
Oracle Incident
Response and
Forensics

Preparing for and Responding
to Data Breaches
—
Pete Finnigan

www.allitebooks.com

http://www.allitebooks.org

Oracle Incident
Response and

Forensics
Preparing for and Responding

to Data Breaches

Pete Finnigan

www.allitebooks.com

http://www.allitebooks.org

Oracle Incident Response and Forensics

ISBN-13 (pbk): 978-1-4842-3263-7 ISBN-13 (electronic): 978-1-4842-3264-4
https://doi.org/10.1007/978-1-4842-3264-4

Library of Congress Control Number: 2017961732

Copyright © 2018 by Pete Finnigan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484232637. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Pete Finnigan
Acomb York, North Yorkshire, United Kingdom

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3264-4
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Data Breach ���1

Types of Attack ��2

An Unskilled Breach ��7

A Skilled Breach ��7

What Is an Incident? ���8

What Is Incident Response? ��9

What Is Forensic Analysis? ���10

Chain of Custody ���10

What Is Oracle Database Forensics?���19

How Does Oracle Function and Store Data? ���20

Oracle 12c Multitenant ��24

Chapter 2: Artifacts ��27

Heisenberg’s Uncertainty Principle of Oracle ��28

Audit Trail or No Audit Trail? ��29

The Problem of Detecting READ ��30

Identity and Accountability��31

Time ��32

About the Author ��vii

Acknowledgments ���ix

Introduction ���xi

www.allitebooks.com

http://www.allitebooks.org

iv

Database Artifacts ���34

Tables or Views with SQL ��34

Tables or Views with Bind Data ���41

Tables or Views with Timestamps ���42

Privilege Changes ��44

Changes to Security ��45

Object Changes ���46

Redo Based ���48

ID Based Searches ��49

Applications Data���51

Internals ��52

Flashback and Recycle ��55

Database Audit ��56

Database Dumps ���58

Rounding Up ��60

Non-Database Artifacts ���60

Webserver Logs ���60

Application Logs ��63

Operating System Audit ���63

TNS Listener Logs��64

SQL*Net Trace ��66

SYSDBA Audit Trace Files and Logs ���66

Database Trace ��69

Database Datafiles ��71

Rounding Up ��73

Correlation ��73

Deleted Data ���75

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Tuning Tools ��84

Rootkits ���87

Chapter 3: Incident Response Approach ��93

Planning ��94

Create an Incident Response Approach ��95

Incident Coordinator ��96

Create an Incident Response Team ���98

Create an Incident Response Process ���101

Create and Collate a Toolkit ���113

Chapter 4: Reacting to an Incident ���119

A Sample Attack ��120

What Not To Do ��121

Incident Verification and Identification ��122

Collecting Artifacts ��127

Disconnecting the System or Shutting Down ��128

Connecting to the System ���128

Live Response and Artifact Collection ���131

Views, Base Tables, RAC, and Synonyms? ���132

Spreadsheets ���137

Server and Database State ��137

Get Server Details ��137

Web Server logs ��141

Collect Oracle Logs Files from the Server ���141

Get Last SQL ��145

Volatile Artifacts���146

Database Artifacts ���147

Checksums ��153

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 5: Forensic Analysis ��155

Pre-Analysis ��156

Example Analysis ��156

Post-Analysis ��172

How Did He Get In? ��172

What Rights Did He Have? ���172

What Did He See? ��172

What Did He Change? ��173

What Could He Have Done? ���173

Findings ���173

Report and Summary ��174

Restore and Rebuild ��174

Chapter 6: What To Do Next? ��177

Planning ���177

Thinking About Database Security ��181

Enabling Sophisticated Audit Trails ���187

Conclusions ���192

Further Reading ��194

 Index ���197

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Pete Finnigan is the founder and CEO of

PeteFinnigan.com Limited, a company

based in York, UK that specializes in helping

customers secure data held in their Oracle

databases. He has assisted customers all over

the world in performing security audits of their

Oracle databases, Oracle incident response

and forensics, design and implementation

work on Oracle features such as Virtual Private

Database (VPD), encryption, masking, and

many more services. Finnigan also provides

very popular detailed training around many aspects of Oracle security.

Pete has spoken many times at conferences around the world on the

subject of Oracle security.

Pete Finnigan is an Oracle ACE for security and also a member of The

OAKTable, which is a network of Oracle scientists. Pete graduated from

the University in Leeds, UK in 1995 with a first-class honors degree in

electronics and electrical systems. This was achieved on a part-time basis

while working a full-time job.

Pete is also the author of the book SANS Oracle Step-by Step Guide

versions 1 and 2 and a co-author on the book Expert Oracle Practices. He

can be found on LinkedIn, Facebook, Twitter, and his company’s web site

at http://www.petefinnigan.com.

www.allitebooks.com

http://www.petefinnigan.com/
http://www.allitebooks.org

ix

Acknowledgments

First of all I would like to thank my beautiful wife, Zulia, for her support

while I wrote this book. I would also like to thank my children, Emil and

Eric, for supporting my Oracle security endeavors.

I would also like to thank Jonathan Gennick for approaching me to

write this book. Jonathan is very professional and a really nice person to

boot.

www.allitebooks.com

http://www.allitebooks.org

xi

Introduction

Data breaches are now so commonplace that it has become a matter for

national news channels and unskilled discussions. Even the BBC no longer

brings in a security expert to discuss the latest data loss; it is just reported

as a matter of fact. A bank robber of old with a sawed-off shotgun stealing

sacks of money is now a hacker for hire with USBs and discs of data for sale

to fuel identity theft, spamming, card theft, and much more. Companies

now have to assume that if they process personal, finance, or indeed any

valuable data and hold that data in an Oracle database then they are targets.

Regulatory bodies and governments are now taking data breaches

much more seriously. For instance, here in the UK a body was formed in

recent years called the information Commissioner’s office specifically to

deal with protection of privacy and data for the public. In the United States,

regulations such as Sarbanes Oxley (SOX), Gramm Leach Bliley (GLBA),

and the Health Insurance Portability and Accountability (HIPPA) were also

created to regulate data and to protect privacy. Most American states and

indeed a lot of other countries now follow California with its data breach

notification law—California S.B. 1386—in having implemented similar laws.

In Europe each of the 28 member states of the EU will soon, at the start

of 2018, implement a new data protection act called GDPR. This new EU

law will affect not just EU but any country that processes and stores the

personal data of EU citizens. This law will be far-reaching and will include

the right for citizens’ data to be forgotten, the need to know where you

have stored customers’ personal data, the need to know that there was a

breach, and the need to notify.

These are just a small number of examples of some data protection

laws, and most countries have similar laws. The upshot is you must be

able to respond to a data breach, to understand what happened and how,

www.allitebooks.com

http://www.allitebooks.org

xii

to understand which data was breached, to report the breach, and know how

to secure your systems to prevent a similar breach from happening again.

This creates the need for two new skills that the Oracle practitioner

should acquire or hone:

• Incident response: This is the process and rules that

you should follow if there is a breach of your Oracle

database. Each and any data breach may be different in

content and character, so understanding what a breach

looks like and whether it really is a breach is important.

An incident response process or policy will also include

details of the actions to be performed, the people

(or job roles in your organization) and tools to be used,

and the types of data and evidence to be collected.

• Forensic analysis: This involves the steps taken to

analyze the data collected and the techniques and tools

that can be used to locate evidence of an attacker and

ideally also when, where, how, and by whom the attack

was conducted. As the CSI show made famous on

television, the forensic process is about analyzing and

detecting detailed facts and snippets of information to

answer these questions.

Incident response and forensics are inextricably linked; carrying out an

incident response isn’t valuable unless a forensic analysis of the collected data

(artifacts) is also performed. Conversely, simply carrying out forensic analysis

of “something” does not carry weight unless it’s part of a complete process.

With each day that passes, more and more data breaches are

occurring; as I write this, it has just been reported that Equifax had been

breached and 143 million customer account details were taken. Cex, the

large second-hand retailer, lost 2 million account details and Verizon

lost six million. See http://www.wired.co.uk/article/hacks-data-

breaches-2017 for more information.

InTroduCTIonInTroduCTIon

http://www.wired.co.uk/article/hacks-data-breaches-2017
http://www.wired.co.uk/article/hacks-data-breaches-2017

xiii

 About This Book
As an Oracle DBA, developer, or security person, how do you know that

your Oracle database has been breached and, more importantly, what do

you do about it? How do you investigate a complex and often huge system

to understand if the breach is real and to then know what was taken or

seen by the hacker? How did the attackers get in; what did they see; what

could they have done, and how much further could they have gone with

more skill? Often companies are lucky that the attackers do not know

Oracle and simply use free web based tools to attack a database. If they

really knew Oracle, then the results could have been much worse.

This book describes what a breach or incident is and discusses what

steps and processes should be taken if a breach is suspected. The book

also looks at what forensics is in relation to Oracle and what tools and

techniques are available, as well as which should be used to investigate a

database to find out how the breach occurred, who did it, and why. The

book also discusses how to put everything together to create a holistic

approach to the investigation. Finally, the book looks briefly at what should

now be put in place in “your” databases to make an attack harder but also

to aid detection of a future attack and make any incident response and

investigation easier.

There has been very little written about Oracle forensics and incident

response over the years since I was the first to write about Oracle forensics

when I wrote a module for the original SANS Oracle Security 509 class back

in 2004. I have written a number of papers and presentations, as has David

Litchfield, but in comparison to the subject of Oracle security in general

not much exists on Oracle forensics and even less exists on incident

response. This book fills this gap and allows Oracle professionals to get a

grasp of Oracle forensics and incident response.

InTroduCTIonInTroduCTIon

xiv

 Who Should Read This Book
The focus of this book is the response to an Oracle database data breach and

the subsequent forensics analysis of the database. The book is aimed at the

Oracle professional—the DBA, developer, and managers of Oracle teams

and in general anyone who is concerned with storing data in an Oracle

database. The key messages of the book transcend both the work of the DBA

and security professionals. In general, security professionals are not going to

be experts at Oracle so they need to involve the DBA in a potential forensic

analysis. Developers will benefit from understanding how the tracks of an

attacker can be traced to an Oracle database and therefore prepare their

applications that fit in the database to potentially include additional sources

of tracking information. The security professional will get a grasp of how

forensic information can be extracted from an Oracle database.

 How This Book Is Organized
This book starts off with the basics by covering what a breach is, what an

incident is, and what Oracle forensics and Oracle incident responses are. It

then looks at how a security professional or a DBA can extract forensic data

from an Oracle database and from where in the Oracle database. The book

then goes on to discuss incident response processes, reacting to incidents,

and of course forensic analysis, including some examples.

The book finishes with an overview of what to do next to help ensure

that you are ready for any potential Oracle breach incident and ready and

able to forensically analyze your database. The chapters of the book cover

the following issues and features.

• Chapter 1—Data Breach: The book starts by defining

what a data breach is, what an incident is, and how

breaches occur. Then Oracle forensics and forensics in

general are introduced. The chapter ends with a brief

InTroduCTIonInTroduCTIon

xv

look at how Oracle works at a high level, as this is the

basis for finding forensic telltales in the database to

determine what an attacker did.

• Chapter 2—Artifacts: Telltale signs of actions

conducted in the database can be determined; these

can be database specific or outside of the database.

Consideration is given to many of the possible places

in the database and outside of the database from where

evidence can be extracted. This chapter also considers

accountability and identity traces in the database as

well as the problem of time. One of the key tenants

of forensic analysis is to establish all of the evidence

in a time-based format. This chapter finishes with a

discussion of the problem of tracking read access as

well as ways to establish if data or objects have been

deleted.

• Chapter 3—Incident Response Approach: This

section of the book is the most important, as it

considers how to plan for an incident and create

an incident response approach and policy. We also

explore the role of the incident coordinator and the

need to create a team to react to a breach. A very

important part of an incident response is to have a set

of tools ready and able to collect evidence from the

database.

• Chapter 4—Reacting to an Incident: Before any

response to an incident starts, it is very important to

establish the things you should not do. So these are

covered first. The chapter discusses the steps that

should be followed, including ad hoc and scripted

InTroduCTIonInTroduCTIon

xvi

collection of artifacts. Also discussed is the issue of

disconnecting the database from the network, shutting

it down, and potentially restoring, rebuilding, or

correcting it.

• Chapter 5—Forensic Analysis: This chapter focuses on

the analysis of a potential hack in an example system.

This example brings together a lot of the techniques

discussed so far in the book. Pre-analysis steps as

well as post-analysis steps are considered along with

findings and assumptions and creating a report and

summary.

• Chapter 6—What To Do Next: We close the book with

a summary whose focus is to give some ideas of what

you should do now, before you are actually breached.

This clearly includes taking steps to secure the Oracle

database to prevent a breach in the first place and

enabling sophisticated audit trails to ease the process

of incident response and forensic analysis.

 Scripts and Download
Much of the SQL code that is presented in the book is available as scripts

from the author’s web site. The example code can be downloaded from

http://www.petefinnigan.com/forensics/download.zip.

InTroduCTIonInTroduCTIon

http://www.petefinnigan.com/forensics/download.zip

1© Pete Finnigan 2018
P. Finnigan, Oracle Incident Response and Forensics,
https://doi.org/10.1007/978-1-4842-3264-4_1

CHAPTER 1

Data Breach
There are often multiple reasons why an Oracle database may be attacked.

An attacker may see an Oracle database simply as an easy target to gain

access to a company’s other IT infrastructure. Unfortunately, because

Oracle is a very complex product that requires an enormous amount of

configuration, often gaps are created in the security model used to protect

the data held within the database.

Because access to data is often at multiple levels—via an application

interface, a developer using TOAD, a DBA using SQL*Plus, and many

more—there is a risk that the security controls are different at each layer

and so allow access to more data at one layer than another. An attacker

may choose to attack an Oracle database to steal the data or he may

choose to attack an Oracle database simply to gain access to other IT

infrastructure.

It is important to understand at a high level the types of attacks that

can be performed on an Oracle database so that you are able to recognize

them from evidence gathered. It is also imperative to understand what

an incident is and what an incident response is. Following an incident,

forensic analysis must take place to understand how the attackers may

have breached and stolen data or done other damage to your database.

Finally, it’s important to know how Oracle itself works at a reasonably

detailed level because this will give you clues as to where evidence or

artifacts can be found and used.

2

We have a brief discussion of the subject of chain of custody. This is

the process normally used when investigating a PC as part of computer

forensics. With a small system, the process is often clean and simple and

involves documentation, verification, and secure storage of the artifacts

(usually a complete computer or hard disk). A short discussion is also

included on the issue of admissibility of evidence in court. Verifying

evidence is usually done by checksumming hard disk, and this process is

compared with an Oracle database. This sets the background to normal

IT forensic analysis so that we can contrast it with forensic analysis of an

Oracle database.

 Types of Attack
Table 1-1 introduces a high-level list of some types of attack that could be

performed against an Oracle database. This list includes a brief description

of the attack type, the danger it poses to the owner of the data in the Oracle

database, and the skill level needed to try the attack. This list is by no

means exhaustive and in some cases an attack type may have multiple

sub-types. For instance, SQL Injection could be SQL Injection of SQL code

embedded in a remote PHP web application that accesses the database or

it could be SQL injection of SQL code executed in a PL/SQL package in the

database. It could even be SQL injection of SQL code in a batch process

where the injection must be done via an INSERT statement.

There are many possible attack types and many of them can be

combined into a single attack. This makes understanding how any

particular attack took place difficult. There is no set list of rules that can be

easily used to identify an attack.

Chapter 1 Data BreaCh

3

The location of the attacker and the database is also very important

to how the attack plays out. An attacker who is located internally to the

business will more than likely have access to a desktop computer, probably

with applications that access the database he wants to attack and possibly

with tools that would allow a direct connection to the database. Most

end users in an organization will probably not have credentials for the

database; at least they may not understand if they do have credentials for

the database. Some applications actually log into the database directly but

the user enters the credentials in the screen of an application. Internally

in an organization the staff is more likely to understand the data that is

processed and possibly more likely to understand the architecture and

technology used, therefore making an attack easier.

An external attack is much harder. If an attacker is able to exploit a

publicly facing web site that serves its data from a database, then it may

be possible to effectively tunnel your way in to the database. If this were

not possible, then it would be much harder for an external attacker to gain

access to an internal database. The attacker would first need to be able to

get onto the network of the organization and then find a way to identify

and access the database.

The list of attacks in Table 1-1 is not exhaustive and, as stated, an

attacker could be internal or external and attacks can be combined. Factor

in the multitude of operating system versions, Oracle database versions,

and different types of applications, and you can see how each attack can

look quite different.

Chapter 1 Data BreaCh

4

Table 1-1. Database Attack Types

Attack Type Danger Skill Level Description

SQL Injection high/Low high/Low the danger is high or low depending on

the data potentially exposed by the SQL

that is attacked. the skill level is high or

low depending on whether a tool can be

used to perform the exploit.

Cross-Site

Scripting

high/Low high/Low as with SQL injection, the danger

depends on where the code that is

exploited is located and what it does.

also the skill level depends again on

whether an attacker can simply use a

tool successfully or a manual attack is

needed.

payload

Injection

high high the injection string must be first inserted

as valid data for a trigger or later process

to read it and place it into a SQL injection

scenario.

DDL injection high/Low high/Low Similar to SQL Injection.

pL/SQL

Injection

high/Low high/Low Similar to SQL Injection.

DML Injection high/Low high/Low Similar to SQL Injection.

Direct

database

access

high Medium/high Much harder, as the attacker needs It

skills and have to install a tool such as

SQL*plus, and would need to know at

least Oracle tNS.

(continued)

Chapter 1 Data BreaCh

5

Attack Type Danger Skill Level Description

Data loss high/Low high/Low this depends on how and where the data

is stolen. Low would be an employee

simply stealing a paper report or printing

a screen. high would be an attack

against a web site and then working out

how to target the data needed.

escalation

of database

rights

high high an attacker would need direct database

access via a tool such as SQL*plus or an

exploit in a web site that allows SQL or

pL/SQL Injection that would allow DDL to

be injected.

access to

operating

system or

network

resources

high high an attacker would need elevated access

to the database normally; then would

need access to an account with OS or

network access or would need skill to

add the correct database objects.

audit trail

changes

high high an attacker would need elevated access

to the database normally; then would

need access to the audit trails or an

account that has access

audit settings

changed

high high an attacker would need elevated access

to the database normally; then would

need access to the audit trail settings or

an account that has access.

(continued)

Table 1-1. (continued)

Chapter 1 Data BreaCh

6

Attack Type Danger Skill Level Description

Security

changes

high high an attacker would need elevated access

to the database normally; then would

need the ability to assess security

settings and the ability to make changes.

addition of

database users

high Medium/high an attacker would need elevated direct

access or access via a SQL injection that

would allow DDL. this would be a highly

skilled action done remotely.

addition of

database

objects

high Medium/high an attacker would need elevated direct

access or access via a SQL Injection that

would allow DDL. this would be a highly

skilled action done remotely.

privilege

highjack

high high an attacker would need access to make

multiple queries to security settings

and then the ability to change database

objects.

Table 1-1. (continued)

A data breach could be carried out by a non-skilled person or a skilled

person. In reality, it could be both. As part of forensic analysis that I have

carried out, I noticed that with one customer system that was breached, a

number of attack phases had occurred. From the analysis of the evidence

that was gathered, it was clear that a number of different groups of

attackers had been into this example system—some were clearly skilled,

i.e., the target data was accessed swiftly, cleanly and with minimal steps.

Other evidence showed completely unskilled, very noisy unsuccessful

access attempts.

Chapter 1 Data BreaCh

7

 An Unskilled Breach
An unskilled breach can be likened to a thief who walks down a suburban

street trying the doors of every car he passes to see if one is open, perhaps

also giving windows a slight push to see if they are also open. This is

opportunistic and unskilled. In terms of IT breaches against an Oracle

database, unskilled attack could be an employee using a tool such as

SQL*Plus or TOAD and attempting to guess passwords for every user

account in the database. An example for an external attacker could be

downloading a tool such as sqlmap (http://sqlmap.org/) and running it

against a web site to see if the Oracle database supporting the web site can

be exploited.

In general, an unskilled attack will look clumsy and noisy. By noisy,

I mean a lot of errors and messages in the web server logs and database

logs caused by thousands or even hundreds of thousands of actions

pushed against the database.

An unskilled attack is generally the work of someone with very little

skill with an Oracle database.

 A Skilled Breach
A skilled attack, on the other hand, is finessed and in general much

harder to detect. The attacker would be very skilled in gaining access to

the database and also in locating and stealing the data that he needed.

The attacker would take as few steps as possible, perhaps practicing on

an external system not owned by the victim so as to work out the fewest

actions possible to succeed.

A skilled breach would stand out by the lack of noise; skilled attacker

would not simply run a brute force tool against the web site or database

attempting to bully his way in. The skilled attacker may also use additional

techniques to hide what they have done. They may delete audit records,

log files, or other evidences that may point to their intrusion into the system.

Chapter 1 Data BreaCh

http://sqlmap.org/

8

The goal for a skilled attacker is to steal what he needs to steal, not for

bragging rights. An unskilled attacker may escalate privileges simply to

brag that he has done it, but a skilled attacker would take only the steps

necessary to steal the data (if that were the target) and would not need to

escalate his rights.

It is important when analyzing a potential breach to understand that

the attack could have been random, brutal, and noisy, or it could have

been stealthy. In other words, don’t make the mistake of simply looking

for noise in log files and then assuming the attack was not real if you don’t

find any.

 What Is an Incident?
An incident is something that happens that is not normal or was not

planned. This could be people (staff, outsiders, others) accessing data they

are not authorized to see or making changes, or conversely, it could be

making changes to the database structure or application code without a

formal change control procedure.

Clearly in the context of this book, an incident can be one of many

things but usually is attributed to an attacker. Don’t make the mistake of

assuming the attacker is some young kid in his bedroom hacking into your

network and databases like Matthew Broderick in the film WarGames

(https://en.wikipedia.org/wiki/WarGames). More than likely, the

attacker is an employee.

It is an unfortunate fact that employees have much more knowledge

of your systems than a kid in his bedroom. They will know where the

valuable data is and they probably have a PC that you have provided them

with applications, command-line tools, and more. Worst of all, you have

probably gave them usernames and passwords to your systems. Of course,

the attacker could also be external so you must not discount this possibility

completely. Just don’t discount the fact that an employee is in a much

better position to steal from you.

Chapter 1 Data BreaCh

https://en.wikipedia.org/wiki/WarGames

9

An incident could be evidence that data is lost (data from your

database has been located on Dropbox or Twitter or Facebook, for

instance). It could be a change to security settings that was not authorized.

It may be an indication that an attack is imminent rather than actually

happened. The incident could also be an indication that an attack is

in progress at the current time. The incident could also be a change to

audit trails or settings or it could be that the change does not match any

authorized change control release; indeed, an incident could be many

things, but in general it is something that is not normal or authorized.

What is the difference between a data breach and an incident? I don’t

delve too deeply into technical definitions for the difference. A data breach

is the technique, the method used to attack a database and steal data or do

other things such as escalate privilege. An incident is the actual evidence

for a specific instance of that data breach happening. The incident is the

thing that you need to respond to, the data breach involves the actions

taken by the attacker to break into the database.

 What Is Incident Response?
Incident response is the process that is established to deal with a potential

incident. This should include a documented plan of the actions to be taken

should a incident or a potential incident occur. This should also include

details of the team members who should be involved or who should be

part of the team that will respond to the incident. It can also include details

of tools and techniques to be used.

Your response to an incident must not be ad hoc. Incident response

must be carefully planned in advance and must be a repeatable, reliable

process. Chapter 3 discusses a sample incident response process in detail

that you can use as a basis for your own incident response process in your

organization.

Chapter 1 Data BreaCh

10

 What Is Forensic Analysis?
There are various definitions of forensics that can be found in dictionaries

or indeed on the Internet. In general, forensics is the techniques used to

analyze something, usually in the context of solving a crime. Forensics

has become popular due to TV series such as CSI. In CSI, forensics is

thought of as highly skilled, very detailed technical analysis of fragments of

evidence to prove that somebody committed a crime. This is usually single

hairs or strands of DNA or something equally tiny.

Forensic analysis can also be thought of as the argument to prove

something. Often in the criminal world forensic evidence is carefully

handled, documented, bagged, and presented as in court as provable and

irrefutable evidence of a crime.

Therefore, forensic analysis is the process of looking at something,

often in minute detail, together with a timeline of physical evidence that

can be used to prove who the perpetrator of the crime was. This evidence

must be able to stand up in court and not be thrown out. Sometimes in

the criminal proceedings and expert may also be brought in to give expert

opinion, perhaps to attest to the validity of the evidence in the context of

the crime.

 Chain of Custody
Traditional computer forensics tends to be focused on the analysis of

personal computers and the evidence to be found on them. Most of the

commercial tools available on the market are aimed at analyzing the hard

disk of a PC. Forensics involves a number of steps. The first is the gathering

of evidence; this is usually the seizure of a personal computer and its hard

disk, perhaps the contents of someone’s desk and notebooks. The analysis

involves looking for computer evidence.

Chapter 1 Data BreaCh

11

Evidence that could be presented in a court of law is usually one of

four things:

• Real evidence

• Testimony

• Demonstration

• Documentation

Evidence in a computer case is usually real evidence or hard

evidence; this is something you can physically pick up and carry and

will be something that relates to the case in question. This could be an

assailant’s PC or the hard disk from his machine. It can also be files or

programs stored on the machine. Computer evidence often also includes

documentation, which again could be files, it can be printed paper. It could

be notebooks or other written down or printed evidence.

In a criminal investigation, you need to often prove the identity and

actions of the attacker. To do this, you must locate the actions in the real

evidence; this could include URLs visited in a web server log or it could be a

file that the assailant has downloaded and is currently still stored on his PC.

To prove the case in court, the investigator would need physical

evidence to prove that the PC was used by the attacker. In the case of a PC

that has been seized, this could be fingerprints on the actual system. In the

case of data theft, this is harder to prove because most likely the attacker

came across a network to the database to steal the data.

In an investigation, you need to be able to recognize what evidence to

collect. This could be hardware or software or pieces of data files that will

be useful to the investigation.

Chapter 1 Data BreaCh

12

The process of evidence gathering and investigation should follow

some basic steps and actions. These include the following:

• Before any physical evidence is touched, photograph

it. Take photographs of the server, including its ID and

serial numbers, and its location and cable connections.

You may also photograph a place from where the

attacker made the attack. If this was a DBA in your own

organization, this could be his desk, his keyboard, his

screen, and maybe the contents of his desk drawers.

• Ensure the legal requirements to access the system and

to perform an investigation.

• Gather serial numbers and identifiers.

• Prepare proof that any tools you use does not corrupt

any evidence that is gathered. This can be tough to do

if you created the tools yourself. In one sense, it can be

better to use pre-approved commercial tools that have

already been used in legal cases and accepted in court.

• Prove the tools can be trusted in terms of providing the

right answers. In other words, ensure the tools have not

been modified to suit the attacker; i.e., to hide evidence.

• If necessary, remove the hard disk of the computer. In

the case of a PC this is easy. In the case of a large Oracle

system SAN or NAS storage, this is probably impossible.

Checksum the disc and store the checksum securely.

Copy the disk with software that makes a byte-to-byte

copy. Checksum the copy and store the checksum

securely. Compare the checksums to ensure they are

identical. This ensures you have the physical one-to-

one match of the disc for investigation

Chapter 1 Data BreaCh

13

• Follow the chain of custody. Steps must be taken to

ensure that the evidence that is collected is preserved

and in pristine condition. Documentation must be kept

that shows every step of movement of the evidence.

This is called the chain of custody. Document all

evidence and all actions against that evidence.

• For evidence to be admissible in court, there are two

basic tenets to be applied. The first is that the evidence

was legally obtained. The second is proof that the

evidence has not been modified while it was in your

possession. The chain of custody can be used to prove

the second. The first must be checked and approved

before the evidence is gathered.

• Integrity of data can be proved with checksums. These

are normally cyclically redundancy checks (CRC) or

MD5 checksums. These can be used on any piece of

evidence, from a single file to a complete hard disk.

This should be a standard method of any forensic

investigation. We make checksums to ensure that we

can prove the evidence collected is the same evidence

when presented later and used in an analysis.

• Ensure that you create a collection and handling

procedure and that all hardware is handled correctly.

Ensure static electricity cannot damage the evidence

and use a protected wrist strap. Figure 1-1 shows a

photograph of a sample strap.

Chapter 1 Data BreaCh

14

• Some types of evidence, such as a PDA, require

uninterrupted power to maintain the evidence in

memory. The Oracle database has a similar issue with

its SGA. If the power is removed from the database, all

of the volatile data in the SGA is lost. A DBA can also

issue a command to flush the shared pool, which will

also remove the volatile data.

• If a case comes to court, you may need to prove that

your investigation or incursion into a system did not

change or corrupt anything. Again, checksum is a good

tool to do this. Another method is to ensure that read-

only access is used. In the PC world, right blocking

hardware or software tools can be used to ensure that

read-only access is made to a disc. In the Oracle world,

this option doesn’t present itself unless a disc that

contains an Oracle database is analyzed statically in

the same way as it would for a PC. To analyze an Oracle

Figure 1-1. A strap used to ensure static electricity cannot damage
evidence. Copyright (c) 2017, PeteFinnigan.com Limited. Used with
permission.

Chapter 1 Data BreaCh

15

database, it’s obviously much more advantageous to

use an SQL interface to the database so you can more

quickly and easily locate issues. But any access to the

database is not read-only. This may make any incursion

into the database inaccessible in court. By inference,

any data that was obtained during this incursion into

the database is not admissible.

• One method is to copy the system tablespace data file

and treat it the same way as the analysis of a PC hard

disk. Although this is not impossible, no tools exist to

aid in this process. System tablespaces and the block

structure inside of them are not documented fully;

therefore, any analysis without using the database

engine may also not be admissible in court because of

the complexity of the structure and storage of data in

the data dictionary. In general, a lot of evidence that

would prove an attacker’s actions in the database can

be obtained from the data dictionary and not from the

data itself. Adding users or procedures or dropping

objects in the database will all be visible in the data

dictionary, which is stored in the system tablespace.

• As another example, a copy of the SGA would be

difficult to interpret outside of the Oracle database.

The only way to do this is to do a memory dump from

the server itself of the shared memory segments used

by Oracle. To analyze this correctly, you need to know

the complete structure of the so-called x$ tables

used within the Oracle database. The SGA is made

up of arrays of data structures. The x$ tables are not

actually tables, but arrays of data in shared memory.

Chapter 1 Data BreaCh

www.allitebooks.com

http://www.allitebooks.org

16

So although it’s not impossible to analyze the SGA

outside of the database, it probably also would not be

admissible in court because there is no documentation

to prove that the access to the shared memory and its

local structure is correct.

The previous section discusses some of the main elements of forensic

analysis of IT systems. This usually means a PC. Contrasting a PC with an

Oracle database shows immediately that they are completely different. In

one sense, a PC is very simple and usually the evidence being searched for

is text files, documents, or images.

With an Oracle database, the evidence being searched for is the

investigation of data theft. Data theft does not actually remove the data

from the database and we are actually looking for evidence of someone

using the database engine to select that data. That evidence is tertiary

and complex and unless audit trails are enabled, it’s usually missing. So

periphery or correlating evidence usually is the target. For instance, the

attacker must log in to show evidence that this connection happened.

The attacker may have entered a SELECT query and the Oracle optimizer

gets involved with a compilation of the SQL and in some cases it stores

evidence of predicates in a dictionary database table. If the attack is

investigated very quickly, then the SQL used by the attacker may be

present in the SGA. If the attack came from a web server, then perhaps the

SQL is available in the web server logs application server logs.

Analyzing an Oracle database is much easier if you can use the Oracle

database to perform the analysis. Because the structure of the Oracle

database is not fully documented and is very complex, using SQL as a tool

is much simpler.

The same basic rules that apply when analyzing a PC apply when

analyzing an Oracle database, but it’s different. Another issue to bear in

mind with an Oracle database is the issue of licensing. If a server that runs

Oracle database is taken in as evidence and then that server is copied in the

Chapter 1 Data BreaCh

17

traditional manner, then effectively a copy of the Oracle database has been

created. Oracle would be due an additional license fee for this additional

database. Before using traditional methods, Oracle database licensing must

be considered. Another example is using the tuning pack and diagnostic

pack to analyze any historic SQL that appear in the database; again, this

method would require payment of an additional license. The investigator

of an Oracle database must remember to consider the legality of accessing

the database even after the investigation has legally begun.

