
Apago PDF Enhancer

Richard Siddaway

M A N N I N G

IN PRACTICE

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

PowerShell in Practice

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

PowerShell in Practice

RICHARD SIDDAWAY

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Sebastian Stirling
Manning Publications Co. Copyeditor: Benjamin Berg
180 Broad Street, Suite 1323 Cover designer: Leslie Haimes
Stamford, CT 06901 Typesetter: Gordan Salinovic

ISBN 9781935182009
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10
www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

Apago PDF Enhancer

 To Ann, for everything
www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer
www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

brief contents
PART 1 GETTING STARTED WITH POWERSHELL.................................1

1 ■ PowerShell fundamentals 3
2 ■ Learning PowerShell 30
3 ■ PowerShell toolkit 63
4 ■ Automating administration 92

PART 2 WORKING WITH PEOPLE...121
5 ■ User accounts 123
6 ■ Mailboxes 159
7 ■ Desktop 188

PART 3 WORKING WITH SERVERS..221
8 ■ Windows servers 223
9 ■ DNS 257

10 ■ Active Directory structure 287
11 ■ Active Directory topology 321
12 ■ Exchange Server 2007 and 2010 352
13 ■ IIS 7 383
14 ■ SQL Server 414
15 ■ PowerShell innovations 448
vii

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

contents
preface xix
acknowledgments xxi
about this book xxiii
about the author xxviii
about the cover illustration xxix

PART 1 GETTING STARTED WITH POWERSHELL1

1 PowerShell fundamentals 3
1.1 What’s PowerShell? 5

.NET—not necessarily 5

1.2 Why PowerShell? 6
Eureka 1 7 ■ Importance to you 7 ■ Designed for you 8
Quicker and more powerful 9 ■ Extensible and flexible 9

1.3 Major features 10
Cmdlets 11 ■ Pipeline 14 ■ Utility
cmdlets 17 ■ Providers 23 ■ Help system 25

1.4 PowerShell v2 25
PowerShell 2 Eureka 27 ■ Should I upgrade? 27

1.5 Summary 28
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
Apago PDF Enhancer

2 Learning PowerShell 30
2.1 Open the book—learn by doing 31

2.2 Installation and configuration 32
Installation 32 ■ Configuring PowerShell 33 ■ Extending
PowerShell 36 ■ Potential issues 37

2.3 Your four best friends 40
Get-Help 40 ■ Get-Command 42 ■ Get-Member 43
Get-PSDrive 45

2.4 Language features 45
Variables 45 ■ Arrays 46 ■ Branches 48 ■ Loops 50
Functions 56 ■ Output 58

2.5 Scripts 59
PowerShell scripts 59 ■ Converting from VBScript 60
VBScript in PowerShell 60 ■ PowerShell in VBScript 61

2.6 Summary 62

3 PowerShell toolkit 63
3.1 Eureka 2 65

3.2 Using .NET 65
Understanding .NET 66 ■ Accessing .NET 71

3.3 Using COM 73
Understanding COM 73 ■ Accessing COM 75

3.4 Using ADSI 75
Understanding ADSI 76 ■ Accessing Active Directory 78

3.5 Using WMI 82
Understanding WMI 83 ■ WMI type accelerators 86

3.6 Summary 90

4 Automating administration 92
4.1 Benefits of automation 94

4.2 Administration styles 94

4.3 Development for administrators 95
Ad hoc development 96 ■ Lifecycle 102 ■ Error handling 103

4.4 Best practice 104
Guidelines 104 ■ Functions and libraries 108

CONTENTS xi
Apago PDF Enhancer

4.5 Automation toolkit 109
Microsoft 110 ■ Commercial 111 ■ Community 114

4.6 Securing PowerShell 115
Script security 115 ■ Script signing 115

4.7 Summary 120

PART 2 WORKING WITH PEOPLE.....................................121

5 User accounts 123
5.1 Automating user account management 124

Microsoft AD cmdlets 125 ■ Recommendations 126

5.2 Local users and groups 126
TECHNIQUE 1 User creation 127
TECHNIQUE 2 Group creation 130
TECHNIQUE 3 Group membership 131

5.3 Active Directory users 133
TECHNIQUE 4 User creation 133
TECHNIQUE 5 User creation (bulk) 135
TECHNIQUE 6 User modification 138
TECHNIQUE 7 Finding users 140
TECHNIQUE 8 Enabling and disabling accounts 144
TECHNIQUE 9 Moving accounts 145
TECHNIQUE 10 Last logon time 146
TECHNIQUE 11 Password expiry 149
TECHNIQUE 12 Account expiry 150

5.4 Active Directory groups 152
TECHNIQUE 13 Group creation 152
TECHNIQUE 14 Changing membership 153
TECHNIQUE 15 Changing scope 155
TECHNIQUE 16 Finding group members 156
TECHNIQUE 17 Finding a user’s group membership 157

5.5 Summary 158

6 Mailboxes 159
6.1 Automating mailbox management 161

TECHNIQUE 18 Create a mailbox 162
6.2 Enabling mail 164

TECHNIQUE 19 Mailboxes 164
TECHNIQUE 20 Mail-enabled 165
TECHNIQUE 21 Contact 166

CONTENTSxii
Apago PDF Enhancer

6.3 Modifying mailboxes 167
TECHNIQUE 22 Mailbox size limits 167
TECHNIQUE 23 Enabling IMAP 168
TECHNIQUE 24 Enabling POP 169
TECHNIQUE 25 Enabling OWA 170
TECHNIQUE 26 Adding an email address 171
TECHNIQUE 27 Hiding an address from the address list 172
TECHNIQUE 28 Moving a mailbox 172
TECHNIQUE 29 Disabling mail 173
TECHNIQUE 30 Reconnecting a mailbox 175

6.4 Distribution groups 176
TECHNIQUE 31 Creating a distribution group 177
TECHNIQUE 32 Mail-enabling a group 178
TECHNIQUE 33 Dynamic distribution group 179
TECHNIQUE 34 View distribution group membership 181
TECHNIQUE 35 Modify distribution group membership 182

6.5 Mailbox statistics 182
TECHNIQUE 36 Determining the largest mailboxes 183
TECHNIQUE 37 Reporting on mailbox sizes 184

6.6 Deleting mailboxes 185
TECHNIQUE 38 Deleting a mailbox 186
TECHNIQUE 39 Purging a mailbox 186

6.7 Summary 187

7 Desktop 188
7.1 Automating desktop configuration 189
7.2 Machine configuration 190

TECHNIQUE 40 System configuration 191
TECHNIQUE 41 Discovering the operating system 194
TECHNIQUE 42 Discovering service packs on the OS 195
TECHNIQUE 43 Hotfixes 196
TECHNIQUE 44 Listing installed software 198
TECHNIQUE 45 Monitoring free disk space 199
TECHNIQUE 46 Renaming a computer 201
TECHNIQUE 47 Restarting a computer 201

7.3 User features 203
TECHNIQUE 48 Minimizing windows 203
TECHNIQUE 49 Desktop contents 204
TECHNIQUE 50 Adding a file to the desktop 205
TECHNIQUE 51 Listing cookies 205
TECHNIQUE 52 Viewing recycle bin contents 206

CONTENTS xiii
Apago PDF Enhancer

TECHNIQUE 53 Emptying the recycle bin 207
TECHNIQUE 54 Sending a printer test page 207
TECHNIQUE 55 Printer drivers 208

7.4 Office applications 209
TECHNIQUE 56 Creating an Excel spreadsheet 209
TECHNIQUE 57 Adding data to a spreadsheet 211
TECHNIQUE 58 Opening a CSV file in Excel 212
TECHNIQUE 59 Creating and writing to a Word document 213
TECHNIQUE 60 Creating a configuration report 214

7.5 Summary 219

PART 3 WORKING WITH SERVERS221

8 Windows servers 223
8.1 Automating server administration 224

Server Core 225

8.2 Services and processes 225
TECHNIQUE 61 Service health check 226
TECHNIQUE 62 Managing services 228
TECHNIQUE 63 Managing processes 229
TECHNIQUE 64 Launching processes 231

8.3 Filesystem 233
TECHNIQUE 65 Creating folders 234
TECHNIQUE 66 Creating files 235
TECHNIQUE 67 Reading files 237
TECHNIQUE 68 Searching files 238
TECHNIQUE 69 Searching for files 239

8.4 Registry 240
TECHNIQUE 70 Accessing the registry 241
TECHNIQUE 71 Reading registry data 243
TECHNIQUE 72 Creating registry entries 244
TECHNIQUE 73 Managing registry data 245

8.5 Event logs 246
TECHNIQUE 74 Reading event logs 247
TECHNIQUE 75 Exporting logs 249
TECHNIQUE 76 Creating an event log 251
TECHNIQUE 77 Creating events 252
TECHNIQUE 78 Managing event logs 253

8.6 Summary 255

CONTENTSxiv
Apago PDF Enhancer

9 DNS 257
9.1 Automating DNS administration 258
9.2 DNS server 260

TECHNIQUE 79 Enable remote administration 261
TECHNIQUE 80 View server configuration 261
TECHNIQUE 81 Configuring round robin 263
TECHNIQUE 82 Configuring conditional forwarding 264
TECHNIQUE 83 Clearing the server cache 265

9.3 DNS zones 266
TECHNIQUE 84 Creating a DNS zone 266
TECHNIQUE 85 Viewing zone configuration 268
TECHNIQUE 86 Viewing zone contents 268
TECHNIQUE 87 Deleting a DNS zone 270

9.4 DNS records 271
TECHNIQUE 88 Creating DNS A records 273
TECHNIQUE 89 Creating DNS AAAA records 275
TECHNIQUE 90 Creating DNS MX records 276
TECHNIQUE 91 Creating DNS CNAME records 277
TECHNIQUE 92 Creating DNS PTR records 278
TECHNIQUE 93 Querying DNS records 279
TECHNIQUE 94 Deleting DNS records 280

9.5 Client settings 281
TECHNIQUE 95 IP address configuration 282
TECHNIQUE 96 Setting an IP address 283
TECHNIQUE 97 Testing IP connectivity 284

9.6 Summary 285

10 Active Directory structure 287
10.1 Automating Active Directory administration 288

.NET 289 ■ Cmdlets 289

10.2 Schema 289
TECHNIQUE 98 Schema version 290
TECHNIQUE 99 Forest and domain level 292
TECHNIQUE 100 Default display name 293

10.3 Organizational units 295
TECHNIQUE 101 Creating an OU 296
TECHNIQUE 102 Bulk creation and nesting 298
TECHNIQUE 103 Listing OUs in a domain 300
TECHNIQUE 104 Discovering child objects 303

CONTENTS xv
Apago PDF Enhancer

TECHNIQUE 105 Moving an OU 305
TECHNIQUE 106 Deleting an OU 306

10.4 Group Policies 307
TECHNIQUE 107 Creating a GPO 308
TECHNIQUE 108 Linking a GPO 308
TECHNIQUE 109 Listing GPOs 310
TECHNIQUE 110 Listing GPO contents 313
TECHNIQUE 111 GPO backup 314

10.5 Protection and recovery 315
TECHNIQUE 112 Protection from accidental deletion 315
TECHNIQUE 113 Object recovery 318

10.6 Summary 320

11 Active Directory topology 321
11.1 Automating AD topology administration 322
11.2 Domain controllers 323

TECHNIQUE 114 Discovering domain controllers 323
TECHNIQUE 115 Discovering global catalog servers 324
TECHNIQUE 116 Promoting to a global catalog server 325
TECHNIQUE 117 Discovering FSMO roles 326
TECHNIQUE 118 Transferring FSMO roles 328
TECHNIQUE 119 Monitor replication 331
TECHNIQUE 120 Triggering replication 333

11.3 Sites 334
TECHNIQUE 121 Listing sites 335
TECHNIQUE 122 Creating a site 336
TECHNIQUE 123 Modifying a site 337
TECHNIQUE 124 Deleting a site 337

11.4 Subnets 338
TECHNIQUE 125 Listing subnets 338
TECHNIQUE 126 Creating a subnet 339
TECHNIQUE 127 Modifying a subnet 340
TECHNIQUE 128 Deleting a subnet 341

11.5 Site links 342
TECHNIQUE 129 Listing site links 342
TECHNIQUE 130 Creating a site link 344
TECHNIQUE 131 Deleting a site link 345
TECHNIQUE 132 Determining replication schedules 346
TECHNIQUE 133 Setting replication schedules 349

11.6 Summary 351

CONTENTSxvi
Apago PDF Enhancer

12 Exchange Server 2007 and 2010 352
12.1 Automating Exchange Server 2007 administration 353

Exchange AD cmdlets 354 ■ Exchange scripts 355

TECHNIQUE 134 Exchange Server health 355
TECHNIQUE 135 Exchange organization 357
TECHNIQUE 136 Exchange Servers 358

12.2 Data stores 359
TECHNIQUE 137 Creating storage groups 359
TECHNIQUE 138 Creating databases 360
TECHNIQUE 139 Mailbox distribution 361
TECHNIQUE 140 Distributing mailboxes 363
TECHNIQUE 141 Moving a database 365
TECHNIQUE 142 Removing a database 366

12.3 Policies 367
TECHNIQUE 143 Email address 367
TECHNIQUE 144 Transport rules 368
TECHNIQUE 145 Attachments 370
TECHNIQUE 146 Journal rules 371

12.4 Certificates 372
TECHNIQUE 147 Viewing certificates 372
TECHNIQUE 148 Self-signed certificates 374
TECHNIQUE 149 Third-party certificates 375

12.5 Resource mailboxes 377
TECHNIQUE 150 Creating a resource mailbox 377
TECHNIQUE 151 Viewing resource mailboxes 378
TECHNIQUE 152 Calendar settings 379

12.6 Exchange Server 2010 380
TECHNIQUE 153 Remote capabilities 380

12.7 Summary 382

13 IIS 7 and XML 383
13.1 Automating IIS 7 administration 384

IIS administration tools 384 ■ .NET 386 ■ WMI 386 ■ IIS
cmdlets and provider 388

TECHNIQUE 154 PowerShell remoting 391
13.2 Websites and application pools 393

TECHNIQUE 155 Viewing websites 393
TECHNIQUE 156 Controlling websites 395
TECHNIQUE 157 Creating an application pool 396
TECHNIQUE 158 Controlling an application pool 397

CONTENTS xvii
Apago PDF Enhancer

TECHNIQUE 159 Modifying website configuration 398
TECHNIQUE 160 Removing a website and application pool 399
TECHNIQUE 161 Configuring a new website on multiple

 machines 400
13.3 Web applications and virtual directories 401

TECHNIQUE 162 Creating a web application 401
TECHNIQUE 163 Add a virtual directory 402
TECHNIQUE 164 Removing virtual directories and web

 applications 403
13.4 XML and configuration files 403

TECHNIQUE 165 Persisting objects 404
TECHNIQUE 166 Reading XML 406
TECHNIQUE 167 Backing up the IIS configuration 409
TECHNIQUE 168 Reading web configuration files 410
TECHNIQUE 169 Modifying web configuration files 411
TECHNIQUE 170 Creating HTML 412

13.5 Summary 413

14 SQL Server 414
14.1 Automating SQL Server administration 415

SMO 415 ■ SQLPS 416

14.2 Server administration 418
TECHNIQUE 171 Checking service health 418
TECHNIQUE 172 Viewing the server version 420
TECHNIQUE 173 Viewing server configuration 421
TECHNIQUE 174 Modifying the server configuration 422
TECHNIQUE 175 Network configuration 423
TECHNIQUE 176 Viewing performance counters 425

14.3 Database administration 427
TECHNIQUE 177 Finding databases 427
TECHNIQUE 178 Viewing space used 429
TECHNIQUE 179 Creating a job 430

14.4 Configuration database 433
TECHNIQUE 180 Creating a database 433
TECHNIQUE 181 Creating a table 435
TECHNIQUE 182 Modifying a table 438
TECHNIQUE 183 Adding keys 439
TECHNIQUE 184 Populating a table 440
TECHNIQUE 185 Reading data 442
TECHNIQUE 186 Modifying data 444

CONTENTSxviii
Apago PDF Enhancer

TECHNIQUE 187 Deleting data 445
TECHNIQUE 188 Backing up a database 446

14.5 Summary 447

15 PowerShell innovations 448
15.1 PowerShell jobs 449

TECHNIQUE 189 Creating a job 450
TECHNIQUE 190 Viewing jobs 450
TECHNIQUE 191 Viewing data 452
TECHNIQUE 192 Deleting a job 452

15.2 Windows 2008 R2 453
TECHNIQUE 193 Modules 454
TECHNIQUE 194 Server Manager 455
TECHNIQUE 195 Troubleshooting 456
TECHNIQUE 196 Best practice 457
TECHNIQUE 197 Active Directory provider 459
TECHNIQUE 198 Creating an AD drive 463

15.3 Virtualization 464
TECHNIQUE 199 Discovering Hyper-V functions 465
TECHNIQUE 200 Virtual machine status 466
TECHNIQUE 201 VM uptime 467
TECHNIQUE 202 Checking disk status 467
TECHNIQUE 203 Checking disk usage 468
TECHNIQUE 204 Compacting disks 468

15.4 PowerShell in the cloud 469
15.5 Summary 471

afterword PowerShell is for you 473
appendix A PowerShell reference 475
appendix B Modules and advanced functions 497
appendix C PowerShell events 508
appendix D Reference data 514

TECHNIQUE 205 Understanding the user account control values
appendix E Useful links 522

index 527

Apago PDF Enhancer

preface
These are the last words that I am writing and perhaps the first words you will be read-
ing. For me the journey is coming to an end, and for you the adventure just begins as
you dive deeper into the world of PowerShell. Welcome!

 There are a significant number of PowerShell books already, so why do we need
another one? I wanted to produce a book that showed how to use PowerShell to solve
the sorts of problems administrators face every day. PowerShell is a tool for automating
the administration of your Windows-based systems, but there wasn’t a book available that
described how to use it to solve my problems. Now there is.

 I’ve written this for system administrators who want to automate their administra-
tion tasks. The PowerShell language is covered in sufficient detail to explain every-
thing you see in the book, but we’re concentrating on providing solutions to the types
of problems we continually face administering Windows, Exchange, Active Directory,
and IIS, among others.

 We’ll look at how to automate our system administration, and equally importantly,
we’ll look at why we’re doing these things. The book supplies a large suite of scripts
that can be put to work in your environment immediately. Linked to the scripts is the
background to the task we’re solving, so you can put the script into the context of
your needs. More than a cookbook or a description of the PowerShell language, this is
your guide to automation through PowerShell.

 As you read along, you’ll also find my thoughts on best practices for administration
in general, and automating those administrative tasks in particular. There’s no point
in automating bad practices—that just makes things go wrong more quickly.
xix

PREFACExx
Apago PDF Enhancer

 Solutions to the problems faced by administrators of all levels of experience can be
found in these chapters. Use the scripts to solve your problems, and if you find a bet-
ter way to perform the task, please share it with the PowerShell community.

 I’ve gained a number of things from working with PowerShell:

■ A deeper understanding of the technologies I work with: I can’t automate it
until I understand what it’s doing.

■ Some wonderful opportunities, including the writing of this book.
■ New friends who share my interest and passion for PowerShell.

If nothing else, I hope that you gain a sense of that interest and passion from reading
the book. Use the techniques, join the PowerShell community, and most of all—enjoy
what you do.

Apago PDF Enhancer

acknowledgments
This book wouldn’t have been possible without the contributions of many other peo-
ple. It isn’t until you get involved in a project like this that you realize just how many
other people contribute to any book before it gets published.

 First and foremost is the Microsoft PowerShell team. The introduction of Power-
Shell marks a huge change in the way we administer Windows systems. You guys don’t
get thanked enough for creating PowerShell and the time you spend with the Power-
Shell community, so I’d like to record my thanks on behalf of that community.

 The group of people at Manning who worked with me on this book have been
superb. The level of support for a first-time author was outstanding. I couldn’t have
done this without you, so many thanks to Sebastian Stirling, Benjamin Berg, Elizabeth
Martin, Michael Stephens, Marjan Bace, Steven Hong, Karen Tegtmeyer, Jamie Tara-
toot, Mary Piergies, Gordan Salinovic, Dottie Marsico, Tiffany Taylor, and Gabriel
Dobrescu. The book is much better thanks to your input and ideas. It’s been a plea-
sure working with such a professional group.

 There have been a number of reviews of this book during its development and pro-
duction. The individual reviewers have taken time to read through and comment on
the original manuscript, in some cases three times. Thanks are due to Jonathan Medd,
Jonathan Noble, Jeffrey Snover, Peter Johnson, Andrew Tearle, Wolfgang Blass, Tomas
Restrepro, Amos Bannister, Dave Corun, Lester Lobo, Anderson Patricio, Marco Shaw,
Austin Osuide, Dmitriy Kopylenko, Bruce Payette, Michael Bain, Oliver Sturm, and Jeff
Copeland. Special thanks to Marco Shaw for also performing the technical review of
the manuscript and code. And I’d like to thank the readers who took the time to
xxi

ACKNOWLEDGMENTSxxii
Apago PDF Enhancer

comment on the MEAP forum. I did read all of the comments and have corrected the
manuscript as appropriate. Any errors of omission or commission are mine alone.

 The PowerShell community is young but strong and enthusiastic. The ideas that
I’ve included in this book aren’t just the result of my work with PowerShell, but the
fruit of numerous discussions, emails, and debates about how PowerShell should be
used. The participants are too numerous to mention, but my heartfelt thanks to you
all for the time you’ve put into the community and for graciously allowing me to
quote your work. The UK PowerShell User Group deserves a special acknowledgment
for putting up with me drilling down into the details during question times.

 Finally, thanks must go to my family, friends, and colleagues who’ve supported me
through the writing and production of this book.

Apago PDF Enhancer

about this book
This is a PowerShell book for administrators. It’ll show you how to use PowerShell v1,
PowerShell v2, and the PowerShell functionality introduced with products such as SQL
Server, Exchange, and Windows Server 2008 R2. Third-party additions will also be
used where appropriate. We’ll see problems solved using scripts in version 1 with ref-
erence to cmdlets that were introduced in version 2. This is a deliberate decision to
ensure that the book has the widest possible scope. PowerShell v1 isn’t going to disap-
pear overnight and we need to be able to work across both versions in the near future.

 I’ve aimed at covering the breadth of PowerShell, in terms of showing the number
of different aspects of the environment we can control, and the depth in terms of
showing the detailed and practical techniques for performing administrative tasks.

 When you read the book, it’ll seem to be a hybrid. It lies somewhere between a
cookbook of PowerShell recipes and an explanation of how to administer Windows-
based systems. That’s deliberate in that I believe you can’t properly apply the automa-
tion techniques you’ll gain from the book unless the underlying technologies are
understood. The book is a PowerShell book, so the explanations aren’t complete—
just enough to explain why we’re performing a specific task.

 Most of all, it’s a book to be used. Keep it on your desk and refer to it often. There
are 205 techniques in the book, numbered consecutively and divided into sections
called Problem, Solution, and Discussion. Techniques first appear in chapter 5. They
should enable you to solve your particular problem. If not, a message on the Author
Online forum will reach me and I may be able to supply some pointers. No promises,
because I have a day job as well.
xxiii

ABOUT THIS BOOKxxiv
Apago PDF Enhancer

Who should read this book?

PowerShell in Practice is written for anyone interested in using PowerShell to automate
the administration of her Windows environment. The obvious audience is administra-
tors in a large enterprise environment, but the lone administrator in a smaller organi-
zation will gain as much if not more from the techniques described here.

 The IT manager and IT architect audience will also benefit from viewing what it’s
possible to achieve using PowerShell. Microsoft is releasing a number of workbooks
that cover the actions that need to be taken to ensure the reliability of various compo-
nents of the infrastructure such as DNS, Active Directory, or IIS. Many of the actions
can be performed by PowerShell scripts taken directly, or adapted, from the tech-
niques shown in the book.

 Above all, this book is written for people interested in PowerShell and what can be
accomplished with it. It’s not the last word on the subject—we’d need a book 5 or 10
times the size for that—but it does take you a long way on the journey to automation.

Roadmap

PowerShell in Practice is organized into three parts. The book opens with part 1, “Get-
ting Started with PowerShell.” This introductory section covers the installation and
configuration of PowerShell, together with the background knowledge we’ll need to
work with other technologies such as WMI and Active Directory.

 Chapter 1, “PowerShell fundamentals,” covers some of the background to Power-
Shell, including the major features of PowerShell such as cmdlets and providers, the
PowerShell pipeline and the utility cmdlets we use for operations such as sorting and
grouping. The chapter closes with an overview of the new features introduced in Pow-
erShell v2.

 Chapter 2, “Learning PowerShell,” discusses the installation and configuration of
PowerShell and how we can use PowerShell to discover information about PowerShell,
including the help system. We’ll also look at the language features we need to know,
such as loops and branching. The use of scripts will be highlighted together with
information on converting from other VBScript to PowerShell.

 Chapter 3, “PowerShell toolkit,” covers the other technologies we need to know.
PowerShell on its own can’t solve all of our administration problems. We need to use
other technologies such as WMI, ADSI (for Active Directory), .NET to access function-
ality not built into PowerShell, and COM to work with applications such as Microsoft
Office and Internet Explorer. How to use these technologies is covered in depth, with
examples that are immediately usable.

 Chapter 4, “Automating Administration,” concludes part 1. After a look at the way
our administration scripts can evolve through an ad hoc development process, we
examine some PowerShell best practices. These aren’t meant to dictate the way we
work with PowerShell, but are more of a set of guidelines to help avoid major pitfalls.
This chapter closes with an examination of how we can make our scripts secure,
including how to use a code-signing certificate.

ABOUT THIS BOOK xxv
Apago PDF Enhancer

 The three chapters of part 2, “Working with people,” describe how we administer
those aspects of our environment that directly impact the user population. The 205
techniques covered in this book can be found, numbered chronologically, in parts 2
and 3. The final technique is in appendix D

 In chapter 5, we look at the management of user accounts and groups. This covers
local accounts and Active Directory accounts. In the enterprise environment, we’ll be
mainly working with Active Directory, but there are a number of areas such as the DMZ
where we still need local accounts.

 In chapter 6, we turn our attention to Exchange mailboxes. The usual manage-
ment functions for mailboxes and other mail-enabled objects are discussed together
with mail protocols and quotas. We also discover how to report on mailbox statistics
such as size and number of items.

 Part 2 concludes with chapter 7, which discusses the administration of the user’s
desktop. This includes system configuration, printers, special folders, and Microsoft
Office applications such as Word and Excel.

 The third and final part of the book, “Working with servers,” opens with chapter 8,
“Windows servers,” in which we find techniques for working with services, processes,
the filesystem, registry, and event logs. This is a linking chapter between parts 2 and 3,
as many of these techniques can be applied to the desktop environment.

 DNS is the subject of chapter 9. It’s a supporting technology for all modern Windows
environments, and as such we need to be automate where appropriate. We can’t work
directly with DNS, but we can use WMI and the techniques we learned in chapter 3.

 Active Directory is revisited in the next two chapters. In chapter 10, we concentrate
on Active Directory structure and work with organizational units. This leads us to
administering GPOs through PowerShell and protecting objects from accidental dele-
tion. Chapter 10 concludes with a look at recovering objects that have been deleted
from Active Directory.

 The physical topology is visited in chapter 11, with an examination of domain con-
trollers, global catalogs, and Active Directory sites and subnets. We close out Active
Directory by examining how we can administer site links and replication.

 The next three chapters demonstrate how we can use PowerShell to administer
applications we’ll commonly find in a Windows environment. Chapter 12 deals with
Exchange 2007/2010, where we learn how to work with data stores, mail servers, and
the mail organization as a whole. The creation and management of Exchange policies
is also covered.

 IIS 7 is the topic of chapter 13. We learn how websites and applications can be
managed by PowerShell cmdlets, a PowerShell provider, and WMI or .NET classes.
Working with XML files completes the chapter. PowerShell remoting is heavily fea-
tured in this chapter.

 In chapter 14, our attention turns to SQL Server. PowerShell functionality is
directly available in SQL Server 2008, but we can use .NET based techniques to work
with earlier versions. A framework configuration database is presented that can be cre-
ated and administered by PowerShell.

ABOUT THIS BOOKxxvi
Apago PDF Enhancer

 The final chapter looks at PowerShell innovations, including new features intro-
duced with PowerShell v2 and Windows Server 2008 R2. Topics include PowerShell
background jobs, Server Manager cmdlets, Hyper-V PowerShell library, and new
Active Directory functionality. We close the book with a brief glance at the administra-
tion of cloud based applications.

 Five appendices are supplied. They cover PowerShell reference material including
format files, PowerShell modules and advanced functions, PowerShell events, refer-
ence data, and useful links to downloads and further information.

Code and typographical conventions

This is a book about using PowerShell and there are a lot of examples provided
throughout the book. A fixed-width font like this is used for all source code, and
major blocks of code are formatted as a specific listing as, for example, this listing
from chapter 5:

$struser = "BOSCH Herbert"

$dom = System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(cn=$struser)"
$result = $search.FindOne()

if ($result -ne $null){$result.properties.distinguishedname}
else {Write-Host $struser " Does not exist"}

These listings are annotated with full explanations provided in the text. In many
cases, the code statements have been split across multiple lines to fit the page cor-
rectly. These lines terminate with a back tick (`), which is the PowerShell line contin-
uation character.

 Code examples are also be embedded in the text where they aren’t long enough to
warrant an explicit listing. They are presented as follows:

Search-ADAccount -AccountDisabled -UsersOnly |
select Name, distinguishedName

If the code has been typed directly at a PowerShell prompt, it’ll be displayed like this:

PS> 1kb
1024

PowerShell has the ability to span multiple lines at the prompt, in which case the con-
tinuation lines will be prefixed by >>.

 When discussing code examples, attribute names, cmdlet names, and all other
PowerShell related items are displayed like this: - Get-Help about_Arrays.

 Source code for the examples can be downloaded from the publisher’s website at
http://www.manning.com/PowerShellinPractice.

Listing 5.12 Searching for a user account

http://www.manning.com/PowerShellinPractice

ABOUT THIS BOOK xxvii
Apago PDF Enhancer

WARNING In my experience, any script obtained from the internet or any
other source should be treated as suspect until proven otherwise. This
includes the scripts in this book! I’ve tested them in my environment but I
don’t know and can’t guarantee that they’re 100% safe for your environment.
It’s your responsibility to test them in your environment.

In addition to the presentation conventions, I’ve also applied my own style to the code
examples. I’ve used the following “rules”:

■ Full cmdlet and parameter names
■ Avoid the use of aliases and partial parameter names
■ Follow common usage for the names of the *Object cmdlets so foreach instead

of foreach-object, sort instead of sort-object, select instead of select-
object, and so on.

■ For select, sort, and format-table or format-list code statements, just sup-
ply the property names rather than using the -property parameter.

My intention is to provide a balance between readability, conciseness, and complete-
ness. Only you can tell if I’ve succeeded.

Author Online

Purchase of PowerShell in Practice includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
PowerShellinPractice. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct on
the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/PowerShellinPractice
http://www.manning.com/PowerShellinPractice

Apago PDF Enhancer

about the author
Richard Siddaway is a technical architect for Serco in the UK,
working on transformation projects in the Local Government
and Commercial arena. With more than 20 years of experience
in various aspects of IT, Richard specializes in the Microsoft
environment at an architectural level—especially around
Active Directory (AD), Exchange, SQL Server, and infrastruc-
ture optimization.

 Much of his recent experience has involved Active Direc-
tory migrations and optimizations, which often include Exchange. Richard has hands-
on administration experience and is involved in implementation activity in addition
to filling architectural and design roles. He has extensive experience specifying,
designing, and implementing high-availability solutions for a number of versions of
the Windows platform, especially for Exchange and SQL Server.

 Richard is always looking for the opportunity to automate a process, preferably with
PowerShell. Richard founded and currently leads the UK PowerShell User Group.
Microsoft has recognized his technical expertise and community activities by present-
ing a Microsoft Most Valued Professional award. Richard has presented to the Direc-
tory Experts Conference, at various events at Microsoft in the UK and Europe, and for
other UK user groups. Richard has a number of articles and technical publications to
his credit.
xxviii

Apago PDF Enhancer

about the cover illustration
The figure on the cover of PowerShell in Practice is a “Mufti, the chief of religion,” or the
chief scholar who interpreted the religious law and whose pronouncements on matters
both large and small were binding to the faithful. The same figure appears in full-
length on the cover of PowerShell in Action, Second Edition by Bruce Payette.

 The illustration is taken from a collection of costumes of the Ottoman Empire
published on January 1, 1802, by William Miller of Old Bond Street, London. The title
page is missing from the collection and we have been unable to track it down to date.
The book’s table of contents identifies the figures in both English and French, and
each illustration bears the names of two artists who worked on it, both of whom would
no doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
xxix

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE COVER ILLUSTRATIONxxx
Apago PDF Enhancer

this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago, brought back to life by the pictures from this collection.

Apago PDF Enhancer

Part 1

Getting started
 with PowerShell

Welcome to PowerShell in Practice. PowerShell is the new command shell
and scripting language from Microsoft. This book will enable you to use Win-
dows PowerShell to administer your Windows servers and applications such as
SQL Server, IIS 7, Exchange 2007, and Active Directory from the command line.
PowerShell provides a more efficient and powerful mechanism for administra-
tion that’ll save you time and effort in your daily job. Whether you’re a Power-
Shell novice or a more experienced user, there’ll be something for you in the
many examples used to illustrate PowerShell based administration.

 The book is divided into three parts. Part 1 begins with the fundamentals of
working with PowerShell, including an explanation of what it is and how it
works, as well as the new features of PowerShell v2.

 Chapter 2 shows how to learn PowerShell with practical examples to speed
the process. Chapter 3 covers the other technologies that are required to work
with PowerShell—.NET, COM, ADSI, and WMI. The final chapter in this section,
chapter 4, is concerned with the process of automation and best practice around
writing scripts.

 Part 2 shows how to perform administrative tasks that are concerned with
people—managing user accounts in Active Directory and on local systems, man-
aging Exchange mailboxes, and managing the user’s desktop.

 Part 3 looks at working with servers, starting with Windows, including the
new Server Core install option in Windows Server 2008. Subsequent chapters
consider Exchange 2007, SQL Server, IIS 7, DNS, and Active Directory, including
the new features in Windows Server 2008 R2.

Apago PDF Enhancer

PowerShell fundamentals
Apago PDF Enhancer

Microsoft seems to be always talking about PowerShell. Listen to a talk about
Exchange Server 2007 or 2010, Windows Server 2008 R2 (release 2), or even SQL
Server 2008, and PowerShell will be mentioned. PowerShell gets its own section on
the Microsoft scripting center and there is a stack of books on the subject. So what’s
PowerShell and why are so many people excited about it? This chapter introduces
PowerShell and answers some of those basic questions. It is formally known as
Microsoft Windows PowerShell but that is too much of a mouthful so we will refer
to it as PowerShell from now on. In this chapter you’ll discover:

■ The major features of PowerShell that make it stand out from other automa-
tion tools in the Windows arena

■ The things that PowerShell is good at and the odd areas where you shouldn’t
use it

■ What changes you can expect with version 2 of PowerShell

This chapter covers
■ Using cmdlets and providers
■ PowerShell’s building blocks
■ Learning the pipeline
3

4 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

Installation and configuration of PowerShell we’ll postpone until chapter 2. This
chapter will provide an overview of PowerShell and why it’s such an important tool for
the administrator community.

 Microsoft is building PowerShell into all of its major products. PowerShell v1 was
released in November 2006 as a free download from the Microsoft website. Power-
Shell v2 shipped with Windows 7 and Windows Server 2008 R2 in July 2009. It is also
available as a download for older versions of Windows. This will give a consistent and
coherent way to manage Windows and services such as Exchange and SQL Server. It’ll
save you time and administrative effort across your Windows-based servers and will
amply repay the time spent learning it.

 PowerShell has a number of unique features, such as cmdlets and providers. These
features, which form the fundamentals of PowerShell, will be explained with exam-
ples. Underneath the covers the differences between PowerShell and other scripting
tools become even more apparent. PowerShell is based on, and makes extensive use
of, .NET objects. These provide the power to the shell.

 Scripting languages need to be able to perform utility functions such as sorting,
grouping, and comparing. PowerShell has a number of utility cmdlets to perform
these roles. We’ll discover how to use these cmdlets with practical examples relating to
tasks that Windows administrators need to perform. Throughout the book, examples
will be drawn from practical administrative tasks rather than demonstrating Power-
Shell as a programming language.

 PowerShell, like any tool, has a learning curve. It seems to be steep when you’re
first introduced to it, but this chapter and the next three will lay the foundations for
us to dive into using it in our day-to-day administrative tasks. This will enable us to
spend more time on other, potentially more interesting, tasks.

Figure 1.1 PowerShell is the automation and integration layer in a Microsoft environment. It can be used
to administer Windows systems as well as an increasing number of Microsoft and third-party applications.

http://support.microsoft.com/kb/968929

5What’s PowerShell?
Apago PDF Enhancer

A number of PowerShell commands will be used in this chapter, including Get-Member,
Get-Command, Get-Help, and Get-PSDrive. This chapter will provide sufficient infor-
mation to explain examples as we work through them. A full explanation of these com-
mands will have to wait until chapter 2.

 At the end of the chapter, you’ll understand what PowerShell is and more impor-
tantly what it isn’t; what the major features are and how they work; and you’ll under-
stand the utility commands within PowerShell.

1.1 What’s PowerShell?
Newcomers to PowerShell usually ask ”What’s PowerShell” and “What can I do with
it?”. This section will answer the first question. The second question takes the rest of
the book to answer.

 A simple answer to “What’s PowerShell” would be that it’s the new scripting lan-
guage and command-line shell from Microsoft. It’s better described as the automation
engine that Microsoft is building into all major products, as shown in figure 1.1. The
central position of PowerShell for administering our Windows-based environment will
become even more entrenched with successive versions of Microsoft products.

 We can think of PowerShell as a layer of automation functionality that connects
the OS of our servers, the infrastructure applications such as Active Directory, Micro-
soft applications such as Exchange and SQL Server, and third-party products. Power-
Shell can be used to administer them all. This gives us a single method of automating
our whole environment.

 The shell and scripting language is the most visible implementation of PowerShell,
but it can also be hosted in .NET applications. That aspect of PowerShell is outside the
scope of this book. We’ll be concentrating on using PowerShell at the command line
and in scripts for administering Windows-based systems.

 Windows administration is often viewed as a GUI-based occupation. One of the
major failings of the Windows OS, at least according to UNIX and Linux administra-
tors, is the inability to perform the powerful shell-based, command-line administra-
tion activities they traditionally use. PowerShell addresses that failing and provides a
first-class command-line experience that makes administrators’ lives easier. It’s so
good that an open source project called PASH was started to port PowerShell to the
Mac and UNIX/Linux platforms. Unfortunately, that development is currently on
hold. This book will show you how to get the most out of PowerShell on the Win-
dows platform.

1.1.1 .NET—not necessarily

PowerShell is .NET-based and enables the .NET framework to be used in scripts and
from the command line. This mixture of interactive and scripting use makes it easy to
start using and building on what you already know. To paraphrase: “Great scripts from
little cmdlets grow.”

6 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

ADMINISTRATORS PLEASE READ THIS! You do not have to become a .NET pro-
grammer to be able to use PowerShell. It’s perfectly possible to work with
PowerShell and never use any .NET code. But there are a lot of examples of
using .NET code within PowerShell that can be downloaded and reused.

PowerShell uses a syntax that’s similar to C#. If you do any C# programming, you’ll
find it close enough to be confusing sometimes. It’s not necessary to use a semicolon
at the end of each line, though one can be used as a line separator if multiple Power-
Shell lines are combined. PowerShell isn’t case sensitive like C#.

 PowerShell commands produce .NET objects rather than the text output pro-
duced by other shells. The objects may not be “pure” .NET objects in that Power-
Shell creates a wrapper around the object. This wrapper controls the methods and
properties in the output object. One of the great strengths of PowerShell is that
extra properties called noteproperty and scriptproperty may be added to a Power-
Shell output object.

TYPE SYSTEM PowerShell has an Extensible Type System (ETS) so we can
even define our own types and objects.

A noteproperty enables a new piece of data to be attached to the object, whereas a
scriptproperty is a property whose value is determined by a PowerShell script block.
A script block is a piece of PowerShell code surrounded by braces ({}). We will meet
script blocks in a number of places throughout the book. They are one of the funda-
mental building blocks of PowerShell but in many cases we use without explicitly
thinking about them as separate entities.

 The relationship between PowerShell and .NET, together with how to use the .NET
framework, are covered in chapter 3.

 Now that we have an idea of what PowerShell is, we’ll consider why it’s worth learning.

1.2 Why PowerShell?
After asking “What’s PowerShell?” the next question is often “Why should I bother
with PowerShell?” (I’m assuming that if you’re reading this book, you’re interested in
using PowerShell.) There are many parts to the answer to “Why PowerShell?” For one,
I think it provides the best automation engine for the Windows platform and saves me
lots of time. We will discover the breadth and depth of PowerShell’s versatility in the
subsequent chapters. Learning every new technology has some “Eureka!” moments
where everything suddenly clicks. I’ll share a few of those moments as we progress
through the book.

 PowerShell isn’t the answer to every problem. There are a number of situations
where PowerShell v1 is difficult to use or can’t be used:

■ Windows 2008 Server Core
■ Logon scripts
■ WinPe environments, because .NET isn’t loaded

7Why PowerShell?
Apago PDF Enhancer

This still leaves the vast majority of the Windows environment for PowerShell. Power-
Shell v2 addresses these issues, even to the extent of being installable on Server Core
in Windows Server 2008 R2.

1.2.1 Eureka 1

I was once asked to look through a 12,000-seat Active Directory to find all of the users
that didn’t have Outlook Web Access enabled. Not the sort of task to perform using
GUI tools! I wrote a script that has been reused several times since. It took much less
time to write and test the script than it would’ve to perform the process manually.
That extra time can be spent on other, more interesting tasks.

 The original script was written in VBScript, as that was all I had available at the
time. The script occupied 86 lines of code and took me about a day to conceive, write,
and test.

 When PowerShell became available in Exchange Server 2007, I converted the code
to PowerShell. It took me about 30 minutes, most of which was starting the virtual
machine (this was when Exchange Server 2007 was in beta) and looking up the appro-
priate cmdlets. Those 86 lines of VBScript condensed to one line of PowerShell that
consisted of three cmdlets linked on the pipeline. A pipeline is a method of passing
data from one command to another. It is covered in detail later in the chapter.

 That drove home just how powerful PowerShell was and how much coding it was
going to save me. Eureka! PowerShell rocks!

1.2.2 Importance to you

PowerShell is an important technology to you the administrator. It’s a small download,
but it has a large impact on the administration of a Windows environment. The way
things are changing in the Microsoft world, if you can’t do things at the command
line—through PowerShell—you’ll be stuck with the mundane jobs. PowerShell sup-
port is being built into all of the major Microsoft products, either as parts of the prod-
uct or as an optional download, including:

■ Windows Server 2008
■ Exchange Server 2007
■ SQL Server 2008
■ IIS 7
■ Members of the System Center family
■ Small Business Server 2008 and Windows Essential Business Server 2008

Microsoft’s Common Engineering Criteria for 2009 includes PowerShell. The one
major omission from the list appears to be SharePoint, but it’s possible to use the .NET
APIs for SharePoint 2003 and 2007 within PowerShell. SharePoint 2010 includes built-
in PowerShell support.

 Using the same automation engine across all Microsoft products enables you to
transfer skills across products. The MMC GUI tools have a (more or less) common look
and feel. This has accelerated learning, as the tools are navigated and used in the

8 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

same way. PowerShell brings this same concept to the command line. Product-specific
add-ins building on a common language base mean that only the new commands
need to be learned, rather than a whole new language. PowerShell also provides the
common administration tools that VBScript has never had.

 As PowerShell appears in more Microsoft (and third-party) products, it’ll be the
best way to automate the administration of your Windows systems. PowerShell is
already incorporated into products from Quest, IBM, Citrix, VMWare, Special Opera-
tions Software, and SDM Software, for example. Some of these we’ll meet in later
chapters. The ability to use the same basic language makes PowerShell the only way to
integrate administration using these products.

1.2.3 Designed for you

PowerShell has been designed from the beginning for administrators. It has built-in
access to a number of the most common things in which administrators are inter-
ested, including:

■ Processes—what’s running on the machine?
■ Services
■ Event logs—what’s happening on the machine?
■ ACLs for security
■ WMI—much easier to use than in than VBScript
■ Filesystem

One of the points that drive this home is that PowerShell understands GB, MB, and
KB as gigabyte, megabyte, and kilobyte, respectively. In PowerShell v2, TB and PB
are added to extend the coverage to terabyte and petabyte. In case you were wonder-
ing, 1 PB is 1,125,899,906,842,624 bytes. Presumably we’ll see even more exotic
extensions to this range as storage capacities increase. PowerShell isn’t case insensi-
tive, so gb, mb, and kb or any combination of case are equally understood. List-
ing 1.1 shows an example.

PS> 1kb
1024
PS> 1mb
1048576
PS> 1gb
1073741824
PS> (1024*1024)/1MB
1

These terms can be used in a standalone manner or can be used in calculations, as
shown in the listing.

 PowerShell can access the full range of .NET, with a few exceptions that really con-
cern developers more than administrators, as well as COM interfaces on products such

Listing 1.1 Use of GB, MB, and KB

9Why PowerShell?
Apago PDF Enhancer

as Office. This allows administrators to continue to work with known tools. These tools,
and PowerShell, enable us to perform our routine administrative tasks in a shorter time
and with a reduced error rate. The power of the command line is now yours.

1.2.4 Quicker and more powerful

There’s a perception that the only way to administer Windows-based systems is through
the GUI tools. In fact, Microsoft has been increasing the support for command-line
administration through the various versions of Windows since Windows 2000. The use
of command-line tools was emphasized at many technical events after the launch of
Windows 2000. With each subsequent release, more command-line tools have been
added. Microsoft has also promoted the use of scripting tools much more over the last
five years or so.

 If you need to perform an administrative action on a single user in Active Direc-
tory, it may be as fast to use the GUI as to use a script. If you have to perform that same
action on 100 users, it’ll definitely be quicker and easier to use a script. Once the
script is written, it can be saved and used for the one-user or 100-user scenarios. The
return on time spent writing the script is paid back every time you use it—plus it
makes you look good. If you can script it, you must really understand this stuff. Right?

 The venerable command file could be regarded as the first, if limited, scripting
language on Windows. Command files have limited functionality and rely to a large
degree on command-line tools to perform most tasks. These tools can’t be integrated
and only pass text between them, making processing difficult.

 VBScript was introduced early in the life of Windows NT. At that time, scripting
wasn’t regarded as a mainstream activity by Windows administrators. That perception
is slowly changing, but the majority of Windows administrators, in my experience, still
prefer not to write scripts.

NOTE I’ve found that UNIX administrators who become involved in adminis-
tering Windows often adopt PowerShell much more quickly than administra-
tors who’ve always worked with Windows.

VBScript is COM-based. This gives it access to a wide range of interfaces for administra-
tion. Unfortunately, they’re often very different in the way they work and the way
they’re used. This makes VBScript difficult to use. There are gaps in the products that
can be administered through VBScript, which reduces its potential.

 PowerShell can be used interactively at the command line as well as in a script,
which makes testing and development much easier. This isn’t possible with VBScript
native tools. The VBScript commands have to be in a file which is then executed, mak-
ing testing and development a slower and more difficult task.

1.2.5 Extensible and flexible

PowerShell is easily extensible. Writing cmdlets is a fairly straightforward piece of devel-
opment work, and though providers may be more complicated, there are examples

10 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

available. Many commercial and open source PowerShell extensions are available.
Some of these extensions will be covered in chapter 4.

 PowerShell is a flexible system. There are often a number of ways to achieve the
same task. This allows administrators to find a method with which they feel comfort-
able. It also means that it’s more likely that someone will have a found a solution to
your problem and posted the script on a blog or forum.

 This flexibility can be a disadvantage. Many people have commented that a weak-
ness of PowerShell is that there can be multiple methods of achieving the same end. I
disagree that this is a weakness, but it can make life much more difficult for a new-
comer. Let’s say he has a problem to solve, so he searches the internet for a script to
copy or alter. He may find three scripts that say they do the same thing but seem to be
very different—which one should he use? This can be a difficulty, but the idea of this
book is to present the information required to make an informed choice, or better
still, for him to be able to write the script himself and share it with the wider Power-
Shell community. No doubt, some people looking at the examples will say, “He
should’ve done it this way….” The examples I use are those that seem to me to be the
most straightforward to use and learn. When it comes to PowerShell, the old saying “If
you have three techies in a room, there are at least four opinions on how to do some-
thing” was never truer. All of those opinions will be good, though.

 The more we use PowerShell, the more obvious the benefits of using it become.
Our review of the benefits is now complete, and it’s time to start learning about
PowerShell. We’ll start with the major features of PowerShell. These are the things
that stick in your mind and make you realize it’s different.

1.3 Major features
PowerShell has a number of features that combine to make it such a unique and pow-
erful tool. We’ll examine the language in more detail in the next chapter, but for now,
the most obvious features will be covered. These include:

■ Cmdlets
■ Pipeline
■ Providers
■ Help system

Putting these things together will give us the basics of PowerShell that we can take into
the rest of the book. I’ll concentrate on the needs of the administrator who wants to
know how to use these features, rather than looking at it purely from a program-
ming viewpoint.

 One of the great strengths of PowerShell is that it can be used interactively as well
as in scripts. The same commands should, and usually do, work equally well from the
command line and in scripts. This is useful when developing scripts, as you can work
interactively to solve your problems. Alternatively, this could be viewed as a way to get
to the head scratching and grumbling stage much faster.

11Major features
Apago PDF Enhancer

1.3.1 Cmdlets

Cmdlets are probably the most obvious feature when comparing PowerShell to other
scripting languages. A cmdlet (I always pronounce it “command-let”) is a small, self-
contained piece of functionality that does one specific job. A cmdlet is analogous to a
shell command such as ping.exe. PowerShell v1 has 129 cmdlets. More than 100 extra
cmdlets are added in PowerShell v2. One of the nice things about PowerShell is that
it’s easy to discover information like this using PowerShell itself. In this case, I used
the following code:

(Get-Command | Where {$_.PSSnapin -like "Microsoft.P*"}).Count

Get-Command generates a list of PowerShell commands. That list is piped into a filter
(Where is an alias or shorthand for Where-Object) that only accepts those commands
installed by a PowerShell snapin (a method of extending PowerShell) whose names
start Microsoft.P. We then count the number of commands in the filtered list, as shown
in figure 1.2.

CASES AND OPERATORS PowerShell isn’t case sensitive. The code in figure 1.2
could have been written in all lowercase, all uppercase, or any random com-
bination. I’ll follow the style of PowerShell itself when capitalizing cmdlet
names, properties, or methods.

The operator -like is used to perform the comparison in figure 1.2. Power-
Shell operators are detailed in appendix A.

This one line of code, simple as it seems, demonstrates a number of PowerShell fea-
tures. It starts with the cmdlet Get-Command. This, like all cmdlets, has a verb-noun syn-
tax. It starts with a verb. The PowerShell team maintains a list of approved verbs. Their
aim to ensure consistency—for example, any time you have a command that fetches
information, the verb to use is get. The second part of the name is a noun that
describes what the verb is acting on—in this case, the commands within PowerShell.
The full list of standard verbs used in PowerShell is given in appendix A.

 Cmdlet names should always be singular, so use Get-Service rather than Get-
Services. This is one of the most common mistakes when writing PowerShell com-
mands and to prove that PowerShell was designed for you it has a solution for this
problem. Tab completion (and the IntelliSense functionality built into the editors

Figure 1.2 PowerShell shell used to count the number of cmdlets

12 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

covered in chapter 4) makes entering PowerShell commands quicker, easier, and
less-error prone. Having said that, I’ll give you one guess as to who still makes cmd-
lets plural from time to time.

 Get-Command retrieves information regarding the installed cmdlets. We’ll learn
much more about Get-Command in the next chapter. Having generated a list of cmd-
lets, we pass that list onto the pipeline. I’ll cover the pipeline in much greater detail in
the next section.

 The second cmdlet, Where-Object, which is one of the utility cmdlets covered in
detail later, functions as a filter acting on the information moving along the pipe-
line—in this case on each command. The filter determines whether the PSSnapin
property is like the string Microsoft.P*, where * is the usual wildcard character. Note
the use of {} to enclose the script block that provides the filtering. By wrapping the
cmdlets in (), we can treat the results as a collection of objects and use the Count
property to determine the number of cmdlets present that match the filter.
TAB COMPLETION

When working at the command line, PowerShell demonstrates another feature that
aids productivity: tab completion. If you type Get- at the command line, then press
the Tab key, the PowerShell engine will complete the command with the first cmdlet
that matches what’s been typed so far. In this case, it’s usually Get-Acl. If the Tab key is
pressed again, the next Get- cmdlet will be displayed, and repeated pressing of the
Tab key enables you to cycle through the list of relevant cmdlets. Tab completion can
be invoked from any relevant part of the cmdlet name, so for instance Get-C followed
by Tab starts cycling through the Get cmdlets whose noun part starts with C.

 Tab completion also applies to parameters, in that typing—followed by the Tab key
enables you to cycle through the parameter list. As with the cmdlet names, the more of
the parameter name you give, the sooner the process brings the required parameter.

 Though the in-built Tab completion works well, there are alternatives, including
one from the PowerShell Guy (usually known as /\/\o\/\/) and the PowerShell Com-
munity Extensions. The download links for these are given in appendix E.
ALIASES

As an alternative to typing the full name of a cmdlet or parameter, it’s possible to use
an alias. An alias is shorthand for the command. Aliases can be used at the command
line as well as in scripts. The use of aliases saves on typing, but at the expense of read-
ability. The list of standard aliases is provided in appendix A. It’s also possible to create
your own aliases using the Set-Alias cmdlet.

COMMON ALIASES The standard set of aliases contains a number correspond-
ing to traditional commands from the command shell, including dir, cd, copy,
and del. There are also a number of aliases for standard UNIX commands,
including ls, lp, mv, and cp. This is deliberate, in order to present administra-
tors with familiar commands wherever possible. The ability to create additional
aliases means that the command line toolset can be tailored to match the way
you want to work, rather than having to learn a new set of commands.

13Major features
Apago PDF Enhancer

The following two examples show the use of aliases:

gwmi -cl win32_process
Get-WmiObject -Class Win32_Process

gps|?{$_.Handles-gt 500}|%{$_.Name}
Get-Process | Where-Object{$_.Handles -gt 500} | ForEach-Object {$_.Name}

The first example shows Get-WmiObject and one of its parameters being aliased.
The second example shows a slightly contrived example of an aliased script. The use
of % and ? make this especially difficult to read. Heavily aliased scripts can be off-
putting for newcomers to PowerShell, and should be avoided apart from when work-
ing interactively.

IN THE BOOK In the rest of the book, I’ll be using full cmdlet and parameter
names to aid understanding and learning. I’m slightly inconsistent, in that I’ll
be using the aliases for the *-Object cmdlets, because Select and Where are
more readable than Select-Object and Where-Object. This also matches
common usage.

I strongly advise against using aliases in scripts: it makes them difficult to understand
when you come back to them several months later.

 Cmdlets and their aliases aren’t used in isolation. Each has a number of parame-
ters to further define and control its actions.
PARAMETERS

PowerShell cmdlets have parameters to define the input and possibly output, or to
select various options. Examples of using parameters can be seen in code samples
throughout the book. Parameters are always preceded by a hyphen. The parameters
of a particular cmdlet can be viewed by using Get-Help. Using a command such as
Get-Help Get-WmiObject –full will display the parameters of Get-WmiObject as well
as the other help information. Typing Get-Help Get-WmiObject –parameter *
will display only the parameters. As an example, consider the Class parameter
from Get-WmiObject:

-Class [<string>]
 Specifies the name of a WMI class. When this parameter is used, the
cmdlet retrieves instances of the WMI class.

 Required? true
 Position? 1
 Default value
 Accept pipeline input? false
 Accept wildcard characters? false

The parameter listing commences with the parameter name and the type of data that
can be used with it. This is followed by a short description. The description may con-
tain a list of acceptable values if the parameter is restricted as to the values it can
accept. The Required? option indicates whether the parameter is considered manda-
tory for that cmdlet, with the value given as true or false. If the parameter is manda-
tory and isn’t supplied, PowerShell will prompt for the value.

14 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

 The Position? option indicates whether data can be passed to the cmdlet and be
automatically allocated to the parameter. In this case, the first argument passed to the
cmdlet is assumed to be the WMI class to retrieve. If the data doesn’t represent a valid
WMI class, an error will be thrown. If a value of named or 0 is given here, it means that
the parameter name must explicitly be used. Default value indicates whether a default
value has been set. If the data required by a parameter can be accepted from the pipe-
line, Accept pipeline input? will be set to true. The Accept wildcard characters?
option will be set to true if wildcards can be used in the input.

 There are a number of common parameters defined for all cmdlets, as listed in
table 1.1.

If a cmdlet will modify the system, it has another two parameters, as listed in table 1.2.

Further information can be found using Get-Help about_CommonParameters.
 Having looked at cmdlets and their parameters, it’s time to see how we can link

them together using the PowerShell pipeline. The pipeline is what makes PowerShell
a really powerful shell.

1.3.2 Pipeline

The ability to pipe data from one command to another has been a standard part of
shells and command-line utilities for many years. DOS, the command shell in later

Table 1.1 Common cmdlet parameters

Parameter Meaning

-Debug Displays detailed information useful to programmers.

-ErrorAction Indicates how the cmdlet responds to a nonterminating error. Possible values
are SilentlyContinue, Continue, Inquire, Stop.

-ErrorVariable Stores information about errors in the specified variable.

-OutBuffer Determines the number of objects to store before sending them onto the pipe-
line. This is usually omitted, which means that objects are sent onto the pipe-
line immediately.

-OutVariable Stores error messages in the specified variable.

-Verbose Displays detailed information about the operation.

Table 1.2 Safety parameters

Parameter Meaning

-WhatIf If present, this parameter causes PowerShell to output a list of statements indicating
what would’ve happened if the command had been executed, without executing the
command.

-Confirm Prompts the user for confirmation before performing any action.

15Major features
Apago PDF Enhancer

versions of Windows, and most notably UNIX/Linux shells have all had this function-
ality. PowerShell also has this functionality, as we’ve seen in some of the examples ear-
lier in the chapter.

 If shells are expected to have this functionality, why is there such a fuss about the
ability to pipe data from one command to the next in PowerShell? All other shells
pipe text data, but PowerShell pipes .NET objects. This is one of the places where the
power of PowerShell comes from:

Get-Process | Where-Object {$_.Handles -gt 500} |
Sort Handles | Format-Table

This example shows a Get-Process cmdlet passing data along the pipeline to a
Where-Object cmdlet. The Get-Process cmdlet passes one .NET object for each pro-
cess that’s present on the machine. A filter is applied to only accept processes that use
more than 500 handles. The objects representing the processes are sorted by the num-
ber of handles and finally displayed in a table. The interaction of the cmdlets and the
pipeline is shown in figure 1.3.

 .NET objects may sound complicated, but we can discover which particular .NET
object is being passed by using Get-Member, as shown in listing 1.2.

PS> Get-Process | Get-Member

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
.
.
Kill Method System.Void Kill()

Listing 1.2 Using Get-Member to view the .NET type

Figure 1.3 The
PowerShell pipeline in
action. The objects pass
along the pipeline, which
controls their processing
by the individual cmdlets.
The PowerShell parser
uses the code to tell the
cmdlets what actions
should be performed.

16 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

.

.
Id Property System.Int32 Id {get;}
.
.
...Listing truncated for brevity

The use of Get-Member shows that the Get-Process cmdlet is producing, or emitting,
.NET objects of type System.Diagnostics.Process. This .NET type has a property
called Handles. The Where-Object cmdlet performs a filtering operation based on
the value of the Handles property of each .NET object. Any object that has a value
greater than 500 for the Handles property is passed. All other objects are filtered out.

 The symbol $_ is used in PowerShell to refer to the current object being passed
along the pipeline. We will see this symbol used in many of the scripts in future chap-
ters. It functions as an object so we can refer to, and use, its properties and methods.

NOTE As explained earlier, the .NET objects emitted by PowerShell objects aren’t
necessarily identical to an object of the same type produced by a .NET
program. This can be seen if the output of listing 1.2 is compared to the list of
properties and methods for the System.Diagnostics.Process that can be found
at http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx.
More information on working with .NET can be found in chapter 3.

A number of cmdlets, including the Format- and Write- cmdlets, will terminate the
pipeline in that the objects cannot be passed to another cmdlet. If a Foreach-Object
cmdlet is used, it’s perfectly valid to create a pipeline within the loop produced by
that cmdlet.

 The data that Get-Process produces is as of the time of execution. When investi-
gating a set of data such as that referring to the running processes, it’s sometimes nec-
essary to ensure that all comparisons are performed on exactly the same data.
Running variants of listing 1.2 won’t suffice, as the data will change between runs. In
this case, we can use a variable:

$proc = Get-Process

$proc | Where-Object{$_.Handles -gt 500}

$proc | Where-Object{$_.CPU -gt 100}

$proc | Sort-Object -Property WS -Descending |Select-Object -First 5

In this example, we start by setting a variable, $proc, equal to the output of Get-Process.
A $ symbol is used in PowerShell to designate a variable ($_ is in effect a special variable
used to refer to the current object on the pipeline). The result from piping $proc to
Get-Member show that the variable is of type System.Diagnostics.Process. It’s an array
of such objects. When it’s passed on to the pipeline, the array elements, or collection,
are processed one at a time as they’re passed along the pipeline.

 The first use of $proc is a repeat of what we saw in listing 1.2. The second is a vari-
ant using the CPU property instead of the Handles property.

http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx

17Major features
Apago PDF Enhancer

 The third use is more interesting, in that we’re sorting the data based on the WS
(WorkingSet)property. The output of the sort is largest to smallest, as designated by
the use of the –Descending parameter. The first five objects in the sorted output are
then displayed. Select-Object discards the other objects.

 Most cmdlets will accept input from the pipeline. There are some exceptions
where this isn’t possible. The help file for the cmdlet will show if this is the case. We
will look at the help system in detail in the next chapter. The fact that the command
will generate an error will also show this quickly!

NOTE For more information on the pipeline, type Get-Help about_pipeline
at the PowerShell prompt.

This concludes our look at the pipeline. There will be many more examples through-
out the book. Next we’ll look at the utility cmdlets that have made brief appearances
up to now.

1.3.3 Utility cmdlets

We’ve seen how cmdlets can be linked together on the pipeline and how .NET objects
are passed along the pipeline. Utility cmdlets are used to supply the glue to join
together the cmdlets performing the processing. They supply utility actions such as
sorting, selecting, and filtering. Some of the utility cmdlets have been used in the pre-
vious examples. The utility cmdlets are listed in table 1.3. When we use these cmdlets,
we normally don’t include the -Object part of the name. This makes scripts more read-
able. Remember that aliases aren’t case sensitive.

Table 1.3 Utility cmdlets and their purposes

Utility cmdlet Alias Purpose

Compare-Object Compare or diff Compares two sets of objects.

ForEach-Object Foreach or % Performs an operation against each of a set of input objects.

Group-Object Group Groups objects that contain the same value for specified
properties.

Measure-Object Measure Calculates the numeric properties of objects, and the char-
acters, words, and lines in string objects, such as files of
text.

Select-Object Select Selects specified properties of an object or set of objects.
It can also select unique objects from an array of objects,
or it can select a specified number of objects from the
beginning or end of an array of objects.

Sort-Object Sort Sorts objects by property values

Tee-Object Tee Saves command output in a file or variable and displays it
in the shell.

Where-Object Where or ? Creates a filter that controls which objects will be passed
along a command pipeline.

18 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

Common usage is to use the alias (though I do recommend avoiding % and ?) instead
of the full cmdlet name, even in scripts! It is just one of those delightful quirks that
seem to occur in computing.

 You can generate this information from within PowerShell by using the following:

Get-Alias | Where {$_.definition -like "*-Object"} |
 Sort Definition

This is a good example of using PowerShell to discover more about PowerShell.
Remember that PowerShell is not case sensitive so I could use $_.definition,
$_.Definition or even $_.dEfInItIoN. I will mix the way I use case in the examples
to help emphasize this point.

PERSONAL NOTE I don’t particularly like % and ? as aliases of foreach and
where, respectively. They make scripts harder to read for people new to Power-
Shell, so I tend to avoid using them. In this chapter, I’ll mix and match the full
name and alias for the *-Object cmdlets and only use the alias in subse-
quent chapters.

The best way to demonstrate the use of these cmdlets is with examples. We’ll look at
comparing files and their contents, filtering with Where-Object, followed by grouping
and sorting the data. Examples of using Measure-Object and how to create calculated
fields for use in select statements will also be shown. Full details on the syntax and use
of these cmdlets can be found in the help system. Get-Help followed by the cmdlet
name will supply the required information.
COMPARING

At some time when working in Windows administration, it’ll be necessary to com-
pare two files. They may be two different versions of scripts or configuration files,
but it’s almost certain that you’ll spend a long time looking at them to spot the dif-
ferences. They never seem obvious until you’ve stared at them for a long time. The
time to discover the differences can be shortened dramatically by using Compare-
Object as follows.

PS> Compare -ReferenceObject chap01v1.txt -DifferenceObject chap01v2.txt

InputObject SideIndicator
----------- -------------
chap01v2.txt =>
chap01v1.txt <=

Compare-Object is used for comparisons. PowerShell really is self-describing! In this
case, I have two text files that I want to compare. The ReferenceObject parameter
supplies the object against which comparisons will be made. DifferenceObject sup-
plies the object to be compared.

 In this example, the SideIndicator shows whether an object appears in the refer-
ence object (<=) or the difference object (=>). We can see that there are differences

Listing 1.3 Comparing files

19Major features
Apago PDF Enhancer

between the files, but we have no idea what they are and where they occur in the file.
We need to modify our script slightly in order to discover that:

PS> Compare -ReferenceObject $(Get-Content chap01v1.txt) `
>> -DifferenceObject $(Get-Content chap01v2.txt)
>>

InputObject SideIndicator
----------- -------------
This is line 6a =>
This is line 6 <=

Notice the use of a backtick (`) character at the end of the first line. This is the line
continuation character. It’s used here to split the line of code onto a continuation line
to make it more readable. Here we’ve compared the individual lines within the files so
we can see exactly where the differences occur. Of special interest is the use of $(Get-
Content chap01v1.txt) and $(Get-Content chap01v2.txt) when supplying the
objects to be compared. The structure $()is a sub-expression that tells PowerShell to
evaluate what’s between the parentheses and treat that as the variable to be used. All
variables in PowerShell start with the $ symbol.

 Our command could also be written as:

$v1 = Get-Content chap01v1.txt
$v2 = Get-Content chap01v2.txt
Compare -ReferenceObject $v1 -DifferenceObject $v2

The choice of which to use is a matter of personal preference and really depends on
your style of coding. I often use a multistep approach if I need to let other people use
the script or if I am using it as a teaching example.

 By default, only data that isn’t equal is displayed in the output from Compare-
Object. If matching data is required, use the IncludeEqual parameter. It’ll generate a
lot of output, though. Comparing files gives us some information about our filesys-
tem, but we often need to determine the distribution of file types. We turn to the
grouping and sorting cmdlets for this task.
GROUPING AND SORTING

Storage is relatively cheap, but no organization can afford to have an infinite amount
of disk space. In order to make better use of the space, we need to know the distribu-
tion of files on the storage medium. Counting the number of files of each type can
give a good indication of where the space is being used, especially if they’re files that
shouldn’t be there. How many organizations have server disk space taken up by down-
loaded music or video files? In listing 1.5, we’re grouping on the file type. Any suitable
property can be used.

PS> Get-ChildItem -Path "c:\temp" | Where {!$_.PSIsContainer} |
>> Group -Property Extension | Sort Count -Descending
>>

Listing 1.4 Comparing file content

Listing 1.5 Counting the number of files in a folder by extension type
www.allitebooks.com

http://www.allitebooks.org

20 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

Count Name Group
----- ---- -----
 92 .tmp {AD~5D8C.tmp, artD5CD.tmp, artD5DE.tmp...}
 61 .cvr {CVR1162.tmp.cvr, CVR2463.tmp.cvr...}
 60 .od {12623912.od, 13136469.od, 13819442.od...}
 33 .txt {dd_depcheck_VS_PRO_90.txt...}
 14 .log {java_install_reg.log, jusched.log...}
 2 .xml {setup.xml, tmp713D.tmp.xml}
 2 .exe {msxml6-KB927977-enu-x86.exe...}
 2 .dll {fxdecod1.dll...}
 1 .sqm {wmplog00.sqm}
 1 .msi {Virtual_PC_2007_Install.msi}
 1 .psc1 {powergui.script.editor.psc1}
 1 .fzip {ImageDecoder_2.0.2008.523.fzip}
 1 .bmp {INT+rsiddaway.bmp}

We’ll be meeting Get-ChildItem again in chapter 8 when we examine the filesystem,
but for now let’s just say it’s the PowerShell equivalent of dir or ls (both of these exist
in PowerShell as aliases of Get-ChildItem). Use ls; it’s less typing! It’ll also impress
the UNIX admins. The Path parameter tells Get-ChildItem the folder to examine.
The output of Get-ChildItem is piped to Where, which applies a filter based on
whether the object is a container (a folder in this case). PowerShell adds a property
(PsIsContainer) to the output of Get-ChildItem which indicates whether the object
is a folder. In this case, we want those objects that aren’t folders-just the files. The “!”
symbol means not, so !PsIsContainer means objects that aren’t containers.

 The results of the filter are piped to Group, which groups the files by extension.
Finally, we use a Sort-Object to order the output by the number of files in each
group. The output gives the number of files in each group, the name of the group (in
this case, the file extension), and a partial list of the group membership.

NOTE The PowerShell pipeline used in this example is actually a single line
of code. It could be typed at the PowerShell prompt and allowed to wrap
around. In order to make it more readable, the input has been split across
multiple lines. When entering code, pressing the Enter key before the com-
mand is complete (in this case immediately after the pipe symbol) causes
PowerShell to display a continuation line, as shown in listing 1.5. Once the
extra code has been typed, pressing Enter twice will run the code. Code can
also be split in this manner before a closing bracket or closing quote for a
string value.

This script could be modified to read a folder tree by adding the recurse parameter.
The script would then start Get-ChildItem –Path "c:\temp" –recurse | and so on. If
you’re not sure of the location of the temporary folder on your system, we can find it
using $env:temp. If we want our scripts to be really portable, we could code it as:

Get-ChildItem -Path $env:temp -Recurse

Now that we’ve found our file distribution, we can see how much space is taken up by
these files.

21Major features
Apago PDF Enhancer

MEASURE

We used Group-Object to determine the number of files of each type earlier in this
section. We can use Measure-Object to determine statistics for those files, including
total number and the sum of their sizes.

PS> Get-ChildItem -Path "c:\temp" | Where {!$_.PSIsContainer} |
>> Measure -Property Length -Average -Sum -Minimum -Maximum
>>

Count : 272
Average : 366154.713235294
Sum : 99594082
Maximum : 29440512
Minimum : 0
Property : Length

As in the previous example, we use Get-ChildItem and Where-Object to produce a
set of objects representing the files in a folder. This time, we pipe them into Measure-
Object. If we use Measure-Object without any parameters, it’ll return just the number
of files—the Count. By telling the cmdlet which property to measure, and selecting
the measurements to make, we can generate the average, minimum, maximum, and
sum of the file length (size in bytes). The parameters indicating which statistics to
measure can be used in any combination that you require. A count of the total num-
ber of items will always be produced.

 Measure-Object can be used with an array of numbers. It can be applied to any
numeric property, but only numeric properties. Where-Object is the cmdlet that’s
used most of all. So far, we’ve seen single filters used. In some cases, we need to think
about using multiple filters.
FILTERING

The Where-Object cmdlet is used for filtering. We’ve seen it being used in a number
of the previous examples. Correct use of filtering can have a beneficial impact on your
scripts, as they’ll run faster because less data is being processed. Filtering can also
make the output easier to understand.

WHERE TO FILTER It is generally better to filter as early as possible especially is
you are manipulating large sets of data. Performance is not necessarily a num-
ber one criterion for administration scripts but your scripts will run faster if
you reduce the amount of data being processed.

Think of the case where a problem has arisen on a server and you need to test whether
the relevant service is actually running. You could run Get-Service, but that involves
reading through a lot of output. A better solution is to filter on just the service or ser-
vices in which you’re interested. Get-Service does have a certain level of built-in filter-
ing, as the parameters for service names accept wildcards. In listing 1.7, I’ll only filter
using Where-Object because I want to show how to combine filters. PowerShell sup-
ports the full range of logical operators.

Listing 1.6 Producing statistics on file sizes in a folder

22 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

PS> Get-Service |
>> Where{$_.Name -like "WM*" -and $_.Status -eq "Stopped"}
>>

Status Name DisplayName
------ ---- -----------
Stopped wmiApSrv WMI Performance Adapter
Stopped WMPNetworkSvc Windows Media Player Network Sharin...
Stopped WMSvc Web Management Service

Get-Service returns the list of Windows services installed on the system. This list is
passed into Where-Object, which performs a filter on the first part of the service name
and on the status of the service. This could be extended by making the service partial
name an argument which is passed into the script. This will be covered in chapter 2.

 An alternative form of filtering is supplied by the Select-Object cmdlet. This is
used to limit the properties of the objects that are passed down the pipeline. It can
also be used to add a calculated property or select a specific number of objects from
the beginning or end of the list, as shown in listing 1.8.

PS> $now = Get-Date
PS> Get-Process | Where-Object{$_.StartTime} |
>> Select Name, @{Name="Run Time";
>> Expression={[int]($now - $_.StartTime).TotalMinutes}} |
>> Sort "Run Time" -Descending | Format-Table –AutoSize
>>

Name Run Time
---- --------
svchost 909
smss 909
csrss 909

- - output truncated

WUDFHost 207
WINWORD 202
Quest.PowerGUI.ScriptEditor 190
PowerShell Assistant 187
Foxit Reader 169
notepad 119
powershell 12

This is the most complicated example we’ve seen so far. We start by using the Get-
Date cmdlet to record the current date and time in a variable. Remember that vari-
ables always start with the symbol.

 Get-Process retrieves a list of the running processes on the system. We filter out
those processes that don’t report a start time. If they’re left in, the script will still work,
but we get error messages for those processes that don’t have a start time recorded.
Select-Object is used to filter the properties. We’re only interested in the process
name and calculating the running time.

Listing 1.7 Using multiple filters in Where-Object

Listing 1.8 Using a calculated property in Select-Object

23Major features
Apago PDF Enhancer

 The calculated property is a hash table (see arrays in chapter 2). It’s an array with
two values separated by a semicolon. The first, known as the key, is the name of the
property—in this case Run Time. The second item, known as the value, is an expres-
sion to calculate the property. This calculation will happen for every process coming
along the pipeline.

 Once the property is calculated, it can be manipulated in the same way as any
other property and we can use it in a sort operation. We can see the longest-running
processes by sorting in a descending direction.

 The final step is to use Format-Table to output the results to screen. The autosize
parameter is used to control the formatting of the columns onscreen.

HASH TABLES Hash tables are also known as associative arrays. Details can be
found in the help files about_associative_arrays (PowerShell v1) and about_
hash_ tables for PowerShell v2.

This concludes our look at the utility cmdlets (Tee-Object isn’t used much, and its
use is self-explanatory). They’ll appear in many more scripts throughout the book.
You’ve now learned enough about them to follow their use in future scripts, where
they’ll be referred to by their aliases. Having completed learning about cmdlets and
the pipeline, it’s time to turn our attention to another feature that gives us an alterna-
tive method of working in PowerShell: the providers. Once we’ve learned about the
providers, we’ll have a look at the help system before examining PowerShell v2.

1.3.4 Providers

Have you ever wanted a consistent method of working with multiple data stores such
as the filesystem, Active Directory, SQL Server, IIS, and the Windows Registry? Power-
Shell can deliver a large part of that vision through the use of providers.

 The provider feature in PowerShell gives us a way of treating data stores as if they
were the filesystem. PowerShell demonstrations where we do a dir through Active
Directory or the Registry always go down well. The provider exposes a data store as
just another drive on your system. Listing 1.9 shows how to view the installed providers
and the associated drives. Note that the cmdlet refers to them as PSDrives to differenti-
ate them from physical drives.

PS> Get-PSDrive | Format-Table -AutoSize

Name Provider Root CurrentLocation
---- -------- ---- ---------------
Alias Alias
C FileSystem C:\ Scripts
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\

Listing 1.9 Viewing the installed PowerShell drives

24 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

Feed FeedStore
Function Function
Gac AssemblyCache Gac
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
IIS WebAdministration \\PCRS2
OneNote OneNote OneNote
Variable Variable

NOTE The following drives aren’t part of the standard PowerShell install:
Feed, Gac, IIS, and OneNote.

The list includes some drives that are specific to PowerShell, such as Environment,
which exposes the environmental variables; Function, which exposes the PowerShell
functions (see chapter 2) loaded into memory; and Variable, which contains the vari-
ables active in your session (mixture of system and user-defined variables). In Power-
Shell v2, the filesystem drives get another two columns, which supply used and free
space in GB.

 An alternative way of viewing the installed providers is to use Get-PSProvider, which
will display the providers, associated drives, and some capabilities. Get-PSProvider will
display all providers installed in the PowerShell session, but Get-PSDrive shows only
the active providers. I have a provider for Active Directory installed on my laptop, but
it’s only active when I’m connected to the network and logged on to the Active Direc-
tory domain.

 In theory, providers should supply access to a common set of cmdlets that enable
navigation through and interaction with the data exposed by the provider. The full list
can be seen by typing Get-Help about_Core_Commands at a PowerShell prompt. The
list includes cmdlets with the following nouns: Item, ItemProperty, ChildItem, Con-
tent, Location, Path, PSDrive, and PSProvider.

NOTE Not all providers supply access to all of the core commands; for exam-
ple, the SQL Server provider doesn’t implement the New-Item cmdlet. The
common cmdlets can have dynamic parameters added depending on the pro-
vider in which they are being used. Check help from within the provider for
changes to parameters.

A provider is navigated in exactly the same way as the filesystem. The full cmdlet name
is Set-Location, but I expect most people will be happier using the aliases cd or
chdir depending on their background (it’s also much less typing!). Aliases are good
things when typing interactively, but should be avoided in scripts.

 The core commands have aliases corresponding to DOS or UNIX commands. As a
demonstration of navigating a provider, try typing the commands from listing 1.10
into PowerShell one at a time.

cd HKLM:
ls
chdir software

Listing 1.10 Navigating the Registry provider

25PowerShell v2
Apago PDF Enhancer

dir
cd microsoft
ls
cd ..
dir
cd c:

NOTE cd and chdir are aliases of Set-Location; ls and dir are aliases of Get-
ChildItem.

In this example, we start by navigating into the HKLM: drive (HKEY_Local_Machine).
A directory listing is then produced. This process is repeated to view the software and
Microsoft keys, respectively. It’s also possible to work with the data exposed by a pro-
vider directly; for example, dir HKLM:\software\Microsoft.

 We’ve now covered the basics of providers. We’ll be working with the providers
again when we examine the Registry, SQL Server, and IIS in more depth later in the
book. The last feature I want to examine is something that’s been mentioned several
times: the help system.

1.3.5 Help system

PowerShell has a set of help files that are presented in the shell as text files when you
use Get-Help. The help system will be covered in detail in chapter 2 when we look at
learning PowerShell.

 We’ve completed our introduction to PowerShell; all that remains is a look to the
future by examining some of the new features we can expect in PowerShell v2. The
examples of using PowerShell we’ve seen so far are all usable in v2. In these early
chapters, we’re learning how to use PowerShell. These techniques will see a lot of use
in parts 2 and 3.

1.4 PowerShell v2
PowerShell v2 is available for download from the Microsoft website (http://support.
microsoft.com/kb/968929) or is available as part of Windows Server 2008 R2/
Windows 7. The folder name is still v1.0 and we still use .ps1 for script extensions. Like
PowerShell v1, it’s also available through Windows Update. PowerShell v2 introduces a
number of new features that extend its capabilities. If you like PowerShell, you’ll love
v2. Table 1.4 covers the major new features.

 Other new features include:

■ New parameters for existing cmdlets
■ Improved tab expansion function
■ Improvements to [ADSI] type accelerator (see chapter 4) and the introduction

of [ADSISearcher] for searching Active Directory.

I don’t intend to cover PowerShell v2 as a separate entity. Instead of having one or more
chapters dedicated to PowerShell v2, I’ll weave the new functionality into the appropri-
ate chapters. For instance, the remoting functionality is covered in the chapter on

http://support.microsoft.com/kb/968929
http://support.microsoft.com/kb/968929

26 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

Table 1.4 New features in PowerShell v2

Feature Explanation

Remoting Enables PowerShell on the local machine to issue commands that’ll be exe-
cuted on a remote machine or machines. PowerShell remoting requires WinRm
and PowerShell v2 to be installed on the local and remote machine(s). Power-
Shell must be started with administrative privileges to use for running remote
commands.

Background jobs Enables PowerShell to run commands asynchronously. This facility returns the
PowerShell prompt immediately rather than waiting until the command has fin-
ished. The asynchronous command runs in the background. The status of the
job can be viewed and the output data retrieved when the job has completed.
Commands can be run against remote machines using background jobs.

Advanced functions Cmdlets can now be written in PowerShell instead of needing to use a .NET
language such as C#. Advanced functions accept parameters in the same way
as a compiled cmdlet. These were known as script cmdlets during the CTP pro-
cess though this term is no longer used officially.

Modules A module is a method of loading additional functionality into PowerShell. A
module can contain collections of functions contained in a .psm1 file that are
loaded into PowerShell as a unit or a dll that provides functionality. Individual
functions can be made visible to the shell or remain hidden and only be acces-
sible from other functions within the module. The cmdlet Import-Module is
used to add modules into PowerShell. It can also be used to load PowerShell
snapins without registering them with PowerShell. Modules are an improved
approach compared to the snapin functionality in PowerShell v1.

Transactions When making a change via a provider, the change can be wrapped within a
transaction so that it can be rolled back in the event of an error. PowerShell v2
only supports transactions on the Registry provider.

Eventing PowerShell can access the eventing system to work with management and
system events.

PowerShell startup
parameters

New PowerShell startup parameters have been added, to run script files via a
File parameter, run PowerShell as a single-threaded application, hide the
console window, and pass complex commands into PowerShell that require
using quotes or curly braces.

Try-Catch-Finally PowerShell v1 uses the trap and throw commands to process .NET excep-
tions. A Try-Catch-Finally block is added to PowerShell v2 to bring it in line with
the .NET languages. The command that may throw an exception is put in a
try{} block, any exceptions are caught in the catch{} block, and a
finally{} block executes regardless of whether an exception occurred.

Steppable pipelines This makes it easier for developers to write cmdlets that call other cmdlets. It
also enables finer control on how a script block executes.

Data language Enables separation of data from code in a PowerShell script.

Script
internationalization

Enables the internationalization of scripts by importing files of message
strings into a data section. The file to be imported is controlled by the UI cul-
ture of the system.

27PowerShell v2
Apago PDF Enhancer

IIS (13), the event log cmdlets are covered in chapter 8, and there are sections in the
appendix dealing with modules, advanced functions, and PowerShell events. I want to
concentrate on using PowerShell, not describing its features.

 The examples in this book will be based on PowerShell. As far as possible, the code
will run on v1. PowerShell v2 examples will be supplied if new functionality makes the
task easier to perform. There are some exciting features in v2 that have been thought
about for a long time.

1.4.1 PowerShell 2 Eureka

In November 2007, at TechEd EMEA, I was talking to the CTO of a company that was
busy building PowerShell into its products. We’d just been to a talk on PowerShell v2
and the new capabilities it would introduce. We were discussing how the new function-
ality could be utilized and had talked about remoting, which always seems to catch the
headlines. The conversation moved to background jobs (see chapter 15) and how
they could be used. We must’ve had the same thought because we just looked at each
other and grinned. Background jobs provide a great way to kick off activities on the
remote machine without disturbing the user.

 Remoting may get the headlines, but I expect background jobs to be at least as use-
ful. Having got all excited about PowerShell v2 and its capabilities, should we upgrade
immediately?

1.4.2 Should I upgrade?

Whenever a new version of a product appears, this is always the killer question. For
PowerShell v2, there are a number of scenarios where the answer is straightforward, as
well as a few murky areas. Pretty standard for IT, really!

Script debugging The debugging facilities have been enhanced with new debugging cmdlets.

New operators and
automatic variables

New operators for working with strings and new automatic variables for work-
ing with the PowerShell system have been added.

New cmdlets New cmdlets have been added for remoting, adding, or converting types; ETW
logs on Windows Server 2008 and Vista; script internationalization; modules;
debugging; eventing; background jobs; transactions; WMI; and some miscella-
neous actions.

PowerShell Integrated
Scripting Environment

PowerShell Integrated Scripting Environment (ISE) is a GUI-based editor with
an interactive shell. It requires .NET 3.5 SP1. ISE can support up to eight Pow-
erShell tabs (instances), each of which can have multiple scripts open. ISE
can execute the whole script or just the highlighted part.

Out-Gridview Displays output in an interactive table that can be searched and filtered. This
feature requires .NET 3.5 SP 1.

Table 1.4 New features in PowerShell v2 (continued)

Feature Explanation

28 CHAPTER 1 PowerShell fundamentals
Apago PDF Enhancer

 If Windows Server 2008 R2 is being used for the OS, then PowerShell v2 is installed
by default (with the usual caveat about Server Core being an option rather than part
of the default installation). If the application will install on R2, then it should be okay
using PowerShell v2. For instance, SQL Server 2008 will happily install on R2 with
PowerShell v2 (it does moan at the beginning that you need to apply SP1 post installa-
tion). Exchange 2007 won’t install on Windows Server 2008 R2 until SP3 is available
later in 2010. Exchange 2010 will only install on Windows Server 2008 R2 and use
PowerShell v2.

 For servers running Windows Server 2008 or Windows Server 2003 that have had
PowerShell v1 installed, the upgrade scenario is dependent on the application. Power-
Shell v2 will install over the top of v1 unless you have installed a Windows Service Pack
on top of v1. In that case it will be necessary to uninstall the Service Pack, uninstall
PowerShell v1 and reinstall the Service pack before installing PowerShell v2. If the
application depends on PowerShell, it may accept the upgrade or it may not. Check
with the vendors and test if possible. If in doubt, don’t upgrade.

 Workstations are in a similar position, in that if Windows 7 is being used, then
PowerShell v2 is installed. If the Remote Server Administration Tools for Windows
Server 2008 R2 are required, Windows 7 is mandatory. The case for upgrading Power-
Shell v1 on Vista or XP is again dependent on applications. Possibly the only thing
that might cause problems are the Exchange 2007 administration tools.

 There’s no hard and fast answer. My advice is that if you can safely upgrade then do
so, but do remember to test.

1.5 Summary
This chapter introduced PowerShell and explained some of the fundamental con-
cepts that are required for the following chapters.

 PowerShell is the new automation engine for the Windows platform. It’s available
as a download or installable feature (Windows Server 2008 and later) that supplies a
command shell and scripting language. It’s .NET-based and has been designed for
administrators. The PowerShell language contains more than 130 built-in commands,
known as cmdlets, that enable administrators to work with the filesystem, Registry,
event logs, processes, and services on a Windows machine.

 PowerShell cmdlets can be linked via a pipeline. Unlike other shells, the pipeline
passes .NET objects rather than text between cmdlets. A number of utility cmdlets to
perform actions such as sorting, grouping, filtering, and measuring are available and
provide the “glue” for joining cmdlets on the pipeline.

 Shells can usually work with the filesystem. PowerShell extends the concept of
drives to expose other data stores such as the Registry, Certificate Store, and the envi-
ronment as if they were the filesystem. This functionality is supplied by a provider.
The core cmdlets work on these providers generally in the same way they work with
the filesystem.

29Summary
Apago PDF Enhancer

 The PowerShell help system is text-based, similar to the man pages in UNIX. Help
is supplied on the individual cmdlets and on PowerShell language and environmental
features.

 The second version of PowerShell is available for download, adding more than 100
new cmdlets. New features in PowerShell v2 are briefly outlined; whether to upgrade
is dependent your the OS and the applications using PowerShell.

 The remainder of part 1 will look at learning PowerShell (chapter 2); other tech-
nologies used with PowerShell including ADSI, .NET, COM, and WMI (chapter 3);
and automation, including best practices around writing scripts in chapter 4. Parts 2
and 3 consider working with PowerShell to perform administration tasks in a Win-
dows environment.

Learning PowerShell
Apago PDF Enhancer

We’ll have created an automation toolkit by the time we reach the end of the book.
The core of that toolkit is PowerShell itself. We’ve looked at the fundamentals of
PowerShell; now we learn how to use it. Think of it as unpacking a shiny new tool,
putting the bits together, and learning how to use it.

 When I downloaded the first beta of PowerShell, I remember installing it, click-
ing the icon to start it, then having one of those “What on Earth is this?” moments.
I usually mention this when giving talks about PowerShell, and often someone
comes up to me and says she had the same problem. I spent a lot of time working
through the documentation, searching the internet, and experimenting through
trial and (lots of) error to find out how this stuff worked. This chapter will be your
shortcut to that learning process; I’ll show you the self-discovery mechanisms in
PowerShell as well as provide usable examples of how it works.

This chapter covers
■ Installing and configuring PowerShell
■ Self-discovery
■ Language features
■ Scripts
30

31Open the book—learn by doing
Apago PDF Enhancer

 We start by discovering how to install and configure PowerShell. The main config-
uration item is the PowerShell profile, what you put in it, and where you store it. It’s
possible to have four profiles—though not recommended—and I’ll explain which to
use when. Once PowerShell is configured, we can start learning how to use it. This is
done by using PowerShell’s self-discovery mechanisms. We’ll find four new friends
along this journey.

 The joy of learning continues as we dig further into the language features, such as
loops, branches, and variables. These are what give us the ability to write scripts in
PowerShell as well as work interactively at the prompt.

 The chapter will close by looking at script development. (Though it’s sometimes
hard to justify calling a piece of PowerShell a script when it’s one line of code!)

 VBScript has been the main Windows-based administration scripting language for
the last 10 years. There’s a huge body of administrative scripting examples available
on the internet through sites such as the Microsoft TechNet Scripting Center, which
can be found at http://www.microsoft.com/technet/scriptcenter/default.mspx.

WARNING As with any download from the internet, ensure that you under-
stand what the script is doing before trying it in your production environ-
ment. Virtual machines are a good place to experiment with downloaded
scripts.

Many administrators have created a library of scripts in VBScript that are used to per-
form daily administration tasks. I’ll show how to convert VBScript into PowerShell by
working through an example. It’s not feasible to instantly convert to using PowerShell,
especially if you rely on VBScript. I’ll show you how to incorporate and run VBScript
code in your PowerShell scripts. This enables you to use a phased approach when con-
verting to PowerShell.

 Now it’s time to start learning PowerShell.

2.1 Open the book—learn by doing
Everyone has different ways of learning a new subject. I think learning a new technology
is best achieved by a mixture of theory and practice, which is the approach I am going
to adopt. When I give talks about PowerShell, they’re always heavy on demonstrations,
as I believe that seeing PowerShell working and solving problems explains more than
a large set of PowerPoint slides. There’s also the excitement for the audience of waiting
to see how my demo sessions go wrong. If it can go wrong, I’ll find a way!

 This book will follow the same concept with lots of examples.
 I recommend that you type in the scripts that are given as examples in the book.

Most are short, and if you use one of the editors with IntelliSense (Microsoft’s auto-
completion technology that reduces the amount of typing you need to do) that are
discussed in chapter 4, the code entry won’t be onerous. The scripts are also available
for download from the associated website if you prefer. I’ve always found that typing in
the examples helps me learn.

http://www.microsoft.com/technet/scriptcenter/default.mspx

32 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

 The interactive nature of PowerShell means that we can experiment in the shell,
then build what works into our scripts. One useful trick is dot sourcing. When a script is
executed in PowerShell, all references to the variables in use are lost when the script
finishes. As explained in section 2.2.4, we need to add a reference to the folder by typ-
ing .\script_name.ps1 when we want to run the script. If we dot source the script—if
we type ..\script_name.ps1 and run the script—we find that the variables are left in
memory. This means we can continue to work with them interactively. I find this par-
ticularly useful when I’m developing scripts and need to experiment how to perform a
particular task, or when I’m trying to work out why a script doesn’t work properly.

 Having thought about how we’re going to learn to use PowerShell, it’s time to start
the learning process. Starting at the beginning, we’ll install and configure PowerShell.

2.2 Installation and configuration
PowerShell v1 can be installed on most modern Windows OSs:

■ Windows 2003
■ Windows XP Service Pack 2
■ Windows Vista
■ Windows Server 2008

Windows Server 2008 has PowerShell v1 as an optional installable feature. There are
downloadable versions for the other OSs. In addition, PowerShell and .NET are avail-
able through Windows Update. PowerShell is available in 32- and 64-bit versions. It’s
not possible to install PowerShell on Windows 2000. It’s also not supposed to be possi-
ble to install PowerShell on Windows Server 2008 Server Core, but as we’ll see in chap-
ter 8, there’s a method of performing the installation.

 PowerShell v2 is installed and enabled by default in Windows 7 and Windows
Server 2008 R2 (except Server Core, where it’s an optional install). On Windows
Server 2008 R2, the ISE isn’t installed by default; it’s an optional install. PowerShell is
buried in the Start menu: Start -> All programs -> Accessories -> Windows PowerShell.
A download is available for these operating systems:

■ Windows Server 2008 SP1 and SP2
■ Windows Server 2003 SP2
■ Windows Vista SP1 and SP2
■ Windows XP SP3

The download is known as the Windows Management Framework and includes
WinRM 2.0 which is required for remoting (this is covered in chapter 13).

2.2.1 Installation

The only prerequisite for installing PowerShell is that the .NET 2.0 framework is
installed. .NET 2.0 is either installed as an optional feature or the framework is down-
loaded and installed. Some features of PowerShell v2 require .NET 3.5 SP 1.

33Installation and configuration
Apago PDF Enhancer

.NET VERSIONS Windows Vista and Windows Server 2008 have .NET 3.0 as the
installable option. Windows 7 and Windows Server 2008 R2 use .NET 3.5. We
are lucky that .NET 3.0 and 3.5 are supersets of .NET 2.0, so it’s automati-
cally installed.

Download links for the various .NET versions are given in appendix E. In both cases,
the Windows Installer software must be at least version 3.0. Links to download the
installer software are available on the appropriate download page. There are also links
to the latest service pack for .NET 2.0. PowerShell can be downloaded from the Micro-
soft website, as detailed in the appendix E. Select the correct OS version to download.

 On Windows 2003, XP, and Vista, PowerShell is installed via the update mecha-
nism. It appears in the list of updates installed on the system rather than as an individ-
ual program in its own right.

NOTE If you install PowerShell, then install a service pack, it may not be possi-
ble to remove PowerShell without uninstalling the service pack.

The actual install is a simple matter of double-clicking on the installation file and fol-
lowing the wizard. The 32-bit version of PowerShell is installed on 64-bit systems as
well as the 64-bit version. Having successfully installed PowerShell, we now need to
configure it to meet our requirements.

2.2.2 Configuring PowerShell

There are a number of configuration items we can perform on PowerShell. The most
common are covered in this section.
EXECUTION POLICY

The PowerShell execution policy determines whether scripts can be run and if they
need to be digitally signed. A full description of how to set execution policy can be
found in section 2.2.4. This is one of the most common issues raised by people start-
ing to use PowerShell.

 The execution policy still confuses people who’ve been using PowerShell for a
while. If you build a new machine and install PowerShell, don’t forget to set the execu-
tion policy. It saves the muttering when you discover you forgot!
PROFILES

A PowerShell profile is a script that executes when PowerShell is first started. Profiles
are used to configure PowerShell and load extra functionality automatically at startup.
This could be done manually, but profiles make the application of a standard, repeat-
able configuration much easier. It’s possible to use four separate profiles in Power-
Shell. In order of loading, the profiles are:

1 $pshome\profile.ps1
2 $pshome\Microsoft.PowerShell_profile.ps1
3 $home\My Documents\WindowsPowerShell\profile.ps1
4 $home\My Documents\WindowsPowerShell\ Microsoft.PowerShell_profile.ps1

34 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

where $pshome is a variable that points to the PowerShell install directory and $home
contains the full path of the user’s home directory. On Windows Vista and Windows
Server 2008, My Documents is replaced by Documents. Variables are used to store
objects and data. They are signified by having a $ symbol as a prefix.

NOTE Profiles that are applied later in the sequence can override settings
from earlier profiles. Avoid using multiple profiles if possible.

The first profile in our list applies to all users and all shells. Most PowerShell function-
ality can be added into the base shell that’s the standard PowerShell install. The second
profile applies to all users, but only to the Microsoft.PowerShell shell (an example of an
alternative shell is PowerShell Analyzer—see the PowerShell Toolkit section in chap-
ter 4). Profile 3 applies to the individual user, but across all shells, and the final profile
applies to the individual user but is restricted to the Microsoft.PowerShell shell. The
rationale behind the naming and location of the profiles can be found on Lee Holmes’s
blog (Lee is a member of the PowerShell team) at http://www.leeholmes.com/blog/
TheStoryBehindTheNamingAndLocationOfPowerShellProfiles.aspx.

RECOMMENDATION I recommend using number 3 if you’re the only person
using the machine, for example on your personal workstation. If you want the
same settings to apply to all users, then number 1 should be used, for example
on a server where several administrators have accounts and you want them all
to have the same settings. Whatever you do with profiles, remember the KISS
principle and keep it simple.

The profile locations are summarized in table 2.1.

$pshome is the path to the PowerShell installation folder. PowerShell doesn’t create any
profiles during the installation process. All profiles have to be created manually,
though it’s possible to store the profile centrally and reference it from a profile on the
local machine.

 Profiles can perform several actions, including:

■ Loading additional functionality via PowerShell snapins
■ Creating functions and storing in memory for future use
■ Setting the PowerShell prompt
■ Running scripts
■ Setting environmental factors such as color schemes
■ Changing the current folder

Table 2.1 Summary of PowerShell profile locations

All shells Standard PowerShell

All users $pshome \profile.ps1 $pshome \ Microsoft.PowerShell_profile.ps1

Individual user .. \My Documents\
WindowsPowerShell\profile.ps1

.. \My Documents\ WindowsPowerShell\
Microsoft.PowerShell_profile.ps1

http://www.leeholmes.com/blog/TheStoryBehindTheNamingAndLocationOfPowerShellProfiles.aspx
http://www.leeholmes.com/blog/TheStoryBehindTheNamingAndLocationOfPowerShellProfiles.aspx

35Installation and configuration
Apago PDF Enhancer

A folder containing an example profile is created when PowerShell is installed. On 32-
bit machines, it can be found at C:\Windows\System32\WindowsPowerShell\v1.0\
Examples. The folder contains a file called profile.ps1.

NOTE If you copy the profile.ps1 file, ensure that you delete the lines at the
beginning of the file that start Set-Alias. These aliases are automatically
defined, and attempting to redefine them in a profile will cause a lot of error
messages. This example hasn’t been updated for PowerShell v2.

A sample profile is provided in listing 2.1 (part of my standard profile).

$host.privatedata.ErrorBackgroundColor = "White"

cd c:\scripts

Add-PSSnapin Pscx
Add-PSSnapin Quest.ActiveRoles.ADManagement

function help
{
 clear-host
 get-help $args[0] -full
}

function man
{
 get-help $args[0] -full | out-host -paging
}

function mkdir
{
 new-item -type directory -path $args
}

function md
{
 new-item -type directory -path $args
}

function prompt
{

 $host.ui.RawUI.WindowTitle = $(get-location)
 "PS> "
}

The profile starts by setting the background color for error messages B. Typing $host
at a PowerShell prompt displays a number of PowerShell configuration items.
$host.privatedata displays all of the foreground and background colors. These
items can be changed.

Listing 2.1 Sample profile

B
Set error
color

C
Change
location Add extra

functionality
D

Create
standard
functions

E

Create
prompt

F

36 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

NOTE Setting colors like this in your profile will generate an error when you
open the Integrated Scripting Environment in PowerShell v2. It doesn’t stop
anything working, though.

The folder location is then changed C. One of the main uses for a profile is to load
additional functionality into PowerShell using the Add-PSSnapin cmdlet D. The func-
tions shown at E create predefined commands, in this case mimicking standard com-
mands from DOS and UNIX. The final function F performs two tasks. It defines the
PowerShell prompt to be PS> rather than the full path of the current folder. It also sets
the title of the shell window to be the full path to the current folder. This will change
as the location is changed in the filesystem or any other provider. A quick search on
the internet will reveal other prompt functions.
CONSOLE FILES

An alternative method of configuring PowerShell is to use a console file. A number of
products such as Exchange 2007, the IIS 7 PowerShell provider, and the Quest Active
Directory cmdlets create console files as part of the installation process. It’s also possi-
ble to create a console file for a PowerShell session using the Export-Console cmdlet.
An example console file is shown in listing 2.2.

<?xml version="1.0" encoding="utf-8"?>
<PSConsoleFile ConsoleSchemaVersion="1.0">
 <PSVersion>1.0</PSVersion>
 <PSSnapIns>
 <PSSnapIn Name="IIsProviderSnapIn" />
 </PSSnapIns>
</PSConsoleFile>

The working part of the console file is the line <PSSnapIn Name="IIsProvider-

SnapIn" />, which causes the snapin to be loaded. PowerShell can be started using
a console file for configuration like this: powershell.exe -PsConsoleFile

MyConsoleFile.psc1.
 If you install one of the previously mentioned products, check the console file to

see what you should add to your profile, check online or ask in the forums for advice if
you are not sure. I prefer to put everything in the profile and only use the one “ver-
sion” of PowerShell on a machine. It saves having to remember which console file you
started with and what functionality you have available.

2.2.3 Extending PowerShell

PowerShell’s extensibility is a major strength that helps third-party vendors and the
PowerShell community thrive. There are an increasing number of PowerShell-related
products available commercially and through community-based projects. It’s prefera-
ble to have a single shell incorporating all of the functionality you require rather than
spreading the functionality across a number of different PowerShell shells.

Listing 2.2 Sample PowerShell console file

37Installation and configuration
Apago PDF Enhancer

 PowerShell is extensible in a number of ways:

■ Create functions that are loaded at PowerShell startup
■ Create new cmdlets in a PowerShell snapin
■ Create a provider in a PowerShell snapin
■ Create a new shell incorporating the extra functionality

We saw an example of creating functions in the previous section. New cmdlets or pro-
viders are created as PowerShell snapins in a .NET language and complied into a DLL.
An installation package is created to install and register the DLL with PowerShell.

 All registered snapins are visible by typing Get-PSSnapin –Registered. Snapins
can be loaded using Add-PSSnapin as shown in the sample profile and removed using
Remove-PSSnapin. To view the installed snapins, use Get-PSSnapin.

 In v2, we also have the concept of modules. These can be libraries of functions or
compiled DLLs analogous to snapins. There’s a separate set of cmdlets for working
with modules: *-Module. Modules are covered in detail in the appendix B.

2.2.4 Potential issues

You’ve now installed and configured PowerShell and want to start using it to solve
your administration problems. You’re at the keyboard ready to start working with
PowerShell. What issues are we likely to meet?
EXECUTION POLICY

The first issue is that when you first install PowerShell, you can’t run scripts. Even the
profile scripts won’t execute. You’re permitted to work interactively at the PowerShell
prompt. In some cases, you may want PowerShell left in that state, but most of the
time you want to run scripts. The ability to execute scripts is controlled by the Power-
Shell execution policy. This is a deliberate design decision by the PowerShell team.

 The rationale is that this makes PowerShell secure by default as part of Microsoft’s
Trustworthy Computing initiative. This policy allows admins to include PowerShell in
their system images without fear of exposing their systems to a security risk. Only
those machines that will actually do scripting will make this change. All the others can
have PowerShell installed and have no security exposure.

THIS WILL BITE You’ll forget about execution policies at some stage. Everyone
does.

The setting for the execution policy can be found in the Windows Registry key Execu-
tionPolicy at HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell.
When PowerShell is first installed, it’s set to Restricted. The possible values for Execu-
tionPolicy are shown in table 2.2.

 The ExecutionPolicy value can be changed by editing the Registry and chang-
ing the value to the appropriate setting. A better way is to perform this task from
PowerShell.

38 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

NOTE On Windows Vista, Windows 7, Windows Server 2008, and Windows
Server 2008 R2, PowerShell must be started using the Run as Administrator
feature-with elevated privileges—if you intend to change the execution policy.
On Windows XP and 2003, the user who started PowerShell must have admin-
istrator privileges in order to change the execution policy. PowerShell can’t
request that an elevation of privileges be performed once it’s running.

The setting for the execution policy can be viewed using the Get-ExecutionPolicy
cmdlet. Only the value of the setting is returned. The setting can be changed using
Set-ExecutionPolicy, as shown in listing 2.3.

PS> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned
PS> Get-ExecutionPolicy
RemoteSigned
PS>

Note that nothing is returned to indicate a successful change of execution policy.
The Get-ExecutionPolicy cmdlet has to be used to view the setting. What’s the rec-
ommended setting for execution policy? My recommendation would be to set the
execution policy as high as possible without compromising the ability to perform
required administrative tasks. The UnRestricted setting should be avoided. Ideally,
AllSigned would be used, but if you don’t have access to a code-signing certificate,
use RemoteSigned. Restricted can be used if you want to allow a user access to run
PowerShell interactively but not run scripts. Ensure that the user doesn’t have
Administrator-level privileges on the system; otherwise he’ll be able to change the
execution policy.
DOUBLE-CLICK

Many Windows executables can be started by double-clicking the file in Windows
Explorer. This includes EXE files, batch files, and VBScript files. If a PowerShell file is
double-clicked, it won’t execute. The default behavior is for the file to be opened
in Notepad.

Table 2.2 Possible values for PowerShell execution policy

Value Meaning

Restricted This is the default setting. It doesn’t allow profile scripts to be loaded or scripts to run.

AllSigned All scripts and profiles must be digitally signed using a code-signing certificate from
a trusted certificate authority. This also applies to scripts created and executed on
the local system.

RemoteSigned All scripts or profile files downloaded from the internet must be digitally signed. This
also applied to scripts from network shares.

Unrestricted All profile files and scripts will be executed regardless of origin.

Listing 2.3 Using Set-ExecutionPolicy

39Installation and configuration
Apago PDF Enhancer

RECOMMENDATION It’s strongly recommended that this default behavior not
be modified to allow a PowerShell script to be executed by double-clicking.

This default behavior may be overridden by applications such as PowerGUI. The set-
tings are changed so that the files are opened in the PowerGUI editor rather than
Notepad.

 Blocking script execution by double-click is intentional behavior and is viewed as a
security feature in PowerShell.
CURRENT FOLDER

In PowerShell, the current folder isn’t on the search path. The contents of the search
path may be viewed by typing $env:path at the PowerShell prompt. This means that a
PowerShell script file in the current folder can’t be executed simply by typing the
name of the script.

 In order to execute a PowerShell script in the current folder, use .\script_
name.ps1. The option ./script_name.ps1 also works. This is the option I tend to use,
as it’s quicker to type at the prompt. One can remove the “.ps1” in this case. Tab com-
pletion in PowerShell v2 will complete script names in the current folder.

RECOMMENDATION It’s strongly recommended that the current folder not be
added to the search path.

This is another deliberate configuration decision by the PowerShell team to help pre-
vent the accidental or malicious running of scripts that could have an adverse effect
on your system.
.NET

PowerShell is .NET-based. It opens nearly the whole of the .NET framework for use in
your scripts or from the command line. One small issue is that the whole of the .NET
framework is not loaded into PowerShell by default.

