
www.allitebooks.com

http://www.allitebooks.org

phpList 2 E-mail Campaign
Manager

Get to grips with the phpList e-mail announcement
delivery system!

David Young

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

phpList 2 E-mail Campaign Manager

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Production Reference: 1180711

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-04-9

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
David Young

Reviewer
Deepak Vohra

Acquisition Editor
Usha Iyer

Development Editor
Alina Lewis

Technical Editor
Sakina Kaydawala

Copy Editor
Leonard D'Silva

Project Coordinator
Srimoyee Ghoshal

Proofreader
Bernadette Watkins

Indexers
Monica Ajmera Mehta

Rekha Nair

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Young's first experience in documenting the open source world was the
official 2003 manual for JAJC, a popular jabber client, which he authored in XML
using Docbook.

He followed this with the development of "Bandersnatch", the whimsically named
Jabber message logger, which remains the de facto open source platform for
recording and archiving messages on a Jabber server.

After founding and successfully running an open source consulting company
("Funky Penguin") for several years, David "retired" to full-time employment.

David now works for a respected New Zealand IT consulting firm (Prophecy
Networks Ltd) and pursues the odd "Funky Penguin" project in his spare time.

David's projects, notes, and ramblings can be found at:
http://www.funkypenguin.co.nz.

I'd like to thank my wife for her support, encouragement, and
constant supply of Griffin's Chocolate Fingers. The team at Packt,
for the opportunity to author this book. My Funky Penguin phpList
clients (you know who you are), for the opportunities you provide
me with. My son Zachary, of whom I'm forever a proud and
loving father.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. Deepak is a Sun Certified Java Programmer and Web Component
Developer, and has worked in the fields of XML, Java programming and J2EE for
over five years. Deepak is the co-author of the Apress book Pro XML Development with
Java Technology and was the technical reviewer for the O'Reilly book WebLogic: The
Definitive Guide. Deepak was also the technical reviewer for the Course Technology
PTR book Ruby Programming for the Absolute Beginner and the technical editor for
the Manning Publications book Prototype and Scriptaculous in Action. Deepak is also
the author of the Packt Publishing books JDBC 4.0 and Oracle JDeveloper for J2EE
Development, and Processing XML Documents with Oracle JDeveloper 11g.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy & paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

•
•
•

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installation and Configuration	 7

Installing phpList files and database	 7
Requirements	 8
Downloading phpList	 8
Unpacking and uploading phpList	 9
Creating a database	 10
Performing initial configuration	 10

Database settings	 10
Path settings	 10

Performing web-based configuration	 11
Initialize database	 11

Initial login	 13
Change Admin Password	 14
Configure General Values	 16
Configure Attributes	 17
Create Lists	 19
Create Subscribe Pages	 20

Testing e-mail delivery	 20
Create user	 20
Sending a message	 22
Processing the message queue (in test mode)	 24
Disabling test mode	 24
Processing the message queue (for real)	 25
Summary	 25

Chapter 2: Setting up Subscriber Forms	 27
Basic concepts	 27
Setting up a basic subscribe page	 28
Creating a custom subscribe page	 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Creating attributes	 30
Creating subscribe page	 32
Customizing title and text	 33
Customizing the HTML header and footer	 33
Customizing delivery options	 34
Selecting attributes	 34
Selecting list	 35
Protecting your subscribe page from spammers	 36

Signing up for reCAPTCHA keys and downloading the PHP library	 36
Modifying index.php	 36
Modifying admin/subscribelib2.php	 37

Putting a subscribe form on other applications	 38
Generating HTML code for the subscribe form	 38
Customizing HTML code	 39

Changing the form action	 39
Removing the JavaScript	 39
Optional pop-up confirmation	 39
Removing the subscribe form button	 40

Summary	 41
Chapter 3: Setting up E-mail Bounce Handling	 43

E-mail bounce handling	 43
Requirements	 43
Configuring basic bounce settings	 44

Testing and manually processing bounces	 46
Reviewing bounces	 47

Taking action on individual bounces	 48
Interpreting why an e-mail bounced	 49
Examining users whose e-mail bounces	 50
Reviewing unconfirmation actions in the eventlog	 51

Summary	 51
Chapter 4: Setting up phpList with Popular Publishing Platforms	 53

Integrating phpList with Drupal	 53
Prerequisites	 54
Installing and configuring the phpList integration module	 54

External phpList configuration	 55
Attribute mapping	 57
My Account – My Newsletters options	 58
Registration Page options	 59
Miscellaneous	 60
Synchronize users to phpList	 60
Turn on debugging	 61

Configuring list access	 61
Configuring Drupal permissions	 62

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Clearing Drupal's cache	 63
Confirming access to My newsletters	 64
Adding the phpList subscribe block	 65

Troubleshooting the phpList subscribe block	 68
Integrating phpList with WordPress	 68

Prerequisites	 68
Installing and configuring the phpList Integration plugin	 68

General Settings	 70
Form Settings	 70

Adding a phpList Integration page	 71
Adding a phpList Integration widget	 72

Integrating phpList with Facebook	 74
Prerequisites	 74
Preparing phpList	 75
Creating the Facebook app	 77
Configuring the Facebook page	 80
Making phpList the default tab on your Facebook page	 82

Summary	 83
Chapter 5: List, User, and Administrator Management	 85

Individual user management	 86
Updating a user's details and list memberships (as the user)	 87
Unsubscribing a user (as the user)	 88
Examining a user's history (as administrator)	 88
Updating a user's details (as admin)	 89
Bulk user management	 90
Importing users	 90

Importing a simple list	 91
Importing a complex list	 93

Reconciling users	 97
Exporting users	 100

All users	 100
Specific list	 101

Managing lists	 102
Creating a list	 102

Performing member operations on a list	 103
Managing administrators	 105

Creating a restricted admin	 105
Setting admin permissions	 107
Creating a super admin	 109
Assigning administrators to lists	 109
Testing a new administrator	 109

Summary	 110

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 6: Personalizing E-mail Body	 111
Enhancing messages using built-in placeholders	 111

Placeholders in confirmation messages	 113
Personalizing messages using member attributes	 113
Sending messages to subsets of lists based on attributes	 115

Increasing the amount of criteria available	 116
Using message templates	 117

Creating a message template	 117
Summary	 120

Chapter 7: Measuring Effectiveness of Newsletters	 121
User tracking	 122

Sending a message with user tracking enabled	 122
Examining user-tracking statistics per message	 123
Examining user-tracking statistics per user	 124

Click tracking	 125
Avoiding false spam / phishing detection	 126
Enabling click tracking	 128

Enabling extra detail in click tracking	 128
Sending an e-mail with click tracking enabled	 128
Examining basic click-tracking statistics per message	 129

Examining advanced user/click-tracking statistics	 130
Extra statistics sidebar link	 130
Overview	 131
Viewing clicks by URL	 132
Viewing clicks by message	 132
Viewing opens by message	 133
Viewing domain statistics	 133

Summary	 134
Chapter 8: Securing phpList	 135

Changing the admin password	 135
Choosing strong passwords	 135
Changing phpList admin password	 136

Confirming correct filesystem permissions	 137
Confirming permissions in a GUI SFTP/FTP client	 137
Confirming permissions using a shell session	 138
Setting appropriate permissions	 138

Confirming htaccess restrictions are in place	 139
Securing admin pages with additional (htauth) password	 139

Creating an htpasswd file	 140

Table of Contents

[�]

Creating an htpassword file online	 140
Creating an htpasswd file in a Unix shell	 141

Amending admin/.htaccess	 141
Summary	 143

Chapter 9: Advanced Features	 145
Advanced bounce handling	 145

Bounce rules and regular expressions	 146
Creating a new bounce rule	 146
Creating a new rule based on an existing bounce	 147
Auto-generating new bounce rules	 149
Checking current rules against bounces	 150

Domain-based e-mail throttling	 151
Adding attachments to messages	 151

Adding multiple files simultaneously	 153
Attaching files stored on your web server	 155
Securing your attachments stored on the web server	 158

Automatically repeat messages	 158
Sending a repeating message	 159
Forcing a repeating message to repeat before embargo	 159

Auto-generating messages from RSS feeds	 160
Enabling RSS support	 161
Associating an RSS feed with a list	 162
"Getting" new RSS items	 163
User requirements to receive RSS messages	 163
Sending a message including RSS	 165
Setting your RSS message's schedule	 165

Setting up processing automation	 166
Requirements	 167
Customize the CLI "wrapper"	 167

Summary	 169
Chapter 10: Hacking phpList	 171

Substituting user attributes in the subject line	 171
Caveat #1 – no attribute substitution for a third party	 173
Caveat #2 – "Forward message" page displays an un-substituted subject	174

Sending system messages as HTML instead of text	 174
Code changes	 174

Creating the plain-text part of the message by stripping out the HTML	 175
Sending both the HTML and text versions of the message	 175
Stripping slashes from messages stored in the database	 176

Table of Contents

[vi]

Web interface changes	 179
Standard system messages	 179
Subscription and confirmation messages on the pre-existing subscribe page	 181
Tips	 181

Creating a messages archive page	 183
Customizing the number of messages displayed per page	 184
Adding a message summary to the list	 185

Hiding the summary in outgoing e-mails	 186
Linking the archives to the main index	 186

Sending messages using your e-mail client	 188
Installing MailToList	 188
Configuring the Mail To List	 190
Whitelisting users	 192

Manually adding users	 192
Importing users	 193

Processing incoming e-mails	 193
Automating Mail To List using cron	 194
Bugs in Mail To List	 195

Plain text messages will come out blank	 195
Plain text or HTML attachments will disappear	 195

Summary	 196
Chapter 11: Troubleshooting and Maintenance	 197

General fault diagnosis	 197
Test mode (the "dry run")	 197
Verbose mode – tell me what you're thinking	 198

Common errors and warnings	 199
Error: Please make sure that index.php is your default document for a
directory	 199
Error: IMAP is not included in your PHP installation, cannot continue	 200
Fatal error: Cannot connect to database, access denied. Please contact the
administrator	 201
HTTP Error 500: Internal server error	 202
HTTP Error 404: File not found	 202
Warning: The pageroot in your config does not match the current location	203
Warning: In safe mode, not everything will work as expected	 204
Warning: The attachment repository does not exist or is not writable	 204
Warning: open_basedir restrictions are in effect	 205
Warning: Things will work better when PHP magic_quotes_gpc = on	 205
Warning: Things will work better when PHP magic_quotes_runtime = off	 206
Warning: You are trying to use RSS, but XML is not included in your PHP	206
Mailer Error: SMTP Error: Could not connect to SMTP host	 207

Table of Contents

[vii]

Creating a backup	 207
Backing up the database	 207
Backing up the files	 209

Upgrading phpList	 209
Where to find more help and information	 211
Summary	 212

Index	 213

Preface
Tired of an e-mail BCC list that scrolls off the page or fiddly and hard-to-manage
bulk mailing systems? You need phpList—a high-powered, robust, feature-packed
mailing system that will "get out of your way" and get the job done.

phpList 2 E-mail Campaign Manager will guide you from basic installation and
setup through management, reporting, and automation of phpList, the world's
most popular open source e-mail campaign manager. It also covers advanced
customization and configuration of phpList.

phpList is a popular open source e-mail campaign manager, sporting a powerful web
frontend, a rich message editor, and an advanced feature set. We start with a basic
configuration and finish with a full-featured e-mail management engine.

You will work your way up from the installation to advanced topics such as bounce
automation, user and click-through tracking, and integration with third party
publishing platforms such as WordPress, Drupal, Blogger, and Facebook.

Advanced topics such as securing your installation against spammers, attacks,
and vulnerabilities are covered, as well as additional advanced and "experimental"
features offered by phpList.

This book is an invaluable guide for an e-mail publisher who wants a robust and
powerful engine to manage their small-to-huge e-mail distribution empire.

What this book covers
Chapter 1, Installation and Configuration, discusses installation and basic configuration
of phpList.

Chapter 2, Setting up Subscriber Forms, talks about creating forms to capture
subscribers' details, preferences, and so on.

Preface

[�]

Chapter 3, Setting up E-mail Bounce Handling, includes automatically managing and
reporting on permanent and temporarily bouncing e-mails.

Chapter 4, Setting up phpList with Popular Publishing Platforms, describes the
integration of phpList with Drupal, WordPress, and Facebook.

Chapter 5, List, User, and Administrator Management, talks about managing users,
admins, and lists and the Performing bulk actions (import/export).

Chapter 6, Personalizing E-mail Body, includes using attributes and variables to
customize e-mails received by subscribers.

Chapter 7, Measuring Effectiveness of Newsletters, describes tracking open and click-
through rates, and reporting on the overall effectiveness of each message.

Chapter 8, Securing phpList, discusses how to ensure you have basic protection from
spammers, brute-force attacks, and misconfigurations.

Chapter 9, Advanced Features, talks about advanced bounce / message handling, RSS
and file attachment, automatically repeating messages, and process automation.

Chapter 10, Hacking phpList, is about adding extra functionality and features by
modifying or adding to phpList code.

Chapter 11, Troubleshooting and Maintenance, discusses common errors and
maintenance tasks.

What you need for this book
While phpList will technically run on a wide range of systems, this book has been
written with the "ideal" environment in mind – a Linux hosting platform running
Apache, PHP, and MySQL (this is the common environment offered by online
shared or dedicated hosting providers).

You will need write access to such an environment, as well as the ability to transfer
files to the hosting environment. Shell access to your hosting environment would
also be useful, but not essential.

This book was written using phpList 2.10.12 as a basis for screenshots and tutorials.
In future versions of phpList, user interface elements may change, including layout
and text, and additional features may be introduced.

Preface

[�]

Who this book is for
This book is aimed at content creators and distributors who want to "up their game"
to a full e-mail distribution engine.

Further, more it will certainly appeal to you if you are technically inclined and
would rather "roll your own" system than use an off-the-shelf product.

It is assumed that you are familiar with the basic concepts of e-mail, editing text files,
and managing remote files with FTP / SFTP.

The more advanced topics will teach you how to get your "hands dirty" in some of
phpList's open source code.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Open admin/subscribelib2.php
and search for spambot."

A block of code is set as follows:

define('USE_DOMAIN_THROTTLE',0);
define('DOMAIN_BATCH_SIZE',1);
define('DOMAIN_BATCH_PERIOD',120);

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

define('USE_DOMAIN_THROTTLE',0);
define('DOMAIN_BATCH_SIZE',1);
define('DOMAIN_BATCH_PERIOD',120);

Any command-line input or output is written as follows:

Process bounces: /path/to/bin/phplist –p processbounces

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
on add new to start adding attribute values."

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for
this book
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installation and Configuration
phpList is a popular open source e-mail campaign manager, sporting a powerful web
frontend, rich message editor, and advanced feature set.

Throughout this book, you will be guided from the basics of initial configurations
to making advanced customizations and modifications.

The first task required in building our phpList system is the initial installation
and configuration of phpList on a web server.

Let's get started!

In this chapter, you will learn how to install and configure a basic phpList
system, including:

Installing phpList files and database
Making configuration changes
Basic configuration of lists, users, and attributes
Sending your first message

Installing phpList files and database
The phpList system contains HTML and image files, as well as the PHP code, which
comprises the phpList. These are static files, and not expected to change, unless you
upgrade, or otherwise manually modify them.

The database is where the dynamic content is stored, including lists, members,
and messages.

We will install the phpList files and then use a setup process to have phpList set up
the database.

•

•

•

•

Installation and Configuration

[�]

Requirements
For the purposes of this book, we will limit ourselves to the developer-tested
system requirements detailed at http://www.phplist.com/system_requirements,
namely:

A Linux-based platform
The Apache web server
MySQL database (version 4.0+)
PHP (version 4.3+)

As it will be discussed in detail in Chapter 3, Setting up E-mail
Bounce Handling, phpList's bounce handling also requires the
php-imap module.

While phpList has been reported to work on Windows servers, by using either IIS or
an Apache/PHP/MySQL environment, this book and the examples herein will focus
on the Linux-based system described previously.

Downloading phpList
Our first port of call is the phpList download page (http://www.phplist.com/
download). Here we can download the latest version of phpList, packaged either
as a ZIP file (typically for Windows users) or TGZ file (typically for Linux users).

Clicking either of the links will auto-start a download of the latest version of phpList
in your preferred packaging format:

•

•

•

•

Chapter 1

[�]

Unpacking and uploading phpList
Unpack the .ZIP or .TGZ file into a new folder. You'll end up with a directory
structure looking something as follows:

Note the three folders named bin, scripts, and public_html. Of these folders,
only the public_html folder is required for phpList (like its name, these are the
files which will be publicly available on your web server). The other folders are
complimentary and contain useful scripts, documentation, and so on.

The structure of the public_html folder assumes that you're going
to put phpList at the /lists/ location of your URL—that is, your
phpList installation will be accessed at http://www.yourdomain.
com/lists/.

If you are satisfied with the default /lists/ location, then simply upload the entire
lists folder directly to your web server, or else upload the contents of the folder to
the preferred location where you want the phpList to be installed on your web server.
Remember that this location must be publicly accessible (that is, it must be under the
same directory structure as the rest of your publicly accessible web content).

Installation and Configuration

[10]

Creating a database
How you create a database for phpList will depend on your web hosting provider,
but after the database creation, the following information will be required to
configure phpList:

Database server hostname (often localhost)
Database username
Database password
Database name

Performing initial configuration
phpList's configuration file is config/config.php. This file is extensive, and contains
many advanced settings, which will be dealt with later in this book. For starters, we'll
configure some of the basic settings to get our phpList installation running.

Database settings
Starting from line #22, customize the following four entries for the database you
created before:

$database_host = "localhost";

Change this to the name of your database host. Leave it as "localhost" if you're not
sure—if this doesn't work, contact your hosting provider.

$database_name = "phplistdb";

Change this to the name of the database you created.

$database_user = "phplist";

Change this to the user you created to access the database.

$database_password = "phplist";

Change this to the password of the user you created.

Path settings
If you chose to install phpList to a path other than "/lists" when you uploaded it,
you'll also need to change the following two entries, starting at line #48:

$pageroot = '/lists';

•

•

•

•

Chapter 1

[11]

Change this to whatever you selected as your phpList path. This could simply be "/"
or something else, like "/newsletters"

$adminpages = '/lists/admin';

Change this to match the $pageroot aforementioned definition. phpList requires that
the "admin" portion remains the same, so this must be whatever your $pageroot is,
with "/admin" added to the end, for example, "/newsletters/admin".

Performing web-based configuration
Access your phpList admin section at the location where you installed it, appending
"/admin" to the URL, as follows: http://www.yourdomain.com/lists/admin.

The test mode warning appears because we have not yet disabled test
mode in the configuration file, meaning no actual e-mails will be sent.
It's helpful to leave phpList in this state until the setup is complete, to
avoid accidentally sending e-mails to "live" recipients.

Initialize database
Although it is hard to see because of the pink highlighting, you are warned that the
database has not yet been initialized, so click on initialize database to continue:

Installation and Configuration

[12]

The database initialization script will automatically connect to the database using the
username and password you specified, and will create and populate all the required
database tables. If you see any errors, check to see if your database settings are
correct. A successful initialization will look like the one in the following screenshot.
Having successfully initialized the database, click on the phplist setup link at the
bottom of the page to continue:

Chapter 1

[13]

Initial login
You're now taken to the admin login screen and presented with a user/password
request. The default username is admin and the password is phplist. Enter this
combination to proceed:

You are then presented with a quick checklist of steps to complete your phpList
setup. Start by clicking on go there next to Change Admin Password to change
your password:

Installation and Configuration

[14]

Change Admin Password
Next, you are taken to the manage admins page (we'll cover this in detail in Chapter
5, List, User, and Administrator Management) and prompted to change the password
for the "admin" user.

1.	 It's a good idea to associate your e-mail address with this user at the
same time. Update the Password and the Email address and click on
Save Changes:

2.	 You'll notice that when you click on Save Changes, the current page
is simply reloaded with a message confirming that the changes have
been saved:

Chapter 1

[15]

3.	 To continue with the setup, click on the main page link on the right-hand
navigation panel:

4.	 We haven't completed the initial checklist yet, so click on the setup link
to continue:

5.	 The next item on our checklist is Configure General Values, so click on go
there to continue:

www.allitebooks.com

http://www.allitebooks.org

Installation and Configuration

[16]

Configure General Values
You are now taken to the configuration page. This can be accessed in future from the
configure link on the right-hand navigation panel. These are the configuration values
that are stored in the database, as opposed to the config/config.php file.

There are a few general attributes we should check right away—the rest of them can
be tweaked later:

Website address (without http://)—This value would have been auto-
detected based on the URL which you used to perform the database
initialization. Ensure it is correct, because this value is used to create the
internal hyperlinks on the web interface.

If you ever move your phpList installation to another URL, remember to
update this value.

Person in charge of this system (one e-mail address)—Make sure this address
is valid. Notifications of new subscriptions and other system actions will be
sent to this address.

You can change a number of other configuration settings, like additional e-mail
addresses to receive system notifications, default size of WYSIWYG editor windows,
default welcome/confirmation messages, and so on.

Click on the main page link in the right-hand panel to return to the main page.
Then click on the setup link to continue the initial setup.

Our next step is the Configure Attributes item, so click on go there to continue:

•

•

Chapter 1

[17]

Configure Attributes
Attributes are used to record additional data about subscribers (such as, name, age,
and so on), and to make selective decisions about e-mailing them based on these
attributes (that is, you may send a different message to all female subscribers on
Mothers' Day).