Listing 1-1 shows a sample usage of the DBMS_SQLHASH package to

checksum the source code of itself. This sample satisfies two requirements.

It demonstrates the use of the built-in package in the database to easily

create checksums of objects within the database and it also demonstrates

checking the validity of the hash package itself. The hash that’s generated

can be compared to a hash from a similar clean database.

Listing 1-1. Create a SHA1 Checksum of the DBMS_SQLHASH

Package

SQL> select sys.dbms_sqlhash.gethash('select text from

dba_source where name=''DBMS_SQLHASH''',3) from dual;

 SYS.DBMS_SQLHASH.GETHASH('SELECTTEXTFROMDBA_

SOURCEWHERENAME=''DBMS_SQLHASH''',3)

3ED360B4B98C9F6B762B4629D3B609E580424024

SQL>

This example seems to show an easy way to validate that the

DBMS_SQLHASH package in the database being investigated has not been

compromised by the attacker. The problem is that it’s not as simple as this.

Listing 1-2 shows the dependencies used by the DBMS_SQLHASH package.

Chapter 1 Data BreaCh

18

Listing 1-2. Dependencies on the DBMS_SQLHASH Package

SQL> col referenced_name for a12

SQL> col referenced_owner for a10

SQL> col referenced_type for a10

SQL> select referenced_name, referenced_owner, referenced_type

 2 from dba_dependencies

 3 where owner='SYS' and name='DBMS_SQLHASH';

REFERENCED_N REFERENCED REFERENCED

------------ ---------- ----------

STANDARD SYS PACKAGE

STANDARD SYS PACKAGE

UTL_RAW SYS PACKAGE

DBMS_LOB SYS PACKAGE

DBMS_SQL SYS PACKAGE

DBMS_CRYPTO SYS PACKAGE

DBMS_SQLHASH SYS PACKAGE

7 rows selected.

SQL>

To properly validate that DBMS_SQLHASH has not been modified,

you would also need to obtain checksums of UTL_RAW, DBMS_LOB, and

DBMS_CRYPTO. But the problem doesn’t stop there—you would then need

to run the same dependency query to see which other packages depend

on these three packages. You would then need to do the same thing again

and again for any child dependencies of those. To be thorough, you should

also obtain a checksum of the view used to test for the dependencies and

any dependencies on that view. As you can see, validating the source

of evidence and the tools used in an Oracle database can be extremely

complex. Prepared checksums of all of these elements would also need to

Chapter 1 Data BreaCh

19

be obtained from a known clean database. How do you prove that another

database is clean?

 What Is Oracle Database Forensics?
Forensic analysis in the context of Oracle security and the Oracle database

is very new. Although data breaches are very common and reported

regularly on national news channels news, detailed forensic analysis of a

breach of a specific Oracle database is unreported and unknown.

I have been involved in the forensic analysis of quite a number of Oracle

databases since 2004.

Oracle forensics is the process by which someone (an auditor?) tries

to determine when/how/why and by who something happened. The

techniques gather and correlate incriminating evidence from the Oracle

database. In this context, Oracle forensics often occurs when, as an auditor,

the author is called in to help a client discover how a breach occurred and

hopefully some clue as to who did it. The techniques used are often limited

by two factors:

• The client finds out that their database has been

breached weeks and often months after the actual

breach, so there is no transient or current data in the

database to use as evidence.

• There is no audit trail enabled for the database.

These two factors make it very difficult to establish exactly what

happened and when and the results of each investigation are dependent

on these two factors.

Oracle forensics should be considered as the same as forensics of

physical evidence, but we must also consider the size of Oracle databases

and the need to keep an Oracle database running so businesses can

continue without interruption. Analysis of the PC in comparison to an

Chapter 1 Data BreaCh

20

Oracle database is much simpler for two reasons. The first is that a PC is

much smaller and simpler than an Oracle database and second is often

the analysis of a PC is searching for images or text. The Oracle database,

although it stores its data in files exactly the same as a PC, is much more

complex.

If an Oracle forensics investigation leads to criminal proceedings, the

evidence must be gathered without distortion or change to the system.

Otherwise, the evidence might not be acceptable for use in court.

 How Does Oracle Function and Store Data?
Understanding how Oracle works is helpful for any future forensic analysis.

This knowledge will allow you to locate evidence or artifacts that are

relevant to any incident response. Figure 1-2 shows a high-level overview

of some of the elements of the Oracle database that are involved with

processing SQL statements. This description is not meant to be a finite

detailed analysis that perhaps would be used in text describing a tuning

problem. The purpose of this description is simply to highlight how Oracle

stores and caches useful pieces of information. Keep in mind the high- level

nature of the description.

Chapter 1 Data BreaCh

21

Figure 1-2 can be read from left to right to show the processing of a

typical user entering data in an application. The data is transported to the

database and used to query or insert information and update data in the

same database.

In this example, the user enters data in the fields of the user

application shown at the top left of Figure 1-2. The application could be

web-based or forms based or indeed any other type of application. In this

example, the web application sends the entered data—perhaps this is a

first name, last name, or a credit card number—through a firewall to an

application server. The application server receives this data and converts it

into a SQL statements. These statements could be SELECT, INSERT, UPDATE,

or DELETE. The statements could also simply concatenate the data received

into the SQL statement or it could use prepared statements or bind

Figure 1-2. High-level view of how Oracle works (c)Copyright 2017.
PeteFinnigan.com Limited. Used with permission.

Chapter 1 Data BreaCh

22

variables. This SQL statement is then sent to the database. The database

receives the statement and does a number of things:

• Oracle will check to see if it has seen the same

statement previously by taking a hash of the SQL text.

The database will store the text of the SQL statement if

it has not seen it before in the SGA.

• Oracle will also parse the SQL statement and create a

binary version ready for execution—again unless it has

seen the statement before, in which case the parsed

statement will already exist. If the statement uses

concatenation then data is also stored in the SGA, for

instance a credit card number. If the statement uses

bind variables then the bind variables are separated

and stored separately in the SGA.

The database will then execute the statement, which involves bringing

blocks of data from the data files into the SGA. Because of the way

Oracle works, it will not bring back a single record that is required for a

SELECT statement, but it may bring back multiple blocks, each of which

may contain hundreds of records. If critical information involved in the

statement is also part of an index column, then index data will also be

read into the SGA. The Oracle database’s ability to be highly available and

highly resilient means that undo and redo are generated. These are also

stored initially in the SGA in a transient way. The redo is also committed

to a redo log file on a periodic basis and also to archive log files. The undo

allows a transaction to be rolled back. The redo allows a record to be

reapplied, such as in the case of a recovery scenario.

The Oracle database is also very heavily instrumented. The database

allows customers to request dumps of data files, the redo log, archive

log, the SGA, and many more elements of the database structure.

Customers also can set events or traces that log actions to the trace file in

Chapter 1 Data BreaCh

23

the event of a certain event happening, perhaps an Oracle error. In some

circumstances, the database may also automatically generate trace files if

an error occurs.

If database auditing is enabled, then this will also record the relevant

actions to an audit log. The audit log can be stored to the database, to the

operating system, or to syslog in 11g and 12c, if mixed mode auditing is

enabled. In 12c, if unified audit is enabled, then the audit trail is written to

the unified audit trail.

The Oracle database may also employ data guard or similar technology

to replicate the database in a real or semi-real mode to another database.

Again, this is for availability and resilience. Finally, the customer could or

indeed should back up the database using Oracle’s RMAN tool or make

cold backups.

This brief description shows that data and actions are replicated

throughout the database. The SQL statements that are issued from an

application are stored as partial text or full text in the SGA as well as bind

variables.

The SGA is transient, so the data held in it is held for a limited amount

of time, but this is not fixed. Statements age out of the SGA depending on

how often they are used, so very frequently used statements stay in the

SGA almost permanently and statements rarely used age out fairly quickly.

Redo logs and archive logs are a useful source of changes that have

occurred in the database both to data and to structure. For instance, when

creating a new PL/SQL procedure. The audit trail is obvious; it should

record an audit record for all of the actions that it has been configured

to capture. Trace files and log files can also contain SQL statements and

data. As databases are replicated, it is also possible that changes can be

extracted at the same time. Copies of databases that are perhaps taken for

use in test and development systems will more than likely be copies on a

less regular basis than replication. For instance, a database may be copied

once a week and replenished in a test system. This means a test system is a

good source for comparison against the production system.

Chapter 1 Data BreaCh

24

This section highlights the fact that Oracle does store evidence of some

actions in different parts of the database log files and these can be very

useful for forensic analysis. This means that an Oracle practitioner who

wants to perform incident response of forensic analysis knowing how the

database works and knowing where it places artifacts is very important.

 Oracle 12c Multitenant
Since Oracle version 12.1.0.1, Oracle has supported a drastically different

architecture. Oracle created the concept of multitenant databases, where a

single root container database can contain multiple pluggable databases.

Since version 12.2.0.1, this concept went even further to allow application

pluggable containers held in an application root. The application root can

be thought of as a pluggable container in the root container and it can

contain any number of application containers, which of course can be

thought of as pluggable containers. This creates a complex hierarchy of

databases.

In simplest terms, each pluggable database is intended to have the

look and feel of a legacy single instance database. So all scripts, tools, and

views in the database should respond in exactly the same way as though

they were a single database.

Oracle still allows a 12c database to be installed in legacy mode; in

other words, a single instance database that could be installed in version

11g. In legacy mode, quite obviously a 12c database has the look and feel

of an 11g database, but this mode was deprecated at the start of 12c. This

means all customers should be moving toward multitenant architecture

with at least a single pluggable tenant.

Multitenant architecture intends to make the database feel the same

as a 11g. Although this is comforting, there is still effectively a second

database to consider for every single pluggable database that is the root

container.

Chapter 1 Data BreaCh

25

Because multitenant architecture shares resources between the root

container and all pluggable containers of tenants, you must consider these

factors in a forensic investigation. In general, Oracle has tried, very well

in fact, to separate resources in the context of the pluggable database.

However, if someone were logged into the root container, they can see

everything across the root container and all the pluggable tenants. This

is either because some privileges and code and views are common or

because someone with access to the root container as a common user can

log into or switch sessions to a pluggable tenant.

As part of forensic analysis of the 12c database that includes

multitenant architecture, you must establish where the breach occurred.

Did it occur in a single pluggable database, were other pluggable databases

in the same container affected, or did the breach occur in the root

container? If the breach occurred in the root container, did the attacker

then access each pluggable container?

The concepts and ideas presented in this book should be considered

as a single tenant level initially. So, in other words, perform the analysis in

the pluggable database or the root container where the breach is known

to have occurred. After standard analysis considering the root container

or the pluggable tenant as a single instance database has been completed,

factor in the multitenant issues that the attacker could have accessed other

tenant databases of the root container itself.

Chapter 1 Data BreaCh

27© Pete Finnigan 2018
P. Finnigan, Oracle Incident Response and Forensics,
https://doi.org/10.1007/978-1-4842-3264-4_2

CHAPTER 2

Artifacts
Many dictionary definitions of artifact state that it is usually something

made by human being and is typically important. An artifact can also be

something observed in science that is not naturally present.

Artifacts and pieces of information that we would like to extract from

the database or the operating system or the web servers or the log files

that will help us understand what may have happened in the database.

Collecting artifacts may alter the database, so we will explore this issue

first before looking at the different types of artifacts that we can collect at

the database level and from outside of the database—the non-database

level. The database level artifacts can be further broken down into two

groups. The first are those that relate to transient data. Oracle caches a lot

of information in its SGA and uses it to maintain the speed, efficiency and

reliability of the database, but this data changes often and fast. The second

type of database artifact are the records stored in the database.

Time and identity are also very important in terms of artifact collection

and forensic analysis. We are interested in time for a number of reasons,

the first being that we need to ensure all the records that contain a

timestamp from different sources are actually all aligned with each other.

Leading on from this we also want to ensure that we can lay out all of

the information we collect in sequential order so that we can see the

actions performed by the attacker in the correct sequence. Identity is also

important, because if we cannot identify who actually performed in action

in the database then we cannot determine easily how the attack played out.

28

Correlation of data is obviously incredibly important, and some elements

when combined may give enough information to tell a story, yet on their

own they have less value.

One of the biggest problems with analyzing an Oracle database for

forensic issues unless audit is enabled is that we cannot detect read

statements easily for the access of any data. If audit is enabled, for instance

for the credit card table, then we can detect reading against the credit card

table, but if audit is not enabled, this becomes incredibly difficult, in fact

almost impossible. In that case, we are relegated to looking for tertiary

evidence of actions the attacker may have taken that relate to his goal of

reading data.

David Litchfield has written much over 10 years ago on the subject of

detecting deleted data in an Oracle database. Most of this research related

to using techniques used by others in tools used to extract data from a

destroyed database many years previous to that. In fact, it’s rare for Oracle

to actually delete any data; it instead marks each record with a single bit

to show that it’s deleted. This data no longer shows up in SQL statements,

but it is still there at the datafile level. A reasonably sound investigation can

use tools provided by the Oracle database to read redo logs or archive logs,

which also contain a record of all changes to the database.

We close the chapter with a brief look at rootkits. These are tools

installed by an attacker to hide his presence and potentially to allow him to

gain access again in the future. A rootkit could hamper an investigation.

 Heisenberg’s Uncertainty Principle of Oracle
Werner Heisenberg was one of the key people involved in the pioneering

of quantum mechanics in the first quarter of the 20th Century. Heisenberg

defined a method to devise quantum mechanics as matrices, he was

awarded the Nobel Prize for physics in 1932 for this. In 1927, while working

Chapter 2 artifaCts

29

at Niels Bohrs research lab, Heisenberg formulated his uncertainty

principle. Heisenberg’s uncertainty principle states:

It is impossible to simultaneously know the exact

position and momentum of a particle. The more

exactly the position of a particle is known, then less

is known of the momentum. The more exactly the

momentum is known, the less exactly the position is

known.

Although an Oracle database does not work at the quantum level, we

have a very similar issue with forensic analysis. Because of the way Oracle

works whenever forensic analysis is performed in general, it will alter the

database. Put simply, almost anything you do to the database changes

the database. The change can vary depending on the action performed.

For instance, selecting data from a table will modify the SGA as the SQL

text, the parsed text, cursors, and many more settings are stored in the

SGA. The database is not static, particularly the transient data such as that

stored in the SGA.

Clearly reading evidence from a compromised database must be done

very carefully and in the correct order so that the database is not modified

in such a way that it would render any further forensic evidence invalid.

The data that is more likely to change must be extracted first. Chapter 4

discusses this in more detail in the “Live Artifact Collection” section.

 Audit Trail or No Audit Trail?
One of the most important artifacts that we want to use in an incident

response and forensic analysis of an Oracle database are audit trail

entries. These entries are specifically set up to capture certain events in

the database; such as adding a user, changing a password, and accessing a

specific table of records in the database.

Chapter 2 artifaCts

30

Even if audit trails are enabled and exist, quite often they will not be

detailed enough or capture the relevant actions to give a very clear picture

of what happened in an attack. Even worse, the problem is that when you

want to investigate why the attack took place, there is inevitably very little

or no audit trail.

The audit trail is very important so if it is available then we can certainly

use elements of it; if not it makes our task much harder. Chapter 6 highlights

the need to design practical and sophisticated audit trails for your database

so that the future incidents audit trails are available and are useful.

Be aware of also testing any existing audit trail as part of an analysis to

make sure that that audit trail has not been altered. This is one of the key

tenets of forensics analysis; the so-called chain of custody. Detecting if

the audit trail has been altered without additional audit is again difficult.

Oracle provides facilities to allow “audits of audits,” which is covered in

Chapter 6.

If there is no audit then it is still possible to rely on redo logs or archive

logs to capture the changes made to the database. If redo or archive logs

are not available then this makes the task much harder. All is not lost, as

there are still some possibilities to capture evidence—tuning views, stats

back, secondary evidence.

Performing forensic analysis is made easier when there is a very

detailed audit trail available that has captured all of the actions performed

by the attacker. Often in the authors experience there is very little audit

trail and it usually does not capture the actions necessary to analyze the

current issue.

 The Problem of Detecting READ
One of the biggest issues for forensic analysis of an Oracle database is that

the database does not normally record read access to anything. In almost

all cases, changes to the database, such as updates, inserts, and deletes

of data including application tables and dictionary tables are recorded.

Chapter 2 artifaCts

31

This is whether the audit trail is enabled or not. Changes are recorded in

redo and archive logs and in some cases changes can be gleaned from

dictionary tables by analyzing the records. If an attack can be detected

while it is ongoing or very soon afterward, then read activity may be visible

in the SGA.

One of the key attacks that we see reported in the national press is data

theft. This is reading of data. This means that one of the biggest groups

of attacks as far as the press is concerned is reading of data. Naturally, we

would like the database to record this read activity, but it doesn’t.

The only way to be sure that access to certain data is captured for

read is to pre-enable audit trails on that data. In reality, even a read based

attack—an attack that steals data—will probably include other elements.

Perhaps the attacker is unskilled and perhaps he uses noisy tools that

generate a web server level in the database level. Even though the specific

read actions are not captured some of the periphery actions will be.

 Identity and Accountability
Analysis of various artifacts in the database or an external log files such as

a web server may provide evidence to prove that the attack occurred but

one additional element is always needed—identity. Without identity there

is no accountability. Without a doubt, identity is one of the most important

elements of the analysis. Each action that is captured must be attributable

to a real person. It may be an individual groups of records cannot be

attributed to a real person but combined with other elements perhaps

they can. For instance a web server log may attribute an IP address with

a real person. The attacker perhaps injects SQL through a web site and

makes a change to the database. The records in the database are attributed

to the user used to connect the application server to the database. If the

end user’s attributes are not transferred into the database, then it’s not

possible to directly attribute an action in the database with a real person.

Chapter 2 artifaCts

32

It is possible, through correlation of records where one set of records can

be directly related to another in a different part of the system, to prove who

actually executed them.

It is important to ensure all artifacts extracted from the database either

have an accountable field included with them, such as a user ID, machine

name, and IP address, or at least they can be linked to additional records

that do include this type of information. Effort must be made during

capture and analysis to think about accountability and identity

 Time
Time comes into play in three different ways:

• Correlation of timestamps across different systems
and targets: It is important to establish a correlation

of timestamps across all the systems that are part of

the analysis. This includes Oracle databases, operating

systems of the servers that support the Oracle database,

web servers, client computers, and more. Often

even in an organization where NTP is used there is

a discrepancy between the timestamps of each of

the machines. Although we may not be working to a

millisecond or microsecond accuracy, one of the goals

of the analysis is to time order all of the artifacts or

records that we are able to extract from the systems

that could be part of the attack. It must be established

if there is a significant time difference between each of

the systems so that all of the time-based artifacts can

be correctly aligned and synchronized. Also ensure

that the wall time (the current time by an accurate wall

clock) is also synchronized with each of the systems.

Chapter 2 artifaCts

33

• Establish the timeslot of the attack: This is very difficult

to do because initially we don’t even know what the

attack looks like or if it really even happened. We need

to establish a start date and an end date for the potential

attack. The end date scenario is now or the time of the

beginning of the analysis of the attack. The start time of

the attack is much harder to establish; in my experience

as the forensic analyst and security auditor, the client

often has a specific point in time when they know an

attack has happened. This is often the appearance of

some of their data that can be proved to have come from

their production database on a public web site such as

Dropbox. But subsequent analysis of the customer’s

database often reveals that the attack occurred or

started much earlier. So in summary, you need to

establish a start date and an end date for the potential

breach but you should be flexible to move the start date

backwards as the analysis progresses.

• Time within the database: There are many Oracle

dictionary views and tables that contain date or

timestamp columns. A naive search of an Oracle

12.2.0.1 database shows 4710 such columns in the data

dictionary owned by SYS. A similar search of other

default users of the Oracle database and of application

tables and views will also reveal many such columns.

Clearly, it’s not possible to search 4,710 dictionary

views in every analysis, as this would be severely

impacting. The existence of so much time-based

data should be noted and can be used as part of any

analysis.

Chapter 2 artifaCts

34

 Database Artifacts
The Oracle data dictionary is complex and large, so is not possible to cover

every possible artifact that could be collected from the data dictionary

as part of forensic analysis. Instead we will focus on high-level groups of

artifacts that can be extracted from the database so that you can use this

information to explore in more depth if necessary. Examples will be given

for each main area where appropriate. You can extend the ideas presented

in the section and extract more or fewer artifacts from the database if

necessary.

Database artifacts are records or information that can be extracted

from within the database that may prove useful as part of forensic analysis.

These will include data that reflects SQL statements, changes to objects,

changes to records, dumps from the database, and many more.

This section discusses the possible artifacts at a high level and in a

general way. Chapter 4 will look at artifact collection again in a specific way

in the discussion around responding to a specific incident. In Chapter 4, we

look to extract artifact details from target database that has been attacked.

Chapter 5 discusses the forensic analysis of the extracted data to try and

establish how the attack took place and as much detail as possible about it.

Chapter 4 also discusses some of the constraints and issues around

artifact collection. The discussion here is more general to give you an

overview of the types of data that could be pulled from the database and

some general examples.

 Tables or Views with SQL
One area of immense interest to a forensic analyst is to establish if any of

the SQL statements that have been issued to the database can be extracted

and used in an investigation. As stated earlier, by default Oracle does not

capture or audit READ or SELECT statements. The only chance you have

Chapter 2 artifaCts

35

to establish evidence of a READ within the database is to look for SQL

statements that can possibly be assigned back to an attacker.

There are many views within the database that include SQL text.

Listing 2-1 shows a simple query against an Oracle 12.2.0.1 database

to locate many of these possible locations. This is a naive search as we

assume that a column in a table or view containing SQL text has the words

SQL and text in its name. If Oracle stores SQL text in a different name

column, this query will not find it; so there may be other tables or views

available.

Listing 2-1. A Simple Query to Locate SQL Text

SQL> select table_name

 2 from dba_tab_columns

 3 where column_name like '%SQL%TEXT%'

 4 and owner='SYS';

TABLE_NAME

--

BOOTSTRAP$

PDB_SYNC_STMT$

JIREFRESHSQL$

SQLTXL_SQL$

SQL$TEXT

PLSCOPE_SQL$

PLSCOPE_SQL$

AUD$

FGA_LOG$

FGA_LOG$

V_$SQL_REDIRECTION

Chapter 2 artifaCts

36

TABLE_NAME

--

V_$SQLAREA

V_$SQLAREA

V_$SQLAREA_PLAN_HASH

V_$SQLAREA_PLAN_HASH

V_$SQLTEXT

V_$SQLTEXT_WITH_NEWLINES

V_$SQL

V_$SQL

V_$OPEN_CURSOR

...

Some of these views of tables are not relevant such as BOOTSTRAP$,

which contains the bootstrap DDL used when the database starts up. This is

not SQL that an attacker has issued. In Oracle 12.2.0.1 locates 125 possible

places that SQL may exist. Early versions of Oracle will return fewer rows.

The key views that we are interested in are VSQL, VSQLAREA,

V$SQLTEXT, and V$SQLTEXT_WITH_NEWLINES. Each of these views has

different structure but clearly references the same data. V$SQL shows all SQL

for all queries that are currently captured in the SGA. V$SQLAREA contains

an aggregate of the previous view. So, for instance, if user U1 has submitted

select * from someview and user U2 has also submitted select * from

someview against the same name view but in his own schema, then V$SQL

will show both SQL statements, but the aggregate will show only one.

Listing 2-2 shows the detail available in this view from one sample record.

Listing 2-2. Details of a Record in V$SQL

SQL> set serveroutput on

SQL> @print 'select * from v$sql'

old 33: --lv_str:=translate('&&1','''','''''');

Chapter 2 artifaCts

www.allitebooks.com

http://www.allitebooks.org

37

new 33: --lv_str:=translate('select * from

v$sql','''','''''');

old 34: print('&&1');

new 34: print('select * from v$sql');

Executing Query [select * from v$sql]

...

SQL_TEXT : select sql_text from v$sqltext

SQL_FULLTEXT : select sql_text from v$sqltext

SQL_ID : chq1fpupm03dw

SHARABLE_MEM : 35575

PERSISTENT_MEM : 4088

RUNTIME_MEM : 2760

SORTS : 0

LOADED_VERSIONS : 1

OPEN_VERSIONS : 0

USERS_OPENING : 0

FETCHES : 7190

EXECUTIONS : 1

PX_SERVERS_EXECUTIONS : 0

END_OF_FETCH_COUNT : 1

USERS_EXECUTING : 0

LOADS : 1

FIRST_LOAD_TIME : 2017-06-07/13:30:51

INVALIDATIONS : 0

PARSE_CALLS : 1

DISK_READS : 0

DIRECT_WRITES : 0

DIRECT_READS : 0

BUFFER_GETS : 6

APPLICATION_WAIT_TIME : 0

CONCURRENCY_WAIT_TIME : 0

Chapter 2 artifaCts

38

CLUSTER_WAIT_TIME : 0

USER_IO_WAIT_TIME : 0

PLSQL_EXEC_TIME : 0

JAVA_EXEC_TIME : 0

ROWS_PROCESSED : 14377

COMMAND_TYPE : 3

OPTIMIZER_MODE : ALL_ROWS

OPTIMIZER_COST : 1

OPTIMIZER_ENV :

E289FB892169B7002D020000AEF9C3E2CFFA331056414555519521105545

55154554555859155544

9665851D5511058555555155515122555415A0EA0C5551454265455454449

081566E001696C6A355

451501025415504416FD557151551555551001550A16214545D1C35444A1

C1101559551025015335

5555555551E91F1411855B0501655D56456140551525645001F9A456016

885A4DD02140808000008

000000400000000400008000000820401F00000000280000800C0004040000

E0E03F0A0000004006

000000140084A4DD02949191090890C908C8000008000C082828141428500

0080000D00700009029

28282890A10F00009001030E0800080000FCFF03001008C80001000100A00

F0000409C0000008000

0028780C200300200000040000409C00000C1000200000042A005A6202A00

F00002C91FDFF0300FC

FF03000040000050801A06009001813801001C0820238FF8FF0300FCF

F030008100001

OPTIMIZER_ENV_HASH_VALUE : 1192275068

PARSING_USER_ID : 0

PARSING_SCHEMA_ID : 0

PARSING_SCHEMA_NAME : SYS

Chapter 2 artifaCts

39

KEPT_VERSIONS : 0

ADDRESS : 0000000061C35670

TYPE_CHK_HEAP : 00

HASH_VALUE : 2872053180

OLD_HASH_VALUE : 2234513503

PLAN_HASH_VALUE : 1787836842

FULL_PLAN_HASH_VALUE : 1586957109

CHILD_NUMBER : 0

SERVICE : orcl.localdomain

SERVICE_HASH : 0

MODULE : sqlplus.exe

MODULE_HASH : 254292535

ACTION :

ACTION_HASH : 0

SERIALIZABLE_ABORTS : 0

OUTLINE_CATEGORY :

CPU_TIME : 35000

ELAPSED_TIME : 224549

OUTLINE_SID :

CHILD_ADDRESS : 0000000080E6D7B0

SQLTYPE : 6

REMOTE : N

OBJECT_STATUS : VALID

LITERAL_HASH_VALUE : 0

LAST_LOAD_TIME : 2017-06-07/13:30:51

IS_OBSOLETE : N

IS_BIND_SENSITIVE : N

IS_BIND_AWARE : N

IS_SHAREABLE : Y

CHILD_LATCH : 0

SQL_PROFILE :

Chapter 2 artifaCts

40

SQL_PATCH :

SQL_PLAN_BASELINE :

PROGRAM_ID : 0

PROGRAM_LINE# : 0

EXACT_MATCHING_SIGNATURE : 17475387565425291141

FORCE_MATCHING_SIGNATURE : 17475387565425291141

LAST_ACTIVE_TIME : 20170607133115

BIND_DATA :

TYPECHECK_MEM : 0

IO_CELL_OFFLOAD_ELIGIBLE_BYTES: 0

IO_INTERCONNECT_BYTES : 0

PHYSICAL_READ_REQUESTS : 0

PHYSICAL_READ_BYTES : 0

PHYSICAL_WRITE_REQUESTS : 0

PHYSICAL_WRITE_BYTES : 0

OPTIMIZED_PHY_READ_REQUESTS : 0

LOCKED_TOTAL : 1

PINNED_TOTAL : 2

IO_CELL_UNCOMPRESSED_BYTES : 0

IO_CELL_OFFLOAD_RETURNED_BYTES: 0

CON_ID : 0

IS_REOPTIMIZABLE : N

IS_RESOLVED_ADAPTIVE_PLAN :

IM_SCANS : 0

IM_SCAN_BYTES_UNCOMPRESSED : 0

IM_SCAN_BYTES_INMEMORY : 0

DDL_NO_INVALIDATE : N

IS_ROLLING_INVALID : N

IS_ROLLING_REFRESH_INVALID : N ...

This view also shows a lot of relevant details of the SQL being executed

such as the last date it was active. We can gain knowledge of the user

Chapter 2 artifaCts

41

who executed and parsed the query. Be careful with this, as some SQL

is executed in the background as SYS when other SQL is executed. The

output shows the last time the SQL statement was used, the last time it

was loaded (presumably into the SQL virtual machine), and the program

used—sqlplus.exe. It shows the first time it was loaded and how many

times it was loaded. Most importantly, it shows the actual SQL.

The disadvantage of the SGA is that a database restart flushes it, and

a manual shared pool flush will also remove evidence. The data is very

transient in that there are limited rows of data available and the space is

reused by Oracle fairly quickly.

A number of the views returned in Listing 2-2 are for tuning and

diagnostic pack related data. Be aware that accessing these views requires

an additional license.

 Tables or Views with Bind Data
A number of tables or views in the database also hold bind data. Bind data

is the data entered by an end user that is bound to an SQL statement, such

as select * from sometable where name=:name, where :name is a bind

variable and its contents are replaced by data entered at execution time.

A simple query such as select table_name from dba_tab_columns

where column_name like '%BIND%' and owner='SYS'; and select

view_name from dba_views where view_name like '%BIND%' will show

tables and views in the database that possibly contain bind data.

One of the views of particular interest returned from these queries is

V$SQL_BIND_CAPTURE. Listing 2-3 shows sample output from this view.

Listing 2-3. Sample Output from v$sql_bind_capture

SQL> col sql_id for 999999

SQL> col datatype for 99

SQL> col last_captured for a14

SQL> col value_string for a100

Chapter 2 artifaCts

42

SQL> set lines 220

SQL> select sql_id,datatype,last_captured,value_string

 2 from v$sql_bind_capture;

SQL_ID DATATYPE LAST_CAPTURED VALUE_STRING

------------- -------- -------------- -------------------------

2wdrw5tqputaq 2 20170607012844 75970

crmdt678jathx 1 20170607002834 NULL

crmdt678jathx 1 20170607002834 SYS

crmdt678jathx 1 20170607002834 WRI$_HEATMAP_TOP_TABLESPACES

crmdt678jathx 1 20170607002834 NULL

crmdt678jathx 1 20170607002834 SYS

crmdt678jathx 1 20170607002834 WRI$_HEATMAP_TOP_TABLESPACES

crmdt678jathx 1 20170607013846 NULL

crmdt678jathx 1 20170607013846 SYS

crmdt678jathx 1 20170607013846 WRI$_HEATMAP_TOP_TABLESPACES

crmdt678jathx 1 20170607013846 NULL

...

Note that bind data available on this view could be stored as text or it

could be stored as the Oracle ANYDATA value that’s not shown here. If bind

data of interest is located with this view, then the analyst should try to link

the SQL ID or hash with all the records in the database to try to establish

where the bind data was used.

 Tables or Views with Timestamps
The Oracle data dictionary is huge and complex and many of its tables and

views include columns that record date or timestamp records. Any of these

records can potentially be useful in a forensic analysis. Listing 2-4 shows

a simplistic search of the database for any table or view that has a column

that is a date or timestamp.

Chapter 2 artifaCts

43

Listing 2-4. A Search for Time and Date Stamps in the Database

SQL> col owner for a20

SQL> col table_name for a30

SQL> col column_name for a30

SQL> col data_type for a30

SQL> set lines 220

SQL> select owner,table_name,column_name,data_type

 2 from dba_tab_columns

 3 where data_type='DATE' or data_type like 'TIMESTAMP%';

...