 There are a number of methods of loading .NET assemblies into PowerShell.
These methods will be explored in chapter 3 when we look at .NET and PowerShell.
NOTHING RETURNED

Sometimes nothing appears to happen when you run a PowerShell cmdlet, as seen in
the earlier example using Set-ExecutionPolicy. There could be for two reasons for
this. First, there may not be any data to act upon, so the cmdlet may not be able to per-
form the designated action. Second, the cmdlet may not return anything.

 The behavior can be frustrating at times. If this happens and you’re unsure as
to what’s happening, try to perform an independent check on the data to make
sure that the cmdlet did perform as expected. Also, check whether the cmdlet
should actually return anything. This information can be found in the help file for
the cmdlet.

 This completes our look at configuring PowerShell. Using this information, you
should be able to install and configure PowerShell to meet your requirements. It’s
time now to read the instructions and learn how to use our shiny new tool.

40 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

2.3 Your four best friends
We’ve looked at how to install and configure PowerShell, and now we’ll discover how
to get over the “What on Earth is this?” moment. The documentation delivered with
PowerShell v1 (strangely it has been dropped from PowerShell v2, but can be found
on the Microsoft download site) consists of:

■ Getting Started Guide
■ Quick Reference Guide
■ User Guide
■ Release Notes

The documentation is well worth reading. If, like me, you want to use the product and
then read about it, the PowerShell discovery mechanisms are designed for just that
purpose.

 PowerShell has a built-in discovery mechanism—you can use PowerShell to dis-
cover how to use PowerShell. The way that this has been thought through and
designed into the product is what makes a lot of people think that PowerShell rocks!

 I’ve called this section “Your four best friends,” and when using PowerShell, there
are four tools that you’ll come to rely on:

■ Get-Help
■ Get-Command
■ Get-Member
■ Get-PSDrive

We’ll look at these in turn and discover how they help us learn PowerShell and how
they continue to help us when we’re working with PowerShell. When something isn’t
working or you can’t work out how to do something, chances are that one of these
tools will solve your problem or provide enough information to point you in the
right direction.

 There are a number of code snippets in this section. They’re there for you to try
and look at the results. PowerShell is best learned by doing. We’ll keep meeting these
friends in later chapters. I guarantee you’ll use one of these commands at least once
in any session when you’re using PowerShell.

 We’ll visit each of our new friends in turn, starting with Get-Help.

2.3.1 Get-Help

The first stop when trying to discover how something works is the help system. Power-
Shell supplies help in the form of files that are displayed as text in the shell. Help
information is stored in either XML files related to the DLL containing the PowerShell
cmdlets, or in text files stored (for the about topics) with the PowerShell binaries.
Comment-based help can be used in PowerShell v2. We will see an example later in
the book. The PowerShell help system is text-based and is analogous to the man files
available on UNIX systems.

 Two sets of help are available:

41Your four best friends
Apago PDF Enhancer

■ Information specific to an individual cmdlet, accessed by Get-Help followed by
the cmdlet name

■ PowerShell language and environment information, accessed by Get-Help fol-
lowed by about_topic_name.

Typing Get-Help returns the help file for Get-Help itself. If a cmdlet name is
appended—for example Get-Help Get-Command—then a brief set of information is
displayed, including:

■ Name of the cmdlet
■ Synopsis—a one sentence statement of what it does
■ Syntax description—how we use it
■ Detailed description
■ Related links pointing to related cmdlets or about files
■ Remarks—usually a reminder about the -full and -detailed parameters

Using Get-Help -detailed adds information on the parameters available for the cmd-
let and examples of how to use it. The -full parameter returns more information on
the cmdlet’s parameters, notes on the cmdlet, information about the input and out-
put data, and examples.

 To see the range of about files available, type Get-Help about at the PowerShell
prompt. The list of files includes language features such as the if statement and the
looping commands, as well as information about the PowerShell environment such as
variables and the pipeline.

 The sample profile discussed in chapter 1 contains two functions that are worth
copying into your profile. One defines a function called help and the other is called
man. The functions as presented are identical, in that they take the output from a Get-
Help call and pipe it into the Out-Host cmdlet, which uses the paging parameter to gen-
erate a paged output. Again, note the use of DOS and UNIX commands for the aliases.

NOTE If you want to see the full help information, you’ll need to change the
code in these functions to read Get-Help $args[0] -full | out-host -paging.
The example profile was produced during the beta process and not updated
when the full and detailed parameters were added to Get-Help. Modified ver-
sions are shown in listing 2.1

Using the help system can be awkward when you’re in the middle of working through
a problem, especially if you want to keep the screen relatively clear. One solution is to
use two PowerShell shells. The first is your working prompt where you’re running
scripts or working interactively. A second PowerShell instance is used to display help
information as required.

 An alternative method of accessing the help information is to download the graph-
ical help file from the Microsoft Script Center at http://www.microsoft.com/technet/
scriptcenter/topics/winpsh/pschm.mspx (it moves around a bit, so you may need to
hunt for it). After unblocking the downloaded file, if necessary, install the compiled

http://www.microsoft.com/technet/scriptcenter/topics/winpsh/pschm.mspx
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/pschm.mspx

42 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer
help file into a folder of your choice and add the Get-GuiHelp function given on the
web page to your profile. When you’ve restarted PowerShell, you’ll be able to type Get-
GuiHelp Format-Table at the PowerShell prompt and the graphical help system will
open at the correct place, as shown in figure 2.1 If a nonexistent command is entered,
the graphical help file will open and an error message will be provided. The help topics
can be browsed using the controls in the left pane. The graphical help file contains the
cmdlet and about file help documentation for PowerShell v1. In addition, there’s a
beginner’s guide with articles from Microsoft’s Scripting Guys plus information on con-
verting VBScript to PowerShell and some of the early Weekly PowerShell Tips. Well
worth the download time.

 PowerShell v2 supplies a similar sort of graphical help system through the graphi-
cal editor. Another possibility is to use the help power pack in PowerGUI.

 Get-Help gives us a lot of information about PowerShell and the cmdlets, but it’s
not the whole story. The next friend we need to visit is Get-Command.

2.3.2 Get-Command

Get-Command is complementary to Get-Help. If we type Get-Help Get-Command at the
PowerShell prompt, the synopsis states “Gets basic information about cmdlets and
about other elements of Windows PowerShell commands.” So how is that different

Figure 2.1 PowerShell graphical help file. The help topics are browsable using the tree control in the
left pane. Also included are introductory documentation and a conversion guide.

43Your four best friends
Apago PDF Enhancer

from Get-Help? Get-Help gives help for those things that have help files in Power-
Shell. Get-Command gives data about those things that can be executed, including cmd-
lets, functions, scripts, and even Windows executables. Enter Get-Command

ipconfig.exe | Format-List and see what’s returned.
 Get-Command is useful in a number of ways. If you know you want to work with the

processes on the computer but can’t remember the cmdlets, then use:

Get-Command *process

If you want to retrieve the names of the cmdlets in a particular snapin:

Get-Command -PSSnapin IIsProviderSnapIn | Sort verb, noun

As I explained earlier I tend to use the alias for the utility cmdlets, such as sort, and
also ignore the parameters. I find that the utility cmdlets tend to be used in the same
way nearly every time so nothing is gained by using the full name. Common accepted
usage is to use the aliases rather than the full cmdlet name.

POWERSHELL V2 In PowerShell v2, the -PSSnapin parameter is renamed
-Module. An alias of -PSSnapin is defined so that existing code won’t break.
The v2 version also works with modules.

The last common use of Get-Command is to provide a quick reminder of the syntax
used by a particular cmdlet:

Get-Command Get-Process -Syntax

Get-Help and Get-Command provide information about PowerShell and PowerShell
commands. We’re always dealing with objects in PowerShell. When we want to dis-
cover things about objects, we turn to Get-Member.

2.3.3 Get-Member

Get-Member is best described as the Swiss Army knife of PowerShell. It seems to be the
one tool for which I’m always reaching. It would be worth reading the help file for
Get-Member. Type Get-Help Get-Member to display it. Get-Member retrieves informa-
tion about objects. PowerShell cmdlets return objects, so we can use Get-Member to
view those objects.

 If we use the Get-Process cmdlet to return information about the running pro-
cesses whose names start with C:

PS> Get-Process c*

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 820 6 1772 5352 96 620 csrss
 613 14 3180 19288 193 684 csrss
 372 10 11452 17344 98 1.53 5400 cssauth
 136 7 3604 6580 77 1724 cvpnd

44 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

Note that that only eight properties are shown for each process. If you’ve looked at
processes in Task manager, you’ll know there are a lot more properties available. We
use Get-Member to view them. Objects and properties are covered in more detail in
the next chapter but for now think of them as a piece of information that helps
describe the object (e.g., “red” is the value of the property color for a red balloon).

 Typing Get-Process c* | Get-Member will return more information than can eas-
ily be displayed on a page, so I’ll leave that for you to try. We can use Get-Member to
only display the property names as follows.

PS> Get-Process c* | Get-Member -MemberType Property |
Format-Wide -Column 2

BasePriority Container
EnableRaisingEvents ExitCode
ExitTime Handle
HandleCount HasExited
Id MachineName
MainModule MainWindowHandle
MainWindowTitle MaxWorkingSet
MinWorkingSet Modules
NonpagedSystemMemorySize NonpagedSystemMemorySize64
PagedMemorySize PagedMemorySize64
PagedSystemMemorySize PagedSystemMemorySize64
PeakPagedMemorySize PeakPagedMemorySize64
PeakVirtualMemorySize PeakVirtualMemorySize64
PeakWorkingSet PeakWorkingSet64
PriorityBoostEnabled PriorityClass
PrivateMemorySize PrivateMemorySize64
PrivilegedProcessorTime ProcessName
ProcessorAffinity Responding
SessionId Site
StandardError StandardInput
StandardOutput StartInfo
StartTime SynchronizingObject
Threads TotalProcessorTime
UserProcessorTime VirtualMemorySize
VirtualMemorySize64 WorkingSet
WorkingSet64

Get-Member will also display the methods on the object as well as properties specifi-
cally added by PowerShell.

 There’s a default formatter for each cmdlet that determines what will be displayed.
Further information on working with format files can be found in appendix A. The
utility cmdlet Select-Object that we saw in chapter 1 can be used when nondefault
properties are to be displayed, or we want to reduce the amount of data . Alternatively,
the Format-* cmdlets can be used to select what will be displayed.

 Last but not least is Get-PSDrive, which gives us information about the PowerShell
providers.

Listing 2.4 Using Get-Member to view object properties

45Language features
Apago PDF Enhancer

2.3.4 Get-PSDrive

Get-PSDrive displays information about the providers that are currently installed.
Full details were supplied in chapter 1, where providers were discussed as part of the
PowerShell feature set.

 You can now install, configure, and learn how to use PowerShell, and you’ve
learned to use it. Now you can start writing scripts. Oh... you don’t know the Power-
Shell language. We’ll look at that next.

2.4 Language features
PowerShell works as a scripting language as well as an interactive shell. So far we’ve
been using PowerShell interactively. In this section, we’ll look at the major features of
the language.

NOTE This isn’t a complete guide to the PowerShell language. This section
will supply the information required to start scripting and to understand the
scripts that will be presented later in the book. I recommend Bruce Payette’s
PowerShell in Action, Second Edition for complete coverage of the language.

All scripting languages need to be able to perform a common set of actions:

■ Store data—variables and arrays
■ Repeat actions—loops
■ Control logic flow—branches
■ Reuse sections of code—functions
■ Output results

They also need to be able to accept input. Typing at the PowerShell prompt has been
covered, and we’ll see lots of examples of reading files later in the book, especially in
chapter 8. We’ll start by considering variables.

 As we get into the loops and branching, you’ll see that there’s a common structure
to many PowerShell commands:

command(condition){script block of actions}

A command is followed by a condition (a test of some kind), which causes a script
block to execute.

2.4.1 Variables

A variable is a store for data that’ll be used during the execution of a script. What can a
variable store? Variables store .NET objects or a collection of objects.

 PowerShell variables are typed; each variable stores a particular type of data based
on the .NET object. Try the following code:

$a = 1
$a | Get-Member
$b = "1"
$b | Get-Member

46 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

We’ve defined two variables, $a and $b. PowerShell variables are designated by a $ sym-
bol. Get-Member gives us information about the object, in this case the variables. It’ll
report that $a is TypeName: System.Int32 whereas $b is TypeName: System.String.

 PowerShell will assign the type based on the data you input. The most common
variables to deal with are integers and strings. If the type should change because of
the code, then PowerShell will perform the change if it can based on the .NET rules
for changing (casting). For example:

$a = $a * 2.35
$a | Get-Member

results in $a being TypeName: System.Double.

NOTE Instead of writing $a = $a * 2.35, we could use $a *= 2.35. There are
similar operators for performing addition, subtraction, and division. They’re
explained in the Operators section in appendix A.

PowerShell has a number of predefined variables. They can be viewed by using Get-
ChildItem variable: (yes, variables can be accessed as a drive). Help information on
variables changes slightly between PowerShell versions and can be gained from:

■ About_Automatic_variables—variables created and maintained by PowerShell
■ About_Environment_variables—Windows environment variables as used in

batch files
■ About_Preference_variables—variables that customize PowerShell (v2 only)
■ About_Shell_variables (v1) or About_variables (v2)

One automatic variable that causes a lot of confusion is $_. It represents the current
object coming down the pipeline. We saw it in the Where statements we used in chap-
ter 1. Another example would be:

Get-ChildItem "c:\temp" | Where {$_.Length -gt 1MB}

We use Get-ChildItem to generate a directory listing of the c:\temp folder. The out-
put from Get-ChildItem is an object of the System.IO.FileInfo class (type) for each
file in the folder. We don’t always need to consider that and will commonly refer to it
as a file. Where-Object is then used as a filter to pass only those files whose length
(size) is more than 1 megabyte, using MB, as discussed earlier.

 Variable names can be composed of letters, numbers, and a few special characters,
including the underscore character _.

 A variable stores a single value. Sometimes we want to store multiple values, in
which case we need an array, which is next on the menu.

2.4.2 Arrays

Arrays are used to store a collection of objects. In an earlier example, we saw an array
that contained System.IO.FileInfo objects (the directory listing). Arrays can be cre-
ated directly as follows:

47Language features
Apago PDF Enhancer

$a = 1,2,3,4,5
$b = 1..5
$c = "a","b","c","d","e"
$a = @(1,2,3,4,5)

The first example creates an array containing the integers 1 through 5. The second
example does the same, except we use the range operator (see appendix A) instead of
typing each value. In the third example, we create an array containing strings. The
final example shows a variation on the first example, in which @() is used to explicitly
define the array. This leads to the possibility of creating an empty array and adding
values to it:

$a = @()
for($i=1;$i-le5;$i++){$a += $i}

Here we create an empty array, then use a loop to populate the elements. Note the use
of += to add the value. Assignment operators like this are explained in appendix A.

 Array values can be accessed by the element number (index), which starts at 0, so
the third element in our first example is $a[2].

NOTE Starting an array at element 0 is a .NET feature. It can cause prob-
lems for users coming from scripting languages that start at 1. This is some-
thing to be aware of, so check this if you get unexpected problems with an
array index.

A second type of array is the associative array, which is equivalent to the dictionary type
object in VBScript. The associative array is normally referred to as a hash table in Power-
Shell. Hash tables consist of key-value pairs. For example:

PS> $h =@{"one"=1;"two"=2;"three"=3}
PS> $h

Name Value
---- -----
two 2
three 3
one 1

Note that when we dump the values, they’re not in the order in which they were input
into the hash table. The hash table creates a hash index of the names so that it can
search on the name:

PS> $h["two"]
2

This can make some activities such as sorting the hash table seemingly impossible. In
this case, we need to use the GetEnumerator method to enable sorting to work:

$h.GetEnumerator() | sort value

The GetEnumerator method is discovered by using Get-Member on a hashtable
object. It is also explained in the MSDN documentation for hash tables.

48 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

 This gives us enough information on arrays to start working with them. Further
information can be found in the help files about_array and about_associative_array
(about_hash_tables in v2). Next on the menu is decision making and the branching
statements in PowerShell.

2.4.3 Branches

Branching involves making a decision based on the relationship between two objects or
an objects value. There are two PowerShell keywords used for branching. The if state-
ment is used for situations when you want to create a test and perform actions based
on the outcome of the test. The other branching command is the switch statement,
which is a better statement to use when there are multiple outcomes, usually based on
the value of a variable.
IF STATEMENT

An if statement is the simplest kind of branch. A test is performed and is evaluated to
true or false. If the result is true, one set of actions is performed, but if it’s false,
another set of actions is performed. Listing 2.5 shows how a test of this sort could be
used to delete the largest files in a folder if you needed to create free space quickly.

Get-ChildItem "C:\Temp" | Where{!$_.PsIsContainer} |
ForEach-Object {
 if ($_.Length -gt 1MB) {
 Remove-Item $_.Fullname -WhatIf
 }
 elseif ($_.Length -gt 0.5MB){
 Write-Host $_.Name, $_.Length, `
 " will be removed if more space required" `
 -ForegroundColor Yellow
 }
 else{
 if ($_.Length -gt 0.25MB){
 Write-Host $_.Name, $_.Length, `
 " will be removed in third wave" `
 -ForegroundColor Blue
 }
 }
}

We start by using Get-ChildItem to generate a file listing. We’re not interested in the
subfolders for this example. If you want to include the subfolders, use the -Recurse
switch with Get-ChildItem. The directory listing is piped to Where-Object, which fil-
ters out the containers. We’re only concerned with files. We then use ForEach-Object
to examine each file in the listing.

 The first if statement B checks whether the file is larger than 1MB. File size is
stored in the length property. If the file is larger than 1MB we delete it with Remove-
Item. Note that I’ve used the -whatif parameter (-whatif is one of the parameters

Listing 2.5 Using an if statement to test file size

Test if greater
than 1MB

B

Default testD

Test if greater
than 0.5MB

C

49Language features

p
ough
s

Apago PDF Enhancer

common across many cmdlets—see get-help about_CommonParameters for details).
This tells us which files will be removed without performing the action. That way, I can
keep using the files for other examples. Once you’re happy with the way the script
works, remove the -whatif. It could be replaced by -confirm if you want to be
prompted for each deletion.

 Any file that’s less than (or equal to) 1MB in size drops through to the elseif state-
ment C. The elseif tests whether the file is more than half a MB in size and prints a
warning that we’ll get it next time around when we need more space.

 Finally we drop into the else statement D. This is the catch-all for everything that
doesn’t get caught by the preceding tests. In this, we nest another check for a possible
third wave of deletions.

 It’s possible to have multiple elseif statements, but it’s usually better to use a
switch statement instead, which is what we’ll look at next.
SWITCH STATEMENT

The if statement that we used in the previous section is good when you have a small
number of decision points. When there are a large number of decision points and the
syntax of the if statement would get cumbersome, we can use a switch statement.
Listing 2.6 shows a switch statement being used to check the size of a file so that the
information can be printed to screen in the appropriate color.

$files = Get-ChildItem "C:\Temp" |
Where {!$_.PsIsContainer}
foreach ($file in $files){
 switch ($file.Length){
 {$_ -gt 1MB}{Write-Host $file.Name, $file.Length
 -ForegroundColor Red; break}
 {$_ -gt 0.5MB}{Write-Host $file.Name, $file.Length
 -ForegroundColor Magenta; break}
 {$_ -ge 0.25MB}{Write-Host $file.Name, $file.Length
 -ForegroundColor Cyan; break}
 #default {Write-Host $file.Name, $file.Length}
 }
}

The output of Get-ChildItem (a listing of the files in the c:\temp directory) is stored
in the variable $files B. $files is a collection of objects (array), so we can iterate
through them using a foreach loop C. The switch statement uses a variable, in this
case the file length property D, as its test. We define a number of tests in this case:

■ Greater than 1MB E
■ Greater than 0.5MB
■ Greater than or equal to 0.25MB

When a file matches the particular criteria, the associated script block is executed.
We use Write-Host to write the file name and size to screen and set text color based

Listing 2.6 Using a switch statement to display file size

Create array of
file informationB

Start of
switch

D

Loo
thr
file

C
E

Check
file
size

DefaultF

50 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

on the size. Note the ; symbol. This signifies that we’ve reached the end of a state-
ment. We use it to concatenate multiple PowerShell commands on one line. The
break command tells switch to terminate processing and not to perform any of the
other tests.

 A switch statement usually has a default clause F to catch anything that hasn’t
been processed previously. In this case, we don’t want to see the bulk of the files dis-
played, so the line is commented out by a # symbol.

SWITCH The switch statement probably doesn’t get used enough. Try using
it in preference to lots of if statements.

We’ve mastered the use of variables and arrays, and have seen a number of loops in
use. It’s time to consider PowerShell’s looping commands in more detail.

2.4.4 Loops

We often need to repeat the same code. We often need to repeat the same code.
That’s bad enough to read (never mind write), so what would it be like if we had to
use the same piece of code 10 times, or 50, 100, or more? This is where loops come to
our rescue. There are a number of looping mechanisms in PowerShell:

■ Foreach-Object cmdlet
■ Foreach loop
■ For loop
■ Do loop
■ While loop

They serve slightly different purposes; I’ll explain when it’s best to use each one as we
go along. When using the foreach, do, for, or while loop, you can use the break com-
mand to jump out of the loop and the continue command to skip processing the
script block and return to the start of the loop. Details can be found in the
about_break and about_continue help files.

MISSING HELP The PowerShell v1 help system does not contain information
on Do loops. The others are covered by about files. This is corrected in v2.

Foreach-Object is the odd one out among the looping mechanisms because it’s a
cmdlet rather than a PowerShell language feature. Just to show that we don’t hold that
against it, we will start with it.
FOREACH-OBJECT

Foreach-Object is used in a pipeline to perform some processing on each object
coming along the pipeline. It may not be thought of as a loop but that’s exactly what it
does. As with all things PowerShell, the workings of this cmdlet are best shown by an
example, shown in listing 2.7.

51Language features
Apago PDF Enhancer

$Out1 = @"
 $count files are smaller than 1MB and occupy $total_size bytes
"@
$Out2 = @"
$count_big files are bigger than 1MB and occupy $total_size_big bytes
"@

Get-ChildItem "c:\Temp" |
 where {!$_.PSIsContainer} | ForEach-Object `
-Begin {
 $count = 0
 $total_size = 0
 $count_big = 0
 $total_size_big = 0
 } `
-Process {
 if ($_.Length -gt 1MB) {
 $total_size_big += $_.Length
 $count_big ++
 }
 else {
 $total_size += $_.Length
 $count ++
 }
} `
-End {

 Write-Host $out1
 Write-Host $out2
}

NOTE The script is split across multiple lines using the ` continuation charac-
ter. This makes it more readable both in the book and when editing.

We start with two variables of special note—$out1 and $out2 B. These are known as
here strings. A here string has the following format:

$out1 = @"
$count files are smaller than 1MB and occupy $total_size bytes
"@

A here string starts with @", or alternatively @’, which is immediately followed by
pressing the Enter key. The data in the here string can span multiple lines. The here
string is terminated by "@, or ‘@, which must be the first characters on the line.
Within a here string, quotes are interpreted literally, so they’ll be displayed for exam-
ple like this:

PS> @"
>> This string
>> spans multiple lines and contains
>> some quotes. Both double " and single

Listing 2.7 Using the Foreach-Object cmdlet to count file distributions

Define
here
strings

B

Start of loopC

Begin script
block

D

Start/end of
process script
block

EIf-else
decision
block

F

Start/ end of
End script block

G

52 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

>> ' quotes will be displayed.
>> "@
>>
This string
spans multiple lines and contains
some quotes. Both double " and single
' quotes will be displayed.

If we use double quotes in the here string terminators, variables will be substituted as
normal. Here strings terminated by single quotes do not perform substitution.

HERE STRINGS Here strings are another PowerShell item that don’t get used
enough. I’m as guilty of this as anyone.

Get-ChildItem is used to generate a directory listing C. This is piped into the
Foreach-Object cmdlet. The Begin, Process, and End parameters are used to define
script blocks that perform some actions before the first object is processed, as every
object is processed, and after the last object is processed, respectively. Often, only a
single script block is seen, and that is, by default, the process block.

SCRIPT BLOCK A script block is some PowerShell code surrounded by {} that
can be used in loops or if statements, assigned to variables or other cmdlets,
and even used directly in the pipeline.

The -Begin script block is used to set the initial value of some variables D. It’s exe-
cuted once, just before the first object enters the loop. In traditional scripting lan-
guages, this would have to happen outside of the loop. These variables are counters,
so we set them to zero.

 Each object coming down the pipeline goes through the -Process script block E.
In this case, it goes through an if statement to decide whether the file is bigger
than 1MB F. Depending on that outcome, the appropriate counter and total file size
variables are updated.

 After all of the objects have been processed, the -End script block is executed G.
The results are written to screen using the Write-Host cmdlet, which is described in
more detail in section 2.4.6.

 Get-Help Foreach-Object -full will supply the help information for this cmdlet.
Now we move on to the foreach loop, which has a similar name and does similar
things. Confused? You won’t be after reading the next section.
FOREACH LOOP

A foreach loop is similar in concept to the Foreach-Object we’ve already looked at. So
why do we need two things that are nearly the same? Foreach is part of the PowerShell
language rather than being a cmdlet. Its purpose boils down to doing the following
script block to every object in a collection of objects. This is best explained by an exam-
ple. We could use the previous example and just rewrite it, but we’ll do something else
because it’ll be more interesting. If you want try to rewrite the script in the previous
example, you can check your answer against the example on the companion website.

53Language features
Apago PDF Enhancer

 One of the unwritten rules of PowerShell is that if you can get your code down to
one line—the “one-liner” of much discussion on blogs and forums—then you’re a real
PowerShell user. This leads to some horrible examples of the overuse of aliases, and in
some cases inefficiencies. I’ve produced a one-line version of listing 2.8 to demon-
strate how it can be done. The script spans three lines but that is just to get make it fit
the lines of the book. It is really one continuous line of code.

dir "c:\test" | ?{!$_.PSIsContainer} |
% {if ($_.LastAccessTime -lt ((Get-Date).AddDays(-10)))
{rm $($_.Fullname) -wh} }

Though it does demonstrate the flexibility and strength of PowerShell, condensing
your code into a one-liner isn’t always the best answer for administrative scripting, as
understanding and speed may be lost.

 One important difference is that Foreach-Object will process objects as they come
along the pipeline, but a foreach loop needs the objects to be already available in a
collection. Testing has suggested that in PowerShell v1 a foreach loop is faster than
using the cmdlet version, though the gap has narrowed in v2. If you have a huge num-
ber of objects, the cmdlet’s ability to process the objects as presented will be a bonus.
Listing 2.8 shows how to use a foreach statement to iterate through a set of files and
remove files older than a certain date. This is a common technique for cleaning up
sets of data that are created periodically.

$date = (Get-Date).Adddays(-10)
$files = Get-ChildItem "c:\Temp" | Where{!$_.PSIsContainer}
foreach($file in $files){
 if ($file.LastAccessTime -lt $date){
 Remove-Item -Path $file.FullName -WhatIf
 }
}

This script loops through all of the files in the C:\Temp folder and checks whether
they’ve been accessed in the last 10 days. If they haven’t been accessed they’re deleted.
The script starts by using Get-Date to retrieve the current date. We then use the
AddDays method to subtract 10 days from the current date. Yes, it does seem odd, but
the alternative is more complicated. The next line is interesting, in that we create a vari-
able called $files and set its value equal to the output from a pipeline consisting of:

Get-ChildItem "c:\Temp" | Where{!$_.PSIsContainer}

which is capable of being run as a standalone piece of PowerShell. Try it. In the pipe-
line, we start with Get-ChildItem producing a directory listing of the C:\Temp folder.
That’s piped into a Where-Object filter that looks to see whether the object is a con-
tainer (a folder). Only objects that aren’t folders are passed.

 The $files variable contains all of the output from the pipeline, so it’s actually a
collection of objects rather than a single object. We can use the foreach loop as

Listing 2.8 Using a foreach loop

Start loop

End loop

54 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

shown. The $files variable is completely arbitrary; it could’ve been $xxx. Usually, col-
lection names are plural and object names are singular. If the names reflect the
objects being processed, in this case files, it aids understanding and readability of the
script, but this isn’t mandatory.

OBJECTION If you do decide on a different convention in your foreach condi-
tions, someone will moan at you. Ignore them. Write your code for the way
you work. If you share with the community—you are going to share, aren’t
you?—expect that someone will change it.

Inside the loop, we check the LastAccessTime property of each file against the
date we calculated at the beginning of the script. Note that we use less than (-lt)
for the comparison. Dates are assumed to be increasing. If the file is older than 10
days, we use Remove-Item to delete it. Note that I have a -Whatif parameter on
Remove-Item. This is a safety mechanism when developing and testing the script to
prevent accidents and to leave the files available for further tests. When you’re ready
to move the script into production, remove the -WhatIf parameter. You could use
the -Confirm parameter instead in production if you want to double check the files
before deletion.

DOUBLE CHECK If you’re working with critical files, the double check is a
good idea. Double check or restore from backup—I know which I’d rather
do. You do have a backup, don’t you?

The Foreach-Object that we used in the previous section is an alias for the foreach
loop that can be used in a pipeline. You can get full details on using foreach from
Get-Help about_foreach.

 Having looked at a couple of options for looping through a collection of objects,
we’ll now look at the straightforward coding loops.
FOR, WHILE AND DO LOOPS

The for loop is the classic “perform this set of code x number of times” type of loop
that has been in programming languages since the year dot (since the beginning of
programming in other words). The PowerShell syntax borrows heavily from the C#
language. While and do loops keep repeating a script block until some condition is
met. The example in listing 2.9 uses a simple for loop to create some test files.

$data = 1..57
$j = 1
while ($j -le 10){
 $foldername = "Testfolder_$j"
 New-Item -ItemType directory -Name $foldername
 $j++

 for ($i=0; $i -le 10; $i++){
 $filename = "file_$i.txt"

Listing 2.9 Creating test folders and files with loops

Start while
loop

B

D Start for loop

55Language features
Apago PDF Enhancer

 Set-Content -Path "$foldername\$filename" -Value $data
 }

}

We start by creating an array containing the values 1 to 57. This is arbitrary data that’s
easy to create. A variable $j is created to be a counter. An outer loop, using a while
command, is used to create test folders B C. New-Item is the standard cmdlet for cre-
ating objects. It’s one of the core cmdlets that should be enabled to work in all provid-
ers, but this isn’t always the case, as we’ll see in chapter 14 when we look at the SQL
Server provider.

POWERSHELL IMPLEMENTATIONS The PowerShell team is responsible for the
core PowerShell engine. How it’s implemented in various products is down to
the team producing that product. This leads to differing styles of implementa-
tion. I expect these to be smoothed out over time as PowerShell and the vari-
ous implementations mature.

All we need to do is pass it the type of object and the name of the object, as shown. If
you want to create the object anywhere but the current folder, the path needs to be
defined as well. After creating the folder, we increment the counter by one.

 We then use a for loop to create test files D E. The part in () sets the conditions
and counters for the loop:

■ Starting point is $i=0
■ End point is $i -le 10
■ Counter increment is $i++

$i is an arbitrary counter. The fact that many people use $i is a hangover from FOR-
TRAN, where i was automatically defined as an integer and was often used as a coun-
ter in loops. The initial value of $i is 0. We increment $i by one on successive
iterations of the loop until we get to a point where $i is equal to 10.

NOTE In a for loop or a while loop, the test occurs before the script block is exe-
cuted. So in this case, when $i is 10, the block is executed, but at the next iter-
ation, $i has increased to 11, so the condition is exceeded and the loop stops.

The script block is executed during each loop. A file name is created by substituting
the counter variable into the file name, so we end up with file_0.txt, file_1.txt, and so
on. We then use Set-Content to write the array into the file. One of the properties of
Set-Content is that it’ll create a file that doesn’t exist. We can exploit that mechanism
here to create and write the content to the file in one line.

 Time now to turn our attention to another loop type—the do loop.
 The do loop suffers a bit because there isn’t any official documentation supplied

for it in v1. All the other looping mechanisms get an about file, but not the poor do
loop. Another reason for its underuse is that it can be awkward to use sometimes.
Here’s an example:

E End for loop
End while loopC

56 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

$i = 1
do {
 $name = "Testfolder_$i"
 New-Item -ItemType directory -Name $name
 $i++
}
while ($i -le 10)

We start our counter at 1 and create a new folder using the counter to supply a differ-
entiator. All we need to do is pass it the type and name of the object as shown. If you
want to create the object anywhere but the current folder, the path needs to be
defined as well. After creating the folder, we increment the counter by one.

 The script will create 10 folders named testfolder_1 to TestFolder_10.
 As an alternative, we could replace the last line of the previous example with this:

until ($i -gt 10)

Note how the operator changes because of the difference between while and until.

RECOMMENDATION The do loop can cause problems in testing, as we’ve seen.
If you know the number of times you’ll traverse the loop, use a for loop; oth-
erwise use a while loop.

That’s enough on loops to make you an expert. We’ll continue our look at the lan-
guage features by working with functions, then look at how to output data before mov-
ing on to creating scripts.

2.4.5 Functions

The looping mechanisms that we’ve just looked at are one way to reuse code, or at
least be more efficient in the way we use code. There are times when we want to run
a set of code and get a result returned, or we want to separate a piece of code to
make the main part of the script easier to understand. That’s when we want to use a
function. PowerShell, unlike VBScript for instance, makes no distinction between
functions that return a result and those that don’t. They’re all functions. Functions
get a huge boost in ability in PowerShell v2. Advanced functions are covered in
appendix B.

 Let’s take listing 2.9 and use a function instead of the inner loop. That gives us the
code shown in listing 2.10.

function new-file {
 param ($number, $foldername)
 for ($i=0; $i -le $number; $i++){
 $name = "$foldername-file-$i.txt"
 Set-Content -Path "$foldername\$name" -Value $data
 }
}
$data = 1..57

Listing 2.10 PowerShell script to create test folders and test files

Function
definition

B

Input parameters
for function

C

Loop to create filesD

Data to put into fileE

57Language features
Apago PDF Enhancer

$i = 1
while ($i -le 10) {
 $name = "Testfolder_$i"
 New-Item -ItemType directory -Name $name
 new-file $i $name
 $i++
}

The function has to be defined first and given a name B. It’s considered best practice
to use the PowerShell cmdlet naming conventions.

POWERSHELL NAMES PowerShell has a verb-noun naming convention for cmd-
lets and the functions that are supplied out of the box. We saw the list of verbs
currently in use in chapter 1. The noun should be singular and related to the
activity or object that’s being accessed. A list of the nouns currently in use can
be obtained using Get-Command | group noun.

The param statement is used to accept arguments passed into the function C. A data
type can be assigned to the parameter. It’s possible to use the $args automatic vari-
able instead of the param statement. The param statement gives more flexibility and
can be used to perform more checks on the parameters, including setting default
values. The for loop we saw earlier is used to create the test files D. In this case, the
number of files to create is based on the number passed into the function as its first
parameter. The folder name is used as part of the file name and to define the path
to the file.

 The main body of the script follows the function. An array E is created to pro-
vide data we can write into the files we create in the function. The folders are cre-
ated by the while loop used earlier F. The only difference being that a call to the
function used to create the files is put into the loop G. We could’ve nested the
loops at this point instead of using a function, but then I’d have had to think of
another example! Note how the function is called. The arguments to pass into the
function are listed after the function name rather than using () to surround them as
in other scripting languages. More information can be found in the about_function
help file.

 There are two things to notice about the way variables are used in this script. First,
$i is used in the main body of the script and within the function as a counter. As far as
PowerShell is concerned, these are two totally independent variables, even though
they have the same name. Second, we define $data in the main body of the script, but
use it in the function. This is an example of variable scope, which isn’t as complicated as
it seems.
SCOPE

Scope defines how scripts and functions work with variables. When PowerShell starts,
it defines a top-level or global scope. When a script, script block, or function is started,
a new scope is defined. A parent-child relationship is created between the original
scope and the child scope. Similarly, when a function is called within a script, a scope
is created that’s a child of the script’s scope.

F
Loop to
create folders

G Call to function

58 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

 Variables are defined with the scope of where they’re created. In our function
example, $data is created in the scope of the script, as is the $i used in the while
loop. The $i used in the function is recreated every time the function is called and is
created in the scope of the function. The function’s scope is a child of the script’s
scope. The function can read and use the $data variable because it was created in the
parent scope of the function.

 PowerShell treats the $i independently because they’re created in different
scopes. The rule is that a variable can be read from a higher scope but not modified
unless the scope of the variable is stated. A parent scope can’t modify variables in a
child scope.

 The important thing to remember is that scope exists and that child scopes can
access variables from the parent scope. Get-help about_scope gives more examples
and is useful to check when troubleshooting your more scripts.
LIBRARY FILES

Functions can be loaded into memory at the start of a PowerShell session, as we saw
when looking at profiles. The profile can become too big to manage if there are many
functions defined within it, so the alternative is to use a library file. This is achieved by
collecting the functions into a single file called LibraryXXXX.ps1, where XXXX is a suit-
ably descriptive name. The library file can be dot-sourced from your profile to make
the functions available within the PowerShell session. Alternatively, dot-source the
library file from a script if you don’t require the functions to be universally available.

MODULES PowerShell v2 introduces the concept of modules, which give
more flexibility and generally replace the concept of library files—see appen-
dix B for more details.

The last of the language features is output. We’ve seen how to use variables and loops,
how to make decisions, and the working of functions. Administrative scripts normally
produce output of some kind. We’ll close this section by looking at the output meth-
ods in PowerShell.

2.4.6 Output

Most administrative scripts produce output, even if it’s only a message to say the script
has completed. There are number of output methods available in PowerShell:

■ Out-*—cmdlets that send the objects or formatting records to a specific
destination

■ Write-*—cmdlets that write data to a specific destination
■ Format-*—cmdlets that convert the objects into formatting records and write

them by default to the screen
■ Export-*—cmdlets that export data to a file

Typing Get-Command Out-* or any of the other examples in the preceding list will gen-
erate a list of the cmdlets in that category. Get-Help can be used to view the help file.
The commonly used output cmdlets are summarized in table 2.3.

59Scripts
Apago PDF Enhancer

Examples of using these cmdlets will be seen throughout the book.
 It’s now time to put everything together and start looking at scripts.

2.5 Scripts
Scripts represent a method of saving PowerShell code and reusing it at a future time,
either as a scheduled task or as ad hoc usage. Chapter 4 covers script development in
detail. This section is concerned with converting to PowerShell from other languages.

2.5.1 PowerShell scripts

Scripts are text files containing PowerShell commands that are given a .ps1 extension.
The same extension is used for scripts in PowerShell v2. Any editor that can output text
files can be used to create scripts, ranging from Notepad (still useful to view scripts) to
PowerShell-specific editors such as PowerGUI, PowerShellPlus, or the ISE in v2. The
PowerShell toolkit, discussed in chapter 4, has more information on these tools.

 PowerShell scripts are used by typing the path and name of the script at a Power-
Shell prompt. If the script is in the current folder, the path is .\ as in .\myscript.ps1.

 One topic that frequently arises is how you can convert existing scripts, written in
VBScript or another scripting language, into PowerShell scripts. If you have a large
library of VBScripts that are in production use, I’d recommend that you don’t rush
into converting them. Leave them in use and start developing new scripts in Power-
Shell. Convert the existing scripts as they need modification.

 In many circumstances you’ll need for VBScripts to either be converted into Power-
Shell or to interoperate with PowerShell. We’ll look at how to do this in the following
sections.

Table 2.3 Common output cmdlets

Name Purpose

Out-File Sends output to a file. Data can be appended to a file.

Out-Null Deletes output rather than displaying it. Use it to suppress messages, for
instance when loading .NET assemblies.

Out-Printer Sends output to the default printer, or an alternative printer if specified. It doesn’t
format the data so use only for simple text documents.

Out-String Sends objects to the host as strings.

Write-Host Writes output to screen. Can change colors of text.

Format-Table Formats the data into a table and displays on screen.

Format-List Formats the data into a list and displays on screen.

Format-Wide Formats objects as a wide table that displays only one property of each object.

Export-Csv Exports objects to a CSV file. Data can’t be appended to a file.

Export-CliXML Exports objects to an XML file.

60 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

2.5.2 Converting from VBScript

VBScript has been in use on Windows systems for more than 10 years. A huge body of
administration scripts is available, starting with Microsoft’s Script Center (see appen-
dix E). Some of the scripts have been converted to PowerShell, but many haven’t. So,
how do we go about converting a script?

 A lot of scripts use WMI, in which case we can use Get-WmiObject, as explained in
the next chapter. For other scripts, we start with the VBScript-to-Windows PowerShell
Conversion Guide, which is downloadable from Microsoft’s Script Center. We’ll use
this script to try the conversion:

Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FileExists("C:\scripts\librarytime.ps1") Then
 Set objFolder = objFSO.GetFile("C:\scripts\librarytime.ps1")
Else
 Wscript.Echo "File does not exist."
End If

It uses the FileExists method of the FileSystemObject to test whether a file exists.
If the file exists, a GetFile is performed so that the properties can be accessed. These
are VBScript objects that we won’t use in the rest of the book where we will concen-
trate on using .NET when we need to step out of pure PowerShell.

 In PowerShell this would become:

if (Test-Path -Path "C:\Scripts\LibraryTime.ps1") {
 $file = Get-Item -Path "C:\Scripts\LibraryTime.ps1"
}
else
{
 Write-Host "File does not exist"
}

Test-Path returns true or false depending on whether the particular path exists. One
advantage of PowerShell is that this same code will work in other providers by just
changing the object being tested.

 Converting scripts is a big step. It may be better to start small and incorporate
VBScript into your early PowerShell scripts.

2.5.3 VBScript in PowerShell

VBScript is based on COM, whereas PowerShell is based on .NET. PowerShell can incor-
porate VBScript objects by using New-Object to create them. This will be covered in
chapter 4 in the section on COM.

 One way of starting to work with PowerShell from a VBScript base is to incorporate
VBScript into your PowerShell scripts so that you’re only converting parts of the script.
There are a couple of ways to use VBScript functionality in a PowerShell script.

 We can start by really incorporating VBScript, as this example demonstrates:

$sc = New-Object -ComObject ScriptControl
$sc.Language = "VBScript"
$sc.AddCode('

61Scripts
Apago PDF Enhancer

Set obj = CreateObject("WScript.Shell")
obj.popup "Popup from PowerShell via VBScript",,"PowerShell in Practice",0
')
$sc.CodeObject

VBScript is COM-based, so we need to use the ComObject parameter of New-Object to
define a COM ScriptControl object. (This may only be available on 32-bit systems.)
There isn’t a lot of documentation available on this object, but a good starting point
can be found at http://msdn.microsoft.com/en-us/library/aa227633(VS.60).aspx.
We then define the language as VBScript (JScript could also be used—in fact it’d be
possible to use PowerShell, VBScript, and JScript in a single script). The AddCode
method is used to define the script. There are some restrictions here, in that it doesn’t
seem possible to use multiple objects in the same ScriptControl. The VBScript is sim-
ple, in that it creates a WScript.Shell object and displays the popup.

 This approach has its limitations, but we can move on and use the COM objects
directly in PowerShell:

$a = New-Object -ComObject WScript.Shell
$a.popup("Popup from PowerShell",$null,"PowerShell in Practice",0)

We define the WScipt.Shell object directly as a COM object in PowerShell and then
call the popup method. It’s important to note the difference in syntax around using
the method. In the first example, we used the VBScript syntax with the arguments
listed after the method name and separated by commas. In the second example,
we used the .NET syntax with a comma-delimited list of arguments surrounded
by parentheses.

 Having seen how to use VBScript inside PowerShell, we can now quickly look at
using PowerShell inside VBScript for completeness.

2.5.4 PowerShell in VBScript

SAPIEN has released a free control that enables us to use PowerShell inside VBScript.
This is a valid way to start converting scripts by incorporating PowerShell into exist-
ing scripts. The control can be downloaded from http://blog.sapien.com/
index.php/2008/06/25/activexposh-is-now-a-free-download/.

 The control can be used like this:

set ap = CreateObject("SAPIEN.ActiveXPoSH")
ap.OutPutMode = 0
ap.Execute("Get-Service | Where-Object{$_.Status -e 'stopped'}")

This is standard VBScript, in that we create the object and then call the Execute
method to run the PowerShell code.

 You’ll now have a good understanding of PowerShell and how it works. Congrat-
ulations, you’re now ready to start building your PowerShell toolkit by looking
at how PowerShell works with other technologies to access WMI, Active Directory,
and .NET.

http://msdn.microsoft.com/en-us/library/aa227633(VS.60).aspx
http://blog.sapien.com/index.php/2008/06/25/activexposh-is-now-a-free-download/
http://blog.sapien.com/index.php/2008/06/25/activexposh-is-now-a-free-download/

62 CHAPTER 2 Learning PowerShell
Apago PDF Enhancer

2.6 Summary
Learning PowerShell is done by using PowerShell. First we need to install and config-
ure it so we can start learning. The PowerShell documentation is a good starting
point, and PowerShell supplies four built in learning tools: Get-Help, Get-Command,
Get-Member, and Get-PSDrive. These are your four best friends as far as learning
PowerShell is concerned. Use them to dig into the inbuilt documentation.

 PowerShell is a scripting language and command shell. The language has a num-
ber of features that need to be mastered, including variables, arrays, loops, branching
logic, and functions.

 VBScript has been available for a number of years. A guide is available for convert-
ing scripts from VBScript into PowerShell. As a first step, it’s possible to embed
VBScript in PowerShell and vice versa.

 This chapter has given you a solid grounding in installing, configuring, and learn-
ing PowerShell. You’re now ready to start looking beyond PowerShell to the other
technologies that need to be mastered in order to successfully administer your Win-
dows systems using PowerShell. In chapter 3, we’ll look at using .NET in PowerShell so
we have access to a wider range of functionality, WMI so we can access existing Win-
dows management technologies both on local and remote machines; COM so we can
access existing applications such as Office, and ADSI so we can work with Active Direc-
tory and local security systems.

PowerShell toolkit
Apago PDF Enhancer

PowerShell, like all tools, can’t exist in isolation. Up to now, we’ve concentrated on
PowerShell itself. We now turn our attention to other technologies we need in our
toolkit to get the most out of PowerShell—.Net, COM, ADSI, and WMI. This may
seem like a random collection of letters, but these technologies are essential to get-
ting the most from PowerShell. These tools are the basis of our PowerShell toolkit,
and will appear throughout our administrative work. I can’t think of an example
that doesn’t involve at least one of them. Using the PowerShell cmdlets involves
using .NET even if it’s somewhat removed.

.NET We can make extensive use of .NET with PowerShell. We don’t have
to become .NET developers to use PowerShell. Most administration tasks
can be performed with little or no .NET.

This chapter covers
■ Using .NET with PowerShell
■ Using COM components
■ Optimizing use of WMI
■ ADSI and PowerShell
63

64 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

PowerShell is .NET-based and gives us a way to access to nearly the whole of .NET. This
may seem to be of more benefit to programmers than administrators. It’d be easy to
think that PowerShell is a programming language rather than an administration tool,
given some of the PowerShell examples on the internet. Just because you can write Win-
dows Forms applications in PowerShell doesn’t mean you should! There’s a lot of useful
functionality in managed code for the PowerShell administrator, for instance access to
SMO to administer SQL Server (see chapter 14) and the interface to IIS 7 (see chap-
ter 13). Microsoft keeps adding functionality into .NET, and administrators should to be
aware of the basics. After a quick look at the .NET basics, we’ll see how to use .NET code
in PowerShell, and look at the issues of using .NET and how to overcome them.

 The Component Object Model (COM) is how programs used to be written for Win-
dows systems. It’s been replaced by .NET for new systems, but there’s still a large amount
of COM in use. For a start, ADSI and WMI, the other two technologies that we’ll cover,
are based on COM. If you look at VBScript, it’s COM-based, as is the scripting interface
to applications such as Microsoft Office and Internet Explorer (IE). We can’t escape
knowing about COM just yet, even without thinking about ADSI and WMI. PowerShell
has good support for using COM, and we’ll learn how to use it later in the chapter.

 Active Directory is the foundation of the Windows-based infrastructure in our enter-
prise. We need to be able to administer Active Directory efficiently, which means auto-
mation. This is usually achieved via scripting. ADSI is the interface used by scripts to work
with Active Directory. “Didn’t we use that in VBScript?” I can hear you asking. Yes we did,
and in part we’ll be using it in exactly the same way, but—and this is a big but—there’s
a lot more to working with ADSI in PowerShell, as we’ll discover. Chapters 5, 10, and 11
concentrate on administering Active Directory. This section sets the scene for
those chapters.

 Finally, but definitely not least, is WMI. Windows Management Instrumentation is one
of the foundation technologies for administering Windows-based systems. Often WMI
is the only way you can get to work with a particular aspect of the system. The Micro-
soft Script Center has many, many examples of using WMI in VBScript. PowerShell has
much better support for WMI—in fact it was working on a replacement for wmic, the
WMI command-line tool, that started the thought processes that led to PowerShell!

WMI WMI support is the hidden gold mine for PowerShell adoption. It’s so
much easier to use WMI that it becomes second nature, rather than “Oh no!
It’s time to use WMI.”

WMI is even more important to the Windows administrator than would seem appar-
ent. It’s rare among technologies accessible from Windows-based scripts, as it has
built-in support for accessing remote systems. PowerShell v1 doesn’t have the capabil-
ity to access remote machines directly (remote access has been the most requested
feature for v2), so we need to learn to work with WMI for this capability. I know of one
PowerShell expert who administers more than 400 systems using PowerShell, WMI,
and a bit of .NET. WMI support has been radically improved in PowerShell v2, and
we’ll look at the options this brings.

65Using .NET
Apago PDF Enhancer

3.1 Eureka 2
When you look at the contents for this chapter, you may think it’s just background
stuff that you can dip into if and when you need it. I’d advise you to read this before
diving into all the scripts in later chapters. I know that’s what every author wants, but
you’ll get more out of the scripts if you understand the background.

 I’ve had a few “wow” moments with PowerShell, and a couple of them involve WMI
and ADSI, the tools in this chapter. WMI has been a great tool for Windows administra-
tors to use. The number of examples on the Microsoft Script Center proves that it’s
one of the main planks of the scripting environment for Windows. If you’ve used WMI
with VBScript, you’ll have experienced one of the main frustrations of using VBScript
firsthand. It’s an absolute pain to format the output, and most VBScripts that use WMI
are primarily concerned with formatting the output. How much simpler it is to use
(for example):

Get-WmiObject -Class Win32_OperatingSystem

and let PowerShell do the formatting. Even if we have to change it to:

Get-WmiObject -Class Win32_OperatingSystem | Format-List

it’s still a lot simpler. WMI just got much easier. Look at the example scripts at the
beginning of section 3.5 comparing a VBScript example and the same thing in Power-
Shell. The VBScript code has 20 lines, versus 2 lines of PowerShell. That’s ease of use
with a vengeance!

 The second Eureka! moment is when I discovered how much easier working with
Active Directory became, especially when searching. With VBScript, we had to create an
ADO record set by searching via a SQL-like query. The queries could be difficult to cre-
ate, and having to step through the record set could be awkward. Look at listing 3.4 and
compare it with a VBScript equivalent—we have 17 lines of VBScript against 10 lines of
PowerShell. It’s not such a wide difference as the WMI example, but PowerShell still
brings a significant productivity improvement.

NOTE If we used the Quest AD cmdlets or the Windows Server 2008 R2 AD
cmdlets instead of a PowerShell script, we’d be comparing 17 lines of VBScript
to one line of PowerShell. That’s ease of use.

Bring on PowerShell, where we can create searches using LDAP filters, we can search
much faster, and we can access the tombstoned records so potentially we can create
our own restore scripts. Things are definitely looking up. Time to start looking at
these extra technologies and first on the agenda is .NET.

3.2 Using .NET
One point that I made in chapter 1 should be remembered while reading this is: you
don’t have to become a .NET programmer to use PowerShell. It’s necessary to use
.NET code to access certain functionality, but most of what you’ll be doing is using the
PowerShell language. .NET enters the picture because you need to load extra bits and
create new objects.

66 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

 The .NET Framework or just .NET (there are differences but we don’t need to
worry about them) is the way to create applications in the modern Microsoft environ-
ment. Microsoft made .NET available in 2002, and new versions have appeared on a
regular basis since then. Each new version of .NET tends to be a superset of the previ-
ous version, in that new functionality is added but the old functionality remains more
or less intact.

.NET VERSIONS PowerShell v1 needs .NET 2.0. PowerShell v2 needs .NET 2.0
apart from some features that require .NET 3.5 SP1. Unless you need multiple
versions of .NET loaded, just load .NET 3.5 SP 1, as it also contains .NET 2.0.

PowerShell is based on .NET, and as we’ve seen, one of the major features is that
PowerShell cmdlets output .NET objects rather than text we’re used to in more tradi-
tional shells. These .NET objects are passed along the pipeline so they can be used by
other cmdlets.

 As with any piece of technology, there’s a set of terminology we need to master. So
we’ll start by looking at the terms used when talking about .NET and explain them
from an administrator’s viewpoint. Application developers may want to skip large
parts of this chapter, as I’m covering the subject only enough to help administrators
who’ve never been exposed to this material. This is definitely .NET for administrators
rather than a full explanation of .NET.

 It’s possible to access some .NET functionality, such as the Math functions, directly
from PowerShell, but as we saw in chapter 2, not everything is immediately available.
We’ll learn how to load additional .NET functionality, such as SMO or the IIS interface,
into PowerShell and how to work with it. Our old friend Get-Member will be useful
when we start to investigate working with .NET. First, we need to know what we’re talk-
ing about, so we’ll look at .NET terminology.

3.2.1 Understanding .NET

.NET is a developer topic, but to get the best out of PowerShell as an administrative
tool, we need to dig into the subject a bit. The Microsoft documentation for .NET is
available on MSDN.

DOCUMENTATION The documentation available on MSDN is for .NET 3.5,
which is the current version at the time of writing. PowerShell is built on .NET
and assumes that .NET version 2.0 is in use. Links are avail-able on the MSDN
web pages to documentation based on .NET 2.0 where necessary.

The MSDN documentation is written for developers, but an increasing number of
PowerShell examples are becoming available on MSDN courtesy of the PowerShell
community and especially some of the PowerShell MVPs. It’s always worth scrolling to
bottom of an MSDN article to see if there’s any PowerShell content.

67Using .NET
Apago PDF Enhancer

COMMUNITY The PowerShell community is strong and healthy due to a large
number of early adopters who believe in sharing. If you have a good example
script, please post it on the web for others to share.

Our starting point for this discussion is the .NET framework, which is formally defined
on MSDN.
FRAMEWORK

The .NET Framework is best described as the environment and tools required to cre-
ate, test, and run applications based on the Windows platform. There are two key
components to the framework:

■ Common Language Runtime (CLR)
■ .NET framework class library

The CLR is the runtime mechanism used by .NET applications. It enables applications
written in any of the .NET languages, such as C#, to be executed. We don’t need to
worry about the CLR when using PowerShell.

 The class library is our main interest from the framework. If you check http://
msdn.microsoft.com/en-us/library/ms229335.aspx, you’ll be able to browse the class
library. There are literally hundreds of .NET classes available. Luckily we don’t need to
learn most of these; otherwise we’d never get any administration done! There’s also a
huge chunk of it we don’t need to worry about as administrators—we’re not going to
be writing Windows forms applications in PowerShell.

 It may seem the class library is a huge heap of stuff, but there’s some structure to it,
namely namespaces and classes.
NAMESPACE

A namespace is best thought of as a set of related classes that are grouped together
because they deliver a particular set of functionality. In section 3.4, we’ll see that the Sys-
tem.DirectoryServices namespace contains the classes we use to work with Active
Directory. This namespace doesn’t deliver all of the functionality required to work with
Active Directory. There’s also the System.DirectoryServices.ActiveDirectory,
System.DirectoryServices.Protocols, and System.DirectoryServices.Account-

Management namespaces to consider.
 We’ll define a class next, since namespaces contain classes.

CLASS

A class is a programming template for creating an object. Objects are what we use in
our scripts. The System.DirectoryServices namespace mentioned earlier contains
two main classes in which we’re interested. System.DirectoryServices.Directory-
Entry represents an object in Active Directory, such as a user account or a group,
whereas System.DirectoryServices.DirectorySearcher is used to search Active
Directory for objects matching particular criteria. Note that the full class name incor-
porates the namespace.

 In PowerShell v2, we can use the Add-Type cmdlet to create our own .NET classes.
This is a useful technique, especially where we want to combine properties from a

http://msdn.microsoft.com/en-us/library/ms229335.aspx
http://msdn.microsoft.com/en-us/library/ms229335.aspx

68 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

number of objects for our display. The advantage of creating a .NET class is that the
type of the properties is checked when values are set—if we have a property that’s a
string, we can only give it a string value. If we give it an integer, we’ll get an error. This
approach is reasonably advanced, so I’ll cover it in the appendix A.

 We’re now moving from the abstract to the concrete, in that we’ve reached some-
thing we can work with in the shape of an object.
OBJECT

The word object has been used in several different ways already in this book. We’ve
mentioned .NET objects, PowerShell objects, Active Directory objects, and so forth. An
object is an instance of a class that we’ve specifically created within our script. Each
object-orientated programming language has its own way of creating objects, and
while they all achieve the same end, the syntax is different.

 PowerShell has a couple of ways of creating a .NET object. The most obvious way is
to use the New-Object cmdlet, as shown in listing 3.1.

PS> $rand = New-Object -TypeName Syste.Random -ArgumentList 42
New-Object : Cannot find type [Syste.Random]:
make sure the assembly containing this type is loaded.
At line:1 char:19
+ $rand = New-Object <<<< -TypeName Syste.Random -ArgumentList 42

This was deliberately typed wrong (honest) to show the error message you get when
PowerShell can’t work out which .NET class you’re trying to access. The message
means one of two things:

■ There’s a mistake, usually a typing mistake, in the class name that’s being used.
■ The .NET class we’re trying to use isn’t loaded into PowerShell, in which case we

need to load it before we can use it. We’ll see how to do that in a while.

Assuming we type everything correctly, we’d have:

$rand = New-Object -TypeName System.Random -ArgumentList 42

Typename is the .NET class name and ArgumentList is the data we need to give the .NET
constructor in order for it to create the object. In this case, we’re creating an instance
of the random number class.

 The .NET class documentation normally consists of:

■ An overview including what it’s used for
■ Constructor—the options for how we can create it
■ Methods—what actions it can perform
■ Properties—what data it contains

There’s an alternative way to create an object:

$rand2 = [System.Random](42)

Listing 3.1 Error message when creating .NET objects

69Using .NET
Apago PDF Enhancer

In this case, we enclose the class in [] and the arguments follow as shown. I tend to
use New-Object, as I’ve found it the simplest to understand. I’ve had some awkward
times with this alternative method when I was first learning PowerShell or when the
argument list is complicated.

POWERSHELL OBJECTS One thing to be aware of is that PowerShell doesn’t nec-
essarily return a “pure” .NET object. A PowerShell wrapper may be placed
around the object. The underlying object can be accessed using .psbase, for
example $rand.psbase. This approach is needed much less with PowerShell 2.

Having created our object, we now need to see what it can do in terms of methods and
properties.
METHODS AND PROPERTIES

A method is an action that an object can perform; a property is a piece of data belonging
to the object. The methods and properties available on an object can be viewed using
Get-Member.

NOTE This is a truncated list, so the important points can be seen. If you per-
form Get-Member on your system, you’ll see a lot more methods and proper-
ties that I’ve omitted for brevity and clarity.

PS> $f = Get-Item Testfolder_1
PS> $f | Get-Member

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Mode CodeProperty System.String Mode{get=Mode;}
Create Method System.Void Create()
Refresh Method System.Void Refresh()
ToString Method System.String ToString()

PSChildName NoteProperty System.String PSChildName=Testfolder_1

Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}

BaseName ScriptProperty System.Object BaseName get=$this.Name;}

In addition to the methods and properties we were expecting, we’ve found a few other
types of members:

■ CodeProperty—accesses a static property of a .NET class (see the following
section)

■ CodeMethod—not shown but accesses a static method of a .NET class
■ NoteProperty—defines a property with a static value
■ ScriptProperty—defines a property whose value is the output of a script
■ ScriptMethod-—defines a method implemented by a PowerShell script
www.allitebooks.com

http://www.allitebooks.org

70 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

In other words, these are ways to extend the object beyond the basic .NET object.
Add-Member can be used to add these additional methods and properties. Chapter 11
of PowerShell in Action, Second Edition by Bruce Payette (Manning 2010) has a large sec-
tion dealing with this.

 That closes our look at methods and properties except for the static methods that
have been mentioned.
STATIC METHOD

A static method (or property) can be accessed directly without creating an instance of
the class. This can be readily seen when using the Math class:

PS> [System.Math]::Sqrt(16)
4

We use a double colon :: to access the method as shown; in this case, taking the
square root of 16.

 The Math class also has static properties (fields) that can be accessed in a similar
way. These can be discovered using [System.math] | get-member –Static.

PS> [System.Math]::Pi
3.14159265358979

When working with the .NET online documentation, be aware of the S icon indicating
static methods and properties, as shown in figure 3.1. In my experience, it’s easy to
miss these icons and spend a lot of time head scratching and grumbling... I mean
troubleshooting.
One item that’ll come up fairly frequently is enumerations. They’re a simple concept
but can be awkward to use if you aren’t aware of how they work.
ENUMERATION

Understanding enumerations isn’t essential to learning PowerShell but it may help
you understand what other people are talking about. An enumeration is a closed list.

Figure 3.1 Part of online documentation for the System.Math class. Note the
S indicating static methods and properties.

71Using .NET
Apago PDF Enhancer

The values are defined as part of the .NET framework and can’t be changed. As an
example, consider what happens when you write to an event log. The entries can only
be one of a specified list of types. We can use PowerShell to discover the possible val-
ues in a enumeration:

PS> [enum]::GetNames([System.Diagnostics.EventLogEntryType])
Error
Warning
Information
SuccessAudit
FailureAudit

The .NET documentation will point us to the enumeration we need to use. In this
example, it’s possible to supply the information as a string that contains one of the val-
ues, or we can get the value out of the enumeration:

function Write-EventLog
{
param([string]$msg="Default Message", [string]$type="Information")
$log = New-Object System.Diagnostics.EventLog
$log.set_log("Scripts")
$log.set_source("PSscripts")

$log.WriteEntry($msg,$type)
}

The example shows a function that’s used to write to a specific event log. We’ll look at
how to create event logs and write to them in more detail in chapter 8. In this func-
tion, we pass in two arguments. One is the message and the other is the type of mes-
sage. We’ve set Information as the default type via a string. The value could have been
set by using $type = [System.Diagnostics.EventLogEntryType]::Information.

 The last area of .NET that we need to look at is the Global Assembly Cache or GAC.
GAC

An assembly, in practical terms, is a compiled DLL that contains one of more classes.
The GAC is a store on the computer that’s created when .NET is installed. It is used to
store shared assemblies—assemblies stored in the GAC are available to all .NET pro-
grams executing on the machine as required.

 The contents of the GAC can be browsed, if required, using Windows Explorer, or
if the PowerShell Community Extensions are loaded (see chapter 4), a provider for
the GAC is available.

 You probably feel that you know more about .NET than you ever really wanted to
by now, but we’ll make all of this worthwhile, by showing you how to use it to perform
administrative tasks for which there’s no other option.

3.2.2 Accessing .NET

Knowing all the theory behind .NET is well and good, but as administrators we want to
be able to use this stuff to administer our systems and, hopefully, make our lives easier.
We’ve seen how to find out from MSDN what we need to know in order to use .NET
classes, but how are we going to actually use it?

72 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

 The first thing is to know whether the assembly we need is already loaded, as
shown in listing 3.2.

PS> [appdomain]::CurrentDomain.GetAssemblies() |
 Sort-Object -Property Fullname | Format-Table fullname

FullName

System.Data,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089
System.DirectoryServices,Version=2.0.0.0,Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a
System.EnterpriseServices, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a
System.Management, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a
System.Management.Automation, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35
System.Transactions, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089
System.Xml,Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
Update-SDMgp, Version=1.0.2963.20431,
Culture=neutral, PublicKeyToken=null

NOTE This is a truncated list; I’ve removed the assemblies that are loaded by
PowerShell or by snapins.

Once we determine that an assembly isn’t available, we need to load it. There are a
number of ways of achieving this task. One of the most common is:

PS> [system.reflection.assembly]::
loadwithpartialname("Microsoft.Web.Administration")

GAC Version Location
--- ------- --------
True v2.0.50727

C:\Windows\assembly\GAC_MSIL\Microsoft.Web.Administration\
7.0.0.0__31bf3856ad364e35\Microsoft....

All we give is the assembly name, rather than the full name we saw in the results of list-
ing 3.2. The load message can be suppressed by using:

$null = [system.reflection.assembly]::
loadwithpartialname("Microsoft.Web.Administration")

or

[void] [system.reflection.assembly]::
loadwithpartialname("Microsoft.Web.Administration")

or

[system.reflection.assembly]::
loadwithpartialname("Microsoft.Web.Administration") | out-null

Listing 3.2 .NET assemblies loaded by PowerShell

73Using COM
Apago PDF Enhancer

This method is scheduled for eventual removal from .NET, so although it’s used a lot,
ideally we should work with the full name. I tend to use one of the cmdlets from the
PowerShell Community Extensions (see chapter 4) to derive the full name and use
the load method:

$name = (Resolve-Assembly microsoft.web.administration).Fullname
[system.reflection.assembly]::load($name)

Alternatively, Resolve-Assembly has an import parameter, or in PowerShell v2, there’s
Add-Type, which can be used to load assemblies. A third possibility is to use the method
supplied by Lee Holmes of the PowerShell team http://www.leeholmes.com/blog/
HowDoIEasilyLoadAssembliesWhenLoadWithPartialNameHasBeenDeprecated.aspx.

 However the assembly is loaded, we need to create objects using the classes in the
assembly, which we saw how to do in the earlier section on objects. This concludes our
brief excursion into .NET. We’ll be working with .NET classes when we look at ADSI,
and again in the chapters on administering Active Directory and IIS 7.

 COM is an older technology, but it’s still used in many areas of Windows adminis-
tration. ADSI and WMI are based on COM, so we need that as background for the dis-
cussion of those topics.

3.3 Using COM
COM is to earlier versions of Windows as .NET is to modern Windows. It was the pro-
gramming methodology of its day. COM is still used in a lot of applications, including
Microsoft Office and Internet Explorer. ADSI and WMI are fundamental to a lot of
scripting. They’re both based on COM. This section will be of benefit when we come
to consider them later in the chapter.

 COM has superficially similar features to .NET in that classes, objects, methods, and
properties are available. They don’t necessarily work the same way, at a programming
level, as .NET functionality with the same name. But from a Windows administrator’s
view, we only need to know how to use them. It’ll be assumed that you’ve read the pre-
ceding section and understand these terms.

3.3.1 Understanding COM

If you want to see the functionality available through COM, try this:

Get-WmiObject -Class Win32_ClassicCOMClass | Select-Object Name

Be warned that it’s a very long list. Also, accessing the COM classes through WMI
doesn’t give the full list of objects. This is a major issue with a lot of scripting activity.
Writing the script is usually straightforward. The difficulty comes in finding out what
you need to use to perform the task.

 Internet Explorer (along with Microsoft Office) is known to have a COM interface
that we can use. Unfortunately, it doesn’t show up in the list generated using WMI.
Time for plan B. We should always have a plan B. The Windows Registry has a full
record of the COM objects installed on a machine. It can be accessed by:

http://www.leeholmes.com/blog/HowDoIEasilyLoadAssembliesWhenLoadWithPartialNameHasBeenDeprecated.aspx
http://www.leeholmes.com/blog/HowDoIEasilyLoadAssembliesWhenLoadWithPartialNameHasBeenDeprecated.aspx

74 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

Get-ChildItem -Path "REGISTRY::HKey_Classes_Root\clsid*\progid" |
 ForEach-Object {
 if ($_.Name -match '\\ProgID$') {
 $_.GetValue("")
 }
} | Where-Object {$_ -like "*Internet*"}

We’re using the Registry provider to perform a dir on the Classes_Root portion of the
registry. In our discussion on providers in chapter 1, I mentioned that HK_Local_
Machine and HK_Current_User are exposed as drives. The root of the Registry is avail-
able via cd REGISTRY::. For each path that ends in progid, we get the value of the
default property, and in this case filter those that contain internet in the name.

NOTE This is an adaptation of the script in chapter 18 of PowerShell in Action,
Second Edition by Bruce Payette. If this is something you’ll be doing a lot, con-
sider making it a function and loading it from your profile.

On my machine, the script returns the following list of objects:
■ InternetExplorer.Application.1
■ InternetManager.SiteConfig.1
■ Internet.HHCtrl.1
■ Internet.HHCtrl.1
■ polmkr.apmGpeInternet.1
■ InternetManager.NetConnection.1
■ Internet.HHCtrl.1
■ InternetShortcut

The naming convention for COM objects is that the first part is the program (Internet
Explorer in the first listed object); the second is the component, often the class name;
and the third is a version, which we can ignore. Many of the scriptable objects that are
related to specific programs will have Application as the component name. An internet
search for InternetExplorer.Application leads us to part of the Windows 2000
Scripting Guide at http://www.microsoft.com/technet/scriptcenter/guide/sas_ent_
qpyo.mspx?mfr=true.

RECOMMENDATION If you haven’t read the Microsoft scripting guide, this is a
source that will repay the time spent on it. It’s concerned with VBScript, but
there’s a wealth of background knowledge. I recommend adding the guide to
your list of favorites. I’ve produced PowerShell versions of a lot of the scripts
on my blog. The address is in listing 3.3

The documentation for COM objects isn’t as well organized as that for the .NET
framework. This is understandable, as the .NET documentation was produced as part
of a concerted effort, whereas the COM documentation grew in an ad hoc manner
over time. This means that you both have to search for the object you want to use

http://www.microsoft.com/technet/scriptcenter/guide/sas_ent_qpyo.mspx?mfr=true
http://www.microsoft.com/technet/scriptcenter/guide/sas_ent_qpyo.mspx?mfr=true

75Using ADSI
Apago PDF Enhancer

(just tracking down its name can be an interesting activity), then search for the
documentation to explain it. Often what you’ll find is example scripts rather than
full-blown documentation.

 Having discovered our interface to Internet Explorer, it’s now time to use it.

3.3.2 Accessing COM

Using COM objects is similar to using .NET objects, which we’ve already covered. As an
example, see listing 3.3, in which we’ll look at creating a script to access a PowerShell-
related web site—in this case one I know well.

function get-rsblog {
$ie = New-Object -ComObject InternetExplorer.Application
$ie.Navigate("http://richardsiddaway.spaces.live.com/")

while ($ie.busy) { Start-Sleep -seconds 1 }

$ie.Visible = $true
}

This is presented as a function, but it could also be used as a script, or if you have sev-
eral sites you regularly use, you could create a parameter and a switch statement to
enable the choice. I’ll leave that as an exercise for the reader.

 In this case, we use New-Object to create the InternetExplorer.Application
object we discovered in the preceding section. The only difference for using it for
COM objects is that we use the -ComObject parameter rather than -TypeName. Once
we’ve created the object, we tell it the site we want to visit using the appropriate URL.
Internet Explorer will take a while to open, so we use a while loop to check whether
IE is busy, and put the script to sleep for a second. Once IE has retrieved the page, we
make it visible.

 This look at COM has shown us that once we’ve found and created the object,
working with it is similar to working with .NET objects. COM is the basis of many of the
Windows-based interfaces, especially WMI, which we’ll see later. Active Directory is one
of the most important technologies in a Windows corporate environment, and a
prime candidate for automation. Active Directory has a COM-based scripting interface
known as ADSI.

3.4 Using ADSI
“When will Microsoft ship an Active Directory provider (or cmdlets)?” is a frequently
asked question. There’s no direct support for working with Active Directory in either
PowerShell v1 or v2.

WINDOWS SERVER 2008 R2 PowerShell cmdlets for Active Directory are avail-
able in Windows Server 2008 R2, along with a huge raft of other PowerShell
functionality. PowerShell v2 is installed and enabled by default.

Listing 3.3 Open a web page from PowerShell

76 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

Automating Active Directory is one of the major areas of scripting, judging by the
number of scripts available and the questions being asked on newsgroups. So we have
a declared need to automate Active Directory work and a new shell that doesn’t
directly support working with Active Directory what are we going to do?

NOTE The discussion in this section is focused on Active Directory, but the
same technologies and interfaces are used to access local user and group
accounts, as well as work with Active Directory Lightweight Directory Services
(ADLDS, formerly known as ADAM).

The COM-based interface ADSI has been used
extensively in VBScript to work with Active
Directory. As it’s COM-based, we can work with
it in PowerShell as we’ve seen. But there’s also
a .NET wrapper, System.DirectoryServices,
that gives .NET access to ADSI. This situation is
further complicated in that PowerShell has
introduced a type accelerator for System.
DirectoryServices called [ADSI] that pro-
vides yet another layer of wrapping, as shown in
figure 3.2.

 There are third-party tools available for
working with Active Directory that will be cov-
ered in chapter 4. Detailed background infor-
mation on ADSI can be found in the SDK (see
appendix E).

3.4.1 Understanding ADSI

The picture so far seems reasonably clear, with a couple of wrappers giving us access to
ADSI and then to Active Directory. But there are a number of other .NET namespaces
available that complicate the situation. System.DirectoryServices.ActiveDirectory
was introduced in .NET 2.0, and System.DirectoryServices.AccountManagement
was introduced in .NET 3.5. The relationship between the components is shown in fig-
ure 3.3.

 Working up from the bottom of the diagram, we have Active Directory and the
other data stores, including the local security system and AD LDS. These stores are
accessed by the native LDAP APIs built into Windows. These APIs aren’t accessible via
scripting, or programming, languages. ADSI is the interface we use with scripting lan-
guages—originally VBScript, but now PowerShell. The AD APIs are another set of
interfaces that bypass LDAP and communicate directly with Active Directory. They
weren’t available to VBScript.

 The introduction of .NET 2.0 brought the System.DirectoryServices (S.DS)
namespace into the picture. This is a .NET wrapper for ADSI, but doesn’t necessarily

ADSI

[ADSI]

System.DirectoryServices

Figure 3.2 Relationship between the ADSI
wrappers in PowerShell

77Using ADSI
Apago PDF Enhancer

expose everything that ADSI does, and changes the names of methods. For example,
in VBScript we use SetInfo() to commit the changes to Active Directory, whereas
System.DirectoryServices uses CommitChanges(). The System.DirectoryServices.
ActiveDirectory (S.DS.AD) namespace is concerned with Active Directory itself,
whereas System.DirectoryServices is for working with the data in Active Directory,
such as user accounts. S.DS.AD bypasses S.DS and ADSI for some functionality, and
accesses the AD APIs directly. System.DirectoryServices.AccountManagement was
introduced in .NET 3.5 and is for working with security principals such as user and group
accounts. It’s a wrapper for System.DirectoryServices.

 System.DirectoryServices.Protocols, introduced with .NET 2.0, sits outside
the stack that accesses ADSI. It works directly with the native APIs for Active Direc-
tory. It can be fast, but is more complicated to work with compared to the ADSI-
based methods.

 Most of the examples we’ll use in this and later chapters will use System.Directory-
Services, though we’ll examine System.DirectoryServices.AccountManagement
when discussing user accounts. We’ll avoid the Protocols namespace, but will spend
some time with the ActiveDirectory namespace.

ACTIVE DIRECTORY CMDLETS I’ve deliberately avoided bringing the Quest or
Microsoft Active Directory cmdlets into this discussion. They’ll be used in
later chapters, but from discussion with users, I know that many organizations
don’t allow the use of the Quest AD cmdlets. I’ll cover working with Active
Directory from scripts because of this, and because I believe that if you under-
stand how to perform the task in a script, it aids in the understanding of
the cmdlets.

An additional complication is the presence of the accelerators that we discussed ear-
lier in this section.

Active Directory

Native LDAP

ADSI

AD APIs

System.DirectoryServices

System.DirectoryServices.Protocols System.DirectoryServices.ActiveDirectory

System.DirectoryServices.AccountManagement

Figure 3.3 Access methods and protocols for working with Active Directory

78 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

POWERSHELL ACCELERATORS

PowerShell contains an Active Directory type accelerator [ADSI]. It functions as an
accelerator for System.DirectoryServices.DirectoryEntry, the class that we use to
work with Active Directory objects such as users and groups:

$user = [ADSI]"LDAP://CN=Richard,CN=Users,DC=Manticore,DC=org"

$user2 = [System.DirectoryServices.DirectoryEntry]`
"LDAP://CN=Richard,CN=Users,DC=Manticore,DC=org"

$user3 = `
New-Object -TypeName System.DirectoryServices.DirectoryEntry
-ArgumentList "LDAP://CN=Richard,CN=Users,DC=Manticore,DC=org"

These three examples all do the same thing. They all generate a PowerShell object
that enables us to work with a particular user object. If you perform a Get-Member on
any of the created variables, you’ll see that that their type is System.DirectorySer-
vices.DirectoryEntry. Most people will use the first option because it’s less typing,
which means it’s faster and easier to use, and you’re less likely to make a typing error.

 PowerShell v2 introduces another accelerator in the form of [ADSISearcher]. This
functions as an accelerator for System.DirectoryServices.DirectorySearcher.

 We’ve had a good look at the tools for working with Active Directory. It’s now time
to take them out of their packaging and put them to use. I don’t want to spoil the sur-
prises that chapters 5, 10, and 11 will bring, so we’ll just get a taste of how we use this
part of our toolkit. Before that, we have a bit of a problem to solve.

3.4.2 Accessing Active Directory

If we create a user object like this:

$user = [ADSI]"LDAP://CN=Richard,CN=Users,DC=Manticore,DC=org"

and then put it through Get-Member, we’ll get the results shown in figure 3.4.
 If you look carefully at the screen shot, you’ll see that all that’s returned are prop-

erties. If you use a tool such as ADSIEdit to check an Active Directory account, you’ll
see that these are the populated attributes of the user object. All properties and no
methods! How can we do anything with this object?

 Back in the .NET section earlier in the chapter, I mentioned that PowerShell put a
wrapper around the .NET object. This is exactly what’s happened here, in that the
PowerShell wrapper only returns the populated Active Directory attributes. To get this
result, we used:

$user | Get-Member

To see the methods we need to use psbase to view the actual object:

$user.psbase | Get-Member

This will give us the information shown in figure 3.5.
 In this second screen shot, we can see that the underlying object has a lot of meth-

ods and some properties that match the .NET documentation for System.Directory-
Services.DirectoryEntry. What does this mean for us in practice?

79Using ADSI
Apago PDF Enhancer

Figure 3.4 Output of Get-Member on an Active Directory user object

Figure 3.5 Applying Get-Member to the base object of an Active Directory user object

80 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

MAKING CHANGES

Assume we want to make a change to an attribute. In this example, we’ll work with the
l attribute (location), which corresponds to the city field on the Address tab of a user
object in Active Directory Users and Computers. We’d use the following code:

PS> $user = [ADSI]"LDAP://CN=Richard,CN=Users,DC=Manticore,DC=org"
PS> $user.l
London
PS> $user.l = "Baston"
PS> $user.l
Baston
PS> $user.psbase.CommitChanges()
PS>

We create a variable to hold the user object. After examining its value, we change it
and then make a call to CommitChanges() to write the result back into the Active
Directory database. This can start to get confusing and cumbersome when other
methods have to be accessed.

NOTE In PowerShell v2, the need to use psbase has been removed, so that
$user.CommitChanges() can be used directly. But when using Get-Member,
the methods aren’t shown unless psbase is used. Still confusing.

As an alternative approach, PowerShell was changed to incorporate the VBScript
approach to working with Active Directory. This resulted in the methods shown in
table 3.1 being added to the Active Directory objects. The big drawback to this is that
they’re hidden. Get-Member doesn’t show these methods either on the PowerShell
object or using psbase to access the raw object.

This would change our example to:

PS> $user = [ADSI]"LDAP://CN=Richard,CN=Users,DC=Manticore,DC=org"
PS> $user.l
London
PS> $user.l = "Baston"
PS> $user.l
Baston
PS> $user.SetInfo()
PS>

Table 3.1 VBScript-style methods to be used when working with Active Directory objects

Method Purpose

Get() Retrieves the value of a named property. Usually used for single-valued properties.

GetEx() Retrieves the value of a named property. Usually used for multivalued properties. The
values are returned as an array.

Put() Sets the value of an attribute.

PutEx() Modifies the values of a multivalued attribute.

SetInfo() Saves the property values of ADSI object back to the directory store.

81Using ADSI
Apago PDF Enhancer

We can use the Put() method (we’ll see an example in chapter 5) or set the attributes
as shown.

RECOMMENDATION Use SetInfo() and the associated methods. It’s the sim-
plest, and makes transitioning from VBScript examples easier.

When working with Active Directory, we’re usually making changes, for example creat-
ing or modifying user accounts, or we’re searching Active Directory for specific infor-
mation. Using PowerShell to search Active Directory has a number of advantages
when compared to the search capability we had in VBScript.
SEARCHING

We’ll see more examples of searching Active Directory in later chapters, but the sim-
ple example in listing 3.4 will explain the changes.

$struser = "BOSCH Herbert"

$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(cn=$struser)"
$result = $search.FindOne()

if ($result -ne $null)
{
 $user = $result.GetDirectoryEntry()
 $user
}
else {Write-Host $struser " Does not exist"}

This script will search Active Directory for a specific user. We’re testing to see
whether a user with this name exists. This could form part of a user creation script,
where you want to test that a specific user name isn’t already in use. We start by creat-
ing a variable to hold the user name B. I always try to make my Active Directory
scripts portable, as I can then reuse them. [System.DirectoryServices.Active-
Directory.Domain]::GetCurrentDomain() will return the current domain C. If
we then get a directory entry for the domain, we can use this as the root of our
search D. A search filter is necessary; in this case we use the user name we’ve
defined E. There shouldn’t be more than one user with a given name, so we can use
FindOne() F. Incidentally, FindOne() does a FindAll() and takes the first result!
The result can then be displayed G—either the user information or a message that
we couldn’t find that user.

NOTE We didn’t have to create an ADO recordset as we do when using
VBScript to search Active Directory. This is a major step forward, in that
scripts become easier to write and they run more quickly.

Listing 3.4 Searching for a user in Active Directory

Set userB

Get current
domain

C

Search rootD

E Search filter
F Find first

G Show result

82 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

Searching Active Directory in PowerShell is much faster than using VBScript. We can
also access the tombstoned records in our searches. This means we can think about
restoring objects that have been deleted. But that’s a treat for a later chapter. For now,
we must turn our back on Active Directory and ADSI and start to think about, WMI, the
last of our tools.

3.5 Using WMI
WMI is a powerful COM-based technology for obtaining information about your sys-
tems, and in some cases making changes to those systems. WMI gives you the keys to
the kingdom as far as your system is concerned. In other words, WMI gives you access
to everything. It’s the ultimate skeleton key for Windows-based machines.

 A WMI call can be executed on your local system or on a remote system (assuming
that you have the correct level of permissions and that a firewall or some other device
doesn’t stop you). A mass of WMI-based scripts is available on the Microsoft TechNet
Script Center, most of which are concerned with retrieving information from one or
more Windows systems. Much of the VBScript-based administration was performed
using WMI.

 Why then do we need another method of using WMI? The simple answer is ease of
use. WMI in PowerShell is so much easier to use. It becomes a familiar tool you want to
use rather than a chore. Listing 3.5 is a good representative script for using WMI that I
found on the Microsoft Script Center.

strComputer = "."
Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\CIMV2")
Set colCSes = objWMIService.ExecQuery("SELECT * FROM Win32_ComputerSystem")
For Each objCS In colCSes
 WScript.Echo "Computer Name: " & objCS.Name
 WScript.Echo "System Type: " & objCS.SystemType
 WScript.Echo "Number Of Processors: " & objCS.NumberOfProcessors
Next
Set colProcessors = objWMIService.ExecQuery("Select * from Win32_Processor")

For Each objProcessor in colProcessors
 WScript.Echo "Manufacturer: " & objProcessor.Manufacturer
 WScript.Echo "Name: " & objProcessor.Name
 WScript.Echo "Description: " & objProcessor.Description
 WScript.Echo "Processor ID: " & objProcessor.ProcessorID
 WScript.Echo "Address Width: " & objProcessor.AddressWidth
 WScript.Echo "Data Width: " & objProcessor.DataWidth
 WScript.Echo "Family: " & objProcessor.Family
 WScript.Echo "Maximum Clock Speed: " & objProcessor.MaxClockSpeed
Next

This isn’t easy to use for a number of reasons. First, because it’s VBScript, the com-
mands can’t be run interactively, which makes testing and debugging more difficult.
Second, notice how an object is created that points to the WMI namespace and a WQL
query is executed. This is the standard way to retrieve information via WMI in

Listing 3.5 WMI in VBScript

83Using WMI
Apago PDF Enhancer

VBScript. We then have to loop through the returned collection of objects. Finally,
note how many lines are required to format the output. It may not be obvious at first
glance, but we’re interrogating two WMI classes in this script: Win32_ComputerSystem
and Win32_Processor.

 Now let’s compare this with the PowerShell equivalent. We use Get-WMIObject and
choose the class we’ll read. We then use Format-List to select and display the proper-
ties. We then repeat for the second class.

 The display from PowerShell may be marginally less elegant, but I’ll gladly trade
that for ease of use. The great advantage of PowerShell is that these commands can be
used interactively as well as in a script. Give me ease of use and less typing every time.
See listing 3.6.

Get-WmiObject -Class Win32_ComputerSystem |
Format-List Name, SystemType, NumberOfProcessors

Get-WmiObject -Class Win32_Processor |
Format-List Manufacturer, Name, Description, `
ProcessorID, AddressWidth, DataWidth, `
Family, MaxClockSpeed

3.5.1 Understanding WMI

One thing to be aware of with WMI is that it’s evolving. New WMI functionality is avail-
able in Windows Vista, for instance, that isn’t available in earlier versions of Windows.
Full information on WMI is available in the WMI SDK (see appendix E). WMI is orga-
nized as classes within namespaces. The default namespace is root\cimv2. This will be
used throughout the book unless stated otherwise; for example chapter 9 makes
extensive use of the root\MicrosoftDNS namespace. To view the installed namespaces
(they’ll change depending on the applications and services installed), use PowerGUI
or the WMIExplorer.

 WMIExplorer looks like a Windows application (to be accurate it’s a Windows
Forms application). But it’s not a compiled .NET executable; it’s a PowerShell script.
This emphasizes just how much versatility is available through PowerShell. WMIEx-
plorer shows that you can write applications like this in PowerShell. Whether you
should do so is a different argument. WMIExplorer was created by Marc van Orsouw
(MoW) and can be downloaded from his blog (see appendix E).

NOTE In the examples in this section, I’ll assume you’re entering the code in
PowerShell yourself as you read about WMI. The resultsets produced by some
of these examples are too long to include in the book. These examples are all
run on the local machine. Use the ComputerName parameter to specify a
remote machine.

PowerShell has excellent WMI support via the Get-WMIObject cmdlet. In order to see
the scope of WMI, try typing the following:

Get-WMIObject –list

Listing 3.6 WMI in PowerShell

84 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer
You’ll see a long list of WMI classes scrolling by. Many of the class names start Win32_.
To make the list more manageable, try:

Get-WMIObject –list |
 Where-Object{$_.Name -like "*OperatingSystem*"}

This becomes even easier in v2, as we can use:

Get-WmiObject -List *OperatingSystem*

Either option will return a list of the classes containing OperatingSystem in their names.
Win32_OperatingSystem looks like it could be interesting:

Get-WMIObject –class Win32_OperatingSystem

On its own, it doesn’t seem to return much. Time to fall back on our old friend,
Get-Member:

Get-WMIObject -Class Win32_OperatingSystem | Get-Member

That’s much better. Lots of interesting properties become available now.

NOTE This is another example of the default formatter restricting the output.
When using any PowerShell cmdlet, it’s usually a good idea to test it with Get-
Member to see if there’s any more information to be displayed.

Figure 3.6 WMIExplorer enables you to browse the WMI namespaces and classes on your system, the
instances that currently exist, and how to use the WMI methods and properties.

85Using WMI
Apago PDF Enhancer

Get-WMIObject has a –Property parameter that lets you select which properties to
display. Alternatively, Select could be used. Let’s see how much we can do within
Get-WMIObject:

Get-WMIObject -Class Win32_OperatingSystem `
-property TotalVirtualMemorySize, FreeVirtualmemory, LastBootUpTime

The TotalVirtualMemorySize and FreeVirtualmemory properties are returned as
kilobytes. The LastBootUpTime is in WMI date format. To convert it to a more read-
able format, the .NET System.Management.ManagementDateTimeConverter class can
be used as shown in Listing 3.7.

PS> $t = Get-WMIObject -Class Win32_OperatingSystem |
>> Select LastBootUpTime
>>
PS> $t

LastBootUpTime

20070406072653.500000+060

When converted to a more readable format we get this:

PS> Get-WMIObject -Class Win32_OperatingSystem `
-property LastBootUpTime | foreach {
[System.Management.ManagementDateTimeConverter]::
ToDateTime($_.LastBootUpTime)}

06 April 2007 07:26:53

The PowerShell Community Extensions contain scripts that can be included in the pipe-
line for performing this calculation. It’d be a simple matter to include the calculation
in a cmdlet that was written to access this information. Alternatively, you could use this:

PS> $w1 = Get-WMIObject -Class Win32_OperatingSystem
PS> $w1.ConvertToDateTime($w1.LastBootUpTime)
08 April 2007 10:05:35

Very neat. There’s an awful lot of functionality in PowerShell and WMI. Every time you
think you understand something, you quickly learn there’s more to be discovered. WMI
contains a wealth of information about your systems. The information returned from
WMI is the sort that’s easily displayed by PowerGadgets or PowerGUI, as we’ll see in
chapter 4. In a lot of cases, the only way to access this information is to use WMI. There’s
no other way to get it, in which case we need the easiest way possible: PowerShell.

 The important thing to remember is that PowerShell is .NET-based, as we saw in
the first part of this chapter, and underneath the cmdlets and accelerators we’re deal-
ing with .NET classes. PowerShell gives us a layer of abstraction that hides some of the
more nasty programming stuff. The following examples will use Win32_Process and
Notepad, as it’s straightforward and definitely something you’ll be able to try at home.

Listing 3.7 Retrieving LastBootTime using WMI

86 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

3.5.2 WMI type accelerators

As we have already seen, Get-WmiObject is used to read information about, and in
some cases perform actions upon, an existing WMI object. Let’s create a WMI object
pointing to an existing and open instance of Notepad and use Get-Member on it:

PS> $g = Get-WmiObject -Class Win32_Process
-Filter "Name = 'notepad.exe'"
PS> $g | Get-Member
 TypeName: System.Management.ManagementObject#root\cimv2\Win32_Process

We see that it returns a System.Management.ManagementObject of a Win32_Process
WMI class.

NOTE The output in the example is truncated for brevity. It’s also possible to
use $g.GetType() | Format-List, which returns a lot of information about
the .NET object. GetType doesn’t appear in the list of methods returned in
this instance.

If you look at the properties and methods shown by Get-Member, there’s no method to
create an instance.

 It’s like picking a cup of coffee off a counter where there are many cups of coffee.
You can drink it but you can’t use it to create another cup. My analogy breaks down
slightly, as there’s a clone() method if we drop into the base object, but that appears
to clone the object rather than a new instance of Notepad, so we’ll leave that to
one side.
[WMICLASS]

If we now look at [WMIClass] and use Get-Member on it:

PS> $c = [WMIClass]'Win32_Process'
PS> $c | Get-Member
 TypeName: System.Management.ManagementClass#ROOT\cimv2\Win32_Process

We see that we’re using a different .NET class, namely System.Management.

ManagementClass, which shows us there’s a way to create a new instance of the class
via the CreateInstance() method. Get-Member shows us a Create() method, and
the following:

PS> $c.psbase | Get-Member

shows us the CreateInstance() method that matches the .NET documentation.
Either will work. The following:

$c.Create("Notepad.exe")

is the simplest to use and will create a new process running Notepad.
 Using [WMIClass] is a shortcut for using New-Object:

$x = New-Object -TypeName System.Management.ManagementClass
-ArgumentList "Win32_Process"
$x | Get-Member
$x.Create("notepad.exe")

87Using WMI
Apago PDF Enhancer

To summarize, Get-WmiObject is a PowerShell cmdlet to work with the System.
Management.ManagementObject .NET class, which allows you to read information
from and interact with existing instances of WMI classes. [WMIClass] is a shortcut (or
accelerator) for creating new instances of WMI classes. PowerShell v2 streamlines the
process to a degree, in that the Invoke-WmiMethod can do it all in one line:

Invoke-WmiMethod -Class Win32_Process -Name Create`
-ArgumentList "notepad.exe"

Having shown how a new WMI object can be created using Invoke-WmiMethod, we
need to consider how to remove a WMI object. PowerShell v2 supplies a Remove-WMI-
Object cmdlet. This takes a WMI path to identify the individual object, or you can use
Get-WMIObject to identify objects and pipe the result to Remove-WMIObject.

WARNING Make sure you’re not using Notepad when you run the next piece of code:

Get-WmiObject -Class Win32_process -Filter "Name='notepad.exe'" |
Remove-WmiObject

Remove-WMIObject doesn’t support the -whatif and -confirm parameters, so best
practice is to use Get-WmiObject and the filter capability to identify the correct object
before piping to Remove-WMIObject.

NOTE Invoke-WMIMethod and Remove-WMIObject are new cmdlets intro-
duced in PowerShell v2.

[WMISEARCHER]

PowerShell and WMI make a powerful, and in some cases frightening combination. One
of the parameters on the Get-WMIObject cmdlet is –filter. This allows a WMI Query Lan-
guage (WQL) syntax clause to be used to further tighten the search. For example:

$s = Get-WmiObject -class Win32_Service
$s

returns a list of services, including the StartMode and the current state, whether or
not it’s running.

NOTE Get-Service doesn’t return the StartMode, so we need to use WMI if
we want to change how services start.

We saw WQL being used in the VBScript example in listing 3.5. Take a moment to com-
pare how it was used there to what we’re doing here.

 We can concentrate on a particular service like this:

PS> $s = Get-WmiObject -class Win32_Service -filter 'Name = "BITS"'
PS> $s

ExitCode : 0
Name : BITS
ProcessId : 1100
StartMode : Auto
State : Running
Status : OK

88 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

Note that the StartMode is set to auto. Piping $s into get-member, $s | get-member,
returns a long list of properties and a number of methods, including:

■ PauseService
■ ResumeService
■ StartService
■ StopService

Looking at the list of cmdlets with Service as the noun, you’ll no doubt recognize
that the methods I just listed are available as cmdlets. This is where WMI becomes
frightening:

$s.stopservice()
$s = Get-WmiObject -class Win32_Service -filter 'Name = "BITS"'
$s
ExitCode : 0
Name : BITS
ProcessId : 0
StartMode : Auto
State : Stopped
Status : OK

Note that we have to refresh the object to see that the service has stopped. If you’re run-
ning Vista you’ll need to start PowerShell with elevated privileges. Using the WMI meth-
ods like this, there are no WHATIF or CONFIRM options like you get with Stop-Service.
Be very careful with WMI methods because you don’t have a safety net.

WARNING Using the methods on WMI classes means we’re working with the
COM object (even if it’s in a .NET wrapper). The PowerShell cmdlets were
written to explicitly give you a safety net. WMI wasn’t.

[WMISearcher] is an accelerator for System.Management.ManagementObjectSearcher.
 It searches WMI classes for particular instance(s) based on a WQLquery. WQL is an

SQL-like language specifically used to search WMI instances.

$query = `
[WMISearcher]`
'Select * from Win32_Process where Name = "notepad.exe"'
$query.Get() | Select Name, Processid | Format-Table -AutoSize

Alternatively the following could be used:

Get-WmiObject -Class Win32_Process -Filter 'Name = "notepad.exe"' |
Select Name, Processid | Format-Table -AutoSize

or the following:

Get-WmiObject -Query `
'Select * from Win32_Process where Name = "notepad.exe"' |
Select Name, Processid | Format-Table -AutoSize

If you need to search WMI for particular information, you have choices which come
down to what sort of object you want to return. If you want to work with the object, use

89Using WMI
Apago PDF Enhancer

Get-WMIObject, but if you only want to view information you could use
[WMISearcher].

NOTE This is a perfect example of PowerShell delivering information by
multiple means. If you look on the internet for using WMI as a search tool,
you’ll find multiple ways of retrieving the information (they’re all on my
blog!) as shown here. Which one you should use is determined by what you
want to achieve and to a certain degree personal preference. In administra-
tive scripting, the answer is everything. There are no points for style and
artistic interpretation!

[WMI]

There’s one last WMI accelerator to look at-[WMI]-which is an accelerator for System.
Management.ManagementObject. This is the same object type that Get-WMIObject
returns. [WMI] gets an object representing an existing WMI object.

 We start with using Get-WmiObject to create a variable representing a WMI object.

$w1 = Get-WmiObject -Class Win32_Process -Filter "Name = 'notepad.exe'"
$w1 | Get-Member

If we try to emulate this with [WMI], we start to run into some issues. The only path
that I could get to work was:

$w2 = [WMI]'root\cimv2:Win32_Process.Handle="4112"'
$w2 | get-member

I tried name, description, and other candidates, but none seemed to work. The rea-
son is because when using [WMI], we can only create an object using a property that’s
designated as a key for that WMI class. Jeffrey Snover explains how this works on the
PowerShell Team blog: http://blogs.msdn.com/powershell/archive/2008/04/15/
wmi-object-identifiers-and-keys.aspx. He provides a function to determine the key for
a particular WMI class. For a variant of the function, see listing 3.8.

PS> $t = [WMIClass]"Win32_Process"
PS> $t.psbase.properties |
Select-Object @{Name="PName";Expression={$_.name}} `
-ExpandProperty Qualifiers |
>>Where-Object {$_.Name -eq "key"} |
>>ForEach-Object {$_.Pname}

Running the code in the listing will return Handle as the key.

NOTE In PowerShell v2, we don’t need to use the psbase qualifier.

We start by creating a new instance of a WMI class, and we need to examine the prop-
erties. There are two important points in the way we use Select-Object here. The
first is the use of -ExpandProperty, which takes a multivalued property such as an
array and enables us to work with the individual values. The second involves

Listing 3.8 Determining the key for a WMI class

http://blogs.msdn.com/powershell/archive/2008/04/15/wmi-object-identifiers-and-keys.aspx
http://blogs.msdn.com/powershell/archive/2008/04/15/wmi-object-identifiers-and-keys.aspx

90 CHAPTER 3 PowerShell toolkit
Apago PDF Enhancer

@{Name="PName";Expression={$_.name}}, which is a calculated property. It’s created
as a hash table (see section 2.4.2) and the name from the expanded list of qualifiers is
used as the value in the array. We then filter on key—we’re looking for a property that
has the value key in its qualifiers.

 The following is the full list of information for the Handle property:

PS> $t.psbase.properties | Where-Object{$_.Name -eq "Handle"} |
>> Format-List

Name : Handle
Value :
Type : String
IsLocal : False
IsArray : False
Origin : CIM_Process
Qualifiers : {CIMTYPE, key, MaxLen, read}

Alternatively the object could be created like this:

$y = [WMI]""
$y
$y.psbase.Path = '\\PCRS2\root\cimv2:Win32_Process.Handle="4112"'

Comparing the results of these three techniques, we get:

Compare-Object -ReferenceObject $w1 -DifferenceObject $w2
Compare-Object -ReferenceObject $w1 -DifferenceObject $y

Both of these comparisons return nothing, which indicates that the objects are the
same.

 Looking at creating this with .NET:

$z = New-Object -TypeName System.Management.ManagementObject `
-ArgumentList '\\.\root\cimv2:Win32_Process.Handle="4112"'
$z | Get-Member
Compare-Object -ReferenceObject $w1 -DifferenceObject $z

Again, the same object is created, and again we need to use Handle as the key to cre-
ation. The object creation works when we do:

$t = Get-WmiObject -Class Win32_process -Filter 'name="notepad.exe"'

Because we need to know the path before we can use [WMI], it may be easier to use
Get-WmiObject instead. Having discovered what the key is for a particular WMI class,
we need to return all current instances and their key values before attempting to cre-
ate the object. This introduces extra stages into the process.

3.6 Summary
PowerShell by itself is a powerful and versatile tool for administering Windows sys-
tems. When we start to extend its reach by teaming it up with .NET, ADSI, WMI, and
COM, we’ve suddenly created a toolset that’s definitely going to meet our needs for
automating the administration of Windows systems.

91Summary
Apago PDF Enhancer

 .NET brings the full power of Microsoft’s latest programming frameworks. Power-
Shell needs to load some parts of the framework; other parts can be loaded optionally.
We may not want to write Windows applications in PowerShell, but the functionality is
there for when we need it. We’ll return to .NET when we start working with IIS and
SQL Server.

 COM is an older way of creating programs, but is still in use in many Microsoft appli-
cations. It’s accessed in a similar way to .NET (ease of use is a big plus for PowerShell)
and opens up applications such as Internet Explorer and the Office suite to our scripts.

 ADSI is a way to work with Active Directory. PowerShell and Active Directory seem to
be a messy combination with too many options. We saw a good way of working with them,
and this will be applied in later chapters. Searching Active Directory has become much
easier and faster with PowerShell. This will also be explored in further chapters.

 WMI is a mainstay of Windows administration. With PowerShell, this is easier to use
and much, much easier to output. PowerShell has made WMI a tool that’s automati-
cally included in the thought process rather than a tool of last resort. .NET and ADSI
will be featured in particular chapters, but we’ll repeatedly use WMI through much of
the rest of the book.

 There’s a common theme here. PowerShell has taken the existing administrator’s
tools and made them easier to use, and in some cases given us access to more power-
ful alternatives. This toolset forms the foundation of our scripting experience. There
are some third-party additions to the toolset; we’ll consider them and some best prac-
tices next.

Automating
 administration
Apago PDF Enhancer

PowerShell is fun, and being able to rattle off a script to do something in a fraction
of the time we’d take manually is cool, but what benefits do we actually get? In
other words, why are we doing this? This point hasn’t been emphasized in the pre-
vious chapters, but the underlying theme has been that PowerShell is all about
automation. Automation brings speed, efficiency, repeatability, and consistency.
These are good things in their own right. When added to other things that you can
do because of the time you’ve saved through your automation efforts, the benefits
become really worthwhile.

 Windows has traditionally been administered through the GUI. PowerShell is all
about the command line. We’ll look at administration styles and how PowerShell is

This chapter covers
■ How to develop administration scripts
■ PowerShell best practices
■ PowerShell tools for development and administration
■ Making scripts secure
92

93Benefits of automation
Apago PDF Enhancer

blurring the boundaries. The introduction of PowerShell into the administration tool-
set brings about automation almost as a matter of course.

Benefits of automation

Most administrators will view automation as writing scripts. One big question is how
do you start writing scripts? PowerShell can be used in exactly the same way interac-
tively as in scripts. That enables us to start developing at the command prompt and to
turn our interactive work into scripts that we can reuse and share with others. One
name for this is ad hoc development.

NOT A DEVELOPMENT METHODOLOGY Ad hoc development is not a new develop-
ment methodology. It’s simply the way that many administrators work. Define
a problem, find a solution, and refine it as needed. Most, if not all, administra-
tors aren’t professional developers. They want, and need, enough code to solve
their problems. Everything else is usually regarded as overhead.

There’s a collective body of knowledge, known as best practice, that can be applied to
developing and using PowerShell scripts. Most of this is common sense. It’s worth review-
ing this section, as there may be some ideas that will make your development easier.

 PowerShell doesn’t and can’t exist in a vacuum. There is a large, and continually
expanding, range of tools that can be used with PowerShell. This ranges from
editors, to GUI front-ends for PowerShell, to additional cmdlets and providers in
the form of snapins or modules. Many of these tools are free downloads that
can make administration much easier. We’ll be using many of them in future chap-
ters, in addition to seeing how to perform the tasks with scripts using basic Power-
Shell functionality.

 Keeping the environment safe is a prime directive for IT administrators. The num-
ber of security threats seems to grow every day. PowerShell is more secure than previ-
ous scripting environments due to some of the design decisions that were taken. We’ll
round off this chapter with a general review of PowerShell security, specifically look-
ing at code signing of scripts. Code signing involves certificates, which some adminis-
trators view as a scary subject. You don’t need to build a full certificate-based

Automation = scripting?
One school of thought says that we’re automating only if the work is being done by a
scheduled task. Though that’s applicable for a number of tasks such as backup or
data loads, should we be performing all administration in this way?

My view is that scripting is automation. We’re getting the machine to do the grunt
work for us. This frees up time we can spend on other tasks. Do we want to limit our-
selves to scheduled tasks? Seems like a restriction we don’t need.

I think we have a spectrum of activity from manual performance through scripting
to scheduled tasks. Pick where you need to be for a particular task.

94 CHAPTER 4 Automating administration
Apago PDF Enhancer

infrastructure to enable code signing. We’ll take the mystery out of this subject so that
it’s something you’ll be able to do in your environment. We’ll start with our original
thought: why do we want to do all this?

4.1 Benefits of automation
A long time ago (in a school far, far away), I remember a physics lesson where we were
told that simple machines such as levers and pulleys didn’t necessarily reduce work,
but they did make it easier to perform. The same concept applies to the automation
of administration.

 Certainly, learning PowerShell and its associated tools takes time and effort.
Writing scripts takes time and effort. Why should you bother when you can use the
GUI tools to do your job? The answer is that you’re saving time and effort over the
long term. The payback from learning PowerShell and writing scripts is that you can
perform routine tasks more quickly and easily. This enables you to spend more time
on other, potentially more interesting things, as well as making your life easier.
You can even improve your high score at PowerShell Space Invaders (http://
ps1.soapyfrog.com/2007/01/02/space-invaders/).

 I have a friend who works in the IT department of a major British university. Every
year the University has 7,000+ new students for whom new accounts, mailboxes, and so
on need to be created. They have a similar number of accounts that need to be removed
due to students leaving at the end of their courses. The PowerShell script would take
more than 15 hours to run if it were performed as a single batch. That’s a lot of com-
puting effort. Could this work be done manually? It could, but it’d take a lot of man-
power and wouldn’t be finished in an acceptable time frame. The automated process
creates a single user in 8-9 seconds, which is much faster than the task could be per-
formed manually. The effort to create one user, that is, starting the script, is the same
as creating 1,000 or more. This is a prime example of where automation is needed to
make the task manageable. I wouldn’t want to do all that manually! The overall time can
also be reduced by processing the data in batches from multiple workstations.

 There’s also a cost benefit to automating administration. A number of analysts
have examined the costs of running an IT infrastructure. The numbers vary, but a
good estimate is that at least 70% of the cost of running an IT infrastructure is spent
on maintenance and keeping the lights on. Though automating your administration
won’t necessarily have a huge impact on that figure, it can help to reduce it.

 Automation saves us time, effort, and money that we can spend elsewhere. Before
we jump into developing scripts, let’s review how we actually administer our systems to
see where automation can help us and how we go about introducing automation.

4.2 Administration styles
When you think of Windows administration, do you automatically reach for a GUI
tool? The common perception of Windows administration is that it’s a GUI-based
activity. Indeed, UNIX administrators have often pointed out the lack of a good inter-
active shell on Windows compared to their environment.

http://ps1.soapyfrog.com/2007/01/02/space-invaders/
http://ps1.soapyfrog.com/2007/01/02/space-invaders/

95Development for administrators
Apago PDF Enhancer

 Figure 4.1 shows three
styles of administration:

■ GUI
■ Interactive
■ Script

GUI is the style that we’re used to with Windows. The MMC brings some uniformity, but
each version of an application brings changes in the way we use the GUI tools. Features
move around the tools, making it sometimes difficult to transition to the new version.

 Interactive administration means working at the command prompt(using cmd.exe)
using the numerous tools available. Each tool is independent and outputs text, making
it difficult to pass information between them. Since Windows 2000, new command-line
tools have been added with each new version of Windows. There’s no commonality
between the syntax of these tools, making learning to use them more difficult.