1.	 To get started, click on the predefined defaults link to import some
pre-prepared attributes:

2.	 Choose the Countries in the world attributes and click on Add:

Installation and Configuration

[18]

3.	 You can see a simple confirmation message, noting that the attributes have
been added. To re-examine these attributes, return to the main admin page
by clicking on the main page link:

4.	 Note that Country is now displayed under the Configuration functions
section. Click on the setup link to continue the setup process:

5.	 The next item on our checklist is Create Lists, so click on go there to proceed:

Chapter 1

[19]

Create Lists
You're now taken to the lists page. This page can also be accessed using the lists link
on the right-hand navigation panel.

Currently, there is only a single default list, named test. This list is inactive. We'll use
this to test our phpList installation, so click the Active checkbox to make it active,
and click on Save Changes to apply:

The lists page will be refreshed with your changes applied. Click on the main
page link to return to the main page, and then click once more on the setup link
to complete the last item on the checklist.

The final item is labeled Create Subscribe Pages, so click on go there to proceed:

Installation and Configuration

[20]

Create Subscribe Pages
You are now taken to the subscribe pages page, which can also be reached using the
navigation panel. We will cover subscribe pages in detail in the next chapter, so let's
ignore this for now and return to the main page to test message delivery!

Testing e-mail delivery
While we'll cover subscribe pages, bounce handling, and e-mail personalization
in subsequent chapters, let's send ourselves a test message to ensure that we're
complete with our basic setup.

Create user
As we don't have subscribe pages for automatic user creation (and as we're the
administrator anyway), let's add a sample user:

1.	 Click on the users link in the navigation panel to go to the users
administration page:

Chapter 1

[21]

2.	 Here we see that we currently have zero users. Click on add a user:

3.	 To add a new user, complete at least the following fields:
Email (the user's e-mail address)
Is this user confirmed (set to 1 to create this user as confirmed,
opted-in)
Mailinglist Membership (check the test list so that we can send
e-mails to this user)

4.	 You can also complete the following optional fields:
Send this user HTML emails (set to 1 to enable HTML for this user)
Country (one of the country attributes we imported earlier)

5.	 Click on Save Changes to apply.

°

°

°

°

°

Installation and Configuration

[22]

On saving, the page will refresh, with the user's details permanently on the page, as
well as some additional administration links (unsubscribe, history, and so on). Click
on back to the list of users to return to the user list:

The user list now shows that we have a single confirmed user, who's subscribed to
one list.

Click on the send a message link in the right-hand navigation panel to send your
first message:

Sending a message
To send the most basic of messages:

1.	 Enter a subject, and some content in the WYSIWYG editor:

Chapter 1

[23]

2.	 Next, click on Save Changes at the very bottom of the page.
3.	 The page will be refreshed, with your message saved in a draft state.

Now click the Lists tab to choose which lists this message will be sent to:

4.	 Choose the test list and then click on Send Message to the Selected
Mailinglists to add this message to the queue:

Installation and Configuration

[24]

5.	 phpList will confirm that the message has been queued and offers you the
option to manually process the queue. Click on the process the message
queue link to process the queue:

Processing the message queue (in test mode)
Because we haven't yet disabled test mode, no actual e-mail will be sent. phpList
will make us aware of this in big, bold, red text. However, this does afford us the
opportunity to check that everything else is working as expected:

Disabling test mode
Now that we're confident that we've completed the initial setup correctly, let's
disable the test mode, so that we can do a real e-mail delivery.

To disable the test mode, edit config/config.php on line #191 and change this line:

define ("TEST",1);

Chapter 1

[25]

To:

define ("TEST",0);

Save the file and click on process queue again to send the e-mail for real.

Processing the message queue (for real)
Once you have clicked on process queue again, your message will be processed for
real. The test subscriber will receive their message and the list admin will receive a
delivery report:

Summary
In this chapter, you've learned about how to install and configure phpList, as well as
some basic administration tasks, including:

Installing phpList files and database
Making configuration changes
Basic configuration of lists, users, and attributes
Sending your first message

In the next chapter, we'll talk about enabling users to subscribe to your lists using
subscribe pages and attributes.

•

•

•

•

Setting up Subscriber Forms
Now that we have phpList installed and set up, it's time to set up subscriber forms
so that our audience can sign up to our various newsletters. Using subscriber forms,
you can not only encourage members to subscribe to your lists, but you can also
capture valuable demographic information (attributes), and have your members set
their own e-mail delivery preferences (HTML or text formatting, for example).

In this chapter, you will learn how to implement and customize subscriber forms.
You will cover the following:

Setting up a basic subscriber form
Modifying a subscriber form
Adding reCAPTCHA support to a subscriber form, by modifying
phpList files
Implementing a subscriber form on other applications (Blogger, WordPress,
and so on)

Basic concepts
As phpList supports multiple lists and multiple attributes, it's also possible to
present a user with multiple subscribe pages. However, phpList must always have
one default subscribe page. This is the page you'll see on a default installation if
you browse to the default subscribe action, that is, http://your-phplist-site/
?p=subscribe.

The following examples are based on these assumptions:

You have created a list called "customers" with a description of "DVD
Rental customers"
Your phpList installation is at http://your-phplist-site

•

•

•

•

•

•

Setting up Subscriber Forms

[28]

Setting up a basic subscribe page
To view available subscriber pages, click on subscribe pages in the right-hand panel
on the admin interface. On a default phpList installation, there are three pre-created
subscribe pages, named Email Only, Everything, and Name Only.

1.	 We will start by using the Email Only subscribe page, so click on the radio
button in the default column to make this subscribe page the default page:

2.	 Now click on the edit link to confirm the lists associated with this
subscribe page:

3.	 Ignoring the customization options for now, scroll to the bottom of the page,
ensure that our "customers" list is checked and that the rest of the default lists
are unchecked, and click on Save Changes to apply the changes:

Chapter 2

[29]

By default, if there is more than one list associated with a subscribe
page, the user will be presented with a selection of lists to subscribe to.
If there is only a single list associated with a subscribe page, the user
will not see the name of the list they are subscribing to. This behavior
is controlled by the Display subscribe form automatically if only one
active list is offered option in the configuration page.

4.	 Return to the subscribe pages list and click on view next to the Email Only
list, to confirm how your new subscriber page will look:

5.	 Because we are logged in as an administrator, we will see additional
information on the subscriber page that regular users wouldn't see,
and are able to bypass the "double-opt-in" feature and subscribe an
e-mail address to our list immediately, without e-mail confirmation:

Setting up Subscriber Forms

[30]

6.	 If we direct our customers to http://your-phplist-site/?p=subscribe,
they will be presented with the non-administrator version of this subscribe
page and will be able to subscribe to our "customers" list.

We will create our own new subscriber form by clicking on the add a new one link
at the bottom of the list of subscribe pages.

Creating a custom subscribe page
Now that we know how to create a basic subscriber page, we may want to capture
more information about our customers when they sign up. In this example, let's
assume we'd like to know their name and movie genre preferences.

Creating attributes
While we can take advantage of the built-in attributes, we can also create our own
attributes to further personalize our e-mails. Let's create a new, optional attribute
for the movie genre preference:

1.	 On the main admin page, click on the attributes link:

2.	 Click on Add a new one to create a new attribute:

Chapter 2

[31]

3.	 You are hyperlinked to the bottom of the page for the new attribute form.
Enter a name for the attribute (Movie Genre) and an attribute type. In this
case, checkboxgroup was chosen, because our readers may have more than
one genre preference. Unless you want the attribute to be mandatory, remove
the check from the checkbox next to Is this attribute required?. Click on Save
Changes to create the new attribute:

4.	 Once you've saved the changes, your attribute is created, but doesn't yet
have any values for selection. To add values for selection, return to the main
admin page, and click on the name of your attribute (Movie Genre) under
the Configuration functions section:

5.	 Click add new to start adding attribute values:

Setting up Subscriber Forms

[32]

6.	 Add the attribute values, one per line, and then click on add new Movie
Genre to save:

7.	 After saving your values, you can reorder, delete, or add new values from
the same page:

Creating subscribe page
Let's create a new subscribe page by clicking on subscribe pages from the
right-hand navigation bar and then on the add a new one link at the bottom
of the list of subscribe pages:

Chapter 2

[33]

Customizing title and text
Name the new page Movie Buffs and enter custom intro text:

We can also customize the thank you page and the welcome/confirmation messages,
but we'll leave them to the phpList default in this example.

Customizing the HTML header and footer
Make a few minor adjustments to the HTML for the header and footer. In the
following example, we will change the table width from 710 to 410 in the header, and
add a custom H3 section "Your number #1 source for movie rentals!" to the footer:

These defaults are assigned to a new subscribe page when it is
created. To change the defaults for any future subscribe pages,
edit them under the configure page.

Setting up Subscriber Forms

[34]

Customizing delivery options
As we intend to deliver bright and colorful e-mails to our customers, let's set the
default e-mail format to HTML, but allow the subscriber to opt for plain text e-mails
with a checkbox:

Selecting attributes
Under the attribute selection section, select the Name, Country, and Movie
Genre attributes:

Chapter 2

[35]

Selecting list
Finally, select the list to which this subscribe page will apply and Save and Activate
your new list!

View your new custom subscribe page to confirm that it looks as you want it to:

www.allitebooks.com

http://www.allitebooks.org

Setting up Subscriber Forms

[36]

Protecting your subscribe page from
spammers
A major problem with online forms is the propensity of automated spam-bots
to target them and fill your database or inbox with annoying false subscriptions
and messages.

phpList includes a basic built-in level of spam protection, which is enabled by
default. (See the USE_SPAM_BLOCK and NOTIFY_SPAM values in config/config.php).

To add an additional layer of spam-protection, we can incorporate reCAPTCHA
(http://www.google.com/recaptcha), a free service that both serves to protect
online forms from spammers and to help digitize books, newspapers, and so on.

Note that the following example requires changes to the phpList source
code, which will be lost when performing an upgrade and the changes
will, therefore, need to be reapplied after each successive upgrade.

Signing up for reCAPTCHA keys and downloading
the PHP library
The first step in implementing reCAPTCHA is to sign up (for free) to obtain a public
/ private key combination specific to your domain. Go to http://www.google.com/
recaptcha and sign up.

Once you've been given your public and private key, record these somewhere safe
and proceed to download the PHP library from http://code.google.com/apis/
recaptcha/docs/php.html. As mentioned on the documentation page, you only
need the recaptchalib.php from the library—the rest of the files are supplemental.

Extract recaptchalib.php from the downloaded zip file and save it to the admin/
folder of your phpList installation. Be sure to confirm that your web server user has
read-access to this file.

Modifying index.php
Edit index.php (in the root of your phpList installation) and search for USE_SPAM_
BLOCK. There is a line that reads:

if (USE_SPAM_BLOCK)

Chapter 2

[37]

Insert the following code above this line:

// Insert reCAPTCHA if library exists and webserver has permission to
read it
 if (file_exists('admin/recaptchalib.php') && is_readable('admin/
recaptchalib.php')) {
 require_once('admin/recaptchalib.php');
 $publickey = "your_public_key "; // you got this from the signup
page
 $html .= recaptcha_get_html($publickey);
 }

Modifying admin/subscribelib2.php
Edit admin/subscribelib2.php and search for spambot. There is a line that reads:

// anti spambot check

Insert the following code above this line:

// Confirm reCAPTCHA was successfully entered
if (file_exists('admin/recaptchalib.php') && is_readable('admin/
recaptchalib.php')) {
 require_once('admin/recaptchalib.php');
 $privatekey = "your_private_key ";
 $resp = recaptcha_check_answer ($privatekey,
 $_SERVER["REMOTE_ADDR"],
 $_POST["recaptcha_challenge_field"],
 $_POST["recaptcha_response_field"]);
 if (!$resp->is_valid) {
 $missing = 'Please try typing the two words again';
 $allthere = 0;
 }
}

Downloading the example code for this book
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.com.
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed
directly to you.

Setting up Subscriber Forms

[38]

This will generate a reCAPTCHA input box on your subscribe form, and will return
an error if a user tries to subscribe without correctly filling out the reCAPTCHA:

Putting a subscribe form on other
applications
You may not always want to direct your customers to the phpList subscribe page,
but may want (for example) to embed the subscribe form within an existing page
on your blog.

This is covered in more detail in the phpList wiki at http://docs.
phplist.com/CustomSubscribeForm.

Generating HTML code for the subscribe form
Create your subscribe form within phpList, customizing it to suit your needs.
Once you're satisfied with the way it looks, view the subscribe form as a normal
user (that is, not as a logged-in administrator), and use your browser to view the
source code. (Generally, right-clicking brings up a variant of a view source option
in your browser).

Chapter 2

[39]

Look in the source code for the following text:

<form method=post name="subscribeform">

This is the beginning of the HTML code for the subscribe form. Copy everything
from the first "<form to the ending </form>" tag and paste it into a text editor.

Customizing HTML code
Now we will customize this code to make it work as a generic form, which can then
be embedded into an unrelated HTML page.

Changing the form action
Change the following opening form tag from this:

<form method=post name="subscribeform">

To this, if this is the default subscribe page:

<form method=post action="http://your-phplist-site/?p=subscribe"
name="subscribeform">

Or to this, if this is not the default subscribe page, where x is the ID of the
subscribe page:

<form method=post action="http://your-phplist-site/
?p=subscribe&id=x" name="subscribeform">

Removing the JavaScript
Unless you manually copy the phpList JavaScript functions across to the website
where you'll be embedding the form, you will probably want to remove anything
in the form code between the <script> tags since, at best, these will be rendered
ineffective and, at worst, will display errors.

Optional pop-up confirmation
If you've embedded the subscribe form into another website, you may not want your
reader to be redirected off your website and to the phpList "thank you" page. If we
add a "target" to our form tag, our browser will bring up the "thank you" page in a
new, pop-up window, leaving the original browser window unchanged.

Setting up Subscriber Forms

[40]

Edit the HTML code and change the opening form tag from this:

<form method=post action="http://your-phplist-site/?p=subscribe"
name="subscribeform">

To this:

<form method="post" action="http://your-phplist-site/?p=subscribe"
name="subscribeform" target="windowName" onsubmit="window.open('',
this.target,
'dialog,modal,scrollbars=no,resizable=no,width=550,height=300,left=0,
top=0');">

Removing the subscribe form button
You may want to further alter the form code in your HTML editor and perhaps
replace the subscribe form button with an image. The form won't work without
the original button though, so you can hide it by replacing:

<input type=submit name="subscribe" value="Subscribe to the Selected
Mailinglists" onClick="return checkform();">

With:

<input type="hidden" name="subscribe" value="yes">

Embedding code into other applications
Having customized the HTML form code, you can now insert it into
any HTML page to provide a subscription form.

Chapter 2

[41]

Summary
In this chapter, you've learned how to create and customize subscriber forms.
You've covered:

Setting up a basic subscriber form
Modifying the subscriber form
Adding reCAPTCHA support to a subscriber form by modifying
phpList files
Implementing subscriber forms on other applications (Blogger, WordPress,
and so on)

You'll notice, we've also covered three different ways of customizing phpList. The
first is through the standard phpList admin interface, the second is through editing
source code, and the third is through duplicating and customizing phpList-generated
HTML code.

In the next chapter, we'll look at phpList automated bounce-handling features and at
how to keep your lists clear of "stale" addresses.

•

•

•

•

Setting up E-mail Bounce
Handling

Now that we have forms enabling our subscribers to sign up, we need to keep our
lists clean by implementing bounce handling. A bounce is an e-mail message which
is returned because it is unable to be delivered.

In this chapter, you will learn how to configure and manage e-mail bounce
handling including:

Basic bounce settings
Manually processing bounces
Reviewing and acting on bounces

E-mail bounce handling
phpList includes a robust bounce-handling system. It uses the "return-path" header
of an e-mail to tell automated systems (that is, our subscribers' mail servers) who
to inform about the failure to deliver our messages. This can be different from the
"From" header in the e-mail, which is what the user sees when he/she reads our
e-mail, and where out-of-office responses are sent.

Requirements
phpList's bounce handling code requires the PHP "IMAP" module. This
module implements functions in PHP for opening POP/IMAP mailboxes,
and is a requirement for bounce handling. Ensure that your hosting provider
includes this module.

•

•

•

Setting up E-mail Bounce Handling

[44]

You will also need a mailbox for the bounces to be delivered to. Depending on your
server configuration, this could be a local or remote POP3, or (under certain special
circumstances) simply a mailbox file.

Finally, for PHP 4.2.3 and greater, "safe mode" will need to be disabled.

The PHP safe mode is an attempt to solve the shared-server security
problem. It is architecturally incorrect to try to solve this problem at the
PHP level, but since the alternatives at the web server and OS-levels
aren't very realistic, many people, especially ISPs, use safe mode for
now—http://php.net/manual/en/features.safe-mode.php.

Configuring basic bounce settings
Having fulfilled the aforementioned requirements (php-imap module,
available mailbox, and safe mode disabled), let's edit config.php to
configure bounce processing:

1.	 Edit config/config.php and search for message_envelope.
2.	 From this section downwards, uncomment (remove the "#" in front of the

line) and customize the following variables, so that phpList knows where to
find the bounce e-mails:
$message_envelope = 'listbounces@yourdomain';

3.	 Change this to your bounce e-mail address. For example,
bouncybouncy@mydomain.com. This won't replace the "from" address,
but will be the "return-path" address on the e-mail headers. (The bounce
address is used for replies, but the return-path address is used by e-mail
systems for bounces:)
$bounce_protocol = 'pop';

4.	 In most cases, you will leave this unchanged. Only modify this if you don't
have pop access to your bounce mailbox
define ("MANUALLY_PROCESS_BOUNCES",1);

5.	 This controls whether or not we have an option in the admin sidebar to
process bounces. Let's leave this unchanged for now
$bounce_mailbox_host = 'localhost';

Chapter 3

[45]

6.	 Assuming we're using a POP mailbox, this refers to the mail host on which
the mailbox is located. If your mail host is the same as your phpList host,
then leaving this unchanged will work; else you might change it to whatever
mail host your provider has set up, that is, mail.mydomain.com.
$bounce_mailbox_user = 'popuser';

7.	 This is the mailbox username. You'll want to change this, unless your bounce
user is really called popuser.
$bounce_mailbox_password = 'password';

8.	 Likewise, you'll almost certainly want to change this from the default of
password!
$bounce_mailbox_port = "110/pop3/notls";

9.	 This specifies the protocol used (by default, unencrypted POP3) to access
the mailbox. You'll want to leave this unchanged unless (a) you experience
problems or (b) your provider requires transmission encryption on POP3
connections; in that case, try changing it to 110/pop3 instead.
$bounce_mailbox = '/var/spool/mail/listbounces';

10.	 If you set $bounce_protocol above mailbox, then this is the location to your
mailbox file on the server's filesystem. If not, you can safely ignore this one.
$bounce_mailbox_purge = 1;

11.	 Sometimes, for testing purposes, you might want to process and re-process
the same bounces in the mailbox. If this is the case, you'll set this value to 0,
but under normal operation, it should remain at 1.
$bounce_mailbox_purge_unprocessed = 1;

12.	 This (advanced) option will leave "unprocessed" bounces (those which could
not be matched to a user) in the mailbox. Change this to 0 if you intend to
manually review these unprocessed bounces using a mail client; or else leave
this at the default of 1.
$bounce_unsubscribe_threshold = 5;

13.	 The "Bounce Threshold" is probably the only field which may require
tweaking— this defines the number of "strikes-before-you're-out" on
bounces. That is, after this many (default 5) consecutive bounces, a member
will be automatically unsubscribed.

Setting up E-mail Bounce Handling

[46]

In versions of phpList prior to 2.10.2, this variable was incorrectly
named $bounce_unsubscribe_treshold (the first h of "threshold"
was missing).

Testing and manually processing
bounces
Now that we've defined our bounce settings (specifically the mailbox settings),
let's test our bounce-processing by sending an e-mail to our bounce mailbox
(the envelope-address) using a regular e-mail program, and then using the
process bounces item on the right-hand panel in the admin page.

We should see at least one message processed, indicating that delivery to
and inspection of our mailbox is working:

Note that in the preceding example, zero users were processed. This is
because phpList was (quite rightly) unable to match our test message with
an existing subscriber.

Chapter 3

[47]

Here's what the output would look like with a real bouncing subscriber:

Reviewing bounces
Having captured information about bounces, we now want to review these
bounces. Click on the view bounces link in the right-hand panel on the admin
page to review bounces:

Setting up E-mail Bounce Handling

[48]

All the processed bounces (including our earlier test messages) are listed. From
this page, we can also "clean up" our bounce history, by deleting all bounces older
than two months, deleting all bounces altogether, or resetting all members' bounce
counts (that is, in the event of an internal mail delivery issue causing members' mail
to bounce).

Taking action on individual bounces
To view an individual bounce, click on the show link, as shown in the
previous screenshot. We will see the details of the bounce message:

From this page, we can:

Adjust the user's bounce count (that is, give the user more or less "strikes"
before they're out)
Mark the user as unconfirmed (stop sending him/her e-mail)
Adjust the user's formatting preferences
Permanently delete the user
Delete this bounce from the database and review the next one sequentially

•

•

•

•

•

Chapter 3

[49]

I��������������������������������� nterpreting why an e-mail bounced
Although we can perform individual actions based on the bounce (deleting the
user, for example), the most useful part of this page is the copy of the actual bounce
message that helps us determine why this message bounced.

