERS" TEMPORARY TABLESPACE "TEMP"

However, we used only the first part of this DDL in step 4 to create a user on the second
database (and let the database decide about default tablespaces).

There's more…
There is another way to accomplish the task.

You can only reveal the hash value of user's password (you cannot reveal
the actual password).

This way requires select on the sys.user$ table:

Connect to the first database as a user who has the select privilege on1.
the sys.user$ table (for example, user who has the sysdba privilege):

 $ sqlplus / as sysdba

Find the hash value of a user's password (for example, user jessica):2.

 SQL> select spare4
 from user$
 where name='JESSICA';

Basic Database Security

[21]

Connect to the second database as a user who has create user privilege:3.

 $ sqlplus zoran@orcl2

Create a user with the same username (for example, jessica) using the hash4.
value of the password that you have found in step 2:

 SQL> create user jessica identified by values
 'S:2724193130FC67E7E23E3E44E33AF143F7A6C36489792B
 5856133DCB331D;H:184895E50EA2FBCC2311ED76A3E5CF35;
 T:BECCD5FC6F6E62BC34DF1C826AEE899EC6A6025FA0D5071659DA
 7DD1ABB37763483B5C821E5A34C1184A56BE4B1C92CED79639D11101D
 61B86ACBE60A30F19CC277D5753F7D3756DC1B7705C0ACE81F3';

See also
Creating and using OS-authenticated users

Locking a user account
In this recipe, you'll learn to lock and unlock user accounts.

Getting ready
To complete this recipe, you'll need an existing (for example, OS-authenticated) user who
has alter user privilege (you may use user who has a DBA role) and another existing
user (for example, mike).

Basic Database Security

[22]

How to do it…
Connect to the database as a user who has alter user privilege:1.

 $ sqlplus /

Lock the account of user mike:2.

 SQL> alter user mike account lock;

Unlock the account of user mike:3.

 SQL> alter user mike account unlock;

How it works…
In step 1, you used OS authentication to connect to the database.

In step 2, you locked the account of user mike. This means that user mike cannot connect to
the database:

 SQL> alter user mike account lock;

 User altered

 SQL> connect mike/welcome1

 ERROR: ORA-28000: the account is locked

Basic Database Security

[23]

However, objects in mike's schema are available, so users can access them (considering that
they have necessary privileges):

 SQL> select a, b from mike.table1;
 A B
 ---------- ---------
 1 3
 2 4
 4 9

It is recommended that you lock the accounts of users that own your
application objects (application schemas).

In step 3, you unlocked the account of user mike. Now user mike can successfully connect
to the database:

 SQL> alter user mike account unlock;

 User altered.

 SQL> conn mike/welcome1

 Connected.

See also
Creating and using OS-authenticated users

Expiring a user's password
The expiration of user's password is a very easy task.

Basic Database Security

[24]

Getting ready
To complete this recipe, you'll need an existing (for example, OS-authenticated) user who
has the alter user privilege (you may use user who has a DBA role) and another existing
user (for example, mike).

How to do it…
Connect to the database as a user who has the alter user privilege:1.

 $ sqlplus /

Mike's password expires with the following command:2.

 SQL> alter user mike password expire;

How it works…
In step 1, you used OS authentication to connect to the database.

In step 2, you expired password for the user mike. This means that the password is no
longer valid and user mike must change his password after the next login:

 SQL> alter user mike password expire;

 User altered.

 SQL> conn mike/welcome1
 ERROR: ORA-28001: the password has expired
 Changing password for mike
 New password:
 Retype new password:
 Password changed
 Connected.

See also
Creating and using OS-authenticated users

Basic Database Security

[25]

Creating and using OS-authenticated users
In this recipe, you'll learn about OS-authenticated users.

Getting ready
To complete this recipe, you'll need an existing user who has a dba role, for example,
johndba. It is assumed that you are working on Linux.

How to do it…
Connect to the database as a user who has a DBA role:1.

 $ sqlplus johndba

Find the prefix for operating system authentication:2.

 SQL> show parameter os_authent_prefix
 NAME TYPE VALUE
 ----------------- -------- -----------
 os_authent_prefix string ops$

Create an OS-authenticated user:3.

 SQL> create user ops$zoran identified externally;

Grant this user the create session privilege:4.

 SQL> grant create session to ops$zoran;

Log in to the operating system as the user zoran:5.

 $ su - zoran

Connect to the database without entering a user name or password:6.

 $ sqlplus /

Basic Database Security

[26]

How it works…
In OS authentication, database delegates user authentication to the operating system. This
means that in order for OS authentication to work, user must exist as the user of the
operating system. In database, these users are created with a prefix that is defined in the
os_authent_prefix parameter (default is ops$). If an OS-authenticated user has
the create session privilege, he or she can connect to the database using the following
syntax:

 SQL> connect /
 Connected.
 SQL> show user
 USER is "OPS$ZORAN"

Note that you cannot grant a sysdba, sysoper, sysbackup, sysdg, or
 syskm privilege to users that are identified externally, using a grant
statement:

 SQL> grant sysdba to ops$zoran;
 grant sysdba to ops$zoran

 ERROR at line 1: ORA-01997: GRANT failed: user
 'OPS$ZORAN' identified externally

If you want to connect as sysdba using OS authentication, you have to add OS user zoran
to OS group DBA:

[root@db121 ~]# usermod -a -G dba zoran
[root@db121 ~]# su - zoran
[zoran@db121 ~]$ sqlplus / as sysdba
SQL*Plus: Release 12.1.0.1.0 Production on Fri Sep 03 20:14:03 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved.
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64 bit
Production With the Partitioning, OLAP, Advanced Analytics and Real
Application Testing options

There's more…
You can change the os_authent_prefix parameter with custom value (or you can leave it
blank if you want OS-authenticated database users to have the same name as OS users).

Basic Database Security

[27]

Creating and using proxy users
In this recipe, you'll learn about proxy users.

Getting ready
To complete this recipe, you'll need an existing (for example, OS-authenticated) user who
has a DBA role and another existing user (for example, mike).

How to do it…
Connect to the database as a user who has a DBA role:1.

 $ sqlplus /

Create a proxy user named appserver:2.

 SQL> create user appserver identified by oracle_1;

Grant create session to the user appserver:3.

 SQL> grant create session to appserver;

Alter the user to connect through the proxy user:4.

 SQL> alter user mike grant connect through appserver;

Connect to the database through proxy user:5.

 SQL> connect appserver[mike]

Enter a password for the appserver user (for example, oracle_1):6.

 Enter password:

To revoke connection through the proxy user, first connect to the database as a7.
user who has altered user privilege:

 $ sqlplus /

www.allitebooks.com

http://www.allitebooks.org

Basic Database Security

[28]

Revoke connection through the proxy user appserver from user mike:8.

 SQL> alter user mike revoke connect through appserver;

How it works…
Proxy authentication is best-suited type of authentication for three-tiered environments.
The middle tier is represented as a proxy user in the database and this user can authenticate
end-users in such a way that these end users can be audited by the database.
In the second step, you created a user appserver (to be the proxy user).
In the third step, you granted this user only the create session privilege.

It is recommended that you grant only the create session privilege to
proxy users.

In step 4, you authorized user mike to connect through proxy user appserver. This means
that the user appserver can connect to the database on behalf of user mike:

SQL> connect appserver[mike]

Enter password:
Connected.

SQL> show user
USER is "MIKE"

SQL> select sys_context('USERENV','PROXY_USER') from dual;
SYS_CONTEXT('USERENV','PROXY_USER')

APPSERVER

To see proxy users, you can query the proxy_users view:

SQL> select * from proxy_users;

PROXY CLIENT AUT FLAGS
---------- ------- ---- ------------------------------------
APPSERVER MIKE NO PROXY MAY ACTIVATE ALL CLIENT ROLES

In the last step, you revoked authorization from user mike to connect through proxy user
appserver. This means that the user appserver can no longer connect to the database on
behalf of user mike.

Basic Database Security

[29]

There's more…
You can control which roles the proxy user can activate for user. By default, all user roles
are activated. If you want the proxy user to activate only particular roles (or no roles) for a
user, you can do that by adding the WITH ROLES <role1, role2, .., roleN> (or WITH
NO ROLES) clause at the end of the alter user statement.
For instance, if the user mike has many roles (including usr_role), and you want him to
have only usr_role when he is connected through proxy user appserver, statement will
look like this:

SQL> alter user mike grant connect through appserver with roles usr_role;

User altered.

SQL> connect appserver[mike]

Enter password:
Connected.

SQL> select * from session_roles;

ROLE

USR_ROLE

SQL> connect mike

Enter password:
Connected.

SQL> select count(*) from session_roles;

COUNT(*)

25

You can request reauthentication of a user to the database. This means that during proxy
authentication, a user's password must be provided. This is done by using the
authentication required clause at the end of alter user statement:

SQL> alter user mike grant connect through appserver authentication
required;
User altered.

Basic Database Security

[30]

Creating and using database roles
In this recipe, you'll learn the basics about database roles.
Roles group together related system and/or object privileges and they can be granted to
users and other roles. They simplify privilege management (for example, rather than
granting the same set of privileges to many users, you can grant those privileges to a role
and then grant that role to users that need those privileges).

Getting ready
For this recipe, you will need an existing (for example, OS-authenticated) user that has a
dba role and another three existing users (for example, mike, tom, and jessica). It is
assumed that sample schemas are installed.

How to do it…
Connect to the database as a user who has a dba role:1.

 $ sqlplus /

Create the role usr_role:2.

 SQL> create role usr_role;

Grant system privilege to usr_role:3.

 SQL> grant create session to usr_role;

Grant object privileges to usr_role:4.

 SQL> grant select, insert on hr.employees to usr_role;

Create another role as follows:5.

 SQL> create role mgr_role;

Grant usr_role to mgr_role:6.

 SQL> grant usr_role to mgr_role;

Basic Database Security

[31]

Grant system privileges to mgr_role:7.

 SQL> grant create table to mgr_role;

Grant object privileges to mgr_role:8.

 SQL> grant update, delete on hr.employees to mgr_role;

Grant usr_role to user (mike):9.

 SQL> grant usr_role to mike;

Grant mgr_role to user (tom):10.

 SQL> grant mgr_role to tom;

How it works…
In the first step, you used OS authentication to connect to the database. In steps 2 and 3, you
granted system privileges and object privileges, respectively, to the role usr_role. In the
next steps, you practiced using database roles; you granted the following:

A role to another role
System and object privileges to role
Roles to users

You revoke privileges and roles by using a revoke statement. For example:

SQL> revoke usr_role from mike;

Circular granting of roles is not allowed.

SQL> grant role1 to role2;
Grant succeeded.

SQL> grant role2 to role1;
grant role2 to role1
*
ERROR at line 1: ORA-01934: circular role grant detected

Basic Database Security

[32]

There's more…
You should be careful about granting privileges to the PUBLIC role
because then every database user can use these privileges.

Suppose that user mike grants object privilege to user jessica with a grant option and
user jessica grants that privilege to user tom. If user mike revokes that privilege from
jessica, it will be automatically revoked from tom.

Revoking a system privilege will not cascade.

SQL> grant select on hr.employees to jessica with grant option;
Grant succeeded.

SQL> connect jessica
Enter password:
Connected.

SQL> grant select on hr.employees to tom;
Grant succeeded.

SQL> connect tom/oracle_123
Connected.

SQL> select count(*) from hr.employees;
COUNT(*)

 107

SQL> connect mike/welcome1
Connected.

SQL> revoke select on hr.employees from jessica;
Revoke succeeded.

SQL> connect tom/oracle_123
Connected.

SQL> select count(*) from hr.employees;
select count(*) from hr.employees
*

Basic Database Security

[33]

ERROR at line 1:
ORA-00942: table or view does not exist

You cannot revoke object privileges you didn't grant.

See also
If you want to learn more about roles, see the official Oracle
documentation—Oracle Database Security Guide 12c Release 1 (refer Chapter 4,
Configuring Privilege and Role Authorization, of this documentation).

The sysbackup privilege – how, when, and
why should you use it?
It is recommended that you use the sysbackup administrative privilege instead of the
sysdba administrative privilege to perform operations related to backup and recovery
tasks.

Getting ready
For this recipe, you'll need:

An existing database user (for example, tom) and a password file in 12c format, if
you want to complete it using a password-authenticated user
An existing OS user (for example, john), who belongs to the backupdba OS
group, in order to connect to the database using OS authentication

How to do it…
Instructions are given in the Database authentication and OS authentication sections.

Basic Database Security

[34]

Database authentication
The instructions for database authentication are as follows:

Connect to the database as sysdba (or another user that can grant the sysbackup1.
privilege):

 sqlplus / as sysdba

Grant the sysbackup privilege to user tom:2.

 grant sysbackup to tom;

Verify that there is an entry in the password file that grants user tom the3.
sysbackup administrative privilege. Select data from the v$pwfile_users
view:

 select * from v$pwfile_users;

The following table is the result of the preceding command:

Username sysdb sysop sysas sysba sysdg syskm con_id

sys TRUE TRUE FALSE FALSE FALSE FALSE 0

sysdg FALSE FALSE FALSE FALSE TRUE FALSE 0

sysbackup FALSE FALSE FALSE TRUE FALSE FALSE 0

syskm FALSE FALSE FALSE FALSE FALSE TRUE 0

tom FALSE FALSE FALSE TRUE FALSE FALSE 0

Test the connection using RMAN:4.

 rman target '"tom/oracle_123 as sysbackup"'

Basic Database Security

[35]

OS authentication
The instructions for OS authentication are as follows:

Verify that the OS user (for example, john) is a member of the backupdba OS1.
group:

 $ id john

Connect to the database using the sysbackup privilege (SQL*Plus or RMAN):2.

 $> sqlplus / as sysbackup
 $> rman target '"/ as sysbackup"'

How it works…
You can use either Oracle Recovery Manager (RMAN) or SQL*Plus to perform the
operations. When you connect to the database as sysbackup, you are connected as a
predefined user sysbackup. If you want to check this, run the following statement:

SQL> select user from dual;

Otherwise, the following statement:

SQL> show user

Using the sysbackup privilege, you can connect to the database even when it is not open.
This privilege enables better separation of duties and the implementation of the least privilege
principle.

From a security perspective, it is recommended that you implement the
least privilege principle. The least privilege principle is an important
security concept that requires that users are given only those privileges
they need to perform their job.

Basic Database Security

[36]

To view the list of privileges a user can exercise when connected to the database using
sysbackup privilege, you can create a user (for example, tom) and grant the user only
sysbackup privileges. The next step is to connect to the database as user tom, using the
sysbackup privilege and the execute statement:

select * from session_privs;

These privileges are shown in the following table:

Privileges (output from
the previous statement)

sysbackup select any
transaction

select any
dictionary

resumable

create any
directory

alter database audit any create any
cluster

create any table unlimited
tablespace

drop
tablespace

alter
tablespace

alter session alter system

This is how you can check enabled roles:

SQL> select * from session_roles;

ROLE

 SELECT_CATALOG_ROLE
 HS_ADMIN_SELECT_ROLE

HS_ADMIN_SELECT_ROLE is granted to SELECT_CATALOG_ROLE.

Basic Database Security

[37]

If you want to view the roles and privileges granted to sysbackup, you can query
DBA_ROLE_PRIVS and DBA_SYS_PRIVS:

SQL> select * from dba_role_privs where grantee='SYSBACKUP';
SQL> select * from dba_sys_privs where grantee='SYSBACKUP';

Also, this new administrative privilege enables you to select, insert, delete, execute, and
perform operations:

SELECT PERFORM operations

X$ tables STARTUP, SHUTDOWN

V$ and GV$ views CREATE PFILE, CREATE SPFILE

APPQOSSYS.WLM_CLASSIFIER_PLAN CREATE CONTROLFILE

SYSTEM.LOGSTDBY$PARAMETERS FLASHBACK DATABASE

INSERT/DELETE DROP DATABASE

SYS.APPLY$_SOURCE_SCHEMA CREATE/DROP RESTORE POINT (including
GUARANTEED restore points)

SYSTEM.LOGSTDBY$PARAMETERS

EXECUTE

SYS.DBMS_BACKUP_RESTORE SYS.DBMS_DATAPUMP

SYS.DBMS_RCVMAN SYS.DBMS_IR

SYS.DBMS_PIPE SYS.SYS_ERROR

SYS.DBMS_TTS SYS.DBMS_TDB

SYS.DBMS_PLUGTS SYS.DBMS_PLUGTSP

It is important for you to remember that:
When using the sysbackup privilege, you can't view application data.

Basic Database Security

[38]

There's more…
You can't drop user sysbackup.
In a multitenant environment, you can restrict a user to be able to perform backups only for
the PDB it can connect to. You can accomplish that by creating a local user in the PDB and
granting the sysbackup privilege to the user.
When you are connected to the database as the sysbackup, you are connected as
sysbackup user to SYS schema:

SQL> connect / as sysbackup
Connected.

SQL> show user
USER is "SYSBACKUP"

SQL> select sys_context('userenv', 'current_schema') from dual;
SYS_CONTEXT('USERENV','CURRENT_SCHEMA')

SYS

See also
Creating password-authenticated users
Creating and using OS-authenticated users

The syskm privilege – how, when, and why
should you use it?
It is recommended that you use the syskm administrative privilege instead of the sysdba
administrative privilege to perform operations related to managing the transparent data
encryption (TDE) keystore.

Basic Database Security

[39]

Getting ready
For this recipe, you'll need:

An existing database user (for example, jessica) and a password file in the 12c
format, if you want to complete it using a password-authenticated user
An existing OS user (for example, bob), who belongs to the kmdba OS group, in
order to connect to the database using OS authentication

How to do it…
Instructions are split into sections for database authentication and OS authentication.

Database authentication
The instructions for database authentication are as follows:

Connect to the database as sysdba (or another user that can grant the syskm1.
privilege):

 sqlplus / as sysdba

Grant the syskm privilege to user jessica:2.

 grant syskm to jessica;

Connect user jessica to the database as syskm:3.

 SQL> connect jessica/oracle_1 as syskm

View privileges:4.

 SQL> select * from user_tab_privs;
 SQL> select * from session_privs;

Basic Database Security

[40]

OS authentication
The instructions for OS authentication are as follows:

Verify that an OS user (for example, bob) is a member of the kmdba OS group.1.

 $ id bob

Connect to the database using syskm privilege:2.

 $ sqlplus / as syskm

How it works…
When you connect to the database as syskm, you are connected as a predefined
user, syskm. Using the syskm privilege, you can connect to the database even when it is not
open.
In most circumstances when using TDE, you don't have to have syskm administrative
privilege. For a more detailed discussion about TDE operations and which privileges users
need, see recipes in Chapter 8, Transparent Data Encryption.
In the Database authentication section after completing step 3, you can perform operations
related to managing the TDE keystore. Step 4 is not necessary and its sole purpose is to
show you which privileges you can use when connected as syskm. These privileges are:
• ADMINISTER KEY MANAGEMENT
• CREATE SESSION
• SELECT on V$ (and GV$) views:

• SYS.V$ENCRYPTED_TABLESPACES
• SYS.V$ENCRYPTION_WALLET
• SYS.V$WALLET
• SYS.V$ENCRYPTION_KEYS
• SYS.V$CLIENT_SECRETS
• SYS.DBA_ENCRYPTION_KEY_USAGE
• SYS.DATABASE_KEY_INFO

It is important for you to remember that:
When using syskm privilege, you can't view the application data.

Basic Database Security

[41]

There's more…
You can't drop user syskm.
When you are connected to the database as syskm, you are connected as the syskm user
to SYS schema:

SQL> connect / as syskm
Connected.

SQL> show user
USER is "SYSKM"

SQL> select sys_context('userenv', 'current_schema') from dual;
SYS_CONTEXT('USERENV','CURRENT_SCHEMA')

SYS

See also
Creating password-authenticated users
Creating and using OS-authenticated users
Chapter 8, Transparent Data Encryption

The sysdg privilege – how, when, and why
should you use it?
It is recommended that you use the sysdg administrative privilege instead of sysdba
administrative privilege to perform operations related to data guard tasks.

Getting ready
For this recipe, you'll need:

An existing database user (for example, mike) and a password file in the 12c
format if you want to complete it using a password-authenticated user
An existing OS user (for example, kelly), who belongs to the dgdba OS group in
order to connect to the database using OS authentication

Basic Database Security

[42]

How to do it…
Instructions are split into sections for database authentication and OS authentication.

Database authentication
The instructions for database authentication are as follows:

Connect to the database as sysdba (or another user who can grant the sysdg1.
privilege):

 sqlplus / as sysdba

Grant SYSDG privilege to user mike:2.

 SQL> grant sysdg to mike;

Exit SQL*Plus, connect mike using the dgmgrl command-line interface:3.

 SQL> exit

 $ dgmgrl

 DGMRRL> connect mike/test_1

OS authentication
The instructions for OS authentication are as follows:

Verify that the OS user (for example, kelly) is a member of the dgdba OS group:1.

 $ id kelly

Connect using the dgmgrl utility and OS authentication:2.

 $ dgmgrl

 DGMGRL> connect /

Basic Database Security

[43]

How it works…
When you connect to the database as sysdg, you are connected as a predefined
user, sysdg. Using the sysdg privilege, you can connect to the database even when it is not
open.
After completing step 2 successfully in the Database authentication section, user mike, as
expected, can grant/revoke sysdg privilege to/from another existing user. If you want to try
it out, type the statements given here.
After you connect to the database using the sysdg administrative privilege, you can
perform the following operations:

Operations

STARTUP, SHUTDOWN CREATE SESSION

ALTER SESSION SELECT ANY DICTIONARY

ALTER DATABASE FLASHBACK DATABASE

ALTER SYSTEM EXECUTE SYS.DBMS_DRS

CREATE/DROP RESTORE POINT

(including GUARANTEED restore points)
SELECT X$ tables, V$ and GV$ views

DELETE
APPQOSSYS.WLM_CLASSIFIER_PLAN

SELECT
APPQOSSYS.WLM_CLASSIFIER_PLAN

It is important for you to remember that:
When using the sysdg administrative privilege, you can't view
application data.

Basic Database Security

[44]

There's more…
You can't drop user sysdg.
When you are connected to the database as sysdg, you are connected as sysdg user to
the SYS schema:

SQL> connect / as sysdg
Connected.

SQL> show user
USER is "SYSDG"

SQL> select sys_context('userenv', 'current_schema') from dual;
SYS_CONTEXT('USERENV','CURRENT_SCHEMA')
--
SYS

See also
Creating password-authenticated users
Creating and using OS-authenticated users

2
Security Considerations in

Multitenant Environment
In this chapter, we will cover the following tasks:

Creating a common user
Creating a local user
Creating a common role
Creating a local role
Granting privileges commonly
Granting privileges locally
Granting common and local roles
The effects of plugging/unplugging operations on users, roles, and privileges

Introduction
The Oracle multitenant environment is a new architecture of Oracle Database, introduced
in version 12c (12.1.0.1). It brings major changes to the way Oracle Database administrators
think about the concept of databases and how they work (in a multitenant environment).
One of the most significant changes is that many databases (up to 252) can share one
database instance.

This chapter is focused on some of the security considerations concerning common and
local users, roles, and privileges. The prerequisite for understanding recipes in this chapter
is to have at least basic knowledge of fundamental multitenant concepts, such as what is a
container database (CDB), pluggable database (PDB), root container, and seed.

Security Considerations in Multitenant Environment

[46]

Figure 1 shows the traditional architecture of Oracle Database.

Figure 1 – A traditional architecture

Figure 2 shows the separation of the data dictionary in a multitenant architecture:

Figure 2 – Data Dictionary separation

Security Considerations in Multitenant Environment

[47]

Figure 3 shows a multitenant architecture. To learn more about it, see the Oracle official
guide, Oracle Database Concepts, 12c Release 1 (12.1), Part VI Multitenant Architecture.

Figure 3 – A multitenant architecture

For all recipes in this chapter, you can use Oracle Database 12c Enterprise
Edition with the multitenant option. All of the concepts presented in this
chapter also apply to the single-tenant architecture (one CDB and one
PDB), which exists in all editions of Oracle Database 12c. Also, for all
recipes in this chapter, it is assumed that a container database (cdb1) is up
and running. Also, the EM Cloud Control version should be 12.1.0.3+.
The default prompt in SQL*Plus is SQL>. In this chapter, the glogin.sql
script (located under $ORACLE_HOME/sqlplus/admin) is changed so that
the prompt reflects the connected user and the current container. The only
purpose is to make it easier to follow who is doing what and where. You
don't have to change the prompt.

Creating a common user
A common user is a user created in the root container, which has the same identity across
all containers. The main purpose of a common user is to perform “infrastructure”
administrative tasks, such as starting up a CDB, plugging and unplugging PDBs, and
opening PDBs. There are two types of common users: Oracle-supplied (for example, SYS
and SYSTEM) and user-created common users.

Security Considerations in Multitenant Environment

[48]

Getting ready
To complete this recipe, you'll need an existing common user who has create user
privilege granted commonly.

How to do it…
Connect to the root container as a common user who has create user privilege1.
granted commonly (for example, c##zoran or system user):

 SQL> connect c##zoran@cdb1

Create a common user (for example, c##maja):2.

 c##zoran@CDB1> create user c##maja identified by oracle1
 container=all;

How it works…
c##maja is actually not a single user, but each container has a user named c##maja and the
passwords must be the same.

Figure 4

Security Considerations in Multitenant Environment

[49]

Rules/guidelines for creating and managing common
users
There are a few rules you should be aware of:

The name of a common user must be unique across all containers. In version
12.1.0.1, it must begin with c## or C## unless you change the internal parameter
common_user_prefix (which you shouldn't do on a production system without
approval from Oracle Support) and, in version 12.1.0.2, it is best practice to use a
prefix (default value c## or C##). However, you can choose it by changing the
value of the common_user_prefix parameter (this naming convention doesn't
apply to Oracle-supplied users in either version).
A common user can have different privileges in different containers.
The schemas for a common user may contain different objects in different
containers.

The column oracle_maintained (in DBA_USERS) provides information as to whether a
user is created and maintained by Oracle-supplied scripts:

c##zoran@CDB1> select username, oracle_maintained from dba_users where
username='SYSTEM' or username='C##ZORAN';

USERNAME O
--------------- -
SYSTEM Y
C##ZORAN N

There's more…
You can also create common users by using Oracle Enterprise Manager Cloud Control (OEM)
12c.

How to create a common user using OEM 12c
Start OEM 12c and log in using user SYSMAN or SYSTEM.1.

From the Databases page, select the root database in which you want to create a2.
common user. The database home page appears.

Security Considerations in Multitenant Environment

[50]

From the Administration menu, select Security (a drop-down menu) and then3.
Users (see Figure 5):

Figure 5

If prompted, log in to the root as a common user who has a create user4.
privilege (for example, c##zoran; see Figure 6):

Figure 6

Security Considerations in Multitenant Environment

[51]

Click on the Create button (see Figure 7):5.

Figure 7

To create a common user, it is enough to fill out the following fields on the6.
General tab: Name (for example, c##john), Enter Password, and Confirm
Password (see Figure 8) and then click on the OK button:

Figure 8

Security Considerations in Multitenant Environment

[52]

Creating a local user
A local user is a user that is created and that exists in only one PDB. A local user can't be
created in the root container.

Getting ready
A pluggable database (in our case, pdb1) should be open. You'll need an existing user
(either common or local) who has create user privilege in that pluggable database.

How to do it…
Connect to PDB (for example, pdb1) as a common user or local user who has 1.
 create user privilege in that PDB (for example, c##zoran or system user):

 SQL> connect c##zoran@pdb1

Create a local user (for example, mike):2.

 c##zoran@PDB1> create user mike identified by pa3t5brii
 container=current;

How it works…

Figure 9

Security Considerations in Multitenant Environment

[53]

Rules/guidelines for creating and managing local users
There are a few rules you should be aware of:

The name of a local user must be unique within its pluggable database and it
must not begin with c## or C##
A local user cannot be created in the root
A local user exists in one and only one PDB and owns a schema in that PDB

There's more…
You can also create local users by using Oracle Enterprise Manager Cloud Control (OEM) 12c.

How to create a local user using OEM 12c
You can follow the steps given in the How to create a common user using OEM 12c section,
except that, in Step 2, you should connect to the pluggable database (for example, pdb1)
instead of the root. Also, you can connect to PDB as a local user who has a local create
user privilege. If you want to switch container, you should click on Container Switcher
and a drop-down menu will open (see Figure 10):

Figure 10

Security Considerations in Multitenant Environment

[54]

In Figure 11, it is shown that the common user you created in the previous recipe is created
in the pluggable database (for example, c##john is created in pdb1; the common user is
created in all pluggable databases that reside in the CDB and will be created in all future
PDBs). By clicking on the Create button shown in Figure 11, you can create (only) a local
user:

Figure 11

Creating a common role
Common roles are roles created in the root container and they exist in all containers. These
roles can have a different set of privileges in different containers and they can be granted to
either common or local users or roles.

Security Considerations in Multitenant Environment

[55]

Getting ready
To complete this recipe, you'll need an existing common user who has create role
privilege granted commonly.

How to do it…
Connect to the root container as a common user who has create role privilege1.
granted commonly (for example, c##zoran or system user):

 SQL> connect c##zoran@cdb1

Create a common role (for example, c##role1):2.

 SQL> create role c##role1 container=all;

How it works…
When you create a common role, that role exists in all containers in that database (including
a root container and existing and future pluggable databases).

Figure 12

Security Considerations in Multitenant Environment

[56]

 c##zoran@CDB1> select * from dba_roles where role='C##ROLE1';

 ROLE PASSWORD AUTHENTICAT COM O
 ---------------- -------- ----------- --- -
 C##ROLE1 NO NONE YES N

 c##zoran@CDB1> connect c##zoran/oracle@pdb1

 Connected.

 c##zoran@PDB1> select * from dba_roles where role='C##ROLE1';

 ROLE PASSWORD AUTHENTICAT COM O
 ---------------- -------- ----------- --- -
 C##ROLE1 NO NONE YES N

 c##zoran@PDB1> connect c##zoran/oracle@pdb2

 Connected.

 c##zoran@PDB2> select * from dba_roles where role='C##ROLE1';

 ROLE PASSWORD AUTHENTICAT COM O
 ---------------- -------- ----------- --- -
 C##ROLE1 NO NONE YES N

There's more…
You can also create common roles by using Oracle Enterprise Manager Cloud Control (OEM)
12c.

Security Considerations in Multitenant Environment

[57]

How to create a common role using OEM 12c
You should connect to the root (CDB$ROOT) as a common user who has create role
privilege granted commonly (for example, c##zoran or system user). From the
Administration menu, select Security (drop-down menu) and then Roles (see Figure 13):

Figure 13

Security Considerations in Multitenant Environment

[58]

On the Roles page, click on the Create button and the Create Role page appears (Figure 14):

Figure 14

On the Create Role page, you name the role on the General tab (for example, c##role2).
Also, you may grant other roles and privileges to c##role2 (using the tabs Roles, System
Privileges, and Object Privileges). After choosing the options and granting privileges to
the role, click on the OK button to create it.

Creating a local role
Local roles are roles created in PDB and they exist only in that PDB. These roles can be
granted only locally to either common or local users or roles.

Getting ready
For this recipe, a pluggable database (in our case, pdb1) should be open. You'll need an
existing user (either common or local) who has create role privilege in that pluggable
database.

Security Considerations in Multitenant Environment

[59]

How to do it…
Connect to PDB (for example, pdb1) as a common or local user who has 1.
 create role privilege in that PDB (for example, c##maja):

 SQL> connect c##maja@pdb1

Create a local role (for example, local_role1):2.

 c##maja@PDB1> create role local_role1 container=current;

How it works…
When you create a local role, that role exists only in the pluggable database in which it is
created. Local roles cannot be created in the root container. These roles are traditional roles.