 Scripting for administration has tended to mean VBScript on Windows. This can’t
be used interactively, which can make development and testing awkward and slow. It
hasn’t been seen as a mainstream activity for administrators.

 PowerShell spans these three styles and makes them a continuum rather than three
separate styles. Exchange Server 2007 was the first major product to incorporate
PowerShell. It’s widely admired in the PowerShell community as the ideal model for
building PowerShell support into a product. The Exchange Management Console
(GUI) was designed to sit above PowerShell. In fact, the Exchange cmdlets were created
first and then the GUI was built to use them. When you perform an action in the GUI,
it uses the Exchange PowerShell cmdlets to perform the action. What makes this GUI
special is that it then shows you the script it ran.

 In Exchange 2007 RTM version, approximately 80% of the administrative tasks can
be performed in the GUI. Even though this figure rises with subsequent releases we
have to use PowerShell interactively for a significant part of our administration tasks.
We can start to learn how to write PowerShell scripts by using the examples the GUI
creates for us. We’ve covered all three of our styles and still remained in PowerShell.
One of the real benefits here is that the learning process continues across the three
styles. Examining the scripts the GUI creates will help you learn to use PowerShell at
the command line.

 Unfortunately, not all products have this level of PowerShell support. In order to
support other products, we’ll have to start writing scripts, which means we need to
look at development.

4.3 Development for administrators
This section isn’t designed to turn you into a developer or introduce a “new develop-
ment methodology”! IT administrators and developers never seem to talk as much as
they should, and they have different outlooks on life. Our goal as administrators is
“keep the lights on” and make sure that our systems are running as efficiently as possi-
ble. Automation is our way of doing that job easier.

ScriptInteractiveGUI

Figure 4.1 Administrative styles

96 CHAPTER 4 Automating administration
Apago PDF Enhancer

 There are a large number of development methodologies in use. Those approaches
don’t really meet the needs for administrators. What can happen is part of a task is auto-
mated because it’s easy to do so or a script is found that gives a head start. We then start
thinking about how we can extend that script to give us more functionality and do more
of the task. As we build up the script, we’re extending the reach of automation and mak-
ing time to automate more of our work.

 People come to automation in different ways, but however you arrive at the
thought of automating your work, at some stage you’ll be developing scripts. The way
this thought process happens has been labeled ad hoc development.

4.3.1 Ad hoc development

Ad hoc development is a topic that keeps coming up around PowerShell. I first heard it
in a talk by Jeffrey Snover, the architect of PowerShell. It has since been picked up and
applied to the way administrators develop scripts. It’s ad hoc because the development
process doesn’t necessarily follow a standard development lifecycle.

 Administrators will often reach for their scripting tools when there’s a task that has
to be repeated many times—the “I need 1,000 user accounts created by tonight” type
of scenario. Alternatively, the administrator has a routine task that may not take long
to perform, but is tedious, so she creates a script to perform the task more efficiently.
When using VBScript, our administrator would need to think through everything
about the script—design it in effect, write it, test it, and start using it in production.
With PowerShell, we can work through a number of stages:

■ Working interactively
■ Writing a function
■ Writing a script
■ Make the script production ready
■ Possibly create a cmdlet (or an advanced function in PowerShell v2)

This is ad hoc development. We’re moving our functionality through an improvement
cycle as we need to, rather than to any set plan. As with everything in PowerShell, it all
starts interactively at the PowerShell prompt.
INTERACTIVE

One of the great strengths of PowerShell is that the interactive experience is the same
as the scripting experience. In other words, if you can do it in a script, you can do it
interactively and vice versa. When designing PowerShell, it was assumed that 80% of
the users would be working interactively rather than writing scripts, which is one rea-
son why the execution policy defaults to Restricted.

 All administration scripting begins with a task. For the sake of discussion, we need
to know which processes are using the most CPU resources on a machine. Ah! That’s
easy, you say. We can use Get-Process, as in listing 4.1.

97Development for administrators
Apago PDF Enhancer

PS> Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 166 6 3128 8208 64 592 AcPrfMgrSvc
 29877 9 46200 51176 139 3180 AcSvc
 72 4 2812 6644 56 0.05 4468 ACTray
 74 4 3052 6788 57 0.22 4476 ACWLIcon
 27 1 364 1624 11 580 AEADISRV
 104 3 1284 4184 36 1124 Ati2evxx
 128 3 1932 6320 51 1564 Ati2evxx
 111 4 11240 14012 44 1336 audiodg
 81 3 1288 4044 39 0.12 5120 AwaySch
 853 6 1768 5244 96 600 csrss

Listing truncated for brevity

This is good, but we have to scroll up and down the list to work out which processes
are causing the most CPU usage. So, let’s move this on a stage and sort the results:

Get-Process | Sort-Object CPU

That doesn’t quite do what we want, as the default sort direction is ascending, which
puts the interesting results at the bottom of the list. Let’s add the -Descending switch,
as in listing 4.2.

PS> Get-Process | Sort-Object CPU -Descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 385 21 30612 72312 260 458.75 2000 WINWORD
 1049 55 85284 83176 316 247.64 4168 wlmail
 137 6 42608 76796 140 176.17 3280 dwm
 825 37 46348 68388 279 76.08 4120 explorer
 684 86 23944 5776 218 70.47 5188 GROOVE
 772 36 35000 27624 222 46.55 5164 msnmsgr
 144 6 5272 8616 74 45.52 4568 rundll32
 199 8 5904 11472 90 34.26 5152 ipoint
 347 12 7252 11748 90 14.99 4244 MSASCui
 502 13 37716 39304 185 3.31 5420 powershell
 400 9 10136 11260 86 2.81 3728 taskeng
 372 10 11448 17320 98 1.54 5112 cssauth
 64 3 1736 4740 60 1.34 4544 EZEJMNAP
 54 3 1316 7728 62 0.41 3824 notepad

Listing truncated for brevity

This is more like it; we can see the processest we’re interested in. The next stage is to
reduce the output, as we’re only really interested in the top four processes for CPU
usage. See listing 4.3.

Listing 4.1 Get-Process

Listing 4.2 Get-Process with sorted output

98 CHAPTER 4 Automating administration
Apago PDF Enhancer

PS> Get-Process | Sort-Object CPU -Descending | Select-Object -First 4

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 366 20 30436 72184 256 465.91 2000 WINWORD
 1049 55 85284 83176 316 247.71 4168 wlmail
 137 6 42608 76796 140 177.72 3280 dwm
 813 36 46084 67776 272 76.08 4120 explorer

By now, we have something that starts to deliver value. A simple command-line script
delivers the information we need. Or not.

 The next problem is that the recipient of this information needs the information in
minutes of CPU usage rather than seconds, and only wants to see the process and its
CPU usage. Format-Table can be used to display a subset of the data, but we don’t have
the CPU time in minutes. Format-Table has the capability to use calculated fields.

 A calculated field is a hash table that contains a Label key to hold the name of the
calculated field. This is the name that’ll be displayed in the table header. The second
key is an expression that’s evaluated for each object passed into Format-Table.

SELECT-OBJECT We can also create calculated fields in Select-Object. Name is
used instead of Label. In PowerShell v2 Name can be used in both cases.

In listing 4.4, we take the CPU time and divide it by 60 to give us our CPU usage in
minutes. Note that we need to use $_ to represent the object when performing the
calculation.

PS> Get-Process | Sort-Object CPU -Descending | Select -First 4 |
Format-Table Name, @{Label="CPU(Min)"; Expression={$_.CPU/60}} -AutoSize

Name CPU(Min)
---- --------
WINWORD 8.04523157166667
wlmail 4.212027
dwm 3.21804062833333
explorer 1.31326841833333

This is good, except the formatting on the CPU display is untidy. Let’s see if we can
straighten it up a bit, as shown in listing 4.5.

PS> Get-Process | Sort-Object CPU -Descending | Select -First 4 |
 Format-Table Name, @{Label="CPU(Min)";
 Expression={"{0:F3}" -f ($_.CPU/60)}} -AutoSize

Name CPU(Min)
---- --------
WINWORD 8.142
wlmail 4.213

Listing 4.3 Top four CPU using processes

Listing 4.4 CPU usage in minutes

Listing 4.5 CPU usage in minutes (tidy)

99Development for administrators
Apago PDF Enhancer

dwm 3.238
explorer 1.313

Perfect. All we did was change the calculated expression to "{0:F3}" -f ($_.CPU/60).
This uses the .NET string formatting functionality via the -f operator. In this example,
we define a single field in our string "{0}". We populate this field with the value to the
right of the -f operator, in this case ($_.CPU/60). The F3 part states that we want
three decimal places to be displayed.

 Instead of dividing the CPU value by 60, we could use the TotalProcessorTime
property, which is a TimeSpan object.

PS> (get-process explorer).TotalProcessorTime | get-member
 TypeName: System.TimeSpan

 TypeName: System.TimeSpan

Name MemberType Definition
---- ---------- ----------
Add Method System.TimeSpan Add(TimeSpan ts)
CompareTo Method System.Int32 CompareTo(TimeSpan value)
Duration Method System.TimeSpan Duration()
Equals Method System.Boolean Equals(Object value),
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
Negate Method System.TimeSpan Negate()
Subtract Method System.TimeSpan Subtract(TimeSpan ts)
ToString Method System.String ToString()
Days Property System.Int32 Days {get;}
Hours Property System.Int32 Hours {get;}
Milliseconds Property System.Int32 Milliseconds {get;}
Minutes Property System.Int32 Minutes {get;}
Seconds Property System.Int32 Seconds {get;}
Ticks Property System.Int64 Ticks {get;}
TotalDays Property System.Double TotalDays {get;}
TotalHours Property System.Double TotalHours {get;}
TotalMilliseconds Property System.Double TotalMilliseconds {get;}
TotalMinutes Property System.Double TotalMinutes {get;}
TotalSeconds Property System.Double TotalSeconds {get;}

In this case, our code would become:

Get-Process | Sort-Object CPU -Descending | Select -First 4 |
 Format-Table Name, @{Label="CPU(Min)";
Expression={"{0:F3}" -f ($_.TotalProcessorTime.TotalMinutes)}}
 -AutoSize

At the end of this, we’ve developed something that matches our requirements even
though we hadn’t fully defined those requirements to begin with.

NOTE This is still one line of PowerShell, even though we span multiple lines
in print! You can see from this where the attraction of the PowerShell “one-
liner” comes from.

Even though it’s only a single line of code, it’s getting cumbersome to type in every
time we want to run it. Didn’t I tell you the customer has decided that he wants to see

100 CHAPTER 4 Automating administration
Apago PDF Enhancer

this information repeatedly throughout the day. I wouldn’t want to keep typing that
line of code into PowerShell. Let’s turn it into a function, and then we can keep it in
memory and rerun it as we require.
FUNCTIONS

We saw in chapter 2 that a function is a named script block that enables us to reuse
code. Our PowerShell one-liner doesn’t have any input parameters, so it becomes a
simple function:

function get-topcpu {Get-Process | Sort-Object CPU -Descending |
Select -First 4 |
Format-Table Name,
@{Label="CPU(Min)"; Expression={"{0:F3}" -f

($_.TotalProcessorTime.TotalMinutes)}} –Autosize}

All we’ve done is use the function keyword, given the function a name, and placed
our PowerShell code inside {}. The function is in memory and easily usable. Output is
shown in listing 4.6.

PS> get-topcpu

Name CPU(Min)
---- --------
wlmail 0.326
explorer 0.249
dwm 0.187
WINWORD 0.177

Our function can be seen in the function drive (see section 1.3.4) by using Get-
ChildItem function:get*. Using the code as a function is easier because tab comple-
tion works on the function name—type get-t and press the Tab key until get-topcpu
appears. We could also set an alias for the function:

Set-Alias -Name c4 -Value get-topcpu

Typing c4 at the PowerShell prompt now gives us our information. This is even better:
we can type c4 and get the data we need, but the function needs to be loaded into
memory every time we start PowerShell. We could load it into our profile so it’s auto-
matically loaded when PowerShell starts. Now we have some real benefit. We can run
this any time we need and we don’t have to retype anything. We start to see some
return on the time we invested in creating the function. In PowerShell v2, we could
put it into a module (see appendix B). Alternatively we can turn it into a script.
SCRIPTS

The real advantage of scripts is that they store the code on disk between PowerShell
sessions. You don’t need to retype the code to reuse it, and you don’t have to overload
your profile. In this case, creating a script is as easy as:

PS> 'Get-Process | Sort-Object CPU -Descending | Select -First 4 |
Format-Table Name,
@{Label="CPU(Min)"; Expression={"{0:F3}" -f

($_.TotalProcessorTime.TotalMinutes)}}
-AutoSize' > get-topcpu.ps1

Listing 4.6 Using a function to get top four CPU using processes

101Development for administrators
Apago PDF Enhancer

We take the line of PowerShell, surround it by ' (double quotes would mean we had
to escape the quotes we were already using, which would be messy), and pipe it to a
file called get-topcpu.ps1. PowerShell scripts always have a .ps1 extension. Our script
is then accessed as .\get-topcpu.ps1, or we use fullpath\get-topcpu.ps1 if it’s not in the
current folder. We can share the script with other administrators in our organization,
which multiples the benefits, or we could share it with the PowerShell community and
spread the benefits across many more people.
PRODUCTION-READY

Our script does what we want, and we can run it as often as we need. At this stage, we
have a script that contains only code. If we give the script to another administrator, or
don’t use it for a number of months, it may not be obvious what our script is doing.
We’ll have to spend some time working out what it does and how it works. That’s wast-
ing the time we spent on developing the script in the first place. We can do a number
of things to make the script production-ready:

■ Expand any aliases that we’ve used to make the script more readable
■ Add comments and header
■ Add error handling

Listing 4.7 shows our script with a header that includes a minimum set of information
including author, date, and a brief description of the purpose of the script.

get-topcpu.ps1
Richard Siddaway
10 August 2008
##
Uses get-process and returns the top 4 cpu using
processes with the time in minutes

Get-Process | Sort-Object CPU -Descending | Select -First 4 |
Format-Table Name, @{Label="CPU(Min)"; Expression={"{0:F3}" -f

($_.TotalProcessorTime.TotalMinutes)}} -AutoSize

I deliberately didn’t use any aliases while developing this to make it easier to follow, so
all I’ve done is add a header section that lists the script name, who wrote it and when,
and what it’s supposed to do. Other possible actions are covered in section 4.4.

CODE EXAMPLES All of the code examples in the book will show only the work-
ing part of the script. The “production-ready stuff” I’ll leave to the reader to add
so that it meets the requirements of your organization. It also makes the listings
shorter and easier to read.

If you have a large script that would benefit from increased performance, you might
want to turn it into a cmdlet, or get a friendly developer to do it for you. This would
return us to the interactive stage of the cycle, where we can begin our ad hoc develop-
ment again.

Listing 4.7 Production-ready script to retrieve top four CPU using processes

102 CHAPTER 4 Automating administration
Apago PDF Enhancer

CMDLET

Writing a cmdlet involves using a .NET language, such as C#, to compile a DLL that
can be added to your PowerShell environment as a PowerShell snapin for v1 or v2.
Alternatively a PowerShell v2 module can be created for that environment. At this
stage, you need to either learn how to work with .NET development tools or find a
developer to do it for you. In either case, you’ve moved beyond the scope of this sec-
tion and this book.

ADVANCED FUNCTIONS In PowerShell v2, we can create an advanced function.
They can be thought of as a cmdlet written in PowerShell. This topic is covered
in the appendix B.

In this section, we’ve looked at how we develop our scripts from simple interactive use
of cmdlets to a PowerShell pipeline that gives us exactly the result we require. We then
turned that PowerShell line of code into a function or script that we can store and
reuse. Developing scripts is an activity that’ll save us administrative effort in the future
(and don’t forget Space Invaders), but is only part of the story. We need to think
about how we maintain those scripts.

4.3.2 Lifecycle

Everything in IT has a lifecycle. Servers are replaced
when they’re no longer powerful enough; software is
upgraded when new versions are available or the cur-
rent version is no longer supported. Even our favorite
scripts may need to be reworked or replaced as the IT
environment changes.

 Scripts have a fairly simple lifecycle, as shown in
figure 4.2.

 We saw script creation in the previous section. Other
sources of scripts include script repositories such as the
Microsoft Technet Script Center, the PowerGUI site, the
PowerShell community site, or individual blogs.

WARNING In my experience, any script obtained from the internet—or any
other source—should be treated as suspect until proven otherwise. To restate
the warning from the beginning of the book: this includes the scripts in this
book! I’ve tested them in my environment, but I don’t know and can’t guar-
antee that they’re 100% safe for your environment. It’s your responsibility to
test them.

Script maintenance is one area where we need to apply best practice. How many peo-
ple and who do you want altering the scripts? How are you going to record changes to
the scripts? Most importantly, how are you going the test those changes?

 These are questions that can only be answered by you for your organization. As a
guide, I’d severely limit the number of people who can modify production scripts (see

Figure 4.2 Script lifecycle

103Development for administrators
Apago PDF Enhancer

section 4.6). Change records should be built into the script header as described in sec-
tion 4.4. Testing should always be done on nonproduction systems. Virtual environ-
ments are ideal for this purpose.

 One activity that’s often overlooked is removing scripts that are no longer
required. If you leave them on production systems, they could become a security risk.
The scripts may be archived if you think you may need them, but ensure that the
archive is protected.

 While we’re developing our scripts, we need tests to find errors in the script. It’s
worth keeping test data for big production scripts so that tests can be repeated when
the scripts are updated. As an aside, think how much time you spend testing and
debugging scripts compared to the original coding. Errors can still occur in scripts
despite all this testing, and we need to know how to handle those errors.

4.3.3 Error handling

One method of handling errors in PowerShell v1 scripts is to use traps. No, we don’t
dig a big hole and wait for them to fall in. Well, not quite. PowerShell is an interactive
shell as well as a scripting language, so we can type 1/2 at the prompt and get an
answer of 0.5. If we type 1/$null, though, we get an error message:

Attempted to divide by zero.
At line:1 char:3
+ 1/ <<<< $null

This is a .NET exception (error). The way .NET handles errors is to pass them up the
chain of routines and programs until they meet something that can handle them, or
they reach the top of the stack and cause the program to fail.

 If we want to handle errors in our PowerShell scripts, we need to use the trap state-
ment, as shown in listing 4.8.

this is a generic trap - that will catch any exception
trap { "Generic Trap"; continue; }

this catches arithmetic exceptions
trap [ArithmeticException]{"Arithmetic Exception trapped"; continue }

this is a specific trap for divide by zero
trap [DivideByZeroException]{ "Divide By Zero"; continue; }

$a = 1 / $null;

"Continuing Past the Exception"

We have three traps set on this script. The first is a general trap that catches any error
not caught by a more specific error. The second catches arithmetic exceptions, and the
third catches a specific subset of arithmetic errors—namely divide by zero errors. If we
run this script, we’ll see output like this:

Divide By Zero
Continuing Past the Exception

Listing 4.8 Using a trap

104 CHAPTER 4 Automating administration
Apago PDF Enhancer

This gives us some better methods to handle the errors. We can make calls to functions
or other scripts in the trap statement so we’re not limited to printing error messages.

NOTE You won’t find any PowerShell about files for trap, as they weren’t
included in the v1 help system.

The drawback to using traps is that you have to find and understand the .NET excep-
tions (errors) and code them into PowerShell. This isn’t always easy.

 PowerShell v2 introduces another method of handling errors—try-catch blocks:

Try {some PowerShell statements}
Catch {one or more exceptions}
Finally {some statements you ALWAYS want to be processed}

We wrap our PowerShell statements in a try{} script block. If an exception occurs, we
execute the error handling code in the catch{} block. The finally{} block is exe-
cuted regardless of whether there’s an error.

 PowerShell cmdlets have an -ErrorAction parameter that dictates how they
react to errors. We can find some potential errors in our scripts by using the Test-
Script cmdlet in version 2 of the PowerShell Community Extensions. Ideally, we want
to avoid errors, and one way to do that is to make sure our scripts conform to
best practice.

4.4 Best practice
Best practice means many things, and getting agreement on what’s best practice can
be difficult. In this section I’ll offer some guidelines. How you apply them depends on
how you work and how your organization functions.

4.4.1 Guidelines

Scripting can be more forgiving than programming in a .NET language. What we’re
looking for is a script we can develop in a short time that’ll save us as much time and
effort as possible in the future. Coding elegance isn’t a necessity. There are no points
for style and artistic interpretation when scripting!

GOOD SCRIPTS A good script is one that delivers the result you need in a sen-
sible time frame. Good automation is an obvious benefit!

Some of the following guidelines are offered as things that I’ve found useful. Whether
you adopt them is up to you. Other guidelines such as testing should be at the top of
everyone’s agenda. This isn’t an exhaustive list of dos and don’ts, but more of a collec-
tion of observations and applied experience.
TESTING

Any script being used in a production environment needs to be tested. Sometimes
you’ll develop a script and test it as you create it. Other times, it can’t be tested until
the end of development. Some things to think about:

105Best practice
Apago PDF Enhancer

■ Make sure that opening and closing braces match. Every script block in Power-
Shell is enclosed in {}. Use an editor that enables you to line them up and visi-
bly show the corresponding closing brace for a given opening brace.

■ Check that the conditions on loops are correct, especially the end point.
■ Use the –whatif parameter when testing.
■ Use an editor with IntelliSense or one that supports tab completion. This pre-

vents you from misspelling variable names.
■ Make sure variables are initialized. You don’t want to pick up a variable that has

a value set somewhere else.

In Microsoft’s 2008 Scripting Games, one of the challenges was to debug a script.
It’s worth looking at as an example of the things that can go wrong. The challenge
can be found at http://www.microsoft.com/technet/scriptcenter/funzone/games/
solutions08/bpssol07.mspx.

 The more experience you get with finding problems in scripts, the easier it
becomes and the faster your scripts get into production. That means they start earn-
ing their keep sooner and you get the benefits of producing them more quickly.

 PowerShell editors such as the ISE in PowerShell v2, the PowerGUI editor, or Pow-
erShell Plus can be used to debug scripts. The more formal debugging process they
introduce will get your scripts into production more quickly and easily. It’s worth tak-
ing the time to learn how to debug scripts using a tool such as these.
KEEP IT SIMPLE

As I said at the beginning of the section, you don’t get points for elegance. Keep your
coding simple, and if you have to put another line of code in to make it more under-
standable, do so. Avoid these things in scripts:

■ Aliases (more on this later).
■ Multiple statements on a line.
■ Do loops (while or for are simpler and easier to get the counters right).
■ Rewriting VBScript into PowerShell. There are a lot of scripts that literally

rewrite VBScript using PowerShell. One of the worst I saw was using ADO
recordsets in PowerShell for an Active Directory search.

Simple scripts are easier to understand, explain, and change when needed.
KNOW WHEN TO STOP

Script development can take on a life of its own. Getting everything perfect and pol-
ishing that line of code can become compulsive. How can I shave another second of
runtime off the script?

 Know when to stop.
 If it works and runs in sensible time, it’s good enough. Get the script into produc-

tion and automate something else. You can always have another look at the script
when you have more experience with PowerShell. In case you’re wondering, this is
said from personal experience. If I wasn’t given deadlines, I’d still be writing this a
year from now.

http://www.microsoft.com/technet/scriptcenter/funzone/games/solutions08/bpssol07.mspx
http://www.microsoft.com/technet/scriptcenter/funzone/games/solutions08/bpssol07.mspx

106 CHAPTER 4 Automating administration
Apago PDF Enhancer

PORTABILITY

Do your scripts need to be portable? By that, I mean will they always be running in the
same environment, or are you a consultant taking your scripts from client to client?

 If you’re always in the same environment, consider hard-coding data such as
domain names unless you’re working in a multidomain environment. It’s one less step
you need to code. One less step the script needs to execute. Runtime gains may not be
noticeable, but coding may be slightly faster. In a static environment, you can also con-
sider moving functionality into function libraries or modules. They’ll always be there
and accessible.

 If you’re constantly moving your scripts, you may want to derive things such as
domain names in the script. Nothing is assumed then. Using function libraries may be
more difficult.
COMMENTS

Comments can be guaranteed to start an argument! Some people loathe them and do
everything they can to not use them. PowerShell treats any line starting with a “#” sym-
bol as a comment. Anything on a line after a “#” symbol is treated as comment. In
PowerShell v2 block comments can be used in which everything between <#.. ..#> is
treated as a comment. This is useful for temporarily stopping a set of code from run-
ning when testing a script.

 Comments do make your life simpler when you come back to look at the code.
Consider:

■ Use comments to describe what action functions perform.
■ Document design decisions. Why you’re doing something in a particular way

can be as important as what’s being done.
■ Put comments on major blocks of code.
■ Remember: comments can start after the code on a line.
■ If you have long loops of many nested loops, consider using comments at the

start and end of the loops to aid matching

PowerShell is self-documenting (to a large degree) because of the naming conven-
tions for cmdlets, but you’ll find comments a big help when you return to a script six
months after writing it.
HEADER BLOCKS

In listing 4.7, we used a header block at the start of script. This should be used for all
production scripts and should contain:

■ Name of script
■ Author
■ Date of creation
■ Purpose
■ Change history including date, author of change, and a description of the

change

107Best practice
Apago PDF Enhancer

CONFESSION I won’t be putting headers on the scripts you see in the book. This
is to save space. In the lines I use for a header on every script, I can supply more
scripts. There will be headers on the downloadable version of the scripts!

Using a header block will enhance the maintainability of your scripts. If you use func-
tions in PowerShell v2, you can use the inline help for the same purpose.
VARIABLE NAMES

This one you’ll see in all scripting books. Use descriptive variable names:

$cn
$compname

These two variables both refer to computer names. The second is much more obvious
and makes things easier to read. Using $ComputerName is even more obvious, but takes
more typing. If you use an editor that includes some kind of IntelliSense for variables,
make them as long as you practically need.

 There is a range of opinion regarding variable names. The options are to:

■ Use camel case
■ Use Hungarian notation
■ Always capitalize

You’ll find advice that supports these viewpoints and other advice that says not to use
them. My advice is simple. Decide what you want to use and stick with it. It’s better to
be consistent than to try and fit somebody else’s view of what’s right.

 Initialize variables in scripts. It does save problems when trying to debug scripts.
Guess how I learned that one! It can help to initialize all variables at the beginning of
the script, especially if it’s a long script.

 The other thing with variables is to be careful with the names when using func-
tions, especially if the functions are in another file. You don’t want to be in the posi-
tion where you’re inadvertently using the same variable name and causing problems
with the value. Also check that you aren’t using a PowerShell keyword or reserved
word. A list of these can be found with Get-Help about_Reserved_Words.
SIGNING

Signing of scripts gives another level of security to your environment. If you only run
scripts signed with an acceptable code-signing certificate, it will be harder for rogue
scripts to be executed. This will make your environment more secure

 Signing scripts adds another level of complexity to the development environment.
Script signing is covered in the last section of this chapter. It’s not as bad as you might
think.
NO ALIASES

Don’t use aliases in scripts. They make the script harder to read and potentially more
difficult for someone else to work on. You need to be especially careful if you define
your own aliases. How do you know whether another user has those aliases defined?
Oops! Your script just broke. Best avoid them.

108 CHAPTER 4 Automating administration
Apago PDF Enhancer

CODE FORMATTING

Code formatting generates almost as much disagreement as variable names. The
important point is to make it readable. I usually indent my script blocks:

if ($x –ge 100) {
 Write-Host "$x more than 100"
 $x /= 100
}
else {
 Write-Host "$x less than 100"
 $x *= 100
}

This could be written:

if ($x –ge 100) {Write-Host "$x more than 100"; $x /= 100}
else { Write-Host "$x less than 100"; $x *= 100 }

The first example is more readable, and if there are more lines in the script block
then it’s even more important to indent it and use the whitespace sensibly. An editor
that helps you do this is invaluable.
NAMING CONVENTIONS

This is another area where you’ll find lots of dogma. My advice again is to decide what
works for you and stick with it. I recommend that you follow the verb-noun naming
convention for scripts and functions wherever possible and that you use the standard
verbs. The noun should always be singular in PowerShell.
PARAMETERS

When passing parameters into a script or function, I recommend using a param state-
ment rather than $args. When you use param, you have more control in that you can
set the type and default value of the parameter.
SCRIPT STORAGE

Where to keep the scripts? In an organization with many people working on the
scripts, you may want to use a source control mechanism. If you talk to a friendly
developer, he may help you with that. Yes, I’m sure one of them must be friendly.

 Keeping a central library of scripts and running them from there will prevent
everyone from having a slightly different copy of the same script though PowerShell
will treat the scripts as downloaded from the internet and prompt you regarding their
use. Alternatively, have a small number of people create the scripts and have everyone
use them via PowerGUI.

4.4.2 Functions and libraries

We’ve seen how functions can be a way to reuse code and make our scripts simpler.
They also have the advantage of making script testing easier, as we can test whether a
function works before incorporating it into a script. Easier testing means quicker test-
ing, so we get the benefits sooner.

 One issue that’ll arise is that you’ll find that you want to use the same function in a
number of scripts. It’s possible to have a copy of the function in each script that you

109Automation toolkit
Apago PDF Enhancer

create. This is easy to achieve using cut and paste. The advantage of adopting this
approach is that the script is totally self-contained and portable. You can move the
script to another machine and it’ll run. The drawback to this approach is that you
have copies of the same function in multiple scripts. If you want to update the func-
tion, you have to modify all the scripts. It’d be a bad idea to only update some of the
functions. Using the same function name for what would be different functions will
lead to mistakes happening.

 The alternative is to create a library of functions or even multiple libraries. A
library should be given a name such as LibraryXXXXX.ps1 where XXXXX describes the
library. An example could be LibraryTime.ps1, which contains functions dealing with
time and date processing. When the library is required, it can be dot-sourced: . ./
librarytime.ps1 from your script. Alternatively, the functions can be loaded when
your profile is executed.

NOTE PowerShell v2 has introduced the concept of modules, which extends
the library idea in that some functions in the module can be hidden and only
accessed by library functions rather than an external call.

Libraries have the advantage of reducing the maintenance requirements, as we only
have a single copy of the function to work with. They do reduce the portability of the
code, in that you need to move the library as well as the script that uses it to another
machine. Alternatively, consider putting the library in a central location that can be
easily accessed. It’s only loaded once, so performance shouldn’t be adversely affected.

RECOMMENDATION Of the two approaches, the use of libraries should cause the
least work and issues over the long run. I recommend the use of libraries (or
modules) of functions over copying a function into many scripts.

Best practice can change, and I recommend subscribing to some of the blogs listed in
appendix E (especially mine!) where you can keep up to date with current thinking.
PowerShell v2 is having an impact on the way we use PowerShell, though the debates
still continue.

 I’ve mentioned several times that a number of vendors have produced products
incorporating PowerShell or additional cmdlets for PowerShell. We’ll quickly look at
some of them before learning how to keep our PowerShell environment secure.

4.5 Automation toolkit
PowerShell can do a certain amount of automation by itself. In chapter 3, we saw that
by using ADSI, WMI, .NET, and COM, we can increase the reach of PowerShell. Ideally
we want to administer all of our systems with as much automation as possible. This
means having PowerShell support built into the products we use.

 Microsoft has made PowerShell part of its Common Engineering Criteria, so expect
to see PowerShell support in all major products. Other vendors such as Citrix, IBM, and
VMWare are using PowerShell to automate the administration of their products. The

110 CHAPTER 4 Automating administration
Apago PDF Enhancer

creators of administration tools such as Quest, and Special Operations Software are
adding PowerShell to their products or even using PowerShell directly.

 This section will give an overview of the tools that can be used to extend Power-
Shell even further. PowerShell is a new technology with a rapidly changing ecosystem.
If there’s a single point for news regarding PowerShell, it’s the team blog at http://
blogs.msdn.com/PowerShell/. I also try to keep abreast of the PowerShell news at
http://richardsiddaway.spaces.live.com/. This list isn’t complete and only includes
things that I use on a regular basis. Other tools are available.

DOWNLOAD URLS The URLs for downloading these tools can be found in
appendix E.

A frequent question about PowerShell involves editors. What’s wrong with Notepad?
As a starter, it’ll enable you to create and edit scripts. I still use it for viewing code, as it
starts more quickly than other editors. When creating scripts, I tend to use a more
sophisticated editor. The scripts in this book were prepared using PowerGUI, Power-
Shell ISE, or PowerShell Plus.

 Microsoft created PowerShell and also has a range of add-ons available.

4.5.1 Microsoft

We discussed PowerShell v1 and its prerequisites in chapter 2. PowerShell v2 is also
now available. PowerShell support is built into an increasing number of products.

 The TechNet Script Center has a number of PowerShell-related features:

■ Script repository—instant automation. Don’t forget to test!
■ Graphical help (v1).
■ PowerShell Scriptomatic—creates WMI scripts.
■ Cheat sheets and documentation.

PowerShell v2 has a graphical version, shown in figure 4.3. The graphical version of
PowerShell will load your profile (note that if you alter the color settings in your pro-
file an error will be reported). It consists of three panes. The upper pane is an editor
that supports tab completion and will color-code your text. Graphical PowerShell sup-
ports up to eight PowerShell runspaces. You can work on a number of scripts simulta-
neously using the multitabbed editing space. Scripts, or part of scripts, can be run
from within the editor.

 The middle pane is an interactive PowerShell prompt (by default it’s at the bottom
but it can be moved) that supports the same color-coding and tab completion as the
editor. Results from running scripts or using the interactive shell are displayed in the
lower pane. A graphical help system rounds out the features. This can be accessed sep-
arately. I put a shortcut to it on my desktop.

 Microsoft product teams are adding PowerShell support as new versions ship, or in
some cases as additional downloads. The IIS team provides a PowerShell provider for

http://blogs.msdn.com/PowerShell/
http://blogs.msdn.com/PowerShell/
http://richardsiddaway.spaces.live.com/

111Automation toolkit
Apago PDF EnhancerIIS 7 (Windows 2008 and Windows Vista. It is also included by default in Windows
Server 2008 R2). We’ll be using the provider in chapter 13.

4.5.2 Commercial

Commercial in this section means that it’s produced by a tools vendor rather than the
PowerShell community. The tool may be free or you may need to buy it. This section is
where new tools appear on a frequent basis. Check the URLs I listed earlier for the lat-
est information.
POWERGUI

PowerGUI is a free download. Produced by Quest, it provides a GUI front end to Pow-
erShell. Scripts can be stored and run in PowerGUI, with the results being output into
a grid display. Further filtering and sortingcan occur on the displayed data. The script
editor also works as a standalone editor, supplying color coding for your scripts and
IntelliSense-like completion for PowerShell, .NET, WMI, and variables.

 The nodes in the left pane can hold scripts or simple PowerShell commands. The
actions at the right side allow further tasks to be performed. PowerGUI is completely cus-
tomizable, as packs of scripts can be exported for later import into PowerGUI on another
machine. A growing library of power packs can be downloaded from the powergui.org
site to add to the default network, system, and Active Directory packs. Again, we get
instant automation because someone else has done the work. Needs testing though!

Figure 4.3 PowerShell ISE from PowerShell v2

112 CHAPTER 4 Automating administration
Apago PDF Enhancer

ACTIVE DIRECTORY CMDLETS

Quest also produces a snapin containing cmdlets for administering Active Directory.
The cmdlets are a free download. The cmdlets are all concerned with Active Directory
data—users, groups, computers, and so forth. Listing 4.9 shows an example.

PS> Get-Command |
Where-Object {$_.PsSnapin -like "Quest.ActiveRoles.ADManagement"} |
 Sort-Object Noun | Select-Object Noun -Unique

Noun

QADAttributeValue
QADComputer
QADGroup
QADGroupMember
QADObject
QADObjectSecurity
QADPasswordSettingsObject
QADPasswordSettingsObjectAppliesTo
QADPermission
QADPSSnapinSettings
QADRootDSE
QADService
QADUser
QARSAccessTemplate
QARSAccessTemplateLink

The basic Get-Command is filtered by using Where on the value of the snapin name
(you don’t want to see how many cmdlets are loaded on this machine!). We then sort

Listing 4.9 Deriving nouns list from a snapin

Figure 4.4 PowerGUI console

113Automation toolkit
Apago PDF Enhancer

on the noun name and select the unique set of nouns. PowerShell really is used to dis-
cover things about PowerShell, as we showed in chapter 2.

 I’ll be using these cmdlets in chapters 5, 10, and 11 when we discuss Active Direc-
tory but will be showing how to perform the task in a script as well, because some orga-
nizations don’t allow the installation of add-ons like this.

 One of the big tasks in managing Active Directory is working with Group Policy.
We can download some cmdlets for that as well.
GROUP POLICY CMDLETS

SDMSoftware supplies commercial and free cmdlets to work with Group Policy via the
GPMC. The free cmdlets can be used to administer Group Policy. The commercial
cmdlets allow you to script the actual settings of the policies. Windows Server 2008 R2
also includes cmdlets for administering Group Policies.
POWERSHELL PLUS

PowerShell Plus is a development environment for PowerShell (as well as text, HTML,
XML, VB.NET, and C) and provides access to an interactive shell by hosting PowerShell
as seen in figure 4.4. IntelliSense-like support is available in the shell and when using
the editor.

 Scripts can be run from within the editor, with the results displayed in the hosted
shell. Windows showing properties and variable values for debugging are visible as in
Visual Studio. There’s a button to run with elevated privileges, but it opens another

Figure 4.5 PowerShell Plus

114 CHAPTER 4 Automating administration
Apago PDF Enhancer

instance of PowerShell Plus rather than elevating the current instance. PowerShell
Plus is frequently updated.

4.5.3 Community

PowerShell has a thriving community with numerous blogs, vendors supplying free
versions of cmdlets, community sites, and user groups. There are a lot of PowerShell-
based projects on Codeplex.
CODEPLEX

CodePlex is Microsoft’s open source hosting site. Yes, you read that correctly. It can be
found at http://www.codeplex.com/. There are nearly 50 projects related to Power-
Shell. A flavor of the range of projects on offer can be gained from this list:

■ PowerShell management library for Hyper-V
■ PowerTools for OpenXML-access office documents in OpenXML format
■ Windows Automation Snapin for PowerShell
■ SharePoint scripts for administration and backup
■ PowerShell Remoting
■ PowerShell Eventing library
■ PowerShell tools for working with Visual Studio

Many of the projects are developer-oriented, but there are a good number of projects
for administrators. The most well-known project from Codeplex is probably the Pow-
erShell Community Extensions.
POWERSHELL COMMUNITY EXTENSIONS

The PowerShell Community Extensions (PSCX) add 59 cmdlets (version 2 expands
this to 86) to your PowerShell environment, together with a number of useful
scripts. Using a script similar to listing 4.8 (the snapin is called pscx), we get the fol-
lowing list of nouns:

■ ADObject ■ Assembly ■ Base64 ■ Bitmap

■ Byte ■ BZip2 ■ Clipboard ■ DhcpServer

■ DomainController ■ ExportedType ■ FileTime ■ FileVersionInfo

■ ForegroundWindow ■ GZip ■ Hardlink ■ Hash

■ Hex ■ Host ■ Junction ■ MacOs9LineEnding

■ MountPoint ■ PEHeader ■ Privilege ■ Process

■ PSSnapinHelp ■ Random ■ ReparsePoint ■ Shortcut

■ ShortPath ■ SmtpMail ■ String ■ Symlink

■ TabExpansion ■ Tar ■ TerminalSession ■ UnixLineEnding

■ VolumeLabel ■ WindowsLineEnding ■ Xml ■ Zip

http://www.codeplex.com/

115Securing PowerShell
Apago PDF Enhancer

In addition, there’s an Active Directory PowerShell provider. Watching a dir through
Active Directory seems to go down really well as a demo. We’ll meet some of the PSCX
cmdlets in later chapters.

 Having created our scripts and built our toolkit, we need to think about keeping it
out of the hands of the bad guys. Time to think about securing PowerShell.

4.6 Securing PowerShell
Security must be at the top of every administrator’s list. Security and usability can pull
you in opposite directions. Automation by PowerShell, or any other scripting tool, is a
definite move toward ease of use. How can we keep our automation and make sure
that we’re secure?

 PowerShell has a number of security features, as we’ve already seen, including:

■ Can’t run a script by double clicking
■ Execution policies
■ Current folder not on the path

We’ll look at some other techniques for keeping our scripts secure and finish off the
section, and the chapter, by looking at script signing.

4.6.1 Script security

We need to keep our scripts secure for two reasons. One, we don’t want anyone run-
ning them who shouldn’t. There’s no telling what damage could be done by someone
running your admin scripts “just to see what happens.” Second, we don’t want anyone
getting access to the scripts and altering them. That could be even nastier!

 So how do we keep our scripts secure?
 How many people need access to the scripts? Restrict access to only the administra-

tors that need them. Use NTFS permissions to secure the scripts. Put the scripts on an
administration machine rather than a file server to which everyone has access.

 Severely restrict the number of people who can modify scripts. In many organiza-
tions, there’s only one person creating or modifying scripts. This is usually because
that person is the only one interested or the only one with the skills.

 Consider using PowerGUI for running scripts. It can provide a friendly front end,
enabling administrators who can’t necessarily develop scripts to run scripts.

 The maximum security for scripts is created by using the AllSigned execution pol-
icy and digitally signing your scripts. When I mention this in talks, a lot of people go
pale at the thought. Script signing isn’t a scary subject, as we’ll see.

4.6.2 Script signing

PowerShell is most secure when used with the AllSigned execution policy. This
requires that all scripts be digitally signed using a code-signing certificate from a
trusted Certificate Authority. Digitally signing a script identifies the source of the
script, or at least who signed it. If your execution policy is set to AllSigned and a
signed script is changed, it won’t be allowed to be executed until it’s signed again.

116 CHAPTER 4 Automating administration
Apago PDF Enhancer

 Code-signing certificates can be supplied by one of the commercial Certificate
Authorities for a fee, or a self-signed certificate for which your computer is the
Certificate Authority. At this point, you may think that this is too hard. Believe me,
it’s not.

COMMERCIAL CERTIFICATES If scripts are going to be distributed to other
machines either internally or externally to the organization, a commercial code
signing certificate must be used. The self-signed certificate is only recognized
on the machine on which it was created.

For the rest of this section, we’ll use a self-signed certificate for the examples. If you
obtain, or already have, a commercial code-signing certificate, you can skip this next
section where we look at creating a certificate.
CREATE CERTIFICATE

We can create a self-signed certificate using the makecert.exe utility. The bad news is
that it’s not part of Windows or PowerShell. You need to download and install the
Windows SDK from the Microsoft website. Alternatively, makecert is available if you
have Visual Studio installed.

 Once makecert is installed, we can create a certificate root and then make the
code-signing certificate. We create the root using this syntax:

./makecert -n "CN=PowerShell Local CertificateRoot" -a sha1
-eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer
-ss Root -sr localMachine

It’s not quite as bad as it looks, as table 4.1 explains.
 Our syntax can be read as making a self-signed certificate root called PowerShell

Local CertificateRoot using the Sha1 algorithm and an Object Identifier
of 1.3.6.1.5.5.7.3.3. The PVK file is called root and is stored in the root certificate store
on the local machine. Easy.

 Full syntax details of makecert can be found by using makecert /? for the basic
options and makecert /! for the advanced options.

Table 4.1 Syntax explanation for creating a certificate root

Parameter Meaning Value

-n Certificate subject name "CN=PowerShell Local CertificateRoot"

-a Signature algorithm. Sha1 (md5 is alternative)

-eku Object Identifier (OID) 1.3.6.1.5.5.7.3.3

-r Switch to create a self-signed certificate

-sv PVK file (to be created if not present) root.pvk root.cer

-ss Certificate store Root

-sr Certificate store location localMachine

117Securing PowerShell
Apago PDF Enhancer

The next stage is to run this code:

./makecert -pe -n "CN=PowerShell User" -ss MY -a sha1
-eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

This is explained in table 4.2.

Working with PowerShell, we have an advantage. We can look directly into the certifi-
cate store. Listing 4.10 will show us the relevant information about the certificate.

PS> Get-ChildItem cert:\CurrentUser\My -codesigning | Format-List

Subject : CN=PowerShell User
Issuer : CN=PowerShell Local CertificateRoot
Thumbprint : FC5A497BB74AC542876D4E84B6921B457E04CB10
FriendlyName :
NotBefore : 16/08/2008 13:08:08
NotAfter : 31/12/2039 23:59:59
Extensions :
{System.Security.Cryptography.Oid, System.Security.Cryptography.Oid}

Having created our certificate, we should secure it. We don’t want the bad guys getting
access to it, automatically signing scripts and doing nasty things to your machine, now
do we?
SECURE CERTIFICATE

So that the certificate can’t be used for automated signing (without your consent),
you need to export the private key. This can be performed using IE 5 and above, as
shown in figure 4.6.

 The procedure to export the private key is straightforward:

Table 4.2 Syntax explanation for creating a certificate

Parameter Meaning Value

-n Certificate subject name "CN=PowerShell User"

-pe Private key is exportable

-a Signature algorithm. Sha1 (md5 is alternative)

-eku OID 1.3.6.1.5.5.7.3.3

-ss Certificate store MY

-iv Issuer’s PVK file root.pvk

-ic Issuers Certificate file

Listing 4.10 Viewing the code-signing certificate

1 Open Internet Explorer. 2 Select Tools. 3 Select Internet Options.

4 Select Content tab. 5 Click Certificates. 6 Select Personal tab.

7 Select the certificate. 8 Click Export. 9 Follow the wizard.

10 Importing the private key is achieved using the Import Wizard on the same tab.

118 CHAPTER 4 Automating administration
Apago PDF Enhancer

We have a certificate and we’ve secured it. Now how do we use it?
SIGN SCRIPTS

We can use Set-AuthenticodeSignature to sign a script. We can experiment on the
get-topcpu.ps1 script that we created earlier:

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigning)[0]
Set-AuthenticodeSignature get-topcpu.ps1 $cert

Start by creating a variable to represent the code-signing certificate. We then use Set-
AuthenticodeSignature to perform the signing. A signed script looks like listing 4.11.

Figure 4.6
Exporting the
private key using
Internet Explorer

119Securing PowerShell
Apago PDF Enhancer

Notice the #SIG labels to delineate the start and end of the signature block. If any
changes are made to the script (even adding a space somewhere), the script will have
to be signed again.

get-topcpu.ps1
Richard Siddaway
10 August 2008
##
Uses get-process and returns the top 4 cpu using
processes with the time in minutes
Get-Process | Sort-Object CPU -Descending | Select -First 4 |
Format-Table Name, @{Label="CPU(Min)"; Expression={"{0}" -f

($_.TotalProcessorTime.TotalMinutes)}} -AutoSize

SIG # Begin signature block
MIIEMAYJKoZIhvcNAQcCoIIEITCCBB0CAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUnScyXCDkO3/sqNa3xyyjQWKX
+HKgggI7MIICNzCCAaSgAwIBAgIQYiaQKjtl0JBK3yOcXy34YjAJBgUrDgMCHQUA
MCsxKTAnBgNVBAMTIFBvd2VyU2hlbGwgTG9jYWwgQ2VydGlmaWNhdGVSb290MB4X
DTA4MDgxNjEyMDgwOFoXDTM5MTIzMTIzNTk1OVowGjEYMBYGA1UEAxMPUG93ZXJT
aGVsbCBVc2VyMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDRl1fqU4T77reO
wJ8aw/GBKuynfIGFGxckL6oqCBU4O+yNRQKunOctmydT0lEO/ckiU8fUjk4BZCy5
BCcZRIkRPv7NukFwLK/vx/fxZS0ykWwO6XRuAzN3H6WDJt46jvP8ApkakLjGe05x
MyYVEiNFtmeNPTVVxskqg0sPIkeCFQIDAQABo3UwczATBgNVHSUEDDAKBggrBgEF
BQcDAzBcBgNVHQEEVTBTgBC4i+8s8OP1u+W6T/qMYwj2oS0wKzEpMCcGA1UEAxMg
UG93ZXJTaGVsbCBMb2NhbCBDZXJ0aWZpY2F0ZVJvb3SCEFjE3UUgk+CmSsbAOmV0
02QwCQYFKw4DAh0FAAOBgQAldcu9RzJji6Cv4HX2fBks8tmqzm25CrZfkYSSO6rw
7edYCBvc2UXOs52hVYv1fIWKB1q6cPvU11VUjUyUDH6td8JbHjpDX7xjiIpC13pM
1DBtoChYzQAkq6bZuK7mKG0LZkwm0zO8BIemZIUIFd9nd0h5Rs3lExAUFS80eYUi
sDGCAV8wggFbAgEBMD8wKzEpMCcGA1UEAxMgUG93ZXJTaGVsbCBMb2NhbCBDZXJ0
aWZpY2F0ZVJvb3QCEGImkCo7ZdCQSt8jnF8t+GIwCQYFKw4DAhoFAKB4MBgGCisG
AQQBgjcCAQwxCjAIoAKAAKECgAAwGQYJKoZIhvcNAQkDMQwGCisGAQQBgjcCAQQw
HAYKKwYBBAGCNwIBCzEOMAwGCisGAQQBgjcCARUwIwYJKoZIhvcNAQkEMRYEFNWw
65/QGdEJyPeY+t1Fg3Kwv6RgMA0GCSqGSIb3DQEBAQUABIGAXekFwJ2yncCT5xNa
oeB3GxXCGpNjchtUh2D7Fgrq/g5LvLa1VLyeRCiatasZArhw1zttm4t2LUdOS/9S
ldePSKg2CMDVDagYNjS3Pa6j7JlZco/unc6pMNmUUBZe6WHqmVa82PdlUgROs6ga
4nSX/LPheYXtqBY/43J4dsU3+00=
SIG # End signature block

Once we have our certificate, signing subsequent scripts is a matter of using Set-
AuthenticodeSignature against the new scripts. We don’t have to keep generating
new certificates. That’s all there is to code signing. Not so scary after all. When a
signed script is first run it will generate a one-time prompt to allow it to run.

 This brings us to the end of the section of the book dedicated to learning Power-
Shell. Well done for sticking with me this far. The fun really ramps up in part 2 when
we start to apply everything we’ve learned to automate user management.

Listing 4.11 A signed script

120 CHAPTER 4 Automating administration
Apago PDF Enhancer

4.7 Summary
The main benefit of automating administration is the time and effort that’s saved
once the script is developed. Remember the creation of those 7,000 user accounts I
mentioned at the beginning of the chapter—that could be your task next week! The
next chapter is just for you in that case.

 Script development can follow an ad hoc methodology by progressing from inter-
active command line to function to script. This mirrors the administration style, and is
helped by products such as Exchange that show the scripts they’re using to perform
GUI-based actions.

 There’s a considerable body of best practice around using scripts for automation.
Keeping scripts simple and building libraries of functions are good ways to ease the
overhead of maintaining your scripts.

 PowerShell is supported by an increasing number of vendors and community proj-
ects that supply tools to aid your administrative effort. Spanning everything from edi-
tors to graphical front end to extra cmdlets, these tools will make your life easier.
They’re not essential but they do help a great deal.

 One important part of PowerShell best practice is security. Keep your scripts safe
and only run known scripts. Consider investing in a code-signing certificate and use
the AllSigned execution policy for maximum security.

Apago PDF Enhancer

Part 2

Working with people

PowerShell is an automation engine for Windows administration. In part 1, we
learned how that engine worked. In parts 2 and 3, we put that engine to work and
get the best out of it by using the toolkit we’ve put together. Part 2, chapters 5-7,
covers people-related activities. The servers that we need to administer are cov-
ered in part 3.

 A lot of administration revolves around people. We need to create and man-
age their user accounts so they can log on to the systems. They have mailboxes
that need to be administered. The desktop systems they use need to be config-
ured and maintained. Chapter 5 will show how to work with user accounts in
Active Directory and locally. The time we spent with ADSI and .NET in chapter 3
pays dividends here. Mail access implies Exchange Server 2007 in this case.
Chapter 6 is where we dive into administering mailboxes. There’s some overlap
with user accounts. We’ll examine the interactions and provide some best prac-
tice guidelines.

 Chapter 7 closes part 2 by showing how to work with the user desktop, includ-
ing configuration settings and applications. WMI and COM will be put to work
here. We’ll also look at how to work with the latest OpenXML formats in Micro-
soft Office.

 Parts 2 and 3 are built around examples of how to automate particular tasks
with PowerShell. It’s not possible to cover every variation and possibility in a
book this size. You’ll gain a thorough understanding of the principles involved,
enabling you to build and expand on what you learn.

 When working with people, we need to start at the beginning, and that
means understanding user accounts and how to automate their administration.

Apago PDF Enhancer

User accounts
Apago PDF Enhancer

“Working with users” is the title of the middle part of this book. Anyone who
thought “It would be a nice job but for the users” should be ashamed, very
ashamed. Write out 100 times “I mustn’t say things like that again.” Better still, cre-
ate a PowerShell script to write it out. There’ll be a test.

 A large part of administration comes back to users, directly or indirectly. In this
chapter, we’ll be automating the administration of user accounts. Why do we want
to do this? Look back at my example from chapter 4. Do you want to set up 7,000+
users in a few weeks? Automation all the way.

 The other reason for automating user account management is consistency.
When working as a consultant, I’ve seen Active Directory implementations where
the names are created in every combination you can think of. First name first; sur-
name first; various combinations of commas and spaces between the name parts.
Commas should be avoided if possible, as they have to be allowed for in the script;

This chapter covers
■ Automating AD user accounts
■ Searching Active Directory
■ Creating and modifying group memberships
■ Group nesting
123

124 CHAPTER 5 User accounts
Apago PDF Enhancer

otherwise the user account won’t be found. The rest of the account information is just
as inconsistent, with missing or wrong telephone numbers, addresses, and so on. Con-
sistency makes things easier to administer. Be consistent. How do you do that? Auto-
mation all the way. Another thing we need to consider is groups. Allocating
permissions by groups is best practice in a Windows environment, so we need to know
how to create and modify groups.

 The chapter will start with a look at the options we have for working with user
accounts and groups. In this chapter, most of the scripts will be presented in two varia-
tions in order to provide the maximum flexibility. After explaining which options will
be used, we’ll look at how we work with local users and groups, including creation and
modification.

 Working with Active Directory users and groups occupies the bulk of the chapter.
We start at the logical place by creating a user account. One of the major differences
between working locally and working with Active Directory is that with the latter, we’re
often working with multiple users simultaneously. This will be illustrated by looking at
how we can create users in bulk. Not quite on the scale of 7,000 at a time, but we could
scale if required. Having created our users, we need to think about modifications to
various attributes together with how we move the account to a different Organiza-
tional Unit (OU). During the move, the account may need to be disabled. This is a
common scenario for dealing with people leaving the organization.

 We often need to search Active Directory to find a particular user or possibly to
find accounts or passwords that are about to expire. One common need is to discover
a user’s last logon time. This can be useful for checking who’s still active on our direc-
tory. I recently checked an AD installation where there were several hundred accounts
that hadn’t been used for over six months. The disposal of old accounts can, and
should, be automated.

 The final section of the chapter deals with Active Directory groups. After a group
has been created, we’ll definitely need to modify its membership and may need to
change its scope—the last type of group. We complete the section by answering two
questions: “Who’s in this particular group?” and “What groups is this user in?” These
are questions that can’t be easily answered by using the GUI tools.

 In order to perform these tasks, we need to use ADSI, which is the primary interface
for working with Active Directory, as we saw in chapter 3. There are a few options to con-
sider regarding the exact way we accomplish this before we start creating scripts.

5.1 Automating user account management
Before the release of Windows Server 2008 R2, we’d work with user accounts via ADSI,
as we saw in chapter 4. This can be performed in a number of ways, including:

■ [ADSI] type accelerator
■ System.DirectoryServices .NET classes
■ System.DirectoryServices.AccountManagement .NET classes
■ Quest AD cmdlets (the nouns all start with QAD)

125Automating user account management
Apago PDF Enhancer

Windows Server 2008 R2 introduced a module containing Active Directory cmdlets
(see section 5.1.2).

POWERSHELL DILEMMA This illustrates the dilemma that many new Power-
Shell users face. “I’ve found three different ways of performing this task:
which one should I use?” The short-term answer, especially if you’re new to
PowerShell, is whichever one you feel most comfortable with. In the longer
term, investigate the possibilities, pick one, and stick with it. One slight
problem is that sometimes you need to use multiple methods to cover
all eventualities.

ADSI can be used to access AD LDS, previously known as ADAM, via PowerShell in a
similar way to Active Directory. The only major change is the way you connect to the
directory service. The code to get a directory entry for an Active Directory user is:

$user = [ADSI]"LDAP://cn=Richard,cn=Users,dc=Manticore,dc=org"

To connect to an AD LDS or ADAM instance, this changes to:

$user = [ADSI]
"LDAP://server_name:port/cn=Richard,cn=Users,dc=Manticore,dc=org"

If the AD LDS/ADAM instance is on the local machine, this becomes:

$user = [ADSI]
"LDAP://localhost:389/cn=Richard,cn=Users,dc=Manticore,dc=org"

5.1.1 Microsoft AD cmdlets

When a Windows Server 2008 R2 domain controller is created, a module of Active
Directory cmdlets is installed. Modules are covered in more detail in chapter 15 and
appendix B. This module can also be installed on Windows Server 2008 R2 servers or
Windows 7 machines (using the RSAT download). The module isn’t loaded by Power-
Shell by default. We use:

Import-Module ActiveDirectory

The Microsoft AD cmdlets work in a slightly different manner, in that they access a
web service running on the domain controller. This performs the actions against
Active Directory. The web service is available for installation on Windows Server 2008
or Windows Server 2003 domain controllers, but we’ll need a Windows Server 2008 R2
or Windows 7 machine to install and run the cmdlets. The PowerShell v2 remoting
capabilities can be used to set up proxy functions for these cmdlets on any machine
running PowerShell v2. This technique is described in chapter 13.

 A similar approach is taken with Exchange 2010, in that remote access is provided
by a web service. These two systems are examples of a “fan-in” administrative model, in
that many administrators can connect to the same machine to perform their jobs.
Contrast this with the approach we’ll see with IIS in chapter 13, where one administra-
tor can work on multiple machines. PowerShell provides many ways to remotely
administer our systems. The Active Directory cmdlets interacting with a web service is

126 CHAPTER 5 User accounts
Apago PDF Enhancer

just one example. The need to install something on the domain controller may be
viewed as a negative, in which case the Quest cmdlets could be used, as they only need
to be installed on the machine used for administration.

5.1.2 Recommendations

When working with Active Directory and PowerShell, we have two main choices: use
scripts or use the AD cmdlets from Microsoft or Quest. My preference is to use the
cmdlets, but I realize that they aren’t available in some tightly controlled environ-
ments. I’ll concentrate on scripting so that the chapter is applicable to as many people
as possible. Even if you use the cmdlets, understanding how to script the task will aid
your understanding of the subject.

 I don’t fully recommend the System.DirectoryServices.AccountManagement
.NET classes for use with Active Directory for three reasons. First, you need to have
installed .NET 3.5, which not everyone can do. Second, the functionality has some
gaps; for instance there’s no capability to set the description attribute (this seems to
be a common failing on the .NET classes for working with Active Directory). Finally,
the syntax is odd compared to the standard ADSI syntax many people already know.
I’ll show examples using these classes because there’s some useful functionality and
because it’s new with little documentation.

 For local users and groups, the System.DirectoryServices.AccountManagement
.NET classes are excellent and will be used in the following scripts. Variant scripts
using [ADSI] will be shown for those users who don’t have .NET 3.5 available. For
Active Directory-based users, the [ADSI] accelerator will mainly be used, with the
Microsoft or Quest AD cmdlets used as a variant.

NOTE I won’t be providing variant scripts in all the remaining chapters of the
book, just where I think there’s value in showing two approaches.

First up on the automation express is local users and groups.

5.2 Local users and groups
Enterprises use Active Directory to manage users and groups. But they still need to
manage local user accounts. This could be because the machine isn’t a domain mem-
ber (for example if it’s in a perimeter network).

NOTE If performing this on Windows Vista or Windows Server 2008, Power-
Shell needs to be started with elevated privileges—it needs to be started using
Run as Administrator. On Windows XP or Windows Server 2003, you must be
logged on with an account with Administrator privileges.

As stated earlier, we’ll be using the System.DirectoryServices.AccountManagement
.NET classes in these examples. You must have .NET 3.5 loaded to use this namespace.
If it’s not possible to use this version of .NET then the scripts shown under the varia-
tion headings can be used.

127TECHNIQUE 1 User creation
Apago PDF Enhancer

COMPUTER NAMES In the example scripts dealing with local users and
groups, the machine name is always pcrs2. You’ll need to change this in your
environment.

Compared to Active Directory, there are a limited number of tasks we’d want to per-
form against local users. The tasks condense to creation and modification activities
against users and groups. We need to create users before we can modify them, so
that’s where we’ll start.

TECHNIQUE 1 User creation

Creating user accounts is the first step in working with users. In this case, we’re creat-
ing an account on the local machine. Ideally, we’re looking for a method that’ll work
when run locally or against a remote machine. We can achieve this by using the follow-
ing approach.

PROBLEM
We need to create a local user account on a Windows machine.

SOLUTION
Creating a user account is a common administrative activity and is illustrated in
listing 5.1. If it’s not possible to use this .NET class, use the variant presented in list-
ing 5.2. Start by loading the System.DirectoryServices.AccountManagement assem-
bly as shown in listing 5.1 (see B). PowerShell doesn’t automatically load all .NET
assemblies, so we need to perform that chore. If an assembly will be used often, put
the load statement into your profile. Nothing bad happens if you do perform the
load statement multiple times.

 The [void] statement is new. All it does is suppress the messages as the assembly
loads. If you want to see the messages, remove it. I’ve used the full name of the assem-
bly (obtained via Resolve-Assembly in PowerShell Community Extensions), as some
of the other load mechanisms are in the process of being removed. In PowerShell v2
we could use:

Add-Type -AssemblyName System.DirectoryServices.AccountManagement

as an alternative load mechanism. This avoids the need to use the deprecated .NET
method.

[void][reflection.assembly]::Load(
"System.DirectoryServices.AccountManagement, Version=3.5.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089")

$password = Read-Host "Password" -AsSecureString
$cred = New-Object -TypeName System.Management.Automation.PSCredential
-ArgumentList "userid", $password

$ctype = [System.DirectoryServices.AccountManagement.ContextType]::Machine
$context = New-Object

Listing 5.1 Creating a local user account

TECHNIQUE 1

Load the
assembly

B

C Create the
password

DSet the context

128 CHAPTER 5 User accounts
Apago PDF Enhancer

-TypeName System.DirectoryServices.AccountManagement.PrincipalContext
-ArgumentList $ctype, "pcrs2"

$usr = New-Object -TypeName
System.DirectoryServices.AccountManagement.UserPrincipal
-ArgumentList $context

$usr.SamAccountName = "Newuser1"
$usr.SetPassword($cred.GetNetworkCredential().Password)
$usr.DisplayName = "New User"
$usr.Enabled = $true
$usr.ExpirePasswordNow()

$usr.Save()

The next job after loading the assembly is to generate a password for the new
account C. The method presented here avoids having the password in the script
(good security) and doesn’t show its value on screen as it is input. Using Read-Host
with the -AsSecureString option means we get prompted for the password, and
when we type it, asterisks (*) are echoed back on screen rather than the actual char-
acters. The string we’ve typed in is encrypted and can’t be accessed directly:

PS> $password = Read-Host "Password" -AsSecureString
Password: ********
PS> $password
System.Security.SecureString
PS>

There’s a slight issue with this technique. You can’t use the secure string directly as a
password in a user account. We resolve this by creating a PowerShell credential as the
next step. Userid is a placeholder for the account name in the credential. Any string
will do.

 PowerShell needs to know where to create the account using the Principal-
Context class D. This takes a context type, in this case Machine (the local SAM store),
and the name of the machine. If the name is null then the local machine is assumed.

MACHINE NAME The machine name will need to be changed for your
environment.

The UserPrincipal class is used to create an empty user account in the data store we
set in the context E. We can then start to set the properties of the user account F as
shown. SamAccountName and DisplayName should be self explanatory. $usr.Enabled =
$true means that the account is enabled and ready to use; $usr.ExpirePassword-
Now() indicates that the user must change the password at first logon.

TRUE OR FALSE The PowerShell automatic variables $true and $false are used
to define Boolean values—true or false. They’re of type System.Boolean. One
thing to explicitly note is that $true isn’t the same as “true” and $false isn’t the
same as “false.” Remember to use the Booleans, not the strings.

Create userE

Set propertiesF

SaveG

129TECHNIQUE 1 User creation
Apago PDF Enhancer

Setting the password value is interesting, as it uses the SetPassword method with the
password from the credential we created earlier:

$usr.SetPassword($cred.GetNetworkCredential().Password)

The last action is to write the new user account back to the local data store G using
the Save() method.
DISCUSSION
This may seem like a lot of code, especially when compared to the WinNT method
presented next, but everything before we create the user object E (in listing 5.1)
could be created once and used many times. One property that can’t be set using this
approach is the description. If you want to use this, consider the WinNT approach pre-
sented in listing 5.2. We’ll be using ADSI via the [ADSI] accelerator in this example.
ADSI can connect to a number of account data stores, including Active Directory using
the LDAP provider, which we’ll see in later sections, and the WinNT provider for con-
necting to the local account database. If you’ve been in IT long enough to remember
scripting against Windows NT, you’ll remember using WinNT. No prizes for guessing
where the name comes from.

WINNT AND ACTIVE DIRECTORY The WinNT provider can be used to connect to
LDAP directories such as Active Directory, but it has much reduced capability
compared to the LDAP provider.

WinNT and LDAP are case sensitive. Remembering this will make debugging scripts
much faster.

$computer = "pcrs2"
$sam = [ADSI]"WinNT://$computer"
$usr = $sam.Create("User", "Newuser2")
$usr.SetPassword("Passw0rd!")
$usr.SetInfo()

$usr.Fullname = "New User2"
$usr.SetInfo()
$usr.Description = "New user from WinNT"
$usr.SetInfo()
$usr.PasswordExpired = 1
$usr.setInfo()

Set a variable to the computer name (change for your environment) B. We then
need to bind to the local Security Account Manager (SAM) database using the WinNT
ADSI provider C. Setting the computer name in a variable isn’t strictly necessary, but
it makes things easier if you want to change the script to accept parameters.

 The Create() method is used to create a user object D. The first parameter tells
the system to create a user, and the second parameter is the account name. Unless you
want the account to be disabled, you must set the password at this point.

Listing 5.2 Creating a local user account using WinNT

Computer nameB
Link to SAMC

Create userD

Set fullnameE

Set DescriptionF

Force password changeG

130 CHAPTER 5 User accounts
Apago PDF Enhancer

PASSWORD WARNING I deliberately wrote this script with the password in the
script to show how obvious it is. Imagine a scenario where you create a set of new
accounts. If someone finds the password, you could have a security breach. As
an alternative, you could leave the account disabled until required.

SetInfo() is used to save the account information back to the database. There are a
few other attributes we want to set. The full name defaults to the account name (login
ID), so changing it to the user’s name will make finding the account easier E. Using
the .NET method, we couldn’t set the description, but it can be done quite easily with
this method F. The last setting is to force the users to change their passwords when
they log on for the first time G. If PasswordExpired is set to one, the password
change is enforced. A value of 0 for PasswordExpired means that users don’t have to
change their passwords.

 It’s not strictly necessary to use SetInfo() after every change. The attribute
changes could be rolled up by a single call to SetInfo().

 One way or another, we’ve created our user. Now we have to think about creating a
group for the user account.

TECHNIQUE 2 Group creation

Working with groups is much more efficient than working with individual accounts.
You need to give a set of users access to a resource. Put them in a group and assign the
permissions to the group. Before we can do that, we need to create the group.
PROBLEM
We need to create a local group on a Windows computer.
SOLUTION
Continuing our exploration of System.DirectoryServices.AccountManagement, we
use the GroupPrincipal class to create a group in listing 5.3. After loading the assem-
bly B (in listing 5.3) we set the context to the local machine C. This time we’re creat-
ing a group, so we need to set the group scope to local D. This code can be modified
to work at the domain level by changing the context to domain and the group scope
to the appropriate value. Examples of using these .NET classes on Active Directory
accounts will be given later.

[void][reflection.assembly]::Load(
"System.DirectoryServices.AccountManagement,
Version=3.5.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089")

$ctype =
[System.DirectoryServices.AccountManagement.ContextType]
::Machine

$context = New-Object
-TypeName System.DirectoryServices.
AccountManagement.PrincipalContext

Listing 5.3 Create a local group

TECHNIQUE 2

Load assemblyB

131TECHNIQUE 3 Group membership
Apago PDF Enhancer

-ArgumentList $ctype, "pcrs2"

$gtype = [System.DirectoryServices.AccountManagement.GroupScope]::Local

$grp = New-Object
-TypeName System.DirectoryServices.
AccountManagement.GroupPrincipal
-ArgumentList $context, "lclgrp01"

$grp.IsSecurityGroup = $true
$grp.GroupScope = $gtype
$grp.Save()

The GroupPrincipal class is used to create the group using the context and a group
name of lclgrp01 E. Set the group scope (type of group) F, save the changes G,
and we’re done. We may not need to explicitly set the fact that it’s a security group for
local groups by using $grp.IsSecurityGroup = $true, but it’s useful when working
with Active Directory groups.
DISCUSSION
Using ADSI is just as easy, as shown in listing 5.4

$computer = "pcrs2"
$sam = [ADSI]"WinNT://$computer"
$grp = $sam.Create("Group", "lclgrp02")
$grp.SetInfo()

$grp.description = "New test group"
$grp.SetInfo()

After connecting to the local SAM database B, we use the Create() method C. The
parameters indicate that we’re creating a group and the group name. This approach
allows us to set the description D, and we save the new group E to the database.

 Note that we also did a SetInfo() immediately after creation. As we’ll see when
working with Active Directory, saving is needed so we can actually work with the
object. Groups need members, so now we’ll look at how to add members into a group.

TECHNIQUE 3 Group membership

Groups by themselves don’t do anything. We need to add members to make them use-
ful. We should remove members from the group when they don’t need to be in there
anymore. We all clean up group membership—don’t we?
PROBLEM
We need to add a new member to a local group.
SOLUTION
The GroupPrincipal class contains methods for modifying the membership of a group.
By now, you should see a pattern emerging for how these scripts work. Listing 5.5 dem-
onstrates this pattern. Load the assembly B, set the context to the local machine C, set
the method to find the group D, and then find the GroupPrincipal E.

Listing 5.4 Create a local group with WinNT

Set contextC

DSet group scope

Create groupE

Set propertiesF

SaveG

Connect to machineB

Create groupC
Set propertiesD

SaveE

TECHNIQUE 3

132 CHAPTER 5 User accounts
Apago PDF Enhancer

[void][reflection.assembly]::Load(
"System.DirectoryServices.AccountManagement,
Version=3.5.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089")

$ctype = [System.DirectoryServices.AccountManagement.ContextType]::Machine
$context = New-Object
-TypeName System.DirectoryServices.
AccountManagement.PrincipalContext
-ArgumentList $ctype, "pcrs2"

$idtype =
[System.DirectoryServices.AccountManagement.IdentityType]
::SamAccountName

$grp = [System.DirectoryServices.AccountManagement.GroupPrincipal]
::FindByIdentity($context, $idtype, "lclgrp01")

$grp.Members.Add($context, $idtype, "newuser1")
$grp.Members.Add($context, $idtype, "newuser2")
$grp.Save()

remove group members
#$grp.Members.Remove($context, $idtype, "newuser1")
#$grp.Save()

The group has a collection of members and we can use the Add() method to modify
the membership F. Note that we have to give the context and how we’re identifying
the user as well as the user account to add. A final Save() G and our changes are writ-
ten back to disk.

 To remove group members, we use the Remove() method instead of the Add()
method.
DISCUSSION
Using ADSI to modify group membership is equally straightforward, as seen in list-
ing 5.6. We get objects to represent the users and group and use the group’s Add()
method to add members. Note that we have to give the path to the user, which will
be something like WinNT://pcrs2/newuser1. We could input the path directly to
Add(). Removing users is equally direct: we use the Remove() method as shown.

$grp = [ADSI]"WinNT://pcrs2/lclgrp02"
$user = [ADSI]"WinNT://pcrs2/newuser1"
$grp.Add($user.Path)
$grp.SetInfo()

$user2 = [ADSI]"WinNT://pcrs2/newuser2"
$grp.Add($user2.Path)
$grp.SetInfo()

#$grp.Remove($user2.Path)
#$grp.SetInfo()

Listing 5.5 Modify local group membership

Listing 5.6 Modify local group membership with WinNT

Load assemblyB

Set contextC

Set find methodD

E
Find
groupAdd

members
F

SaveG

133TECHNIQUE 4 User creation
Apago PDF Enhancer

That’s all we’re going to look at as far as local users and groups are concerned. Auto-
mating local accounts gains us some efficiency improvements, but it’s not the whole
picture. Enterprises will be using Active Directory to manage the vast majority of their
user accounts. With accounts numbering in the hundreds, if not thousands, it’s in the
automation of Active Directory management that we’ll really see some benefit.

5.3 Active Directory users
Active Directory is the foundation of administration in a modern Windows environ-
ment. I’ve given an example of the mass creation of user accounts and the savings that
automating that process brought. It’s time to start looking at the automation of Active
Directory user account management in detail. Though I can’t cover all eventualities in
a single chapter, the examples here will form a solid start to building automation into
your environment.

 The majority of the scripts deal with a single object, but in listing 5.11 I show how
to create users in bulk. In listing 5.23 where we discuss changing group membership,
there’s a technique for dealing with all of the users in a particular OU. This technique
can be used in the other scripts as appropriate to enable them for bulk processing. In
this section, I’ll use an ADSI-based script as the primary method, with the Quest and
Microsoft AD cmdlets as secondary methods. If it’s possible to use these cmdlets in
your organization, I recommend you do so.

DOMAIN NAMES In these scripts I’m working in my test domain. You need to
change this for your environment, so you must change the LDAP connectivity
strings of the form LDAP://OU=England,dc=manticore,dc=org to match your
domain.

TECHNIQUE 4 User creation

Any work on user accounts must start with creating that user account
PROBLEM
A user account has to be created in Active Directory.
SOLUTION
Using ADSI, the solution has similarities to that presented in listing 5.2. We start by
creating the data, such as the name and user ID that we’ll use to create the account B
(in listing 5.7). I create the fullname ($struser) from the first and last names, as each
will be required later. I’ve deliberately set the password in the script rather than
explain how to use a secure string again. Use the technique shown in listing 5.1 if you
want to mask the password. I’ve included a version of listing 5.7 in the code download
file that uses the password-masking technique—look for listing 5.7s.

$first = "Joshua"
$last = "TETLEY"
$userid = "jtetl"

Listing 5.7 Creating a single user

TECHNIQUE 4

Define dataB

134 CHAPTER 5 User accounts
Apago PDF Enhancer

$strusr = $last + " " + $first
$defaultPassword = "Password1"

$ou = [ADSI]"LDAP://OU=England,dc=manticore,dc=org"
$newuser = $ou.Create("User", "CN=$strusr")
$newuser.SetInfo()

$newuser.samaccountname = $userid
$newuser.givenName = $first
$newuser.sn = $last
$newuser.displayName = $strusr
$newuser.userPrincipalName = $userid + "@manticore.org"
$newuser.SetInfo()

$newuser.Invoke("SetPassword", $defaultPassword)
$newuser.userAccountControl = 512
$newuser.SetInfo()

$newuser.pwdLastSet = 0
$newuser.SetInfo()

The next steps are to define the OU where we’ll create the user C then perform the
creation D. The new user account should be immediately saved E. This ensures that
later processing occurs without error.

 The attributes concerned with the user’s name are set F. Surname is sn and
givenName is the first name. The display name is what’s shown as the full name in
Active Directory Users and Computers (ADUC). The attribute cn is the name shown in
AD Users and Computers when the OU is browsed. cn is also used to identify the user
when we’re creating a directory entry for modification. See listing 5.11.

 When first created, an Active Directory account is disabled by default. We need to
set a password and set the useraccountcontrol attribute to 512 (normal user) to
enable the account G. useraccountcontrol flags are detailed in appendix D. The
final process is to set the pwdLastset attribute to zero H. This forces the user to
change the password at next logon.
DISCUSSION
That was a fairly lengthy script for creating users. PowerShell cmdlets give a much bet-
ter experience than scripting, as we’ll see in listings 5.8 and 5.8a. There are three sep-
arate examples here to illustrate different methods of handling passwords:

■ In the first example in listing 5.8 B, $null password is specified. No password is
set and the account is disabled unless it’s requested to be enabled. A password
has to be supplied before the account can be enabled.

■ In the second example C, no password is specified. No password is set and the
account is left in a disabled state. Again, a password is required before the
account can be enabled.

■ In the final example D, a user password is specified. The password is set and
the account is enabled via the Enable-ADAccount cmdlet.

Note that the Microsoft AD cmdlets all use a prefix on AD for the noun.

Define dataB
Set OUC

Create userD

E Save

Basic
attributes

F

Enable
account

G

Force password
change

H

135TECHNIQUE 5 User creation (bulk)
Apago PDF Enhancer

New-ADUser -Name "DARWIN Charles" -SamAccountName "CDarwin" `
-GivenName "Charles" -Surname "DARWIN" `
-Path 'ou=england,dc=manticore,dc=org' -DisplayName "DARWIN Charles" `
-AccountPassword $null -CannotChangePassword $false `
-ChangePasswordAtLogon $true -UserPrincipalName "CDarwin@manticore.org"

New-ADUser -Name "NEWTON Isaac" -SamAccountName "INewton" `
-GivenName "Isaac" -Surname "NEWTON" `
-Path 'ou=england,dc=manticore,dc=org' -DisplayName "NEWTON Isaac" `
-AccountPassword (Read-Host -AsSecureString "AccountPassword") `
-CannotChangePassword $false -ChangePasswordAtLogon $true `
-UserPrincipalName "INewton@manticore.org"

New-ADUser -Name "SORBY Henry" -SamAccountName "HSorby" `
-GivenName "Henry" -Surname "SORBY" `
-Path 'ou=england,dc=manticore,dc=org' -DisplayName "SORBY Henry" `
-AccountPassword (Read-Host -AsSecureString "AccountPassword")`
-CannotChangePassword $false -ChangePasswordAtLogon $true `
-UserPrincipalName "HSorby@manticore.org"

 Enable-ADAccount -Identity HSorby

Using the Quest cmdlets is similar. Some of the parameters are slightly different—
for example, Path and ParentContainer respectively for the OU in which the user is
created.

New-QADUser -Name "SMITH Samuel" -FirstName "Samuel" -LastName "SMITH"
-DisplayName "SMITH Samuel" -SamAccountName ssmith
-UserPassword "Password1" -UserPrincipalName "ssmith@manticore.org"
-ParentContainer "ou=England,dc=manticore,dc=org"

Set-QADUser -Identity "manticore\ssmith"
-ObjectAttributes @{useraccountcontrol=512; pwdLastSet=0}

The New-QADUser cmdlet is used to create user accounts. New is used for cmdlets that
create objects. Comparing listing 5.8 with listing 5.7: the similarities are obvious. The
–Name parameter corresponds to cn used to create the user in listing 5.7. Note we need
to create the user, then set the useraccountcontrol and force the password change
by using Set-QADUser. These attributes can’t be set when creating the account. It just
doesn’t work.

 Creating a single user may be slightly more efficient in PowerShell, especially using
the cmdlets. We really gain from automating the bulk creation of user accounts.

TECHNIQUE 5 User creation (bulk)

We’ve seen how to create users one by one. The full benefit of automation is achieved
by creating users in bulk. In order to get the most from these techniques, you may
want to change your procedures for new joiners to the organization. Get all the new
user information in one go and create them using listing 5.9 or 5.10. One or two runs

Listing 5.8 Creating a single user by Microsoft cmdlets

Listing 5.8a Creating a single user with the Quest cmdlets

B

C

D

D

TECHNIQUE 5

136 CHAPTER 5 User accounts
Apago PDF Enhancer

per week and they’re all done. It’s much more efficient than single-user creation in
dribs and drabs.
PROBLEM
We need to create a lot of users at one time.
SOLUTION
Our solution is an adaptation of listing 5.7. Take a moment to compare listing 5.9 with
listing 5.7 and you’ll see that the content of the foreach loop is a modified version of
listing 5.7.

FOREACH ALIAS Foreach as used here is an alias for Foreach-Object as shown
in listing 5.10a.

We start by reading a CSV file called pms.csv and passing the contents into a
Foreach_object (in listing 5.9) B. The CSV file contains three columns with headers
of last, first, and userid. The great advantage of using a CSV file is that we can refer to
the column headers in the rest of our script as properties of the pipeline object.

Import-csv pms.csv | foreach {
 $strusr = $_.Last.ToUpper() + " " + $_.First

 $ou = [ADSI]"LDAP://OU=England,dc=manticore,dc=org"
 $newuser = $ou.Create("user","cn=$strusr")
 $newuser.SetInfo()

 $newuser.samaccountname = $_.userid
 $newuser.givenName = $_.first
 $newuser.sn = $_.last
 $newuser.displayName = $strusr
 $newuser.userPrincipalName = $_.userid + "@manticore.org"
 $newuser.SetInfo()

 $newuser.Invoke("SetPassword", "Password1")
 $newuser.userAccountControl = 512
 $newuser.SetInfo()

 $newuser.pwdLastSet = 0
 $newuser.SetInfo()

 Write-Host "Created Account for: " $newuser.Displayname
}

We can create the contents of the $struser variable by using $_.last.ToUpper() and
$_.first (remember PowerShell isn’t case sensitive) C. ToUpper() is a string-
handling method that converts all characters to uppercase. $_ refers to the object
coming down the pipeline. In this case, the object is a line from the CSV file. The col-
umn headers are properties, so $_.first means the contents of the column named
first in the current row. This is real processing power.

 I’ve hard coded an OU for this batch of users D. In a typical organization, you may
be creating users in a number of OUs, so this could become another column in the

Listing 5.9 Creating users in bulk
Read CSV file into loopB

Create userC

D Set OU

E Save user

Completion
message

F

137TECHNIQUE 5 User creation (bulk)
Apago PDF Enhancer

CSV file. After we create the user E, we proceed to complete the attributes as before.
The only difference is that we’re reading them from the pipeline object rather than
coding them into the script. The last line of the script F writes out a message to state
that creation is complete.

 By adding a couple of commands and changing the way we get the data, we’ve
turned a script to create a single user into one that can create many. The time and
effort to go from listing 5.7 to 5.9 is minimal. The administrative effort that will be
saved is huge and will easily pay back the investment.
DISCUSSION

In listing 5.8, we had a script to create a single user with the AD cmdlets. This is can
also be turned into a bulk creation script, as in listing 5.10.

Import-Csv -Path users2.csv | foreach {
New-ADUser -Name "$($_.Given) $($_.Surname)" `
-SamAccountName $_.Id -GivenName $_.Given `
-Surname $_.Surname `-Path 'ou=england,dc=manticore,dc=org' `

 -DisplayName "$($_.Given) $($_.Surname)" `
 -AccountPassword $null -CannotChangePassword $false `
 -ChangePasswordAtLogon $true `
 -UserPrincipalName "$($_.Id)@manticore.org"
 }

In this case, I’ve used the parameters as subexpressions for variety. It’s not usually nec-
essary to do this, but is worth demonstrating. We have seen how to create a user
account with the Microsoft cmdlets. Listing 5.10a shows how we can perform the same
action with the Quest cmdlets.

Import-Csv pres.csv | ForEach-Object {
$name = $_.last.ToUpper() + " " + $_.first
$upn = $_.userid + "@manticore.org"
New-QADUser -Name $name -FirstName $_.first -LastName $_.last.ToUpper()
 -DisplayName $name -SamAccountName $_.userid -UserPassword "Password1"
 -UserPrincipalName $upn -ParentContainer "ou=USA,dc=manticore,dc=org"

Set-QADUser -Identity $upn
-ObjectAttributes @{useraccountcontrol=512; pwdLastSet=0}
}

These examples follow the same format as listing 5.9. We take a CSV file and pass it
into a foreach loop. The data for the parameters is read from the pipeline as
before. After looking at listing 5.10, there are no real differences in this one as to
how we handle the data apart from the fact that I create a variable for the UPN. This
is so that it can be used in both cmdlets. It’s more efficient to only create it once. I
haven’t specifically written out a message, because the two cmdlets automatically cre-
ate messages.

Listing 5.10 Creating users in bulk with Microsoft cmdlets

Listing 5.10a Creating users in bulk with Quest cmdlets

138 CHAPTER 5 User accounts
Apago PDF Enhancer

 The names in the CSV files are those of English scientists, British prime ministers,
and US presidents respectively, in case you were wondering. Unfortunately, things
never remain the same in IT, so we have to tear ourselves away from PowerShell Space
Invaders and modify some users. An admin’s work is never done.

TECHNIQUE 6 User modification

After creating a user account, it’s more than probable that we’ll need to make modifi-
cations. People move departments; telephone numbers change; even names can
change. We may want to increase security by restricting most users to being able to log
on only during business hours.

 Active Directory can hold a lot of information about your organization. If you keep
the information up to date and accessible then you can leverage the investment in
Active Directory and you don’t need a separate phone book system, for instance.
PROBLEM
We have to make modifications to one or more user accounts in Active Directory.
SOLUTION
Using ADSI, we retrieve a directory entry for the user account we need to modify and
set the appropriate properties. This is one of the longest scripts we’ll see, but as we
break it down, you’ll see that it’s not as bad as it looks. I’ve organized the script to
match the tabs on the user properties in ADUC.

SCRIPT USAGE I don’t expect this script to be used in its entirety. In normal use,
I’d expect a few attributes to be changed rather than a bulk change like this. It’s
more efficient to present all the changes in one script. Then you can choose
which attributes you need to modify.

In listing 5.11, we start by getting a directory entry for the user B. This is the part
that will change in your organization. If you’re making the same change to lots
of users, put them into a CSV file and use a foreach loop in a similar manner to list-
ing 5.9.

$user = [ADSI]
"LDAP://CN=CHURCHILL Winston,OU=England,DC=Manticore,DC=org"
$user.Initials = "S"
$user.Description = "British PM"
$user.physicalDeliveryOfficeName = "10 Downing Street"
$user.TelephoneNumber = "01207101010"
$user.mail = "wsc@manticore.org"
$user.wwwHomePage = "http://www.number10.com"
$user.SetInfo()

$user.streetAddress = "10 Downing Street"
$user.postOfficeBox = "P.O. 10"
$user.l = "London"
$user.St = "England"

Listing 5.11 Modifying user attributes

TECHNIQUE 6

Get userB

Start of General tabC

D Office
EmailE

Start of
Address

F

PO BoxG
CityH

State/provinceD

139TECHNIQUE 6 User modification
Apago PDF Enhancer

$user.postalCode = "L10 9WS"
$user.c = "GB"
$user.SetInfo()

$comp = "comp1,comp2"
[byte[]]$hours = @(0,0,0,0,255,3,0,255,3,0,255,3,0,255,3,0,255,3,0,0,0)

$user.logonhours.value = $hours
$user.userWorkstations = $comp
$user.SetInfo()

$user.profilepath = \\server1\usrprofiles\wsc
$user.scriptPath = "mylogon.vbs"
$user.homeDrive = "S:"
$user.homeDirectory = "\\server2\home\wsc"
$user.SetInfo()

$user.homePhone = "01207101010"
$user.Pager = "01207101011"
$user.Mobile = "01207101012"
$user.facsimileTelephoneNumber = "01207101014"
$user.ipPhone = "01207101015"
$user.Info = "This is made up data"
$user.SetInfo()

$user.Title = "Prime Minister"
$user.Department = "Government" "
$user.Company = "Britain""
$user.Manager = "CN=WELLESLEY Arthur,OU=England,DC=Manticore,DC=org" "

$user.SetInfo()

The first tab that we need to deal with is the General tab C. This holds the name
information, which can be modified as shown. Usually the attributes we use in ADSI
match those shown in ADUC. I’ve annotated those that are different such as office D
and email address E. I’ve used SetInfo() after each tab’s worth of changes to ensure
that they’re written back. If you cut and paste the script, it’s less likely the SetInfo()
will be forgotten.

 Moving on to the Address tab F, we find simple data such as the PO Box G as well
as number of catches. The City field on ADUC we have to treat as l (for location) H,
and state\province becomes st I. Setting the country requires the use of the two-
character ISO code in the c attribute J. In this case, GB is the ISO code for the United
Kingdom, even though Great Britain is only part of the UK!

TIP If you can’t remember the ISO code for a particular country or aren’t sure
what to use, use ADUC to set the country by name on one user and ADSIEdit to
check what code has been entered. With Windows Server 2008 ADUC, use the
Attribute tab to view the data.

On the Account tab 1@, we can also set the workstations a user can log on to 1# as
well as the hours of the day he can log on. We need to create an array of workstation
names 1) and use this to set the attribute. The logon hours attribute is more compli-
cated, in that we have to create an array of bytes as shown 1!. Three bytes represent a

CountryJ
Array of computer
names

1)

Start of Account tab1@

1# Log on to... 1!
Allowed logon

hours

Start of Profile tab1$

Logon script1%

1^ Local path
1& Connect

Telephones tab1*

1(Organization tab

140 CHAPTER 5 User accounts
Apago PDF Enhancer

day (starting at Sunday) and each bit represents a one-hour time span. All zeros
means the user isn’t allowed to log on, and if all values are set to 255 (default) the
user can log on 24x7. In the case shown, the user is restricted to logon times of Mon-
day to Friday 8 a.m. to 6 p.m. If you want to use this, I recommend setting up one
user in ADUC and copying the resultant values. This is definitely the quickest way to
get it right.

 The Profile tab 1$ is for setting logon scripts and home drives as shown. The only dif-
ficulty here is the attribute names, as I’ve annotated, especially the scriptpath 1% which
supplies the logon script to be run for the user. The local path 1^ refers to the drive to
be mapped to a user’s home area and the connect attribute 1& supplies the UNC path
to the user’s home area. When you’re setting telephone numbers on the Telephones
tab 1*, remember that the numbers are input as strings rather than numbers.

 The final tab I’ll deal with is the Organization tab 1(. The attribute names match
the ADUC fields as shown. Note that the Manger entry must be given the AD distin-
guished name as its input. The Direct Reports field is automatically backfilled from
the Manager settings on other users. You can’t set it directly.
DISCUSSION
I haven’t given a full alternative using the cmdlets in this section. We can use the
Microsoft cmdlets like this:

Get-ADUser -Identity hsorby | Set-ADUser -Department Geology
Get-ADUser -Identity hsorby -Properties Department

Get-ADUser -Identity hsorby -Properties *

The most efficient way to perform bulk changes is to use Get-ADuser to return the
users in which we’re interested and then pipe them into Set-AdUser. This way we can
easily test which users are affected. The change can be examined with Get-ADUser.
When we use Get-ADUser, we normally only get a small subset of properties returned.
We can generate more data by explicitly stating which properties we want returned.

 With the Quest cmdlets, we’d use the Set-QADUser cmdlet and use either one of the
predefined parameters or the -ObjectAttributes parameter as shown in listing 5.10a.

TECHNIQUE 7 Finding users

We’ve seen how to create and modify user accounts in Active Directory. One of the
other tasks we need to perform frequently is searching for particular users. No, not
under the desk, but in Active Directory. In this section, we’ll look at searching for an
individual user, disabled accounts, and accounts that are locked out. You’ll see other
searches that look at logon times and account expiration later in the chapter.

 Searching Active Directory requires the use of LDAP filters. They’re explained in
appendix D.

DELETED USER ACCOUNTS Searching for deleted user accounts will be covered
in chapter 10

We’ll start with searching for a single user.

TECHNIQUE 7

141TECHNIQUE 7 Finding users
Apago PDF Enhancer

PROBLEM
We need to search Active Directory for specific users or accounts that are disabled or
locked out.
SOLUTION
We can use the System.DirectoryServices.DirectorySearcher class to perform our
search. In PowerShell v2, this can be shortened slightly by using [ADSISEARCHER].
Using System.DirectoryServices.DirectorySearcher makes searching faster and
simpler compared to previous scripting options. We need to start by creating a vari-
able with the name of the user to search for B (in listing 5.12). We can search on
other attributes, as we’ll see later. We want to search the whole Active Directory,
because we can’t remember where we put this user. We can use GetDomain() to deter-
mine the current domain C. Using this method makes our script portable across
domains. We then get a directory entry D for the domain.

$struser = "BOSCH Herbert"

$dom = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(cn=$struser)"
$result = $search.FindOne()

if ($result -ne $null)
{
 $result.properties.distinguishedname
}
else {Write-Host $struser " Does not exist"}

Creating a search as shown E will set the domain as the root of the search—we search
the whole domain. We’re looking for a particular user, so we need to set an LDAP filter
for that user F. The cn attribute holds the name of the user account in Active Direc-
tory. It’s possible to search on most attributes.

PAGE SIZE AND TIMEOUT There’s a limit on the number of results that will be
returned from an LDAP search. The default limit is 1,000. If your results will
exceed this number, add the line $search.PageSize = 1000 after the filter.
This will cause the results to be returned in batches (pages) of 1,000. When
using the cmdlets, use the PageSize and SizeLimit parameters to control the
return of data.

There’s a timeout of 120 seconds on the server side, at which point the
server will return only the results found up to that point. The default client-
side timeout is infinite.

When we run this search, we only expect a single result, so we use FindOne() G. As we’ll
see later, if we expect multiple results to be returned, we use FindAll(). Interestingly,
FindOne() does a FindAll() and returns only the first result. If you’ve performed

Listing 5.12 Searching for a user account

Set userB

C

D
Root
entry

E

F Set filter
G Run search

H

142 CHAPTER 5 User accounts
Apago PDF Enhancer

Active Directory searches using VBScript in the past, note that we don’t need to use an
ADO recordset.

 We perform a final check to see if we actually have a result H and then we can dis-
play the distinguished name of the user. This will tell us where the user is hiding.
DISCUSSION
Using the cmdlets is even simpler. The Microsoft cmdlets give us:

Get-ADUser -Identity hsorby

And the Quest cmdlets produce:

$struser = "BOSCH Herbert"
Get-QADUser -ldapFilter "(cn=$struser)"

We could make this one line by putting the name into the -Identity parameter. The
cmdlet automatically produces output, including the distinguished name, which mini-
mizes the amount of code we need.

 Our search script can be easily modified so that we can search for different things.
Two examples are searching for disabled accounts and locked-out accounts, as shown
in listing 5.13.

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root

$search.Filter = "(&(objectclass=user)(objectcategory=user)
(useraccountcontrol:1.2.840.113556.1.4.803:=2))"
$result = $search.FindAll()

foreach ($user in $result)
{
 $user.properties.distinguishedname
}

We create the search so that we’re searching the whole domain again. The main dif-
ference in this script is the search filter B. Our LDAP filter will find user accounts. We
need the objectclass and the objectcategory, as computer accounts also use the
user class! The last part of the filter is where we look at the useraccountcontrol attri-
bute and perform a bitwise AND on it with the value 2 (account disabled). The syntax
looks bad, but just think of it as a long-winded way of saying “bitwise”. The only part
we need to think about changing is the final value, which is what we’re searching for.
The possible values for useraccountcontrol are listed in appendix D.

 In case there’s more than one disabled account, we use FindAll() to return multi-
ple results C, which we can then display.

 I’m almost embarrassed to present the cmdlet equivalents as they are so short.
We’ll start with the Microsoft cmdlet:

Listing 5.13 Disabled user accounts

Search filterB

C
Find all disabled
accounts

143TECHNIQUE 7 Finding users
Apago PDF Enhancer

Search-ADAccount -AccountDisabled -UsersOnly |
select Name, distinguishedName

The Quest version is even shorter:

Get-QADUser -Disabled

It doesn’t get any easier than that! The cmdlet also displays the results. What more can
you ask for? Well, it doesn’t make the tea for one...

 Moving on, users and passwords don’t mix. Users seem to take great delight in for-
getting passwords and locking themselves out of Active Directory, usually on a Monday
morning when they’ve just got back from vacation. Eventually, they may get around to
ringing the help desk and you can check to see if they’re locked out. Alternatively, you
can use listing 5.14 to find the locked-out accounts.

Add-Type -AssemblyName System.DirectoryServices.AccountManagement

$ctype =
[System.DirectoryServices.AccountManagement.ContextType]::Domain
$context = New-Object -TypeName

System.DirectoryServices.AccountManagement.PrincipalContext
-ArgumentList $ctype, "manticore.org", "DC=Manticore,DC=org"

$date = (Get-Date).AddDays(-1)

$mtype =
[System.DirectoryServices.AccountManagement.MatchType]
::GreaterThan

$results =
[System.DirectoryServices.AccountManagement.UserPrincipal]
::FindByLockoutTime($context, $date, $mtype)
if($results -ne $null){
 foreach ($result in $results){$result.distinguishedname}
}
else{Write-Host "No users locked out"}

System.DirectoryServices.AccountManagement from .NET 3.5 has a nice method,
FindByLockoutTime(), which we can use to find locked accounts. In addition, we can
see how to use these classes in a domain environment. As usual, we start by loading the
.NET assembly B. In this case, I’ve used Add-Type from PowerShell v2. In PowerShell
v1 you can use the load command from listing 5.1. The context in this case is a
domain rather than a single machine. ContextType is set to Domain as shown, and the
PrincipalContext is set to the name of the domain C. The arguments are the con-
text type we created in B; the name of the domain and container we’re working with,
respectively. The container defined by the LDAP distinguished name of the domain.

 The lockout time on the user accounts will be compared to a value we create D.
We use Get-Date to retrieve the current date and use the AddDays() method to set the
date back, in this case by one day. We’re adding a negative number. There isn’t a
method to subtract days, so we fall back on this slightly inelegant approach. We’ll be

Listing 5.14 Locked user accounts

B

C

D

E

F

144 CHAPTER 5 User accounts
Apago PDF Enhancer

searching for accounts locked out in the last 24 hours. By varying this value, we can
control how far back we look for locked-out accounts.

 The comparison operator for our search is provided by the MatchType E. In this
case we’re looking for values greater than the reference value—lockouts that have
occurred since the reference time. The search is performed by the FindByLockout-
Time() method with the context, reference date, and operator as parameters F. The
usual check on the results and displaying the distinguished names completes the
script. This is the easiest method to script for searching for locked-out accounts that
I’ve found.

 If you want a super easy way of finding locked-out accounts, it doesn’t get much
easier than using the AD cmdlets. The Microsoft cmdlet syntax is:

Search-ADAccount -LockedOut

and the syntax for the Quest cmdlet is very similar:

Get-QADUser -Locked

These will retrieve all locked-out accounts in the domain.
 We’ve looked at searching for disabled accounts; we should now look at how to

enable or disable them.

TECHNIQUE 8 Enabling and disabling accounts

Listing 5.4 showed how to disable or enable a local user account. This script shows
how to perform the same action on an Active Directory account.
PROBLEM
We need to disable or enable an Active Directory account.
SOLUTION
An Active Directory user account can be disabled by modifying the useraccountcon-
trol attribute, as shown in listing 5.15. This is the domain equivalent of listing 5.1 in
that it toggles between enabled/disabled—it’ll enable a disabled account and vice
versa. We use ADSI to connect to the relevant account, retrieve the useraccountcon-
trol attribute, perform a bitwise exclusive OR on it, and write it back. The bitwise
exclusive OR will toggle the disabled bit to the opposite value; that is it will disable the
account if enabled and enable if disabled.

$user = [ADSI]"LDAP://CN=BOSCH Herbert,OU=Austria,DC=Manticore,DC=org"
$oldflag = $user.useraccountcontrol.value
$newflag = $oldflag -bxor 2
$user.useraccountcontrol = $newflag
$user.SetInfo()

DISCUSSION
The AD cmdlets provide specific commands to disable and enable user accounts:

Disable-ADAccount -Identity HSorby
Enable-ADAccount -Identity HSorby

Listing 5.15 Disabling Active Directory user accounts

TECHNIQUE 8

145TECHNIQUE 9 Moving accounts
Apago PDF Enhancer

Disable-QADUser -Identity "CN=BOSCH Herbert,OU=Austria,DC=Manticore,DC=org"
Enable-QADUser -Identity "CN=BOSCH Herbert,OU=Austria,DC=Manticore,DC=org"

All we need is to pass the identity of the user to the cmdlet and it does the rest. I can
type this faster than opening the GUI tools, especially if I know the user ID so I can use
domain\userid as the identity with the Quest cmdlets. (See appendix D for an expla-
nation of the differences between the two sets of cmdlets when handling identities.)

 One problem that you may find is disabling an account and moving it to a holding
OU pending deletion. We’ve seen how to disable it, and we’ll now turn to the move.

TECHNIQUE 9 Moving accounts

One method of organizing users in Active Directory is to have OUs based on department
or location. This can enable us to apply specific group policies to those users. If the users
move to a different location or department, we need to move the account to the correct
OU so they receive the correct settings. When people leave the organization, their user
accounts should be deleted. Many organizations will have an OU specifically for
accounts that are to be deleted, so the accounts have to be moved into the correct OU.
PROBLEM
A user account has to be moved to another OU.
SOLUTION
The [ADSI] accelerator gives us access to a MoveTo method, but we have to remember
that it’s on the base object, so we need to include .psbase in PowerShell v1. In v2, this
isn’t an issue, as it has been made visible. Listing 5.16 demonstrates how we use the
MoveTo() method to move a user account into a new OU.

$newou = [ADSI]"LDAP://OU=ToBeDeleted,DC=Manticore,DC=org"
$user = [ADSI]"LDAP://CN=SMITH Samuel,OU=England,DC=Manticore,DC=org"

$user.psbase.MoveTo($newou)

Using the [ADSI] type accelerator, we set variables to the user and target OU. If you
were to perform $user | get-member, you wouldn’t see any methods on the object
apart from two conversion methods. But by using $user.psbase | get-member, we
drop into the underlying object as discussed in chapter 2. There we can see a
MoveTo() method that will do just what we want. We call the method with the target
OU as a parameter and the user is whisked off to his new home. If we have to move a
number of accounts from an OU, we can modify the script to read the OU contents
and then perform a move on the selected accounts.

WITHIN A DOMAIN ONLY The techniques in this section only work within a
domain; they can’t be used for cross-domain moves.

DISCUSSION
The AD cmdlets don’t provide a cmdlet to explicitly move users between OUs, but
we can use the generic cmdlets for moving AD objects. All we need to provide is the

Listing 5.16 Moving Active Directory user accounts

TECHNIQUE 9

146 CHAPTER 5 User accounts
Apago PDF Enhancer

identity of the user and target OU. Using the Microsoft cmdlet we can perform a move
like this:

Move-ADObject
-Identity "CN=HUXLEY Thomas,ou=starking,dc=manticore,dc=org"
-TargetPath "ou=england,dc=manticore,dc=org"

The Quest cmdlet is similar, but notice the parameter is called NewParentContainer
rather than TargetPath. There are just enough differences like this to get confusing if
you use both sets of cmdlets on a regular basis:

Move-QADObject
-Identity "CN=SMITH Samuel,OU=England,DC=Manticore,DC=org"
-NewParentContainer "OU=ToBeDeleted,DC=Manticore,DC=org"

These cmdlets also work with groups and computer accounts. When we’re not creat-
ing, moving, or modifying user accounts, someone is bound to ask for information
such as the last time Richard logged on to the domain.

TECHNIQUE 10 Last logon time

Finding the last logon time for a user isn’t straightforward. When Active Directory was
introduced with Windows 2000, an attribute called lastlogon was made available. This
is stored on a domain controller by domain controller basis. Each domain controller
stores the date and time it last authenticated that user. The attribute isn’t replicated.

 Windows 2003 introduced another attribute called lastlogontimestamp. It does
replicate between domain controllers, but it’s only updated if the user hasn’t logged
on to that domain controller for more than a week. The value can easily become more
than a week out of date. This attribute is really of use for determining if a user hasn’t
logged on for a significant period, for example finding all of the users who haven’t
logged on for a month or more.
PROBLEM
Determine the last time a user logged on to the domain.
SOLUTION
As discussed, in listing 5.17 we’ll use the lastlogon and lastlogontimestamp attri-
butes to find when a user last logged on to the domain. By using System.Directory-
Services.ActiveDirectory.Domain we can retrieve information about the current
domain B. This includes a list of the domain controllers C in the domain. By loop-
ing through this list, we can check each domain controller in turn for the last logon
information. This wouldn’t be practical in a domain with many domain controllers, so
the list of domain controllers to check could be manually created.

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()

foreach ($dc in $dom.domaincontrollers) {

$ldapstr = "LDAP://" + $dc.Name + "/cn=richard,cn=users,dc=manticore,dc=org"

Listing 5.17 Last logon times

TECHNIQUE 10

B

Iterate through domain controllersC

D

147TECHNIQUE 10 Last logon time
Apago PDF Enhancer

$user = [ADSI]$ldapstr
"`nDomain Controller: $($dc.Name)"
"Name: {0}" -f $($user.name)

$ll = $user.lastlogon.value
$log = [datetime]$user.ConvertLargeIntegerToInt64($ll)
$lastlog = $log.AddYears(1600)

"Last Logon: {0:F}" -f $($lastlog)

$ll = $user.lastlogontimestamp.value
$log = [datetime]$user.ConvertLargeIntegerToInt64($ll)
$lastlog = $log.AddYears(1600)

"Last Logon Timestamp: {0:F}" -f $($lastlog)

}

The LDAP string we use to connect is slightly modified to include the fully qualified
domain name of the domain controller D. Note the use of the + symbol for string con-
catenation. Previously we’ve performed a serverless binding and not worried about
which domain controller we connected to. Using the LDAP string, we connect to the
designated domain controller and access the user account E stored on that machine.

 We can now print the required information starting with the domain controller F
name. We’re substituting into the string, but need to use the $() to ensure the name
is evaluated before substitution; otherwise the name of the object would be output!
The `n before the domain controller is a special character that forces a new line. Spe-
cial characters are detailed in appendix A.

 The name G, lastlogon H, and lastlogontimestamp I are displayed using the
string formatting operator -f. The fields within the string are enclosed in {} and sub-
stituted by the variables to the right of the -f operator in turn. The two logon times
are stored in ticks (10,000th of a second, counting from January 1, 1600). We need to
convert the number that’s stored in Active Directory into a 64-bit integer and then
into a date.

 When we use $log = [datetime]$user.ConvertLargeIntegerToInt64($ll) to
create the date it starts counting from 0 AD so the date is 1,600 years too low. We need
to add 1,600 years to the resultant date to make it match the calendar.

 In listing 5.18 we use the FromFileTime() method of the datetime class which
automatically performs this addition. A simple example illustrates how it works.

PS> $d = Get-Date
PS> $d

25 March 2010 21:36:47

PS> $d.Ticks
634051498076096000
PS> [datetime]::FromFileTime($d.Ticks)

25 March 3610 21:36:47

We get the date and save it to a variable. The date and number of ticks can be viewed.
When we convert the number of ticks back to a date the 1600 years is automatically
added.

Get userE
F

G

Last logonH

Last logon
timestamp

I

148 CHAPTER 5 User accounts
Apago PDF Enhancer

DISCUSSION
Using the cmdlets is a little simpler, but we still need to query multiple domain con-
trollers, as shown in listing 5.18.

Get-ADDomainController -Filter *| foreach {
 $server = $_.Name
 $user = Get-ADUser -Identity Richard `
 -Properties lastlogon, lastlogondate, lastlogontimestamp `
 -Server $($server)

 $t1 = [Int64]::Parse($($user.lastLogon))
 $d1 = [DateTime]::FromFileTime($t1)

 $t2 = [Int64]::Parse($($user.lastLogontimestamp))
 $d2 = [DateTime]::FromFileTime(t2)

 Add-Member -InputObject $($user) -MemberType Noteproperty `
 -Name "DCName" -Value $($server) -PassThru -Force |
 Format-Table DCName, `
 @{Name="LastLogonTime"; Expression={$($d1)}},`
 lastlogondate, `
 @{Name="LastLogonTimeStamp"; Expression={$d2}
}}

Get-ADDomainController will only return a single domain controller by choice. This
can be overridden by specifying * in the filter parameter. Each domain controller is
queried for the last logon time information. Note that lastlogondate is new in Win-
dows Server 2008 R2. I’m using Add-Member to add the domain controller name as a
new property on the user object. This enables us to see to which domain controller
the information relates. Note how we have to work to retrieve the date from the Int64
that’s held in Active Directory.