Scrolling down to the body of the bounce message normally yields an explanation.
That is, in the following example, our message bounced because it was sent to an
invalid e-mail address:

Some reasons why an e-mail might bounce are:

Invalid e-mail address
Temporary issue delivering e-mail to a destination server
The recipient's mailbox may be full

•

•

•

Setting up E-mail Bounce Handling

[50]

Examining users whose e-mail bounces
From the view bounces menu, we can click on the user number to examine a
particular user whose e-mail bounces:

Examining the user, in this context, tells us the following:

How many consecutive bounces we've received from this user
Whether this user has been unconfirmed due to exceeding the consecutive
bounce threshold

•

•

Chapter 3

[51]

Reviewing unconfirmation actions in the
eventlog
When a user's consecutive bounce count exceeds the defined threshold, they will be
automatically unconfirmed. You can see this action in the eventlog:

Summary
In this chapter, you've learned about how to configure and manage e-mail bounce
handling, including:

Basic bounce settings
Manually processing bounces
Reviewing and acting on bounces

In Chapter 9, Advanced Features, we'll cover more advanced bounce processing, as
well as configuring automated bounce handling. In the following chapter, we'll look
at integrating phpList with popular publishing platforms, such as Blogger, Drupal,
Joomla, and WordPress.

•

•

•

Setting up phpList with
Popular Publishing Platforms

In Chapter 2, Setting up Subscriber Forms, you learned how to create phpList subscribe
pages and how to add these pages to other platforms by copying and pasting the
form code into an HTML box, on platforms such as Blogger.

There are some platforms that offer deeper integration with phpList and we'll cover
three of the most popular in this chapter, namely:

Integrating phpList with Drupal
Integrating phpList with WordPress
Integrating phpList with Facebook

These platforms were chosen for this chapter because of the phpList integration
already available to them using open source modules (Drupal) and plugins
(WordPress), or because of the platform's own extensibility or popularity (Facebook).

Integrating phpList with Drupal
Drupal is described as a "community publishing system". It has a mature, modular,
well-documented "core" of features, providing general content management
functions such as content, user, and system management.

Drupal is then extensible through modules, which add features like e-commerce,
advanced taxonomy, SEO optimizations, and so on. In our case, we're going to
install and configure a module to add phpList integration.

•

•

•

Setting up phpList with Popular Publishing Platforms

[54]

Prerequisites
For this section, we'll make the following assumptions:

We already have a working instance of Drupal (version 6).
We are hosting our Drupal site and our phpList site on the same web
server and with the same URL base. That is, our Drupal site is accessible
at http://yoursite.com and our phpList installation is accessible at
http://yoursite.com/lists/.

We chose to document the Drupal-phpList integration using Drupal 6,
even though Drupal 7 has recently been released. This is because (a) the
phpList module for Drupal 7 is still marked as "development" and (b)
Drupal 6 has been the official stable version for three years and has a
more familiar interface than 7 at this time.
However, the following method described for Drupal 6 will work on
Drupal 7.

Installing and configuring the phpList
integration module
Go to http://drupal.org/project/phplist and download the latest stable
version of the module for Drupal 6.x. Unpack the tar.gz file and you should have
a folder called phplist inside. Upload this folder to your Drupal installation's
modules directory and then navigate to Administer | Site building | Modules:

•

•

Chapter 4

[55]

At the bottom of the modules list, you'll find the Mail and phpList headings with
a single phpList module under each. Check both and click on Save configuration:

External phpList configuration
Navigate to Administer | Site configuration | PHPlist to set up the database
credentials and other options required for the integration:

Setting up phpList with Popular Publishing Platforms

[56]

You are prompted for your phpList database details. Enter your database host,
database name, username, and password. Unless you've done a non-standard
installation of phpList, the default entries for prefix and user table prefix will
already be correct.

Under PHPList URL, enter the URL to your phpList installation. Because we are
using phpList and Drupal at the same base URL, we set /lists/ (with a trailing slash)
as our PHPList URL:

Chapter 4

[57]

The database check illustrated in the preceding screenshot (red text
reading Password is not set) is done after you save your settings.
The module tries to connect to the phpList database using the
details provided and will warn you if it fails.

Scroll to the bottom, ignoring the other options for now, and click on
Save configuration:

If the database connection test was successful, the External PHPList configuration
options will be collapsed into a single, clickable field, hiding them from normal view,
as you configure the remaining options:

Attribute mapping
The module can auto-create attributes in phpList to match any attributes created
in your Drupal instance. For example, you may ask your Drupal members to enter
demographic information when registering and this mapping would allow these
details to be transferred to the phpList.

Setting up phpList with Popular Publishing Platforms

[58]

Note that the module warns you that this mapping only works well with textline
attributes and not select attributes or radio buttons. Use of this feature is not covered
in this chapter, as it requires advanced pre-configuration of your Drupal instance:

My Account – My Newsletters options
The module adds a tab to your My Account page in Drupal, allowing a user
to modify their list subscriptions. You can customize several aspects of this
page, including:

The text to show on the My Newsletters tab
The title of the My Newsletters tab itself (that is, you may want it to read
"My Subscriptions")
Whether or not to show mailing list descriptions (the list description you
entered in phpList)
Whether to offer the user the choice of HTML or Text e-mail and which one
should be the default

•

•

•

•

Chapter 4

[59]

Registration Page options
The module can optionally display a subscription page on the registration page
that Drupal shows to prospective members as they register. This would allow new
members to select their subscription preferences at the same time as they create their
Drupal account. By default, this is disabled:

Setting up phpList with Popular Publishing Platforms

[60]

Miscellaneous
There are three unclassified options offered under the Miscellaneous heading:

Redirect /newsletters to registration: Normally, if an unauthenticated user
tries to go to the My newsletters URL in Drupal, they would be presented
with a login screen to authenticate. This option replaces this default behavior
and, instead, presents them immediately with the registration page.
Delete user from PHPList when deleted from Drupal: To keep your phpList
database tidy, you may want to automatically delete phpList's version of a
user when their Drupal account is deleted.
Delay sign-up until first login: This option will leave a subscribed user in
a blacklisted state in phpList until they've logged into Drupal for the first
time. This is to prevent a malicious user from filling out the registration form
on behalf of an unsuspecting victim and having that victim immediately
subscribed to your mailing lists.

Synchronize users to phpList
Normally, synchronization between Drupal and phpList happens when a user
initiates the change (that is, they register or they change their subscription
preferences). However, as this is the first time the phpList integration has been
introduced, you may want to force an immediate synchronization of all existing
Drupal users, by checking the Synchronise now checkbox:

•

•

•

Chapter 4

[61]

The lower two checkboxes control whether the subscription information
(as opposed to simply the user information) will be altered in the synchronization
process. You would only conceivably use the Update default subscriptions and
Remove existing subscriptions checkboxes if you were working on a clean install
without existing users.

Turn on debugging
Enabling the Turn on debugging checkbox will add some debugging status boxes
to help identify problems. This should be left disabled unless required.

Configuring list access
Now that the global integration options are configured, let's configure which Drupal
user roles may sign up to which phpList lists.

Under the Administer | Site Configuration | PHPlist page, click on the List access
tab. You're prompted to select user access based on roles and the two default Drupal
roles (anonymous user and authenticated user) are displayed:

Setting up phpList with Popular Publishing Platforms

[62]

Expand each role and select (with the checkbox) all the lists that this role is allowed
to subscribe to and click on Save settings:

Remember that Drupal considers unauthenticated users as
anonymous and logged-in users as authenticated. If you make some
lists accessible to the anonymous user role, but not the authenticated
user role, then the logged-in users will be unable to manage their
subscription.

Any list marked as optional is available for subscription and any marked as
auto-subscribe is subscribed to by default.

Configuring Drupal permissions
Now that we've carried out all the configuration inside the phpList module, we also
need to grant permissions to the various phpList functions to user roles in Drupal.

Navigate to Administer | User management | Permissions to assign
these permissions:

Chapter 4

[63]

You're shown a table of all the available permissions in Drupal, with a column for
each user role (by default, anonymous and authenticated).

Scroll down to the phplist module section and grant access lists permission to
all the user roles that you want to be able to subscribe to lists. Leave the administer
PHPlist and manage subscriptions (of other users) unchecked as these are
administrator-only functions:

Clearing Drupal's cache
We need to clear Drupal's cache, so that our new newsletters tab will show up in our
users' profile management page.

Setting up phpList with Popular Publishing Platforms

[64]

Navigate to Administer | Site configuration | Performance:

Scroll to the bottom of the Performance page and click on the Clear cached data
button to clear the cache:

Confirming access to My newsletters
Having all the requirements in place, click on your account (My account) and then
on the My newsletters tab. You will see the phpList lists that you've made available
to the authenticated users role:

Chapter 4

[65]

Adding the phpList subscribe block
You might want to use the "block" that the phpList module provides. This will put
a subscription form (or a link to your current subscriptions) on the sidebar of every
Drupal page.

1.	 Navigate to Administer | Site building | Blocks:

2.	 Here a list of all currently active blocks is displayed section-by-section
followed by a list of currently disabled blocks. Change the PHPList
subscribe block to Left sidebar to activate it and then click on Save
blocks at the bottom of the page to save your changes:

Setting up phpList with Popular Publishing Platforms

[66]

3.	 Having reloaded the page after saving, click on the configure link next to the
PHPList subscribe block to confirm the configuration:

4.	 You can make any phpList-specific changes under the Block specific settings
section, including whether or not to include an e-mail confirmation field,
whether to include list descriptions, and the option of HTML/Text format:

Drupal also gives you flexible control over the display of the block,
including which users may see it, which pages it is displayed on,
and so on.

Chapter 4

[67]

5.	 Having saved your block settings, the phpList subscribe block is now visible
in the left-hand navigation panel, for an authenticated user, as follows:

6.	 It is also visible for unauthenticated (anonymous) users, as follows:

7.	 Once the user is done entering an e-mail and making a list selection, they will
receive the following message:

Setting up phpList with Popular Publishing Platforms

[68]

Troubleshooting the phpList subscribe block
There are a few prerequisites for correct functioning of the subscribe block:

The phpList URL you entered in the module configuration must be correct
The default phpList subscribe page must have no mandatory attributes
The phpList language must be English (the module looks for the text Thank
you for subscribing to indicate success)

Integrating phpList with WordPress
"WordPress is an open source blog tool and publishing platform powered by PHP
and MySQL. It's often customized into a Content Management System (CMS).
It has many features including a plug-in architecture and a template system.
WordPress is used by over 13% of the 1,000,000 biggest websites".
Source: http://en.wikipedia.org/wiki/WordPress

Prerequisites
For this section, we'll make the following assumptions:

We already have a working instance of WordPress (version 3.x)
Our phpList site is accessible through HTTP / HTTPS from our
WordPress site

Installing and configuring the phpList
Integration plugin
Download the latest version of Jesse Heap's phpList Integration plugin from
http://wordpress.org/extend/plugins/phplist-form-integration/, unpack
it, and upload the contents to your wp-content/plugins/ directory in WordPress.

•

•

•

•

•

Chapter 4

[69]

Activate the plugin from within your WordPress dashboard:

Under the Settings menu, click on the new PHPlist link to configure the plugin:

Setting up phpList with Popular Publishing Platforms

[70]

General Settings
Under the General Settings heading, enter the URL to your phpList installation,
as well as an admin username/password combination. Enter the ID and name
of at least one list that you want to allow your WordPress users to subscribe to:

Why does the plugin require my admin login and password?
The admin login and password are used to bypass the confirmation
e-mail that would normally be sent to a subscriber. Effectively, the
plugin "logs into" phpList as the administrator and then subscribes
the user, bypassing confirmation.
If you don't want to bypass confirmation e-mails, then you don't need to
enter your username and password.

Form Settings
The plugin will work with this section unmodified. However, let's imagine that we
also want to capture the subscriber's name. We already have an attribute in phpList
called first name, so change the first field label to First Name and the Text Field ID
to first name (the same as our phpList attribute name):

Chapter 4

[71]

Adding a phpList Integration page
The plugin will replace the HTML comment <!--phplist form--> with the
generated phpList form.

Let's say we wanted our phpList form to show up at http://ourblog.com/signup.

Create a new WordPress page called Signup, add the content you want to be
displayed, and then click on the HTML tab to edit the HTML source:

You will see the HTML source of your page displayed. Insert the text "<!--phplist
form-->" where you want the form to be displayed and save the page:

Setting up phpList with Popular Publishing Platforms

[72]

HTML comments
The "<!--some text-->" syntax designates an HTML comment,
which is not displayed when the HTML is processed by the browser /
viewer. This means that you won't see your comment when you view
your page in Visual mode.

Once the page has been updated, click on the View page link to display the page
in WordPress:

The subscribe form will be inserted in the page at the location where you added
the comment:

Adding a phpList Integration widget
Instead of a dedicated page to sign up new subscribers, you may want to use a
sidebar widget instead, so that the subscription options can show up on multiple
pages on your WordPress site.

To add the phpList integration widget, go to your WordPress site's Appearance
option and go to the Widgets page:

Chapter 4

[73]

Drag the PHPList Integration widget to your preferred widget location. (These vary
depending on your theme):

You can change the Title of the widget before you click on Close to finish:

Setting up phpList with Popular Publishing Platforms

[74]

Now that you've added the PHPList Integration widget to the widget area,
your sign up form will be displayed on all WordPress pages, which include
that widget area:

Integrating phpList with Facebook
Facebook encourages businesses to create "Pages" that Facebook members can then
"like" (by clicking the Like button on the page).

Once a member has "liked" a page, future updates on that page are displayed on the
member's news feed. Page owners can also customize the display of their page—that
is, pages can display exclusive content to fans who've already "liked" the page.

Facebook pages are an easy way to distribute news to your fans, including special
offers, and product updates, and drive traffic back to your own website.

Prerequisites
For this section, we'll make the following assumptions:

We already have a Facebook account
We already have a Facebook page
We already have the Facebook developer's application installed
(http://www.facebook.com/developers)

•

•

•

Chapter 4

[75]

Preparing phpList
Facebook allows us to include any content on our page in an iframe with a maximum
width of 520 px. phpList's default theming won't fit in 520 px and so it will either get
cut off and look odd, or will invoke awkward scroll bars in the middle of the page.

To resolve this, we'll need to change the styling of phpList. Note that this will also
affect how the public URLs to our phpList site are displayed outside of Facebook
(that is, the default sign up page).

Navigate to the configure page in phpList's admin interface, using the right-hand
navigation panel:

Scroll down to the section starting with Header of public pages and click on edit.
This is the HTML code that is added to the top of every public (not admin) page.

In the following example, we've removed the background image, the HTML table,
and images, but left the CSS styling unchanged:

Setting up phpList with Popular Publishing Platforms

[76]

Having saved your changes, edit the next section labeled Footer of public pages and
make the corresponding changes:

Remember that the actual content that the user sees will be "sandwiched" between
the header and footer. This means that if you open a tag in the header, you need to
make sure it's closed again in the footer.

Again in this example, we just closed the HTML body tag in the footer:

Having changed the header and footer of the public pages, browse to your
default public page (http://your-site.com/lists/, for example) to see
how the page looks:

Chapter 4

[77]

Note that there is hardly any styling now, but that there are no fixed-width elements
which will cause issues with our iframe. Tweaking the design of using the public
header and footer code is a task left to the reader.

Creating the Facebook app
Before we can add phpList to our Facebook page, we need to create an App.

From http://www.facebook.com/developers/, click on the Set Up New
App button:

Click the radio button to indicate that you agree to the Facebook terms and then click
on Create App:

Prove you're a human by completing the CAPTCHA:

Setting up phpList with Popular Publishing Platforms

[78]

You're taken to the edit page for your new app. Under the Facebook Integration
section, enter at least the following details:

IFrame Size: Auto-resize (we don't want scrollbars)
Tab Name (what the tab will be called when your page is displayed)
Tab URL (the full URL to the page you want loaded in your iframe.
Generally, this would be a phpList subscribe page)

Once you've saved your changes, you're taken to your list of applications. Click on
Application Profile Page to see the application as other Facebook users would see it
(as opposed to the developer):

•

•

•

Chapter 4

[79]

On the application's profile page, click on Add to My Page to add this application to
your Facebook page:

Setting up phpList with Popular Publishing Platforms

[80]

When prompted, choose which of your pages you want to add the application to.
In this example, we've created a page for this book, so we add the application to
this page:

Configuring the Facebook page
Now that we've added the application to our Facebook page, view the page and click
on the Edit Page button:

Under the Apps section, you'll find your application listed. Click on Edit Settings:

Chapter 4

[81]

The only setting available to us is adding a tab, so click on Add to do so:

You are prompted for a custom name for your tab. The default name you chose
when creating the application will be used, unless you enter a custom name. Click
on Okay to complete:

The next time you view your page, you'll notice an additional tab created for
your application:

Setting up phpList with Popular Publishing Platforms

[82]

Clicking the tab will show you your phpList installation inside an iframe:

Obviously, any adjustments you make to the styling of the header and footer inside
phpList will alter the way the phpList content is displayed on the Facebook page.

Making phpList the default tab on your
Facebook page
You may want the phpList page to be the default tab on your page, so that when
someone visits the page, the first tab they see is your phpList sign up form.

To change your page's default tab, edit the page again and click on Manage
Permissions. Set the Default Landing Tab to the tab created by your app
and click on Save:

Chapter 4

[83]

This tab will now be shown to visitors by default, as opposed to the Wall or Info tab.

Summary
In this chapter, you've learned about integrating phpList with popular publishing
platforms, including:

Drupal
WordPress
Facebook

In the next chapter, we'll tackle managing users, lists, and administrators.

•

•

•

List, User, and Administrator
Management

In the previous chapters, we've established our mailing list system and made it
possible for our members to subscribe to. While phpList automatically takes care
of many of the routine and repeatable parts of mailing list management, such
as subscription, unsubscription, bounce processing, and so on, it remains the
administrator's role to manage users, create lists, and possibly delegate some
tasks to other administrators.

In this chapter, you'll learn to:

Manage users either individually or in bulk
Manage lists and their associated users
Manage administrators and permission levels

•
•
•

www.allitebooks.com

http://www.allitebooks.org

List, User, and Administrator Management

[86][86]

Individual user management
Let's start with creating some users. Click on the users link in the right-hand
navigation panel or under the List and user functions heading to go to the user
management page:

You are presented with the list of users (if there are too many users to display,
phpList will prompt you to search for a subset of users). We have already added
a user in the first chapter, so let's edit that user. Click on the user's e-mail address
to edit their account:

Chapter 5

[87][87]

Updating a user's details and list
memberships (as the user)
phpList provides a unique URL for each user to update their details, including their
e-mail address, list memberships, and any other attributes you've defined. This
URL can be added to the footer of your messages using the variable substitutions
discussed in the following chapter.

To see what the user would see on this page, click on the update page link:

You are redirected to a URL specific to this user's preferences. (This is the same URL
the user would be directed to if they were to click their preferences link in an e-mail,
to modify their subscription or formatting details):

List, User, and Administrator Management

[88][88]

Unsubscribing a user (as the user)
Use your browser's back button to return to the User Details administration page
and click the unsubscribe page link:

Like the update page, this is a unique URL that this user can visit to unsubscribe
from all lists:

Examining a user's history (as administrator)
Use the history link to examine the user's history:

Chapter 5

[89][89]

The user's history page shows every event associated with this user including their
original subscription, every e-mail they've received (you can click the message ID to
view it), as well as bounces, unsubscriptions, and so on:

Updating a user's details (as admin)
Of course, as the administrator, you don't need to use the update or unsubscribe link
to manage the user—you can perform individual user operations from the user detail
page. From this page, you can:

1.	 Confirm/unconfirm a user (users are only confirmed when they double
option and only confirmed users receive e-mail).

2.	 Disable a user.

List, User, and Administrator Management

[90][90]

3.	 Alter the user's RSS frequency setting (we'll cover this in
Chapter 9, Advanced Features).

4.	 Alter the user's HTML / plain text preference.
5.	 Alter any defined attributes.

For all of the true/false values (that is, confirmation status or HTML
preference), phpList expects you to enter 0 for false and 1 for true.

Bulk user management
We've covered managing an individual user. phpList can also perform bulk actions
on users, such as importing / exporting, moving between lists, and reconciling.

For bulk user management, click on the manage users link in the right-hand
navigation panel:

Importing users
Click on the import users link to display the options for importing users:

Chapter 5

[91][91]

Importing a simple list
The most common means of importing users is the uploading of a plain text file
containing a list of e-mail addresses.

Click on the import emails with the same values for attributes link:

Let's assume that we want to import a list of customer's e-mail addresses from a text
file named customers_simple.txt containing the following:

clarkkent@packtphplist.com
loislane@packtphplist.com
jimmyolsen@packtphplist.com
brucewayne@packtphplist.com
peterparker@packtphplist.com
lanalang@packtphplist.com
brucebanner@packtphplist.com

We'll enter the following options on the import page:

1.	 Test import first (make sure our file syntax is correct).
2.	 Send all subscribers a notification giving them the opportunity to confirm

their subscription (unconfirmed subscribers will not receive messages).