Figure 15

 c##maja@CDB1> select * from dba_roles where role='LOCAL_ROLE1';

 no rows selected

 c##maja@CDB1> connect c##maja/oracle@pdb1

 Connected.

 c##maja@PDB1> select * from dba_roles where role='LOCAL_ROLE1';

Security Considerations in Multitenant Environment

[60]

 ROLE PASSWORD AUTHENTICAT COM O
 ------------------- -------- ----------- --- -
 LOCAL_ROLE1 NO NONE NO N

 c##maja@PDB1> connect c##maja/oracle@pdb2

 Connected.

 c##maja@PDB2> select * from dba_roles where role='LOCAL_ROLE1';

 no rows selected

There's more…
You can also create local roles by using Oracle Enterprise Manager Cloud Control (OEM) 12c.

How to create a local role using OEM 12c
You should connect to PDB (for example, pdb1) as a common or local user who has
 create role privilege in that PDB (for example, c##maja). All the remaining steps are
done in the same way as in the How to create a common role using OEM 12c section.

Granting privileges and roles commonly
The common privilege is a privilege that can be exercised across all containers in a container
database. Depending only on the way it is granted, a privilege becomes common or local.
When you grant a privilege commonly (across all containers) it becomes a common
privilege. Only common users or roles can have common privileges. Only common role can
be granted commonly.

Getting ready
For this recipe, you will need to connect to the root container as an existing common user
who is able to grant a specific privilege or existing role (in our case, create session,
select any table, c##role1, c##role2) to another existing common user (c##john). If
you want to try out examples in the How it works section, you should open pdb1 and pdb2.

Security Considerations in Multitenant Environment

[61]

You will use the following:

Common users c##maja and c##zoran with the dba role granted commonly
Common user c##john
Common roles c##role1 and c##role2

How to do it…
You should connect to the root container as a common user who can grant these1.
privileges and roles (for example, c##maja or system user):

 SQL> connect c##maja@cdb1

Grant a privilege (for example, create session) to a common user (for2.
example, c##john) commonly:

 c##maja@CDB1> grant create session to c##john container=all;

Grant a privilege (for example, select any table) to a common role (for3.
example, c##role1) commonly:

 c##maja@CDB1> grant select any table to c##role1 container=all;

Grant a common role (for example, c##role1) to a common role (for example,4.
c##role2) commonly:

 c##maja@CDB1> grant c##role1 to c##role2 container=all;

Grant a common role (for example, c##role2) to a common user (for example,5.
c##john) commonly:

 c##maja@CDB1> grant c##role2 to c##john container=all;

Security Considerations in Multitenant Environment

[62]

How it works…

Figure 16

You can grant privileges or common roles commonly only to a common user. You need to
connect to the root container as a common user who is able to grant a specific privilege or
role.

In Step 2, system privilege, create session is granted to the common user
c##john commonly by adding a container=all clause to the grant statement. This means
that the user c##john can connect (create session) to the root or any pluggable
database in this container database (including all pluggable databases that will be plugged
in in the future).

Note that the container = all clause is NOT optional even though you
are connected to the root. Unlike during the creation of common users and
roles (if you omit container=all, the user or role will be created in all
containers commonly), if you omit this clause during the privilege or role
grant, the privilege or role will be granted locally and it can be exercised
only in root container.

 SQL> connect c##john/oracle@cdb1

 Connected.

 c##john@CDB1> connect c##john/oracle@pdb1

Security Considerations in Multitenant Environment

[63]

 Connected.

 c##john@PDB1> connect c##john/oracle@pdb2

 Connected.

 c##john@PDB2>

In step 3, system privilege select any table is granted to the common role c##role1
commonly. This means that the role c##role1 contains the select any table privilege
in all containers (root and pluggable databases):

 c##zoran@CDB1> select * from role_sys_privs where role='C##ROLE1';

 ROLE PRIVILEGE ADM COM
 ----------------- ------------------ --- ---
 C##ROLE1 SELECT ANY TABLE NO YES

 c##zoran@CDB1> connect c##zoran/oracle@pdb1

 Connected.

 c##zoran@PDB1> select * from role_sys_privs where role='C##ROLE1';

 ROLE PRIVILEGE ADM COM
 ----------------- ------------------ --- ---
 C##ROLE1 SELECT ANY TABLE NO YES

 c##zoran@PDB1> connect c##zoran/oracle@pdb2

 Connected.

 c##zoran@PDB2> select * from role_sys_privs where role='C##ROLE1';

 ROLE PRIVILEGE ADM COM
 ----------------- ------------------ --- ---
 C##ROLE1 SELECT ANY TABLE NO YES

Security Considerations in Multitenant Environment

[64]

In Step 4, the common role c##role1 is granted to another common role c##role2
commonly. This means that the role c##role2 has granted the role c##role1 in all
containers:

 c##zoran@CDB1> select * from role_role_privs where role='C##ROLE2';

 ROLE GRANTED_ROLE ADM COM
 ----------------- ---------------------- ---- ---
 C##ROLE2 C##ROLE1 NO YES

 c##zoran@CDB1> connect c##zoran/oracle@pdb1

 Connected.

 c##zoran@PDB1> select * from role_role_privs where role='C##ROLE2';

 ROLE GRANTED_ROLE ADM COM
 ----------------- ---------------------- ---- ---
 C##ROLE2 C##ROLE1 NO YES

 c##zoran@PDB1> connect c##zoran/oracle@pdb2

 Connected.

 c##zoran@PDB2> select * from role_role_privs where role='C##ROLE2';

 ROLE GRANTED_ROLE ADM COM
 ----------------- ---------------------- ---- ---
 C##ROLE2 C##ROLE1 NO YES

In step 5, the common role c##role2 is granted to the common user c##john commonly.
This means that the user c##john has c##role2 in all containers.

Security Considerations in Multitenant Environment

[65]

Consequently, the user c##john can use the select any table privilege in all containers
in this container database:

 c##john@CDB1> select count(*) from c##zoran.t1;

 COUNT(*)

 4

 c##john@CDB1> connect c##john/oracle@pdb1

 Connected.

 c##john@PDB1> select count(*) from hr.employees;

 COUNT(*)

 107

 c##john@PDB1> connect c##john/oracle@pdb2

 Connected.

 c##john@PDB2> select count(*) from sh.sales;

 COUNT(*)

 918843

Granting privileges and roles locally
A local privilege is a privilege than can be exercised only in a container in which it is
granted. Depending only on the way it is granted, a privilege becomes common or local.
When you grant privilege locally (in the current container), it becomes a local privilege.
Both common and local users or roles can have local privileges.

Security Considerations in Multitenant Environment

[66]

Getting ready
For this recipe, you'll need an existing user (c##maja) who can grant some privileges (for
example, create procedure, create table, create view, and create synonym) and
roles (c##role1, c##role2, c##role3, c##role4, and local_role1) in a specific
container (root or PDB; in our case, pdb1) to existing users and roles (c##john, mike,
local_role1, c##role1, c##role3, and c##role4).

How to do it…
You should connect to the container (root or pluggable database) in which you 1.
want to grant the privilege as a common or local user who can grant that
privilege (for example, c##maja):

 SQL> connect c##maja@pdb1

Grant a privilege (for example, create synonym) to a common user (for2.
example, c##john) locally:

 c##maja@PDB1> grant create synonym to c##john container=current;

Grant a privilege (for example, create view) to a local user (for example, mike)3.
locally:

 c##maja@PDB1> grant create view to mike container=current;

Grant a privilege (for example, create table) to a common role (for example,4.
c##role1) locally:

 c##maja@PDB1> grant create table to c##role1 container=current;

Grant a privilege (for example, create procedure) to a local role (for example,5.
local_role1) locally:

 c##maja@PDB1> grant create procedure to local_role1
 container=current;

Security Considerations in Multitenant Environment

[67]

Grant a common role (for example, c##role2) to another common role (for6.
example, c##role3) locally:

 c##maja@PDB1> grant c##role2 to c##role3 container=current;

Grant a common role (for example, c##role3) to a local role (for example,7.
local_role1) locally:

 c##maja@PDB1> grant c##role3 to local_role1 container=current;

Grant a local role (for example, local_role1) to a common role (for example,8.
c##role4) locally:

 c##maja@PDB1> grant local_role1 to c##role4 container=current;

Grant a common role (for example, c##role4) to a common user (for example,9.
c##john) locally:

 c##maja@PDB1> grant c##role4 to c##john container=current;

How it works…
In the previous section, we have seen different types of local grants. Local grants are valid
only in the current container even though the granted user (or role) is common.
Consequently, common users and common roles can have a different set of privileges in
different containers. Steps 3, 5, 7, and 8 can't be done in the root container because there are
no local users and local roles in the root container.

Effects of plugging/unplugging operations
on users, roles, and privileges
The purpose of this recipe is to show what is going to happen to users, roles, and privileges
when you unplug a pluggable database from one container database (cdb1) and plug it into
some other container database (cdb2).

Security Considerations in Multitenant Environment

[68]

Getting ready
To complete this recipe, you will need the following:

Two container databases (cdb1 and cdb2)
One pluggable database (pdb1) in the container database cdb1
Local user mike in the pluggable database pdb1 with the local create session
privilege
The common user c##john with the create session common privilege and
create synonym local privilege on the pluggable database pdb1

How to do it…
Connect to the root container of cdb1 as user sys:1.

 SQL> connect sys@cdb1 as sysdba

Unplug pdb1 by creating an XML metadata file:2.

 SQL> alter pluggable database pdb1 unplug into
 '/u02/oradata/pdb1.xml';

Drop pdb1 and keep the datafiles:3.

 SQL> drop pluggable database pdb1 keep datafiles;

Connect to the root container of cdb2 as user sys:4.

 SQL> connect sys@cdb2 as sysdba

Create (plug) pdb1 to cdb2 by using the previously created metadata file:5.

 SQL> create pluggable database pdb1 using '/u02/oradata/pdb1.xml'
 nocopy;

Security Considerations in Multitenant Environment

[69]

How it works…
By completing the previous steps, you unplugged pdb1 from cdb1 and plugged it into
cdb2. After this operation, all local users and roles (in pdb1) are migrated with the pdb1
database.

The following is how you try to connect to pdb1 as a local user:

 SQL> connect mike@pdb1

All local privileges are migrated even if they are granted to common users/roles. However,
if you try to connect to pdb1 as a previously created common user, c##john, you'll get an
error, as follows:

 SQL> connect c##john@pdb1

 ERROR:
 ORA-28000: the account is locked
 Warning: You are no longer connected to ORACLE.

This happened because, after migration, common users are migrated in a pluggable
database as locked accounts. You can continue to use objects in these users' schemas, or you
can create these users in a root container of a new CDB. To do this, we first need to close
pdb1:

 sys@CDB2> alter pluggable database pdb1 close;
 Pluggable database altered.

 sys@CDB2> create user c##john identified by oracle container=all;
 User created.

 sys@CDB2> alter pluggable database pdb1 open;
 Pluggable database altered.

Security Considerations in Multitenant Environment

[70]

If we try to connect to pdb1 as the user c##john, we will get the following error:

 SQL> conn c##john/oracle@pdb1

 ERROR:
 ORA-01045: user C##JOHN lacks CREATE SESSION privilege; logon denied
 Warning: You are no longer connected to ORACLE.

Even though c##john had the create session common privilege in cdb1, he cannot
connect to the migrated PDB. This is because common privileges are not migrated! So, we
need to give the create session privilege (either common or local) to the user c##john,
as follows:

 sys@CDB2> grant create session to c##john container=all;

 Grant succeeded.

In the earlier recipe (Granting privileges and roles locally), we granted a create synonym
local privilege to a user, c##john. Let's try this privilege on the migrated pdb2:

 c##john@PDB1> create synonym emp for hr.employees;

 Synonym created.

This proves that local privileges are always migrated.

3
PL/SQL Security

In this chapter, we will cover the following tasks:

Creating and using definer's rights procedures
Creating and using invoker's rights procedures
Using code-based access control
Restricting access to program units by using accessible by

Introduction
In this section, you will learn the definitions of concepts that will be used in the rest of the
chapter.

Definer is the owner of a procedure.

Invoker is a user who uses (invokes) a procedure, but is not the definer of the procedure.

Definer's rights procedure is a procedure (or a program unit) that executes with the
privileges of its definer.

Invoker's rights procedure is a procedure (or a program unit) that executes with the
privileges of the invoker.

Another difference between definer's and invoker's rights procedures is
that invoker's rights procedures are not bound to the schema in which
they are located.

PL/SQL Security

[72]

Code base access control is a new feature, introduced in Oracle Database 12c. It enables you
to grant database roles to PL/SQL functions, procedures, or packages. You can use it with
definer's and invoker's rights procedures.

The purpose of the accessible by clause is to limit the calling set of program units to be
those in the accessible by clause and the unit itself.

For all the recipes in this chapter, you will use non-CDB 12c. We assume
that the database is up and running.

Creating and using definer's rights
procedures
In this recipe, you'll learn to create and use definer's rights procedures.

Getting ready
To complete this recipe, you'll use a user who has a DBA role.

How to do it…
Connect to the database as a user with the DBA role (for example, zoran)1.

 SQL> connect zoran

Create two users (procowner and procuser) and grant them appropriate2.
privileges:

 SQL> create user procowner identified by oracle1;
 SQL> create user procuser identified by oracle2;
 SQL> grant create session, create procedure to procowner;
 SQL> grant create session to procuser;

PL/SQL Security

[73]

Create a table called zoran.tbl and grant users privileges on this table:3.

 SQL> create table zoran.tbl(a number, b varchar2(40));
 SQL> insert into zoran.tbl values(1, 'old_value');
 SQL> commit;
 SQL> grant select on zoran.tbl to procuser;
 SQL> grant update on zoran.tbl to procowner;

Connect as a user, procowner, create a procedure to update table zoran.tbl,4.
and grant execute on this procedure to user procuser:

 SQL> connect procowner/oracle1
 CREATE OR REPLACE PROCEDURE UpdateTbl (x IN number,
 y IN varchar2)
 AUTHID DEFINER
 AS
 BEGIN
 UPDATE ZORAN.TBL
 SET b = y
 WHERE a = x;
 END;
 /
 SQL> grant execute on UpdateTbl to procuser;

Connect as user procuser and try to directly update table zoran.tbl:5.

 SQL> connect procuser/oracle2
 SQL> UPDATE ZORAN.TBL SET B = 'value1' WHERE A = 1;
 UPDATE ZORAN.TBL SET B = 'value1' WHERE A = 1
 *
 ERROR at line 1:
 ORA-01031: insufficient privileges

When the previous step fails, update table by using the UpdateTbl procedure:6.

 SQL> EXEC procowner.UpdateTbl(1, 'new_value');
 PL/SQL procedure successfully completed.

Check whether the table is updated:7.

 SQL> select * from zoran.tbl;
 A B
 ---------- --
 1 new_value

PL/SQL Security

[74]

How it works…
Definer's rights procedures are executed by using privileges that are granted to the owner
of the procedure. In our example, we have two users: procowner - a user who is the owner
of the procedure and has privilege to update table zoran.tbl and procuser - a user who
just executes the procedure. In step 4, procuser creates procedure by using the AUTHID
DEFINER clause, which means that this procedure will be definer's rights procedure. This is
a default behavior (we can omit the AUTHID DEFINER clause). In step 5, procuser tries to
update table zoran.tbl directly, but it gets an error:

 SQL> UPDATE ZORAN.TBL SET B = 'value1' WHERE A = 1;
 UPDATE ZORAN.TBL SET B = 'value1' WHERE A = 1
 *
 ERROR at line 1:
 ORA-01031: insufficient privileges

This is the expected behavior, considering that procuser doesn't have an update privilege
on zoran.tbl. When procuser executes the procedure in step 6, the table is updated
because the privilege of the definer is applied.

Creating and using invoker's right
procedures
In this recipe, you'll learn to create and use invoker's rights procedures. They can be useful
when creating PL/SQL procedures in a highly privileged schema (because in this case, it is
more secure to grant specific privileges to the invoker). Also, when there is no SQL code in
the PL/SQL procedure and the procedure is available to other users, invoker's rights
procedure will be executed more efficiently. There are no changes in the values of current
schema and currently enabled roles during the execution (these changes are not necessary
because without SQL in PL/SQL code, privilege checking is not performed).

Getting ready
To complete this recipe, you'll use a user who has the DBA role.

PL/SQL Security

[75]

How to do it…
Connect to the database as a user with the DBA role (for example, zoran):1.

 SQL> connect zoran

Create two users (procuser1, procuser2) and grant them privileges:2.

 SQL> create user procuser1 identified by oracle1;
 SQL> create user procuser2 identified by oracle2;
 SQL> grant create session to procuser1;
 SQL> grant create session to procuser2;

Create the table table1 and grant select and update privileges on that table to3.
procuser1 and only select privilege to procuser2:

 SQL> create table table1(a number, b varchar2(30));
 SQL> insert into zoran.table1 values(1, 'old_value');
 SQL> commit;
 SQL> grant select on zoran.table1 to procuser1;
 SQL> grant update on zoran.table1 to procuser1;
 SQL> grant select on zoran.table1 to procuser2;

Create an invoker's rights procedure to update table1:4.

 CREATE OR REPLACE PROCEDURE UpdateTable1 (x IN number,
 y IN varchar2)
 AUTHID CURRENT_USER
 AS
 BEGIN
 UPDATE ZORAN.TABLE1
 SET b = y
 WHERE a = x;
 END;
 /

Grant execute on that procedure to procuser1 and procuser2:5.

 SQL> grant execute on zoran.UpdateTable1 to procuser1;
 SQL> grant execute on zoran.UpdateTable1 to procuser2;

PL/SQL Security

[76]

Connect as user procuser1 and execute the procedure UpdateTable1:6.

 SQL> connect procuser1
 SQL> EXEC zoran.UpdateTable1(1, 'new_value');
 PL/SQL procedure successfully completed.
 SQL> commit;

Check whether the table is updated:7.

 SQL> select * from zoran.table1;
 A B
 ---------- --
 1 new_value

Connect as the user procuser2 and try to execute the procedure UpdateTable1:8.

 SQL> connect procuser2
 SQL> EXEC zoran.UpdateTable1(1, 'newer_value');
 BEGIN zoran.UpdateTable1(1, 'new_value'); END;
 *
 ERROR at line 1:
 ORA-01031: insufficient privileges
 ORA-06512: at "ZORAN.UPDATETABLE1", line 5
 ORA-06512: at line 1

How it works…
Invoker's rights procedures are executed by using privileges that are granted to the user
that executes the procedure. In step 4, the user zoran creates an invoker's rights procedure
by specifying the AUTHID CURRENT_USER clause. When procuser1 executes that
procedure in step 6, he or she succeeds because update privilege is granted to procuser1,
but when procuser2 tries to execute it in step 8, he or she gets an error because procuser2
lacks the update privilege on table1.

PL/SQL Security

[77]

There's more…
Let's consider this security problem.

Connect as a user who has a DBA role (for example, zoran). Create a new user1.
maluser and grant him the privileges create session and create
procedure.

 SQL> create user maluser identified by oracle1;
 SQL> grant create session, create procedure to maluser;

Connect as the user maluser and create the following “malicious” procedure2.
with the purpose of granting him the DBA role:

 SQL> connect maluser/oracle1
 create or replace procedure mal_proc
 authid current_user
 as
 begin
 execute immediate 'grant dba to maluser';
 end;
 /

Connect as a user who has a DBA role (for example, zoran) and execute the3.
procedure you created in the previous step:

 SQL> connect zoran
 SQL> EXEC maluser.mal_proc;
 PL/SQL procedure successfully completed.

Connect as maluser and check whether the DBA role is granted:4.

 SQL> connect maluser
 SQL> select * from session_roles where role= 'DBA';

www.allitebooks.com

http://www.allitebooks.org

PL/SQL Security

[78]

In this example, we've seen that a low-privileged user can trick the DBA user to grant him
the DBA role, by tricking the DBA user (in this case, zoran) to execute an invoker's rights
procedure that was created by low-privileged user (in this case, maluser). The user zoran
can avoid this scenario by examining code that he is executing using his own privileges and
specifying users whose procedures he wants to execute using his own privileges. The latter
can be done by granting the INHERIT PRIVILEGE privilege to these users. Remember that
this privilege is granted by default to public user, meaning that zoran can execute
procedures from all users in the database. The first thing zoran can do is to revoke this
privilege from the public user and then grant it only to users whose invoker's rights
procedures he wants to execute. Let's try this:

Connect as a user zoran and revoke inherit privileges from public user:1.

 SQL> connect zoran
 SQL> revoke inherit privileges on user zoran from public;

Figure 1

PL/SQL Security

[79]

Try to execute mal_proc:2.

 SQL> EXEC maluser.mal_proc;
 BEGIN maluser.mal_proc; END;
 *
 ERROR at line 1:
 ORA-06598: insufficient INHERIT PRIVILEGES privilege
 ORA-06512: at "MALUSER.MAL_PROC", line 1
 ORA-06512: at line 1

Figure 2

PL/SQL Security

[80]

Grant inherit rights privileges to maluser:3.

 SQL> grant inherit privileges on user zoran to maluser;

Figure 3

Try again to execute mal_proc:4.

 SQL> EXEC maluser.mal_proc;
 PL/SQL procedure successfully completed.

Figure 4

PL/SQL Security

[81]

Users who have the inherit any privileges system privilege are exempted from this
rule, meaning that procedures from these users can be executed by all the users in the
database. For example, we have the following steps:

Connect as a user who has a DBA role (for example, zoran), create two users,1.
and grant them the following privileges:

 SQL> connect zoran
 SQL> create user super_user identified by oracle1;
 SQL> create user regular_user identified by oracle2;
 SQL> grant create session, create procedure to super_user;
 SQL> grant create session, create procedure to
 regular_user;

Grant inherit any privileges only to super_user:2.

 SQL> grant inherit any privileges to super_user;

Connect as regular_user and create the following procedure:3.

 SQL> connect regular_user
 create or replace procedure reg_proc
 authid current_user
 as
 begin
 execute immediate 'grant dba to regular_user';
 end;
 /

Connect as super_user and create the following procedure:4.

 SQL> connect super_user
 create or replace procedure sup_proc
 authid current_user
 as
 begin
 execute immediate 'grant dba to super_user';
 end;
 /

PL/SQL Security

[82]

Connect as user zoran and try to execute reg_proc from regular _user5.
(observe an error because regular_user doesn't have the inherit
privileges privilege on user zoran):

 SQL> connect zoran/oracle_4U
 Connected.
 SQL> EXEC regular_user.reg_proc;
 BEGIN regular_user.reg_proc; END;
 *
 ERROR at line 1:
 ORA-06598: insufficient INHERIT PRIVILEGES privilege
 ORA-06512: at "REGULAR_USER.REG_PROC", line 1
 ORA-06512: at line 1

Try to execute sup_proc from super_user (this succeeds because, even though6.
super_user doesn't have inherit privileges privilege on the user zoran, he
has inherited any privileges system privilege, which can be interpreted as
inherit privileges on all users of the database):

 SQL> EXEC super_user.sup_proc;
 PL/SQL procedure successfully completed.

Using code-based access control
In this recipe, you'll use code base access control with invoker's rights procedure.

Getting ready
To complete this recipe, you'll use a user who has a DBA role.

How to do it…
Connect to the database as a user with a DBA role (for example, zoran), create1.
proc_user, and grant him the create session privilege:

 SQL> create user proc_user identified by oracle1;
 SQL> grant create session to proc_user;

PL/SQL Security

[83]

Create table tbl1 and insert test data:2.

 SQL> create table tbl1(a number, b varchar2(30));
 SQL> insert into tbl1 values (1, 'old_value');
 SQL> commit;

Create the invoker's rights procedure UpdateTbl1 and grant execute on that3.
procedure to proc_user:

 CREATE OR REPLACE PROCEDURE UpdateTbl1 (x IN number,
 y IN varchar2)
 AUTHID CURRENT_USER
 AS
 BEGIN
 UPDATE ZORAN.TBL1
 SET b = y
 WHERE a = x;
 END;
 /
 SQL> grant execute on zoran.UpdateTbl1 to proc_user;

Create the role proc_role and grant update on tbl1 to proc_role:4.

 SQL> create role proc_role;
 SQL> grant update on zoran.tbl1 to proc_role;

Grant proc_role to the procedure UpdateTbl1:5.

 SQL> grant proc_role to procedure zoran.UpdateTbl1;

Connect as a user proc_user:6.

 SQL> connect proc_user

Try to directly update the table:7.

 SQL> update zoran.tbl1 set b = 'value1' where a = 1;
 update zoran.tbl1 set b = 'value1' where a = 1
 *
 ERROR at line 1:
 ORA-00942: table or view does not exist

Execute the procedure UpdateTbl1:8.

 SQL> execute zoran.UpdateTbl1(1, 'new_value');
 PL/SQL procedure successfully completed.

PL/SQL Security

[84]

Connect as the user zoran and verify whether the table is updated:9.

 SQL> connect zoran
 SQL> select * from tbl1;
 A B
 ---------- --
 1 new_value

How it works…
Code-based access control allows us to grant a role to a PL/SQL procedure, function, or
package. It works with both definer's rights and invoker's rights procedures. The scenario in
this example shows one use of this feature. The invoker's rights procedure in step 3 created
by zoran (UpdateTbl1), is used to update the table tbl1. Execute on this procedure is
granted to the user proc_user. This is an invoker's rights procedure, meaning that it is
executed by using privileges granted to invoker (in our case, proc_user). However,
proc_user doesn't have update privilege on this table, but he can still execute it
successfully because procedure itself contains update privilege on tbl1 table, granted
through the role proc_role in step 5.

There's more…
Remember that, in some cases, privileges granted to users via roles are not active during the
PL/SQL calls. Let's try this:

Connect as a user who has a DBA role (for example, zoran), create the user1.
plsusr, and grant him the create session and create procedure
privileges:

 SQL> create user plsusr identified by oracle1;
 SQL> grant create session, create procedure to plsusr;

Create the role plsrole1 and grant the create table privilege to it:2.

 SQL> create role plsrole1;
 SQL> grant create table to plsrole1;

Grant plsrole1 to the user plsusr:3.

 SQL> grant plsrole1 to plsusr;

PL/SQL Security

[85]

Connect as plsusr and create the procedure cr_table:4.

 SQL> connect plsusr
 create or replace procedure cr_table
 authid definer
 as
 begin
 execute immediate 'create table test2(a int)';
 end;
 /

Create the table test1 to check whether the plsusr user has a create table5.
privilege:

 SQL> create table test1(a int);
 Table created.

Execute the cr_table procedure and observe the insufficient privileges6.
error. Even though the user plsusr has a create table privilege, that privilege
is granted via role and roles are not active during this PL/SQL call resulting in the
insufficient privileges error.

 SQL> exec cr_table;
 BEGIN cr_table; END;
 *
 ERROR at line 1:
 ORA-01031: insufficient privileges
 ORA-06512: at "PLSUSR.CR_TABLE", line 5
 ORA-06512: at line 1

Connect as a user who has the DBA role and grant the create table privilege7.
directly to the user plsusr:

 SQL> connect zoran
 SQL> grant create table to plsusr;

Connect as the user plsusr and try to execute the procedure cr_table again.8.
This time, the create table privilege is granted directly; thus, it is active
during the PL/SQL call, resulting in successful completion:

 SQL> connect plsusr/oracle1
 SQL> exec cr_table;
 PL/SQL procedure successfully completed.

PL/SQL Security

[86]

Restricting access to program units by
using accessible by
In this recipe, you'll learn about the effects of using the accessible by clause.

Getting ready
To complete this recipe, you'll use a user who has the create procedure privilege.

How to do it…
Connect as a user who has the create procedure privilege (for example,1.
zoran):

 SQL> connect zoran

Create the protected_pkg package that is only accessible by public_pkg:2.

 CREATE OR REPLACE PACKAGE protected_pkg
 ACCESSIBLE BY (public_pkg)
 IS
 PROCEDURE protected_proc;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY protected_pkg
 IS
 PROCEDURE protected_proc
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('This is a Protected Procedure
 that can only be accessed from Public Package');
 END;
 END;
 /

PL/SQL Security

[87]

Create the public_pkg package:3.

 CREATE OR REPLACE PACKAGE public_pkg
 IS
 PROCEDURE public_proc;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY public_pkg
 IS
 PROCEDURE public_proc
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('This is Public Procedure from
 Public Package!');
 protected_pkg.protected_proc;
 END;
 END;
 /

Execute the public_proc procedure from public_pkg:4.

 SQL> set serveroutput on
 SQL> EXEC public_pkg.public_proc;
 This is Public Procedure from Public Package!
 This is a Protected Procedure that can only be accessed from
 Public Package
 PL/SQL procedure successfully completed.

Try to directly execute protected_proc from protected_pkg and observe the5.
error:

 SQL> EXEC protected_pkg.protected_proc;
 BEGIN protected_pkg.protected_proc; END;
 *
 ERROR at line 1:
 ORA-06550: line 1, column 7:
 PLS-00904: insufficient privilege to access object
 PROTECTED_PKG
 ORA-06550: line 1, column 7:
 PL/SQL: Statement ignored

PL/SQL Security

[88]

Try to create another package that accesses protected_proc from6.
protected_pkg:

 CREATE OR REPLACE PACKAGE other_pkg
 IS
 PROCEDURE other_proc;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY other_pkg
 IS
 PROCEDURE other_proc
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('This is Other Procedure from
 Other Package!');
 protected_pkg.protected_proc;
 END;
 END;
 /
 Warning: Package Body created with compilation errors.

Find the compilation errors, as follows:7.

 SQL> show errors
 Errors for PACKAGE BODY OTHER_PKG:
 LINE/COL ERROR
 -------- --
 7/7 PL/SQL: Statement ignored
 7/7 PLS-00904: insufficient privilege to access object
 PROTECTED_PKG

How it works…
An accessible by clause enables us to specify which packages can access procedures and
functions of another package. This process is called white listing. In step 2, we created the
protected_pkg package and we specified that procedures and functions of this package
can be accessed only by procedures and functions of public_pkg package. In step 4, we
executed the public_proc procedure from the public_pkg package and, in output, we
can observe that the protected_proc procedure has been successfully executed. However,
if we try to execute protected_proc directly, we get an insufficient privileges
error because the accessible by clause restricts execution of this procedure (step 5). Even
if we try to create a new package with the procedure that calls the protected_proc
procedure, we get an insufficient privileges error (steps 6 and 7).

4
Virtual Private Database

In this chapter, we will cover the following tasks:

Creating different policy functions
Creating Oracle Virtual Private Database row-level policies
Creating column-level policies
Creating a driving context
Creating policy groups
Setting context as a driving context
Adding a policy to a group
Exempting users from VPD policies

Introduction
Oracle Virtual Private Database (VPD) is a security feature, introduced in Oracle Database
8i. It is available only in Enterprise Edition of Oracle Database. Discretionary access control
(DAC) grants/restricts access to data at an object level (for example, table level). This means
that a user can access either the entire data in a table or no data. VPD enables you more
granular control over security of your data. Using VPD, you can restrict access to data at
row level or column level.

VPD doesn't replace DAC, but it is complimentary to DAC. VPD can
further restrict access to users who have been given access to data by
DAC.

Virtual Private Database

[90]

There are five types of policies based on how often a policy function is evaluated:

DBMS_RLS.DYNAMIC

DMBS_RLS.STATIC

DBMS_RLS.SHARED_STATIC

DBMS_RLS.CONTEXT_SENSITIVE

DBMS_RLS.SHARED_CONTEXT_SENSITIVE

DBMS_RLS.DYNAMIC is default.

Although it is not necessary to use application contexts when implementing VPD policies, it
is a common practice. Figure 1 shows usual steps that you will need to complete to
implement the VPD policy on protected objects, such as table or view:

Figure 1 – Steps to implement the VPD policy

A driving context is an application context that has at least one attribute and its purpose is
to determine which group of policies will be applied. The driving context is set by an
application that is trying to access the data.