 The Quest solution is similar to listing 5.18 in that we connect to the domain B
(in listing 5.19) and loop through the domain controllers C as before. We print the
domain controller name D and then connect to the domain controller of interest E.
$null is used to suppress the informational messages regarding the connection. The
user information is retrieved and displayed F. The date creation is handled automati-
cally G. We then disconnect from the domain controller.

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()
foreach ($dc in $dom.domaincontrollers) {

"`nDomain Controller: $($dc.Name)"

$null = Connect-QADService -Service $dc.Name

Get-QADUser -Identity 'manticore\Richard' |
Select-Object name, lastlogon, lastlogontimestamp | Format-List

Disconnect-QADService
}

Listing 5.18 Last logon times using Microsoft cmdlets

Listing 5.19 Last logon times using Quest cmdlets

B

C
Iterate through
domain controllersD

E
Get
user

F

DisconnectG

149TECHNIQUE 11 Password expiration
Apago PDF Enhancer

These solutions aren’t satisfactory because we have to query a number of domain con-
trollers to get an exact time. But if we only need an approximate last logon time, using
the lastlogontimestamp is a simpler option.

 In addition to knowing when users last logged on, we may need to know when
their passwords or, in the case of temporary staff, their accounts are going to expire.

TECHNIQUE 11 Password expiration

The default maximum password age is 42 days and is controlled by domain-level
group policy. This is often altered to meet an organization’s particular needs. Users
will often forget that passwords need changing, especially mobile users who’re rarely
in the office. It can often save administrative effort to remind them that their pass-
words will need changing ahead of time. It’s usually possible to change a password
when connected by VPN, but not if the password has already expired. Prompting users
to change passwords ahead of time can solve the problem before it arrives.
PROBLEM
We need to find the users whose passwords will expire within a given time frame.
SOLUTION
This involves searching the domain, so we return to our search script and modify the
LDAP filter to check the pwdlastset attribute. The expiration date for the password
isn’t stored directly. The date the password was last set is stored in the pwdlastset
attribute. Unfortunately, this isn’t directly accessible because it’s a COM large integer,
like the logon times we saw in the previous example. We need to convert some dates
into the correct format and use them in our search filter, as in listing 5.20.

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).Adddays(-42)).ToFileTime()

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()

$root = $dom.GetDirectoryEntry()

$filt = "(&(objectcategory=Person)" +
"(objectclass=user)" +
"(pwdlastset>=$end)(pwdlastset<=$now))"

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = $filt
$results = $search.FindAll()

foreach ($result in $results){
 $result.properties.distinguishedname
}

Start by using the current date (Get-Date) and convert it into the correct format using
the ToFileTime() method B. If we assume that we have a 42-day maximum password
age then all passwords should’ve been reset at least 42 days ago. We need to decide how
many days ago we want to check for password reset. If you’re looking at passwords that

Listing 5.20 Password expiration check

TECHNIQUE 11

Set current dateB

C
Set time period
of interest

Get current domainD

Create
searcher

E

F Set filter

G Display results

150 CHAPTER 5 User accounts
Apago PDF Enhancer

will expire in the next 10 days, we’re interested in those set 32 days ago, and so forth.
As I’m using a test domain, I had to force some of this, so my example shows a date of
42 days in the past—in other words, all password changes C. You’ll need to set this
value depending on your password policy and how far ahead you want look.

 We get the current domain root D and create a directory searcher E, as we’ve
seen previously. The filter F is interesting in that we need the objectcategory and
objectclass to restrict the search to users. Leave off the objectcategory and you’ll
get computer accounts as well.

COMPUTER PASSWORDS Computer passwords set themselves—don’t try to
change them manually.

We check the pwdlastset attribute for accounts that fall between our chosen dates
using FindAll() and display the results G. We’re using a DirectorySearcher object
so you don’t have access to the full property list. We can use the distinguished name to
access a DirectoryEntry object and list full names, and so on. We could even send the
user an email (PowerShell v2 has a Send-MailMessage cmdlet or we can script it).
DISCUSSION
A similar result can be achieved using the cmdlets:

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).AddDays(-42)).ToFileTime()

$filt = "(&(objectcategory=Person)" +
"(objectclass=user)(pwdlastset>=$end)" +
"(pwdlastset<=$now))"

Get-ADUser -LDAPFilter $filt

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).Adddays(-42)).ToFileTime()

$filt = "(&(objectcategory=Person)" +
"(objectclass=user)(pwdlastset>=$end)" +
"(pwdlastset<=$now))"

Get-QADUser -ldapFilter $filt

We set the start and end dates of our search and use the same LDAP filter as earlier. We
get the same result, but with less code.

 Temporary workers are often given accounts with an expiration date. Searching for
these is similar to searching for expiring passwords.

TECHNIQUE 12 Account expiration

This is another search scenario, except this time we’ll be using the accountexpires
attribute. One big plus of creating search scripts in this way is that the only real
change is the LDAP filter. The body of the script remains the same.
PROBLEM
We need to know which accounts will expire within a given time frame.

TECHNIQUE 12

151TECHNIQUE 12 Account expiration
Apago PDF Enhancer

SOLUTION
Modifying our LDAP filter to use the accountexpires attribute enables us to find
accounts that will expire within a certain number of days, as shown in listing 5.21. This
is a variation on the password expiration script we saw previously. Set the start and end
dates of our search B. In this case, we’re interested in accounts that will expire in the
next 60 days. Get the current domain root and create a searcher C. The search filter
is simpler in that we’re looking at the user object class and we want to find accounts
where the accountexpires attribute falls between our two given dates D. We use Find-
All() because we expect multiple results and we display the results E as previously.

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).Adddays(60)).ToFileTime()

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()

$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root
$filt = "(&(objectclass=user)" +
"(accountexpires<=$end)" +
"(accountexpires>=$now))"

$search.Filter = $filt

foreach ($result in $results){
 $result.properties.distinguishedname
}

DISCUSSION
Using the cmdlets is easy. All we need to do is define the end date of our search. Using
the Microsoft cmdlet, we have this syntax:

Search-ADAccount -AccountExpiring `
-TimeSpan 60.00:00:00 -UsersOnly |
Format-Table Name, Distinguishedname

The Quest cmdlet has a simpler syntax:

Get-QADUser -AccountExpiresBefore $((Get-Date).AddDays(60))

With the Microsoft cmdlets, we use a TimeSpan to look 60 days ahead. We use the -
UsersOnly parameter to only give us user accounts. The Quest cmdlet only has to be
given the date that’s 60 days ahead.

 This completes our look at user accounts in Active Directory. You’ve seen a lot of
material in this section that should cover most of your needs for automating the
administration of user accounts. The scripts are easily modifiable, especially the
search and modification scripts. They can all easily be adapted to accept parameters
or to read from a file using the examples already given. I’m going to round off the
chapter with a look at Active Directory groups.

Listing 5.21 Account expiration check

Set datesB

Create
searcher

C

Search filterD

Display resultsE

152 CHAPTER 5 User accounts
Apago PDF Enhancer

5.4 Active Directory groups
Active Directory groups are manipulated in a similar manner to the local groups we’ve
already seen. We have the alternative of using cmdlets in this case. We’ll look at creat-
ing and modifying groups, and finish the section by discovering how to display nested
group memberships from the perspective of a group and a user-something you defi-
nitely can’t do in the GUI.

TECHNIQUE 13 Group creation

Group creation is similar to creating local groups.
PROBLEM
We need to create an Active Directory group.
SOLUTION
The group can be created using ADSI in a similar manner to creating a user in Active
Directory, as shown in listing 5.22. There are a number of group types available in Active
Directory. We start by creating constants that define the available types and scopes of
groups B (in listing 5.22). We bind to the OU where we’ll create the group C. The
group type and scope are combined at the bit level using a binary or operation D. I
deliberately made this a universal group so that it’s obvious that this works. The default
group is a global security group. The group is created E and immediately saved.

$global = 0x00000002
$domainlocal = 0x00000004
$security = 0x80000000
$universal = 0x00000008

$ou = [ADSI]"LDAP://ou=All Groups,dc=manticore,dc=org"
$grouptype = $security -bor $universal

$newgroup = $ou.Create("Group", "cn=UKPMs")
$newgroup.SetInfo()

$newgroup.GroupType = $grouptype
$newgroup.samAccountname = "UKPMs"
$newgroup.SetInfo()

Processing is completed by setting the group type F and a samaccountname G. We
need samaccountname or a random one is generated. A final SetInfo() writes every-
thing back to the database.
DISCUSSION
If we use the cmdlets, we need to supply the information shown. The code matches
the script, but each cmdlet is only one line of code. We start with the Microsoft cmd-
let, New-ADGroup, and then look at the Quest cmdlet. New-QADGroup:

New-ADGroup -Name "English Scientists" -SamAccountName EngSci `
 -GroupCategory Security -GroupScope Global `
-DisplayName "English Scientists" `
 -Path "OU=England,dc=manticore,dc=org" `

Listing 5.22 Creating Active Directory group

TECHNIQUE 13

Set constantsB

C

D Set group type
E

F
Set samAccountnameG

153TECHNIQUE 14 Changing membership
Apago PDF Enhancer

-Description "Members of this group are English Scientists"

New-QADGroup -Name "USPres" -SamAccountName "USPres" `
-GroupType "Security" -GroupScope "Universal" `
-ParentContainer "ou=All Groups,dc=manticore,dc=org"

After creating our group, we need to populate it with members.

TECHNIQUE 14 Changing membership

Managing group membership will be a mixture of manual and automated proce-
dures. I hate to say it, but not everything can be automated. If you can use the cmd-
lets, they’re ideal for adding single users to a group. If you’re creating a group with a
number of users that can be identified to an LDAP search, then use the following
script as a guide. It could just as easily be searching on a department or location. If the
users are scattered across your Active Directory, then collect their names into a CSV
file and modify the script to read the file and add the users to a group.

 Group membership can also be set as the user account is created.
PROBLEM
All of the users in an OU need to be put into a group.
SOLUTION
An LDAP search filter is used to find all of the user accounts in a given OU, and we can
use that information to add the users to the group, as in listing 5.23. We start by creat-
ing a directory entry B (in listing 5.23) for the group. A directorysearcher C is cre-
ated to find all of the users in the OU. Note that we set the root of the search to the
OU. There’s no need to search the whole directory when we know the users are in a
single OU.

$group = [ADSI]"LDAP://cn=UKPMs,ou=All Groups,dc=manticore,dc=org"
$root = [ADSI]"LDAP://ou=England,dc=manticore,dc=org"
$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(&(objectclass=user)(objectcategory=user))"
$result = $search.FindAll()

foreach ($user in $result)
{
 $group.Add("LDAP://" + $user.properties.distinguishedname)
 $group.SetInfo()

$message = $user.properties.distinguishedname +
 " added to group " + $group.cn
Write-Host $message
}

We loop through our results D and use the Add() method of the group to add E the
user into the group. We’re constructing the AD path for the user, which is the input
parameter the method expects. $user.properties.distinguishedname is used to
access the distinguished name property because we’re dealing with a directory-
searcher resultset rather than a user object.

Listing 5.23 Changing Active Directory group membership

TECHNIQUE 14

GroupB

Search
for users

C

Loop through resultsD
Add userE

F Save

MessageG

154 CHAPTER 5 User accounts
Apago PDF Enhancer

 As usual, we use SetInfo() to write F the information back to disk. The script fin-
ishes by writing a message G to say the user has been created. If we wanted to remove
users from a group, we could use the Remove() method instead of Add().
DISCUSSION
We can use the cmdlets in a number of ways to solve this problem. One solution is to
search on an attribute and pipe the results into the cmdlet we use to add a group
member:

Get-ADUser -Filter {Title -eq "Scientist"} `
-SearchBase "OU=England,dc=manticore,dc=org" | foreach {
 Add-ADGroupMember -Identity EngSci -Members $($_.DistinguishedName) }

Quest has analagous cmdlets:

Get-QADUser -SearchRoot "ou=USA,dc=manticore,dc=org" |
ForEach-Object {Add-QADGroupMember
-Identity "CN=USPres,OU=All Groups,DC=Manticore,DC=org"
-Member $_.distinguishedname }

Use Get-QADUser (equivalent to a directory searcher) pointed at the OU with the
users. Pipe the results into a foreach where we use Add-QADGroupMember to add the
user to the group. The -Identity parameter refers to the group, and -Member to the
user. The cmdlets automatically print the results on screen as shown in figure 5.1.

 After creating our groups and populating them with users, we may need to change
the scope of the group.

Figure 5.1 Output when using Add-QADGroupMember

155TECHNIQUE 15 Changing scope
Apago PDF Enhancer

TECHNIQUE 15 Changing scope
Groups can be changed from distribution lists to security groups (going the other way,
you’ll lose the permissions the group has) and the group scope can be changed within
the limits given next. Distribution groups don’t have their own constant, so just leave
out the security group value.

 Only some group scope changes are supported:

■ Universal to global
■ Global to universal
■ Domain local to universal
■ Universal to domain local

In all cases, the group membership has to support the new scope; for instance a global
group can’t be changed to a universal group if it’s a member of other global groups.
PROBLEM
Our universal group must be changed to a global group.
SOLUTION
The group scope is changed by modifying the grouptype attribute, as shown in list-
ing 5.24. The script starts by defining the constants B that we use to create the
group. Comparison with listing 5.22 will show them to be the same as used in that
script. We have to get a directory entry for the group C, and create D and set the
new group type E. The script finishes by saving the change to disk F. The creation
of the group type is a binary bit operation as in listing 5.22.

$global = 0x00000002
$domainlocal = 0x00000004
$security = 0x80000000
$universal = 0x00000008

$group = [ADSI]"LDAP://cn=USPres,ou=All Groups,dc=manticore,dc=org"

$grouptype = $security -bor $global
$group.GroupType = $grouptype
$group.SetInfo()

DISCUSSION
The change can be accomplished by using cmdlets. We define the group together
with the new type and scope:

Microsoft
Get-ADGroup -Identity EngSci
Set-ADGroup -Identity EngSci -GroupScope Universal
Get-ADGroup -Identity EngSci

Quest
Set-QADGroup -Identity "cn=UKPMs,ou=All Groups,dc=manticore,dc=org"
-GroupScope "Global" -GroupType "Security"

Listing 5.24 Changing Active Directory group scope

TECHNIQUE 15

Set constantsB
Get group C

Create group typeD

E Set group typeSaveF

156 CHAPTER 5 User accounts
Apago PDF Enhancer

We need to consider two final tasks regarding groups to complete our work with Active
Directory. One question that will arise is “Which groups is this user a member of?” But
before we consider that, we need to be able to find all of the members of a group.

TECHNIQUE 16 Finding group members

Discovering the members of a group can be thought of as two separate problems. We
have a problem—the direct group membership—that can be resolved easily. This is
the list of members you’d see on the Members tab of the Properties dialog in Active
Directory Users and Computers.

 The second problem is more complex, in that we want to find all of the members,
including those users that are members of a group—members of the group in which
we’re interested. The group nesting may occur to any number of levels.
PROBLEM
We need to find all the members of a group.
SOLUTION
We solve this problem by creating a function that will list the group members, as
shown in listing 5.25. If a member is itself a group, we get the function to call itself
using the name of that group. This is known as recursion. The primary goal of this sec-
tion is to resolve the nested group membership. But before we review that script, we’ll
look at reading the direct membership of a group:

$group = [ADSI]"LDAP://cn=UKPMs,ou=All Groups,dc=manticore,dc=org"
$group.member | Sort-Object

After retrieving a directory entry object for the group, we can display the members
using $group.member. Piping this into a sort makes the output more readable.

function resolve-group{
param ($group)
 foreach ($member in $group.member){
 $obj = [ADSI]("LDAP://" + $member)
 $global:members += $obj.distinguishedname
 if ($obj.objectclass[1] -eq 'group'){resolve-group $obj}
 }
}

$global:members = @()
$ldp = "LDAP://cn=International,ou=All Groups,dc=manticore,dc=org"
$group = [ADSI]$ldp

resolve-group $group
$global:members | Sort-Object -Unique

Alternatively, we can use the Microsoft cmdlet:

Get-ADGroupMember -Identity EngSci | select Name, distinguishedname

The Quest alternative gives us:

Get-QADGroupMember -Identity "cn=USPres,ou=All Groups,dc=manticore,dc=org"

Listing 5.25 Get nested group membership

TECHNIQUE 16

Loop through
members

E
Add to
members
list

F

GCall function
Define arrayB

C Directory entry Call functionD

Display all membersH

157TECHNIQUE 17 Finding a user’s group membership
Apago PDF Enhancer

Discovering the nested group membership is more complicated than retrieving the
membership of a single group, as listing 5.25 shows. The script consists of two parts: a
function, resolve-group, that reads the group membership, and the main part of the
script that gets the group and displays the membership. We start the script by creating
an empty array (developers will refer to this as declaring an array) B. The point to note
here is the way the variable is defined: $global:members. The addition of global: to
the variable makes it a variable of global scope, meaning that we can access the same
variable in the main part of the script and in the function. This will be important.

 ADSI is used to get a directory entry C for the group. We then call the resolve-
group function D, passing in the group as a parameter. The $group within the func-
tion is in a different scope than the $group outside the function.

 A foreach loop is used to read the group membership E from the member prop-
erty. A directory entry is created for each member F and added to our globally avail-
able array. We test the group member, and if it’s a group G, we call the resolve-
group function using the member as a parameter.
DISCUSSION
Congratulations! You now understand recursion, as the function will keep calling
itself as many times as necessary. As the array we created to hold the membership is
global in scope, it can be accessed through the various levels of recursion.

 Once the function has finished processing the direct and nested membership, we
return to the main part of the script. The contents of the array are sorted and the
unique values H are displayed. Using the -Unique parameter prevents duplicate
entries from being displayed, and means that we don’t have to write code to deal with
them. This makes the script easier to write and understand.

 There’s a simpler way to get this information using the Microsoft cmdlet Get-
ADGroupMember. The -Recursive parameter displays nested group membership:

Get-ADGroupMember -Identity international -Recursive |
select Name, DistinguishedName

The Quest alternative is to use the –Indirect parameter:

Get-QADGroupMember -Identity 'manticore\international' -Indirect

Having mastered recursion in the previous example, we’ll use it again to determine all
of the groups of which a particular user is a member.

TECHNIQUE 17 Finding a user’s group membership

One last Active Directory script and then we’re done.
PROBLEM
We need to find all of the groups of which the user is a member.
SOLUTION
The memberof attribute holds the groups of which the user is a member. We can recur-
sively check those groups for other groups to determine the full list of groups where the
user is a member, as shown in listing 5.26. The processing starts by getting a directory

TECHNIQUE 17

158 CHAPTER 5 User accounts
Apago PDF Enhancer

entry for the user B. We use the memberof property to find the groups of which the user
is a direct member C. The group is passed into the function resolve-membership,
where the distinguished name is written D to screen.

 For each of the groups, we get a directory entry E and test to see if it’s a member
of any groups. If it is, we call the function with the name of each group. F Recursion
keeps this script compact. It is a topic that many find difficult but the examples in the
book should make it easier to use. Once you have worked through a few scripts of
your own you’ll be proficient.

function resolve-membership{
param ($group)
 Write-Host $group

 $group2 = [ADSI]("LDAP://" + $group)
 if ($group2.memberof -ne $null){
 foreach ($group3 in $group2.memberof){
 resolve-membership $group3 }
 }
}

$user = [ADSI]"LDAP://CN=WELLESLEY Arthur,OU=England,DC=Manticore,DC=org"

foreach ($group in $user.memberof){resolve-membership $group}

DISCUSSION
I haven’t produced a version using the cmdlets, as there isn’t a built-in way to produce
this information, and we just replace the [ADSI] lines E and B in listing 5.26 with
Get-ADGroup/Get-QADGroup and Get-ADUser/Get-QADUser respectively.

5.5 Summary
Automating Active Directory administration involves working with users and groups
or performing searches. We can perform these tasks by scripting based on ADSI or by
using the AD cmdlets from either Microsoft or Quest .

 Creation and modification scripts follow a pattern of getting a directory object,
making changes (or creating a child object), and saving back to the database. Search-
ing has its own pattern of defining the root of the search, defining the search filter,
performing the search, and displaying the results.

 There’s useful functionality in the System.DirectoryServices.Accountmanage-
ment classes, though a few holes also exist.

 After creating and modifying our user account, it’s time to turn our attention to
our email system. Email has become a business critical tool, and by combining our
mailbox and user account administration techniques, we can automate and stream-
line our processes.

Listing 5.26 Get user’s group membership

Write groupD
Group directory entryE

Call functionF

CCall function

User directory entry B

Mailboxes
Apago PDF Enhancer

Email is the number one business tool today, and one of the items guaranteed to get
users upset if it doesn’t work properly. We, as administrators, need to keep email
working. In a Microsoft environment, email means Exchange. In this chapter, we’ll
be looking at email from the user’s perspective—her mailbox—and how we can
automate its administration throughout the mailbox lifecycle of creation, modifica-
tion, and destruction. In chapter 12, we’ll look at administering Exchange servers.

EXCHANGE TERMINOLOGY It’s assumed that the reader is familiar with
Exchange terminology and administration.

This is a book about PowerShell, so I’ll be concentrating on Exchange Server 2007,
which is dependent on PowerShell for administration. It’s possible to administer
Exchange 2003 through PowerShell. A good example of this can be found in Jona-
than Medd’s power pack for PowerGUI, which can be downloaded from the
PowerGUI site (see appendix E). Exchange 2010 builds on the foundation of

This chapter covers
■ Managing mailboxes and mail enabled objects
■ Managing distribution lists
■ Managing mail protocols and quotas
■ Reporting on mailbox statistics
159

160 CHAPTER 6 Mailboxes
Apago PDF Enhancer

Exchange 2007, so all the concepts in this chapter can be ported directly to
Exchange 2010 when it comes into production.

 Exchange Server 2007 provides two management tools. There’s a GUI tool called
the Exchange Management Console and there’s PowerShell, known as the Exchange Man-
agement Shell. Exchange Server 2007 has been held up by the PowerShell community
as a poster child of PowerShell implementation. The PowerShell cmdlets were created
first, then the GUI was layered over the top of the cmdlets. In fact, there are some tasks
(approximately 20%) that can only be performed in PowerShell: there’s no function-
ality available in the GUI to perform these tasks.

 Any action performed in the GUI actually runs a PowerShell cmdlet in the back-
ground. There’s an option to display the PowerShell command that’s being executed;
this can be copied and used as the basis of a future script. An example is shown in fig-
ure 6.1. This is a great way to learn to use PowerShell.

EXCHANGE SERVER 2007 Exchange Server 2007 for production use is 64-bit
only, which can make life difficult for experimenting. There’s also a 32-bit eval-
uation version that can be used in desktop virtualization products. It’s time lim-
ited, but in my experience it still works after the time expiry. It does remind you
it has expired, though! Running an expired version in the demo of a talk always
seems to get a laugh for some reason.

Figure 6.1 Exchange Management Console showing script

161Automating mailbox management
Apago PDF Enhancer

When Exchange Server 2007 is installed, it requires PowerShell v1 to be available and
installed. The Exchange cmdlets (approximately 400 in number) are installed via a
snapin as we’d expect, but the snapin isn’t added directly to PowerShell. A console
file, as discussed in chapter 2, is used to create a separate Exchange Command Shell.
The snapins can be easily added to standard PowerShell if required by putting the fol-
lowing lines in your profile:

Add-PSSnapin Microsoft.Exchange.Management.PowerShell.Admin
Add-PSSnapin Microsoft.Exchange.Management.Powershell.Support

MANAGEMENT TOOLS If you want to install the Exchange Server 2007 manage-
ment tools on Windows Vista, you need to use the SP1 version of Exchange
Server 2007.

6.1 Automating mailbox management
Before we get around to using PowerShell, we need to spend a little time thinking
about how we’ll administer Exchange 2007. One of the changes that have been intro-
duced is that the Exchange attributes aren’t visible in ADUC. If you use ADSIEdit or the
Object tab in Windows 2008 ADUC, you can view and work with the attributes as
required, but that’s like using a sledgehammer to crack a nut.

 The nature of PowerShell lends itself to easy usage and increased productivity,
meaning that many tasks can be performed interactively. But one issue must be
addressed before we start solving our administration problems: who will perform the
administration? In many organizations, especially large ones, different teams are
responsible for administering Active Directory and Exchange. The same team may be
responsible for both in smaller organizations. During the lifecycle of a mailbox, there
are a number of times when work has to be performed in both Active Directory and
Exchange, particularly during the creation and deletion of mailboxes. Either the
same individuals perform both tasks or the process must encompass both teams to
ensure the work is completed.

 Exchange introduces a number of cmdlets that can be used to work with Active
Directory. These cmdlets aren’t fully featured as far as Active Directory is concerned.
They only supply the functionality required to complete the Exchange-related tasks.
Using the Quest AD cmdlets and the Exchange cmdlets together enables some tasks to
be performed that neither can perform alone. Exchange 2007 needs SP3 (available in
mid-2010) to run on Windows Server 2008 R2, so using the Exchange cmdlets and the
Microsoft AD cmdlets together requires a more restrictive environment. This also
applies to installing the administration tools on Windows 7. Exchange 2010 uses a web
service-type remoting configuration similar in concept to the Microsoft AD cmdlets.
Using the AD cmdlets and Exchange 2010 together is a simpler proposition that can
be installed immediately.

 Exchange has three classes of objects we need to be concerned with when consid-
ering the user aspects of email:

162 CHAPTER 6 Mailboxes
Apago PDF Enhancer

■ Mailbox-enabled
■ Mail-enabled
■ Contact

A mailbox-enabled user is an Active Directory user that has a mailbox hosted on the
Exchange server. A mail-enabled user has an account in Active Directory, but uses a
mailbox on an external server. Only the email address is stored in Active Directory. A
contact is an external person whose email address we want to be available to many peo-
ple via the address book. We’ll start our examination of administering the user aspects
of email by learning how to create mailboxes.

TECHNIQUE 18 Create a mailbox

Creating a mailbox for a user can occur at the time a user account is created, or a
mailbox can be created for an existing user (see section 6.3.1). The example shown
here uses the Exchange New-Mailbox cmdlet to create the user account and simulta-
neously creates the mailbox. If the two actions need to be separated, consider using
the scripts presented in chapter 5 to create the user account and use the command in
listing 6.3 to create the mailbox.
PROBLEM
We need to create a user account and mailbox for a new user in our organization.
SOLUTION
The New-Mailbox cmdlet provides the functionality to perform both tasks, assuming
that we’re using an account that has the required permissions for Active Directory and
Exchange. This script, like many in this chapter, was derived by running the Create
Mailbox Wizard and utilizing the subsequent script. It’s referred to as a script, but in
reality it’s a single line of PowerShell!

New-Mailbox -Name 'NELSON Horatio' -Alias 'hnelson'
-OrganizationalUnit 'Manticore.org/England'
-UserPrincipalName 'hnelson@Manticore.org'
-SamAccountName 'hnelson' -FirstName 'Horatio' -Initials ''
-LastName 'NELSON'
-Password 'Password1'
-ResetPasswordOnNextLogon $true
-Database 'EXCH01\First Storage Group\Mailbox Database'

If we’re creating the user account and the mailbox, we need to provide the required
information for Active Directory and Exchange. The -Alias parameter B supplies the
email alias that’ll be used by the user. Note that by default, it’s the same as the SamAc-
countName. The way the organizational unit name is presented C may be unfamiliar. It’s
in effect presented as a path—domain name\OU hierarchy. This should be compared to the
way distinguished names are used in the AD cmdlets to supply the same information.

 In this case, I’ve hard-coded the password into the script D. If you want to add an
additional layer of security to your scripts, consider using the technique that utilizes
Read-Host to obtain the password as a secure string that was presented in chapter 5.

Listing 6.1 Creating a user account and mailbox

TECHNIQUE 18

B
OU namingC

D
Force password
reset

E

F

163TECHNIQUE 18 Create a mailbox
Apago PDF Enhancer

EXCHANGE GUI SCRIPTS If the Create Mailbox Wizard is used and the resul-
tant script copied for subsequent use, the value entered for the password is
not copied into the script. Instead, the script reads as -Password 'System.
Security.SecureString'. In other words, the .NET object type is shown
rather than the value. This will occur in a number of places within Exchange
when copying a script from the wizard. Double-check any scripts created
using the wizard for this occurrence.

The -ResetPassswordOnNextLogon parameter E is set to $true to force the user to
change her password when she logs on for the first time. Our final piece of required
information is the Exchange database F where we’ll be creating the mailbox. This is
presented as server\storage group\database.

USER ACCOUNT ENABLED The user account is automatically created in the
enabled state.

DISCUSSION
By using the techniques utilized in listing 5.10, we can adapt our script to enable the
creation of users and mailboxes in bulk. The adapted version is shown in listing 6.2.

Import-Csv pres.csv | ForEach-Object {
$name = $_.last.ToUpper() + " " + $_.first
$upn = $_.userid + "@manticore.org"

New-Mailbox -Name $name -Alias $_.userid
-OrganizationalUnit 'Manticore.org/England'
-UserPrincipalName $upn
-SamAccountName $_.userid -FirstName $_.first -Initials ''
-LastName $_.last.ToUpper()
-Password 'Password1'
-ResetPasswordOnNextLogon $true
-Database 'EXCH01\First Storage Group\Mailbox Database' }

Comparing the previous two listings shows that the only real changes are putting the
original script inside a foreach-object loop and reading the required data from a CSV
file. Ideally the CSV file would be created by the HR department as part of the process
used when new people join the organization. This was also discussed in section 5.3.2.

 We start by reading the CSV file B and passing its contents onto the pipeline.
Remember that with PowerShell, the header row in a CSV file provides the field names
that we can use to refer to data on the pipeline.

 Within the foreach loop, we combine the first and last names to create the full
name C. The user principal name ($upn) is created at the same time. We then use the
variables we’ve created or the data on the pipeline (for example, $_.first for first
name) to supply the values for creating users and mailboxes in New-Mailbox D.

 Moving to this type of process, we create a CSV file with the first and last names of
the user and a user ID. This is then used to create the user account and mailbox. For
large numbers of users, this will be a significant time saving over performing these
actions manually.

Listing 6.2 Creating user accounts and mailboxes in bulk

Read CSVB
Create
variables

C

D
Create account
and mailbox

164 CHAPTER 6 Mailboxes
Apago PDF Enhancer

MULTIPLE ADMIN TEAMS If the organization has separated user creation and
mailbox creation into separate groups of administrators, the same CSV file
can be used by both. Use it with listing 5.10 to create the users. It can then be
used with a modified version of the following script to create the mailbox.

Creating new users and mailboxes may form the majority of our creation activity, but
we may have a requirement to create a mailbox for an existing user account or create
a mail contact.

6.2 Enabling mail
Creating mailboxes as we create the user accounts is one aspect, but we also need to
consider the situation where we have existing accounts and need to give access to
email. There are three variations:

■ Create a mailbox for an existing account.
■ Enable an existing account to receive email on an external email address.
■ Create a contact for a person external to the organization.

GLOBAL ADDRESS LIST All of these objects will be automatically included in
the Global Address List unless they’re specifically excluded.

We’ll start with creating a mailbox for an existing user. I’ve used this technique where
Active Directory accounts already exist and the organization is migrating to Exchange
from another email system. It’s the quickest and most efficient way to perform this
task, though I recommend that you do it one OU at a time. It’s always fun to challenge
a GUI user to a race!

TECHNIQUE 19 Mailboxes

In Exchange terms, a mailbox resides on an Exchange server within the organization.
The user associated with that mailbox has an account in Active Directory that he uses
to authenticate to the network. His Active Directory account is also used to facilitate
the authorization (or denial) of access to network resources.
PROBLEM
An existing user account in Active Directory needs to have a mailbox created.
SOLUTION
The Enable-Mailbox cmdlet can be used to create the mailbox, as shown in listing 6.3.
The cmdlet provides the functionality to create a mailbox for an existing user. We need
to provide the identity of the user together with the email alias and the mail database
in which we’ll create the mailbox. The format of the identity should be noted. In this
case, it has the form domain/OU/user. The mailbox database is specified as server\storage
group\database.

Enable-Mailbox -Identity 'Manticore.org/England/HORNBLOWER Horatio'
-Alias 'hhorblow' -Database 'EXCH01\First Storage Group\Mailbox Database'

Listing 6.3 Creating a mailbox for an existing user

TECHNIQUE 19

165TECHNIQUE 20 Mail-enabled
Apago PDF Enhancer

DISCUSSION
If there are many users who require a mailbox, the bulk approach to creating user
accounts and mailboxes shown previously can be utilized. We can also use:

Get-User -OrganizationalUnit "England" |
Enable-Mailbox `
-Database 'EXCH01\First Storage Group\Mailbox Database'

This is a purely Exchange solution to the problem. Get-User will also fetch the user
accounts in all child OUs of the given OU. We may want to spread our mailboxes over
a number of databases, as in listing 6.3a.

$maxdb = 4
Get-User -OrganizationalUnit "Austria" | foreach `
 -begin {$db = 1} `
 -process {
 switch ($db){
 1 {$maildb = "Exch01\SG1\MailDb1"}
 2 {$maildb = "Exch01\SG2\MailDb2"}
 3 {$maildb = "Exch01\SG3\MailDb3"}
 4 {$maildb = "Exch01\SG4\MailDb4"}
 }
 Enable-Mailbox -Identity $_.DistinguishedName -Database $maildb `
 -Alias $_.samaccountname -Displayname $_.Name ##-WhatIf
 if ($db -eq $maxdb){$db=1} else {$db++}
}

We start by creating a variable to hold the maximum number of databases. We can use
Get-User to fetch the user accounts from Active Directory. The accounts are piped
into foreach, where we use the $db variable to decide in which database we’ll create
the mailbox. Note that the -begin script block is used to set the initial value to 1.
Enable-Mailbox creates the mailbox in the appropriate database. We then increment
the database number (reset to 1 if required) to start the cycle for the next mailbox.
This gives us a rough distribution of new mailboxes. An alternative, though slower,
method would be to find the smallest database each time and use that as the target.

 There may be some cases where a user in Active Directory isn’t entitled to a mail-
box, but there’s also a requirement for this individual to be emailed from within the
organization.

TECHNIQUE 20 Mail-enabled

In Exchange terminology, a mail-enabled account is an Active Directory account that
uses an external email system rather than having a mailbox on the internal email sys-
tem. This scenario may fit a contractor or member of staff from a partner organization
who must be able to authenticate in Active Directory, but whose mail will be directed
to her external account.
PROBLEM
We need mail to be sent to a user with an external email address. The user must also
appear in the internal address lists.

Listing 6.3a Creating a mailbox for many existing users

TECHNIQUE 20

166 CHAPTER 6 Mailboxes
Apago PDF Enhancer

SOLUTION
We’ll mail-enable the user account. Creating a mail-enabled account is similar to creat-
ing a mailbox-enabled user, as shown in listing 6.4. We need to supply the identifying
information such as name, and the samaccountname. A password needs to created, and
the account enabled. If we compare this to the script to create a new mailbox discussed
earlier in the chapter, we can see that the only real difference is that we’re supplying an
external email address in place of specifying the database in which to create the mailbox.

New-MailUser -Name 'NIMITZ Chester' -Alias 'cnimitz'
-OrganizationalUnit 'Manticore.org/USA'
-UserPrincipalName 'cnimitz@Manticore.org'
-SamAccountName 'cnimitz' -FirstName 'Chester' -Initials ''
-LastName 'NIMITZ' -Password 'Password1'
-ResetPasswordOnNextLogon $true
-ExternalEmailAddress 'SMTP:cnimitz@navy.com'

DISCUSSION
In the case of an existing account, we can use Enable-MailUser instead, as in listing 6.5.

Enable-MailUser -Identity 'Manticore.org/USA/PATTON George'
-Alias 'gpatton' -ExternalEmailAddress 'SMTP:gpatton@army.com'

Our final type of mail object is a contact.

TECHNIQUE 21 Contact

A contact is an object that provides a link to an external email address. There will be
people external to your organization whom you need to email on a frequent basis.
That’s not just your mum! On an individual basis, it’s possible to create your own con-
tact list in Outlook. If a number of your users need to email these people, it’s more
efficient to create a single contact that everyone can use.
PROBLEM
We need to provide the email addresses of external people such as business partners,
customers, and suppliers in the address list so that they can be accessed by the whole
organization.
SOLUTION
We’ll create a contact for these people, as shown in listing 6.6. The information
required is similar to that for a normal user account. We supply the naming informa-
tion together with the OU in which we want to create the contact. The final piece of
information is the external email address associated with the contact.

New-MailContact -ExternalEmailAddress 'SMTP:jmarlbor@army.com'
-Name 'MARLBOROUGH John' -Alias 'jmarlbor'
-OrganizationalUnit 'Manticore.org/Contacts'
-FirstName 'John' -Initials '' -LastName 'MARLBOROUGH'

Listing 6.4 Creating mail-enabled account

Listing 6.5 Mail-enabling an existing account

Listing 6.6 Creating a contact

TECHNIQUE 21

167TECHNIQUE 22 Mailbox size limits
Apago PDF Enhancer

DISCUSSION
Last Christmas, I was asked if I could set up email contacts for several hundred cus-
tomers so that we could email a Christmas greeting. After specifying the information I
required in terms of names and email addresses, I piped the contents of a CSV file into
the New-MailContact cmdlet. I used the techniques shown earlier for bulk creation. A
job that would’ve taken literally hours, assuming terminal boredom didn’t set in, was
completed in minutes.

 We’ve seen how to create our mailbox and mail-enable users. The next stage in the
lifecycle is starting to modify these mailboxes.

6.3 Modifying mailboxes
There are a number of settings that administrators can modify on mailboxes. These
include control of the mailbox size, which protocols can be used to access the mail-
box, moving mailboxes between databases, and disabling mail.

 These actions can be performed in the GUI, but in many cases it’s more efficient to
use PowerShell. Some of these actions will be used more frequently than others. I sus-
pect the settings that are most often used are those to do with the mailbox size limits.

TECHNIQUE 22 Mailbox size limits

Mailbox size limits can be set in a number of places, including the server, the data-
base, and the individual mailbox. Exchange defines three limits; in ascending order,
these are:

■ Issue Warning Quota
■ Prohibit Send Quota
■ Prohibit Send and Receive Quota

The limits apply to when the user is warned that the mailbox is filling up, when no
more messages can be sent, and finally when no more messages can be sent or
received. At this point, you have to start cleaning out the mailbox—unless you can
convince your friendly Exchange administrator to increase the size of the mailbox.
Strangely, I can’t remember ever seeing a request to have a mailbox reduced in size!

NOT FOR USERS’ EYES! Don’t let users read this section. If they discover how
easy this is, they’ll all want a bigger mailbox.

The *-Mailbox cmdlets will come to our aid here. Remember that get and set are the
verbs that correspond to reading and writing information in PowerShell.
PROBLEM
A user is continually filling his mailbox. It’s been decided that because of the nature
of his role that his mailbox will be configured with larger quota limits.
SOLUTION
Changing the quota limits on a mailbox is accomplished with the Set-Mailbox cmd-
let, as shown in listing 6.7. The task requires little typing, if tab completion is used, so
it’s ideal as an interactive task. The first step is to check the current limits B. Get-
Mailbox will return a large set of information about the mailbox, including the quota

TECHNIQUE 22

168 CHAPTER 6 Mailboxes
Apago PDF Enhancer

limits. We want to reduce the output, so we use a select to restrict our output to the
name and the quotas.

WILDCARDS The use of a wildcard in the property names makes this even eas-
ier. It’s seemingly the little things like this that show how much thought has
gone into PowerShell.

The quota properties show a setting of unlimited, which means that the server or
database default has been applied to the mailbox. In order to change the setting on
the mailbox, we need to use the Set-Mailbox cmdlet C. We identify the mailbox
using the samaccountname in this instance.

Get-Mailbox -Identity 'hwilson' | Select Name, *quota

Name : WILSON Harold
ProhibitSendQuota : unlimited
ProhibitSendReceiveQuota : unlimited
IssueWarningQuota : unlimited

Set-Mailbox -Identity 'hwilson' -IssueWarningQuota 100mb
-ProhibitSendQuota 150mb -ProhibitSendReceiveQuota 200mb

Get-Mailbox -Identity 'hwilson' | Select Name, *quota

Name : WILSON Harold
ProhibitSendQuota : 150MB
ProhibitSendReceiveQuota : 200MB
IssueWarningQuota : 100MB

DISCUSSION
The quota settings need to be set individually. This is where tab completion becomes
so useful. Type the hyphen and the first part of parameter name, or even the first let-
ter, and keep pressing Tab until the desired parameter is shown. The second point to
note is that we can give the quota limits in megabytes, or even gigabytes, as shown.
When we’re working in the GUI, we have to work in kilobytes, which isn’t nearly as
convenient. A final check of the mailbox settings D shows that the new quota limits
have been applied.

 If users are accessing their mailboxes using Outlook, there’s no need to configure
other protocols. But there may be users who need to use other protocols such as IMAP,
POP, or OWA (Outlook Web Access). These settings are handled slightly differently.

TECHNIQUE 23 Enabling IMAP

There are three protocols that can be used to access mailboxes, apart from using Out-
look: POP, IMAP, and OWA. Exchange Server 2007 has a concept of server roles. In this
concept, there’s a separation between the server managing the mailboxes, the mailbox
server, and the server managing access through these additional protocols, the client
access server.

Listing 6.7 Changing mailbox quota limits Determine current
quotas

B

Set quotaC

D
Check quota
setting

TECHNIQUE 23

169TECHNIQUE 24 Enabling POP
Apago PDF Enhancer

SERVICES The appropriate service needs to be running on the client access
server for these additional protocols to work.

We need to use a different cmdlet to work with these settings—the Get- and Set-CAS-
Mailbox cmdlets, where CAS stands for client access server.
PROBLEM
One of our users can only access her mailbox by using IMAP. Your task, should you
choose to accept it, is to enable IMAP on the mailbox.
SOLUTION
If these settings are enabled via the GUI, it’s simply a case of checking a box. When
using PowerShell, we use a Boolean value to represent whether the protocol is
enabled. The property value is set to true or false to indicate enabled or disabled, as
shown in listing 6.8.

Get-CASMailbox -Identity 'hwilson' |
Select Name, OWAEnabled, PopEnabled, ImapEnabled, MapiEnabled |
Format-List

Name : WILSON Harold
OWAEnabled : False
PopEnabled : False
ImapEnabled : False
MAPIEnabled : True

Set-CASMailbox -Identity 'hwilson' -ImapEnabled $true

DISCUSSION
It’s always wise to determine the current settings before we start making changes. We
may even find that the settings have already been enabled. In this case, we use Get-
CASMailbox B and supply the relevant identity. A Select is used to reduce the num-
ber of properties we’ll be examining. Note that the properties are all the names of the
protocol concatenated with the word enabled. These properties take a Boolean, true or
false, value. This particular user can only use MAPI to access the mailbox.

NOTE This isn’t the default state. I deliberately configured the user this way
before starting the example.

We can use the Set-CASMailbox cmdlet to enable the protocol C. Note that apart
from the identity, we only have to give the -IMAPEnabled parameter the value $true.
$true is one of the PowerShell automatic variables.

 POP is enabled in a similar manner.

TECHNIQUE 24 Enabling POP

As discussed in the previous example, POP can be enabled or disabled by setting the
value of the appropriate property to true or false respectively.
PROBLEM
We have to be able to modify the POP settings on the mailbox.

Listing 6.8 Enable IMAP on a mailbox

B
Determine current
settings

Enable IMAPC

TECHNIQUE 24

170 CHAPTER 6 Mailboxes
Apago PDF Enhancer

SOLUTION
The *CASMailbox cmdlets can also work for us in this scenario. If we want to enable
the protocol B, we use Set-CASMailbox and set the -PopEnabled parameter to
$true—we turn it on. Conversely, we can turn the protocol off C by setting the
parameter to false. See listing 6.9.

Set-CASMailbox -Identity 'hwilson' -PopEnabled $true

Set-CASMailbox -Identity 'hwilson' -PopEnabled $false

DISCUSSION
Modifying the protocols that users can use is one way that we can allow access to mail-
boxes but we need to accommodate other types of user as well. Mobile users, who are
rarely in the office, need to access their mailboxes across the Internet. One method of
achieving this is to use OWA.

TECHNIQUE 25 Enabling OWA

There are a number of configuration steps to enable OWA access across the enter-
prise. The server configuration is beyond the scope of this book, but we can look at
configuring the mailboxes to enable this method of access.
PROBLEM
How can we determine which users don’t have OWA enabled? Once we’ve determined
this, we also need to be able to enable OWA for those users in the most efficient
manner.
SOLUTION
We first find out who doesn’t have OWA access and then we enable those users. We can
discover which users don’t have OWA enabled by first performing a Get-CASMailbox
on the user population. A filter can be applied by using Where-Object (where) to
check the OWAEnabled property on each object (user) coming down the pipeline B.
$_.OWAEnabled refers to the OWAEnabled property on the current object on the pipe-
line. The ! means not—we’re checking for users where the property isn’t enabled, as
shown in listing 6.10.

Get-CASMailbox | Where{!$_.OWAEnabled}

Get-CASMailbox | Where{!$_.OWAEnabled} | Set-CASMailbox -OWAEnabled $true

The next step is to enable OWA access C. We can use our previous line of code, and
rather than displaying the results, we can pipe them into the Set-CASMailbox cmdlet
and give the -OWAEnabled parameter a value of true. Straightforward but very powerful.
DISCUSSION
I’ve been asked to perform this task in the past against a 12,000-seat Active Directory. I
didn’t really like the idea of checking each account manually, so I wrote a script. In

Listing 6.9 Modifying the -PopEnabled settings

Listing 6.10 Enabling OWA

Enable POP protocolB
Disable POP protocolC

TECHNIQUE 25

B

C

171TECHNIQUE 26 Adding an email address
Apago PDF Enhancer

those days, I was limited to using VBScript. It took 86 lines of code. PowerShell does it
in one!

TECHNIQUE 26 Adding an email address

When we create a mailbox, an email address is created according to the policies that
are in force within the Exchange organization. There are situations where the user
requires another email address, for instance due to a name change, but needs to keep
the old name as well. These email addresses work for incoming mail. Outgoing mail
will be labeled as coming from the primary SMTP address.
PROBLEM
A user asks if it’s possible to add another email address to her mailbox for incoming
mail.
SOLUTION
We know that Set-Mailbox can be used to make changes to the mailbox settings.
After looking at the help file (remember our four friends from chapter 2: Get-Help,
Get-Command, Get-Member, and Get-PSDrive), we discover an EmailAddresses param-
eter we can use. Before we start adding email addresses, it might be a good idea to
view the currently defined addresses B (in listing 6.11). Get-Mailbox retrieves the
information and we use a select to restrict the display to the data points of interest in
this situation.

TIP When I’m working with mailboxes like this, I’ll often use Get-Mailbox to
establish that I’m using the correct mailbox. Use the up arrow key to display
the previous command and change Get to Set. This saves some typing and
helps avoid mistakes.

Set is the verb we need when making changes C. Note that I haven’t explicitly used
the -Identity parameter in listing 6.11. If you look at the help file, you’ll see that this
is a positional parameter. PowerShell will assume that the first values you input will be
assigned to the -Identity parameter.

Get-Mailbox "WELLESLEY Arthur" | Select Name, EmailAddresses

Set-Mailbox "WELLESLEY Arthur" –EmailAddresses `
 ((Get-Mailbox "WELLESLEY Arthur").EmailAddresses +
"ironduke@manticore.org")

The -EmailAddresses parameter is used to set the new address. We need to be careful
to ensure that we add an email address rather than overwriting the existing addresses.
We create a list of current addresses by using the Get-Mailbox cmdlet, and then we
add the new address to the list. Note the use of parentheses to wrap the new list of
addresses and to work with the object returned from Get-Mailbox.
DISCUSSION
One of the useful things about Exchange from the user’s perspective is the address
list. It makes it easy to find the email addresses of people within the organization to

Listing 6.11 Add an email address to a mailbox

TECHNIQUE 26

Check
current
addresses

B

Add addressC

172 CHAPTER 6 Mailboxes
Apago PDF Enhancer

whom you want to send an email. These address lists are maintained automatically by
Exchange. But occasionally there may be a reason for a particular user not to be
included in the address list.

TECHNIQUE 27 Hiding an address from the address list

The default for Exchange is that all users are shown in the address list. Occasionally
we may need to hide a user from the address list.
PROBLEM
There are a number of possible scenarios regarding being visible to the address list. A
user may need to be hidden from the address list. We may need to determine which
users are hidden from the address list. Finally, we may need to make all hidden users
visible again.
SOLUTION
We can perform this action by using the Set-Mailbox cmdlet, as in listing 6.12. Hiding
the user from the address book is another tick box in the GUI. In PowerShell, it’s another
Boolean value. We use Set-Mailbox B and the -HiddenFromAddressListsEnabled
parameter is given a value of true.

Set-Mailbox -Identity 'hwilson' -HiddenFromAddressListsEnabled $true

Get-Mailbox | Where {$_.HiddenFromAddressListsEnabled}

Get-Mailbox | Where {$_.HiddenFromAddressListsEnabled} |
Set-Mailbox -HiddenFromAddressListsEnabled $false

DISCUSSION
Finding users who are hidden from the address lists C is a matter of piping the out-
put of Get-Mailbox into the Where-Object cmdlet and filtering on the Hiddenfrom-
AddressListsEnabled (remember that we use $_to refer to the current object on the
pipeline) property as shown.

 The two commands can be combined D to find all users hidden from the address
list and reveal them by setting -HiddenfromAddressListsEnabled to false. In other
words, it’s not hidden. You can hide, but we’ll find you!

TECHNIQUE 28 Moving a mailbox

A mailbox is created in a particular database on a particular server. At some time dur-
ing a mailbox’s lifecycle, we may need to move it to another database or even to
another server. This could be for a number of reasons including:

■ Balancing the database or server load.
■ The current server is being decommissioned.
■ There’s a problem with the database.

It’s possible to move mailboxes from servers running earlier versions of Exchange into
an Exchange Server 2007 database.

Listing 6.12 Hide a mailbox from the address list

TECHNIQUE 27

B

C

D

TECHNIQUE 28

173TECHNIQUE 29 Disabling mail
Apago PDF Enhancer

PROBLEM
The workload on the mail databases has become uneven and we need to move the
mailbox to another database.
SOLUTION
PowerShell uses verb-noun syntax for cmdlets. We’re working with mailboxes, which
gives us the noun, and we want to perform a move. Move-Mailbox is the answer, as
shown in listing 6.13. As a reference point, we want to check the current database
hosting the mailbox B. We only need to view the name and the database, so a
select is used to restrict the returned data. The Get-Mailbox portion of the previ-
ous line can be used to return the mailbox. This can then be piped into the Move-
Mailbox cmdlet C. We only need to define a couple of parameters. The first is the
BadItemLimit. This defines how many bad items we’re allowed to skip before cancel-
ing the move. In this case, we’re not allowing any. The second parameter is the new
database given as server\storage group\database.

Get-Mailbox "PERCEVAL Spencer" | Select Name, Database

Get-Mailbox "PERCEVAL Spencer" | Move-Mailbox -BadItemLimit '0'
-TargetDatabase 'EXCH01\Second Storage group\MaiboxDatabase 2'

Get-Mailbox "PERCEVAL Spencer" | Select Name, Database

When the cmdlet is started, you’ll be asked to confirm the action, as shown in figure 6.2.
This confirmation action is automatic and shouldn’t be overridden.
DISCUSSION
Additionally, a progress bar is displayed at the top of the PowerShell window. This is
particularly useful when moving multiple or very large mailboxes. Our final action is
to perform another Get-Mailbox D to check that the move succeeded.

The final parts of this section deal with disconnecting and reconnecting mailboxes.

TECHNIQUE 29 Disabling mail

Disabling a mailbox or any of the other mail-related user objects does more than stop
access to the mailbox. It removes the Exchange information from the user object and

Listing 6.13 Move a mailbox to another database

B

C

D

Figure 6.2 Move-Mailbox confirmation and progress bar.

TECHNIQUE 29

174 CHAPTER 6 Mailboxes
Apago PDF Enhancer

puts the mailbox into disconnected mode. This is equivalent to the tombstone state in
Active Directory, and eventually the mailbox will be permanently deleted from the sys-
tem. The default time period before it’s deleted is 30 days.

 Rather than disabling the mailbox in this way, it’s possible to use the script from
chapter 5 to deny the user the ability to log in on a 24x7 basis—he can’t logon at all.
This is discussed in a post by Jonathan Noble at http://jonoble.spaces.live.com/blog/
cns!CC73D8744F0894A5!643.entry.

WARNING-NO SCRIPT When you disable a mailbox in the Exchange Manage-
ment Console, you don’t see the script! This is one of the few places where
the GUI fails to show the correct PowerShell command.

When you disable a mailbox via the GUI or the command line, it happens immediately.
PROBLEM
You need to disable a mailbox for a user because he no longer needs to use email.
SOLUTION
Once we know which user to disable, a single line of PowerShell will accomplish the
task, as in listing 6.14. This could be run in the time it would take to open the
GUI! The act of disabling the mailbox is simple B. Put the appropriate identity into
Disable-Mailbox and it happens.

Disable-Mailbox -Identity "FITZROY Angus"

Get-MailboxStatistics | Where {$_.DisconnectDate}

DISCUSSION
It’s possible that an error could be made and the wrong user could have her mailbox
disabled. We need to be able to see the mailboxes that are disabled. The Exchange
terminology refers to them as being disconnected, and they’re available in the GUI
under that heading.

 If you want to do this from the command line, it needs a little thought C. Use
Get-MailboxStatistics (which we’ll see more of later) and use a where cmdlet to
check on the DisconnectDate attribute of each mailbox. This attribute holds the date
the mailbox was disconnected. It’s only set on mailboxes that have been disconnected.
On normal mailboxes, the attribute is empty (null). We’re performing an implicit
comparison, and only those mailboxes which have the attribute set will return true
and therefore be passed.

WARNING If you’re doing a number of these actions, consider using the
-whatif and/or the -confirm parameters as a safety net before making the
final deletion.

Similar cmdlets, Disable Mail-User and Disable-MailContact, can be used to
remove the email functionality from mail-enabled users and contacts, respectively.
Having learned how to disable a mailbox and discover the disconnected mailboxes in
our system, it would be appropriate to learn how to reconnect them.

Listing 6.14 Disable a mailbox Disable
mailbox

B
Show disabled
mailboxes

C

http://jonoble.spaces.live.com/blog/cns!CC73D8744F0894A5!643.entry
http://jonoble.spaces.live.com/blog/cns!CC73D8744F0894A5!643.entry

175TECHNIQUE 30 Reconnecting a mailbox
Apago PDF Enhancer

TECHNIQUE 30 Reconnecting a mailbox
We may need to reconnect a mailbox to a user account for a number of reasons,
including:

■ Giving an existing mailbox to a new employee where the emails of the previous
role holder need to be available to the new employee.

■ The mailbox has been imported from a .PST file during a migration activity.
■ Recovery from an error.

Whatever the reason, we need to identify the mailbox and the user account, and con-
nect the mailbox to the user account. This sets the permissions on the mailbox and
populates the appropriate Active Directory attributes.
PROBLEM
We need to reconnect a user to his mailbox.
SOLUTION
This is another case where we need to match the identities of the mailbox and the
user account to ensure the correct user gets access to the mailbox. We’re led to the
Connect-Mailbox cmdlet by applying our knowledge of the PowerShell naming con-
ventions. We’re working with a mailbox (noun) and we want to connect it to a user
(verb). The information supplied to the cmdlet consists of the identity of the mailbox.
In this case, we’re using the name that you’d see in the Exchange Management Con-
sole. We also need to supply the database information. The format is server\storage
group\database. Note that the fully qualified domain name has been used for the server
in listing 6.15.

Connect-Mailbox -Identity "FITZROY Angus"
-Database 'Exch01.Manticore.org\First Storage Group\Mailbox Database'
-User 'Manticore\afitz' -Alias 'afitz'

After identifying the mailbox, we need to identify the user to whom we’re going to
connect it. The user is identified as domain\samaccountname. The samaccountname is
also used for the email alias.

 If we perform this action in the Exchange Management Console, the script that’s
produced looks like this:

Connect-Mailbox -Identity '2026f71f-f55f-4385-b40d-bdf7bf01077f'
-Database 'Exch01.Manticore.org\First Storage Group\Mailbox Database'
-User 'Manticore\afitz' -Alias 'afitz'

Note that we use a GUID to identify the mailbox rather than the name we used earlier.
When working interactively at a PowerShell prompt or when performing this action in
a script, I’d recommend using the name to identify the mailbox if at all possible.
GUIDs are more difficult to type (and get right) compared to a name.
DISCUSSION
That concludes our look at modifying mailboxes. Though we haven’t looked at every
possibility, the concepts you’ve learned in this section can be applied across a whole

Listing 6.15 Connect a mailbox to a user account

TECHNIQUE 30

176 CHAPTER 6 Mailboxes
Apago PDF Enhancer

range of scenarios when working with mailboxes. One useful idea is to check the help
file for the cmdlets we’ve been using. Learning the parameters that are available and
looking at examples will give you lots of ideas for how they can be used to automate
more processes. The other major administration area we need to consider is distribu-
tion groups. These are useful in saving everyone a lot of typing when they want to
send an email to multiple people.

6.4 Distribution groups
Distribution groups (or distribution lists) are a good way to organize your recipients. Put
a set of linked users into a distribution group, and you can send an email to the
group rather than emailing each individual member separately. This saves a lot of
time and effort from the user’s viewpoint, as well as ensuring that it’s possible to
send a notification to all interested people. The group will appear in the Exchange
address lists.

 You may want to create a distribution group for various groups of users, including:

■ All members of a department or team
■ All members of a project
■ All users with a particular role
■ All users in a particular location

If you’ve created groups in Active Directory, you’ll have noticed that they are split into
security groups and distribution lists. The difference is that a security group can be
used to grant permissions to access files and other resources, whereas a distribution
group doesn’t support this option.

 As a slight complication (IT complicated? Never!), it’s possible to mail-enable a
security group, but it has to be an Active Directory universal group (one that’s avail-
able across domains in the AD forest). At this point, keeping track of distribution
group membership can be difficult if you start nesting groups within groups.

UNIVERSAL ONLY Exchange Server 2007 distribution groups can only be Uni-
versal groups. This means that the forest and domain functional levels must
be at least Windows 2000-native. Universal groups are used so that members
from across the forest can be located in the same group.

In chapter 5 when we were creating groups, we had to define a group type for security
groups (see listing 5.22). If we use a similar script to create a distribution group, we
just leave the group type at the default setting.

 Exchange Server 2007 introduces a number of cmdlets for working with distribu-
tion groups. If we just want to know the distribution groups that are available in our
Exchange organization, we can use:

Get-DistributionGroup

This will display the distribution lists currently defined within Active Directory. If
you’re not sure about the cmdlets that are available to work with distribution groups,

177TECHNIQUE 31 Creating a distribution group
Apago PDF Enhancer

or any other aspect of Exchange or PowerShell itself, remember that we can fall back
on Get-Command. In this case, we could use:

Get-Command *distributiongroup

This would display a list of the appropriate cmdlets. If you’re not quite sure of the
name, try altering the search criteria, for example:

Get-Command *distribution*

Now that we know how to find the distribution groups, we need to go back to the
beginning and discover how to create the things in the first place.

TECHNIQUE 31 Creating a distribution group

Creating a distribution group can be performed in one of two ways. Either create the
group and mail-enable it simultaneously, or create a group and then mail-enable it.
The first option would be used when the same people administer Active Directory and
Exchange. If there’s significant separation between the Active Directory and
Exchange administrators, then use the second option.
PROBLEM
We need to create a distribution group. In this instance, we can administer Active
Directory and Exchange so we’ll create the distribution group directly.
SOLUTION
Exchange Server 2007 provides a number of DistributionGroup cmdlets. If we want
to create a distribution group, we can use the New-DistributionGroup cmdlet.
If you compare the script in listing 6.16 to the earlier scripts we used to create
a mailbox-enabled user, you’ll notice a number of similarities. We supply a number
of pieces of information, including the name of the group, the fact that it’s a
distribution group, where we want the group to be placed in Active Directory, the
email alias, and the samaccountname. The last parameter is essential; otherwise a ran-
dom name will be assigned by Active Directory. In order to keep administration
simple, it’s always best to explicitly define the samaccountname for groups-security
or distribution.

New-DistributionGroup -Name 'Navy' -Type 'Distribution'
-OrganizationalUnit 'Manticore.org/England' -SamAccountName 'Navy'
-Alias 'Navy'

DISCUSSION
If we need to create a number of distribution groups, consider adapting the script we
used in chapter 5 when performing a bulk creation of Active Directory. The only
changes we make are to wrap a foreach-object script block around the previous
script and substitute $_.attributename for the data used with the parameters. An
Import-Csv cmdlet is used to read the data and put it on to the pipeline, as shown in
listing 6.17.

Listing 6.16 Creating a distribution group

TECHNIQUE 31

178 CHAPTER 6 Mailboxes
Apago PDF Enhancer

Import-Csv groups.csv | ForEach {
 New-DistributionGroup -Name $_.name -Type 'Distribution'
 -OrganizationalUnit $_.ou -SamAccountName $_.name
 -Alias $_.name
}

This is a good example of the type of script development that’s often performed by
administrators. We start with a script that’s produced by the GUI, in this case
Exchange Management Console. The script is used to create distribution groups one
at a time by changing the data passed to the parameters. A further change gives us a
script that we can use to perform bulk creation of groups. All we’re changing is the
data, rather than the script itself.

 There’s no set schedule on this type of development. It’s often driven by necessity.
“Oh, I need to create a number of groups. I know! I’ll make that change to the cre-
ation script so I can read a CSV file.” That’s why it’s referred to as ad hoc development,
as we discussed in chapter 4.

 These scripts cover the situation where we control everything. What do we do if the
Active Directory people won’t let us create groups?

TECHNIQUE 32 Mail-enabling a group

In larger organizations, there may well be a division between the Active Directory
administrators and those working with Exchange. In this case, we have to be able to
mail-enable an existing group.

PERMISSION DELEGATION One possible way around this situation is to ask for
permissions to be delegated for you to create and manage groups in a specific
OU. This way, the Exchange administrators can create the distribution groups
and manage their membership rather than needing to call on the Active
Directory administrators for the creation aspects. I’ve worked in this way on a
large Exchange rollout, and it was very effective.

PROBLEM
Our colleagues in the Active Directory team have created a group and asked us to
mail-enable the group.
SOLUTION
PowerShell is consistent in its use of verbs. We used Enable-MailUser when we wanted
to add a mailbox to an existing user account. We still want the verb Enable, but this
time we add it to the noun DistributionGroup. The Enable-DistributionGroup
cmdlet can be used to solve this problem. This is a straightforward operation, as all we
have to do is supply the identity of the group and the email alias we want to use, as
shown in listing 6.18. All of the other information we had to provide when we were
creating a new group in the previous section already exists.

Enable-DistributionGroup -Identity 'Manticore.org/USA/Army' -Alias 'Army'

Listing 6.17 Bulk creation of distribution groups

Listing 6.18 Mail-enabling a group

TECHNIQUE 32

179TECHNIQUE 33 Dynamic distribution group
Apago PDF Enhancer

DISCUSSION
In PowerShell, the opposite of Enable is Disable, assuming the cmdlet writers follow
the guidelines on the standard PowerShell verbs. So if we needed to remove the mail
capability from the group for any reason, we’d use:

Disable-DistributionGroup -Identity 'Manticore.org/USA/Army'

The distribution groups we’ve been working with so far have been static groups. The
group membership is defined, and only changes when an administrator performs an
action on the group using PowerShell or the Exchange Management Console (which
actually uses PowerShell in the background). There’s another type of group whose
membership is dynamic and is determined as required.

TECHNIQUE 33 Dynamic distribution group

Dynamic distribution groups may also be referred to as query-based distribution groups. The
idea behind these groups is that the membership isn’t statically defined as with most
groups, but that it’s dynamically determined, as required. The membership at a point
in time is determined by an LDAP query performed against Active Directory. The
results of the query define the group membership at that time.

 As far as the user is concerned, the group functions the same as any other group, in
that it appears in the address list and is accessed in the same way as any other group.

PERFORMANCE WARNING At some stage in the proceedings, the LDAP query to
determine group membership has to be performed. If the query is complicated
or there are a large number of users or other objects in the Active Directory, the
query could take a significant length of time to complete. This could delay the
transmission of the email as well as put extra overhead on the Global Catalog
server that’s used to resolve the query.

If you’re creating the dynamic dis-
tribution group in the Exchange
Management Console, there’s a
restricted choice in terms of how
the query can be defined, as shown
in figure 6.3.
PROBLEM
We need to create a distribution
group that can have a rapidly chang-
ing membership list.
SOLUTION
We could create a normal distribu-
tion group and accept the extra
administrative overhead to update
the group on a frequent basis.
But we’ve embraced the spirit of

TECHNIQUE 33

Figure 6.3 Creating a dynamic distribution group

180 CHAPTER 6 Mailboxes
Apago PDF Enhancer

automation and have determined that a dynamic distribution group would meet our
needs. In this case, the dynamic distribution group has been created in the Exchange
Management console and we’ve copied the script, which is shown in listing 6.19. All
good administrators copy scripts whenever they can.

New-DynamicDistributionGroup -Name 'Prime Ministers'
-IncludedRecipients 'MailboxUsers' -ConditionalDepartment 'Downing Street'
-OrganizationalUnit 'Manticore.org/England' -Alias 'PrimeMinisters'
-RecipientContainer 'Manticore.org/England'

DISCUSSION
We can use the New-DynamicDistributionGroup cmdlet to create the group. Any
related cmdlets with the same noun can be viewed by using:

Get-Command *dynamicdistributiongroup

We need to supply a name, parent OU, and email alias for the group as we did for the
static distribution group. One of the options is the type of recipients (-Included-
Recipients) included in the group. In this case, we’re only including mailbox users.
We could include mail-enabled users or even contacts. The OU in which to find these
mailbox-enabled users is defined using –RecipientContainer. The query that will
generate the group membership is defined by –ConditionalDepartment. In other
words, in this case we’re looking for mailbox-enabled users in a particular OU who are
members of a particular department. This translates to the following LDAP query:

(&(department=Downing Street)(objectClass=user)
(objectCategory=person)(mailNickname=*)
(msExchHomeServerName=*)
(!(name=SystemMailbox*))(!(name=CAS_*)))

This looks for the following criteria:

■ A user whose department is set to Downing Street.
■ The user is a person (rather than a computer, which is also based on the user

class).
■ The user has a mail nickname (alias).
■ The user can be on any mailbox server.
■ The username doesn’t contain the string SystemMailBox.
■ The username doesn’t start with CAS_.

It’s easier to use the cmdlet parameters or even the wizard to generate the query,
rather than trying to code an LDAP query like this.

WARNING A script copied from the internet should always be viewed as sus-
pect until it’s tested, especially if it’s heavily aliased, which can make it diffi-
cult to read. I’d like to claim my scripts should be an exception, but they
should be tested as well, as there may be something in your environment that
doesn’t work with the scripts.

Listing 6.19 Creating a dynamic distribution group

181TECHNIQUE 34 View distribution group membership
Apago PDF Enhancer

One question we may get asked is who’s included in this distribution group. This
could be significant for distribution lists that handle confidential information.

TECHNIQUE 34 View distribution group membership

Distribution groups are Active Directory groups, so we can use Active Directory Users
and Computers to view the membership. We can also use the Exchange Management
Console, but it’s quicker to use PowerShell.
PROBLEM
We need to review the membership of a distribution group to determine if it still
meets our needs. The other variation on this question is if I send this email to this
group, who’ll actually get the email (and possibly confidential attachment)?
SOLUTION
We could use the GUI-based tools to perform this task, but using PowerShell will be more
efficient (and more fun). When retrieving information, we always use the verb Get, and
as we want to view distribution group membership, we use the cmdlet in listing 6.20.

Get-DistributionGroupMember -Identity 'Manticore\Navy'

DISCUSSION
When dealing with a static distribution group, we can find the membership list by
using Get-DistributionGroupMember as shown. The only information required is the
identity of the distribution group. In this case it is identified in domain\name format.

 In the case of a dynamic distribution group, we can’t see the members directly
because they aren’t stored anywhere. The membership list is derived when a message
is sent. We need to be a bit creative in how we solve this variant of the problem, as list-
ing 6.21 demonstrates.

$filter = (Get-DynamicDistributionGroup `
-Identity 'Prime Ministers').ldaprecipientfilter

Get-QADuser –ldapfilter $filter

We can find the group membership by combing functionality from Exchange and the
Quest AD cmdlets. This extensibility is one of the real strengths of PowerShell. By cre-
ating a PowerShell instance that has the AD cmdlets snapin and the Exchange snapin
loaded, we can access the power of both. If you’re not allowed to add software to your
environment, you can always use the filter in an Active Directory search using the
searching scripts in chapter 5 as a starting point.

REMEMBER We use the Add-Snapin cmdlet in our profile to load the snapins
automatically when PowerShell starts.

The first thing we have to do is retrieve the LDAP filter B. A variable $filter is created
and its value is set equal to the LDAP filter. If we use a Get-DynamicDistributionGroup

Listing 6.20 View members of a distribution group

Listing 6.21 View members of a dynamic distribution group

TECHNIQUE 34

Get filterB
Get users matching filter

182 CHAPTER 6 Mailboxes
Apago PDF Enhancer

cmdlet and enclose it in parentheses, as shown, PowerShell will treat it as an object, in
which case we can access the ldaprecipientfilter property in the same way that we’d
access a property on any other object.

 The filter is then used in Get-QADUser to fetch the list of users that currently match
that filter. Depending on the rate of change of group membership, we may well get dif-
ferent answers when we run this script at different times. The Exchange Get-User cmd-
let has a -Filter parameter, but it doesn’t accept an LDAP filter. We’d need to rewrite
the filter, which may not be possible given the syntax required for the parameter.

 The next step on the road for administering distribution lists is to modify their
membership.

TECHNIQUE 35 Modify distribution group membership

We can only modify the membership of static distribution groups directly. The mem-
bership of dynamic distribution groups is only determined by the LDAP filter when the
group is used. If the membership of the dynamic group doesn’t meet our needs, we’ll
need to modify the LDAP filter.
PROBLEM
We’ve been asked to add another member to a distribution group.
SOLUTION
In PowerShell, the verb Add is used when we want to add more information into a con-
tainer. In this case, we want to add another member to the collection members
belonging to the distribution group. With the Add-DistributionGroupMember cmdlet,
we only need to specify the identity of the group and the identity of the member we
want to add to the group, as in listing 6.22.

Add-DistributionGroupMember -Identity 'Manticore\Navy' `
-Member "CHURCHILL Winston"

DISCUSSION
If we need to remove a member from a group, we’d use Remove-DistributionGroup-
Member.

 This concludes our excursion into the world of distribution groups. With the scripts
presented in this section, you’ll be more than capable of automating this aspect of
Exchange administration. The next topic we need to consider is the type of information
we can obtain when looking to generate reports on the mailboxes in our environment.

6.5 Mailbox statistics
We’ve already seen how to find the mailboxes that have been disconnected from their
user accounts. Get-Mailboxstatistics can give a lot of useful information about the
mailboxes. There doesn’t seem to be an equivalent for getting the same information
about databases, but we’ll discover a way to overcome that when we reach chapter 12.
For now, we’ll concentrate on retrieving information regarding mailboxes.

Listing 6.22 Modifying distribution group membership

TECHNIQUE 35

183TECHNIQUE 36 Determining the largest mailboxes
Apago PDF Enhancer

TECHNIQUE 36 Determining the largest mailboxes
There are two questions to ponder when considering mailbox size:

■ Do you know which users have the five largest mailboxes in your organization?
■ How do you measure mailbox size?

We’ll answer the first question in a while, but first we need to think about mailbox
size. The obvious way to measure size is by the total amount of space occupied by the
messages in the mailbox. But a user could have a small number of relatively large
emails, because those emails have large attachments, in which case the mailbox will be
easy to use. On the other hand, a mailbox with a very large number of small messages
may be difficult to use due to the sheer number of messages. In either case, the user
may need prompting, or help, in removing or archiving messages.
PROBLEM
We’ve been asked to determine the users with the largest mailboxes by size and by the
total number of items in the mailbox.
SOLUTION
In both cases—size of mailbox and number of items—we can answer the question using
Get-MailboxStatistics. The variation, and fun, comes with what we do with the data
further along the pipeline. Get-MailboxStatistics displays itemcount rather than
itemsize by default. To find the five mailboxes with the largest number of messages, we
start with Get-MailboxStatistics B as in listing 6.23. The next step is filter out the sys-
tem mailboxes using a where command. Note the use of -notlike as the comparison
operator and that we can use wildcards with the like family of operators.

Get-MailboxStatistics |Where {$_.Displayname -notlike "SystemMail*"} |
sort itemcount -desc | select -first 5

Get-MailboxStatistics |Where {$_.Displayname -notlike "SystemMail*"} |
sort TotalItemsize -desc | select -first 5 |
Select DisplayName, TotalItemSize, StorageLimitStatus

Once the system mailboxes have been filtered out, we can sort the mailboxes on item-
count. We want to see the mailboxes with the largest number of items, so we sort in a
descending manner. In the script, we used -desc instead of the full parameter name
-descending. PowerShell will happily take a partial parameter name as long as it can
be resolved unambiguously. An error will be generated if PowerShell can’t successfully
resolve the abbreviated parameter name. The final action on the pipeline is to select
the first five objects and pass them to the default display.

TIP Be sure to remember the difference between using the like family of
operators and the match family. Like operates on strings and can use wild-
cards as shown. Match works with regular expressions. From the names, you
might think they did the same thing, but they’re used in different ways. The
operator help files can supply more information. Use Get-Help about*oper-
ator* to see the list of the available help files.

Listing 6.23 Determine largest mailboxes

TECHNIQUE 36

By item countB

By sizeC

184 CHAPTER 6 Mailboxes
Apago PDF Enhancer

DISCUSSION
The alternative is to find the largest five mailboxes as measured by size C. This is sim-
ilar to the previous script, except we sort on totalitemsize and we specify in the
select that we want to use the mailbox display name, total item size, and the storage
limit status.

TECHNIQUE 37 Reporting on mailbox sizes

Another possibility is that you may want to report on all of the mailboxes by size or
item count.

WARNING In a large organization, this may generate very large reports. This
can be tackled either by producing the report by database, or by restricting
the report to the first 20, 30, 50, or whatever by putting select -first n after
the sort.

Perhaps you want to move mailboxes between databases depending on their size. A
possible scenario could involve establishing a database specifically for the largest mail-
boxes. The mailbox quota limits could be established at the database level rather than
configuring individual mailboxes.
PROBLEM
We want to understand the distribution of mailbox sizes within our organization.
SOLUTION
As before, Get-MailboxStatistics is the tool for this job. The scripts are almost iden-
tical. The difference arises because of the different property used for sorting, as you can
see in listing 6.24. The results of running the scripts are shown in figure 6.4. As in the
previous listing, we start with Get-MailboxStatistics, pipe into the same where, fol-
lowed by a sort on itemcount B. We then use Format-Table to produce our report. We
can effectively perform a select at the same time due to the property selection. The
interesting part of this is the use of the calculated field in the Format-Table cmdlet. By
default, the totalitemsize property is displayed in bytes with a B at the end. In this
example, I’ve converted the value to a string, removed the B, and then divided by 1MB.

Get-MailboxStatistics |Where {$_.Displayname -notlike "SystemMail*"} |
sort itemcount -desc |
format-table DisplayName, ItemCount, @{Label="Approx Size (MB)";
Expression={
[int](($_.totalitemsize.ToString().Replace("B", ""))/1mb)}},
StorageLimitStatus -autosize

Get-MailboxStatistics |Where {$_.Displayname -notlike "SystemMail*"} |
sort totalitemsize -desc |
format-table DisplayName, ItemCount, @{Label="Approx Size (MB)";
Expression={
[int](($_.totalitemsize.ToString().Replace("B", ""))/1mb)}},
StorageLimitStatus -autosize

Listing 6.24 Report mailbox sizes

TECHNIQUE 37

By item
count

B

By sizeC

185TECHNIQUE 37 Deleting mailboxes
Apago PDF Enhancer

This result is converted to an integer to remove the decimal parts. The calculation
could be replaced by these alternatives:

■ $_.TotalItemSize.Value.ToGB()
■ $_.TotalItemSize.Value.ToMB()

DISCUSSION
If we want to view the information based on mailbox size, we replace the sort prop-
erty with totalitemsize C. The rest of the script is the same. The results are worth
comparing, as a user with the mailbox occupying the most space doesn’t necessarily
have the most items in the mailbox, as shown in figure 6.4.

REPORT RESTRICTION In the figure, the scripts have been modified to only
select the first 15 mailboxes, so that the comparison between the two
approaches could be seen.

The final stage in the lifecycle is deleting the mailbox from the server.

6.6 Deleting mailboxes
We saw earlier that disabling a mailbox causes the Exchange information to be
removed from a user account, and the mailbox to be disconnected. In time it’ll be
deleted from the server. The situation may arise where we need to force the deletion
of a mailbox and possibly of the user account as well. Be careful deleting mailboxes. If
it’s the wrong one you could end up in this situation:

Figure 6.4 Mailbox size scripts

186 CHAPTER 6 Mailboxes
Apago PDF Enhancer

Remove-Mailbox -wrongone | Revise-CV
In other words, you need to revise your CV (résumé) because you have to look

for another job!

TECHNIQUE 5 Deleting a mailbox
When we disable a mailbox, the user account is left in Active Directory. There are sce-
narios where we may want to delete the account and either disconnect the mailbox so
that it’ll be deleted during the regular cleanup operations or delete it immediately.

 If the administration of Active Directory and Exchange is performed by the same
people, the solution presented here could be used. Otherwise, disabling the mailbox
and then using the procedure in the following section will be necessary. The Active
Directory team will need to delete the user.
PROBLEM
A user has left the organization and it’s been determined that the user account and
mailbox should be deleted. This approach may also be useful if test accounts have
been created and now need removing.
SOLUTION
We have two alternatives. First, we can delete the user account and let the Exchange
cleanup operation eventually remove the mailbox. Alternatively, we can delete the user
account and force the immediate removal of the mailbox. The Remove-Mailbox cmdlet
meets our needs perfectly, as shown in listing 6.25. If we use it with just the identity param-
eter B we’ll delete the user from the Active Directory. The user object is tombstoned
and will remain in that state for 60 or 180 days, depending on the version of Windows
used to create the Active Directory, before final removal. The mailbox will be discon-
nected and remain in that state for 30 days, by default, before permanent deletion.

Remove-Mailbox -Identity "FITZROY Angus"

Remove-Mailbox -Identity "FITZROY Angus" -Permanent $true

DISCUSSION
If required the -permanent parameter can be used C. This will cause the user object
to be tombstoned as previously, but will immediately remove the mailbox from the
Exchange database. The disconnect stage is completely bypassed.

WARNING Use the -permanent option with care, as the only way to retrieve
the mailbox is to perform a restore.

In the case of the first option presented here, or if we’ve already disconnected the
mailbox, we may need to consider permanently removing a disconnected mailbox
from the database.

TECHNIQUE 6 Purging a mailbox

As we’ve seen, mailboxes aren’t usually deleted but left in a disconnected state for a
period of time. We need to be able to purge disconnected mailboxes from the server

Listing 6.25 Delete a mailbox

TECHNIQUE 38

B

C

TECHNIQUE 39

187Summary
Apago PDF Enhancer

PROBLEM
We have one or more disconnected mailboxes we need to remove from the server.
SOLUTION
Remove-Mailbox is the answer to this question. This time, though, we need to be able
to identify the disconnected mailbox to remove. We’ve seen previously that GetMail-
boxStatistics can be used to access disconnected mailboxes. We can use that com-
mand to find the mailbox GUID, which will uniquely identify it, as shown in listing 6.26.
The database containing the disconnected mailbox is also required.

Remove-Mailbox -Database 'Exch01\Mailbox Database'
-StoreMailboxIdentity (Get-MailboxStatistics |
 Where {$_.DisplayName -eq "FITZROY Angus"}).MailboxGuid

DISCUSSION
Remember that this is a permanent removal, with a restore being the only way to
reverse the action.

6.7 Summary
In this chapter, we’ve seen the lifecycle of mailboxes from creation through modifica-
tion and to the final act of destruction. The various mail objects can be simply and
efficiently created with PowerShell. In some instances, it may be necessary to split the
work among multiple administration teams.

 Modifying mailboxes can include changing size limits as well as enabling or dis-
abling functionality. Moving mailboxes between databases can be performed interac-
tively if required.

 Distribution groups are used to group recipients who all need to get the same mes-
sages on a regular basis. They save a lot of effort from a user perspective. Creating a
group and changing its membership are similar to actions performed when creating
Active Directory security groups. Dynamic distribution groups are a special case, in
that the membership is derived when the group is accessed. The current membership
can be viewed by combining the functionality of Exchange and AD cmdlets.

 The final stage in the lifecycle is removal. This can either be staged or immediate
depending on the requirements.

 After considering user accounts and mailboxes, we must turn our attention to the
user’s desktop, which is the next and final chapter in this part. We’ll see how Power-
Shell and WMI give us a powerful method of interrogating the desktop machine for
configuration and status information. We’ll explore methods to change the configura-
tion as well as investigate how to work with the Office applications. Much of the infor-
mation in chapter 7 will be useful when working with servers as well as desktops.

Listing 6.26 Purge a mailbox from the server

Desktop
Apago PDF Enhancer

This chapter closes out the part of the book dealing with users and leads into chap-
ter 8, which opens the server administration section.

HOW TO USE THE SCRIPTS Many of the scripts presented in this chapter
could be run interactively from the PowerShell prompt rather than as a
script. If anything is run frequently, consider creating a function with the
computer name as a parameter. Alternatively, PowerGUI could be utilized
(see section 4.5.2).

Group Policy is used to configure and manage desktops in many corporate environ-
ments. Group Policy is a great technology that’s underutilized in many cases.
Group Policy objects (GPOs) are great for configuring the computer, but they don’t

This chapter covers
■ Discovering a machine’s configuration
■ Testing printers and printer drivers
■ Working with special folders
■ Working with Microsoft Office applications such

as Word and Excel
188

189Automating desktop configuration
Apago PDF Enhancer

report back the actual configuration. There will still be a need to investigate desktop
(or server) issues even with an extensive utilization of GPO-based technologies.

 This chapter shows how to investigate those issues by discovering information
about the computer, and how to configure aspects of the computer that can’t be
reached by other means. In this chapter, we’ll make extensive use of the WMI and
COM capabilities of the Windows environment. Using these technologies in Power-
Shell was covered in chapter 3. If you jumped straight into the sections of the book
covering the scripts, it might be worth looking at chapter 3 as a refresher before delv-
ing too far into this chapter.

7.1 Automating desktop configuration
In most organizations, there are a lot more desktops (that does include laptops for
this discussion) than servers. This means that there will be a lot more administrative
effort spent on the desktop estate. Anything that can reduce that overhead will have a
beneficial impact on the company. This is where automation comes into the picture. If
I can make changes remotely or remotely discover information that will help me
resolve the user’s problems, I can be more productive. How can I be more productive?
The answer in the Windows environment of today is to use PowerShell.

 When we want to investigate an issue with a user’s computer (or a server), we need
to know how it’s configured. The first part of this chapter uses PowerShell and WMI to
discover configuration information. A number of scripts are presented that show how
to go about discovering this information. Rather than running these scripts individu-
ally, we may decide to create a standard script that returns the common information
we’ll want to know. The second stage is to then run individual scripts to dig further
into the issues. A good example of how to do this has been created by Alan Renouf
(http://teckinfo.blogspot.com/2008/10/powershell-audit-script_15.html). The out-
put from the WMI scripts is presented in an HTML page that can be viewed in a
browser, as shown in figure 7.1

 After discovering our information, we may need to make changes to the configura-
tion. The machine configuration section finishes with some examples. Setting IP
addresses is delayed until chapter 9.

 It’s also possible to work with what the user sees on the machine—his desktop
experience. We can discover information about the desktop and other folders that are
special to the user, including examining the contents of the Recycle Bin.

 The final section of the chapter deals with applications. The Office applications
Word and Excel have been chosen as examples because they can be found in most
Windows environments. You can combine the discovery scripts presented in the first
section with the information regarding Office applications to create a system to docu-
ment and report on the machines in your environment. But before we can do that, we
need to learn how to discover that information.

http://teckinfo.blogspot.com/2008/10/powershell-audit-script_15.html

190 CHAPTER 7 Desktop
Apago PDF Enhancer

7.2 Machine configuration
Machine configuration can be split into a number of areas. A lot of the time, when we
need to work with a machine’s configuration, we really just want to report on that

Figure 7.1 Presenting configuration information via HTML

191TECHNIQUE 40 System configuration
Apago PDF Enhancer

configuration. How many organizations have a database of their machine configura-
tions? I suspect that the answer is not many. It would be relatively straightforward to
take these scripts and push the results into a set of SQL Server tables to create such a
database. We’ll see an example in chapter 14.

REMOTE RUNNING All of the scripts in this section are shown running against
the local machine. They can be run equally well against a remote machine by
using the -ComputerName parameter and supplying the NETBIOS name, IP
address, or fully qualified domain name of the relevant computer. This doesn’t
require the remoting capabilities of PowerShell v2.

Examples of where we’re only reporting include retrieving the OS or BIOS informa-
tion. In some cases, we actually need to modify the machine configuration, for exam-
ple altering the IP address or default gateway. This may be more likely on servers than
workstations.

NOTE Many of the scripts in this chapter use Windows Management
Instrumentation (WMI) . WMI is blocked by default by the Windows firewall
that’s present in the latest versions of the Windows OS. Ensure that the
firewall is configured to allow WMI access. WMI can take a long time to time
out in certain instances. Ensure that firewalls aren’t blocking WMI to avoid
the wait.

WMI can supply a huge amount of information about your system. It’s a constantly evolv-
ing technology, as each new version of Windows introduces new classes to the default
namespace (root\cimv2) and also brings completely new namespaces. Most of the sys-
tem information and machine configuration classes are contained in root\cimv2, as
explained in the WMI section in chapter 3. You did read that section, didn’t you? If you
skipped that section, it would be worth reading to refresh yourself on how WMI works
with PowerShell. One thing to remember with WMI is that you can use PowerShell itself
to help you discover what classes are available by using the following:

Get-WmiObject -Namespace 'root\cimv2' -List

This will give you a list of the classes belonging to the namespace. Remember that the
default namespace contains literally hundreds of classes. In order to reduce the wait,
try limiting the number of classes returned by trying:

Get-WmiObject -Namespace 'root\cimv2' -List -Class *network*

Any suitable item can be used as the basis of the search. Wildcards are accepted as shown.
 The logical place to start with the machine configuration is by obtaining some

standard and fairly basic information about the machine. This is the sort of informa-
tion that we’re likely to need in many troubleshooting situations.

TECHNIQUE 40 System configuration

A system administrator, or help desk operative, needs to have access to system config-
uration information. Ideally this will be available to them through a configuration

TECHNIQUE 40

192 CHAPTER 7 Desktop
Apago PDF Enhancer

database as described previously. If a configuration database isn’t available then we
can fall back on WMI to supply the information.

DATA SUBSET This is only a small subset of the information that can be
obtained. Examining the classes shown here or investigating other classes will
enable a more detailed report to be generated.

The solution shown here is displayed onscreen. If a permanent record is required,
Out-File could be used instead of Format-List. Remember to use the -Append
parameter on all but the first section of the script; otherwise you’ll experience one of
those “Oops! I wish I hadn’t done that” moments when you realize you’ve overwritten
all of the data.
PROBLEM
The basic system configuration must be discovered. We want to know the OS and ser-
vice pack, computer model and manufacturer, basic processor information, and the
BIOS version.
SOLUTION
There isn’t a single WMI class that we can use to retrieve all of the information we
require. This means that a number of individual commands needs to be used, as
shown in listing 7.1. The advantage of this approach is that it’s easy to extend the
script by introducing additional items such as physical disks or reporting on addi-
tional properties from the existing classes.

"Operating System"
Get-WmiObject -Class Win32_OperatingSystem | Select Name,
Version,ServicePackMajorVersion, ServicePackMinorVersion,
Manufacturer, WindowsDirectory, Locale, FreePhysicalMemory,
TotalVirtualMemorySize, FreeVirtualMemory | Format-List

"Computer System"
Get-WmiObject -Class Win32_ComputerSystem |
Select Name, Manufacturer, Model, CurrentTimeZone,
 TotalPhysicalmemory | Format-List

"Processor"
Get-WmiObject -Class Win32_Processor |
Select Architecture, Description | Format-List

"BIOS"
Get-WmiObject -Class Win32_Bios |
Select -Property BuildNumber, CurrentLanguage,
InstallableLanguages, Manufacturer, Name,
PrimaryBIOS, ReleaseDate, SerialNumber,
SMBIOSBIOSVersion, SMBIOSMajorVersion,
SMBIOSMinorVersion, SMBIOSPresent, Status,
Version, BiosCharacteristics

Get-WmiObject -Class Win32_Bios |
Select ExpandProperty BiosCharacteristics

Listing 7.1 Basic system configuration information

OS informationB

Computer informationC

Processor informationD

BIOS informationE

Expand characteristicsF

193TECHNIQUE 40 System configuration
Apago PDF Enhancer

WMI can supply a varied and rich set of information. In this example, we’re drawing
on four different WMI classes to supply the information. In all cases, the default
namespace is being used (root\cimv2). In fact, it’s used in all of the scripts in this sec-
tion. The script is an ideal candidate for running against multiple computers.

 We start by looking at the operating system B. As you might guess, we use
the Win32_OperatingSystem class. Many classes in WMI are quite sensibly named,
and so relatively easy to find. In this case, we select a number of properties, includ-
ing the version, service pack, locale, and some information on the memory available
in the machine. A Format-List is used at the end of the pipeline to ensure a consis-
tent display.

NOTE In all parts of the script, I could’ve dropped Format-List from the
end of the pipeline and substituted it for the select command. That would
be acceptable if I only wanted to display to the screen. The way I’ve written
the script, I think it’s easier to modify if you want to output the data to a file
instead of to the screen. All you have to do is substitute Out-File and the
name of the file in place of Format-List. Don’t forget the -append.

Win32_OperatingSystem and the other classes used in this chapter have more proper-
ties than we’re using in these examples. When we use Get-WmiObject, there’s a
default formatter that controls which properties are returned. The default formatters
are investigated in appendix A. If you want to see the names of all of the properties
and methods available to the particular WMI object we’re working with, then use

Get-WmiObject -Class Win32_OperatingSystem | Get-Member

If you want to quickly see the values of the properties, use:

Get-WmiObject -Class Win32_OperatingSystem | Select *

The other point to note about this listing is that there’s a label before each use of Get-
WmiObject. In each case, we have a single string on the line. One convenient piece of
functionality in PowerShell is that if we place a string by itself on a line, it’s automati-
cally treated as output to be directed to the standard output device—in this case the
screen. This is good technique for listing progress through a script, as well as helping
to comment the script. Two birds with one stone !

 After the OS, the next area that will interest us is the machine itself C. This fol-
lows the same format as the previous line, except we’re using the Win32_ Computer-
System class. Information such as manufacturer, model, and the physical memory
can be discovered. Troubleshooting a user’s problem can often be easier and
quicker when we know some basics about the machine. If we know that a particular
model has had an issue with a piece of software, it could help narrow our search
for a solution.

 The final two sections of the script find basic information about the processor D
and the BIOS E.

194 CHAPTER 7 Desktop
Apago PDF Enhancer

SYSTEM DOCUMENTATION The possibility of using these scripts to populate a
configuration database has been mentioned. The other possibility is to com-
bine the scripts and output the results to a file. Any time there was a change
to the machine, the script could be rerun. If required, the information could
be written into a Word document using the scripts in the last section of this
chapter as a guide.

WMI will sometimes return a collection of values as a single property. This happens
with Win32_Bios in the BiosCharacteristics property F. We can use the -Expand-
Property parameter of select to list the members of the property collection.
DISCUSSION
In many cases, as here, the information in the property collection is stored as digits, each
with a special meaning. Using the -ExpandProperty parameter doesn’t add meaning;
it just lists them. If you want to see what the numbers mean, the best way to find the infor-
mation is to search on the Microsoft website for the documentation of the WMI class.

 If it becomes necessary to add meaning to the numbers, pass the expanded charac-
teristics into a foreach command that contains a switch statement. The meaning of
each characteristic can be then be written out. I haven’t included this, in the interest
of space, but it’s included in the downloadable scripts.

TECHNIQUE 41 Discovering the operating system

The operating system is fundamental to the correct operation of the machine and the
installed software. As administrators, we need to know that the correct version is
installed on our machines and that it’s configured correctly.
PROBLEM
We need to be able to discover information about the version of the operating system
and its configuration.
SOLUTION
WMI provides another class—Win32_OperatingSystem—to provide this information,
as shown in listing 7.2. WMI has so much information available to us that we could
almost start thinking “WMI is the answer; now what was my problem?”

Get-WmiObject -Class Win32_OperatingSystem |
Select BootDevice, BuildNumber,BuildType, Caption,
Codeset, CountryCode, Debug, InstallDate,
NumberofLicensedUsers, Organization, OSLanguage,
OSProductSuite, OSType, Primary, RegisteredUser,
SerialNumber, Version

DISCUSSION
The Win32_OperatingSystem class returns more than 70 properties. It’s worth experi-
menting by using the following line of code in order to see the amount of information
that can be retrieved:

Get-WmiObject -Class Win32_OperatingSystem | Select *

Listing 7.2 Operating system information

TECHNIQUE 41

195TECHNIQUE 42 Discovering service packs on the OS
Apago PDF Enhancer

Several of these properties, such as CountryCode and Codeset, will be numbers. If
required, their meanings can be discovered in the WMI documentation. It’s usually
enough to know what should be configured and then to look for the anomalies. After
all, you’d expect all of the machines in the same location to use the same country
code and OS language!

 One issue that costs administrators a good deal of time and effort is patching.
Knowing which service pack and hotfixes are installed on a machine is essential to
keeping them secure.

TECHNIQUE 42 Discovering service packs on the OS

Service packs are issued at irregular intervals during the lifecycle of a version of Win-
dows. A service pack will usually contain all of the previously released hotfixes and ser-
vice packs in one package. Ideally, service packs should be installed as soon as they’ve
been tested for your environment. Unless this is an automated procedure, it’s easy for
machines to be missed.

 There are tools can tell us which service packs and hotfixes have been and still
need to be installed on every system in our environment. When we’re troubleshooting
a problem, it’s not always possible to access that information. Being able to generate a
report showing the latest service pack installed on your machines could be very useful.
PROBLEM
We need to be able to discover the service pack applied to the operating system on a
set of machines within our infrastructure.
SOLUTION
We can read a file to get the computer names and then discover the service pack level
by using WMI. In previous examples, we’ve used Import-Csv to read a CSV file with the
data we’ll be using in the script. There’s another cmdlet, Get-Content B, that we can
use to read text files. As we’re only reading a single column of names, either method
will work.

SAMPLE FILE A sample computers.txt file is supplied with the script down-
loads. It shows three different ways to call the local machine! Add other com-
puter names or IP addresses as required.

It can be useful to read the contents of a file into an array, especially if you’ll be using
it multiple times in your script. Performing the read once will improve the perfor-
mance and efficiency of your script. As an example, consider combining the scripts in
listing 7.2 and listing 7.3. We’re using the same data in both, so why read it twice?

$computers = Get-Content computers.txt
Foreach ($computer in $computers) {

 Get-WmiObject -ComputerName $Computer `
-Class Win32_OperatingSystem |
Select CSName, ServicePackMajorVersion,
ServicePackMinorVersion
 }

Listing 7.3 Service pack information

TECHNIQUE 42

Read fileB Loop through
computers

C

Get service
pack versionD

196 CHAPTER 7 Desktop
Apago PDF Enhancer

Our data is in an array at this point, so we won’t use the Foreach-Object cmdlet we’ve
used in other scripts. We turn to the foreach loop command as shown C. Within the
foreach loop, we use Get-WmiObject to access the Win32_OperatingSystem class D to
read the service pack version. One important change from using Import-Csv is that
our foreach isn’t on the pipeline. We can’t use $_ to represent the computer name in
this instance. We use $computer instead, which is the foreach variable. Note that
we’re outputting the major and minor version numbers of the service pack. The
minor version number will normally be zero.

 Putting all of this together, the script can be read as:

1 Read a list of computer names.
2 For each computer name in the list.
3 Use WMI to get the service pack version.

A similar structure can be used to discover the hotfixes installed on a machine.

TECHNIQUE 43 Hotfixes

Hotfixes, or patches, are usually produced in response to a bug. They can be applied to
a machine manually or by automatic means. It’s possible that the method of applica-
tion doesn’t keep a centralized record of the patches that have been installed. With-
out this information, you, as an administrator, can’t determine whether your
machines are vulnerable to a new exploit that the patch will stop.
PROBLEM
We need to determine the hotfixes that are installed on a machine, and whether a par-
ticular hotfix is installed on the machine.
SOLUTION
We use a different WMI class this time. If this script is compared to the one in list-
ing 7.4, we can see that they’re very similar. We start, again, by reading the file of
computer names B and loop C through that list. The output will consist of a list of
the applied patches.

$computers = Get-Content computers.txt

Foreach ($computer in $computers) {
 "`n "
 Get-WmiObject -ComputerName $Computer `
-Class Win32_QuickFixEngineering
}

This could be quite long, so we put a blank line between the outputs of the different
computers D. This is accomplished using the `n special character, which denotes a
new line. Special characters are explained in appendix A.

 We need to use a different WMI class to find the installed patches. We use Win32_
QuickFixEngineering E. The default format has the information we need, so we
don’t need to use the select or format cmdlets.

Listing 7.4 Hotfix information

TECHNIQUE 43

B Loop through
computers

C

D
Get
patch list

E

197TECHNIQUE 43 Hotfixes
Apago PDF Enhancer

POWERSHELL JOBS PowerShell v2 introduces the ability to run PowerShell
commands as background jobs. This functionality enables us to perform
tasks asynchronously. If we had a large number of computers in our list, it
could take quite a while before all of the results were returned and we
were given back control of the PowerShell prompt. This makes this type of
task ideal for running as a job. When we run the command as a job, we get
the prompt back immediately, so we can continue working while the job
runs in the background. Once it has finished, we can investigate the results
at our convenience.

DISCUSSION
In PowerShell v2, we could use a new cmdlet—Get-Hotfix—instead:

$computers = Get-Content computers.txt
Foreach ($computer in $computers) {
 "`n $computer"
 Get-HotFix -ComputerName $computer
}

As it stands, the script will display all of the hotfixes installed on the system. Much of
the time, we may want to check whether a particular hotfix is applied on the
machines, as in listing 7.5.

$computers = Get-Content computers.txt

Foreach ($computer in $computers) {

$fix = Get-WmiObject -ComputerName $computer
-Class Win32_QuickFixEngineering -Filter "HotfixId = 'KB998989'"

if ($fix -eq $null){Write-Host "$computer - patch not installed"}
else {Write-Host "$computer - patch installed"}
}

This script starts in the same way, by reading the file of computer names B and loop-
ing through them C. In this case, we put the results D of the Get-WmiObject cmdlet
into a variable. The -Filter parameter is used to restrict Get-WmiObject to only look
for the specified hotfix. This will give a significant boost to the script’s performance.
The way PowerShell works is that it will return nothing if it can’t find the specified
patch on the machine. We can exploit that fact to determine the patch’s existence.

 If the patch doesn’t exist the variable is null (nothing has been returned). We can
use an if statement E to test whether the variable is null, and if it is, we get a message
to tell us the patch isn’t installed. If the variable isn’t null it means that WMI found the
patch and we can write out the appropriate message.

 Get-Hotfix can also be used in this situation:

$computers = Get-Content computers.txt
Foreach ($computer in $computers) {
 "`n $computer"
 Get-HotFix -Id KB972636 –ComputerName $computer
}

Listing 7.5 Check for specific hotfix

Read fileB Loop through
computers

C

Get hotfix D

EPrint message

198 CHAPTER 7 Desktop
Apago PDF Enhancer

In addition to the installed hotfixes, we’ll also be interested in the installed software.

TECHNIQUE 44 Listing installed software

Many organizations will have policies to determine what software is allowed to be
loaded on desktop machines. If a software asset management system isn’t in place, it
can be difficult to know what software has been installed. Also, when troubleshooting,
it can be useful to know what software has been installed, and especially what versions
of the software.
PROBLEM
We need to create a report listing the software loaded on our machines.
SOLUTION
The Win32_Product WMI class is available on all recent versions of Windows, up to and
including Windows Server 2008, Windows Vista, and Windows 7. We use the Win32_
product class to read the list of software installed under the control of the Windows
installer, as shown in listing 7.6.

Get-WmiObject -Class Win32_product | Select Name, Caption,
IdentifyingNumber, InstallLocation, Vendor, Version |
 Export-Csv software.txt -NoTypeInformation

DISCUSSION
Within the PowerShell community, a lot is made of the “PowerShell one liner.” The
way the pipeline works in PowerShell enables us to put a lot of functionality into a sin-
gle line of code. This script, though fairly simple, achieves a lot. It’s also expandable,
while remaining (technically) within the one-line constraint.

IMPORTANT NOTE Only software installed through the Windows installer will
be discovered by this script. This will include most modern software, but
there’s always the possibility that some software has been installed by other
means.

The script returns a lot of information, as with most WMI classes. A select (Select-
Object cmdlet) is used to restrict the data passed along the pipeline. Our problem
statement was that we needed to create a report listing the installed software.

 One of the easiest ways to do this is to create a CSV file containing the information.
We can use the Export-Csv cmdlet to create and write to the CSV file. By default.
Export-Csv will write the .NET type information into the first row of the CSV file. This
can cause problems when we try to read the CSV file outside of PowerShell. The -NoTy-
peInformation parameter will prevent the type information being written to the file.

 The example only creates a report for the local machine. We can extend the script
to work with remote machines. Create a file with the computer names. This can be a CSV
file or a text file. Read the file and pipe it into a foreach loop. Use the -Computername
parameter in Get-WmiObject to read the information from the appropriate computer.
The information can then be exported to a file. In these cases, we usually want to create

Listing 7.6 Installed software

TECHNIQUE 44

199TECHNIQUE 45 Monitoring free disk space
Apago PDF Enhancer

one file per computer, so create a filename in the loop and incorporate the computer
name and the date.

 Our investigation of the machine configuration has encompassed the hardware,
the OS, and the installed software. This gives us the basic building blocks, but one area
we haven’t looked at yet is the disks.

TECHNIQUE 45 Monitoring free disk space

As you’d expect, there are a number of classes that deal with disks:
■ Win32_DiskDrive
■ Win32_DiskDrivePhysicalMedia
■ Win32_DiskDriveToDiskPartition
■ Win32_DiskPartition
■ Win32_DiskQuota
■ Win32_LogicalDisk
■ Win32_LogicalDiskRootDirectory
■ Win32_LogicalDiskToPartition
■ Win32_LogonSessionMappedDisk
■ Win32_MappedLogicalDisk

Physical disks are investigated using Win32_DiskDrive. Win32_DiskDriveToDisk-
Partition is especially useful, as it enables us to discover which partitions are on
which physical disk. In this instance, we’re concerned with disk space.
PROBLEM
Monitoring available disk space is a common task for administrators. We may also
need to quickly discover how much free space is available on a given disk when we
need to move data around or install software.
SOLUTION
If we use the Win32_LogicalDisk class and a calculated field, we can even get the
answer in GB rather than bytes, as in listing 7.7.

$HardDisk = 3
Get-WmiObject -Class Win32_LogicalDisk `
-Filter "DriveType = $HardDisk" |
Format-Table DeviceId, @{Label="Freespace(GB)";
Expression={($_.FreeSpace/1GB).ToString("F04")}} -auto

There are a number of interesting points in this script. In the first line of the script,
I’ve defined a variable called $HardDisk with a value of 3. This is then used in the
-Filter parameter of Get-WmiObject. A filter is in effect a WMI Query Language
(WQL) query, but we only need to give the part of the query after the WHERE statement.
The full query would be:

"SELECT * FROM Win32_LogicalDisk WHERE DriveType = '$HardDisk'"

Listing 7.7 Free disk space

TECHNIQUE 45

200 CHAPTER 7 Desktop
Apago PDF Enhancer

The WHERE clause is acting as a filter, and so is the part we use in our filter parameter as
shown in the script. In listing 7.7, we’ve defined the query to only look at disks where
the drive type equals the value of the variable.

 The query will only return information on local hard disks—type 3 disks. There’s a
clue in the name of the variable. I could’ve just hard-coded the disk type into the
script, but this allows us to change the disk type easily, as it’s at the top of the script. It
also demonstrates how we can substitute into strings. If a variable is placed inside a
double-quoted string as in this example, its value will be substituted into the string
when the script executes.

QUOTES The way that PowerShell allows us to put variables inside strings
and then substitute the value of the variable is a useful technique. It greatly
simplifies a number of tasks, especially building commands in this way
and creating output messages. It only works with strings bounded by dou-
ble quotes.

DISCUSSION
The second interesting—and again useful—feature is the calculated field in the For-
mat-Table cmdlet. It reads:

@{Label="Freespace(GB)"; Expression={($_.FreeSpace/1GB).ToString("F04")}}

This isn’t as complicated as it would seem, as we can see by breaking this down. Start at
the outside with @{}, which denotes this is a hash table. We know that hash tables con-
sist of key-value pairs. In this case, we have two keys—Label and Expression. The
Label is a string that defines the name of the field, as shown in figure 7.2.

 The Expression is where all the hard work is done, as we take the value of the
Freespace property (which is in bytes) and convert it to gigabytes by dividing by 1GB.
Remember that PowerShell recognizes KB, MB, and GB as values. This calculation
leaves a large number of decimal places, so we’ll format the output by converting the
number to a string using "F04" as the format string. This will restrict the display to
four decimal places. What we’ve done is take a value in bytes and convert it into a
more meaningful form given the size of the hard disks in use today.

 Calculated fields can be used in a select statement, except that Label is changed
to Name:

Figure 7.2 Using a calculated field

201TECHNIQUE 47 Restarting a computer
Apago PDF Enhancer

$HardDisk = 3
Get-WmiObject -Class Win32_LogicalDisk `
-Filter "DriveType = $HardDisk" |
Select DeviceId, @{Name="Freespace(GB)";
Expression={($_.FreeSpace/1GB).ToString("F04")}}

When we create a calculated field using select, it becomes part of the object and can
be used later on the pipeline exactly like any other property. The member type for
these properties created as calculated fields is NoteProperty.

GET-PSDRIVE In PowerShell v2, Get-PSDrive has been amended to give used
and free space for filesystem drives.

One configuration item that can have a major impact is the IP address. We’ll look at
that in chapter 9.

TECHNIQUE 46 Renaming a computer

When a Windows machine is built, it’ll be assigned a randomly created name. This
name will need to be changed to fit our naming conventions. We may also need to
change the name of a machine if it changes role or location.
PROBLEM
How can we change the name of a Windows machine?
SOLUTION
Another aspect of the Win32_ComputerSystem class comes into play, as in listing 7.8.

$computer = Get-WmiObject -Class Win32_ComputerSystem
$computer.Rename("newname",$null,$null)

Set a variable to Win32_ComputerSystem. The Rename() method is used to change the
name. We need to give the new computer name as the first parameter. The other
parameters are the administrator ID and password, which aren’t necessary if you’re
working on the local machine and are logged in as the administrator.
DISCUSSION
There are a couple of points worth remembering about computer renaming. Using
this technique on a machine does not change the name in Active Directory. If the
machine is a domain member, perform the name change through the system configu-
ration to ensure AD is updated.