List, User, and Administrator Management

[92][92]

3.	 Set all subscribers to HTML e-mail with a standard Country attribute

The test process shows that the e-mails will be imported one-per-line as we expect.
Click on the back link to return to the import page:

Chapter 5

[93][93]

This time leave Test output unchecked, re-select your file and subscription options,
and click on import. Instead of seeing each e-mail address listed on the success
page (there could be tens of thousands after all), you're simply shown a total of the
successful imports:

Importing a complex list
You might have a more complex list that includes customer names and surnames,
as well as their home town. Let's assume we want to import a list of customer details
we've exported from another database, which includes their e-mail addresses, first
and last name, and home town. We have the file customers_complex.csv in the
.CSV (comma-separated values) format:

email,first name, last name, hometown
clarkkent@packtphplist.com,Clark,Kent, Krypton
loislane@packtphplist.com,Lois,Lane,Metropolis
jimmyolsen@packtphplist.com,Jimmy,Olsen,Metropolis
brucewayne@packtphplist.com,Bruce,Wayne,Gotham City

List, User, and Administrator Management

[94][94]

peterparker@packtphplist.com,Peter,Parker,New York
lanalang@packtphplist.com,Lana,Lang,Smallville
brucebanner@packtphplist.com,Bruce,Banner,Dayton

Note the column names are defined on the first line and that the e-mail column has
to be named email.

phpList can import complex lists using the import emails with the different values
for attributes link:

There are more options to choose from when importing e-mails with different values
for attributes. We now have options regarding what to do with conflicts, duplicates,
or invalid addresses. Fortunately, the defaults will do fine for our import. Note that
we haven't created the first name, last name, or hometown attributes, but as they will
be one of the fields we import, phpList will automatically create them as text fields.

Remember to specify your field separator—in this example, we are using the CSV
format, so a comma separates our values. Run an input with Test output checked
first to confirm that our syntax and options are correct:

Chapter 5

[95][95]

After clicking on the Import button, because there are no matching, pre-existing
attributes, phpList will prompt you to create a new attribute for each column which
it's imported, or to select from the list of existing attributes. Choose Create new one
and click on Continue:

List, User, and Administrator Management

[96][96]

phpList will show you which attributes have been identified, and which columns
from your file should be mapped to these attributes Once you're happy with the
mapping, click on confirm import to continue:

In this case, as these e-mail addresses already existed in the database from the
simple import, phpList updated the user records with the new attribute data that
was imported:

Chapter 5

[97][97]

Examining one of the imported users would determine that we've successfully
imported not only the e-mail address, but also the additional values, which can
later be used to personalize their e-mails:

Reconciling users
When managing large numbers of users, it can be very helpful to run batch
operations to perform bulk-updates on all (or a subset of) users.

List, User, and Administrator Management

[98][98]

To use the user reconciliation tools, click on the reconcile users link in the manage
users page:

Many of the functions available are intended to address minor import issues. Here's
a brief breakdown of what's possible:

1.	 Delete all users who are not subscribed to any list:
Either in testing or importing, you may have accidentally imported users,
but not assigned them to any lists. This option will get rid of any of these
"orphaned" users.

2.	 Find users who have an invalid email:
phpList has a function that checks whether an e-mail address is valid (that is,
it can't contain spaces and has to contain an @ sign). This option will identify
all users whose e-mail address is invalid.

3.	 Make sure that all users have a unique ID:
Under certain circumstances, users can be imported with the same unique ID.
This option identifies these users and creates unique IDs for them

4.	 Mark all users with an invalid email as unconfirmed:
Instead of having phpList warn you every time it tries to send e-mails
to invalid addresses, you may prefer to have these address marked as
unconfirmed, so that they will not receive any further e-mails.

5.	 Delete users who have an invalid email:
If you choose not to bother with the invalid users, you could delete them
altogether, keeping your user database free of clutter.

Chapter 5

[99][99]

6.	 Mark all users to receive HTML:
If you don't want to offer your users the option to choose between HTML
and text e-mails, you could bulk-change all users to receive HTML e-mails.

7.	 Mark all users to receive text:
If you don't want to offer your users the option to choose between HTML
and text e-mails, you could bulk-change all users to receive text e-mails.

8.	 Mark all users as confirmed:
Perhaps you accidentally imported 10,000 e-mails as unconfirmed. Use this
option to bulk-confirm all your users.

9.	 To try to (automatically) fix emails for users who have an invalid email:
phpList can try to automatically fix invalid e-mails by removing spaces and
fixing common errors.

10.	 Remove stale entries from the database:
In addition to removing invalid users, this will also clean up some of the
database tables.

11.	 Merge duplicate users:
You may have imported a user twice or once with a valid e-mail and once
with an invalid e-mail that you've later fixed. This option will try to merge
any duplicate users.

You also have the option at the bottom of the page to either delete or send
a subscription reminder to any unconfirmed users who signed up during
a particular date range.

List, User, and Administrator Management

[100][100]

Exporting users
phpList's options for exporting users are quite straightforward. Either on the user
management page (all users) or from the member's page of a particular list, there
is a link to download users as a csv file.

All users
Using the list of all users, you can globally export all your users details, across
all lists

Chapter 5

[101][101]

Specific list
Using a specific list's members page, you can export only the members of that list

After clicking on the download link, you're prompted to select a date range and
optionally choose which attributes will be exported. All the standard attributes
(Email, HTML preference, and so on) will be optional as well as any custom
attributes defined:

List, User, and Administrator Management

[102][102]

Once you've clicked on Download, a text file will be downloaded which can be
imported into a spreadsheet application.

Note that while phpList's download links refer to downloading a CSV
(comma-separated values), file the fields in the file will actually be
delimited with tabs as opposed to commas.

Managing lists
To manage lists, use the lists link in the right-hand navigation panel:

Creating a list
On the list page, all current active and inactive lists are displayed. In the introductory
chapter, we activated the default "test" list. Let's now go into more detail and create a
new list. Click on the add a list link to add a new list:

Enter a name for your new list, check the checkbox to make it active, and enter an
optional description. If you had a huge selection of lists, you could manually arrange
the order in which they are displayed by changing the value of the order. Click on
Save to create your list:

Chapter 5

[103][103]

You are returned to the lists page. We can tell that our list has been created, but that
it currently has zero members:

Now that we've created the list, we can edit it (the same information we just entered),
delete it, or perform member operations on it.

Performing member operations on a list
When you click on view members next to a particular list on the lists page, you are
shown all (or a subset of) the members of that list. From here, you can bulk move or
copy either all, or only selected, users to a different list.

List, User, and Administrator Management

[104][104]

In this example, let's move all the users we imported from the default test list to the
new goodguys list which we just created. Click on view members next to the test list,
and then click on Tag all users in this page to tag every e-mail address displayed,
and then uncheck the entry for our test user—myemailaddress@myisp.com, as we
don't want to move this one. Choose to move all tagged users to the goodguys list
and click on do it:

After clicking on do it, we're presented with the results of the bulk action. Note that
there is only one subscriber remaining in the test list:

Chapter 5

[105][105]

Reviewing the list management page will also indicate that the users have been
successfully moved:

Managing administrators
If you have a few lists that you manage yourself, then you might be quite
comfortable simply using the default super-admin account for all administration
work. However, if your phpList installation encompasses a lot of lists, you may
have delegated management of some of these lists to other (restricted) admins or
even other super-admins.

Creating a restricted admin
Let's create another administrator to manage our test2 list. On the main page,
click on the admins link to go to the list administrators page:

List, User, and Administrator Management

[106][106]

On this page, you can see the current admin user listed. Click on add new admin to
create another administrator:

To start off with, we'll enter a few basic details about our new admin. Include their
login name, e-mail address, and password. Unless you want this admin to be granted
all possible rights, enter 0 (that is, no) for the Super Admin field, and likewise for the
disabled field. Click on Save Changes to save this admin account:

Chapter 5

[107][107]

You'll receive a confirmation message to indicate that the admin has been created
and will be returned to the same page to verify the admin permissions:

Setting admin permissions
There are fifty access levels that can be assigned to an administrator. phpList has a
sensible default of allowing administrators free reign on their own lists, but limited
access to the global administration options.

Permissions are assigned by choosing one of the following levels: None, All, View,
and Owner, and associating them with the fifty different types of admin page access.

An overview:

None—no access. An administrator won't even see links to pages he/she has
no rights to and any attempts to access these pages by URL would fail.
All—full access. If an admin can see an "all" page, he/she has full rights to
do whatever that page controls. All rights to the system upgrade page would
allow an administrator to perform phpList database upgrades.
View—read-only access. This is currently limited to viewing user details,
user lists, and list membership lists, and is of limited usefulness.

•

•

•

List, User, and Administrator Management

[108][108]

Owner—full access to admin's own lists. This is the access level most
commonly assigned to sub-admins. It allows them to perform all admin
functions on the lists assigned to them, without access to manage other lists,
or any other global options.

Adjust the permissions as required and click on Save Changes at the bottom
of the list:

Setting default permissions
To change the default admin permissions, make your required
adjustments and then click on Set these permissions as default.
Any subsequently created admins will inherit these new defaults.

•

Chapter 5

[109][109]

Creating a super admin
A super admin is an administrator with full administrative rights and no restrictions
applied. phpList's default admin account is a super-admin. Delegate this role
carefully, because a super-admin can edit (or create) any other super-admin's
account and change any configuration settings.

To create a super-admin, either add a new user or edit an existing user, and change
the value of Is this user Super Admin? to 1:

Assigning administrators to lists
The final component of managing administrators is assigning admins to lists.
Edit a list using the lists management page and change the owner using the
drop-down menu:

Testing a new administrator
To confirm that the new administrator has been created successfully, log out of
phpList by clicking the logout link at the top of the navigation panel, and re-login
as the user you just created:

List, User, and Administrator Management

[110][110]

When you login as the new admin, you'll see that there is only a subset of
management options available, and only those that relate directly to this
admin are shown:

Summary
In this chapter, you've learned about managing users, lists, and admins, specifically:

Managing users either individually or in bulk
Managing lists and their associated users
Managing administrators and permission levels

In the next chapter, we'll talk about personalizing messages to your subscribers
based on their unique attributes.

•
•
•

Personalizing E-mail Body
Now that we've covered creation of lists and attributes, let's look at how to use
these lists and attributes to personalize the e-mail we send to our subscribers.
Personalizing e-mail messages makes them more engaging to readers and increases
the effectiveness of your newsletters.

In this chapter, you'll learn to:

Enhance messages with built-in placeholders
Personalize messages using member attributes
Send messages to subsets of lists based on attributes
Use message templates for consistent layout and styling

Enhancing messages using built-in
placeholders
For simple functionality's sake, we generally want our phpList messages to contain
at least a small amount of customization. For example, even the default footer, which
phpList attaches to messages, contains three placeholders, customizing each message
for each recipient:

--
If you do not want to receive any more newsletters, [UNSUBSCRIBE]

To update your preferences and to unsubscribe, visit [PREFERENCES]

Forward a Message to Someone [FORWARD]

The placeholders [UNSUBSCRIBE],[PREFERENCES], and [FORWARD] will be
replaced with unique URLs per subscriber, allowing any subscriber to immediately
unsubscribe, adjust their preferences, or forward a message to a friend simply by
clicking on a link.

•

•

•

•

Personalizing E-mail Body

[112]

There's a complete list of available placeholders documented on phpList's wiki page
at http://docs.phplist.com/Placeholders. Here are some of the most frequently
used ones:

[CONTENT]: Use this while creating standard message templates. You
can design a styled template which is re-used for every mailing and the
[CONTENT] placeholder will be replaced with the unique content for that
particular message.
[EMAIL]: This is replaced by the user's e-mail address. It can be very helpful
in the footer of an e-mail, so that subscribers know which e-mail address they
used to sign up for list subscription.
[LISTS]: The lists to which a member is subscribed. Having this information
attached to system confirmation messages makes it easy for subscribers to
manage their own subscriptions. Note that this placeholder is only applicable
in system messages and not in general list messages.
[UNSUBSCRIBEURL]: Almost certainly, you'll want to include some sort of
"click here to unsubscribe" link on your messages, either as a pre-requisite
for sending bulk mail (perhaps imposed by your ISP) or to avoid users
inadvertently reporting you for spamming.
[UNSUBSCRIBE]: This placeholder generates the entire hyperlink for you
(including the link text, "unsubscribe"), whereas the [UNSUBSCRIBEURL]
placeholder simply generates the URL. You would use the URL only if
you wanted to link an image to the unsubscription page, as opposed to
a simple link, or if you wanted the HTML link text to be something other
than "unsubscribe".
[USERTRACK]: This inserts an invisible tracker image into HTML messages,
helping you to measure the effectiveness of your newsletter (discussed
in greater depth in the next chapter).

You might combine several of these placeholders to add a standard signature to your
messages, as follows:

--
You ([EMAIL]) are receiving this message because you subscribed to one
or more of our mailing lists.

We only send messages to subscribers who have requested and confirmed
their subscription (double-opt-in). You can adjust your list
membership at any time by clicking on [PREFERENCES] or unsubscribe
altogether by clicking on [UNSUBSCRIBE].
--

•

•

•

•

•

•

Chapter 6

[113]

Placeholders in confirmation messages
Some placeholders (such as [LISTS]) are only applicable in confirmation messages
(that is, "thank you for subscribing to the following lists…"). These placeholders
allow you to customize the following:

Request to confirm: Sent initially to users when they subscribe, confirming
their e-mail address and subscription request
Confirmation of subscription: Sent to users to confirm that they've been
successfully added to the requested lists (after they've confirmed their
e-mail address)
Confirmation of preferences update: Sent to users to confirm their updates
when they change their list subscriptions/preferences themselves
Confirmation of unsubscription: Sent to users after they've unsubscribed
to confirm that their e-mail address will no longer receive messages
from phpList

Personalizing messages using member
attributes
Apart from the built-in placeholders, you can also use any member attributes to
further personalize your messages. Say you captured the following attributes from
your new members:

First Name
Last Name
Hometown
Favorite Food

You could craft a personalized message as follows:

Dear [FIRST NAME],

Hello from your friends at the Funky Town Restaurant. We hope the
[LAST NAME] family is well in the friendly town of [HOMETOWN].

If you're ever in the mood for a fresh [FAVORITE FOOD], please drop in
– we'd be happy to have you!
...

•

•

•

•

•

•

•

•

Personalizing E-mail Body

[114]

This would appear to different subscribers as:

Dear Bart,

Hello from your friends at the Funky Town Restaurant. We hope the
Simpson family is well in the friendly town of Springfield.

If you're ever in the mood for a fresh pizza, please drop in – we'd be
happy to have you!
...

Or:

Dear Clark,

Hello from your friends at the Funky Town Restaurant. We hope the Kent
family is well in the friendly town of Smallville.

If you're ever in the mood for a fresh Krypto-Burger, please drop in
– we'd be happy to have you!
...

If a user doesn't have an attribute for a particular placeholder, it will be replaced
with a blank space. For example, if user "Mary" hadn't entered any attributes, her
message would look like:

Dear,

Hello from your friends at the Funky Town Restaurant. We hope the
family is well in the friendly town of .

If you're ever in the mood for a fresh , please drop in – we'd be
happy to have you!
...

If the attributes on your subscription form are optional, try to structure your content
in such a way that a blank placeholder substitution won't ruin the text. For example,
the following text will look awkward with blank substitutions:

Your name is [FIRST NAME], your favorite food is [FAVORITE FOOD], and
your last name is [LAST NAME]

Whereas the following text would at least "degrade gracefully":

Your name: [FIRST NAME]
Your favorite food: [FAVORITE FOOD]
Your last name [LAST NAME]

Chapter 6

[115]

Sending messages to subsets of lists
based on attributes
The techniques we've discussed so far apply to messages sent to all the members of
a particular list. You can also use user attributes to define a target subset of members
to which a particular message should be sent.

Let's say you wanted to e-mail only members who lived in Albania, whose favorite
food is pizza. When composing your message, click on the Criteria tab to add criteria
based on attributes. Select the applicable attributes and remember to check the Use
this one checkboxes where applicable:

Personalizing E-mail Body

[116]

After clicking on Save Changes, you can proceed to compose and send the
message as you normally would. It will only be sent to users whose criteria
match your selections.

Note that criteria-based selections don't work with plain text attributes, as the
members' attributes can't be matched against previously known values. Only
select, radio, or checkbox attributes are available.

Increasing the amount of criteria available
By default, phpList only allows you two selection criteria when sending messages
based on user attributes. To increase the amount of criteria available, you'll need to
edit config/config.php.

On line #296 in config/config.php, change the 2 in the line below to the maximum
amount of criteria you need:

define ("NUMCRITERIAS",2);

Let's assume you want a maximum of 5 criteria available for selection (you don't
have to use them all). Change the NUMCRITERIAS variable as follows:

define ("NUMCRITERIAS",5);

Now while selecting criteria when composing a message, there are five criteria
available for use:

Chapter 6

[117]

Using message templates
So far, we've used placeholders and attributes to customize individual messages.
phpList also allows us to create message templates, so that all the repetitive parts
of a message (styling, footer, and so on) can remain consistent and "out of the way".

Creating a message template
To create or manage message templates, click on the templates link on the
right-hand navigation panel:

Personalizing E-mail Body

[118]

You are taken to the phplist – templates in the system page. All the templates you've
defined will be listed here. Click on add new template to create a new template:

Either upload a pre-existing HTML file to use as a template or compose one using the
WYSIWYG editor. Remember to insert the placeholder [CONTENT] where you want
the dynamic content to be inserted when the message is sent:

Chapter 6

[119]

Below the message compose window, above the Save Changes button, are options
controlling the checking of external links and URLs:

If you reference local images in your template, phpList will prompt you to upload
these; in that case, they will be attached to each message upon sending.

Click on Save Changes to save your template. In this example, phpList acknowledges
that there are no local images referenced in the template. Click on send a message to
compose a new message using this template:

Compose your message (just the dynamic content), save at least once, and then click
on the Format tab to select a template:

Personalizing E-mail Body

[120]

Select your template and then continue to send the message as normal:

The content you entered replaces the [CONTENT] placeholder in the template:

Summary
In this chapter, you've learned to use built-in placeholders and user attributes to
personalize the e-mails you send to your subscribers. You've learned about using
built-in placeholders and custom attributes, selecting criteria when sending
messages, and taking advantage of templates to provide a consistent look
to your messages.

In this chapter, we have covered:

Enhancing messages with built-in placeholders
Personalizing messages using member attributes
Sending messages to subsets of lists based on attributes
Using message templates for consistent layout and styling

In the next chapter, we'll talk about measuring the effectiveness of your newsletter.

•

•

•

•

Measuring Effectiveness of
Newsletters

Effectiveness of a newsletter is commonly measured by the amount of delivered
messages that are actually opened (and presumably read) or the percentage of
readers who "click through" on a link in the message.

Your own definition of effectiveness will vary depending on your
newsletter-publishing goals, but you will no doubt want to know as much
as you can about which of your messages are opened, read, and which links
are clicked.

In this chapter, you will learn how to implement and use the user-tracking and
click-tracking features of phpList. These include:

Enabling user tracking (we refer to user tracking as the visibility of whether
or not a message has been opened by a particular recipient)
Enabling click tracking (we refer to click tracking as the visibility of which
links in either our text or HTML messages are clicked on, by which users)
Examining user/click statistics in greater detail using the "statistics" menu

Privacy and transparency note
While it's a common practice for newsletter publishers to gather as
much information as they can from their readers, it's recommended
that you explicitly declare what you will and won't record, in a
privacy policy which is both published online and referred to in your
message content.

•

•

•

Measuring Effectiveness of Newsletters

[122]

User tracking
User tracking can be used to tell whether a unique recipient of an HTML-formatted
message has opened the message in their e-mail client. phpList tracks user activity
by embedding a tiny (1 x 1 pixel) transparent image into each HTML-formatted
e-mail that it sends. This image, instead of being an actual image file, is a unique
URL to a phpList script, whose function when loaded is to record a "hit" in a
database table against a unique message ID.

phpList can then examine that database table to tell which messages destined for
which users have been opened.

The embedding tracking image will look something like this in the source of your
HTML message:

<img src="http://url-to-your-phplist-install.com/ut.php?u=1a555c58f885
bf66ec8571d217eea18d&m=26" width="1" height="1" border="0">

As this technique relies on the e-mail being displayed in HTML, it won't work on
users who receive your messages in plain text format.

This common technique for e-mail opening tracking suffers from a few
limitations—if the user reading the e-mail is (a) not connected to the Internet,
or (b) filtering images in their e-mail client, the tracking image won't be fetched
and phpList won't record an "open" result against this e-mail.

Sending a message with user tracking
enabled
To enable user tracking on a message, add the placeholder [USERTRACK] anywhere
in the HTML body of the message. When the message is sent, phpList will replace
this holder with a unique tracking "image" for this user.

Chapter 7

[123]

Turning on user tracking by default
To turn on user tracking by default, you can add this placeholder to a
message template and subsequent messages sent using that template will
automatically include the placeholder and so have user tracking enabled.

Examining user-tracking statistics per
message
To examine the user-tracking statistics in their simplest format, click on the messages
link in the sidebar and view the sent messages.

Measuring Effectiveness of Newsletters

[124]

Here is a test message sent with user tracking enabled, but no users had opened the
message yet:

Here is the same message after two users have opened the message (and at least
one of them opened it more than once, given the difference between the total versus
unique views!):

Examining user-tracking statistics per user
In addition to examining user-tracking statistics per message, we can also view the
individual actions of each user. To examine user-tracking statistics per-user, view
the user's details and click on the history link:

Chapter 7

[125]

Now that user tracking is enabled, we are able to see the date and time at which
this user opened each message and calculate a per-message, as well as an average,
response time (in seconds).