Virtual Private Database

[91]

The default VPD behavior is that all policies defined on a table or a view are enforced for all
SQL statements regardless of the application that executes them. If multiple applications
share a table or a view, it is highly likely that you will either need to establish more complex
logic to handle security requirements (to determine in which case, which predicate should
be returned) or change the default VPD behavior by creating and using policy groups. If
policies are already defined, you should identify which policies should be in effect when
each application accesses the table or view. Each object has a predefined default policy
group (SYS_DEFAULT), and the policies defined in this group are always applied for that
particular object. A driving context determines which other policy group will also be
applied at that time.

Suppose that there are two applications (A and B) that access data in table
HR.EMP_VPD_TEST. Their specific policies are defined in two policy groups (HR_GRP_A and
HR_GRP_B), and policies that should be enforced in any case are defined in the default
group (SYS_DEFAULT). When application A accesses the data, policies that belong to
HR_GRP_A and SYS_DEFAULT groups are applied, and when application B accesses the data,
polices that belong to HR_GRP_B and SYS_DEFAULT groups are applied (it is assumed that
the driving context is properly set).

Steps to implement policy groups are shown in Figure 2:

Figure 2 – Steps to implement policy groups

Virtual Private Database

[92]

Creating different policy functions
The purpose of a policy function is to return a predicate that will be applied in WHERE clause
of the statement (except for INSERT operation). In this recipe, you'll create several simple
policy functions, based on different business and security requirements.

Getting ready
To complete this recipe, you'll need to create the table hr.emp_vpd_test, insert several
values into that table, and create several users (in our case, susan, joel, emma, maja, and
zoran already exist).

Figure 3 – A test table

Virtual Private Database

[93]

If you won't use the same data as shown in Figure 4, then keep in mind to accordingly make
changes in the How to do it section and the rest of the recipes in this chapter.

Figure 4 – Test data in the table hr.emp_vpd_test

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
user maja):

 $ sqlplus maja

Virtual Private Database

[94]

Create a policy function that satisfies this condition: The user susan can't access2.
data in a table (for example, hr.emp_vpd_test) and other users can access entire
data in the table.

Figure 5

Create an application context that has the emp_id attribute and the value is3.
emp_id (from the hr.emp_vpd_test) of the connected user or if the connected
user is not employee. See Chapter 12, Appendix – Application Contexts for
detailed explanation (recipes: Creating an application context and Setting application
context attributes) and make appropriate changes.

Create an application context

Virtual Private Database

[95]

Create a PL/SQL package

Create a logon trigger

Virtual Private Database

[96]

Create a policy function (for example, emp_access) that satisfies this condition: a4.
“regular” employee can access only his or her data in a table (for example,
hr.emp_vpd_test) and manager users can access his or her data in the table and
data for employees he or she directly manages.

Figure 9 – The emp_access policy function

Create a role (for example, HREMP_TEST).5.

Virtual Private Database

[97]

Create a policy function that satisfies this condition: Only users who have the6.
HREMP_TEST role can view data in a table (for example, hr.emp_vpd_test).

Figure 11 – The role_access policy function

How it works…
In step 4, you created a policy function that uses the application context you created, where
as other policy functions you created use built-in application contexts.

A policy function can be part of a package or is standalone.

Virtual Private Database

[98]

There's more…
To test whether the function defined in step 2 works properly, perform the following tasks:

Connect to the database as the user maja and execute the following statement:1.

Figure 12 – Maja can access data

Grant the user susan execute on no_access function and connect to the2.
database as the user susan.

Figure 13 – Temporary grant the susan privilege

Execute the following statement:3.

 select maja.no_access('a','b') from dual;

Figure 14 – Susan can't access data

Virtual Private Database

[99]

Connect to the database as the user maja and revoke execute on no_access 4.
function from the user susan.

Figure 15 – Clean up environment (revoke privilege)

See also
All recipes of Chapter 12, Appendix – Application Contexts

Creating Oracle Virtual Private Database
row-level policies
Oracle VPD row-level policies restrict users' access per row for a protected object. This
means that two users who execute the same query against, for example, a table may, as a
result, receive different number of rows.

Getting ready
See the Getting ready section of the recipe Creating different policy functions.

Virtual Private Database

[100]

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
the user maja):

 $ sqlplus maja

Create a VPD policy (for example, test_pol1) that protects the2.
hr.emp_vpd_test table in the following way: it restricts SELECT operation
based on a policy function (for example, no_access).

To test VPD policy created in the previous step, connect as the user susan to the3.
database (keep in mind that she has the SELECT ANY TABLE privilege) and try to
access data in the table hr.emp_vpd_test.

Figure 17 – Susan can't access data

Virtual Private Database

[101]

Connect to the database as a user who can create a VPD policy (for example, user4.
maja). Create a VPD policy (for example, test_pol2) that additionally protects
the hr.emp_vpd_test table in the following way: it restricts the SELECT and
DELETE operations based on a policy function (for example, emp_access).

 SQL> connect maja

Figure 18 – The VPD policy TEST_POL2

Connect to the database as the user joel and execute the following query:5.

 SELECT * FROM HR.EMP_VPD_TEST;

The result will show 3 rows, because joel can view his data and data for his
direct employees (policy function emp_access).

Figure 19 – Joel can view his data and data for his direct employees

Virtual Private Database

[102]

Connect to the database as the user emma and execute the following query:6.

 SELECT * FROM HR.EMP_VPD_TEST;

The result will show only 1 row, because emma is a “regular” employee, so
she can view only her own data (policy function emp_access).

Figure 20 – Emma can only view her own data

There's more…
You defined two VPD policies on the same table, and they are both enabled. The first one
only restricts the user susan from accessing the table, whereas the other one affects all users
connected to the database (with some exceptions, see the recipe Exempting users from VPD
policies). If susan connects to the database, both policies will determine whether she can
access the data and if yes, which data. The way the policies are defined, she won't be able
to view data in the table.

See also
The recipe Exempting users from VPD policies

Virtual Private Database

[103]

Creating column-level policies
When you create a column-level VPD policy, you define sensitive columns, and if those
columns are referenced in a query, statement will be rewritten. To create a column-level
VPD policy, you also use the DBMS_RLS.ADD_POLICY procedure.

Getting ready
See the Getting ready section for the first recipe in this chapter. Results shown in this recipe
assume that you completed previous recipes in this chapter.

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
the user maja):

 $ sqlplus maja

Create a VPD policy (for example, test_col) that protects the2.
hr.emp_vpd_test table in the following way: it defines that salary and
comm_pct are sensitive columns and a user can access them only if he or she has
the HREMP_TEST role (the role_access policy function).

Virtual Private Database

[104]

Grant the role HREMP_TEST to user zoran:3.

 SQL> grant HREMP_TEST to zoran;

Connect to the database as the user zoran and view data in the table4.
hr.emp_vpd_test.

Connect to the database as the user maja and disable the VPD policy TEST_POL2.5.

Virtual Private Database

[105]

Repeat step 4.6.

Connect to the database as the user joel and execute the same statement as in7.
the previous step.

Virtual Private Database

[106]

How it works…
In step 2, the test_col VPD policy is created. In step 3, the user zoran is granted the role
(HREMP_TEST) that will allow him to view entire data in step 6 (after test_pol2 is
disabled). In step 4, displayed rows are restricted by TEST_POL2, so user zoran can view
only his data. In step 5, you disabled the TEST_POL2 policy using the
DBMS_RLS.ENABLE_POLICY procedure (to disable the policy, you set enable parameter to
false). The syntax is:

 DBMS_RLS.ENABLE_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 enable IN BOOLEAN TRUE)

In step 7, the user joel can view all rows, but cannot view salary and comm_pct, because
he doesn't have the HREMP_TEST role.

Creating a driving context
In the previous recipe, you saw that having multiple VPD policies (most probably created
because multiple application use that same table) is harder to manage, and it can lead to
unexpected/unwanted results.

For example, you have two applications and want to create two policy groups. If the first
application accesses the table, the test_pol1 and test_col policies should be enforced,
and if second application accesses the table, the test_pol2 policies should be applied.
There will be no default policies.

In this recipe, you'll create an application context and set it.

Getting ready
To complete this recipe, you'll need an existing user who can create an application context
(for example, the user maja).

Virtual Private Database

[107]

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
the user maja):

 $ sqlplus maja

Create a driving context (for example, driver_ctx):2.

 SQL> CREATE CONTEXT driver_ctx using driver_ctx_pkg;

Set the driving context:3.

 SQL> CREATE OR REPLACE PACKAGE driver_ctx_pkg IS
 PROCEDURE set_driver (p_group varchar2);
 END;
 /
 SQL> CREATE OR REPLACE PACKAGE BODY driver_ctx_pkg IS
 PROCEDURE set_driver (p_group varchar2)
 IS
 BEGIN
 DBMS_SESSION.SET_CONTEXT('driver_ctx','ACTIVE',p_group);
 END;
 END;
 /

Creating policy groups
In this recipe, you'll create two policy groups that will be applied to table
hr.emp_vpd_test.

Getting ready
To complete this recipe, you'll need an existing user who has appropriate privileges (for
example, the user maja).

Virtual Private Database

[108]

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
the user maja):

 $ sqlplus maja

Create the first policy group (for example, pol_grp_A):2.

 SQL> BEGIN
 DBMS_RLS.CREATE_POLICY_GROUP(
 object_schema => 'HR',
 object_name => 'EMP_VPD_TEST',
 policy_group => 'pol_grp_A');
 END;
 /

Create the second policy group (for example, pol_grp_B):3.

 SQL> BEGIN
 DBMS_RLS.CREATE_POLICY_GROUP(
 object_schema => 'HR',
 object_name => 'EMP_VPD_TEST',
 policy_group => 'pol_grp_B');
 END;
 /

Setting context as a driving context
In this recipe, you'll make an existing application context a driving context (you'll associate
it with the protected object).

Getting ready
To complete this recipe, you'll need an existing application context (for example,
driver_ctx) and an existing user who has appropriate privileges (for example, maja).

Virtual Private Database

[109]

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
the user maja):

 $ sqlplus maja

Make an existing application context a driving context.2.

Adding policy to a group
In this recipe, create VPD policies as part of a policy group.

Getting ready
To complete this recipe, you'll need an existing user who has appropriate privileges (for
example, maja). If you completed previous recipes, drop all VPD policies using the
DBMS_RLS.DROP_POLICY procedure.

Figure 27 – Drop policies

Virtual Private Database

[110]

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
the user maja):

 $ sqlplus maja

Add TEST_POL1 to policy group pol_grp_A.2.

Virtual Private Database

[111]

Add TEST_COL to policy group pol_grp_A.3.

Add TEST_POL2 to policy group pol_grp_B.4.

Virtual Private Database

[112]

Create a logon trigger.5.

Connect to the database as the user joel using SQL*Plus and execute the SELECT6.
statement, as shown in Figure 32.

Figure 32

Virtual Private Database

[113]

View data in the table hr.emp_vpd_test.7.

Figure 33

Connect to the database as the user susan using SQL*Plus and view data in the8.
table hr.emp_vpd_test:

 SQL> connect susan

Virtual Private Database

[114]

Connect as the user emma using SQL Developer and view data in the table9.
hr.emp_vpd_test.

Exempting users from VPD policies
VPD policies are not enforced for users who connect as sysdba, during direct path export,
and for users who have the EXEMPT ACCESS POLICY privilege.

Getting ready
To complete this recipe, you'll connect to the database as SYS user and grant EXEMPT
ACCESS POLICY to an existing user.

Virtual Private Database

[115]

How to do it…
Connect to the database as SYS user:1.

 $ sqlplus / as sysdba

Grant the EXEMPT ACCESS POLICY privilege to an existing user (for example,2.
susan):

 SQL> grant EXEMPT ACCESS POLICY to susan;

Connect to the database as the user susan and verify that now she can access3.
data in the hr.emp_vpd_test table.

5
Data Redaction

In this chapter, we will cover the following tasks:

Creating a redaction policy when using full redaction
Creating a redaction policy when using partial redaction
Creating a redaction policy when using random redaction
Creating a redaction policy when using regular expression redaction
Using Oracle Enterprise Manager Cloud Control 12c to manage redaction policies
Changing the function parameters for a specified column
Adding a column to the redaction policy
Enabling, disabling, and dropping a redaction policy
Exempting users from data redaction policies

Introduction
Oracle Data Redaction is a new security feature, introduced in Oracle Database 12c. From a
licensing viewpoint, it is part of the Advanced Security Option (only available as an option
for Oracle Database Enterprise Edition). However, afterwards, Oracle decided to make it
available in Oracle Database 11g as well (only in version 11.2.0.4). The main idea behind this
feature is to mask (hide/redact) some (sensitive) data from end-users. Having this in mind, it
is logical that you will primarily use this security solution in a production environment.

Data Redaction

[117]

Oracle Data Redaction and Oracle Data Masking are both used to mask
sensitive data, but these solutions are completely different—from the way
they are designed (how they work) to their target implementation use
cases. Oracle Data Masking enables organizations to use production data
in development and test environments by changing production data with
realistic data (transformation is done by using masking rules).

Oracle Data Redaction masks sensitive data just before the results of the SQL query are
returned to the application that issued the query. Data stored in the database is NOT
changed in any way.

When you implement Oracle Data Redaction, you have to decide the following:

What data should be redacted
Which redaction method is most suitable for the identified data
In which situations the redaction should take place

You define all these decisions by creating a redaction policy (Figure 1), and they are
enforced as long as the policy is enabled.

Figure 1 – The parts of a redaction policy

Data Redaction

[118]

Different types of redaction are shown in Figure 2.

Figure 2 – The types of redaction

You can define only one redaction policy on a table (or view).

To view which data redaction policies are defined and whether they are enabled, you can
query the redaction_policies view. Also, it is very useful to query
the redaction_columns view, which shows which columns will be masked and what type
of redaction will be used. Note that the names of those two views do not have any prefix
(such as DBA_, USER_, or ALL_).

Although Oracle Data Redaction as a concept is fantastic, you should keep
in mind that there are some implementation limitations (for example,
unsupported data types) and unexpected behavior (most likely bugs)
observed in Oracle Database 12.1.0.2.

For all recipes in this chapter, we assume that database is up and running, and each user
has at least a create session privilege. Recipes are tested on Oracle Database 12.1.0.2.

Data Redaction

[119]

Creating a redaction policy when using full
redaction
In this recipe, you will create a redaction policy on the income_level column (on
the income_level column on the CUSTOMERS table in the sample schema OE), find the
default values (for full redaction) for different data types, and change the default value for
the varchar2 data type.

You may consider data about customer address to be sensitive.
Unfortunately, you can't create a redaction policy on the CUST_ADDRESS
column (the table CUSTOMERS in the sample schema OE) because its data
type is not supported (its data type is TYPE, which is not a literal value, so
it can't be redacted). If you try to create a redaction policy, you will receive
the following error: ORA-28073. The column CUST_ADDRESS has an
unsupported data type.

Getting ready
To complete this recipe, you'll need the following:

An existing user who can view data in OE.CUSTOMERS sample table but doesn't
have exempt redaction policy privilege (for example, oe)
To connect as a SYS user to the database
To restart the database (There's more… section of the recipe)

How to do it…
Connect to the database as a user who has the SELECT privilege on1.
the OE.CUSTOMERS table or the SELECT ANY TABLE privilege (for example, the
oe user):

 $ sqlplus oe

Data Redaction

[120]

Verify that the user (for example, the user oe) can view data by executing the2.
following query:

 select customer_id, cust_last_name, income_level from
 oe.customers order by customer_id fetch first 10 rows
 only;

Figure 3 – Data in the clear text format (before redaction) in the OE.CUSTOMERS table

Connect to the database as a user who can create the user secmgr (who will be3.
responsible for managing redaction policies) and grant him appropriate
privileges (for example, SYS):

 SQL> create user secmgr identified by oracle;

 SQL> grant create session to secmgr;

 SQL> grant execute on dbms_redact to secmgr;

Data Redaction

[121]

Connect to the database as the secmgr user:4.

 SQL> connect secmgr/oracle

Create the redaction policy CUST_POL in such a manner that data in the5.
column income_level (the table oe.customers) is redacted using full
redaction:

 SQL> begin
 2 dbms_redact.add_policy
 3 (object_schema => 'OE',
 4 object_name => 'CUSTOMERS',
 5 policy_name => 'CUST_POL',
 6 column_name => 'INCOME_LEVEL',
 7 function_type => DBMS_REDACT.FULL,
 8 expression => '1=1');
 9 end;
 10 /

 PL/SQL procedure successfully completed.

Connect to the database as the same user as in step 1 (for example, oe) and6.
execute the same query as in step 2.

Figure 4 – After applying the redaction policy

Data Redaction

[122]

How it works…
In order to manage redaction policies, you need to connect to a database as a user who has
an execute privilege on the dbms_redact package (in this recipe, that user is created in step
3 – the secmgr user). In step 5, you defined redaction policy CUST_POL. Let's examine that
step in more detail. Creating a new redaction policy is done by using the ADD_POLICY
procedure in the DBMS_REDACT package (line 2). A policy consists of several distinct
sections (see Figure 1). In step 5, lines 3-6 are part of the WHAT section in Figure 1. Lines 3,
4, and 6 define on which the column redaction policy (whose name is defined on line 5)
should be applied. Line 7 is part of the HOW section in Figure 1. It defines the redaction
type (in this case, full redaction). Line 8 is a part of the WHEN section in Figure 1. It defines
the conditions when protected data will be masked (in situations when the expression is
evaluated to TRUE, the data is masked). In this case, the expression is always TRUE (1=1),
meaning that data in column INCOME_LEVEL will always* be masked. Defining different,
more complex expressions (using application contexts, and roles) will be done in the next
few recipes in this chapter.

* Assume that the redaction policy CUST_POL is enabled and user doesn't
have strong privileges. For more information about for which
users/operations the data redaction policy doesn't have any effect, see the
recipe Exempting users from data redaction policies.

In Figure 4, the result of applying the data redaction policy to the column INCOME_LEVEL
(whose data type is varchar2) is shown, and as you can see, data in the column is masked.
Every row is masked with the same value, in this case, whitespace (the default value when
masking column whose data type is varchar2).

Keep in mind that whitespace is exactly one blank space and that it is
different from NULL.

Data Redaction

[123]

Figure 5 shows the example of creating a redaction policy (SAL_POLICY) using a full
redaction method on a column (SALARY in table EMPLOYEES in schema GLDB) whose
data type is a number. As you can see, the masked value is .

Figure 5 – An example of the redaction policy applied on the column whose data type is a number

To find out default values (for full redaction) for other data types, query
REDACTION_VALUES_FOR_TYPE_FULL. Finding the default value for DATE data type is
depicted in Figure 6.

Data Redaction

[124]

Figure 6 – The default value for full redaction

At the time when you define data redaction policy, you can specify
redaction for only one column. If you want to redact more than one column
in a table, you can later modify the policy. For more information, see the
recipe Changing redaction policy.

There's more…
In the following section, you will learn to change default value for full redaction type. Step-
by-step instructions are given on how to change default value from whitespace to T for
varchar2 data type.

It is important to remember that changing default value for full redaction
will affect ALL the defined redaction policies in a database (that use full
redaction type).

Data Redaction

[125]

How to change the default value
You will use the update_full_redaction_values procedure to change the default value
from whitespace to T for the varchar2 data type. Note that you can create a redaction
policy (for example, as you have already done in step 5 in the beginning of the recipe), but
you can't change the default value (Figure 7) even though the user secmgr has been
granted EXECUTE on the DBMS_REDACT package.

Figure 7 – An unsuccessful change of default value

Connect to the database as the SYS user and change the default value.

Figure 8 – A successful change of the default value

Data Redaction

[126]

Optionally, verify that the default value is changed and that there is no effect before you
restart the database. (Figure 9).

Figure 9 – The changed default value still has no effect on the displayed value in the column income_level

Data Redaction

[127]

Restart the database and verify that the modified default value is displayed (Figure 10).

Figure 10 – A new default value is displayed

See also
Changing redaction policy
Exempting users from data redaction policies

Data Redaction

[128]

Creating a redaction policy when using
partial redaction
In this recipe, you will implement partial redaction on columns of two different types:
Number and Varchar2. Partial redaction means that only part (hence the name partial) of
the data in a specified column will be masked (redacted), whereas the other part of the data
will be visible to the user – for instance, the first 12 digits of credit card number will be
redacted, whereas other 4 digits will be visible.

How to do it…
Log in to database as a user who has a DBA role (for instance, zoran):1.

 $ sqlplus zoran/oracle

Create a test table and insert some data in it:2.

 SQL> create table tbl (a number);

 SQL> insert into tbl values (123456);

 SQL> insert into tbl values (234567);

 SQL> insert into tbl values (345678);

 SQL> commit;

Create role (that is going to be used in redaction policy) and user usr1 as the first3.
test user:

 SQL> create role myrole;

 SQL> create user usr1 identified by oracle1;

 SQL> grant create session to usr1;

Grant the select privilege and role to usr1:4.

 SQL> grant select on zoran.tbl to usr1;

 SQL> grant myrole to usr1;

Data Redaction

[129]

Create the second test user and grant him create session and select5.
privilege, but don't grant him the role myrole:

 SQL> create user usr2 identified by oracle2;

 SQL> grant create session to usr2;

 SQL> grant select on zoran.tbl to usr2;

Create redaction policy to redact column a of the type Number using partial6.
redaction (first four digits will be redacted and won't be seen at all). This
redaction policy will be applied only to users that don't have role myrole and
don't have the EXEMPT REDACTION POLICY privilege:

 SQL> BEGIN
 2 DBMS_REDACT.ADD_POLICY(
 3 object_schema => 'zoran',
 4 object_name => 'tbl',
 5 column_name => 'a',
 6 column_description => 'Sensitive column A',
 7 policy_name => 'a_tbl_partial',
 8 policy_description => 'Redact column A of tbl',
 9 function_type => DBMS_REDACT.PARTIAL,
 10 function_parameters => '0,1,4',
 11 expression => 'SYS_CONTEXT(
 ''SYS_SESSION_ROLES'',
 ''MYROLE'') =
 ''FALSE''');
 12 END;
 13 /

Connect to database as the user usr1 and select from the table tbl in the7.
schema zoran:

 SQL> connect usr1/oracle1

 SQL> select a from zoran.tbl;

 A

 123456
 234567
 345678

Data Redaction

[130]

Now, connect to database as the user usr2 and again select from the table tbl in8.
the schema zoran:

 SQL> connect usr2/oracle2

 usr2@ORA12CR1> select a from zoran.tbl;

 A

 56
 67
 78

Log in to database as a user who has a DBA role (for instance, zoran):9.

 $ sqlplus zoran/oracle

Create the test table to store credit cards data and insert some data in it:10.

 SQL> create table customers (name varchar2(20 CHAR),
 credit_card varchar2(20 CHAR));

 SQL> insert into customers values ('tom',
 '3455647456589132');

 SQL> insert into customers values ('mike',
 '3734982321225691');

 SQL> insert into customers values ('john',
 '3472586894975806');

 SQL> commit;

Grant select privilege on table customers in the schema zoran to usr1:11.

 SQL> grant select on zoran.customers to usr1;

Data Redaction

[131]

Create a redaction policy to redact column credit_card of type Varchar2 using12.
partial redaction (first 12 values will be redacted with #sign). This redaction
policy will be applied to all users, except those who have the EXEMPT REDACTION
POLICY privilege (see the Exempting users from data redaction policies recipe):

 SQL> BEGIN
 2 DBMS_REDACT.ADD_POLICY(
 3 object_schema => 'zoran',
 4 object_name => 'customers',
 5 column_name => 'credit_card',
 6 column_description => 'Credit Card numbers',
 7 policy_name => 'CCN_POLICY',
 8 policy_description => 'Redact column
 credit_card of table
 customers',
 9 function_type => DBMS_REDACT.PARTIAL,
 10 function_parameters => 'VVVVVVVVVVVVVVVV,
 VVVVVVVVVVVVVVVV, #, 1,
 12',
 11 expression => '1=1');
 12 END;
 13 /

Connect to database as the user usr1 and select from the table customers in the13.
schema zoran:

 SQL> connect usr1/oracle1

 SQL> select * from zoran.customers;

 NAME CREDIT_CARD
 -------------------- --------------------
 tom ############9132
 mike ############5691
 john ############5806

How it works…
In order to manage redaction policies and also to create some test tables, you can connect to
a database as a user who has a dba role (for example, zoran). If you just need to manage
redaction policies, you can connect with user who has the execute privilege on
the dbms_redact package.

Data Redaction

[132]

The previous section is divided into two parts. The first part shows the creation of redaction
policy for number type column, in such a way that redaction should only be applied to
users that don't have a particular role. The second part shows the creation of a redaction
policy for Varchar2 type column.

In step 6, you created a redaction policy named a_tbl_partial. Creating a new redaction
policy is done by using the ADD_POLICY procedure in the DBMS_REDACT package (line 2). A
policy consists of several distinct sections (see Figure 1). Lines 3, 4, and 5 define on which
column our redaction policy should be applied. Line 9 defines redaction type (in this case,
partial redaction). Line 10 is used for function parameters (in our case, it is defined that first
four digits will be redacted to 0). In line 11, you defined condition when protected data will
be masked (in our case, it is when user doesn't have role myrole), and it is evaluated using
the following expression: SYS_CONTEXT(''SYS_SESSION_ROLES'',''MYROLE'') =
''FALSE''. In this case, expression is true only if user doesn't have role myrole, and in this
case, data in column a will be redacted (which is a case with the user usr2, whereas the
user usr1, who has the role myrole, can see the unmasked data).

Step 12 shows the creation of redaction policy for the Varchar2 column type. The
difference is on line 10- function parameters (in our case, the first 12 values will be redacted
or changed with symbol #, so only last four digits will be visible) and on line 11-condition
is always TRUE.

Figure 11 – Partial redaction

Data Redaction

[133]

There's more…
Even though users can't see unmasked data, they can use redacted columns in where
clause:

 SQL> select * from zoran.customers;

 NAME CREDIT_CARD
 -------------------- ------------------------------
 tom ############9132
 mike ############5691
 john ############5806

 SQL> select * from zoran.customers where credit_card like
 '34%';

 NAME CREDIT_CARD
 -------------------- ------------------------------
 tom ############9132
 john ############5806

Creating a redaction policy when using
random redaction
Random redaction type is usually used for the number and date-time data types because for
these data types, it is hard to make a distinction between the redacted (random) and real
data. In this recipe, you will create redaction policy EMP_POL using random redaction type
on hr.employees table, column salary, by using SQL*Plus. In the Changing redaction
policy recipe, you will modify the EMP_POL redaction policy.

Getting ready
To complete this recipe, you'll need:

An existing user who can view data in the HR.EMPLOYEES sample table but
doesn't have an exempt redaction policy privilege (for example, hr)
The secmgr user created in the Creating a redaction policy using full redaction
recipe or another user who can create redaction policies (has execute on
the dbms_redact package)

Data Redaction

[134]

How to do it…
Connect to the database as a user who has the SELECT privilege on1.
the HR.EMPLOYEES table or the SELECT ANY TABLE privilege (for example, hr
user):

 $ sqlplus hr

Verify that the user (for example, hr user) can view data by executing the2.
following query:

 select employee_id, salary, commission_pct from
 hr.employees where commission_pct IS NOT NULL order by
 employee_id fetch first 10 rows only;

Figure 12 – Data in the clear text format in the HR.EMPOYEES table

Data Redaction

[135]

Connect to the database as the secmgr user:3.

 SQL> connect secmgr/oracle

Create the redaction policy EMP_POL in such a way that data in column salary4.
(the table hr.employees) is redacted using random redaction only when user in
step 1 (for example, hr) tries to view it. If you don't use the hr user, modify line 8
to reflect that change:

 SQL> begin
 2 dbms_redact.add_policy
 3 (object_schema => 'HR',
 4 object_name => 'EMPLOYEES',
 5 policy_name => 'EMP_POL',
 6 column_name => 'SALARY',
 7 function_type => DBMS_REDACT.RANDOM,
 8 expression => 'SYS_CONTEXT(''USERENV'',
 ''SESSION_USER'') = ''HR''');
 9 end;
 10 /

 PL/SQL procedure successfully completed.

Connect to the database as the same user as in step 1 (for example, hr) and5.
execute the same query, as in step 2, twice.

Data Redaction

[136]

Figure 13 – After applying redaction policy

How it works…
In step 4, you created the redaction policy EMP_POL by using the procedure ADD_POLICY in
the DBMS_REDACT package. Line 7 defines that random redaction type will be used to redact
data. Line 8 (policy expression) in this case specifies the blacklist (which contains only user
HR). This means only the hr user is not allowed to view data in the column salary. To define
a whitelist (for example, list only users who are allowed to view data, range of only those IP
addresses from which access is allowed, and so on) change operator = to operator <> and
define left and right operand according to your needs.

Data Redaction

[137]

When defining security policies, it is a good practice to create whitelists.

When the number data type is redacted using random redaction type, the redacted value
will belong to the interval [0, |n|], where |n| is the absolute value of the original data.
According to the official Oracle documentation (Database Advanced Security Guide, Chapter
9), the only exception to this rule is when original data is an integer between −1 and 9, and
in that case, the redacted value will belong to the interval [0, 9].

Creating a redaction policy when using
regular expression redaction
A regular expression redaction type enables you to create and implement flexible redaction
rules. You define patterns that will be used in order to match and replace data, as well as
some other parameters of the search. In this recipe, you will create the redaction policy
SHORT_POL, which will be used to mask customers' phone numbers.

Getting ready
To complete this recipe, you'll need:

An existing user who can view data in the SH.CUSTOMERS sample table but
doesn't have an exempt redaction policy privilege (for example, sh)
The secmgr user you created in the Creating redaction policy using full redaction
recipe or another user who can create redaction policies (has execute
on dbms_redact package)

How to do it…
Connect to the database as a user who has the SELECT privilege on1.
the SH.CUSTOMERS table or the SELECT ANY TABLE privilege (for example,
the sh user):

 $ sqlplus sh

Data Redaction

[138]

Verify that the user (for example, the user sh) can view data by executing the2.
following query:

 select cust_id, cust_main_phone_number from sh.customers
 order by cust_id fetch first 10 rows only;

Figure 14 – Data in the clear text format (before redaction) in the SH.CUSTOMERS table

Connect to the database as the secmgr user:3.

 SQL> connect secmgr/oracle

Data Redaction

[139]

Create the redaction policy SHORT_POL in such a manner that data in the4.
column cust_main_phone_number (the table sh.customers) is redacted using
regular expression redaction:

 SQL> begin
 2 dbms_redact.add_policy
 3 (object_schema => 'SH',
 4 object_name => 'CUSTOMERS',
 5 policy_name => 'SHORT_POL',
 6 column_name => 'CUST_MAIN_PHONE_NUMBER',
 7 function_type => DBMS_REDACT.REGEXP,
 8 expression => '1=1',
 9 regexp_pattern => DBMS_REDACT.RE_PATTERN_US_PHONE,
 10 regexp_replace_string => DBMS_REDACT.
 RE_REDACT_US_PHONE_L7,
 11 regexp_position => DBMS_REDACT.RE_BEGINNING,
 12 regexp_occurrence => DBMS_REDACT.RE_FIRST);
 13 end;
 14 /

 PL/SQL procedure successfully completed.

Connect to the database as the same user as in step 1 (for example, sh) and5.
execute the same query as in step 2.

Figure 15 – After applying the redaction policy

Data Redaction

[140]

How it works…
When creating redaction policies that use regular expression redaction type, you can choose
between redaction shortcuts (they exist for commonly redacted data, such as e-mail
address, social security number, and postal code) and the creation of custom regular
expressions. In this recipe, in step 4, lines 9-12, you used redaction shortcuts.

In Figure 15, the value T is displayed in the places where regular
expression didn't find a match and because of that full redaction was
applied to them. With this kind of implementation, Oracle prevented
accidental exposure of sensitive data.