SYS USER_USERS LOCK_DATE DATE

SYS USER_USERS EXPIRY_DATE DATE

SYS USER_USERS CREATED DATE

SYS DBA_USERS LOCK_DATE DATE

SYS DBA_USERS EXPIRY_DATE DATE

SYS DBA_USERS CREATED DATE

SYS DBA_USERS LAST_LOGIN TIMESTAMP(9) WITH TIME ZONE

SYS CDB_USERS LOCK_DATE DATE

SYS CDB_USERS EXPIRY_DATE DATE

SYS CDB_USERS CREATED DATE

OWNER TABLE_NAME COLUMN_NAME DATA_TYPE

------ ------------- ------------- ---------------------------

SYS CDB_USERS LAST_LOGIN TIMESTAMP(9) WITH TIME ZONE

...

4848 rows selected.

SQL>

This query in Oracle 12.2.0.1 returns almost 5,000 individual columns

that may contain time information. Using timestamps on the object that

you are investigating, for instance user accounts or procedures, is very

Chapter 2 artifaCts

44

useful on two levels. First, the creation or update of a particular object can

be confirmed to have occurred during the known timescale of the attack.

Second, if some piece of evidence is found that can be attributed to the

attacker, then all other objects in the database that could potentially be

involved can also be linked by testing the timestamp audit columns to see

if any change or insertion of records occurred during the same timeframe

or even at the same timestamp.

Using timestamps to create a timeline of events is one of the core

tenets of forensics analysis.

A timestamp or a date column is unfortunately not going to be useful

if the action by the attacker was deletion. Different techniques, such

as looking for deleted data in a datafile using redo log analysis, may be

helpful in this case.

 Privilege Changes
A key indication of part of an attack may be changes to privileges within

the database. An attacker may seek to grant himself membership of

powerful roles or may seek to grant himself system privileges or object

privileges (grants to execute procedures or grants to select from tables for

instance).

Detecting these actions at a high level in the database is harder

because none of the key views that store information of privileges such as:

DBA_TAB_PRIVS

DBA_SYS_PRIVS

DBA_ROLE_PRIVS

And even the base table

SYS.SYSAUTH$

Chapter 2 artifaCts

45

Include any date or timestamp columns. The change to privilege in the

Oracle database is therefore not natively captured as a timestamp. There

are still methods to obtain changes to privilege. One method would be to

use the flashback functionality, if enabled in the database, and compare

the current privileges to those of a time in the past. The time in the past

should initially be just before the start of the attack, as this will confirm if

any additional privileges were added during the attack that haven’t been

deleted. More detailed checks can be made throughout the attack with a

comparison to the current time to try to detect if any privileges were added

and then removed during the attack.

If test systems exist that are populated from the production database, a

comparison can also be made between those test systems and the current

state of the production system that was attacked.

The analyst can also look at the system tablespace datafile for deleted

records that relate to the SYS.SYSAUTH$ table to see if any privilege records

were removed. A cursory check against the three main views can be

made simply by listing the contents of these reviews and checking for any

privileges that do not look consistent with the normal operation of the

database.

Finally, LogMiner could also be used to analyze redo changes.

 Changes to Security
An attacker may also attempt to modify any security controls that you

enabled in your database. This could include hardening elements such as

database initialization parameters. It can also include data access controls,

user privilege controls, or password management. Changes to security can

also include attempts to modify context-based security. Context-based

security is where security is enabled based on the current situation of the

logged-in user. This is popular with Oracle additional cost options such as

Virtual Private database, Oracle label security, and database vault. These

tools depend on session data such as the logged in user, the terminal used,

Chapter 2 artifaCts

46

the position the user is currently in an application, and many more. An

attacker may attempt to modify the source of the context data to bypass

context-based security tools such as these.

Detecting changes to the current database security made by an

attacker can be complex because in general security for each database will

be different across many vertical channels or individual niche businesses.

The security of the database quite obviously depends on what the

organization has implemented.

The best way to detect any change to the database security would be

to compare the security audit of a known good database with that of the

breached database. Commercial scanning tools such as PFCLScan can be

easily used to perform such scans. Any differences in the security located

between two databases may not be due to an attacker, but may simply

be that the security has not been applied consistently in the first place.

A difference in the security should be used as a basis to then investigate

further. The changes in the security are likely to fall into a number of

categories. These include grants to objects, grants of privileges, grants of

roles, parameter changes, and setting changes within the database. Once

the actual difference is isolated then individual investigations can be

made to try to ascertain when the change was made and by who and how.

Similar techniques to last section can be used to do this.

 Object Changes
Detecting changes to objects in the database such as tables, views, or

procedures is slightly better than detecting changes to privileges described

earlier in this chapter. This is because the base storage for objects in the

database also includes date and timestamp columns. These columns can

be used to locate any object that has been added to the database and any

changes made to an existing object in the database. This will not include

the deletion of an object, as it will no longer exist in the base table.

Chapter 2 artifaCts

47

Deleted objects can again be located by analyzing the system

tablespace datafile for deleted records or use of LogMiner can be made

to find the changes that deleted an object such as a procedure. A further

method can be used to infer deleted objects, which involves looking for

missing object IDs or rowids. This could be a simple first step before

resorting to mining redo logs or analyzing system tablespace files.

Further evidence may be obtained from audit trails or from the SQL in

the SGA. Figure 2-1 shows a detailed data extract from the object table in

the data dictionary.

Figure 2-1. Detailed data extract from the object table in the data
dictionary

There are three main date fields in this table. CTIME is the creation time

of the object in the database. STIME is the last load time of the object into

the database. MTIME is the last time the object was compiled. When a new

object is added to the database such as a PL/SQL procedure then all three-

time fields are set. When an object is reloaded to the database, for example

by running a script with create or replace in it, then the STIME timestamp

is changed because the object is reloaded and the MTIME timestamp is

changed because the object is recompiled. If the object is just compiled with

the ALTER...COMPILE syntax, then just the MTIME timestamp is changed.

Chapter 2 artifaCts

48

 Redo Based
Oracle stores redo logs on the database server usually in a multiplexed

manner. The redo logs contain a binary representation of all the changes

that have been applied to the database during the period of the redo log.

The redo log is a fixed size and its space is reused by a circular buffer stored

in memory in the SGA. The Oracle database decides when to commit the

circular buffer to the redo log for more permanent storage. The redo log

itself is not permanent as it is overwritten. The length of time that data will

stay in a redo log is dependent on the size of the database, the size of the

redo log, and the amount of activity on the database.

If archive logging is enabled, then the redo logs are also periodically

written to archive logs. These archive logs contain a complete history of

changes to the database since logging began. The archive logs and redo

logs’ purpose is to enable point-in-time recovery of the database to reapply

changes made by end users automatically by use of the binary history in

the redo log.

Other tools exist to mine redo logs or to manipulate redo logs. Oracle

CDC, Streams, and Goldengate can be used to process redo logs in various

ways, primarily in the area of reapplying particular changes to another

database.

Oracle also provides a tool called LogMiner, which is a PL/SQL

package that allows mining of the redo logs to take place. There are also

third- party libraries available on the Internet written in C such as Zizzy

that allow redo logs to be mined from C programs.

Mining blocks and redo is time consuming and error prone as it’s

not consistent in all commands. If the database is large and there is an

enormous amount of activity in the timestamp you want to investigate, you

must enable the location of the correct archive log redo log in advance.

Chapter 2 artifaCts

49

LogMiner can be used to track any DML or DDL statements executed

against the database. Because of the logical way that redo is stored, all of

these actions will be in the correct order.

Redo analysis should be a later step, because it is more complex to

locate and mine the redo logs than it is to start with simple artifacts from

the database servers.

 ID Based Searches
An alternative approach to locating deleted data is to use an ID based

search. A lot of tables in the Oracle data dictionary and in application

tables will invariably have a database column that is some form of

ID. Quite often the ID is generated sequentially. One approach to locate

deleted data without resorting to log mining or analyzing database

datafiles is to first look for gaps in IDs. Listing 2-5 shows a simple example

in an Oracle 12.2.0.1 database where a user has been deleted from the

database.

Listing 2-5. Examples Locating a Deleted User by Inference

SQL> col user# for 999999999999

SQL> col name for a30

SQL> col ctime for a14

SQL> col ptime for a14

SQL> col type for a4

SQL> set lines 220

SQL> select user#,name,decode(type#,0,'ROLE',1,'USER')

type,ctime,ptime

 2 from sys.user$

 3 order by user#

 4 /

Chapter 2 artifaCts

50

 USER# NAME TYPE CTIME PTIME

------- ------------- ---- -------------- --------------

 0 SYS USER 20170126135325 20170429173751

 1 PUBLIC ROLE 20170126135325

 2 CONNECT ROLE 20170126135325

...

 113 PETE7 USER 20170607174845 20170607174845

 114 PETE8 USER 20170607174902 20170607174902

 116 PETE9 USER 20170607174922 20170607174922

 117 _NEXT_USER ROLE 20170126135325

...

It is clear from this example that there is a user ID missing from the

user$ table. This is ID 115. We can assess when this user was added and

deleted by looking at the timestamps of users 114 and 116. Logically, the

user that has been deleted must been created after 17:49:02 on 7 June 2017.

Determining when it was deleted is harder. Clearly, it was deleted after its

creation time and before now. But there is no way to know exactly when it

was deleted, because it could have been deleted two seconds after it was

created or it could have been deleted two minutes before the review of the

table just now.

Further analysis could take place to look for the deleted record in the

system tablespace datafile or by using LogMiner.

A further example shown in Figure 2-2 is based on one of the first

Oracle forensic pieces work I did approximately 14 years ago. The initial

hook into the investigation was to analyze the audit trail listed by date

and then listed by rowid. This was done by loading the audit trail from the

target system into another local database so that multiple queries could be

run against it without changing the audit trail. If the audit trail was ordered

by rowid then rowids were missing and some dates were out of sequence.

If, on the other hand, the audit trails were ordered by date, then the rowids

were out of sequence. The conclusion from this was the records had been

Chapter 2 artifaCts

51

deleted from this table and some records have been modified to change

their entries and dates. Further analysis using LogMiner confirmed this.

Figure 2-2. A simple example showing detection of deleted data by
missing rowid (c) Copyright PeteFinnigan.co Ltd, used with permission

 Applications Data
Similar to looking for missing IDs in user$ presented in the last section,

the same approach can be made with application data. Application data

often uses sequences when records are generated and added to a table.

Similar checks can be made in specific circumstances for missing records.

The applications table also often contain other useful data such as audit,

user details, and timestamps that can also be used to isolate actions and by

whom when an attacker has accessed data in the application.

Some applications, such as the E-Business Suite from Oracle, include

specific columns in most tables that record the last user that changed the

records in the table and when. They also often include who created the

record and when.

Chapter 2 artifaCts

52

The specifics of the structure of these tables and usage in forensics

is going to be very specific to each investigation. Keep in mind the

 application tables can often keep track of what users have done throughout

the application suite, which could be useful.

 Internals
Oracle has limited internal tables that may also be useful for forensic

analysis. The three most common ones are discussed here:

• v$db_object_cache: This displays database objects

that are cached in the library cache. Different types

of records exist in this view. The type of record is

distinguished by the namespace column. This includes

objects, code, SQL via cursors, and more. Not all of

the details in this view survive the database stop and

restart, but some do. Even in a busy database, I have

seen records from months previous. Figure 2-3 shows

sample output from this view.

Figure 2-3. Example output from the library cache.
Copyright (c) PeteFinnigan.com Limited. Used with permission.

Chapter 2 artifaCts

53

• col_usage$: The Oracle optimizer, when a query is

parsed, decides on the best and most efficient options

to use when executing the SQL. As part of this process,

the optimizer stores details of database table columns

that are accessed in a predicate (a where clause). This

table can be useful in determining if an attacker has

accessed a particular table in a select query. A record

in this table will be transient as Oracle reuses the space.

An entry will only appear if the query included a where

clause. Listing 2-6 shows a sample session to create an

entry in col_usage$. First we extract the object ID for

the USER$ table and the column ID for the NAME column.

We then query the USER$ table using a LIKE predicate.

And finally we query the COL_USAGE$ table to show the

entry. This information is clearly circumstantial. The

number of types of predicates that have been used

against the particular table are just updated. The only

thing of use is the timestamp to know when the table

was last accessed. The table such as USER$ is a bad

example because almost every query in the database

accesses this table to check permissions. If we were

trying to find whether a particular application table had

been accessed, then this would likely yield better results.

Listing 2-6. Queries Visible in col_usage$

SQL> select object_id from dba_objects where object_name='USER$';

 OBJECT_ID

 22

...

Chapter 2 artifaCts

54

SQL> col column_id for 999

SQL> col column_name for a30

SQL> l

 1 select column_id, column_name from dba_tab_columns

 2* where table_name='USER$'

SQL> /

COLUMN_ID COLUMN_NAME

--------- ------------------------------

 1 USER#

 2 NAME

 3 TYPE#

 4 PASSWORD

 5 DATATS#

...

SQL> select password from sys.user$ where name like 'SYSTE%';

PASSWORD

SQL>

...

SQL> @print 'select * from col_usage$ where obj#=22 and

intcol#=2'

old 33: --lv_str:=translate('&&1','''','''''');

new 33: --lv_str:=translate('select * from col_usage$

where obj#=22 and intcol#=2','''','''''');

old 34: print('&&1');

new 34: print('select * from col_usage$ where obj#=22

and intcol#=2');

Executing Query [select * from col_usage$ where obj#=22 and

intcol#=2]

OBJ# : 22

Chapter 2 artifaCts

55

INTCOL# : 2

EQUALITY_PREDS : 341

EQUIJOIN_PREDS : 83

NONEQUIJOIN_PREDS : 0

RANGE_PREDS : 0

LIKE_PREDS : 9

NULL_PREDS : 64

TIMESTAMP : 20170607183634

FLAGS : 16

PL/SQL procedure successfully completed.

SQL>

• mon_mods$, mon_mods_all$, dba_tab_modifications,

all_tab_modifications, and user_tab_moldifications:

These tables and views record changes that are

been made to a particular table that was monitored.

Timestamps as well as statistics are also available in

these tables. Again, although these views and tables

will show a very high-level picture as to the last access

to a particular table (if it is being monitored), they

will not give the detail of exactly when something

happened and who did it. It could be a useful starting

point though.

 Flashback and Recycle
Flashback is an extremely useful feature of the database that allows

individual objects or even a complete database to be flashed back in time.

If flashback is enabled, then a flashback query can be used to compare

data in the past with current data. This is useful to look for data or objects

Chapter 2 artifaCts

56

that have changed, added, or deleted recently. You can check if flashback is

enabled with the following query:

SQL> select flashback_on from v$database;

FLASHBACK_ON

NO

SQL>

The Oracle recycle bin is also useful in forensic analysis. If an attacker

dropped an object and he doesn’t understand the recycle bin, the object

that he dropped may be still in the recycle bin. Checking if the recycle bin

is on can be done with this command:

SQL> sho parameter recyclebin

NAME TYPE VALUE

------------------------------------ ----------- --------------

recyclebin string on

SQL>

To see the contents of the recycle bin, issue the following command:

SQL> show recyclebin

The recycle bin carries useful source data of objects that may have

been dropped.

 Database Audit
The Oracle database provides a number of different audit trail solutions.

The core audit solution writes audit records to SYS.AUD$ and must be

enabled with an initialization parameter to allow writing to this table.

Individual audit commands must then be issued to audit privileges,

Chapter 2 artifaCts

57

statements, and object access. The core audit is still available in Oracle 12c

but Oracle 12c also now provides a new audit solution called unified audit.

This is not really completely new, as it still uses the same features as a core

audit but now from within policies and a read-only audit trail. If unified

audit is enabled in pure mode, then core auditing no longer works. Core

auditing also supports writing the audit trail to the operating system as text

files or XML and the possibility to syslog.

There are other audit trail opportunities within the database, including

the audit of superuser privileges to trace files on the operating system

and fine-grained auditing in the enterprise edition of Oracle. Some of

the other components installed in the Oracle database (usually cost

options), including database vault, have their own audit trail. Some

of the components such as RMAN and can generate their own audit.

Other tools, such as BI, also have their own audit trails. Oracle’s product

E-Business Suite also has comprehensive auditing built in. Products such

as E-Business Suite allow row-level auditing using triggers.

Customers have often developed and built their own audit trail

solutions, sometimes using Oracle features and sometimes using triggers.

There is also a possibility to use system triggers to audit almost 50 different

actions in a 12c database, including logon, log off, start-up, shutdown,

DDL, errors, and much more.

It is possible to correlate across most audit trails and the database

sessions. Oracle maintains a common ID for audit records that can be

linked to the session ID and the ID used in fine-grained auditing. The only

flaw with this is that there does not seem to be a way to link unified audit

with the traditional core audit. This can be solved quite easily with use of a

logon trigger that stores the link between the two.

If auditing is enabled in the database, that is to be investigated. The

first step is to understand all of the audit settings that have been enabled

for core audit, unified audit, application audit, fine-grained audit, and

more. Once the range of audit settings is known, the trails can be targeted

and used in the investigation.

Chapter 2 artifaCts

58

 Database Dumps
Oracle allows almost every component of its structure to be dumped to

trace file. This includes many areas of the SGA, datafiles, redo logs, control

files, and much more. Oracle has very comprehensive instrumentation that

allows many elements of its functionality to be traced and generate trace

files. Even the complete SGA can be dumped to a text file for later analysis,

which can be useful for forensics. Individual areas of the SGA, such as the

library cache, can be dumped separately. Listing 2-7 shows how to dump

the library cache to the trace file.

Listing 2-7. Dumping the Library Cache to Show a Password Change

SQL> alter session set events 'immediate trace name library_

cache level 10';

Session altered

SQL>

Figure 2-4 shows the results of this dump command. Internal details of

the library cache are revealed as well as the actual DDL that was issued to

change the system password.

Chapter 2 artifaCts

59

Oracle has many interfaces to allow trace to be set. This includes

packages such as DBMS_SYSTEM, DBMS_MONITOR, the oradebug tool,

and various ALTER SYSTEM and ALTER SESSION commands. Dumping

something from a compromised database should be considered carefully.

Dumping the SGA will generate an enormous text file and impact the

SGA slightly. There are no standard tools available to review trace files

or dumps that have been created. There are trace files analyzer tools

for standard SQL trace but these are not useful for forensics unless the

attacker accessed with some SQL trace enabled.

Consider all the different possibilities of dumping, particularly the

ability to dump specific data blocks from a file. The one flaw with this is

that the standard trace file does not include the deleted data.

Figure 2-4. A library cache dump (c) Copyright PeteFinnigan.com
Limited. Used with permission.

Chapter 2 artifaCts

60

 Rounding Up
This section showed a flavor of possible areas to extract forensic

information from the Oracle database. Explore these and all of their

nuances. For instance, for extracting SQL, there are over 100 tables

and views that can potentially hold SQL statements. There is a massive

opportunity for locating forensic data in an Oracle database even if audit

trails are not enabled.

 Non-Database Artifacts
Even though some of the artifacts listed in this section are effectively part

of the Oracle database, they fit better in this section, as they are not true

database artifacts since they are not actually in the database. Any forensic

investigation of an Oracle database should not just focus on the database.

The database does not run in isolation; it runs on a Windows server or a

Unix type server in general. Therefore, there are database artifacts that can

be collected from the file system of the operating system, such as the logs

from the database and logs and other information from the server.

This section discusses some of these artifacts and how they might be

useful during forensic analysis.

 Webserver Logs
The logs that are available depend on the actual web server that is being

used. There can also be application server logs that may prove useful.

In general, a web-based application will receive data from an end user

through a web form and an application server will convert this into a SQL

statements that are sent to the database. Sometimes there is a separate

application server that does this work and sometimes it’s a plugin to the

web server.

Chapter 2 artifaCts

61

Most web servers, such as Apache or IIS, have very similar log file

formats. There is usually an access log and an error log. We are interested

in the error log particularly during the time scale of the attack because if

an attacker is attempting to connect to the database via something like

SQL injection, then it’s likely the errors are going to be generated and

some of those will end up in the error log for the web server. If the attacker

succeeds in connecting to the database via the web site then there can also

be entries in the access log that are attributable to the attacker. That’s why

we’re very interested in the access log as well.

Web server logs follow a standard format so it’s easy to understand and

deal with. Some tools are available to parse web server logs but generally

these are related to web site statistics and access patterns. Some of the

major log repository software such as Splunk support transfer storage and

reporting on web server logs. Listing 2-8 shows a small amount of output

from a typical Apache error log. This output may or may not be attributed

to an attack. There is very little to go on.

Listing 2-8. Typical Output from an Apache Error Log

[root@oel59orablog logs]# tail -f error_log

 [Fri Jun 02 23:55:19 2017] [error] [client 192.168.1.56] File

does not exist: /usr/local/apache2/htdocs/favicon.ico

[Sat Jun 03 00:10:33 2017] [error] [client 192.168.1.56] File

does not exist: /usr/local/apache2/htdocs/favicon.ico

[Sat Jun 03 00:18:32 2017] [error] [client 192.168.1.56] File

does not exist: /usr/local/apache2/htdocs/browserconfig.xml

[Sat Jun 03 00:23:50 2017] [error] [client 192.168.1.56] File

does not exist: /usr/local/apache2/htdocs/browserconfig.xml

Listing 2-9 shows a sample of output from an Apache access log. In this

case, the output is very telling as it shows probable SQL injection against

the database that supports the web site.

Chapter 2 artifaCts

62

Listing 2-9. Sample Apache Access Log Showing SQL Injection

[root@oel59orablog logs]# tail -f access_log

192.168.1.56 - - [03/Jun/2017:01:54:16 +0100] "GET /index.php?s

=x%25%27%29%29%29%29a%29%2F**%2Funion%2F**%2Fselect%2F**%2F33%2

C1%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2Ctable_name%2C%27x%27%2C0%2Cnull%2C%27publish%27

%2C%27open%27%2C%27open%27%2Cnull%2C%27name%27%2Cnull%2Cnull%2

Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-OCT-

13%27%29%2Cnull%2C0%2Cnull%2C0%2Cnull%2Cnull%2C0%2C6%2F**%2Ffro

m%2F**%2Fuser_tables-- HTTP/1.1" 200 17549

192.168.1.56 - - [03/Jun/2017:01:54:38 +0100] "GET /wp-login.

php HTTP/1.1" 200 1464

192.168.1.56 - - [03/Jun/2017:01:54:44 +0100] "POST /wp-login.

php HTTP/1.1" 200 1806

192.168.1.56 - - [03/Jun/2017:01:56:19 +0100] "GET /index.php?s

=x%25%27%29%29%29%29a%29%2F**%2Funion%2F**%2Fselect%2F**%2F33%2

C1%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2C%27CardNumber-%27%7C%7Cname_on_card%7C%7C%27-

%27%7C%7Cbof_kkrc.dr%28cc34%29%2C%27x%27%2C0%2Cnull%2C%27publis

h%27%2C%27open%27%2C%27open%27%2Cnull%2C%27name%27%2Cnull%2Cnu

ll%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2Cnull%2C0%2Cnull%2C0%2Cnull%2Cnull%2C0%2C6%2F**%2

Ffrom%2F**%2Forablog.bof_pay_details-- HTTP/1.1" 200 5367

SQL Injection attempts in this logger are very clear because of the

PL/SQL comment visible at the end of the URL. Also the URL does not look

like the earlier entries where someone has attempted to get to the login

page; they are very simple and clean URLs. The other URLs are clearly SQL.

Chapter 2 artifaCts

63

 Application Logs
If the application runs on a server, then be sure to access the logs that

relate to the application. These can prove useful in the analysis. The exact

location of these logs and their format and the contents are unknown

in advance. If the application runs locally on a PC, then the logs can be

requested for the application but only for the PC that indicates where the

attack came from. This requires further investigation to try to establish

where the attacker is located and if the attacker is using an application that

you have access to.

If the attack is remote and not an employee of the company, then this

is not possible. Applications often generate external files such text-based or

binary-based reports and sometimes there are data dumps written to the

operating system of the application server. If necessary, request any files

created during the time period of the attack from the application server.

 Operating System Audit
Most modern operating systems support audit trails. This is true of

Windows, Linux, and Solaris. As part of the analysis, establish if auditing

is enabled on the server. If auditing is enabled then request the audit logs

from the server. These can be used to correlate with the time period of the

attack to assess if the attacker was able to access the operating system from

the database. If the attacker actually gained access to the database from

the operating system in the first place, then these logs are also important.

Different operating systems support completely different types of audit

trails; therefore, establish which operating system is supporting the

database and the possible audit solutions that may be present.

On a Linux operating system also request or obtain all the messages

for security, log in, etc. Also on a Unix operating system, request or obtain

the history files from every user’s shell account. This will give you an

indication as to whether anyone accessed the database directly or another

Chapter 2 artifaCts

64

database on another server from the breached server. Again this may give

you an indication if the attacker was able to access the operating system

from the database.

 TNS Listener Logs
The database listener may be set up to run on the database server or it

could be on a remote server, particularly when RAC is used and enabled.

In fact, there may be multiple listeners in a RAC environment. For each

database listener, establish the location of the log file. This can be found

from the listener.ora file and by using a status command within the

listener. A sample status command is shown in Listing 2-10.

Listing 2-10. A Sample Listener Status Command

LSNRCTL> status

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=oel7.

localdomain)(PORT=1539)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version

12.2.0.1.0 - Production

Start Date 02-JUN-2017 10:39:51

Uptime 5 days 10 hr. 8 min. 55 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File /u01/app/oracle/product/12.2.0/

dbhome_1/network/admin/listener.ora

Listener Log File /u01/app/oracle/diag/tnslsnr/oel7/

listener/alert/log.xml

Chapter 2 artifaCts

65

Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oel7.localdomain)

(PORT=1539)))

 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=oel7.localdomain)

(PORT=5500))(Security=(my_wallet_directory=/u01/app/oracle/

admin/orcl/xdb_wallet))(Presentation=HTTP)(Session=RAW))

Services Summary...

Service "orcl.localdomain" has 1 instance(s).

 Instance "orcl", status READY, has 1 handler(s) for this

service...

Service "orclXDB.localdomain" has 1 instance(s).

 Instance "orcl", status READY, has 1 handler(s) for this

service...

The command completed successfully

The log file location is visible in the header of the status command. This

log file can then be located on the operating system and its contents can be

used as part of a forensic investigation. The log file shows details of every

connection to the database. The log file can be summarized to establish

high-level counts of connections from the IP address, the terminal, users,

and more. The listener log file is the only place where the full path to the

program used to make the connection to the database is visible. Listing 2-11

shows a sample entry from an Oracle 12.2.0.1 listener log file.

Listing 2-11. Sample Contents of a Listener Log File

...

<msg time='2017-06-07T19:05:41.460+01:00' org_id='oracle'

comp_id='tnslsnr'

 type='UNKNOWN' level='16' host_id='oel7.localdomain'

 host_addr='192.168.1.95' pid='2991'>

Chapter 2 artifaCts

66

 <txt>07-JUN-2017 19:05:41 * (CONNECT_DATA=(SERVICE_NAME=orcl.

localdomain)(CID=(PROGRAM=C:_aa\PB\bin\sqlplus.exe)

(HOST=HACKER-DEV)(USER=Pete))) * (ADDRESS=(PROTOCOL=tcp)

(HOST=192.168.1.56)(PORT=62829)) * establish * orcl.localdomain

* 0

 </txt>

</msg>

...

Arup Nanda wrote a great three-part paper on mining information

from the Oracle listener log. This is available from http://www.dbazine.

com/oracle/or-articles/nanda14.

 SQL*Net Trace
SQL*Net log files and trace files can be generated on the database server

or client PCs. These are unlikely to relate to an attack unless the DBA

has enabled SQL*Net logging automatically on the server. Any log file

generated on the client PC can be accessed but doesn’t provide much

value. SQL*Net trace, if set to level 16 or support level, will include network

packet contents.

For completeness, search the server for any log or trace files and check

if they occur during the period of the attack. However, it is unlikely the

hacker would generate logs files for his own activities.

 SYSDBA Audit Trace Files and Logs
There are three levels of audit within the traditional Oracle database audit

system. The first is the audit trail that is generated by settings enabled in

the database, where this audit trail is written to the database, to operating

system files, or to syslog. The second is SYSDBA auditing, which is enabled

when the initialization parameter audit_sys_operations=true. If this

Chapter 2 artifaCts

http://www.dbazine.com/oracle/or-articles/nanda14
http://www.dbazine.com/oracle/or-articles/nanda14

67

is enabled, then all top-level actions as SYSDBA and SYSOPER are logged

to trace files that are located on the server and pointed out by the

 initialization parameter audit_file_dest. Finally, there is mandatory

audit. This is the audit that generated when anyone makes a connection as

SYSDBA or SYSOPER. This audit also captures startup, shutdown, and basic

recovery details. The mandatory audit cannot be disabled. The previous

two audits for SYSDBA and standard database auditing can of course be

disabled.

The mandatory audit and the SYSDBA audit when written to trace

files causes a lot of files to be created. Each process that is running in the

database has a separate PID and each process generates its own audit trace

file. If a process starts and there is already an audit trace file for the same

PID, then the new audit records are appended to that same file. If a process

starts and there is no trace file for the PID then a new file is created and the

audit records are written to. This can quickly generate thousands of audit

trace files, which become difficult to manage and difficult to analyze. There

are no standard tools to aid in this process. There is a view in the database

called V$XML_AUDIT_TRAIL that allows these trace files to be viewed with

SQL, but only if SYSDBA auditing is enabled and the audit trail is set to be

generated as XML. There are also a lot of bugs in this functionality, making

it unreliable.

Simple grep commands can be used to analyze these trace files. These

can be used to locate all the different database users, operating system

users, terminals, programs, and actions that have been used against the

database. Of course, some of these include SQL. The audit settings can be

seen in Listing 2-12.

Chapter 2 artifaCts

68

Listing 2-12. The Audit Trail Settings in the Database

SQL> show parameter aud

NAME TYPE VALUE

---------------------- -------- ------------------------------

audit_file_dest string /u01/app/oracle/admin/orcl/

adump

audit_sys_operations boolean TRUE

audit_syslog_level string

audit_trail string DB

There are currently 426 such trace files on my Oracle 12.2.0.1 database

server:

[oracle@oel7 adump]$ ls -al | wc -l

426

[oracle@oel7 adump]$

Sample contents of one trace file are shown in Listing 2-13. Trace

file includes high-level information such as the database version of the

operating system platform, but very little to allow correlation with other

forensic sources. The two values that are of use are the Unix PID and the

Oracle process number, as these can be matched to values in the database

session.

Listing 2-13. Sample SYSDBA Trace File

Audit file /u01/app/oracle/admin/orcl/adump/orcl_ora_8628_20170

604192652037318143795.aud

Oracle Database 12c Standard Edition Release 12.2.0.1.0 - 64bit

Production

Build label: RDBMS_12.2.0.1.0_LINUX.X64_170125

ORACLE_HOME: /u01/app/oracle/product/12.2.0/dbhome_1

System name: Linux

Chapter 2 artifaCts

69

Node name: oel7.localdomain

Release: 3.8.13-118.17.5.el7uek.x86_64

Version: #2 SMP Wed Apr 12 09:11:03 PDT 2017

Machine: x86_64

Instance name: orcl

Redo thread mounted by this instance: 1

Oracle process number: 26

Unix process pid: 8628, image: oracle@oel7.localdomain

...

Sun Jun 4 19:27:13 2017 +01:00

LENGTH : '357'

ACTION :[33] 'select count(*) from v$sql_cursor'

DATABASE USER:[3] 'SYS'

PRIVILEGE :[6] 'SYSDBA'

CLIENT USER:[4] 'Pete'

CLIENT TERMINAL:[10] 'HACKER-DEV'

STATUS:[1] '0'

DBID:[10] '1470381799'

SESSIONID:[10] '4294967295'

USERHOST:[20] 'WORKGROUP\HACKER-DEV'

CLIENT ADDRESS:[54] '(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.56)

(PORT=2656))'

ACTION NUMBER:[1] '3'

 Database Trace
Oracle can generate many different types of trace files. These include

trace files generated by core dumps, trace files generated by background

processes, and trace files generated by end users. Listing 2-14 shows how

to find these trace files.

Chapter 2 artifaCts

70

Listing 2-14. How to Find Trace Files

SQL> sho parameter dump_dest

NAME TYPE VALUE

--------------------- ------- ------------------------------

background_dump_dest string /u01/app/oracle/product/12.2.0/

dbhome_1/rdbms/log

core_dump_dest string /u01/app/oracle/diag/rdbms/orcl/

orcl/cdump

user_dump_dest string /u01/app/oracle/product/12.2.0/

dbhome_1/rdbms/log

SQL>

Trace files can contain a lot of useful information for forensic analysis.

Initial analysis should focus on directory listings, including the timestamps

of the files. Target the trace files that match the date range of the attack.