Click tracking
Now that we know how to track basic message open statistics, we may want to know
who opens our messages and actually clicks on the links in the message.

Unlike user tracking, click tracking is enabled / disabled globally in the config
file and will work with text or HTML e-mails. phpList performs click tracking by
rewriting every URL in your message, effectively placing itself "in between" the user
and the final destination.

Measuring Effectiveness of Newsletters

[126]

This means that if you add a link to www.mywonderfulwidgets.com to your e-mail,
it would normally look like this in the e-mail source:

widget

When click tracking is enabled, the link will be rewritten like this:

<a href="url-to-your-phplist-install.com/lt.php?id=fk0ETwdVGlcH"
>widget

phpList records a unique ID (see the rewritten link) for each user and link, meaning
that it's able to redirect the rewritten link to the original link, as well as record which
user clicked on the link:

Important note regarding availability of your phpList installation:
Once click tracking is enabled, your phpList installation must be
world-reachable for users to click the links and be directed to their
ultimate destination.
That is, if your phpList server is down or not publically available,
your readers will be unable to click the links in your e-mail.

Avoiding false spam / phishing detection
A note of caution—some e-mail systems will flag or even block e-mails which appear
to contain "fraudulent" links. For example, a common technique used in "phishing"
attacks is to present a link with display-text which looks legitimate to a user, such as
http://www.paypal.com, but which, in actual fact, redirects to a malicious website
(that is, http://www.imabadguygonnastealyourmoney.com).

In the HTML code, this would appear as follows:

Go to <A HREF="http:// http://www.imabadguygonnastealyourmoney.
com">www.paypal.com to verify your account

phpList's click tracking works in a similar way. We are rewriting a standard URL
to our own and then redirecting the user. To avoid being flagged as a potential
"phisher", use a "friendly" display-text for your URL. That is, make sure all
hyperlinks that you include in your messages have a display-text that doesn't
resemble a URL.

For example, this is a bad way to include a link to http://www.paypal.com,
because it will ultimately look like a phishing attack, once phpList has rewritten
http://www.paypal.com to its own URL:

Chapter 7

[127]

If we set our display-text to be simply "PayPal", then we avoid committing this
(innocent) mistake:

Measuring Effectiveness of Newsletters

[128]

Enabling click tracking
To enable click tracking, open config/config.php and search for CLICKTRACK.
You'll find this line:

define('CLICKTRACK',0);

Enable the click tracking feature by changing the 0 to a 1 as follows:

define('CLICKTRACK',1);

Enabling extra detail in click tracking
To enable additional detail in your click tracking reports, open config/config.php
and search for CLICKTRACK_SHOWDETAIL (around line #433). You'll find this line:

define('CLICKTRACK_SHOWDETAIL',0);

Enable additional click tracking details by changing the 0 to a 1 as follows:

define('CLICKTRACK_SHOWDETAIL',1);

Note that the commented lines in the config file explain the purpose of the
additional detail, but we recommend against using this feature because it impacts
the speed at which statistics are displayed:

"if you enable this, you will get some extra statistics about unique users who have
clicked the links in your messages and the breakdown between clicks from text or
html messages. However, this will slow down the process to view the statistics, so
it is recommended to leave it off, but if you're very curious, you can enable it"

Sending an e-mail with click tracking enabled
Because click tracking is enabled globally, there is nothing more to be done when
you send a message. Simply include some links in your message to have these links
rewritten for click tracking.

Chapter 7

[129]

Examining basic click-tracking statistics
per message
As with the user tracking features, for a basic overview of the click-tracking statistics
per-message, click on the Sent tab in the messages page. You'll notice an additional
counter indicating how many clicks are recorded against each message.

There's also an additional action in the left-most column entitled click stats. This will
show you detailed statistics on each URL in the message:

Clicking on the view users link will show you which users clicked on this URL
in this particular message:

Measuring Effectiveness of Newsletters

[130]

A list of all the users who clicked on the URL is displayed. Note that it's possible for
a user to click a link several times; that is why a firstclick and a latestclick entry are
recorded for each:

Examining advanced user/click-tracking
statistics
While we can examine both basic-user and click-tracking statistics from the
Sent tab on the messages page, we can also use the new statistics page to
give us more details.

Extra statistics sidebar link
Once click tracking is enabled, an additional link will appear on your sidebar
labeled statistics:

This link will take you to a page (under development) enabling more detailed
statistics about user and link tracking:

Chapter 7

[131]

Overview
The overview page is a useful place to start. It will show you your most recent
messages and indicate how many were sent, how many bounced, and how many
were viewed:

The viewed counter is a link to the message detail page, which will show you which
users viewed the message:

Measuring Effectiveness of Newsletters

[132]

Viewing clicks by URL
From the statistics page, the view clicks by url link will display all the URLs you've
used in all your messages. On this page, the total clicks per URL will be indicated:

Clicking on the URL will take you to the URL detail page, which will show more
detailed statistics for each message:

Clicking on the message link will display the click statistics for this message and
clicking on the view users link will show which users clicked this link in this
particular message:

Viewing clicks by message
The view clicks by message link on the statistics page will display click statistics
on a per-message basis (instead of the per-URL basis, as before):

Chapter 7

[133]

Clicking on a message will then show statistics about all the URLs included in
that message:

Viewing opens by message
The link to view opens by message displays the same data as the overview link,
except the messages' subjects are not clickable, so this page essentially provides
less data than the overview page. Let's ignore it.

Viewing domain statistics
This seems to be part of the ongoing development of phpList. At the time of writing,
this link displays nothing. Let's ignore it too.

Measuring Effectiveness of Newsletters

[134]

Summary
In this chapter, you have learned about user and click tracking, specifically how
they operate, and the limitations of each. You've examined user-and click-tracking
statistics to determine which users are opening which messages and which links are
being clicked. Specifically, you've covered:

Enabling user tracking and viewing statistics about who's reading
our messages
Enabling click tracking and viewing statistics about who's clicking on which
links in our messages
Examining user/click statistics in greater detail using the "statistics" menu

In the following chapter, we'll be looking at securing your phpList installation,
both against common attacks (that is, brute force) and against potential (current
and future) vulnerabilities.

•

•

•

Securing phpList
Having a fully functioning e-mail delivery system, we now want to ensure that
we secure it as best we can, namely, by preventing both unauthorized access and
exposure to potential vulnerabilities.

In this chapter, you will learn some techniques to further restrict and secure your
phpList installation. These include:

Changing the administrator password
Confirming .htaccess mod_access restrictions
Securing the admin pages with an additional (.htaccess mod_auth)
password
Confirming appropriate filesystem permissions

Changing the admin password
Your password is the "key" to your phpList installation. Just as you wouldn't leave
your house keys outside the front door, or your PIN number written onto your bank
cards, security begins with effective password management.

Choosing strong passwords
A strong password is one that is difficult to detect by humans or computers. It is
generally accepted that a strong password:

Is unique to this application (that is, don't use the same password that you
use elsewhere).
Is at least eight characters long.
Contains numbers and letters in both upper and lower case. Consider using
symbols too.

•

•

•

•

•

•

•

Securing phpList

[136]

There are several websites that will help generate / validate strong passwords. (Just
search the web for "how strong is my password?").

Changing phpList admin password
Hopefully, you'll already have changed the "admin" password from the default
"phplist", but make sure it's set to a strong password that won't be guessable (that is,
if your domain is "fuzzyslippers.com", don't make the password "fuzzyslippers!").

To change the admin password, click on the admins link on the main page:

Click on your admin account (you can have multiple administrators):

Change your password (displayed in clear text) and click on Save Changes:

Chapter 8

[137]

Confirming correct filesystem
permissions
Every file on a Unix-based filesystem has three levels of access permission—read,
write, and execute. These permissions are assigned to three separate entities—the
owner, a user group, and the world. Best practice dictates that these permissions be
set as low (restrictive) as possible (that is, unless you really NEED world-writeable
files, don't set them that way!).

It's important to ensure that the filesystem permissions for all of the phpList's files
are correct. If the permissions are too restrictive, the web server won't be able to
display the phpList interface at all. If they are too loose, you risk unauthorized users
editing or deleting your files.

If you unpacked phpList onto your web host directly from the source tar.gz file,
then the permissions will be correctly set. However, if you transferred the files
from another host using FTP, it's possible that the permissions will have been reset.
Regardless, it's advisable to inspect these.

Confirming permissions in a GUI SFTP/FTP
client
Most users will interact with their web host via a GUI SFTP/FTP client. Your client
will generally show you the permissions on each file using the drwxrwxrwx syntax
or in numeric shorthand called "octal notation":

Securing phpList

[138]

Confirming permissions using a shell session
The same information can be displayed if you have a shell on the web server host
using the ls –l command:

[root@myhost public_html]# ls -l

total 88

drwxr-xr-x 15 root root 4096 Oct 22 14:57 admin

drwxr-xr-x 2 root root 4096 Oct 22 12:36 config

-rw-r--r-- 1 root root 2283 May 6 2009 dl.php

drwxr-xr-x 3 root root 4096 Apr 24 03:05 images

-rw-r--r-- 1 root root 698 Apr 15 2004 index.html

-rw-r--r-- 1 root root 35860 Sep 25 15:18 index.php

drwxr-xr-x 2 root root 4096 Apr 24 03:05 js

drwxr-xr-x 2 root root 4096 Sep 25 10:35 lists

-rw-r--r-- 1 root root 3873 May 6 2009 lt.php

drwxr-xr-x 2 root root 4096 Apr 24 03:05 styles

-rw-r--r-- 1 root root 1683 Sep 25 14:33 test.html

-rw-r--r-- 1 root root 318 Sep 25 13:25 test.php

drwxr-xr-x 2 root root 4096 Apr 24 03:05 texts

-rw-r--r-- 1 root root 1847 May 6 2009 ut.php

[root@myhost public_html]#

Setting appropriate permissions
Ensure that all directories are set to rwxr-xr-x or 755 (read, write, and execute
access for the owner, read and execute for the group and world) and that all files
are set to rw-r--r--, or 644 (read and write access for the owner, read access for the
group and world).

On a Unix shell, you do this using the chmod command. That is, to change the
permissions on a file to 644, you'll run chmod 644 filename.

In your GUI client, there's likely a context menu item to set permissions on a
selection of files:

Chapter 8

[139]

Confirming htaccess restrictions are
in place
phpList ships with a preconfigured .htaccess file (distributed Apache configuration
directives) which protects certain files in the admin/ subfolder from being processed
individually (most of these files are intended to be referenced within index.php,
not directly).

Certain web hosting providers may not allow .htaccess files to alter the web server
behavior. To test whether your admin/.htaccess file is effective, try to open the
URL http://url-to-your-phplist-install.com/admin/subscribelib2.php in
your browser.

If your .htaccess file is working as expected, you will receive a 403 Forbidden
message, as this file is not intended to be accessed directly.

However, if your .htaccess file is ineffective, you will see a single line, reading
Invalid Request. If this is the case, then your .htaccess file is being ignored by
your web server and you should contact your hosting provider to address this.
Your phpList installation is vulnerable.

Securing admin pages with additional
(htauth) password
By default, to view the admin pages, you need to enter an administrator username
and password on the phpList admin login page. However, this is only a single layer
of security. If your phpList database was to be compromised, or the routines used
to validate passwords were discovered to be exploitable, an attacker could gain full
control over your phpList installation.

Securing phpList

[140]

To add an additional layer of security, we can configure an additional Apache
mod_auth-based password to protect the admin page. This means that your
web server (prior to phpList) will prompt the viewer for a user and password
combination, before showing them the phpList login page.

This also means that you need two passwords to
administer your list!

Creating an htpasswd file
The mod_auth authentication scheme requires a file commonly called an htpasswd
file, which contains pairs of usernames and encrypted passwords, one per line, to
exist on the web server. The web server will use this file to validate your username
and password when you browse to any URL underneath the /admin/ directory.

This file should be accessible to the web server (that is, on the web server's
filesystem), but not accessible to the world (that is, not in a directory which is
accessible via a web browser).

In many cases, web-facing files (such as phpList's .php files) are stored in a
public_html folder on your web host. You may have other folders including log
files, backups, and so on. Choose a location for the password file and make sure you
know the filesystem path to this file. (For example, /home/webusers/myusername/
htpasswd would be secure, if your web files are in /home/webusers/myusername/
public_html/).

Creating an htpassword file online
The simplest way to generate an htpassword file is to generate the user-encrypted
password pairs online. There are many online tools that use simple code to do this
for you. You could search the web for "generate htpasswd file" or use a website like
http://www.htaccesstools.com/htpasswd-generator/.

Once you have the user-encrypted password line, save it to a file named htpasswd,
and upload it to the chosen directory on your web host. Remember, you need to
know the filesystem path to this file.

Chapter 8

[141]

Creating an htpasswd file in a Unix shell
Assuming you have access to your web host using a Unix shell (or to another Unix-
like host), you can also create the password file directly on the web host, using the
following command:

htpasswd -cb <filesystem path to password file> <username> <password>

For example, you may use:

[root@webhost myuser]# htpasswd -cb /home/webusers/myusername/passwd
myuser mypassword

Adding password for user myuser

[root@webhost myuser]#

The -c in the htpasswd command stands for "create". It assumes
that the password file doesn't already exist. If you run this against an
existing file, it will overwrite this file, so be careful! If you want to add
additional usernames to this file, use the htpasswd command without
the -c argument.

The contents of your password file should look something like this: myuser:
CEZqTfQTUZhzw.

Amending admin/.htaccess
Having a file containing usernames and passwords is not enough to secure
access—we need to tell the web server not to allow any visits to any URLs
underneath the admin/ directory, unless the user has authenticated against
our password file.

We put these instructions in a special file in the admin/ directory called .htaccess.

By default, this file contains the following lines, which restrict any access to
important .php files under the admin/ directory:

<FilesMatch "\.(php|inc)$">
Order allow,deny
deny from all
</FilesMatch>
<FilesMatch "(index.php|connector.php|upload.php)$">
Order allow,deny
allow from all
</FilesMatch>

Securing phpList

[142]

We will add the following directives to this file either above or below the
existing text:

Restrict access to admin/ URLs
AuthUserFile <filesystem path to your htpasswd file>
AuthName "PHPList Admin Access"
AuthType Basic
require valid-user
End access restriction directives

These lines tell the web server which password file to refer to, what the name of the
authentication "realm" is, what type of authentication to use, and instruct it that a
valid user match is required.

Comments
The lines starting with hash characters are comments and are included
simply to improve readability. They can be excluded or customized
and are ignored by the web server.

Having added the aforementioned lines, the entire admin/.htaccess file will look
something like this:

<FilesMatch "\.(php|inc)$">
Order allow,deny
deny from all
</FilesMatch>
<FilesMatch "(index.php|connector.php|upload.php)$">
Order allow,deny
allow from all
</FilesMatch>
Restrict access to admin/ URLs
AuthUserFile <filesystem path to your htpasswd file>
AuthName "PHPList Admin Access"
AuthType Basic
require valid-user
End access restriction directives

Chapter 8

[143]

Having saved the changes to admin/.htaccess, refresh the admin page and your
browser will pop up an authentication request as shown in the following screenshot:

Remembering passwords
Some web browsers will offer you the option of remembering this
password for the future, which is suitable if you are using a browser on
a trusted, private computer (that is, don't do this at an Internet cafe!).

Note that using this method of restricting access doesn't allow you any
means to log out again. Once you enter your username and password,
your browser will keep you logged in (at the mod_auth level) until you
restart your browser.

Summary
In this chapter, you've learned some simple, and some advanced, techniques
to secure your phpList installation, including:

Changing the administrator password
Confirming .htaccess mod_access restrictions
Securing the admin pages with an additional (.htaccess mod_auth)
password
Confirming the appropriate filesystem permissions

In the next chapter, we'll look at using some of phpList's more advanced features
and settings.

•

•

•

•

Advanced Features
In Chapter 7, Measuring Effectiveness of Newsletters, we talked about measuring the
effectiveness of your newsletters and we covered manually enabling more advanced
click-tracking features by editing the config/config.php file. In this chapter, we'll
cover some of the more advanced features of phpList including:

Advanced bounce handling
Domain-based e-mail throttling
Adding attachments to messages
Automatically repeating messages
Including RSS feeds in messages
Setting up processing automation

Advanced bounce handling
If we have a high volume of users, lists, and bounces, we might want to configure
advanced bounce handling to better automate the processing of bounces.

Note that this is classified as an experimental
advanced phpList feature.

To enable advanced bounce handling, open config/config.php and look for
this line:

define('USE_ADVANCED_BOUNCEHANDLING',0);

•

•

•

•

•

•

Advanced Features

[146]

Change USE_ADVANCED_BOUNCEHANDLING from 0 to 1 and then reload the
admin page. You'll note that the view bounces link has been replaced with
manage bounces:

Bounce rules and regular expressions
Advance bounce handling lets us configure different actions for incoming bounce
messages based on regular expressions.

Regular expressions
Regular expressions are extremely powerful, but in our examples, we'll
just use simple string matching. You can find a detailed description of
what they are and how to use them at http://en.wikipedia.org/
wiki/Regular_expression.

Creating a new bounce rule
To create a new bounce rule (from scratch), click on list bounce rules to display
all rules (by default, there are none) and fill out the following under the add a
new rule section:

Chapter 9

[147]

Regular expression: The text match to perform against the bounce message
Action: A specific action to perform based on this bounce
Memo for this rule: A note to yourself to explain what this rule does
and why. (It's fairly obvious in this example, but more complex regular
expressions may require explanation.)

Creating a new rule based on an existing
bounce
Instead of creating new rules from scratch, it's more likely that we'll need to create
new rules from existing bounces as the need arises.

•

•

•

Advanced Features

[148]

Now that we've enabled advanced bounce processing, we have an additional option
when viewing a bounce (using manage bounces and then view bounces) to create a
new rule based on the bounce:

This simply gives us the convenient view of the actual bounce body above the new
rule creation dialog so that we can easily create (or copy and paste) our text match.

Chapter 9

[149]

Auto-generating new bounce rules
phpList can auto-generate bounce rules, based on existing bounces, if you click on
the generate bounce rules link:

Without further prompting, phpList will review the current bounces and generate
new rules based on these bounces:

You can view these new "suggested" bounce rules by clicking on list bounce rules,
then by changing the tab from active to candidate, and then clicking on the "rule
number" link to edit the rule:

Advanced Features

[150]

phpList would have tried to select an appropriate regular expression. Below the
memo is listed the bounces which were used to derive this rule. Make any necessary
changes (that is, make the regular expression as generic as possible) and change the
status from candidate to active to enable the rule:

Checking current rules against bounces
Having created your bounce rules, you can test them against the current bounces,
by clicking on check current bounce rules in the manage bounces page:

Note that if a bounce is not matched by any bounce rules, the "default" bounce
processing system will apply (un-confirming the user after consecutive bounces
exceeds threshold).

Chapter 9

[151]

Domain-based e-mail throttling
You may want to take advantage of phpList's "domain throttling" features if you
have lots of subscribers on the same domain and you want to avoid having yourself
classed as a "spammer" by their e-mail provider. Throttling slows down e-mail
delivery to a maximum messages-per-period rate, ensuring that you don't flood a
particular e-mail host with too many concurrent messages.

To use domain throttling, edit the following lines in config/config.php:

define('USE_DOMAIN_THROTTLE',0);
define('DOMAIN_BATCH_SIZE',1);
define('DOMAIN_BATCH_PERIOD',120);

Change USE_DOMAIN_THROTTLE to 1 to turn on the domain throttling feature, and
then customize DOMAIN_BATCH_SIZE and DOMAIN_BATCH_PERIOD (in seconds) for
the amount of e-mails (that is, BATCH_SIZE) to be sent to a given domain within a
particular period.

For example, you may want to deliver a maximum of one message per minute to
each destination domain. In this case, you'd use the following configuration:

define('USE_DOMAIN_THROTTLE',1);
define('DOMAIN_BATCH_SIZE',1);
define('DOMAIN_BATCH_PERIOD',60);

It's recommended to implement this after setting up regular, automated queue
process actions (we'll look at this later in this chapter), because depending on the size
and diversity of your subscriber base, domain throttling may vastly increase the time
it takes to send your messages to all of your subscribers.

Adding attachments to messages
phpList supports the adding of attachments to your messages. The config/config.
php file warns that this feature is experimental and may result in large e-mails. It also
cautions that it's generally more acceptable to send a link to a file download, instead
of including that file as an attachment in the message sent to the subscriber.

However, there are many situations where you might want to include attachments
and doing so is quite simple.

To enable attachments, look for this line in config/config.php:

define("ALLOW_ATTACHMENTS",0);

Advanced Features

[152]

Change ALLOW_ATTACHMENTS from 0 to 1 to turn on attachment support.

You'll note on the send a message page that there's an additional tab labeled Attach.
Click on this tab while preparing your message to add attachments. The attachment
tab will display the current (server-set) size limits and allow you to browse for new
files to attach:

It's recommended that you add a description of each attachment, although this
is only for your own clarity and is not visible to your readers. Click on Add
(and save) when you've selected the file (on your local system) to attach and
entered an optional description:

Chapter 9

[153]

phpList will confirm the successful attachment of the file and display a summary of
all files attached, including a sequence number (this will increment over time with
every new attachment), a filename, description, and file size.

It's a good idea to do a "sanity-check" at this point and make sure that
the file attachment won't make the message so large that it will cause
inconvenience to your readers.