 In the PowerShell v2 beta process, a Rename-Computer cmdlet was introduced. This
was removed in the final version. Any mention of using this cmdlet you find in docu-
mentation or examples should be ignored.

 Changing the name of the computer will force a reboot. There are also times when
we need to manually reboot or shut down the system.

TECHNIQUE 47 Restarting a computer

There are many situations when we need to restart or even shut down a system. The
ability to restart a system remotely is useful. If we have a remote desktop connection,

Listing 7.8 Change computer name

TECHNIQUE 46

TECHNIQUE 47

202 CHAPTER 7 Desktop
Apago PDF Enhancer

we can log on and perform the reboot. It’s more efficient to run the first option in
this script.

 There are many applications that use a number of different servers. These systems
must be shut down in the right order; for example if we have a SharePoint environ-
ment, we must shut down the SharePoint servers before we shut down the SQL Server
back end. If we perform the shutdowns by a script, we’ll always get them in the right
order. This is important if we’re working late and need to get it right!
PROBLEM
What’s the most efficient way to remotely restart or shut down a system?
SOLUTION
The OS controls the machine, so we need to look at the Win32_OperatingSystem class.

WHATIF WARNING There’s no warning, whatif, or confirmation when using
these WMI methods. If we use the PowerShell 2.0 Restart-Computer cmd-
let, we can use the -whatif parameter. Use Stop-Computer for a complete
shutdown.

In listing 7.9, we start by creating a variable to represent the computer’s Win32_
OperatingSystem class. We can then call the Reboot() method B to cause a restart,
or we can make the machine shut down by using Win32Shutdown() C. In this exam-
ple, a computer name is given, so it’s acting on a remote machine.

$computer = Get-WmiObject -CompterName pcrs2 -Class Win32_OperatingSystem
$computer.ReBoot()

$computer = Get-WmiObject -CompterName pcrs2 -Class Win32_OperatingSystem
$computer.Win32Shutdown(5)

DISCUSSION
The numeric value we pass as a parameter to
Win32Shutdown() defines how the machine closes
down. Table 7.1 shows that the values are paired with
a difference of four between the members of a pair.
The second value in the pair causes the activity to
happen immediately and force the closure of any
open applications.

 We’ve seen in this section that we can discover a
lot of extremely valuable information about the con-
figuration of our systems using PowerShell and WMI.
We can also configure the machines remotely using
the same tools. These activities affect the machine,
but what can we do for the user? This aspect of the
desktop will be examined next.

Listing 7.9 Restarting the system

RebootB

C Shutdown

Value Meaning

0 Log off

4 Forced logoff

1 Shutdown

5 Forced shutdown

2 Reboot

6 Forced reboot

8 Power off

12 Forced power off

Table 7.1
Win32Shutdown values

203TECHNIQUE 48 Minimizing windows
Apago PDF Enhancer

7.3 User features
In an Active Directory-based environment, a lot of the configuration work that directly
affects the user will be performed by Group Policy. PowerShell isn’t directly usable
from Group Policy. There’s a certain amount of configuration work we may need to
perform, especially concerning the folders such as the desktop that are known as spe-
cial folders. Printers and the recycle bin are parts of the desktop environment that we
may need to work with when administering the user’s desktop.

 See appendix D for a list of special folders.
 As an introduction to special folders, we’ll work with the desktop folder.

TECHNIQUE 48 Minimizing windows

When working on a Windows machine, we often find ourselves in the position of hav-
ing multiple windows open. Many years ago when I spent my time directly supporting
users, I remember being called over by a user who was having difficulty opening a par-
ticular spreadsheet. After a bit of digging, we realized he already had the file open but
couldn’t see it because it was hidden behind a number of other windows. A function
to minimize all of the open windows would’ve been useful.
PROBLEM
I have too many windows open on my desktop and have lost track of what’s open. I
don’t want to close the applications, as I have work in progress using the applications.
SOLUTION
We can use the Shell object to help us in this situation, as in listing 7.10.

$a = New-Object -ComObject Shell.Application
$a.MinimizeAll()

The shell is the interface we work with in Windows OSs. The Shell COM object gives
us the ability to access and work with that shell. We can create an object representing
the shell by using New-Object. We need to use -ComObject, as this is COM-based. If we
don’t put in this parameter, PowerShell will assume that we’re trying to work with a
.NET object that it won’t be able to find. This will cause it to object (sorry) by throwing
an error.
DISCUSSION
There are a number of useful methods on the Shell object, which we can find by using:

$a | Get-Member

We can stop and start services, set the machine time, shut down Windows, and search
for files and printers, for example. Using the MinimizeAll() method, as shown in the
listing Get-Member produces, causes all of the windows to minimize. It’s possible to use
UndoMinimizeAll() to reverse this.

Listing 7.10 Minimizing desktop windows

TECHNIQUE 48

204 CHAPTER 7 Desktop
Apago PDF Enhancer

 Now we’ve minimized all of the windows we can see the desktop. Users seem to fall
into two groups—those who have hardly any icons on their desktops and those whose
desktop is completely covered in icons. There’s a problem with this last situation.

TECHNIQUE 49 Desktop contents

The problem with having a lot of icons on the desktop is that only a few characters of
the file or application name are displayed. This can lead to a lot of wasted time as we
search through the icons on the desktop looking for that elusive file.
PROBLEM
I have too many files and icons on my desktop. How can I see what’s really there?
SOLUTION
Using the Shell object, we can drill down into the desktop contents, as in listing 7.11.

$a = New-Object -ComObject Shell.Application
$desktop = 0x0
Get-ChildItem $a.Namespace($desktop).Self.Path

DISCUSSION
We start as before, by creating an instance of the Shell object. We need to set a vari-
able to represent the desktop. This is in hexadecimal format, as shown by the 0x pre-
fix. Appendix B lists the special folders and their representative values. A lot of the
scripts that you see on the web will have the values for the special folders shown
as hexadecimal.

 Get-ChildItem will return a list of the files in the desktop folder. We specify the
path to the desktop folder as shown.

Listing 7.11 Viewing the desktop contents

TECHNIQUE 49

Hexadecimal conversions
We can use the following function to convert a decimal number to hexadecimal:

Function tohex{
param ([int]$i =0)
[convert]::ToString($i,16)
}

This function accepts an integer as input and uses the System.Convert class to
convert the integer to a string represent a hexadecimal (base 16) number. This
method can also be used to convert to binary (base 2) and octal (base 8). If you
need to convert a hexadecimal number back to a decimal number, use this conver-
sion: [convert]::ToString(0xF,10). The number to be converted has to be pre-
sented in hexadecimal format.

205TECHNIQUE 51 Listing cookies
Apago PDF Enhancer

TECHNIQUE 50 Adding a file to the desktop
I store a number of small files on my desktop. Usually they’re pieces of information
that I know I’ll require on a frequent basis, such as the IP addressing scheme for my
virtualized environment (don’t ask) or important information such as the deadline
for my next chapter that I have to keep handy. Opening Notepad, typing the informa-
tion, and saving the file to the desktop is tedious. There’s an easier way to do it.
PROBLEM
We want to preserve the current process information in a file on the desktop so that
we can refer to it at a later time.
SOLUTION
This problem can be solved by modifying listing 7.11. We create the COM object repre-
senting the shell. We can then use the desktop namespace to create a file path, as in
listing 7.12.

$a = New-Object -ComObject Shell.Application
$file = $a.Namespace(0x0).Self.Path + "\process.csv"
Get-Process | Export-Csv -Path $file-NoTypeInformation

Get-Process can be piped into an Export-Csv that writes the data into our file.
-NoTypeInformation prevents the .NET type information being written to the first
line of the CSV file
DISCUSSION
We could create a string holding some data and pass that to Out-File to create a TXT
file on the desktop instead. If we need to access the file, we can create the file path as
shown.

TECHNIQUE 51 Listing cookies

Many internet sites will create a cookie to hold information relevant to your visit to the
site. The problem with cookies is that you don’t necessarily know that they’ve been
created. In the past, I’ve had problems with particular sites that changed in various
aspects. The cookies I had for the site wouldn’t work with the new version, so I had to
delete the cookies. Internet Explorer is an all-or-nothing proposition. It’d be better to
be able to find which cookies were causing the problem and delete only those, rather
than all cookies.
PROBLEM
What cookies have been saved on your machine? You don’t know?
SOLUTION
We can access the cookie folder (don’t you wish they’d been called jars rather than
folders?) and determine which cookies are present, as in listing 7.13.

Listing 7.12 Create a file on the desktop

TECHNIQUE 50

TECHNIQUE 51

206 CHAPTER 7 Desktop
Apago PDF Enhancer

$a = New-Object –ComObject Shell.Application
Get-ChildItem $a.Namespace(0x21).Self.Path |
Sort LastWriteTime -Descending

The shell object is created and the Get-ChildItem cmdlet is used to list the contents
of the cookie folder. We can sort the information using the PowerShell pipeline to
pass the objects into Sort based on LastWriteTime.
DISCUSSION
This means we can easily see the most recent cookies. It would be a simple matter to
replace Sort LastWriteTime –Descending with

Where {$_.LastWriteTime -le (Get-Date).AddDays(-90)} | Remove-Item

This would enable us to delete old cookies. Set the number of days to compare against
to a value that suits your system.

 Another special folder we need to consider is the recycle bin.

TECHNIQUE 52 Viewing recycle bin contents

When we delete a local file from our machines, it doesn’t immediately vanish. It’s
moved into the recycle bin for possible restoration. We need to empty the recycle bin
to finally remove the file.

ACKNOWLEDGMENT This script and the following one are adapted from a blog
post by Thomas Lee: http://tfl09.blogspot.com/2007/01/manipulating-
recycle-bin-in-powershell.html. These scripts don’t work on Windows Vista/
Windows Server 2008 and above, but alternatives are provided.

PROBLEM
It looks like an important file we need has been deleted. How can we check the recy-
cle bin to see if it’s there?
SOLUTION
The recycle bin is a special folder and can be accessed in the same way as the others,
as in listing 7.14.

$a = New-Object -ComObject Shell.Application
$rb = $a.NameSpace(0xa)
$rb.Self.InvokeVerbEx("Explore")

We create the shell object as before, but this time we create a variable representing the
recycle bin namespace B. Self represents the recycle bin folder. We use the Invoke-
Verb() method to explore (open) the recycle bin window C. This would make a use-
ful function that could be invoked with a single command.
DISCUSSION
The recycle bin folder can be investigated using our trusty Get-Member cmdlet:

$rb.Self | gm

Get-Member has gm as an alias.

Listing 7.13 Discovering cookies

Listing 7.14 Opening the recycle bin

TECHNIQUE 52

Recycle bin
namespace

B

Open binC

http://tfl09.blogspot.com/2007/01/manipulating-recycle-bin-in-powershell.html
http://tfl09.blogspot.com/2007/01/manipulating-recycle-bin-in-powershell.html

207TECHNIQUE 54 Sending a printer test page
Apago PDF Enhancer

 ALIASES I find I spend more time writing scripts than working interactively. I
only use aliases at the command prompt, and even then only the most com-
mon ones, as this ensures my scripts are understandable and portable. I rec-
ommend that custom aliases never be used in scripts. They may not be
present on other machines.

If we dig a little further, we find a verbs() method:

$rb.self.verbs()

The verbs in the list match the context menu you get when you right-click a desktop
object. We could use this method to open a file or application on the desktop. If
you’re using Windows Vista/Windows Server 2008 or above, this script may not work.
In that case, we can use plan B and access the recycle bin contents like this:

$a = New-Object -ComObject Shell.Application
$a.NameSpace(0xa).Items() | Format-Table Name, Path -AutoSize

The recycle bin has a verb that we can use to empty it, as we’ll see next.

TECHNIQUE 53 Emptying the recycle bin

The contents of the recycle bin can take up valuable disk space. We can reclaim this
space by emptying the recycle bin.

WARNING Once a file has been deleted from the recycle bin, there’s no native
way to restore that file. It means turning to our backup system. You do per-
form backups, right?

PROBLEM
It would be useful to empty the recycle bin on a periodic basis as part of our house-
keeping routines for a machine. Can we do that from a script?
SOLUTION
The recycle bin has an entry on its context menu to empty it. We gain access to the recy-
cle bin as before. We then use InvokeVerb() to trigger the action, as in listing 7.15. A
confirmation dialog box will pop up asking if you want to perform the action.

$a = New-Object –ComObject Shell.Application
$rb = $a.NameSpace(0xa).Self
$rb.InvokeVerb("Empty Recycle &Bin")

DISCUSSION
This technique works on Windows XP/2003 but not on Windows Vista/2008 or later.
An alternative for Vista, and above, would be to use this to pipe the items in the recy-
cle bin into Remove-Item:

$a = New-Object -Com Shell.Application
$a.NameSpace(0xA).Items() | Remove-Item -Recurse

TECHNIQUE 54 Sending a printer test page

One thing that sticks in my mind from my time directly supporting users is that a lot of
reported problems revolved around printing. My colleagues working in this area assure

Listing 7.15 Emptying the recycle bin

TECHNIQUE 53

TECHNIQUE 54

208 CHAPTER 7 Desktop
Apago PDF Enhancer

me that this still is the case. I dedicate the next couple of scripts to every administrator
who has had to troubleshoot a printing issue with the hope they may be of some help.
PROBLEM
One step that’s often needed when we start investigating printing issues is to attempt
to print a test page. This will quickly show whether we can communicate with the
printer. Usually we do this through the GUI controls, or we ask the user to do it on a
remote machine. Can we perform this action remotely?
SOLUTION
We’ve seen that WMI has the capability to access remote machines. There’s a WMI class
specifically meant for working with printers, as shown in listing 7.16.

Get-WmiObject -Class Win32_Printer | Select Name
$printer = Get-WmiObject -Class Win32_Printer
-Filter "Name = 'HP DeskJet 660C'"
$printer.PrintTestPage()

We need to start by checking the printers installed on the machine B. This enables us
to ensure that we’re working with the correct printer. The -computername parameter
can be used to specify a remote machine to access. Once we know the name of the
printer we need, we can use that in a filter C to create an object for the printer. A call
to the PrintTestPage() method produces the test page D.

PRIVILEGES When using Windows Vista/2008, we need to start PowerShell
with elevated privileges. We right-click the PowerShell icon and select Run As
Administrator.

DISCUSSION
We could test all printers on a machine using a foreach-object cmdlet and combin-
ing the lines of code. Alternatively listing 7.16 could be used to test a printer on a
number of machines. The return code would have to be checked to confirm the test
page was successfully printed.

 The other aspect of printers that we need to consider is the printer drivers that are
installed on the machine.

TECHNIQUE 55 Printer drivers

Printer drivers can cause issues. I’ve seen drivers for printers from the same manufac-
turer causing problems because they used different versions of the same file. We need
to be able to determine information about our printer drivers.
PROBLEM
We have a number of printers installed on the machine; how can we check that the
correct drivers are installed?
SOLUTION
WMI can provide this information—specifically the Win32_PrinterDriver class. A
Select statement will reduce the amount of data returned to us, as in listing 7.17. Use
Get-Member to determine other useful information that’s available.

Listing 7.16 Print a test page

B
C

D

TECHNIQUE 55

209TECHNIQUE 56 Creating an Excel spreadsheet
Apago PDF Enhancer

Get-WmiObject -Class Win32_PrinterDriver |
Select Name, ConFigFile, DependentFiles, Driverpath |
Format-List

DISCUSSION
We’ve examined the machine configuration and how we can work with features of
interest to the user such as the desktop and their printers. The last section in this
chapter will cover working with the standard Office applications Word and Excel.

7.4 Office applications
It’s a fair assumption to say that the Microsoft Office applications will be found on
almost every desktop machine in work environments. It’s possible to work with most
of the Office applications using PowerShell. There are COM objects representing most
of the them. In this section, we’ll concentrate on using Word and Excel, as these are
the two applications we’re most likely to use as administrators. We’ll start with Excel by
looking at how we can create a spreadsheet and then put data into it. Spreadsheets
seem much more useful when they have data. In the same way, we’ll look at creating a
Word document and how to push text into the document.

NOTE In this section, we’ll just look at using the COM methods to work with
Excel and Word. If the Office 2007 applications are in use, it’s possible to use
the OpenXML format for the documents. This involves delving into the
depths of XML, which may not appeal to all administrators. An example of
using OpenXML will be given at the end of this section.

The Microsoft Technet script center has a lot of VBScript examples of using Excel that
can be converted to PowerShell. The first thing we need to do is to create an Excel
spreadsheet.

TECHNIQUE 56 Creating an Excel spreadsheet

Creating an Excel spreadsheet should be a simple act, in theory. But there’s a slight
problem in the shape of a bug in Excel versions up to Excel 2007 that can prevent this
from working if you don’t happen to be in the U.S. After reading this, it won’t matter
where you live. If you’re using Excel 2010, then the first version in listing 7.18 can be
used wherever you live and work.
PROBLEM
We need to create an Excel spreadsheet from within a PowerShell script.
SOLUTION
The Excel.application COM object can be used to create a spreadsheet.

$xl = New-Object -ComObject "Excel.Application"
$xl.visible = $true
$xlbooks =$xl.workbooks.Add()

Listing 7.17 View printer drivers

Listing 7.18 Create Excel spreadsheet

TECHNIQUE 56

U.S. versionB

210 CHAPTER 7 Desktop
Apago PDF Enhancer

$xl = New-Object -ComObject "Excel.Application"
$xl.visible = $true
$xlbooks =$xl.workbooks
$newci = [System.Globalization.CultureInfo]"en-US"
$xlbooks.PSBase.GetType().InvokeMember("Add",
[Reflection.BindingFlags]::
InvokeMethod, $null, $xlbooks, $null, $newci)

DISCUSSION
If you live in the U.S. or are using a
machine that’s configured to the
U.S. locale—see the Control Panel ->
Regional and Language settings (fig-
ure 7.3). Then you can use the first
option in listing 7.18.

 Otherwise, you have to use the sec-
ond, international option. If you want
to remain with PowerShell rather than
succumbing to the GUI, you can check
the culture by typing $psculture (in
PowerShell v2). If en-US isn’t returned
then you need to use the second
option in listing 7.18.

 The simple way to create a spread-
sheet B starts by creating the COM
object using New-Object. We make it
visible. Administrators are clever peo-
ple, but working on an invisible
spreadsheet may be a step too far,
especially on a Monday morning. At this point, we have only the Excel application
open. We need to add a workbook to enable us to use the spreadsheet.

 If the machine isn’t using the U.S. culture—I live in England so $psculture
returns en-GB—we have two options. The first option is to change the culture on the
machine to en-US, which isn’t convenient. Otherwise, we have to use the second
option given in the listing.

 We start in the same way by creating the COM object and making the spreadsheet
visible. A variable $xlbooks is created that represents the workbooks in the spread-
sheet. A second variable $newci is created that represents the culture. Note that we’re
forcing the culture used to create the workbook to be U.S. English. The last line is a
bit complicated, but we’re dropping down into the base workbook object and invok-
ing the add method using the U.S. English culture. If you don’t want to see the long
list of data onscreen when this last line is run, then add | Out-Null to the end of the
line. This is awkward, but it does get us past the bug. The good news is that once we’ve
created our workbook, we can add data into it.

International versionC

Figure 7.3 Regional settings

211TECHNIQUE 57 Adding data to a spreadsheet
Apago PDF Enhancer

TECHNIQUE 57 Adding data to a spreadsheet
A spreadsheet without data isn’t much use to us, so we need to investigate how we can
add data into the spreadsheet and perform calculations on that data.
PROBLEM
We need to populate our spreadsheet with some data.
SOLUTION
Expanding on the previous script, we can create a worksheet to hold the data. The
starting point is to remove any previous versions of the spreadsheet B, as shown in
listing 7.19. We use Test-Path to determine whether the file exists and Remove-Item
to delete it. The -confirm parameter could be used with Remove-Item as an additional
check if required. This is useful if working with important data.

$sfile = "C:\test\test.xlsx"
if(Test-Path $sfile){Remove-Item $sfile}

$xl = New-Object -comobject "Excel.Application"
$xl.visible = $true
$xlbooks =$xl.workbooks
$newci = [System.Globalization.CultureInfo]"en-US"
$wkbk = $xlbooks.PSBase.GetType().InvokeMember("Add",
[Reflection.BindingFlags]
::InvokeMethod, $null, $xlbooks, $null, $newci)
$sheet = $wkbk.WorkSheets.Item(1)

$sheet.Cells.Item(1,1).FormulaLocal = "Value"
$sheet.Cells.Item(1,2).FormulaLocal = "Square"
$sheet.Cells.Item(1,3).FormulaLocal = "Cube"
$sheet.Cells.Item(1,4).FormulaLocal = "Delta"

$row = 2

for ($i=1;$i -lt 25; $i++){

 $f = $i*$i

 $sheet.Cells.Item($row,1).FormulaLocal = $i
 $sheet.Cells.Item($row,2).FormulaLocal = $f
 $sheet.Cells.Item($row,3).FormulaLocal = $f*$i
 $sheet.Cells.Item($row,4).FormulaR1C1Local = "=RC[-1]-RC[-2]"

 $row++
}

 [void]$wkbk.PSBase.GetType().InvokeMember("SaveAs",
[Reflection.BindingFlags]
::InvokeMethod, $null, $wkbk, $sfile, $newci)

[void]$wkbk.PSBase.GetType().InvokeMember("Close",
[Reflection.BindingFlags]
::InvokeMethod, $null, $wkbk, 0, $newci)
$xl.Quit()

The next step is to create the spreadsheet. In this case, I’ve used the international
method. Once the workbook is created, we can create a worksheet C. Worksheet

Listing 7.19 Add data to Excel spreadsheet

TECHNIQUE 57

Delete
previous files

B

Create
spreadsheet

C

Set headersD

Row counterE
Create dataF

SaveG

CloseH

QuitI

212 CHAPTER 7 Desktop
Apago PDF Enhancer

cells are referred to by the row and column as shown D by creating the column
headers.

 A counter is created E for the rows. A for loop F is used to calculate the square
and the cube of the loop index. This is a simple example to illustrate the point. In
reality, the data could be something like the number of rows exported compared to
the number of rows imported for each table involved in a database migration. Note
that the difference between the square and the cube is calculated by counting back
from the current column.

 We save the spreadsheet when all of the data has been written to it G and close the
workbook H. Note that we have to use a similar construction to adding a workbook,
in Excel 2007 and earlier, to get around the culture issue. If we were using the en-US
culture, those lines would become:

$wkbk.SaveAs("$file")
$wkbk.Close()

The last action is to quit the application I.
DISCUSSION
There are numerous reasons why you would want to record data into a spreadsheet
but the performance implications must be understood. Working with Excel in this
manner can be slow.

RECOMMENDATION Adding data into an Excel spreadsheet in this manner
can be extremely slow. In fact, painfully slow if a lot of data needs to be writ-
ten into the spreadsheet. I strongly recommend creating a CSV file with the
data and manually importing it into Excel instead of working directly with
the spreadsheet.

This technique could be used to create reports, for instance from some of the WMI-
based scripts we saw earlier. The machine name and relevant information could be
written into the spreadsheet. Alternatively, we can write the data to a CSV file and then
open it in Excel.

TECHNIQUE 58 Opening a CSV file in Excel

We have seen how writing data directly into a spreadsheet is slow. Slow tends to get frus-
trating, so we need another way to get the data into a spreadsheet. If we can write the
data to a CSV file, we can open that file in Excel. It’s much faster and more satisfying.
PROBLEM
Having decided that we need to speed up creating our spreadsheet, we need to open a
CSV file in Excel.
SOLUTION
The Open method will perform this action, as in listing 7.20.

$xl = New-Object -comobject "excel.application"
$xl.WorkBooks.Open("C:\Scripts\Office\data.csv")
$xl.visible = $true

Listing 7.20 Open a CSV file

TECHNIQUE 58

213TECHNIQUE 59 Creating and writing to a Word document
Apago PDF Enhancer

DISCUSSION
As with previous examples, we start by creating an object to represent the Excel appli-
cation. We can then use the Open method of the workbooks to open the CSV file. The
only parameter required is the path to the file. The full path has to be given. We then
make the spreadsheet visible so we can work with it.

 Alternatively we could use:

Invoke-Item data.csv

This depends on the default action in the file associations being to open the file in
Excel. Hal Rottenberg graciously reminded me of this one.

 The other major Office application is Word, which we’ll look at next.

TECHNIQUE 59 Creating and writing to a Word document

Creating a Word document is straightforward compared to creating an Excel spread-
sheet. There’s only a single method regardless of location. The ability to add text into
a Word document from within our script enables us to automate our processes and
create the reports detailing our activities all in one pass. This is efficiency.
PROBLEM
We need to create a report from within our script.
SOLUTION
We adapt the script from listing 7.18 to create the report. The New-Object cmdlet B
is used to create an instance of the Word.Application object, as shown in listing 7.21.
Note that we need to tell PowerShell we’re dealing with a COM object. If this is forgot-
ten, the error message will say that it can’t find the type word.application and tell
you to check that the assembly is loaded.

$word = New-Object -ComObject "Word.application"
$word.visible = $true
$doc = $word.Documents.Add()
$doc.Activate()

$word.Selection.Font.Name = "Cambria"
$word.Selection.Font.Size = "20"
$word.Selection.TypeText("PowerShell")
$word.Selection.TypeParagraph()

$word.Selection.Font.Name = "Calibri"
$word.Selection.Font.Size = "12"
$word.Selection.TypeText("The best scripting language in the world!")
$word.Selection.TypeParagraph()

$file = "c:\scripts\office\test.doc"
$doc.SaveAs([REF]$file)
$Word.Quit()

The Word application is made visible so that we can work with it. Finally, we add a doc-
ument to the application. At this point, we have a blank document to start typing into,
exactly as if we’d double-clicked on the Word icon. We can take this a stage further by
writing text into the document from our script.

Listing 7.21 Add text to a Word document

TECHNIQUE 59

Create Word
document

B

Add headerC

D Add text

Save documentE
Quit WordF

214 CHAPTER 7 Desktop
Apago PDF Enhancer

 A header can be added C by defining a font name, a font size, and the text to be
added. The TypeParagraph() method is used to denote a new paragraph. These
actions are repeated D to add text to the document. The script closes by defining the
filename to be used by the file; we save the file E using the REF to reference the file-
name in the variable and then quit Word F.
DISCUSSION
This approach could be used to document machine information. The information is
produced by utilizing the WMI scripts described in the first part of the document. It’s
written into a Word document by a variation of this script.

TECHNIQUE 60 Creating a configuration report

This is the fun part of the chapter where we combine everything we’ve learned previ-
ously to produce a Word document from a PowerShell script that will document our
system. The document will be produced using the COM approach we’ve used so far,
and as a bonus we’ll look at using the OpenXML format for Word documents that was
introduced with Office 2007.

 The OpenXML document format is in effect a set of XML files within a zip file. The
files can be examined by changing the extension (DOCX) of a Word 2007 document
to ZIP. Opening the zip file allows the individual files to be read. We need to use XPath
functionality to work with these files. XPath is a technology not usually associated with
administrators! A tutorial on XPath can be found at http://www.w3schools.com/
XPath/default.asp.

 Before we can work with OpenXML documents, we need to load the OpenXML
Power Tools. The binaries can be downloaded from the links in appendix E. First off,
we’ll work with the Word COM object.
PROBLEM
A configuration report must be produced for a system. The report must be created in
a Word document for distribution.
SOLUTION
The configuration information can be obtained by using the WMI scripts from the first
section of the chapter. This script brings together a number concepts starting with a
function B. The function takes three parameters that contain the font name, the font
size, and the text to be written into the document, as shown in listing 7.22. Within the
body of the function, the font name and size are set. The text is written and the para-
graph is closed.

function add-data {
param ($font, $size, $text)
$word.Selection.Font.Name = $font
$word.Selection.Font.Size = $size
$word.Selection.TypeText("$text")
$word.Selection.TypeParagraph()
}

Listing 7.22 Create a configuration report

TECHNIQUE 60

Write dataB

http://www.w3schools.com/XPath/default.asp
http://www.w3schools.com/XPath/default.asp

215TECHNIQUE 60 Creating a configuration report
Apago PDF Enhancer

$hdfont = "Cambria"
$hdSize = "13"
$txfont = "Courier"
$txSize = "8"

$word = New-Object -ComObject "Word.application"
$word.visible = $true
$doc = $word.Documents.Add()
$doc.Activate()

$name = (Get-WmiObject -Class Win32_ComputerSystem).Name
add-data "Cambria" "14" "Configuration report for $name"

$text = "Computer System"
add-data $hdfont $hdsize $text
$text = Get-WmiObject -Class Win32_ComputerSystem |
Select Name, Manufacturer, Model, CurrentTimeZone,
TotalPhysicalmemory | Out-String
add-data $txfont $txsize $text.Trim()

$text = "Operating System"
add-data $hdfont $hdsize $text
$text = Get-WmiObject -Class Win32_OperatingSystem |
Select Name, Version,ServicePackMajorVersion,
ServicePackMinorVersion, Manufacturer, WindowsDirectory,
Locale, FreePhysicalMemory, TotalVirtualMemorySize,
FreeVirtualMemory | Out-String
add-data $txfont $txsize $text.Trim()

$text = "Processor"
add-data $hdfont $hdsize $text
$text = Get-WmiObject -Class Win32_Processor |
select Manufacturer, Name, NumberOfCores,
NumberofLogicalProcessors, Version,
 L2CacheSize, DataWidth | Out-String
add-data $txfont $txsize $text.Trim()

$text = "BIOS"
add-data $hdfont $hdsize $text
$text = Get-WmiObject -Class Win32_Bios |
Select -Property BuildNumber, CurrentLanguage,
InstallableLanguages, Manufacturer, Name, PrimaryBIOS,
ReleaseDate, SerialNumber, SMBIOSBIOSVersion,
SMBIOSMajorVersion, SMBIOSMinorVersion, SMBIOSPresent,
Status, Version | Out-String
add-data $txfont $txsize $text.Trim()

$text = "Page File"
add-data $hdfont $hdsize $text
$text = Get-WmiObject -Class Win32_PageFileUsage |
Select AllocatedBaseSize, CurrentUsage, Description,
InstallDate, Name, PeakUsage | Out-String
add-data $txfont $txsize $text.Trim()

$text = "IP Address"
add-data $hdfont $hdsize $text
$text = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
-Filter "IPEnabled = True" |

Set constantsC

Create documentD

Write
header

E

Write config-
uration data

F

216 CHAPTER 7 Desktop
Apago PDF Enhancer

Select DNSHostName, Caption, MACaddress, IPAddress,
IPSubNet, DefaultIPGateway, DHCPEnabled, DHCPServer,
DHCPLeaseObtained, DHCPLeaseExpires, DNSServerSearchOrder,
DNSDomainSuffixSearchOrder, WINSPrimaryServer,
 WINSSecondaryServer | Out-String
add-data $txfont $txsize $text.Trim()

$file = "c:\scripts\office\$name config report .doc"
$doc.SaveAs([REF]$file)
$Word.Quit()

The body of the script starts by defining some constants C for font names and sizes.
Note that the sizes are defined as strings rather than integers. A Word document is
created D using the technique from the previous script.

 At this point, we can start adding our configuration information into the docu-
ment. The computer name is retrieved using the Win32_ComputerSystem class E and
substituted into a string that’s passed into the function we defined at the beginning of
the script.

FUNCTION DEFINITIONS Functions must be defined before they’re used. Best
practice is to do it at the beginning of the script.

The configuration data can now be added to the document. I’ve chosen to use the WMI
scripts from earlier in this chapter. Other WMI classes are available. The script is mod-
ular, so it’s easy add or change the WMI classes used to derive the configuration infor-
mation. For each set of configurations F, we define a title such as "Computer System"
that we write using the header font and size we defined in the constants C. Using Get-
WmiObject with our chosen class, we select the properties we want to record. The infor-
mation is piped into Out-String so that a string is available to write into the Word doc-
ument, rather than trying to write the object! The add-data function is used to write the
data as previously, but we use the Trim method to remove the whitespace from before
and after the data. This isn’t essential, but it does make the report look better.

 The Courier font is used for the data to ensure that spacing and formatting is pre-
served. Courier is a fixed-space font, so each character takes up the same amount of
space. If a proportional spaced font such as Calibri (default in Word 2007) is used, the
formatting will be lost.

 When all of the configuration data has been written into the file, we need to create
a filename that incorporates the machine name G and then save and close the file.
The configuration reports can be kept in a common folder. As WMI can be used to
access remote machines, the computer name can be used in the Get-WmiObject cmd-
let. The computer name can be passed into the script as a parameter.
DISCUSSION
As an alternative to using the COM object, we can create a Word document using the
OpenXML format, as in listing 7.23. This may seem more complicated than using the
more traditional COM object (and it is), but by adopting a standard approach using
functions, we can make it straightforward. By comparing the two methods in this way,
we can use a method we understand to help us understand the new method.

Save and closeG

217TECHNIQUE 60 Creating a configuration report
Apago PDF Enhancer

function add-header{
param ($text)
$content = "<w:p><w:r><w:t>$text</w:t></w:r></w:p>"
Add-OpenXmlContent -Path $file -PartPath '/word/document.xml' `
-InsertionPoint '/w:document/w:body/w:p[last()]|/w:styles/w:style[1]' `
-Content $content -SuppressBackups

Get-OpenXmlStyle -Path $template | `
Set-OpenXmlContentStyle -Path $file `
-InsertionPoint '/w:document/w:body/w:p[last()]' `
-StyleName 'Heading2' -SuppressBackups
}

function add-text{
Get-Content data.txt | foreach {
if ($_ -ne "") {
 $content = "<w:p><w:r><w:t>$_</w:t></w:r></w:p>"
 Add-OpenXmlContent -Path $file -PartPath '/word/document.xml' `
 -InsertionPoint '/w:document/w:body/w:p[last()]|/w:styles/w:style[1]' `
 -Content $content -SuppressBackups

 Get-OpenXmlStyle -Path $template | `
 Set-OpenXmlContentStyle -Path $file `
-InsertionPoint '/w:document/w:body/w:p[last()]' `
 -StyleName 'ConfigData' -SuppressBackups
 }
}
}

$date = (Get-Date).ToString()
$name = (Get-WmiObject -Class Win32_ComputerSystem).Name
$file = "c:\scripts\office\$name config report.docx"
Export-OpenXmlWordprocessing
-Text "Configuration report for $name at $date"
-OutputPath $file

$template = "C:\Scripts\PowerShellinPractice\Chapter 07\Template.docx"
Get-OpenXmlStyle -Path $template | Set-OpenXmlStyle -Path $file
-SuppressBackups

Get-OpenXmlStyle -Path $template | `
Set-OpenXmlContentStyle -Path $file -InsertionPoint '/w:document/w:body/

w:p[1]' `
-StyleName 'Heading1' -SuppressBackups

add-header "Computer System"
Get-WmiObject -Class Win32_ComputerSystem |
Select Name, Manufacturer, Model,
CurrentTimeZone, TotalPhysicalmemory |
Out-File data.txt
add-text

add-header "Operating System"
Get-WmiObject -Class Win32_OperatingSystem |
Select Name, Version,ServicePackMajorVersion,
ServicePackMinorVersion, Manufacturer,
WindowsDirectory, Locale, FreePhysicalMemory,

Listing 7.23 Using OpenXML Add paragraph
header

B

Add paragraph
text

C

Create file
name

D

Open
template file

E

FSet report header

Create
report items

G

218 CHAPTER 7 Desktop
Apago PDF Enhancer

TotalVirtualMemorySize, FreeVirtualMemory |
Out-File data.txt
add-text

add-header "Processor"
Get-WmiObject -Class Win32_Processor |
select Manufacturer, Name, NumberOfCores,
NumberofLogicalProcessors, Version, L2CacheSize,
DataWidth | Out-File data.txt
add-text

add-header "BIOS"
Get-WmiObject -Class Win32_Bios |
Select -Property BuildNumber, CurrentLanguage,
InstallableLanguages, Manufacturer, Name,
PrimaryBIOS, ReleaseDate, SerialNumber,
SMBIOSBIOSVersion, SMBIOSMajorVersion,
SMBIOSMinorVersion, SMBIOSPresent, Status,
 Version | Out-File data.txt
add-text

add-header "Page File"
Get-WmiObject -Class Win32_PageFileUsage |
Select AllocatedBaseSize, CurrentUsage, Description,
InstallDate, Name, PeakUsage | Out-File data.txt
add-text

add-header "IP Address"
Get-WmiObject
-Class Win32_NetWorkAdapterConfiguration
-Filter "IPEnabled = True" |
Select DNSHostName, Caption, MACaddress, IPAddress,
IPSubNet, DefaultIPGateway, DHCPEnabled, DHCPServer,
DHCPLeaseObtained, DHCPLeaseExpires, DNSServerSearchOrder,
DNSDomainSuffixSearchOrder, WINSPrimaryServer,
WINSSecondaryServer | Out-File data.txt
add-text

The script starts by defining two functions. One function B is used to write the para-
graph headers in the report; the second C is used to add the body of the text in the
paragraph. The functions will be explained later in the context of creating the report.

 The body of the script opens by using Get-Date D to retrieve the current date. A
filename is constructed after we’ve retrieved the computer name. The Export-Open-
XMLWordProcessing cmdlet is used to create the document. We need to give the cmd-
let some text to put into the document and the filename.

 When using the COM model in the previous script, we set the style of the text, the
font and size, before we wrote the text. In the OpenXML format, we set the style after
the text has been written. We have to define a template file E from which we can use
the styles defined in it.

TEMPLATE FILE The template file I used in this example is available in the
scripts download for this chapter.

We get the styles from the template file and put them into the report file we’re creating.
Note the use of the -SuppressBackups parameter F. This prevents a backup of the file

Create report
items

G

219Summary
Apago PDF Enhancer

being generated. I recommend using this parameter to stop your disk filling with lots
of copies of your file. The default setting is that a backup is produced at every change.

 Having defined the template document, we can use Get-OpenXmlStyle and Set-
OpenXmlContentStyle to set the font and size of the text. The -InsertionPoint
parameter takes an XPath definition, which reads as the first paragraph in the body of
the document.

 After this point, the report creation consists of defining the paragraph header G
and passing it to the add-header function, followed by the use of a WMI class to gener-
ate the report text. In this case, we have to write the text to a file and then call the
add-text function.

 add-header takes the text as a parameter and puts it into the correct XML tags to
define its position in the paragraph. Add-OpenXmlContent writes the XML into the file.
Remember that a DOCX file is a compressed set of XML files. The actual text is stored
in the document.xml file in the Word folder. An insertion point of the last paragraph
is used to ensure that the data doesn’t get overwritten. Backups are suppressed. The
second part of the function sets the style of this text as discussed earlier.

 The add-text function is similar, except it reads the contents of the file and for
each record checks whether the string is empty. If it’s not empty, the string is written
into the document and the font set to Courier by using the ConfigData style.

 In some ways, the OpenXML format is easier to use, and in others it’s harder. It’s
the format that will be most used in the future. Wise administrators will ensure that
they have at least an understanding of how to work with it.

7.5 Summary
Administering the desktop estate in our environments can consume a large propor-
tion of our time and effort. Much of the effort is spent discovering basic information
about the systems showing problems. We can automate the discovery process using
PowerShell and WMI. This can consist of a standard script returning a basic set of
information and scripts that enable us to dig deeper to resolve particular issues. The
issue can then be resolved using WMI and PowerShell, providing us with a powerful
discovery and resolution method.

 The user’s desktop can be investigated using COM functionality to access the spe-
cial folders. We can discover how things are configured, and then manipulate and
change them as required.

 The Office applications are extremely widespread in the Windows environment.
We can create and access documents using these applications in PowerShell. This
enables us to produce a reporting and documentation system for our machines based
on using PowerShell with WMI and COM.

 There are other aspects of a machine configuration and well-being, such as pro-
cesses, services, event logs, and the registry that need to be included in this frame-
work. These will be covered in the next chapter, which has sections that could also be
applied to the desktop. Likewise, a large part of the material in this chapter could be
applied to servers as well as desktops.

Apago PDF Enhancer

Apago PDF Enhancer

Part 3

Working with servers

In the previous two parts of the book, we learned how to use PowerShell.
We’ve taken that knowledge and applied it to performing administration tasks
that directly impact the user community. In part 3, we’ll turn our attention to
working with Windows servers and the applications that run on our servers.

 Desktop administration tends to be about performing the same acts on many
machines. Server administration is about performing a wider range of actions
on a smaller number of machines. The other major difference is that an individ-
ual desktop machine having problems doesn’t impact the business (unless it
belongs to a senior manager, of course). A server that’s having problems could
stop a business-critical application and have a major impact on the business.
Server administration has a bigger impact on the user community than desktop
administration, as it affects the whole user community rather than an individual.

 Server administration should be taken to mean remote administration. The
servers are usually in a data center that may be at the other end of the building
or the other end of town. In some cases, the data center may be in a different
part of the country or even a different country. We shouldn’t assume that we can
gain physical access to the servers. Work remotely and embrace automation. It
leaves more time for the fun things such as investigating what we can administer
with PowerShell and how we can perform those actions remotely.

 We’ll start our look at servers in chapter 8 by understanding how to adminis-
ter the basic aspects of a Windows server, including the filesystem, services, pro-
cesses, the Registry and the event logs. While reading this chapter, keep in mind
that parts of the material we covered in chapter 7 can be applied to servers also.

Apago PDF Enhancer

 DNS, AD structure, AD topology, Exchange 2007, IIS 7, and SQL Server are covered
in chapters 9 to 14. In each chapter, we’ll look at how to administer the individual appli-
cation from an “on-server” and remote viewpoint. In many cases, the same tools allow
both. Some applications, such as IIS 7 and SQL Server, supply multiple methods of
administration by PowerShell. We’ll examine the options and make recommendations
as to the best tools to use in particular circumstances. Chapter 15 brings together some
of the innovations in the PowerShell world and how these can be applied.

Windows servers
Apago PDF Enhancer

This chapter opens the third and major part of the book, where we look at how we
can administer our Windows servers, and the applications they host, by using
PowerShell.

 REMEMBER Many of the scripts and tasks that were covered in chapter 7
also need to be performed on servers. Likewise, some of the material in
this chapter can be applied to desktop machines. The two chapters form a
bridge between the desktop and server aspects of administrator’s activities.

In the introduction to this part, I made the point that server administration should
be viewed as an activity to be performed remotely. PowerShell has a number of ways
of supplying the capability to perform remote administration:

This chapter covers
■ Services and Processes
■ Administering the filesystem
■ Working with the Registry
■ Managing Event Logs
223

224 CHAPTER 8 Windows servers
Apago PDF Enhancer

■ Some cmdlets have a remote capability.
■ Scripts can use WMI or .NET to access remote systems.
■ PowerShell v2 brings a remoting capability based on the Windows Remote Man-

agement service.
■ Some PowerShell providers, for example the one in SQL Server 2008, provide

access to remote machines.

The techniques that apply in a given situation will be highlighted, as will any known
issues with the remote capability. In all cases, firewalls can block access via these
remoting technologies. Make sure that the firewall on the remote computer doesn’t
block the required protocols.

 In this chapter we’ll start by looking at how we’ll administer our Windows server.
This will create the foundation for later chapters, when we look at the applications
hosted on the servers.

8.1 Automating server administration
One of my main areas of work is as an IT architect. I spend my time designing and
implementing systems to solve business problems. One of the first things I have to
do when presented with a new problem is to determine the customer’s require-
ments. The same concept applies to server administration. What are our require-
ments? We can’t decide how we’ll automate our administration until we know what
we’ll administer.

 When we think about administering the server itself rather than the applications
hosted on it, we tend to arrive at the following suspects:

■ Services
■ Processes
■ Filesystem
■ Registry
■ Event logs

The system configuration section from chapter 7 is also applicable to servers. Many of
the scripts presented in that section are WMI-based and are therefore directly applica-
ble to remote administration. Anything to save you from running around so much.

 Services and processes define what’s running on the server. These, in many cases,
are the applications we’ll be dealing with in subsequent chapters. At this stage we’re
concerned with the basics; are they running and how do we manage them?

 The filesystem is an essential part of any server. We need to be able to work with
files and the folder hierarchy irrespective of the applications in use. The registry is a
repository of configuration information that we have to be able to access. We’ll see the
registry provider in action. Now you can do a dir through the registry. Awesome!

 Event logs are where we find the diagnostic information we need when things go
wrong. Reading the data in the event logs is good, but we also need to be able to write
to the event logs and even create our own logs.

225Services and processes
Apago PDF Enhancer

 We need to consider one more thing before we dive into all the fun stuff with Pow-
erShell. There’s a new kid on the block in the Windows world: Windows Server Core.

8.1.1 Server Core

Server Core is an install option for Windows Server 2008 (and R2). It’s a stripped
down version without a GUI, which may seem an odd option for a Windows system.
The command prompt is the only way to locally manage a Server Core machine,
though GUI tools can be used from a remote machine. Once chosen, the only way to
revert to a GUI-based version of Windows is to reinstall. Likewise, a GUI-based version
of Windows can’t be converted to a Server Core version without reinstalling.

 One of the real benefits of running Server Core is the reduced number of services,
leading to a reduced patching requirement. Anything that reduces patching is a bene-
fit to an administrator.

 There are a number of roles for which Server Core is ideal, including domain con-
trollers, DNS servers, or file and print servers. One thing that’s missing in the original
Windows Server 2008 release is the .NET framework. This means that ASP.NET can’t be
used, and also PowerShell can’t be installed in the normal way. (Dmitry Sotnikov has
shown how it’s possible to install PowerShell v2 on a Server Core machine: http://
dmitrysotnikov.wordpress.com/2008/05/15/powershell-on-server-core/.)

NOTE Sotnikov’s method for installing PowerShell on Server Core isn’t a sup-
ported or recommended approach for production machines. It should be
viewed as a proof of concept. Many aspects of a Server Core installation can
be managed remotely via WMI.

In Windows Server 2008 R2, a subset of the .NET framework can be installed on Server
Core, meaning that PowerShell is available as an optional feature. If you’re using
Server Core in your environment consider upgrading to R2 if at all possible.

 The first things we need to look at are services and processes. In other words,
what’s running on our systems and how can we manage them.

8.2 Services and processes
Services and processes together make up the applications running on our systems.
Some services such as Exchange or SQL Server provide applications; others provide
the background functionality we need for a healthy, working system. Knowing what’s
running, and possibly more importantly, what should be running, gives us a powerful
administrative handle on our systems.

 Some of the processes we have running are from applications we’ve explicitly
started. PowerShell can be used to manage the processes we have running, including
the creation of new processes. There’s a mesh of dependencies between services on a
Windows system. We could use the GUI tool to trace these, but it’s easier with Power-
Shell as we’ll see. We can even display the information graphically, which can make
the dependencies more obvious.

http://dmitrysotnikov.wordpress.com/2008/05/15/powershell-on-server-core/
http://dmitrysotnikov.wordpress.com/2008/05/15/powershell-on-server-core/

226 CHAPTER 8 Windows servers
Apago PDF Enhancer

TECHNIQUE 61 Service health check
One common troubleshooting scenario is that a service has stopped for some reason.
It’s not necessarily the primary service that’s causing the problem, but a service on
which that service is dependent that’s having problems. Big fleas have little fleas upon
their back to bite ’em and little fleas have...
PROBLEM
We need to view the services installed on the system to determine which services are
running and if any of their dependent services haven’t started.
SOLUTION
PowerShell provides a Get-Service cmdlet that we can use to investigate the status of
our services. In PowerShell v1, this script can only be run against the local system. If
we want to work with remote systems, we need to use WMI. PowerShell v2 adds a com-
putername parameter so we could modify the script to incorporate the dealing with
services on remote computers.

NOTE PowerShell v2 also adds DependentServices and RequiredServices
parameters. These will only show the status of the dependent or required ser-
vice. The status of the parent service isn’t shown. The script could be modi-
fied to work with these parameters if required.

The script in listing 8.1 starts by using Get-Service in its default mode to generate a
list of services installed on the local machine B. The list is sorted by the display name
of the service. This is the name that’s shown in the Services administration tool. The
display name isn’t necessarily the same as the service name, as can be seen by running
Get-Service, or by looking at the examples in table 8.1.

The services are piped into a foreach cmdlet that performs the bulk of the work in
the script. An initial check on the status of the service is used to determine how the
information is displayed. A service that’s stopped C will be displayed with red text on
a white background, whereas a running service D will be displayed in the normal col-
ors normally used by PowerShell. Note how `n is used to force the display to be on a
new line in the Write-Host.

NOTE The colors can be easily changed depending on the colors used on
your machine. The list of allowable colors can be seen in the help file for
Write-Host.

Name Display name

Afd Ancilliary Function Driver for Winsock

Tdx NetIO Legacy TDI Support Driver

NSI Network Store Interface Service

TECHNIQUE 61

Table 8.1
Sample service names and display names.

227TECHNIQUE 61 Service health check
Apago PDF Enhancer

After displaying the status of the service, we perform a Get-Service on the individ-
ual services and expand the property that holds the services that are depended
on E. Another foreach is used to display whether these services are stopped F or
running G.

Get-Service |Sort -property DisplayName | foreach{
 If ($_.Status -eq "Stopped") {
 Write-Host "`n $($_.DisplayName) is $($_.Status)" `
 -foregroundcolor Red -backGroundColor White}
 Else {Write-Host "`n $($_.DisplayName) is $($_.Status)" }

 Get-Service $_.Name |
 Select -ExpandProperty ServicesDependedOn | foreach{
 If ($_.Status -eq "Stopped") {
 Write-Host "`t is dependent on $($_.DisplayName) `
 which is $($_.Status)" `
 -foregroundcolor Red -backGroundColor White }
 Else { Write-Host "`t is dependent on $($_.DisplayName) `
 which is $($_.Status)" }
 }
}

DISCUSSION
Exchange Server 2007 has a cmdlet that produces similar output for the Exchange
services. Variants could be written that just tested the SQL Server services, for
instance.

 One interesting variation is to display the results graphically. Netmap is a tool that
can be used to create and view network graphs. PowerShell scripts to work with it can
be downloaded from http://dougfinke.com/blog/?p=465. As an example, we could
look at the DHCP client service. The services that the DHCP client is dependent on are
listed in table 8.1. But as figure 8.1 shows, there’s a further layer of dependencies in
that the Tdx and NSI services both have dependent services. This diagram could be
extended to include all services, but the level of detail wouldn’t lend itself to being
easily reproduced.

 Now that we know what services are on our systems, how do we go about managing
them?

Listing 8.1 Service health check List services B

DDisplay running service

GDisplay running

F
Display
stopped

Display
stopped
service

C

E

List
required
services

Figure 8.1 Hierarchy of
services on which the DHCP
client service is dependent.
There are three primary
dependencies, two of which
have a further dependent
service. All of the services in
the hierarchy must be
working for DHCP to work.

http://dougfinke.com/blog/?p=465

228 CHAPTER 8 Windows servers
Apago PDF Enhancer

TECHNIQUE 62 Managing services
There are a number of cmdlets available to manage services:

The cmdlet names are self-describing in terms of functionality. In PowerShell v1, the
service cmdlets are restricted to the local machine. This is extended in version 2, in
that Get-Service and Set-Service have a -computername parameter added so we can
work with remote systems. It’s not possible to use the ReStart-, Resume-, Start-,
Stop-, or Suspend-Service cmdlets against a remote machine. We can perform these
actions using WMI or the Set-Service cmdlet. Set-Service can work with the service
startup type, but Get-Service can’t display the startup type because the .NET object
doesn’t incorporate the startup type.
PROBLEM
Many of our major applications run as services, for example SQL Server and
Exchange. How can we quickly, and easily, determine which services are running if the
users report problems accessing the systems?
SOLUTION
PowerShell and WMI, where necessary, enable us to view and manage the services on
our systems. The first thing we usually want to know is whether our services are run-
ning. In PowerShell, whenever we have to retrieve information, the verb to use is Get.
We’re dealing with services, so our command in listing 8.2 becomes Get-Service B.
The standard output is shown in the truncated listing and consists of the service
name, display name, and its status in terms of whether it’s running. With PowerShell
vv2, we can interrogate the services on remote machines by using a -ComputerName
parameter. Alternatively, we can use the Win32_Service WMI class. The cmdlets that
have a –ComputerName parameter use the local credentials and don’t allow them to be
changed. Get-WmiObject does allow the use of alternate credentials.

 The PowerShell pipeline enables us to take the results of our discovery C. In this
case, we want all of the services whose name starts with the letter S and we can use
Where-Object to limit our output to those services that are actually running. We could
take this a step further and pipe these results in to a Stop-Service cmdlet. We find all
of the running services whose names start with S and stop them.

NOT ME I often include this in PowerShell introductory sessions. Strangely
enough, none of the people who encourage me to try this in the demonstra-
tion are willing to perform the same action on their machines.

This leads to a reminder about one of PowerShell’s failsafe mechanisms—the -whatif
parameter D. We can see what the results of our actions would be if we actually

■ Get-Service ■ New-Service

■ Restart-Service ■ Resume-Service

■ Set-Service ■ Start-Service

■ Stop-Service ■ Suspend-Service

TECHNIQUE 62

229TECHNIQUE 63 Managing processes
Apago PDF Enhancer

performed them by using -whatif, as in listing 8.2. It’s a good idea to test these types
of actions using -whatif.

PS> Get-Service

Status Name DisplayName
------ ---- -----------
Running AEADIFilters Andrea ADI Filters Service
Running AeLookupSvc Application Experience
Stopped ALG Application Layer Gateway Service
Running AppHostSvc Application Host Helper Service
Running Appinfo Application Information
Stopped AppMgmt Application Management

Listing truncated to save space

Get-Service s* | where {$_.Status -eq "Running"}

Get-Service s* | where {$_.Status -eq "Running"} |
Stop-Service -whatif

$s1 = Get-WmiObject -class Win32_Service -Filter "Name='W32Time'"
$s1.stopservice()

DISCUSSION
WMI can also be used to manage services. But be aware that the *-Service cmdlets
don’t use WMI to perform their functions. We can use WMI directly to manage ser-
vices E. Using the Win32_Service class will return information about all services.
The -Filter parameter can be used to restrict the action to a single service as
shown. Get-Member can be used to view the list of properties and methods available
when using this WMI class:

$s1 | Get-Member

There’s a method that will stop the service. A -whatif parameter isn’t available when
using the StopService() method in WMI. The service will be stopped immediately.
WMI gives us the ability to administer services on remote machines. In PowerShell v2,
some of this functionality is available through the Set-Service cmdlet.

TECHNIQUE 63 Managing processes

Processes are the other major area we have to look at in this section. We’re often deal-
ing with applications such as Microsoft Word when we think of processes. All pro-
cesses consume resources, usually thought of as CPU cycles and memory (physical and
virtual). As administrators, we need to be aware of the resources that applications are
consuming. It could be that an application is taking more resources than it should,
which is having an adverse effect on other processes.
PROBLEM
One common scenario for an administrator is that the phone rings and an irate voice
tells you that the system is running slow, which is stopping everyone from working

Listing 8.2 Managing services

Get-ServiceB

Filter Get-
Service

C

Stop-ServiceD

E
WMI and
services

TECHNIQUE 63

230 CHAPTER 8 Windows servers
Apago PDF Enhancer

properly. There are numerous possible reasons that could cause this slowdown. One
area that has to be investigated is how the processes are using CPU and memory.
SOLUTION
Get-Process is at the heart of any understanding of resource usage by processes. We
can use it to view the CPU and memory usage by process. Get-Process is the cmdlet
that we need when we want to investigate processes. In PowerShell v2, it gets a -Com-
puterName parameter so that we can look at the processes on remote machines. In
PowerShell v1, we can use the Win32_Process WMI class to achieve the same goal as
Get-WMIObject can access remote machines. The default output of Get-Process in
listing 8.3 B shows a number of useful pieces of information, including:

■ CPU usage
■ Physical memory usage-both paged and nonpaged
■ Virtual memory usage
■ Working set size
■ Number of handles

We can restrict the data by only asking for particular processes, either filtering by
name or by property, as in listing 8.3. Get-Process returns a large number of proper-
ties. They can be viewed by using Get-Member C. The default display is to show the
processes sorted by name.

PS> Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 27 1 368 1624 11 496 AEADISRV
 112 3 1096 3972 35 1148 Ati2evxx
Listing truncated for brevity

 574 31 45636 96404 319 540.84 4932 WINWORD
 611 17 27872 32336 174 10.94 4384 wlcomm
 1105 71 116916 103724 373 224.16 3696 wlmail
 37 2 768 2456 22 3100 XAudio

Get-Process | Get-Member

Get-Process | sort cpu -Descending | Select -First 5
Get-Process | Sort PM -Descending | Select -First 5
Get-Process | Sort WS -Descending | Select -First 5

Get-Process | Select Name, `
@{Name="CPU(s)";
Expression={if ($_.CPU -ne $()) {$_.CPU.ToString("N")}}}, `
@{Name="Mem";Expression={($_.PM+$_.WS)/1kb}}, `
@{Name="VM(M)";Expression={[int]($_.VM/1mb)}}, Handles |
Sort Mem -Descending | Select -First 5 |
Format-Table Handles, Mem, "VM(M)", Name -AutoSize

Get-Process notepad | Stop-Process

Listing 8.3 Managing processes

List processesB

Process
properties

C

D Sorting

E
Calculated
display

Kill
process

F

231TECHNIQUE 64 Launching processes
Apago PDF Enhancer

DISCUSSION
In many cases, we’re more interested in the processes that are consuming most of a
particular resource, usually CPU or memory. PowerShell has a Sort-Object cmdlet.
We can sort by various properties and select the top five, or whatever seems suitable,
and just display those processes D. This is a useful technique, but the results shown by
sorting by Paged Memory (PM) and Working Set (WS) for instance will be slightly dif-
ferent. What we really need is a combined measure that will show those processes that
take the most memory overall.

 We can’t do this directly. But by starting with Get-Process E we can calculate what
we need. The bulk of the work is performed in the Select-Object cmdlet. In addition
to selecting the process name and handles, we calculate three fields. The CPU(s) field
gives a neater display in that CPU usage is rounded to two decimal places. Note how
the if statement is used in the Expression script block. The Mem field simply adds
the WS and the PM, with the result returned as kilobytes. As a contrast, the virtual
memory is returned as an integer number of megabytes.

 We can sort on calculated fields. In this case the combined memory calculation. The
first five results are selected and Format-Table is used to control the order of display.

ONE LINE In listing 8.3 E is a single line of PowerShell code! It’s split for clar-
ity of display purposes.

The thought process that has brought us to this long line of code is typical of the way
that we as administrators produce scripts. We start with the output of the cmdlets,
then start sorting and selecting specific properties to refine our results. If we can’t
achieve the results we need, we have to get more complicated and start calculating
fields. This approach was described in more detail in chapter 4.

 If we find a process that’s taking too big a share of the resources, we may need to
stop it. We can use Stop-Process and ensure we identify the process correctly. There’s
a big opportunity for mistakes here. A better solution is to make sure we get the cor-
rect process and pipe the results into Stop-Process F. This reduces the chances of a
mistake being made.

TECHNIQUE 64 Launching processes

The final activity involving processes we need to consider is how we can create them.
Processes are created by the OS, applications, and services. We may need to start our
own processes either because we need to start an application or as part of the activity
involved in solving a problem.
PROBLEM
We need to start an application on a local or remote system. This application may
need to start at a specific time (use Windows scheduler to run PowerShell) or could
be used for diagnostic purposes.
SOLUTION
WMI provides two methods we can exploit to solve this problem. The first is usable in
PowerShell v1 or v2, but the second method is only applicable to version 2. We also

TECHNIQUE 64

232 CHAPTER 8 Windows servers
Apago PDF Enhancer

have a direct method using Start-Process, which is only available in version 2 and
only works on the local computer, as shown in listing 8.4.

$c = [WMIClass]"Win32_Process"
$c.Create("notepad.exe")

Invoke-WmiMethod -Class Win32_process -Name Create
-ArgumentList notepad.exe

Start-Process notepad

DISCUSSION
The object of the exercise in this example is to start a process that allows us to start an
instance of Notepad. Notepad is a good test bed when experimenting with processes.
It won’t damage your system, unless you start hundreds of instances. It’s possible to
make a mistake, such that you create an infinite loop that continually spawns pro-
cesses. You’ll only do this once and become very paranoid about loops afterward. Yes,
this is experience talking but it was a long, long time ago. Honest!

 Our first example uses the [WMIClass] accelerator B we discussed in chap-
ter 3. This enables us to create an instance on a WMI class, in this case the
Win32_Process class. Unfortunately, this is a two-step process, as we then have to use
the Create() method to actually create the process. We need to give the application
that’ll run in the process as a parameter. If the application path isn’t known to Win-
dows, we need to give the full path. This approach can be used on remote comput-
ers. We amend the first line to include the computer name and use the full WMI
path to the class.

$c = [WMIClass]"\\computer1\root\cimv2:Win32_Process"

The Create() method is used in exactly the same way.
 PowerShell v2 brings a slightly easier to use option in the form of the Invoke-

WmiMethod cmdlet C. We need to supply the WMI class, the method, and the argu-
ments as shown. This cmdlet has a -ComputerName parameter so that we can work with
remote machines:

Invoke-WmiMethod -Computername computer1 -Class Win32_process
-Name Create -ArgumentList notepad.exe

Start-Process D can be used on the local machine to create a process for an
application.

 In addition to starting processes, we need to think about terminating processes.
We can use WMI, though Remove-WMIObject is only available in PowerShell v2:

Get-WmiObject -Class win32_process -Filter "Name='calc.exe'" |
Remove-WmiObject

Other alternatives include using the Stop-Process cmdlet on the local machine or
using the kill method on the process object:

Listing 8.4 Creating processes

Version 1 or 2B

Version 2C

Version 2, local onlyD

233TECHNIQUE 64 Filesystem
Apago PDF Enhancer

Stop-Process -Name notepad
Get-Process notepad | Stop-Process

$p = Get-Process notepad
$p.Kill()

The Kill() method is the one I’d recommend least. Ideally, you should use Power-
Shell v2 and the Stop-Process cmdlet so that the -whatif and -confirm parameters
are available.

 The combination of PowerShell and WMI is the recommended method for work-
ing with remote processes. The remoting capabilities in PowerShell v2 could be used
if available. This concludes our work with services and processes. The next major activ-
ity we need to consider is administering the filesystem.

8.3 Filesystem
Administrators always seem to be tinkering around in the filesystem. It’s where most
of us probably started as administrators. Even if we’re working with server-based appli-
cations such as Exchange or SQL Server, we still need to interact with the filesystem.
PowerShell gives us a number of tools for working with the filesystem. We don’t have
the space to cover all of the possible scenarios in this section. We could probably fill
another book with examples of just working with the filesystem. The examples in this
section will provide a starting point for further experimentation, and will cover the
most common administrative tasks regarding the filesystem.

 PowerShell has the concept of providers for working with data stores. The filesystem
provides the model for providers. Though PowerShell treats the filesystem as just
another provider, in reality the other providers often don’t supply the same level of
functionality as the filesystem provider. Table 8.2 lists the cmdlets that can be used to
work with files.

Table 8.2 Cmdlets for working with files

Cmdlet Synopsis

Clear-Item Deletes the contents of an item, but doesn’t delete the item.

Copy-Item Copies an item from one location to another.

Get-ChildItem Gets the items and child items in one or more specified locations.

Get-Item Gets the item at the specified location.

Invoke-Item Performs the default action on the specified item.

Move-Item Moves an item from one location to another.

New-Item Creates a new item.

Remove-Item Deletes the specified items.

Rename-Item Renames an item.

Set-Item Changes the value of an item to the value specified in the command.

234 CHAPTER 8 Windows servers
Apago PDF Enhancer

In the filesystem provider, a file or folder is regarded as an item, and it’s the provider’s
task to provide the interface to the *-Item and *-ItemProperty cmdlets. These cmdlets
together with a number of others are known as the core commands and theoretically should
be available in all providers. The full list of core commands can be found by typing:

Get-Help about_Core_Commands

In addition to being able to work with the files themselves, we need to be able to
access the contents of the files, which we can using the cmdlets in table 8.3.

In addition to the cmdlets listed in the table, we have other ways to work with text type
files including:

■ Export-Csv
■ Import-Csv
■ Out-File

XML files have been deliberately left until chapter 13. We’ll see these cmdlets in action
in the rest of this section. The starting point for the filesystem though has to be folders.

TECHNIQUE 65 Creating folders

In the Windows filesystem, folders are used as a method of grouping and organizing
files into a treelike structure. Before we can work with files, we need to consider how
we’ll organize our files and how we’ll create the folders we’ll need. Examples of creat-
ing folders and files are also given in section 2.4.4 dealing with for, do, and while
loops, and section 2.4.5 dealing with functions.
PROBLEM
We need a method of creating one or more folders.
SOLUTION
The cmdlet we need to perform this task can be discovered by remembering the verb-
noun syntax of PowerShell. If we want to create something, the verb to use is New. In
this case, we want to create a folder in the filesystem and folders are counted as items
in a provider. This means we need the New-Item cmdlet, shown in listing 8.5.

New-Item -Name TestFolder -Path c:\scripts -ItemType Directory

Table 8.3 Cmdlets for working with file content

Cmdlet Synopsis

Add-Content Adds content to the specified items, such as adding words to a file.

Clear-Content Deletes the contents of a item, such as deleting the text from a file,
but doesn’t delete the item.

Get-Content Gets the content of the item at the specified location.

Set-Content Writes or replaces the content in an item with new content.

Listing 8.5 Creating folders

TECHNIQUE 65

235TECHNIQUE 66 Creating files
Apago PDF Enhancer

DISCUSSION
New-Item only requires three pieces of information in order to create a folder. The
name of the folder, the path to the folder (remember the standard limits on path
length in Windows), and the fact that we’re creating a folder. In the filesystem pro-
vider, the -ItemType parameter can only accept values of Directory or File. Power-
Shell will prompt for a type if you don’t supply one.

NOTE There are two aliases available when creating folders—md and mkdir.
They’re used in the same way as the cmd.exe commands.

Having created our folder, we now need something to put in it.

TECHNIQUE 66 Creating files

The files on our systems tend to fall into one of two categories. One possibility is that
they’re application-specific, such as a file created by Word or a SQL Server database
file. On the other hand, they may be a text file that we can work with directly in our
PowerShell scripts. This assumes that we have the permissions required to work with
the particular files in question!
PROBLEM
Our computer systems are never static. This is where some of the challenge and fun
comes into being an administrator. Applications take more resources over time.
Disks fill up. New applications are introduced. These activities all involve changes to
the system.

 One thing we need to be aware of is change over time. This can only be recognized
if we have a record of previous states. We can view the current state of our processes
and services, but to save the previous state, we need to write the data into a file that we
can access at a later date. How can we save this information using PowerShell?
SOLUTION
PowerShell provides several ways to create and write to a file, as shown in listing 8.6.
The best one to use depends on circumstances. One of the great strengths of Power-
Shell is that there are multiple ways to achieve a goal. This can also be perceived as a
weakness, especially by someone setting out to learn PowerShell. The best advice I can
give is to look at the alternatives and settle on which works best in your particular cir-
cumstances. This may well involve experimentation. Never be afraid to experiment—
that’s why you can use the same commands from the prompt as in your scripts!

New-Item -Name testfile.txt -Path c:\scripts\testfolder -ItemType File
-Value "This is a one line file"

Get-Service | Out-File -FilePath c:\scripts\testfolder\sp.txt
Get-Process | Out-File -FilePath c:\scripts\testfolder\sp.txt -Append

Get-Process |
Export-Csv -Path c:\scripts\testfolder\testprc.csv -NoTypeInformation

Listing 8.6 Creating files

TECHNIQUE 66

B

C

D

236 CHAPTER 8 Windows servers
Apago PDF Enhancer

We can use New-Item to create a file B. We follow the same pattern as when creating a
folder, and supply the name, the path, and the type of item we’re creating. We also
have the option to add content to the file at the time of creation by using the -value
parameter. If this is omitted, an empty file is created, as in the examples in chapter 2.
The Set-Content cmdlet can be used to put content into the empty file. If it’s used
against a file that already has content, that content will be overwritten. This option is
good if we need to create an empty file or we have content available to write to the file
as one piece.

 Our second option involves using Out-File C. In the first part of the script, we
pipe the results from using Get-Service into our file. The second part appends the
results of Get-Process. Note the use of the -Append parameter. This forces the data to
be appended to the end of the file rather than overwriting the file contents, which is
the default behavior. One of the best uses of Out-File is where we need to keep
appending data to a file. Add-Content can also be used to append data to a file.

 The final option is to use Export-Csv D. A text file was produced in the previous
two cases. In this example, we’re creating a delimited file where the fields are sepa-
rated by commas. We need to give the path to the file pipe in the data we wish to write
into the file. The -NoTypeInformation parameter prevents the .NET type information
from being written into the first row of the file. We don’t usually need this informa-
tion, so it’s best to use this parameter as a matter of routine.

NOTE Export-Csv doesn’t have the capability to append data to a file.

DISCUSSION
In addition to being able to create and write to files, we need to be able to delete them
at the appropriate time. The script in listing 8.7 is used to clean up the contents of my
Temp folder on a periodic basis (when I remember to do it).

Remove-Item C:\temp*.tmp -Recurse
Remove-Item C:\temp\low*.tmp -Recurse
Remove-Item C:\temp*.log -Recurse
Remove-Item C:\temp*.txt -Recurse
Remove-Item C:\temp*.cvr -Recurse
Remove-Item C:\temp*.od -Recurse
Remove-Item C:\temp*.exe -Recurse
Remove-Item C:\temp*.dll -Recurse
Remove-Item C:\temp*.xml -Recurse
Remove-Item C:\temp*.Hxc -Recurse

Note the use of the -Recurse parameter. This will recursively follow the subfolder tree
within the Temp folder to delete all of the files with the given extension. My scripts of
this sort tend to be built up over time, so I end up with repeated calls like this (quick
and dirty scripting). If we want to make the script more concise, we can always do this:

"tmp", "log", "txt", "cvr", "od", "exe", "dll", "xml", "Hxc" |
foreach {Remove-Item "$env:temp*.$_" -Recurse}

Listing 8.7 Removing files

237TECHNIQUE 67 Reading files
Apago PDF Enhancer

Simply pipe the list of extensions into a foreach cmdlet that calls Remove-Item. This
also showcases the use of an environmental variable temp, which gives the path to the
temporary folder. We access environmental variables via the $env variable, which rep-
resents the environment drive in PowerShell.

 Once we’ve written our data into a file, we’ll need to read the data in the file.

TECHNIQUE 67 Reading files

Being able to write data into our files is a good thing. It’s even better if we can access
the data in those files. At this point, we can start to save data for reuse in our scripts, or
even for other purposes.
PROBLEM
The data in files, of various formats, has to be read so that we can use it in our scripts.
SOLUTION
In a similar manner to the situation with writing data, PowerShell provides a number
of ways to read the data in a file, as shown in listing 8.8. The simplest way to read the
data is to use Invoke-Item B. Invoke-Item performs the default action on a file. This
will open the file in the application associated with the file type, assuming the file asso-
ciations have been created in the normal manner. In this case, we’re opening an Excel
spreadsheet using the Excel application. Invoke-Item will open .txt files in Notepad
and .csv files in Excel. We can open the file in its default application and manually
read the data, or work with it within the application, but we can’t work with the data
using a PowerShell script using this approach.

Invoke-Item F:\Blog\blogstats.xlsx

if (Test-Path c:\scripts\testfolder\testfile.txt){
Get-Content -Path c:\scripts\testfolder\testfile.txt}

Import-Csv -Path c:\scripts\testfolder\testprc.csv |
Select Name, PeakPagedMemorySize, PeakWorkingSet,
PeakVirtualMemorySize | Format-Table -AutoSize

DISCUSSION
Get-Content can be used to read the contents of a file C. One source of error in our
scripts is that the file we’re trying to use isn’t actually present. We can avoid this by
using Test-Path as shown. This cmdlet returns $true if it finds the file and $false if
it doesn’t. Performing this test allows us to avoid the error.

 The best way to read a .csv file is to use Import-Csv D. The great thing about this
approach is that the field names in the header row in the file can be used in the script
after the file has been read. This can either be in a select statement as here or
referred to as $_.fieldname when appropriate; for example in a foreach cmdlet.
Examples of this will appear throughout the book.

 When using Get-Content or Import-Csv, it’s often desirable to read the contents
of the file into a variable. Script D would become:

Listing 8.8 Reading files

TECHNIQUE 67

B

C

D

238 CHAPTER 8 Windows servers
Apago PDF Enhancer

$data = Import-Csv -Path c:\scripts\testfolder\testprc.csv
$data | Select Name, PeakPagedMemorySize,
PeakWorkingSet, PeakVirtualMemorySize |
Format-Table -AutoSize

We could use the same variable in a number of subsequent statements. This approach
is worth adopting if you’ll be performing a number of actions on the data. It saves the
overhead of rereading the file.

 These examples show how we can use pieces of PowerShell functionality to read
the contents of a file. One other scenario we need to think about is how we search a
set of files to find the one that contains the data in which we’re interested.

TECHNIQUE 68 Searching files

There are two basic approaches to searching the contents of files. One approach is to
explicitly read each file and loop through each record, testing to determine whether
it has the content we need. The second is to wrap all of that functionality into a single
command. This is the approach we’ll take using the Select-String cmdlet.
PROBLEM
We need to find a particular piece of text in one or more files from a given set of files.
SOLUTION
Select-String provides a search facility similar to that found in the UNIX grep com-
mand or Windows findstr, but it doesn’t have a recurse parameter to search subfold-
ers. We again get multiple ways to address this problem, which boil down to using
regular expressions or a simple text search, as in listing 8.9.

Select-String -Path $pshome*.ps1xml -Pattern "EventType" -SimpleMatch

Select-String -Path "c:\scripts\testfolder*.txt"
-Pattern "\s{4}Windows\s" -CaseSensitive

DISCUSSION
In the first example, we’re using a simple text-matching approach One of the cmdlets
introduced in PowerShell v2 is Get-ComputerRestorePoint, which returns a list of the
available restore points on the system. One of the properties returned is EventType,
which provides information on the event that triggered the creation of the restore
point. While experimenting with the cmdlet, I discovered that though just running the
cmdlet provides a text description of the EntryType, if I used a select or Format-List
with the cmdlet I got an integer returned as the EntryType. With a bit more digging, I
discovered that this cmdlet is returning WMI objects and that the change in data being
returned is a formatting issue. How could I match the integers with the text?

 I knew that the formatting data was held in the PowerShell folder in XML files with
an extension of .ps1xml. Select-String can be used to search those files for all occur-
rences of EntryType B. The data returned includes the file name, the line number
within the file, and the contents of the line. In this case I’m using a simple string-
matching approach.

Listing 8.9 Searching files

TECHNIQUE 68

B

C

239TECHNIQUE 69 Searching for files
Apago PDF Enhancer

NOTE $pshome is a built-in PowerShell variable that contains the path to the
PowerShell installation folder. On a 32-bit machine, it’ll be c:\windows\
system32\windowspowershell\v1.0. On a 64-bit machine, the answers will be
different depending whether the 64- or 32-bit version of PowerShell is used.

The second approach is to use a regular expression as the pattern we’re searching
against C. I must confess that I don’t like using regular expressions. They seem to be
one of those arcane pieces of technology that I’ve never had the time to sit down and
master. They’re incredibly powerful and if you haven’t spent time learning how to use
them, I’d definitely recommend it as time well spent.

 The path to the files is supplied as is the pattern we want to use for searching. The
example shows I’m searching for four spaces—\s is a space and {4} indicates I want four
in a row. After that, we’re looking for the word Windows, followed by another space. The
capitalization in Windows is preserved by using the -CaseSensitive parameter.

NOTE More on regular expressions can be found in appendix A.

One of the advantages of using Select-String for these searches is that we can search
text files and XML files. Before we can perform the search, we need to know where
our files are located.

TECHNIQUE 69 Searching for files

Most systems will contain thousands of files. How many times have you thought, “I
know I put that information in a file, but where’s the file?”
PROBLEM
We need to be able to find a file, or set of files, given the name of the file.
SOLUTION
There’s a WMI class, CIM_DataFile, that’s ideal for solving this problem. Get-WMIOb-
ject is our way to access this data, as in listing 8.10. We can perform our search based
on a number of criteria. In the first example we’re using the file name. Note that this
doesn’t include the extension. Our second example uses the extension as the filter cri-
teria. When using the extension, we don’t include the dot—we only use the text part
of the extension.

 These two examples search the whole machine. We can restrict our search to a par-
ticular folder, as shown in the third example. The use of \\ as the delimiter on the
path is deliberate and necessary when passing paths into WMI cmdlets. It’s possible to
combine these filters as required using the WQL syntax.

Get-WmiObject -Class CIM_DataFile -Filter "FileName='sp'"

Get-WmiObject -Class CIM_DataFile -Filter "Extension='txt'" |
Select Name

Get-WmiObject -Class CIM_DataFile `
-Filter "Path='\\scripts\\testfolder\\'" |
 Select Name

Listing 8.10 Searching for files

TECHNIQUE 69

240 CHAPTER 8 Windows servers
Apago PDF Enhancer

DISCUSSION
Alternatively we could use Get-ChildItem:

Get-ChildItem -Path c:\ -Filter "sp*" -Recurse
Get-ChildItem -Path c:\ -Filter "*.txt" -Recurse
Get-ChildItem -Path c:\scripts | select Name

Which should we use? It depends! Compare the output of these two commands:

Get-WmiObject -Class CIM_DataFile
-Filter "Path='\\scripts\\strings\\'" | Get-Member

Get-ChildItem -Path c:\scripts\strings | Get-Member

The objects that are returned carry different information. It would be worthwhile to
explore the differences to determine which will best meet your needs.

 This concludes our look at the filesystem. The examples in this section will provide
a firm basis for extending your knowledge of how to administer the filesystem using
PowerShell. It’s time for us to turn our attention the part of Windows administration
that many people would prefer to leave alone. The registry has definitely had bad
press. Though it’s possible to completely wreck your system by being careless when
working with the registry, those administrators who take the time to learn how to do it
properly end up with a powerful tool at their disposal.

8.4 Registry
The registry is the fundamental store for configuration information on a Windows sys-
tem. Many applications follow the .NET approach and utilize XML configuration files,
but the registry is still heavily used. A lot of the information in the registry would be
useful if we could access it. Traditionally, we’ve used Regedit.exe to work with the reg-
istry. PowerShell provides an alternative in the shape of a registry provider.

 BE VERY, VERY CAREFUL This is when I should point out that altering the reg-
istry can damage your computer setup, which will necessitate a rebuild. I’m
assuming that you won’t trash your registry just for giggles, but accidents do
happen. So, unless you like rebuilding Windows systems, “Let’s be careful
in there.”

We discussed the concept of providers in the early chapters. A provider is a method of
exposing a data store as if it were the filesystem. PowerShell supplies a number of pro-
viders that expose various data stores as additional PowerShell drives. A truncated list
is shown here:

PS> Get-PSDrive

Name Provider Root
---- -------- ----
Alias Alias
C FileSystem C:\
D FileSystem D:\
Env Environment

241TECHNIQUE 70 Accessing the registry
Apago PDF Enhancer

Function Function
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE

This shows that two drives, HKCU: and HKLM:, are created by PowerShell. We can
access these two parts of the Registry as if they were the filesystem, including the use of
standard navigation and manipulation commands. These two parts of the registry are
the parts we’re most likely to need to access, but there are other parts these drives
can’t reach. In all, there are six sections to the registry:

Our first task is to find a method of accessing the whole of the registry.

TECHNIQUE 70 Accessing the registry

Before we jump into the registry itself, it’s worth spending a bit of time thinking about
location. When all we had to think about was our local disks and a few network drives,
life was fairly simple. We knew which drive we were on and where our stuff should be.
With PowerShell’s ability to create drives pointing to other data stores, things are
more complicated, as I found out the hard way.

 One of the early meetings of the PowerShell User Group involved me giving a
demonstration of PowerShell being used to administer Active Directory. I finished the
demonstration with the Active Directory provider from PowerShell Community Exten-
sions (PSCX). Even after a couple of years, doing a dir through AD is still a cool dem-
onstration and this was the first time I’d shown it. The demonstration was scripted and
worked perfectly.

 The night before the User Group meeting, Quest released a beta of its Active
Directory cmdlets. Now this was beyond cool. There was no way I could leave them
out. I created another demonstration script for the cmdlets and tested it until it
worked perfectly. By this time, it was late and without thinking it through, or testing, I
joined the two demonstration scripts together.

 The talk went well. The first part of the demonstration went well. It reached the
join and collapsed. The second part completely failed because I’d left my location in
the AD provider and forgotten to swap back to the filesystem to pick up the scripts for
the second part. The moral of the story is this: always know where you are and don’t
change the demo.

 We can combine a couple of problems here. How can we keep track of where we
are and how can we access the registry?
PROBLEM
We know that we can use cd HKLM: or cd HKCU: to access parts of the registry, but we
need to be able to access the whole registry. While we’re doing this, it would be a good
idea if we could return to our starting point in terms of location.

■ HKEY_CURRENT_USER ■ HKEY_LOCAL_MACHINE

■ HKEY_CLASSES_ROOT ■ HKEY_CURRENT_CONFIG

■ HKEY_USERS ■ HKEY_PERFORMANCE_DATA

TECHNIQUE 70

242 CHAPTER 8 Windows servers
Apago PDF Enhancer

SOLUTION
We can access the whole registry and keep track of our location in, and among, the var-
ious providers by using the *-Location cmdlets, as in listing 8.11. The Set-Location
cmdlet B can be used to change the current location in a provider, such as the filesys-
tem, and between providers or the drives they expose. The Path parameter gives the
location we want to move to. PowerShell can create aliases of commands to reduce the
amount of typing. The alias of Set-Location is cd, as shown. The use of commands
from DOS and Unix shells is one of the things that makes PowerShell easier to learn.

Set-Location -Path Microsoft.PowerShell.Core\registry::
cd Microsoft.PowerShell.Core\registry::

PS> Push-Location -Path Microsoft.PowerShell.Core\registry::
PS> Get-ChildItem

 Hive:

SKC VC Name Property
--- -- ---- --------
 6 0 HKEY_LOCAL_MACHINE {}
 13 1 HKEY_CURRENT_USER {Attachment Path}
391 0 HKEY_CLASSES_ROOT {}
 2 0 HKEY_CURRENT_CONFIG {}
 6 0 HKEY_USERS {}
 0 2 HKEY_PERFORMANCE_DATA {Global, Costly}

PS> Pop-Location

The one odd thing is the path we’ve constructed to enter the Registry. It’s composed of
two elements: PSSnapin name and the provider name, followed by two colons, for exam-
ple PSSnapin\Provider::. We can discover the PSSnapin and provider names by using:

Get-PSProvider | select Name, PSSnapin

PowerShell really can be used to discover how to make PowerShell work.
 As I related earlier, not keeping track of location can lead to problems. In the

example it wasn’t too bad, but a similar lack of awareness once led a colleague to type
del *.* in the root of the C: drive. Time to rebuild!

 PowerShell provides Push-Location C to save the current location. The location
is pushed onto a stack.

NOTE A stack is a store in memory. It’s exactly analogous to a stack of plates.
We can add a plate to the top of the stack or we can take a plate off the top
of the stack. We can’t access a plate, or piece of data, that isn’t on the top of
the stack.

We can use the default stack or we can use the -StackName parameter to create, or
use, a new stack. Push-Location does two jobs, in that we can also use the -Path
parameter to provide a location to move to (as Set-Location) at the same time as put-
ting the current location on the stack.

Listing 8.11 Accessing the registry Move into
Registry

B

Save current
location

C

D Perform listing

ReturnE

243TECHNIQUE 71 Reading registry data
Apago PDF Enhancer

DISCUSSION
Once we’ve moved to the desired location, we can perform our tasks, in this case a
Get-ChildItem to display the registry. D We can return to our starting location by
using Pop-Location to take the top location off the stack E and set that to be the cur-
rent location. Pop-Location can be used with the default stack or a named stack in
the same way as Push-Location.

RECOMMENDATION If you’re going to be working in other providers exten-
sively, I strongly recommend that you use Push-Location and Pop-Location
in your scripts. This ensures that you always start from a known point and that
you can easily return to that point.

Now that we know how to access the registry, it’s time to look at reading the data that
we find there.

TECHNIQUE 71 Reading registry data

The registry consists of a tree structure of keys and key values. The PowerShell registry
provider treats registry keys in the same way that the filesystem provider treats files—
as items. Registry key values are treated as item properties. We need to be aware of this
difference and use the appropriate tools.
PROBLEM
The registry provider enables us to access the data stored in the registry as if it were
the filesystem. How can we view registry data?
SOLUTION
There is a set of standard cmdlets that work with providers, as shown in listing 8.12. They
can be viewed using Get-Help about_providers. We start by using Push-Location to
store our current location and to move to the registry entry we want to view B. This task
could also have been achieved using Set-Location either in one pass or by stepping
through the structure of the registry. If a step-by-step approach is used, we can use Get-
ChildItem at each step to examine the entries. Beware: this can lead to distractions if
you spot something interesting!

PS> Push-Location `
-Path HKLM:\software\microsoft\powershell\1\shellids
PS> Get-ChildItem

 Hive: HKEY_LOCAL_MACHINE\software\microsoft\powershell\1\shellids

SKC VC Name Property
--- -- ---- --------
 0 2 Microsoft.PowerShell {ExecutionPolicy, Path}

PS> Get-ItemProperty Microsoft.PowerShell

PSPath : Microsoft.PowerShell.Core\Registry::
HKEY_LOCAL_MACHINE\software\microsoft\
powershell\1\shellids\Microsoft.PowerShell

Listing 8.12 Reading registry data

TECHNIQUE 71

Move
to key

B

Display keyC

Display key valuesD

244 CHAPTER 8 Windows servers
Apago PDF Enhancer

PSParentPath : Microsoft.PowerShell.Core\Registry::
HKEY_LOCAL_MACHINE\software\microsoft\powershell\1\shellids

PSChildName : Microsoft.PowerShell
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
ExecutionPolicy : RemoteSigned
Path : C:\Windows\system32\WindowsPowerShell\v1.0\powershell.exe

PS> Pop-Location

Get-ChildItem is used to view the available entries C. Note that the key values are
returned as properties. In addition to the *-Item cmdlets we’ve discussed, there’s a set
of *-ItemProperty cmdlets we can use to work with properties:

DISCUSSION
PowerShell’s consistent verb naming conventions means that we need the Get-Item-
Property cmdlet to read the key values D. Be aware that some other information will
be displayed as well as the values in which we’re interested. The data is shown in the
listing. We could modify the execution policy by accessing through the registry in this
manner. It’s more efficient to use the *-ExecutionPolicy cmdlets. Finally, we use
Pop-Location E to return to our known starting point.

 It’s possible to short-circuit this procedure by a single call to Get-ItemProperty:

Get-ItemProperty `
-Path HKLM:\software\microsoft\powershell\1\ `
shellids\Microsoft.PowerShell

We can examine portions of the registry, in the same way we can dir through a folder
hierarchy, for example:

Get-ChildItem -Path HKLM:\software\microsoft\powershell -Recurse

The next item on the agenda is learning how to create entries in the registry. This is
fun.

TECHNIQUE 72 Creating registry entries

This section deals with performing modifications to the registry. This activity should
always be treated with care. Now that we have the obligatory warning out of the way,
we can learn how to use our PowerShell knowledge to create registry entries.
PROBLEM
The registry is used to store configuration data as we have seen. There’s a periodic
need to store configuration data in the registry, perhaps to enable a particular applica-
tion to work or to prevent an attack on our systems. We need to be able to create and

■ Clear-ItemProperty ■ Copy-ItemProperty

■ Get-ItemProperty ■ Move-ItemProperty

■ New-ItemProperty ■ Remove-ItemProperty

■ Rename-ItemProperty ■ Set-ItemProperty

ReturnE

TECHNIQUE 72

245TECHNIQUE 73 Managing registry data
Apago PDF Enhancer

write to registry entries. Please note that this should be a safe example to try, as it
doesn’t modify live data.
SOLUTION
The *-Item and *-ItemProperty cmdlets solve this problem for us. We’ll create a
counter for the number of entries in the software key of the local machine hive for the
purposes of this exercise. A key and a key value will have to be created. In this exam-
ple, we don’t move into the registry. All of these tasks can be performed by using the
registry drives that are created by the provider, as shown in listing 8.13.

 The first task is to examine the Registry key HKLM:\software B. This shows a num-
ber of keys usually related to software vendors; for example, on my machine there are
more than 180 entries in the Microsoft key.

Get-ChildItem -Path HKLM:\software
New-Item -Path HKLM:\software\count
Get-ChildItem -Path HKLM:\software

New-ItemProperty -Path HKLM:\software\count -Name "Total"
 -Value $((Get-ChildItem -Path HKLM:\software).count -1)
Get-ItemProperty -Path HKLM:\software\count

New-Item is used to create the key C. We have to provide the path to the item we’re
creating. As we can only create keys in the registry, we don’t have to provide a type for
the item. The new key can be seen when we use Get-ChildItem as shown.

ALIASES Get-ChildItem is aliased to dir and ls. In PowerShell v2, use
Get-Alias -Definition Get-ChildItem to see the aliases. I tend to use ls
at the PowerShell prompt, as it’s less typing! In scripts I use the full cmdlet
name.

DISCUSSION
After creating the key, we need to create a value. Key values are manipulated using the
*-ItemProperty cmdlets. In this case, New-ItemProperty is used for creation. The com-
mand has to be supplied with the path to the key, a name for the item, and a value D.
We’re using the count of items in the software key minus one to account for the count
key itself as the value.

 Get-ItemProperty is used to examine the value E as we’ve previously seen. The
last activity we need to consider is how to change registry values and how to delete reg-
istry keys.

TECHNIQUE 73 Managing registry data

Managing data is often described by using the acronym CRUD (not a reflection on the
quality of the data) which stands for Create, Read, Update, and Delete. It would be possi-
ble to do this manually using Regedit.exe, but scripting the solution using PowerShell
is a better alternative.

Listing 8.13 Creating registry entries Examine
registry

B

Create keyC
Create key
value

D

Test entryE

TECHNIQUE 73

246 CHAPTER 8 Windows servers
Apago PDF Enhancer

PROBLEM
All data follows a lifecycle and registry keys are no exception. Once the keys been cre-
ated, we need to be able to manage them in a safe manner.
SOLUTION
We’ve seen how create and read the data; now we need to discover how perform the
update and deletion. We will be using the *-ItemProperty and *-Item cmdlets, as
shown in listing 8.14. The verb Set is used to perform changes, and Remove when we
need to delete.

Set-ItemProperty `
-Path HKLM:\software\count -Name "Total" -Value 67
Get-ItemProperty -Path HKLM:\software\count

Remove-ItemProperty -Path HKLM:\software\count -Name "Total"
Remove-Item -Path HKLM:\software\count
Get-ChildItem -Path HKLM:\software

Changing a registry key value is achieved by using Set-ItemProperty B. In the same
way as when we created the key value, we supply the path (key) the name and the
actual value. The change can be verified using Get-ItemProperty C.

 The functionality to wrap registry changes inside transactions was introduced in
PowerShell v2. This will provide another level of protection to Registry data.
DISCUSSION
Deleting data from the registry follows a reverse path to creation. The key value is
deleted first using Remove-ItemProperty D. This cmdlet needs to know the path to
the key and the name of the value to remove.

EVENT LOGS One thing to think about is creating an event log to record when
scripts are run and what changes are performed by the script. This creates an
audit trail for your administration, which allows you to prove what you’ve
done, and possibly prove your script didn’t do something wrong. Creating
and writing to event logs is covered in the next section.

The key itself is removed using Remove-Item E. A final check can be performed to
verify that the key has been removed F. These commands can be executed at the
PowerShell prompt or within a script.

 Working with the filesystem, services, processes, and the registry are all necessary
skills for the administrator. At some stage, we need to start investigating what’s hap-
pening on our systems. The event logs are used to record this information. The next,
and last, section in this chapter shows how PowerShell can be used to interrogate and
administer the event logs.

8.5 Event logs
Event logs are used by Windows and applications for recording events that occur on
the system. The information that’s recorded may be of several forms:

Listing 8.14 Managing registry data

B
C

Delete
value

D

Delete keyE
F

247TECHNIQUE 74 Reading event logs
Apago PDF Enhancer

There are a number of standard event logs, with more being created as applications
are installed or additional functionality is installed. Event logs are the first port of call
for an administrator when troubleshooting problems. I’ve lost track of the number of
times looking at the event logs has enabled me to solve a problem. This includes issues
from Active Directory replication not working to cluster nodes refusing to failover. If I
were to give a new administrator one tip, it would be learn how to discover informa-
tion in the event logs: “Learn PowerShell” wouldn’t be a tip...it would be an order!

 We can use the event viewer to read the logs. It’s possible to filter the view. Using
PowerShell, we can interrogate and search the logs based on any of the information in
the logs. PowerShell v1 only allowed us to read the event logs. If we wanted to do any-
thing else, we had to write scripts as in listings 8.16 through 8.19. PowerShell v2 intro-
duces a number of new cmdlets to work with event logs:

PS> Get-Command *eventlog

CommandType Name
----------- ----
Cmdlet Clear-EventLog
Cmdlet Get-EventLog
Cmdlet Limit-EventLog
Cmdlet New-EventLog
Cmdlet Remove-EventLog
Cmdlet Show-EventLog
Cmdlet Write-EventLog

We’ll see examples of using these as alternatives to the scripts. We can export the
information in the logs, possibly for importing into a database. A further possibility is
to create our own logs, for instance to record the use of our production scripts. The
user running the script could be recorded as well as the actual script used.

 PowerShell can be used to configure the event logs. WMI or the *-EventLog cmd-
lets in PowerShell v2 can be used to manage the event logs of remote servers. There
may be a performance issue if attempting to manage a large number of servers in a
single script.

 Before we do any of this, we have to learn to read the logs.

TECHNIQUE 74 Reading event logs

Before we can read the logs, we need to discover what logs are available on the system.
PowerShell supplies a cmdlet Get-Eventlog to read the logs. This can also be used to
discover the event logs on the system:

Get-Eventlog -List

This will return a lot of useful information, as shown in figure 8.2.

■ Error ■ Warning

■ Information ■ SuccessAudit

■ FailureAudit

TECHNIQUE 74

248 CHAPTER 8 Windows servers
Apago PDF Enhancer

The default information includes the number of entries in the log, the maximum size
of the logs, and what the logs are configured to do when they become full. This data
was taken from the laptop I normally use. These events had built up in less than a
month of normal usage. Note how many entries there are in the system log.

NOTE Get-EventLog can’t read the new style event logs introduced with Win-
dows Vista and Windows Server 2008. We’ll see how to work with these logs at
the end of this section.

Having found the logs, we can now discover how to read them.
PROBLEM
There’s information in the event logs that we need to retrieve. How can we do achieve
this?
SOLUTION
We’ve already seen that we can use Get-EventLog to discover the logs on the system.
We can also use it to read the data in the event logs, as in listing 8.15. We can retrieve
the contents of a particular log B by using its name with the -LogName parameter. It
has to be the name of the log rather than the display name. Wildcards aren’t permit-
ted. This will display all of the entries in the particular log. In the case of the system
log, this could be many thousands of entries. This will take a long time to scroll up the
screen. We can restrict the number of entries returned by using the -newest parame-
ter, or the –after and –before parameters in version 2 to restrict the returned entries
by date. An integer value is supplied to the parameter and the cmdlet will only return
that number of entries, starting with the most recent. Using this parameter can be use-
ful if you want to check that an event has just happened.

REQUIRED PARAMETER The logname parameter is required. This means that if
you don’t supply it, PowerShell will prompt you for the value. Many cmdlets
have required parameters. The help file for a cmdlet will indicate which
parameters are required.

If we’re only interested in a particular event, we can filter on EventId C. This imme-
diately restricts the amount of data that’s returned to more manageable proportions.

Figure 8.2
Discovering the event
logs. The maximum size
in kilobytes and the
number of entries supply
information regarding
log usage. The retention
days and overflow action
determine what happens
if the log becomes full.

249TECHNIQUE 75 Exporting logs
Apago PDF Enhancer

One problem with using the EventId as a filter parameter is that we have to know
what the event IDs mean. Many event IDs are documented on the Microsoft and other
web sites.

Get-EventLog -LogName System

Get-EventLog -LogName System | Where {$_.EventId -eq 7036}

Get-EventLog -LogName System |
Where {$_.Timewritten -gt ((Get-Date).Adddays(-2))}

Get-Eventlog security |
where {$_.TimeWritten -gt (get-date).AddDays(-7)
-and $_.TimeWritten -lt (get-date)).AddDays(-2) }
| Sort EventId | Group EventId

The date and time when an event occurs (TimeGenerated) are written to the log. The
time the entry was written is also recorded. On a busy system, there may be more than
a slight difference between the two. We can filter on time B. Looking at the system
log again, we compare the TimeWritten property against a date. In this case, we take
the current date and subtract two days. Note that we have to use AddDays() but supply
a negative number. It would’ve been simpler if we had methods to perform a subtrac-
tion. Don’t try to define a date that you’ll then subtract from the current date. You’ll
end up with a TimeSpan object, which won’t work in this context.

 It may sometimes be useful to group the events so we can see how many events of a
particular type are happening. In particular, we may want to do this against the secu-
rity log. For instance, if we see a large number of failed logins or failed attempts to
access a particular file, it may be a warning that an attack is being mounted against the
system. In this case, we read the security log E. We perform a filter to restrict the data
to a particular time period. The example shows us reading data between seven and
two days old. The entries are sorted on event ID and then the data is grouped (group
is an alias for Group-Object).
DISCUSSION
PowerShell must be started with elevated privileges to access the security logs. In Win-
dows Vista/2008 and above when UAC is turned on, this means using Run as Adminis-
trator, and logging on using an account with administrator privileges on XP/2003.

 Having discovered that we can read the logs, is there a way that we can copy the
data to another file for further analysis?

TECHNIQUE 75 Exporting logs

There’s often a requirement to preserve the information in event logs. Files can be
created to store the data. These files can either be the final home of the data, or they
could be used as an intermediary stage to loading the data into a database.
PROBLEM
The data in the event logs has to be exported to CSV files. The file names have to include
the date so that we can easily ascertain the period covered by the events in the file.

Listing 8.15 Reading event logs

Read allB
Filtering dataC

Filtering by timeD

Grouping eventsE

TECHNIQUE 75

250 CHAPTER 8 Windows servers

g

Apago PDF Enhancer

SOLUTION
We’ve seen that the Get-EventLog cmdlet can be used to read the contents of the
event log. This can be combined with the Export-Csv cmdlet to produce the required
file, as in listing 8.16.

$date = get-date

if ($date.Month -le 9) {
 $fname = $date.Year.ToString() + "0" +
$date.Month.ToString() + $date.Day.ToString() +
"_security.txt"
 }

else {
 $fname = $date.Year.ToString() + $date.Month.ToString() +
$date.Day.ToString() + "_security.txt"
 }

get-eventlog security | export-csv $fname -noTypeInformation

$fname = $fname -replace "security", "application"
get-eventlog application |
export-csv $fname -NoTypeInformation

$fname = $fname -replace "application", "system"
get-eventlog system | export-csv $fname -noTypeInformation

DISCUSSION
This script can be used to create a copy of the data in the three main event logs—
application, security, and system. Remember that PowerShell will have to be running
with elevated privileges to access the security log.

 The script starts by retrieving the current date B. Any time you want to manipu-
late the date information, it’s easier to create a variable that can hold the date. We can
use the date information to create the file name C. The year, month, and day are con-
catenated, in that order, with the name of the log and a file extension. There are two
variations on the way the file name is produced, depending on the number of digits in
the month. A leading zero is added for months with only a single digit—January to
September. The file names can be sorted on the date part when created in this style.

 We could use the -f operator to format the filename for us:

$fname = "{0}{1:00}{2:00}_security.txt" -f `
$date.Year, $date.Month, $date.Day

The first part, {0}{1:00}{2:00}_security.txt, defines three fields that will be filled
by the data on the right side of the -f operator, plus the static part of the file name.
The first field takes the year, which will be four digits, whereas the month and day are
substituted into the second and third fields respectively. These two fields are defined
as being two digits wide, so a leading zero is automatically appended for a day or
month value of 9 or less. These formatted strings look a bit scary, but it’s worth getting
to know how to use them, as they can save a lot of effort.

Listing 8.16 Copy event logs

Current dateB

Create file nameC

Export
security
log

D

Export
application log

E

Export system loF

251TECHNIQUE 76 Creating an event log
Apago PDF Enhancer

 The only thing left to do is to get the data from the event log D and write it out to
the file. We use the -noTypeInformation parameter on Export-Csv to avoid writing
the .NET type information into the first line of the file. This technique can be applied
to other logs, including the application E and system logs F as shown. The -replace
operator can be used to modify the file name to reflect the correct log. The file name
is a string, so we could use $file.Replace() instead.

 Having explored how we can read from the event log, it’s now time to look at writ-
ing to an event log. Before we can write to a log, we need to be able to create a log.

TECHNIQUE 76 Creating an event log

Windows supplies a number of event logs by default and will create others depending
on the applications and functionality installed on the system. The generic system and
application logs would seem ideal to use for recording events from our scripts. If a
specialized log is created just for scripting events that we create, we can have much
greater control of the data. The data will be easier to search, as it’s restricted to script-
ing events.
PROBLEM
We’ve decided to create an event log specifically for events from our scripts.
SOLUTION
This problem requires using some, but not a lot, of .NET code. Just one little line. This
problem can be solved using a static method of the System.Diagnostics.EventLog
class. Static methods were explained in chapter 3; to recap they’re methods that can
be used without creating an object. The CreateEventSource method is given two
parameters, as shown in listing 8.17.

[System.Diagnostics.EventLog]::CreateEventSource("PSscripts","Scripts")

The first parameter is the event source. Sources are registered against a particular
event log. They’re in effect a handle for the particular log. Figure 8.3 shows the cen-
tral part of the event viewer console. Our Scripts log is the selected log and it
contains a single event. The log name and source can be seen in the lower part of
the panel.

 The second parameter is the name of the log. CreateEventSource can be used to
create a source for an existing event log, or as in this case, it’ll create the event log if it
doesn’t already exist. .NET code will rarely get any simpler.
DISCUSSION
The PowerShell v2 version of this is just as simple:

New-EventLog -LogName Scripts -Source PSscripts

It has parameters for the log name and source as seen previously. Having created an
event log, we need to learn how to populate it. This means we have to use a bit more
.NET code, but it’s straightforward, as we shall see.

Listing 8.17 Create an event log

TECHNIQUE 76

252 CHAPTER 8 Windows servers
Apago PDF Enhancer
TECHNIQUE 77 Creating events

Having seen how to create an event log, we now need to think about writing events
into the log. An empty log isn’t going to do us much good. Ideally, this should be
done in a way that allows the functionality to be used from any of our scripts without
having to copy the code into every script.
PROBLEM
In order to keep track of which scripts are run when, we want to be able to write an
entry into the event log as the script is executing. So that we get the most out of the
time we spend developing the functionality, we also want to be able to call at any time
during the execution of the script. There are much more interesting things to do than
write variations on the same code. Write once, run many times.
SOLUTION
We can solve this by creating a function using the System.Diagnostics.EventLog
class we saw in the previous example. Our problem statement said that we needed to
be able to use this from multiple scripts without putting the code into every script.
The best way to achieve this is to create a function that we load into memory when
we start PowerShell. How do we do this? We either put the function into our profile
or use a dot-sourced call to a script containing the function into the profile, as in
listing 8.18. In both cases we have it loaded and ready to use. Now all we’ve got to do
is write it!

Figure 8.3 Event log example with source. The computer name is blacked out to obscure the internal
domain for security reasons.

TECHNIQUE 77

253TECHNIQUE 78 Managing event logs
Apago PDF Enhancer

function Write-EventLog
{
param([string]$msg = "Default Message", [string]$type="Information")
$log = New-Object System.Diagnostics.EventLog
$log.set_log("Scripts")
$log.set_source("PSscripts")

$log.WriteEntry($msg,$type)
}

The function takes two parameters—a message and the event type. Event types can
one of several types, including information, warning, and error. If we want to see the
available types, we can use:

[enum]::GetNames([System.Diagnostics.EventLogEntryType])

This is explained in chapter 3. As a quick recap, [enum] is a shorthand for the Sys-
tem.Enum class. The Enum class is the base class for enumerations, which are closed
lists. Enums are often used for parameters where there’s a discrete set of possibilities.
The contents of a particular enumeration can be found in the .NET documentation.

 The bulk of the function is taken up by creating an object using the System.Diag-
nosticsEventLog class. We then set the log and the source we want to use. The final
action is to write the event message and the event type to the log.

 We can use our function from the PowerShell prompt or from within a script by a
simple call to the function:

Write-EventLog "Testing Function use" "Information"

The first parameter is the message and the second is the event type.
DISCUSSION
We can test that the event has been written to the log by using:

Get-EventLog -LogName Scripts

This will show the log entries including the messages. The PowerShell v2 version is:

Write-EventLog -LogName Scripts -Source PSscripts `
-EntryType "Information" `
-Message "Testing the event log" -EventId 1

We have to provide an EventId when using this cmdlet. It’d be worthwhile document-
ing the IDs to be used with the event log when it’s created. After learning how to cre-
ate and write to event logs, it’s now time to learn how to manage them.

TECHNIQUE 78 Managing event logs

Administering computer systems involves a number of activities, including configur-
ing the system components and creating backups. In this section, we’ll look at both of
these activities in relation to the event logs on our systems.

 NOTE If you want to work with the Security event log, you’ll need to be work-
ing with elevated privileges.

Listing 8.18 Write to an event log

TECHNIQUE 78

254 CHAPTER 8 Windows servers
Apago PDF Enhancer

The scripts in this section are WMI-based and written to work against the local machine.
Using the -computername parameter, we can manage event logs on remote systems.
PROBLEM
We need to be able to configure the event log and be able to back it up.
SOLUTION
The WMI class Win32_NTEventLogFile is available to us for performing these actions.
There are two main parameters we think about configuring for an event log file:

■ The maximum file size (MaxFileSize)
■ Action to take when the log is full (OverWritePolicy)

Event log configuration can be achieved with the Win32_NTEventLogFile WMI class,
as in listing 8.19. We start by creating a WMI object for the log B. In this case, we’re
configuring the Application log. The file size is set using the MaxFileSize parameter.
We have to use the psbase construction to get to the underlying object so we can call
the Put() method. This saves the configuration change. Win32_NTEventLogFile can
only be used against the “old-style” event logs in Windows 2003 and earlier. It won’t
work against the new-style logs in Vista/Windows 2008.

$applog = Get-WmiObject -Class Win32_NTEventLogFile
-Filter "LogFileName = 'Application'"
$applog.MaxFileSize = 26214400
$applog.psbase.Put()

$log = Get-WmiObject -Class Win32_NTEventLogFile
-Filter "LogFileName = 'Application'"
$ret = $log.BackupEventLog("c:\test\applog.evt")
if ($ret.returnvalue -eq 0){$log.ClearEventLog()}
else {Write-Host "could not back up log file"}

Get-WmiObject -Class Win32_NTEventLogFile |
Where {$_.FileSize -gt 10MB} | Foreach {
 $file = "c:\test\" + $_.LogFileName + ".evt"
 $_.BackupEventLog($file)
 $_.ClearEventLog()
}

$date = Get-Date
Get-WmiObject -Class Win32_NTEventLogFile |
Where {$_.NumberofRecords -gt 5} | Foreach {
 $file = "c:\test\" + $_.LogFileName + "_{0}_{1}_{2}.evt" -f
 $date.Year, $date.Month, $date.Day
 $_.BackupEventLog($file)
 $_.ClearEventLog()
}

Win32_NTEventLogFile can also be used to back up the event logs. If we want to back
up a single log, we can apply a filter to restrict ourselves to the particular log C. We
can use the BackupEventLog() method to perform the backup. The backup file is the
only parameter. If the return code is zero, we can then clear the event log.