Inspect the trace files for evidence of the attacker. If an attacker causes

an error in the database, then it could cause a core dump, which could

generate trace file. Trace files can include SQL and memory of the stack or

the heap of the Oracle process that was running when the error occurred.

Then this may give details of what the attacker was doing. Each trace file

includes SID and serial, which can be used to cross-reference with other

artifacts from the database. It’s unlikely that an attacker would generate

a user-level trace during his attack, but it’s possible. If some hacker was

attempting to understand how something worked, then he may do this, so

don’t discount user trace.

Chapter 2 artifaCts

71

 Database Datafiles
The database is made up of many files, including the datafiles that

hold the actual database. Listing 2-15 shows how to find the locations

of these datafiles. The default permissions on the datafiles should be

secure. Accessing the datafiles directly with commands such as strings

on Unix allows you to see data easily. Character data is stored in clear text

normally, numbers are obfuscated with a simple scheme, and dates are

stored in a Julian format.

Listing 2-15. Locating the Datafiles

SQL> col file_id for 99

SQL> col file_name for a40

SQL> col tablespace_name for a20

SQL> set lines 120

SQL> select file_id,file_name,tablespace_name

 2 from dba_data_files;

FILE_ID FILE_NAME TABLESPACE_NAME

------- --- -----------

 1 /u01/app/oracle/oradata/orcl/system01.dbf SYSTEM

 3 /u01/app/oracle/oradata/orcl/sysaux01.dbf SYSAUX

 7 /u01/app/oracle/oradata/orcl/users01.dbf USERS

 4 /u01/app/oracle/oradata/orcl/undotbs01.dbf UNDOTBS1

SQL> select file_id,file_name,tablespace_name

 2 from dba_temp_files;

FILE_ID FILE_NAME TABLESPACE_NAME

------- -- ------------

 1 /u01/app/oracle/oradata/orcl/temp01.dbf TEMP

If necessary, the system tablespace datafile can be copied,

checksummed, and then used for analysis to locate deleted data.

Chapter 2 artifaCts

72

The online redo logs can be located with the SQL in Listing 2-16.

Listing 2-16. Location of the Redo Logs

SQL> col type for a6

SQL> col member for a50

SQL> select type,member from v$logfile;

TYPE MEMBER

------ --

ONLINE /u01/app/oracle/oradata/orcl/redo03.log

ONLINE /u01/app/oracle/oradata/orcl/redo02.log

ONLINE /u01/app/oracle/oradata/orcl/redo01.log

SQL>

The archive logs can be located using the V$ARCHIVED_LOG view and

this command:

SQL> archive log list

Database log mode No Archive Mode

Automatic archival Disabled

Archive destination /u01/app/oracle/product/12.2.0/

dbhome_1/dbs/arch

Oldest online log sequence 8

Current log sequence 10

SQL>

Chapter 2 artifaCts

73

 Rounding Up
The database includes many external artifacts such as database datafiles,

redo logs, and archive logs. There are also other files of interest, such as the

password file. The initialization parameter file (init.ora and spfile.ora).

The database also has a central log file called the alert log, which includes

information about database shutdown and restart, structural changes to

the database, and database errors. The alert log is worth including in the

forensic analysis, particularly for the errors.

The biggest gap in the analysis process is the lack of availability of free

standard tools to analyze the trace files and log files oracle produces. These

can still be viewed by hand of course using simple tools such as grep.

 Correlation
Correlation can help immensely during a forensic analysis. If you can

locate one piece of information that is relevant to the investigation, then

because of the complex structure of Oracle, it’s more than likely that

another piece of information can also be located and correlated with the

first. There are many fields that can be correlated. Figure 2-5 shows the

contents of an Excel spreadsheet that was created to compare columns

of data from the Oracle session information, SYS_CONTEXT information,

database trigger attributes, and the core Oracle database audit trail.

Chapter 2 artifaCts

74

This spreadsheet contains by no means all possible fields that could

be correlated, in fact around 185 different fields. Even so, there is still not

a great deal of correlation between just these four areas. In fact, there are

only six fields that correlate across all four areas of session, context, trigger,

and audit (actually we compare AUD$ and DBA_AUDIT_TRAIL so there are

actually five areas). Even among the six fields, Oracle is not good at naming

conventions. For instance, the operating system user field is called OSUSER,

OS_USER, SPARE4, and OS_USERNAME. There is also confusion with some

fields where the column name does match but the data is different such as

the process number.

In general, we can correlate two main things—the first is time and the

second is any number of other fields such as session ID, operating system

user, database username, and many more. In the case of time correlation,

it may be that there is no other field that can be matched but if something

Figure 2-5. A study of correlated columns Copyright (c) 2017,
PeteFinnigan.com Limited. Used with permission.

Chapter 2 artifaCts

75

was changed in the database at around the exact same time then it could

be significant, but only if we can match records. The fact that only six fields

can be matched out of 185 is not actually a big problem because with the

six fields we can match across each of these areas and gain additional

columns of data.

If you don’t know what to search for—i.e. you have been hacked

but not sure how—but know you the time period, then you can use the

timestamp to locate all evidence and correlate it with other data.

Many other views and tables in the database can also be correlated to

these five core areas, which enables artifacts that you gather to be matched

to each other. Some of the areas that you can correlate with include

trace files; these can be matched on time stamps and the SID and serial

included in every trace file. You can also match on user IDs or object IDs or

any other data just as you can with any business relational logic; the same

applies with forensics. If it’s possible to match records, then they can be

added to the analysis.

Correlation can take place with external sources such as the trace

files just mentioned, SQL*Net log files, listener log files, web server logs,

operating system logs, and more. In these cases, it is still possible to match

with data in the database such as timestamps, users, process IDs, and more.

Correlation is a powerful tool that can be used as part of the analysis.

 Deleted Data
In traditional forensic analysis of a desktop PC, the target machine would

be taken away by law enforcement and the hard disk copied for forensic

analysis. Some of the high-level processes involved in this were discussed

earlier in the chain of custody section in Chapter 1. In this process it is

important that the copy of the hard disk is an exact byte-for-byte copy.

This is verified by performing a checksum of the original disc and a copy.

Starting the target machine would likely change the hard disk, as any

Chapter 2 artifaCts

76

PC operating system would generate logs or modify static files as part of

its startup and shutdown process. Therefore, techniques for analyzing a

target machine usually involve mounting the disc in read-only mode, often

with byte blocker software or even hardware to ensure that the disc is not

changed and only read. In general, the analysis of a read-only hard disk

would involve looking for certain types of documents—text files or images

perhaps—and documenting those. It may also involve looking for deleted

files or data where the perpetrator has tried to hide their actions. Forensic

investigators of PCs are often equipped with software or even hardware

such as an electron microscope in rare cases when deleted data can be

recovered. At a simpler level, the PC’s recycle bin can be used to find

deleted files and simple software can search hard disk for files that have

been deleted.

Taking the same analogy to the forensic analysis of an Oracle database

is much harder. We could take the same approach with an Oracle database

in that we could copy all of the discs involved in the database and then

mount them all in a read-only mode and allow only read-only searching

of the disc to look for evidence of the attack. This would be much harder

to do because there is no off-the-shelf software that would allow the disc

to be used as a database in read-only mode. A read-only database in the

context of disaster recovery is not what we mean by read-only here. A

read-only database still has transient data in the SGA and is still modifying

and updating its dictionary. Another concern with copying a database is a

size. It is not uncommon to have databases in the many terabytes or even

hundreds of terabytes size. It would be expensive to copy every disc from

a production database; this method is probably impractical in most cases.

The biggest concern with static disk analysis is the lack of the ability to use

the database itself to query the data using SQL.

One thing that could still be done is to search the discs for deleted

data; in this case data that has been deleted that is part of the actual

database. In other words, rows in a database table that have been deleted.

Again there is no off-the-shelf software to do this but various people over

Chapter 2 artifaCts

77

the years have been involved with writing software that does some of this.

At a simplistic level, Oracle sets a single bit in each record to indicate that

it is deleted. This allows the database engine to reuse that space when it

needs to. In reality in datafiles there is often a lot of deleted data. In some

cases, updates to records also involve the deletion of the existing record

and the insertion of a new record. So even updated data may look like

deleted data.

A number of companies and individuals have written software that

allows a crashed database to be recovered. In this case, the intention is

not forensic analysis but the recovery of a broken database. The tool from

Oracle was called DUL (data unloader). A number of individuals, including

Kurt Van Meerbeeck (jDUL/Dude), have written tools to do exactly the

same. These tools parsed the datafiles looking for records including

deleted data.

A number of years ago David Litchfield wrote some simple tools

for parsing datafiles and redo logs in the search for deleted data. David

introduced the idea of looking for deleted data in data blocks as well

as other Oracle forensics techniques in his seven-part Oracle forensics

series—see Chapter 6 for a link that references these papers. David’s

tools were available on his web site but this is no longer the case. There

is no public access to the Litchfield tools any longer and they were not

production quality anyway. They were written for much older versions of

Oracle (10g). Writing tools such as this to search datafiles for deleted data

would be a complex task and involves reverse engineering the datafile

format and the redo log format. Any author would need to take into

account Oracle running on different operating systems, different endian

file systems, and other factors. Although the data block format could

change between major versions or even minor patches, this is unlikely.

The file format for the Oracle database remains pretty stable over many

years. The fact remains that most of the block structure is not documented

by Oracle but enough information is available on the Internet to various

internal web sites and David’s seven- part series on forensics that it would

Chapter 2 artifaCts

78

not be impossible to create such tools. So, this was a good idea at the time,

but these are not practical reliable tools to be used as part of forensic

analysis unless a commercial company invests a lot of time and effort to

create production quality tools.

If a PL/SQL procedure was added to the database by an attacker,

perhaps used to escalate his rights within the database as part of an SQL

Injection and then removed because the attacker wanted to hide, he might

think he could get away with it. In reality, because of the complexity of

Oracle and the fact that everything related to the structure of the database

including code is stored in the data dictionary, it’s possible to reconstruct

what has been created and then removed. There are a number of

techniques that look for deleted objects without using reverse engineering

or writing complex tools.

One method is to use LogMiner or direct redo log analysis. LogMiner

allows redo logs or archive logs to be mined to locate changes that have

occurred in the database. The redo logs store a binary version of all of the

changes that have occurred. This is so they can be replayed in a recovery

scenario. Although LogMiner can be used to analyze redo logs, it is also

possible to dump the redo logs to text-based trace files using ALTER SYSTEM

commands. The output can be readable text or binary. Unfortunately, the

block dump method does not include deleted data. Oracle has provided a

number of tools over the years for processing of redo logs, including CDC,

Streams, and GoldenGate. The earlier of the tools of now been deprecated

in the latter tools are now cost options. So the use of the tools from Oracle

to analyze redo are effectively not supported or need additional licenses.

There is a LGPL library (in C) to read Redo logs on

sourceforce— http://www.zizzy.org and https://sourceforge.net/

projects/zizzy/. This has not been touched for at least ten years. Use

of this library would again be complex and would require skill in the C

programming language and detailed knowledge of Oracle. Again, this is

not a practical solution for forensic analysis of deleted data.

Chapter 2 artifaCts

http://www.zizzy.org/
http://www.zizzy.org/
https://sourceforge.net/projects/zizzy/
https://sourceforge.net/projects/zizzy/
https://sourceforge.net/projects/zizzy/

79

Remember that the deleted data is transient and could disappear

any time. There is no predictable way to understand when a deleted

record may be lost. Oracle’s internal algorithms decide on whether space

should be reused or not. In reality, deleted data will most likely stay in

the database for quite some time. Listing 2-17 shows the creation of a

procedure, in this case by an attacker. The creation of procedure involves

a lot of changes to the database and storage of many artifacts in the data

dictionary. A true picture of what happens when procedures are created

can be obtained quite easily by running a trace during the creation

process. Of course, the hacker would not have run trace; I included this

here simply to illustrate what goes on when a procedure is added to the

database.

Listing 2-17. Create a Hacker Backdoor Procedure

SQL> alter session set sql_trace=true;

Session altered.

SQL> create procedure hacker_backdoor (p in varchar2) as

 2 begin

 3 execute immediate p;

 4 end;

 5 /

Procedure created.

SQL> alter session set sql_trace=false;

Session altered.

SQL>

Chapter 2 artifaCts

80

Listing 2-18 shows how many actions have taken place in the database

simply by creating a procedure. Even this high-level view of the actions

is not a complete list of everything that happens in the database when

a procedure is created. A review of these 58 parse statements shows

insert, update, delete, and select statements against many dictionary

tables and views, including OBJ$, IDL_CHAR$, ACCESS$, DEPENDENCY$,

CCOL$, AUDIT$, PROCEDUREPLSQL$, ARGUMENT$, PROCEDUREINFO$,

WARNING_SETTINGS$, SETTINGS$, PLSCOPE_SQL$, PLSCOPE_STATEMENT$,

PLSCOPE_IDENTIFIERS$, PLSCOPE_ACTION$, OBJAUTH$, SOURCE$,

IDL_SB4$, IDL_UB1$, IDL_UB2$, and more. A number of triggers are

also executed around the spatial functionality and the PL/SQL itself is

compiled. This involves compilation, optimization of the SQL (if there was

SQL involved), optimization of PL/SQL, and insertion of the SQL code

into the SGA. Hashes of the SQL code are taken and stored as well. This

gives a good overview of how complex Oracle is as a database. Anything

that occurs in the database that involves changes to the database—i.e.,

adding a procedure or a user—will involve a large number of actions both

in the SGA and against and into the data dictionary. This is good news for

forensic analysts, because all of these actions leave traces.

Listing 2-18. Grep of the Trace File to See How Many Actions Take

Place When Adding a Procedure to the Database

[root@oel7 trace]# grep PARSING orcl_ora_28998.trc | wc -l

58

[root@oel7 trace]#

Of course, once the procedure has been compiled, many of the

artifacts are created and are visible in the data dictionary. Listing 2-19

shows an example of the procedure details.

Chapter 2 artifaCts

81

Listing 2-19. Details of the Hacker Procedure in the

DBA_PROCEDURES View

SQL> select owner,object_name,procedure_name,object_id,object_type

 2 from dba_procedures where object_name='HACKER_BACKDOOR';

OWNER

OBJECT_NAME

PROCEDURE_NAME

 OBJECT_ID OBJECT_TYPE

---------- -------------

SYSTEM

HACKER_BACKDOOR

 75774 PROCEDURE

SQL>

The hacker wants to protect his identity and avoid being caught, so

after he does whatever nefarious acts, he deletes his backdoor procedure.

Listing 2-20 shows the deletion of the hacker’s procedure.

Listing 2-20. Deletion of the Hacker’s Procedure

SQL> drop procedure hacker_backdoor;

Procedure dropped.

SQL>

Of course, the hacker again will not run a trace on this deletion but

you can expect without any detailed analysis that most of the actions

performed in the compilation of the procedure have to be reversed. This

Chapter 2 artifaCts

82

means removing the entry that includes the source code from SOURCE$, the

details of the object from OBJ$, details of the procedure, and its arguments

from PROCEDURE$ and ARGUMENT$ and all of the compiled code from the

IDL_% tables. Of course, this is just a sample of what it does.

Can we still see the procedure in the database without resorting to

reverse engineering tools such as those created by David Litchfield after

it has been deleted? Listing 2-21 shows that simple tools can be used

to locate strings within the undo tablespace datafile. In this example, I

already knew the name of the procedure that I was looking for, so finding

it was easy. In a real investigation, the complete contents of the undo

tablespace must be reviewed and any procedure or PL/SQL can be

extracted and compared with the current database. Of course, the source

code of any procedure can also be reviewed to see if it looks nefarious.

Listing 2-21. The Deleted Procedure Visible in the Undo Tablespace

Datafile

...

[root@oel7 orcl]# strings undotbs01.dbf > /tmp/undo.txt

...

!B]A

!B]W

"HACKER_BACKDOOR"067678E6F74C6F524BBF5F319F6D326C"P"VARCHAR2"SY

S"SYS_STUB_FOR_PURITY_ANALYSIS"PRDS"PWDS"PRPS"PWPS"DE0D653FCD4C

FAD500FF0FC43D33DE57"74E3E828BDE795AC1DD1B0C2F001DD9B"68FEB09BE

098A75F4580EB0A64161B19"E47FC731D0007CFC1F21B274314A5C63"494259

841A7F614198485ACBCC50749D""

end;

execute immediate p;

/ArN

Chapter 2 artifaCts

83

begin

procedure hacker_backdoor (p in varchar2) as

:K--------------------------------------

rNxu

Can the deleted procedure also be viewed in the datafile itself? Without

resorting to tools to search datafiles looking for deleted row entries, this

is harder to do. This is simply because we would need to find the deleted

entries, which would require stepping through data blocks and looking for

row entries and then looking for entries that have the deleted flag set. But,

we can use simple tools such as Unix strings or open the datafile in a hex

editor to search through it to look for things that may be suspicious.

Figure 2-6 shows the system tablespace from the same Oracle version

12.2.0.1 database opened in a hex editor. The HACKER_BACKDOOR procedure

was deleted from this database, but as you can see the source code for

the procedure is still visible in the datafile. Again this was made simpler

because we knew the name of the procedure we were looking for. But, a

simple search for source code in the system tablespace datafile can be

made by looking for the keywords procedure, function, package, and type

and manually searching for the start of the procedure, function, or package

source code, as this will indicate that we are most likely in the SOURCE$

records. In the line above the start of the procedure source code we can

see 3C; this indicates a deleted record. A non-deleted record would show

2C. The values after 3C indicate the number of columns and column data.

Chapter 2 artifaCts

84

One of the big differences between the police analyzing a perpetrator’s

hard drive on a PC is that we are not looking for images or web access. We

are trying to establish if an attacker has read data, or worse, has escalated

privileges by creation of objects in the database or even changed settings

in the database. This is much more complex than simply searching for text

with grep like utilities.

The Oracle recycle bin and flashback (discussed in Chapter 2) are also

good options if they are enabled for looking for deleted or modified data.

 Tuning Tools
One of the bigger issues with collecting artifacts for forensic analysis is

the lack of natural records for read access to data written by default by the

database engine. Tuning tools, both built into the database and external,

can help in this regard. Quite often DBAs will use the Oracle database’s

built-in tuning features, such as trace, to solve a performance problem.

Figure 2-6. Showing a deleted PL/SQL procedure in a datafile.
Copyright (c) PeteFinnigan.com Limited. Used with permission.

Chapter 2 artifaCts

85

The customer may have licensed the Oracle diagnostic pack and tuning

pack. If the diagnostic pack and tuning pack is licensed, then the AWR and

ASH repositories may be populated with data that includes SQL, timing,

and bind data linked to database users.

Caution Just because the Oracle diagnostic pack and tuning pack
views always exist in the database does not mean that you can
use them. accessing the database views if you don't have a license
incurs a license violation could cost your company a lot of money. the
contents of these views may be your last hope in investigation; fully
check out the license implications first before you query contents of
these views.

Base tables and views such as:

WRI$_ADV_SQLW_STMTS

WRHS$_SQLTEXT

WI$_STATEMENT

WRH$_SQLTEXT

DBA_HIST_SQLTEXT

DBA_WI_STATEMENTS

DBA_SQLSET_STATEMENTS

WRH$_ACTIVE_SESSION_HISTORY

For instance, DBA_HIST_SQLTEXT contained a column called SQL_TEXT

that holds captures of SQL taken on a periodic basic from the V$SQL

view. The view WRH$_ACTIVE_SESSION_HISTORY also shows history of

connections to the database that could be useful if auditing is not enabled

for connections. There are more views and tables as part of AWR and

ASH, that can be explored and that may contain information useful to a

forensics analysis.

Chapter 2 artifaCts

86

Third-party tools such as Quest spotlight or Quest Foglight may also

have been purchased and implemented. These tools may also contain

some historic SQL of interest and bind and link to database users or

 external identifiers. For instance, the Quest Spotlight product contains

the view QUEST_SOO_AT_SQL_STMT_PIECES, which has a SQL statement

pieces column. Spotlight also has a table called QUEST_PPCM_SQL_TEXT that

contains a SQL_TEXT column and the QUEST_PPCM_CUSTOM_SQL table has

also a SQL_TEXT column. These tables and more in any Quest product may

prove useful in a forensic analysis review.

The database may also have STATSPACK installed as it still free but quite

old. The STATSPACK (which stands for Statistics Package) is a simple utility

to capture various information from the database on a periodic basis.

These are known as snapshots. The captured data includes details such as

database parameters, events, details and background events, details of the

SGA, and of course SQL.

The STATS$SQL_SUMMARY table includes a SQL_TEXT column. The

STATS$SQLTEXT table also has a SQL_TEXT column. In all of the tuning tools

available SQL text is a valid commodity to use in a forensic analysis but

other useful information is also available. For instance, the STATS$SQL_PLAN

table includes details of SQL plans. This means that objects accessed

as part of SQL are referenced in this table. The third-party tools and the

Oracle tuning and diagnostic packs also include similar data. So even if it

is not possible to see actual SQL that was executed, it may be possible via

these tuning tools to understand the objects that were accessed as part

of SQL or DML. Even database parameters could have been changed by

an attacker. For instance, an attacker may want to disable the audit trail;

in Oracle before 12c and indeed in 12c if using mixed mode the audit

trail is enabled and disabled by setting an initialization parameter. If an

attacker was able to get SYSDBA or DBA access, then he may have been able

to change the parameter and stop and restart the database. If tools such

as STATSPACK or the tuning pack were enabled, then historic settings of

parameters may be included. This could also help a forensic investigation.

Chapter 2 artifaCts

www.allitebooks.com

http://www.allitebooks.org

87

There are also a number of free tools used for tuning that come from

third parties or from Oracle support. Examples are MOATS and SNAPPER

from Tanel Poder and SQLXPLAINT from Carlos Sierra (which is download

from Oracle) who previously wrote and maintained the tool.

One of the key issues with free and commercial tuning tools is that

to have useful forensics data contained within the repositories of these

tools, they must have been set up to capture the data you are interested

in. The primary function of a tuning tool is of course to tune the database,

not to provide forensics information. A forensics investigation should

also include searching for any tuning tools that may be installed and

establishing if any relevant data has been captured that would be useful to

the investigation.

Bear in mind the license arrangements of some of these tools. Be

careful not to view the repository information facilities tools if they require

a license, as that would be a license infringement.

 Rootkits
What is a rootkit? A rootkit is made up of the words root and kit. The word

root being the name of the superuser in Unix and the word kit being the

idea that a set of tools is needed in a so-called rootkit. The traditional

purpose of a rootkit used on a Unix server or Windows box is to allow

an attacker to remain on the server as a privileged user undetected. The

rootkit would include tools to hide his presence on the server and tools to

allow him to regain access as a superuser should he be locked out. These

ways back in are traditionally called backdoors. A hacker in general installs

new versions of commands and tools that satisfy these two requirements; a

way back in and hiding his every move. An example of hiding could be that

he replaces the Unix who and ps commands with commands that do not

show his user identity if used by the real system administrator logged

in as root.

Chapter 2 artifaCts

88

The idea of rootkits in Oracle was first suggested in approximately

2005 when an Argentinean company offered for sale an Oracle rootkit

for vendors of Oracle security database activity monitoring, intrusion

 detection, and vulnerability scanning products. In 2006 Alexander

Kornbrust and David Litchfield both presented papers on Oracle based

rootkits at the BlackHat conferences in the United States and Europe.

Despite this initial interest and activity around Oracle rootkits, it has all

gone very quiet for many years with no talks or papers specifically aimed at

Oracle based rootkits.

An attack on a server that hosts an Oracle database is still a valid target

for a rootkit to be installed by an attacker at the server level. Adding a

viable rootkit that works at the Oracle level is much harder though.

Listing 2-22 shows how part of rootkit may be implemented in an

Oracle database by an attacker. In this simple example he takes the source

code of the DBA_USERS view and adds an extra line to the view definition.

He excludes his user called HACKER from being returned in queries against

this view.

Listing 2-22. A Simple Example of How a User May Be Hidden in an

Oracle Database

SQL> set pages 55

SQL> set long 1000000

SQL> select text from dba_views

 2 where view_name='DBA_USERS';

TEXT

select u.name, u.user#,

 decode(u.password, 'GLOBAL', u.password,

 'EXTERNAL', u.password,

 NULL),

 m.status,

Chapter 2 artifaCts

89

 decode(mod(u.astatus, 16), 4, u.ltime,

{...}

 and dp.resource#=1

 and pr.type# = 1

 and pr.resource# = 1

 and u.name<>'HACKER'

There is a major flaw in this very simple type of rootkit; the DBA could

simply list out users from SYS.USER$ and the hackers user would be visible

again. The other big problem is that there are many hundreds of other

views that could also reveal hacker’s user—some views having the same

column name as DBA_USERS and some having different column names

such as the OWNER column in DBA_OBJECTS or DBA_PROCEDURES if the hacker

also created any objects. Hundreds of views would need to be changed

quickly to successfully hide the hacker but it would still be visible in base

dictionary tables.

A number of types of rootkits were suggested for Oracle back in the

2005/2006 timeframe. These included this simple example by editing

system views and more complex rootkits by editing the Oracle binaries and

changing all references to SYS.USER$ to SYS.AUSER$ and creating a copy

of the user table in the database. This was very complex and messy and

would require the database to be shut down to relink all of the binaries.

Other suggestions involved pinning packages to the SGA where the

package had been already removed, therefore hiding the functionality. It

was also suggested by Denis Yurichev to use traditional operating system

rootkit approaches and hook the user function in the Oracle binary.

Is it realistic that you would find a rootkit in an Oracle database that

you are investigating? In reality, probably not, but you should not discount

rootkits completely. The ideas for rootkits have been around for more than

10 years, so it’s possible that someone could install a rootkit in an Oracle

database. There are no comprehensive rootkits for Oracle freely available

on the Internet, so attackers have to have written their own rootkits.

Chapter 2 artifaCts

90

Is it possible to detect a rootkit in an Oracle database? For simple

rootkits such as the example shown in Listing 2-22 the answer is yes; in

fact, commercial Oracle vulnerability scanning tools such as PFCLScan

do provide checks to detect this type of rootkit. The second type of rootkit

where the Oracle binary has been changed and an additional SYS.USER$

table has been added are also tested for a commercial tools such as

PFCLScan. So, yes it is possible to detect rootkits and a simplistic check

could be used with an SQL query that compares the number of users in

the SYS.USER$ table with that in the DBA_USERS view. Listing 2-23 shows a

simple SQL- based check that can detect if the view DBA_USERS may have

been modified as part of a rootkit.

As part of any incident response and forensic analysis, we should not

ignore rootkits completely and at least a simple check should be made to

establish if any simplistic rootkit was installed. Detecting rootkits could be

done in a number of possible ways within the Oracle database.

A time-based check could be used for any dictionary views that have a

different timestamp from the other core views. For instance, if the database

was installed on 1st March 2010 and there have been no upgrades or

changes that require recompilation of views then the timestamps of all

of the core views such as DBA_USERS or V$SESSION or V$PROCESS should

be on or around 1st March 2010. If some views have a much more recent

timestamp then the source code of the view can be investigated. In reality,

dictionary views will change every time there is a patch of an upgrade or

anything that requires recompilation of views, so this may not be a reliable

method.

Listing 2-23 shows an example of a different type of check, which is

for detecting a change to the views DBA_USERS and ALL_USERS. It is simply

an account of users in these two views with a comparison to SYS.USER$.

Even this check is not simple, as the base table also stores details of roles.

The type of the record in this table is defined by the TYPE# column. In

older versions of Oracle, this column had one of two values—a 1 or a 0.

Chapter 2 artifaCts

91

This indicated whether the record was a role or a user. Since edition-based

redefinition was added, this column can also include different values

because of the edition—this should be considered.

Listing 2-23. A Simple Check for an Oracle Rootkit

SQL> select name from sys.user$ where type#=1

 2 minus

 3 select username from dba_users;

no rows selected

SQL> select name from sys.user$ where type#=1

 2 minus

 3 select username from all_users;

no rows selected

SQL>

An alternative check for a rootkit would be to have a predefined list

of checksums for every object of relevance in the database. This would

initially include views and procedures. This list of checksums would need

to be stored outside of the database so that it couldn’t be manipulated and

the list could be used to re-checksum every object and compare it to the

list. Maintenance of this list would become very tiresome, as each new

release of the database and every patch could potentially change a view

definition of PL/SQL code. Therefore, the master checksums would need

to be recalculated and stored on ongoing basis. This is not practical unless

you have resource available to do this.

For the really paranoid, if checksums are used via packages in the

database such as DBMS_UTILITY then it’s essential that the checksum utility

also be validated if you’re using it to test for rootkits.

Chapter 2 artifaCts

93© Pete Finnigan 2018
P. Finnigan, Oracle Incident Response and Forensics,
https://doi.org/10.1007/978-1-4842-3264-4_3

CHAPTER 3

Incident Response
Approach
If you are unlucky enough to have a confirmed breach of your Oracle

database or even a potential breach and you have no plan of what to

do, dealing with it will become very ad hoc and likely cost much more

money and take much more time than it should. Planning for an incident

response is the most important part of the process and indeed this is the

most important chapter of the whole book. If you plan, then you will know

what to do, the right person will lead you, and you will have the right team

involved in the process and have the right tools in your toolbox. Most

importantly, you will also have the correct knowledge to deal with the

incident.

It is vital to create and document the incident response process. This

should be a formal process that is signed off on and agreed by all relevant

parties in the organization. This document or plan can then be used as a

step-by-step guide to deal with the incident.

In advance of an incident, someone must be identified as the incident

coordinator. This is the person who will lead the response. There should

also be an incident response team who will be led by the incident

coordinator. The team should have the right balance of skills—including

security skills, management skills, and Oracle skills. It is also important to

pre-build a toolkit to be used as part of a response. This chapter explores

all these ideas.

94

 Planning
It should go without saying that planning must be the first step toward a

viable incident response process. Simply acknowledging that a breach

might occur and you have to deal with it is not enough. You must create a

detailed plan that shows exactly who will be involved and what they must

do if a breach occurs. This plan should be documented and agreed on and

signed off by all relevant parties, ideally with budget owners and business

owners. It is important that everyone in the company take the threat of a

data breach very seriously.

In the UK and across the EU, there is a new data protection law to

be launched in May 2018. This new GDPR law will demand better, more

secure handling of personal data. Companies even outside of the EU, if

they process EU citizens’ data, will need to comply with GDPR. This new

law means that you must know when you have been breached. You must

know which individual records were accessed (or most likely accessed)

as part of the breach. You must report the breach within so many hours

of it occurring or potentially you may pay enormous fines. The new law,

similar to other laws around the world for data protection, also requires

you to know where that data is stored within your systems. It must be

possible for that data to be extracted in a standard format to be given to the

person who it refers to if requested formally. Also, GDPR introduced a new

concept, which is the right to be forgotten. This means someone whose

data you process can demand that you delete that data. That can become

very complex, especially as with an Oracle data is never really deleted but

simply marked as space that can be reused.

These new regulations, certainly in the UK and the EU, combined with

the upsurge of data breaches over recent years will require that companies

know what to do if their database has been breached. They must know

how to identify if a breach has occurred and they must know how to

analyze and investigate that breach. This means it is imperative to plan in

advance for a potential breach; hopefully, one will never occur.

Chapter 3 InCIdent response approaCh

95

The planning must include a documented step-by-step process.

It must include the nomination of a leader of the process. It must also

include identification of a suitable team to deal with the breach. This

chapter explores this in more detail.

 Create an Incident Response Approach
An incident response process must not be ad hoc in nature. The process

must be formally documented so that it can be signed off and agreed to

in advance. It also means that the budget should be made available to

deal with a response so that normal business can be halted temporarily if

necessary and the team can spring into action to start to investigate and

deal with the breach.

The process does not need to be complex; in fact, it should be a

succinct as possible so that it is easy to follow without any question.

The process should identify the risk that the investigation team may be

involved with the original breach. For instance, if the investigation was

simply handed to the DBA and he’s told get on with it and report back

when you discovered how the database was breached, then there could

be a major problem if it was in fact the DBA who stole the data and sold it

online to criminal proponents. This does not mean that the DBA cannot

be involved with the investigation; it simply means that someone is clearly

unbiased. Ideally more than one person controls the process to ensure that

it is safe and trustworthy.

Incident response approach should ideally be a checklist with some

header information. The header information can be identification and

mobilization of the relevant team members or substitutes if the identified

people no longer work in the company and cannot be moved into the

incident response team on an instant basis.