To add another file, repeat this process, one file at a time.

Adding multiple files simultaneously
While phpList doesn't impose a limit on how many attachments can be added to a
message, it does (by default) expect you to attach them one at a time.

You may have a requirement to attach several files to every message and find
the one-at-a-time approach laborious. phpList can be configured to attach many
files simultaneously.

Advanced Features

[154]

Look for this line in config/config.php:

define("NUMATTACHMENTS",1);

And change NUMATTACHMENTS from 1 to the number you require.

For example, after changing this value to 2, you're presented with two
file-attachment forms on the same page:

Note that clicking any of the Add (and save) buttons will add all
attachments you've selected with the Browse button. The reason this
button is repeated for every upload is that (a) it's easier to code and (b)
while you have defined a maximum concurrent attachment limit, you
may sometimes want to attach less than the maximum number of files.

Chapter 9

[155]

Attaching files stored on your web server
So far, we've covered uploading attachments using your web browser. You may also
want to attach files that are already on your web server. (For example, perhaps you
want to attach a report that is automatically created by another system and saved to
a location on the web server).

To enable filesystem attachments, look for the following line in config/config.php:

define("FILESYSTEM_ATTACHMENTS",0);

Change FILESYSTEM_ATTACHMENTS from 0 to 1 to enable filesystem attachments.

Now, on the send a message page, under the Attach tab, in addition to a Browse
button to upload the file, you also have an input field allowing you to specify a
filesystem location for this file:

Advanced Features

[156]

Note that no validation is done at this point. That is, phpList doesn't stop you if the
file doesn't exist. Your only indication that this file may not exist is the file size (zero
in the following example):

If the file size is a positive number, then phpList is able to find the file, and
therefore attach it (assuming that the web server user has permission to read
that file on the filesystem).

Note that phpList will not warn you of a failure to attach a filesystem file—it will
silently ignore it. That is, in the following example, only the second attachment
(testattachment.txt) will actually be sent, but no errors will be produced:

Chapter 9

[157]

However, when examining the message after sending using the Edit Message link,
the Attach tab will show which attachments were successfully attached:

Advanced Features

[158]

Securing your attachments stored on the
web server
By default, any attachments you upload are stored in /tmp on your web server. This
is not ideal, as on a shared host, other users might also have access to these files.

It's recommended that you create a dedicated directory for your attachments instead.
It may be best to create an "attachments" folder at the same level as the folder which
contains your publicly accessible HTML and PHP files (but not in it!), ensuring that
this directory is available to phpList but not to normal web users.

Make sure that the web server has "write" access to this directory, or
else it won't be able to save the attachments you upload.

When you've created this directory, open config/config.php and look for this line:

$attachment_repository = '/tmp';

Change the value of $attachment_repository to refer to the full path to the new
"attachments" directory you created, for example: /home/myuser/mywebsite/
attachments.

Automatically repeat messages
You may need to have messages automatically repeat every day, week, or month.
For example, perhaps you have a filesystem attachment (a daily report) that you
want e-mailed to your subscribers at 7 AM every morning.

To enable message repetition, look for this line in config/config.php:

define("USE_REPETITION",0);

Change USE_REPETITION from 0 to 1 to enable message repetition.

On the send a message page, under the Scheduling tab, you now have the option for
hourly, daily, or weekly repetition. You can also schedule a date when the repetition
will cease:

Chapter 9

[159]

Sending a repeating message
Aside from the Scheduling tab, sending a repeating message is just like sending a
normal message. As soon as the message has finished sending, another copy of that
message will be put in the queued tab to be sent when the hourly / daily / weekly
embargo expires:

Forcing a repeating message to repeat before
embargo
Under certain circumstances, you may want to force a repeating message to be resent
before its embargo expires.

Advanced Features

[160]

To do so, view the Queued tab and click on edit to edit the message:

Click on the Scheduling tab and change the Embargoed Until fields to the new time
(or a time that has already passed), and save the message:

The message will be sent on the next process queue action and unless you also
changed the Repeat Until fields, the next repetition of this message will be sent
at the normal scheduled time.

Auto-generating messages from RSS
feeds
One of phpList's unique strengths is its ability to process RSS feeds and insert them
into your messages. For example, you may distribute a formal daily newsletter, but
include your latest twitter posts at the bottom.

Chapter 9

[161]

There are some requirements to processing RSS feeds with phpList:

Your PHP installation must have XML support. If you don't have this,
or don't know, ask your web hosting provider.
Your RSS feed must be accessible (via HTTP) to your phpList installation.
Your PHP instance should be running with safe_mode off. Some web hosting
providers will enable safe_mode for security reasons—unfortunately, this
can block the RSS-fetching operation of phpList.
You must have enabled phpList's repeating messages feature.

You can test whether your PHP includes XML support and determine the
status of safe_mode by creating a file called test.php, which contains
only the following line:
<?php phpinfo(); ?>
Then upload this file to your hosting provider and open its public URL
in your web browser. PHP will give you detailed information about your
installation.

Enabling RSS support
To enable RSS support, look for the following line in config/config.php:

define("ENABLE_RSS",0);

Change ENABLE_RSS from 0 to 1 to enable RSS support.

If you have successfully enabled RSS support, you will see three new RSS-related
functions on the main admin page (getrss, viewrss, and purgerss):

•

•

•

•

Advanced Features

[162]

Associating an RSS feed with a list
phpList allows you to associate a single RSS feed with a single list. To add a feed to a
list, edit the list, and add the RSS feed URL to the RSS Source input field:

Validating a feed
You can confirm that the RSS feed URL is valid by running it through
the "validator" at http://validator.w3.org/feed/.

When you view the summary of your lists, you'll now see the RSS feed associated
with each list:

However, you'll notice that if you click on (view items), there will be no
items displayed:

This is because, like the message queue, each RSS feed must be periodically
"processed" for new items, before phpList will know about them.

Chapter 9

[163]

"Getting" new RSS items
To "get" new RSS items, click on the new getrss link at the bottom of the main
admin page:

phpList will now connect to the URL and use the built-in XML libraries to process
the RSS feed and put each item into the database. This getrss action is the acid test of
your RSS implementation—if this doesn't work, then address the requirements with
your web hosting provider or test your RSS feed for validity, before proceeding with
sending an actual message.

User requirements to receive RSS messages
Because RSS messages are designed to take advantage of the "repeating messages"
function of phpList, in order for users to receive these messages, they must have
already selected an RSS frequency of either hourly, daily, or weekly.

Advanced Features

[164]

You can confirm a user's RSS frequency setting by examining their user account:

If you plan to make use of repeating RSS messages, make sure that your
subscribe form includes the option to select a frequency. If you want to
force any new subscribers into a particular frequency (that is, they are
deliberately subscribing for RSS updates), you can simply restrict the
RSS frequency options to a single option (such as daily).

Chapter 9

[165]

Sending a message including RSS
Now that you have a working RSS feed, it's time to send a message that will include
the items in this feed. As usual, use the send a message link to compose a new
message to the appropriate list.

Ensure you enter the placeholder [RSS] somewhere in your message:

Setting your RSS message's schedule
If you simply send a message containing [RSS] as a standard, one-off message, the
RSS feed will not be inserted into the message. For a message to include RSS items,
phpList needs to know whether this message is destined for users who've selected
an hourly, daily, or weekly RSS frequency.

Advanced Features

[166]

On the Scheduling tab, select your RSS frequency. Note that when you click on
the Save button, the Repeat message every drop-down box will automatically be
adjusted to match your RSS frequency selection. That is, repeating messages is a
pre-requisite of RSS support.

Once you've saved the message, the next time the queue is processed, any new RSS
items will be included in the message to each user:

Setting up processing automation
Now that we are able to manually send messages and process bounces, it would be
handy to be able to automate these actions so that they happen at regular intervals.

Chapter 9

[167]

Requirements
The requirements are as follows:

Access to Cron—for automatic phpList processing, we'll need access to
schedule jobs on our server using cron entries. Your provider may have
made this available using a control panel and it may be called something
like "scheduled tasks", or "automated tasks".
Filesystem information—we'll also need to know the filesystem path to
our phpList installation, the user our scripts will run as and (potentially)
the path to the PHP binary. It will also be helpful to have shell (SSH) access
to our host.

Customize the CLI "wrapper"
Before we can use the scheduling tools to set up automated phpList processing, we
need to customize the "wrapper" bash shell which we can run on our host, that'll do
the CLI-based phpList work.

phpList's source code includes a bin subfolder containing a file called phplist
(this file will be set as executable if you unpacked the phpList source on a
POSIX-based host).

Copy the bin directory to a location outside of your publicly-accessible phpList files
(that is, at the same level in the directory hierarchy as your public_html folder or
the folder where all your web-accessible files are).

Edit the phplist file inside the bin directory.

You will need to customize the following lines to suit your installation:

CONFIG=/home/website/public_html/lists/config/config.php

Change this to reflect the filesystem path to your phpList installation:

/usr/bin/php /home/website/public_html/lists/admin/index.php $*

Change this to reflect both the filesystem path (again) and the PHP binary location
on our host (/usr/bin/php may well be correct).

Having updated the bin/phplist file, open your config/config.php file and look
for the line containing commandline_users:

$commandline_users = array("admin");

•

•

Advanced Features

[168]

Edit this line by replacing admin with the user under which your web host processes
run as.

This username might be difficult to determine, especially in a shared
environment. If you can access a shell session, run the whoami
command to determine this. If you are using a dedicated server, this
will be the user under which your web server runs. Your web hosting
provider can supply you with this information.

Now that you have prepared phpList's config and your wrapper script, use whatever
interface you have at your disposal to schedule tasks as follows:

Process bounces: /path/to/bin/phplist –p processbounces

Process queue : /path/to/bin/phplist –p processqueue

Process RSS : /path/to/bin/phplist –p processrss

Don't worry about running the processqueue task too frequently—if it
runs and detects that it's been run in the past six minutes, it'll abort with
a warning so you can't cause multiple copies to run simultaneously.

The author recommends you to run the processqueue action every 30 minutes and
the processbounces and processrss every day.

Getting RSS before processing queue
If you have a regular, repeating RSS message scheduled for sending in
your queue, it's a good idea to make sure that the processrss task
runs before this message is scheduled to be sent. That way, the latest
RSS items will be included in the message.

Chapter 9

[169]

Summary
In this chapter, you've learned to take advantage of some of phpList's more
advanced features, such as:

Advanced bounce handling
Domain-based e-mail throttling
Adding attachments to messages
Automatically repeating messages
Including RSS feeds in messages
Setting up processing automation

In the following chapter, you'll learn how to add your own advanced features by
modifying (hacking) the phpList code.

•

•

•

•

•

•

Hacking phpList
In this chapter, you will learn how to add extra functionality to your phpList
installation by "hacking" the source code. Unlike the advanced features previously
covered, none of the hacks covered in this chapter are officially supported by
phpList and may not work in future versions. Instead of teaching you how to
implement specific features, this chapter is aimed more at teaching the basic methods
behind adding functionality to phpList by either making direct code changes or
implementing pre-packaged, community-developed hacks.

We will cover the following hacks:

Substituting user attributes in the message subject line
Sending system messages formatted as HTML instead of plain text
Creating a messages archive page
Sending messages through your e-mail client

Substituting user attributes in the
subject line
phpList supports the substituting of attributes into your messages recorded from
your subscribers by using [ATTRIBUTE] tags in the content of the message.

It doesn't, however, support this in message subjects. A personalized e-mail subject
line goes a long way towards engaging your readers, so let's modify phpList to
perform the same attribute substitution in the subject line.

•

•

•

•

Hacking phpList

[172]

Open admin/sendemaillib.php and look for the following stanza, around
line #757:

if (!TEST) {
 if ($hash != 'forwarded' || !sizeof($forwardedby)) {
 $fromname = $cached[$messageid]["fromname"];
 $fromemail = $cached[$messageid]["fromemail"];
 $subject = $cached[$messageid]["subject"];
 } else {
 $fromname = '';
 $fromemail = $forwardedby['email'];
 $subject = $GLOBALS['strFwd'].': '.$cached[$messageid]["subject
"];
 }

This is the logic that decides whether an e-mail is being sent to a subscriber or being
forwarded to a third party by a subscriber. Instead of interfering with this code, we'll
do our modifications directly afterwards.

Directly after this stanza, paste in the following code:

// START HACK - Perform attribute substitution in the subject
 if (is_array($user_att_values)) {
 foreach ($user_att_values as $att_name => $att_value) {
 $subject = str_ireplace("[$att_name]",$att_value,
$subject);
 }
 }
 // END HACK - Perform attribute substitution in the subject

This cycles through the in-scope variable—$user_att_values and performs
case-insensitive attribute replacement against the $subject variable.

Now we can attempt to send a message with a personalized subject line:

Chapter 10

[173]

The messages are received and individually customized for our subscribers:

Caveat #1 – no attribute substitution for a
third party
You'll notice in the original stanza before our pasted hack that it's also possible for a
subscriber to click a link to forward a message that they received onto a third party.
This will become a problem for our attribute-substitution code, as we don't have
any attributes on record for the third party. The third party will receive a message
without any attribute substitution:

Hacking phpList

[174]

Caveat #2 – "Forward message" page
displays an un-substituted subject
The mechanism for this forwarding process involves our subscriber clicking
on a link in the message to forward the message. This page displays the subject
of the message (un-substituted) when requesting the e-mail address to forward
the message:

Sending system messages as HTML
instead of text
While phpList allows you to send beautifully formatted HTML messages, its own
system messages (confirmation request, unsubscription notification, and so on) are
sent in plain-old-boring-text.

This hack allows you to enter HTML in your system messages and have them
delivered in multipart HTML-and-text.

Code changes
The following pages detail all the code changes required for this hack. A patch file
is included with this book, as well as a readme file that explains how to apply it.

The following pages detail the code changes that are required, step-by-step.

Chapter 10

[175]

Creating the plain-text part of the message by
stripping out the HTML
You'll customize your system message to include HTML code. Unlike the message
composition interface, phpList doesn't give us the option to define separate HTML
and text parts to our system messages, so we'll have to create the text version by
stripping out all of the HTML code, but still preserving any hyperlinks.

Open admin/lib.php and look for the following line (around line #271):

$destinationemail = '';

Directly below this line, add the following:

// START HACK - Allow HTML in system messages
 $html_message = $message;
 $message = preg_replace('/(<script.*\/script>)|(<style.*\/style>)/
i', '', $message);
 $message = preg_replace('/<a\s*.*?href\s*=\s*("|\')([^"\']*?)("|\').
?>(.?)<\/a>/i', "$4:\n$2\n", $message);
 $message = strip_tags($message);
 // END HACK - Allow HTML in system messages

This code starts off with the assumption that the message that it gets from the
database includes all the HTML code required. As you'll also want to generate a
plain-text version of this message (for multipart MIME messages) it copies the HTML
message into a new variable for the plain text message.

Then, it removes any JavaScript or CSS styles which may contain URLs. Next,
it converts any HTML links into plain text links and then it strips out all
remaining HTML.

Sending both the HTML and text versions of
the message
Now that we have two separate messages—one HTML and one plain-text—we'll
modify the code that actually sends the message ensuring that it sends both parts.

Open admin/lib.php and look for the following lines (around line #283):

if (!ereg("dev",VERSION)) {
 $mail = new PHPlistMailer('systemmessage',$to);
 $destinationemail = $to;
 $mail->add_text($message);
 } else {
 # send mails to one place when running a test version

Hacking phpList

[176]

 $message = "To: $to\n".$message;
 if ($GLOBALS["developer_email"]) {
 # fake occasional failure
 if (mt_rand(0,50) == 1) {
 return 0;
 } else {
 $mail = new PHPlistMailer('systemmessage',$GLOBALS["developer
_email"]);
 $mail->add_text($message);
 $destinationemail = $GLOBALS["developer_email"];
 }
 } else {
 print "Error: Running CVS version, but developer_email not set";
 }
 }

This conditional implements slightly different message-sending behavior,
depending on whether phpList's version indicates that it's a development
instance. Our addition is the same in both cases, so identify both occurrences
of the following line in this stanza:

$mail->add_text($message);

And below each instance, add the following:

$mail->add_html($html_message); // HACK - Allow HTML in system
messages

This simply uses already-existing features of the PHPlistMailer class to add an
HTML part to the message.

Stripping slashes from messages stored in
the database
phpList stores the custom system messages in the database in a "quoted" format.
That is, any apostrophes will be preceded with backslashes. This is a common
(and sensible) security practice for protection against SQL injection attacks.
However, because phpList doesn't anticipate that these custom messages will contain
HTML, it doesn't strip these slashes off the content before sending them. We'll have
to manually do that in the following section, so that our HTML messages aren't sent
full of slashes.

Chapter 10

[177]

Stripping slashes from a subscribe message for normal
subscriptions
Open admin/subscribelib2.php and look for the following line (around line #312):

$subscribemessage = ereg_replace('\[LISTS\]', $lists, getUserConfig("s
ubscribemessage:$id",$userid));

Directly below this line, add the following:

$subscribemessage = stripslashes($subscribemessage); // HACK - Allow
HTML in system messages

Stripping slashes from member data change notifications
Open admin/subscribelib2.php and look for the following line (around line #595):

$message = ereg_replace('\[USERDATA\]', $datachange, $message);

Directly below this line, add the following:

$message = stripslashes($message); // HACK - Allow HTML in system
messages

Stripping slashes from the confirmation message
Open index.php and look for the following line (around line #555):

$confirmationmessage = ereg_replace('\[LISTS\]', $lists, getUserConfig
("confirmationmessage:$id",$userdata["id"]));

Directly below this line, add the following;

$confirmationmessage = stripslashes($confirmationmessage); // HACK -
Allow HTML in system messages

Stripping slashes from the unsubscribe message
Open index.php and look for the following line (around line #656):

$unsubscribemessage = ereg_replace("\[LISTS\]", $lists,getUserConfig("
unsubscribemessage",$userid));

Directly below this line, add the following:

$unsubscribemessage = stripslashes($unsubscribemessage); // HACK -
Allow HTML in system messages

Hacking phpList

[178]

Stripping slashes from the personal location message
Open index.php and look for the following line (around line #130):

sendMail ($uid[1],getConfig("personallocation_subject"),getUserConfig
("personallocation_message",$uid[2]),system_messageheaders(),$GLOBALS
["envelop
e"]);

Replace this line with the following:

// START HACK - Allow HTML in system messages
 $personallocmessage = getUserConfig("personallocation_
message",$uid[2]);
 $personallocmessage = stripslashes($personallocmessage);
 sendMail ($uid[1],getConfig("personallocation_subject"),$persona
llocmessage,system_messageheaders(),$GLOBALS["envelope"]);
 // END HACK - Allow HTML in system messages

Stripping slashes from the subscribe message for
user imports
Open admin/import1.php and look for the following line (around line #246):

$subscribemessage = ereg_replace('\[LISTS\]', $listoflists, getUserCon
fig("subscribemessage",$userid));

Directly below this line, add the following:

$subscribemessage = stripslashes($subscribemessage); // HACK - Allow
HTML in system messages

Open admin/import3.php and look for the following line (around line #461):

$subscribemessage = ereg_replace('\[LISTS\]', $listoflists, getUserCon
fig("subscribemessage",$userid));

Directly below this line, add the following:

$subscribemessage = stripslashes($subscribemessage); // HACK - Allow
HTML in system messages

Open admin/commonlib/pages/importcsv.php and look for the following line
(around line #834):

$subscribemessage = ereg_replace('\[LISTS\]', $listoflists, getUserCon
fig("subscribemessage", $userid));

Chapter 10

[179]

Directly below this line, add the following:

$subscribemessage = stripslashes($subscribemessage); // HACK - Allow
HTML in system messages

Stripping slashes from the subscribe message when
resending confirmations
Open admin/reconcileusers.php and look for the following stanza
(around line #36):

if ($userdata["subscribepage"]) {
 $subscribemessage = ereg_replace('\[LISTS\]', $lists, getUserConfi
g("subscribemessage:".$userdata["subscribepage"],$id));
 $subject = getConfig("subscribesubject:".$userdata["subscribepage
"]);
 } else {
 $subscribemessage = ereg_replace('\[LISTS\]', $lists, getUserConfi
g("subscribemessage",$id));
 $subject = getConfig("subscribesubject");
 }

Directly below this stanza, add the following:

$subscribemessage = stripslashes($subscribemessage); // HACK - Allow
HTML in system messages

Web interface changes
Having made all the required code changes, we'll now customize the contents of the
system messages in the web interface.

Standard system messages
The standard system messages are configured under the Configure page on the
web interface.

You should now modify the following:

Message users receive when they subscribe
Message users receive when they unsubscribe
Message users receive after confirming their e-mail address
Message that is sent when users change their information
Part of the message that is sent to their new e-mail address when users
change their information and the e-mail address has changed

•

•

•

•

•

Hacking phpList

[180]

Part of the message that is sent to their old e-mail address when users change
their information and the e-mail address has changed
Message to send when they request their personal location

This illustration will use the confirmation message (Message users receive after
confirming their e-mail address).

Customize your message to include whatever HTML you require:

The user will receive this message in HTML:

•

•

Chapter 10

[181]

Subscription and confirmation messages on the
pre-existing subscribe page
While you've made changes to the subscribe and confirmation messages on the
Configure page, be aware that these changes only apply to any subsequently
created subscribe pages.