Listing 8.19 Managing event logs

Set max sizeB

Backup event logC

Size triggered
backup

D

Records triggered
backup

E

255Summary
Apago PDF Enhancer

 It may be desirable to back up and clear the event log depending on a trigger.
This could be when the log reaches a particular size D or when it has more than a
preset number of records E. All of the logs are retrieved via WMI. The test is
applied, and for each log that passes the test, a backup file is created and then the
logs are cleared.
DISCUSSION
PowerShell v2 cmdlets allow us to configure the event logs and clear the event logs:

Limit-EventLog -LogName scripts -MaximumSize 25MB
Clear-EventLog -LogName scripts

We don’t get a cmdlet to perform the backup.

8.6 Summary
We’ve looked at a number of facets of server administration in this chapter. The ser-
vices and applications need to be managed. This can involve discovering their status as
well as creating or terminating processes. These techniques will be useful when con-
sidering specific applications in later chapters. Think about the situation where you
can write a script that tests the status of the required services running on a remote
machine and then starts them if they aren’t running.

 The filesystem involves us in a number of activities. Some activities are simple such
as creating files and folders. Other activities are much more involved, in that we have
to read or write the contents of the files. At some stage, we’ll need to be able to search
the contents of files for particular pieces of text or possibly search through the filesys-
tem for a particular file. How many times have you had a user come along and say “I
can’t find my file. It’s called xyz.txt. Can you find it for me?” Now you can.

 The registry holds configuration data that we need to be able to read and possibly
change. Accessing and modifying the registry can be regarded as a dangerous occupa-
tion but the tools in PowerShell enable us to perform these tasks in a safe and con-
trolled manner.

 The activities we’ve been performing when administering the servers are recorded
in the event logs. We looked at reading the contents of the event logs so we can diag-
nose issues. Event logs are also objects that we need to administer. We can change the
settings of an existing log and create new logs. Backing up the event logs gives us a way
to keep the records for future use.

Windows 2008 and Vista logs
A new type of event log was introduced in Windows Server 2008 and Windows Vista.
At the moment, all we can do is retrieve records from these logs using Get-WinEvent
in PowerShell v2. This is used in a similar manner to Get-EventLog, which we have
already seen in detail.

This completes our look at event logs. We’ve covered most if not all of the tasks
that administrators need to perform on them. You should be well placed to admin-
ister your event logs using PowerShell after reading this section.

256 CHAPTER 8 Windows servers
Apago PDF Enhancer

 A book this size can’t exhaustively cover every variation involved in administering
the server. The examples in this chapter form a firm foundation for undertaking the
core administrative tasks on a Windows server. Now that we know how to do that, we
can start looking at the applications running on the server, starting with DNS.

DNS
Apago PDF Enhancer

DNS is at the heart of the modern Windows environment. It’s the telephone direc-
tory of our network. If it’s missing, or working incorrectly, our systems can’t talk to
each other, we can’t logon because we can’t find a domain controller, and our
applications may not work properly.

BAD HAIR DAY All things considered, if DNS isn’t working properly, we’re
definitely in the realm of “admins running around with their hair on fire”
as one famous PowerShell speaker so vividly describes it.

The object of this chapter is to show you how to use PowerShell to administer and
check your DNS systems to ensure that you don’t find yourself in such an exciting
predicament. In administration terms, excitement is bad—very bad. We want calm.
Lots and lots of calm.

This chapter covers
■ Administering DNS Servers
■ Managing DNS Zones
■ Working with DNS records
■ Administering the IP configuration on server

or workstation
257

258 CHAPTER 9 DNS
Apago PDF Enhancer

 DNS is one of those systems that we expect to set up and it’ll just keep on working.
But mistakes happen. One large IT vendor lost access to its website because of an error
that had been made during a change to the DNS configuration.

ASSUMPTION This chapter won’t explicitly explain the workings of DNS. It’s
assumed to be understood. It’s further assumed that Windows Server 2008
DNS is being used. The scripts were created and tested using Windows
Server 2008. They should work with Windows Server 2003 and Windows
Server 2008 R2.

Administrators need to be able to check the configuration of their DNS system, includ-
ing servers, zones, and where applicable, individual records. We also need to be able
to configure IP settings and check those settings when troubleshooting. In this chap-
ter, you’ll learn how to do all of this from PowerShell.

 The chapter is split into five main sections. We’ll look at automating DNS adminis-
tration and the tools that we have available. The next section will cover DNS servers
and how we can discover, report, and when necessary, change the configuration. DNS
zones are our third topic, where we discover how to manage their lifecycle from
within PowerShell.

 DNS records are the low-level building blocks. A large proportion of our records
may be created automatically, but we still need to create records from time to time.
We’ll find techniques for managing the major records types we’re likely to need,
together with templates that we can apply when creating other records.

TEACH A MAN TO… There’s a famous proverb about teaching a man to fish.
We could adapt that for our PowerShell experiences. Give an admin a Power-
Shell script and you enable him to solve a problem. Give an admin a set of
templates for creating scripts and he can solve anything.

The hierarchy of these DNS objects is shown in figure 9.1.
 The chapter concludes by looking at the IP configuration of systems. How we can

test it and how we can configure it? We’ll also look at test IP connectivity. We have to
start at the beginning, though, by considering what tools we have available for work-
ing with DNS and IP configurations.

9.1 Automating DNS administration
Having looked at all of the good things we can do to (and with) DNS, how are we
going to achieve all of this?

 PowerShell doesn’t have any native tools for working with DNS or IP configurations.
PowerShell v2 introduces a Test-Connection cmdlet that’s a PowerShell version of the
classic ping utility. By this stage in your discovery of PowerShell, you should automati-
cally think that if PowerShell can’t do it natively, we can probably do it in WMI.

 Windows Server 2008 installs a WMI provider for DNS when the DNS service is
installed. Documentation for the provider can be found at http://msdn.microsoft.
com/en-us/library/ms682125(VS.85).aspx. This provider can also be found in

http://msdn.microsoft.com/en-us/library/ms682125(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682125(VS.85).aspx

259Automating DNS administration
Apago PDF Enhancer
Windows Server 2003 when DNS is installed. The Get-WmiObject cmdlet allows us
to work with remote machines so we don’t have to have PowerShell installed on the
DNS server.

PERMISSIONS You must start PowerShell with administrative privileges to be
able to use the DNS WMI provider when using Windows Server 2008. This
requirement has been relaxed in Windows Server 2008 R2, and the DNS WMI
classes are available from a standard nonelevated console.

The WMI provider for DNS installs another WMI namespace. The DNS functionality is
stored in the MicrosoftDNS namespace. The classes available within the namespace
can be viewed by using Get-WmiObject’s -List parameter, as follows:

Get-WmiObject -List -Namespace 'root\MicrosoftDNS' |
 Sort name | Select name

The sort and select make the results more presentable and easier to read. Before
working with WMI and DNS, I strongly recommend running this example and examin-
ing the output. It may be worthwhile to print off the list of classes for future reference.
This is the sort of information I have pinned up around my desk.

OBJECT MODEL The WMI objects that the WMI provider supplies aren’t
arranged in a hierarchical fashion. Each WMI class is self-contained.

Figure 9.1 The relationship between DNS servers, zones, and records is illustrated using the DNS
Manager console.

260 CHAPTER 9 DNS
Apago PDF Enhancer

If you’ve taken any Microsoft exam involving infrastructure, you’ll know that one
thing that keeps popping up is that DNS stores SRV (Service) records, which define
the services that domain controllers provide. We can view the SRV records on a partic-
ular domain controller using this code:

Get-WmiObject -ComputerName dc02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_SRVType |
Select DnsServerName, OwnerName, TextRepresentation |
Sort OwnerName

This is a quick and easy check that’s much simpler than opening up the DNS manage-
ment console and checking each of the many nodes where SRV records can be found.
With this code, we can quickly check whether a particular domain controller has regis-
tered its SRV records.

 When we think of DNS, we tend to start by thinking about DNS servers, and this is
where we start using PowerShell to administer DNS.

9.2 DNS server
One quick check can determine if the DNS service is running on the server in ques-
tion when troubleshooting DNS problems. It’s always a good idea to check whether the
service is running. This may seem obvious, but a number of times I’ve seen people
spend a long time checking other things before checking the obvious. Create a trou-
bleshooting checklist for likely scenarios and build PowerShell scripts to perform the
tests. The following can be used as a start for DNS tests:

Get-WmiObject -Class Win32_Service -Filter "Name like '%DNS%'"
-ComputerName DC02

The -Class and the -ComputerName parameters define what we’re testing and the
computer respectively. If you need to test a number of machines, put the names in a
CSV file and use Import-Csv to read it, then put the test in foreach cmdlet.

 The filter parameter is interesting because we want to restrict our test to the DNS
server. As written, the filter will return the DNS server service and DNS client service.
The example shows how to use the LIKE operator in a WQL-based WMI filer. The %
symbol is a wildcard character equivalent to the * symbol in PowerShell strings.

 There’s an alternative that can be used in PowerShell v2:

Get-Service *dns* -ComputerName DC02

This is simpler to code and easier to understand. All we need to do is define the ser-
vices we’re interested in and supply the computer name. The command can be made
part of a loop if multiple computers have to be tested:

Import-Csv machines.csv |
Foreach{ Get-Service *dns* -ComputerName $_.Computername}

It’d be possible to make this more generic and have the service to test in the file as
well, or possibly as a parameter if this is turned into a function.

261TECHNIQUE 80 View server configuration
Apago PDF Enhancer

TECHNIQUE 79 Enable remote administration
An administrator’s job can be split into two parts. There are those tasks that are repet-
itive and mundane, and then there are the more interesting challenges such as inte-
grating new technologies into our environment.

 We want to be concentrating on the latter and automating the former. This keeps
life interesting and allows us to use PowerShell to its maximum potential. We want to
get it to do as much of the heavy lifting as possible for us. One slight roadblock we
need to deal with is the Windows firewall. This isn’t just an issue on DNS servers. This
has to be applied to all servers we need to administer remotely, especially if we want to
use WMI.
PROBLEM
The Windows firewall is designed to prevent access from external protocols and com-
mands that haven’t been authorized. This is preventing us from performing adminis-
tration remotely. We need to configure the firewall to allow remote administration.
SOLUTION
There isn’t a PowerShell solution to this problem. We have to revert to using another
solution such as the netsh command, as shown in listing 9.1. This task has to be per-
formed on full install and server core installs on Windows Server 2008 machines.

Netsh firewall set service RemoteAdmin

Netsh advfirewall set currentprofile settings remotemanagement enable

DISCUSSION
We need to run two commands. The first will enable remote WMI access. The second
will enable remote administration. These commands remain in force until the config-
uration is deliberately changed.

 Now that we can access our DNS servers, we can examine the configuration.

TECHNIQUE 80 View server configuration

DNS is one of those services that we install and tend to leave alone. It sits there, mind-
ing its own business, and responds to the requests for IP addresses that we keep send-
ing. This makes it a well-behaved citizen on our corporate network. Until things
decide to take a turn for the worse. When DNS has problems, it means the whole net-
work has problems.

 One of the standard questions when troubleshooting is “What has changed?” The
first response you get will always be “Nothing” but a little perseverance often reveals
that something has changed, together with the comment “But it couldn’t possibly be
that...”

 In an ideal world, we’d maintain a configuration database that stored all of the
configuration information from all of our systems. This database would be kept up to
date in an automated manner (using PowerShell of course) and would be available to

Listing 9.1 Enable remote administration

TECHNIQUE 79

TECHNIQUE 80

262 CHAPTER 9 DNS
Apago PDF Enhancer

answer these questions. Most organizations aren’t in a position to follow this practice,
so we need an alternative.

 What we can accomplish easily is to record the configuration information to a
series of files. WMI would be used to gather the information, and we can store the
information in Word documents as we saw in section 7.4.5. If we’re feeling ambi-
tious, we could decide to write the data to a database. This option will be covered in
chapter 14.
PROBLEM
We need to view and record the configuration of our DNS servers so that we can
determine whether any changes have occurred that could contribute to our situa-
tion. This moves the problem back a stage. How can we create a report of the server
configuration?
SOLUTION
Many of the scripts discussed in chapter 7 can be used to create configuration reports
for our servers. We also need to document the DNS settings. We could take screen
shots of the DNS Manager Administration console (see figure 9.2), but a preferable
solution is to generate the report using WMI. The MicrosoftDNS namespace can be of
assistance, as shown in listing 9.2.

Figure 9.2 DNS Manager Administration console showing the zones present on a server. The
properties on each of the nodes would have to be recorded (often multitabbed dialogs) in order
to fully document the DNS environment.

263TECHNIQUE 81 Configuring round robin
Apago PDF Enhancer

Get-WmiObject -Namespace "root\microsoftdns" -Class MicrosoftDNS_Server
-ComputerName DC02

The first stage in tackling this problem is to look at the MicrosoftDNS WMI
namespace. As we saw in section 9.1, we can use Get-WmiObject’s -List parameter to
display a list of the WMI classes in the namespace. Examining the list of classes shows a
Microsoft_DNS class that might meet our needs.

 When we use a WMI namespace other than the default, which is root\cimv2, we need
to supply the namespace to Get-WmiObject. We also need to supply the WMI class.

 The –ComputerName parameter allows us to run this script against remote systems.
In this way, we can document all of our DNS servers from one machine instead of log-
ging on to each in turn. That saves us a lot of time.
DISCUSSION
In its current form, the script will output the information to the screen. This is accept-
able when we want to view the present configuration and possibly compare it to a stored
version. We can generate the stored version using the techniques in section 7.4.5 to cre-
ate a Word document. Alternatively we could use the options in listing 8.6 to create a
text or CSV file. A final option would be use Export-CliXML to persist the PowerShell
object created by Get-WmiObject as an XML file. One thing with PowerShell is that we
always have choices. The right choice for your environment will depend on what you
need to achieve.

AUTOMATE FILE COMPARISON If we create a file of our starting configuration
and another containing our current configuration, we can use Compare-
Object to test for differences between the files as shown in listing 1.4.

Now that we can view and store the DNS server configuration, how can we make
changes to that configuration?

TECHNIQUE 81 Configuring round robin

In this section we’ll concentrate on a couple of changes that are useful examples of
server administration. These can serve as examples and templates. The MSDN docu-
mentation on the MicrosoftDNS WMI namespace includes details of the other meth-
ods and properties available to us.

 There are a number of situations where we need to load-balance an activity across
multiple machines. This can be accomplished in a number of ways using functionality
built into the Windows OS, third-party hardware devices, or by using the round robin
capability in DNS. Round robin DNS isn’t always a suitable answer, but it’s readily avail-
able and easy to configure.
PROBLEM
Round robin is controlled at the server level. We need to be able to turn it on or off as
we require.

Listing 9.2 View server configuration

TECHNIQUE 81

264 CHAPTER 9 DNS
Apago PDF Enhancer

SOLUTION
We saw in the previous example how it’s possible to view the DNS server configuration
using WMI. We’ll build on that knowledge to control the settings on the server, includ-
ing round robin, in listing 9.3. The solution starts by retrieving the server configura-
tion information using WMI B. This is performed in exactly the same manner as in
listing 9.2. Reuse is a wonderful thing! I’ve used a different computer this time. Leav-
ing out the -ComputerName parameter causes the command to be executed against the
local system. Instead of displaying the information to the screen, we’ll save it to a vari-
able so that we can work with it.

$s = Get-WmiObject -ComputerName csdc1 -Namespace "root\microsoftdns"
-Class MicrosoftDNS_Server
$s
$s.getdistinguishedname()

$s.RoundRobin = $false
$s.psbase.put()

$s.RoundRobin = $true
$s.psbase.put()

Once we’ve stored the configuration information in the variable, we can use that data.
The variable is a .NET object holding the properties and methods available to that par-
ticular class. We can display all configuration properties by using the variable name C
or we can display a single property.

 The property for the round robin setting is Boolean. It can only be configured as
true or false, which causes it to turn on or off respectively. Setting the RoundRobin
property to $false turns it off D. We need to save the configuration, so we need to
use the Put() method.
DISCUSSION
This method isn’t exposed on the object we get returned from Get-WmiObject (try
using Get-Member on it to see the results). We need to drop into the underlying object
using the .psbase suffix to see, and use, the Put() methods

PSBASE Always check the underlying object using .psbase if you can’t see the
methods or properties that you think should be available.

The change can be reversed by setting the property to $true E and calling Put().
One thing that you must do after making a change like this is make sure that you
record the change!

TECHNIQUE 82 Configuring conditional forwarding

DNS is used to look up an IP address so that our machine can communicate with another
machine. When we’re dealing with machines on our internal network, we should have
a complete set of DNS records for the machines on the network. Our DNS servers won’t
have information for machines in other DNS zones, belonging to other organizations.

Listing 9.3 Configure RoundRobin

B Create server variable

C Display properties

RoundRobin OffD

RoundRobin OnE

TECHNIQUE 82

265TECHNIQUE 83 Clearing the server cache
Apago PDF Enhancer

 DNS servers surmount this problem by forwarding the requests to other DNS servers.
The forwarding process will eventually lead to a server that has the information we need.
PROBLEM
Forwarding in this manner will resolve external internet addresses, but it won’t do
anything for a separate DNS domain that we may host internally. During a merger, we
may be able to communicate across the internal network with the other organization,
but we may not have integrated the DNS infrastructure of the two organizations.

 We may also want to create a shortcut. If we know the IP addresses of the DNS serv-
ers for a particular domain, we can configure conditional forwarding. This will imme-
diately cause the DNS servers to forward requests for IP addresses in the given domain
to a specific set of servers. The question is how do we configure this?
SOLUTION
Figure 9.2 shows the Conditional Forwarders node in DNS. We could perform this task
through the GUI. That wouldn’t be any fun, though. A much better idea is to use
PowerShell and the DNS WMI provider.

 The way that we configure conditional forwarding is closely related to how we cre-
ate a DNS zone. Compare listing 9.4 with listing 9.6 where we investigate how to create
a DNS zone. Examining the conditional forwarders in the DNS manager console shows
that they’re specialized zones that only contain the IP addresses of DNS servers author-
ative for that zone.

$ip = "192.168.40.1", "192.168.40.2"
$z = [WMIClass]"\\dc02\root\MicrosoftDNS:MicrosoftDNS_Zone"
$z.CreateZone("cond.com", 3, $false, $null, $ip)

Listing 9.4 starts by defining an array of IP addresses. The addresses have to be given
as strings. We then use [WMIClass] to create an instance of a DNS zone on the server
we’re targeting—in this case dc02.

 The CreateZone method is used to create the zone. A number of parameters have
to be supplied, starting with the name of the DNS zone that will be conditionally for-
warded. The next parameter, value 3, indicates a zone forwarder as explained in
table 9.1.

 $false indicates that the zone isn’t Active Directory-integrated. This means that if
we want to configure multiple servers with this conditional forwarder, we have to do
each separately. That’s why we script it. Write once, run many. The $null parameter is
a placeholder that’s used for other purposes. Our final parameter is the list of IP
addresses we created at the beginning.

 After learning how to configure our DNS server, we need to look at one more activ-
ity at the server level before we start investigating DNS zones.

TECHNIQUE 83 Clearing the server cache

When a DNS server supplies an address to satisfy a client request, the data is stored in
the server’s DNS cache. The cached information is then used if the same address is

Listing 9.4 Configure conditional forwarding

TECHNIQUE 83

266 CHAPTER 9 DNS
Apago PDF Enhancer

requested. This increases the speed of response, especially for addresses that are fre-
quently requested. The data in the cache is of limited life defined by the time to live
(TTL) property, which is set when the record is created.
PROBLEM
If we change the IP address of one of our servers, the DNS server will continue to sup-
ply the old address while that record is in its cache. We need to be able to remove that
old, stale information from the DNS server’s cache.
SOLUTION
The cache is an all-or-nothing proposition, so there isn’t a way to remove a single, stale
record, but we can clear the whole cache using the technique in listing 9.5. This causes
the cache to repopulate so that the correct addresses are supplied to DNS clients.

$cache = Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_Cache
$cache.ClearCache()

There’s a WMI class that represents the cache. We use Get-WmiObject to create a vari-
able for the cache object. The MicrosoftDNS_Cache WMI class in the MicrosoftDNS
namespace is used to access the cache.
DISCUSSION
We can control which DNS server we’re working with. This is one parameter to double
check. It would be embarrassing to clear the wrong cache! Once we have our variable,
we can use the ClearCache() method to perform the task.

 This concludes our look at the DNS server. In the next section, we move down a
level and consider DNS zones.

9.3 DNS zones
A DNS zone is used to store DNS records. The zone may match our Active Directory
name if the zone is internal. It may match the company name if external-facing, such
as Microsoft.com. Zones may be Active Directory-integrated or exist in separate files
with a separate replication topology. The examples in this section assume that Active
Directory-integrated DNS is being used.

 Most of our day-to-day activity with DNS occurs within a zone. We’re usually con-
cerned with the records or the zone configuration. But before we can attempt to per-
form any of those tasks, we need to create a DNS zone on our server.

TECHNIQUE 84 Creating a DNS zone

DNS zones are the containers for DNS records and can be divided into two distinct
types. Forward DNS zones are used to supply an IP address when the name of the
machine is supplied. Reverse DNS zones supply the name of a machine when an IP
address is supplied.

 Creating DNS zones isn’t an everyday task. One area where the ability to regenerate
the DNS infrastructure quickly will pay off is in a disaster recovery situation. Script the

Listing 9.5 Clear server cache

TECHNIQUE 84

267TECHNIQUE 84 Creating a DNS zone
Apago PDF Enhancer

creation of your DNS zones and you know that part of the rebuild will occur properly
and rapidly. The creation of test environments that mimic the production environ-
ment should also be scripted for speed and accuracy.

 There are a number of zone types that can be created by
this method. The possible zone types are listed in table 9.1.

 We’ll concentrate on creating a primary zone, as this is
the most likely scenario in an Active Directory environment.
PROBLEM
We’re required to create forward and reverse DNS zones
to accommodate a new suite of functionality in the
organization.
SOLUTION
The creation of DNS zones involves using the MicrosoftDNS WMI namespace so we
can perform this task remotely as well as on the local machine, as shown in list-
ing 9.6. We’ve seen [WMIClass] being used in a number of examples in earlier chap-
ters. One of the great things with PowerShell is that the same techniques are applica-
ble over and over again. This consistency is one of the great strengths of the tool
and is something that we should aim to emulate. Once you’ve discovered a way to
perform a task, stick with it. You know the method will work and this will make you
more productive.

$z = [WMIClass]"\\csdc1\root\MicrosoftDNS:MicrosoftDNS_Zone"
$z.CreateZone("example2.com", 0, $true)

$z.CreateZone("175.168.192.in-addr.arpa", 0, $true)

Creating a zone involves using the [WMIClass] type accelerator to create a WMI
object for the zone. We can then call the CreateZone() method B. The structure of
the path to the WMI class is \\computer_name\namespace:class. This is consistent across
WMI. If you’re working locally or using PowerShell remoting, the computer name
isn’t necessary.

 The parameters represent the zone name and the zone type, described in the
previous table. The Boolean value $true indicates that the zone is Active Directory-
integrated. This example creates a forward lookup zone

 We need to create a primary zone. Active Directory forward zones are always con-
sidered as primary because they’re writable due to their multimaster nature. One of
the good features of using Active Directory-integrated DNS is that we only need to cre-
ate the zones on a single DNS server. Active Directory will replicate the information to
the other appropriate DNS servers.
DISCUSSION
A reverse lookup zone is created in a similar manner C. Note the format of the zone
name. Having created our zone, we need to be able to discover the other zones on the
DNS server and examine their configuration.

Listing 9.6 Create DNS zone

Forward zoneB
Reverse zoneC

Value Zone type

0 Primary zone

1 Secondary zone

2 Stub zone

3 Zone forwarder

Table 9.1 DNS zone types

268 CHAPTER 9 DNS
Apago PDF Enhancer

TECHNIQUE 85 Viewing zone configuration
A DNS server can contain one, several, or many zones. When the DNS service is started,
the zone data is loaded by DNS either from Active Directory or from a file.
PROBLEM
Windows machines quickly stop communicating if DNS can’t resolve the names cor-
rectly. We can’t even log on without it. This could occur if the zones aren’t loaded or
are misconfigured so that they haven’t replicated correctly. When troubleshooting
DNS, we need to be able to determine which zones are available on our server and
how those zones are configured.
SOLUTION
We have gotten to know the MicrosoftDNS_Zone class quite well by now. It’s going to
prove its worth by solving this problem for us as well, as shown in listing 9.7.

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_Zone | Select Name

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_Zone -Filter 'Name = "example2.com"'

There are two aspects to this problem:

■ What zones are present?
■ How is a zone configured?

We can answer the first part of the question by determining the names of the zones
that are loaded B. We use Get-WmiObject and supply a computer name. The WMI
namespace has to be supplied, as it’s not the default root space. The WMI class also has
to be supplied. Normally this command would display information about all of the
instances of this class—all zones—but in this instance we’ve restricted ourselves to
returning just the name. This is an important test, as there are DNS zones that have to
present for Active Directory logon to work correctly. If the zones aren’t present, this is
one possible test to determine the problem.
DISCUSSION
A filter can be used to restrict the returned information to a single zone C. We use
the same computer name, WMI namespace, and class as before, but this time we add a
filter based on the names of the zone.

 Now that we know the names of the zones on the server, we can think about exam-
ining the contents of the zone.

TECHNIQUE 86 Viewing zone contents

DNS zones contain DNS records. We’ve seen how to view the configuration properties
of a zone. Now it’s time to view the records contained within the zone. This is useful
for a number of reasons, including checking that individual records are contained in
the zone. This technique could also be used to compare the contents of a zone on two
different systems to ensure that replication has occurred correctly.

Listing 9.7 View zone configuration

TECHNIQUE 85

Zone
list

B

Zone
configuration

C

TECHNIQUE 86

269TECHNIQUE 86 Viewing zone contents
Apago PDF Enhancer

PROBLEM
Disaster recovery involves a lot of planning for the worst and finding ways to mitigate
those risks. DNS is one of the foundations of a modern Windows infrastructure. In the
event of a disaster, we’d need to ensure that we could recreate our DNS zone contents.
One possible way of achieving this would be to create a permanent record of the con-
tents as part of the DR documentation. We need to be able to view the zone contents
before we write it to a disk file.
SOLUTION
WMI provides the means to solve this problem. We need to get some information out
of WMI so we need to use Get-WmiObject. Get-WmiObject is the core of this solution.
PowerShell has superb WMI support that gets even better in version 2. What isn’t
widely known is that some of the early work that became PowerShell involved a new
version of a command-line WMI utility. Expect WMI to be at the core of PowerShell for
a long time.

 The MicrosoftDNS namespace is used together with the MicrosoftDNS_AType
class. This combination will retrieve the entire list of A records on the server that we
define in the -ComputerName parameter. We don’t want this, so we need to employ a
filter to restrict the output, as shown in listing 9.8.

Get-WmiObject -Namespace 'root\MicrosoftDNS'
 -Class MicrosoftDNS_AType -ComputerName DC02 `
-Filter "ContainerName ='example2.com'" |
 Select OwnerName, IPAddress

DISCUSSION
It’s always better to restrict the output with a WMI filter than to put a where statement
further down the pipeline. This is because the filtering is applied as the data is
retrieved, rather than after it’s returned. The net effect is to reduce the amount of
data returned and to reduce network utilization. Overall, the command will run
more quickly.

 The filter in this case is set to only accept records where the ContainerName
matches a specific value. ContainerName is the property that holds the zone name.
The net effect is that the A records contained in the particular zone will be retrieved.
We can then limit the display to the machine name (OwnerName) and the IP address.
A further refinement would be to use the -Property parameter to restrict the
returned data to only the properties we need. I tend not to use this option. I like to
keep my scripts generic, as I often find myself having to modify scripts for new trou-
bleshooting scenarios.

A RECORDS ONLY Only DNS A records will be displayed. We’d need to repeat
with other record types if we required a complete view of the contents. The
different types of records discussed in section 9.4 could be substituted in the
script.

Listing 9.8 View zone contents

270 CHAPTER 9 DNS
Apago PDF Enhancer

In technique 92, we look at how we can query a DNS server for an individual record.
We could achieve this using by modifying the filter to include an IP address or using a
where statement. If the record type is known, this may be a better solution, but if all
of the records associated with a given machine name or IP address are required, use
technique 92. This script could be easily modified to create a file containing the
information. We could pipe the data into Out-File or Export-Csv as shown in tech-
nique 66, where we discuss creating files.

 We’ve discussed the data lifecycle a number of times, and DNS zones follow this
lifecycle. The final act we have to perform on our zone is to delete it when it’s no lon-
ger required.

TECHNIQUE 87 Deleting a DNS zone

When a DNS zone is no longer required, we should ensure that it’s deleted. This
ensures that the DNS server’s resources are concentrated on properly serving the pro-
duction environment and that the information isn’t available to potential attackers.
When we delete an Active Directory-integrated zone, the replication system will
ensure that the zone will be also be deleted on the other DNS servers.

BACKUP It’s a good idea to create a backup of the zone before deleting. You
never know when you might need it.

Zone deletion is something that we could perform in the GUI, but we wouldn’t have a
record of the activity. If we use a PowerShell script, we can delete the zone and create
a record in the event log (see section 8.5 for scripts to create and write to event logs)
so that the activity can be tracked.
PROBLEM
We need to delete a DNS zone in such a way that we can record the activity.
SOLUTION
Section 8.5 showed how to record the event. We can use the WMI DNS provider to per-
form the actual deletion. The zone is deleted by creating a variable for the zone we
need to delete. It’s strongly recommended that you use Get-WmiObject by itself to
determine the correct zone before you wrap the rest of the script around the call.
Deleting the wrong zone would be generally considered a bad thing to do.

 Once we’ve determined that we have the correct zone, we call the Delete()
method on the zone to perform the deletion. The PowerShell object doesn’t expose
this method, so we have to use .psbase to access the underlying object, as shown in list-
ing 9.9. This is a slightly messy way of working, but things get much better in Power-
Shell v2.

$zone = Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_Zone -Filter 'Name = "example2.com"
$zone.psbase.Delete()

Listing 9.9 Delete a DNS zone

TECHNIQUE 87

271TECHNIQUE 87 DNS records
Apago PDF Enhancer

DISCUSSION
One of the WMI improvements in PowerShell v2 is a Remove-WmiObject cmdlet. We
can use this to modify the script to a single line of PowerShell:

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_Zone -Filter 'Name = "example2.com"' |
Remove-WmiObject

Use Get-WmiObject to identify the correct zone as previously demonstrated. We can
then pipe the object that Get-WmiObject produces into Remove-WmiObject. This has
the benefit that we can use the Get cmdlet to ensure that we have the correct zone,
then add the Remove cmdlet to the pipeline.

 DNS zones exist for the purpose of containing DNS records. We need to discover
how to manage DNS records using PowerShell.

9.4 DNS records
The DNS records are the working end of the DNS system. Are the correct records in
place? Do we need to create any records for specific purposes? Modern Windows OSs
will register their own records in DNS, or DHCP can be configured to provide this ser-
vice. These records are the standard forward lookup (A) and reverse lookup (PRT)
records. But there are still occasions, for instance if we create a new web server or mail
server, where we need to register a specific record.

 We’ll look at how we can create a number of different record types. These are the
records that we’re most likely to have to create. The records have different formats, so
it’s a useful exercise to examine how to create multiple record types. Forward lookup
(A) records and reverse lookup (PTR) records are the building blocks of DNS. We also
need to consider IPv6 records (AAAA), mail server (MX), and alias (CNAME) records.
This will cover the most common scenarios we’re likely to meet and give us a founda-
tion for any other type of record that we may come across.

 One theme that keeps coming through with PowerShell is that we have multiple
ways to achieve a given outcome. This is true with creating DNS records. We can either
use the MicrosoftDNS_ResourceRecord class or we can use a specific class for each dif-
ferent type of record. Examples of both are supplied in the following listings.

 We’ll need to supply a text representation of a record if we use the
MicrosoftDNS_ResourceRecord class. This will look something like:

test57.Manticore.org IN A 10.10.54.177

or:

177.54.10.10.in-addr.arpa IN PTR test57.manticore.org

We can view the text representations of the records by using this script. We use the
WMI provider to retrieve the records and select the data we require:

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_ResourceRecord | Select TextRepresentation

272 CHAPTER 9 DNS
Apago PDF Enhancer

The MicrosoftDNS_ResourceRecord class is a generic class for working with DNS
records. There are also classes for dealing with specific record types; for instance, the
MicrosoftDNS_AType or the MicrosoftDNS_PTRType class as we’ll see in the examples
in this section. Figure 9.3 shows the previous script being modified to discover PTR
and MX records. This would be a suitable use for PowerGUI, as the individual requests
can be stored and used as required.

 This becomes useful when we want to examine SRV records. These are used by cli-
ents to discover the services that domain controllers offer, including logon to the
domain. If the SRV records for a domain controller aren’t available, the users won’t be
able to log on. SRV records can be viewed as follows:

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_SRVType | Select TextRepresentation

This will display all the SRV records on the DNS server. We usually want to be more
selective, as there could be a lot of records in a big Active Directory environment.
Often we’re interested in the records relating to a particular domain controller, so we
modify the script by using a filter in the Get-WmiObject cmdlet:

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_SRVType
-Filter "SRVDomainName = 'csdc1.manticore.org.'" |
Select TextRepresentation

This will return the SRV records stored in the DNS server for a given domain control-
ler. If the correct records aren’t present, logon or another service from the domain
controller will fail. I wouldn’t recommend creating SRV records using PowerShell or

Figure 9.3 Using the Microsoft DNS WMI provider to display the text representation of DNS records.
This can be used to determine the format of the information needed to create new DNS records.

273TECHNIQUE 88 Creating DNS A records
Apago PDF Enhancer

any other means. In the event that the domain controller hasn’t registered the
records, it’s usually because of an underlying problem that should be investigated and
rectified so that the domain controller can register the records itself.

 Other types of DNS records may need to be created as we discussed earlier. The
most common type of record is the A, also known as glue record, which links a machine
name to an IP address.

TECHNIQUE 88 Creating DNS A records

DNS A records are where the relationship between a machine name and an IP address
are recorded. We may create an MX record so that we can find our email servers, or a
CNAME record to provide an alias for a machine (or possibly a website), but we need
to have an A record to go with these other records. The A record provides the glue
that binds these other type of records to an IP address.

 In many cases, Windows will create these records for us. We need to know how to
create them to cover the case where we need to guarantee the contents of the DNS
zone, for example if we’re adding multiple IP addresses to a network interface.
PROBLEM
DNS records often have to be created during the commissioning process of new serv-
ers and services. The records can be created manually using the GUI tools, but this
doesn’t leave an audit trail. Audit records are available if we create the records in a
script, especially if we use the techniques from section 8.5 to write the information
into an event log.
SOLUTION
We’re using a WMI class to solve this problem for us, as shown in listing 9.10. We’ve
seen this pattern a few times already. We first create an instance of the class. We then
set variables to represent the data we need to create the particular object. The final
step is to use a create method (not always called Create()) to perform the actual cre-
ation. We’ll see variations on this theme used in solving many of the problems in this
section. It’s one of the fundamental PowerShell techniques. We’ll also see it used in
subsequent chapters, particularly chapter 13 on IIS.

NOTE This solution is used to create an IPv4 record. We need to use the solu-
tion in the next section if we want to create an IPv6 record.

We want to create a DNS A record, so we use the MicrosoftDNS_AType class B. The
starting point is to create a variable to represent our WMI class. We use [WMIClass] to
define the path to the WMI class in the form \\computer_name\wmi_namespace:wmi_class.

$rec =
[WmiClass]"\\DC02\root\MicrosoftDNS:MicrosoftDNS_AType"

$server = "dc02.manticore.org"
$zone = "example2.com"
$name = "Test2.example2.com"

Listing 9.10 Create DNS A record

TECHNIQUE 88

B
Create
instance

Define parametersC

274 CHAPTER 9 DNS
Apago PDF Enhancer

$class = 1
$ttl = 3600
$address = "192.168.172.20"

$rec.CreateInstanceFromPropertydata(
 $server, $zone, $name, $class, $ttl, $address)

The second step is to create the data we’ll feed into the actual creation process C:

■ The DNS server on which the record will be created.
■ The zone that will store the record.
■ The fully qualified domain name (FQDN) of the computer.
■ The class of record. A value of 1 means that it’s a standard IN internet record.
■ The TTL value for the record in seconds.
■ The IP address to be associated with the machine name.

The CreateInstanceFromPropertyData() method D is used to perform the record
creation. This must be one of the longer method names we’ll use in this book: It’s not
something I want to type that often. The data we discussed is used as arguments for
the method as shown.

PARAMETER ORDER The parameters have to be presented to the method in
the order shown.

DISCUSSION
One thing we can do with this is extend the script to deal with creating multiple
records. We’ll assume that we have a CSV file containing two fields, namely machine
name and IP address. The script is modified to become listing 9.11.

Import-Csv iprec.csv | Foreach -Begin {
 $rec = [WmiClass]"\\DC02\root\MicrosoftDNS:MicrosoftDNS_AType"
 $server = "dc02.manticore.org"
 $zone = "example2.com"
 $class = 1
 $ttl = 3600
 } `
 -Process {
 $name = $_.FQDN
 $address = $_.IPAddress

 $rec.CreateInstanceFromPropertydata(
 $server, $zone, $name, $class, $ttl, $address)
 }

The script starts by reading a CSV file B. The data is passed into a foreach statement.
We use a -Begin script block to define the constant data C such as the server and
zone names. A -Process script block D is used to take the machine name (FQDN)
and the IP address and use the CreateInstanceFromPropertyData() method to cre-
ate the record.

Listing 9.11 Create multiple DNS A records

Define parametersC

Create recordsD

Read fileB

C Set constants

Process dataD

275TECHNIQUE 89 Creating DNS AAAA records
Apago PDF Enhancer

 This is a useful example of how we can take a script that performs a function once
and turn it into a script that does the same thing many times. The -Begin, -Process,
and -End parameters are well worth remembering when working with a foreach cmd-
let. It’s possible to save processing time this way.

 IPv4 records like this have been the standard for many years. IPv6 is coming into
use, as it’s introduced in Windows Vista, Windows 7 and Windows Server 2008. We
need to adapt our script to manage IPv6 records.

TECHNIQUE 89 Creating DNS AAAA records

TCP/IP is the standard networking protocol suite. One issue is that the number of pos-
sible addresses is finite and forecast to run out in the near future. An enhancement in
the form of IPv6 radically increases the number of addresses that are available. Yes,
your fridge can have its own IP address!

 At present, IPv6 isn’t widely adopted, but both Windows Vista and Windows
Server 2008 have a new TCP/IP stack that facilitates using IPv6. In order to future-
proof our administration skills, we need to know how to create a DNS record for an
IPv6 address.
PROBLEM
We learned how to create an IPv4 address record in the previous section. How can we
create an IPv6 IP address record?
SOLUTION
We adapt listing 9.12 to use a different WMI class that allows us to work directly with
IPv6 addresses. Comparing listing 9.12 to listing 9.11, we start by creating a WMI object
for the IPv6 address B. Note that we’re using the MicrosoftDNS_AAAAType class. An
IPv6 AAAA record is analogous to an IPv4 A record.

$rec = [WmiClass]"\\DC02\root\MicrosoftDNS:MicrosoftDNS_AAAAType"

$server = "dc02.manticore.org"
$zone = "example2.com"
$name = "Testip6.example2.com"
$class = 1
$ttl = 3600
$address = "fe80::f564:22dd:b7d9:4eb"

$rec.CreateInstanceFromPropertydata(
 $server, $zone, $name, $class, $ttl, $address)

Most of the parameters we’ve seen before. The server, zone, class, and TTL all match
the previous listing. The name is obviously different, but the real difference is in the
address. IPv4 addresses are 32 bits long and are normally represented in a dotted-
decimal format such as 192.168.172.20. IPv6 addresses are 128 bits long (that’s why
there are so many of them) and are represented in a hexadecimal format such as
fe80::f564:22dd:b7d9:4eb C.

Listing 9.12 Create an IPv6 AAAA record

TECHNIQUE 89

BCreate WMI object

IPv6 addressC

276 CHAPTER 9 DNS
Apago PDF Enhancer

DISCUSSION
The double colon is used to represent parts of the address that are composed of con-
secutive zeroes, so it expands to fe80:0000:0000:0000:f564:22dd:b7d9:4eb.

 This isn’t the place for a full tutorial on Ipv6, so after learning how to create the
records, we’ll move on to the records we need to keep our email flowing.

TECHNIQUE 90 Creating DNS MX records

Email is the primary communication mechanism for many companies. A Windows-
based email server will register its own A records by default. But the outside world
needs to be able to find the email server. This is enabled by the creation of MX (Mail
Exchange) records in DNS. These aren’t required internally, but are required in the
external internet-facing DNS.

 Organizations often have multiple systems accepting email. In this situation, multi-
ple MX records are created to enable redundancy through round robin DNS. Creating
multiple records takes more effort to do manually, but is relatively easy for a Power-
Shell script.
PROBLEM
We need to quickly create MX records in our internet-facing DNS. It may be necessary
to configure multiple records to facilitate availability of service.
SOLUTION
We’ll continue to use the DNS WMI provider, but this time we’ll look at the
MicrosoftDNS_MXType class. Creating an MX record is slightly different. In previous
records, we’ve been mapping a machine name to an IP address. In this case, we’re
mapping a mail domain to a machine name.

 We start by creating our WMI object, as in listing 9.13. This time we’ll use the
MicrosoftDNS_MXType class B. We could also use the MicrosoftDNS_ResourceRecord
class and give the required information in the form of a text representation, as shown
in figure 9.3. Once we’ve created the object, we need to define the data we’ll feed into
the creation process.

$rec = [WmiClass]"\\DC02\root\MicrosoftDNS:MicrosoftDNS_MXType"

$server = "dc02.manticore.org"
$zone = "Manticore.org"
$owner = "Manticore.org"
$class = 1
$ttl = 3600
$preference = 10
$name = "Exch01.Manticore.org"

$rec.CreateInstanceFromPropertyData(
 $server, $zone, $owner, $class, $ttl, $preference, $name)

Much of the information will be familiar from the previous examples. Instead of
defining a machine name as the record owner, we use the mail domain C. The owner
is usually the domain for MX records.

Listing 9.13 Create an MX record

TECHNIQUE 90

BCreate WMI object

Record ownerC

Machine nameD Create
record

E

277TECHNIQUE 91 Creating DNS CNAME records
Apago PDF Enhancer

 A piece of information that we haven’t seen before is the preference. This is used to
set a preference for which mail server is actually used. The mail servers that have MX
records with lower preference values will be given priority over servers with higher val-
ues. Configuring multiple mail servers with the same preference value will initiate
load balancing for incoming mail.

 The final piece of data is the FQDN of the mail server that can accept mail for the
mail domain D. A call to the CreateInstanceFromPropertyData() method E cre-
ates the record.
DISCUSSION
We may need to create multiple MX records where we have several mail servers and we
need to control which mail servers will be used.

DNS RECORDS FOR MAIL A DNS A record needs to be created for the mail
server as well. The MX record points to the A record, which supplies the IP
address.

The MX record is effectively a pointer to another record. MX records are specific to
email servers, but we may need to create pointers for other purposes.

TECHNIQUE 91 Creating DNS CNAME records

A CNAME or alias record is a pointer to another record. We define a name and then
provide a pointer to an A record that will give us the IP address.
PROBLEM
We need to be able to define another name for our database server. The application is
expecting a particular name, but we can’t change the server name because of the other
applications that access it. How can we resolve the new name to the correct server?
SOLUTION
We create a pointer from our alias to the correct server using a CNAME record, as in
listing 9.14. There’s a class in the DNS WMI namespace that we can use. I mentioned
earlier in the chapter that many of the scripts we create for administration follow
established patterns. There’s a distinct pattern to creating DNS records, such that it’d
be easy to combine these scripts into a function that used a switch statement to
decide which record type to create, and then input the rest of the information as argu-
ments to the function.

$rec = [WmiClass]"\\DC02\root\MicrosoftDNS:MicrosoftDNS_CNameType"

$server = "dc02.manticore.org"
$zone = "Manticore.org"
$alias = "MySQLBox4"
$class = 1
$ttl = 3600
$name = "SQL08.Manticore.org"

$rec.CreateInstanceFromPropertyData(
 $server, $zone, $alias, $class, $ttl, $name)

Listing 9.14 Create a CNAME record

TECHNIQUE 91

BCreate object

Define aliasC

Define true nameD
Create recordE

278 CHAPTER 9 DNS
Apago PDF Enhancer

Following our pattern, we create a WMI object for the CNAME record B. We set the
usual data. This time we need to set the alias C and the real name D. We can then
create the record E.
DISCUSSION
It’s worth comparing the data required for creating an alias with that required for an
MX record as presented in listing 9.13.

ERROR REPORT I’ve seen this script report errors, but it still continues and
generates the correct record. If you see an error message, double-check that
the record was created successfully. Using a FQDN for the alias rather than
just the server name may resolve the issue.

So far, we’ve looked at records that are used for a forward lookup where we want to
end up with an IP address. The final record type we’ll look at creating performs the
reverse function and gives use a machine name when we have an IP address.

TECHNIQUE 92 Creating DNS PTR records

PTR records aren’t always created by machines in a Windows infrastructure. It
depends on the way the DNS settings have been configured on the client. DHCP can be
configured to create PTR records for its clients. If we create an A record manually or
through a script, we need to create the corresponding PTR record.
PROBLEM
We need to create PTR records for machines that don’t have them created automatically.
SOLUTION
We can use a variation of our established pattern to create them using WMI. This
time, we’ll use the MicrosoftDNS_ResourceRecord class to create the PTR record in
listing 9.15. This class can be used to create any type of DNS record by varying the
text that’s used. There are two reasons for using this class here. (1) It hasn’t already
been used and it needs to be covered. (2) I couldn’t get the MicrosoftDNS_PTRType
WMI class to work correctly in my testing. It may have been the combination of
PowerShell v2 beta and Windows Server 2008 that caused this. This class definitely
works with PowerShell v2 on Windows Server 2008 R2. I know this method works and
like all good admins I’ll stick with what I know works.

$str = "\\DC02\root\MicrosoftDNS:MicrosoftDNS_ResourceRecord"
$rec = [WmiClass]$str

$server = "dc02.manticore.org"
$zone = "175.168.192.in-addr.arpa"
$text = "78.175.168.192.in-addr.arpa IN PTR test78.example2.com."
$rec.CreateInstanceFromTextRepresentation($server, $zone, $text)

We start by creating the object B. There are only three pieces of data that we present
using this technique: the server name, the zone C, and the record text D. The zone
is a reverse lookup zone, so its name includes the subnet reversed. The text gives the

Listing 9.15 Create PTR record

TECHNIQUE 92

B
DNS zoneC

Record
text

D

E

279TECHNIQUE 93 Querying DNS records
Apago PDF Enhancer

reversed IP address of the system and the machine name. The CreateInstanceFrom-
TextRepresentation() E method is used to perform the creation.
DISCUSSION
If we’re going to create multiple records in one pass we should use string substitution
to create the text for the record. We’ve configured our server and created zones and
records, so it’s now time to discover how to find those records when we need to check
on our systems.

TECHNIQUE 93 Querying DNS records

DNS is used for name resolution in a Windows environment. The records that are stored
in DNS come from a number of sources. They can be created by our systems when they
start up, they can be created by DHCP, they can be created by scripts as we’ve seen pre-
viously, or we could even create them manually using the DNS administration console.
Some of these methods may be error-prone to a greater or lesser degree.

 DNS records need to be maintained and will eventually have to be deleted. Clients
will be given the wrong DNS information if old, stale records aren’t removed, leading
to problems on our network.
PROBLEM
Testing network connectivity is a standard troubleshooting technique. One of the
steps in the troubleshooting progression is to check the data held in DNS. Machines
won’t be able to communicate if this information is out of date or wrong. In order to
complete our testing, we need to be able to query the data held in DNS either by com-
puter name or by IP address.
SOLUTION
We need to see all of the records held in DNS for a particular computer. We can use
the MicrosoftDNS_ResourceRecord WMI class to return this information, as shown in
listing 9.16.

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
 -Class MicrosoftDNS_ResourceRecord
-Filter "OwnerName = 'csdc1.manticore.org'"

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_ResourceRecord
-Filter "RecordData = '10.10.54.99'"

The solution is presented in two parts to simplify the discussion. In the first instance, we
want to search for DNS records using the name of the machine B. Using our trusty Get-
WmiObject again, we give it the name of the DNS server in the -ComputerName parameter.
The DNS namespace is used, but this time we use MicrosoftDNS_ResourceRecord for
the class. This will ensure that we retrieve all of the required records.

 A filter is used to restrict the data returned to that pertaining to the computer in
which we’re interested. Note that we’re using the FQDN rather than just the NetBIOS

Listing 9.16 Querying a DNS record

TECHNIQUE 93

BQuery by name

CQuery by address

280 CHAPTER 9 DNS
Apago PDF Enhancer

name. This will return all records that have the OwnerName property set to the particu-
lar computer name.

 Assuming that we haven’t worn out Get-WmiObject, we’ll use it again to test the IP
address C. This version is identical to our previous example, except that we’re com-
paring the RecordData property to the IP address. We have to present the IP address as
a string.
DISCUSSION
As an enhancement, we could combine the filters into a single statement. Alterna-
tively we could create a function that combined both scripts and accepted a computer
name and IP address as arguments.

 Now that we know how to create and find records, it’s time to consider how we can
delete them.

TECHNIQUE 94 Deleting DNS records

We need our DNS records to be always available so that communications across our
networks proceed in a smooth manner. DNS records, like all data, will eventually
become out-of-date and will have to be removed. DNS has a self-cleaning mechanism
known as scavenging. Old, stale DNS records are removed from the server when this
mechanism is activated. But there is a delay before the scavenging will pick up a stale
record. In certain circumstances, this is unacceptable.
PROBLEM
One of our servers has failed. We need to remove the records pertaining to this server
from DNS to ensure that other machines don’t attempt to communicate with the
failed machine. This situation is a potential problem if we’re using round robin DNS,
for instance, and need to remove the DNS record for a particular machine that has
failed so that we drop it out of the load-balancing configuration.
SOLUTION
Our WMI classes have a method we can use to delete the records. Alternatively, Power-
Shell v2 introduces a cmdlet that’ll do the job for us, as shown in listing 9.17. Consid-
eration of the code shows that in both cases we’re using WMI to create an object
representing the record and we then perform a delete action.

$rec = Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_AType -Filter "IPAddress = '192.168.172.20'"

$rec.psbase.Delete()

Get-WmiObject -ComputerName DC02 -Namespace 'root\MicrosoftDNS'
-Class MicrosoftDNS_AType -Filter "IPAddress = '192.168.172.17'" |
Remove-WmiObject

In the first example B, we create a variable $rec for the DNS record. We use the DNS
namespace and the class representing the type of record we want to remove. A filter con-
taining the IP address is used to confine our attentions to the record we actually want.

Listing 9.17 Delete a DNS record

TECHNIQUE 94

BPowerShell v1

CPowerShell v2

281TECHNIQUE 94 Client settings
Apago PDF Enhancer

DOUBLE CHECK At this stage of the proceedings, it’s worth double-
checking that we actually have the correct record to delete. Simply display
the contents of $rec.

We need a method to delete the record. Now that we have a variable to work with, we
can use Get-Member to discover the methods:

$rec | Get-Member

This doesn’t show any methods that could be used to perform a deletion, though. We
came across a similar problem in section 3.4.2 when discussing Active Directory
objects. We can find what we need by using psbase to access the underlying .NET
object rather than the PowerShell wrapper:

$rec.psbase | Get-Member

We delete the DNS record by using the methods on the underlying object as follows:

$rec.psbase.Delete().

DISCUSSION
Our second option only works in PowerShell v2. We use Get-WmiObject to retrieve the
record we need to delete C. We then pipe the results into Remove-WmiObject, which
will perform the deletion. I prefer this approach because using Get-WmiObject
directly enables us to view the results. We can then refine the query, if necessary, so
that we’re targeting the correct record. Once we’ve determined that we have the cor-
rect record, we simply pipe it into Remove-WmiObject. A good demonstration of inter-
active PowerShell. It’s also a good way to avoid deleting the wrong record, which
would be embarrassing.

 We’ve looked at the DNS server, the DNS zones, and records in this chapter. The
last section will complete the picture by showing us how to work with the settings on
client machines.

9.5 Client settings
DNS and IP configuration needs to be correct for network connectivity to function cor-
rectly between Windows machines. We’ve examined the DNS server side of the puzzle

Alternative
If you don’t have access to a DNS server to test using psbase, you can see a similar
result by using the Win32_Process class on the local machine. Create an object for
a new process and use Get-Member. You won’t see a delete method. Accessing the
underlying object using psbase reveals a delete method:

$p = [WMIClass]"Win32_Process"
$p | Get-Member
$p.psbase | Get-Member

282 CHAPTER 9 DNS
Apago PDF Enhancer

in previous sections of this chapter. In this section we’ll learn how to check the IP con-
figuration of a machine and to test its connectivity.

 Administrators will instinctively reach for the ipconfig and ping utilities to per-
form these tasks. (If only I had a dollar for every time I’ve used ping or ipconfig!)
These utilities can be used directly in PowerShell but still only return text.

 There are PowerShell alternatives that we can use that have the advantage of allow-
ing us to work with objects. After we’ve tested the configuration and the connectivity,
we may need to make changes. This can also be accomplished with PowerShell.

TECHNIQUE 95 IP address configuration

One of the first tools that an administrator learns to use is ipconfig. It enables us to
discover how our IP addresses and related information is configured. If a networking-
related issue is suspected, one of the first things we’ll need to do is to check the IP
address, subnet mask, and other data.
PROBLEM
Administrators often use ipconfig to determine the IP configuration of a system. How
can we retrieve the same information in PowerShell?
SOLUTION
It would be possible to use ipconfig and expend a lot of effort extracting the
required data and formatting as required. A preferred solution would be to generate
the information in PowerShell, using WMI, as in listing 9.18.

Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
 -Filter "IPEnabled = True" |
Select DNSHostName, Caption, MACaddress, IPAddress,
IPSubNet, DefaultIPGateway, DHCPEnabled, DHCPServer,
DHCPLeaseObtained, DHCPLeaseExpires, DNSServerSearchOrder,
DNSDomainSuffixSearchOrder, WINSPrimaryServer,
WINSSecondaryServer

It may not look it, but technically this is one line of PowerShell! If we’re working at the
command line, we can reduce the typing by using IP*, DHCP*, DNS*, and WINS* to
select multiple properties with minimal effort. I wouldn’t recommend using this style
in scripts, though.

 We can use the NetworkAdapterConfiguration class to discover this information.
The network adapters that we’re interested in will be those that are enabled to com-
municate over TCP/IP. This is indicated by the IPEnabled property being set to true.
DISCUSSION
In much earlier incarnations of Windows, we may have expected to find other proto-
cols such as Novell’s SPX in use. Today, TCP/IP will form the great majority of network
connections on your Windows systems.

 Once we’ve identified the adapters we’re interested in via the -Filter parameter,
we can select the particular properties in which we’re interested. It would be benefi-
cial to compare the output from this line of PowerShell with that obtained from

Listing 9.18 IP address configuration

TECHNIQUE 95

283TECHNIQUE 96 Setting an IP address
Apago PDF Enhancer

ipconfig.exe. The other advantage to the script is that we can run it against remote
machines by specifying the -ComputerName property.

 It’s one thing to be able to discover the IP address and other TCP/IP-related infor-
mation, but how can we set this information?

TECHNIQUE 96 Setting an IP address

When Windows is first installed, it tells the network card to obtain an address via
DHCP. This is fine for workstation machines, as we more than likely want to manage
their IP information by DHCP. Servers for the most part should have static IP
addresses. We could go into the properties of each network card and configure the
TCP/IP information, but that might involve walking to the computer room. Ideally we
need to be able to do this remotely.
PROBLEM
We have one or more remote machines where we need to set the IP address and other
TCP/IP properties.
SOLUTION
Having previously discarded the idea of walking to the computer room, we’ll have to
use WMI and the NetWorkingAdapterConfiguration class to solve this problem. This
script is the equivalent of opening the properties of a network connection and manu-
ally setting the TCP/IP properties.

WARNING This could severely damage your computer’s ability to communi-
cate on the network if used incorrectly. Make sure the values being used are
correct.

There will be a number of network adapters in a server machine. I’ve worked on sys-
tems with 10 extra network cards that were combined for load-balancing and failover.
This made a dozen cards before we started looking at the other connections that are
counted as network connections. We need some way to identify the particular card we
want to configure, as in listing 9.19. The easiest way is to look at the descriptions B.
Once we’ve identified the card, we can use the description of the card in a WMI filter
to create an object representing the card C. Note the use of single and double quotes
around the filter string.

Get-WmiObject -Class Win32_NetWorkAdapterConfiguration |
Select Description

 $na = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration
-Filter "Description = 'Intel(R) PRO/1000 PL Network Connection'"

$na.EnableStatic("10.10.10.21", "255.255.255.0")
$na.SetGateways("10.10.10.1")

$dns = "10.10.20.5", "10.10.20.6"
$na.SetDNSServerSearchOrder($dns)

$na.EnableDHCP()
$na.RenewDHCPLease()

Listing 9.19 Setting the IP address configuration

TECHNIQUE 96

Get
descriptions

B

CSelect
card

D
Configure
IP address

E
Configure
gatewayConfigure

DNS
F

Set DHCPG Renew
DHCP lease

H

284 CHAPTER 9 DNS
Apago PDF Enhancer

The IP address and subnet mask are configured using the EnableStatic() method
D. This will remove the setting to use DHCP and set the values. The addresses have to
be presented as a string, as shown.

 Other information needed with a static address includes the default gateway E
and the DNS servers F. Normally two DNS servers are defined, so put both addresses
in the string as shown.

PRIVILEGES You need to Run as Administrator (Vista/2008) or be logged in
with Administrator credentials (XP/2003) to run the code in listing 9.19. This
restriction has been relaxed on Windows Server 2008 R2.

DISCUSSION
If it becomes necessary to revert to using DHCP, the EnableDHCP() method G will do
this. Using this method will remove the static IP address and the subnet mask, but it
won’t remove any other information such as the default gateway or DNS servers we’ve
defined either manually or via a script. Having reverted to DHCP, it may be necessary
to force a renewal of the DHCP lease by using RenewDHCPLease() H. There are a num-
ber of other methods available to use via this WMI class:

This one WMI class enables us to configure the networking connectivity of our sys-
tems. This can be used remotely making it even more efficient.

TECHNIQUE 97 Testing IP connectivity

Testing the IP connectivity from a machine or between two machines is a basic trou-
bleshooting activity. One of the first things you learn as an administrator is to use the
ping utility.

FIREWALL The Windows firewall prevents ping-type activities by default. The
use of ICMP needs to be enabled so that we can perform these tests.

Ping can be used in PowerShell, but because it returns text, it’s not easy to work with
the output.
PROBLEM
We need to test network connectivity from within PowerShell.
SOLUTION
There’s a WMI class we can use to test IP connectivity. PowerShell version 2 makes it
easier to use by wrapping the functionality within a cmdlet, as in listing 9.20.

■ DisableIPSec ■ EnableDHCP

■ EnableIPSec ■ EnableStatic

■ ReleaseDHCPLease ■ RenewDHCPLease

■ SetDNSDomain ■ SetDNSServerSearchOrder

■ SetDynamicDNSRegistration ■ SetGateways

■ SetIPConnectionMetric ■ SetIPXFrameTypeNetworkPairs

■ SetTcpipNetbios ■ SetWINSServer

TECHNIQUE 97

285Summary
Apago PDF Enhancer

Get-WmiObject -Class Win32_PingStatus -Filter "Address = '127.0.0.1'"

Test-Connection -Destination 127.0.0.1
Test-Connection -Destination Computer01
Test-Connection -Destination 192.168.37.56
Test-Connection -Destination fe80::f564:22dd:b7d9:4ea
Test-Connection -Destination 127.0.0.1, 192.168.37.56
"127.0.0.1","192.168.37.56" | foreach {Test-Connection -Destination $_}

The WMI class used to perform this test is Win32_PingStatus B. We use a filter to
define the address we want to test. One interesting difference is that on Windows Vista
and Windows Server 2008, using this WMI class returns the IPv4 and IPv6 addresses
associated with the machine.

 In PowerShell v2, we have the same functionality supplied in a cmdlet—Test-

Connection C. We can supply one or more destinations, either as IP addresses or as
names, and they’ll be tested in turn. IPv4 and IPv6 addresses can be used. The
addresses to be tested can also be supplied along the pipeline.

NOTE Test-Connection 127.0.0.1 | select IPV4Address -First 1 is a
quick way to get the local IP address using PowerShell.

DISCUSSION
One common troubleshooting scenario is to ping the localhost, then the local
machine address, followed by the default gateway, and finally a remote machine on
another subnet. This could be achieved in one line of PowerShell by simply listing the
addresses as shown and piping into Test-Connection. Alternatively, the addresses
could be supplied in a CSV file if required.

 In the event that there are a large number of addresses to test, the -AsJob parame-
ter runs the tests as a PowerShell background job.

9.6 Summary
PowerShell doesn’t have native tools to work with DNS. The DNS WMI provider can be
used in PowerShell so that we can administer local and remote DNS servers. This is
automatically installed when we install DNS.

 WMI gives us access to the server configuration, DNS zones, and DNS records. We
can manage the full lifecycle for these objects from PowerShell. We can also compare
and contrast settings and data across servers. This means we can ensure the correct
settings are applied uniformly across the environment and that the data is consistent.

 There are a number of DNS record types that we may need to create. These can all
be created using PowerShell and WMI. The ability to interrogate DNS and check the
records means that we can troubleshoot issues such as the nonregistration of SRV
records quickly and efficiently.

 Client machines and servers have IP configurations. We can use PowerShell and
WMI to check the configuration and make changes as appropriate. The connectivity
between machines can be checked using WMI or new functionality in PowerShell v2.

Listing 9.20 Testing IP connectivity

CmdletC BWMI

286 CHAPTER 9 DNS
Apago PDF Enhancer

 In this chapter, we’ve seen several instances where Active Directory is dependent
on DNS. We’ve already looked at configuring Active Directory user accounts in chap-
ter 5. In the next chapter, we’ll build on this chapter and the work we’ve done with
user accounts by examining how we can administer the Active Directory structure with
PowerShell.

Active Directory structure
Apago PDF Enhancer

In chapter 5, we looked at user accounts and groups in Active Directory. This is the
most volatile data in Active Directory, but it has the least impact on our Active
Directory as a whole. Figure 10.1 shows a three-layer view of Active Directory. At the
bottom we find data that changes slowly such as sites, site links, and domain con-
trollers. Though these items don’t change often, they can have a huge impact on
Active Directory, and the user population, if things go wrong. We’ll be looking at
how to administer this layer in chapter 11.

The middle layer comprises our OU structure, the GPOs that we link to the OUs,
and how we protect Active Directory. This layer changes more rapidly than the bot-
tom layer and usually has a lower impact. But I’ve seen GPO errors have a devastat-
ing effect on Active Directory. Watching servers drop out of use as the GPO
replicates isn’t a pretty sight. This is the topic for this chapter, where we’ll look at
the Active Directory schema, organizational units, GPOs, and how we can add fur-
ther security to our AD objects.

This chapter covers
■ Working with Organizational Units
■ Administering Group Policies
■ Protecting objects from accidental deletion
■ Restoring deleted Active Directory objects
287

288 CHAPTER 10 Active Directory structure
Apago PDF EnhancerWe normally don’t touch the AD schema apart from updating it for new versions of
Active Directory or AD-aware applications such as Exchange. It has a lot of useful
information. We’ll look at accessing the schema to discover its version and change the
display defaults we use in Active Directory Users & Computers. Code to discover the
forest and domain levels will also be examined.

 OUs are the containers we use to give structure to our domains. They contain the
user and computer accounts we work with on a day-to-day basis. The full lifecycle of
OUs will be examined with scripts to perform all common administrative actions that
occur during this lifecycle. This will include how to discover the objects contained
within an OU.

 GPOs are used to control all aspects of our managed environment. We won’t look
at scripting the contents of the GPO, but we’ll examine how create and link them to
our OUs. A common question is “What GPOs are linked where in my domain?” Power-
Shell can be used to discover this information for us.

 The final section of the chapter shows how to stop Active Directory objects from
being accidentally deleted. It also explains how to restore a deleted object, and what
you need to do to repopulate the attributes on the object.

10.1 Automating Active Directory administration
When we start to work with the objects considered in this chapter, we have two choices
regarding our approach. We can use the .NET classes in PowerShell and script our

Figure 10.1 Frequency of change to Active Directory objects. The topology changes slowly, but
changes can have a large impact. The structure changes more rapidly but tends to have less of an
impact. User data changes most frequently, but has the least impact on the directory as a whole.

289Schema
Apago PDF Enhancer

solutions in this style. Alternatively, we can assemble a toolkit of cmdlets to perform
these tasks. Most of the solutions in this chapter will be presented in both styles.

 A number of the scripts in this chapter will help you with “the guy who set it up has
left” scenario. In other words, no one knows exactly how the Active Directory is config-
ured. You can use the scripts to discover what’s happening as well as document the
configuration.

10.1.1 .NET

In this chapter, we’ll be mainly using classes in the System.DirectoryServices.
ActiveDirectory and System.DirectoryServices namespaces. They build from the
way we used them in chapter 5. These scripts can be used on any Active Directory ver-
sion as long as we have a machine running PowerShell in the domain.

10.1.2 Cmdlets

Cmdlets are available from a number of sources. In this chapter we’ll see examples of
working with:

■ The AD and GPO cmdlets that ship with Windows Server 2008 R2. These cmd-
lets are supplied as modules—ActiveDirectory and GroupPolicy respec-
tively. They’re loaded using Import-Module. The AD cmdlets work against a
web service on the domain controller rather than a direct ADSI call. The web
service is available for download to install on Windows Server 2008 and Win-
dows Server 2003 domain controllers. It’ll be necessary to have a Windows 7 or
Windows Server 2008 R2 machine in the domain to host the cmdlets.

■ The Quest cmdlets, which can be used from an administration workstation or
server without installation on a domain controller. We’ll make extensive use of
the *-QADObject cmdlets in this chapter. The Quest cmdlets all have a QAD pre-
fix attached to the noun in order to distinguish them.

■ SDM Software, which provides cmdlets for working with GPOs and tombstone
objects. SDM provides a number of snapins to download and install rather than
the single snapin we see with Quest.

One question I’m often asked is which set of cmdlets I use. I use all three sets wherever
possible. There are cases where one has functionality that the other doesn’t, or one has
easier syntax. If I had to choose, I’d probably use the Microsoft cmdlets on Windows
Server 2008 R2 and the Quest/SDM cmdlets on Windows Server 2008 and 2003.

 Now that we know the outlines of what we’re looking at and the tools we’re using,
it’s time to dive into the details, starting with the Active Directory schema.

10.2 Schema
The schema defines the types of objects that can be created in our Active Directory as
well as the attributes those objects may possess. It’s created when Active Directory is
installed, and in the vast majority of organizations it’s subsequently ignored until it’s
time for an upgrade. Changes to the schema are rare events and should be under
tight change control.

290 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

 SCHEMA CHANGES Schema updates are one-way: you can’t remove classes or
attributes that have been added. In the later versions of Windows, you can dis-
able these new classes or attributes under certain circumstances.

When Active Directory was first introduced, it was thought that companies would be
adding classes and attributes to Active Directory to support their applications. This
hasn’t happened for the most part. Most schema upgrades seem to be either when
Active Directory is upgraded or when a new version of Exchange is introduced.

 Many administrators don’t like touching the schema because it’s seen as risky. Sound
planning and preparation will contain the risk. There aren’t a lot of tasks we really need
to do to the schema, but being able to find your way around it can be useful.

TECHNIQUE 98 Schema version

One thing that consultants seem to spend a lot of time doing is digging into the cur-
rent state of a system to find how it’s configured and set up. The documentation never
seems to cover the information we need.

 Microsoft has introduced new functionality with each new version of Active Direc-
tory. That functionality is linked to the forest and domain levels, which we’ll examine
in the next section. The schema version is important so we know what updates have
been applied and what functionality is available. It’s also possible for schema updates
to occur if beta or release candidate versions of Windows have been applied. This
leaves the schema in a state that may not be supportable.
PROBLEM
A standard issue with the “guy who set it up has left” scenario is the schema version. Did
he apply any updates? We need to determine the version of the schema so that we know
what functionality should be available and that the schema is in a supportable state.
SOLUTION
The System.DirectoryServices.ActiveDirectory namespace supplies an Active-
DirectorySchema class that we can use to discover this information, as in listing 10.1.
We saw in chapter 5 how we could access and manipulate objects in Active Directory.
Unfortunately, accessing the schema is slightly different. The starting point is creating
an object for the schema B. We can do this by using the System.Directory-
Services.ActiveDirectory.ActiveDirectorySchema class as shown. That name is a
mouthful—not something I’d want to try saying quickly five times. This class has a
static method GetCurrentSchema() that we use. Remember, we need :: to access
static methods.

SCHEMA CLASSES The System.DirectoryServices.ActiveDirectory.Active-
DirectorySchema class has methods that enable us to view the classes and attri-
butes in the schema. It has faster access than ADSIEdit.

After we have our schema object, we can get a directory entry for it C. This gives us
access to the information on the schema. The particular attribute we use to see the
schema version is called ObjectVersion D. This can take one of a discrete set of

TECHNIQUE 98

291TECHNIQUE 98 Schema version
Apago PDF Enhancer

values. The most efficient way to test the value is to use a switch statement. See list-
ing 2.6 for another example.

$sch = [System.DirectoryServices.ActiveDirectory.ActiveDirectorySchema]::
GetCurrentSchema()
$de = $sch.GetDirectoryEntry()
switch ($de.ObjectVersion)
{
 13{"{0,25} " -f "Schema Version 13 = Windows 2000"; break}
 30{"{0,25} " -f "Schema Version 30 = Windows 2003"; break}
 31{"{0,25} " -f "Schema Version 31 = Windows 2003 R2"; break}
 44{"{0,25} " -f "Schema Version 44 = Windows 2008"; break}
 47{"{0,25} " -f "Schema Version 47 = Windows 2008 R2"; break}
 default{"{0,25} {1,2} " -f `
 "Unknown Schema Version", $de.ObjectVersion; break}
}

DISCUSSION
It would be possible to use a number of if statements to produce the same result, but
a switch statement is more efficient. Each line consists of a condition to test—for
instance, is the ObjectVersion value equal to 13 as shown on the first line? If the
ObjectVersion value matches the test value, the script block is executed. In this case,
we output a string giving the version number and the associated version of Windows.
The break statement causes processing to jump out of the switch statement. If we
didn’t use break, the other tests would be performed, and we want to stop processing
at the first match.

FORMATTING I’ve deliberately used the string-formatting capabilities in this
script and the next because they’re part of an Active Directory reporting
script. The output is designed to be written to text files for further use.

The default value catches anything that doesn’t match one of the test values. If we get
to this point, it means that either we have an odd value for the schema version which
needs further investigation, or our script needs updating to allow for a new version
of Windows!

 The script becomes much easier to maintain using a switch statement. A new line
containing the value to test and the associated text needs to be added into the state-
ment. One thing to keep in mind is how the script will be maintained. At some stage,
we’ll need to perform maintenance or updates on our scripts, and writing with that in
mind will save a lot of muttering in the future.

 This script can’t be shortened by using cmdlets. If desired, lines 1 and 2 of the
script could be replaced by a single line using the Microsoft cmdlet:

$de = Get-ADObject
-Identity "CN=Schema,CN=Configuration,DC=Manticore,DC=org"
-Property ObjectVersion

Listing 10.1 Schema version

B
Create directory entryC

D

292 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

A similar syntax is available with the Quest cmdlet

TECHNIQUE 99 Forest and domain level

An Active Directory forest is a collection of one or more domains that share common
information such as the schema and the global catalog. The domain level, and in Win-
dows Server 2003 or later the forest level, controls the functionality available within
Active Directory. Changing the domain or forest level is a one-way process. We may
still need to report on the levels, either when investigating an Active Directory that’s
new to us or to prepare a report documenting our AD.
PROBLEM
The forest and domain levels need to be determined for all of the domains in our
Active Directory forest. We need to derive the information in a form that can be incor-
porated into a report. The task should be accomplished with the least amount of
administrative effort. Sounds like an MCP exam question.
SOLUTION
We can determine the forest and domain levels by using the GUI tools. But this infor-
mation would then need to be typed into our report and would also require more admin-
istrative effort in a forest with a significant number of domains. We’ll use the System.
DirectoryServices.ActiveDirectory namespace again to solve this problem.

 The script in listing 10.2 starts by creating an object for the forest B. We can use
the GetCurrentForest() static method of the System.DirectoryServices.Active-
Directory.Forest class for this. The information we need is stored as properties of
this object C. I’ve used a formatted string in this example, as I wanted to be able to
pipe the output directly into a text file. If the data is only required onscreen, we could
use a simple piece of code:

$for | Select Name, ForestMode, RootDomain

This displays the forest name, root domain, and the forest level. The forest level is
stored in the ForestMode property. The Domains collection of the forest object stores
the information we need. A foreach loop can be used to iterate through the domains
in the collection D. Within the loop, the domain name, parent domain, and domain
level (domainmode) are displayed E. The parent domain is useful, as it enables us to pic-
ture the structure of the domain trees. The netmap technique discussed in section 8.2.1
could be used to create a visual display of the forest structure.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

"{0,15} {1,2} " -f "Name:", $for.Name
"{0,15} {1,2} " -f "Forest Mode:", $for.ForestMode
"{0,15} {1,2} " -f "Root Domain:", $for.RootDomain

foreach ($domain in $for.Domains){

Listing 10.2 Forest and domain levels

TECHNIQUE 99

Get forest objectB
Forest
data

C

DomainsD

293TECHNIQUE 100 Default display name
Apago PDF Enhancer

"{0,8} {1,2} " -f "Name:", $domain.Name
"{0,25} {1,2} " -f "Parent Domain:", $domain.Parent
"{0,25} {1,2} " -f "Domain Mode:", $domain.DomainMode
}

DISCUSSION
The following could be used to display the domain data onscreen if there’s no
requirement to save to a file:

$for.Domains | Select Name, Parent, DomainMode

The Microsoft AD cmdlets supply Get-ADForest and Get-ADDomain cmdlets that sim-
plify this code:

$for = Get-ADForest
$for | Format-List Name, ForestMode, RootDomain
foreach ($domain in $for.Domains){
 Get-ADDomain $domain | Format-List Name, Parent, DomainMode}

I stated earlier that modifying the schema is a rare occurrence. It certainly fits into the
lowest part of our triangle in figure 10.1. One thing we may want to think about doing
though is modifying the way display names are created when using the GUI tools.

TECHNIQUE 100 Default display name

When we use PowerShell to create our user accounts, we can control the format of the
display names, as we saw in chapter 5. But the GUI tools default to displaying the

Domain
data

E

Figure 10.2 Creating a user in ADUC automatically creates the display name. We want to ensure that
this is automatically created as last name followed by first name to give us consistency between our
scripts and the GUI tools.

TECHNIQUE 100

294 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

names as first name followed by last name. This makes browsing more difficult, as first
names tend not to be as selective as last names.

 Some organizations and admins advocate creating names as last name followed by
a comma followed by first name. This is a bad idea.

AVOID THE COMMA Adding a comma into the name causes difficulties when
we create LDAP strings and we have to escape the comma. Don’t use it. If you
find your user accounts are structured like this, then try and get a change
approved to modify the process and rename the accounts. It’ll make automa-
tion much easier.

Figure 10.2 shows a user being created, where the display name is automatically cre-
ated as last name followed by first name. This ensures consistency and helps prevent
those that haven’t yet adopted PowerShell for performing their administration from
feeling neglected.
PROBLEM
Many organizations attempt to handle this using procedures, but someone forgets or
nobody tells the new guy and odd names get produced. What we want to be able to do
is apply the same rules in the GUI as we do in our scripts. Our task is to modify the way
display names are created when we use the GUI tools. We need to change the default
behavior to that shown in figure 10.2.
SOLUTION
There are a number of display specifiers in Active Directory. We set the appropriate
specifier to perform this task. This isn’t, strictly speaking, an operation on the schema,
but it fits logically into this section.

 We need to access the display specifier we need which can be found at:

cn=User-Display,cn=409,cn=DisplaySpecifiers,
CN=Configuration,DC=Manticore,DC=org

in my test domain. These display specifiers control how the GUI tools present informa-
tion. The 409 refers to the code page that’s used in the environment.

CODE PAGE This will vary if you’re using a non-English language. You’ll need
to determine the correct number to use for your system.

As shown in listing 10.3, the easiest way to access the display specifiers without hard-
coding the name of the domain into the script is to use RootDSE B. This binds us to
the root of our Active Directory.

$rootDSE = [ADSI]"LDAP://RootDSE"

$dispspec =
[ADSI] ("LDAP://cn=User-Display,cn=409,cn=DisplaySpecifiers," +
$rootDSE.ConfigurationNamingContext)

$dispspec.CreateDialog = "%<sn> %<givenName>"
$dispspec.SetInfo()

Listing 10.3 Default display name

Bind to LDAP rootB

Get display
specifiers

C
Set
display name format

D

SaveE

295TECHNIQUE 100 Organizational units
Apago PDF Enhancer

The script is also made more portable by creating it in this manner. We then need to
create a directory entry for the User-Display specifier C. If we wanted to view the set
of display specifiers, we could use the following:

$disp =
[ADSI]("LDAP://,cn=409,cn=DisplaySpecifiers," +
$rootDSE.ConfigurationNamingContext)
$disp.children

After accessing the user-display specifier, we change the CreateDialog property D.
The value used translates as last name first name separated by a space. sn and given-
name are names used in Active Directory for these attributes. The full range of attri-
butes and characters that can be used in the CreateDialog value can be viewed by
accessing KB250455 on the Microsoft website.

TEST As with all of the scripts in this book that may potentially perform
changes to your environment, you should test this one thoroughly to ensure it
performs as you expect.

The final act of the script is to save the changes back into Active Directory E. The
next time a user is created using ADUC, the dialog will work as shown in figure 10.2.
DISCUSSION
We can display and modify the specifier using Get-ADObject and Set-ADObject (Set-
QADObject could also be used). Using the RootDSE to get the configuration naming
context keeps it portable. The CreateDialog property isn’t part of the default prop-
erty set, and so has to be explicitly defined when we want to view it:

Get-ADObject `
-Identity "cn=User-Display,cn=409,cn=DisplaySpecifiers, `
$((Get-ADRootDSE).configurationNamingContext)" `
-Properties CreateDialog |
Format-List *

Set-ADObject `
-Identity "cn=User-Display,cn=409,cn=DisplaySpecifiers,`
$((Get-ADRootDSE).configurationNamingContext)" `
-Replace @{CreateDialog = "%<sn> %<givenName>"}

This chapter is about the structure of Active Directory. The primary object concerned
with the logical structure within a domain is the OU. OUs are used for the delegation
of administration and to provide a structure for linking GPOs, as we’ll see in the fol-
lowing sections.

10.3 Organizational units
OUs are the subcontainers within an Active Directory domain that we use to bring
structure and order to our environment. OUs are designed so that the domain struc-
ture is flexible and (relatively) easily modified. We saw how to move users between
OUs in chapter 5. Later in this section, we’ll see how to move whole OUs and the com-
plete set of their child objects.

296 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

 The rate of change on OUs is much less than that of the user population, but
higher than the physical topology of our Active Directory. Changing an OU in some
way will impact only a portion of our Active Directory. This puts the OU changes in the
middle of the frequency and impact diagram, as can be seen in figure 10.1. The
diminished impact level doesn’t mean we can perform changes without a proper
change control mechanism.

 Active Directory creates a number of containers and OUs when it’s installed. We
need to learn how to create our own OUs before we can go much further with them.

TECHNIQUE 101 Creating an OU

Creating an OU is similar to creating a user object. The script presented in this section
should be compared with that in listing 5.7. In this section, we look at creating a single
OU. In the next section we’ll examine how to create a number of nested OUs.
PROBLEM
We have to create an OU structure for the users and computers we’ll be creating in Active
Directory. We can’t put them in the default containers because we can’t apply GPOs to
them. Our starting point is to create one or more OUs in the root of the domain.
SOLUTION
The script presented in listing 5.7 will be modified to perform this task; the modified
version is shown in listing 10.4. OUs are much simpler objects than users, which means
we don’t need to set as many attributes. Whenever we’re creating objects in Active
Directory, we need to start by getting a directory entry for the parent object B. This
syntax is the long version of:

$parent = [ADSI]$ldap

In this case, the domain is the parent object. This listing hard-codes the domain name
into the script. If the script is required to be portable, the first two lines of the next
listing can be substituted for the first two lines of this script.

 Once we have the directory entry for the parent, we can then find the collection of
children belonging to the parent C. The Add() method is used to perform the cre-
ation D. The OU name is given in the first parameter and the type of object (organi-
zationalUnit) given in the second parameter. We must remember to save the newly
created object back to Active Directory using SetInfo(); otherwise our new OU
will disappear.

$ldap = "LDAP://dc=Manticore,dc=org"
$parent = New-Object DirectoryServices.DirectoryEntry $ldap
$OUs = $parent.get_children()

$newOU = $OUs.add("OU=PwrShlPractce1", "organizationalUnit")
$newOU.SetInfo()

$newOU.Description = "Powershell in Practice OU 1"
$newOU.SetInfo()

Write-host "Created OU: PwrShlPractce1"

Listing 10.4 Create OU

TECHNIQUE 101

Parent
directory
entry

B

Child objectsC
Create OUD

Set descriptionE

ConfirmF

297TECHNIQUE 101 Creating an OU
Apago PDF Enhancer

It’s a good idea to set a description for the OU (or any other object). It helps us remem-
ber why we created it in the first place. After setting the description E, we need to use
SetInfo() again to save the change. The script finishes by outputting a message to say
we’ve created the OU F. We could also write a message to the event logs if required.
DISCUSSION
The script in listing 10.5 shows how to create an OU using the Quest cmdlets. There
isn’t a set of cmdlets for working with OUs, so we have to use the generic *-QADObject
cmdlets.

$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

New-QADObject -Name PwrShlPractce2
-ParentContainer $root.DistinguishedName.ToString()
-Type 'OrganizationalUnit' -NamingProperty 'ou'
-Description "Powershell in Practice OU 2"

This is actually a three-line script. The first two lines create a directory entry object for
the root of the domain. Using the GetCurrentDomain() static method of the Sys-
tem.DirectoryServices.ActiveDirectory.Domain class, we create a .NET object for
the domain. GetDirectoryEntry() creates the directory entry that enables us to get
the distinguished name to use as the parent container. This approach has the advan-
tage of not having the domain hard-coded, so it is portable between domains.

 The New-QADObject cmdlet is used to create the OU. We give the new OU a name
and define the previously derived distinguished name of the domain as the parent.
The -Type and -NamingProperty parameters are used to set the fact that we’re creat-
ing an OU as opposed to another type of object. We can set the description in the
same cmdlet. There’s no need for a message to confirm the creation because the cmd-
let outputs one automatically.

 This becomes even simpler with the Microsoft cmdlets:

New-ADOrganizationalUnit -Name "PwrShlPractce3"
-Description "Test OU Number 3"

A new OU is created in the root of the domain. In Windows Server 2008 R2, by default
the OU is protected from accidental deletion (see technique 112 in section 10.5). If
we don’t want it protected, we need to use -ProtectedFromAccidentalDeletion
$false. A child OU is created by defining the path to the parent OU:

New-ADOrganizationalUnit -Name "Child1"
-Description "Child of Test OU Number 3"
-Path "OU=PwrShlPractce3,DC=Manticore,DC=org"

We’ve seen how to create on OU. This is useful, but we often need to create multiple
nested OUs. That’s the next step in our exploration of OUs.

Listing 10.5 Create OU by cmdlet

298 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

TECHNIQUE 102 Bulk creation and nesting
There are numerous ways to organize the OU structure of an Active Directory domain.
Three AD experts will give you at least four good answers and a lot of entertainment
listening to the debate. One good way is to base the OU structure on geography—the
different locations your organization occupies. This should be the least changeable
possibility in theory.

 This means that we usually end
up repeating the OU structure
beneath our geography-based OUs.
An example is shown in figure 10.3,
though it’s not based on geography—
at least I don’t know of anywhere
called Pwrshpractce3.

 This becomes a tedious chore to
perform in the GUI if we have a large
number of locations. I became inter-
ested in scripting OU creation when I
had to set up the OU structure for a
90+ site Active Directory!
PROBLEM
We’ve defined our problem as how to
create an OU structure that consists
of a number of nested OUs. The pro-
cess must be repeatable for when we
add new locations into our Active
Directory environment.
SOLUTION
The script presented in the previous
section can be used as the basis of solving this problem. We can make the script
generic by using variables rather than hard-coding the data, as in listing 10.6. The
technique of importing the data from a CSV file can be used again here. This gives us
the situation where we just change the input data to make the script reusable across
any domain and across numerous situations, including initial domain creation and
addition of locations to the AD.

clear-host
Import-Csv ou.csv | Foreach {
 $ldap = "LDAP://" + $_.ParentOU
 $parent = new-Object DirectoryServices.DirectoryEntry $ldap
 $OUs = $parent.get_children()

 $newOU = $OUs.add("OU=" + $($_.Name), "organizationalUnit")
 $newOU.SetInfo()

Listing 10.6 OU bulk creation

TECHNIQUE 102

B
Set parent
container

C

D

Create OUE
F

Figure 10.3 Repeating OU structure within a
geographic-based OU structure

299TECHNIQUE 102 Bulk creation and nesting
Apago PDF Enhancer

 $newOU.Description = $_.Description
 $newOU.SetInfo()

 Write-host "Created OU: " $_.Name
}

If you spend a lot of time working with PowerShell, you’ll end up with a fairly busy dis-
play with the results of previous scripts and command-line activity on display. One
thing I’ve found useful is clearing the screen before running a script that will do a sig-
nificant amount of work. It seems easier to keep track of what’s going on if you start
with a clear PowerShell console. I use a clear-host command at the top of my scripts
achieve this. You could just use cls, but I don’t like using aliases in scripts.

ASSUME I won’t necessarily show a clear-host command at the top of all
scripts, but assume that it could be used unless there’s a specific reason not to
use it.

The first working line of the script reads the contents of a CSV file B. This CSV file has
the following columns:

■ ParentOU
■ Name
■ Description

The CSV file contents are piped into a foreach cmdlet that’ll operate on each record
passing along the pipeline. CSV files are the best way to handle this, because the col-
umn headers become the variable names that are used in the foreach processing
block. The parentOU value (remember that $_ represents the object coming along the
pipeline) is used to get a directory entry for that OU C. It’s used as the parent con-
tainer for the new OU.

 Our parent container will have children D. We then add the new OU into the children
of the parent OU E and save the new OU back into AD F. This is exactly the way we cre-
ated an OU in the previous section, except we’re supplying the data via the pipeline.

 A description is set G and saved H before we write out our message confirming
the creation of the OU I. The script will then loop back to process the next record
on the pipeline. This process happens much faster than you’re reading this section
and far, far faster than me writing about it.
DISCUSSION
We can use the New-QADObject cmdlet in exactly the same way, as shown in listing 10.7.

clear-host
Import-Csv qou.csv | Foreach {
 New-QADObject -Name $_.Name -ParentContainer $_.ParentOU
 -Type 'OrganizationalUnit' -NamingProperty 'ou'
 -Description $_.Description
}

Listing 10.7 OU bulk creation

Set descriptionG
H

I

300 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

This script could be presented as one line of PowerShell if we put a semicolon after
the clear-host so that it reads:

Clear-host; Import-Csv qou.csv | Foreach {New-QADObject. }

We can put a huge amount of functionality into a small script with PowerShell. This is
where our productivity gains will come from. It doesn’t take long to write and test
something like this that can then be used repeatedly. I haven’t given an example using
the Microsoft cmdlets, but it’s straightforward to adapt listing 10.7 using the syntax
given in the previous section.

 Our example starts by clearing the screen. It’s probably more important to do this
when using the cmdlets, as they tend to output a good deal of information. We then
import our CSV file and pipe it into the foreach cmdlet. The CSV file has the same for-
mat as used in listing 10.7. Within the foreach cmdlet, we use the New-QADObject to
create the OUs as previously discussed. This time we use variables to represent the data
coming along the pipeline rather than hard-coding the data.

 One thing that’s guaranteed in an administrator’s life is that someone will ask for a
report on whatever you’re working on. At some stage, we’ll be asked to produce a
report detailing our OU structure.

TECHNIQUE 103 Listing OUs in a domain

OUs simplify our management of Active Directory, as they allow us to use the structure
they create to restrict the number of objects we’re working with at any one time. But
in a large or complicated Active Directory domain, we may not be able to visualize the
whole structure. We need to be able to produce a report detailing our OU structure.
PROBLEM
How can we create a report that lists all of the OUs in our domain? Ideally, we’d want
the listing to be available onscreen or to be written into a file. The report should be
formatted to enable the relationship between the OUs to be clearly seen. Figure 10.4
shows an example of the requirements.
SOLUTION
We know that we can use the [ADSI] type accelerator to get a directory entry for the
domain; we also know we can access the children of the domain. This gives us the top-
level OUs in the root of the domain. We then need to look in each OU and get any
child OUs, and then look in those OUs for their child OUs, and so on. This could be
solved in a brute-force approach, but a neater solution is to use recursion so that the
function we use to get the children calls itself for each child OU, as in listing 10.8. This
isn’t as complicated as it sounds. Honest.

Function DisplayOU{
param($strLDAP)

 $item = [ADSI]"$strLDAP"
 $disp = $item.distinguishedName.ToString()

Listing 10.8 List OUs in a domain

TECHNIQUE 103

LDAP
string

E

Distinguished
name

F

301TECHNIQUE 103 Listing OUs in a domain
Apago PDF Enhancer

 $n = 0
 for ($i=0; $i -le ($disp.length-1); $i++)
 {
 if ($disp[$i] -eq ","){$n++}
 }
 $strSpace = " " * $n
 "$strSpace $disp"

 $item.psbase.Children |
 where {$_.objectCategory -like "*Organizational-Unit*"} |
 foreach {

 $strLDAP = "LDAP://" + $_.distinguishedName.Tostring()
 DisplayOU $strLDAP
 }

}

$dom = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$root = $dom.GetDirectoryEntry()
$strLDAP = "LDAP://" + $root.distinguishedName.ToString()

"Report created " + (Get-Date).ToString()

"OU structure"
DisplayOU $strLDAP

When we use a function in a script like this, we have to declare the function at the
beginning of the script. It has to be this way; otherwise the following commands won’t
know what we’re talking about when we make a call to the function. This is why the
order of the annotation in the listing may seem odd, as I’ve started the annotation and
discussion from the point at which the script starts processing.

 The bulk of the script is taken up with the DisplayOU function. The script actually
starts by using the GetCurrentDomain() static method of the .NET class Sys-
tem.DirectoryServices.ActiveDirectory.Domain. A directory entry is derived from
this domain object and an LDAP string containing the distinguished name of the
domain is created B. We can create a dated report by using Get-Date to retrieve the
current date. The result is converted to a string C so that it can be written directly
with the report header. A subheader of "OU Structure" is written out. PowerShell has
the wonderful facility of treating a line with just a string as output that will be dis-
played to the console.

 The LDAP string that we created earlier is now used as a parameter to our Dis-
playOU function D. The function starts by defining the incoming parameter E. This
is used to create a directory entry and get the distinguished name F. One of the
requirements was that we structured the report so that the relationship between the
OUs was obvious. We achieve this by indenting child OUs with respect their parents, as
shown in figure 10.4.

 The indentation is controlled by the depth of the OU structure, which we measure
by the number of commas in the distinguished name. A for loop G is used to look at
each character in the distinguished name. A counter $n is incremented H if the char-
acter is a comma. The indentation spacing is created by creating a string of spaces

For loopG

Comma counterH

Write distinguished nameI

Get child OUsJ

1)

Create
LDAP
string

1!
Call display
function

B
Get
domainWrite

header
C

Call display functionD

302 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

whose length matches the counter. This is then written out as a prefix to the distin-
guished name I.

 The directory object that we created at the beginning of the function is then used
to find the children of this OU J. Note how we use a where statement to restrict our-
selves to organizational units. For each child OU, we create an LDAP string from the
distinguished name 1) and call our DisplayOU function with that string as a parame-
ter 1!. In this way, we’ll iterate through the OU structure of the domain and produce
an output like that in figure 10.4.

 The way we use GetCurrentDomain to derive the domain name makes our script
portable between domains. If we want to use the script to create the report as output
that we can use later in a Word document, we could pipe the output into a text file:

./get-allou.ps1 | set-content reports\ou.txt

The script could also be enhanced to write the information directly into a Word docu-
ment using the techniques we discovered in section 7.4.
DISCUSSION
Not to be outdone by scripting, the cmdlets can also be used to produce a similar
result, as shown in listing 10.9.

Get-QADObject -Type 'OrganizationalUnit' | Format-Table Name, DN -AutoSize

We can use Get-QADObject to return a list of the OUs in the domain. We need to use
the -Type parameter to restrict the returned data to organizational units; otherwise
we may get back a bit more data than we bargained for. The output of this cmdlet is

Listing 10.9 List OUs in a domain using cmdlets

Hello World
One of the first examples that you’ll see in many programming language books is a
program to type out “Hello World.” In PowerShell we can write such a program as follows:

 '"Hello World"' > hw.ps1

The quoting is a little special for this. We have double quotes around the words Hello
World and single quotes around the whole structure. This ensures that the double
quotes are passed through into the script:

PS> cat .\hw.ps1
"Hello World"

This means that the text is treated as a string by PowerShell. If we didn’t have the
quotes, PowerShell would try to interpret Hello and World as PowerShell commands.
This would cause a failure. Note that the quotes aren’t echoed back to the com-
mand line:

PS> ./hw.ps1
Hello World

303TECHNIQUE 104 Discovering child objects
Apago PDF Enhancer

piped into Format-Table so that the name and the distinguished name (DN) can be
displayed. It’s slightly more work (but not impossible) to create an indented list simi-
lar to the previous listing. I’ll leave that with you as tonight’s homework assignment.
With Windows Server 2008 R2, we could also use:

Get-ADOrganizationalUnit -Filter * | select DistinguishedName

An OU can contain various types of objects such as user accounts, computers, other
OUs, groups, or email contacts. One common task we’ll be faced with is discovering
just what’s in a particular OU.

TECHNIQUE 104 Discovering child objects

A number of years ago, I was involved in a migration from Novell Netware to Active
Directory. The new user accounts had all been created in a holding OU; as the users
actually moved across to be based in the AD environment (new workstations, home
data migrated, and so forth), the accounts were moved into specific OUs. I was tasked
with keeping track of the total numbers migrated—moved into the proper OUs—and
was asked to produce a report. The report had to be run multiple times to make sure
the project managers had the correct information, especially when it was time to bill
the customer.

 Rather than counting by hand, I wrote a script to perform this task. Unfortunately
it was in the days before PowerShell. In a similar situation, I’d use the same approach,
only this time I’d want to use PowerShell.
PROBLEM
We need to generate a report listing the objects in a particular OU. We also need to
generate a count of the objects.

Figure 10.4 The output
of all of the OUs in a
domain produced as an
indented list. The level of
indenting is controlled by
the depth of the OU
structure so that the
parent-child relationships
are displayed correctly.

TECHNIQUE 104

304 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

SOLUTION
This task could be performed by using ADUC, but using PowerShell is a more efficient
process. We can adapt the scripts in the previous section to enumerate and count the
objects in an OU, as in listing 10.10. The starting point for most administration scripts
in Active Directory is creating a directory entry object B. In this script we’re using
New-Object and giving DirectoryServices.DirectoryEntry as the type of object
we’re creating. The LDAP string is accepted as the argument list to pass to the object
constructor. We could’ve used [ADSI] instead of New-Object; it’s a shortcut or acceler-
ator for this process.

 After creating the directory entry, we need to get the children of the object C. A
foreach loop is used to iterate through the child objects D. We’ll display the name
and distinguished name of the object as we process each child object. A counter is also
incremented.

 At the end of the script, we display the number of objects in the OU E.

$ldap = "LDAP://ou=England,dc=Manticore,dc=org"
$parent = New-Object DirectoryServices.DirectoryEntry $ldap
$children = $parent.get_children()
$count=0
foreach ($child in $children){
 Write-Host $child.Name, $child.distinguishedname
 $count++
}
"`n There are $count objects in the OU"

DISCUSSION
A similar result can be obtained by using the cmdlets, as in listing 10.11.

Get-QADObject -SearchRoot "ou=England,dc=manticore,dc=org"

(Get-QADObject -SearchRoot "ou=England,dc=manticore,dc=org").count

We’re assuming that we don’t know what types of objects are in the particular OU, so
we use the Get-QADObject cmdlet rather than a specific user or computer cmdlet. The
only parameter we need to supply is the OU of interest. The cmdlet displays name,
type, and DN by default.

 Alternatively we can use:

Get-ADObject -Filter * -SearchBase "ou=England,dc=manticore,dc=org"
| Format-Table Name, distinguishedname -AutoSize

Note the similarities and differences between the syntax. Tab expansion is useful to
avoid tripping over these differences.

 A count of the number of objects can be obtained by wrapping the previous line in
parentheses. This treats the PowerShell commands inside as an object. We can then
use the count property of the collection to tell us how many objects are in the OU.

Listing 10.10 List OU contents

Listing 10.11 List OU contents using cmdlets

Get
directory
entry

B

C
Get
children

D
Loop
through children

List numbersE

305TECHNIQUE 105 Moving an OU
Apago PDF Enhancer

MISMATCH The two methods shown in this section don’t give identical
results. When using the cmdlets, the count shows one more object than is
present. This is because the cmdlet displays and counts the parent OU as part
of the total.

A possible refinement to the scripts in this section would be to use the Group-Object
cmdlet to produce a count of the number of each type of object in the OU.

TECHNIQUE 105 Moving an OU

Organizational units are designed to give us structure within our domains. This structure
is flexible. We saw how to move user accounts between OUs in chapter 5 (technique 9).
PROBLEM
Can we extend the flexibility of OUs to move a whole OU, its contents, and the con-
tents of any child OUs to a new parent?
SOLUTION
The wrapper that PowerShell puts round Active Directory objects hides the methods of
these objects. But by using the .psbase qualifier, we can drill down into the base object.
When we do this, we discover a MoveTo() method we can use to solve this problem.

 The script in listing 10.12 starts by generating a directory object for the OU to which
we’re moving our target OU. We then generate a directory entry for the OU that we’re
moving. If you’ve run the examples under technique 103, you’ll know that there are a
number of child OUs under this OU.

 We then use the MoveTo() method on the base object of our directory object to
perform the move. The new parent OU is given as a parameter. The final line of the
script writes a message informing us that the move has happened.

$newhome = [ADSI]"LDAP://OU=PwrShlPractce2,DC=Manticore,DC=org"
$ou = [ADSI]"LDAP://OU=Workstations,OU=PwrShlPractce3,DC=Manticore,DC=org"
$ou.psbase.MoveTo($newhome)
Write-Host "Moved OU"

DISCUSSION
The Quest cmdlets don’t have a specific cmdlet for working with OUs, so we use the
Move-QADObject cmdlet in listing 10.13. The -Identity parameter supplies the OU
that’ll be moved and the -NewParentContainer supplies the place to which it’ll be
moved. If it’s possible to use an Active Directory provider in the environment, for
example that from the PowerShell Community Extensions, we can use Move-Item to
perform the move.

Move-QADObject -Identity "ou=users,ou=PwrShlPractce3,dc=manticore,dc=org"
-NewParentContainer "ou=PwrShlPractce1,dc=manticore,dc=org"

In Windows Server 2008 R2, we need to deal with the ProtectedFromAccidental-
Deletion setting:

Listing 10.12 Move an OU

Listing 10.13 Move an OU with cmdlets

TECHNIQUE 105

306 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

Set-ADOrganizationalUnit -ProtectedFromAccidentalDeletion $false
-Identity "OU=Child1,OU=PwrShlPractce3,DC=Manticore,DC=org"

Move-ADObject -Identity "OU=Child1,OU=PwrShlPractce3,DC=Manticore,DC=org"
-TargetPath "OU=PwrShlPractce1,DC=Manticore,DC=org"

Set-ADOrganizationalUnit -ProtectedFromAccidentalDeletion $true
-Identity "OU=Child1,OU=PwrShlPractce1,DC=Manticore,DC=org"

A move can be thought of as copying and deleting the original. We need to remove
the protection from the source, perform the move, and put the protection back onto
the OU in its target location.

 The last act in the lifecycle of an OU is its deletion. This is also the last task we’ll
consider in this section of the chapter.

TECHNIQUE 106 Deleting an OU

Over the lifetime of an Active Directory installation, OUs will come and go as the
needs of the organization cause reorganizations within the domain. When an OU is
empty and will remain empty for the foreseeable future, it’s time to remove it from the
directory. Simple housekeeping of this sort can go a long way to making our Active
Directory installations easier to manage.
PROBLEM
We no longer require a particular OU. How can we delete the object and any child
objects (including other OUs)?
SOLUTION
Our directory entry object has a method we can use to perform this task. We start by
creating a directory entry object for the OU in question using the [ADSI] type acceler-
ator. As we’ve seen previously, using Get-Member on these objects doesn’t show any
methods, but if we use .psbase we can see a DeleteTree() method. A quick check of
the documentation shows this will do exactly what we want.

WARNING At this point, we need to stop and double-check that we’re delet-
ing the correct OU. Wiping out an OU with lots of active users isn’t recom-
mended. It doesn’t take long to realize the magnitude of such as mistake.
This is one place where a strong change control system can really help you.

The DeleteTree() method is used to remove the OU and all child objects, as in list-
ing 10.14. In PowerShell v2, you don’t need the psbase. You can access the method
directly even though it still doesn’t show when Get-Member is performed on
the object.

$ou = [ADSI]"LDAP://OU=PwrShlPractce4,DC=Manticore,DC=org"
$ou.psbase.DeleteTree()

DISCUSSION
We can also use the AD cmdlets to perform the activity, as in listing 10.15.

Listing 10.14 Delete an OU

TECHNIQUE 106

307TECHNIQUE 106 Group Policies
Apago PDF Enhancer

Remove-QADObject `
-Identity "OU=PwrShlPractce3,DC=Manticore,DC=org" `
-DeleteTree

Warning!
Are you sure you want to delete this object and its children:

OU=PwrShlPractce3,DC=Manticore,DC=org?
[Y] Yes [A] Yes to All [N] No
[L] No to All [S] Suspend [?] Help
(default is "Y"):

In this case, we do get a warning and we’re asked to confirm the action, which is a use-
ful bonus. Windows Server 2008 has a way of helping relieve some of the risk around
this activity, which we’ll see in section 10.5. This has to be removed before we can
delete the OU. We also are asked to confirm the deletion:

Set-ADOrganizationalUnit -ProtectedFromAccidentalDeletion $false
-Identity "OU=PwrShlPractce3,DC=Manticore,DC=org"

Remove-ADOrganizationalUnit -Identity "OU=PwrShlPractce3,DC=Manticore,DC=org"

This has completed our journey around the OU lifecycle. It’s time to move on to look-
ing at GPOs and how we can use PowerShell to help administer this powerful aspect of
our Active Directory.

10.4 Group Policies
Administrators view Group Policies as the way that they configure, control, and manage
the machines in an Active Directory environment. Parts of the user population may
view them more as a “Big Brother” that stops them from doing what they want. GPOs
(Group Policy Objects) are an essential part of managing a Windows infrastructure.

 There are literally thousands of settings that are available for configuration through
Group Policy. Don’t worry; I’m not going to list them here. This section is more about
how we can use PowerShell to help us manage out Group Policies. Before we can use
PowerShell with our Group Policies, we need to install extras into PowerShell.

 SDM Software produces a number of free snapins for working with Group Policies.
These products are available from http://www.sdmsoftware.com/freeware.php. The
basic Group Policy snapins needs Group Policy Management Console (GPMC) to be
loaded, as it works with the APIs made available by the GPMC. After the installation
routine has run, the snapins can be added to PowerShell with:

Add-PSsnapin SDMSoftware.PowerShell.GPMC

Other cmdlets are available for testing group health and invoking Group Policy
updates. The GPMC cmdlets don’t give us the facility to script the contents of our
Group Policies, though that feature is available in a commercial offering.

 Windows Server 2008 R2 introduces a set of cmdlets from Microsoft for working
with Group Policy. They’re available as a module so need to be loaded:

Import-Module GroupPolicy
Get-Command -Module GroupPolicy

Listing 10.15 Delete an OU using cmdlets

http://www.sdmsoftware.com/freeware.php

308 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

These R2 cmdlets match the SDM cmdlets for functionality, more or less. Similar rec-
ommendations apply as with the AD cmdlets: use the R2 cmdlets with Windows
Server 2008 R2 and the SDM cmdlets with other platforms.

 The first step in working with Group Policies is creating a new policy.

TECHNIQUE 107 Creating a GPO

Getting a GPO into use so that we can use it to manage our systems is a three-stage
process:

1 Create the GPO.
2 Configure the settings to achieve our goal.
3 Link the GPO to one or more OUs.

The free GPO cmdlets can’t help us with the second stage, but they can help with the
first and third stages. We’ll look at linking GPOs in the next section, but first, how can
we create them?
PROBLEM
We want to quickly create a new GPO so that we can get started on configuring the new
policy. Ideally we want to be able to make use of the starter GPO functionality in Win-
dows Server 2008.
SOLUTION
The SDM GPMC cmdlets provide a way to achieve this goal quickly, as in listing 10.16.

New-SDMgpo -Name "PowershellinPractice"

DISCUSSION
The New-SDMgpo cmdlet is used to create a new GPO. The verb New is used any time we
need to create something. The only parameter we need is the name of the new GPO.
We can create our GPO from scratch, or in Windows Server 2008 we can give the name
of a starter GPO and use that as a template.

 In Windows Server 2008 R2 we have a similar syntax:

New-GPO -Name "PowerShellinPractice" -Comment "Test GPO creation"

Once we’ve created our GPO, we can modify the settings and then we need to link it to
an OU.

TECHNIQUE 108 Linking a GPO

A GPO can be linked to a number of Active Directory containers—domain, site, and
OU. Usual practice is link to an OU. The settings are then applied to all child OUs
unless deliberately blocked. Blocking can be overridden, but then we get into the
realms of MCSE exam questions with messy diagrams so we won’t go there. It’s possible
to link a GPO to many OUs and have many GPOs linked to a single OU.

Listing 10.16 Create a GPO

TECHNIQUE 107

TECHNIQUE 108

309TECHNIQUE 108 Linking a GPO
Apago PDF Enhancer

PROBLEM
Linking a GPO to a single OU is straightforward if we do it in the GUI just after creat-
ing the settings. If we want to link it to a number of OUs, can we find a more efficient
way of performing this task?
SOLUTION
We can simply link a cmdlet by using the Add-SDMgplink cmdlet as shown in list-
ing 10.17. The name of the GPO is required (otherwise we don’t know what we’re
linking). The -Scope parameter indicated the OU to which we’ll link the GPO.

 It gets confusing when we consider the -Location parameter, as it sounds as if it
means the same as the scope—where we’re applying the GPO. The location actually
refers to the GPO’s order in the list of GPOs to be applied to that particular OU,
where 1 is the top of the list and -1 is the bottom.

Add-SDMgplink -Name "PowershellinPractice"
-Scope "OU=PwrShlPractce1,DC=Manticore,DC=org" -Location 1

DISCUSSION
The script as presented will apply a single GPO to a single OU. The 2008 R2 equivalent is:

New-GPLink -Name PowerShellinPractice
-Target "OU=PwrShlPractce1,DC=Manticore,DC=org" -LinkEnabled Yes

If we want to apply the same GPO to multiple OUs we can create a CSV file with the list
of OUs (remember cut and paste) and read it using Import-Csv. The data can be
passed into a foreach cmdlet that calls Add-SDMgplink. We’ve seen this technique in a
number of places, and it’s one we’ll keep returning to, as it’s very useful.