The leader can use the document, as a checklist, to make sure that

every step of the process is followed and that it is ticked off as it’s complete.

Chapter 3 InCIdent response approaCh

96

Spend some time in advance creating your own incident response

process or documentation. My advice is that this should fit on a single

sheet of paper and attached to a clipboard so it can be easily ticked off as

it’s completed. This chapter presents information about team members

and the leader and tools that should be used and presents the steps that

could be part of your incident response process. Feel free to use the steps

defined here; I have used these steps at a number of customer sites in the

development of incident response processes and used them to respond to

incidents where the customer did not have a preplanned incident response

process or team.

The process is presented as a bulleted list in this chapter, but feel free

to convert it into a table or a ticklist.

It is most important that the process is documented and signed off in

advance.

 Incident Coordinator
A single person should be appointed to lead the incident response process.

The choice of who this person is can be difficult. In some organizations

where the IT team is very small, creating a team to deal with an incident

is difficult because it means that most likely every member of the IT team

will be part of it. In an organization that is very small, it is unlikely there

is any spare resource to simply put on standby for incident responses. It

is also unlikely that there is already an Oracle security person. In every

organization, large or small, there is likely to be some element of a security

team. In large organizations, the scope is much greater to predefine

relevant people to lead an incident.

Whether the team available to deal with a response is large or small;

in other words the resources available within your company are large or

small, it make senses that the incident coordinator or leader be a person

of trust. In any incident response it is more likely that the attacker is

internal and works at the organization. It is also likely that the attacker

Chapter 3 InCIdent response approaCh

97

has knowledge of the data that has been stolen and has knowledge of the

technical infrastructure; in other words, he knows where to find what

he wants to steal. It’s quite obvious that somebody who works for you

(with knowledge and a desktop PC and possibly Oracle database-related

applications) has a much easier chance of stealing data.

It makes sense to ensure that the person leading the investigation

cannot manipulate the investigation should they be involved with the

original breach. Therefore, it makes sense to appoint somebody outside

of the IT team and outside of the normal business processing of the data

that was stolen. If the coordinator in general does not have knowledge

of the data that has been stolen, and that person in general does not

have the credentials to access the database or indeed data applications

installed on his or her PC, they are less likely to have been involved in the

original breach. There is no 100% guarantee that the person leading the

investigation was not involved, but it makes sense to reduce this risk as

much as possible. To that end, if resources allow, it’s sensible to ensure

someone else moderates the coordinator.

All businesses are complex and busy and people take vacations, so it

also makes sense to ensure that substitutes are also identified. In a large

company, it most likely makes sense to identify three or four coordinators

and teams, depending on where the investigation takes place and on

which data.

But at least identify one person who is able to lead the process and

then identify at least one substitute should that person not be available.

That person needs to lead the process and follow the list without being

forced to change the process dynamically. A person does not need to be a

security expert or an Oracle expert; they simply need to be able to manage

people to follow the list. That said, security knowledge would be useful, as

would Oracle knowledge to understand what other people are doing and

that the results are trustworthy. Ideally, the coordinator should receive

training in areas that are relevant to this task, such as security or Oracle,

but this is not mandatory.

Chapter 3 InCIdent response approaCh

98

The important points are that an incident coordinator must be

identified in advance of a potential breach and this person should not

be biased toward other agendas. If the coordinator has the freedom to

investigate, a more reliable result will be obtained.

 Create an Incident Response Team
The incident response coordinator should be unbiased and trustworthy

and ideally chosen because of the unlikelihood of being involved with a

breach, but unfortunately the rest of the team needs to have skills relevant

to the system being investigated or business knowledge of the area of

breach. Each of these people must be untrustworthy. There is no simple

solution to this problem of untrustworthiness other than ensuring multiple

people are involved so that a cover-up would require collusion on a much

larger scale, which should be less likely but not impossible.

The team members should have a number of skills and ideally have

more than one person in each skill area. As stated, this could help prevent

collusion but also ensures that more than one person is available should a

breach occur.

What sort of skills are required? Because of the complex nature of an

Oracle database and the fact that it is a security investigation, the ideal

person would be someone with Oracle security skills. The detailed skills

necessary in the area of security and Oracle are less likely to exist in most

companies in one person. Usually, there will be a security team or at least

a security person, but unless the company is large, this is unlikely to be

a person with specific Oracle security skills in the security department.

Similarly with the DBA team, the staff is likely to have detailed knowledge

of Oracle, but less likely to have detailed knowledge of Oracle security.

In general, over many years it has been concluded that it is simpler to

teach an Oracle person security skills than teach a security person Oracle

skills. The concepts of security are much simpler than the inordinate

amount of knowledge needed to understand Oracle.

Chapter 3 InCIdent response approaCh

99

The skills needed should include:

• Security person: Should have the knowledge of

breaches, possibly incident responses, and techniques

used by hackers to gain access to systems. This is

likely to be in the areas of operating systems and

possibly firewalls. This person should bring a security

perspective to the analysis process.

• Oracle person (DBA): Most likely a DBA who has

enough knowledge of the Oracle database to be able to

control it, shut it down, remove users or sessions, and

be able to locate information from within the Oracle

database as requested, and in conjunction with the

security person.

• Businessperson: Someone from the business area,

ideally outside of IT but involved with the day-to-day

running of the business processes hosted by the Oracle

database that has been attacked. This person should

have good knowledge of the data held in the database,

understand which data is most valuable, and be able to

recognize normal processing and abnormal processing

as presented by the security person.

• Management person: A person who has the ability

to make decisions that affect budget or cost must be

part of the team. Often, investigation quick decisions

are needed that may cost money to implement. For

instance, in a recent forensic investigation that I took

part in, we realized that additional systems had almost

certainly been compromised by the attacker. A decision

needed to be made quickly to allow me to investigate

those systems as well.

Chapter 3 InCIdent response approaCh

100

• Public relations: It is important to consider public

relations as part of the response. A lack of information

given out once an incident has become public serves

to enrage the victims. A person should be appointed as

a single point of contact with any form of media. This

could be posting a message on Twitter or Facebook or

on the company web site or it could even involve giving

an interview on television. No other person should be

allowed to discuss the incident either verbally or in

writing on any platform. Management and the incident

coordinator should approve any statement given out by

the public relations person.

The team should be as small as possible to avoid business by

committee. One of the reasons to have a process that is documented is so

that everyone can follow the process step-by-step and ensure that every

step is completed and no additional unnecessary steps are added. Still, in

the investigation of a complex Oracle database, it is likely that the amount

of investigation, artifact collection, and forensic analysis are unknown

quantities in advance. The team needs to be flexible in terms of time and

size. It is useful to identify a single person for each role but also identify

substitutes if necessary. The substitute may be used if someone else is not

available and can assist when additional resources are needed.

If necessary, in advance of any potential investigation, some level of

training is needed for the team and potential additional team members

who may become part of an investigation. Initially this training should

at least be to review the complete process and to ensure that everyone

understands the steps involved and what is needed from them during an

investigation. This type of training can be performed internally and is led

by a security person.

Chapter 3 InCIdent response approaCh

101

 Create an Incident Response Process
The incident response process must be documented. Ideally, this should

be as succinct as possible so as to make following it simple. In the event

of an alert, the incident response/resolution process must be worked

through completely. Part of the incident response process should be a

communication channel. There should be a recognized method within

the organization of raising or alerting an incident. A method to implement

this can be different in each organization. A simple solution is to create an

e-mail address whose purpose it is to receive notification of any incident.

This e-mail address can be public so that any member of the public can

raise an incident response in the organization. This is not the ideal way to

learn about an incident, but it is still valid. Internally, any incident that’s

feared to have happened should also be reported to the same e-mail

address.

The incident coordinator and/or his substitute should manage the

incident response e-mail. Notices should be given out to the whole

organization with a short training session to make everyone in the

organization aware of how to deal with a potential incident. If incidents

are reported in an ad hoc way to different departments of the company

and some departments attempt to investigate without any structure, some

departments may simply ignore the issue and other departments may

publicly leak the breach.

Consistency is very important. Ensure that every member of the

organization understands that any potential breach could be very

damaging to the company. Everyone should understand that while

keeping a breach quiet is not ethical in terms of not telling the victims,

it is important to ensure that the breaches are handled and reported on

correctly to the media and especially through social media.

Chapter 3 InCIdent response approaCh

102

This process should include the following steps:

• Identify the incident response leader: This step falls

outside the process, as the incident response leader or

coordinator should already be assigned in advance of

any potential incident. Any subordinates or substitutes

must also be identified in advance. This should always

be someone available who can step in and manage an

incident.

• Recognize that an alert has occurred: There should

be a central reporting point for any potential incident.

This could be an e-mail address, but it doesn’t have

to be. The main objective is to ensure that all reports

of a breach are funneled to one source. Any report

arriving at the source should be treated seriously and

investigated to understand if it really is a breach. For

instance, data that has been posted to a web site such

as Dropbox or Twitter can be easily analyzed to see if it

did come from the Oracle database. If an alert has not

been raised through a reporting system, then assessing

whether a breach has occurred becomes much

harder. The breach could be noticed due to strange

behavior of an employee. In this case, the person who

notices the strange behavior should use the same

breach notification process. Perhaps the breach or

potential breach is noticed through standard business

reporting. Perhaps something changes or is missing or

additional accounts exist in the database that weren’t

there yesterday. Perhaps the DBA comes to work and

notices that additional accounts were approved. Again,

these types of incidents should be reported to the

same channel. Some breaches may not come initially

Chapter 3 InCIdent response approaCh

103

as a notice to an e-mail address or other notification

system, but inevitably any initial suspicion should be

raised through the official channel.

• Control passes to the incident response leader: Once

a breach has been confirmed, control of the process

should pass to the incident response leader. He should

then ensure that a breach is officially recognized and

that the incident response process is live. The incident

controller should then have the final say on any next

steps. He should have the ability to overrule the

business or management whose first response may be

to keep the business running and ignore the incident.

• Do not turn off the database or disconnect from
the network (at this stage): An initial reaction may

be to disconnect the machine from the network or to

power it down or, even worse, unplug the power cord.

Unplugging the power cord to a large Oracle database

server could be catastrophic. (It perhaps wouldn’t shut

it down anyway if it had redundant power sources.)

Although Oracle is much more reliable than it was in the

old days, turning the database power off can still cause it

to be corrupted. Pulling the power on the server can also

cause the server to be corrupted. The most important

issue is that any live data that could possibly be gathered

from the database server or from the database itself will

be lost; the worst-case scenario is at the machine itself

is lost. Do not disconnect the server from the network,

do not disconnect the database from the network,

and do not shut it down. Stopping the attacker from

doing anything else may be a good idea, but destroying

potential transient evidence is probably worse.

Chapter 3 InCIdent response approaCh

104

• Investigate if the attack is real: At this point, the

incident response leader should appoint someone

on the team, depending on what the breach is, to

investigate as to whether it really is a breach. In the

case of data posted on the Internet, somebody in the

team could look into the database and understand

which tables the data came from. Perhaps someone

will confirm that that data should not be on the

Internet; therefore, there is a verified breach. It is

important that all potential breaches be investigated,

even if they turn out not to be a breach. The old case of

crying wolf should not come into play; it’s better to cry

wolf sometimes and be on top of an issue as soon as

possible.

• Document the system: Photograph the system,

particularly the maker’s plate serial numbers and other

relevant data. If the threat was conducted internally, a

photograph the perpetrator desk’s can be very helpful

in finding evidence in the surrounding area.

• Perform incident response (collect live data):

Perform the steps to collect the volatile and transient

data from the database server. This includes the

timestamps, users logged in, processes running, ports

open, files open, and more. Perform the necessary

steps to gather copies of all the server log files. Gather

all database log files, trace files, and configuration

files. Gather logs from other relevant servers or clients.

This includes web server logs and application server

logs. Perform live analysis of the database engine to

obtain the live, transient data or volatile data from the

database. This includes SQL that is currently in the

Chapter 3 InCIdent response approaCh

105

SGA, date and timestamps, processes and sessions,

connected users, running SQL, and more.

• Perform incident response (collect less volatile
data): Gather all further forensic evidence from the

database. This includes all users, password hashes,

privileges for users, all membership of roles, all external

accesses (files, network, and links), jobs, audit trails,

evidence from the cost-based optimizer, evidence from

the library cache, and much more.

• Break the network connection to the database:

Breaking the connection will prevent any new network

based access to the database. This will not prevent

direct access from the server itself, which at this stage

should only be done by the incident response team.

The database is not shut down, so transient data is still

available if necessary; the database is not in danger of

being corrupted by the shutdown process.

• Copy hard disks and evidence: Where possible, make

byte for byte copies of any hard disk that is relevant

to the database server. Or make copies of individual

evidence where possible.

• Checksum the evidence: Ensure all evidence that is

collected is checksummed in the source storage before

removed and the checksums are stored independently.

This allows the evidence to be re-checksum. It’s then

compared to the stored value to prove that it’s the same

data that is being analyzed.

Chapter 3 InCIdent response approaCh

106

• Perform forensic analysis of the data: Using the

live data, the server data, external data, and the data

from the database itself, start to perform forensic

analysis. The analysis should start from the point of the

confirmed breach. If the breach is confirmed, there

should be evidence to corroborate that breach. This

evidence should also have timestamp details. This gives

the first start time of the breach; use the last access time

by normal users as the end date of the breach. The start

the breach may be pushed back as more evidence is

analyzed. Attempt to locate evidence that corroborates

the access by the attacker and locates his access.

• Build a timeline of events: Build a timeline based

on the start time and the end time of all actions that

are relevant and that occurred in the database, on the

server, and on external servers such as web servers. Use

this timeline evidence to build an understanding of

what the attacker did. This should include how he got

in, who was he connected as, what he saw, what he did,

what privileges he had, and what he could have done

with more skill.

• Shut down and restore: Decide whether to shut

down the database at this point. If the database is

mission- critical, this decision will need to be balanced

against business needs. Before the decision is made

to shut down and restore the database, you must

understand what the attacker did. It is important

to know if the data is compromised. If the data was

just read and no objects were created and there no

escalation of duties, most likely, the data is not actually

corrupt; it has just been stolen. In this instance, with

Chapter 3 InCIdent response approaCh

107

careful analysis, it is probably acceptable not to restore

the system. Restoring the system would involve the

need to restore to either a point in time before the attack

took place and then reapplying all of the business after

that point to restore to the current time. If the restored

database had any corruptions caused by the attacker,

these will be replayed into a restored version of the

production database. In some systems it is probably

more practical to fully understand what the attack did,

restore the system to a clean state but the same point in

time and then reversed the actions of the attacker. In this

way, lost business is kept to a minimum and the need to

reapply business manually is kept to a minimum.

• Document the attack: It is important to document

the process and all of the evidence that was captured.

Furthermore, document your understanding of

what happened. This includes all the actions the

attacker took and an indication of any data that he

saw or potentially stole. This report should also aim

to identify the gaps in the system that allowed the

attacker to enter in the first place and perhaps to

escalate his permissions once he was in the system.

The conclusions of the report should not only aim

to understand exactly what the attacker did, but also

identify the weaknesses and suggest how to fix them.

• Report the issue: Reporting the issue is not simple as

it sounds. First of all, it depends on the type of attack.

If the attack involved data loss, there is probably a

bigger requirement to disclose. If the attack involved

misuse or destruction or excess rights, it may depend

on other factors. If there are regulations that govern

Chapter 3 InCIdent response approaCh

108

your industry or general regulations such as PCI or

GDPR, you will be required to report the issue of

data loss. If your industry is not governed by any data

regulations, then maybe there isn’t even someone to

report the breach to. If you work for an ethical company

and customer data has been lost, yet there is no

requirement to report it, you should consider whether

you should still inform customers anyway; it’s ethically

correct to do so.

Note one of the biggest issues in analyzing an oracle database is
the more you investigate inside the database, the more it changes
the database itself. providing the access is read-only, this should only
really change the transient data within the sGa. Unfortunately, almost
every action in the database, even including SELECT statements, can
generate changes to dictionary records. For instance, if auditing were
enabled on a particular database view, and as part of the analysis,
you access that, an audit record would be created. the creation of
the audit record would also involve more changes to the sGa, as the
INSERT statement into the AUD$ table is compiled and processed.

You should aim to answer a number of questions during the

investigation:

• Did an attack actually occur? You need to establish

that the initial evidence does actually point to an attack

having taken place. This is the first proof that is needed

and is also reported in the final documentation

Chapter 3 InCIdent response approaCh

109

• How did the attacker gain access? It is imperative to

understand exactly how the attacker gained access to

the database. Was it via a web application, perhaps

via SQL Injection, or perhaps was it a DBA who

accessed personal data to save and later sell. Without

understanding exactly how the attacker gained access,

you cannot begin to understand exactly what privileges

he had and what he could have done as well as what

he did do. You need this information to be able to lock

down and secure the database.

• Who did the attacker gain access as? Which database

user did the attacker use to gain access. Was the

access direct using a tool such as SQL*Plus, or was the

connection indirect via SQL Injection through a web

application? In this case, the web server logs into the

database and the attacker piggybacks on to that user.

In some cases, the potential actions of the attacker are

perhaps more limited by a web-based access than they

would be by direct access. Some attacks may start as

web-based access and the attacker may then be able to

download and install command-line tools or graphical

tools to make a direct connection to the database and

browse.

• What was the “reach” of his access? What rights and

privileges are granted to the user that the attacker used?

This will give you a clear picture of the functionality

and the data that the attacker could have accessed.

This is the maximum access possible for the particular

database user, but it may be that something like a

web- based application that limits the attacker’s use of

the potential access and rights.

Chapter 3 InCIdent response approaCh

110

• What could he have done if he had more skills?

An attacker with more skill may find a way to further

elevate the privileges within the database. An unskilled

or very semiskilled attacker may use off-the-shelf

tools to initiate a brute force access to a database via a

vulnerable web site URL. A skilled hacker may be able

to tunnel further attacks through the initial attack. An

example is finding SQL Injection that allows the calling

of a procedure. Perhaps the procedure could then be

used to further inject DDL. This means that an attacker

can do anything as the user that he is connected to.

He could inject code as DDL into a procedure call,

which is itself injected into vulnerable SQL as SQL

Injection. This generally would require a much higher

level of skill. So while an attacker may have access to

a certain set of privileges, not all hackers will have the

skill to take advantage of this. In some cases, the hacker

may be able to gain elevated privileges by exploiting

vulnerabilities in PL/SQL in the database that runs

a higher-level user. If this were possible, the attacker

may then be able to gain access to other databases by

database links or the operating system of the server or

potentially gain access to the server as the Oracle user.

To analyze the possibilities, you need some level of

knowledge of Oracle security and potential database

hacking. Also bear in mind that in Oracle 12.2.0.1, there

are tens of thousands of public privileges available to

any database user; in general, most of these are execute

privileges.

Chapter 3 InCIdent response approaCh

111

The investigation should not change the database. Some documents

suggest that a superuser such as SYS be used for forensic analysis.

Although it makes sense to use an existing user, there is a risk that when a

powerful user is used, changes could be made to the database nefariously.

Creating a user specifically for the investigation in one sense would be

ideal because the privileges granted to it could be limited to as read-

only as possible this would not work. Creating a user in a compromised

database would certainly change the database. Adding a user involves

many SQL actions, so it could corrupt the SGA at least and potentially

change the dictionary by adding objects to it. This should be avoided. So

in retrospect, even though a user such as SYS is dangerous because it can

change the database, it makes more sense to use this type of user to gain

access to everything without difficulty. Just bear in mind that the database

could be changed or evidence could be deleted.

Can the evidence extracted from the database be trusted or verified?

This is very difficult to answer. Of course, using SYS means that anything in

the database can be changed. Some of the artifacts that are removed from

the database should be checksummed to ensure that they can be validated

at a later date if that same data is accessed again. This process of creating a

checksum would invariably use a package in the database such as

DBMS_SQLHASH, but this package could also have been modified by the

attacker or the investigator. An extremely thorough investigation should

validate that any of the tools used in the investigation have not been

corrupted or changed.

An attacker could also change views in the database to hide the

actions of the database objects that he created. This is called a root kit.

Gathering evidence from database views is therefore also susceptible to

a trust problem. A view is a compiled piece of SQL that is present in the

database to easy access to multiple tables that already include a predicate

(where clause). Attackers can easily change these views to add SQL in the

predicate. The analysis of the database should take this into account and

either one of two actions can be taken. The first is to only use the base

Chapter 3 InCIdent response approaCh

112

tables in the data dictionary so as to avoid using views that could have

been changed. The second is to validate the views first to ensure they

haven’t been changed and then use views to access the data dictionary as

part of the analysis and data gathering.

Validating the views in one sense is simple. You take a checksum

of each view and then compare that with a known valid database. The

problem with this is that the source code of views can change between

platforms and patches. To validate the views, you must maintain an

exact copy of the same database version to be able to generate the same

checksums in it to use as a comparison. This would be tedious.

Choosing between direct access or using views must be decided

carefully.

The issue of public relations must be considered. If someone external

reports the breach to you, then someone external already knows you have

been breached and could be talking to the press or media or disclosing it

on social media or similar. If the story gets out first, then you need to have

a response that shows you care and you are doing something about it to

limit the damage as much as possible. It is very important that a single

contact is appointed within your own organization to speak to the media

to post on social media any updates. Managing public relations and

media access is a very important part of incident response. Don’t lie to

the media or in statements that you make. Don’t be overoptimistic about

your progress or about the level of the incident. If it’s likely that an attacker

could have taken 100,000 records but you feel he might have taken 10,

don’t report immediately to the media that only 10 records were breached.

This would be foolish if it later turned out that 100,000 records were

available on Dropbox. Measure your interaction with the media guardedly.

Never rush to make a statement; ensure that all the facts are straight first

and then speak to the media.

Chapter 3 InCIdent response approaCh

113

 Create and Collate a Toolkit
As part of the preparations to deal with an incident, you must source and

build a toolkit. This toolkit should ideally be documented; this doesn’t

mean that detailed instructions need to be produced or sourced for every

item in the toolkit, but a high-level list of what each tool does will be

sufficient. It also makes sense that anyone who is involved in the incident

response process know how to run the tools. Any supporting software that

you need must also be sourced. Ideally, the toolkit should be copied to a

CD or a DVD so that it is read-only and therefore cannot be altered before

use. A more modern equivalent is use a pen drive or USB stick, but these

are in general read-write, so don’t satisfy the read-only aspect. Some USB

sticks can be made read-only, so investigate this as a potential repository.

If you use a FAT file system that doesn’t support permissions, then this is

not possible. If you use an NTFS file system, this can be done. Windows

supports a tool called DISKPART; start this tool by typing diskpart and you will

be left with the DISKPART> prompt. Now type the following after the prompt:

DISKPART> SELECT DISK "1"

where "1" is the drive that you want to protect. Then type the following

after the prompt:

DISKPART> ATTRIBUTES DISK SET READONLY

This will make the USB drive read-only. Bear in mind that a USB drive

was never intended to be protected, as the protection can just as easily be

turned off again. Some USB drives include a mechanical switch, but this

can be easily turned on or off.

A sensible approach is to checksum all of the tools on the USB drive.

A set of checksums can then be stored for comparison when the tools are

used to prove that they are the same copies and have not been modified.

Chapter 3 InCIdent response approaCh

114

Each relevant member of the team should gain experience with the

tools ahead of any potential breach. It is important to understand what

a tool does and how it behaves in advance of having to use it. They must

understand what the output looks like under normal circumstances, so

that when a breach occurs, they will understand the difference when

actual evidence shows up.

Creating a toolkit for Oracle forensics can be a problem because

at this point in time there are no specific commercial Oracle security

forensics tools available. But this is about to change, as there is one

commercial product coming soon. PFCLScan version 2.0 (see http://www.

petefinnigan.com/products/pfclscan.htm for details of the features and

the pricing), which will be released by the time you have this book in your

hands. It will include an update over the current version 1.9 that adds four

new Oracle forensics project templates for use in helping Oracle incident

response and forensics analysis, as well for use in auditing your database

for security vulnerabilities.

The first project template shown in Figure 3-1, to be used in the

interview section, will allow an incident coordinator to manage the

incident response process through PFCLScan and therefore generate

reports against this process. There are live and static incident response

projects to allow volatile data collection and less volatile data collection

using PFCLScan from the database. The fourth and final prebuilt project

template will allow analysis of the static and volatile data collection

projects. This project will be driven by a start and end date and will allow

the user to build a timeline from all of the collected artifacts and highlight

issues that could be relevant to an attack.

Chapter 3 InCIdent response approaCh

http://www.petefinnigan.com/products/pfclscan.htm
http://www.petefinnigan.com/products/pfclscan.htm

115

The PFCLScan was the first commercial tool that had Oracle forensics

built into it. In 2007, David Litchfield announced he was developing a

tool called FEDS, but it was never released. Then in 2011, David created

a company called V3rity and released some small command-line tools,

which have since disappeared. No commercial tool was ever released

despite the company being acquired.

The good news is that you don’t necessarily need commercial tools

or specific tools such as those developed by David Litchfield to analyze

Oracle data files. Standard Oracle, tools such as SQL*Plus, will work just

fine with a set of simple PL/SQL and SQL queries.

Analyzing the server can involve existing forensic tools such as EnCase

from Guidance software (see https://www.guidancesoftware.com/

encase-forensic for more details).

You can use other tools from Oracle, such as redo analysis using

LogMinor. There are also exotic options, such as oradebug or BBED to

access the SGA or data blocks in memory directly. Little help is available

online for tools such as oradebug or BBED, so these are not really

Figure 3-1. A question and answer type project in PFCLScan.
Copyright (c) PeteFinnigan.com Limited. Used with permission.

Chapter 3 InCIdent response approaCh

https://www.guidancesoftware.com/encase-forensic
https://www.guidancesoftware.com/encase-forensic

116

suitable outside of the hands of an expert. These tools were created to

debug or tune the Oracle database engine itself. They were not intended

for forensic analysis.

Miladin Modrakovic wrote a paper in 2004 based on Kyle Hailey’s

original work on direct SGA access in C. This work was intended to allow

access to the SGA for tuning purposes. This paper can be found at

http://www.petefinnigan.com/Storing_Data_Directly_From_

Oracle_SGA.pdf. This is because it is possible to poll structures in the

SGA extremely quickly using direct memory access and the C language.

Doing the same in SQL is too slow. The same ideas can be used for Oracle

forensics by writing a C program to access transient and volatile data such

as SQL, users, sessions, and processes in the SGA. This allows access to the

transient data without affecting the transient data. The big problem with

this approach is that a different C program is needed for each operating

system that supports Oracle. And each version of Oracle potentially

changes the location of the X$ structures that make up the SGA. This would

be a minefield to maintain.

Some tuning tools such as the tuning pack and diagnostic pack from

Oracle (additional license required) allow monitoring and historic data to

be collected from the SGA. Third-party tools such as foglight and spotlight

from Quest operate in a similar way and again demand a license fee.

These tools are intended for tuning, but they may prove useful in forensic

analysis. There are also free tools available, such as SQLXPLAINT from

Oracle and a tool such as snapper and MOATS from Tanel Poder. All of

these may prove useful in forensic analysis but they are not intended for

forensics.

The simplest approach is to gather the relevant log files and

configuration files from Oracle with simple tools such as ssh and sftp.

Manual analysis of these log files will suffice combined with simple grep or

search commands. In terms of database analysis, SQL and simple

PL/SQL scripts are the best approach. These are ubiquitous and will work

on all supported platforms and versions of Oracle. The scripts need not

Chapter 3 InCIdent response approaCh

http://www.petefinnigan.com/Storing_Data_Directly_From_Oracle_SGA.pdf
http://www.petefinnigan.com/Storing_Data_Directly_From_Oracle_SGA.pdf
http://www.petefinnigan.com/Storing_Data_Directly_From_Oracle_SGA.pdf

117

be complex, as they gather simple sets of data from the database. This

includes gathering volatile data from the SGA and more permanent data

from the data dictionary of the database. Microsoft Office products such

as Excel are really useful for sorting and analyzing data that has been

gathered from the database. Excel also provides graphing facilities to

visualize the patterns in data.

Ensure that you pre-gather a suitable set of tools or scripts to allow

artifacts to be taken from the database and subsequently analyzed. Is

important to ensure you’re familiar and trained with these tools.

The next chapter discusses some of the tools that provide more help.

Chapter 3 InCIdent response approaCh

119© Pete Finnigan 2018
P. Finnigan, Oracle Incident Response and Forensics,
https://doi.org/10.1007/978-1-4842-3264-4_4

CHAPTER 4

Reacting
to an Incident
This chapter explores the scenarios involved in reacting to an incident.

It focuses on the steps involved with incident response. This starts with a

brief discussion of what not to do; it’s important in advance to make sure

that you don’t make things worse by switching off the computer or the

multi-node Oracle database server, for example. This would be completely

impractical in any normal sense. The incident coordinator first verifies that

an incident has actually occurred. Connecting to the system and verifying

the system state are the next steps. In other words, you need to know

exactly what was affected—versions, users who are connected, processes

that are running, and other details that will be relevant at a later date when

the analysis is used, perhaps in criminal proceedings. After an incident

has been verified then a detailed analysis of the database needs to be done

and this starts with artifact collection. The chapter includes with a brief

discussion of whether to disconnect the database from the network and

when and if to shut it down.

Artifacts must be collected in the correct order. Any collection that

could affect the rest of the collection must be done first. One unfortunate

problem with an Oracle database when using SQL as the incident response

tool is that the act of running SQL can change the transient data of the

database, so you must take care when collecting. Once the incident range

120

has been established, the collection of the artifacts from the database can

be made. This includes looking for changes to database objects, access

to data, access to user accounts and elevated privileges and in general

anything that can help coordinate the attack response.

 A Sample Attack
Chapters 4 and 5 are based on a sample simulated attack of the simple

company system supported by an Oracle database. The company runs

two web-based applications. The first application supports the company’s

web site and uses a content management system to serve web pages to the

public. This content management system uses an Oracle database as its

data store. The intention of the public facing web site is to showcase the

company’s products and services and provide a blogging platform.

The second application supports the company’s business processes.

Employees of the company log into a web-based application that allows

access to business-critical data. Authorized users are able to modify,

delete, or add new suppliers, shipping information, customer details,

products, and of course payment details such as credit cards. This

application also uses a content management system with Oracle as its

data store.

The biggest flaw in this company’s database architecture is that it uses

the same Oracle database to support the public facing web site and the

business specific functionality. Even worse, the public facing web site data

and backoffice business data are all stored in the same database schema;

ORABLOG. The problems deepen as it also turns out that the public facing

web site and the backoffice web application both connect to the database

as the same schema owner; ORABLOG.

The attack was simulated of course for this book. Although it would be

great to use evidence from a real customer’s forensic analysis, no customer

would agree to this. So instead we simulate an attack against a customer’s

Chapter 4 reaCting to an inCident

121

web site supported by an Oracle database. A video was made of the actual

attack and posted to my YouTube account. You can see it at http://www.

petefinnigan.com/forensics/hack.htm. It is more interesting not to

describe the details of the attack now, but instead leave that until after

the forensic analysis in Chapter 5. Forensic analysis should be able to

determine exactly what happened; that is the goal of course. After you’ve

read the sample forensic analysis, you can watch the video to see what

really happened.

 What Not To Do
It is vital that the incident response process is planned carefully in

advance. In an Oracle database, accessing the database itself can change

the database. This was discussed in the last chapter. This means that we

should read data from the database in a carefully pre-planned order so

that limited changes or data corruption are likely to be made. It is also

important to not immediately disconnect the database from the network

or disconnect users or shut it down. We are dealing with production Oracle

databases supporting a myriad of applications and simply turning the

power off is not an option. Neither is disconnecting people, that is, without

careful planning and forethought.

In simple terms, if an incident is raised then do not panic. Ensure that

the process for incident response is worked through correctly. Ensure

that the system is not touched so that live analysis can take place without

corruption. Carefully consider the business requirements of the system—is

the system compromised in terms of business integrity? Does it need to

be completely rebuilt or can it be rectified after the analysis of the issue?

One of the key tenets will be keeping the business running as smoothly as

possible even when there has been a breach. So make no rash decisions

straight away.

Chapter 4 reaCting to an inCident

http://www.petefinnigan.com/forensics/hack.htm
http://www.petefinnigan.com/forensics/hack.htm

122

The first stage of incident response is to establish that an incident has

in fact taken place. Once you verify the incident, the incident response

team must jump into action. The incident coordinator must take the lead

and ensure that the incident response process is followed step-by-step

until completion.