If you already have subscribe pages set up, you'll also need to customize
the subscribe and confirmation messages which were inherited by these pages
on creation:

Tips
The following are a few tips to help you avoid common stumbling blocks in sending
system messages by HTML.

Be sure to customize all system messages
Once this hack is enabled, all system messages will be sent as HTML. If a default
phpList message is sent as HTML, it will lose all its line breaks and hence look
worse than the original. At the very least, you should convert word-for-word,
each plain text message into HTML.

Hacking phpList

[182]

Composing HTML messages
A useful way to convert a plain text system message to HTML is to copy the text
contents and paste it into a new message. Then customize the message using the
WYSIWYG editor and click the Source button to view the generated HTML code:

How to deal with placeholders producing URLs
You'll note that some messages include placeholders like [SUBSCRIBEURL],
which will be converted into a user-specific URL at the time of sending. Because
you want these links to still be clickable when sent via HTML, be sure to check
that the <A HREF> link contains the correct source.

For example, if the text version of a message looks like this:

If this is correct, please click the following link to confirm your
subscription.
 Without this confirmation, you will not receive any newsletters.

 [CONFIRMATIONURL]

Chapter 10

[183]

In this example, the corresponding HTML version should look like this:

<p>If this is correct, please click the following link to confirm
your subscription.</p>
 <p>Without this confirmation, you will not receive any
newsletters.</p>

 <p>Click here</p>

Keep CSS styling inline
This tip applies not just to system messages as HTML, but also to any HTML
messages sent through phpList.

Many online e-mail providers (for example, Gmail) will attempt to strip out any
potentially harmful or incompatible style information from your message before
displaying it. If you (as you would on a regular website) apply all your styling
before the <body> tag, it's likely it'll all be stripped out.

A more reliable, but more time-consuming, approach is to apply all your
styling inline.

Say you want a particular paragraph to have a gray background with a 1 px solid
border on all sides. Instead of declaring a custom style greyborderbox in the <head>
section of the HTML, and then applying that to your paragraph, you should present
your paragraph like this:

<p style="border:1px solid; background: grey;">Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Vivamus pretium, dolor in eleifend
tempor, lacus erat ultricies sapien, in ultrices lorem ligula quis
eros. Etiam at velit convallis nulla tristique elementum quis at
lacus. Pellentesque ultricies facilisis justo eu egestas.</p>

This will ensure maximum compatibility with web mail providers.

Creating a messages archive page
While the previous section explained how to add functionality to phpList by
manual editing of the source code, this section will walk you through
implementing a "ready-built" phpList hack—the messages archive page.

Perhaps you want your readers to be able to refer to an "archives" page to be able
to find and re-read your previous mailings. phpList itself does not provide such an
archive, but some committed users have implemented an effective solution.

Hacking phpList

[184]

The solution is discussed in the phpList forums at http://forums.phplist.
com/viewtopic.php?t=1501 and the necessary code is available at http://docs.
phplist.com/NewsletterArchive. Copy the contents of the wiki page (everything
from the opening <?php tag at the top to the closing ?> tag at the bottom), and paste
it into a new file called archive.php at the root of your publicly accessible
phpList files.

You'll recall from Chapter 8, Securing phpList, that the .htaccess file in the root of
your phpList installation controls which files may be viewed by web users.

Open .htaccess (you may have to enable viewing of hidden files to see it) and look
for this line (around line #8):

<FilesMatch "(index.php|dl.php|ut.php|lt.php|download.php)$">

Change this line to include archive.php. The line should now look like this:

<FilesMatch "(index.php|dl.php|ut.php|lt.php|download.php|archive.
php)$">

Direct your web browser to http://your-phplist-installation/archive.php—you'll see
a list of all your lists. Clicking each one will show you a reverse-chronological list of
the messages sent to that list, 20 per page:

Customizing the number of messages
displayed per page
By default, 20 messages will be displayed per page. To change the number of
messages per page, add the string "&pagerows=x" to the URL, where x is the
number of messages to display.

Chapter 10

[185]

In the following illustration, the string "&pagerows=2" was added to the URL, so only
two messages are displayed per page:

Adding a message summary to the list
If your users are going to be making frequent use of your archives, you may want to
include a summary of each message on the list of messages page. You can't do this
retrospectively to messages that have already been sent, but you can ensure than any
subsequent messages include a summary.

In the send a message window, when you compose your message, enter the
summary between the <summary> and </summary> tags:

Hacking phpList

[186]

Adding a summary in HTML source mode
Note that you won't be able to enter the summary tags in the regular
WYSIWYG mode. Even if you attempt to do so, the angular brackets
will be changed into HTML entities (that is, < becomes <), rendering
them invalid. You'll need to switch the message editor into Source mode
to add these tags.

Once a message with a summary has been processed, the summary will be displayed
on the archive.php page:

Hiding the summary in outgoing e-mails
If you don't want the summary text to be displayed in the actual message sent to
your readers, encapsulate the summary tags in HTML comment tags. For example,
if your hidden summary was to read "Super-subscriber Christmas specials!", you'd
enter it as:

<!-- <summary>Super-subscriber Christmas specials!</summary> -->

Linking the archives to the main index
Now that you have automatic message archiving, you may want to allow users to
reach the archives via a link on the main page.

Chapter 10

[187]

To accomplish this, open index.php and look for the following line (around line
#274):

printf('<p>%s</p>',$strUnsubscribeTitl
e);

Directly below this line, add the following:

// START HACK - Link to archives
 if (isset($strArchiveTitle)) {
 $TitleArchive = $strArchiveTitle;
 } else {
 $TitleArchive = "See the archive";
 printf("\r\n" . '<p>%s</p>',
$TitleArchive);
 }
 // END HACK - Link to archives

Now the index page will include a link to the archives page:

Changing the "See the archive" string
If you're using a non-English translation, or if you just want to change
the See the archive text, set the variable $strArchive to the text you
want to be displayed in the appropriate language file (under the texts
subdirectory).

Hacking phpList

[188]

Sending messages using your e-mail
client
One of the limitations of phpList is that you have to use the web interface to compose
your messages. Some users may prefer to compose their message using their regular
e-mail client or pass on a forwarded message to their list.

There is a phpList hack which implements this functionality. It's described at
http://docs.phplist.com/MailToList.

Installing MailToList
To install the MailToList hack, download the latest version (linked to the wiki page,
and included with this book) and extract the contents. Copy m2l_cron.php to the
root of your publicly-accessible phpList directory, and copy the mailtolist.php
and the plugins/mailtolist folder into your admin/plugins directory, retaining
the folder structure.

Your plugins folder will now look something like this:

drwxr-xr-x 2 root root 4096 Apr 24 2010 defaultplugin
-rw-r--r-- 1 root root 265 Apr 27 2006 helloworld.php
drwxr-xr-x 2 root root 4096 Dec 5 18:18 mailtolist
-rw-r--r-- 1 root root 507 Feb 14 2007 mailtolist.php
drwxr-xr-x 2 root root 4096 Apr 24 2010 sidebar
-rw-r--r-- 1 root root 241 Apr 27 2006 sidebar.php

Open admin/plugins/mailtolist/get_email.class.php and look for the
following line (around line #30):

var $attach_url = "http://www.yourdomain.com/mailinglist/
attachments/";

Change the value of $attach_url to the URL which users would use to view your
attachments directory, if you have one.

Then look for the following line (around line #34):

var $file_path = "C:/wamp/www/phplist test/lists/tmp/";

Change the value of $file_path to the filesystem path to your attachments directory
(the same as $attachment_repository in config/config.php).

Now open config/config.php and look for the following line:

define("PLUGIN_ROOTDIR","/home/me/phplistplugins");

Chapter 10

[189]

Change this to:

define("PLUGIN_ROOTDIR","plugins");

While phpList permits either a relative or an absolute path to be
specified as your plugin root dir, the Mail To List cron interface
expects this to be a path relative to the /admin/ folder.

Reload the administration web interface. At the bottom of the right-hand sidebar,
you'll see new links for the plugins we've enabled. Click on mail to list:

Hacking phpList

[190]

The first time you click on mail to list, the plugin will update your database
structure to add its own tables. Click on Click to reload to load the "normal"
interface you'll see from now on:

Configuring the Mail To List
Click on Configure Mail To List to start the configuration process. For each list to be
configured for Mail To List processing, select the list in the drop-down box and click
on the Edit list button:

Chapter 10

[191]

For each list, you'll need an independent e-mail address with which to receive
incoming messages. Configure your e-mail address, mail box details, and whether
or not you want to automatically place incoming messages in the message queue
(that is, you may want to manually review them first). Click on Apply settings
to save:

Note that you won't be directed back to the main configuration page—you'll need
to re-navigate to this page using the sidebar.

Hacking phpList

[192]

Whitelisting users
Of course, you don't want just anybody to be able to send e-mails to your list
(imagine receiving a spam message and having it re-broadcasted to your trusting
subscribers!). To this end, you'll need to "whitelist" trusted e-mail addresses.
Click on the Edit users button on the main configuration page to whitelist users:

Manually adding users
To manually add a user, enter their name and e-mail address and click on Add user:

Chapter 10

[193]

I�������������� mporting users
If you have a large subscriber base and you want several users to be able to create
messages by e-mail, it may be impractical to whitelist them one-by-one. Click on the
Import users button to begin importing existing list members:

Select the list from which you want to import users and click on Import.

Processing incoming e-mails
Send an e-mail to the configured address from a whitelisted e-mail account
and then click on the Process new mails button:

Hacking phpList

[194]

Note that due to a bug in the code, if there is only a single message to be processed, it
will not be reflected as having been successful even though it was (that is, Processed
message 1 of 1 still means that a message was successfully processed):

When you run process queue the next time, the message will be delivered
as per usual.

Automating Mail To List using cron
While sending an e-mail to phpList via your e-mail client is very convenient, if you
still have to login to manually process the incoming mail box, then you're not saving
much time or effort.

Let's automate the processing of this mail box using the ml2_cron.php file, which
you've saved into the root of your phpList folder upon installation earlier.

Using whatever cron-based task scheduling interface you have at your disposal
(either via the command line or a web control panel), schedule the running of this
file via the PHP CLI binary. That is, if your version is saved in /home/mywebuser/
public_html/lists/ml2_cron.php and your PHP binary is /usr/bin/php, then set
up a cron task (at whatever frequency you prefer) to execute /usr/bin/php /home/
mywebuser/public_html/lists/ml2_cron.php.

Chapter 10

[195]

The output of this command will look just like it does in the web interface, except it
will be displayed in HTML code, like this:

<h1>Mail to List Processing page </h1><p>Mail to List is trying to
process all the new messages</p>

Processing list 'myfans'
-

Status of pop3 connection:
Connected

Processed
message 1 of 1
No e-mails where sent to myfans@
phplistpackt.com.

Combining cron automation with phpList's processqueue automation will,
therefore, give you the potential to send messages to your subscribers without
having to use the web interface at all.

Bugs in Mail To List
At the time of writing, the latest version of mailtolist is 2.0.0b. This version
suffers from a few bugs which will hopefully be addressed by the developer in
future releases. Two such bugs are the following.

Plain text messages will come out blank
Due to either a flaw in the plugin logic or to changes to recent versions of phpList, if
you use your e-mail client to send a message in plain text format, it will be delivered
to your subscribers with no content and only the default footer. To work around this,
always send your messages in HTML format.

Plain text or HTML attachments will disappear
Due to the same bit of logic (deconstructing a multipart MIME message), if your
attachment is a plain text file or an HTML file, the plugin will assume that file to
be the message itself and not the attachment, and confusion will ensue.

Hacking phpList

[196]

Summary
In this chapter, you have learned to "hack" phpList, both by making minor code
edits yourself, using pre-created plugins, or creating standalone files (that is,
archive.php) to add additional functionality. You "hacked" phpList to add
the following features:

Substituting user attributes in the message subject line
Sending system messages formatted as HTML instead of plain text
Creating a messages archive page
Send messages via your e-mail client

In the next chapter, we'll discuss some common issues encountered using phpList
and teach you how to troubleshoot and maintain your installation.

•

•

•

•

Troubleshooting and
Maintenance

In the preceding chapters, you've learned about how to use phpList from simple
routine list management to more advanced features and settings. In this chapter,
you will learn how to maintain, backup, and update phpList, as well as how to
troubleshoot common faults and errors.

We will cover the following topics:

General fault diagnosis
Common errors and warnings
Backing up phpList
Upgrading phpList
Where to find more help and information

General fault diagnosis
phpList includes some advanced controls for providing information and debugging
when a problem occurs. These can help us determine where the fault lies.

Test mode (the "dry run")
In test mode, phpList will appear to process messages as normal, but will not
actually send any messages. This is a useful way to test your configuration and
settings without disrupting your subscribers.

•

•

•

•

•

Troubleshooting and Maintenance

[198]

Open config/config.php and look for the following line (around line #193):

define ("TEST",0);

Change the value of TEST to 1. If TEST is set to 1, then no actual e-mail will be sent
from phpList.

You will be notified that the phpList's admin interface is in test mode:

Similar messages will be displayed when you process the queue:

Verbose mode – tell me what you're thinking
In verbose mode, phpList will output far more details than usual when processing
messages. For example, it will display every e-mail address used when processing
the queue—on a large e-mail list, this can significantly impact the performance of the
in-browser "process queue" page!

To enable verbose mode, open config/config.php, and look for the following line
(around line #198):

define ("VERBOSE",0);

Change the value of VERBOSE to 1 to enable verbose mode.

Chapter 11

[199]

When sending a message in verbose mode, the process output includes the SQL
statements used to determine whether a user should receive a message or not.
These can be very helpful in resolving faults around repeat / RSS messages.

Common errors and warnings
Here are some common faults encountered with phpList and their resolutions:

Error: Please make sure that index.php is
your default document for a directory
On installing phpList, you see a page entitled Error: please make sure that index.
php is your default document for a directory as follows:

Troubleshooting and Maintenance

[200]

This is a phpList-specific error message intended to appear if:

You don't have PHP installed
Your website host prefers to display the contents of index.html (a static
page) before index.php (a dynamic page)

If you are using a web-hosting service, this would be a matter for your provider
to resolve.

If you manage your own host using Apache, you'll need to edit the configuration
for this server and find the DirectoryIndex directive. This line tells the web server
which file is the "default" page under a given directory. There may be several options
in descending order of priority. Ensure that index.php is included and that it is
included before index.html.

The quick-and-dirty way to address this problem may be simply to delete index.
html so that index.php will take priority.

(You can read about the functionality of Apache's DirectoryIndex directive at
http://httpd.apache.org/docs/trunk/mod/mod_dir.html).

Error: IMAP is not included in your PHP
installation, cannot continue
You may encounter the message error: IMAP is not included in your PHP
installation, cannot continue when attempting to process bounces, as shown
in the following screenshot:

•

•

Chapter 11

[201]

This is because a vital PHP module (php-imap) is missing from your installation.
This module is used not only for IMAP connections, but also for POP3 connections
and contains the functions that phpList requires to poll the bounce mailbox for
new messages.

To resolve this message, either request your web hosting provider to install the
php-imap module or install it on your own web server.

Fatal error: Cannot connect to database,
access denied. Please contact the
administrator
This error indicates that one of the following four variables in config/config.php
is incorrect:

•	 Your database host name (often it's localhost)
•	 Your database name (the actual database on the aforementioned host, where

phpList's data is stored)
•	 Your database username (the user who connects to the aforementioned

database)
Your database user's password (the password used by the aforementioned
user to connect)

Confirm each of these either by using a web-based control panel or from a command-
line on your host.

If you have command-line access to your web host, you can test these details using
the mysql command as follows:

mysql -h <hostname> -u <user> -p<password> <databasename>

A failed attempt will show you a message similar to the following:

ERROR 1045 (28000): Access denied for user 'baduser'@'localhost' (using
password: YES)

A successful attempt will give the following prompt:

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 984

•

Troubleshooting and Maintenance

[202]

Server version: 5.0.77-log Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Type quit to exit from a MySQL prompt

HTTP Error 500: Internal server error
The HTTP Error 500: Internal server error is the error thrown when the server
encountered an unexpected condition which prevented it from fulfilling the request. This
can be caused by several factors, but in the case of phpList, if you haven't made
any changes to the source code, the most likely scenario is that your web server is
running PHP as a CGI as opposed to an Apache module.

Some web-hosting providers will prefer to run PHP as a CGI for its security and
privilege-separation advantages.

One resolution to this problem in the context of phpList is to edit .htaccess
in the root of your publicly-accessible phpList files and comment out this line
(around line #12):

php_flag magic_quotes_gpc on

By changing it to:

php_flag magic_quotes_gpc on

HTTP Error 404: File not found
Like the previous Error 500, the 404 Error status is a generic HTTP status meaning
that the server couldn't find an appropriate file to match the URL you requested.

phpList needs to know the URL at which it's installed in order to generate
appropriate hyperlinks, both on the web interface, and in the e-mails it delivers.

To resolve this fault, confirm that the value of Website address on the configure
page is correct:

Chapter 11

[203]

Also confirm the values of $pageroot and $adminpages in config/config.php.

If you've migrated your phpList installation from one URL to another,
you may find that you are unable to save any changes made to the
configure page, because phpList will redirect you to the previous URL
when attempting to save. In this instance, you'll need to use a database
editor to manually change the value of the website field in the
phplist_config table in the database.

Warning: The pageroot in your config does
not match the current location
This warning (The pageroot in your config does not match the current location) will
be displayed on the admin interface if the values of $pageroot and $adminpages do
not correspond to the current URL:

Troubleshooting and Maintenance

[204]

For example, if you were accessing the admin interface at http://your-
installation/demo/phplist, but you had configured $pageroot as /lists,
then this error would be presented. It indicates that the URLs generated by phpList
in both the configuration section and in any e-mails sent would be invalid.

Confirm that the values of $pageroot and $adminpages both align with the URL
currently used to access the admin interface.

Warning: In safe mode, not everything will
work as expected
PHP's "safe mode" (deprecated in upcoming version 6) was intended to increase the
security of the web server by restricting certain PHP functions. This has various
restricting effects on phpList, the primary one being that automated bounce list
processing is not possible.

If you are seeing this message, either you or your hosting provider should disable
safe mode, if possible. If it's not possible to disable safe mode, you will need to
process bounces manually. There is also the possibility of problems occurring when
sending messages to lists that exceed 500 subscribers.

Warning: The attachment repository does not
exist or is not writable
This message indicates that the filesystem path in which you've configured
phpList to save its attachments, either doesn't exist, or is not writable by
the web server process:

Chapter 11

[205]

Open config/config.php and look for the following line (around line #583):

$attachment_repository = '/tmp';

Change the value of $attachment_repository to match the location (ideally a
non-public location) where you want phpList to store uploaded files. Make sure
that this directory exists and that the web server process has write-access to it.

Warning: open_basedir restrictions are
in effect
This message suggests that the PHP configuration on your web host has been set up
with a specific range of directories that PHP may access. This open_basedir setting
is often configured on shared hosts for additional security.

This warning is more often found in combination with the previous warning (The
attachment repository does not exist or is not writable). If you see the two of these
messages together, there's a high likelihood that the open_basedir security setting
is preventing PHP from accessing your chosen $attachment_repository directory.
Contact your hosting provider to determine which directories are usable under their
open_basedir configuration", and make sure that your $attachment_repository
directory is located within one of these usable directories.

Warning: Things will work better when PHP
magic_quotes_gpc = on
Magic_quotes_gpc is a PHP setting (deprecated in version 6) that automatically
escapes incoming data (that is, from HTML forms) to prevent SQL injection attacks.
For now, phpList will work better when magic_quotes_gpc is enabled and it will
present this warning message when it is not:

Troubleshooting and Maintenance

[206]

The .htaccess file supplied with phpList will automatically enable magic_quotes_
gpc if possible. If you are seeing this message, it's likely your PHP configuration has
been "locked down" to prevent magic_quotes_gpc from being enabled and you will
need to contact your web hosting provider.

Warning: Things will work better when PHP
magic_quotes_runtime = off
In contrast to the magic_quotes_gpc feature just discussed, magic_quotes_runtime
will automatically escape any data returning from an external source at runtime,
such as a database query or a filesystem attachment. phpList will also work better
when magic_quotes_runtime is set to off:

Warning: You are trying to use RSS, but XML
is not included in your PHP
You will see this message if you've enabled RSS processing, but your PHP
installation doesn't include XML support:

To resolve this, compile PHP with XML support, install the appropriate php-xml
module, or request your web hosting provider to arrange it.

Chapter 11

[207]

Mailer Error: SMTP Error: Could not connect
to SMTP host
You may see this error if you've configured phpList to use a custom SMTP host
and the PHPMailer component is unable to connect to this host to deliver outgoing
e-mails. To check your SMTP host details, edit config/config.php on line #670,
and ensure that your SMTP server is set correctly. Also ensure that you have
connectivity from your phpList installation to this SMTP server (that is, check
firewalls and access rules).

 # To use a SMTP please give your server hostname here, leave it blank
to use the standard
PHP mail() command.
define("PHPMAILERHOST",'i.dont.exist.com');

Creating a backup
It's important to create regular backups of your phpList installation, which you can
then use to restore it in the event of a data loss or corruption. phpList doesn't have a
built-in backup mechanism, but as it's powered by a combination of a database and a
collection of PHP and support files, we can back these up manually.

Backing up the database
Most web hosting providers will supply an interface to manage your databases,
as well as to create backups. This example will illustrate using the popular
phpMyAdmin tool to create a database backup.

Log into your phpMyAdmin tool using your phpList database user credentials
and select your database from the drop-down list in the left-hand panel.