 At some stage we’ll be asked to unlink the GPO, as in listing 10.18. This doesn’t
delete the GPO, but only stops it acting on the particular part of our directory.

Remove-SDMgplink -Name "PowershellinPractice" `
-Scope "OU=PwrShlPractce1,DC=Manticore,DC=org"

We use Remove-SDMgplink and supply the name of the GPO and the OU from which
we want to remove the link. Our R2 alternative is:

Remove-GPLink -Name PowerShellinPractice
-Target "OU=PwrShlPractce1,DC=Manticore,DC=org"

If we want to delete the GPO, we can use Remove-SDMgpo as shown in listing 10.19,
which will delete the GPO. This has the effect of unlinking as well.

Remove-SDMgpo -Name "PowershellinPractice"

Listing 10.17 Link a GPO

Listing 10.18 Unlink a GPO

Listing 10.19 Delete a GPO

310 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

This cmdlet will ask for confirmation of the action. The two cmdlets have similar
names, so be careful if using Tab completion! We have a similar alternative in R2:

Remove-GPO -Name PowerShellinPractice

Now that we’ve seen how to create and link GPOs, we need to consider how we can
report on the GPOs being applied in our directory.

TECHNIQUE 109 Listing GPOs

A list of the GPOs that exist in the domain can be produced by running one of these
commands (SDM first followed by the Microsoft cmdlet):

Get-SDMgpo -Name *
Get-GPO -All | Select DisplayName

A slightly more useful report can be produced by examining the list of GPOs linked to
a particular OU:

Get-SDMgplink -Scope "OU=Finland,DC=Manticore,DC=org"

NOT RSOP These reports don’t give you a Resultant Set of Policy report. That
needs to be generated explicitly. There are cmdlets in the toolkit to perform
this task.

This would have to be repeated for every single OU in the domain to get the full pic-
ture of GPO deployment.
PROBLEM
Our task is to display the GPOs that are linked to the domain OUs. The output should
reflect the OU structure.
SOLUTION
We can modify the script we saw in technique 103 to produce listing 10.20, which will
list the OUs in the domain and the linked GPOs.

#Requires -Version 2.0
Function DisplayOU{
param($strLDAP)
 $item = [ADSI]"$strLDAP"
 $disp = $item.distinguishedName.ToString()

 $n = 0
 for ($i=0; $i -le ($disp.length-1); $i++)
 {
 if ($disp[$i] -eq ","){$n++}
 }
 $strSpace = " " * ($n+1)
 "$strSpace $disp"

 $linked = $item.gpLink.ToString() -split "[",0,"simplematch"

 foreach ($link in $linked){
 if ($link.length -gt 1) {
 $gpopath = $link -split ";"

Listing 10.20 List GPO links by OU

TECHNIQUE 109

Get distinguished
name

G

Display
OU name

H Get linked
GPOs

I

311TECHNIQUE 109 Listing GPOs
Apago PDF Enhancer

 $gponame = $gpos[$gpopath[0].Replace("LDAP://","")]

 $gpocount[$gponame] ++

 "$strSpace $gponame"
 }
}

$item.psbase.Children |
where {$_.objectCategory -like "*Organizational-Unit*"} | foreach {

 $strLDAP = "LDAP://" + $_.distinguishedName.Tostring()
 DisplayOU $strLDAP
}
}

$gpos = @{}
$gpocount = @{}
Get-SDMgpo * | Foreach {
 $gpos += @{$_.Path = $_.Name}
 $gpocount += @{$_.Name = 0}
}

$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

$strLDAP = "LDAP://" + $root.distinguishedName.ToString()

"Report created " + (Get-Date).ToString()
"GPO Links"
DisplayOU $strLDAP

""
"GPO linkage table"
"The following GPOs are NOT linked if the value is zero"
$gpocount

This script builds on listing 10.8, so we’ll concentrate on the additions to produce the
GPO listing. We start by creating a couple of hash tables B. They’ll hold the list of
GPO names C together with their paths and the number of times they’re applied,
respectively. The reason for these objects will become apparent in a while. After get-
ting a directory entry for the domain D, we create the LDAP string for the domain
name E, write out some header information, and call our display function F. This
immediately gets the distinguished name of the object G and produces an indented
listing of the OU names H as we’ve seen previously.

ANNOTATION The annotation order may appear odd in listing 10.20 due to
the necessity of the function being declared before the main body of the
script. The annotation follows the way the script works when it’s run.

We now start on the GPOs. The OU directory entry object has a property called gplink
that holds the GPOs linked to this OU. We can create a collection of the GPOs by using
the split operator I. The simplematch parameter has to be used to prevent a regu-
lar expression match.

J
Display GPO
names

1) Recursive call

Create hash tablesB

Get GPO listC

Get domainD

E
Create LDAP
string

F
Call display
function Display the

GPO links
1!

312 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

POWERSHELL VERSION 2 This script is written with PowerShell v2 so that the
-split operator could be used. If you’re using v1 then use the split()
method on the string. The #Requires -Version 2.0 statement will ensure
that the script doesn’t run on a v1 installation. This line must be removed if
you’re modifying the script for PowerShell v1.

A foreach is used to iterate through the list of linked GPOs. After testing that there’s
data in the link string, we perform another split on the GPO path and remove the
front part of the path (LDAP://). The counter is incremented (++ means increase by
one) and we display the GPO name J. The script progresses by getting the child OUs
and calling the displayOU 1) function for each of them.

 The final part of the script displays the number of times each GPO is linked 1!.
The bonus part of the script is that we can easily see any GPOs that aren’t linked so
that they can be removed, or we can investigate why they aren’t linked. An admin’s
work is never done.
DISCUSSION
If we were using the 2008 R2 Group Policy cmdlets, we could replace Get-SDMGPO *
with Get-GPO -All in listing 10.20.

 We can’t perform exactly the same operation just using cmdlets, but we can come
close. The code is shown in listing 10.21. It uses the SDM Software cmdlets

Clear-Host
"Domain links"
Get-SDMgplink -Scope "dc=manticore,dc=org" |
 Format-Table Name, Enforced, Enabled -AutoSize

Get-QADObject -Type 'OrganizationalUnit' | Foreach {
 "`nOU - $_"
 Get-SDMgplink -Scope $_.DN |
 Format-Table Name, Enforced, Enabled -AutoSize
}

The Get-SDMgplink cmdlet will show us the GPOs linked to a single OU as we’ve
already seen. We deliberately clear the screen and write out a header before retrieving
a list of the GPOs linked to the domain B. We can display additional information
showing whether the GPO is enabled and/or configured to override a block.

 The domain OUs are found using Get-QADObject with the type set to organiza-
tional unit. The Foreach statement C will use the distinguished name of the OU to
define the scope for displaying the GPOs.

 Our alternative code uses the R2 cmdlets:

Get-GPInheritance -Target "ou=Greece,dc=manticore,dc=org" |
Format-Table Path, GpoLinks, InheritedGpoLinks -Wrap

Get-ADOrganizationalUnit -Filter * | foreach {
 "`n OU $_.DistinguishedName "
 Get-GPInheritance -Target $_.DistinguishedName |
 Format-Table Path, GpoLinks, InheritedGpoLinks -Wrap
}

Listing 10.21 List GPO links by OU using cmdlets

Domain linksB

OU linksC

313TECHNIQUE 110 Listing GPO contents
Apago PDF Enhancer

When considering GPOs, the last point we may need to think about is discovering
where a particular GPO is linked. Listing 10.22 gets the list of GPOs, and for each of
them, discovers where that GPO is linked.

Get-SDMgpo * | foreach {
 "`nGPO: $($_.Name) is linked to:"
 Get-SDMgplink -Name $_.Name |
 Format-Table Path, GPOInheritanceBlocked -AutoSize
}

Surprisingly, it doesn’t seem possible to perform this action using the R2 cmdlets. The
only way I can think to get that information is to run the reports in the next section,
but produce an XML output, then extract the information from the XML. Messy!

 We’ve seen how we can use PowerShell to discover how our GPOs are linked in the
domain. The next step to understanding the environment is discovering what those
GPOs are actually doing.

TECHNIQUE 110 Listing GPO contents

The easiest way to view the settings applied by a particular GPO is to run a report. It’s not
feasible to trawl through the thousands of settings checking each one, especially when
we only need to know the configured settings. Reports can be created using the GPMC.
Opening the GPMC and running a report for every GPO can be tedious, though.
PROBLEM
How can we create a report for every GPO in our domain that shows the configured
settings? Ideally we’d like the solution to be adaptable so that the settings for only a
single GPO are reported.
SOLUTION
We already know how to get a list of the GPOs in the domain. The cmdlets work with
the GPMC, and there’s a cmdlet that creates a settings report. Our script starts by using
Get-Location to determine the path to the current folder. If required, a specific path
could be entered instead.

 We use Get-SDMgpo to return the list of GPOs, as shown in listing 10.23. For each
GPO, we create a filename to hold the report and use Out-SDMgpSettingsReport to
create the report. The ReportHTML parameter causes the report to be rendered as
HTML. If this parameter isn’t used, the report will be produced in XML.

$here = (get-location).path
Get-SDMgpo -Name * | foreach {
 $file = $here + "\" + $_.Name.Tostring() +".htm"
 Out-SDMgpsettingsreport -Name $_.Name -FileName $file -ReportHTML
}

DISCUSSION
A sample report is shown in figure 10.5.

Listing 10.22 List GPO links by GPO

Listing 10.23 List GPO contents

TECHNIQUE 110

314 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

The same report can be produced in Windows Server 2008 R2 using:

Get-GPO -All | foreach {
 $file = "d:\scripts\gpo\$($_.Displayname).htm"
 Get-GPOReport -Name $_.Displayname -ReportType HTML -Path $file
}

The SDM and Microsoft cmdlets and their parameters have slightly different names,
but they’re similar enough to work out what’s happening. The results are the same in
either case.

 This is a simple way to produce a record of the settings of your GPOs. The script
could easily be run on a periodic basis to preserve a record of any changes. This script
is an ideal companion to the next script, in that a backup of the GPO at a point in time
and a record of the settings could be produced together.

TECHNIQUE 111 GPO backup

GPOs will be backed up as part of the Active Directory backup regime. But there may
be cause to create a backup for a specific purpose such as preserving a record of
changes or for transferring the GPO settings to a test environment for further develop-
ment work.

 Mergers and acquisitions are a major source of changes to Active Directory config-
urations. It’s possible that such activity will involve the transfer of GPOs between
domains.
PROBLEM
We need to generate a backup of our GPO settings so that they can be applied in
another domain for testing purposes.

Figure 10.5 A report on the contents of the Default Domain Policy rendered in HTML.

TECHNIQUE 111

315TECHNIQUE 112 Protection from accidental deletion
Apago PDF Enhancer

SOLUTION
We start by generating a list of GPOs as shown in listing 10.24. Get-SDMgpo expects the
name of a GPO. If we want all GPOs, we need to use * as a wildcard. The GPOs are
piped into Export-SDMgpo, which will create a backup in the given folder.

Get-SDMgpo * | Export-SDMgpo -Location "C:\gpobackup"

DISCUSSION
When you look at the backup folder, you’ll see a subfolder for each GPO. It’ll be
named using the GUID of the GPO, which isn’t very user friendly. The backups in the
folder can be viewed by using:

Get-SDMgpo * | Get-SDMgpoBackups -Location "c:\gpobackup"

which will retrieve the available backups for each GPO. We can use Import-SDMgpo to
restore one or more GPOs.

 Windows Server 2008 R2 provides similar functionality:

Backup-GPO -All -Path d:\scripts\gpo

Restore-GPO can be used to restore the settings. Now that we know how to protect our
GPOs, we should look at protecting the rest of the Active Directory data and look at
how we can restore objects that get deleted.

10.5 Protection and recovery
Our backup regime should be the primary protection and recovery mechanism for
Active Directory. This includes standard backup tools as well as third-party Active
Directory tools that enable recovery without performing an authoritative restore.

 There two things we can do to protect our Active Directory data or make it easier
for us to recover individual objects that get deleted. Protection from accidental dele-
tion is a technique that reduces the risk of the wrong object being deleted, and the
ability to access AD tombstone records means we can restore objects that have been
deleted without having to perform an authoritative restore.

TECHNIQUE 112 Protection from accidental deletion

In technique 106, we looked at how we can delete an OU and its contents. In chapter
5, we learned how to delete individual user accounts and groups.

 One definition of automation is that it’s the mechanism by which we make mistakes
at a faster rate. We need to ensure that we don’t fall into that situation. Thinking back
to technique 106, we don’t want to be in the situation where we hit Enter to run our
script and then think “Oops, didn’t mean to delete PwrShlPractce4” or words to that
effect. Even the best of admins make mistakes, and a mistake of this sort means we
have to perform an authoritative restore with all of the pain involved in that activity—
unless we know how to protect ourselves from this scenario.

Listing 10.24 Backup GPOs

TECHNIQUE 112

316 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

 Windows Server 2008 introduced a feature into Active Directory known as Protec-
tion from Accidental Deletion. It should be known as the AD admin’s best friend. There’s
a tick box on the object tab in an AD object’s properties that allows this to be set
(Advanced features must be selected from the View menu). Don’t go searching for
the property related to this because there isn’t one. As an aside, that would make a
good interview question...

 Selecting the tick box causes the security settings on the object to be changed so
that the Delete permission is denied to the Everyone group. This is great, but—and
it’s a big but from the administrator’s view point—the settings are only made on that
object. They don’t flow to any child objects. This leaves us with a lot of clicking to do
in ADUC.
PROBLEM
How can we set Protection from Accidental Deletion on all of the objects in an OU?
SOLUTION
We need to modify the security settings on the individual objects so that they’re pro-
tected from accidental deletion, as shown in listing 10.25. This may look complicated,
but when we break it down, it’s quite logical. The starting point is the parent OU. We
need the directory entry object for it, so we use the [ADSI] type accelerator to create it
for us. The security information is held in the ObjectSecurity property, which we get
next B. We know that we need to deny the delete and DeleteTree permissions to
solve this problem. The System.Security.AccessControl.AccessControlType and
the System.DirectoryServices.ActiveDirectoryRights enumerations hold the rel-
evant values. Variables are created C to hold these values, which will make the rest of
the script easier to read.

$ou = [ADSI]"LDAP://ou=Thunderbirds,dc=manticore,dc=org"
$sec = $ou.psbase.ObjectSecurity

$act = [System.Security.AccessControl.AccessControlType]::Deny
$adrights = [System.DirectoryServices.ActiveDirectoryRights]::Delete
$adrights2 = [System.DirectoryServices.ActiveDirectoryRights]::DeleteTree

$who = New-Object -TypeName System.Security.Principal.NTAccount
-ArgumentList "", "Everyone"

$newrule1 = New-Object -TypeName `
System.DirectoryServices.ActiveDirectoryAccessRule `
-ArgumentList $who, $adrights, $act

$sec.AddAccessRule($newrule1)
$ou.psbase.CommitChanges()

$newrule2 = New-Object -TypeName `
System.DirectoryServices.ActiveDirectoryAccessRule `
-ArgumentList $who, $adrights2, $act

$sec.AddAccessRule($newrule2)
$ou.psbase.CommitChanges()

Listing 10.25 Protect from accidental deletion

Get OU security
settings

B

D
Who does

this apply to

C
Set rights and

control typeStop deleteE

Stop deletetreeF

317TECHNIQUE 112 Protection from accidental deletion
Apago PDF Enhancer

$ou = [ADSI]"LDAP://ou=Thunderbirds,dc=manticore,dc=org"
foreach ($child in $ou.psbase.children)
{
 $user = [ADSI]$child
 $sec = $user.psbase.ObjectSecurity

 $sec.AddAccessRule($newrule1)
 $user.psbase.CommitChanges()

 $sec.AddAccessRule($newrule2)
 $user.psbase.CommitChanges()
}

Having decided that we’ll deny the delete and deletetree permissions, the next step
is to decide who’ll be denied this permission D. We create a new object of type System.
Security.Principal.NTAccount to define to whom these permissions will be assigned.
The target is the Active Directory group Everyone.

EVERYONE Using the group Everyone really does mean that these permis-
sions are applied to everyone. You’ll be told you don’t have permissions to
perform the deletion even if you explicitly log on with Domain Admin
credentials.

The permissions are applied as Active Directory access rules using the System.Direc-
toryServices.ActiveDirectoryAccessRule class E. The arguments represent who
it’ll be applied to (Everyone), the rights (Delete), and action (Deny). The changes are
then saved using CommitChanges(). Permissions are applied singly, so we have to
repeat for the DeleteTree permission F. Note that we’re adding the rules to the
ObjectSecurity property.
DISCUSSION
Protection from Accidental Deletion is now set on the OU, and if you open ADUC and
look at the object tab, you should see that the protection box is ticked.

DISCOVERY I worked out how to do this by starting at the end point. I knew I
needed to apply an access rule and found the .NET class to perform that action.
Looking at the information it needed, I worked backward to understand how
to create each piece of data. The .NET documentation explains the type of each
piece of data, which is a good starting point for working out how to use it and
leads you to the relevant .NET class.

We’ve protected the OU, but we haven’t protected the objects in the OU. We’ll start by
refreshing the OU object G, just in case someone has sneaked a few new users in while
we were concentrating on the OU. The child objects of the OU are held in the children
collection. We can use a foreach loop to iterate through these objects, get the
ObjectSecurity collection for each, and add the rules H. We’ve already created the
rules in the previous part of the script, so it’s a simple matter of reusing the objects.

WARNING Using Protection from Accidental Deletion won’t stop a rogue
administrator from manually unsetting the protection and deleting
something.

G
Refresh
OU object

Apply to
child objects

H

318 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

One thing I’ve noticed is that sometimes when this script is run, it appears not to have
worked. The protection tick box on the object tab isn’t set. If you go into any object in
the OU and manually set the tick box, all of the other objects will have it set. Likewise,
if you run the script in an OU where one or more objects already have this set, the tick
box is set properly.

 Set-ADObject in Windows Server 2008 R2 has a -ProtectedFromAccidental-
Deletion parameter that can be used to protect objects:

Get-ADObject -SearchBase "OU=Thunderbirds,DC=Manticore,DC=org"
-Filter {ObjectClass -eq "user"} | foreach {
 Set-ADObject -ProtectedFromAccidentalDeletion $true
 -Identity $_.DistinguishedName
}

We can easily test whether the object is protected:

Get-ADObject -SearchBase "OU=Thunderbirds,DC=Manticore,DC=org"
-Filter {ObjectClass -eq "user"}
-properties ProtectedFromAccidentalDeletion |
Format-Table Name, ProtectedFromAccidentalDeletion -AutoSize

Note that we have to explicitly include the ProtectedFromAccidentalDeletion prop-
erty. In my opinion, the ease of invoking this protection makes a strong case for
upgrading to be able to use these cmdlets. The next section only reinforces this
thought as we think about restoring deleted objects.

TECHNIQUE 113 Object recovery

Active Directory doesn’t make an object immediately disappear when we delete it. The
object hangs around for a while in a sort of limbo state known as a tombstone—morbid
but I didn’t choose it. This tombstone object can be restored (or reanimated) if the
tombstone period hasn’t expired. This gives us 60 or 180 days depending on the ver-
sion of Windows used to first install Active Directory. Once the tombstone period has
expired, the tombstoned object is purged from Active Directory.

ACTIVE DIRECTORY RECYCLE BIN Windows Server 2008 R2 introduces the recy-
cle bin to Active Directory. The bin holds deleted objects for a period equal to
the tombstone period before actually performing the tombstone actions. Dur-
ing their time in the recycle bin, objects can be restored, with all their attri-
butes, using native PowerShell cmdlets.

Why should we bother restoring a deleted object? Why not just create a new object
with the same name? The problem is that Windows doesn’t necessarily work on the
name of the object. It’s more likely to work with the SID. This is especially true when
dealing with access permissions.
PROBLEM
Our problem is how to reanimate a tombstoned object in Active Directory.
SOLUTION
The solution problem is to use the tombstone cmdlets from SDM Software, as shown
in listing 10.26.

TECHNIQUE 113

319TECHNIQUE 113 Object recovery
Apago PDF Enhancer

Get-SDMADTombstone | Where {$_.cn -like "*pig*"} | Restore-SDMADTombstone

DISCUSSION
Compared to some of the scripts we’ve seen in this chapter, this probably seems an
anticlimax, but it’s a powerful and useful tool for the AD administrator.

RECOMMENDATION It’s possible to perform this task using the System.
DirectoryServices.Protocols classes directly in PowerShell. These classes
aren’t well documented and work differently than the .NET classes we’ve seen
in the book. I really recommend using these cmdlets to perform this task.

There are two cmdlets in the SDMSoftware.PowerShell.AD.Tombstones snapins:
■ Get-SDMADTombstone
■ Restore-SDMADTombstone

For our experiment in using the tombstone cmdlets, we’ll call on the assistance of Mr.
Guinea Pigge. His account resides in OU=Test,DC=Manticore,DC=org and the object
name is CN=PIGGE Guinea.

 If we use Get-SDMADTombstone without any filters, we’ll get back more data than we
want to deal with. Think how many accounts, groups, computers and so on were
deleted from your AD over the last two or six months! The simplest filter to apply is
based on the common name as shown. When an object is tombstoned, the common
name changes so we use -like to allow partial matches. If more than one object is
returned, the filter can be refined using additional filters in the where script block. A
comparison on when it was deleted is a good option.

 Once we’ve narrowed the search to a single object, we can pipe it into Restore-
SDMADTombstone. This will restore the object to the container it was deleted from,
which is stored in the tombstoned object’s LastKnownParent property. If that con-
tainer has been deleted as well then we need to restore the container before restoring
the object.

 One issue is that the tombstoned object has most of its properties stripped away.
This means that when we restore it, we need to recreate this data. The options are
recreating manually based on knowledge of the object, or if we’re in a Windows
Server 2008 Active Directory, mounting a snapshot backup and copying the data
onto the restored object.

 The latest version of the Quest AD cmdlets also include the capability of restoring a
tombstoned object using Restore-QADDeletedObject. In a Windows Server 2008 R2
environment with the AD recycle bin enabled, it’ll restore from the recycle bin.

 The Microsoft R2 cmdlets also can restore from the recycle bin:

Get-ADObject -Filter {(isdeleted -eq $true) -and (Name -like "*pigge*")}
-IncludeDeletedObjects -Properties * | Restore-ADObject

With this cmdlet, remember to use -Properties *; otherwise only the skeleton of the
object will be restored and the attributes will have to be populated another way.

Listing 10.26 Restore a tombstoned object

320 CHAPTER 10 Active Directory structure
Apago PDF Enhancer

10.6 Summary
Our Active Directory structure has a medium volatility but a medium-to-high impact
on the directory as a whole. The two main areas we deal with in this chapter are orga-
nizational units and GPOs. OUs are fundamental to the structure of our domain. Man-
aging their lifecycle through PowerShell gives us the ability to quickly and easily add a
new standard subunit to our domain. Extending our knowledge from chapter 5
enables us to view and work with the child objects of an OU. This includes traversing
the entire OU structure if necessary.

 GPOs are a main part of our ability to control our environment. Using the GPMC
cmdlets, we can control their lifecycle using PowerShell. The huge number of settings
available to us makes an efficient reporting mechanism vital. The HTML reports we
produce can be easily viewed outside PowerShell, making them ideal for distribution.

 The schema holds very useful information. We can make modifications that make
our GUI tools easier to use.

 One scenario we need to avoid is accidentally deleting data from Active Directory.
We can use the security permissions on Active Directory objects to prevent this occur-
rence. Windows Server 2008 gives this option via the GUI, whereas the techniques
we’ve seen enable us to apply it to Windows Server 2003-based Active Directory as well.
We can also recover tombstoned objects through PowerShell.

 In chapter 11, we’ll continue our examination of how we can administer Active
Directory by looking at the lowest layer of our triangle. We’ll look at the Active Direc-
tory topology with sites, subnets, and site links all under the microscope. Domain con-
trollers are a crucial aspect of Active Directory and will also be examined.

Active Directory topology
Apago PDF Enhancer

This chapter discusses how we can automate the administration of our Active Direc-
tory topology. The topology is composed of the physical aspects of Active Directory:

■ Domain controllers
■ Sites
■ Subnets
■ Site links

These are the aspects that control the Active Directory service, as opposed to the
Active Directory data we looked at in chapters 5 and 10. In terms of figure 10.1, this
chapter is all about those objects at the bottom of the diagram—low volatility but
potentially a huge impact if mistakes are made.

This chapter covers
■ Discovering and managing domain controllers

and global catalogs
■ Working with Active Directory sites and subnets
■ Administering Active Directory site links and

replication schedules
321

322 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

PRODUCTION FOREST Don’t experiment with these techniques in a produc-
tion forest. This is the ideal scenario for utilizing your favorite virtualization
technology such as VMware, Hyper-V, or Xen.

Replication latency must be taken into account when working at this level in Active
Directory. The changes must have time to replicate to the required domain control-
lers before they become effective and usable. If the wait for replication becomes too
long, we can always force it to happen. This is explained in technique 119. It’s all right
if you want to peek before we get there.

 The scripts in this chapter will use the .NET classes we discussed in section 3.4. The
available AD cmdlets are more suited to working with the data within Active Directory,
as we saw in chapters 5 and 10.

PERMISSIONS Many of the scripts in this chapter work at the forest level. In
order for them to run successfully, you’ll need to start PowerShell with an
account that has Enterprise Admin privileges or Domain Admin privileges in
a few cases.

What’s involved in automating the administration of our Active Directory topology?

11.1 Automating AD topology administration
This chapter uses a number of concepts involving the Active Directory topology.
Domain controllers are the servers that host and control Active Directory. Sites are used
to control replication between domain controllers, as well as which domain control-
lers a user will use for authentication.

 Active Directory subnets define the range of IP addresses available within a site.
They’re used by clients to determine site membership. The final elements in the
topology are site links, which are used to control replication between domain control-
lers in different sites.

 The .NET classes we’ll be using are part of the System.DirectoryServices.
ActiveDirectory namespace. These classes are specifically created for administering
Active Directory. PowerShell automatically loads these classes for you as part of the
System.DirectoryServices assembly. The assemblies loaded by PowerShell can be
viewed by using:

[appdomain]::currentdomain.getassemblies() |
 sort -property fullname | format-table fullname

The scripts follow a few similar patterns. We get the current forest, or domain, and
work with the data. Alternatively, we need to derive a forest (or domain) context and
use that to create objects for our sites, subnets, or site links.

 We’ll use fewer of the AD cmdlets in this chapter compared to chapters 5 and 10.
The cmdlets are geared to working with Active Directory data such as users, comput-
ers, and groups rather than the topology.

 Administrators work with Active Directory via domain controllers. Users need
domain controllers to authenticate. This makes domain controllers crucial to our

323TECHNIQUE 114 Discovering domain controllers
Apago PDF Enhancer

Active Directory, so they’re the best place to start learning how to use PowerShell with
this part of Active Directory.

11.2 Domain controllers
Domain controllers are the servers that host Active Directory. They have to be avail-
able, and discoverable, for users to log on to the network and access their resources.
We’ll use PowerShell to work with, and configure, domain controllers.

DOMAIN CONTROLLER PROMOTION One task we won’t try to perform using Pow-
erShell is promoting a member server to be a domain controller. That task is
still reserved for the dcpromo utility, though the scripts presented in the book
can be utilized to configure the server prior to promotion.

The first thing we need to do with our Active Directory is to find the domain controllers.

TECHNIQUE 114 Discovering domain controllers

This is an essential task in its own right, but is also the foundation for a number of sub-
sequent tasks.

Now that we know what we should have, we need to see if this is the case.
PROBLEM
We need to be able to find the domain controllers in our Active Directory domain so
that we can work with them in our scripts.
SOLUTION
Domain controllers belong to a domain. If we create an object for the domain, we’ll
be able to discover our domain controllers. The System.DirectoryServices.Active-
Directory.Domain class has a static method that enables us to create an object for the
current domain, as in listing 11.1.

$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()
$dom.FindAllDomainControllers() |
 select Name, SiteName, IPAddress | Format-Table

Listing 11.1 Discover domain controllers

TECHNIQUE 114

Number of domain controllers
One question that comes with depressing regularity on the forums is, “My only do-
main controller has failed and I don’t have any backups. What can I do?”

The kindest answer is usually along the lines of “Make sure your résumé is up to date.”

All production domains should have a minimum of two DCs. This can be ignored for
a test domain if you can afford to lose it!

324 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

We can then use the FindAllDomainControllers() method to discover the domain
controllers. A select and Format-Table are used to create a tabular display. The
Format-Table cmdlet is used to force a tabular display. It can be left off, or alterna-
tively don’t use the select and move the properties to the Format-Table and use an
–AutoSize parameter. Many of the scripts in this chapter are modified from a set I
use for AD audit and discovery. They usually terminate with a Select-Object as I
output the data to a file. I’ve added Format-Table to force a tabular display.

IP ADDRESSES If you run the scripts in listing 11.1 or 11.2 on a Windows
Server 2008 domain controller, you may get an IPv6 address returned for the
machine you’re using. Domain controllers running earlier versions of Win-
dows will return IPv4 addresses.

DISCUSSION
It’s worth spending some time investigating the information available in the domain
and domain controller objects:

$dom | Get-Member
$dcs = $dom.FindAllDomainControllers()
$dcs | Get-Member

The global catalog is hosted on some, but not necessarily all, domain controllers. Dis-
covering the global catalog servers is the next part of understanding our domain con-
troller configuration.

TECHNIQUE 115 Discovering global catalog servers

The global catalog is a subset of the attributes of all objects in our Active Directory for-
est. It’s especially important in a multidomain forest. Some applications such as
Exchange 2007 require access to a global catalog server. Global catalogs are main-
tained at the forest level because they can maintain data from all domains in the for-
est. The global catalog is hosted on one or more domain controllers.
PROBLEM
The global catalog servers in our forest have to be found. We can then determine that
all users and applications requiring direct access to a global catalog server can find
one in their home site.
SOLUTION
We can adopt a similar solution to the previous script, except we’ll be working at the
forest rather than domain level. The System.DirectoryServices.ActiveDirectory.
Forest class has a static method to retrieve the current forest. We can then use the
FindAllGlobalCatalogs() method to retrieve the list of global catalog servers.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()
($gc = $for.FindAllGlobalCatalogs()) |
 select Name, IPAddress | Format-table

Listing 11.2 Discover global catalog servers

TECHNIQUE 115

325TECHNIQUE 116 Promoting to a global catalog server
Apago PDF Enhancer

DISCUSSION
In this example we created a variable to hold the collection of global catalog servers. If
the script in listing 11.2 is dot-sourced, we’ll have the variables available in memory for
further investigation, as we discussed in listing 11.1.

 Once we’ve discovered our global catalogs, we can decide whether we need to pro-
mote any further domain controllers to be global catalogs.

TECHNIQUE 116 Promoting to a global catalog server

The first domain controller in our forest will be a global catalog. No other domain
controllers will be global catalogs by default.
PROBLEM
We need to promote one or more domain controllers to be global catalogs.
SOLUTION
The .NET domain controller (DC) class, System.DirectoryServices.ActiveDirec-
tory.DomainController, can be used to promote a domain controller to be a global
catalog. Using this class is convoluted, as we’ll see in listing 11.3.

 The script starts by defining the FQDN B of the domain controller we’ll be turning
into a global catalog. A context type has to be defined for the object with which we’ll
be working C. We used contexts in chapter 5 when we looked at managing AD
accounts using System.DirectoryServices.AccountManagement. S.DS.AD.Directo-
ryContextType is an enumeration, which is a closed list as discussed in section 3.2.1.
The list of values in the enumeration can be discovered by using:

[enum]::GetNames([System.DirectoryServices.ActiveDirectory.
 DirectoryContextType])

The third step is to create a DirectoryContext D. This uses the context type and the
name of the domain controller as arguments. Putting all of this together, we use the con-
text as the argument to the GetDomainController() static method e. Phew! Now that
we have our domain controller, we can call the EnableGlobalCatalog() method f to
perform the promotion.

$dc = "csdc1.manticore.org"

$contextType =
[System.DirectoryServices.ActiveDirectory. `
DirectoryContextType]:: DirectoryServer

$context = New-Object
-TypeName System.DirectoryServices.ActiveDirectory.DirectoryContext
-ArgumentList $contextType, $dc

$gc = [System.DirectoryServices.ActiveDirectory.DomainController]::
GetDomainController($context)
$gc.EnableGlobalCatalog()

Listing 11.3 Enable a global catalog server

TECHNIQUE 116

DC nameB

Set context typeC

E
Get domain
controller D

Create
context

Enable GCF

326 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

DISCUSSION
It’ll take some time for replication to occur to the newly promoted global catalog
server.

 An organization’s Active Directory isn’t set in stone and will change. It may be nec-
essary to stop a domain controller from being a global catalog server, possibly as part
of a decommissioning process. The script in listing 11.4 can be used to remove the
global catalog.

$dc = "csdc1.manticore.org"
$contextType =
[System.DirectoryServices.ActiveDirectory. `
DirectoryContextType]:: DirectoryServer
$context = New-Object
-TypeName System.DirectoryServices.ActiveDirectory.DirectoryContext
-ArgumentList $contextType, $dc

$gc = [System.DirectoryServices.ActiveDirectory.GlobalCatalog]::
GetGlobalCatalog($context)
$gc.DisableGlobalCatalog()

The script is similar to the one we used to enable the global catalog. The difference
occurs at the end, where we use the context to get a global catalog rather than a
domain controller. We can then use the DisableGlobalCatalog() method.

 FRUSTRATION AVOIDANCE The GlobalCatalog class also contains a method
called EnableGlobalCatalog(). Don’t try to use it because it won’t work. The
correct way to create a global catalog is to use the DomainController class as
shown.

Active Directory was a big step forward when it was introduced because the domain
controllers are multimaster, so that we can perform updates at any DC and the
changes will replicate. But this doesn’t mean that all domain controllers are equal. We
need to consider the FSMO roles to understand this.

TECHNIQUE 117 Discovering FSMO roles

In theory, all domain controllers are equal, but it turns out some are more equal than
others. There are a number of roles that can only be held by one domain controller at
a time. These roles can be moved between domain controllers.

 We’ll see how to discover which domain controllers hold these roles and then how
to transfer the role to another domain controller.
PROBLEM
We need to discover the FSMO role holders. Some of the roles such as the RID Master
and the PDC Emulator can become critical if the DC holding the role is unavailable.
Once we know the role holders, we can ensure our monitoring includes those
machines.

Listing 11.4 Disable a global catalog server

TECHNIQUE 117

327TECHNIQUE 117 Discovering FSMO roles
Apago PDF Enhancer

SOLUTION
We need to look at the forest and domain objects to discover all of the FSMO role
holders, as shown in listing 11.5. Our starting point is to clear the screen (not 100%
necessary, but it makes the display neater) and create an empty hash table B. Hash
tables were covered in section 2.4.2 if you need a refresher. The two role holders at
the forest level are found by creating an object for the current forest C. We then use
the SchemaRoleOwner and NamingRoleOwner properties to get the names of the
domain controllers. Note how we create an entry in the hash table by referring to the
new key and supplying the associated value.

 The pattern is repeated for the domain D. This time, the role holders are the
PdcRoleOwner, RidRoleOwner, and InfrastructureRoleOwner. Once we have all of
the roles, we list the information E. The hash table will display the key-value pairs
that correspond to the role and the holder, respectively. The output can be seen in fig-
ure 11.1.

clear-host
$roles = @{}

$for =
[System.DirectoryServices.ActiveDirectory.Forest]:
:GetCurrentForest()

$roles["SchemaMaster"] = $for.SchemaRoleOwner
$roles["DomainNamingMaster"] = $for.NamingRoleOwner

$dom =

Listing 11.5 Discover FSMO role holders

FSMO roles
FSMO stands for Flexible Single Master Operations.. The following FSMO roles are
defined:

Forest level (one each per forest):

■ Schema Master—only DC on which schema updates can be performed.
■ Domain Naming Master—controls changes to forest structure, such as adding

or removing domains.

Domain level (one each per domain):

■ PDC Emulator—emulates PDC if NT domain controllers exist. Also controls time
synchronization and has password changes immediately replicated.

■ RID Master—issues RIDs to other domain controllers to ensure that unique
SIDs are issued to new objects.

■ Infrastructure Master—maintains references to objects in other domains in a
multidomain forest.

Create hash tableB

Get forestC

328 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()

$roles["PDCEmulator"] = $dom.PdcRoleOwner
$roles["RIDMaster"] = $dom.RidRoleOwner
$roles["InfrastructureMaster"] = $dom.InfrastructureRoleOwner

$roles

DISCUSSION
This script assumes that we only want to display the role holders for the current
domain and the forest. If we have a multidomain forest, we may want to display all role
holders across all domains. This can be achieved by altering the script. Use the
domains collection on the forest object and iterate through them using foreach. For
each domain, get a domain object and list the role holders. It’ll be necessary to add
the domain name into the data; otherwise we won’t know which domain controllers
correspond to which domain.

 If a domain controller holding a role becomes unavailable for an extended period
of time, we may need to transfer the role to another domain controller.

TECHNIQUE 118 Transferring FSMO roles

Moving FSMO roles between domain controllers is straightforward. It doesn’t happen
automatically, though. I’ve transferred these roles between servers situated in southeast
England and the midwest of the U.S. in past projects. The transfer happened flawlessly,
though it was interesting watching the faces of people who’d never done this before.

TRANSFER, NOT SEIZE A transfer is a graceful transition where both servers are
available. If the current role holder is unavailable the role must be seized
using ntdsutil, in which case you should ensure that the original role holder
doesn’t come back online.

The roles can be transferred using the GUI, but it involves three different tools. We’ll
make this more efficient by using a single script.
PROBLEM
The FSMO roles don’t automatically transfer between domain controllers. The roles
have to be transferred to another domain controller if the role holder will be offline
for any great length of time.
SOLUTION
We can get access to the rootDSE on the domain controller, which will become the
role holder and set the relevant properties so that it’s the acknowledged role holder.
This is shown in listing 11.6.

 All objects in Active Directory have a unique security identifier (SID). This includes
the domain itself. We need to use the SID to transfer one of the roles, so the first task
is to find it. We can access the current domain B and use the objectSID property to
give us the SID C which is stored in the variable as an array. The rootDSE on the
domain controller D that’ll become the role holder is accessed.

Get domainD

List rolesE

TECHNIQUE 118

329TECHNIQUE 118 Transferring FSMO roles
Apago PDF Enhancer

 There are a number of ways of looping through the list of roles. I think the easiest
is to create an array of the roles E and use foreach to iterate over the collection.
Note the format of the property—becomeXXXXXX where XXXXXX is the role.

$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()

$sid = ($dom.GetDirectoryEntry()).objectSid
$dc = [ADSI]"LDAP://csdc1/rootDSE"

$fsmo = "becomeSchemaMaster", "becomeDomainMaster", `
"becomeRidMaster", "becomeInfraStructureMaster",
"becomePDC"

foreach ($role in $fsmo){
 if ($role -eq "becomePDC"){ $dc.Put($role, $sid[0])}
 else {$dc.Put($role, 1) }
 $dc.SetInfo()
}

We need to check whether the role being transferred is the PDC emulator F. If it is,
then we use the Put() method to set the property. The value is the SID of the domain.
Note that we’re treating the SID as an array and only taking the first element. For any
other role, a value of 1 is used to indicate that the role is being transferred. The last
act of the loop is to save the change back to Active Directory G.
DISCUSSION
There will be latency due to replication before all of the domain controllers are aware
of the change.

.NET DOMAIN CONTROLLER CLASS The System.DirectoryServices.Active-
Directory.DomainController class has a TransferRoleOwnership method for
moving FSMO roles. It doesn’t fully work with Windows Server 2008. I recom-
mend that it not be used.

The previous script works fine for an organization that has all of the FSMO roles on
the same domain controller. If we want to spread the roles across multiple servers, we
need to modify our script to accommodate moving a given role to a specific server.

param([string]$server, [string]$fsmo)
$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()

$sid = ($dom.GetDirectoryEntry()).objectSid
$dc = [ADSI]"LDAP://$server/rootDSE"

switch ($fsmo.ToLower()){
 "schema" {$role = "becomeSchemaMaster"; break}

Listing 11.6 Transfer all FSMO roles

Listing 11.7 Transfer a single FSMO role

Get domainB

Get SIDC

D Connect to DC

Set rolesE

Transfer roleF

SaveG

ParametersB

Domain SIDC

D Connect to DC

E Set roles

330 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

 "domain" {$role = "becomeDomainMaster"; break}
 "rid" {$role = "becomeRidMaster"; break}
 "infra" {$role = "becomeInfraStructureMaster"; break}
 "pdc" {$role = "becomePDC"; break}
 default {
 Write-Host "Role must be one of schema,” + `
 domain, rid, infra, pdc"
 return
 }

}

if ($role -eq "becomePDC"){ $dc.Put($role, $sid[0])}
else {$dc.Put($role, 1) }
$dc.SetInfo()

In section 4.4.2, we discussed functions and how to use parameters. They can be used
with scripts in the same way. This script takes two parameters B—the server name and
the role to be transferred. Figure 11.1 shows the script being used. The domain SID C
is obtained and the connection to rootDSE on the domain controller is made D. It’s
not necessary to always obtain the SID, but it leaves the script directly comparable to
the previous example. The purist may want to move these lines into the if statement
so that they only run when required.

 A switch statement is use to set the role property based on the input parameter E.
In theory, the case we use for the input parameter shouldn’t matter, but we’ll play it safe
and force it to lowercase. A default statement is used to catch an error where the role
isn’t entered correctly. This can be seen working in the next figure

 The last lines of the script set the role F and save the change G as we’ve seen pre-
viously. We can use this script by supplying the domain controller that’ll hold the role
and the role we want to transfer; for example:

.\move-afsmo.ps1 "dc02" "pdc"

Examples for all of the FSMO roles are shown in figure 11.1.

Transfer roleF

SaveG

Figure 11.1 Using the
script to transfer a single
FSMO role. Note the error
message if the correct
parameters aren’t supplied.
The figure also shows the
result of running the script
to discover the FSMO roles.

331TECHNIQUE 119 Monitor replication
Apago PDF Enhancer

We’ve seen how to find our domain controllers, how we can modify them, and how we
can move the FSMO roles. We’ll close this section on domain controllers by consider-
ing replication.

TECHNIQUE 119 Monitor replication

Active Directory can accept changes, such as a new user, on any domain controller.
That data is then replicated to all domain controllers in the domain, and possibly the
forest. Replication can be adversely affected by networking issues or hardware prob-
lems such as a hard disk that becomes corrupted or a network card failing. If replica-
tion isn’t working correctly, problems such as users not being able to log on will
manifest themselves.

 It’s surprising how many people install Active Directory and just leave it. They
don’t check the event logs on domain controllers or check that replication is working
correctly. We saw how to access the event logs in chapter 8, and you’re about to learn
how to check on replication. Put these techniques together to create a script that
examines the health of your Active Directory on a regular basis. It’s much better for
you to find problems than for your users to find them.
PROBLEM
The help desk has received a number of calls about users having problems logging on
to the network. We need to determine whether our domain controllers are replicating
information correctly.
SOLUTION
Determining whether replication is working isn’t as straightforward as some of the prob-
lems we’ve solved. We’ll look at replication from the viewpoint of a single domain con-
troller and then look at comparing the replication state between domain controllers.

 The script in listing 11.8 uses techniques we’ve seen earlier, when we were looking
at enabling or disabling the global catalog. A domain controller name B and a con-
text type C are used to create a directory context D. The directory context is then
used to create a domain controller object E. We can use the GetAllReplication-
Neighbors() method to find the information we need about this domain controller’s
replication state F and display it.

$dcn1 = "csdc1.manticore.org"
$dcn1
$contextType =

[System.DirectoryServices.ActiveDirectory.DirectoryContextType]::
DirectoryServer

$context = New-Object
-TypeName System.DirectoryServices.ActiveDirectory.DirectoryContext
-ArgumentList $contextType, $dcn1

$dc1 = [System.DirectoryServices.ActiveDirectory.DomainController]::
GetDomainController($context)

Listing 11.8 Examine replication synchronization

TECHNIQUE 119

Domain
controller name

B

C Context type Directory context D

E Get domain controller

332 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

$dc1.GetAllReplicationNeighbors() |
 select PartitionName, SourceServer,
UsnLastObjectChangeSynced, LastSuccessfulSync,
LastAttemptedSync, LastSyncMessage,
ConsecutiveFailureCount

DISCUSSION
Here’s part of the output from this script:

csdc1.manticore.org

PartitionName : DC=Manticore,DC=org
SourceServer : DC02.Manticore.org
UsnLastObjectChangeSynced : 787396
LastSuccessfulSync : 07/03/2009 20:40:59
LastAttemptedSync : 07/03/2009 20:40:59
LastSyncMessage : The operation completed successfully.

ConsecutiveFailureCount : 0

This script will show all of the domain controllers that are directly replicating with this
domain controller and the state of replication for each Active Directory partition.

 Active Directory is distributed across a number of partitions which replicate inde-
pendently. Our output shows the partition representing the Active Directory data
(users, groups, and so on). The source server is the domain controller with which our
server is replicating.

 Every time an object is changed in Active Directory, the USN (update sequence num-
ber) is incremented. The USN of the last object to be replicated is shown, as are the
date and time of the last attempt at replication and the last successful replication. If
they don’t match, you immediately know you have problems.

 Likewise, if the LastSyncMessage shows anything but “The operation completed
successfully.” it’s time for deeper investigations. The ConsecutiveFailureCount
should be zero if everything is working correctly.

 So far we’ve seen how to test replication on a single domain controller, but like Oli-
ver we want more. Listing 11.9 shows how can we ensure that a partition is replicating
correctly across all domain controllers.

$d = [ADSI]""
$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()

$dom.FindAllDomainControllers() | foreach {
 $_.Name
 $_.GetReplicationCursors($d.distinguishedName)
}

We can test the replication between domain controllers by comparing the UptoDate-
nessUSN (also known as the up-to-dateness vector) on the source server with the same

Listing 11.9 Show up-to-dateness vector

View replication
data

F

Get domain rootB

Get domain
object

C

Get DCsD
Get replication
data

E

333TECHNIQUE 120 Triggering replication
Apago PDF Enhancer

attribute stored on the target server for that domain controller, which produces out-
put like this:

CSDC1.Manticore.org

PartitionName : DC=Manticore,DC=org
SourceInvocationId : 3242a94a-7538-47bd-9aa3-be4d3b56d813
UpToDatenessUsn : 787396
SourceServer : DC02.Manticore.org
LastSuccessfulSyncTime : 07/03/2009 20:36:13

PartitionName : DC=Manticore,DC=org
SourceInvocationId : b2f36313-5342-4324-8336-ffb554fb28ee
UpToDatenessUsn : 403995
SourceServer : CSDC1.Manticore.org
LastSuccessfulSyncTime : 07/03/2009 20:38:40

The script gets the domain B and creates a domain object C. We use the FindAllDo-
mainControllers() D method and use foreach to execute the GetReplicationCur-
sors() method on each domain controller E. This method expects a partition as the
input parameter. In this case, we’re examining the default partition.

 For each domain controller, we’ll get output showing the partition, source server,
and UpToDatenessUSN, among other information. The UpToDatenessUSN shown by
csdc1 for the data coming from dc02 should match the UpToDatenessUSN recorded by
dco2 for itself.

 It’s necessary to repeat this for all partitions to get a complete picture of the repli-
cation state. In a large domain with many domain controllers, it’d be wise to modify
the script so that smaller groups of domain controllers were processed at a time.

 If we find a discrepancy between the data stored on replication partners, we may
need to trigger replication to bring the domain controllers back into synchronization.

TECHNIQUE 120 Triggering replication

In Active Directory, replication happens without our intervention. We set up the
domain controllers and they work out how to replicate among themselves. They keep
replicating data until something changes. That change may be a network (or
machine) problem that prevents replication. We need to be able to manually force
domain controllers to replicate.
PROBLEM
We’re taking a domain controller offline for an extended period of time, so we have
to force replication to be certain that all changes have been replicated out to Active
Directory instances on other domain controllers.
SOLUTION
Active Directory works out how the domain controllers should replicate among
themselves. Each domain controller has one or more neighbors with which it repli-
cates. We can use that to trigger replication throughout the domain if required, as in
listing 11.10.

TECHNIQUE 120

334 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::
GetCurrentDomain()

$dom.FindAllDomainControllers() | foreach-object {

 $contextType =
 [System.DirectoryServices.ActiveDirectory.DirectoryContextType]::
 DirectoryServer

 $context = New-Object -TypeName
 System.DirectoryServices.ActiveDirectory.DirectoryContext
 -ArgumentList $contextType, $_.Name

 $dc = [System.DirectoryServices.ActiveDirectory.DomainController]::
 GetDomainController($context)

 $_.Name
 foreach ($partition in $_.Partitions){
 "Replicating $partition"
 $dc.TriggerSyncReplicaFromNeighbors($partition)
 }
}

The early part of the script we’ve seen before. The more we automate our activities, the
more we’ll see the same patterns of code being used. We get the current domain B and
find all of the domain controllers in the domain C. We pipe the domain controllers
collection into a Foreach-Object cmdlet where we create a context type D and a direc-
tory context with the context type and the domain controller name E, then get the
domain controller object F we use as our trigger point.

 The domain controller name is printed and we loop through the partitions hosted
on that domain controller G. It’s possible that not all partitions will be on all domain
controllers; for example DNS can be targeted to a specific set of domain controllers.
The TriggerSyncReplicaFromNeighbors() method is used to force the replication H.
It requires a partition name as a parameter.
DISCUSSION
Don’t try this in a domain with a large number of domain controllers. There could be
an enormous spike in the network traffic, plus the script could take a long time to run.
If there are a large number of DCs, split them up and either work with them singly or
feed a number of names into the script at a time.

 This concludes our examination of domain controllers. These scripts will enable
us to perform the daily administration tasks involving domain controllers. It’s time to
step up a level in scale and look at Active Directory sites.

11.3 Sites
Active Directory sites define locations. They’re the physical manifestation of our
Active Directory being used to control replication as well as being used to find domain
controllers and other services. A well-designed and healthy site topology is a basic

Listing 11.10 Trigger replication

Get domainB
Find DCsC

D Set context Type
Set
directory
context

E

F Get DC

Iterate partitionsG

ReplicateH

335TECHNIQUE 121 Listing sites
Apago PDF Enhancer

requirement for a well-behaved Active Directory. It’s also essential for Exchange 2007,
as we’ll see in the next chapter.

 The first thing we need to be able to do is find out what sites are defined and just
what information is available.

TECHNIQUE 121 Listing sites

There’s a lot of useful information lurking in our sites. The GUI tool doesn’t give us
this information in an easy-to-access manner.
PROBLEM
How can we discover the sites that are defined in our AD and simultaneously discover
the related data we need to properly understand our Active Directory topology?
SOLUTION
The site information can be found on the forest object we’ve used previously. Sites are
defined at the forest level. We can use the GetCurrentForest() static method of the
System.DirectoryServices.ActiveDirectory.Forest class to create an object for
the forest, as in listing 11.11. One of the properties on this object is a collection of site
objects. We can display the information by simply accessing the property. The quantity
of information forces us to display it as a list rather than a table.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()
$for.sites

DISCUSSION
The information for one site is shown in figure 11.2. Some of the information is miss-
ing because I only have a single site in my Active Directory at this point.

 The site information includes the name and the domains in the site. Sites can span
domains. It means there’s a domain controller for that domain located in the particu-
lar site. The Servers property refers to domain controllers only. It doesn’t list other
servers such as Exchange or SQL Server.

Listing 11.11 List sites

TECHNIQUE 121

Figure 11.2 Display of the information available for a site when accessed through PowerShell and .NET

336 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

AdjacentSites refers to those sites that are directly linked to our site through site
links. The bridgehead servers are the domain controllers that are used to replicate
with other sites.

 Now that we know how to list the sites, it’s time to discover how to create them.

TECHNIQUE 122 Creating a site

Site creation is a task that tends to happen in bursts. There’s a big burst of activity
when Active Directory is first installed. After that, sites are only created when changes
to the organization’s locations occur. This is most often seen in merger and acquisi-
tion activity.
PROBLEM
Your company has acquired another company. The acquired company’s Active Direc-
tory will be merged into your AD. You need to create the necessary sites in your Active
Directory to accommodate this change.
SOLUTION
.NET comes galloping to the rescue. There’s a .NET class we can use to solve this
problem, as shown in listing 11.12. We start by finding the current forest B. A con-
text type of Forest is created C. In this script, we’ve used the type directly rather
than going through the enumeration as we have in previous examples. Either will
work, though I prefer using the enumeration as I think it’s a better aid to under-
standing what’s happening.

 We use the forest and context types to create a context D and create the site using
the ActiveDirectorySite class E. The change must be saved to Active Directory F
to make it usable.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$fortyp = [System.DirectoryServices.ActiveDirectory.`
DirectoryContextType]"Forest"

$forcntxt = New-Object –TypeName `
System.DirectoryServices.ActiveDirectory.DirectoryContext
-ArgumentList $fortyp, $for

$site = New-Object –TypeName
`System.DirectoryServices.ActiveDirectory.ActiveDirectorySite

-ArgumentList $forcntxt, "MyNewSite1"
$site.Save()

DISCUSSION
One drawback to using the .NET class is that it’s not possible to set the Description
property on the site object. An alternative for the creation process would be to com-
bine the two scripts so that the description was set at creation time. An example of
how to use the GetDirectoryEntry() method is presented in section 11.5.2; in the
mean time, we’ll see how to modify a site after it has been created.

Listing 11.12 Create sites

TECHNIQUE 122

Get forestB

Context typeC

ContextD

E Create siteSaveF

337TECHNIQUE 124 Deleting a site
Apago PDF Enhancer

TECHNIQUE 123 Modifying a site
The major modifications to a site would be changing the metadata, such as the
description, or changing the subnets associated with a site. We’ll look at moving sub-
nets between sites later.
PROBLEM
Changes within the organization can create a need for the metadata held about a site
to be changed. We need to be able to change the description of our sites to accommo-
date these changes.
SOLUTION
We know this isn’t possible with .NET, so we need to use ADSI, as shown in listing 11.13.

$root = [ADSI]"LDAP://RootDSE"
$site = [ADSI]"LDAP://CN=MyNewSite3,CN=Sites,`
$($root.configurationNamingContext)"

$site.location = "Building Z"
$site.description = "Site for New Building Z"
$site.SetInfo()

DISCUSSION
Site information is held in the configuration context. The easiest way to access this con-
text is to start by creating an object pointing to rootDSE B. The configuration naming
context is a property of rootDSE that we can use to create an ADSI object for our site C.
The metadata is stored as properties whose values can be changed D. The changed
data is saved E to Active Directory.

 An important part of Active Directory maintenance is removing objects that are no
longer required. This applies equally well to sites.

TECHNIQUE 124 Deleting a site

Deleting a site from Active Directory will probably be a rare activity. If a site is to be
deleted, ensure that any users who relied on domain controllers in that site for
authentication can find another domain controller so that they can still access the
domain.
PROBLEM
As business needs change, we may need to delete a site from Active Directory.
SOLUTION
The simplest way to accomplish this is to use ADSI, as in listing 11.14.

$root = [ADSI]"LDAP://RootDSE"
$site = [ADSI]"LDAP://CN=MyNewSite3,CN=Sites, `
$($root.configurationNamingContext)"

$site.DeleteTree()

Listing 11.13 Modify site properties

Listing 11.14 Delete a site

TECHNIQUE 123

Get RootDSEB

Get siteC

ModifyD

SaveE

TECHNIQUE 124

338 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

DISCUSSION
We use rootDSE and the configuration naming context in the same way as the previ-
ous example. This makes our script more portable, as we aren’t hard-coding the forest
name. The DeleteTree() method is called to perform the deletion.

 This concludes our examination of Active Directory sites. Subnets are closely asso-
ciated with sites, and we’ll turn our attention to them in the next section.

11.4 Subnets
This section is about creating subnets in Active Directory, not about the subnetting of
networks. A subnet is linked to an Active Directory site and defines the range of IP
addresses Active Directory expects to see in that site. They’re used to enable newly
promoted domain controllers to determine in which site they belong.

 Correctly defined subnets are essential for machines to determine their site mem-
bership. This will reduce network traffic by ensuring that services, such as domain
controllers, are accessed from the site in which they’re situated. A subnet can only be
linked to a single site, but a site can have many subnets associated with it.

 Our first step with subnets is discovering which ones have been defined in our
Active Directory. This will enable us to determine whether we need to create further
subnets.

TECHNIQUE 125 Listing subnets

The list of subnets defined in Active Directory can be seen using Active Directory Sites
and Services, but using PowerShell gives us more flexibility in how we look at the data.
PROBLEM
We need to determine which subnets have been defined in Active Directory, and
which sites are linked to those subnets. The data should be output in a format that can
easily be formatted into a tabular display.
SOLUTION
There are a number of ways to retrieve this information. I prefer to read the individ-
ual subnet objects and create an object containing the data I want to display, as shown
in listing 11.15. This gives me more flexibility for future work.

 Let’s start by creating an empty array B. This will be used to hold our data. The
second task is to find our subnets container C. Subnets are stored at the forest level
rather than the domain (there’s no difference for a single-domain forest), so I’ve
hard-coded the forest name. It’s possible to change this to bind to the root of Active
Directory using RootDSE if you want to make this portable (see later examples).

 We’ll use foreach to examine each subnet (the children of the subnets container)
in turn D. The loop starts by getting a directory object for the subnet E. An empty
object is then created F. If you pipe $data into Get-Member, the returned type is a
Selected.System.String with NoteProperties added for each property in the
select statement. It would be possible to create a PowerShell object using New-
Object and then add each property with Add-Member. I first saw this way of creating
objects in a post on Jonathan Noble’s blog (search for “Noble musings”).

TECHNIQUE 125

339TECHNIQUE 126 Creating a subnet
Apago PDF Enhancer

$allnets = @()
$subnets = [ADSI]"LDAP://CN=Subnets,CN=Sites,`
CN=Configuration,DC=Manticore,DC=org"

foreach ($subnet in $subnets.children) {
 $net = [ADSI]"$($subnet.Path)"
 $data = "" | select Name, Location, Site, Description
 $data.name = $($net.cn)
 $data.Description = $($net.description)
 $st = $net.siteobject.value.split(",")
 $data.site = $st[0].Replace("CN=","")
 $allnets += $data
}
$allnets | Format-Table

DISCUSSION
Now that we have an object, we need to add some properties G. The subnet location
and description are found in the relevant properties. The site that the subnet is associ-
ated with is found using the siteobject property. But this is a distinguished name, so
we split the string into an array using the Split() operator. The name of the site is in
the first element of the array. The Replace() method can be used to remove the CN=
from the beginning of the distinguished name. The name of the site is the final prop-
erty we need.

PROPERTY VALUE COLLECTION The data is handled as $data.name =
$($net.cn) and so on using subexpessions because ADSI returns the proper-
ties as PropertyValueCollections, from which we need to pick the data.

Our object is added to the array H and we loop for the next subnet. The data is dis-
played using Format-Table I. Alternatively, it could be exported to a CSV file for
future use or further processing could be performed. Notice that the description
property isn’t set. We’ll learn how to perform that task shortly.

 Now that we know what subnets we have, the next task is to look at creating new
subnets.

TECHNIQUE 126 Creating a subnet

Subnets are closely associated with sites in Active Directory. When we create the sub-
net, we have to know with which site the subnet will be associated.
PROBLEM
A subnet has to be created in Active Directory to facilitate the incorporation of a new
location.
SOLUTION
The .NET ActiveDirectorySubnet class solves this problem for us, as shown in list-
ing 11.16. The first three lines of the script get the forest B, and use a forest con-
text type C to create a forest context D. We then set the data we’ll use to create the
subnet E. The site name and subnet name must be given; the location is optional.

Listing 11.15 List subnets

Create arrayB

Get subnetsC
Iterate subnetsD Individua

l subnet
E

F
Create
objectSet

properties
G

H Add to array
DisplayI

TECHNIQUE 126

340 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$fortyp =
[System.DirectoryServices.ActiveDirectory.`
DirectoryContexttype]"forest"

$forcntxt =
New-Object System.DirectoryServices.ActiveDirectory.`
DirectoryContext($fortyp, $for)

$site = "MyNewSite1"
$subnetlocation = "Building Y"
$subnetname = "10.55.0.0/16"

$subnet =
New-Object System.DirectoryServices.ActiveDirectory.`
ActiveDirectorySubnet($forcntxt, $subnetname, $site)
$Subnet.Location = $subnetlocation
$subnet.Save()

DISCUSSION
It’s good practice to complete the location and description fields, as it can save time
and effort in the future trying to discover where a subnet or site is actually situated.

 After creating the subnet F, we can set the location G and save our changes H.
Once we’ve created our subnets, we may need to modify them at some time.

TECHNIQUE 127 Modifying a subnet

There isn’t much to modify with subnets, except which site it’s in. This has an impact
on Active Directory joined computers, as they use the subnet information to deter-
mine site membership, which controls which domain controllers will be used for
authentication.
PROBLEM
The reorganization of the company and its locations means that we have to change
the Active Directory site with which a subnet is affiliated.
SOLUTION
This task can’t be performed using .NET, so we need to look at using ADSI, as in list-
ing 11.7. Start by connecting to rootDSE B. We can then access the subnet we need
to change C. The structure of the LDAP string may look odd. That’s because the /
character is reserved in ADSI, which means that the subnet name 10.56.0.0/24
wouldn’t be interpreted correctly when we try to access it. We need to make sure
the / is read as part of the name so we put a \ in front of it as an escape character. An
escape character forces the next character to be read literally rather than being
interpreted as a reserved character.

CHILD OF SITES The subnets container is a child of the sites container. This
is one of things that can easily get forgotten when you’re building a script
from scratch. I can confirm from experience that forgetting this causes a lot
of frustration in debugging the script.

Listing 11.16 Create a subnet

Get forestB

Context typeC

Forest contextD

DataE

Create
subnet

F

Set locationG
SaveH

TECHNIQUE 127

341TECHNIQUE 128 Deleting a subnet
Apago PDF Enhancer

The properties we need to change are set D and saved E. When we change the site
association, we need to set the siteobject property G with the distinguished name of
the new site F and make sure we save the change H.

$root = [ADSI]"LDAP://RootDSE"
$subnet = [ADSI]"LDAP://CN=10.56.0.0\/24,CN=Subnets,CN=Sites,
$($root.configurationNamingContext)"

$subnet.location = "Building Z"
$subnet.description = "Subnet for New Building Z"
$subnet.SetInfo()

$newsite =
[ADSI]"LDAP://CN=MyNewSite3,CN=Sites, `
$($root.configurationNamingContext)"

$subnet.siteObject = $newsite.distinguishedName
$subnet.SetInfo()

DISCUSSION
It’s strange how we keep forgetting the final change when doing this interactively.

 Next we’ll look at how to remove subnets from Active Directory. One thing I’ve
noticed over the years is that people seem not to want to remove objects from AD. I’ve
seen user accounts where the user left the company two or three years ago. Use Power-
Shell to find these unused objects and remove them. Put AD on a diet and it’ll be eas-
ier to manage.

TECHNIQUE 128 Deleting a subnet

Deleting a subnet can be a simple tidying up exercise, as AD will use the most
granular subnet available. For example, if we designate 10.10.0.0/16 to a site, it also
covers 10.10.54.0/16, so we wouldn’t explicitly have to define the child subnets.
Whatever the reason, we remove subnets in a similar manner to sites.
PROBLEM
A subnet is no longer required and has to be deleted from Active Directory.
SOLUTION
Listing 11.18 shows a solution similar to that presented in section 11.3.4. Simply get
the ADSI object for the subnet and call the DeleteTree() method as shown.

$root = [ADSI]"LDAP://RootDSE"
$subnet = [ADSI]"LDAP://CN=10.56.0.0\/24,CN=Subnets,CN=Sites,
$($root.configurationNamingContext)"
$subnet.DeleteTree()

DISCUSSION
One drawback to the deletion scripts is that there’s no easy way to have a check before
deletion (remember the -confirm and -whatif parameters on Remove-Item). This
would be a compelling reason to move to using Microsoft’s AD provider if you

Listing 11.17 Modify a subnet

Listing 11.18 Delete a subnet

Get AD rootB

Get subnetC
Set
properties

D

E Save

Get new siteF Change
subnet’s site

G

SaveH

TECHNIQUE 128

342 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

upgrade to Windows Server 2008 R2, as it means you can use Remove-Item and its
extra safety features. AD administration with a safety net! I can sense a lot of relieved
admins as this gets adopted. Microsoft’s AD provider is also available if you install the
AD web service on your Windows Server 2003 or Windows Server 2008 domain con-
trollers and use the AD cmdlets from a Windows 7 or Windows Server 2008 R2 admin-
istration machine.

 So far in our look at the Active Directory topology, we’ve learned how to work with
domain controllers, sites, and subnets. The last component we need to consider is the
links between sites that we use to control replication.

11.5 Site links
Site links are in effect containers for two or more Active Directory sites. The link has
some properties of its own, the most important of which are the cost (an arbitrary
number) and a replication schedule. It’s important that the site links are defined and
created correctly so that Active Directory replication isn’t hindered.

 Consider figure 10.1: site links definitely belong in the bottom part of the diagram.
They don’t change frequently but they can have a big impact on the organization if
they’re misconfigured and cause Active Directory replication problems.

 The first exercise we need to consider is discovering the site links that exist in our
Active Directory.

TECHNIQUE 129 Listing site links

Site link documentation is essential to understanding the Active Directory topology.
PROBLEM
The documentation has vanished, as has the guy who created the links. We need to
understand our Active Directory topology, especially the site links used to control
replication.
SOLUTION
Figure 11.2 shows that the output from listing the Active Directory sites includes the
site links. The information is better presented by showing which sites are part of a par-
ticular site link rather than which links are associated with a site, as in listing 11.19.

 The first part of the script we’ve seen several times in this chapter. We create a for-
est context D by using the current forest B and the context type of forest C. The
next step is to use rootDSE E as a shortcut to the configuration naming context so
that we can find the sites container F to use as the root of our search. We’re using
the sites container as our starting point because it’s the parent container for site
links. There are two possible types of site link (RPC and SMTP) and starting at this level
ensures we find all links.

 An ADSI searcher is created G using .NET. If we have access to PowerShell v2, we
can simplify this line slightly:

$search = [ADSISearcher]$root

TECHNIQUE 129

343TECHNIQUE 129 Listing site links
Apago PDF Enhancer

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$fortyp =
[System.DirectoryServices.ActiveDirectory.`
DirectoryContexttype]"forest"

$forcntxt = New-Object
System.DirectoryServices.ActiveDirectory.`
DirectoryContext($fortyp, $for)

$dse = [ADSI]"LDAP://RootDSE"
$root = [ADSI]"LDAP://cn=Sites,$($dse.configurationNamingContext)"

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(objectclass=sitelink)"
$results = $search.FindAll()

if ($results -ne $null){
 foreach ($result in $results){
 $link =
 [System.DirectoryServices.ActiveDirectory. `
 ActiveDirectorySiteLink]::
 FindByName($forcntxt, $result.Properties.name)
 $link
 }
}
else {Write-Host "No Site-Links exist"}

DISCUSSION
We want to restrict the objects that are returned so that we get only site links H. The
LDAP filter will return all objects whose object class is sitelink.

ADSIEDIT When I was researching this script, I wasn’t sure how to create the
correct filter so that I only returned site links. How did I find this out? I
cheated and used ADSIEdit to look at the attributes of an existing site link. It
showed that a simple filter on objectclass would do the trick. ADSIEdit is a
great tool for drilling down into Active Directory objects—think of it as the
Get-Member for AD.

We use FindAll() I to return all of the site links. If no site links exist in our forest,
the $results variable will be empty-null (equal to $null). You can save processing
time and prevent script errors by testing the results variable against $null J. If there
are no links, a message is displayed 1@.

 Assuming that we’ve found some site links (a single Site Active Directory may not
have any if the default site has been deleted), we can loop though them. The site link
name can be obtained from our results, and together with the forest context we cre-
ated earlier, can be used to create an object for the link 1). The properties of the link
can be displayed 1! including the constituent sites and the cost. The information for
the replication schedule is discussed in section 11.5.4.

Listing 11.19 List site links

Get forestB

Context
type

C

Forest
context

D
Get
rootDSE

E

FGet
configuration

context

G

Filter on
site links

Create
searcher

H
I

Find all
links

J
Test for
results

Get link1)

1! Display data

Error message1@

344 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

 The script in listing 11.19 looks at site links that include sites as a property. If we
want to look at the sites in our forest and see which links are connected to a particular
script, it’s a much simpler task. We use the sites collection of the current forest object
and select the name and the links, as shown in listing 11.20.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$for.sites | Format-Table Name, SiteLinks

One idea for extending this work would be to use the mapping technique we saw in
chapter 8 when looking at services. This would produce a graphical view of the links
between sites.

 Now that we know what links exist, how can new ones be created to fill in the gaps?

TECHNIQUE 130 Creating a site link

The organizational changes we discussed earlier that cause Active Directory sites to be
created also mean we need to create new site links.
PROBLEM
We’ve used the script in section 11.3.2 to create two new sites. We now need to create
a site link to control the replication between the sites.
SOLUTION
The ActiveDirectorySiteLink can be used for this task, as shown in listing 11.21.
Working at the forest level, we start by creating a forest context B in the usual way.
The ActiveDirectorySiteLink class is used to create a new link object C giving the
name of the new link as one of the parameters.

LINK NAMES I tend to create link names using the sites that form part of the
link in the name. I find this helps when working with the links, as it’s immedi-
ately obvious which sites are involved in the link. Other naming conventions
are available.

The ActiveDirectorySite class can be used to find the sites D that will be added to
the link. A link always contains a minimum of two sites. Best practice is to have only
two sites in a link. The sites are added to the link E. This has to be done one site at a
time. There doesn’t appear to be a way to perform a bulk addition of sites to the link.

 The link cost F and the replication interval G properties are set. The interval is
given as hh:mm:ss—hours, minutes, and seconds, respectively. I haven’t set a replica-
tion schedule in this script but have implicitly accepted the default 24 x 7 schedule. If
a different schedule is required, the script presented in technique 133 can be used to
control the schedule.

REPLICATION INTERVAL The replication interval can’t be lower than 15 min-
utes. The default is 3 hours (180 minutes in the GUI).

Listing 11.20 Site links by site

TECHNIQUE 130

345TECHNIQUE 131 Deleting a site link
Apago PDF Enhancer

The new link is saved H and a directory entry created so that we can set the link descrip-
tion I. A final save J ensures that everything is written back to Active Directory.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$fortyp =
[System.DirectoryServices.ActiveDirectory.`
DirectoryContexttype]"forest"

$forcntxt = New-Object
System.DirectoryServices.ActiveDirectory.`
DirectoryContext($fortyp, $for)

$link = New-Object -TypeName
System.DirectoryServices.ActiveDirectory.ActiveDirectorySiteLink

-ArgumentList $forcntxt, "MyNewSite3-MyNewSite4"

$site1 =
[System.DirectoryServices.ActiveDirectory.ActiveDirectorySite]::
FindByName($forcntxt, "MyNewSite3")

$site2 =
[System.DirectoryServices.ActiveDirectory.ActiveDirectorySite]::
FindByName($forcntxt, "MyNewSite4")

$link.Sites.Add($site1)
$link.Sites.Add($site2)

$link.Cost = 150
$link.ReplicationInterval = "01:00:00"
$link.Save()

$linkde = $link.GetDirectoryEntry()
$linkde.Description = "Links sites MyNewSite3 and MyNew Site4"
$linkde.SetInfo()

DISCUSSION
I’m not going to present a script to explicitly modify the properties of a site link. The
script in technique 133 can be easily modified to change the cost, replication interval,
or even the member sites if required. To remove a site use the following syntax:

$link.Sites.Remove($site_name)

Before we turn our attention to manipulating replication schedules, let’s discover how
we can delete a site link.

TECHNIQUE 131 Deleting a site link

Any organizational change that modifies the Active Directory sites that are in use will
also alter the set of site links we need to use.
PROBLEM
A number of sites have been removed from our Active Directory topology. We need to
remove the corresponding links to ensure that the replication topology is kept at max-
imum efficiency.

Listing 11.21 Create site link

Forest contextB

C New link

DFind sites

Add sites
to link

E

Set costF
Set
replication
interval

G

ISet
description

SaveJ

H Save

TECHNIQUE 131

346 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

SOLUTION
The ActiveDirectorySiteLink class has a delete method we can use for this task, as
shown in listing 11.22.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$fortyp =
[System.DirectoryServices.ActiveDirectory.`
DirectoryContexttype]"forest"

$forcntxt = New-Object
System.DirectoryServices.ActiveDirectory.`
DirectoryContext($fortyp, $for)

$link =
[System.DirectoryServices.ActiveDirectory.`
ActiveDirectorySiteLink]::
FindByName($forcntxt, "TestLink")

$link.Delete()

DISCUSSION
The forest context B is retrieved and used with the link name to create C the Active-
DirectorySiteLink object. The Delete() method D is then used to remove it.

 As part of our work with Active Directory, we need to be able to discover the sched-
ules controlling replication.

TECHNIQUE 132 Determining replication schedules

When a site link is created, a replication interval (default 180 minutes) and schedule
(default 24 x 7) are created.

SCHEDULE The schedule controls when replication can start, not when repli-
cation can happen. If the schedule is only set for 1-2 a.m. then replication can
start during that period, but once started, it’ll continue until finished even if
that goes beyond 2 a.m.

Accessing the schedule in the GUI is awkward in that AD Sites and Services has to be
opened, then we have to drill down into the transport mechanisms to find the site
link, open its properties, and finally click on the Schedule button. This will show the
schedule on an hourly basis for each day of the week. Additionally, we can’t just use
the InterSiteReplicationSchedule property, because if a schedule is set as 24 x 7
then nothing shows when you list the InterSiteReplicationSchedule property. If it’s
set to anything else, then we get System.DirectoryServices.ActiveDirectory.
ActiveDirectorySchedule returned instead of the actual schedule. Let’s write a script
that will sort this out for us.
PROBLEM
We want an easy way to see the replication schedules of our site link. Ideally we want
the display to show more detail than the GUI tools.

Listing 11.22 Delete site link

Forest contextB

Get linkC
DeleteD

TECHNIQUE 132

347TECHNIQUE 132 Determining replication schedules
Apago PDF Enhancer

SOLUTION
What we want is a display like figure 11.3. We need to unravel the way AD stores the sched-
ule information to get to that display. The script to do so is shown in listing 11.23.

$sched = @()
$days = "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday"
hours = " "*11

for ($j=0; $j -le 23; $j++){$hours += "{0,-4}" -f $j}
$sched += $hours

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$fortyp =
[System.DirectoryServices.ActiveDirectory.`
DirectoryContexttype]"forest"

$forcntxt = New-Object
System.DirectoryServices.ActiveDirectory.`
DirectoryContext($fortyp, $for)

$link =
[System.DirectoryServices.ActiveDirectory.`
ActiveDirectorySiteLink]::
FindByName($forcntxt, "MyNewSite3-MyNewSite4")

for ($i=0; $i -le 6; $i++) { #days
 $out = ""
 $out += $days[$i].PadRight(11)
 for ($j=0; $j -le 23; $j++) { #hours
 for ($k=0; $k -le 3; $k++) { #15 minutes
 if ($link.InterSiteReplicationSchedule.
 RawSchedule.psbase.GetValue($i,$j,$k)){$out += "Y"}
 else {$out += "n"}
 }
 }
 $sched += $out
}
$sched

DISCUSSION
I like this script because it gives me more information than the GUI and makes that
information easier to access. The display in figure 11.3 shows the replication schedule
for 15-minute intervals through the whole week. The numbers across the top row are
the hours of the day (24-hour clock). I chose to show when replication is allowed with
a capital Y and when it isn’t with a lowercase n. This makes the replication schedule
easier to understand.

 It’s time to see how we get to this display. We start by creating a couple of arrays B.
The first is empty and will hold the schedule data, whereas the second holds the days

Listing 11.23 Display replication schedule

B

C

D

E

F

G
H

I

J

1)

1!

348 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

of the week. If you don’t want to type the days of the week into a script like this, you
can generate them this way:

$days = 0..6 | foreach{([System.DayofWeek]$_).ToString()}

Use the range operator to pipe the numbers 0 through 6 into foreach. The System.
DayofWeek enumeration is used to generate the name of the weekday.

 The next job is to create the top row of the table that holds the hours. Our start-
ing point is a variable $hours that has 11 spaces. This is padding to allow for the col-
umn of day names in the table. The values are simply numbers, so we can use a loop
to put each integer value into a four-character field using the -f operator and the
.NET string formatting functionality. It’s then appended to the $hours variable. Once
completed, the hours variable is appended to the array holding the schedule C.
We then need to generate a forest context D, going through the usual steps to
create it.

 The ActiveDirectorySiteLink class has a FindByName() method that uses
the forest context and the name of the link E A site link has an InterSite-
ReplicationSchedule.RawSchedule property consisting of 672 Boolean entries in
a three-dimensional array. Each value represents a period of 15 minutes counted
sequentially from 00:00 on Sunday. We can use a set of nested loops to unravel
these entries.

 The outer loop F counts through the seven days of the week. The processing for
each day initializes an empty string as an output variable and adds the day of the
week name to it. We pad the name to 11 characters to make everything line up.
It’s much easier to read that way. The middle loop counts through the hours of the
day G and the inner loop counts the 15-minute blocks of each hour H. The cor-
rect value is retrieved from the schedule using the loop counters as indices I. If set
to True, the output variable has a Y appended and if it’s false, an n is appended J.
At the end of the loop representing the days, the output variable is appended to our
schedule array 1).

 When all 672 values have been processed, we can display the schedule 1! to pro-
duce the display seen in figure 11.3.

 Now that we know how to display the schedule, let’s look at changing it. That will
give us another excuse to run our display script to check the results.

Figure 11.3 Display of the replication schedule for a site link. Y means replication is enabled and n
means it isn’t. Each character represents a 15-minute block of time.

349TECHNIQUE 133 Setting replication schedules
Apago PDF Enhancer

TECHNIQUE 133 Setting replication schedules
The ability to set replication schedules at an hourly level may seem to give us enough
granularity, but there are circumstances where we need more. Imagine the situation
where a busy WAN link can only be used for replication in the evening and at lunch-
time. Even worse, we have to ensure that we don’t start replicating after 13:45., as the
users will be ramping up their use of the bandwidth by 14:00.

 Now take that problem and extend it across a number of links. We need to be able
to automate these changes.
PROBLEM
We’ve been told that replication is only allowed during limited time periods—in this
case 12:00-13:45 and 18:00 to 23:59. We need to manipulate our replication schedule
with a finer degree of control than allowed by the GUI tool.
SOLUTION
The schedule values can’t be set directly. We need to create a schedule object and use
it to set the schedule on the site link. In the GUI, we can set or clear individual blocks
of time to control replication. Using the ActiveDirectorySchedule class, we find two
methods. The first is SetDailySchedule(), which will create a schedule for everyday
of the week for the given times. The second method, SetSchedule(), can be used to
set the schedule for individual days. The results are cumulative when the two methods
are used in combination, as we’ll see shortly.

 Site links are among the group of objects that sit at the forest level. This group also
includes sites and subnets, which we discussed in earlier sections. This means we have
to start our script in listing 11.24 by creating a forest context. We can do this by getting
the current forest B and creating a context type of forest C. These are used to create
the forest context D. An object can be created for the site link E using the forest con-
text and the name of the link.

 Our next task is to create the schedule we’ll apply F. The ResetSchedule()
method can be used to completely clear the schedule G. If this is then applied to the
site link, replication won’t be possible.

 Part of our task was to enable replication between 18:00 and midnight. We want
this to apply every day of the week, so we use the SetDailySchedule() method H.
The four parameters give the start and end times for the period of replication. The
times are read as pairs, where the first member of the pair is the hour (based on a 24-
hour clock) and the second is the hour quarters.

$for =
[System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

$fortyp =
[System.DirectoryServices.ActiveDirectory.`
DirectoryContexttype]"forest"

Listing 11.24 Set replication schedule

TECHNIQUE 133

Get forestB

Context typec

350 CHAPTER 11 Active Directory topology
Apago PDF Enhancer

$forcntxt = New-Object
System.DirectoryServices.ActiveDirectory.`
DirectoryContext($fortyp, $for)

$link =
[System.DirectoryServices.ActiveDirectory.`
ActiveDirectorySiteLink]::
FindByName($forcntxt, "MyNewSite3-MyNewSite4")

$sched = New-Object -TypeName
System.DirectoryServices.ActiveDirectory.`
ActiveDirectorySchedule

$sched.ResetSchedule()
$sched.SetDailySchedule("Eighteen", "Zero", "TwentyThree", "FortyFive")

$link.InterSiteReplicationSchedule = $sched
$link.Save()

$days = "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
$sched.SetSchedule($days, "Twelve", "Zero", "Thirteen", "Thirty")

$link.InterSiteReplicationSchedule = $sched
$link.Save()

DISCUSSION
We can determine the correct values to use by examining the contents of two enumer-
ations. The hours can be seen by using:

[enum]::GetNames([System.DirectoryServices.ActiveDirectory.HourOfday])

This will display the names of the hours from Zero to TwentyThree.
 The quarter hour divisions can be seen using:

[enum]::GetNames([System.DirectoryServices.ActiveDirectory.MinuteOfHour])

which will display the values Zero, Fifteen, Thirty, and FortyFive, representing the
four 15-minute periods we can use. The name of the enumeration is misleading, as it
only has the quarter-hour values.

 Once we’ve determined the schedule to use, we set the InterSiteReplication-
Schedule property to the schedule I and save it.

 The other method we can use to set the schedule is more granular. We need to give
SetSchedule() an array containing the days we want it to apply J and the beginning
and end times 1). This schedule is then set 1! and saved.

 The days of the week can be obtained from an enumeration, but it’s a generic .NET
enumeration:

[enum]::GetNames([System.DayofWeek])

rather than a specific one for Active Directory.
 This completes our look at site links and the Active Directory topology.

Forest contextD

SiteLink
object

E

Schedule
object

F

Clear
schedule

G

HCreate
daily

schedule

Set scheduleI
List
days

J

Set schedule1!
1)Create schedule

351Summary
Apago PDF Enhancer

11.6 Summary
The Active Directory topology consists of domain controllers, sites, subnets, and site
links. We’ve seen how to find the domain controllers and global catalog servers in our
AD. Domain controllers are tasked with replicating Active Directory information
between themselves. The scripts in this chapter will enable us to test whether replica-
tion is working and force it to happen if required.

 Active Directory sites and subnets are used to define the physical topology. We’ve
seen how to apply PowerShell to the lifecycle of these objects.

 Active Directory replication is controlled by AD site links. The lifecycle of these
links can be controlled by PowerShell. We’ve seen how to work with the replication
schedule to extract more information than is available in the GUI. In addition, we can
create replication schedules with a finer degree of control than we can when we use
the GUI tools.

 This chapter concludes our direct work with Active Directory. We’ll turn our atten-
tion back to Exchange 2007 in the next chapter. We’ll build on chapter 6, but this
time we’ll concentrate on the Exchange servers rather than the mailboxes.

Exchange Server
 2007 and 2010
Apago PDF Enhancer

We saw in chapter 6 how Exchange Server 2007 was designed with PowerShell at
the heart of the administration toolset. While reading this chapter, the information
in chapters 5, 6, and 11 should be kept in mind. Exchange 2007 has methods for
working with Active Directory users (chapter 5) and AD sites (chapter 11) that give
useful variations on the examples in those chapters. Chapter 6 covers individual
mailboxes; this chapter concentrates on the administration of the servers that host
those mailboxes.

POWERSHELL V2 Exchange 2007 doesn’t install on Windows Server 2008 R2
as of the time of writing. This capability should be available later in 2010
when SP 3 is delivered. I wouldn’t recommend upgrading PowerShell v1 to
v2 on a system that’s already in production. In theory, everything should
work okay, but email is a business-critical system. Installing Exchange 2007
SP2 on Windows Server 2008 with PowerShell v2 is supported.

This chapter covers
■ Working with storage groups and databases
■ Managing Exchange policies
■ PowerShell in Exchange 2010
352

353Automating Exchange Server 2007 administration
Apago PDF Enhancer

Exchange 2010 administration builds on the foundation laid by the 2007 version.
This chapter and chapter 6 can be applied to both versions. In chapter 6, I stated
that a user will be upset if his mailbox isn’t available. Think of the level of upset if all
the mailboxes in a database aren’t available, or even worse, none of the mailboxes
in any of the databases on a server can be accessed. We need to adopt a common-
sense approach to administering our Exchange servers that incorporates recognized
best practice.

SCRIPTS A number of the examples in this chapter will be short compared to
previous chapters. This is due to the Exchange team producing a superb set
of cmdlets that really fit with the administrative tasks we need to perform. If
an example of how to implement PowerShell to administer an application is
ever needed, this is the one to choose.

If you don’t work with Exchange on regular basis, I recommend rereading the intro-
ductory part of chapter 6 as a refresher on how PowerShell is integrated into
Exchange 2007 and the relationship between the GUI tools and the cmdlets.

 Exchange 2007 exposes a lot of functionality through PowerShell. This chapter will
concentrate on the server-based tasks associated with mailboxes. We start by looking at
the range of functionality that’s available via PowerShell in Exchange 2007. After a
quick look at the Active Directory functionality that’s available and the administration
scripts that are provided, we discover how to test the health of our Exchange systems.

 The administration of the Exchange organization and our servers is discussed
before we look at storage groups and databases. Exchange allows us to create a wide
range of policies to simplify and automate administration. We can work with these pol-
icies through PowerShell. Certificate administration as it affects Exchange will be dis-
cussed, followed by a look at resource mailboxes. We’ll close the chapter with a brief
look at the functionality introduced with Exchange 2010 that allows us to work
remotely through PowerShell.

 Our first task is discover what we can do with PowerShell on an Exchange server.

12.1 Automating Exchange Server 2007 administration
There are a large number of cmdlets for Exchange 2007. The breadth they cover can
be examined by using:

Get-Command `
-PSSnapin Microsoft.Exchange.Management.PowerShell.Admin |
Group Noun | Sort Name

With 394 Exchange cmdlets spread across 139 nouns, we’re not going to cover all of
them in a single chapter. It’ll take the most conscientious admin quite a while to get
all of those cmdlets fixed in her mind. This is where we flip back to chapter 2 and
remember that we can use PowerShell as our discovery tool. For instance, if we need
to work with the Exchange databases, we can use:

Get-Command *database*

354 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

This will generate a list of the cmdlets dealing with databases. The scripts provided by
the Exchange team (see section 12.1.2) will also be listed. If we only want cmdlets, we
can change the command to be:

 Get-Command *database* -CommandType cmdlet

We can discover cmdlets by the action they perform. If we need to think about the
tests we can run on our Exchange system, then we’d use:

Get-Command -Verb test

USE THE SNAPIN The examples presented here will also include the stan-
dard PowerShell cmdlets as well as the Exchange cmdlets. If we need to
filter out the standard cmdlets, we can use the PSSnapin parameter to
restrict our search to the Exchange cmdlets, as shown in the first example in
this section.

We’ll take a brief aside to look at the cmdlets Exchange provides for working with
Active Directory before looking directly at the Exchange functionality.

12.1.1 Exchange AD cmdlets

There are a number of Exchange cmdlets for working with Active Directory. We’ve
seen that we can use the New-Mailbox cmdlet for creating user accounts. The cmdlets
for working with distribution groups also work directly with AD.

 We can, assuming we have the permissions, work with Active Directory users and
groups. There are pairs of Get/Set- cmdlets for the nouns User and Group. These cmd-
lets will enable us to work with the main user attributes. Get-User is especially useful
when Exchange and AD administration are divided and the Exchange administrators
need to access the user accounts to create or modify mail settings.

 Active Directory permissions can be manipulated using the *-ADPermission cmd-
lets. Add-ADPermission could be used to configure Protection from Accidental Dele-
tion on an object by denying the Delete permission to the Everyone group.

 Exchange 2007 uses the Active Directory site topology for internally routing mes-
sages. There are two cmdlets for working with sites. Get-ADSite, by default, returns a
list of the sites in the AD topology and whether they’re a hub site for Exchange. The
other information available through this cmdlet is the standard AD information a site
object would show in the GUI.

 Set-ADSite can be used to configure an Active Directory site as an Exchange hub
site, which will then override the default message routing.

AD ADMINISTRATORS If AD and Exchange administration are separated in the
organization, it’d be worth talking to the AD admins about the *-ADSite and
*-ADSiteLink cmdlets and what they do. They’ll get upset if they think you’re
modifying their AD topology.

Get-ADSiteLink can be use to view the site link information, including the cost. The cost
is the important parameter for Exchange, as it’s used to determine message routing

355TECHNIQUE 134 Exchange Server health
Apago PDF Enhancer

paths. Set-ADSiteLink can be used to assign an Exchange cost to a link that overrides
the AD cost for Exchange only. It doesn’t modify the AD cost.

 These are the only cmdlets available for working directly with the AD topology.
Windows 2008 R2 doesn’t include any, either. The Quest AD cmdlets and the Micro-
soft cmdlets in Windows Server 2008 R2 are completely compatible, and complemen-
tary, to the Exchange cmdlets.

 Next on the agenda is a look at the scripts packaged with Exchange 2007.

12.1.2 Exchange scripts

The Exchange team has supplied a number of scripts to aid the administration of our
Exchange organization. These scripts are installed during the creation of the
Exchange server. They can be found in the Exchange installation directory.

 Scripts are supplied to perform a number of tasks:

■ Spam statistics, including top blocked domains and IP addresses
■ Configuring AD LDS on Edge servers
■ Enabling cross-forest connectors
■ Moving the Transport database
■ Configuring and resetting the search index

These scripts are a good set of examples. They appear to be written in a number of dif-
ferent styles, but are readily understandable.

 An important part of administering any system such as Exchange is proving that
our system is healthy.

TECHNIQUE 134 Exchange Server health

If we sit and wait for problems to find us, we’ll always be reactive. Often, users will be
the first to discover a problem with the email server. This situation puts us into a
defensive position. It’s much better to be aware of any potential problems and deal
with them before they become apparent.

 With Exchange, we have a significant number of Windows services we need to
check. All of these services need to be running for us to have a healthy server. There’s
also a significant body of best practice knowledge available for Exchange Server 2007.
Incorporating this into our testing would be useful for confirming that our Exchange
servers are configured correctly.
PROBLEM
We’ve been tasked with discovering whether all of the requisite services are available
on our Exchange servers. As part of our investigation, we also want to a test to deter-
mine whether our servers are configured according to current best practice.
SOLUTION
There are two Exchange cmdlets we can use for these tests, as shown in listing 12.1.
When we use Test-ServiceHealth, we obtain the data shown in figure 12.1. The
display shows the Exchange roles (I only had Mailbox, Client Access, and Hub
Transport available on the my test machine). There’s an entry for each role to show

TECHNIQUE 134

356 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

whether the required services are running. This gives us a rapid view of the state of
the server.

Test-ServiceHealth

Test-SystemHealth

The final two columns show whether individual services are running. This part of the
display includes Exchange-specific services as well as dependent services such as the
IIS Administration service.

CONCEPT REUSE This idea of testing whether the required and dependent
services are running is useful. In chapter 14, we’ll look at developing some-
thing similar for SQL Server.

Our second cmdlet was Test-SystemHealth. This cmdlet will examine our Exchange
system and report back on items that don’t meet best practice. The results will change

Listing 12.1 Testing the health of Exchange

Figure 12.1 The results of running the Test-ServiceHealth cmdlet. The services required by each
Exchange role are displayed. The display is broken down into services that are running and services that
aren’t running.

357TECHNIQUE 135 Exchange organization
Apago PDF Enhancer

between systems and as best practice evolves. A configuration file containing the latest
best practice data is downloaded as part of the exercise.
DISCUSSION
When I ran listing 12.1 on my system, I was told that I was running a trial version of
Exchange and that the grace period had expired. Some of the information that’s
more useful in a production environment includes checks on the last time the data
stores were backed up.

 There are also cmdlets to test connectivity over various protocols such as MAPI or
POP. Replication can be tested as can the flow of mail.

 The mailbox server is at the heart of our Exchange infrastructure. Mailbox data
stores are covered next.

TECHNIQUE 135 Exchange organization

The Exchange organization is at the top of the pyramid of Exchange objects. When you
look at the Exchange Management Console, it contains additional nodes for Mailbox,
Client Access, Hub Transport, and Unified Messaging. Modifications to the organiza-
tional level configuration won’t be very common.
PROBLEM
We need to be able to view and modify the configuration of the Exchange organization.
SOLUTION
The *-OrganizationConfiguration cmdlets can be used, as in listing 12.2. Get-
OrganizationConfig will show obvious information such as the name of the Exchange
organization and whether it’s mixed-mode. More useful information includes:

■ Mime types that are enabled within the organization
■ The spam confidence level junk threshold-controls the volume of messages that

are redirected to the users Junk Mail folder
■ The state of the email address policy
■ The GUID of the organization
■ When the Exchange organization object was created, and more importantly

when it was last changed

The organization level configuration can be modified using Set-OrganizationCon-
fig. For instance, the SCL junk threshold can be changed like so:

Set-OrganizationConfig -SCLJunkThreshold 7

This modifies the junk threshold downward from the default of 8. More messages will
be directed to the junk folder, and less spam will get through to the user’s inbox.

Get-OrganizationConfig

Set-OrganizationConfig

DISCUSSION
Other cmdlets exist to modify settings at the organizational level:

Listing 12.2 Working with the Exchange organization

TECHNIQUE 135

358 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

■ *-TransportConfig can be used to read or change the way messages are trans-
ported, including dumpster size for storage groups, maximum message size,
and the maximum number of recipients.

■ *-ResourceConfig for working with resources such as room sizes and equip-
ment available.

■ *-AvailabilityConfig controls the access levels for free/busy information.

TECHNIQUE 136 Exchange Servers

We’ve already seen how to test the health of our servers. In this section, we’ll look at dis-
covering the configuration of those servers and how we can modify that configuration.

 One slight drawback to Exchange 2007 is that we have a number of server roles.
This granularity has to be reflected in how we administer our servers. The different
roles mandate configuration differences that we need to understand.
PROBLEM
We need to be able to view and modify the configuration of the Exchange servers in
our organization.
SOLUTION
The *-*Server cmdlets can be used to read the configuration information for servers,
as in listing 12.2. We can start with Get-ExchangeServer, which will return informa-
tion on every Exchange server within Active Directory including the AD site, the
installed server roles, Exchange Edition, and the domain controllers that the server is
configured to use.

Get-ExchangeServer

Get-MailboxServer
Get-ClientAccessServer
Get-TransportServer

Get-UMServer

DISCUSSION
We can modify, via Set-ExchangeServer, the domain controllers and global catalogs
that the Exchange server will use for accessing Active Directory. This is a good idea if
we have a big, fast 64-bit global catalog server with enough memory to hold the AD
database. Speedy! Set-ExchangeServer also can be used to enable error reporting.

EDGE SERVERS Edge Servers exist in the perimeter network and don’t partici-
pate in AD. We’ll ignore them for the purposes of this discussion.

Each of the other cmdlets deals with a specific server role. There’s a corresponding
Set- cmdlet for modifying the server configuration. The Set-TransportServer cmdlet
is probably of most interest, as it’s used to set the transport options on Hub Transport
servers (and Edge servers). There’s a long list of options including:

Listing 12.3 Discovering servers

TECHNIQUE 136

359TECHNIQUE 137 Creating storage groups
Apago PDF Enhancer

■ Internal and external DNS configuration
■ External postmaster address
■ Connection limits
■ Maximum delivery and submission threads to throttle the flow of mail
■ Message-tracking configuration
■ Notification time-outs and retry intervals

Where multiple instances of a server role exist in an organization, these cmdlets can
be used to record the configuration and to modify the configuration to ensure unifor-
mity where required.

 Mailbox servers are of the most interest to our users, because that’s where their
mailboxes are hosted. The data stores on those servers are the subject of our next
topic.

12.2 Data stores
In Exchange 2007, the rules on the number of databases have been changed. In previ-
ous versions, we could have up to 5 databases in each of 4 storage groups, for a maxi-
mum of 20 databases. Now we can have up to 50 databases in the Enterprise version of
Exchange 2007. There can be a maximum of 50 storage groups, but the 50-database
limit still applies regardless of the number of storage groups.

 The storage group is the unit of backup, because the databases within the storage
group share a common set of log files. In Exchange 2010, storage groups disappear
and we work directly with the databases. Exchange 2007 will be around for long
enough to make this topic worth covering.

 Exchange 2007 introduced a couple of new high availability options in the form of
local continuous replication (LCR) and cluster continuous replication (CCR).
Exchange 2007 SP1 introduced standby continuous replication (SCR). These three
configurations require that there only be a single database per storage group. Micro-
soft best practice is that storage groups be configured with one database.

 Putting this together, we need to be able to create a number of storage groups and
databases in an efficient manner.

TECHNIQUE 137 Creating storage groups

Before we jump into creating our storage groups, we should take a quick look to see
what groups are already available. This can be done using a single cmdlet:

Get-StorageGroup

As with all cmdlets, it’s worth taking the time to use Get-Member to discover what other
data we can access besides the default display.
PROBLEM
Our organization is expanding, so we need to create another database on the
Exchange server. Before we can do that, we must create a new storage group.

TECHNIQUE 137

360 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

SOLUTION
When Exchange is installed, it creates the initial databases on the C: drive by default.
This isn’t a good place to keep our databases, as this drive is usually quite small (by
Exchange standards) and performance will be impacted.

BEST PRACTICE We should put our logs and databases on different drives as
best practice. I’m deliberately ignoring that to set up a later example.

We can create a storage group using the New-StorageGroup cmdlet, as in listing 12.4.

New-StorageGroup -Server 'EXCH01' -Name 'SG4'
-LogFolderPath 'C:\ExchangeData\sg4\logs'
 -SystemFolderPath 'C:\ExchangeData\sg4\data'

DISCUSSION
The required parameters include the server on which the storage group will reside,
the name of the group, and the folders to store the logs and the database,
respectively.

 FOLDERS If the default locations aren’t being accepted when creating storage
groups, the folder structure must be created before running this script. If
the folders haven’t already been created, the script will throw an error and
stop. Oops!

In case you’re thinking this would be easier in the GUI, think of the case of CCR or
SCR where you need identical storage group and database configuration on two, or
possibly more, Exchange servers. Using PowerShell improves setup speed and
accuracy.

 Now that we have a storage group, we should create something for it to store.

TECHNIQUE 138 Creating databases

Storage groups aren’t much use without databases. The two objects are created sepa-
rately because we can have multiple databases in a storage group.
PROBLEM
We need to create a database to store the mailboxes of new users and make it available
for use.
SOLUTION
The New-MailboxDatabase cmdlet is our tool in this example, as shown in listing 12.5.
This needs a few parameters. The name of the new database and the storage group in
which it’ll reside are required. The location of the log files is controlled by the storage
group. We then tell the cmdlet where to create the database. Note the parameter
name. The path we use was established when we created the storage group. We’re add-
ing the name of the database to that path.

Listing 12.4 Creating a storage group

TECHNIQUE 138

361TECHNIQUE 139 Mailbox distribution
Apago PDF Enhancer

New-MailboxDatabase -Name 'MailDb4'
-StorageGroup 'SG4'
-EdbFilePath 'C:\ExchangeData\sg4\data\MailDb4.edb'

Mount-Database -Identity "Exch01\SG4\MailDb4"

DISCUSSION
Newly created databases aren’t mounted by default. We need to issue the command to
mount the database so it can be used. Notice the server\storage group\database struc-
ture for the identity of the database. This structure can be used in any cmdlet working
with databases when we need to identify the database.

MOUNT COMMANDS The Mount- and Dismount-Database cmdlets apply to
public folder databases as well as mailbox databases.

We can combine this example and the preceding example for a script that can create
our storage groups and databases in one operation.

 One perennial problem for the Exchange administrator is monitoring the distribu-
tion of mailboxes across the databases.

TECHNIQUE 139 Mailbox distribution

Some years ago, I was involved in a large Exchange migration. I was moving more
than 7,000 mailboxes onto three Exchange servers, each of which had 16 databases.
One of the issues I had was ensuring an even distribution of mailboxes across the
databases. I wrote a script (VBScript because this was several years BP—Before Power-
Shell) to discover the information, but it wasn’t as easy to do compared to PowerShell.
PROBLEM
An even distribution of mailboxes across our databases balances the load on the vari-
ous components of our Exchange mailbox server. How can we determine whether the
databases are equally loaded?
SOLUTION
We can use Get-MailboxStatistics to find the size of each mailbox. Combining
them at the database level produces our desired result, as shown in listing 12.6.

 This may look complicated, but it breaks down into two nested loops using the
Foreach-Object cmdlet. As usual I’ve used the alias Foreach to save space. We start by
creating an empty array to hold our results B. Our goal is to find the number of mail-
boxes and the size of the databases. This makes our next task C finding the mailbox
databases. The databases are piped into foreach, which has a -process and an -end
script block. The -process block commences by creating a new object D and defin-
ing a number of properties for the object E. Note that we have to give initial values
for the properties. An error will be generated if the value isn’t supplied. The proper-
ties are:

Listing 12.5 Creating a database

TECHNIQUE 139

362 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

■ Database name
■ Number of mailboxes
■ Number of mail items
■ Total size of the mailboxes

At this point, we’re creating one object per database to hold this information.
 In order to populate these properties, we use Get-MailboxStatistics with a filter

based on the database name F. The second -process block of the second foreach
increments the count and adds the number of items and the size of the mailbox to the
running total G. When all of the mailboxes for that particular database have been
processed, the -end block appends our object H to the array.

 After all of the databases have been processed, the array is piped to a Format-
Table cmdlet to display the data I. We’ll get one line per database, listing the name,
number of mailboxes, number of mail items, and cumulative size of the database.

$sizes = @()
Get-MailboxDatabase | Foreach `
-Process {
 $data = New-Object -TypeName System.Object
 Add-Member -InputObject $data -MemberType NoteProperty
 -Name Database -Value $_.Name
 Add-Member -InputObject $data -MemberType NoteProperty
 -Name Count -Value 0

 Add-Member -InputObject $data -MemberType NoteProperty
 -Name Item -Value 0
 Add-Member -InputObject $data -MemberType NoteProperty
 -Name Size -Value 0

 Get-MailboxStatistics -Database $_.Name | Foreach `
 -Process {
 $data.Count ++
 $data.Item += $_.ItemCount
 $data.Size += $_.TotalItemSize.Value.ToKB()
 }`
 -End {$sizes += $data}
}`
-End {
 $sizes | Format-Table -auto
}

DISCUSSION
The array of objects could be exported to a CSV file for further processing if required.

DELETED ITEMS The size figures don’t include the deleted items or any other
of the standard mailbox database overhead. We’re concentrating purely on
live mail items. These figures will give a reasonable approximation to the total
size of the databases.

Listing 12.6 Mailbox distribution

Create arrayB

C Get databases Create
object

D

Create
properties

E

F
Get mailbox

statistics

Populate
properties

G

Add to arrayH

Display resultsI

363TECHNIQUE 140 Distributing mailboxes
Apago PDF Enhancer

There will be times when we don’t need the full set of information. The number of
mailboxes per database will be sufficient for our needs. A simple count of mailboxes
per database can be found using:

Get-Mailbox | group database

The Get-Mailbox cmdlet returns all mailboxes. Group is an alias for Group-Object that
we saw in chapter 1 (see listing 1.5). It’ll group the mailboxes on the given property—
in this case, the database name. The display from this “script” is shown in figure 12.2.

The display could be made neater by changing the command:

Get-Mailbox | group database | Format-Table Count, Name

This will drop the group property with its long list of mailboxes. If the results are to be
persisted, use select instead of Format-Table and pipe to a file.

 If our databases show a wide range of sizes, we can use Move-Mailbox to redistrib-
ute the mailboxes between the databases. Ideally, we want to distribute new mailboxes
across our databases to prevent this situation from arising.

TECHNIQUE 140 Distributing mailboxes

An ounce of prevention is worth a pound of cure. If we distribute mailboxes across
our databases as we create them, we can keep the database loading in balance. This
will reduce the amount of monitoring and remedial work the databases require.

ASSUMPTION In the examples in this section, I’m assuming that the user
accounts are already created. These scripts could be combined with those
presented in chapters 5 and 6 to create a user and mailbox creation mecha-
nism that fits your organizations process and distributes the mailboxes across
the databases.

If we have multiple servers in our environment, this approach can be expanded to bal-
ance across servers and databases.

Figure 12.2 Using Group-Object to count the number of mailboxes per database.

TECHNIQUE 140

364 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

PROBLEM
How can we distribute mailboxes across multiple databases on a relatively even basis?
This should occur as we create the databases.
SOLUTION
There are several possible solutions to this problem. The two examples presented
here select each database in turn to receive the next mailbox or distribute the mail-
boxes using a scheme based on the alphabet.

 One thing to note in listing 12.7 is that I’m using Get-User in both of the scripts in
this section. The Quest cmdlets, a script, or Windows 2008 R2 AD cmdlet could be sub-
stituted if required, as we saw in chapter 5.

 In my test environment I have four databases. We start by fixing this number as a
constant B. The users who are getting mailboxes are selected C by OU in this case.
The -begin script block sets the starting database D. If we wanted this to be random
we could change the line to read:

$db = Get-Random -Minimum 1 -Maximum 5

where we derive a random number between one and four. Get-Random is found in
PowerShell v2. A switch statement E is used to choose the database based on the
value of the $db variable. The mailbox is then created F. If desired, the script can be
tested by uncommenting the -whatif parameter. The value of the $db variable is then
incremented, or reset G, ready for the next mailbox.

$maxdb = 4
Get-User -OrganizationalUnit "United Kingdom" | foreach `
 -begin {$db = 1} `
 -process {
 switch ($db){
 1 {$maildb = "Exch01\SG1\MailDb1"}
 2 {$maildb = "Exch01\SG2\MailDb2"}
 3 {$maildb = "Exch01\SG3\MailDb3"}
 4 {$maildb = "Exch01\SG4\MailDb4"}
 }
 Enable-Mailbox -Identity $_.DistinguishedName -Database $maildb
 -Alias $_.samaccountname -Displayname $_.Name ##-WhatIf
 if ($db -eq $maxdb){$db=1} else {$db++}
}

DISCUSSION
Many organizations will use a distribution scheme based on an alphabetic distribu-
tion, as in listing 12.8.

Get-User -OrganizationalUnit "Sweden" | foreach {
 switch -regex ($_.Name.ToString().SubString(0,1)){
 "[A-G]" {$maildb = "Exch01\SG1\MailDb1"}
 "[H-M]" {$maildb = "Exch01\SG2\MailDb2"}

Listing 12.7 Distributing mailboxes

Listing 12.8 Distributing mailboxes by name

Number of
databases

B

C
Get user
accountsD Initial database

E Choose database

Create
mailbox

F

Next databaseG

Get user
accounts

B

C
Choose
database

365TECHNIQUE 141 Moving a database

ge
p

ount
ase
Apago PDF Enhancer

 "[N-S]" {$maildb = "Exch01\SG3\MailDb3"}
 "[T-Z]" {$maildb = "Exch01\SG4\MailDb4"}
 }
 Enable-Mailbox -Identity $_.DistinguishedName -Database $maildb
 -Alias $_.samaccountname -Displayname $_.Name ##-WhatIf
}

In this case, the four databases will contain mailboxes such that those names starting
with the letters A-G are in database 1, H-M are in database 2, and so on. The users are
selected as in the previous example B. The variable used in the switch statement is
the first character of the user name C. In this script, we’ve introduced the -regex
parameter into the switch statement. This instructs switch to match the cases based
on regular expressions rather than simple string matching. The switch will match the
variable against "[A-G]" for instance, which means match against all letters between A
and G. The script then creates the mailbox D as before.