Using Oracle Enterprise Manager Cloud
Control 12c to manage redaction policies
In this recipe, you will perform several tasks with Data Redaction policies using Oracle
Enterprise Manager Cloud Control 12c, including creation, modification, and deletion.
Many tasks from other recipes, described in this chapter, can be done very easily using
Enterprise Manager.

Getting ready
To complete this recipe, you need Enterprise Manager Cloud Control 12c and HR sample
schema in the database.

How to do it…
Log in to Oracle Enterprise Manager Cloud Control1.
at https://hostname:port/em.
Go to a Database home page (if it is a container database, you should go to a2.
home page of PDB that contains sample schemas).

Data Redaction

[141]

On menu, select Security | Data Redaction (see Figure 16).3.

Figure 16 – Select Data Redaction

Data Redaction

[142]

On the Data Redaction screen, select Create (Figure 17).4.

Figure 17 – Creating a redaction policy

Data Redaction

[143]

Set Schema as HR and the table as EMPLOYEES. Enter SAL_POLICY as a policy5.
name. Click on the Add button, to add column that is going to be redacted.
(Figure 18).

Figure 18 – The addition of a column

Data Redaction

[144]

Select the SALARY column and specify RANDOM as a Redaction Function.6.
Click on OK. (Figure 19). On the next screen, click on OK at the top-right corner.

Figure 19 – Choose random redaction type

To edit SAL_POLICY, select it and click on Edit (you can search for policies by7.
specifying schema, table, or policy name) (Figure 20).

Figure 20 – Alter policy

Data Redaction

[145]

Select the SALARY column and click on Modify (Figure 21).8.

Figure 21 – Modifying a column

Change Redaction Function from RANDOM to FULL. Click on OK (Figure 22).9.

Figure 22 – Changing redaction type for salary column

Data Redaction

[146]

Click on Add in order to add one more column to the redaction policy. (Figure10.
23).

Figure 23 – Adding a column to the redaction policy

Data Redaction

[147]

Select the EMAIL column, and as Redaction Template. select Email Address.11.
You can see that this pattern uses Regular expression type of Data Redaction.
You can also change any of the parameters. Click on OK. (Figure 24).

Figure 24 – Defining redaction type for email column

Data Redaction

[148]

On next page you can change Policy Expression. Click OK on the top right12.
corner.

Figure 25 – You can change the policy expression

To disable SAL_POLICY, select it and click on Disable. (Figure 26).13.

Figure 26 – Disabling the sal_policy redaction policy

Data Redaction

[149]

To enable SAL_POLICY, select it and click on Enable. (Figure 27).14.

Figure 27 – Enabling the sal_policy redaction policy

To delete SAL_POLICY, select it and click on Delete. (Figure 28).15.

Figure 28 – Deleting the sal_policy redaction policy

Data Redaction

[150]

You should see the Confirmation message (Figure 29).16.

Figure 29 – The SAL_POLICY policy has been successfully deleted

Changing the function parameters for a
specified column
There are several ways in which you can change an existing redaction policy. In this recipe
and the next one, you will:

Change the function parameters for a specified column (the a_tbl_partial
policy, which you created in the recipe Creating a redaction policy when using partial
redaction)
Add a column (commission_pct in the hr.employees table) to the redaction
policy EMP_POL (you defined it in the Creating a redaction policy when using random
redaction recipe)

Data Redaction

[151]

Also, it is possible to remove column from the redaction policy, alter the policy expression,
and modify the type of redaction for a specified column.

You concluded that the a_tbl_partial redaction policy doesn't satisfy the requirements
for your application anymore because it redacts first four digits with 0 and leading zeros are
not displayed in the application. You decide to alter the a_tbl_partial policy. You want
all digits to be displayed and to have them redacted with some value (for example, 9).

Getting ready
Before doing this recipe, you should have completed the Creating a redaction policy when
using partial redaction recipe. You will use the secmgr user you created in the Creating a
redaction policy when using full redaction recipe .

How to do it…
Connect to the database as the secmgr user and alter the policy EMP_POL:1.

 $ sqlplus secmgr
 SQL> BEGIN
 2 DBMS_REDACT.ALTER_POLICY(
 3 object_schema => 'zoran',
 4 object_name => 'tbl',
 5 policy_name => 'a_tbl_partial',
 6 action => DBMS_REDACT.MODIFY_COLUMN,
 7 column_name => 'a',
 8 function_type => DBMS_REDACT.PARTIAL,
 9 function_parameters => '9,1,4');
 10 END;
 11 /

Data Redaction

[152]

Connect as the user usr2 to the database and view data in column A in2.
the zoran.tbl table:

 SQL> connect usr2/oracle2
 Connected.

 SQL> select a from zoran.tbl;

 A

 999956
 999967
 999978

Add a column to the redaction policy
You have to modify the existing redaction policy in order to redact more than one column
in the table. In the table HR.EMPLOYEES, besides the column SALARY, you want to redact the
column COMMISSION_PCT. You will modify the redaction policy EMP_POL. You decide that
you want to use full redaction type for the column COMMISSION_PCT.

Note that in the same redaction policy (in this case, EMP_POL) the different
“protected” columns can use different redaction types (in this case,
random and full redaction).

Getting ready
Before doing this recipe, you should have completed the Creating redaction policy when using
random redaction recipe. You will use the secmgr user you created in the Creating redaction
policy when using full redaction recipe.

Data Redaction

[153]

How to do it…
Connect to the database as the secmgr user and alter the EMP_POL policy:1.

 $ sqlplus secmgr
 SQL> BEGIN
 2 DBMS_REDACT.ALTER_POLICY(
 3 object_schema => 'HR',
 4 object_name => 'EMPLOYEES',
 5 policy_name => 'EMP_POL',
 6 action => DBMS_REDACT.ADD_COLUMN,
 7 column_name => 'COMMISSION_PCT',
 8 function_type => DBMS_REDACT.FULL);
 9 END;
 10 /

 PL/SQL procedure successfully completed.

Connect the user hr to the database and execute the following query:2.

 select employee_id, salary, commission_pct from hr.employees
 where commission_pct IS NOT NULL order by employee_id fetch
 first 10 rows only;

Figure 30 – Two columns are redacted

Data Redaction

[154]

How it works…
You used the procedure ALTER_POLICY in the PL/SQL package DMBS_REDACT to change
redaction policies. On line 6 (in both examples), you specified value for the ACTION
parameter, which defines what kind of change will happen.

See also
Using Oracle Enterprise Manager Cloud Control 12c to manage redaction policies

Enabling, disabling, and dropping redaction
policy
In this recipe, you will perform the three basic tasks: enabling, disabling, and dropping the
same redaction policy (CUST_POL), which you defined in the Creating a redaction policy when
using full redaction recipe using SQL*Plus. Also, you will check which redaction policies
exist in the database and whether they are enforced (enabled).

To minimize dependence on the previous recipes in this chapter, a result shown after
querying data dictionary view is equivalent to the one you would get if you completed only
the Creating a redaction policy when using full redaction recipe before starting to do this recipe.
The only difference you may see in the result is the number of existing redaction policies in
the database.

Getting ready
Before doing this recipe, you should have completed the Creating a redaction policy when
using full redaction recipe.

Data Redaction

[155]

How to do it…
To complete the tasks, you will use procedures in the dbms_redact package
(disable_policy, enable_policy, and drop_policy).

Connect to the database as a user who has an execute privilege on dbms_redact1.
package and select_catalog_role role (for example, secmgr user):

 $ sqlplus secmgr

Find out which redaction policies exist in the database by querying2.
the redaction_policies view:

 SQL> col policy_name format A20
 select policy_name, enable from redaction_policies;

Figure 31 – Finding defined redaction policies

Connect to the database as the oe user and grant the SELECT privilege3.
on OE.CUSTOMERS to the secmgr user. Connect to the database as the secmgr
user. Verify that the secmgr user can't see original data in the
column INCOME_LEVEL:

 SQL> connect oe

 SQL> grant select on oe.customers to secmgr;

 SQL> connect secmgr

 SQL> select customer_id, cust_last_name, income_level
 from oe.customers
 2 order by customer_id
 3 fetch first 10 rows only;

Data Redaction

[156]

Figure 32 – Redacted data is displayed even to the user who created the policy

Disable the redaction policy CUST_POL (as the secmgr user):4.

 SQL> begin
 2 dbms_redact.disable_policy
 3 (object_schema => 'OE',
 4 object_name => 'CUSTOMERS',
 5 policy_name => 'CUST_POL');
 6 end;
 7 /

 PL/SQL procedure successfully completed.

Data Redaction

[157]

Verify that now the secmgr user can view original data in the 5.
column INCOME_LEVEL and query the redaction_policies view by executing
the following statements:

select customer_id, cust_last_name, income_level from
oe.customers order by customer_id fetch first 10 rows
only;

col policy_name format A20

select policy_name, enable from redaction_policies;

Figure 33 – secmgr can view unmasked data in the column income_level, because the cust_pol policy is disabled

Data Redaction

[158]

Enable the redaction policy CUST_POL:

 SQL> begin
 2 dbms_redact.enable_policy
 3 (object_schema => 'OE',
 4 object_name => 'CUSTOMERS',
 5 policy_name => 'CUST_POL');
 6 end;
 7 /

 PL/SQL procedure successfully completed.

Verify that redaction is working properly by executing the following statements:6.

select customer_id, cust_last_name, income_level from
oe.customers order by customer_id fetch first 10 rows
only;

col policy_name format A20

select policy_name, enable from redaction_policies;

Data Redaction

[159]

Figure 34 – Redacted data is displayed to the secmgr user because the cust_pol redaction policy is enabled

Drop the redaction policy CUST_POL:

 SQL> begin
 2 dbms_redact.drop_policy
 3 (object_schema => 'OE',
 4 object_name => 'CUSTOMERS',
 5 policy_name => 'CUST_POL');
 6 end;
 7 /

 PL/SQL procedure successfully completed.

Data Redaction

[160]

Verify that the redaction policy CUST_POL doesn't exist in the database by7.
executing the following statements:

select customer_id, cust_last_name, income_level from
oe.customers order by customer_id fetch first 10 rows
only;

col policy_name format A20

select policy_name, enable from redaction_policies;

Figure 35 – The redaction policy cust_pol doesn't exist anymore

See also
Creating a redaction policy when using full redaction
Using Oracle Enterprise Manager Cloud Control 12c to manage redaction policies

Data Redaction

[161]

Exempting users from data redaction
policies
In this recipe, you will create a user and then exempt that user from Data Redaction. This
user will be exempted from all redaction policies in the database.

Getting ready
Before doing this recipe, you should have completed the Creating a redaction policy when
using the partial redaction recipe.

How to do it…
Connect to the database as a user who has a DBA role (for example, user zoran):1.

 $ sqlplus zoran/oracle

Create a new user (for example, vipuser) and grant him the create session2.
privilege and select privilege on table customers in schema zoran:

 SQL> create user vipuser identified by oracle;

 SQL> grant create session to vipuser;

 SQL> grant select on zoran.customers to vipuser;

Connect as a newly created user and try to select from the zoran.customers3.
table:

 SQL> connect vipuser/oracle

 SQL> select * from zoran.customers;

 NAME CREDIT_CARD
 ---------------- ------------------------------
 tom ############9132
 mike ############5691
 john ############5806

Data Redaction

[162]

Connect again as the user zoran, and grant the EXEMPT REDACTION POLICY4.
privilege to the vipuser user:

 SQL> connect zoran/oracle

 SQL> grant exempt redaction policy to vipuser;

As the user vipuser, now try to select from the table zoran.customers:5.

 SQL> connect vipuser/oracle

 SQL> select * from zoran.customers;

 NAME CREDIT_CARD
 --------------- ------------------------------
 tom 3455647456589132
 mike 3734982321225691
 john 3472586894975806

How it works…
There is a new system privilege that is used to control which users will be exempted from
data redaction in Oracle Database. This privilege is EXEMPT REDACTION POLICY. Users
who are granted this privilege will be able to see clear (unmasked) data in the whole
database if they have (select) privilege to access that data. This means that all redaction
policies in the database will not be applied to these users. The DBA and
EXP_FULL_DATABASE roles both contain this privilege, so any user that has either of these
roles is exempt from data redaction.

Backup/restore as well as import and export operations are not subject to data redaction.
However, data redaction policies are included in export and import operations.

6
Transparent Sensitive Data

Protection
In this chapter, we will cover the following tasks:

Creating a sensitive type
Determining sensitive columns
Creating transparent sensitive data protection policy
Associating transparent sensitive data protection policy with sensitive type
Enabling, disabling, and dropping policy
Altering transparent sensitive data protection policy

Introduction
Oracle Transparent Sensitive Data Protection (TSDP) is a new security feature, introduced
in Oracle Database 12c (available only in Enterprise Edition). TSDP provides a way to create
classes of sensitive data and enables more centralized control of how sensitive data is
protected. In database versions 12.1.0.1 and 12.1.0.2, it leverages two Oracle security
mechanisms:

Oracle Virtual Private Database (VPD), described in Chapter 4, Virtual Private
Database
Oracle Data Redaction, explained in Chapter 5, Data Redaction

Transparent Sensitive Data Protection

[164]

To implement TSDP, you should complete steps shown in Figure 1:

Figure 1 – Steps to implement TSDP

For all recipes in this chapter, we assume that the database is up and running and each user
has at least a create session privilege. In this chapter, it is assumed that user c##zoran has a
DBA role and it executes privileges on the following packages:

DBMS_TSDP_MANAGE

DBMS_TSDP_PROTECT

DBMS_RLS

DBMS_REDACT

Recipes are tested on Oracle Database 12.1.0.2 in multitenant and non-CDB environment. If
you use non-CDB, connect to that database instead of pdb1 (as is done in recipes).

Creating a sensitive type
To create a sensitive type, you can use Oracle Enterprise Manager or a command-line
interface. In this recipe, you'll use the command-line interface to execute a PL/SQL
procedure. You decided that you want to protect e-mail addresses stored in your database,
so first you are going to create sensitive type email_type.

Transparent Sensitive Data Protection

[165]

Getting ready
To complete this recipe, you'll need an existing user who can create a sensitive type (for
example, c##zoran).

How to do it…
Connect to the database (for example, pdb1) as a user who has appropriate1.
privileges (for example, c##zoran):

 $ sqlplus c##zoran@pdb1

Create a sensitive type (for example, email_type):2.

 SQL> BEGIN
 DBMS_TSDP_MANAGE.ADD_SENSITIVE_TYPE (
 sensitive_type => '<your_type>',
 user_comment=> '<description>');
 END;
 /

Figure 2 – Creating a sensitive type

How it works…
In step 2, you created a sensitive type (for example, email_type), which you can use to
consistently mask (protect), in our case, e-mail information throughout the database. By
creating a sensitive type, you only define that in the database, there exists a class of
sensitive data and you name it. In later recipes in this chapter, you'll define where that
sensitive data resides (in which columns) and the way that data will be protected.

Transparent Sensitive Data Protection

[166]

The name of a sensitive type (for example, email_type) is case-sensitive.

There's more…
To view existing sensitive types, execute the following query:

 select name from DBA_SENSITIVE_COLUMN_TYPES;

Figure 3 – Finding information about defined sensitive types

Determining sensitive columns
After you decide which data is sensitive, you'll need to find all places where that data is
stored. Once you do that, you'll classify the data (associate sensitive columns with sensitive
types). In this recipe, you'll associate two sensitive columns (from two tables) with sensitive
type you created in the previous recipe.

Getting ready
To complete this recipe, create a user challengezoran, create table T1, and insert several
values into the table (see Figure 1) or use your own table. Also, you'll need an existing user
who has an execute privilege on dbms_tsdp_manage package (for example, c##zoran).

Transparent Sensitive Data Protection

[167]

Figure 4 – Creating table T1

How to do it…
Connect to the database (for example, pdb1) as a user who has appropriate 1.
privileges (for example, c##zoran user):

 $ sqlplus c##zoran@pdb1

Associate a sensitive column (for example, schema CHALLENGEZORAN, table T1,2.
column EMAIL_ADDRESS) with sensitive type you created in the previous recipe
(for example, email_type)

Figure 5 – Adding sensitive column email_address to email_type sensitive type

Transparent Sensitive Data Protection

[168]

Associate another sensitive column (for example, schema HR, table EMPLOYEES,3.
column EMAIL) with the same sensitive data type (for example, email_type).

Figure 6 – Adding sensitive column email to sensitive type email_type

How it works…
In step 2 and 3, you defined where sensitive data resides and associated it with previously
created sensitive data type.

You can associate a column with only one sensitive type. If you try to
associate it with another type, you'll receive ORA-45607.

Creating transparent sensitive data
protection policy
This step defines the way you want to protect sensitive data. You can use Data Redaction or
VPD settings for your TSDP policy. In this recipe, you'll use regular expression redaction to
protect previously defined sensitive data.

Transparent Sensitive Data Protection

[169]

Getting ready
To complete this recipe, you'll need an existing user who has the execute privilege on
the dbms_tsdp_protect package (for example, c##zoran).

How to do it…
Connect to the database (for example, pdb1) as a user who has appropriate1.
privileges (for example, c##zoran user):

 $ sqlplus c##zoran@pdb1

Create TSDP policy using Data Redaction.2.

Figure 7 – TSDP policy using Oracle Data Redaction

How it works…
In step 2, lines 2 and 3 define variables redact_features_options
and policy_conditions. Data redaction settings, for TSPD policy, are defined by
using redact_features_options variable that holds parameter-value pairs that
correspond with the parameters in DBMS_REDACT.ADD_POLICY procedure (lines 4-8). Line 9
specifies that data type of protected columns should be VARCHAR2 in order for redaction
settings to be applied on the column.

Transparent Sensitive Data Protection

[170]

See also
You can see Chapter 5, Data Redaction.

Associating transparent sensitive data
protection policy with sensitive type
In this recipe, you'll associate TSDP policy and sensitive type you created in the previous
recipes.

Getting ready
To complete this recipe, you'll need an existing user who has the execute privilege on
the dbms_tsdp_protect package (for example, c##zoran).

How to do it…
Connect to the database as a user (for example, pdb1) who has appropriate1.
privileges (for example, c##zoran user):

 $ sqlplus c##zoran@pdb1

Associate TSDP policy with sensitive type:2.

Transparent Sensitive Data Protection

[171]

There's more…
To verify that you successfully associated the TSDP policy and the sensitive type, execute
the following query:

 SQL> SELECT POLICY_NAME, SENSITIVE_TYPE FROM DBA_TSDP_POLICY_TYPE;

See also
Creating a sensitive type
Determining sensitive columns
Creating transparent sensitive data protection policy

Enabling, disabling, and dropping policy
In this recipe, you'll learn to enable, disable, and drop transparent sensitive data protection
policies.

Getting ready
To complete this recipe, you'll need two existing users-one to manage TSDP policies and the
other to view sensitive data.

How to do it…
Connect to the database (for example, pdb1) as a user who has the SELECT1.
privilege on the HR.EMPLOYEES table and the CHALLENGEZORAN.T1 table or
the SELECT ANY TABLE privilege (for example, maja).

 $ sqlplus maja@pdb1

Transparent Sensitive Data Protection

[172]

View sensitive data by executing the following two queries:2.

 SELECT EMAIL FROM HR.EMPLOYEES FETCH FIRST 10 ROWS ONLY;

Figure 9 – Before enabling the policy

 SELECT EMAIL_ADDRESS FROM CHALLENGEZORAN.T1;

Figure 10 – Before enabling the policy

Transparent Sensitive Data Protection

[173]

Connect to the database (for example, pdb1) as a user who can manage TSDP 3.
policies (for example, c##zoran). Enable the TSDP policy:

Repeat step 2 as user maja.4.

Figure 12 – Sensitive data is protected

Result of the second query is shown in Figure 13:5.

Figure 13 – After enabling the policy

Transparent Sensitive Data Protection

[174]

Connect to the database (for example, pdb1) as a user who can manage TSDP 6.
policies (for example, c##zoran). Disable the TSDP policy.

Repeat step 2 as user maja.7.

Figure 15 – After the policy was disabled

In Figure 16, the result of the second query is shown:8.

Figure 16 – After the policy was disabled

Transparent Sensitive Data Protection

[175]

Connect to the database (for example, pdb1) as a user who can manage TSDP9.
policies (for example, c##zoran). Drop both sensitive columns.

Drop the sensitive type.10.

Drop the TSDP policy.11.

Transparent Sensitive Data Protection

[176]

How it works…
In step 4, you got correct result-column email_address in schema challengezoran was
masked like specified in the policy and full redaction was applied on all values in column
email in schema HR where data wasn't matched to the specified pattern. For more
information about redaction policies, see Chapter 5, Data Redaction (the recipe Creating
redaction policy when using regular expression redaction).

Before you drop the policy, you don't have to disable it.

There's more…
Another way to enable/disable protection is to use procedures
enable_protection_column (disable_protection_column):

 SQL> begin
 DBMS_TSDP_PROTECT.ENABLE_PROTECTION_COLUMN(
 schema_name =>'CHALLENGEZORAN',
 table_name =>'T1',
 column_name =>'EMAIL_ADDRESS',
 policy => 'redact_regexp_email');
 end;
 /
 SQL> begin
 DBMS_TSDP_PROTECT.ENABLE_PROTECTION_COLUMN(
 schema_name =>'HR',
 table_name =>'EMPLOYEES',
 column_name =>'EMAIL',
 policy => 'redact_regexp_email');
 end;
 /
 SQL> begin
 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN(
 schema_name =>'CHALLENGEZORAN',
 table_name =>'T1',
 column_name =>'EMAIL_ADDRESS',
 policy => 'redact_regexp_email');
 end;
 /
 SQL> begin
 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN(
 schema_name =>'HR',
 table_name =>'EMPLOYEES',
 column_name =>'EMAIL',
 policy => 'redact_regexp_email');

Transparent Sensitive Data Protection

[177]

 end;
 /

Altering transparent sensitive data
protection policy
In this recipe, you'll alter policy you created in recipe Creating transparent sensitive data
protection policy and enable it.

Getting ready
To complete this recipe, you'll need two existing users (for example, c##zoran and maja).
Also, update the table hr.employees, as shown in Figure 20:

Figure 20 – Set new e-mail addresses in the hr.employees table

How to do it…
Connect to the database (for example, pdb1) as a user who can manage TSDP1.
policies (for example, c##zoran):

 $ sqlplus c##zoran@pdb1

If the policy is enabled, disable it for all columns (for instructions how to disable2.
the TSDP policy, see recipe Enabling, disabling, and dropping policy).

Transparent Sensitive Data Protection

[178]

Connect to the database (for example, pdb1) as a user who can view sensitive3.
data (for example, maja). Execute the following queries:

 SELECT EMAIL FROM HR.EMPLOYEES FETCH FIRST 10 ROWS ONLY;

Figure 21 – Before altering and enabling the policy

 SELECT EMAIL_ADDRESS FROM CHALLENGEZORAN.T1;

Figure 22 – Before altering and enabling the policy

Connect to the database (for example, pdb1) as a user who can manage TSDP4.
policies (for example, c##zoran). Alter the TSDP policy and enable it.

Transparent Sensitive Data Protection

[179]

Figure 23 – Alter the TSDP policy

View sensitive data as the user maja (repeat step 3).5.

Figure 24 – After altering TSDP policy

Transparent Sensitive Data Protection

[180]

How it works…
After you alter the policy, you have to manually enable it (it isn't automatically enabled).

See also
Creating transparent sensitive data protection policy, from this chapter

7
Privilege Analysis

In this chapter, we will cover the following tasks:

Creating a database analysis policy
Creating a role analysis policy
Creating a context analysis policy
Creating a combined analysis policy
Starting and stopping privilege analysis
Reporting on used system privileges
Reporting on used object privileges
Reporting on unused system privileges
Reporting on unused object privileges
How to revoke unused privileges
Dropping the analysis

Introduction
Privilege analysis is a new security feature, introduced in Oracle Database 12c. It is only
available in Oracle Database Enterprise Edition, and from licensing viewpoint, it is part of
Oracle Database Vault option.

Privilege analysis is very useful to implement and maintain the least privilege principle by
identifying both privileges that users are actually using (used privileges) and those that are
only granted to them (unused privileges).

Privilege Analysis

[182]

General steps to analyze privileges using this feature are shown in Figure 1.

Figure 1 – The steps to analyzethe used and unused privileges

In this chapter, it is assumed that all users have a create session privilege, and in the
following table, other privileges and roles granted to the users and roles are listed:

USER/ROLE HR.EMPLOYEES OE.ORDERS ROLES/SYS.PRIVS.

BARBARA P1_ROLE

NICK DBA

ALAN SELECT, INSERT,
UPDATE, DELETE

STEVE P2_ROLE

P1_ROLE SELECT

P2_ROLE SELECT, INSERT,
UPDATE, DELETE

SELECT ANY TABLE, CREATE
TABLE

Depending on your needs, you can create and use four different types of privilege analysis
policies that differ in the scope of the analysis. This scope can be:

An entire database
Role-based
Context-based
Role- and context-based

Privilege Analysis

[183]

Creating database analysis policy
In this recipe, you'll learn to create database privilege analysis policy. It analyzes privileges
in the whole database (except privileges used by SYS user). You can use SQL*Plus and
Enterprise Manager Cloud Control 12.1.0.3+ (in our case, EM12cR4) to create privilege
analysis policies.

Getting ready
You'll need an existing user who can create a privilege analysis policy (has CAPTURE_ADMIN
role and SELECT ANY DICTIONARY privilege), for example, SYSTEM user.

How to do it…
Connect to the database as system or a user who has appropriate privilege:1.

 $ sqlplus system

Create a privilege analysis policy that captures all the used privileges in the2.
database:

 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => '<policy_name>',
 description => '<your_desc>',
 type => DBMS_PRIVILEGE_CAPTURE.G_DATABASE);
 END;
 /

Figure 2 – Database (unconditional) analysis policy

Privilege Analysis

[184]

How it works…
In step 2, you created database-wide policy that will capture privileges, which are used
(and which are granted, but are unused) by users (except the SYS user). However, to start
gathering data about privilege usage, you have to enable the policy (see recipe Starting and
stopping privilege analysis).

There's more…
Another way to create the same policy is to use Enterprise Manager Cloud Control 12c
(EM).

Login to EM as a user who has appropriate privileges and select Privilege1.
Analysis from Security drop-down menu (see Figure 3):

Figure 3 – The choose privilege analysis

Privilege Analysis

[185]

Log in to the database as SYSTEM user or a user who has appropriate privileges2.
(CAPTURE_ADMIN role and SELECT ANY DICTIONARY privilege).

Figure 4 – The login screen

Click on the Create button in the Policy section (see Figure 5):3.

Figure 5 – Start the process of creating a privilege analysis policy

Privilege Analysis

[186]

To create a database policy, choose that scope is Database, name the policy, and4.
optionally write a description (see Figure 6). Click on the OK button:

Figure 6 – The create policy

You should receive a confirmation message and see your newly created policy5.
listed in the table (see Figure 7):

Figure 7 – A successful message

See also
You can see the Starting and stopping privilege analysis recipe.

Privilege Analysis

[187]

Creating role analysis policy
In this recipe, you'll create a role analysis policy using SQL*Plus and Enterprise Manager
Cloud Control 12c (EM). The usage of directly and indirectly granted privileges to the roles
listed in the policy, will be captured if the roles are active for the session.

Getting ready
You'll need an existing user who can create a privilege analysis policy (has a
CAPTURE_ADMIN role and a SELECT ANY DICTIONARY privilege), for example, SYSTEM
user.

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

Create a privilege analysis policy that captures all the used privileges granted2.
through roles DBA and P1_ROLE:

 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => '<policy_name>',
 description => '<your_desc>',
 type => DBMS_PRIVILEGE_CAPTURE.G_ROLE,
 roles => role_name_list (<'role1',...,'role10'>));
 END;
 /

Figure 8 – The role analysis policy

Privilege Analysis

[188]

There's more…
Another way to create a role privilege analysis policy is to use EM12c. Repeat steps 1, 2, and
3 from the There's more… section in the previous recipe. Name the policy, select roles,
optionally write a description, and click on OK button (see Figure 9):

Figure 9 – Creating a role policy

You should receive a confirmation message and see your newly created policy listed in the
table (see Figure 10):

Privilege Analysis

[189]

Figure 10 – The successful creation of the policy

See also
You can refer to the Starting and stopping privilege analysis recipe.

Creating context analysis policy
In this recipe, you'll create a context analysis policy. After the policy is enabled, it will
capture privileges when the condition specified in the policy evaluates to true.

Getting ready
You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

Privilege Analysis

[190]

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

Create a privilege analysis policy that captures all the used (and unused)2.
privileges by Steve:

 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => '<policy_name>',
 description => '<your_desc>',
 type => DBMS_PRIVILEGE_CAPTURE.G_CONTEXT,
 condition => '<your_condition>');
 END;
 /

Figure 11 – The context analysis policy

There's more…
Another way to create a context privilege analysis policy is to use EM12c. Repeat steps 1, 2,
and 3 from the There's more… section in the Creating database analysis policy recipe. Name the
policy and optionally write a description (see Figure 12):

Privilege Analysis

[191]

Figure 12 – The create context policy

Click on the Build Context Expression button (a pencil icon; see Figure 13). You can enter
expression manually (select Edit checkbox) or use the built-in help (select the checkbox
Policy is in effect when select appropriate options from drop-down menus, click on the
Add button). Click on the OK button.

Figure 13 – The Expression Builder

Privilege Analysis

[192]

Make sure that you chose options you wanted (see Figure 14) and then click on the OK
button:

Figure 14 – Checking the filled-out context policy

You should receive a confirmation message and see your newly created policy listed in the
table (see Figure 15):

Privilege Analysis

[193]

Figure 15 – The context policy has been successfully created

See also
You can refer to the Starting and stopping privilege analysis recipe. For more
information about application contexts, see Chapter 12, Appendix – Application
Contexts.

Creating combined analysis policy
In this recipe, you'll create a combined analysis policy. This type of policy defines that the
usage of directly and indirectly granted privilege to specified roles will be gathered if roles
are enabled in the session and the context condition is satisfied. The context condition can
consist of one or more conditions (you can use the AND or OR Boolean operators).

Getting ready
You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

Privilege Analysis

[194]

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

Create a privilege analysis policy that captures the usage of privileges, when2.
using SQL Developer, which are granted through the role P2_ROLE:

 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => '<policy_name>',
 description => '<your_desc>',
 type => DBMS_PRIVILEGE_CAPTURE.G_ROLE_AND_CONTEXT,
 roles => role_name_list (<'role1',...,'role10'>),
 condition => '<your_condition>');
 END;
 /

Figure 16 – The combined analysis policy

There's more…
Another way to create a context privilege analysis policy is to use EM12c. Repeat steps 1, 2,
and 3 from the There's more… section in the recipe Creating database analysis policy. Name the
policy, select roles, and optionally write a description. Click on Build Context Expression
(see Figure 17).

Privilege Analysis

[195]

Figure 17 – Creating the combined policy

Manually write the policy expression. Click on the Validate button and then on the OK
button (see Figure 18):

Figure 18 – Manually write expression in the Policy Expression Builder

Privilege Analysis

[196]

You should receive a confirmation message and see your newly created policy listed in the
table (see Figure 19).

Figure 19 – The successful message

See also
You can refer to the Starting and stopping privilege analysis recipe. For more
information about application contexts, see Chapter 12, Appendix – Application
Contexts.

Starting and stopping privilege analysis
To start capturing privileges, you'll enable privilege analysis policies you created in the
previous recipes.

Getting ready
You'll need an existing user who can manage privilege analysis policies (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

Privilege Analysis

[197]

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

List all existing privilege analysis policies by querying DBA_PRIV_CAPTURES.2.