This chapter focuses on collection of the incident-based artifacts from

a sample database that has been exploited. This gives examples of some of

the data they should collect and some sample queries to do just that.

 Incident Verification and Identification
The first task is to verify that an incident has occurred. Establishing that

an incident has in fact taken place is very complex. There is no golden

bullet technique to do this. This is simply because one incident will not

be the same as the next incident. Chapter 3 discussed planning for an

incident and creating a team and a leader. You must also create an incident

reporting channel. This could be as simple as an e-mail address so that

the public or employees or customers can report an incident to you. If

someone internally suspects an incident and makes initial investigations,

then at some point they should also report the incident to the same

channel. All employees of the company should be made aware of the

incident response process so that they use it.

In real life, people don’t always follow rules so expect that some

incidents may start to occur and be investigated perhaps by members of

the development team or the DBA team or even business people. Usually

this is because someone notices something that is not normal and starts

to investigate. It doesn’t even need to be someone from IT; it could be a

business person who noticed an anomaly in some figures or records that

are normally processed. At some point, even with an ad hoc approach

to investigating an incident, they must involve someone from IT or

management.

Chapter 4 reaCting to an inCident

123

Even if an incident comes to the attention of the correct people and not

via the correct channel, the incident should be formally raised by someone

to ensure standardization. However, the incident has been reported at

some point it comes to the attention of the incident process team. This is

the point at which someone must validate and verify that there really is an

incident.

Some incidents will be easier to verify than others. For instance, if

data for some of your customers held in your database has been posted on

Dropbox or some attacker has announced publicly on social media that he

has hacked your company’s database and has taken data, then it’s pretty

much established already that it’s genuine.

This should still be verified. The data must be obtained and then a

search of the database must be made to establish whether this data really

did come from the database. If the data that has been posted on Dropbox

is posted with a certain order—for instance first name, last name, date of

birth, e-mail address, postcode, first-line, second-line—then we have an

order of columns that could have been extracted from a database table.

Therefore, the first step is to do a search of the database to find every table

that contains the type of information that has been stolen and to validate

if any of the tables are located have the same order of data. It could be that

the attacker selected the data in an order that is different from the structure

of the table, but this is a starting point. If you can verify that the data did

indeed come from that table because the order is the same, then you can

verify the count of records in that table and compare it to the number of

records that were stolen. If they match, then immediately you know that

all records have been stolen. If they don’t match, then perhaps the records

came from a different system where the table does match but the system

has less data. So perhaps the attacker gained access to a test system that is

seven months old.

At the time the test system was populated with production data was

used but in the seven months since the test system was populated more

data has been added to the production system that is not in the test

Chapter 4 reaCting to an inCident

124

system. Compare the counts of records with other systems within your

organization that copies data from the production system. This may

give an indication of the exact database that the data was stolen from. If

the data also included a timestamp for each record, then this may also

indicate where the data came from and when. If data is added to a table

on a daily basis and the data that has been exposed on the Internet has a

final date for some record of three weeks ago, then almost certainly the

data was taken three weeks ago.

At this point, it is also worth looking at a number of records that have

been posted on the web site dropbox (if indeed this was the method that

the attacker used) to establish whether the hacker took all of the data or

just some of it. Just because he posted a subset of data to dropbox does not

mean that he doesn’t have all of the data.

In general, an attack falls into a number of broad categories:

• Data has been found outside of the company where it’s

clearly not normal or authorized.

• Something has happened that should not have. This

could be a process running at the wrong time or access

to a system out of hours or something similar.

• Something does not add up. There could be a

discrepancy in summary reports that is not normally

present, indicating that data may be corrupted or

changed.

If the initial indication of an attack came from business employees,

perhaps because they noticed some strange values in reports or a

mismatch between banking records and invoices, then maybe the attack

is more complex. Maybe an attacker managed to alter or change payment

processing to steal money from your company. A clever technique could

be that an employee changes the postal address for a customer in a

company that lends money. This address change is made immediately

Chapter 4 reaCting to an inCident

125

before the payout check is sent and changed again immediately after this

process; back to the original customers address of course.

Maybe an employee notices an inconsistency in invoices and payouts

or perhaps notices an address in one record that doesn’t match with

another. The big problem with a breach is we don’t know what the breach

is until somebody thinks there is a breach, at which point we can start

to investigate and dig into data. In this particular example, if there was

auditing at the application layer, perhaps we can establish that an address

was changed twice. An immediate response may be to check all the

records to see if this action is common and that every customer’s address

has changed twice during the payout process. Visit this data and confirm

employee addresses, as it’s a good test to see if a breach has occurred.

Once you’ve establish that a breach has occurred or is in process, you

need to establish some basic facts:

• When did the attack start and end? Sometimes it’s

possible to estimate this from date and timestamps

on records that have been stolen or manipulated. It is

often easier to establish the end date of an attack from

timestamps or even the current date now at the start of

the investigation. At this stage an initial guess as to the

start of the attack can be made based on timestamps,

perhaps comparisons between test systems and the

production system to see if data is changed and when.

The fact is, you need to establish the start date and

the end date of the attack to use this as a basis in the

analysis.

• How did he get in? The insertion point in to your

systems by the attacker must be established. It’s very

important to understand how the attacker got in so

that whatever method he used can be closed out and

secured.

Chapter 4 reaCting to an inCident

126

• What did he steal or change? A concerted effort must be

made to establish exactly what was stolen or changed

within the database. This gives a basis for assessing

what to do with the database after the investigation is

complete. If the complete range of actions that were

made by the attacker are known, it may be possible to

reverse those rather than completely rebuilding the

database. This may give the opportunity to keep the

system live rather than have downtime and manual

rework or re-entry of data afterward.

• What could the attacker have done? By reviewing the

privileges that the attacker had while he was in the

database, you can assess the exact range of what he

could have done. This might include what data he

could have seen if he chose to, and which objects he

could have deleted, changed, or accessed. Could he

have escalated his privileges to another user or could

he have access to the operating system or networking

or even another database? This information can be

used to help lock down and secure the database after

the analysis is complete.

The type of attack can vary from a purely external attack by exploitation

for instance of a web site to a completely internal attack whereby for

instance DBA has accessed data using his normal day-to-day privileges. An

attack can be anything between. In my experience, many different types of

attacks have happened over many years. For instance, an attacker found

out how to request backup tapes from the external store and requested that

they are delivered to the company site, whereby he turned up and signed

for the tapes. He took them and stole the complete production database.

Another example was a person employed as a cleaner where the customers

Chapter 4 reaCting to an inCident

127

offices were cleaned during the night. The evidence showed that the

nefarious database access happened at 2 AM and CCTV confirmed it was a

person employed as a cleaner using another employee’s PC, which was left

turned on and unlocked. In fact, in the organization, every PC was left on

24 hours a day. After this attack, that changed.

Establishing if an attack has occurred can be complex and initially

there must be some suspicion and that suspicion must be investigated. It’s

very difficult in advance to specify rules, unfortunately.

 Collecting Artifacts
The main activity of incident response is to collect artifacts from the

server, from the database, and from other targets such as web servers.

There are two general ways to collect artifacts—the first is scripted and

structured and second is ad hoc. Clearly we should plan and obtain a

toolkit in advance to assist in extracting artifacts from a database. The

incident responder should already be familiar with the tools and know

how to install them or use them in a response. The responder should also

have tested the tools in advance to know how they behave and what to

expect in terms of results. For a live response, a preset list of actions should

be defined to extract from the server and the database. Therefore, this

extraction can very easily be scripted if necessary.

It makes sense to use pre-defined tools, scripts to extract the data,

and then automate the process. Don’t discount ad hoc methods to gather

additional data if necessary, but ideally have predefined scripts and tools.

An incident responder should not be connected to the target system

and describing views or describing tables and trying to develop queries in

the system that is being investigated. If that is necessary, then this should

be done on a test database. When the query has been completely defined,

you then run it on the target system and document it.

Chapter 4 reaCting to an inCident

128

 Disconnecting the System or Shutting Down
The first reaction if a breach is in progress may be to disconnect the database

from the network or shut it down—or worse, pull the power plug. All

members of the incident response team and the DBA team must understand

not to disconnect the database from the network or shut it down.

The incident response team must control these two actions. It is

important to understand that the database contains a lot of volatile

information that will be lost if the database is powered down abruptly

or shut down normally. It may also be the case that an attacker has left

code in the database—perhaps as a trigger—so that if it is shut down,

it will delete evidence that he left. This could be deleting audit records

or removing users or procedures from the database. The biggest loss in

shutting a database down immediately would be that the SGA is cleared

and all of the transient data is lost. This information is important, as it

shows which SQL ran most recently, which users are currently logged in

and active, and which processes and sessions are running.

If the attacker is still in the database, he almost certainly is connecting

remotely to the database either through a web server or a direct SQL

connection. His actions may lead to further loss of data or destruction,

but the evidence gained may prove useful in the investigation. A decision

needs to be made by the incident response team as to exactly when to

disconnect the database from the network and when and if to shut it down.

Clearly, all the volatile evidence must be collected first.

 Connecting to the System
To enable collection of artifacts from the database, a connection must

be made to the database. Although it could be possible to extract some

information from the SGA with a direct connection to the shared memory

using a C program, there is no publicly available C program to do this.

Chapter 4 reaCting to an inCident

129

You would have to write it yourself. Also if a direct connection to the SGA

was used there would be differences to that program based on Oracle

version and the operating systems used to support Oracle. This would

cause the need to have different programs created for each platform and

each version. This is not practical. Also this method would only allow

connection to the SGA and would not allow SQL to be executed.

It may be possible to connect to the database using an operating

system debugger. Tanel Poder has discuss this on his blog at http://blog.

tanelpoder.com/2008/06/14/debugger-dangers/ and http://blog.

tanelpoder.com/2013/05/27/debugger-dangers-part-2/, but it’s clear

that these are very unreliable and unstable methods to access an Oracle

database for forensics.

Clearly the access should be using a standard SQL type tool such as

SQL*Plus. In fact I recommend using SQL*Plus over graphical tools such

as SQL*Developer or TOAD. A command-line tool has a much smaller

footprint on the server and therefore is less likely to disturb anything else.

A further question arises as to whether to connect to the database from

the server or remotely from a client. Connecting from the server would

make sense but there are side issues with this. Accessing the server will

change the server because the connection must be made perhaps causing

logging or auditing to be written to the server at the operating system

level. Also if the investigation is done from the server, then the artifacts

are likely to also be written to the server. Being on the server doesn’t mean

physically standing next to it; in this context it means making an ssh

connection as a Unix user (or Windows user if the platform is Windows)

and then accessing the database with SQL*Plus. The simple solution to this

is to store the artifacts on removable media, but if the connection is made

remotely and no access to the server room is possible, then inserting a USB

drive into the server is not likely to be possible. It is probably possible to

remotely mount a USB drive, but again this will change the server.

Chapter 4 reaCting to an inCident

http://blog.tanelpoder.com/2008/06/14/debugger-dangers/
http://blog.tanelpoder.com/2008/06/14/debugger-dangers/
http://blog.tanelpoder.com/2013/05/27/debugger-dangers-part-2/
http://blog.tanelpoder.com/2013/05/27/debugger-dangers-part-2/

130

The most sensible approach and the cleanest is to access the

database remotely using SQL*Net from a client PC. The incident response

practitioner should use a PC prepared for the incident response. Ideally,

an encrypted container can be created on the PC using software such as

Drivecrypt from a vendor in Germany. The free alternative Truecrypt is no

longer supported and available. An encrypted container is a good option,

as it allows all tools to be installed into the container or accessed from

within the container and all the results to be stored in the container. As

soon as the investigation is closed, the container can be locked to prevent

access to the data that has been gathered by anyone else.

As part of the investigation, a new user should not be created in the

database for the investigator. In other circumstances, such as a security

audit, this would be the right thing to do. In the case of forensic analysis,

this should not be done as the database should not be changed to add a

new user. This would certainly change the SGA and certainly change the

data dictionary. Normally it would not be recommended to use the SYS

user for security work, as this allows access to do anything. But other than

the SYSTEM user, this is the only user guaranteed to exist in any database.

Why not use the SYSTEM user? Because in later versions such as 12.2.0.1

some dictionary tables are not accessible to this user. Again, this is for

the same reasons we would not want to make grants to this user simply

to access objects that are necessary for the investigation. One example

is the SYS.USER$ table, which is no longer accessed with the SELECT ANY

DICTIONARY system privilege in 12.2.0.1.

It makes sense also to use an Oracle instant client, as it is freely

available and much smaller than a complete client. A complete client is

usually around 1.2GB, but the instant client is approximately 120MB. This

leaves a much smaller footprint.

In summary, use simple tools such as SQL*Plus, use an instant client,

connect remotely from a secured PC, and use the SYS user.

Chapter 4 reaCting to an inCident

131

 Live Response and Artifact Collection
Live response is the process of collecting the evidence from the server and

the database. This should be done in a reasonably specific order. Start with

the server first and collecting the most volatile evidence so that any change

caused by incident collection activities will have the least effect on the rest

of the artifacts that you collect. After the most volatile records are collected

from the server, then move on to the less volatile and finally the almost static.

At this point, the connection can be made to the Oracle database as

discussed in the previous section and artifact collection can begin within

the database. Again the same process should be followed. The most

volatile data should be collected first to ensure that any further collection

does not affect the earlier records. In terms of the database, this is the

current SQL that is visible in the SGA. Any SQL that is executed could

change the current SQL in the buffers in the SGA; therefore, we must

collect this first. Collecting this SQL has to be done with an SQL statement,

so it could age out another statement from the buffer.

When you start collecting artifacts, ensure a separate directory has

been created to store all of those artifacts. Ideally, encrypt this directory:

[root@oel59orablog bin]# mkdir /tmp/client-xxx

Also, it is worth ensuring that the date format for the database is set to

include seconds. Listing 4-1 shows how to check the current date format.

Listing 4-1. Checking the Current Date Format

SQL> select * from sys.nls_session_parameters

 2 where parameter='NLS_DATE_FORMAT';

PARAMETER

--

VALUE

--

Chapter 4 reaCting to an inCident

132

NLS_DATE_FORMAT

DD-MON-RR

1 row selected.

Actually, testing this will affect the SGA, so it is best not to run this

query in the target database. This is available if you need to check what

is specified if results do not display the best precision. Listing 4-2 shows

how to set the date format to include seconds and the timestamp format to

include hundredths of seconds.

Listing 4-2. Setting Date and Timestamp Formats

SQL> alter session set nls_date_format='YYYYMMDDHH24MISS';

Session altered.

SQL> alter session set nls_timestamp_

format='YYYYMMDDHH24MISSFF';

Session altered.

SQL>

If this is not set, the date format in any query will lose seconds and

hundredths of seconds and of course lose accuracy. Using pure numeric

settings means that dates can be subtracted or compared numerically

more easily without conversion and language or character set issues are

removed.

 Views, Base Tables, RAC, and Synonyms?
The analysis of a database for forensic issues involves primarily selecting

data from tables or views. The use of views to extract data makes that data

richer because of the pre-made views of more complex data.

Chapter 4 reaCting to an inCident

133

There is a risk that when analyzing a database that someone could

have manipulated the source code of the Oracle database. This is covered

in the section on rootkits and elsewhere in this book. The source code of

the database includes compiled SQL that forms views. This is normal in a

database, but because a view is actually just pre-compiled SQL, someone

could change or replace that pre-compiled program. The source code of

pre-built PL/SQL procedures could also be manipulated to give incorrect

results. For instance, the package DBMS_SQLHASH, which can be used to

create checksums of database objects could be modified to output a

pre-known hash for certain packages, leading the user to believe that the

package is genuine and not modified.

The structure of the data dictionary is also complex in that views can

read data from many base tables and other views. These other views can

also read data from further base tables and yet more views, ad infinitum.

A sample security view is the view DBA_SYS_PRIVS. The text of this view

is shown in Listing 4-3.

Listing 4-3. A Listing from the Database of the View DBA_SYS_PRIVS

SQL> set long 1000000

SQL> set pages 0

SQL> select text from dba_views

 2 where view_name='DBA_SYS_PRIVS';

select u.name,spm.name,decode(min(mod(option$,

2)),1,'YES','NO'),

 'NO', 'NO'

from sys.system_privilege_map spm, sys.sysauth$ sa, user$ u

where sa.grantee#=u.user# and sa.privilege#=spm.privilege

 and bitand(nvl(option$, 0), 4) = 0

group by u.name,spm.name

union all

Chapter 4 reaCting to an inCident

134

/* Commonly granted Privileges */

select u.name,spm.name,decode(min(bitand(option$,

16)),16,'YES','NO'),

 'YES', decode(SYS_CONTEXT('USERENV', 'CON_ID'), 1, 'NO',

'YES')

from sys.system_privilege_map spm, sys.sysauth$ sa, user$ u

where sa.grantee#=u.user# and sa.privilege#=spm.privilege

 and bitand(option$,8) = 8

group by u.name,spm.name

union all

/* Federationally granted Privileges */

select u.name,spm.name,decode(min(bitand(option$,

128)),128,'YES','NO'),

 'YES',

 decode(SYS_CONTEXT('USERENV', 'IS_APPLICATION_PDB'),

'YES', 'YES', 'NO')

from sys.system_privilege_map spm, sys.sysauth$ sa, user$ u

where sa.grantee#=u.user# and sa.privilege#=spm.privilege

 and bitand(option$,64) = 64

group by u.name,spm.name

This view is complex and is actually made up from three SELECT

statements joined together to give one complete statement via two UNION

ALL clauses. This is made up from local standard rights from 11g and

earlier and 12c Common privileges and Federationally granted rights.

Each section includes a core SQL against three tables—USER$, SYSAUTH$,

and SYSTEM_PRIVILEGE_MAP. The differences between the three sections

of the UNION are controlled by the OPTION$ column of SYSAUTH$. To ensure

Chapter 4 reaCting to an inCident

135

that this view and indeed any other view has not been hacked, you have a

number of choices. You can:

• Copy the complete SQL of the view into a script and use

it as SQL in a script. This is the best approach, as the

SQL in the view is the same but you control it, not the

Oracle dictionary.

• Develop simpler SQL on only base tables based on the

major joins of the view. The risk is that some rows may

be lost in future queries or additional incorrect rows

revealed because it is not the same SQL.

• Checksum the views and all child views to verify that

they have not been modified and use the original views.

In the case of the dynamic views such as V$SQL, these are also complex

and are based on a different model. If you take the view V$SQL, you can see

its text in Listing 4-4.

Listing 4-4. The Text for V_$SQL

SQL> select text from dba_views

 2 where view_name='V_$SQL';

select "SQL_TEXT","SQL_FULLTEXT","SQL_ID","SHARABLE_

MEM","PERSISTENT_MEM","RUN...

S_ROLLING_INVALID","IS_ROLLING_REFRESH_INVALID" from v$sql

Some of the text has been removed to save space as the point of

interest is the FROM Clause. This says that V$SQL text selects from v$SQL;

what’s going on? Well V$SQL is not V$SQL but is in fact V_$SQL. This is

because V$SQL is a synonym for V_$SQL. The from V$SQL is because v$sql

is a fixed view and the text can be found in V$FIXED_VIEW_DEFINITION.

Listing 4-5 shows this for v$sql.

Chapter 4 reaCting to an inCident

136

Listing 4-5. Fixed View Definition for v$sql

SQL> select * from v$fixed_view_definition

 2 where view_name='V$SQL';

V$SQL

select SQL_TEXT, SQL_FULLTEXT, SQL_ID, SHARABLE_MEM,

PERSISTENT_MEM, RUNTI

...

NO_INVALIDATE, IS_ROLLING_INVALID, IS_ROLLING_REFRESH_INVALID

from GV$SQL where

inst_id = USERENV('Instance')

 0

Some of the code has been removed to save space. This time v$sql

reads from GV$SQL. This is a normal view and its text in DBA_VIEWS shows

that data is selected from gv$sql for GV_$SQL. When the fixed view

definition is examined for gv$sql, then we finally see that the data is read

from x$kglcursor_child. This is complex and involves multiple layers

of views and synonyms. Synonyms pass SELECT statements on V$SQL and

GV$SQL to V_$SQL and GV_$SQL. Just because these are dynamic views does

not mean that they could not be changed. The synonyms could also be

modified to point at hacker versions of any of these views.

What does GV$ and V$ mean? Well, the V$ views means get data from

the current instance and the GV$ view means get data from all instances.

This comes into play with Oracle RAC. If a RAC database is breached, then

the GV$ views must be used, as you could be connected to one instance of

a three-node RAC cluster and the attacker is connected to another. So his

SQL could be visible in one node and not the others.

So again, as with DBA_SYS_PRIVS, you should use base tables. In this

case, X$ tables. Avoid synonyms and ensure that you use the lowest code

in the stack and access the complete database across all instances. Again

the simplest approach is to put the text of the fixed view GV$SQL against

x$kglcursor_child into your script to avoid views and synonyms.

Chapter 4 reaCting to an inCident

137

 Spreadsheets
Ideally, make all scripts output record-separated rows of data. Commas

are not a good choice, as they can appear in data, so a good option is the

vertical bar | as a record separator. The data can then be easily loaded into

MS Excel (or similar) so that columns of data can be hidden, rearranged,

and of course filtered and sorted. This makes analysis easier.

 Server and Database State
The first step in live response is to collect as much detail as possible about

the current system state—of both the server and database. This should

include establishing what processes are running on the operating system;

which users are connected to the operating system; and any network

connections that are currently established on the operating system.

Similar action should be performed within the database to establish

which processes are running within the database, what jobs are running,

which users are connected, and ideally what users are doing (the current

SQL that is running), and all recent SQL.

It is also important to establish the system time and its offset if any

from real time. Also establish the version of the database and its patch set.

This basic information is useful to understand what vulnerabilities

may be possible to exploit. The next step is to collect artifacts from the

server and database. Some of these processes are covered with examples

in the next section.

 Get Server Details
This is now the start of the gathering of artifacts from the servers involved

and the database. A suitable directory should be created to store this data.

The data collected will be used in Chapter 5 to analyze the breach.

Chapter 4 reaCting to an inCident

138

All of the scripts used are available for download from

http://www.petefinnigan.com/forensics/download.zip, so download

and use these. Some examples are shown for running scripts to obtain

artifacts, some are shown with simple commands, and some are just listed

to preserve space.

The first step is to get details about the database server. First get the

current date and time:

[root@oel1124 ~]# date

Sat Jun 3 20:15:23 BST 2017

Find out who is logged in:

[root@oel1124 ~]# who

root :0 2017-06-02 15:42

root pts/1 2017-06-02 15:42 (:0.0)

root pts/2 2017-06-03 20:15 (192.168.1.89)

[root@oel1124 ~]#

Next get the running processes:

[root@oel1124 ~]# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jun02 ? 00:00:02 init [5]

root 2 0 0 Jun02 ? 00:00:00 [kthreadd]

root 3 2 0 Jun02 ? 00:00:02 [ksoftirqd/0]

...

root 19980 1 0 02:41 ? 00:00:00 /usr/bin/

system-config-network

root 19981 19980 0 02:41 ? 00:00:00 /usr/sbin/

userhelper -w system-

config-network

root 19984 19981 0 02:41 ? 00:00:08 /usr/bin/python

/usr/sbin/system-config-

network-gui

Chapter 4 reaCting to an inCident

http://www.petefinnigan.com/forensics/download.zip

139

root 20336 3362 0 03:00 pts/1 00:00:00 su - oracle

oracle 20337 20336 0 03:00 pts/1 00:00:00 -bash

oracle 23002 1 0 06:00 ? 00:01:48 ora_vkrm_bfora

oracle 27621 20337 0 11:42 pts/1 00:00:00 sqlplus as sysdba

oracle 27624 27621 0 11:42 ? 00:00:00 oraclebfora

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

root 30260 2 0 14:58 ? 00:00:05 [kworker/1:2]

[root@oel1124 ~]#

Now get the user accounts from the server and groups:

[root@oel1124 ~]# cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

...

oracle:x:502:501::/home/oracle:/bin/bash

orablog:x:503:501::/home/orablog:/bin/bash

[root@oel1124 ~]#

and

[root@oel1124 ~]# cat /etc/group

root:x:0:root

bin:x:1:root,bin,daemon

...

dba:x:501:orablog

orablog:x:503:

[root@oel1124 ~]#

Get the server release and versions:

[root@oel1124 ~]# cat /etc/redhat-release

Red Hat Enterprise Linux Server release 5.9 (Tikanga)

 [root@oel1124 ~]# uname -r

2.6.39-300.26.1.el5uek

Chapter 4 reaCting to an inCident

140

List the open ports:

[root@oel1124 ~]# netstat -pln

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address State PID/Program name

tcp 0 0 0.0.0.0:1521 LISTEN 3570/tnslsnr

tcp 0 0 0.0.0.0:22 LISTEN 2562/sshd

tcp 0 0 127.0.0.1:631 LISTEN 2573/cupsd

tcp 0 0 127.0.0.1:25 LISTEN 2608/sendmail

tcp 0 0 0.0.0.0:702 LISTEN 2216/rpc.statd

tcp 0 0 127.0.0.1:2207 LISTEN 2547/python

tcp 0 0 127.0.0.1:2208 LISTEN 2542/./hpiod

tcp 0 0 0.0.0.0:56717 LISTEN 3646/ora_d000_

bfora

tcp 0 0 0.0.0.0:111 LISTEN 2182/portmap

...

You’ll need to take other steps, including:

• Locating and saving any operating system audit trails

• Dumping the memory of any running process

• Recursive listing of all files and directories on the server

including date and timestamps

• Listing all open files using the Unix command lsof

• Getting copies of any log files

• Getting copies of the .bash_history files

• Establishing if audit is enabled and getting a copy; this

is different per operating system

Chapter 4 reaCting to an inCident

141

 Web Server logs
Now access the two web servers that support the public facing web site and

backoffice processing in this example system.

Extract the same server information for the two web servers as was

extracted for the database server in the last section. This should include

the system time for use in correlation of records from different systems.

Locate the web server access and error logs as well:

[root@oel59orablog logs]# ls -ltr

total 1100

-rw-r--r-- 1 root root 6229 Oct 31 2013 php.log

-rw-r--r-- 1 root root 5 Jun 2 16:49 httpd.pid

-rw-r--r-- 1 root root 84135 Jun 3 00:23 error_log

-rw-r--r-- 1 root root 1001300 Jun 3 01:56 access_log

[root@oel59orablog logs]#

Copy these to your safe storage in readiness for analysis. Ensure that

any archived logs are located and copied to your storage.

 Collect Oracle Logs Files from the Server
The Oracle database contains a lot of files that could be useful to database

analysis. All of these should be located and copied to the analysis safe

storage directory.

The following files should be located and copied:

• The database alert log

• The listener log file

• The SYSDBA audit files

• The database initialization files (init and spfile)

Chapter 4 reaCting to an inCident

142

• The database password file that contains the SYSDBA

password hashes

• Database trace files

• Redo logs

• Database archive logs if they exist

• SQL*Net logs if any exist

• The database system tablespace data file

• The database control files

Most of these files locations can be found by querying the database to

get the locations, but at this point in the investigation we do not want to

query the target system and risk changing it. The locations can also found

by trail and error from the operating system. The example code shows how

to find the alter log:

[root@oel1124 u01]# find . -name "*alert*" -print 2>/dev/null

...

./app/oracle/diag/rdbms/bfora/bfora/trace/alert_bfora.log

./app/oracle/diag/rdbms/bfora/bfora/alert

./app/oracle/diag/tnslsnr/oel1124/listener/alert

[root@oel1124 u01]#

By default, this also locates the background dump destination, as

this is the location of the alert log for the database. Obtain the trace files

and the alert log. Locate other trace directories, such as the core dump

destination and the user dump destination by using a find command to

locate .trc files:

[root@oel1124 oracle]# find . -name "*.trc" -print 2>/dev/null

 ./product/11.2.0/db_1/oel1124.localdomain_bfora/sysman/log/

emagentfetchlet.trc

Chapter 4 reaCting to an inCident

143

./product/11.2.0/db_1/oel1124.localdomain_bfora/sysman/log/

emagent_perl.trc

./product/11.2.0/db_1/oel1124.localdomain_bfora/sysman/log/

emoms.trc

./product/11.2.0/db_1/oel1124.localdomain_bfora/sysman/log/

emagent.trc

./product/11.2.0/db_1/oel1124.localdomain_bfora/sysman/log/

emdctl.trc

./diag/rdbms/bfora/bfora/trace/bfora_diag_3602.trc

./diag/rdbms/bfora/bfora/trace/bfora_vkrm_28444.trc

./diag/rdbms/bfora/bfora/trace/bfora_j001_26463.trc

./diag/rdbms/bfora/bfora/trace/bfora_smon_28697.trc

./diag/rdbms/bfora/bfora/trace/bfora_dbrm_3606.trc

./diag/rdbms/bfora/bfora/trace/cdmp_20170503205638/bfora_

m000_22354_bucket.trc

...

./diag/rdbms/bfora/bfora/incident/incdir_8625/bfora_m000_13772_

i8625.trc

./diag/rdbms/bfora/bfora/incident/incdir_9910/bfora_m000_25357_

i9910.trc

[root@oel1124 oracle]#

Obtain all of these files for reference and use. The listener log,

listener.ora, and sqlnet.ora can be located by running the listener

control utility. This is shown in Chapter 2. These files should be obtained

and copied to the safe storage.

The initialization and password files are usually in the $ORACLE_HOME/

dbs directory on Unix. So get these files and save them:

[root@oel1124 dbs]# ls -al

total 28

drwxr-xr-x 2 oracle dba 4096 Jun 2 15:53 .

drwxrwxr-x 73 oracle dba 4096 Apr 4 2016 ..

Chapter 4 reaCting to an inCident

144

-rw-rw---- 1 oracle dba 1544 Jun 2 15:53 hc_bfora.dat

-rw-r--r-- 1 oracle dba 2851 May 15 2009 init.ora

-rw-r----- 1 oracle dba 24 Apr 4 2016 lkBFORA

-rw-r----- 1 oracle dba 1536 Apr 12 2016 orapwbfora

-rw-r----- 1 oracle dba 2560 Jun 3 22:05 spfilebfora.ora

[root@oel1124 dbs]# cp orapwbfora /tmp/forensic/

[root@oel1124 dbs]# cp spfilebfora.ora /tmp/forensic/

[root@oel1124 dbs]# cp init.ora /tmp/forensic/

Obtain the system tablespace data file and keep a copy in case it’s

needed for deleted file analysis:

[root@oel1124 bfora]# pwd

/u01/app/oracle/oradata/bfora

[root@oel1124 bfora]# cp system01.dbf /tmp/forensic/

Obtain all of the other files listed here and ensure that you have copies

for the investigation. Some files cannot be found without access to the

database. These will include:

• Locations of libraries (DLL or shared objects) used in

the database.

• Locations of files accessible from the database

using the parameter utl_file_dir (this parameter

is deprecated from Oracle 12.2.0.1) and DIRECTORY

objects.

• The location of the ASM data files if ASM is used.

• The location of Flashback files if flashback is used.

• The location of files written to the operating system by

Java stored in the database.

All of these can be located after the database artifacts are collected and

the files are obtained for analysis.

Chapter 4 reaCting to an inCident

145

 Get Last SQL
The most important first step in collecting artifacts from the database itself

is to get the last SQL executed from the SGA. There are a limited number of

rows available in the SGA, but if the investigation is started quickly enough

then it may be possible to locate SQL statements that are part of the attack.

Tuning tools such as the Oracle tuning and diagnostic pack and

statspack or commercial tools such as Quest may also have tables that

contain historic SQL.

Connect to the database and set the date format and timestamp

format. Then extract the last SQL from the GV$SQL view:

SQL> connect sys/oracle1@//192.168.1.85:1521/bfora.localdomain

as sysdba

Connected.

SQL> alter session set nls_date_format='YYYYMMDDHH24MISS';

Session altered.

SQL> alter session set nls_timestamp_

format='YYYYMMDDHH24MISSFF';

Session altered.