The number of database tables displayed will vary with your
installation, as a custom table is created for every attribute you define
within your own configuration.

Troubleshooting and Maintenance

[208]

Click on the Export tab at the top of the main (right-hand) panel:

On the subsequent export page, ensure that all database tables are selected. Also
ensure that the Data and Save as file checkboxes are ticked and then click on Go at
the bottom-right:

Your browser will prompt you to download a file. This is a current copy of the
database, which can be used to recreate it in the event of a loss.

Chapter 11

[209]

Backing up the files
You can simply use your FTP client to download a copy of your phpList folder to
another system and save it somewhere for safekeeping.

Upgrading phpList
Before attempting an upgrade, ensure that you've made a fresh backup of both the
database and the phpList files. Specifically, you'll want to ensure you have a copy of
config/config.php and any other files that you've manually changed.

Download the latest version of phpList from http://www.phplist.com/download.
Extract it locally and then upload it to your web server, overwriting the existing files.

Once the upload is complete, either copy config/config.php over verbatim
(for a minor update) or re-customize config/config.php using your backed-up
copy as a sample.

Load the admin page in your web browser. A message will warn you that your
database is out-of-date. Click on the upgrade link:

Troubleshooting and Maintenance

[210]

You will be presented with a confirmation message explaining the upgrade process.
Click on the word here to start the upgrade. This may take some time, depending on
the size of your database:

Upon completion, you will see an Information: Success message:

To confirm that the upgrade message is no longer displayed and that the database
was successfully upgraded, return to the main admin page and then click on the
dbcheck link to check the database structure (the upgrade link should be gone at
this point):

Chapter 11

[211]

Confirm that the database check is successful (look at the checkmarks):

The upgrade is complete.

Where to find more help and information
phpList is constantly evolving and the features and directions provided in this book
will eventually be made obsolete by future versions.

Outside of this book, your primary source of information and assistance will
probably be the phpList user forums (http://forums.phplist.com/) and the
phpList documentation wiki (http://docs.phplist.com/).

Troubleshooting and Maintenance

[212]

Summary
In this chapter, you learned how to troubleshoot common faults and errors with
phpList, as well as how to perform routine maintenance on your installation.

You covered the following topics:

General fault diagnosis
Common errors and warnings
Backing up phpList
Upgrading phpList
Where to find more help and information

•

•

•

•

•

Index
Symbols
$subject variable 172
.htaccess file 206
.TGZ file 9
[ATTRIBUTE] tags 171
[CONTENT] placeholder 120

A
add a list link 102
add a new one link 30
administrator management

about 105
assigning, to lists 109, 110
new administrator, testing 109, 110
restricted admin, creating 105-108
super admin, creating 109

admin login screen 13
admin pages

securing, htauth password used 139
admin pages security, htauth password used

about 140
admin/.htaccess, amending 141, 143
htpasswd file, creating 140
htpasswd file, creating in Unix shell 141
htpasswd file, creating online 140
passwords, remembering 143

admin password
changing 135, 136
strong passwords, choosing 135, 136

admin permissions
setting, overview 107

admins link 136

advanced user/click tracking statistics
about 130
domain statistics, viewing 133
overview page 131
statistic sidebar link 130
view clicks by url link 132, 133
view opens by message link 133

Appearance option 72
attachments

adding, to messages 151-153
enabling 151
files on web server, attaching 155-157
multiple files, adding simultaneously 153,

154
on web server, securing 158

B
backup

creating 207
database, backing up 207, 208
files, backing up 209

basic subscribe page
setting up 28, 29

bounce
about 43

bounce handling
about 145
current rules against bounces, checking 150
enabling 145
new bounce rule, creating 146, 147
new bounce rules, auto-generating 149
new rule based creating, existing bounce

based 147, 148

[214]

regular expressions 146
rules 146

bounce review
e-mail bounce reason, intepreting 49
e-mail bounce users, examining 50, 51
individual bounce actions 48
unconfirmation actions in eventlog,

reviewing 51
bounces

manual processing 46, 47
reviewing 47, 48
testing 46, 47

built-in placeholders
[CONTENT] 112
[EMAIL] 112
[LISTS] 112
about 111

C
chmod command 138
Clear cached data button 64
click tracking

about 125
basic statistics per message, examining 129
enabled email, sending 128
extra detail, enabling 128
false spam/phishing detection, avoiding

126-128
CLI wrapper

customizing 167, 168
config file 125
Configuration functions section 18
Configure Attributes item 16
Configure General Values 15
configure link 16
consecutive bounces 45
correct filesystem permissions

about 137
appropriate permissions, setting 138
confirming, in GUI SFTP/FTP client 137
shell session, using 138

Countries in the world attributes 17
Create Subscribe Pages 19
Criteria tab 115
cron

used, for automating Mail To List 194, 195

custom subscribe page
about 30
attributes, creating 30, 31
attributes, selecting 34
creating 32
delivery options, customizing 34
HTML footer, customizing 33, 34
HTML header, customizing 33, 34
list, selecting 35
spammer protection 36
text, customizing 33
title, customizing 33

D
dbcheck link 210
Default Landing Tab 82
default permissions

default permissionssetting 108
DirectoryIndex directive 200
Display subscribe form automatically if

only one active list is offered option
29

domain-based e-mail throttling
about 151

downloading
 phpList 8

Drupal-phpList integration. See php
List-Drupal integration

dry run
general fault diagnosis 197

E
e-mail bounce handling

about 43
basic settings, configuring 44, 45
requirements 43, 44

e-mail delivery
testing 20

e-mail delivery, testing
message, sending 22-24
message queue(test mode), processing 24
test mode, disabling 24
user, creating 20-22

e-mail personalization
about 111

edit link 28

[215]

errors
about 199, 200
fatal error 201
HTTP Error 404 (File not found) 202, 203
HTTP Error 500 (Internal server error) 202
mailer error 207

F
Facebook

phpList, integrating with 74
Facebook-phpList integration. See phpList-

Facebook integration
Format tab 119

G
general fault diagnosis

about 197
test mode 197, 198
verbose mode 198, 199

H
history link 88, 125
htaccess restrictions 139
HTML code, subscribe form

customizing 39
JavaScript, removing 39
optional pop-up configuration 39
subscribe form button, removing 40
tag, changing 39

htpasswd command 141

I
individual user management

bulk user management 90
complex list, importing 93-97
list memberships, updating 87
simple list, importing 91-93
user details, updating 87, 89
user history, examining 88, 89
users, creating 86
users, exporting 100-102
users, importing 90
users, reconciling 97-99

user unsubscribing 88
Info tab 83
initial configuration

about 10
database settings 10
path settings 10

initial login
Admin Password, modifying 14
Attributes, configuring 17
General Values, configuring 16
List, creating 19
Subscribe Pages, creating 20

installation, phpList Integration Module
about 54
attribute mapping 57
debugging, turning on 61
Drupal’s cache, clearing 63
Drupal permissions, configuring 62
external configuration 55-57
list access, configuring 61
miscellaneous 60
My Account-My Newsletter options 58
My newsletters access, confirming 64
 PHPList subscribe block, adding 65, 67
 PHPList subscribe block, troubleshooting

68
Registration page options 59
users, synchronizing to phpList 60, 61

installation, phpList Integration plugin
admin login 70
admin password 70
form setting 70
general setting 70
HTML comments 72
page, adding 71, 72
widget, adding 72, 74

installing
phpList databases 7

L
list administrators page 105
lists

creating 102, 103
managing 102
member operations, performing 103-105

[216]

lists link 19
localhost 10
ls -l command 138

M
Magic_quotes_gpc 205
magic_quotes_gpc feature 206
MailToList

automating, cron used 194, 195
bugs 195, 196
configuring 190, 192
installing 188

main page link 15-19
messages

attachments, adding 151-153
auto-generating, from RSS feeds 160, 161
available criterion amount, increasing 116
enhancing, built-in placeholders used 111,

112
personalizing, member attributes used 113,

114
placeholders 113
repeating, automatically 158
repeating message, forcing to repeat 159,

160
repeating message, sending 159
sending, to attribute based subsets 115, 116
summary, adding to list 185, 186

messages archive page
creating 183, 184
linking, to main index 186
messages displayed, customizing 184
message summary, adding to list 185, 186
summary in outgoing e-mails, hiding 186

message sending, e-mail client used
about 188
incoming e-mails, processing 193, 194
Mail To List, bugs 195
Mail To List, configuring 190, 191
MailToList, installing 188
Mail To List automating, cron used 194, 195
users, adding manually 192
users, importing 193
users, whitelisting 192

messages link 123
message templates

about 117
creating 117, 118

mod_auth level 143
My newsletters tab 64
mysql command 201

N
newsletter effectiveness

about 121
privacy note 121
transparency note 121

O
open_basedir setting 205
overview link 133

P
php-imap module 8
phpList

about 7
basic concepts 27
documentation wiki 211
downloading 8
e-mail bounce handling 43
errors 199
files, installing 7
references 211
securing 135
unpacking 9, 10
upgrading 209-211
uploading 9, 10
user forums 211
user tracking 122
warnings 199

phpList, securing
admin pages, securing 139
admin password, changing 135
correct filesystem permissions, confirming

137
htaccess restrictions, confirming 139

phpList-Drupal integration
about 53
phpList Integration Module configuration

54, 55

[217]

phpList Integration Module installation 54,
55

prerequisites 54
phpList-Drupal integration plugin

phpList Integration Module configuration
69, 70

phpList Integration Module installation 69,
70

phpList-Facebook integration
App, creating 77, 79
Facebook page, configuring 80, 82
list, preparing 75, 76, 77
phpList, as default tab 82, 83
prerequisites 74

phpList-WordPress integration
about 68
phpList Integration plugin configuration 68
phpList Integration plugin installation 68
prerequisites 68

phplist – templates in the system page 118
phpList database

installing 7
phpList files

installing 7
phpList files installation

creating 10, 11
initial configuration, performing 10
initial login 13
requirements 8
steps 7
web-based configuration, performing 11

phpList Integration Module installation.
See installation, phpList Integration
Module

phpList Integration plugin installation.
See installation, phpList Integration
plugin

PHPList Integration widget 74
PHPlistMailer class 176
phplist setup link 12
pop access 44
popuser 45
predefined defaults link 17
processing automation

CLI wrapper, customizing 167, 168
requirements 167

setting 166
public_html folder 9

R
recaptchalib.php 36
reconcile users link 98
regular expressions 146
requirements, phpList files installation

list 8
RSS

feed, associating with list 162
feed, messages auto-generating from 160
messages, user requirements for receiving

163
messages schedule, setting 165, 166
new RSS items, getting 163
support, enabling 161
used, for sending messages, sending 165

ruleflow. See Drools Flow

S
Save Changes button 119
send a message link 22
setup link 15, 16
Set Up New App button 77
show link 48
slashes,

 stripping, from database stored
messages 176

stripping, from confirmation message 177
stripping, from member data change notifi-

cations 177
stripping, from personal location message

178
stripping, from unsubscribe message 177,

178
stripping, from subscribe message, for

normal subscriotions 177
stripping, from subscribe message, for user

imports 178, 179
stripping, from subscribe message, when

resending confirmations 179
slashes, stripping from messages

web interface changes 179

[218]

spammer protection, subscribe page
about 36
admin/subscribelib2.php, modifying 37
index.php, modifying 36
PHP library, downloading 36
reCAPTCHA keys, signing up for 36

standard system messages, web interface
changes 179, 180

subscribe form
embedding, within other application 38, 39
HTML code, customizing 39
HTML code, generating 38

subscribe pages list 29
system messages

sending, as HTML 174
system messages, sending as HTML

code changes 174
CSS styling 183
HTML, stripping out 175
HTML messages, composing 182
message HTML version, sending 175, 176
message plain-text part, creating 175
message text version, sending 175, 176
placeholders 182, 183
slashes, stripping from confirmation mes-

sage 177
slashes, stripping from member data

change notifications 177
slashes, stripping from messages 176
slashes, stripping from personal location

message 178
slashes, stripping from unsubscribe mes-

sage 177
slashes stripping from subscribe message,

for normal subscriptions 177
slashes stripping from subscribe message,

for user imports 178, 179
slashes stripping from subscribe message,

when resending confirmations 179
tips 181, 182
web interface changes 179

T
Turn on debugging checkbox 61

U
unsubscribe page link 88
update page link 87
user attributes

forward message 174
no attribute substitution, for third party

173
substituting, in subject line 171, 172

users
all users, exporting 100
bulk management 90
complex list, importing 93-97
details, updating 89, 90
exporting 100
history, examining 88, 89
importing 90
individual management 86
reconciling 97-99
simple list, importing 91, 92
specific list, exporting 101, 102
unsubscribing 88

users link 20
user tracking

about 122
enabling, on message 122
statistics, examining per message 123, 124
statistics, examining per user 124
turning on, by default 123

V
view bounces link 47
view clicks by message link 132
viewed counter 131
View page link 72
view users link 129

[219]

W
warning 203-206
web-based configuration

initial database 11, 12
performing 11

web interface changes
confirmation messages, on pre-existing

subscribe page 181
standard system messages 179, 180
subscription messages, on pre-existing

subscribe page 181

web server
attachments, securing 158
files stored, attaching 155, 156

Website address attribute 16
WordPress-phpList integration. See

phpList-WordPress integration

Z
ZIP file 8

Thank you for buying
phpList 2 E-mail Campaign Manager

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Selling Online with Drupal
e-Commerce
ISBN: 978-1-847194-06-0 Paperback: 264 pages

Walk through the creation of an online store with
Drupal's e-Commerce module

1.	 Set up a basic Drupal system and plan your
shop

2.	 Set up your shop, and take payments

3.	 Optimize your site for selling and better
reporting

4.	 Manage and market your site

Drupal 6 Search Engine
Optimization
ISBN: 978-1-847198-22-8 Paperback: 280 pages

Rank high in search engines with professional SEO
tips, modules, and best practices for Drupal web sites

1.	 Concise, actionable steps for increasing traffic
to your Drupal site

2.	 Learn which modules to install and how to
configure them for maximum SEO results

3.	 Create search engine friendly and optimized
title tags, paths, sitemaps, headings, navigation,
and more

4.	 A practical, step-by-step guide that takes the
mystery out of Drupal SEO

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installation and Configuration
	Installing phpList files and database
	Requirements
	Downloading phpList
	Unpacking and uploading phpList
	Creating a database
	Performing initial configuration
	Database settings
	Path settings

	Performing web-based configuration
	Initialize database

	Initial login
	Change Admin Password
	Configure General Values
	Configure Attributes
	Create Lists
	Create Subscribe Pages

	Testing e-mail delivery
	Create user
	Sending a message
	Processing the message queue (in test mode)
	Disabling test mode
	Processing the message queue (for real)
	Summary

	Chapter 2: Setting up Subscriber Forms
	Basic concepts
	Setting up a basic subscribe page
	Creating a custom subscribe page
	Creating attributes
	Creating subscribe page
	Customizing title and text
	Customizing the HTML header and footer
	Customizing delivery options
	Selecting attributes
	Selecting list
	Protecting your subscribe page from spammers
	Signing up for reCAPTCHA keys and downloading the PHP library
	Modifying index.php
	Modifying admin/subscribelib2.php

	Putting a subscribe form on other applications
	Generating HTML code for the subscribe form
	Customizing HTML code
	Changing the form action
	Removing the JavaScript
	Optional pop-up confirmation
	Removing the subscribe form button

	Summary

	Chapter 3: Setting up E-mail Bounce Handling
	E-mail bounce handling
	Requirements
	Configuring basic bounce settings

	Testing and manually processing bounces
	Reviewing bounces
	Taking action on individual bounces
	Interpreting why an e-mail bounced
	Examining users whose e-mail bounces
	Reviewing unconfirmation actions in the eventlog

	Summary

	Chapter 4: Setting up phpList with Popular Publishing Platforms
	Integrating phpList with Drupal
	Prerequisites
	Installing and configuring the phpList integration module
	External phpList configuration
	Attribute mapping
	My Account – My Newsletters options
	Registration Page options
	Miscellaneous
	Synchronize users to phpList
	Turn on debugging

	Configuring list access
	Configuring Drupal permissions
	Clearing Drupal's cache
	Confirming access to My newsletters
	Adding the phpList subscribe block
	Troubleshooting the phpList subscribe block

	Integrating phpList with WordPress
	Prerequisites
	Installing and configuring the phpList Integration plugin
	General Settings
	Form Settings

	Adding a phpList Integration page
	Adding a phpList Integration widget

	Integrating phpList with Facebook
	Prerequisites
	Preparing phpList
	Creating the Facebook app
	Configuring the Facebook page
	Making phpList the default tab on your Facebook page

	Summary

	Chapter 5: List, User, and Administrator Management
	Individual user management
	Updating a user's details and list memberships (as the user)
	Unsubscribing a user (as the user)
	Examining a user's history (as administrator)
	Updating a user's details (as admin)
	Bulk user management
	Importing users
	Importing a simple list
	Importing a complex list

	Reconciling users
	Exporting users
	All users
	Specific list

	Managing lists
	Creating a list
	Performing member operations on a list

	Managing administrators
	Creating a restricted admin
	Setting admin permissions
	Creating a super admin
	Assigning administrators to lists
	Testing a new administrator

	Summary

	Chapter 6: Personalizing E-mail Body
	Enhancing messages using built-in placeholders
	Placeholders in confirmation messages

	Personalizing messages using member attributes
	Sending messages to subsets of lists based on attributes
	Increasing the amount of criteria available

	Using message templates
	Creating a message template

	Summary

	Chapter 7: Measuring Effectiveness of Newsletters
	User tracking
	Sending a message with user tracking enabled
	Examining user-tracking statistics per message
	Examining user-tracking statistics per user

	Click tracking
	Avoiding false spam / phishing detection
	Enabling click tracking
	Enabling extra detail in click tracking

	Sending an e-mail with click tracking enabled
	Examining basic click-tracking statistics per message

	Examining advanced user/click-tracking statistics
	Extra statistics sidebar link
	Overview
	Viewing clicks by URL
	Viewing clicks by message
	Viewing opens by message
	Viewing domain statistics

	Summary

	Chapter 8: Securing phpList
	Changing the admin password
	Choosing strong passwords
	Changing phpList admin password

	Confirming correct filesystem permissions
	Confirming permissions in a GUI SFTP/FTP client
	Confirming permissions using a shell session
	Setting appropriate permissions

	Confirming htaccess restrictions are in place
	Securing admin pages with additional (htauth) password
	Creating an htpasswd file
	Creating an htpassword file online
	Creating an htpasswd file in a Unix shell

	Amending admin/.htaccess

	Summary

	Chapter 9: Advanced Features
	Advanced bounce handling
	Bounce rules and regular expressions
	Creating a new bounce rule
	Creating a new rule based on an existing bounce
	Auto-generating new bounce rules
	Checking current rules against bounces

	Domain-based e-mail throttling
	Adding attachments to messages
	Adding multiple files simultaneously
	Attaching files stored on your web server
	Securing your attachments stored on the web server

	Automatically repeat messages
	Sending a repeating message
	Forcing a repeating message to repeat before embargo

	Auto-generating messages from RSS feeds
	Enabling RSS support
	Associating an RSS feed with a list
	"Getting" new RSS items
	User requirements to receive RSS messages
	Sending a message including RSS
	Setting your RSS message's schedule

	Setting up processing automation
	Requirements
	Customize the CLI "wrapper"

	Summary

	Chapter 10: Hacking phpList
	Substituting user attributes in the subject line
	Caveat #1 – no attribute substitution for a third party
	Caveat #2 – "Forward message" page displays an un-substituted subject

	Sending system messages as HTML instead of text
	Code changes
	Creating the plain-text part of the message by stripping out the HTML
	Sending both the HTML and text versions of the message
	Stripping slashes from messages stored in the database

	Web interface changes
	Standard system messages
	Subscription and confirmation messages on the pre-existing subscribe page
	Tips

	Creating a messages archive page
	Customizing the number of messages displayed per page
	Adding a message summary to the list
	Hiding the summary in outgoing e-mails
	Linking the archives to the main index

	Sending messages using your e-mail client
	Installing MailToList
	Configuring the Mail To List
	Whitelisting users
	Manually adding users
	Importing users

	Processing incoming e-mails
	Automating Mail To List using cron
	Bugs in Mail To List
	Plain text messages will come out blank
	Plain text or HTML attachments will disappear

	Summary

	Chapter 11: Troubleshooting and Maintenance
	General fault diagnosis
	Test mode (the "dry run")
	Verbose mode – tell me what you're thinking

	Common errors and warnings
	Error: Please make sure that index.php is your default document for a directory
	Error: IMAP is not included in your PHP installation, cannot continue
	Fatal error: Cannot connect to database, access denied. Please contact the administrator
	HTTP Error 500: Internal server error
	HTTP Error 404: File not found
	Warning: The pageroot in your config does not match the current location
	Warning: In safe mode, not everything will work as expected
	Warning: The attachment repository does not exist or is not writable
	Warning: open_basedir restrictions are in effect
	Warning: Things will work better when PHP magic_quotes_gpc = on
	Warning: Things will work better when PHP magic_quotes_runtime = off
	Warning: You are trying to use RSS, but XML is not included in your PHP
	Mailer Error: SMTP Error: Could not connect to SMTP host

	Creating a backup
	Backing up the database
	Backing up the files

	Upgrading phpList
	Where to find more help and information
	Summary

	Index