Figure 20 – Finding all defined policies

Enable a privilege analysis (for example, ALL_PRIV_POL, which you created in3.
the first recipe in this chapter):

 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE(
 name => '<policy_name>');
 END;
 /

Figure 21 – Start capturing all privileges

Privilege Analysis

[198]

Connect to the database as the user alan and view the first names of employees4.
who have salary less than 1000:

Figure 22 – the first test of select privilege

Find first names of employees who earn less than 3 000.5.

Figure 23 – The second test of select privilege

Try to delete all employees whose first name is Karen.6.

Figure 24 – The test of delete privilege: integrity constraint violation

Connect to the database as system or a user who has appropriate privileges. Stop7.
collecting data about privileges:

 SQL> connect system
 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE(
 name => '<policy_name>');
 END;
 /

Privilege Analysis

[199]

Figure 25 – Stop capturing

Generate the result:8.

 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT(
 name => '<policy_name>');
 END;
 /

Figure 26 – Generating the report

How it works…
In step 3, you started capturing privileges according to the policy ALL_PRIV_POL. Then,
you executed several statements as the user ALAN. The point of those statements is to
generate records, you'll see in the next recipes.

Delete operation wasn't able to delete row(s) because of integrity
constraint violation, but you will see in the next recipes it generated record
that DELETE privilege was used.

In step 7, you stopped capturing the privilege usage. In step 8, you populated
DBA_USED_XXX and DBA_UNUSED_XXX data dictionary views. You can see how to use the
results of capture later in this chapter.

Privilege Analysis

[200]

There's more…
You can also use Enterprise Manager Cloud Control 12c to manage privilege analysis
policies. Repeat steps 1 and 2 from the There's more… section in the recipe Creating database
analysis policy.

Select the database policy and click on the Start Capture button (see Figure 27):

Figure 27 – Enabling a policy

You can either start capture immediately or schedule it. Leave the defaults and click on the
OK button (see Figure 28):

Figure 28 – Start capture immediately

Privilege Analysis

[201]

You should receive a confirmation message and see that your policy is active (see Figure
29).

Figure 29 – An active capture

Select the role policy and click on Start Capture (see Figure 30):

Figure 30 – Enabling role policy

Privilege Analysis

[202]

You should see under the Policies section that both policies are active (see Figure 31):

Figure 31 – Active policies

Keep in mind that only one policy whose type is Database and one policy
whose type is not Database could be active at any given time.

Verify that you can't enable another non-database policy while role policy is active. Select
CONT_PRIV_POL and click on the Start Capture button. You'll receive warning message,
and you'll only be able to schedule job to run at later point in time (see Figure 32).

Figure 32 – Warning message

Privilege Analysis

[203]

To disable capture, select an active policy (for example, ALL_PRIV_POL) and click on the
button Stop Capture (see Figure 33):

Figure 33 – Stop capture

Choose to immediately stop capture and tick generate report checkbox. Click on the OK
button (see Figure 34).

Figure 34 – Stop capture and generate report

Privilege Analysis

[204]

You should receive confirmation message that capture has been stopped and that job has
been submitted (see Figure 35):

Figure 35 – Confirmation

Refresh page (it may take up to several minutes to complete). You should receive result
similar to the one shown in Figure 36.

Figure 36 – The generated report

Test all policies you have created in the previous recipes.

Reporting on used system privileges
In this recipe, you'll view collected data about the usage of system privileges during a
capture interval.

Privilege Analysis

[205]

Getting ready
You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

View system privileges that the user ALAN used:2.

Figure 37 – The used system privileges

View grant path for the used system privileges generated by ALL_PRIV_POL for3.
the user ALAN:

Figure 38 – The Grant path

Privilege Analysis

[206]

There's more…
In EM 12c, after you have generated the report, select the policy and from Actions drop-
down menu, select Reports. The Usage Summary report will open (see Figure 39).

Figure 39 – Usage Summary

Click on the tab Used and choose All for Match radio button, Policy: ALL_PRIV_POL, User
Name: ALAN, and click on the Search button. Results are shown in Figure 40:

Figure 40 – Report the used privileges recorded for the user Alan based on the database policy

Privilege Analysis

[207]

If you haven't generated report for the role policy, do it now and return to this tab (the Used
tab). Find all records generated by ROLE_PRIV_POL for user Nick (who has a DBA role).
Results are presented in Figure 41:

Figure 41 – The used privileges recorded for the user Nick based on role policy

Reporting on used object privileges
In this recipe, you'll view collected data about the usage of object privileges during the
capture interval.

Getting ready
You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

Privilege Analysis

[208]

View which object privileges the user Alan has used while database policy2.
ALL_PRIV_POL has been active.

Figure 42 – The used object privileges

View grant path by querying DBA_USED_OBJPRIVS_PATH:3.

Figure 43 – Object privileges grant path

There's more…
In EM 12c, after you have generated the report, select the policy, and from Actions drop-
down menu, select Reports. The Usage Summary report will open. Click on the Used tab
and verify that the user Alan has used the SELECT and DELETE privileges while
ALL_PRIV_POL has been active (see Figure 44):

Privilege Analysis

[209]

Figure 44 – Reports

Reporting on unused system privileges
In this recipe, you'll view the collected data about the unused system privileges during the
capture interval.

Getting ready
You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

Privilege Analysis

[210]

View that the user Alan has used all system privileges that have been granted to2.
him (there are no unused system privileges):

Figure 45 – The unused system privileges for the user Alan during the database policy ALL_PRIV_POL capture interval

There's more…
To view report about the unused system privileges in EM12c, see instructions to view the
used system privileges and under Privilege Analysis: Reports, choose the Unused tab
instead of the Used tab.

Reporting on unused object privileges
In this recipe, you'll view collected data about the unused object privileges during the
capture interval.

Getting ready
You'll need an existing user who can create a privilege analysis policy (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user.

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

View which object privileges the user Alan has used during the database policy2.
capture interval:

Privilege Analysis

[211]

Figure 46 – The unused object privileges

There's more…
In EM 12c, after you have generated the report, select the policy, and from Actions drop-
down menu, select Reports. The Usage Summary report will open. Click on the Unused tab
and verify that the user Alan hasn't used the INSERT and UPDATE privileges while
ALL_PRIV_POL has been active.

Figure 47 – The Unused object privileges report

Privilege Analysis

[212]

How to revoke unused privileges
You can manually revoke unused privileges one by one from users, write your own scripts
to complete that task, or use Enterprise Manager Cloud Control 12c. In this recipe, you'll
use EM12c to efficiently revoke unused privileges based on reports you generated in the
previous recipes.

How to do it…
Select policy, and from Actions drop-down menu, choose Revoke Scripts (see1.
Figure 48):

Figure 48 – Create revoke scripts

You'll see a message about required privileges (see Figure 49). Click on the OK2.
button.

Figure 49 – The info message

Privilege Analysis

[213]

Select policy (Policy Name) and click on the Generate button (see Figure 50):3.

Figure 50 – Generating a script

Generate script to revoke all the unused object privileges from the user Alan. Fill4.
out form as shown in Figure 51 and click on the Next button:

Figure 51 – Revoking the script configuration

Privilege Analysis

[214]

Click on the Select None link and tick revoke checkbox for the user Alan (see5.
Figure 52):

Figure 52 – Choose to revoke privilege only from the user Alan

Click on the Next button. Review your choices and click on the Save button
(see Figure 53):

Figure 53 – Review

Privilege Analysis

[215]

You should receive confirmation similar to the one shown in Figure 54:

Figure 54- The confirmation message

Click on the green arrow in the Revoke Script column (Figure 54) to download6.
the generated revoke script. Note that Regrant Script has also been generated.
View the generated revoke script- ALAN_OBJ_PRIV_REV_revokeScript.sql7.
(see Figure 55):

Figure 55 – The generated revoke script

There's more…
In EM 12c, there is another excellent option to create a new role based on privilege analysis
results. This way, you won't change an existing role (and affect other users and roles who
have that role), but create a new one and afterwards revoke the old role and grant a newly
created one.

Privilege Analysis

[216]

You can select it from the Actions menu (Create Role). In Figure 56, the configuration part
of a process for creating a new role is shown:

Figure 56 – Create a new role based on policy

Dropping the analysis
In this recipe, you'll drop an existing privilege analysis policy. It has to be disabled before
dropping; otherwise, you'll receive an error.

Getting ready
You'll need an existing user who can manage privilege analysis policies (has the
CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege), for example, the
SYSTEM user and an existing privilege analysis policy.

How to do it…
Connect to the database as system or a user who has appropriate privileges:1.

 $ sqlplus system

Privilege Analysis

[217]

Drop a privilege analysis policy (for example, ALL_PRIV_POL, which you created2.
in the first recipe in this chapter):

 SQL> BEGIN
 SYS.DBMS_PRIVILEGE_CAPTURE.DROP_CAPTURE(
 name => '<policy_name>');
 END;
 /

Figure 57 – Drop policy

Verify that all the records about the used and unused privileges, which have been3.
gathered according to the policy, are also dropped:

 SQL> SELECT username, sys_priv, obj_priv, object_owner,
 object_name
 FROM DBA_USED_PRIVS
 WHERE capture='<policy_name>';

Figure 58 – Records doesn't exist anymore

There's more…
In EM 12c under the Policies section, select policy you want to drop and click on the Delete
button.

8
Transparent Data Encryption

In this chapter, we will cover the following tasks:

Configuring a keystore location in sqlnet.ora
Creating and opening the keystore
Setting a master encryption key in a software keystore
Column encryption – adding a new encrypted column to a table
Column encryption – creating a new table that has encrypted column(s)
Using salt and MAC
Column encryption – encrypting the existing column
Autologin keystore
Encrypting tablespace
Rekeying
Backup and recovery

Introduction
Encryption is a very important security mechanism used to enforce confidentiality of data.
There are two types of encryption that can be used in the Oracle Database. The first type is
application-based encryption, which is implemented using the DBMS_CRYPTO PL/SQL
package (this type is not covered in this book), and the second type is Transparent Data
Encryption (TDE). TDE is a part of Advanced Security option of Oracle Database Enterprise
Edition. It can be used to encrypt data in rest (table columns and tablespaces inside the
database) and in transit (network, Recovery Manager (RMAN) backups, and Data Pump
Exports).

Transparent Data Encryption

[219]

The word transparent in Transparent Data Encryption means that application is not aware
that data is encrypted in any way. In other words, application will never see the encrypted
data-if user is not authorized to see the data, error (for example, insufficient privileges,
table, or view does not exist) will be shown. The only way that a user will see encrypted
data is if he or she tries to avoid Oracle Database Access Controls, by reading data files
directly.

TDE should never be used as a mechanism of access control. For this
purpose, there is a large portfolio of access control mechanisms in Oracle
Database (standard Discretionary Access Control, Mandatory Access
Control-Oracle Label Security, Virtual Private Database, Database Vault,
and so on).

There are two types of TDE: column and tablespace.

In column encryption, only user-selected columns (in user-selected tables) are encrypted.
This encryption type is more suitable for systems with small number of columns that need
to be encrypted. Encrypting large number of columns can lead to significant performance
degradation. This type even encrypts data in memory, which prevents cold boot attacks.
There are several encryption algorithms that can be chosen from: AES128, AES192, AES256,
and 3DES168. The default one is AES192. Because these are block cyphers, each row that is
going to be encrypted need to be padded to a multiple of 16 bytes (for example, if the size of
value in row is 11 bytes, additional 5 bytes of storage is needed to encrypt this row). By
default, salt and MAC are used (salt and MAC are covered in the Using salt and MAC
recipe). There are several restrictions of column encryption:

Foreign key constraints are not supported because each table has a different table
key
B-Tree indexes are not supported when using salt
Bitmap indexes are not supported
Transportable tablespaces are not supported
Synchronous Change Data Capture (CDC) is not supported
External Large Objects (LOBs) are not supported
SYS schema objects cannot be encrypted

Transparent Data Encryption

[220]

Tablespace encryption is the second type of TDE, which has better performance and has
fewer restrictions. This type of TDE is usually more suitable for systems that need to
encrypt large portion of data in the database. Using this type, all data that resides inside
encrypted tablespace is encrypted (no restrictions on data types). Encryption/decryption is
performed on the I/O level, so performance overhead can be expected to be seen on that
level. Tablespace encryption doesn't require additional storage. Unlike column encryption,
tablespace encryption supports the following:

Foreign keys
Bitmap indexes
Transportable tablespaces (as long as platforms are of the same endian and the
same keystore exists on both locations)
All data types

However, there are still some limitations. Following things are not supported in tablespace
encryption:

BFILE cannot be encrypted
External tables cannot be encrypted
UNDO tablespace cannot be encrypted
TEMP tablespace cannot be encrypted
SYSTEM tablespace cannot be encrypted
Key for tablespace cannot be rekeyed (workaround is to create another encrypted
tablespace and move all data to this newly created tablespace)

Transparent Data Encryption

[221]

TDE uses two-tier key architecture. For column encryption, columns are encrypted using
column (also known as table) keys. There is only one key per table regardless of number of
columns that are encrypted in that particular table. For tablespace encryption, tablespaces
are encrypted using tablespace keys. Both table and tablespace keys are stored in data
dictionary inside Oracle Database. These keys are encrypted using a master key. There is
only one master key per database (in Oracle multitenant environment, there is one master
key per pluggable database). This master key is stored in a keystore outside the Oracle
Database. This keystore can be a software keystore (in previous versions of Oracle
Database, it's been named Oracle Wallet) or a hardware keystore (for example, Hardware
Security Module). There is only one keystore per database (in Oracle Multitenant
environment, there is only one keystore per whole container database). This means that in
Oracle Multitenant, there will be one keystore (software or hardware) per container
database, which contains multiple master keys (one for each pluggable database that is
plugged in that particular container database). A keystore is secured by a password, which
is used during maintenance operations (keystore opening and closing, rekeying master key,
and so on).

Keystore's password is not the same as the master key.

Configuring keystore location in sqlnet.ora
In this recipe, you're going to configure the location of a software keystore in a regular file
system. If you want to use Hardware Security Module (HSM), see the official Oracle
documentation (Chapter 3 in Oracle Advanced Security Guide, part named Configuring
Hardware Keystore).

Transparent Data Encryption

[222]

How to do it…
Create a directory, to hold a keystore, that is accessible to the owner of Oracle1.
software (for example, $ORACLE_BASE/admin/ora12cR1/wallet). See Figure 1:

Figure 1 – Create a directory and edit sqlnet.ora

Edit sqlnet.ora and add entry to specify the location of the keystore (see Figure2.
1 and 2). This step is optional if you are using default location for the wallet,
which is $ORACLE_HOME/admin/<db_name>/wallet.

Figure 2 – Define ENCRYPTION_WALLET_LOCATION parameter

Creating and opening the keystore
In this recipe, you're going to create a password-based keystore. Open it and learn to check
its status.

Transparent Data Encryption

[223]

Getting ready
It is assumed that the keystore location is already configured (instructions are given in the
recipe Configuring keystore location in sqlnet.ora). In this recipe, you'll grant, as the SYS user,
administer key management privilege, or SYSKM administrative privilege to an existing user
(for example, maja).

How to do it…
Connect to the database as a user who can grant administer key management1.
privilege (for example, SYS) and grant the privilege to an existing user (for
example, maja).
To create a password-based software keystore, connect to the database as the user2.
in the previous step (for example, maja) and execute the following statement
(after you change parameters so that they are appropriate for your environment)
(an example is shown in Figure 3):

 SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'keystore_location'
 IDENTIFIED BY keystore_password;

Figure 3 – Creating a password-based software keystore

Transparent Data Encryption

[224]

Open the keystore you created in the previous step by executing the following3.
statement (see Figure 4):

 SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
 keystore_password;

Figure 4 – Opening the password-based keystore

How it works…
In step 2, you create a new wallet, which is a file with .p12 extension, in a wallet directory.

In step 3, you opened the keystore. It will remain open until you manually close it.

There's more…
Verify that the keystore has been successfully created in step 2 by checking that the file
ewallet.p12 exists in the directory you specified as a keystore location
(ENCRYPTION_WALLET_LOCATION parameter in sqlnet.ora). You should get the similar
result to the one shown in Figure 5.

Figure 5

To view the status of the keystore execute the following statements:

 $ sqlplus / as syskm
 SQL> SELECT STATUS, WALLET_TYPE FROM V$ENCRYPTION_WALLET;

Transparent Data Encryption

[225]

You should receive the same result as shown in Figure 6. The OPEN_NO_MASTER_KEY status
means that the keystore is opened, but a master key hasn't been generated yet.

Figure 6

Setting master encryption key in software
keystore
In this recipe, you're going to create the first master key for the password-based software
keystore you created and opened in the previous recipe.

Getting ready
It is assumed that software keystore is already opened. To complete this recipe, you'll need
an existing user who has the SYSKM administrative or administer key management privilege
(for example, maja).

How to do it…
Connect to the database as a user who has the SYSKM administrative or1.
administer key management privilege (for example, maja):

 $ sqlplus maja

Transparent Data Encryption

[226]

Create a master key for the password-based keystore (Figure 7 shows the creation2.
of master key for the keystore you created in the recipe Creating and opening the
keystore):

 SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY
 keystore_password
 WITH BACKUP
 USING 'desc_purpose';

Figure 7

There's more…
The WITH BACKUP clause in step 2 instructs Oracle Database to create a backup of a
keystore before the creation of a master key. This backup is created in the same directory
where keystore resides and is created in the form ewallet_timestamp.p12 (where
timestamp represents timestamp of backup creation).

Verify the status of the keystore (Figure 8):

Figure 8 – The status of the keystore after master key was created

See also
If you want to learn to change a master key, see the Rekeying recipe.

Transparent Data Encryption

[227]

Column encryption – adding new encrypted
column to table
In this recipe, you'll add a new column, which will be encrypted using a nondefault
encryption algorithm, to an existing table.

Getting ready
It is assumed that a keystore is opened and a master key is created.

How to do it…
Connect to the database as a user who has administer key privilege or SYSKM1.
privilege (for example, maja) and verify that the keystore is in the OPEN status.
You should get the result similar to the one depicted in Figure 9:

 $ sqlplus maja

Figure 9

Add a column (for example, bonus) to a table (for example, hr.employees),2.
encrypted using the AES 256 algorithm.

Figure 10 – Adding the new encrypted column to the table

Transparent Data Encryption

[228]

Column encryption – creating new table that
has encrypted column(s)
In this recipe, you're going to learn to use TDE column encryption to encrypt columns in a
newly created table.

Getting ready
It is assumed that a keystore is opened and a master key is created.

How to do it…
Connect to the database as a user who has administer key privilege or SYSKM1.
privilege (for example, maja):

 $ sqlplus maja

Create a new table (for example, table enc_cols in schema hr) that has, for2.
example, the following structure:

Column name Column type Encrypted

NAME VARCHAR2 (50) No

CREDIT_LIMIT NUMBER (10) Yes, AES192

SALARY NUMBER (10) Yes, AES192

Figure 11 – A syntax to create the table hr.enc_cols

Transparent Data Encryption

[229]

Connect to the database as a user who can insert and view data in the table (for3.
example, hr user):

 SQL> connect hr

Insert several arbitrary values into the table HR.ENC_COLS.4.

Figure 12 – Test values

Verify that the user can view unencrypted values in all columns.5.

Figure 13- Encryption is transparent

Transparent Data Encryption

[230]

Connect to the database as a user who can't view data in the table (for example,6.
james) and try to view data in all columns:

 SQL> connect james
 SQL> select * from hr.enc_cols;

Figure 14 – User who doesn't have “view” privilege(s) won't see encrypted values

Using salt and MAC
In this recipe, you'll understand when you should use salt and MAC.

Getting ready
It is assumed that a keystore is opened and a master key is created.

How to do it…
Connect to the database as a user who has administer key privilege or SYSKM1.
privilege (for example, maja):

 $ connect maja

Transparent Data Encryption

[231]

Encrypt two columns in an existing table (for example, sh.customers)2.

Figure 15 – Using salt and MAC

How it works…
In step 2:

You encrypted the last_name column using the AES256 algorithm with salt and
used MAC
You encrypted the cust_street_address column using the AES256 algorithm
with no salt and used MAC

In general, you have to use same encryption algorithm for all encrypted columns at the
same time. You can choose a SALT option on the encrypted column level in a table, but you
have to choose either the MAC or NOMAC option on a table level (meaning that all encryption
columns in a table must use the same option).

There's more…
To understand why salt is important, let's consider a basic scenario that doesn't use salt. For
example, if we have 100 rows and they contain only values A, B, C, and D, this will mean
that there are only 4 different values in 100 rows. If we know that value A exists in 3 rows,
value B exists in 20, value C exists in 30, and value D exists in 47 rows, we can then check
cyphertexts (because there will be only 4 different values in cyphertext as well). By
evaluating it, we can find that one cyphertext that exists in 3 rows will be value A, one that
exists in 20 rows will be value B, and so on. In order to avoid this problem, we can
introduce salt. Salt is used to ensure that each encrypted row has different cyphertext
regardless of number of same values in plaintext rows. In our previous example, if we used
salt, even though there were only 4 different plaintext values in 100 rows, there will be 100
different cyphertext values in 100 rows, which will be almost impossible for attacker to
presume which value corresponds to which row. Consequently, there is no need for salt if
plaintext values are unique. There is additional storage cost of 16 bytes per row for salt.

Transparent Data Encryption

[232]

Salt cannot be used on indexed columns.

MAC (short for Message Authentication Code) is a hash value computed on encrypted
data, which is used for data integrity verification. There is the additional storage cost of 20
bytes per row.

By default, both salt and MAC are used.

Figure 16 – TDE column restriction

Figure 17 – Encrypted primary key with no salt

It is not possible to have salt on indexed column. In Figure 16, it is shown that column ID
(which is primary key) cannot be encrypted with salt. In Figure 17 is shown that after
changing attribute to NOSALT, the primary key column is successfully encrypted.

Transparent Data Encryption

[233]

Column encryption – encrypting existing
column
It is common case that organizations first create database and later decide that they want to
implement encryption. In this recipe, you're going to encrypt an existing column using TDE
column encryption.

Getting ready
It is assumed that a keystore is opened and a master key is created.

How to do it…
Connect to the database as a user who can read data from the OE.CUSTOMERS1.
table (for example, the oe user):

 $ sqlplus oe

Select data from column you want to encrypt (for example, cust_email), just to2.
verify that the user can view it.

Figure 18 – A test query

Connect to the database as a user who has administer key privilege or SYSKM3.
privilege (for example, maja):

 SQL> connect maja

Transparent Data Encryption

[234]

Encrypt the cust_email column in the oe.customers table using the default4.
encryption algorithm (AES192) and no salt.

Figure 19 – Encrypting an existing column, which has an index

Execute steps 1 and 2 again to verify that there is no change in the way5.
user/application views data after TDE column encryption is applied.

There's more…
This example demonstrates that you can't use TDE column encryption to encrypt column,
which is a foreign key. If you need to encrypt that kind of column, use TDE tablespace
encryption.

Connect to the database as a user who can select data from a table, for example,1.
OE.ORDERS (for example, the oe user):

 $ sqlplus oe

Select data from the foreign key column you want to encrypt (for example,2.
customer_id), just to verify the user can view it.

Figure 20 – A simple test query

Transparent Data Encryption

[235]

Connect to the database as a user who has administer key privilege or SYSKM3.
privilege (for example, maja):

 SQL> connect maja

Encrypt the customer_id column in the oe.orders table using the default 4.
encryption algorithm (AES192).

Figure 21 – A TDE column encryption restriction

Auto-login keystore
Autologin keystore is a type of keystore that doesn't need to be manually opened. The local
autologin keystore can be opened only from computer where it has been created. Autologin
keystores have system-generated passwords. They are less secure than password-based
keystores. They are created from password-based software keystores.

Getting ready
It is assumed that password-based software keystore is created.

How to do it…
Connect to the database as a user who has administer key privilege or SYSKM1.
privilege (for example, maja):

 $ sqlplus maja

Transparent Data Encryption

[236]

Create (local) an autologin keystore. In our case, keystore_location is2.
/u01/app/oracle/admin/ora12cR1/wallet and keystore_password is
welcome1:

 SQL> ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM
 KEYSTORE 'keystore_location' IDENTIFIED BY keystore_password;
 OR
 SQL> ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM
 KEYSTORE 'keystore_location' IDENTIFIED BY keystore_password;

How it works…
After you executed statement in step 2, in directory that holds password-based keystore, the
cwallet.sso file was created. That file represents autologin keystore.

Encrypting tablespace
It is not possible to encrypt an existing tablespace using TDE tablespace encryption. In this
recipe, you'll create a new encrypted tablespace.

Getting ready
It is assumed that a keystore is opened and a master key is created.

How to do it…
Connect to the database as a user who has a create tablespace privilege (for1.
example, zoran):

 $ sqlplus zoran

Transparent Data Encryption

[237]

Create encrypted tablespace (for example, TEST_ENC) using AES192 encryption2.
algorithm:

 SQL> CREATE TABLESPACE TEST_ENC
 DATAFILE '/u01/app/oracle/oradata/ORA12CR1/datafile/testenc01.dbf'
 SIZE 20M
 ENCRYPTION USING 'AES192'
 DEFAULT STORAGE (ENCRYPT);

Figure 22 – Encrypting tablespace

How it works…
In step 2, you create an encrypted tablespace TEST_ENC. To find information about
encrypted tablespaces, you can query the V$ENCRYPTED_TABLESPACES view.

Figure 23 – Finding information about encrypted tablespace

Transparent Data Encryption

[238]

There's more…
You can import existing tables into encrypted tablespace using Oracle Data Pump. Another
option is to use SQL statements, for example, CTAS (short for CREATE TABLE AS).

Rekeying
You can change (rekey) a master key and table keys. You cannot rekey tablespace keys.

Getting ready
It is assumed that a keystore is opened and a master key is created.

How to do it…
Connect to the database as a user who has administer key privilege or SYSKM1.
privilege (for example, maja):

 $ sqlplus maja

To rekey a table (for example, the oe.customer) using a different encryption2.
algorithm (for example, AES128), execute the following statement:

Figure 24 – Rekeying a table key

Transparent Data Encryption

[239]

Change a master key by executing the following statement (in our example,3.
keystore_password is welcome1):

 SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY
 keystore_password
 WITH BACKUP;

Figure 25 – Rekeying a master key

How it works…
When you changed a table key, in step 2, all encrypted data in the oe.customers table were
decrypted and then encrypted using the new table key and the new encryption algorithm. If
you just want to change key and use the same algorithm as before, syntax for rekeying is:

 ALTER TABLE table_name REKEY;

In step 3, you created a backup of the keystore and created a new master key in the
keystore. Old master keys are held in the keystore.

It is extremely important to have backup of the keystore.

Transparent Data Encryption

[240]

Backup and Recovery
RMAN supports three encryption modes:

Transparent mode
Password mode
Dual mode

In this recipe, you're going to learn to create encrypted backups using RMAN.

How to do it…
Connect to the RMAN as user who has the sysbackup privilege:1.

 $ rman target '"zoran@orcl as sysbackup"'

Configure encryption on a database level:2.

 RMAN> CONFIGURE ENCRYPTION FOR DATABASE ON;

Backup a tablespace example in transparent mode:3.

 RMAN> BACKUP TABLESPACE EXAMPLE tag 'tran_mode';

Enable dual mode encryption and backup tablespace example in dual mode:4.

 RMAN> SET ENCRYPTION ON IDENTIFIED BY "password_1";
 RMAN> BACKUP TABLESPACE EXAMPLE tag 'dual_mode';

Enable password mode and backup tablespace example in password mode:5.

 RMAN> SET ENCRYPTION ON IDENTIFIED BY "password_2" ONLY;
 RMAN> BACKUP TABLESPACE EXAMPLE tag 'pass_mode';

Transparent Data Encryption

[241]

There's more…
If a backup is created in transparent mode, it can be restored only by using a key that is
used to create the backup (stored in the external keystore).

If the backup is created in password mode, it can be restored only by using a password that
is provided during the backup.

If the backup is created in dual mode, it can be restored by either key that is stored in the
external keystore or the password that is provided during the backup.

9
Database Vault

In this chapter, we will cover the following tasks:

Registering Database Vault
Preventing users from exercising system privileges on schema objects
Securing roles
Preventing users from executing a specific command on a specific object
Creating a rule set
Creating a secure application role
Using Database Vault to implement that administrators cannot view data
Running Oracle Database Vault reports
Disabling Database Vault
Re-enabling Database Vault

Introduction
Introduction of Oracle Database Vault in 2005 brought a major change in the way security is
enforced. Today, 10 years after it was introduced, it remains the most significant tool to
control data access and enforce separation of duties in Oracle Database.

From licensing viewpoint, it is only available as an option for Oracle Database Enterprise
Edition.

Database Vault

[243]

You need to understand how, when, why, and which component of Database Vault you
should implement in order to successfully protect your database. In this chapter, you are
going to learn to create and appropriately use realms, rules, rule sets, command rules,
factors, and secure application roles. Basic concepts are covered in this chapter, whereas
doing everyday administration tasks in Database Vault environment, more advanced
topics, and security in more complex environments are explained in Chapter 11,
Additional Topics.

For all recipes in this chapter, we assume that database is up and running, and each user
has at least a create session privilege. Also, you will use Oracle Enterprise Manager
Cloud Control 12c.

A SYS user, because he is the most powerful user, will be used to test that
security is correctly enforced (even for him).

Recipes are tested on Oracle Database 12.1.0.2 in multitenant environment.

Registering Database Vault
In Oracle Database 12c process of configuring and enabling Database Vault is different than
in Oracle Database 11g. In this recipe, you will learn to register Oracle Database Vault in
multitenant environment in two situations:

When Oracle Database 12c is already installed
During the installation of Oracle Database 12c

Getting ready
To complete this recipe, you'll need an existing common user who has a privilege to create
users and grant create session and set container privileges (for example, c##maja).

Database Vault

[244]

How to do it…
To register Database Vault with Oracle Database 12c when the database is already installed,
perform the following steps:

Connect to the root container as a user who has privileges to create users and1.
grant create session and set container privileges (for example, c##maja):

 $ sqlplus c##maja

Create two users (for example, c##dbv_owner and c##dbv_acctmgr) and grant2.
them create session and set container privileges:

 SQL> create user c##dbv_owner identified by oraDVO123 CONTAINER =
 ALL;
 SQL> grant create session, set container to c##dbv_owner CONTAINER =
 ALL;
 SQL> create user c##dbv_acctmgr identified by oraDVA123 CONTAINER =
 ALL;
 SQL> grant create session, set container to c##dbv_acctmgr CONTAINER
 = ALL;

Connect to the root as a SYS user:3.

 SQL> connect sys as sysdba

Configure the Database Vault users:4.

 SQL> begin
 DVSYS.CONFIGURE_DV (
 dvowner_uname => 'c##dbv_owner',
 dvacctmgr_uname => 'c##dbv_acctmgr');
 end;
 /

Execute the utlrp.sql script:5.

 SQL> @?/rdbms/admin/utlrp.sql

Database Vault

[245]

Connect to the root as the Database Vault Owner user that you just configured6.
(for example, the c##dbv_owner):

 SQL> connect c##dbv_owner/oraDVO123

Enable Oracle Database Vault:7.

 SQL> exec DBMS_MACADM.ENABLE_DV

Connect as a SYS user:8.

 SQL> CONNECT / AS SYSDBA

Restart the database.9.

For each PDB, perform step 3 through step 8 and then close and reopen the pluggable
database (for example, PDB1).

SQL> alter pluggable database pdb1 close immediate;

SQL> alter pluggable database pdb1 open;

How it works…
After you register Oracle Database Vault with Oracle Database 12c, there are number of
changes in the Oracle Database. Some database parameters change values, separation of
duties is enabled by revoking privileges from some roles and by creating new users.

There's more…
You use Database Configuration Assistant (DBCA) when you configure Database Vault
during the database installation. When you get to step 9 (Database Options), click on tab
Database Vault & Label Security. Select both available checkboxes and fill out text fields to
create users: Database Vault Owner and Account Manager (see Figure 1). You should
complete the rest of the installation in the same way you usually do.