SQL>

Collect the SQL:

SQL> spool sga.lis

SQL> @sga

...

av6t2u4kxhdm1|SELECT * FROM (SELECT a.*, rownum RN FROM

(SELECT * FROM wp_posts WHERE 1=1 AND (((post_title LIKE

'%x%'))))a)/**/union/**/select/**/33,1,to_timestamp('27-OCT-

13'),to_timestamp('27-OCT-13'),object_name,'x',0,null,'publish',

Chapter 4 reaCting to an inCident

146

'open','open',null,'name',null,null,to_timestamp('27-OCT-

13'),to_timestamp('27-OCT-13'),null,0,null,0,null,null,0,6/**/

from/**/user_objects/**/where/**/object_type/**/in('PACKAGE','

PROCEDURE','FUNCTION','PACKAGE/**/BODY')--%') OR (post_content

LIKE '%x%'))))a)/**/union/**/select/**/33,1,to_timestamp('27-

OCT- 13'),to_timestamp('27-OCT-13'),object_name,'x',0,null,

'publish','open','open',null,'name',null,null,to_timestamp

('27- OCT- 13'),to_timestamp('27-OCT-13'),null,0,null,0,null,

null,0,6/**/from/**/user_objects/**/where/**/object_type/**/in

('PACKAGE','PROCEDURE','FUNCTION','PACKAGE/**/BODY')--%')) OR

(post_title LIKE '%x%'))))a)/**/union/**/select/**/33,1,

to_timestamp('27-OCT-13'),to_timestamp('27-OCT-13'),object_name,

'x',0,null,'publish','open','open',null,'name',nul|2017-

06- 03/02:56:19|90|90|bfora.localdomain|httpd@oel59orablog.

localdomain (TNS V1-V3)||2017-06-03/02:56:19|20170603025618

...

2258 rows selected.

SQL> spool off

The SQL here looks like SQL Injection!

 Volatile Artifacts
Next, collect other volatile artifacts from the SGA, including sessions and

processes that are current in the SGA. The following gets the session details:

SQL> spool session.lis

SQL> @session

1|1||0|0|SYS|oracle|3584|oel1124.localdomain|0|UNKNOWN|oracle@

oel1124.localdomain (PMON)|BACKGROUND||||20170602155350|||SYS$B

ACKGROUND

Chapter 4 reaCting to an inCident

147

...

145|95|ORABLOG|200168|3|ORABLOG|apache|3643|oel59orab

log.localdomain|46266||httpd@oel59orablog.localdomain

(TNS V1-V3)|USER|httpd@oel59orablog.localdomain (TNS V1-

V3)|||20170603011635|||bfora.localdomain

36 rows selected.

SQL> spool off

Do the same with the process details in v$process and the active

session history and save the results to safe storage for later analysis.

 Database Artifacts
The core database artifacts can now be obtained and saved for later analysis.

Most of these can be extracted with scripts available for download from my

web site. A number of these will be shown as examples here and then the rest

of the sources are listed for you to obtain the data during your own analysis:

First, get the database system date and time:

SQL> select sysdate from dual;

20170603231336

SQL>

The date is the 3rd June 2017 at a time of 21:13 and 36 seconds. Now

get the database version and any patches installed:

SQL> select banner from v$version;

Oracle Database 11g Release 11.2.0.4.0 - 64bit Production

PL/SQL Release 11.2.0.4.0 - Production

CORE 11.2.0.4.0 Production

TNS for Linux: Version 11.2.0.4.0 - Production

NLSRTL Version 11.2.0.4.0 - Production

SQL>

Chapter 4 reaCting to an inCident

148

And the patches:

SQL> set serveroutput on

SQL> @print 'select * from dba_registry_history'

old 33: lv_str:=translate('&&1','''','''''');

new 33: lv_str:=translate('select * from dba_registry_

history','''','''''');

Executing Query [select * from dba_registry_history]

ACTION_TIME : 20130824120345119862

ACTION : APPLY

NAMESPACE : SERVER

VERSION : 11.2.0.4

ID : 0

BUNDLE_SERIES : PSU

COMMENTS : Patchset 11.2.0.2.0

ACTION_TIME : 20160404073803616634

ACTION : APPLY

NAMESPACE : SERVER

VERSION : 11.2.0.4

ID : 0

BUNDLE_SERIES : PSU

COMMENTS : Patchset 11.2.0.2.0

PL/SQL procedure successfully completed.

SQL>

Also obtain the database name, ID, and created date:

SQL> select dbid,name,created from v$database;

1487954385 BFORA 20160404073649

SQL>

Chapter 4 reaCting to an inCident

149

Establish if any audit trails exist in the database and which settings are

enabled. To do this, you can run the audit.sql tool, which analyzes audit

trail settings:

SQL> @audit

...

Core Database Audit [DB]

SYSDBA Audit [FALSE]

Audit Trace Location [/u01/app/oracle/admin/bfora/adump]

Privilege Audit [144]

Statement Audit [116]

Object Audit [89]

...

As you can see, this database has a rich audit trail enabled, so we can

grab the contents of the AUD$ audit trail:

SQL> spool dump_aud.lis

SQL> @dump_aud.sql

...

There is also a non-standard audit trail in this database. Actually, it is

the PFCLATK audit trail toolkit discussed in Chapter 6. This has some 50,000

records in it:

SQL> select count(*) from atkd.pfclatk_audit;

 50923

SQL>

The contents of this audit trail also should be extracted from the

database and kept for analysis. Now get a list of users:

SQL> @user_dump.sql

0,SYS,20130824113740,20160412160636,20130824120704,20130824120704

1,PUBLIC,20130824113740,,,

Chapter 4 reaCting to an inCident

150

2,CONNECT,20130824113740,,,

3,RESOURCE,20130824113740,,,

...

154 rows selected.

SQL> spool off

Now dump the library cache:

SQL> spool object_cache2.lis

SQL> @db_object_cache

...

^SELECT * FROM (SELECT a.*, rownum RN FROM (SELECT * FROM

wp_posts WHERE 1=1 AND (((post_title LIKE '%oracle%')

OR (post_content LIKE '%oracle%')) AND ((post_title LIKE

'%UNION%') OR (post_content LIKE '%UNION%')) AND ((post_

title LIKE '%ALL%') OR (post_content LIKE '%ALL%')) AND

((post_title LIKE '%SELECT%') OR (post_content LIKE

'%SELECT%')) AND ((post_title LIKE '%NULL,NULL,NULL,NULL,NU

LL,NULL%') OR (post_content LIKE '%NULL,NULL,NULL,NULL,NUL

L,NULL%')) AND ((post_title LIKE '%FROM%') OR (post_content

LIKE '%FROM%')) AND ((post_title LIKE '%DUAL--%') OR (post_

content LIKE '%DUAL--%')) AND ((post_title LIKE '%xuEE%') OR

(post_content LIKE '%xuEE%')) OR (post_title LIKE '%oracle

UNION ALL SELECT NULL,NULL,NULL,NULL,NULL,NULL FROM DUAL-

- xuEE%') OR (post_content LIKE '%oracle UNION ALL SELECT

NULL,NULL,NULL,NULL,NULL,NULL FROM DUAL-- xuEE%')) AND post_

date_gmt <= SYSDATE AND (post_status = 'publish') AND post_

status != 'attachment' ORDER BY post_date DESC) a WHERE rownum

<= 10) WHE

R^^SQL AREA^CURSOR^5696^2^1^1^0^NO^117386^0^2655505034^NULL^NON

E^VALID^2017-06-03/01:36:20^^1^1

Chapter 4 reaCting to an inCident

151

^SELECT * FROM wp_users WHERE user_login = 'x' union

select 1, 'x', run_sql('execute immediate ''alter user

orablog identified by password'';'), 'x', 'x', 'x',to_

timestamp('29- NOV- 2013'), 'x',1, 'x' from dual--'^^SQL

 AREA^CURSOR^4528^1^2^1^0^NO^0^0^4193683362^NULL^NONE^VALID^

2017-06-03/03:00:47^^1^3

...

This sample from the library cache dump shows that SQL Injection

was attempted by the attacker—presumably trying to attack a web page

and attempting to change the ORABLOG user’s password. Now run the jd*

scripts to locate all privileges for all users, all members of all roles, all

privileges granted to all roles, and all grants to all objects. This can be done

by running the following:

• jd_f.sql to get all privileges for all users

• jd_r.sql to get all privileges granted to all roles

• jd_who_has_role.sql to get all role memberships

• jd_obj.sql to get all object grants

Now go ahead and extract all of the other data from the database that

may be used in an investigation. This includes:

• All database parameters, including hidden ones.

• All of the database password hashes so that they can be

cracked to see if passwords are very weak.

• A list of all directory objects and the utl_file_dir

database parameter to locate all file systems that can be

accessed from the database. Check these file systems

and list the files to see if any may have been created by

the attacker.

Chapter 4 reaCting to an inCident

152

• A list of all database links and the databases they

connect to and credentials involved.

• A list of all database jobs, scheduler jobs, and the job

logs, payloads of jobs, and programs used in jobs.

• List of all database libraries installed.

• List of all users age and profiles using the age.sql and

profiles.sql scripts. This will show protections on

users credentials and whether passwords have been

changed.

• A list of users including dates and IDs so that an

analysis can be made to see if any users have been

added and dropped during the attack.

• A list of all objects and assess whether any objects have

been created, changed, or dropped.

• Changes to DML from the MON_MODS$, MON_MODS_ALL$,

and DBA_TAB_MODIFICATIONS views to see DML

changes to tables.

• The contents of the recycle bin.

• A list of all external tables.

• The contents of the COL_USAGE$ table to assess if any

tables have been included in a where clause.

• All source code for Java, PL/SQL, triggers, and types.

• Check which triggers and their types are enabled.

Chapter 4 reaCting to an inCident

153

 Checksums
To establish the integrity of the database, it is necessary to create

checksums of the database objects to include:

• All PL/SQL source code

• Source code of views

• Source code of triggers

• Table structures

• All Java code in the database

The checksums should be generated and stored externally so that

checksums can also be generated on a “good” known system and

compared with those generated on the target database. This comparison

can be used to validate any object in the target database.

Do not generate and store the hashes in the target system, even for

copying out to somewhere else. This would make changes to the target

system, which would invalidate it. Also, while these checksums are stored

in the target, the attacker (if still present) could change them.

A sample checksum is here:

SQL> @checksum

HR|ADD_JOB_HISTORY|PROCEDURE|AE9EA3261E7626A30AED8131BB3E57E8FA

72A1AE

HR|SECURE_DML|PROCEDURE|476E086F11DDAC477827654F3B91F9AF3D84C47E

HR|SECURE_EMPLOYEES|TRIGGER|8EF93443488D1B45832A909AED81DAAC9E1FCA6E

HR|UPDATE_JOB_HISTORY|TRIGGER|B03EF89E7849E38BB97AD1867405ED240

CBC7ED4

...

Chapter 4 reaCting to an inCident

155© Pete Finnigan 2018
P. Finnigan, Oracle Incident Response and Forensics,
https://doi.org/10.1007/978-1-4842-3264-4_5

CHAPTER 5

Forensic Analysis
This chapter focuses on the forensic analysis process by using a simple

example of a compromised system. The attacker has managed to exploit

the database through a web-based application and we going to use some

of the lessons from Chapter 2 around artifact collection and from Chapter

3 using the structure of an incident response process. The attack of our

sample system was introduced in Chapter 4.

The pre-analysis section discusses what should be done first; initially,

take a step back to plan and make sure nothing is rushed. An Oracle

database is a very complex system and it needs to be carefully analyzed

and dealt with. Example analysis will then be walked through using the

data that has been collected from the attack in Chapter 4 to show how each

of the artifacts fit together to prove that an attack has taken place and from

where, as well as how and when the attacker get in and stole the data.

In the post analysis section, basic questions will be answered such

as how the attacker got in, what rights did he have while he was in the

database, what did he see while he was in the database, what did he

change while he was in the database if anything, and—importantly—what

could he have done if he had more Oracle based skills.

Chapter 5 concludes with a discussion of the findings and assumptions

of the sample analysis and briefly discusses creating a report and summary

that can be presented to relevant business managers or even authorities.

Finally, a discussion around whether to restore and rebuild the database

is made.

156

 Pre-Analysis
This chapter focuses on the forensic analysis of the same attack that we

started in Chapter 4. Before a detailed analysis of a target system can take

place, we must collect all the required artifacts from:

• The target database server—the server that hosts the

database

• The database itself

• The web servers

• Other targets as necessary

The data that was collected must be stored and used in a trusted and

secure way in accordance with the chain of custody rules. The integrity

of the data must also be established and checked. This is normally by

checksumming the data collected and the database structure to prove

whether the attacker has changed it. Checksumming helps prove collected

data has not been modified by the collection and analysis process.

Checksumming also helps with the restoration of the database and

its application process. If you can prove that the basic structure of the

database is intact and has not been changed by the attacker, there is less

risk in not doing a full restore.

The analysis presented in this chapter is of course related to the sample

application and the attack against it. This is specific to this database and

this application but the ideas and techniques presented here should help

in any forensic investigation.

 Example Analysis
In the section, we are going to look at a sample analysis of a potential

breach of a sample database running two applications. The simulated

attack was described briefly in Chapter 4 before we looked at the artifact

Chapter 5 ForensiC analysis

157

collection process in the live response. Chapters 4 and 5 focus on the

simple example of an attack; Chapter 4 looks at the data collection and

Chapter 5 looks at the analysis after the data collection.

The forensic analysis should first establish if the breach has indeed

occurred. As discussed earlier, there is no hard and set rule to do this.

Establishing if a breach occurred depends on a lot of factors. The simplest

is that it has become publicly known that business-critical data has

become available in a non-standard way. If data has not been exposed

publicly, it becomes harder to establish that a breach has occurred;

perhaps someone has reported an employee for having access to systems

they should not have. Maybe a cleaner was seen at 2AM logging in to a

DBA workstation or maybe a lady who works in customer support was

seen accessing the HR system by another employee. Another example for

establishing that a breach has actually occurred could be that an audit trail

created an alert that showed that someone was making grants or creating

users in the database outside of normal change control.

The possibilities for establishing that a breach has occurred need

investigation and knowledge of the business and IT infrastructure specific

to the system in question. This is always going to be difficult to establish

in advance, as there are no set rules to do this. It takes detective-like

investigation.

For this forensic analysis example, the sample company system that

we described is aware of credit card details and personally identifiable

information being posted to the Facebook web site and some records

being exposed on Twitter. Figure 5-1 shows a post made by the attacker of

some credit card details to the Facebook web site.

Chapter 5 ForensiC analysis

158

Remember that there is a video detailing the actual attack that is the

focus of this chapter. You can view this video after reading this chapter; the

link is provided at the end.

Often with a web-based attack, there can be lots of preparatory hacks

done by the attacker. This may be manually done or could use automated

SQL Injection tools. In researching an attack, we need to establish whether

the attack was manual or tool driven. If it was tool driven, it's likely that the

attacker had little skill; i.e., he just downloaded the tool from the Internet

and pointed it at your web site. If the attack was manual, it's more likely

that it was a skilled attacker and therefore you should be more aware of

trying to establish exactly what he did. Trying to assess if an attack used

tools or not is difficult. As with anything, the evidence depends on what

was caught and the tools that were used.

This post to Facebook is the starting point of this investigation; we

know that sensitive data has been exposed so our incident response

process must be triggered.

Figure 5-1. The customer’s credit card data is leaked to
Facebook. Copyright (c) PeteFinnigan.com Limited. Used with
permission.

Chapter 5 ForensiC analysis

159

The first step is to establish if the data posted to the Internet was

genuine. This phase of the investigation will require ad hoc queries

because we need to find the data in the database. This cannot be

preplanned and scripted. Here is a search looking for any database table

that might include credit card details:

SQL> select owner,table_name from dba_tables

 2 where table_name like '%CREDIT%';

ORABLOG CREDIT_CARDS_DEV

ORABLOG CREDITCARD

ORABLOG CREDIT_CARD

Is one of these tables the source of the leak? The first step is to describe

each table and see if it includes columns that store credit card details and

names.

SQL> desc orablog.credit_card

 Name Null? Type

 ------------------ -------- --------------

 NAME_ON_CARD VARCHAR2(100)

 FIRST_NAME VARCHAR2(50)

 LAST_NAME VARCHAR2(50)

 PAN RAW(100)

SQL> desc orablog.creditcard

 Name Null? Type

 ------------------ -------- --------------

 NAME_ON_CARD VARCHAR2(100)

 FIRST_NAME VARCHAR2(50)

 LAST_NAME VARCHAR2(50)

 PAN RAW(100)

Chapter 5 ForensiC analysis

160

SQL> desc orablog.credit_cards_dev

 Name Null? Type

 ------------------ -------- --------------

 NAME_ON_CARD VARCHAR2(100)

 FIRST_NAME VARCHAR2(50)

 LAST_NAME VARCHAR2(50)

 CARD_NUMBER VARCHAR2(4000)

Clearly all of these tables could have provided the data that the attacker

displayed. We know the surnames of the two records shown, so we can

search in each of these tables to see if this exists. None of these tables holds

this data, so they are clearly not the source of the leak.

We can also establish at this stage the likely attack vector used by

the hacker. Clearly, there is a clue in the screenshot that he took. The

screenshot is of the public facing web site and careful analysis shows

part of what looks like SQL in the search box. The piece we can see says

g.bof_pay_details--.

A description of this table is:

SQL> desc orablog.bof_pay_details

 Name Null? Type

 ------------------ -------- --------------

 ID NOT NULL NUMBER

 PAYMENT_ID NOT NULL NUMBER

 NAME_ON_CARD NOT NULL VARCHAR2(100)

 CC34 NOT NULL RAW(100)

 START_DATE DATE

 END_DATE NOT NULL DATE

 LAST_FOUR NOT NULL VARCHAR2(4)

SQL>

Chapter 5 ForensiC analysis

161

A quick check of the contents of this table proves that this is the source

of the leak. This can be seen here:

SQL> select name_on_card,cc34

 2 from orablog.bof_pay_details;

Mr David Bentley

C795E9199A78988F3D375D5297AED40342AAF4A32FE28A2D

Mr Martin Chisholm

E634E4CF55C484B4E8924F5CF3C79D29D68ACDD2FC06F8BC

2 rows selected.

SQL>

The number of records match and the names are exactly the same, so

in this case, this probably proves the data came from this database and this

table. The owner of the table is ORABLOG and this is also the same user who

connected the webserver to the database. This is likely to be part of the

reason the attack succeeded.

This proves the attack is real; we also know how the attacker got in

at this point. He entered the database by SQL Injecting the company's

public web site. It is worth checking if there is a difference between the

timestamps on the web server, the database server, and the database:

[root@oel59orablog client-xxx]# date

Sun Jun 4 06:24:32 BST 2017

[root@oel59orablog client-xxx]# ssh root@192.168.1.85

root@192.168.1.85's password:

Last login: Sun Jun 4 01:56:31 2017 from 192.168.1.89

[root@oel1124 ~]# date

Sun Jun 4 01:59:56 BST 2017

[root@oel1124 ~]# exit

logout

Chapter 5 ForensiC analysis

162

Connection to 192.168.1.85 closed.

[root@oel59orablog client-xxx]# ./env

SQL*Plus: Release 12.1.0.1.0 Production on Sun Jun 4 06:24:58 2017

Copyright (c) 1982, 2013, Oracle. All rights reserved.

SQL> connect sys/oracle1@//192.168.1.85:1521/bfora.localdomain

as sysdba

Connected.

SQL> alter session set nls_date_format='DD-MON-YYYY

HH24:MI:SS';

Session altered.

SQL> select sysdate from dual;

SYSDATE

04-JUN-2017 02:00:48

SQL>

There is a big discrepancy between these dates. All have dates on 4

June 2017, but the times are different. The web server shows 06:24, the

database server shows 01:59, and the database shows 02:00. The database

in the database server is likely to be on the exact same timestamp if the

difference is due to the time taken to type in the commands. The web

server and database differ by four hours and 20 minutes. This must be

taken into account when comparing records.

A review of the web server error log does not help with the analysis of

this attack. There are very few records for 2017 and none of them stand out

as potential SQL Injection.

Chapter 5 ForensiC analysis

163

Next, look at the access log for the web server. A search of the access

log looking for the database table BOF_PAY_DETAILS shows just two entries

in 2017:

192.168.1.56 - - [03/Jun/2017:01:53:02 +0100] "GET /index.php?s

=x%25%27%29%29%29%29a%29%2F**%2Funion%2F**%2Fselect%2F**%2F33%2

C1%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2C%27CardNumber-%27%7C%7Cname_on_card%7C%7C%27-

%27%7C%7Cbof_kkrc.dr%28cc34%29%2C%27x%27%2C0%2Cnull%2C%27publis

h%27%2C%27open%27%2C%27open%27%2Cnull%2C%27name%27%2Cnull%2Cnu

ll%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2Cnull%2C0%2Cnull%2C0%2Cnull%2Cnull%2C0%2C6%2F**%2

Ffrom%2F**%2Forablog.bof_pay_details-- HTTP/1.1" 200 5367

192.168.1.56 - - [03/Jun/2017:01:56:19 +0100] "GET /index.php?s

=x%25%27%29%29%29%29a%29%2F**%2Funion%2F**%2Fselect%2F**%2F33%2

C1%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2C%27CardNumber-%27%7C%7Cname_on_card%7C%7C%27-

%27%7C%7Cbof_kkrc.dr%28cc34%29%2C%27x%27%2C0%2Cnull%2C%27publis

h%27%2C%27open%27%2C%27open%27%2Cnull%2C%27name%27%2Cnull%2Cnu

ll%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2Cnull%2C0%2Cnull%2C0%2Cnull%2Cnull%2C0%2C6%2F**%2

Ffrom%2F**%2Forablog.bof_pay_details-- HTTP/1.1" 200 5367

These are clearly SQL Injection. The dates also show that the attack

took place on 3 June 2017 at 01:53. As this time is very late for the UK where

the database and web server are located, this may indicate an attacker

who is in the United States. The IP address of the attacker is also located

as 192.168.1.56. In this example, this IP address is not public and is on the

author's private network, but in a real investigation this would give us a

clue as to who the attacker may be and we could analyze the IP address or

hostname to find out more. This may involve research into ISPs and other

Chapter 5 ForensiC analysis

164

details to isolate the attacker. We can now search in the access log to see

how many entries the attacker made.

[root@oel59orablog logs]# grep 192.168.1.56 access_log | wc -l

1612

[root@oel59orablog logs]#

There are a lot of entries, which can indicate a scripted tool-based

attack. The first entry for this IP address is:

192.168.1.56 - - [02/Jun/2017:16:49:34 +0100] "GET / HTTP/1.1"

200 8314

The last is:

192.168.1.56 - - [03/Jun/2017:01:56:19 +0100] "GET /index.php?s

=x%25%27%29%29%29%29a%29%2F**%2Funion%2F**%2Fselect%2F**%2F33%2

C1%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2C%27CardNumber-%27%7C%7Cname_on_card%7C%7C%27-

%27%7C%7Cbof_kkrc.dr%28cc34%29%2C%27x%27%2C0%2Cnull%2C%27publis

h%27%2C%27open%27%2C%27open%27%2Cnull%2C%27name%27%2Cnull%2Cnu

ll%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2Cnull%2C0%2Cnull%2C0%2Cnull%2Cnull%2C0%2C6%2F**%2

Ffrom%2F**%2Forablog.bof_pay_details-- HTTP/1.1" 200 5367

This shows that the attack took place between the 2nd June 2017 at

16:49 and the 3rd June 2017 at 01:56 and that the attacker made over 1,600

requests to the database.

This is the same record we saw earlier, so it seems the attacker's goal

was to steal credit cards and when he got them he left. Figure 5-2 shows

browsing the access_log for more details.

Chapter 5 ForensiC analysis

165

The analysis of the access log indicates that the attacker made manual

attacks and succeeded in reading credit card details. But it also shows

that he used an automated tool; this is clear from the log, as requests are

extended to add more elements to potential SQL and multiple requests are

executed per second. This has to be scripted. The attacks where he gets

the credit card details were much slower and were therefore manual. We

can assume that he started with a tool and then continued manually once

he was convinced that the database was vulnerable. Or, it could have been

two people—an initial unskilled person and then a much more skilled

second person. We may never know!

Figure 5-2. Showing more details in the access_log. Copyright (c)
PeteFinnigan.com Limited. Used with permission.

Chapter 5 ForensiC analysis

166

Figure 5-3 shows the tool that was possibly used—sqlmap.

What are the access permissions on the ORABLOG.BOF_PAY_DETAILS

table? We can get this from our object dump evidence in Chapter 4:

Testing root object => [ORABLOG.BOF_PAY_DETAILS]

GRANTOR GRANTEE S I U D A F D I R Q C E

------------- -------------- - - - - - - - - - - - -

PL/SQL procedure successfully completed.

Figure 5-3. An example of using sqlmap (c) Copyright PeteFinnigan.
com Limited. Used with permission.

Chapter 5 ForensiC analysis

167

This is interesting, as there are no grants on this table. But this is not

an issue for the attacker, as he is connected as the schema owner ORABLOG.

We can see this in the access_log with a little perseverance:

[root@oel59orablog logs]# grep 192.168.1.56 access_log | grep

user | grep dual

192.168.1.56 - - [03/Jun/2017:01:48:42 +0100] "GET /index.php?s

=x%25%27%29%29%29%29a%29%2F**%2Funion%2F**%2Fselect%2F**%2F33%2

C1%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-

OCT- 13%27%29%2Cuser%2C%27x%27%2C0%2Cnull%2C%27publish%27%2C

%27open%27%2C%27open%27%2Cnull%2C%27name%27%2Cnull%2Cnull%2C

to_timestamp%28%2727-OCT-13%27%29%2Cto_timestamp%28%2727-OCT-

13%27%29%2Cnull%2C0%2Cnull%2C0%2Cnull%2Cnull%2C0%2C6%2F**%2Ffrom%

2F**%2Fdual-- HTTP/1.1" 200 4887

[root@oel59orablog logs]#

So the attacker knew what he was doing and was able to see who

he was logged in as. The access_log also shows that he viewed a list of

database tables, a list of procedures, and the source code of the encryption

routine for the credit card processing.

A review of the library cache dump that we took also shows in

Figure 5- 4 that the attacker used SQL Injection to read the encryption key

that is stored in a file called .key on the file system as well as the source

code of the encryption routine written in PL/SQL.

Chapter 5 ForensiC analysis

168

Another interesting entry in the library cache shows:

^begin execute/**/immediate/**/'noaudit/**/select/**/on/**/

orablog.credit_card'; end;^^SQL AREA^CURSOR^4768^2^1^1^0^NO^111

466^0^1046721386^NULL^NONE^VALID^2017-06-03/02:59:49^^1^1

The attacker executed DDL against the database and disabled audit

trail settings on the ORABLOG.CREDIT_CARD table. How did he do this via

SQL Injection:

192.168.1.56 - - [03/Jun/2017:01:53:45 +0100] "GET /index.

php?s=x%25%27%29%29%29%29a%29%2F**%2Funion%2F**%2Fselect

%2F**%2F33%2C1%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_

timestamp%28%2727- OCT- 13%27%29%2Crun_sql%28%27execute%2F**%

2Fimmediate%2F**%2F%27%27noaudit%2F**%2Fselect%2F**%2Fon%2F

**%2Forablog.credit_card%27%27%3B%27%29%2C%27x%27%2C0%2Cnul

l%2C%27publish%27%2C%27open%27%2C%27open%27%2Cnull%2C%27nam

e%27%2Cnull%2Cnull%2Cto_timestamp%28%2727-OCT-13%27%29%2Cto_

Figure 5-4. Library cache showing the attacker’s actions.
Copyright (c) PeteFinnigan.com Limited. Used with permission.

Chapter 5 ForensiC analysis

169

timestamp%28%2727-OCT- 13%27%29%2Cnull%2C0%2Cnull%2C0%2Cnull%2C

null%2C0%2C6%2F**%2Ffrom%2F**%2Fdual-- HTTP/1.1" 200 4976

This shows that he used a procedure called ORABLOG.RUN_SQL to

execute DDL. He can do this as this procedure allows any code to be run as

the owner (ORABLOG), so DDL is allowed and the owner can disable his own

audit without audit system privileges.

Another interesting entry in the library cache is:

^SELECT * FROM wp_users WHERE user_login = 'x' union select 1,

'x', run_sql('execute immediate ''alter user orablog identified

by password'';'), 'x', 'x', 'x',to_timestamp('29- NOV- 2013'),

'x',1, 'x' from dual--'^^SQL AREA^CURSOR^4528^1^2^1^0^NO^0^0^41

93683362^NULL^NONE^VALID^2017-06-03/03:00:47^^1^3

^SELECT * FROM wp_users WHERE user_login = 'x' union select 1,

'x', run_sql('execute immediate ''alter user orablog identified

by password'';'), 'x', 'x', 'x',to_timestamp('29-NOV-2013'),

'x',1, 'x' from dual--'^^SQL AREA^CURSOR^4896^2^2^1^0^NO^34722^

0^4193683362^NULL^NONE^VALID^2017-06-03/03:00:47^^1^1

This shows that he changed the ORABLOG password again using the

same procedure RUN_SQL, which allows DDL, but this time via a different

vector as the URL is much simpler. This is in fact the logon dialog of the

web site and the SQL is sent twice because there is a password field and a

username field.

Are there any audit trail records that tell us anything? As a matter of

fact, the detailed audit in the database captured most of the attacker’s

actions; in particular, the DDL that disabled the audit and changed the

password.

The user dump taken from the database for the ORABLOG user shows:

90,ORABL

OG,20160404143947,20170603030158,20170427190058,20160404143947

Chapter 5 ForensiC analysis

170

This confirms from the PTIME date on the user’s table that the password

was changed. No other user passwords were changed in the short period

between the 2nd June and the 3rd June 2017. ID analysis shows that no

user was added:

259,ATKR,20170426160152,20170426160152,,

262,DEV,20170426173649,20170426173649,,

263,_NEXT_USER,20130824113740,,,

The last user ID, 262, was added April 2017 and the next user is 263, so

no user was dropped; otherwise, it would be higher than 263. So we know

the attacker did not create any users or change any other passwords.

A review of the object dump again as with users gives us reasonable

confidence that no database objects were added and/or dropped. This

means that we probably do not need to analyze the redo logs or look for

deleted data in the system tablespace data file.

The listener log gives little new detail, as we have learned a lot from the

other logs.

The hacker used ORABLOG and its permissions from the jd_f.sql script

results are:

User => ORABLOG has been granted the following privileges

===

 ROLE => CONNECT which contains =>

 SYS PRIV => CREATE SESSION grantable => NO

 ROLE => RESOURCE which contains =>

 SYS PRIV => CREATE CLUSTER grantable => NO

 SYS PRIV => CREATE INDEXTYPE grantable => NO

 SYS PRIV => CREATE OPERATOR grantable => NO

 SYS PRIV => CREATE PROCEDURE grantable => NO

 SYS PRIV => CREATE SEQUENCE grantable => NO

Chapter 5 ForensiC analysis

171

 SYS PRIV => CREATE TABLE grantable => NO

 SYS PRIV => CREATE TRIGGER grantable => NO

 SYS PRIV => CREATE TYPE grantable => NO

 SYS PRIV => CREATE ANY CONTEXT grantable => NO

 SYS PRIV => CREATE PROCEDURE grantable => NO

 SYS PRIV => CREATE VIEW grantable => NO

 SYS PRIV => UNLIMITED TABLESPACE grantable => NO

 TABLE PRIV => EXECUTE object => FACADM.Count[1] grantable

=> NO

 TABLE PRIV => EXECUTE object => SEED.Count[1] grantable

=> NO

 TABLE PRIV => EXECUTE object => SYS.Count[3] grantable =>

NO

 TABLE PRIV => READ object => SYS.Count[1] grantable => NO

 TABLE PRIV => SELECT object => IMPORTER.Count[1]

grantable => NO

 TABLE PRIV => WRITE object => SYS.Count[1] grantable => NO

PL/SQL procedure successfully completed.

The permissions allow the attacker to do anything to the existing

ORABLOG objects and create new ones but little else. He could exploit an

unfixed bug in the database, as the database has not had a CPU applied

since the release of Oracle 11.2.0.4, but there is no evidence of a direct

connection to the database as ORABLOG or any other user, and there is no

evidence of using or accessing Oracle packages via the web logs or the

audit or library cache.

Chapter 5 ForensiC analysis

172

 Post-Analysis
We learned a lot about the attackers actions in the database from a few

collected resources and we can correlate these with other resources that

we took from the target database and web server.

It is now important for this analysis to revisit our simple questions

again and see if we can answer them succinctly.

 How Did He Get In?
The attacker accessed the database via a vulnerable web application from

the company’s public web site using SQL Injection through the web site’s

search box and via the web site’s admin logon form.

It is unlikely that he gained access to the database by other means.

It is also unlikely that he accessed other databases, as this database has

no links.

He did access the file system indirectly by reading the encryption key

via SQL Injection.

 What Rights Did He Have?
The attacker had the rights of the ORABLOG user, who owns the schema

for the public web site and the back office application. While he could

manipulate the application’s functions and data, he could not access other

schemas without considerably more skill to locate weaknesses.