Database Vault

[246]

Figure 1 – Using DBCA to register Oracle Database Vault

See also
Disabling Database Vault
Re-enabling Database Vault

Preventing users from exercising system
privileges on schema objects
In this recipe, to prevent users to exercise system privileges (such as select any table),
you are going to first create a realm and then you are going to change it to a mandatory
realm. The mandatory realm further restricts access to protected objects. Schema owners
and users with object privileges cannot access mandatory realm-secured objects if they are
not authorized in realm.

Database Vault

[247]

Getting ready
To complete this recipe, you'll need an existing common user who has a DBA role in the
pluggable database PDB1 (for example, c##zoran).

How to do it…
Connect to a pluggable database (for example, pdb1) as a Database Vault account1.
manager (for example, c##dbv_acctmgr):

 SQL> connect c##dbv_acctmgr@pdb1

Create a new local user in the pluggable database (for example, usr1):2.

 SQL> create user usr1 identified by oracle;

Connect to the pluggable database as a common user who has a DBA role in3.
pdb1 (for example, c##zoran):

 SQL> connect c##zoran@pdb1

Grant the select privilege on the table HR.EMPLOYEES and the create4.
session privilege to the user usr1:

 SQL> grant select on hr.employees to usr1;

 SQL> grant create session to usr1;

Connect to the Enterprise Manager Cloud Control 12c (EM) as a privileged user5.
(SYSMAN or some other privileged user, for example, zoran). From Security drop-
down menu, choose Database Vault (see Figure 2).

Database Vault

[248]

Figure 2 – Selecting Database Vault

Log in to the pluggable database PDB1 as a user who is the Database Vault Owner6.
(see Figure 3).

Database Vault

[249]

On the next page, click on the Administration tab (see Figure 4).7.

Figure 4 – Switching to the Administration tab

Create HR_Realm, as shown in the following figures (Figure 5 – 8). First, click on8.
the Create button.

Database Vault

[250]

Name the realm (for example, HR_Realm) and leave default values for other parts9.
of the form.

Securing all tables in HR schema.10.

Figure 7 – Adding secured objects

Database Vault

[251]

Add realm participant (for example, C##ZORAN).11.

Figure 8 – Adding authorized user(s)

After you make sure that you chose the options you wanted, click on the Finish12.
button.

Figure 9 – Reviewing and clicking on the Finish button

Database Vault

[252]

Verify that the usr1 and hr users can view data in the HR.EMPLOYEES table:13.

 SQL> connect usr1@pdb1

 SQL> select count(*) from hr.employees;

 COUNT(*)

 107

 SQL> connect hr@pdb1

 SQL> select count(*) from hr.employees;

 COUNT(*)

 107

To provide better security, edit the realm HR_Realm and select the checkbox14.
Mandatory Realm (see Figure 10 – Figure 12).

Figure 10 – Editing HR_Realm

Database Vault

[253]

Figure 11 – Mandatory Realm checkbox

Clicking on the Finish button.15.

Figure 12 – Leaving other settings as they were and clicking on the Finish button

Database Vault

[254]

There's more…
The difference between participant and owner of the realm is that a realm
participant can only exercise system privileges on realm-secured objects,
whereas an owner besides that can grant object privileges on realm-
secured objects to other users and roles.

Verify that the SYS user can't create a user, after Database Vault is registered:

SQL> connect sys@pdb1 as sysdba

Enter password:
Connected.

SQL> create user usr1 identified by oracle;
create user usr1 identified by oracle
 *
ERROR at line 1:
ORA-01031: insufficient privileges

Verify that after you created realm HR_Realm, the SYS user can't access data in the table
HR.EMPLOYEES.

SQL> connect sys@pdb1 as sysdba

Enter password:
Connected.

SQL> select count(*) from hr.employees;

select count(*) from hr.employees
 *
ERROR at line 1:
ORA-01031: insufficient privileges

This is the expected behavior because realm protects secured objects from
users who try to use their system privileges. In our example, SYS tried to
use SELECT ANY TABLE, and because he doesn't have direct object
privilege (SELECT on HR.EMPLOYEES), he is restricted from selecting data
in the table HR.EMPLOYEES.

SQL> conn c##zoran@pdb1

Enter password:
Connected.

Database Vault

[255]

SQL> select count(*) from hr.employees;

 COUNT(*)

 107

After mandatory realm is created, the user usr1 can't access data in the table
HR.EMPLOYEES because he/she is not authorized in the realm.

SQL> connect usr1@pdb1

Enter password:
Connected.

usr1@CDB1> select count(*) from hr.employees;

select count(*) from hr.employees
 *
ERROR at line 1:
ORA-01031: insufficient privileges

The same principle applies even to the schema owner (HR).

SQL> connect hr@pdb1

Enter password:
Connected.

SQL> select count(*) from hr.employees;

select count(*) from hr.employees
 *
ERROR at line 1:
ORA-01031: insufficient privileges

Database Vault

[256]

See also
Securing roles

Securing roles
In the recipe Preventing users from exercising system privileges on schema objects, you secured
the table HR.EMPLOYEES by creating the HR_Realm realm, and afterwards, you edit it and
made it mandatory. In this recipe, you'll learn to protect roles using a realm and a
mandatory realm.

Getting ready
To complete this recipe, you'll need to use a SYS user.

How to do it…
Connect to the pluggable database PDB1 as a SYS user:1.

 SQL> connect sys@pdb1 as sysdba

Create the role role1:2.

 SQL> create role role1;

Grant the create session and select any table privileges to the role:3.

 SQL> grant create session, select any table to role1;

Database Vault

[257]

Create realm ROLE1_Realm in Enterprise Manager Cloud Control 12c (see Figure4.
13).

Figure 13 – Creating ROLE1_Realm

Add realm-secured objects (see Figure 14).5.

Figure 14 – Adding secured objects

Database Vault

[258]

Add realm authorizations and click on the Next button (see Figure 15).6.

Figure 15 – Realm authorizations

Review and click on the Finish button (see Figure 16).7.

Figure 16

Database Vault

[259]

Connect to the pluggable database PDB1 as a SYS user:8.

 SQL> connect sys@pdb1 as sysdba

Verify that SYS still can revoke/grant privileges from/to role role1, even though9.
role1 is protected by the realm:

 SQL> revoke select any table from role1;

 SQL> grant drop any synonym to role1;

Edit the realm ROLE1_Realm and make it mandatory (select the Mandatory10.
Realm checkbox).

Figure 17 – Editing realm

Database Vault

[260]

Review and confirm the change of ROLE1_Realm.11.

Figure 18

There's more…
After we created a realm, the SYS user (or any user that is not authorized in realm) cannot
grant the realm-protected role:

SQL> connect sys@pdb1 as sysdba

Enter password:
Connected.

SQL> grant role1 to usr1;

grant role1 to usr1
*
ERROR at line 1:
ORA-47410: Realm violation for GRANT on ROLE1

Database Vault

[261]

However, user c##zoran is authorized in realm as owner, so he can grant this role:

SQL> connect c##zoran@pdb1

Enter password:
Connected.

SQL> grant role1 to usr1;

Grant succeeded.

In step 9, we've seen that the SYS user can grant or revoke privileges from role even though
the role is protected by realm. After we make the realm mandatory (steps 10 and 11), this is
no longer possible:

SQL> connect sys@pdb1 as sysdba

Enter password:
Connected.

SQL> revoke drop any synonym from role1;

revoke drop any synonym from role1
*
ERROR at line 1:
ORA-47410: Realm violation for REVOKE on ROLE1

SQL> grant update any table to role1;

grant update any table to role1
*
ERROR at line 1:
ORA-47410: Realm violation for GRANT on ROLE1

See also
Preventing users from exercising system privileges on schema objects

Database Vault

[262]

Preventing users from executing specific
command on specific object
In this recipe, you'll learn to create command rules. A command rule defines a protected
database operation on a specific database object (for example, UPDATE on all tables in HR
schema). The evaluation of associated rule set determines if statement will be allowed
(executed) or blocked.

How to do it…
Create a command rule by following these steps depicted in Figures 19 and 20.

Figure 19 – Creating a command rule

Database Vault

[263]

In the Command field, write UPDATE; in the Applicable Object Owner field, write OE; in
the Applicable Object Name field, write ORDERS; and select Disabled for Rule Set (see
Figure 20).

Figure 20 – A Command rule to secure the UPDATE operation on OE.Orders

How it works…
Command rules can be understood this way: In order to execute command
X on object Y in schema Z, rule set with name A needs to evaluate TRUE.

In our case, it can be understood this way: In order to execute UPDATE on the table ORDERS
in schema OE, rule set Disabled needs to evaluate TRUE. However, because rule set
 DISABLED will evaluate FALSE always, consequently, this command is disabled for all
users in the database:

SQL> connect sys@pdb1 as sysdba

Enter password:
Connected.

SQL> UPDATE OE.ORDERS SET ORDER_MODE = 'TEST' WHERE ORDER_ID < 3000;

UPDATE OE.ORDERS SET ORDER_MODE = 'TEST' WHERE ORDER_ID < 3000
 *
ERROR at line 1:
ORA-01031: insufficient privileges

Database Vault

[264]

Creating a rule set
A rule set is a group of rules, which will be evaluated as a whole, using only AND or only OR
operator. The Boolean result of logical evaluation is used in other Oracle Database Vault
components to grant or deny certain actions (for example, deleting data from a table). In
this recipe, you'll learn to create rules and rule sets.

Getting ready
In this recipe, you are going to use Enterprise Manager Cloud Control 12c.

How to do it…
Go to Rule Sets component and then click on Create (Figure 21).1.

Figure 21

Database Vault

[265]

As a name, enter Working Hours and click on Next (Figure 22). For Evaluation2.
Options, choose All True.

Figure 22 – Our rule set “Working Hours”

Add two rules (Is Working Day and Is Working Hour) by clicking on Create3.
Rule before adding each of them. Enter the details in Rule Name and Rule
Expression as shown in Figure 23. After you added both rules, click on Next.

Figure 23 – Create two rules

Database Vault

[266]

Leave all options on defaults and click on Next.4.

Figure 24 – Error handling and audit options

Click on Finish.5.

Figure 25 – Finish

Database Vault

[267]

There's more…
To use rule set you have created in this recipe, create command rule for UPDATE operation
on schema SCOTT, table EMP, and choose that condition for evaluation whether update
operation will be executed is defined by rule set Working Hours.

Figure 26 – Create command rule using your rule set

Check time and day (your result will be different). In this case, it's NOT a work day, so rule
set will evaluate to false.

SQL> !date

Sun Jun 14 02:12:02 CEST 2015

Try to increase salary by 300 for the employee whose empno is 7902.

SQL> UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE EMPNO = 7902;

UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE EMPNO = 7902
 *
ERROR at line 1:
ORA-01031: insufficient privileges

Database Vault

[268]

Check time and day (your result will be different). In this case, it is a work day and it is
during working hours, so rule set will evaluate to true.

SQL> !date

Mon Jun 15 14:27:24 CEST 2015

SQL> UPDATE SCOTT.EMP SET SAL = SAL + 300 WHERE EMPNO = 7902;

1 row updated.

Creating a secure application role
A secure application role is a database role whose enablement depends on the evaluation of
a specified condition. In this recipe, you'll learn to create secure application role using
Oracle Database Vault. The condition that determines whether the role will be enabled is
specified by rule set (you can use built-in rule set or create your own).

How to do it…
Create rule set with name Can Access Customer Data and with rule1.
DVF.F$MACHINE = <your host name> (for example, name it: Is Local
Machine). In our case, hostname is host01.challengezoran.com (see Figure
27). Refer to the recipe Creating rule sets for full explanation.

Figure 27 – Is a Local Machine rule

Database Vault

[269]

In the Database Vault Components panel, click on the Secure Application Roles2.
link and then click on the Create button (see Figure 28).

Figure 28 – Create a secure application role

Define secure application role settings. In our case, we secure the role cust_role3.
and condition for enablement is defined by the Can Access Customer
Data rule set (see Figure 29).

Figure 29 – Define secure application role

Database Vault

[270]

There's more…
Now, you are going to test behavior of the secure application role.

Connect to pluggable database pdb1 as a user who has the Oracle Database Vault Account
Manager role and create the user usr2.

SQL> connect c##dbv_acctmgr/oraDVA123@pdb1

Connected.

SQL> create user usr2 identified by oracle1;

User created.

Connect to the pluggable database pdb1 as a SYS user and grant a create session
privilege to usr2 and select and update privileges to the role cust_role.

SQL> connect sys/oracle@pdb1 as sysdba

Connected.

SQL> grant create session to usr2.

Grant succeeded.

SQL> grant select on oe.customers to cust_role;

Grant succeeded.

SQL> grant update on oe.customers to cust_role;

Grant succeeded.

Connect to pluggable database pdb1 as usr2 and view information about machine you are
accessing the database from. In this example, we are using a built-in factor to get that
information. If you want to learn more about factors in Oracle Database Vault, see Chapter
11, Additional Topics.

SQL> connect usr2/oracle1@pdb1

SQL> select dvf.f$machine from dual;

F$MACHINE
--
host01.challengezoran.com

Database Vault

[271]

Set cust_role by using the PL/SQL package DBMS_MACSEC_ROLES:

SQL> EXEC DBMS_MACSEC_ROLES.SET_ROLE('CUST_ROLE');

PL/SQL procedure successfully completed.

View number of rows in the table OE.CUSTOMERS:

SQL> select count(*) from oe.customers;

 COUNT(*)

 319

When the same user tries to connect from another machine, he or she won't be able to set
the role, which in turn means that he or she won't be able to view data in the table
OE.CUSTOMERS:

SQL> connect usr2/oracle1@pdb1

Connected.

SQL> select dvf.f$machine from dual;

F$MACHINE

host02.challengezoran.com

SQL> EXEC DBMS_MACSEC_ROLES.SET_ROLE('CUST_ROLE');

BEGIN DBMS_MACSEC_ROLES.SET_ROLE('CUST_ROLE'); END;

*
ERROR at line 1:
ORA-47305: Rule Set violation on SET ROLE (CUST_ROLE)
ORA-06512: at "DVSYS.DBMS_MACUTL", line 49
ORA-06512: at "DVSYS.DBMS_MACUTL", line 398
ORA-06512: at "DVSYS.DBMS_MACSEC", line 306
ORA-06512: at "DVSYS.ROLE_IS_ENABLED", line 4
ORA-06512: at "DVSYS.DBMS_MACSEC_ROLES", line 55
ORA-06512: at line 1

SQL> select count(*) from oe.customers;

select count(*) from oe.customers
 *
ERROR at line 1:
ORA-00942: table or view does not exist

Database Vault

[272]

See also
Chapter 11, Additional topics

Using Database Vault to implement that
administrators cannot view data
In this recipe, you will use multiple components (realms, command rules, and rule sets) to
secure data in database from administrators.

How to do it…
Connect to the pluggable database PDB1 as the user c##dbv_acctmgr:1.

 SQL> connect c##dbv_acctmgr@pdb1
 SQL> create user orders_dba identified by oracle1;
 SQL> create user orders_user identified by oracle2;

Connect to the pluggable database PDB1 as a SYS user and execute the following2.
statements:

 SQL> connect sys@pdb1 as sysdba
 SQL> grant dba to orders_dba;
 SQL> grant create session to orders_user;
 SQL> grant select on oe.orders to orders_user;
 SQL> grant update on oe.orders to orders_user;
 SQL> create role ord_usr_role;
 SQL> grant ord_usr_role to orders_user;

Database Vault

[273]

Create a realm that protects all objects in OE schema and authorize user3.
orders_dba as owner (for detailed explanation on creating realms, see recipe
Preventing users from exercising system privileges on schema objects) – Figure 30.

Figure 30 – Create realm OE_Realm

Create realm that protects the ORD_USR_ROLE role and authorize the user4.
c##zoran as owner (for detailed explanation on creating realms, see recipe
Preventing users from exercising system privileges on schema objects) – Figure
31.

Figure 31 – Create realm Orders_Role_Realm

Database Vault

[274]

Create rule set (exp. role check) that has one rule with name Has ORD_USR_ROLE5.
and expression DBMS_MACUTL.USER_HAS_ROLE_VARCHAR('ORD_USER_ROLE')
= 'Y' (for detailed explanation on how to create rule sets see the recipe Creating
a rule set) – Figure 32.

Figure 32 – Create Rule Set Role check

Create a command rule for Select on all objects in OE schema, and as rule set,6.
select one that you created in previous step (exp role check) (for detailed
explanation on how to create command rules, see recipe Preventing users from
executing a specific command on a specific object) – Figure 33.

Figure 33 – Create a command rule

Database Vault

[275]

There's more…
We can show that the user orders_dba in fact can manage objects in OE schema (for
instance, he can create and drop a table test) – this is because he is authorized in realm that
protects oe schema:

SQL> connect orders_dba@pdb1

Enter password:
Connected.

SQL> create table oe.test(a int);

Table created.

SQL> drop table oe.test;

Table dropped.

However, the user orders_dba cannot view data that resides inside objects in OE schema –
select on objects in this schema is restricted to users that have the role ORD_USR_ROLE using
command rule:

SQL> select count(*) from oe.orders;

select count(*) from oe.orders
 *
ERROR at line 1:
ORA-01031: insufficient privileges

The user orders_user has the role ORD_USER_ROLE and he or she can select data from
table in OE schema:

SQL> connect orders_user@pdb1

Enter password:
Connected.

SQL> select count(*) from oe.orders;

 COUNT(*)

 105

Database Vault

[276]

An example of adding a new user to the system and authorizing him to access the data:

Because separation of duties is implemented, there are several users that need to grant
certain privileges.

Only account manager can create users in database:

SQL> connect c##dbv_acctmgr@pdb1

Enter password:
Connected.

SQL> create user orders_user2 identified by oracle3;

User created.

The SYS user is one of the few users who are authorized to grant a create session
privilege (after Database Vault is implemented, users with the DBA role cannot grant the
create session privilege, unless they are authorized in Database Vault)

SQL> connect sys@pdb1 as sysdba

Enter password:
Connected.

SQL> grant create session to orders_user2;

Grant succeeded.

Because c##zoran is the only authorized user in realm that protects the role
ORD_USR_ROLE; he is the only user that can grant that role:

SQL> connect c##zoran@pdb1

Enter password:
Connected.

SQL> grant ord_usr_role to orders_user2;

Grant succeeded.

Database Vault

[277]

Orders_dba is the only user that is authorized in realm that protects OE schema, so he is the
only user that can grant object privileges on objects in OE schema.

SQL> connect orders_dba@pdb1

Enter password:
Connected.

SQL> grant select on oe.orders to orders_user2;

Grant succeeded.

SQL> grant update on oe.orders to orders_user2;

Grant succeeded.

After a user is granted all necessary privileges, he or she is able to connect to the database
and select data from table in secured schema.

SQL> connect orders_user2@pdb1

Enter password:
Connected.

SQL> select count(*) from oe.orders;

 COUNT(*)

 105

Running Oracle Database Vault reports
In this recipe, you will intentionally violate some security controls in order to have data for
reports.

Database Vault

[278]

How to do it…
Let's connect as user system and violate some restrictions. First, we are going to select from
hr schema, which is going to violate HR realm, and second, we are going to update sal in
the scott.emp table, which is going to violate the command rule (we are updating it
outside of working hours).

SQL> connect system@pdb11.

SQL> select count(*) from hr.employees;2.

SQL> update scott.emp set sal = sal*1.20 where empno = 7839;3.

Let's see reports for these violations:

Go to Database Vault home page (See Figure 2).1.

Click on Enforcement Audit Reports (See Figure 34).2.

Figure 34

Database Vault

[279]

Click on Realm Audit Report (see Figure 35). Observe the line marked in red3.
(violation from step 2 is audited).

Figure 35

Next, click on Command Rule Audit Report (see Figure 36). Observe the line 4.
marked in red (violation from step 3 is audited).

Figure 36

Database Vault

[280]

Disabling Database Vault
In this recipe, you will disable Database Vault in two ways: Using Enterprise Manager 12c
Cloud Control and command line.

How to do it…
Go to Database Vault home page of your database or pluggable database and1.
click on Disable (see Figure 37):

Figure 37

Click on continue in a small pop-up window (see Figure 38)2.

Figure 38

Database Vault

[281]

Or

Connect to the database as Database Vault owner and disable it through
command line:

 SQL> EXEC DBMS_MACADM.DISABLE_DV;

Connect to your database or pluggable database and restart it:3.

 SQL> connect / as sysdba
 SQL> alter pluggable database pdb1 close immediate;
 SQL> alter pluggable database pdb1 open;

Confirm that Database Vault is disabled:4.

 SQL> connect c##dbv_owner@pdb1
 SQL> SELECT PARAMETER, VALUE FROM V$OPTION WHERE PARAMETER = 'Oracle
 Database Vault';
 PARAMETER VALUE
 ---------------------------- --------------
 Oracle Database Vault FALSE

Re-enabling Database Vault
In this recipe, you will enable previously disabled Database Vault in two ways: Using
Enterprise Manager 12c Cloud Control and command line.

Database Vault

[282]

How to do it…
Go to Database Vault home page of your database or pluggable database and1.
click on Enable, then click on continue in a small pop-up window (see Figures 39,
40).

Figure 39

Figure 40

Database Vault

[283]

Or

Connect to the database as Database Vault owner and enable it through command
line:

 SQL> EXEC DBMS_MACADM.ENABLE_DV;

Connect to your database or pluggable database and restart it:2.

 SQL> connect / as sysdba

 SQL> alter pluggable database pdb1 close immediate;

 SQL> alter pluggable database pdb1 open;

Confirm that Database Vault is enabled:3.

 SQL> connect c##dbv_owner@pdb1

 SQL> SELECT PARAMETER, VALUE FROM V$OPTION WHERE PARAMETER = 'Oracle
 Database Vault';
 PARAMETER VALUE
 ---------------------------- --------------
 Oracle Database Vault TRUE

10
Unified Auditing

In this chapter, we will cover the following tasks:

Enabling the Unified Auditing mode
Configuring whether loss of audit data is acceptable
Which roles do you need to have to be able to create audit policies and to view
audit data?
Auditing RMAN operations
Auditing Data Pump operations
Auditing Database Vault operations
Creating audit policies to audit privileges, actions, and roles under specified
conditions
Enabling an audit policy
Finding information about audit policies and audited data
Auditing application contexts
Purging audit trail
Disabling and dropping audit policies

Introduction
Unified Auditing is a new feature in Oracle Database 12c, and it introduces new auditing
architecture. Some of the characteristics of unified auditing are:

A single audit trail
Being based on a read-only table

Unified Auditing

[285]

Extensible Audit Framework for additional columns
The separation of audit administration with new roles
Auditing performance is better, especially when used in the queued-write mode

Figure 1 depicts that in preunified auditing architecture, there were many audit trails. Now,
there is one consolidated unified audit trail, which simplifies management, and auditors
can more easily find audited data they are looking for.

Figure 1

In Figure 2, a new architecture is shown:

Figure 2 – Unified Auditing Architecture

Unified Auditing

[286]

Enabling Unified Auditing mode
In Oracle Database 12c, unified auditing is not enabled by default. The process of enabling it
is simple and equivalent to enabling of other database options.

Getting ready
To complete this recipe, you'll need to shut down the database.

How to do it…
The process of enabling unified auditing is depicted in Figure 3.

Figure 3

Unified Auditing

[287]

In our case, there is only one database instance. Connect to the instance as1.
sysoper and shut it down. Also, stop the listener:

 $ sqlplus / as sysoper

 SQL> shutdown immediate
 SQL> exit
 $ lsnrctl stop

Relink Oracle binaries with the uniaud_on option:2.

 $ cd $ORACLE_HOME/rdbms/lib

 $ make -f ins_rdbms.mk uniaud_on ioracle

Start the listener and the database instance:3.

 $ lsnrctl start

 $ sqlplus / as sysoper
 SQL> startup

To verify that unified auditing is enabled, issue the following SQL statement:

SQL> SELECT PARAMETER, VALUE
 2 from v$option
 3 where PARAMETER = 'Unified Auditing';

You should see that value for Unified Auditing parameter is true:

 PARAMETER VALUE
 ---------------- --------
 Unified Auditing TRUE

How it works…
When database is upgraded to 12c, by default, it uses the traditional way of auditing
(everything like it was in previous versions). However, when you directly install a new
database 12c, default auditing is set to mixed auditing mode. In both cases, the procedure
to enable the unified auditing mode is the same.

Unified Auditing

[288]

After you enable the unified auditing mode, traditional auditing doesn't work anymore.
Old audit instance parameters (AUDIT_TRAIL, AUDIT_FILE_DEST, AUDIT_SYSLOG_LEVEL,
and AUDIT_SYS_OPERATIONS) are disregarded. Also, using syslog and writing audit
records to OS are not supported. Predefined unified audit policies that are enabled by
default are:

ORA_SECURECONFIG (database versions:12.1.0.1, 12.1.0.2)
ORA_LOGON_FAILURES (Oracle Database 12.1.0.2)

Predefined unified audit policies
A predefined unified audit policy is a named set of commonly used and recommended
audit settings, which already exists in Oracle Database 12c. In Oracle Database 12.1.0.1,
there are five predefined unified audit policies, whereas there are eight predefined audit
policies in Oracle Database 12.1.0.2. Table 1 lists predefined audit policies.

Predefined audit policy Oracle Database 12.1.0.1 Oracle Database 12.1.0.2

ORA_RAS_POLICY_MGMT Yes Yes

ORA_DATABASE_PARAMETER Yes Yes

ORA_RAS_SESSION_MGMT Yes Yes

ORA_ACCOUNT_MGMT Yes Yes

ORA_SECURECONFIG Yes Yes

ORA_LOGON_FAILURES No Yes

ORA_CIS_RECOMMENDATIONS No Yes

ORA_DV_AUDPOL No Yes

Table 1 – The list of predefined unified audit policies

Even though predefined audit policies have the same name in different
versions of Oracle Database, it doesn't necessarily mean that they are
always identical.

Unified Auditing

[289]

If you execute the following statement in both 12.1.0.1 and 12.1.0.2 database versions, as a
user who has the audit_admin or dba role:

SQL> select audit_option from audit_unified_policies
where policy_name='ORA_SECURECONFIG'
order by 1;

You will note that the ORA_SECURECONFIG predefined unified audit policy is slightly
different (for example, audit_options: LOGON, LOGOFF that exist in 12.1.0.1 are
removed from the policy in 12.1.0.2 and LOGON is part of ORA_LOGON_FAILURES policy; also
some audit options are added in ORA_SECURECONFIG in 12.1.0.2 such as ALTER PLUGGABLE
DATABASE).

There's more…
In Oracle Database 12cR1 Standard Edition (SE), when you enable unified auditing mode
and query the v$option view to verify that it's enabled you may see the following:

 PARAMETER VALUE
 ---------------- --------
 Unified Auditing FALSE

This bug has been reported in My Oracle Support (17466854) and patch has been released.

See also
Finding information about audit policies and audited data
Create audit policies to audit privileges, actions, and roles under specified conditions
Enabling audit policy

Configuring whether loss of audit data is
acceptable
In this recipe, you'll learn to set whether audit data is queued in memory or is immediately
written to audit trail.

Unified Auditing

[290]

Getting ready
To complete this recipe, you'll need an existing user who has the audit_admin role (for
example, jack).

How to do it…
Connect to the database as user who has the audit_admin role (for example,1.
jack):

 SQL> connect jack

If you want audit records to be immediately written to the unified audit trail set 2.
immediate-write mode:

 SQL> EXEC DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY
 (DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,DBMS_AUDIT_MGMT.
 AUDIT_TRAIL_WRITE_MODE,
 DBMS_AUDIT_MGMT.AUDIT_TRAIL_IMMEDIATE_WRITE);

Check that the mode is set to immediate-write:3.

 SQL> select * from dba_audit_mgmt_config_params
 where parameter_name='AUDIT WRITE MODE';

You should see that the value for the AUDIT WRITE MODE parameter is IMMEDIATE WRITE
MODE:

 PARAMETER_NAME PARAMETER_VALUE AUDIT_TRAIL
 ----------------- -------------------- ------------------
 AUDIT WRITE MODE IMMEDIATE WRITE MODE UNIFIED AUDIT TRAIL

If you want audit records to be queued in memory and at later time persisted, then set the
queued-write mode. Instead of step 2, execute:

SQL> EXEC DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY
(DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,DBMS_AUDIT_MGMT.AUDIT_TRAIL_WRITE_MODE
, DBMS_AUDIT_MGMT.AUDIT_TRAIL_QUEUED_WRITE);

Unified Auditing

[291]

How it works…
The default value for a write mode is the queued-write mode. In this mode, audit data is
stored in SGA queues and later automatically persisted in the read-only table in the AUDSYS
schema in the SYSAUX tablespace. You can also manually flush content of memory queues
to the disk:

 SQL>EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;

You'll achieve better performance by using the queued-write mode, but in an event of
instance crash, you may lose some audit records.

It is recommended that you use the queued-write mode in case that
possibility of some audit data loss is acceptable.

Which roles do you need to have to be able
to create audit policies and to view audit
data?
In this recipe, you're going to create two users (for example, jack and jill). Jack's job is to
implement auditing requirements and to make sure that auditing is functioning properly.
Jill is an auditor and her job is to analyze audit data.

Getting ready
To complete this recipe, you'll need an existing user who has the DBA role (for example,
maja).

How to do it…
Connect to the database as a user who has the dba role (for example, maja):1.

 $ sqlplus maja

Unified Auditing

[292]

Create the user jack and grant him the create session privilege and the2.
audit_admin role.

 SQL> create user jack identified by pQ3s7a4w2;

 SQL> grant create session, audit_admin to jack;

Create the user jill and grant her the create session privilege and the3.
audit_viewer role.

 SQL> create user jill identified by t1m5_R2f3;

 SQL> grant create session, audit_viewer to jill;

How it works…
In Oracle Database 12c, there are two new roles: AUDIT_ADMIN and AUDIT_VIEWER (Figure
4).

Figure 4

They enable the separation of duties in the auditing process. To configure auditing, you no
longer need to have the dba role or connect as sysdba. From the security perspective, this is
a significant improvement.

Unified Auditing

[293]

In step 2, you granted the AUDIT_ADMIN role to the newly created user jack because that
role enables him to create, alter, enable, disable, and drop audit policies, view audit data,
and manage the unified audit trail. In step 3, you granted the AUDIT_VIEWER role to the
user jill because that role enables her to view audit data. You may wonder why the
AUDIT_ADMIN role is designed in such a way that it enables a user to view audit data. One
of the reasons could be that when you configure auditing (for example, create and enable
audit policies), you have to be able to verify that audit records are generated in a way you
have expected they would.

There's more…
To test what can and can't be done as a user who has the audit_viewer role, connect to the
database as jill and try to create the unified audit policy jill_policy:

SQL> connect jill

SQL> create audit policy jill_policy
actions delete on oe.orders;
actions delete on oe.orders
*
ERROR at line 2:
ORA-00942: table or view does not exist

Even if you grant object privileges on the oe.orders table to jill, she won't be able to
create unified audit policy because she doesn't have the audit_admin role or the AUDIT
SYSTEM system privilege:

SQL> conn maja

SQL> grant select,delete on oe.orders to jill;

SQL> connect jill

SQL> create audit policy jill_policy
actions delete on oe.orders;
actions delete on oe.orders
*
ERROR at line 2:
ORA-01031: insufficient privileges

Unified Auditing

[294]

Revoke select and delete on the oe.orders table from Jill:

SQL> connect maja

SQL> revoke select,delete on oe.orders from jill;

Revoke succeeded.

Grant the AUDIT SYSTEM privilege to jill and again try to create the audit policy
jill_policy:

SQL> grant audit system to jill;

SQL> connect jill

SQL> create audit policy jill_policy
actions delete on oe.orders;

Audit policy created.

Drop the unified audit policy jill_policy and revoke the AUDIT SYSTEM privilege from
jill:

SQL> drop audit policy jill_policy;

Audit Policy dropped.

SQL> connect maja

SQL> revoke audit system from jill;

View audit data:

SQL> connect jill

SQL> select dbusername, action_name from unified_audit_trail
where unified_audit_policies='ORA_SECURECONFIG';

Also, a user who has the audit_viewer role can access information about defined and
enabled unified audit policies.

Unified Auditing

[295]

Throughout this chapter, you'll use a user who has the audit_admin role (for example,
jack), so only test you'll do right now is to enable the predefined audit policy
ORA_ACCOUNT_MGMT and then to disable it:

SQL> connect jack

SQL> audit policy ora_account_mgmt;
Audit succeeded.
SQL> noaudit policy ora_account_mgmt;
Noaudit succeeded.

Auditing RMAN operations
In this recipe, you'll see that RMAN operations are audited by default.

Getting ready
In this recipe, we assume that database is in the ARCHIVELOG mode. To complete this recipe,
you'll need an existing user who has the SYSBACKUP privilege (for example, tom) and an
existing user who has the dba role (for example, maja).

How to do it…
Connect to the target database as a user who has the SYSBACKUP privilege (for1.
example, tom).

 $ rman target '"tom@ora12cR1 AS SYSBACKUP"'

Backup the EXAMPLE tablespace and view information about backups:2.

 RMAN> backup tablespace EXAMPLE;

 RMAN> list backup;

 RMAN> exit

Unified Auditing

[296]

Connect to the database as a user who has the DBA role (for example, maja):3.

 $ sqlplus maja

Find the location of datafile for EXAMPLE tablespace:4.

 SQL> select file_name from dba_data_files where
 tablespace_name='EXAMPLE';
 FILE_NAME
 --
 /u01/app/oracle/oradata/ORA12CR1/datafile/
 o1_mf_example_9z79vpcj_.dbf

Remove the EXAMPLE tablespace datafile:5.

 SQL> !rm /u01/app/oracle/oradata/ORA12CR1/datafile/
 o1_mf_example_9z79vpcj_.dbf

Put the EXAMPLE tablespace offline:6.

 SQL> alter tablespace example offline immediate;

 SQL> exit

Restore the EXAMPLE tablespace datafile:7.

 $ rman target '"tom@ora12cR1 AS SYSBACKUP"'

 RMAN> restore tablespace EXAMPLE;

Recover the EXAMPLE tablespace datafile:8.

 RMAN> recover tablespace EXAMPLE;

 RMAN> exit

Put tablespace back online:9.

 $ sqlplus maja

 SQL> alter tablespace EXAMPLE online;

Unified Auditing

[297]

To verify that RMAN operations were successfully audited, execute the following10.
statements:

 SQL> connect jack

 SQL> EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;

 SQL> select dbusername, rman_operation
 from unified_audit_trail
 where rman_operation is not null;

How it works…
When the mixed or unified auditing mode is enabled, RMAN operations are automatically
audited. This means that you don't create audit policies, but you view and manage audit
data in the same way as for other components.

In step 2, you performed the backup of the tablespace EXAMPLE. Then, in step 5, you
intentionally caused a problem by removing the datafile. Afterwards, you performed
restore and recover RMAN operations. The whole point of the example is to execute several
RMAN operations. In the unified_audit_trail data dictionary view, there are several
columns that contain data pertaining to the RMAN events. Their names start with RMAN,
so it's easy to find them.

In step 10, you should get similar result to this one:

 DBUSERNAME RMAN_OPERATION
 ----------------- --------------------
 TOM Backup
 TOM List
 TOM Restore
 TOM Recover

See also
The sysbackup privilege – How, when, and why you should use it? (Chapter 1, Basic
Database Security)
Finding information about audit policies and audited data

Unified Auditing

[298]

Auditing Data Pump operations
You can audit Data Pump export, import, or both export and import operations by creating
audit policies.

Getting ready
To complete this recipe, you'll need an existing user who has the audit_admin role (for
example, jack). Also, it is assumed that directory for export operations (for example,
my_dir) is created and a user (for example, maja) who is going to perform the Data Pump
export has read and write privileges on the directory.

SQL> CREATE DIRECTORY my_dir AS '/u01/app/oracle/oradata/export';

SQL> grant read, write ON DIRECTORY my_dir to maja;

How to do it…
Connect to the database as a user who has the audit_admin role (for example,1.
jack):

 $ sqlplus jack

Create an audit policy to audit Data Pump export operations:2.

 SQL> CREATE AUDIT POLICY DP_POLICY ACTIONS
 COMPONENT=datapump export;

Enable the audit policy:3.

 SQL> AUDIT POLICY DP_POLICY;

Export the table hr.departments:4.

 $ expdp maja@ora12cR1 dumpfile=test tables=hr.departments
 DIRECTORY=my_dir

Unified Auditing

[299]

Verify that the export operation was successfully audited:5.

 SQL> connect jack
 SQL> select DP_TEXT_PARAMETERS1,DP_BOOLEAN_PARAMETERS1
 from unified_audit_trail
 where audit_type='Datapump' and dbusername='MAJA';

See also
Enabling audit policy
Finding information about audit policies and audited data

Auditing Database Vault operations
In this recipe, you'll learn to audit Oracle Database Vault events.

Getting ready
To complete this recipe, you'll need to use Oracle Database 12c, which has Oracle Database
Vault enabled and at least some of the components configured (for example, the realm
HR realm and rule set Working Hours). Also, you'll need an existing user who has the
audit_admin role (for example, jack).

How to do it…
Connect to the database as a user who has the audit_admin role (for example,1.
jack):

 $ connect jack

Create the audit policy dbv_policy:2.

 SQL> CREATE AUDIT POLICY dbv_policy
 ACTIONS COMPONENT = DV Rule Set Failure on "Working Hours",realm
 violation on "HR Realm";

Unified Auditing

[300]

Enable the audit policy dbv_policy:3.

 SQL> audit policy dbv_policy;

Execute several statements that will cause generation of audit records:4.

 SQL> select * from oe.orders;

 SQL> update hr.employees set salary=30000 where salary=24000;

How it works…
To create an audit policy that captures Oracle Database Vault events, specify ACTIONS
COMPONENT = DV <action> ON <object>. In step 2, you defined the audit policy
dbv_policy that encapsulates the rules: audit records should be generated when
somebody tries to access protected objects during nonworking hours or when unauthorized
person tries to access objects secured by HR Realm.

In the unified audit trail, Oracle Database Vault-specific audit data is stored in the columns
whose name starts with DV_.

There's more…
When you are using Oracle Database Vault, you can also additionally secure your auditing
infrastructure by creating a realm around the AUDIT_ADMIN and AUDIT_VIEWER roles. This
allows you to control who can grant those roles.

See also
Re-enabling Database Vault (Chapter 9, Database Vault)
Creating a rule set (Chapter 9, Database Vault)

Unified Auditing

[301]

Creating audit policies to audit privileges,
actions and roles under specified conditions
In this recipe, you will create several unified audit policies.

Getting ready
To complete this recipe, you'll need two existing users:

A user who has the audit_admin role (for example, jack)
A user who has the create session privilege (for example, john)

Also, you should create the roles hr_role and oe_role as stated here and grant hr_role
to the user john.

SQL> create role hr_role;
SQL> grant select any table, create table to hr_role;
SQL> grant insert on hr.departments to hr_role;
SQL> create role oe_role;
SQL> grant drop any table to oe_role;
SQL> grant select, update on oe.orders to oe_role;
SQL> grant oe_role to hr_role;
SQL> grant hr_role to john;

How to do it…
Connect to the database as a user who has the audit_admin role (for example,1.
jack):

 $ sqlplus jack

Create audit policy my_policy1:2.

 SQL> CREATE AUDIT POLICY MY_POLICY1
 PRIVILEGES SELECT ANY TABLE
 ACTIONS CREATE TABLE, DROP TABLE;

Unified Auditing

[302]

Create the audit policy role_con_policy:3.

 SQL> CREATE AUDIT POLICY ROLE_CON_POLICY
 ROLES HR_ROLE
 WHEN 'SYS_CONTEXT(''USERENV'',''HOST'')=''dbhost.orapassion.com'''
 EVALUATE PER SESSION;

Create the audit policy hr_policy:4.

 SQL> CREATE AUDIT POLICY HR_POLICY
 ACTIONS SELECT,INSERT,UPDATE,DELETE ON HR.DEPARTMENTS;

Create the audit policy oe_policy:5.

 SQL> CREATE AUDIT POLICY OE_POLICY
 ACTIONS ALL ON OE.ORDERS;

How it works…
When you create a unified audit policy, it is stored in the first-class object owned by SYS
schema (According to the official Oracle documentation, Oracle Database Security Guide
12c, E48135-09, p.22-4).

Audit records generation, as defined in a unified audit policy, starts after
you enable the policy.

In step 2, you created the audit policy my_policy1.

In step 3, you created the audit policy role_con_policy, which defines that audit records
will be generated when a user is connected to the database from the specified host
(dbhost.orapassion.com) and system privileges that are directly granted to HR_ROLE are
used. The Role HR_ROLE has to exist at the time audit policy role_con_policy is created
because if it doesn't exist you will get an error message:

 ERROR at line 2:
 ORA-01919: role 'HR_ROLE' does not exist

Unified Auditing

[303]

In step 4, you created the audit policy hr_policy, the way it is written, audit records will
be generated for select, insert, and update operations on all objects and for delete
operations on hr.departments.

A common pitfall: People often define object-wise audit policies, the way
you did in step 4 (<object_action_1>, <object_action_2>,
…,<object_action_n> ON <object>). However, in most cases, the
behavior they really want to get should be defined by writing
<object_action_1> ON <object>, <object_action_2> ON
<object>,…,<object_action_n> ON <object>.

In step 5, you created the audit policy oe_policy, which will be used in order to audit all
actions on table orders in oe schema. In Oracle Database 12.1.0.1 due to the bug, audit
records for this policy are not generated (16714031- Audit policy using actions all does
not record audit trails (MOS)). Workaround is to specify one by one actions instead of using
keyword ALL. The bug is fixed in Oracle Database 12.1.0.2.

See also
Enabling audit policy

Enabling audit policy
In this recipe, you will learn to use different options to enable unified audit policies.

Getting ready
To complete this recipe, you'll need an existing user who has the audit_admin role (for
example, jack) and several other existing users (for example, john, maja, and zoran).

Unified Auditing

[304]

How to do it…
Connect to the database as a user who has audit_admin role (for example, jack)1.

 SQL> connect jack

Enable audit policy oe_policy in such way that it applies only to user JOHN2.

 SQL> audit policy OE_POLICY BY JOHN;

Enable audit policy hr_policy to capture only successful events.3.

 SQL> AUDIT POLICY HR_POLICY WHENEVER SUCCESSFUL;

Enable policy my_policy1 to audit unsuccessful events for all users except maja4.
and zoran.

 SQL> audit policy my_policy1 EXCEPT MAJA, ZORAN WHENEVER NOT
 SUCCESSFUL;

Enable audit policy role_con_policy using default options.5.

 SQL> audit policy role_con_policy;

How it works…
In step 2, you defined BY list, which means that only user(s) listed on that list will be
affected by the policy.

In step 3, you defined that audit policy hr_policy is applied to all users, but only
successful operations will generate audit records.

In step 4, you defined EXCEPT list, which means that listed users will not be affected by
audit policy. Also, audit records will be generated only for the failed operations.

Unified Auditing

[305]

In step 5, you enabled audit policy using default options, which means that
role_con_policy will affect all users for both successful and unsuccessful events.

You can't use both BY and EXCEPT lists for the same policy statement.

Finding information about audit policies and
audited data
In this recipe, you will view audited data and find information about unified audit policies.

Getting ready
To complete this recipe, you'll need three existing users:

A user who has audit_admin role (for example, jack)
A user who has hr_role and oe_role (for example, john), created in recipe
Creating audit policies to audit privileges, actions and roles under specified conditions
A user who has admin_viewer role (for example, jill)

Also, you'll need to connect to the database as SYS user.

How to do it…
Connect to the database as a user who has the audit_admin role (for example,1.
jack):

 $ connect jack

Find which unified audit policies are defined (exist in the database):2.

 SQL> select distinct policy_name
 from audit_unified_policies;
 SQL> desc audit_unified_policies

Unified Auditing

[306]

View which unified audit policies are enabled:3.

 SQL> select * from audit_unified_enabled_policies;

Connect to the database as the user john:4.

 SQL> connect john

Execute several statements on the tables HR.EMPLOYEES, HR.DEPARTMENTS, and5.
OE.ORDERS:

 SQL> create table t(a number(10));
 SQL> select count(*) from oe.orders;
 SQL> select first_name from hr.employees;
 SQL> drop table t;
 SQL> connect sys / as sysdba
 SQL> create table hr.my_table(b varchar2(10));
 SQL> connect john
 SQL> drop table hr.my_table;

Connect to the database as a user who has the audit_viewer role (for example,6.
jill):

 SQL> connect jill

View audit records:7.

 SQL> set linesize 250
 SQL> col event_timestamp format a30
 SQL> col action_name format a20
 SQL> col unified_audit_policies format a20
 SQL> col sql_text format a80
 SQL> select event_timestamp,
 action_name,unified_audit_policies, sql_text from
 unified_audit_trail where DBUSERNAME = 'SYS'and
 ACTION_NAME NOT IN ('LOGON','LOGOFF')
 ORDER BY EVENT_TIMESTAMP DESC;
 SQL> select event_timestamp,
 action_name, unified_audit_policies, sql_text
 from unified_audit_trail where DBUSERNAME = 'JONH'and
 ACTION_NAME NOT IN ('LOGON','LOGOFF') ORDER BY EVENT_TIMESTAMP
 DESC;

Unified Auditing

[307]

Auditing application contexts
In this recipe, you will configure auditing of information contained in an application
context.

Getting ready
To complete this recipe, you'll need an existing (or predefined) application context and a
user who has the audit_admin role (for example, jack).

How to do it…
Connect to the database as a user who has the audit_admin role (for example,1.
jack):

 $ sqlplus jack

Configure application context auditing:2.

 SQL> AUDIT CONTEXT NAMESPACE USERENV
 ATTRIBUTES SESSION_USER, SERVICE_NAME;

 Audit succeeded.

 SQL> AUDIT CONTEXT NAMESPACE USERENV
 ATTRIBUTES HOST BY jill;
 Audit succeeded.

View for which application contexts audit data is going to be captured:3.

 SQL> set linesize 180
 SQL> column namespace format A30
 SQL> column attribute format A30
 SQL> column user_name format A30

 SQL> select * from audit_unified_contexts;

Connect user jill as follows:4.

 SQL> connect jill

Unified Auditing

[308]

View audit records:5.

 SQL> SELECT APPLICATION_CONTEXTS FROM UNIFIED_AUDIT_TRAIL
 WHERE APPLICATION_CONTEXTS IS NOT NULL;

How it works…
The result of the statements in step3:

NAMESPACE ATTRIBUTE USER_NAME
---------- ------------ -------------
 USERENV HOST JILL
 USERENV SERVICE_NAME ALL USERS
 USERENV SESSION_USER ALL USERS

You can audit custom application contexts (for example, the ones you
created) in the same way.

If needed, execute the following statement as the user jack:

SQL>EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;

Result after step 5:

APPLICATION_CONTEXTS
--
(USERENV,SERVICE_NAME=SYS$USERS); (USERENV,SESSION_USER=JACK)
(USERENV,SERVICE_NAME=SYS$USERS); (USERENV,SESSION_USER=JILL);
(USERENV,HOST= dbhost.orapassion.com)

There's more…
To disable auditing of application contexts, you should use the NOAUDIT command:

SQL> connect jack

SQL> NOAUDIT CONTEXT NAMESPACE USERENV
ATTRIBUTES HOST BY jill;

Unified Auditing

[309]

See also
Chapter 12, Appendix – Application Contexts

Purging audit trail
You can clean up audit data manually or by scheduling clean up job.

Getting ready
To complete this recipe, you'll need a user who has the audit_admin role (for example,
jack).

How to do it…
Connect to the database as a user who has the audit_admin role (for example,1.
jack):

 $ sqlplus jack

View number of audit records in the unified audit trail before the cleanup:2.

 SQL> select count (*) from unified_audit_trail;

To perform the manual cleanup, execute:

 SQL> exec DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED)

To create a purge job:

 SQL> exec DBMS_AUDIT_MGMT.CREATE_PURGE_JOB
 (AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 AUDIT_TRAIL_PURGE_INTERVAL => 24,
 AUDIT_TRAIL_PURGE_NAME => 'My_Job',
 USE_LAST_ARCH_TIMESTAMP => TRUE)

Unified Auditing

[310]

View number of audit records in the unified audit trail after the cleanup:3.

 SQL> select count (*) from unified_audit_trail;

How it works…
By default, USE_LAST_ARCH_TIMESTAMP is set to TRUE. It means that only records created
before that time will be deleted. If you set that parameter to FALSE, all records will be
deleted. It is recommended to use the default value.

There's more…
In multitenant environment, use CONTAINER clause as well (CONTAINER =>
DBMS_AUDIT_MGMT.CONTAINER_CURRENT or DBMS_AUDIT_MGMT.CONTAINER_ALL).

Disabling and dropping audit policies
In this recipe, you will learn to disable and drop audit policies.

Getting ready
To complete this recipe, you'll need an enabled unified audit policy (for example,
oe_policy) and a user who has the audit_admin role (for example, jack).

How to do it…
Connect to the database as a user who has the audit_admin role (for example,1.
jack):

 $ sqlplus jack

Unified Auditing

[311]

Verify that the policy is enabled:2.

 SQL> SELECT POLICY_NAME, ENABLED_OPT, USER_NAME,
 SUCCESS, FAILURE
 FROM AUDIT_UNIFIED_ENABLED_POLICIES;

Disable the policy oe_policy:3.

 SQL> NOAUDIT policy oe_policy BY JOHN;

Verify that oe_policy is disabled:4.

 SQL> select * from AUDIT_UNIFIED_ENABLED_POLICIES;

Drop the policy oe_policy:5.

 SQL> drop audit policy oe_policy;

How it works…
In step 2, you checked that the audit policy oe_policy is enabled. In step 3, you disabled it.

When you disable audit policy, make sure that in the NOAUDIT statement,
a list of users (BY or EXCEPT) is the same as it was in the AUDIT statement.
If in step 3, you omit BY JOHN, audit records will continue to be
generated.

To be able to drop audit policy, you have to disable it first. In step 5, you dropped the audit
policy oe_policy.

See also
Enabling audit policy

11
Additional Topics

In this chapter, we will cover the following tasks:

Exporting data using Oracle Data Pump in the Oracle Database Vault
environment
Creating factors in Oracle Database Vault
Using TDE in a multitenant environment

Introduction
An Oracle Database Vault component factor is a named variable, which can have one or
more values, assigned in several ways. The actual value of factor is named identity. Each
factor has a factor type. A factor type is used only for classification purposes. Factors are
building blocks for configuring security policies. They can be used in rules/rule sets. You
can configure factors by using Oracle Enterprise Manager or the Database Vault API.

Exporting data using Oracle Data Pump in
Oracle Database Vault environment
In Oracle Database 12c, it is possible to perform Oracle Data Pump regular and
transportable export and import operations in the Oracle Database Vault environment.

The process of exporting and importing data in Oracle Database 12c is a
bit different than in Oracle Database 11g. The default rule set Allow Oracle
Data Pump Operation is deprecated.

Additional Topics

[313]

In this recipe, you'll export data that resides in a schema that is protected by a realm.

Getting ready
It is assumed that:

You are using Oracle Database 12.1.0.2 (the traditional architecture) on Linux
Sample schemas are installed (you'll use HR schema in this recipe)
Database Vault is enabled and configured (a Database Vault owner is user
dbv_owner, account manager is user dbv_acctmgr, and realm that protects HR
schema is created). This is one way how you can create HR realm:

 SQL> connect dbv_owner
 SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'HR Realm',
 description => 'Protects HR schema',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 0);
 END;
 /

 PL/SQL procedure successfully completed.

The parameter realm_type specifies whether realm is a mandatory realm
or not. Allowed values, for the parameter, are (realm) and 1 (mandatory
realm).

 SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'HR Realm',
 object_owner => 'HR',
 object_name => '%',
 object_type => '%');
 END;
 /

 PL/SQL procedure successfully completed.

Additional Topics

[314]

A directory for export operations (for example, dp_dir) is created and a user (for
example, piter) who is going to perform Data Pump export has read and write
privileges on the directory. Also, the DATAPUMP_EXP_FULL_DATABASE role and
the CREATE TABLE and UNLIMITED TABLESPACE privileges have been granted
to the user:

 SQL> connect system
 SQL> CREATE DIRECTORY dp_dir AS '/u01/app/oracle/oradata/dp_exp';
 SQL> connect dbv_acctmgr
 SQL> create user piter identified by T2abc_4z1;
 SQL> grant create session to piter;
 SQL> connect / as sysdba
 SQL> grant create table, unlimited tablespace to piter;
 SQL> grant read, write ON DIRECTORY dp_dir to piter;
 SQL> grant DATAPUMP_EXP_FULL_DATABASE to piter;

How to do it…
Connect to the database as a user who has the DV_OWNER or DV_ADMIN role (for1.
example, dbv_owner):

 $ sqlplus dbv_owner

Verify that the user piter has the DATAPUMP_EXP_FULL_DATABASE role:2.

 SQL> SELECT GRANTED_ROLE FROM DBA_ROLE_PRIVS WHERE
 GRANTED_ROLE LIKE '%FULL%' AND GRANTEE='PITER';

Figure 1 – Prerequisite role

Authorize the user piter to perform Data Pump operations on HR schema3.
(execute the DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure):

 SQL> EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER ('PITER', 'HR');

 PL/SQL procedure successfully completed.

Additional Topics

[315]

Query the DVSYS.DBA_DV_DATAPUMP_AUTH view to confirm that the user piter4.
is authorized to perform export and import operations only on HR schema:

 SQL> column grantee format A10
 SQL> column schema format A15
 SQL> column object format A15
 SQL> SELECT * FROM DVSYS.DBA_DV_DATAPUMP_AUTH WHERE GRANTEE =
 'PITER';

Figure 2 – Authorized for all database object in schema HR

Export the HR.EMPLOYEES and HR.DEPARTMENTS tables:5.

 $ expdp piter DIRECTORY=dp_dir DUMPFILE= exptables.dmp TABLES=
 hr.employees, hr.departments

Figure 3 – The warning message

Additional Topics

[316]

Export HR schema in an unencrypted format:6.

 $ expdp piter DIRECTORY=dp_dir DUMPFILE=expsh.dmp SCHEMAS=hr
 ENCRYPTION=NONE

You'll receive the same message as in the previous step (ORA-39327), even though you
explicitly stated that you don't want to encrypt export. At the end of the job, you'll see that
it completed with one error (Figure 4) meaning that one warning:

Figure 4 – Successful export with warning

How it works…
To be able to export data that is protected by Database Vault mechanisms, user has to be
authorized (besides having appropriate privileges to perform Data Pump operations, for
example, the role). You can authorize a user to perform export and import operations:

On specific database object in a schema, such as table. For example, it authorizes
the user amy to export the table HR.EMPLOYEES:

 SQL> EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER ('AMY', 'HR',
 'EMPLOYEES');

On specific schema (you authorized the user piter to perform export and import
operations on HR schema in step 3).
For entire database. For example, it authorizes the user kim to export and import
database object for the entire database:

 SQL> EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER ('KIM');

 SQL> grant DV_OWNER to kim;

Additional Topics

[317]

There's more…
According to Oracle Database Licensing Information, 12c Release 1 (12.1),If you want to encrypt
Oracle Data Pump export, using its encryption features, Oracle Advanced Security option
has to be enabled.

To encrypt export, specify appropriate value for ENCRYPTION parameter (instead of NONE
which was shown in step 6 in the How to do it section). These are allowed values for the
parameter:

ENCRYPTION=[ALL|DATA_ONLY|ENCRYPTED_COLUMNS_ONLY|METADATA_ONLY|NONE]

Also, before starting an export operation, make sure that the keystore is open.

See also
A good reference to learn about Oracle Data Pump is official Oracle
documentation – Oracle Database Utilities, 12c Release 1 (12.1.0.2), Part I.

Creating factors in Oracle Database Vault
In this recipe, you'll create three factors (Day, Holiday, and NonWorkingDay). The factor
Day will return name of the day based on sysdate. The factor Holiday will return TRUE if
it is a company nonworking holiday (for example, 1-JAN, 4-JUL, and 15-NOV) and FALSE
otherwise. The factor NonWorkingDay will return whether it's a nonworking day (NO,
WEEKEND, and COMPANY_HOLIDAY). We'll assume that a day is a nonworking day if it is a
weekend or a company nonworking holiday (in case it is both weekend and holiday, it
should resolve it to COMPANY_HOLIDAY).

Additional Topics

[318]

Getting ready
It is assumed that:

You are using Oracle Database 12.1.0.2 (the traditional architecture) on Linux and
Oracle Enterprise Manager Cloud Control 12c
Database Vault is enabled and configured (the Database Vault owner is the user
dbv_owner and account manager is the user dbv_acctmgr).

The user dbv_owner has been granted the SELECT ANY DICTIONARY privilege
The user piter exists, the function piter.get_function has been created, and
DVSYS has been granted the EXECUTE privilege on the function:

 SQL> connect system
 SQL> create or replace function piter.get_holiday
 2 return varchar2
 3 IS
 4 holiday varchar2(10);
 5 begin
 6 IF (RTRIM(TO_CHAR(SYSDATE,'DD-MON')) IN ('1-JAN', '4-JUL',
 '15-NOV')) THEN
 7 holiday := 'TRUE';
 8 ELSE
 9 holiday := 'FALSE';
 10 END IF;
 11 RETURN holiday;
 12 end;
 13 /
 Function created.
 SQL> grant execute on piter.get_holiday to dvsys;
 Grant succeeded.

Results in this recipe are shown for the situation that, at the same time, it is
SUNDAY and it is a holiday.

Additional Topics

[319]

How to do it…
Log in to EM12c as a SYSMAN or some other privileged user. Select your database.1.
Then, from Security drop-down menu, choose Database Vault (Figure 5).

Figure 5

Log in as the dbv_owner user (Figure 6).2.

Figure 6

Additional Topics

[320]

Choose the Administration tab and click on the Factors link (Figure 7).3.

Figure 7

Click on the Create button to create your first custom factor (see Figure 8).4.

Figure 8

Additional Topics

[321]

The name of the factor will be Day, the description will be The name of day,5.
and Factor Type will be Time (shown in Figure 9). After you enter that
information, click on the button Next.

Figure 9

Enter these configuration details for the factor and click on the button Next. It6.
will appear as shown in this figure :

Figure 10

Additional Topics

[322]

For Audit Options, choose Never. Leave other default values and click the button7.
Next (see Figure 11).

Figure 11

You won't create new identities at this moment, so just click on the button Next.8.
After you finish reviewing the configuration, click on the Finish button . You
should receive a confirmation message and see the newly created factor Day
(result is shown in Figure 12).

Figure 12

Additional Topics

[323]

Click on Link Day (in the column Factor Name, as shown in Figure 12). You will9.
see that factor Day will get value SUNDAY (see figure 13). Click on the OK button.

Figure 13

Now create the new factor NonWorkingDay (Factor Type: Time) which will,
for the beginning, be based only on the factor Day and test it. After you create
the factor Holiday, you'll edit the factor NonWorkingDay in such a way that
it is based on both factors (Day and Holiday).

Repeat steps 4 and 5.10.

Enter these configuration details for the factor and click on the button Next:11.

Factor Identification: By Factors

Evaluation: By Access

Factor Labeling: By Self

Leave the default values and click on the Next button.12.

Additional Topics

[324]

Click on the green plus button – Add New Identity (see Figure 14).13.

Figure 14

On the tab Identity, enter Value as TRUE and select Untrusted for Trust Level14.
(see Figure 15).

Figure 15

Additional Topics

[325]

Click on the Map Identity tab . Click on the green plus button – Add Mapping15.
(see Figure 16).

Figure 16

Select the following values and click on the OK button:16.

Child Factor Name Day

Operator Like

Min Value S%

Additional Topics

[326]

You should see that identity is added (Figure 17).17.

Figure 17

Add the new identity FALSE. Repeat steps from 13 to 16 with appropriate values18.
(for example, the value FALSE, Trust Level as Somewhat trusted; instead of the
Like operator, choose Not Like).

Click on the Next button. Review the configuration and click on the Finish19.
button. You should see confirmation message.

Additional Topics

[327]

Click on the link NonWorkingDay (in the column Factor Name). You will see that20.
the factor NonWorkingDay will get value TRUE (see Figure 18). Click on the OK
button.

Figure 18

On the Factors page (see Figure 12), in the table select row in which Day factor is 21.
displayed and click on the Edit button (pencil icon). Click on the Next button.

Change Retrieval Method to RTRIM(TO_CHAR(sysdate, 'DAY')) and click on22.
the Done button.

Create the new factor Holiday (Factor Type: Time).23.

Additional Topics

[328]

Enter these configuration details for the factor and click on the Done button:24.

Factor Identification: By Method

Evaluation: By Access

Factor Labeling: By Self

Retrieval Method: PITER.GET_HOLIDAY

It will appear as shown in this figure :

Figure 19

Edit the factor NonWorkingDay so that it has three identities (NO, WEEKEND, and25.
COMPANY_HOLIDAY) and click on OK.

melliott
Sticky Note
Marked set by melliott

melliott
Sticky Note
Marked set by melliott

melliott
Sticky Note
Marked set by melliott

Additional Topics

[329]

a. Edit the FALSE identity (change value to NO, add mapping in the Map26.
Identity – Child Factor Name: Holiday, Operator: Like, Min Value: F%). Click
on the OK button.

Figure 20

b. Edit the TRUE identity and click on the OK button (change value to WEEKEND,26.
change mapping to have two rows:

Child Factor Name Operator Min Value Max Value

Day Equal SATURDAY

Day Equal SUNDAY

c. Add the new COMPANY_HOLIDAY identity (Trust Level: Untrusted). On the26.
Map Identity tab, click on Add Mapping. Set the following values and click on
OK:

Child Factor Name Operator Min Value Max Value

Holiday Equal TRUE

Additional Topics

[330]

This will appear as shown in this figure:

Figure 21

View evaluated value for factor Day (repeat step 9). The result is shown in Figure27.
22.

Figure 22

Additional Topics

[331]

View evaluated value for factor Holiday. The result is shown in figure.28.

Figure 23

View an evaluated value for factor NonWorkingDay. The result is shown in29.
Figure 24.

Figure 24

Additional Topics

[332]

How it works…
The identity of a factor can be assigned by:

Method
Constant
Factors

The process of assigning identity to a factor is named factor identification.

In this recipe, you created two factors (Day and Holiday) whose identities were assigned
by methods and one factor (NonWorkingDay) whose identity was assigned by factors.

Factors can be evaluated when database session is created (By Session), each time factor is
accessed (By Access), and when a database session starts (On Startup). Because you
created factors that can change during a session, you chose evaluation by access.

Factor labeling is relevant for integration with Oracle Label Security.

In step 28, you verified that the factor NonWorkingDay got the value COMPANY_HOLIDAY (in
case when it is SUNDAY and a holiday at the same time). That happened because factors that
are based on other factors get actual value by evaluating identities in the order of their
sorted ASCII identity values and first one that matches is assigned (evaluation stops). In our
case, COMPANY_HOLIDAY was matched, so WEEKEND wasn't evaluated. in general, it is better
to try to avoid overlapping conditions (if possible) because maintenance is easier and the
risk of making a mistake is smaller.

Additional Topics

[333]

There's more…
From Factors page in EM12c verify that you can't delete the factor Holiday because you
use it to resolve identities for the factor NonWorkingDay (error ORA-47030: Factor Holiday
is referred by one or more factor links).