 What Did He See?
He read the credit card details, including the payment card numbers,

personal details, user lists for the database, credit card encryption codes,

and lists of all tables and PL/SQL code in the database as well as the

encryption key.

Chapter 5 ForensiC analysis

173

 What Did He Change?
He was able to disable audit on the credit card table and change the

ORABLOG user’s password. This would have been noticed as soon as the

current logged-in sessions from the web server were closed.

 What Could He Have Done?
He could have stolen all customer data and code and database structure

for the application. With some skill, he maybe could have found a general

vulnerability in Oracle code, but there is no evidence that he did.

He seems skilled and his target was customer data, which he got.

He also seems to have left as soon as he achieved his goal and he also

displayed some levels of skill.

 Findings
The database design and application have weaknesses:

• The two applications share a schema

• The two applications log in as the schema

• There are SQL Injection issues in the application code

• The encryption code is reasonable but its weakness is

that it is in the same schema

• The audit trail was good

Some high-level solutions could be:

• Split frontoffice and backoffice applications into

separate schema

• Move security code such as encryption to separate

schemas

Chapter 5 ForensiC analysis

174

• Do not allow the applications to connect as the schema

owners

• Fix the SQL Injection

All of this would prevent these hacks. SQL Injection could not be used

to access backoffice data or code or decrypt cards. The current design is

lazy, as it means no privileges are needed between the connected user and

the data and code. This of course means that an attacker has an advantage

in this case.

As part of the solution to solve the problems highlighted by this attack,

we need to remove the duplicate credit card tables from the database

identified earlier.

 Report and Summary
A detailed report should be created that presents the analysis in a logical

manner, as we have done in this chapter. The report should focus on

the key issues and questions that we discussed in the last section. The

summary should answer those questions but, as in the last section, it

should focus on what’s broken in the database security and what are the

best ways to fix this.

Clearly, the report could also be intended for law enforcement and

therefore should contain chain of custody information and documentation

to prove the integrity of the data gathered and tools used.

 Restore and Rebuild
Should the database be destroyed and rebuilt or can it be repaired? This all

depends on the particular breach of course. In the example we presented

in this book, it’s clear that the attacker stole data and changed audit

settings and passwords.

Chapter 5 ForensiC analysis

175

In this case, we almost certainly do not need to rebuild and business

can continue without a break or need to reload data manually. We do need

to change the design, as discussed, and add better security—this issue is

discussed in Chapter 6.

In other cases, if data is stolen but no evidence of change is found,

it’s possible not to rebuild. If changes are found or the full extent of the

attacker activities is not known, it’s better to rebuild but still fix the security

layers in the database.

Chapter 5 ForensiC analysis

177© Pete Finnigan 2018
P. Finnigan, Oracle Incident Response and Forensics,
https://doi.org/10.1007/978-1-4842-3264-4_6

CHAPTER 6

What To Do Next?
Be realistic, most Oracle databases are not super locked down, and

you cannot always trust all your staff, even those who have elevated

credentials, to access the database. Therefore you have to assume it’s

a matter of if not when you will be attacked. This means you must be

prepared. You must know how to understand if you’ve been breached and

you must know how to respond to an incident. Clearly, forensic analysis

to understand how the attack played out is very important and must be

understood in advance, even if you don’t do the analysis yourself.

Preparing to be attacked does not mean that you want to be attacked;

it just means you accept in advance that it is a possibility. Adding security

and lockdown to your Oracle database costs money, but it may cost you

even more money when you’re actually breached. A simpler first step is to

include a very useful and comprehensive audit trail that would detect an

attack. In this way, you would be able to react much more instantaneously

and potentially even stop the removal of data that an attacker would like to

steal. Having a comprehensive audit trail will also aid the analysis process

and help you understand exactly what happened.

 Planning
Planning is the most important step of the incident response process. If

you do not have a plan, you simply don’t know what to do when an attack

occurs. Planning involves a number of elements. The steps that should be

178

followed when an incident occurs should be prepared and documented

in advance. This should be signed off on and all relevant members of staff

should be trained to understand what should happen when an incident

occurs.

This plan does not need to be complex; in fact, a reasonable plan can

fit on a single sheet of paper. The plan should include how to report and

handle the raising of an incident; it should include who the leader of the

response to the incident is and it should identify a team and the tools that

they will use to investigate and analyze the incident.

With new regulations, such as GDPR, coming into force in early

2018 in the UK and the EU, it is more important than ever, at least on that

side of the Atlantic, that a business knows how to deal with an incident

and how to analyze breach of an Oracle database. GDPR will change

how companies in all the parts of the world process personal data from

EU citizens. In the United States, almost every state has data breach and

protection laws that are similar to GDPR.

Not only knowing how to deal with an incident is important and it

makes absolutely no sense to leave the database wide open and prepare

to deal with an incident breach. Clearly one of the most important steps

you can take now is to protect the database and try to prevent a potential

breach. This is a very complex area and is discussed in more detail in a

later section. If you can prevent most direct access to the database and

ensure that every authorized user has the least privilege needed, as well

as ensure that all of data has the best access controls possible, the only

breach available is a corrupt employee with this limited correct access or

an attacker who breaches an exploit in the application code.

Employing some level of Oracle security makes the most sense. Quite

often sites have limited Oracle security even in this day and age. My

experience of conducting security audits still causes me consternation

and head scratching when I review customer databases and find them to

be wide open. My discussion with the customer is on service availability

and budget. There is often a push to get an application live in a database

Chapter 6 What to Do Next?

179

and no effort is expended on security during the design and build process.

Quite often, applications are designed and built with privileged access

with a lack of granularity or data access controls.

Still further, the DBA is often seen to be accessing the database with

superuser privilege (sysdba) on a daily basis. This means there is very

limited accountability, as it’s often impossible to know who did what

and when. Using highly privileged accounts also means that the staff can

access any data they want to with impunity.

Designing practical and useful audit trails is beneficial to the results of

future forensic analysis or investigations as well. Audit trails in the Oracle

database using the standard features are also free. Designing practical

audit trails is not free in the sense of the hours and effort required to

design, implement, and maintain them, but using the standard features

of the database means there are no license fees. If implemented correctly,

an audit trail can be up and running very quickly; the section on designing

audit trails illustrates this with the free toolkit written in PL/SQL and

SQL. It can be implemented to get policy driven audit and alerts for your

database.

Audit trails should be cheap compared to actual hardening, For

example, if you identify that accounts of the database have weak passwords

and no password management features are enabled, it would take quite a

bit of effort to design controls. Designing password management should be

simple but applications and other working practices often get in the way of

having a password expire after 30, 60, or 90 days.

Enforcing complex passwords also causes problems for the people who

have used the same password for the last 14 years and that password is five

characters long. Obviously, it’s easy to remember these without writing

them down, but obviously many other people are likely to know it and

have guessed it over the years. Implementing controls such as these can

be complex, and implementing audits to understand who is connecting

as a particular account or who is attempting to connect is simple in

comparison.

Chapter 6 What to Do Next?

180

The security of the database should initially include a detailed audit

trail. This will help you understand what security issues have potentially

been exploited or abused and it will certainly give you a detailed audit

trail with any potential forensic analysis. Although audit trails are cheap

and cheerful and will tell you what’s happening, don’t ignore securing and

locking down the database. Security of the database costs money; this is

unfortunate but a fact of life. It is better to be pragmatic and understand

your budget in advance for security and then spend it very wisely. Always

aim to get the best protection for the least amount of money spent. Often

this starts with audit trails.

Having a detailed audit trail will ensure that evidence will always exist

to use in any analysis.

Ensure that data security and auditing are part of your ongoing

process; to reiterate, it makes no sense to plan for a potential attack that

might not happen while not actually protecting the assets. Common sense!

Coming back to incident response and forensic analysis, ensure that

the planning takes place, and ensure that an incident response process has

been developed, reviewed, and agreed. Ensure that all relevant personnel

who deal with an incident are fully aware of the contents of the plan and

know what to do and how to act in case of a breach.

Ensure that you’ve built your team in advance and everyone who

was part of the team knows what to do. Ensure that you have collected

the relevant tools needed for the incident response. These tools should

be available easily at the drop of a hat for the relevant staff to use when

necessary.

Pre-test the tools ensure all relevant staff are familiar with them. Use

them, understand what they do, and understand what the results look like.

This will help with any future analysis. Using tools for the first time in an

analysis situation is a mistake. If you use the tools on a clean database with

no breach, you going to see normal day-to-day business and know what it

looks like so that when a breach does occur, you know what non-standard

actions also look like.

Chapter 6 What to Do Next?

181

Assume an attack will happen, prepare the process and document,

assign a leader, gather tools, build a team, and train it in advance.

 Thinking About Database Security
It makes no sense to create a detailed process for dealing with a potential

Oracle database breach or incident unless you also take steps to protect

that same Oracle database from being attacked in the first place. This

would be like sitting at your dining room table, pre-writing a letter to the

police that describes how your house was burgled just in case it ever is,

while at the same time removing the locks from all of your doors.

Performing security audits of an Oracle database, defining a security

policy, and locking an Oracle database could be the subject of a complete

book. This section covers these topics very briefly.

Securing an Oracle database can be a big and complex task; the biggest

factor that determines the security level that you can achieve for your

databases is budget or the money available to allocate to Oracle security.

Do not attempt to secure your Oracle databases in an ad hoc or

random manner. An ad hoc technique will in the end provide very little

security. I have seen many sites over the last 16 years of performing

security audits of Oracle databases whereby the customer seems to have a

random set of controls in combination with gaping holes.

The first step in securing an Oracle database is to understand what you

have currently. The best way to do this is to perform a detailed security

audit of at least one production database. Learn as much as possible

about what is wrong with one valuable production database and use that

information to develop a security policy to lock down and secure all of

your Oracle databases.

Chapter 6 What to Do Next?

182

There are a number of possibilities to perform a security audit of the

Oracle database:

• Hire someone: This is probably the quickest and most

cost-effective because you can hire someone with the

relevant skill who can perform an audit very quickly

and provide a detailed report. But longer term, this

does not build up the skill in your own organization.

• Use a commercial tool: It is possible to purchase a

license for a commercial Oracle security scanner and

use this to perform a detailed audit of a single database.

In some circumstances, this can be more cost-effective

than hiring an external consultant and it has the benefit

that some limited skill is transferred internally by using

the tool. The downside is that using a tool means that

you only get the output of the tool itself without any

additional analysis and annotation from an expert.

Figure 6-1 shows an example completed security scan

of an Oracle database using the commercial tool called

PFCLScan.

Chapter 6 What to Do Next?

183

• Build your own tools or use free tools: Constructing

Oracle security tools internally is a good option. The

knowledge gained in writing and using them is kept

internally . Free tools can be downloaded and used

conjunction with internal built tools. Listing 6-1 shows

a sample password cracking session using a free PL/

SQL password cracker at http://www.petefinnigan.

com/oracle_password_cracker.htm. A reasonable

amount of cost is involved in creating these tools, but

there are no ongoing license fees.

The output of a detailed Oracle security audit, combined with existing

security policies (including any detailed Oracle security policy if one

exists) and any best practices, create a detailed Oracle security policy

specific to the organization. The security policy should be a succinct as

possible.

Figure 6-1. An Oracle database vulnerability scan with PFCLScan of
an Oracle 12.2 database

Chapter 6 What to Do Next?

http://www.petefinnigan.com/oracle_password_cracker.htm
http://www.petefinnigan.com/oracle_password_cracker.htm

184

Listing 6-1. A Sample Password Cracking Session with A PL/SQL

Password Cracker

SQL> @cracker-v2.9.sql

PL/SQL cracker: Release 2.9.0.0.0 - Production on Tue Jun 06

01:15:59 2017

Copyright (c) 2008 - 2017 PeteFinnigan.com Limited. All rights

reserved.

T [Username] [P(10g)] [Password (11g)] FL ST

===

U [SYS] [] [oracle1] DI OP

U [AUDSYS] [] [AUDSYS] PU EL

U [SYSTEM] [] [oracle1] DI OP

U [SYSBACKUP] [] [D_SYSBKPW] DE EL

U [SYSDG] [] [D_SYSDGPW] DE EL

U [SYSKM] [] [D_SYSKMPW] DE EL

U [SYSRAC] [] [D_SYSRACPW] DE EL

U [OUTLN] [] [outln] PU EL

U [XS$NULL] [] [] -- EL

U [GSMADMIN_INTERNAL] [] [gsm] DE EL

U [GSMUSER] [] [gsm] DE EL

U [DIP] [] [dip] PU EL

U [DBSFWUSER] [] [SECURE123] DE EL

U [ORACLE_OCM] [] [OCM_3XP1R3D] DE EL

U [SYS$UMF] [] [sysumf] DE EL

U [DBSNMP] [] [dbsnmp] PU EL

U [APPQOSSYS] [] [APPQOSSYS] PU EL

U [GSMCATUSER] [] [gsm] DE EL

U [GGSYS] [] [ggsys] PU EL

U [XDB] [] [XDB] PU EL

U [ANONYMOUS] [IMP {}] [] IM EL

Chapter 6 What to Do Next?

185

U [WMSYS] [] [wmsys] PU EL

U [OJVMSYS] [] [xxx] DE EL

U [CTXSYS] [] [CTXSYS] PU EL

U [ORDSYS] [] [ordsys] PU EL

U [ORDDATA] [] [orddata] PU EL

U [ORDPLUGINS] [] [ordplugins] PU EL

U [SI_INFORMTN_SCHEMA] [] [si_informtn_schema] PU EL

U [MDSYS] [] [mdsys] PU EL

U [OLAPSYS] [] [no_password] DE EL

U [MDDATA] [] [MDDATA] PU EL

U [SPATIAL_CSW_ADMIN_USR] [] [spatial_csw_admin_usr] PU EL

U [DVSYS] [] [] -- EL

U [LBACSYS] [] [LabelSecurity12_#] DE EL

U [DVF] [] [] -- EL

U [HR] [] [] -- EL

U [PETE] [] [pete] PU OP

U [PETE2] [] [pete2] PU OP

U [PETE3] [] [pete3] PU OP

U [PETE4] [] [pete4] PU OP

U [PETE5] [] [pete5] PU OP

U [PETE6] [PETE6] [pete6] PU OP

INFO: Number of crack attempts = [68691]

INFO: Elapsed cracking time = [3.97 Seconds]

INFO: Total elapsed time = [3.98 Seconds]

INFO: Cracks per second = [17300]

PL/SQL procedure successfully completed.

SQL>

Chapter 6 What to Do Next?

186

It is important that there is a budget to implement the policy in

all relevant Oracle databases. It is also important that it is possible to

implement every clause of the policy in all Oracle databases. The Oracle

security policy should contain three broad areas of actions that make up its

content:

• Security patching (10%): Security patches should

be applied on a consistent and regular basis. Oracle

releases quarterly security patch set of dates (PSUs)

and, without applying these, it is often impossible to be

secure against exploits reported to Oracle.

• Hardening (30%): Hardening is an important

component of securing an Oracle database. Hardening

removes access to data dictionary components and

dangerous facilities. It also applies secure settings to

various database parameters. Locking down will also

generally enable things like password management and

remove extraneous services and features.

• Design work (60%): The security design work is the

most complex. This will generally include data access

controls and user security. It should also include

context-based security, network controls, operating

system controls, and much more. This involves the

general security settings and work is needed to secure

the application in the Oracle database from abuse.

These areas are broken into percentages to give a broad indication of

the importance of each section of Oracle security work. Although patching

seems the smallest, that does not diminish its importance. Patching is the

smallest percentage because, from the security auditor’s perspective, it’s

a simple yes/no question and answer—is the database patched or not.

Patching a database can be a complex procedure involving downtime,

Chapter 6 What to Do Next?

187

regression testing, and much more. Hardening is the next largest area and

will in general improve the security of a particular database, but it will not

improve the security of the data itself in the database. Hardening usually

speaks to a core empty database, not an actual application and its settings.

The design element is the most complex and hardest to achieve because it

is specific to each application.

What this means is that a security policy that includes the three

elements can be implemented as a two-phased process. When a database

is provisioned, it can be locked down and patched to the hardening

standard. Once an application is deployed, then application within the

database can be further locked down. Until the application is deployed,

it’s not possible to know the requirements of individual user accounts and

schemas or the data access requirements.

Database security policy should be written that takes all of this into

account. It should be possible that once a database has been built and

deployed and an application installed, an automated security audit check

should be possible to confirm that the database security policy has been

fully implemented and that the database is compliant.

 Enabling Sophisticated Audit Trails
The subject of designing practical and sophisticated audit trails for an

Oracle database could fill a whole book. This section simply summarizes

the high-level requirements of a suitable audit trail design.

The key message that comes from any Oracle incident response and

forensic analysis is that it would have been so much easier if an audit trail

had existed in the database that captured the actions of the attacker. It’s

impossible to go back and add audit trails for an attack that has already

occurred, but quite clearly it makes great sense to take some time now to

design and implement useful and sophisticated audit trails so that if there

is an attack, an audit trail exists to make the analysis process much easier.

Chapter 6 What to Do Next?

188

An audit trail design should not be ad hoc. It makes no sense to

randomly add settings. An audit trail should be designed on the basis

of “I want to know”. You must start with a list of issues that you want to

capture, such as:

• Anyone logging in or out

• Anyone masquerading as a DBA

• Attempted SQL Injections

• Changes to user profiles

• Changes to database structure

This design should be based on capturing actions in the database

that should not be occurring. This should be specified without technical

know-how. Specifications should be documented at a high-level design or

policy perspective. This can be signed off on and agreed to in advance of

implementation.

Only after the policy has been designed should the actual technical

solution be specified. There are many types of audit solutions that can be

used with Oracle. At a high level, these include the features that come for

free with the database, the cost options such as audit vault, and any third-

party solutions available from a multitude of vendors.

The solutions available inside the database include the core audit,

unified audit, fine-grained audit, trigger-based audit, and many more.

The design should also include all the other elements required for an

audit solution. It should include storage specification and sizing, design of

archiving and purge, performance considerations, management alerting

and escalation, and much more.

A comprehensive audit solution should also include audits of the audit

trail itself. If an attacker attempts to delete an audit record, that action will

also be captured.

Chapter 6 What to Do Next?

189

Figure 6-2 shows an audit trail solution written in approximately

14k lines of PL/SQL and SQL code. The origin of this toolkit came from

working with clients over the last eight years, whereby they wanted

sophisticated and useful audit trails in the database but did not have the

budget, team size, or time to design something and implement it.

Figure 6-2. PFCLATK, a design for a simple audit trail toolkit for
Oracle (c) Copyright 2017 PeteFinnigan.com Limited. Used with
Permission.

This toolkit is called PFCLATK. The main idea behind it is to allow

someone to simply install a single script into an Oracle database that

enables sophisticated audit trail. The only things the user needs to do is

to select which policies they want to enable and to potentially add some

factors. The factors are things such as IP addresses of DBAs, the names of

DBA users, the names of schemas, and so on. This meant that someone

could literally spend no more than 5 to 10 minutes setting up and installing

an audit trail. The toolkit is very sophisticated and includes many layers.

Not only can you enable built-in policies, there are also policies that

include audits of audits—audit security and audit security audit. These

layers enable you to capture anyone attempting to change the audit trails.

Chapter 6 What to Do Next?

190

The toolkit is policy based, but these policies are not the same as

the unified audit in Oracle 12c. The policies combine the collection of

raw audit trail details and events. The audit policy can collect data from

multiple sources, including core audit, trigger-based audit, function-based

audit, and others. The alerts process the collected audit data based on the

specified time cycle. Some events can be immediate, some events can run

once a month, and some events can run every few minutes. The toolkit

generates alerts based on whether the event captures any actions in the

audit trail that satisfy its rules.

Figure 6-3 extends the PFCLATK toolkit to become a simple toolkit that

can be deployed to multiple databases, whereby the audit trail collected

in each target database can be automatically transferred back to a single

central storage database. The same script is applied to a target as to the

central storage. Simple configuration is required to specify if the target

is the central storage or simply a target. Once deployed a simple setup is

required to connect each target to the central storage. After this is enabled,

the audit details and alerts are transferred from each target database to the

central storage every hour. This means that the storage required for this

audit toolkit in each target database is limited, because every hour the data

is extracted and purged. This is cost-effective in terms of storage.

Chapter 6 What to Do Next?

191

The main purpose of this toolkit is to enable customers to download

simple set of scripts, make some very simple configuration changes,

and then deploy to each target database and set up a centralized storage

database for audit trails of all databases. This means that reporting can

also be centralized for all databases by targeting a single database. The

toolkit is free and is available by e-mailing pete@petefinnigan.com. The

toolkit is just an API and does not include any reporting, but it does have

one or two simple reports related to the extract and archive processes.

Some simple management screens and reports will be added to PFCLScan

Figure 6-3. PFCLATC, a design for a simple audit trail toolkit for
Oracle (c) Copyright 2017 PeteFinnigan.com Limited. Used with
Permission.

Chapter 6 What to Do Next?

192

to enable customers to use the free toolkit. It also includes an easy-to-use

graphical user interface. That said, you are free to use the command-line

toolkit if you want; just contact me to ask for a download.

 Conclusions
I hope you enjoyed this journey through Oracle incident response and

forensic analysis. I hope you’ve learned what to do if your own systems are

perhaps breached. Even though Oracle forensics has been around since

2004 when I first wrote about it in the Sans 509 class, there’s been no major

public progress in terms of free or commercial tools that would help deal

with an incident. That said, it is perfectly viable to analyze a database for a

potential breach using the standard tools that come with a database.

One of the key tenets of analyzing an Oracle database for a potential

breach is to plan for it. This is very important to ensure that anything you

do does not destroy or change any potential evidence that could be used

later. Factor in large databases, production scenarios where it is simply

not as easy as analyzing a PC, and different techniques need to be used.

With a PC you can simply copy the disk and analyze the copy to produce

evidence. With a 200TB database that needs to be up 99.99% of the time,

this is not realistic. Most sites would not have enough disk space or time to

copy all of the database anyway.

It’s also very important that you plan exactly what you’re going to do in

terms of steps, analysis, and tools to use. Make sure that a team is set up to

handle an incident; ideally people are selected from a different channel in

the business. In this way, this person can manage the process and ensure

all steps are taken, and it’s less likely that he would change or miss steps

because of the need to cover things up.

Chapter 6 What to Do Next?

193

Understanding that the incident has occurred is hard; this is primarily

because there are so many different types of possible incidents that can

occur with an Oracle database and it’s very difficult to plan and identify all

these. Combine this with a myriad of possibilities in terms of data location

and data access and we are left with two common scenarios.

The first is that data has been stolen and located somewhere else

(such as on Twitter). The second is that some change has occurred to the

database that no one can explain. Taking these two tenets as a starting

point is a reasonable strategy. Once the incident has been understood

to have occurred, the incident response process must be activated. The

primary purpose of this process is to establish the true incident has

occurred, collect as much forensic evidence as possible before it could

possibly be changed, make decisions on what to do the database in terms

of getting the business back working, and finally make a forensic analysis.

Forensic analysis is complex and cannot really be identified in

advance, again for the same reasons that there are so many different

possibilities, it’s very difficult to do this. Key things should be achieved.

The first is to establish the start and end time and date of the potential

attack and then collect evidence between these two timestamps from

all possible systems and locations. This evidence can be filtered and

organized in a time-ordered format so that the attacker’s actions can be

extracted from common day-to-day business actions. The case can then

be built against the attacker to prove exactly what he did, how he gained

access, what data he saw, and finally what could he have done if he had

more skill.

In advance of any potential incident, it is clearly very important that

database security is considered. If an incident can be prevented by having

good database security, it is worth doing. Having a comprehensive and

sophisticated audit trail will go a long way toward this goal. In parallel,

all the elements for incident response should be prepared in advance to

ensure that if an incident does occur, you’re able and skilled to deal with it.

Chapter 6 What to Do Next?

194

 Further Reading
Despite Oracle forensics first being talked and written about more than

13 years ago, there is been very little published in recent times. I have

presented Oracle forensics topics at various conferences over the years and

as recently as 2017. Here is a short list of some useful papers, links, and

web sites to find out more about Oracle forensics. The list is not exhaustive.

Bear in mind a lot of these are quite old at the time of writing of this book,

but may still be useful.

• Pete Finnigan (2003). Detecting SQL Injection in Oracle.

http://www.securityfocus.com/infocus/1714. Some

forensics ideas, such as mining redo, SQL extraction,

trace, and audit.

• Pete Finnigan (2004). Oracle Forensics Module 17.

Original SANS 509 6-Day Oracle security training.

• Arup nanda (2005). Mining for clues at http://www.

oracle.com/technology/oramag/oracle/05-jul/

o45dba.html.

• Alex Gorbachev (2006). Log Miner for forensics.

http://www.pythian.com/blogs/269/oracle-

logminer- helps-investigate-security-issues.

• Paul Wright (2006/7). A number of papers at http://

www.oracleforensics.com and his SANS GSOC paper

http://www.sans.org/reading_room/whitepapers/

application/ for the final exam after attending the

SANS Oracle 509 class.

• Pete Finnigan (2007). Oracle Forensics. http://www.

petefinnigan.com/Oracle_Forensics.pdf. Presented

at UKOUG conference 2007 and multiple other venues.

Chapter 6 What to Do Next?

http://www.securityfocus.com/infocus/1714
http://www.oracle.com/technology/oramag/oracle/05-jul/o45dba.html
http://www.oracle.com/technology/oramag/oracle/05-jul/o45dba.html
http://www.oracle.com/technology/oramag/oracle/05-jul/o45dba.html
http://www.pythian.com/blogs/269/oracle-logminer-helps-investigate-security-issues
http://www.pythian.com/blogs/269/oracle-logminer-helps-investigate-security-issues
http://www.oracleforensics.com/
http://www.oracleforensics.com/
http://www.sans.org/reading_room/whitepapers/application/
http://www.sans.org/reading_room/whitepapers/application/
http://www.petefinnigan.com/Oracle_Forensics.pdf
http://www.petefinnigan.com/Oracle_Forensics.pdf

195

• David Litchfield (2007). Six-part paper. http://www.

databasesecurity.com/.

• Alejandro Vargas (2007). Log Miner 10g

Implementation Example. http://static7.

userland.com/oracle/gems/alejandroVargas/

logminerexample.pdf.

• David Litchfield (2007). Blackhat paper. http://www.

databasesecurity.com/dbsec/forensics.ppt.

• Two books (Note: one of the books is not available):

• Oracle Forensics by Paul Wright (2007. ISBN-

10- 0977671526.

• Oracle Forensics Analysis Using the Forensic

Examiners Database Scalpel (FEDS) Tool (2008).

ISBN- 10: 047019118X Never written or released??

• Pete Finnigan (2007). Oracle Incident response and

forensics. Presented at Technology SIG UKOUG,

Manchester. Not published.

Chapter 6 What to Do Next?

http://www.databasesecurity.com/
http://www.databasesecurity.com/
http://static7.userland.com/oracle/gems/alejandroVargas/logminerexample.pdf
http://static7.userland.com/oracle/gems/alejandroVargas/logminerexample.pdf
http://static7.userland.com/oracle/gems/alejandroVargas/logminerexample.pdf
http://www.databasesecurity.com/dbsec/forensics.ppt
http://www.databasesecurity.com/dbsec/forensics.ppt

197© Pete Finnigan 2018
P. Finnigan, Oracle Incident Response and Forensics,
https://doi.org/10.1007/978-1-4842-3264-4

Index

A, B
Accountability, 31
Artifacts

accountability, 31
audit trail, 29
collection and forensic

analysis, 27
database (see Database

artifacts)
deleted data

creation of procedure,
79–80

HACKER_BACKDOOR,
81, 83

PL/SQL, 78
read-only mode, 76
tablespace datafile, 82

Heisenberg’s uncertainty
principle, 29

identity, 31
non-database (see Non-database

artifacts)
reading of data, 31
time, 32–33
tuning tools, 84–86

Audit trails
design, 188
PFCLATK, 190–191

C
Chain of custody

DBMS_SQLHASH, 17–18
evidence, 11–13, 15

Correlation, 73, 75

D, E
Database artifacts

applications data, 51
audit trail, 56–57
database audit, 57
dumps, 58–59
flashback and recycle, 55
IDs, 49–51
internal tables, 52–53, 55
object changes, 46–47
privilege changes, 44–45
redo, 48
security, 46
tables/views

bind data, 41
SQL, 34, 36, 38, 40
timestamps, 42, 44

Database security
implementation, 186
performance, 182–183
PL/SQL, 184–186

https://doi.org/10.1007/978-1-4842-3264-4

198

Data breach
skilled, 7
types of attack, 2–3, 5
unskilled, 7

F, G, H
Forensic analysis, 10, 19

access_log, 164–165
checksums, 156
encryption key, 172
ORABLOG, 167–169, 171
SQL, 160–163
web-based attack, 158

I, J, K, L, M
Identity, 31
Incident, 8–9
Incident response approach, 9

artifacts, 127
attack, 120
base tables, 132–133, 135–136
checksums, 153
connection and disconnection,

128–129
current date format, 131
database artifacts, 147–152
header information, 95
incident coordinator, 96–97
incident response team, 98–100
investigation, 108, 110, 112

Oracle database, 141–144
planning, 94, 177–178, 180
process, 102–103, 105–107
RAC, 132–133, 135–136
server and database

state, 137, 139–140
spreadsheets, 137
SQL, 145
timestamp format, 132
toolkit, 113, 115–116
verification and identification,

122–123, 125, 127
views, 132–133, 135–136
volatile artifacts, 146

N
Non-database artifacts

Apache, 61–62
application, 63
datafiles, 71–72
Linux operating system, 63
SQL*Net, 66
SYSDBA, 67–69
TNS listener, 64–65
trace files, 69

O, P, Q
Oracle 12c database, 24–25
Oracle database, SQL statements,

20–21, 23

Index

199

R
Rootkits

HACKER, 88
type of check, 90–91

S, T
Skilled breach, 7

U, V, W, X, Y, Z
Unified audit, 57

Unskilled breach, 7

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Data Breach
	 Types of Attack
	 An Unskilled Breach
	 A Skilled Breach

	 What Is an Incident?
	 What Is Incident Response?
	 What Is Forensic Analysis?
	 Chain of Custody
	 What Is Oracle Database Forensics?
	 How Does Oracle Function and Store Data?
	 Oracle 12c Multitenant

	Chapter 2: Artifacts
	 Heisenberg’s Uncertainty Principle of Oracle
	 Audit Trail or No Audit Trail?
	 The Problem of Detecting READ
	 Identity and Accountability
	 Time
	 Database Artifacts
	 Tables or Views with SQL
	 Tables or Views with Bind Data
	 Tables or Views with Timestamps
	 Privilege Changes
	 Changes to Security
	 Object Changes
	 Redo Based
	 ID Based Searches
	 Applications Data
	 Internals
	 Flashback and Recycle
	 Database Audit
	 Database Dumps
	 Rounding Up

	 Non-Database Artifacts
	 Webserver Logs
	 Application Logs
	 Operating System Audit
	 TNS Listener Logs
	 SQL*Net Trace
	 SYSDBA Audit Trace Files and Logs
	 Database Trace
	 Database Datafiles
	 Rounding Up

	 Correlation
	 Deleted Data
	 Tuning Tools
	 Rootkits

	Chapter 3: Incident Response Approach
	 Planning
	 Create an Incident Response Approach
	 Incident Coordinator
	 Create an Incident Response Team
	 Create an Incident Response Process
	 Create and Collate a Toolkit

	Chapter 4: Reacting to an Incident
	 A Sample Attack
	 What Not To Do
	 Incident Verification and Identification
	 Collecting Artifacts
	 Disconnecting the System or Shutting Down
	 Connecting to the System
	 Live Response and Artifact Collection
	 Views, Base Tables, RAC, and Synonyms?
	 Spreadsheets
	 Server and Database State
	 Get Server Details
	 Web Server logs
	 Collect Oracle Logs Files from the Server
	 Get Last SQL
	 Volatile Artifacts
	 Database Artifacts
	 Checksums

	Chapter 5: Forensic Analysis
	 Pre-Analysis
	 Example Analysis
	 Post-Analysis
	 How Did He Get In?
	 What Rights Did He Have?
	 What Did He See?
	 What Did He Change?
	 What Could He Have Done?

	 Findings
	 Report and Summary
	 Restore and Rebuild

	Chapter 6: What To Do Next?
	 Planning
	 Thinking About Database Security
	 Enabling Sophisticated Audit Trails
	 Conclusions
	 Further Reading

	Index