Select the factor Holiday and click on the Delete button (see Figure 25).1.

Figure 25

Click on the button Yes (see Figure 26).2.

Figure 26

Additional Topics

[334]

You will receive an error message (see Figure 27).3.

Figure 27

When you create the factor PL/SQL, a function is created in schema DVF with the name
F$<factor_name>.

See also
An Oracle official guide Database Vault Administrator's Guide - Chapters: 8, 16, and
19.

Using TDE in a multitenant environment
In this recipe, you will perform different operations using Transparent Data Encryption in a
multitenant environment.

Additional Topics

[335]

Getting ready
It is assumed that:

You have two container databases (the multitenant architecture), version 12.1.0.2
in the same host.
You have at least one pluggable database in each container database
You have sample schemes installed.

How to do it…
Enter the following text into your sqlnet.ora file located in a network/admin1.
directory of your oracle home (for example,
/u01/app/oracle/product/12.1.0/dbhome_1)

 ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=/u01/app/oracle/admin/$ORACLE_SID/wallet)))

Change your environment to the first container database (for example, cdb1):2.

 [oracle@host01 ~]$. oraenv
 ORACLE_SID = [oracle] ? cdb1

Connect as a user with the DBA role (for example, system), create a new user (for3.
example, c##tdedba) to manage key management administration, and grant him
appropriate privileges:

 $ sqlplus system
 SQL> create user c##tdedba identified by oracle123 container=all;

 SQL> grant administer key management to c##tdedba container=all;

 SQL> grant create session to c##tdedba container=all;

 SQL> grant select any dictionary to c##tdedba container=all;

 SQL> grant set container to c##tdedba container=all;

Additional Topics

[336]

Connect as a user c##tdedba and create a keystore:4.

 SQL> connect c##tdedba/oracle123
 SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
 '/u01/app/oracle/admin/cdb1/wallet' identified by oracle1;

See information about the previously created keystore and open it:5.

 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 -------------- ------------ -------------------
 UNKNOWN FILE CLOSED

 SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
 oracle1;
 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 --------------- ------------ -------------------
 PASSWORD FILE OPEN_NO_MASTER_KEY

 SQL> select con_id, tag, key_id from v$encryption_keys;

 no rows selected

Create a new master key for root container:6.

 SQL> ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'description:
 root key' IDENTIFIED BY oracle1 WITH BACKUP;

 SQL> select con_id, tag, key_id from v$encryption_keys;

Figure 28

 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 -------------- ------------ -------------------
 PASSWORD FILE OPEN

Additional Topics

[337]

Connect to a pluggable database (for example, pdb11) inside the first container7.
database and check availability of a keystore:

 SQL> alter session set container=pdb11;

 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 -------------- ---------- -------------------
 UNKNOWN FILE CLOSED

Open a keystore, check availability of a master key, and create one:8.

 SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED
 BY oracle1;
 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 -------------- ------------- -------------------
 PASSWORD FILE OPEN_NO_MASTER_KEY

 SQL> select con_id, tag, key_id from v$encryption_keys;
 no rows selected

 SQL> ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'description:
 pdb11 key' IDENTIFIED BY oracle1 WITH BACKUP;

 SQL> select con_id, tag, key_id from v$encryption_keys;

Figure 29

 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 -------------- -------------- -------------------
 PASSWORD FILE OPEN

Additional Topics

[338]

Change environment for the second container database (for example, cdb2):9.

 [oracle@host01 ~]$. oraenv
 ORACLE_SID = [cdb1] ? cdb2

Connect as a user with the sysdba privileges, create a new user (for example,10.
c##tdedba), and grant him appropriate privileges:

 $ sqlplus / as sysdba
 SQL> create user c##tdedba identified by oracle321 container=all;
 SQL> grant syskm to c##tdedba container=all;

Connect as a user c##tdedba (as syskm), create a keystore, and open it for all11.
pluggable databases:

 SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
 '/u01/app/oracle/admin/cdb2/wallet' identified by oracle2;

 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 ---------------- -------------- -------------------
 UNKNOWN FILE CLOSED

 SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
 oracle2 container=all;

 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 ---------------- ------------- -------------------
 PASSWORD FILE OPEN_NO_MASTER_KEY

Create new master keys for all pdbs:12.

 SQL> ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'description:
 all pdbs' IDENTIFIED BY oracle2 WITH BACKUP container=all;
 SQL> select con_id, tag, key_id from v$encryption_keys;

Figure 30

Additional Topics

[339]

Connect to a pluggable database as a SYS user and check keystore and masterkey:13.

 SQL> connect / as sysdba

 SQL> alter session set container=pdb21;

 SQL> select wallet_type,wrl_type,status from v$encryption_wallet;

 WALLET_TYPE WRL_TYPE STATUS
 ---------------- -------------- -------------------
 PASSWORD FILE OPEN

 SQL> select con_id, tag, key_id from v$encryption_keys;

Figure 31

Change your environment to the first container database (for example, cdb1):14.

 [oracle@host01 ~]$. oraenv
 ORACLE_SID = [cdb2] ? cdb1

Connect to the pluggable database as a user who has the DBA role (for example,15.
c##zoran), create a test table with one encrypted column, and insert some data:

 $ sqlplus c##zoran@pdb11
 SQL> create table hr.enc_tbl(a int, b varchar2(20) encrypt);
 SQL> insert into hr.enc_tbl values (1, 'value1');
 SQL> insert into hr.enc_tbl values (2, 'value2');
 SQL> commit;
 SQL> select * from hr.enc_tbl;

 A B
 ---------- ------------
 1 value1
 2 value2

Additional Topics

[340]

Export a master key:16.

 SQL> ADMINISTER KEY MANAGEMENT EXPORT KEYS WITH SECRET "secret1"
 to '/home/oracle/keys.exp' IDENTIFIED BY oracle1;

Close the pluggable database pdb11 and unplug it:17.

 SQL> alter pluggable database pdb11 close immediate;
 SQL> alter pluggable database pdb11 unplug into
 '/home/oracle/pdb11.xml';
 SQL> drop pluggable database pdb11 keep datafiles;

Change your environment to the second container database (for example, cdb2):18.

 [oracle@host01 ~]$. oraenv
 ORACLE_SID = [cdb1] ? cdb2

Connect to the second container database (for example, cdb2) as a sys user and19.
plug the previously unplugged database (pdb11):

 $ sqlplus / as sysdba
 SQL> create pluggable database pdb11 using '/home/oracle/pdb11.xml';

Open the pluggable database:20.

 SQL> alter pluggable database pdb11 open;

 Warning: PDB altered with errors.

 SQL> show pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
 ---------- --------------- ----------- -----------
 2 PDB$SEED READ ONLY NO
 3 PDB21 READ WRITE NO
 4 PDB11 READ WRITE YES

Additional Topics

[341]

Connect to pdb11, as a SYS user, open the keystore, and try to select from table21.
with encrypted column:

 SQL> alter session set container=pdb11;
 SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
 oracle2;
 SQL> select * from hr.enc_tbl;
 select * from hr.enc_tbl
 *
 ERROR at line 1:
 ORA-28362: master key not found

Import the master key for this pluggable database and restart it:22.

 SQL> ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET
 "secret1" FROM '/home/oracle/keys.exp' IDENTIFIED BY oracle2 WITH
 BACKUP;
 SQL> alter pluggable database pdb11 close immediate;

 SQL> alter pluggable database pdb11 open;

 SQL> show pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
 ---------- -------------- ----------- -----------
 2 PDB$SEED READ ONLY NO
 3 PDB21 READ WRITE NO
 4 PDB11 READ WRITE NO

Connect to the pluggable database (pdb11), open the keystore, and select from23.
table with encrypted column:

 SQL> alter session set container=pdb11;

 SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
 oracle2;

 SQL> select * from hr.enc_tbl;

 A B
 ---------- --------------------
 1 value1
 2 value2

Additional Topics

[342]

How it works…
In steps 1-6, the creation of keystore and master key in root container is shown. In step 7-8,
the opening and creation of master key in the pluggable database is shown. There is only
one keystore per entire container database, but that keystore contains multiple master keys
(root container has its own master key, as well as every pluggable database in which
transparent data encryption is used). In steps 9-13, another way of creation of the keystore
and master key is shown (in the second container database). The user with the SYSKM
system privilege is used, and opening of keystore as well as the creation of master keys are
done by using container=all clause. This way, we are opening a keystore and creating
master keys in all pluggable databases.

Because there is only one keystore per container database but multiple master keys, if
database needs to be unplugged and plugged into another container database, a master key
needs to be exported and imported into the target database also. In steps 16 and 17, we are
exporting a master key and unplugging the database. In steps 18-20, we are plugging this
database into another container database (cdb2). When we try to open the pluggable
database in step 20, we get an error (because the master key is missing). The pluggable
database is opened but in restricted mode. We can ignore this error for now and connect to
that pluggable database as SYS user, but if we try to select from table that has encrypted
columns, we get an error because the master key is missing. In step 22, we are importing a
master key (that we exported in step 16). After importing a master key, we are restarting
that pluggable database (now we can see that it can be opened without errors). And when
we try to select from table that has encrypted columns, everything works perfectly.

See also
Chapter 8, Transparent Data Encryption (in this book) and official Oracle
documentation Oracle Advanced Security Guide.

12
Appendix – Application

Contexts
In this chapter, we will cover the following tasks:

Exploring and using built-in contexts
Creating an application context
Setting application context attributes
Using an application context

Introduction
An application context is a memory container that holds a set of key-value pairs. You can
think of an application context as an array of attributes where every attribute has a name
(key) and value. Also, an application context is a namespace because in different application
contexts, attributes that have the same name can exist (and there is no correlation between
those attributes; they can store the same or different value).

Appendix – Application Contexts

[344]

To implement a local application context, you should complete steps shown in Figure 1 (the
order of steps 1 and 2 is not important).

Figure 1 – The steps to implement a local application context

Exploring and using built-in contexts
The USERENV application context is a built-in context that contains information about the
current session. In this recipe, you'll learn to retrieve values from built-in contexts.

Getting ready
To complete this recipe, you'll need an existing user who can get values from built-in
namespaces by using the SYS_CONTEXT function (for example, user maja).

Appendix – Application Contexts

[345]

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
user maja):

 $ sqlplus maja

Find the name of host machine from which the client has connected to the2.
database.

Figure 2 – The name of the client host machine

Find the name of the user who logged on to the database.3.

Figure 3 – The name of the session user

Find the name of the program used for the database session.4.

Figure 4 – The name of the client program

Appendix – Application Contexts

[346]

Find unified audit session ID.5.

Figure 5 – A unified audit session ID

How it works…
In steps 2-5, you used the SYS_CONTEXT function to get values of several parameters from
the USERENV context. You can use that function in both SQL and PL/SQL statements. It is
expected that your results will differ from those shown in Figures 2-5, because they are
system-specific.

The UNIFIED_AUDIT_SESSIONID attribute (parameter) is introduced in Oracle Database
12.1.0.2. The value of that parameter is unified audit session ID if the database uses
unified auditing mode or mixed auditing mode, and NULL if the database uses traditional
auditing (see Figure 6).

Figure 6 – The value of the UNIFIED_AUDIT_SESSIONID

Note that in mixed auditing mode, the UNIFIED_AUDIT_SESSIONID value
in the USERENV context is different from the SESSIONID value.

Appendix – Application Contexts

[347]

There's more…
Another built-in context is SYS_SESSION_ROLES. You can use it to check whether a
specified role is currently enabled for the session. For example, you'll create the test_role
role, grant select privilege on hr.employees table, and grant the role to an existing user
(for example, zoran). Afterwards, you'll verify that zoran has the test_role role by using
the SYS_CONTEXT function. The example is shown in Figure 7.

Figure 7 – Using the SYS_SESSION_ROLES namespace

When working in the multitenant environment, some useful attributes are CON_ID,
CON_NAME, and CDB_NAME.

See also
The full list of attributes that exist in the USERENV namespace is available in the
official Oracle documentation-Oracle Database SQL Language Reference, Chapter 7,
The SYS_CONTEXT function.

Appendix – Application Contexts

[348]

Creating an application context
In this recipe, you'll create a local application context (for example, sh_client). In the next
recipes, you will use it to store clients' identifiers.

Getting ready
To complete this recipe, you'll need an existing user who can create an application context
(it needs the CREATE ANY CONTEXT privilege or a DBA role), for example, the user maja.

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
user maja).

 $ sqlplus maja

Create a local application context (for example, sh_client).2.

The PL/SQL package that will be used to set application context attributes
doesn't have to exist at this time, but you have to specify its name.

 SQL> CREATE CONTEXT <context_name> USING <PL/SQL_package_name>;

Figure 8 – Creating an application context

Appendix – Application Contexts

[349]

How it works…
In step 2, you created application context sh_client and defined that the PL/SQL package
sh_ctx_pkg will be used to create and set application context attributes. At this moment,
attributes aren't set in the application context.

Context names must be unique within the database.

Setting application context attributes
In this recipe, you'll create the PL/SQL package (for example, sh_ctx_pkg) that will set
application context attributes for the application context you created in the previous recipe
(for example, sh_client). Also, you'll create a logon trigger.

Getting ready
To complete this recipe, you'll need an existing user who can create sh_ctx_pkg. Make
sure that the user has direct privileges on the sh.customers table (even if he/she has a
DBA role) so that you don't receive this message in SQL*Plus: Warning: Package Body
created with compilation errors. or error Table or view doesn't exist in
SQL Developer (for more information, see Chapter 3, PL/SQL Security).

How to do it…
Connect to the database as a user who has appropriate privileges (for example,1.
user maja):

 $ sqlplus maja

Appendix – Application Contexts

[350]

Create the PL/SQL package that will set the cust_id attribute with the value,2.
which is equal to the value of the cust_id column when the following statement
is evaluated: UPPER(cust_email) = (SYS_CONTEXT('USERENV',
'SESSION_USER') || '@COMPANY.EXAMPLE.COM'). In case session user is not
a customer, set the value for cust_id attribute in the application context to .

Figure 9 – Creating a PL/SQL package

Create a logon trigger that calls the sh_ctx_pkg.set_cust_id procedure.3.

Figure 10 – A logon trigger

Appendix – Application Contexts

[351]

How it works…
In step 3, you created a logon trigger so that every user who connects to the database is
going to have an application context set. This step is optional because your application can
set the application context by calling the same procedure.

There's more…
It is very important to note that if you try to set or change key-value pairs outside the
package you specified when you created application context, you will receive the error
insufficient privileges (see Figure 11).

Figure 11 – An error message

See also
You can see Chapter 3, PL/SQL Security.

Using an application context
In this recipe, you'll see one possible usage (in SQL) of the application contexts. Some other
usages are shown in other parts of the book, and their references are given in the See
also section of this recipe.

Appendix – Application Contexts

[352]

Getting ready
Create a new user (for example, sofia). Make sure that his or her e-mail in the format
user@company.example.com is unique. Grant him or her privileges: create session
and select on sh.customers table.

Figure 12 – New user

Insert data about him or her into the sh.customers table.

Figure 13 – The new data in sh.customers

How to do it…
Connect to the database as a newly created user (for example, user sofia):1.

 $ sqlplus sofia

Appendix – Application Contexts

[353]

Verify that the user (for example, sofia) can access all data in the2.
sh.customers table.

Figure 14 – The entire data in sh.customers

Verify that when executing the following statement, he or she (for example,3.
sofia) can view only his or her data.

Figure 15 – Only data about newly created user

How it works…
In step 3, a simple way how an application can leverage application contexts in SQL
statements was shown.

See also
You can refer to Chapter 4, Virtual Private Database, Chapter 5, Data Redaction,
and Chapter 10, Unified Auditing.

Index

A
accessible by
 used, for restricting access to Program Units 86,

87, 88
application context attributes
 setting 349, 350, 351
application context
 about 343
 auditing 307, 308
 creating 348, 349
 implementing 344
 using 351, 352, 353
audit policies
 audited data, viewing 305, 306
 creating 301, 302, 303
 disabling 310, 311
 dropping 310, 311
 enabling 303, 304, 305
 information, finding 305, 306
audit trail
 purging 309, 310
authentication 7
auto-login keystore 235, 236

B
built-in context
 using 344, 345, 346, 347

C
code base access control
 about 72
 using 82, 83, 84, 85
 working 84
column encryption
 existing column, encrypting 235
 existing column, encrypting 233, 234

 new column, adding 227
 new table, creating 228, 229, 230
column-level VPD policy
 about 103
 creating 103, 104, 105
 working 106
combined analysis policy
 creating 193, 194
common privilege
 about 60
 creating 62
 granting 60, 61, 65
common role
 creating 54, 55
 creating, OEM 12c 57, 58
 granting 60, 61, 62, 65
common user
 creating 47, 48
 creating, OEM 12c used 49, 50, 51
 rules 49
container database (CDB) 45
context analysis policy
 creating 189, 190, 191, 192
context
 setting, as driving context 108, 109
cyphertexts 231

D
data dictionary seperation 46
data guard tasks 41
Data Pump operations
 auditing 298, 299
Data Redaction 168
data redaction policies
 users, exempting from 161, 162
data
 exporting in Oracle Database Vault environment,

[355]

Oracle Data Pump used 312, 313, 314, 315,
316

database administrators (dba) role 8
database analysis policy
 creating 183, 185
Database Configuration Assistant (DBCA) 245
database roles
 creating 30
 using 30
 working 31
Database Vault operations
 auditing 299, 300
Database Vault reports
 running 277, 278, 279
Database Vault
 about 242, 243
 disabling 280, 281
 for implementing, administrators cannot view

data 272, 273, 274, 275, 276, 277
 re-enabling 281, 282, 283
 registering 243, 244, 245
DBMS_CRYPTO PL/SQL package 218
definer 71
definer's rights procedure
 about 71
 creating 72, 73
 using 73
 working 74
Discretionary access control (DAC) 89
driving context
 about 90
 creating 106, 107

E
EM Express
 for creating user 12, 13, 14, 15, 16
encrypted backups
 creating, RMAN used 240, 241
encryption 218

F
factor type 312
factors
 creating, in Oracle Database Vault 317, 318,

319, 320, 321, 322, 323, 324, 325, 326,

327, 328, 329, 330, 331, 332, 333, 334
function parameters
 changing, for specified column 150, 151, 152

H
Hardware Security Module (HSM) 221

I
immediate-write mode 290
invoker 71
invoker's right procedure
 about 71
 creating 74, 75, 76
 using 77, 78, 79, 80, 81, 82
 working 76

K
keystore location
 configuring, in sqlnet.ora 221, 222
keystore
 creating 222, 223, 224
 opening 222, 223, 224

L
local privilege
 about 65
 granting 66, 67
local role
 creating 58, 59
 creating, OEM 12c used 60
 granting 66, 67
local user
 creating 52
 creating, OEM 12c used 53, 54
 rules 53
loss of audit data
 checking 289, 290, 291

M
MAC
 about 232
 using 230, 231
mandatory realm 246
master encryption key

[356]

 setting, in software keystore 225, 226
mixed auditing mode 287

O
object privileges, usage
 reporting on 207, 208
OEM 12c
 used, for creating common user 49, 50, 51
 used, for creating local role 60
 used, for creating local user 53, 54
Oracle Data Masking 117
Oracle Data Redaction 116, 117
Oracle Database 12c 7
Oracle Database 12cR1 Standard Edition (SE)

289
Oracle Database Vault option 181
Oracle Database
 multitenant architecture 47
 traditional architecture 46
Oracle Enterprise Manager Cloud Control 12c
 used, for managing redaction policies 140, 143,

144
Oracle Enterprise Manager Database Express 12c

(EM Express) 10
Oracle multitenant environment 45
Oracle VPD row-level policies
 about 99
 creating 99, 100, 101, 102
Oracle Wallet 221
OS-authenticated users
 creating 25, 26
 using 25, 26

P
partial redaction 128
password profile
 creating 8, 9, 10
password-authenticated users
 creating 10, 11, 12
pluggable database (PDB) 45
policy function
 about 90
 creating 92, 93, 94, 96, 97
 testing 98, 99
 working 97

policy groups
 creating 107, 108
policy
 adding, to group 109, 110, 111, 112, 113,

114
predefined unified audit policy 288
privilege analysis
 about 181
 dropping 216
 starting 196, 198, 199, 202, 204
 stopping 196, 198, 199, 202, 204
privileges
 effects, of plugging/unplugging operations 67,

68, 69
Program Units
 access restricting, with accessible by 86, 87, 88
proxy authentication 28
proxy users
 creating 27, 28
 using 27, 28

Q
queued-write mode 290

R
random redaction type 133
realm 246
Recovery Manager (RMAN) backups 218
redaction policy
 column, adding 152, 153, 154
 creating, when using full redaction 119, 120,

121, 122, 123, 124
 creating, when using partial redaction 128, 129,

130, 131, 132, 133
 creating, when using random redaction 133,

134, 135, 136, 137
 creating, when using regular expression

redaction 137, 138, 139, 140
 default value, changing 125, 126
 disabling 154, 155, 156, 157, 158, 159, 160
 dropping 154, 155, 156, 157, 158, 159, 160
 enabling 154, 155, 156, 157, 158, 159, 160
 managing, with Oracle Enterprise Manager Cloud

Control 12c 140, 142, 144, 146, 147, 148,
149, 150

[357]

redaction
 types 118
regular expression redaction 137
rekeying 238, 239
RMAN operations
 auditing 295, 296, 297
 working 297
RMAN
 encryption modes 240
 used, for backup and recovery 240, 241
role analysis policy
 creating 187, 188
roles
 effects, of plugging/unplugging operations 67,

68, 69
 securing 256, 257, 258, 259, 260, 261
root container 45
rule set
 about 264
 creating 264, 265, 266
 using 267, 268

S
salt
 about 232
 using 230, 231
secure application role
 about 268
 behavior, testing 270, 271
 creating 268, 269
seed 45
sensitive columns
 determining 166, 167, 168
sensitive type
 creating 164, 165, 166
sysbackup privilege
 about 33
 instructions, for database authentication 34
 instructions, for OS authentication 35
 using 33
 working 35, 36, 37
sysdg privilege
 about 41
 instructions, for database authentication 42
 instructions, for OS authentication 42

 using 41
 working 43
syskm privilege
 about 38
 instructions, for database authentication 39
 instructions, for OS authentication 40
 using 39
 working 40
system privileges, usage
 reporting on 204, 205, 206

T
tablespace encryption 220
tablespace
 encrypting 236, 237
transparent data encryption (TDE) keystore 38
Transparent Data Encryption (TDE)
 about 218
 architecture 221
 column 219
 tablespace 220
 types 219
 using, in multitenant environment 334, 335,

336, 337, 338, 339, 340, 341, 342
Transparent Sensitive Data Protection (TSDP)
 about 163
 implementing 164
transparent sensitive data protection policy
 altering 177, 178, 179
 associating, with sensitive type 170, 171
 creating 168, 169
 disabling 171, 172, 173, 174, 175, 176
 dropping 171, 172, 173, 174, 175, 176
 enabling 171, 172, 173, 174, 175, 176

U
unified auditing
 about 284
 characteristics 284, 285
 enabling 286, 287, 288
 predefined unified audit policy 288, 289
unused object privileges
 reporting on 210, 211
unused privileges
 revoking 212, 213, 215, 216

unused system privileges
 reporting on 209
user account
 locking 21, 22, 23
user's password
 changing 16, 17, 18
 expiring 23, 24
users
 creating, EM Express used 12, 13, 14, 15, 16
 creating, with same credentials on another

database 19, 20, 21
 effects, of plugging/unplugging operations 67,

68, 69
 exempting, from data redaction policies 161,

162

 for creating audit policies 291, 292, 293, 294,
295

 for viewing audit data 291, 292, 293, 294,
295

 preventing, from executing specific command on
specific object 262, 263

 preventing, from exercising system privileges on
schema objects 246, 248, 249, 250, 251,
252, 253, 254

V
Virtual Private Database (VPD) 89
VPD policies
 users, exempting from 114, 115

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basic Database Security
	Introduction
	Creating a password profile
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating password-authenticated users
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to create a user using EM Express

	See also

	Changing a user's password
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a user with the same credentials on another database
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Locking a user account
	Getting ready
	How to do it…
	How it works…
	See also

	Expiring a user's password
	Getting ready
	How to do it…
	How it works…
	See also

	Creating and using OS-authenticated users
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating and using proxy users
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating and using database roles
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	The sysbackup privilege – how, when, and why span /should /spanspanyou/span use it?
	Getting ready
	How to do it…
	Database authentication
	OS authentication

	How it works…
	There's more…
	See also

	The syskm privilege – how, when, and why span /should /spanspanyou/span use it?
	Getting ready
	How to do it…
	Database authentication
	OS authentication

	How it works…
	There's more…
	See also

	The sysdg privilege – how, when, and why span /should /spanspanyou/span use it?
	Getting ready
	How to do it…
	Database authentication
	OS authentication

	How it works…
	There's more…
	See also

	Chapter 2: Security Considerations in Multitenant Environment
	Introduction
	Creating a common user
	Getting ready
	How to do it…
	How it works…
	Rules/guidelines for creating and managing common users

	There's more…
	How to create a common user using OEM 12c

	Creating a local user
	Getting ready
	How to do it…
	How it works…
	Rules/guidelines for creating and managing local users

	There's more…
	How to create a local user using OEM 12c

	Creating a common role
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to create a common role using OEM 12c

	Creating a local role
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to create a local role using OEM 12c

	Granting privileges and roles commonly
	Getting ready
	How to do it…
	How it works…

	Granting privileges and roles locally
	Getting ready
	How to do it…
	How it works…

	Effects of plugging/unplugging operations on users, roles, and privileges
	Getting ready
	How to do it…
	How it works…

	Chapter 3: PL/SQL Security
	Introduction
	Creating and using definer's rights procedures
	Getting ready
	How to do it…
	How it works…

	Creating and using invoker's right procedures
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using span /code-based access control/span
	Getting ready
	How to do it…
	How it works…
	There's more…

	Restricting access to program units by using span /accessible by/span
	Getting ready
	How to do it…
	How it works…

	Chapter 4: Virtual Private Database
	Introduction
	Creating different policy functions
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating Oracle Virtual Private Database row-level policies
	Getting ready
	How to do it…
	There's more…
	See also

	Creating column-level policies
	Getting ready
	How to do it…
	How it works…

	Creating a driving context
	Getting ready
	How to do it…

	Creating policy groups
	Getting ready
	How to do it…

	Setting context as a driving context
	Getting ready
	How to do it…

	Adding policy to a group
	Getting ready
	How to do it…

	Exempting users from VPD policies
	Getting ready
	How to do it…

	Chapter 5: Data Redaction
	Introduction
	Creating a redaction policy when using full redaction
	Getting ready
	How to do it…
	How it works…
	There's more…
	How to change the default value

	See also

	Creating a redaction policy when using partial redaction
	How to do it…
	How it works…
	There's more…

	Creating a redaction policy when using random redaction
	Getting ready
	How to do it…
	How it works…

	Creating a redaction policy when using regular expression redaction
	Getting ready
	How to do it…
	How it works…

	Using Oracle Enterprise Manager Cloud Control 12c to manage redaction policies
	Getting ready
	How to do it…

	Changing the function parameters for a specified column
	Getting ready
	How to do it…

	Add a column to the redaction policy
	Getting ready
	How to do it…
	How it works…
	See also

	Enabling, disabling, and dropping redaction policy
	Getting ready
	How to do it…
	See also

	Exempting users from data redaction policies
	Getting ready
	How to do it…
	How it works…

	Chapter 6: Transparent Sensitive Data Protection
	Introduction
	Creating a sensitive type
	Getting ready
	How to do it…
	How it works…
	There's more…

	Determining sensitive columns
	Getting ready
	How to do it…
	How it works…

	Creating transparent sensitive data protection policy
	Getting ready
	How to do it…
	How it works…
	See also

	Associating transparent sensitive data protection policy with sensitive type
	Getting ready
	How to do it…
	There's more…
	See also

	Enabling, disabling, and dropping policy
	Getting ready
	How to do it…
	How it works…
	There's more…

	Altering transparent sensitive data protection policy
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 7: Privilege Analysis
	Introduction
	Creating database analysis policy
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating role analysis policy
	Getting ready
	How to do it…
	There's more…
	See also

	Creating context analysis policy
	Getting ready
	How to do it…
	There's more…
	See also

	Creating combined analysis policy
	Getting ready
	How to do it…
	There's more…
	See also

	Starting and stopping privilege analysis
	Getting ready
	How to do it…
	How it works…
	There's more…

	Reporting on used system privileges
	Getting ready
	How to do it…
	There's more…

	Reporting on used object privileges
	Getting ready
	How to do it…
	There's more…

	Reporting on unused system privileges
	Getting ready
	How to do it…
	There's more…

	Reporting on unused object privileges
	Getting ready
	How to do it…
	There's more…

	How to revoke unused privileges
	How to do it…
	There's more…

	Dropping the analysis
	Getting ready
	How to do it…
	There's more…

	Chapter 8: Transparent Data Encryption
	Introduction
	Configuring keystore location in sqlnet.ora
	How to do it…

	Creating and opening the keystore
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting master encryption key in software keystore
	Getting ready
	How to do it…
	There's more…
	See also

	Column encryption – adding new encrypted column to table
	Getting ready
	How to do it…

	Column encryption – creating new table that has encrypted column(s)
	Getting ready
	How to do it…

	Using salt and MAC
	Getting ready
	How to do it…
	How it works…
	There's more…

	Column encryption – encrypting existing column
	Getting ready
	How to do it…
	There's more…

	Auto-login keystore
	Getting ready
	How to do it…
	How it works…

	Encrypting tablespace
	Getting ready
	How to do it…
	How it works…
	There's more…

	Rekeying
	Getting ready
	How to do it…
	How it works…

	Backup and Recovery
	How to do it…
	There's more…

	Chapter 9: Database Vault
	Introduction
	Registering Database Vault
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Preventing users from exercising system privileges on schema objects
	Getting ready
	How to do it…
	There's more…
	See also

	Securing roles
	Getting ready
	How to do it…
	There's more…
	See also

	Preventing users from executing specific command on specific object
	How to do it…
	How it works…

	Creating a rule set
	Getting ready
	How to do it…
	There's more…

	Creating a secure application role
	How to do it…
	There's more…
	See also

	Using Database Vault to implement that administrators cannot view data
	How to do it…
	There's more…

	Running Oracle Database Vault reports
	How to do it…

	Disabling Database Vault
	How to do it…

	Re-enabling Database Vault
	How to do it…

	Chapter 10: Unified Auditing
	Introduction
	Enabling Unified Auditing mode
	Getting ready
	How to do it…
	How it works…
	Predefined unified audit policies

	There's more…
	See also

	Configuring whether loss of audit data is acceptable
	Getting ready
	How to do it…
	How it works…

	Which roles do you need to have to be able to create audit policies and to view audit data?
	Getting ready
	How to do it…
	How it works…
	There's more…

	Auditing RMAN operations
	Getting ready
	How to do it…
	How it works…
	See also

	Auditing Data Pump operations
	Getting ready
	How to do it…
	See also

	Auditing Database Vault operations
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating audit policies to audit privileges, actions and roles under specified conditions
	Getting ready
	How to do it…
	How it works…
	See also

	Enabling audit policy
	Getting ready
	How to do it…
	How it works…

	Finding information about audit policies and audited data
	Getting ready
	How to do it…

	Auditing application contexts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Purging audit trail
	Getting ready
	How to do it…
	How it works…
	There's more…

	Disabling and dropping audit policies
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 11: Additional Topics
	Introduction
	Exporting data using Oracle Data Pump in Oracle Database Vault environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating factors in Oracle Database Vault
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using TDE in a multitenant environment
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 12: Appendix – Application Contexts
	Introduction
	Exploring and using built-in contexts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating an application context
	Getting ready
	How to do it…
	How it works…

	Setting application context attributes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using an application context
	Getting ready
	How to do it…
	How it works…
	See also

	Index