 Alternatively, we may decide to move the whole database to a new disk volume.

TECHNIQUE 141 Moving a database

When Exchange is first installed, it creates the databases on the C: drive in the Pro-
gram Files folder. This isn’t a good place for them to be. We need to move the data-
bases to another location. Databases may also become too large for the disk on which
they’re situated.
PROBLEM
A growth in user numbers means our database has outgrown the disk space. We need
to move the database to a larger disk volume.
SOLUTION
We need to move the storage group and the database to complete this task, as shown
in listing 12.9.

New-Item -Name FirstSGLogs -Path L:\ -ItemType directory
New-Item -Name FirstSGData -Path J:\ -ItemType directory

Dismount-Database -Identity "Mailbox Database"
Move-StorageGroupPath -Identity "First Storage Group"
-LogFolderPath "L:\FirstSGLogs" -SystemFolderPath "J:\FirstSGData"

Move-DatabasePath -Identity "Mailbox Database"
-EdbFilePath "J:\FirstSGData\Mailbox Database.edb"

Mount-Database -Identity "Mailbox Database"

DISCUSSION
This script should be compared with those presented in techniques 137 and 138,
where we created a storage group and database respectively. Our first task is to create
the folders for the logs and the database files B. These are on separate drives to con-
form to best practice.

 The mailbox database must be dismounted C before any of the moves can occur.
The Move-* cmdlets will implicitly dismount the database if it’s mounted. It’s better to

Listing 12.9 Moving a mailbox database

Create
mailbox

D

TECHNIQUE 141

Create
folders

B

D

Move
stora
grou

Dism
datab

C

Move
database

E

Mount databaseF

366 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

dismount it explicitly, because this helps us to remember to mount it again after the
move. The database won’t be much use to us until we do that. We’ll be asked to con-
firm when dismounting the database, moving the storage group, and moving the data-
base. Progress bars will be displayed as the log files and database files are moved.

DRIVES In this example, we’re conforming to best practice and separating
the database and log files on to different disk volumes.

The storage group is moved by supplying a new path for the log files and the system
folder D. The current log files will be moved into the new path. The database file can
then be moved E. The full path to the database file must be supplied. A common
error is to leave the database file name off the path. This will cause an error. At the
end of the script, the database can be mounted F, ready for the users to access their
mailboxes. We need to manually delete the old folder structure.

 The last example in this section deals with end-of-life databases and how we can
remove them from our environment.

TECHNIQUE 142 Removing a database

All good things must come to an end, and this holds true for mailbox databases. Occa-
sionally we’ll need to remove a database and its associated storage group. The impor-
tant thing is to ensure we safely move the mailboxes to another database before we
remove the database.
PROBLEM
A business relocation has left fewer users on a particular Exchanger server. We’ve
decided to consolidate the mailboxes into a single database.
SOLUTION
The PowerShell cmdlet naming conventions make this script almost completely self-
describing. It should be possible for you to read and immediately understand what
listing 12.10 is doing if you’ve read the rest of the book. If not, I’ll assume you’re look-
ing for the answer to an immediate problem and provide a discussion of the script.

Get-Mailbox -Database MailDb4
Get-Mailbox -Database MailDb4 | Move-Mailbox -TargetDatabase MailDb3

Get-Mailbox -Database MailDb3

Dismount-Database MailDb4
Remove-MailboxDatabase MailDb4
Remove-StorageGroup SG4

DISCUSSION
In an exercise like this, the first thing we should do is get a list of the mailboxes held
in the database B. MailDb4 is the database we’ll remove. This list can be used as a
check that we’ve completed the move of the mailboxes later on.

 The mailboxes can be moved by using Get-Mailbox and piping the results into a
Move-Mailbox cmdlet C. The number of mailboxes moved simultaneously can be

Listing 12.10 Removing a mailbox database

TECHNIQUE 142

Check
mailboxes

B CMove
mailboxes

Recheck mailboxesD Dismount
database

E

Delete databaseF Delete
storage group

G

367TECHNIQUE 143 Email address
Apago PDF Enhancer

controlled by using the -MaxThreads parameter. We could use the techniques in tech-
nique 140 to distribute mailboxes between multiple databases instead of targeting a
single database.

 SAME SERVER The script in listing 12.10 assumes that we’re moving the mail-
boxes to another database on the same server. We can use the server\storage
group\database syntax to define a target database on another server.

We can issue a Get-Mailbox against the target database D to check that all of the
expected mailboxes have been migrated. The remaining steps dismount the data-
base E, delete the database F, and finally delete the storage group G. We’ll be asked
for confirmation at each of these steps. In addition, we’ll receive a warning about
manually deleting the database file and log files to complete the removal process. We
won’t be able to create a storage group or database with the same name while these
files exist.

 We’ve learned to manage the mailbox databases and the mailboxes (chapter 5).
Now it’s time to look at the way we can simplify and automate the administration by
applying polices to various aspects of our Exchange infrastructure.

12.3 Policies
In listing 6.7, we looked at applying mailbox size quotas. This is one type of policy. Ide-
ally we want to apply our policies at the Exchange organizational level and allow them
to cascade down to our servers, data stores, and mailboxes.

 Exchange 2007 enables us to create a number of different policy types. We’ll exam-
ine some of them in this section, starting with address policies.

TECHNIQUE 143 Email address

Email addresses are usually of the form name@company.xx. XX can be com, co.uk, or
any other recognized domain. A default email policy is created when Exchange is
installed that will create a default address. Organizations may require some users to
have more than one email address, or even groups of users may have totally different
email addresses (merger and acquisition scenarios). The groups of users may overlap,
requiring differing email addresses to be created for each user. This should be auto-
mated using email address policies. The extant email policies can be viewed using
Get-EmailAddressPolicy.

 This can display all policies, or a specific policy can be displayed by supplying the
identity of the policy. The GUID can be used, but it’s a lot less frustrating to use the
name!

 Before we can view the policies, we need to think about creating one or more policies.
PROBLEM
A specific group of users needs to have their email addresses set to a specific email
domain.

TECHNIQUE 143

368 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

SOLUTION
The policy is created using New-EmailAddressPolicy. PowerShell’s verb-noun nam-
ing context makes writing and reading scripts much easier. It does make writing about
them an exercise in stating the obvious sometimes, though.

 We’re creating a new policy, so we need to give it a name and decide which types of
recipients will be included in the policy. We can include all types, as in listing 12.11, or
restrict ourselves to one or more types such as mailbox users, mail users, contacts, and
so forth.

 A filter of some sort is usually applied to ensure that the email address policy is
applied to the correct group of people. This can be applied by creating conditions
based on the users’ department, state or province, company attributes, or the value of
one of the custom attributes. Alternatively, an LDAP type filter can be used in the -
RecipientFilter parameter.

New-EmailAddressPolicy -Name 'Downing Street'
-IncludedRecipients 'AllRecipients'
-ConditionalDepartment 'Downing Street' -Priority 'Lowest'
-EnabledEmailAddressTemplates 'SMTP:%s%1g@downingstreet.org'

Update-EmailAddressPolicy -Identity 'Downing Street'

The policy has to be given a priority so that the application order of multiple policies
can be established. The final parameter defines the email address template that’ll be
applied to the user. It consists of the email domain preceded by rules that define the
style in which the addressee’s name will be defined. In this example, it’s surname (%s)
followed by the first letter of the given name (%1g). Similar rules can be written to
match the common styles of email addresses—for example, given-name.surname
(%g.%s) or first letter of given name followed by surname (%1g%s).
DISCUSSION
Creating an email policy doesn’t actually apply the policy. We need to run Update-
EmailAddressPolicy to make the changes to the user’s email addresses. Once a pol-
icy is in place, any users that match its criteria will automatically be assigned the cor-
rect email addresses.

 If policies need to be modified, we can use Set-EmailAddressPolicy. A policy
that’s no longer required can be deleted using Remove-EmailAddressPolicy.

 Emails are concerned with transporting information around our organization and
between organizations. We can use transport rules to control this flow of information.

TECHNIQUE 144 Transport rules

We use transport rules to control how emails flow around the organization. We can con-
trol many aspects of mail flow, for instance:

■ We can control who can send emails to whom within the organization.
■ We can stop groups of people from sending emails outside of the organization.

Listing 12.11 Creating an email address policy

TECHNIQUE 144

369TECHNIQUE 144 Transport rules
Apago PDF Enhancer

■ We can control the information that can be contained in an email—for exam-
ple we can prevent emails that contain specific words, phrases, or patterns (reg-
ular expressions) from being sent.

■ We can control the size and type of attachments that can be emailed.

Transport rules can be a big help in meeting our compliance obligations.
PROBLEM
A group within our organization is working on a confidential project. We don’t want
them to be able to send emails to anyone who’s not working on that project.
SOLUTION
Transport rules tend to consist of a condition (a user is a member of a particular
group), an action (delete the message), and possibly an exception (don’t apply the
rule in the case of a particular user).

 Two cmdlets are extremely useful for discovering the possible criteria, as shown in
listing 12.12. Get-TransportRulePredicate will display a list of the possible rule pred-
icates—the criteria that can be applied in the action and exception parts of the rule. Get-
TransportRuleAction will display a list of the possible actions that can be performed.

$condition1 = Get-TransportRulePredicate FromMemberOf
$condition1.Addresses = @((Get-DistributionGroup Navy))

$action1 = Get-TransportRuleAction DeleteMessage

$exception1 = Get-TransportRulePredicate SentToMemberOf
$exception1.Addresses = @((Get-DistributionGroup Navy))

New-TransportRule -Name 'Navy Secrets' `
-Comments "Prevents members of Navy group from `
sending emails to anyone who is not in Navy group"
 -Conditions @($condition1) -Actions @($action1) `
-Exceptions ($exception1) -Enabled $true -Priority 0

Our rule creation script commences by creating a condition B. In this case, it’s that
all emails sent from a group will be affected by the rule. We have to define the condi-
tion type, then add the address as a second step. An array is used as the mechanism to
allow multiple addresses to be affected by the policy.

 An action C that we’ll apply to the message is defined. In this case, the message
will be deleted. At this stage, the users can’t send emails to anyone. This may make our
lives as admins easier, but will upset the users, so we’d better define an exception D.
The exception allows this group to send emails to other members of the group.

 The final statement in the script brings the condition, action, and exception
together in the New-TransportRule cmdlet. We complete the cmdlet by providing a
name and description, and by enabling the policy E.
DISCUSSION
We have a full suite of cmdlets for working with transport rules so we can enable/dis-
able rules, change (set) rules, view (get) rules, and remove rules.

Listing 12.12 Transport rule to restrict sending capability Create
condition

B

Create
action

C

Create
exception

D

E
Create
rule

370 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

CAN’T COPY FROM EMC The creation of transport rules is one of the few
places where it’s not possible to simply copy and reuse the PowerShell script
created by the Exchange Management Console. If we try, we get a result simi-
lar to that in listing 12.13.

New-TransportRule -Name 'Size Limit' -Comments ''
-Conditions `
'Microsoft.Exchange.MessagingPolicies.`
Rules.Tasks.FromPredicate',`
'Microsoft.Exchange.MessagingPolicies.`
Rules.Tasks.AttachmentSizeOverPredicate'

-Actions `
'Microsoft.Exchange.MessagingPolicies.`
Rules.Tasks.DeleteMessageAction'

-Exceptions `
'Microsoft.Exchange.MessagingPolicies`
.Rules.Tasks.SentToPredicate'

-Enabled $true -Priority '0'

Careful examination of the script shows that the conditions, actions, and exceptions
aren’t properly defined. The display shows the .NET object types we’re using rather
than the values. We have to do all the hard work ourselves to create the full suite of
conditions, actions, and exceptions. The next example shows how this can be modi-
fied to give us a working script.

TECHNIQUE 145 Attachments

Users can attach a file to an email message and send it to other users who may be
internal or external to the organization. It’s possible for large attachments to cause
problems at mail gateways and with network bandwidth if sent to many recipients. A
policy that restricts the size of attachments can be used to counter this problem.

 We may also want to create attachment policies to restrict the types of file that
can be attached or even prevent some users from sending email messages with
attachments. In our previous example, we prevented a group of users from sending
emails to anyone who wasn’t in their group. We could also prevent them from send-
ing attachments.
PROBLEM
One user has been flooding the network with large attachments. We need to restrict
the size of files that can be attached to email messages sent by that user.
SOLUTION
Our first action in listing 12.14 is to create a transport rule condition B that states
who the rule applies to. Alternatively, this condition could be applied to a group, as
we’ve seen. The second condition sets the maximum size of attachments that are
allowed C. In this case, we’ve been harsh and said we’ll apply a limit of 20KB.

Listing 12.13 Incorrect script produced by EMC

TECHNIQUE 145

371TECHNIQUE 146 Journal rules
Apago PDF Enhancer

KB, MB PowerShell recognizes the labels KB, MB, and GB (v2 adds TB and PB)
and uses them in the same way we do as admins.

If you want to see the actual values, try this:

1kb,1mb,1gb,1tb,1pb | foreach{"$_".PadLeft(16)}

Once we’ve created our conditions, we can create the action we’ll perform on the mes-
sage D. We’ve decided that we’ll delete the message. All rules have an exception, and
our exception E is that messages sent to a particular user are exempt from the policy.

$condition1 = Get-TransportRulePredicate From
$condition1.Addresses = @((Get-Mailbox "Jo Leinen"))

$condition2 = Get-TransportRulePredicate AttachmentSizeOver
$condition2.Size = 20KB

$Action1 = Get-TransportRuleAction DeleteMessage

$Exception1 = Get-TransportRulePredicate SentTo
$Exception1.Addresses = @((Get-Mailbox "Richard"))

New-TransportRule -Name 'Size Limit' -Comments ''
-Conditions @($Condition1, $condition2)
-Actions @($Action1)
-Exceptions @($Exception1) -Enabled $true -Priority '0'

Our final task F is to bring the conditions, actions, and exceptions together to create
the rule. We can also enable the rule at the same time.

 We need to look at one other type of rule to complete our understanding of this
topic: the journal rule.

TECHNIQUE 146 Journal rules

There are many reasons, commercial as well as regulatory, why organizations need to
archive emails. In some sectors, information such as this has to be kept for a number
of years. Backup isn’t suitable for performing this task, as emails could be sent and
deleted between backups. We need a mechanism that can capture emails in flight and
automatically make a copy.
PROBLEM
We have to be able to make a copy of all emails sent by or sent to a particular set of
recipients in our organization.
SOLUTION
The first step, before we look at listing 12.15, is to create a mailbox to act as the recip-
ient for journaled emails. We can use the script from listing 6.1 to perform this act.

 The New-JournalRule cmdlet is our method of creating the rule. We start by pro-
viding a name for the rule and the email address of the journal mailbox. The email
address can be supplied by pointing to the user account associated with the mailbox,
as shown. The format is domain\OU\user.

Listing 12.14 Creating an attachment policy

Create From
condition

B

Create Size
condition

C

Set actionD

E
Create
exception

Create ruleF

TECHNIQUE 146

372 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

New-JournalRule -Name 'Navy Journal rule'
-JournalEmailAddress 'manticore.org/users/NavyJournal'
-Scope 'Global' -Enabled $true -Recipient 'navy@manticore.org'

DISCUSSION
The rule has to be given a scope, which tells it which messages the rule applies to. The
global scope will apply the rule to all messages. There are three possible scopes, as
detailed in table 12.1.

The final steps in creating the rule are to enable it and to determine which recipients
are affected by the rule. If possible, apply the rule to groups and distribution lists
rather than individuals. It’s possible to create a rule and not enable it. The rule could
then be enabled at a later date using Enable-JournalRule.

 This concludes our look at Exchange polices. The overview presented here should
give you sufficient information to extrapolate to other scenarios. Our next topic con-
cerns certificates and how they relate to Exchange operations.

12.4 Certificates
Email carries a lot of confidential information for an organization. We must ensure
that access to email is secure and, where appropriate, email traffic is encrypted. Certif-
icates are used to provide this security.

RUN AS ADMINISTRATOR When working with Exchange certificates—
especially if making changes—PowerShell must be started with elevated
privileges.

Administering Exchange certificates is only possible through PowerShell. Don’t use
the Certificate console to administer Exchange certificates.

 Our first task is to discover which certificates Exchange is using.

TECHNIQUE 147 Viewing certificates

Windows has a storage area specifically for certificates. PowerShell exposes this store
as PowerShell drive. Get-ChildItem allows us to explore this drive.

Listing 12.15 Creating a journal rule

Table 12.1 Journal rule scopes

Scope Definition

Global Global rules process all email messages that pass through a Hub Transport server. This
includes email messages that were already processed by the external and internal rules.
The default value is Global.

Internal Internal rules process email messages that are sent and received by recipients in the
Exchange Server 2007 organization.

External External rules process email messages that are sent to recipients or from senders out-
side the Exchange Server 2007 organization.

TECHNIQUE 147

373TECHNIQUE 147 Viewing certificates
Apago PDF Enhancer

PS> Get-ChildItem cert:

Location : CurrentUser
StoreNames : {SmartCardRoot, UserDS, AuthRoot, CA...}

Location : LocalMachine
StoreNames : {SmartCardRoot, AuthRoot, CA, Trust...}

We can drill down further. Get-ChildItem cert:\currentuser shows a number of
substores:

One more level and we start to see the certificates:

Get-ChildItem cert:\currentuser\root

This is fine for most certificates, but we need a more direct method for finding the
certificates that are specific to Exchange.
PROBLEM
The Exchange certificates must be examined to determine expiry dates and their
purpose.
SOLUTION
In listing 12.16, the cmdlet Get-ExchangeCertificate B will display any and all cer-
tificates that explicitly relate to the Exchange server. The default display C shows the
certificate thumbprint, the services it applies to, and the server.

 Get-ExchangeCertificate

Thumbprint Services Subject
---------- -------- -------
095E4E55442E2C5E35FC1957F7AAA8BD12A00C53 IP.WS CN=Exch01

Get-ExchangeCertificate | select *

Get-ChildItem cert: -Recurse |
where{$_.Thumbprint -eq ((get-exchangecertificate).Thumbprint)}

DISCUSSION
There are times when this isn’t enough and we need to examine the certificate in
more detail. Selecting all of the certificate’s properties D enables us to view the
details, including expiry date.

 Administrators of a curious nature can discover where the certificates are actually
stored by searching the certificate store E. The –Recurse parameter ensures that we

■ SmartCardRoot ■ UserDS

■ AuthRoot ■ CA

■ AddressBook ■ Trust

■ Disallowed ■ My

■ Root ■ TrustedPeople

■ TrustedPublisher

Listing 12.16 Viewing the Exchange certificate View
certificate

B
Certificate
details

C

EView
certificate

store
View all propertiesD

374 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

search all subfolders. The thumbprint of our Exchange certificate is used as the filter
criterion. Alternatively, if the thumbprint is pasted into the where clause, it’s a string
so it must be in quotes.

 Certificates don’t last forever; we need to renew them periodically.

TECHNIQUE 148 Self-signed certificates

Exchange 2007 installs with a self-signed certificate that’s valid for one year. Self-
signed certificates are generated by the Exchange server. This will work for some func-
tionality such as autodiscovery and OWA, but not for Outlook Anywhere. The self-
signed certificate will need renewing to ensure continued access to Exchange.
PROBLEM
The self-signed Exchange certificate is approaching its renewal date. We must ensure
that it’s renewed before it expires.
SOLUTION
As shown in listing 12.17, a new self-signed certificate can be generated B by using
New-ExchangeCertificate. The cmdlet doesn’t require any parameters. Remember
that PowerShell will soon prompt us if it needs parameters.

 A confirmation message C is automatically generated (looks like I was working
late when the old one was generated). The thumbprints of the current and new certif-
icates are presented. This is useful, as it saves typing the thumbprint string.

New-ExchangeCertificate

Confirm
Overwrite existing default SMTP certificate,
'095E4E55442E2C5E35FC1957F7AAA8BD12A00C53'
(expires 09/09/2009 23:59:03), with certificate
'3825E95A627D724EEAD1469224EB62A342D0E37B'
(expires 18/04/2010 21:23:40)?

[Y] Yes [A] Yes to All [N] No [L] No to All
[S] Suspend [?] Help (default is "Y"): Y

Thumbprint Services Subject
---------- -------- -------
3825E95A627D724EEAD1469224EB62A342D0E37B CN=Exch01

Enable-ExchangeCertificate -Thumbprint
"3825E95A627D724EEAD1469224EB62A342D0E37B" -Services "IIS"

Get-ExchangeCertificate | select Thumbprint, Services

Remove-ExchangeCertificate -Thumbprint
"095E4E55442E2C5E35FC1957F7AAA8BD12A00C53"

DISCUSSION
When we confirm the action, the new certificate will be created and the details D will
be displayed. At this point, the certificate hasn’t been enabled for any services. This is
achieved using Enable-ExchangeCertificate E. The certificate has to be identified

Listing 12.17 Renewing the self-signed certificate

TECHNIQUE 148

Create
certificate

B

C
Confirmation
dialog

New
certificate
details

D

Enable
certificate

E

Check servicesF

G
Remove old
certificate

375TECHNIQUE 149 Third-party certificates
Apago PDF Enhancer

by its thumbprint (a great reason to bless the inventor of cut and paste) and the ser-
vices it’ll apply to are identified as a comma-separated list.

 Our old friend Get-ExchangeCertificate F can be used to view the certificate
and the associated services (if required). The old certificate can be removed G once
it’s no longer required.

 Self-signed certificates are useful in certain circumstances, but if we want to use the
full range of Exchange functionality, we need to invest in a certificate from a commer-
cial certificate authority (CA).

TECHNIQUE 149 Third-party certificates

We need to use a third-party certificate if we want to exploit the full functionality of
Exchange 2007. This task builds on the previous task.

 Obtaining and using a certificate from a commercial authority is a multistep process:

■ Generate certificate request and send to authority (with payment)
■ Obtain certificate file
■ Install certificate
■ Enable certificate

The first part is where life gets interesting.
PROBLEM
A certificate request file has to be generated to be sent to a commercial CA.
SOLUTION
We use the New-ExchangeCertificate cmdlet as in the previous example. This time,
we have to supply a lot more information. Listing 12.18 shows the script; figure 12.3
shows an annotated view. It should help the explanation, as we can’t put the normal
annotation markers onto a single line of PowerShell.

 The first parameter is a switch to tell the cmdlet that we want to generate a certifi-
cate request. A path to the request file is needed. This can be located anywhere on
your disk that’s convenient. The file can be given any arbitrary name. We want the pri-
vate key to be exportable for backup and the certificate should have a friendly name.

New-ExchangeCertificate -GenerateRequest -Path c:\request.txt
-PrivateKeyExportable $true
-FriendlyName "My SAN certificate"
-DomainName autodiscover.manticore.org, exch01.manticore.org,
owa.manticore.org
-SubjectName "cn=exch01.manticore.org"

DISCUSSION
The SAN in the friendly name stands for subject alternate name. Obtaining a certificate
of this sort means that we can use a single certificate for a number of purposes. This is
where some of the confusion regarding Exchange certificates arises. It comes down to
giving the certificate request a list of the FQDNs of the services we want to deliver. The

Listing 12.18 Requesting a certificate

TECHNIQUE 149

376 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

domain name parameter is used to do this. In the example, we’re supplying the FQDN
for the autodiscovery service, OWA, and the Exchange server itself.

 The final parameter is the name of the server.

Once we’re sure of the parameters we want to input into New-ExchangeCertificate,
we can run it and generate the request file. The file isn’t in a readable format, as can
be seen from the following example:

PS> cat c:\request.txt
-----BEGIN NEW CERTIFICATE REQUEST-----
MIID5DCCAswCAQAwHzEdMBsGA1UEAwwUZXhjaDAxLm1hbnRpY29yZS5vcmcwggEi
MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCHnpx97sjsSfC24smKecU6jE7q
fT/eIHg45Wej6Ei6vkwXmucwK5HlL0EPe3YuTFWd5KtuCmvH+lRi/2xsfYbUrPgi
YVxEOJmeUO5kiPlBzuIbB3wFbpaNDBnIknTq3iYqNsxJc/rBHwyTzz2Eawl9N8f4
jSMmix56BwE4rTM5MdGLHCHnyDqtlYEE+jHF2WsoTKqVjh0IiKl5W5AI1hLFQs0E
hkV2PTfEFbtAeW2jtFaG4rwHWQc8hMacKSqoUxyvC9uLL7LDFk+8leRnpkl+cnma
lzS8z9EEeasYp9Z+1/XGJg8Das7jhTHDTAVndp2rsvMjYp7rzZHBvrbt9H2lAgMB
AAGgggF+MBoGCisGAQQBgjcNAgMxDBYKNi4wLjYwMDEuMjBLBgkrBgEEAYI3FRQx
PjA8AgEFDBRFeGNoMDEuTWFudGljb3JlLm9yZwwRTUFOVElDT1JFXFJpY2hhcmQM
DnBvd2Vyc2hlbGwuZXhlMHIGCisGAQQBgjcNAgIxZDBiAgEBHloATQBpAGMAcgBv
AHMAbwBmAHQAIABSAFMAQQAgAFMAQwBoAGEAbgBuAGUAbAAgAEMAcgB5AHAAdABv
AGcAcgBhAHAAaABpAGMAIABQAHIAbwB2AGkAZABlAHIDAQAwgZ4GCSqGSIb3DQEJ
DjGBkDCBjTAOBgNVHQ8BAf8EBAMCBaAwTgYDVR0RBEcwRYIaYXV0b2Rpc2NvdmVy
Lm1hbnRpY29yZS5vcmeCFGV4Y2gwMS5tYW50aWNvcmUub3JnghFvd2EubWFudGlj
b3JlLm9yZzAMBgNVHRMBAf8EAjAAMB0GA1UdDgQWBBRwAYI8NnDigTnvZqiWgMl6
+R1gvTANBgkqhkiG9w0BAQUFAAOCAQEAgk7vsQFqX46Wj5jNn8ZBiulWpUWj7glf
pxNCrOZg8HLQHC8S7s6gfQXFCFrcfa8cjR6NrNblke9EaLXBuRoXkxpo+OL9qq/8
UHo0wo5288sVJy9A4DkJXK2LxkIGy+iVtgzgpDmkvfosLkOmiI1Fn9NMbUR+pfyn

Figure 12.3 Generating a certificate request. The New-ExchangeCertificate cmdlet is used to
generate the request.

377TECHNIQUE 150 Creating a resource mailbox
Apago PDF Enhancer

7ypJ6lyQpgPHtV09+7jf3XSSpuG9LbmM++qt7aCEtZFJzBAfOAd60+BKoqYpVEiU
Q6fQWr/Al5nD2gnr9PdZ/IdM473HhiOzClH2sp3/2SVux0t49HZMzoxrJogC2PbC
U5UCNTGoqYjdVu50OeT6zsqqUfMD2B2tmfchTnIkSaPwanUnd2wJlg==

-----END NEW CERTIFICATE REQUEST-----
Cat is an alias for Get-Content.

When the certificate is sent back to us, we need to import it into Exchange and enable
the services as we’ve seen previously, and as shown in listing 12.19.

Import-ExchangeCertificate -path c:\certname |
Enable-ExchangeCertificate -Services IIS, POP, IMAP

If required, old or expired certificates can be removed.
 This completes our look at certificates. Our next topic expands on the work we did

in chapter 6 by looking at resource mailboxes.

12.5 Resource mailboxes
In chapter 6 we looked at working with users’ mailboxes. These aren’t the only type of
mailbox we can create in Exchange 2007. We can create mailboxes for meeting rooms
and equipment such as projectors. Now we can directly invite the meeting room to
our meeting.

 Before we can start to use these meeting rooms, we have to create the mailboxes
for them.

TECHNIQUE 150 Creating a resource mailbox

One perennial problem in many organizations seems to be finding a meeting room.
The systems of booking a meeting room and scheduling a meeting don’t necessarily
match up so that we either struggle to find a room after the meeting is booked or we
book a room and struggle to get everyone into it at the same time.
PROBLEM
We’ve been asked to provide mailboxes for meeting rooms so that they can be booked
as part of the meeting request.
SOLUTION
We can use the New-Mailbox cmdlet to perform this task, as shown in listing 12.20.

New-Mailbox -Name 'Room 02' -Alias 'room02'
-OrganizationalUnit 'Manticore.org/Meeting Rooms'
-UserPrincipalName 'room02@Manticore.org' -SamAccountName 'room02'
-FirstName '' -Initials '' -LastName '' -Database 'EXCH01\SG4\MailDb4'
-Room

DISCUSSION
If we compare this to creating a normal mailbox, there are a few differences. We don’t
find many meeting rooms that have a first name, initials, or a last name, so we can
input those as empty strings, as shown.

Listing 12.19 Installing an Exchange certificate

Listing 12.20 Creating a resource mailbox

TECHNIQUE 150

378 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

The -Room parameter indicates that we’re creating a mailbox for a meeting room.
Another option is to use -Equipment if we want a calendar for some piece of equip-
ment such as a projector or flip chart. Using either of these options causes the associ-
ated Active Directory account to be disabled.

 An organizational unit was created specifically for meeting rooms. This helps keep
them organized, and if they’re all together, it may stop some helpful soul from inad-
vertently activating the accounts.

 After creating the accounts, the next item is to be able to view our resource
mailboxes.

TECHNIQUE 151 Viewing resource mailboxes

The I in IT stands for information and one thing we can be sure of is someone will
come knocking on our door asking for information. In this case, they want to know
about resource mailboxes.
PROBLEM
A report is required detailing the mailboxes associated with meeting rooms and
potentially other resources.
SOLUTION
We’ve seen that Get-Mailbox can be used to view information about user mailboxes. It
can also be used for viewing resource mailboxes, as in listing 12.21.

Get-Mailbox -RecipientTypeDetails "RoomMailbox"

Listing 12.21 Viewing resource mailboxes

Empty versus null
An empty string isn’t the same thing as a null string. This isn’t always intuitive and
can cause problems if the wrong option is chosen.

Try this:

PS> $str1 = "a"
PS> $str2 = "a"
PS> $str1 -eq $str2
True
PS> $str1 = ""
PS> $str2 = $null
PS> $str1 -eq $str2
False

Create two strings each equal to a. This could also be achieved by using $str1 = $str2
= "a", which is a useful technique if we need to initialize a number of variables to the
same value. If we compare these strings, we find they’re equal as we’d expect.

$str1 is now set to be empty and $str2 is set to be equal to null. A comparison
shows that they aren’t equal.

TECHNIQUE 151

379TECHNIQUE 152 Calendar settings
Apago PDF Enhancer

DISCUSSION
If we want to view all of the meeting room mailboxes, we use the command as given.
We can use a select statement to extract specific information that doesn’t show in the
default view. Alternatively Get-Mailbox can be used and an individual resource mail-
box can be specified.

 The Exchange 2007 SP1 help information for Get-Mailbox states that the recipient
type is ConferenceRoomMailbox. This is incorrect. If you run with this value, an error
will be thrown and a list of options will be presented. This isn’t the full list of options.
The following options can be used:

If we don’t specify a recipient type, we’ll get user mailboxes.
 The final configuration item to cover in this section is who can control the calen-

dar of the meeting room.

TECHNIQUE 152 Calendar settings

The whole point of giving a meeting room a mailbox is that it gets a calendar. You
weren’t expecting the meeting room to send an email detailing when it was free were
you?

 The room’s calendar can be accessed through the free/busy service and the room
can be scheduled into the meeting just like any other attendee. But we still need
someone to manage that calendar, for instance so that conflicts can be resolved.
PROBLEM
We have to define the users who have control of the meeting room calendars.
SOLUTION
The mailbox calendar settings need to be modified, so we use the Set-MailboxCalen-
darSettings cmdlet, as in listing 12.22. We start by examining the properties of the
calendar of our meeting room. The default formatting is overridden by using select
* to return all properties. The resource delegates are the people who can manage that
particular calendar.

■ None ■ UserMailbox ■ LinkedMailbox

■ SharedMailbox ■ LegacyMailbox ■ RoomMailbox

■ EquipmentMailbox ■ MailContact ■ MailUser

■ MailUniversalDistribu-
tionGroup

■ MailNonUniversalGroup ■ MailUniversalSecurity-
Group

■ DynamicDistribution-
Group

■ PublicFolder ■ SystemAttendantMailbox

■ SystemMailbox ■ MailForestContact ■ User

■ Contact ■ UniversalDistribution-
Group

■ UniversalSecurityGroup

■ NonUniversalGroup ■ DisabledUser ■ MicrosoftExchange

■ AllUniqueRecipient-
Types

TECHNIQUE 152

380 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

Get-MailboxCalendarSettings -Identity room02 | select *

$users = @("Hornblower Horatio", "Drake Francis")
Set-MailboxCalendarSettings -Identity room02 -ResourceDelegates $users

Get-MailboxCalendarSettings -Identity room02 | select ResourceDelegates

DISCUSSION
It’s normal practice to allocate this task to more than one person. This is accomplished
by creating an array of the names of the users who are being delegated the right to man-
age the calendar. We use the Active Directory name (cn property) for each user.

 The delegation is set with Set-MailboxCalendarSettings. The final line of the
script shows how to check that delegates for the calendar.

NOTE This technique can also be used to delegate access to user mailboxes.

We’ve finished our examination of using PowerShell to administer Exchange 2007. As
a taste of what’s to come, we’ll conclude the chapter with a quick look at its successor,
Exchange Server 2010.

12.6 Exchange Server 2010
Exchange Server 2010 was released during the writing of this book. Exchange 2010
has PowerShell v2 as a prerequisite rather than v1 as in Exchange 2007. This opens
Exchange to the remoting capabilities of PowerShell. We’ll be looking at remoting in
detail in the next chapter; a quick look at the Exchange 2010 capabilities is worth-
while as there are differences.

 There are two PowerShell icons available in Exchange 2010. One is labeled local
and provides access to PowerShell on the local server. The other icon is, interestingly,
just labeled PowerShell and gives access to the remote capabilities.

TECHNIQUE 153 Remote capabilities

A machine running PowerShell v2 can create a remote session to PowerShell on the
Exchange server. Certificates are used by default to authenticate the connection,
though this check can be bypassed as shown in listing 12.23. The ability to access
Exchange 2010 enables us to access remote functionality without installing the admin-
istration tools on the local machine.
PROBLEM
How can we administer our Exchange server from a remote machine?
SOLUTION
A PowerShell session is created to form the connection to the remote Exchange server.

$SkipCertificate =
New-WSManSessionOption -SkipCACheck -SkipCNCheck -SkipRevocationCheck

$Session =

Listing 12.22 Modifying calendar settings

Listing 12.23 Remote connection to Exchange 2010

TECHNIQUE 153

Create option B

381TECHNIQUE 153 Remote capabilities
Apago PDF Enhancer

New-PSSession -ConfigurationName Microsoft.Exchange
 -ConnectionUri https://Exch01/PowerShell/
-Authentication NegotiateWithImplicitCredential
-SessionOption $SkipCertificate

Import-PSSession $Session

DISCUSSION
PowerShell remoting uses the WS-Management protocol to communicate with the
remote machine. The default option is to use the Exchange certificate to secure the
connection. This will involve a number of checks being performed on the certificate.
If the certificate is a commercial certificate, this will work without further configura-
tion. In the case of a self-signed certificate, we can either import the self-signed certifi-
cate into our local machine or bypass the certificate checking.

 The checks on the certificate can be bypassed by configuring a number of options
on the WS-Management session B. The parameters used cause a number of the nor-
mal checks to be skipped. These parameters, defined in table 12.2, should only be
used on internal, trusted and secure networks.

Our next action is to create a PowerShell session to the remote machine C. A session
is a persistent connection that gives us a speedier response, as the communication
lines between the two machines remain open until we explicitly close them.

SESSION VARIABLE When using sessions, it’s best practice to use a variable to
represent the session as shown here. This makes it much easier to refer to the
session in other commands.

The -ConfigurationName parameter ensures that the remote session is pointing to
the Exchange configuration for PowerShell rather than the default PowerShell con-
figuration. In other words, we’re connecting to the Exchange Management Shell,
which has the Exchange snapin preloaded. The -ConnectionUri defines the connec-
tion endpoint on the Exchange server. This SSL connection is secured by the
Exchange certificate—hence the reason for skipping the checks when using a self-
signed certificate.

 We can authenticate ourselves to the session by using the -Authentication param-
eter. The value we supply tells the remoting system to authenticate using the credentials

Table 12.2 Parameters for skipping certificate checks

Parameter Meaning

-SkipCACheck The check that the certificate is signed by a trusted CA isn’t
performed.

-SkipCNCheck The check that the common name on the certificate matches the
server name isn’t performed.

-SkipRevocationCheck The revocation lists aren’t checked to determine whether the certifi-
cate has been revoked.

Create
session

C

Import functionalityD

382 CHAPTER 12 Exchange Server 2007 and 2010
Apago PDF Enhancer

we used to log on to our local machine. Our final parameter supplies the options for the
session that we created earlier in the listing.

 Once our session is created, we can then work with the session to administer the
remote instance of Exchange 2010. We can use the Invoke-Command cmdlet to send
individual commands to the remote machine. Alternatively, we can import the
Exchange functionality into our local PowerShell D. As shown, all of the Exchange
cmdlets will be imported into the local session. It’s possible to restrict which cmdlets
are imported, for example if we only work with mail boxes then we only need to
import the mailbox cmdlets we would modify the import statement to be:
Import-PSSession $Session –CommandName *Mailbox

POWERSHELL PROFILE These commands could be part of our PowerShell
profile if we’re often going to be working with Exchange through remote
PowerShell.

A function is created on our local machine to represent the cmdlet on the remote
machine. The Export-PSSession cmdlet can be used to export the functions to a
module that we can import into future sessions, again through the PowerShell profile
if required. In either case, we have the Exchange functionality on our local machine
so we can perform remote administration of the Exchange server.

 This brief look to the future shows that we still have a lot more to gain, as adminis-
trators, as PowerShell itself evolves and it’s built into more products.

12.7 Summary
Exchange 2007 is probably the most complex application we’ll put into our organiza-
tion. We’ve seen how we can administer the servers comprising that Exchange organi-
zation. Mailbox servers have a lifecycle for the mail databases that we can administer
using our PowerShell knowledge.

 Exchange 2007 becomes simpler to administer when we use policies to control
items such as email addresses and message attachment sizes. We can also use policies
to control who can send messages to whom. The use of certificates in an Exchange
environment requires management using PowerShell. We can use mailboxes to repre-
sent meeting rooms and equipment, though it does seem odd inviting a projector to
my meeting.

 Exchange 2010 builds on the use of PowerShell we’ve seen with Exchange 2007 and
adds more flexibility to our administration through the use of PowerShell remoting.

 Exchange 2007 and 2010 use IIS in a number of ways. The installation of IIS is one
of the prerequisites for installing Exchange. IIS is also used in its own right. We’ll be
discovering how to administer IIS with PowerShell in the next chapter.

IIS 7 and XML
Apago PDF Enhancer

Internet Information Server (IIS) has been part of Windows since the days of the NT.
The primary use of IIS is to host web-based applications by delivering web pages. It’s
also one of the supporting technologies for a number of other applications includ-
ing Exchange, SharePoint, and SQL Server (in the form of Reporting Services). IIS
appears in so many places that knowledge of how to administer it is a “must-have”
skill for many administrators.

 In this chapter we’ll concentrate on IIS itself, though the skills and techniques
acquired here will be usable wherever IIS is encountered. The chapter concentrates
on IIS 7 and 7.5 on Windows Server 2008 and Windows Server 2008 R2, respec-
tively. It may be possible to take some of the techniques and work with IIS 6 (Win-
dows Server 2003), especially the use of WMI, though it should be noted that the
WMI providers in IIS 6 and IIS 7 are different.

This chapter covers
■ Comparing PowerShell techniques for working with IIS
■ Administering web sites and application pools
■ Managing web applications and virtual directories
■ Working with XML and configuration files
383

384 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

 IIS servers are often deployed in web farms—a number of identically configured
machines all providing the same application (or applications). This scenario is perfect
for automation, in that we need to perform exactly the same actions on a number of
servers and we can save wear and tear on our legs by not having to walk round the
server farm.

BACKUP It’s strongly recommended that you make a backup of the IIS con-
figuration before making any of the changes in this chapter. How to do this
with PowerShell is covered in technique 167.

The chapter starts by looking at the tools available for automating IIS administration.
We’ll examine each of the PowerShell tools by using it to create a website. The creation
and administration of these websites will form a loose theme throughout the chapter.
I have a preferred toolset for working with IIS, which I’ll explain at the end of the section.
But feel free to convert the other examples into one of the other toolsets if they fit better
with the way you prefer to use PowerShell. Variety is the spice of life, after all.

 This section of the chapter will also cover PowerShell remoting. IIS administration
provides excellent opportunities for using the remoting capabilities of PowerShell v2.
The topic is explained with practical examples of administering IIS.

 Websites are further explored, together with their associated application pools.
We’ll also consider web application and virtual directories. The full lifecycle of these
objects will be shown to provide the complete administration toolset.

 IIS uses XML for storing configuration information. We need to understand how to
work with XML files before we can look at the IIS configuration files.

 EXPERIMENTING Remember that if you want to experiment with the tech-
niques in this chapter, Windows Vista and Windows 7 have IIS as an optional
feature that can be installed. The WMI provider and .NET classes become
available when IIS is installed on these platforms in just the same way they
do on servers. The IIS provider also works on these platforms, as we’ll
see later.

It’s now time to jump in and start looking at the PowerShell toolset for IIS.

13.1 Automating IIS 7 administration
This section covers two main themes. First we’ll examine the tools that are available
within PowerShell for working with IIS. This may seem like overkill, but some organi-
zations won’t allow additional software to be installed, so administrators in that situa-
tion need to know what alternatives are available. The last part covers how we can use
PowerShell remoting to help us administer IIS.

 IIS, of all the applications we’ll examine in this book, probably has the richest tool-
set available for working with PowerShell. It’s time to investigate those tools.

13.1.1 IIS administration tools

PowerShell provides a number of ways to administer our IIS systems:

385Automating IIS 7 administration
Apago PDF Enhancer

■ Through a .NET managed code provider
■ Through WMI
■ Wrapping WMI in .NET code to make remote access easier
■ Through IIS cmdlets
■ Through an IIS provider
■ Through wrapping appcmd.exe, the IIS command-line tool, in a PowerShell

script, but I view that as a last resort, as it’s a more complex way to perform the tasks.

These tools can be used on the local machine, accessed through RDP, or we can com-
bine with PowerShell remoting for the ultimate PowerShell experience. The toolset will
work with IIS 7 on Windows Vista, Windows 7, and Windows Server 2008 including R2.

 This diversity can be viewed as one of the strengths of PowerShell or as a weakness.
My view is that it shows PowerShell’s strength because we have the flexibility to choose
the way we want to work.

 Even though we have a wide range of techniques for working with IIS, we’re lim-
ited when it comes to accessing IIS remotely, as table 13.1 indicates.

This slows us down only slightly, as we’ll see.
 In this section I’ll demonstrate each approach, but for the bulk of the chapter I’ll

use the IIS provider and cmdlets. We’ll start with the .NET managed code, though
before we dive into that, we need to create a few folders we can use in our examples
throughout the chapter, as shown in listing 13.1.

New-Item -ItemType Directory -Path c:\inetpub -Name testnet
New-Item -ItemType Directory -Path c:\inetpub -Name testwmi
New-Item -ItemType Directory -Path c:\inetpub -Name testnw
New-Item -ItemType Directory -Path c:\inetpub -Name testcdlt
New-Item -ItemType Directory -Path c:\inetpub -Name testprov

Repeated calls to New-Item enable us to create the required folders. It’s not elegant,
but it works! When time is short, sometimes a brute-force approach is the best solu-
tion. There are no points for style and artistic interpretation in this game. Okay, I give
up-here’s the elegant version:

"testnet", "testwmi", "testnw", "testcdlt", "testprov" |
foreach {New-Item -ItemType Directory -Path c:\test -Name $_}

Method Works remotely?

.NET No

WMI Partial

WMI with .NET Yes

IIS cmdlets No

IIS provider No

Listing 13.1 Create test folders

Table 13.1 Methods of
accessing IIS through PowerShell

386 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

13.1.2 .NET

When we install IIS 7, we also get access to a DLL containing the .NET namespace for
working with IIS. This assembly isn’t loaded into PowerShell automatically, so the first
thing we need to do is load the assembly, as shown in listing 13.2.

[system.reflection.assembly]::
loadfrom("c:\windows\system32\inetsrv\`
microsoft.web.administration.dll")

$server = New-Object microsoft.web.administration.servermanager

$server.Sites.Add(
"TestNet", "http", "*:80:testnet.manticore.org", "c:\inetpub\testnet")

$server.CommitChanges()

The assembly is loaded B using the loadfrom() method. We know where to find the
DLL, which makes this the easiest and simplest method to perform the load. Alterna-
tively, we could use Add-Type if using PowerShell v2. Once the assembly is loaded, we
can create an object for the IIS server C. When working with the Microsoft.
Web.Administration classes, we always have to start with the ServerManager object.

 Websites are treated as part of the properties of the server. We use the Add() method
of the sites collection D to create our site. The parameters give the site name, the pro-
tocol, the binding (IP address, port, and DNS name [host header]), and the physical
path for the site. We’ll see this information used in the other methods of creating sites.
The site name works for my environment. Change the domain name to reflect yours.

 We must remember to save our changes E. One thing we’ll find with this method
is that we’ll need to refresh the server object after making changes. We’ll need to per-
form the second line of our code again before performing any other actions.

 This technique is only usable on the local machine. It’s not possible to access IIS
remotely in this manner.

 The way that PowerShell makes WMI easier to use has been a major theme
throughout the book. We’ll continue exploring this theme as we look at creating a
website using the WMI provider.

13.1.3 WMI

Installing IIS also creates a new WMI namespace for us. The namespace is a direct
child of the root namespace, called webadministration. The extent of the namespace
can be discovered by using:

Get-WmiObject -Namespace 'root\webadministration' -List

This will supply a list of the classes available to us. Examining the list reveals that we
have WMI functionality for administering all of the major elements of IIS. We’ll need
to use two of these classes to create a new website, as in listing 13.3.

Listing 13.2 Create a site with .NET

Load assemblyB
Create
server
object

C

DAdd siteSaveE

387Automating IIS 7 administration

Apago PDF Enhancer

$Site = [WMIClass]'root\webadministration:Site'

$Binding = [WMIClass]'root\webadministration:BindingElement'

$BInstance = $Binding.CreateInstance()

$Binstance.BindingInformation = "*:80:testwmi.manticore.org"

$BInstance.Protocol = "http"

$Site.Create('TestWMI', $Binstance, 'C:\Inetpub\TestWMI', $true)

In section 3.5 we looked at the WMI type accelerators. We’ll use the [WMIClass] type
accelerator to create the WMI objects we need. The starting point is to create a WMI
object for the new website B and the binding C. A specific instance of the binding
element has to be created D. We can then supply the binding information E and the
protocol used to access the site F. The binding contains the same port as the previous
example, but has a different host name, which removes any possible conflicts.

 The site can then be created G. We need to provide the site name, the binding
information, and the physical path for the site as before. The final Boolean value
instructs the server to automatically start the site if set to $true.

NO MESSAGES No messages of completion or indication of success are
returned when using this approach.

The IIS WMI provider requires Packet Privacy authentication, which prevents us from
using the [WMIClass] type accelerator remotely. But we can wrap the WMI calls in
.NET code to create a site on a remote machine, as shown in listing 13.4.

$conopt = New-Object System.Management.ConnectionOptions
$conopt.Authentication =

[System.Management.AuthenticationLevel]::PacketPrivacy

$scope = New-Object System.Management.ManagementScope
$scope.Path = "\\.\root\WebAdministration"
$scope.Options = $conopt

$path = New-Object System.Management.ManagementPath
$path.ClassName = "Site"

$site =
New-Object System.Management.ManagementClass($scope, $path, $null)

$path2 = New-Object System.Management.ManagementPath
$path2.ClassName = "BindingElement"

$bind =
New-Object System.Management.ManagementClass($scope, $path2, $null)
$BInstance = $bind.psbase.CreateInstance()

$Binstance.BindingInformation = "*:80:testnw.manticore.org"
$BInstance.Protocol = "http"

$site.Create('testnw', $Binstance, 'C:\Inetpub\testnw', $true)

Listing 13.3 Create a site with WMI

Listing 13.4 Create a site with WMI and .NET

B
Create
binding
object

C

D
Set bindingE

Set protocolF

G

Set
connection
options

B

Set
namespace

C

Set site classD Create
site
object

E

Set binding
class

F

Create
binding
object

G

Set binding
Information

H

Create classI

388 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

This example may look more complicated than our previous examples, but it’s really
an expanded version of the WMI listing, as we’ll see. Our example starts by creating a
connection and setting the options on that connection. In this case, we have to use
Packet Privacy for the authentication level B.

PACKET PRIVACY PowerShell v1 can’t utilize Packet Privacy or other forms of
WMI authentication, but the WMI objects in version 2 can. We can use Get-
WmiObject against the IIS WMI provider by using the -Authentication
parameter and giving it a value of 6.

The WMI namespace is set next C. The path is set as \\server\root\namespace. In this
instance, I’m using . for the server, meaning the local host. We can use a server name
to work remotely. The connection options need to be provided to the scope to ensure
the connection succeeds.

 The WMI class we need to use, Site, is defined D and then we can create an object
representing our new site E. The arguments represent the namespace, the class, and
any options we want to define. At this point, we don’t want to supply any options, so
we use the $null value to show this. A value must be supplied, even if it’s just saying
that we don’t have any options today.

 A similar exercise is performed for the binding elements F, after which we create
an instance of the binding element G. The last part of the script sets the binding
information and the access protocol H. The final line creates the script supplying
name I, binding information, physical path, and the command to automatically start
the site, as we saw previously.

13.1.4 IIS cmdlets and provider

When the release of PowerShell v1 was announced at IT Forum (Barcelona, Novem-
ber 2006), it was demonstrated as part of the conference keynote speech. One part of
the demonstration showed administering IIS with PowerShell cmdlets. The demon-
stration received a good response but it turned out those cmdlets were just a proof of
concept for the demonstration. There were lots of disappointed PowerShell users!

 But once Windows 2008 was released, a PowerShell provider for IIS soon followed.
The original technology preview concentrated on the provider. The PowerShell com-
munity kept asking for more cmdlets, and by the time it was released, it had a good
supply of cmdlets and a well-behaved provider. The IIS 7 PowerShell provider is avail-
able as a 32- or 64-bit download from http://www.iis.net (a Microsoft site maintained
by the IIS team) for Windows 2008.

WARNING There are a number of good examples for the provider and cmd-
lets on the IIS.net site. Be aware that some of the examples haven’t been
updated as the technology has progressed and are out of date. The concepts
are correct but sometimes the syntax is wrong.

The provider and cmdlets are automatically installed when IIS is enabled on Win-
dows 2008 R2.

http://www.iis.net

389Automating IIS 7 administration
Apago PDF Enhancer

ELEVATED PRIVILEGES Elevated privileges are required to access the provider
in both versions of Windows 2008.

The provider installation routine creates an IIS PowerShell Management Console
icon, which loads the snapin via a PowerShell console file and sets the location to IIS:\.
It can be loaded into any other PowerShell session by using:

Add-PsSnapin Webadministration

In Windows 7/2008 R2, it’s a module! Modules are covered in appendix B. The list-
ings in the chapter are applicable however the code is loaded. Now that we have our
cmdlets installed, let’s create a website using the code in listing 13.5.

New-WebSite -Name testcdlt -Port 80 -HostHeader "testcdlt.manticore.org"
-PhysicalPath "c:\inetpub\testcdlt"

PowerShell enables us to discover how to use PowerShell so it is easy to find the cmd-
lets dealing with websites:

Get-Command *site

This will return a number of cmdlets with the noun WebSite and the verbs Get-, New-,
Remove-, Start-, and Stop-. We need the New-WebSite cmdlet for creation. We can give a
name, the port, and the physical path as parameters with this cmdlet. The HostHeader
parameter is important—without it the binding defaults to *:80:, meaning all IP
addresses on port 80 with no specific name. Unfortunately, this matches the binding
for the default website, which means our poor new website won’t start. If we try to start
the site, we’ll get an error:

Start-Website : Cannot create a file when that file already exists.

This isn’t the most intuitive error message! What it means is that we need to change the
binding information, for which we can use Set-WebBinding. Our code would become:

New-WebSite -Name testcdlt -Port 80 -PhysicalPath "c:\inetpub\testcdlt"
Set-WebBinding -Name testcdlt -BindingInformation "*:80:"
-PropertyName HostHeader -Value testcdlt.manticore.org

Get-WebBinding -Name testcdlt

Start-Sleep -Seconds 5
Start-Website -Name testcdlt

We need to supply the name of the website and the current binding information to
the relevant parameters. We then change the HostHeader value to our preferred
option. If we are performing this at the command line, we don’t need the Start-
Sleep, but in a script I’ve found that it’s required to give IIS a chance to catch up with
the script. It’s much better to get it right first time and supply all of the information.

 Our final script in this section, shown in listing 13.6, looks at using the IIS provider.
A provider exposes a data store to PowerShell as if it were the filesystem. This means

Listing 13.5 Listing 13.5 Create a site with the IIS cmdlet

http://www.microsoft.com

390 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

that we should be able to use the same commands to navigate the provider that we use
in the filesystem. We should also be able to use the cmdlets we use in the filesystem to
work with the data in the provider.

cd IIS:\sites

New-Item testprov
-bindings @{protocol="http";bindingInformation=":80:testprov.manticore.org"}
-physicalPath c:\inetpub\testprov

cd \
cd c:

A provider is exposed as a drive in PowerShell. We can view the drives using Get-
PSDrive and navigate into the root of the IIS drive using cd IIS:\. Performing a dir
at this point reveals three subfolders, as shown in figure 13.1

 We can use the navigation commands to jump into the sites container. The New-
Item cmdlet is used to create the site. The provider understands that at this location,
the item to create is a website. Compare this command with the use of New-Item ear-
lier in this section, when we were creating folders in the filesystem. We had to tell it to
create a folder, as files and folders can be created in the filesystem.

 The parameters we’re using with New-Item may not be familiar—especially when
compared to the filesystem usage. This is because the IIS provider modifies the cmd-
lets by adding additional parameters. We can see the changes by using:

Get-Command new-item -syntax

If we try this in the C: drive and IIS: drive, the results show the additions.
 Using New-Item, we supply the site name, the binding information, and the physi-

cal path as we’d expect. The bindings are supplied as a hash table containing the pro-
tocol and actual binding information. This information is in a similar format to our
other examples.

 When using the provider in a script, it’s always a good idea to return to a known
point. In this case, we end the script by navigating to the root of the IIS: drive and then
back to the C: drive.

NO ALIASES One thing to note is that the IIS provider doesn’t create any
default aliases for the cmdlets. If you want to create aliases for cmdlets that
you’ll be using from the command line, it’ll save typing. Don’t use them in
scripts you want to use across multiple machines!

Listing 13.6 Create a site with the IIS provider

Figure 13.1 The three
subfolders available at
the root of the IIS: drive
when using the IIS
PowerShell provider.

391TECHNIQUE 154 PowerShell remoting
Apago PDF Enhancer

In these examples, we’ve looked at creating a website using techniques that are avail-
able to us. In addition to demonstrating the techniques, it also gives us a good
number of sites to play with in the rest of the chapter. Did I say play with? Sorry, I
meant experiment.

 The examples we’ve seen have all been run on the local machine. We don’t want to
keep going into the machine room to perform these tasks or spend our time using
Remote Desktop to connect to multiple machines to perform the same task. The solu-
tion to this problem is PowerShell remoting.

TECHNIQUE 154 PowerShell remoting

We briefly looked at PowerShell remoting in the previous chapter. That was in a spe-
cific context for Exchange 2010. In this section, we’ll look at the more general case of
using PowerShell to access remote machines. This functionality is especially useful in
the case of web farms, where we may want to perform the same action on a number
of servers.

 PowerShell v1 enabled some cmdlets such as Get-WmiObject to work with remote
machines. This capability has been extended to many more cmdlets including the *Ser-
vice, *Process, and *Eventlog cmdlets. We can discover the cmdlets that can work
directly with remote machines by finding which ones have a -ComputerName parameter

Get-Help * -Parameter computername

As an example, we can discover the hotfixes installed on a remote machine:

Get-HotFix -ComputerName RSLaptop01

The advantage of using cmdlets in this way is that syntax is easy to use and we don’t
need to do anything except add an extra parameter when using the cmdlet. The dis-
advantage of using cmdlets in this way is that the cmdlet has to create a connection to
the remote machine, run our command, then tear down the connection. This is a pro-
cessing overhead if we need to perform multiple actions on the same machine.
PROBLEM
How can we make our remote sessions more efficient by reducing the processing
overhead?
SOLUTION
This example shows how to use PowerShell-based remoting. It’s a good example of a
“fan-out” approach: one workstation administers many servers. Compare listing 13.7
to the Exchange 2010 example we saw at the end of the last chapter, which is a good
example of the “fan-in” approach. Expect to see more of both as PowerShell adop-
tion expands.

 PowerShell v2 needs to be installed on the local and remote machines, the winrm ser-
vice (display name is Windows Remote Management [WS-Management]) needs to be run-
ning on both machines, and Enable-PSRemoting needs to be run on both machines to
perform the required configuration. The starting point of the example is the creation
of a PowerShell session B. This just takes the computer name as a parameter. Using a
variable to represent the session makes using it much easier in later statements.

TECHNIQUE 154

392 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

$sweb01 = New-PSSession -ComputerName web01

Invoke-Command -Session $sweb01
-ScriptBlock `
{C:\Users\Richard\Documents\WindowsPowerShell\profile.ps1}

Invoke-Command -Session $s `
-ScriptBlock {Add-PSSnapin webadministration}

Invoke-Command -Session $sweb01 `
-ScriptBlock {Get-PSSnapin}

Invoke-Command -Session $sweb01 -ScriptBlock {Get-WebSite |
 Format-Table}

Invoke-Command -Session $sweb01
-ScriptBlock {Get-ChildItem iis:\AppPools | Format-Table}

DISCUSSION
As an aside in the early CTPs of PowerShell v2, what’s now called a PowerShell session was
referred to as a runspace. Expect to see this term used in blog posts and other discus-
sions from this period. Simply replace PSSession for RunSpace and the listings should
be reusable. (Yes it’s confusing and caused some interesting discussion during test-
ing.) Once we’ve created the session, we could enter it (Enter-PSSession) or import
the functionality (Import-PSSession). In this case, we want to run some commands
interactively through the session. When we create a session in this way, the PowerShell
profile(s) on the remote machine aren’t executed. We need to run the profile C or
perform individual configuration actions such as adding snapins D. We’ll see
Invoke-Command a lot when using remoting. It’s possible to have multiple remote ses-
sions open, so we need to supply the session and use the -ScriptBlock parameter to
supply the command we want to execute.

 When our session is configured, we can then execute commands through the ses-
sion such as viewing the available snapins E, using a cmdlet to view websites F, or
using the provider to view application pools G. Sometimes the formatting doesn’t get
preserved when the data is returned to the local machine. This can be solved by add-
ing a Format-Table command to the scriptblock as shown.

RECOMMENDATION My recommendation is to adopt PowerShell v2 as soon as
possible. Install it and the IIS PowerShell provider on your IIS systems. This
will give you the best, richest experience as well as making the administration
of extensive web farms much simpler. Do more with less!

Before we finish with remoting, we need to look at running scripts through remote
sessions. So far we’ve been running individual commands through Invoke-Command,
which will get tedious if we need to perform a large set of linked tasks. It’s also awk-
ward if we need to use a large loop or functions. The answer is the same as when we’re
running PowerShell on the local machine—use a script.

 We have two options:

Listing 13.7 Working remotely with PowerShell and IIS

Create sessionB

Run REMOTE
profile

C

Add snapinD

View snapinsE

F View websites View
application
pools

G

393TECHNIQUE 155 Viewing websites
Apago PDF Enhancer

Invoke-Command -Session $sweb01 -ScriptBlock {c:\script\scrpt1.ps1}

Invoke-Command -Session $sweb01 -FilePath {c:\script\scrpt1.ps1}

Option 1 uses the -ScriptBlock parameter we’ve already seen. It runs a script that’s
situated on the remote machine. This is good for running a profile or script that’s
already on the remote machine. The drawback to this approach is that the script on
the remote machine has to be maintained. That’s straightforward if we’re talking
about one machine, but by the time we get to 10, 20, or more, it doesn’t become feasi-
ble unless we can use an automated delivery mechanism.

 Option 2 is similar, but it uses the -FilePath parameter instead of ScriptBlock.
This will look for the script on the local machine and run it against the remote
machine. We only maintain a single copy of the script in an easily accessible place. It’s
ideal for running against multiple remote machines. When using this technique, it’s
difficult to perform actions such as Import-Csv into the script, as the location of the
file is unclear to PowerShell. It doesn’t seem possible for PowerShell to “reach” back
to the local machine to access a file through the remoting mechanism. Even using a
UNC path doesn’t work.

 The answer is to think about what we need to do and to use the technique that’s
most efficient for performing the task. We can use PowerShell to copy scripts to
remote machines if required.

LOCAL VERSUS REMOTE In the rest of the chapter, I’ll present the use of the
IIS provider and cmdlets as if we were using them locally. These commands
could be run remotely using the techniques from this section. I won’t refer
to this repeatedly, though it should be kept in mind. I’ll also assume that
the provider is loaded when discussing its use and that of the accompany-
ing cmdlets.

Having learned how to use PowerShell-based tools for administering IIS both locally
and remotely, we’ll turn our attention to administering the objects within IIS. We’ll
continue our examination of websites and dive into the related topic of application
pools as well.

13.2 Websites and application pools
We saw a number of ways to create websites in the previous section. In this section
we’ll turn our attention to administering those sites. Application pools enable us to
separate the processing of individual websites. We’ll also see how we can work with
these objects.

TECHNIQUE 155 Viewing websites

Many web servers host a number of websites. This maximizes the use of server
resources. But it creates a problem for us as administrators, because we need to be
able to find out what’s happening on our web servers. If we have a single web server,
we can always use the IIS Manager console to attach to the remote server. That isn’t
practical when you have a number of servers.

TECHNIQUE 155

394 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

PROBLEM
The users are on the phone complaining that the website isn’t available! We need to
check quickly whether it’s still running.
SOLUTION
We can use the IIS cmdlets to view the sites or WMI to view the websites on a server
hosting IIS, as in listing 13.8. The easiest way to view the basic information about our
websites is to use the Get-WebSite cmdlet B. The output is shown in figure 13.2. We
get a tabulated display showing the website name, the ID, the state, physical path, and
bindings. Glancing at the bindings for the default website shows how multiple bind-
ings are displayed. In some ways, the state is the most important, as it provides a quick
check that the website is up.

 An identical display is returned if we use the provider C. Any bets on how the
cmdlet works? I’ve used the alias ls for Get-ChildItem in this example. Despite what
might be thought from reading my blog. I do use aliases at the command line. They
still should be avoided in scripts.

 The final option presented here is to use WMI D. We’ve seen Get-WmiObject many
times. The two major differences are that we’re using the webadministration
namespace and the authentication requirements.

Get-WebSite

ls iis:\sites

#Requires -version 2.0
Get-WmiObject -ComputerName 'Web01' -Namespace "root\webadministration"
-Class Site -Authentication 6

Listing 13.8 Viewing website status

CmdletB
ProviderC

WMID

Figure 13.2 Viewing websites using the cmdlets and the provider.

395TECHNIQUE 156 Controlling websites
Apago PDF Enhancer

DISCUSSION
We discovered earlier that the IIS WMI provider requires Packet Privacy (authentica-
tion and packet encryption) when accessing a remote machine. The value 6 assigned
to the -Authentication parameter is how we specify Packet Privacy. The meaning of
other values can be found in the help file. The authentication parameter is only avail-
able in PowerShell v2, which is why we use #Requires -version 2.0 to ensure that the
script can’t be run on PowerShell v1. This command can also be used to stop scripts
running if certain snapins or versions of snapins aren’t available. See Get-Help
about_Requires for full details.

GADGETS We could use PowerGadgets with these scripts to create a simple
warning system if our websites stopped working. The gadget could be hosted
on the Windows Vista sidebar or as a Windows 7 desktop gadget.

We now know how to create websites and how to view their status. Let’s see how we can
control the status with PowerShell.

TECHNIQUE 156 Controlling websites

If we examine the IIS Manager console, we’ll see prominent controls for stopping,
starting, and restarting websites. These tasks may need to be performed on a relatively
frequent basis.
PROBLEM
Our website has stopped. How can we restart it?
SOLUTION
We have cmdlets for controlling website status, as shown in listing 13.9. We usually
want our websites to be automatically started when the IIS server starts. The tech-
niques we have for creating websites either default to this state or allow us to set the
website to this configuration. Our first task then is to stop a website B. An individual
website can be stopped by using Stop-WebSite and providing the name of the site.
Using Get-WebSite before and after the stop allows us to determine whether the task
worked. It also allows us to check the name of the website.

 In a similar manner, we can use Start-WebSite to start a website C. In the exam-
ple we use Get-WebSite with a where statement to filter the sites that are in a state of
being stopped. We can pipe the results into Start-WebSite, which will start all of the
stopped sites. We can, of course, just start an individual site by supplying its name in
the same way that we used Stop-WebSite.

Get-Website
Stop-Website -Name testwmi
Get-Website

Get-Website | where{$_.state -eq "Stopped"}
Get-Website | where{$_.state -eq "Stopped"} | Start-Website
Get-Website

Restart-WebItem -PSPath iis:\sites\TestNet
Get-ChildItem iis:\sites | Restart-WebItem

Listing 13.9 Controlling websites

TECHNIQUE 156

Stop siteB

Start siteC

Restart siteD

396 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

DISCUSSION
Sometimes we’ll have one or more websites that are running but that need to be recy-
cled, possibly because of a configuration or file change.

RESTART-WEBSITE You may see reference to a Restart-WebSite cmdlet. This
cmdlet doesn’t actually exist. Use Restart-WebItem as shown, or Stop-WebSite
and Start-WebSite run sequentially.

We can restart (recycle) websites by using the Restart-WebItem cmdlet D. The first
technical preview of the IIS provider had many fewer cmdlets, and those tended to be
generic such as *-WebItem. The WebItem cmdlets work with IIS paths rather than
object names. We can provide the path to a single site as shown, but if we want to recy-
cle all of the websites, we need to be slightly more creative.

 We can use Get-ChildItem to return all of the site information, as we saw in the
previous listing. That information can then be piped into Restart-WebItem as shown.
The IIS path is automatically picked up by Restart-WebItem and the object is recy-
cled. The wonders of the pipeline! After using PowerShell for a few years, we do get to
expect this sort of power. If a reminder is needed of how much we gain from the pipe-
line, try reverting to VBScript for a task or two.

 Application pools are used to separate the processes used in IIS websites and appli-
cations so that an issue with one site doesn’t affect all sites. We need to consider these
objects next.

TECHNIQUE 157 Creating an application pool

When it’s first installed, IIS creates a single application pool. All subsequent websites
and web applications use the default application pool unless a specific one is created
for that site or application. It’s possible to specify the application pool to use during
the creation of a site.
PROBLEM
We have a number of websites running on our server, all using the same application
pool. Additional application pools need to be created so that we can separate the pro-
cesses of each site.
SOLUTION
We can solve this problem using a cmdlet or the provider. These two methods are
essentially similar, as shown in listing 13.10. It often becomes a matter of preference as
to which one is used. We’ll start by using the New-WebAppPool cmdlet B. The only
parameter we need to supply is a name.

 Our alternative method is to use the provider and the New-Item cmdlet C. When
creating objects using the provider, I’ve found it easier to navigate to the part of the
provider dealing with that object type. Then we don’t need to worry about specifying
the type of object to create—the provider does that for us.

TECHNIQUE 157

397TECHNIQUE 158 Controlling an application pool
Apago PDF Enhancer

New-WebAppPool -Name wmipool

cd IIS:\AppPools
ls
New-Item netpool
cd \
cd c:

DISCUSSION
We start by navigating into the application pools. A directory listing is obtained to
check the names of the application pools that currently exist. I don’t use the ls alias
because I’m from a UNIX background (honest)—I use it because it’s only two charac-
ters long and saves a fair amount of typing over dir considering how often I use it.
The letters are also in a more accessible combination on the keyboard.

GET-WEBAPPPOOL There isn’t a Get-WebAppPool cmdlet, so we need to use
the provider. The inconsistency in cmdlet provisions is one of the charms of
the IIS provider. It also shows that the provider came first and the cmdlets
were developed later.

New-Item is used to create the application pool, and we navigate back to our standard
location to finish the task. This example was copied directly from command-line input.
The same commands could be run from a script (better still, expand the aliases).

 After creating some application pools we had better learn how to control them.

TECHNIQUE 158 Controlling an application pool

In section 13.2.2 we learned how to control websites. The ability to control application
pools may be even more important. Our website may contain a number of applica-
tions, each using its own application. We gain more granular control of our web server
if we can control the individual application pools.
PROBLEM
We need the ability to control individual application pools to ensure that we maintain
a fine degree of control over our IIS server.
SOLUTION
The *-WebAppPool cmdlets will enable us to meet this challenge, as shown in list-
ing 13.11. We can start this exercise by viewing the current state of the application
pools B. This includes whether the application pool is running.

 An individual application pool can be stopped by using Stop-WeAppPool with the
name of the application pool C. Alternatively, we could use Stop-WebItem and supply
the path to the particular pool we want to stop. Viewing the state of the application
pools after performing the stop confirms our actions.

 When we want to start the application pool D, we can use Start-WebItem with the
path to the pool or Start-WebAppPool with the name of the application pool.

Listing 13.10 Create application pool

CmdletB

ProviderC

TECHNIQUE 158

398 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

Get-ChildItem iis:\AppPools

Stop-WebAppPool -Name netpool
Get-ChildItem iis:\AppPools

Start-WebItem -PSPath iis:\AppPools\netpool
Get-ChildItem iis:\AppPools

Restart-WebAppPool -Name wmipool
Get-ChildItem iis:\AppPools | Restart-WebAppPool

DISCUSSION
We do get a Restart-WebAppPool cmdlet, so we can use that to restart (recycle) indi-
vidual application pools by name E. The whole collection of application pools can be
restarted by using Get-ChildItem to pipe the pools in to the restart command. It’s
possible to use Restart-WebItem as we saw in the section on controlling websites.

 We’ve looked at creating and controlling websites and application pools. It’s time
to consider how we can put the two objects together.

TECHNIQUE 159 Modifying website configuration

When we create a website, we have the opportunity to assign an application pool to
the site. If this opportunity isn’t taken, the default application pool is utilized. A badly
configured IIS server may have all of its websites and applications running on a single
application pool.
PROBLEM
We need to correct an incorrectly configured IIS server by assigning separate applica-
tion pools to the websites.
SOLUTION
We need to work within the IIS provider to perform this reconfiguration task, as in list-
ing 13.12.

Get-ChildItem iis:\AppPools

Set-ItemProperty -Path iis:\Sites\testwmi
-Name ApplicationPool -Value wmipool

Get-ChildItem iis:\AppPools

DISCUSSION
PowerShell has a number of cmdlets that should work within all providers:

■ *-ChildItem
■ *-Content
■ *-Item
■ *-ItemProperty
■ *-Location
■ *-Path

Listing 13.11 Control an application pool

Listing 13.12 Modify a site configuration

View application poolsB
Stop application poolC

Start application poolD

Recycle application poolsE

TECHNIQUE 159

399TECHNIQUE 160 Removing a website and application pool
Apago PDF Enhancer

These are known as the core commands. More details can be found in the help file Get-
Help about_Core_Commands. We’ve already used the *-Item cmdlets in this chapter to
work with the item as a whole; now it’s time for the *-ItemProperty cmdlets. We use
the ItemProperty cmdlets to administer individual properties on objects.

 In the present case, we need to modify the ApplicationPool property of a website.
The verb Set- is used when we want to change something. Set-ItemProperty needs to
be given the path to the site we must reconfigure. The -Name parameter controls
which property is changed, whereas the -Value parameter supplies the name of the
new application pool.

 The new application pool must exist for the change to work. If this was a change
that had to happen before other changes could be implemented, we could create the
application pool in the script and use Test-Path to confirm its existence before per-
forming the subsequent actions.

 The creation of websites and application pools has been considered, as has their
modification. We can now consider how we’ll remove these objects when they’re no
longer required.

TECHNIQUE 160 Removing a website and application pool

One thing that I’ve discovered over the years is that while projects can always find time
to implement new features, it’s often another matter when it comes time to tidy up
and remove parts of the infrastructure that are no longer required. This can leave our
infrastructure vulnerable, as the attack surface is larger. It can also cause server
resources to be consumed supporting the no-longer-required elements that would be
better employed supporting current business processes.
PROBLEM
We’ve inherited a web server farm that has a number of sites and application pools.
How can we easily remove them?
SOLUTION
The verb Remove is used when we wish to delete an object. We can pair it with the
appropriate noun or use Item to work with the provider, as in listing 13.13. If we’re
removing a website and the associated application pool, we have to remove the web-
site before we can remove the application pool. An application pool can’t be deleted
while it remains linked to a website or a web application.

 An application pool or website can be deleted by using the Remove-WebAppPool or
Remove-WebSite cmdlet respectively B. We need to pass the name of the object to be
deleted as a parameter.

Remove-WebSite -Name testnet
Remove-WebAppPool -Name netpool

Remove-Item iis:\Sites\testwmi
Remove-Item iis:\AppPools\wmipool

Listing 13.13 Remove website

TECHNIQUE 160

Remove by
cmdlet

B

Remove by
provider

C

400 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

DISCUSSION
The Remove-Item cmdlet can be used to delete objects via the provider C. The path
to the object is the only parameter needed. The before and after state could be viewed
using the techniques we’ve seen earlier in the chapter.

 We’ll complete this section by applying what we’ve discovered to simultaneously
configuring multiple machines.

TECHNIQUE 161 Configuring a new website on multiple machines

IIS is often deployed in web farms with multiple identically configured machines. Add-
ing a new application to a web farm can be a tedious and repetitive task. It cries out
for automation.
PROBLEM
We have to deploy a new application to the 10 servers in our web farm.
SOLUTION
We solve this by writing a script that combines what we’ve seen previously regarding
PowerShell remote administration and IIS administration. The script is shown in list-
ing 13.14.

$source = "c:\Scripts\IIS\NewSite"
Import-Csv servers.csv | foreach {
 $dest = '\\' + $_.Server + '\C$\Inetpub'

 Write-Host "Copying Files to $dest"
 Copy-Item -Path $source `
 -Destination $dest -Recurse
 -Force -Verbose

 $web = New-PSSession -ComputerName $_.Server

 Invoke-Command -Session $web
 -ScriptBlock {Add-PSSnapin WebAdministration}

 Invoke-Command -Session $web
 -ScriptBlock {New-WebAppPool -Name NewSite}

 Invoke-Command -Session $web
 -ScriptBlock {New-WebSite -Name NewSite -Port 80
 -PhysicalPath "c:\inetpub\NewSite" -ApplicationPool NewSite}

 Invoke-Command -Session $web
 -ScriptBlock {Set-WebBinding
 -Name NewSite -BindingInformation "*:80:" -PropertyName HostHeader
 -Value NewSite.manticore.org}

 Invoke-Command -Session $web
 -ScriptBlock {Get-WebBinding -Name NewSite}

 Invoke-Command -Session $web -ScriptBlock {Start-Sleep -Seconds 5}

 Invoke-Command -Session $web
 -ScriptBlock {Start-Website -Name NewSite}

 Remove-PSSession -Session $web
}

Listing 13.14 Creating a website on multiple machines

TECHNIQUE 161

Set source folderB

C Read CSV file

Copy website filesD
Create sessionE

Add snapinF

G
Create
application pool

HCreate site

I Set binding

Check bindingJ

Start website1)
Close session1!

401TECHNIQUE 162 Creating a web application
Apago PDF Enhancer

The outcome of this script is that we copy a folder to the web server and create a web-
site to use that folder. This is repeated for a number of servers. We start by setting the
source of the folder we copy to the remote machine B. The CSV file containing the
list of servers is read and contents piped into a foreach C. The folder containing the
files used in the website is copied to the remote server D. We use -Recurse to ensure
that subfolders and their contents are copied. The -Verbose parameter gives better
feedback on the progress of the copy.

 A remote session is created to the server E. Then the IIS snapin is loaded F, and
a web application pool G and a website H are created using the code we saw earlier.
Creating the application pool first enables us to reference it when we create the site
and save a processing step. The site bindings are created I and checked J. After a
pause to allow the server to catch up, the website is started 1). The session is closed 1!
and we loop back for the next server to process.
DISCUSSION
In this script, we used Invoke-Command for each step. An alternative would be to put
steps 6-10 into a separate script and call them like this:

Invoke-Command -Session $web -FilePath {c:\scripts\iis\new-application.ps1}

We don’t need to wrap the individual statements with Invoke-Command if we use this
technique. It’s neater coding but more difficult to describe. In Windows 2008 R2, we
can also create an NLB cluster or add a node to an existing cluster in the same script.
If you’ve worked with NLB, this will be a great step forward.

 This concludes our examination of websites. We’ll look next at web applications.

13.3 Web applications and virtual directories
The alternative to creating multiple websites on our server is to create a web applica-
tion. This is similar to creating a website, in that we need to define where the files used
in the site will reside. We don’t need to worry about things such as the site bindings,
because our web application lives inside a website.

 We can have multiple web applications inside our website—a good example is
Exchange and the multiple applications such as OWA.

TECHNIQUE 162 Creating a web application

Our starting point with these objects is creating them. This is a cmdlet-only operation.
The provider deals directly with sites and application pools, but treats applications as
properties of sites. It’s probably possible to use New-ItemProperty, but the investment
in time and effort in learning how to do it isn’t worth the gain when we have a per-
fectly good cmdlet waiting to go to work for us.
PROBLEM
We need to create a new web application on our server.
SOLUTION
Our cmdlet is New-WebApplication, as shown in listing 13.15. We’ve already seen that
using application pools to isolate the processes of different websites and applications

TECHNIQUE 162

402 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

is generally seen to be “a good thing.” As good administrators, we’ll follow best prac-
tice and start by creating a new application pool B. The previous section discusses
application pools in detail.

New-WebAppPool -Name provpool
md c:\Processes

New-WebApplication -Site testprov -Name Processes
-PhysicalPath c:\processes -ApplicationPool provpool

Get-WebApplication

A folder to hold the files associated with our application would be nice, so we create
that next C. The most important step is to create the actual application. We use the
New-WebApplication cmdlet D. The parameters define the website used to host the
application. Testprov is a site we created earlier. The application has to have a name;
otherwise we won’t be able to talk about it or use it. Our folder from the previous step
tells the application where to look for its files, and the final parameter links the appli-
cation to the application pool from the first step.

 The web applications hosted on our server can be investigated using Get-
WebApplication E. Many applications require multiple folders. These are referred
to as virtual directories.

TECHNIQUE 163 Add a virtual directory

Containers are used in a number of areas of computing. We have OUs in our Active
Directory, we have folders in the filesystem, and we have hives in the registry. In a sim-
ilar manner, we can use virtual directories to subdivide the files we need in our web
application.
PROBLEM
We’ve created a web application to display process information. We now need to
extend the application to cover data relating to services.
SOLUTION
The most efficient way to solve this problem is to use the New-WebVirtualDirectory
cmdlet, as in listing 13.16. The whole idea of this is to give some structure to our web
application, so we’ll create a separate folder for the new files B. This doesn’t have to
be a separate folder on the same volume. It could be a subfolder in an existing file path,
or it could even be on a different server if we wanted a number of machines to access
the same files. If a different server is used, make sure the network connections are fast!

md c:\services
New-WebVirtualDirectory -Site testprov -Application Processes
-Name Services -PhysicalPath c:\services

Get-WebVirtualDirectory

Listing 13.15 Creating a web application

Listing 13.16 Creating a virtual directory

Create application
pool

B

Create folderC
Create
application

D

View applicationsE

TECHNIQUE 163

Create
folder

B
Create
virtual
directory

C

View virtual directoriesD

403TECHNIQUE 164 XML and configuration files
Apago PDF Enhancer

DISCUSSION
The virtual directory can then be created C. Its position in the hierarchy of objects
on our IIS server is defined by supplying the website and application that’ll be hosting
the new directory. A name is supplied together with the physical path to the folder.

 Our application now has a new virtual directory. We can view the fruits of our labor
by using Get-WebVirtualDirectory D to investigate the virtual directories on the
server.

 We won’t do much in the way of modifying our applications and virtual directories,
but we do need to think about removing them.

TECHNIQUE 164 Removing virtual directories and web applications

Administrators seem to spend more time installing new applications and features
compared to removing those applications and features that are no longer required.
Finding the time to perform house-cleaning operations can be difficult, but will save
time in the long run. Using PowerShell to automate the cleanup will save us time and
effort, but remember that automation can be viewed as a way to make mistakes faster,
so double-check and always remember the -Whatif parameter.
PROBLEM
We’re changing the servers that support our web applications and need to remove the
application from the old web server.
SOLUTION
The verb Remove is used whenever we need to delete something. We need to remove
the virtual directory first. The directory is identified by supplying the website, applica-
tion, and name of the directory, as shown in listing 13.17. Then the application can be
removed. We only need to supply the website and application.

Remove-WebVirtualDirectory –Site testprov –Application processes
–Name services

Remove-WebApplication –Site testprov –Name processes

DISCUSSION
This process removes the application and virtual directory from the web server config-
uration. It doesn’t remove the physical files and folders from the web server’s filesystem.
We can use Remove-Item with the appropriate path to perform that part of the task.

 Our examination of the objects we can administer on the IIS server is complete.
We’ll conclude this chapter with a look at the IIS configuration files and how to work
with XML.

13.4 XML and configuration files
XML is everywhere. It’s a common standard for exchanging information between sys-
tems or for presenting information that’s machine-readable as well as human-readable
(sometimes). PowerShell uses XML in a number of places:

Listing 13.17 Remove a web application

TECHNIQUE 164

404 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

■ Help files
■ Type files
■ For persisting objects

XML is of special relevance to this chapter because in IIS 7, the configuration informa-
tion is stored in XML files rather than the binary metabase used in previous versions of
IIS. This provides the ability to directly configure the web server by accessing the XML
configuration files. The configuration files used by ASP.NET applications are also XML
files, meaning we can configure the application and the server using the same tools
and techniques.

NOTE I made a conscious decision to keep all of the XML-related material
together, as I think this aids understanding compared to scattering it
throughout the book.

The IIS provider supplies a number of cmdlets for working with IIS configuration files:
■ Add-WebConfiguration
■ Backup-WebConfiguration
■ Clear-WebConfiguration
■ Get-WebConfiguration
■ Restore-WebConfiguration
■ Select-WebConfiguration
■ Set-WebConfiguration

There are also a number of cmdlets for manipulating the individual properties within
the configuration files:

■ Add-WebConfigurationProperty
■ Get-WebConfigurationProperty
■ Remove-WebConfigurationProperty
■ Set-WebConfigurationProperty

These cmdlets can be thought of as being analogous to the *-Item and *-ItemProp-
erty cmdlets we’ve used on the filesystem and the registry. But they use XPath to
describe the path to the data rather than the file paths we’re accustomed to using.
We’ll consider working with generic XML files and then look at the IIS configuration
files, but before that, we’ll look at the tools that PowerShell provides for working with
XML files.

TECHNIQUE 165 Persisting objects

One of the fundamental pillars of PowerShell is that it works with .NET objects. Usu-
ally these objects disappear when our script finishes (it’s called garbage collection if you
want to impress the developers) or the PowerShell session is closed. This is usually the
behavior that we need, but sometimes we need to keep these objects so that we can
reuse them. We want them to persist in the environment.
PROBLEM
How can we save objects from our PowerShell session for future access?

TECHNIQUE 165

405TECHNIQUE 165 Persisting objects
Apago PDF Enhancer

SOLUTION
We’ve saved data into files previously. This time, we’ll save the whole object into an
XML file. PowerShell provides a pair of cmdlets for solving this problem. Export-
Clixml can be used to create an XML file representing the object. We can then recre-
ate that object using Import-Clixml, as in listing 13.18.

Get-Process | Export-Clixml -Path proc.xml

$p = Import-Clixml -Path proc.xml
$p

$p | where {$_.Handles -gt 500}

DISCUSSION
Get-Process is a good place to start experimenting with the *-Clixml cmdlets, as we
can guarantee its availability. The output from Get-Process is piped into Export-
Clixml B. We have to supply a path for the file. If a file with the same name exists, it’ll
be overwritten.

 It’s possible to export an object directly, so this would also work:

$proc = Get-Process
Export-Clixml -InputObject $proc -Path proc.xml

The original is preferred, as it’s more efficient and better PowerShell to use the pipe-
line. Regardless of how the file is produced, it provides a good example of the verbos-
ity of XML, as the file is nearly 5.5MB in size! A smaller file can be created using:

Get-Process powershell | Export-Clixml -Path pp.xml
Get-Content pp.xml

A single process creates a file of 278KB.
 When we need to access this data again, we can use Import-Clixml to perform the

re-creation of the object C. Typing the variable name will give us a display identical to
that we would’ve received if we’d run Get-Process to screen instead of performing
the export. We can use the object created from the XML file in exactly the same way as
an object created to hold the output of Get-Process D. For instance, we can use the
object to find the processes that have more than 500 handles open.

 One word of warning about using this technique is required. The original object
and the recreated object contain the same properties but they’re different type. If we
test the type of the objects produced by Get-Process:

PS> Get-Process | get-member
 TypeName: System.Diagnostics.Process

We can see that we are dealing with System.Diagnostics.Process objects (full details
on MSDN). But if we repeat the exercise using the recreated object:

PS> $p | Get-Member
 TypeName: Deserialized.System.Diagnostics.Process

Listing 13.18 Persisting PowerShell objects

Create objectB
Recreate objectC

Use objectD

406 CHAPTER 13 IIS 7 and XML

ad
Apago PDF Enhancer

We find that the object type has changed. This will only be of importance if the type of
the object is referenced and used in the script; otherwise it’s an “under the hood”
change that doesn’t affect how we use the object.

 PowerShell v2 also brings the ConvertTo-XML cmdlet to the party. This functions
in a similar manner to Export-Clixml but creates the XML in memory rather than as
a file:

PS> $x = Get-Date | ConvertTo-Xml
PS> $x | Get-Member
 TypeName: System.Xml.XmlDocument

This creates an XML document that we can read using the standard techniques. Other
options include creating the XML as a string (-as String) or as an array of strings
(-as Stream). Try:

Get-Process powershell | ConvertTo-Xml -As String

The XML will be displayed onscreen and we can merrily scroll up and down reading
the data. The amount of detail is reduced compared to using Export-Clixml.

 XML files are a common occurrence in modern IT environments. It’s time for us to
turn our attention to reading these files using PowerShell.

TECHNIQUE 166 Reading XML

In a while, we’ll see how to read IIS configuration files, but we also need to understand
how to read XML files with PowerShell.

EXAMPLE FILE I’ve tried to ensure that the examples I’ve used throughout the
book have been directly relevant to administrators. I’m going to break that
rule with this example, as the XML files I know will be available (the Power-
Shell format and type files) are too big and complicated. I’ve created an XML
file detailing some PowerShell books and blogs that we’ll use instead. The file
is included in the script download.

A bit of caution: the majority of examples in this section use PowerShell v2.
PROBLEM
How can we read the data in an XML file?
SOLUTION
PowerShell provides a number of different ways of tackling this problem using both
generic file access cmdlets and XML-specific cmdlets, as shown in listing 13.19.

Get-Content powershell.xml

Select-String -Path powershell.xml -Pattern "url" –SimpleMatch
Select-String -Path powershell.xml -Pattern "Siddaway" –SimpleMatch

Select-Xml -Path powershell.xml -XPath "/PowerShell/blogs/blog"
Select-Xml -Path powershell.xml -XPath "/PowerShell/blogs/blog" |
select -ExpandProperty Node

Listing 13.19 Reading XML

TECHNIQUE 166

Read whole fileB
Select
lines

C

Attempt reD

Find blogsE

407TECHNIQUE 166 Reading XML
Apago PDF Enhancer

Select-Xml -Path powershell.xml -XPath "/PowerShell/books/book[1]" |
select -ExpandProperty Node

Select-Xml -Path powershell.xml -XPath "/PowerShell/books/book[last()]" |
select -ExpandProperty Node

Select-Xml -Path powershell.xml -XPath "/PowerShell/blogs/blog[last()-1]" |
select -ExpandProperty Node

Select-Xml -Path powershell.xml
-XPath "/PowerShell/books/book[year>2008]/title" |
select -ExpandProperty Node

Select-Xml -Path powershell.xml
-XPath "/PowerShell/books/book/title/text()" |
select -ExpandProperty Node | select value

DISCUSSION
Let’s start by viewing the whole file B. We know that XML is a text-based format and
we know that Get-Content can be used to read and display the contents of files.
Reviewing the file content, we can see that we have three PowerShell-related blogs and
two books. I strongly recommend the three blogs as good sources of information
on PowerShell.

OPEN FILE It may be useful to keep a PowerShell window open to view the file
while working through the rest of the examples. It should make the explana-
tions easier to follow.

This technique is good if we want to view the whole file. But if the file is large or we
need to extract individual pieces of data, we need to be able drill into the file. Power-
Shell v1 doesn’t have any cmdlets for dealing directly with XML, but we can use
Select-String, as we’re dealing with text-based files C. One advantage of using
Select-String is that we can access the XML node structure as well as the data values.
In the first example, we’re looking for the text "url", which is a node name. This will
return the three lines containing the URL nodes. In a similar manner, searching for a
name will return all of the lines that contain that name, whichever type of node it may
be. The results of these commands are shown in figure 13.3.

 If we want to use more precision in reading the XML file, we have to turn to the
Select-XML cmdlet in PowerShell v2. This uses XPath to read the file. Now before
everybody runs shrieking from the room, XPath is quite logical and straightforward to
use. We can only provide an overview here, but there are XPath tutorials on MSDN or
http://w3schools.com.

 Select-XML expects the path to the XML file and an XPath search query to retrieve
the XML nodes in which we’re interested D. The easiest way to understand the query
is to follow it down through the XML file. /PowerShell/blogs/blog means that we
start at the root of the XML <PowerShell>, then follow through <blogs> and select all
of the nodes labeled <blog>. The output is shown in figure 13.3.

 Unfortunately, we don’t get quite what we wanted, as the display shows. Select-
XML returns XML node objects rather than the information in those nodes. We need

Find 1st bookF

Find last bookG

H Navigate

ComparisonI

Access valueJ

http://w3schools.com

408 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer
an extra step to get the actual data E. Using a Select-Object and expanding the
node property, we can now see the information we wanted, as displayed in figure 13.3.

 We can be more precise in how we retrieve data, as the remaining examples
illustrate. /PowerShell/books/book[1] F will return the first book node, whereas
/PowerShell/books/book[last()] G will return the last. We can also navigate
through the XML /PowerShell/blogs/blog[last()-1] H, which will return the
second-to-last blog.

 It’s also possible to perform comparisons I. /PowerShell/books/book[year>2008]
/title will return the title of any book whose year (of publishing) is greater than 2008.

 We can also select the text (data) in the XML node J. For example, /PowerShell/
books/book/title/text() will select the text from the title node. If we stop at just
expanding the node, we get a lot of information returned that masks the data. We use
a second select to restrict our output to the textural data (value) that we require.
Comparing the results with and without the final select is a worthwhile exercise.

PSCX PowerShell Community Extensions also have a cmdlet called Select-
Xml.

This section has supplied the basics of working with XPath via Select-XML. The tutori-
als and further experimentation are strongly recommended.

Figure 13.3 The output of using Select-String and Select-Xml on our example XML file.

409TECHNIQUE 167 Backing up the IIS configuration
Apago PDF Enhancer

TECHNIQUE 167 Backing up the IIS configuration
At the beginning of the chapter, I suggested that backing up the IIS configuration was
a good idea. The first law of admins: “He who backs up lives to restore another day.”
We’ve seen that the configuration files are XML-based. XML is effectively text, so we
could just copy the files. But that means tracking down their hiding place. There’s a
better way.
PROBLEM
We’re about to make a change to the configuration of our IIS server and need to back
up the configuration so we can perform a rollback on the change if problems arise.
SOLUTION
The IIS provider supplies a cmdlet we can use to perform the backup. Our backup
mechanism isn’t hugely sophisticated, but it does give us a quick and easy way to cre-
ate a configuration backup. The normal backup systems can then back up our backup
files to tape, and so forth.

DATA BACKUPS This technique performs a backup on the configuration; it
doesn’t back up the files in our websites and web applications.

We don’t have a lot of control over the location of the backup files. They have to be in
a subfolder of “$($env:windir)\system32\inetsrv\backup”. This means that we need to
ensure we have a way of distinguishing between backups. We can manage this using
the name of the subfolder we create to store the backups, as in listing 13.20.

$d = Get-Date
$folder = "PIP-IIS-Backup-$($d.Year)-$($d.Month)-$($d.Day)"
Backup-WebConfiguration -Name $folder

DISCUSSION
The easiest (and probably best) distinguisher is date-based as shown in the script. We start
by retrieving the current date with Get-Date. A folder name is created using the year,
month, and day portions of the date. A prefix has been supplied. This is useful if backups
are taken for specific reasons. The final step is to call Backup-WebConfiguration with the
name of the folder as the argument.

MULTIPLE DAILY BACKUPS Multiple backups taken in the same day will over-
write each other with this naming convention. Add seconds to the name if
more than one backup per day is required.

The results of the backup are shown in the following directory listing:

PS> Get-ChildItem $env:windir\system32\inetsrv\backup -Recurse

 Directory: C:\Windows\system32\inetsrv\backup

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 29/05/2009 21:28 PIP-IIS-Backup-2009-5-29

Listing 13.20 Backup IIS configuration

TECHNIQUE 167

410 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

 Directory: C:\Windows\system32\inetsrv\backup\PIP-IIS-Backup-2009-5-29

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 19/04/2008 16:44 14256 administration.config
-a--- 29/05/2009 21:12 56057 applicationHost.config
-a--- 03/10/2007 21:31 490 redirection.config

These files are backed up as a set and restored as a set. It’s not possible to restore only
one of the files, for instance. The backup sets that are available can be viewed using:

Get-ChildItem "$($env:windir)\system32\inetsrv\backup"

A restore can be performed using the name of the folder as follows:

Restore-WebConfiguration -Name "PIP-IIS-Backup-2009-5-29"

Old backups can be pruned using Remove-Item. Thinking about what we’ve discussed
throughout the book, how could we remove backup folders that were more than three
months old? As a clue, remember the PSIsContainer and CreationTime properties of
folders, and that Get-Date has an AddMonths method.

 We can protect our configuration files (from ourselves if required); now we can
look at reading the files and then at modifying them.

TECHNIQUE 168 Reading web configuration files

Before we can do anything with the web configuration files, we need to know where
they’re located. This can be achieved by using the Get-WebConfigFile cmdlet:

PS> Get-WebConfigFile

 Directory: C:\Windows\system32\inetsrv\config

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 29/05/2009 21:12 56057 applicationHost.config

Note that this is one of the files we saw when we were looking at the results of backing
up the configuration file. Get-WebConfigFile only returns the filesystem path to the
configuration; it doesn’t display the contents.
PROBLEM
We need to view the contents of a web configuration file.
SOLUTION
We can either display the file onscreen or we can open it in an editor, as shown in list-
ing 13.21. Get-Content B is the standard PowerShell method of accessing the con-
tents of a file. This will display the contents of the file on screen. These files are too
big for this to be viable.

 Get-WebConfigFile without a path returns the server configuration file. We can
use a simple editor, such as Notepad, to display the file C. Note that we use a path in
the IIS provider to determine the location of the file.

TECHNIQUE 168

411TECHNIQUE 169 Modifying web configuration files
Apago PDF Enhancer

Get-Content -Path (Get-WebConfigFile)

notepad (Get-WebConfigFile "iis:\sites\testnet")

DISCUSSION
The file can then be searched. We can also scroll through the file using the normal
controls.

 Alternatives include using:

Select-String -Path (Get-WebConfigFile "iis:\sites\default web site")
-Pattern "Authentication" -SimpleMatch

or the XPath queries we saw in section 13.4.2. Both of these alternatives rely on our
understanding the structure of the file, which we can learn from the techniques in
this section. Start by using the generic techniques, and as we develop a greater under-
standing of the configuration files, we can be more specific in our searches.

 Reading the files is only half the problem. We also need to know how to modify
them.

TECHNIQUE 169 Modifying web configuration files

The scripts we created in the earlier parts of the chapter will modify the IIS configura-
tion. When we change the bindings for a website, for instance, the changes will be
stored in the configuration file. In many cases, it’s better to make the changes at the
object level rather than change the configuration file. This ensures that the configura-
tion file is updated correctly. But not all changes can be performed in this way.
PROBLEM
The authentication settings need to be modified on our IIS server. We need to enable
basic authentication.
SOLUTION
We can modify the server-level configuration file to accomplish this change, as in list-
ing 13.22. We don’t want to spend time performing tasks that are unnecessary, so we’ll
start by checking the authentication configuration of our server B. The -Filter
parameter accepts an XPath query to enable the information to be retrieved from the
file. If you’ve examined the configuration file as suggested in the previous example,
you’ll realize why we used a simple file to investigate XPath earlier in the section.
There’s a method to our madness after all.

 The -Path parameter uses IIS provider paths to find the configuration file. We
select the properties we need and display the data in a table.

Get-WebConfiguration
-Filter system.webServer/security/authentication/*[@enabled]
-PSPath iis:\ |
select ItemXPath,enabled | Format-Table -AutoSize

Listing 13.21 Read a configuration file

Listing 13.22 Modify a configuration file

Display onscreenB
Open in editorC

TECHNIQUE 169

View authenticationB

412 CHAPTER 13 IIS 7 and XML
Apago PDF Enhancer

Get-WebConfiguration
-Filter system.webServer/security/authentication/*[@enabled]
-PSPath iis:\sites\testprov |
select ItemXPath,enabled | Format-Table -AutoSize

Get-WebConfiguration
-Filter system.webServer/security/authentication/*[@enabled] |
Get-Member

Set-WebConfiguration
-Filter system.webServer/security/authentication/basicAuthentication
-Value @{enabled="True"} -PSPath iis:\

DISCUSSION
There are configuration files at a number of levels on our IIS server. We can also
examine the same information on the website C rather than the server. Note that the
configurations such as authentication do flow down from the server to the site.

 The properties we’re selecting in B and C aren’t obvious, so how do we know
what to use? Get-Member D enables us to view the properties of the object. We can
then select the ones we’re interested in. The examples in the help files are also a good
place to find this type of information.

 So far we’ve been reading using Get-WebConfiguration. Now we make the modifi-
cation using Set-WebConfiguration E. Note that we take the filter down a level to
the basicAuthentication node. The new value is supplied as a hash table. It’s possi-
ble to make multiple changes in one hash table. The hash table key is the property
we’re changing, and the value is its new value as shown. We still need to supply the
path to the configuration file. We could repeat B to view the configuration changes.

PRIVILEGES PowerShell needs to be started with elevated privileges to modify
the web configuration files on Windows Server 2008, but not on Windows
Server 2008 R2

We’ve seen how to create and administer websites, but these sites need content. We
can create that content directly from PowerShell if required.

TECHNIQUE 170 Creating HTML

There’s always a need to store information about the computers we administer. In the
next chapter, we’ll look at using SQL Server as the storage mechanism. An alternative
is to create web pages holding the information. Creating these pages by hand would
be tedious and time consuming, so we need to think about automating the process.
PROBLEM
We need to create web pages to store information about the machines in our
environment.
SOLUTION
This problem can be solved using ConvertTo-Html. There’s a simple three-stage pro-
cess to solving this problem. We start by generating information—in this case we’re
using Get-Process. With PowerShell v2, we can use the computername parameter and
generate results for remote machines. In PowerShell v1, we can use WMI

Check at site levelC
View
configuration
properties

D

EEnable basic authentication

TECHNIQUE 170

413Summary
Apago PDF Enhancer

(Win32_Process class). Other information sources include Get-Service and the WMI-
based scripts we saw in chapters 7 and 8.

 The second stage of our process is to convert the data into HTML that we can dis-
play in our web pages, as in listing 13.23. We can use the parameters of ConvertTo-
Html to select object properties, to specify a table or list format, to specify the HTML
page title, to add text before and after the object, and to return only the table or list
fragment, instead of a strict DTD page.

Get-Process | ConvertTo-Html -As TABLE | Out-File -FilePath t2.html

DISCUSSION
This cmdlet has been enhanced in PowerShell v2; for instance the -As parameter
enables us to format the data as a table or as a list. Choosing table produces an out-
put similar to that produced by Format-Table, whereas choosing list produces an
output that generates a two-column list (property name and value) similar to Format-
List. In PowerShell v1, we can only produce an HTML table.

 ConvertTo-Html outputs to the screen. We need the third stage of our process to
produce a file we can put into our website. In this case, we use out-file. We could use
Set-Content (or even Add-Content) as an alternative.

 If we want to view the results of this script, we can open the file in our favorite web
browser using:

Invoke-Item t2.html

We can view multiple HTML files by using Get-ChildItem and piping into Invoke-
Item. This will open each file in a separate browser tab. If we want to view the whole
site, we can do that by using:

Start-Process www.microsoft.com

This only works with the release version of PowerShell v2.

13.5 Summary
There are a number of PowerShell tools available for administering IIS. It’s recom-
mended that the IIS provider and PowerShell remoting be used to give the best expe-
rience. This means adopting PowerShell v2 as soon as is practical.

 Websites, application pools, virtual directories, and web applications can all be
administered using PowerShell. The provider supplies functionality to support the
whole lifecycle.

 IIS configuration files are XML. The techniques, such as XPath, that are used for
working with these configuration files can be applied to other non-IIS XML files.

 Many of our applications, including those hosted in IIS, require a database to store
the associated data. Now it’s time to turn our attention to administering SQL Server
with PowerShell.

Listing 13.23 Creating a web page

SQL Server
Apago PDF Enhancer

Any Windows-based environment is more than likely to have SQL Server installed
somewhere. In addition to being used as a database in its own right, it also appears
as a data store for a number of other Microsoft products including SharePoint,
Operations Manager, and Configuration Manager.

 SQL Server has a powerful scripting language in the shape of T-SQL. Many SQL
Server experts will say they don’t need PowerShell, as they can administer SQL
Server quite happily using T-SQL.

 Unfortunately, in many organizations the opportunity to specialize in one prod-
uct, such as SQL Server, is disappearing. The phrase “Do more with less” seems to crop
up frequently. I’ve even been known to use it myself when talking about PowerShell.
Chad Miller discussed this in a blog posting “The Value Proposition of PowerShell to
DBAs.” The following was one of my comments in the follow-up discussion:

This chapter covers
■ Configuring SQL Server
■ Creating and administering databases
■ Creating and managing database objects such

as tables and indexes
■ Manipulating data in a SQL Server database
414

415Automating SQL Server administration
Apago PDF Enhancer

Chad gives a number of benefits of learning PowerShell. I think that one of the most
compelling reasons is that it’ll be a part of all future Microsoft server products—look
what is happening with Windows 2008 R2—and provides a common automation
platform across your Microsoft estate. PowerShell gives us the possibility of
integrated, automated administration across your servers and applications.

In other words: the theme of this book. PowerShell shouldn’t be thought of as a
replacement for T-SQL, but for the generalist administrator who has a number of serv-
ers and applications to administer, it’s the way forward. It has a lot to offer the pure
DBA in terms of automation especially in SQL Server 2008.

 Having said all that, what are we going to learn regarding PowerShell and SQL
Server? We’ll start by looking at SQL Server Management Objects, which is the .NET
object model for administering SQL Server. This will lead into server administration
and database administration. We’ll create a configuration database together with the
tables to hold the data. This was discussed in chapter 7. We’ll examine methods of
working with data held in SQL Server, including creating, reading, and deleting. We’ll
also discover how to back up our databases.

WINDOWS SERVER 2008 R2 AND POWERSHELL V2 SQL Server 2008 will install on
R2 with PowerShell v2. It needs SQL Server 2008 SP1 to complete the install.
The install will also work on Windows Server 2008 if PowerShell v2 is installed
first. I wouldn’t recommend installing PowerShell v2 over a PowerShell v1 on
a production machine. I’ve heard of issues when this happens.

Our starting point will be how we automate SQL Server administration.

14.1 Automating SQL Server administration
SQL Server has a number of tools such as T-SQL and SQL Server Agent jobs that can be
used to automate administration. The Policy-Based Administration introduced in SQL
Server 2008 adds another strand.

 PowerShell can be used to augment or replace these tools. Not a lot of SQL Server
material is available compared to some other products. Idera (http://www.idera.com)
has some scripts available for download from its website and CodePlex (http://
www.codeplex.com) has the SQL Server PowerShell Extensions. After a few blog posts,
we start to run out. This chapter aims to plug some of that gap. Our starting point is
discovering more about SMO.

14.1.1 SMO

SQL Server Management Objects (SMO to its friends) is a .NET management interface
introduced with SQL Server 2005. It’s a hierarchical object model in that servers
contain databases, which contain tables, which contain columns, and so on. SMO can
be used to programmatically manage SQL Server 2000 and later. We can use it
in PowerShell, but there’s one slight snag in that it’s not loaded into PowerShell
by default.

http://www.idera.com
http://www.codeplex.com
http://www.codeplex.com

416 CHAPTER 14 SQL Server
Apago PDF Enhancer

 We overcome this by loading the SQL Server client tools on the machine we’re going
to use for administration. If you load the latest version of the tools (SQL Server 2008),
you should be able to administer SQL Server 2000, 2005, and 2008 with them. The SMO
.NET assemblies are installed with the tools and we can then load them into PowerShell,
as in listing 14.1.

$null = [reflection.assembly]::
LoadWithPartialName("Microsoft.SqlServer.ConnectionInfo")

[void][reflection.assembly]::
LoadWithPartialName("Microsoft.SqlServer.SmoEnum")

[reflection.assembly]::
LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null

With SQL Server 2005, we have three assemblies to load as shown. They all use the
LoadWithPartialName static method to perform the load. The full name of the assem-
bly could be discovered and used instead if preferred. Three different techniques are
used to suppress the messages produced by loading the assemblies. We can use $null
to absorb the messages; we can use the .NET [void], which serves the same purpose
(but might seem too developer-like), or we can pipe the results to Out-Null. Pick
whichever you prefer, as they work equally well. In PowerShell v2, I’d use Add-Type to
load the assembly.

 We could put these three lines in each script that uses SMO, but it’s more efficient
to execute them as part of the PowerShell profile or in a specific script that we dot-
source to perform the load. A similar technique can be used with SQL Server 2008,
but it’s more complicated, as we’ll see.

14.1.2 SQLPS

SQL Server 2008 brings us PowerShell by default. It’s a prerequisite for installation.
The way PowerShell has been implemented in SQL Server 2008 is different from the
other applications we’ve examined. The SQL Server team has created a separate
implementation of PowerShell known as sqlps.exe. In the early beta version of Power-
Shell (back when it was called Monad), the only way to extend PowerShell was to
recompile the shell, incorporating your DLL in the process. This is how SQL Server
implements PowerShell.

 One other major difference is that sqlps is a closed shell. This means we can’t add
any snapins to it. In fact, the *-PsSnapin cmdlets aren’t available in sqlps. PowerShell
in SQL Server 2008 gives us a provider and a few cmdlets. One issue with the provider
is that New-Item doesn’t work, so it can’t be used for creation. The other *-Item cmd-
lets do work. We’ll see a little of the provider in this section, but I’m going to concen-
trate on using SMO.

 There’s one exceptional aspect of the PowerShell functionality in SQL Server 2008.
If you right-click an object such as a database, table, or job in SQL Server Management

Listing 14.1 Load SQL 2005 SMO assemblies

417Automating SQL Server administration
Apago PDF Enhancer

Studio (GUI), the context menu includes the option to open PowerShell at that point.
We can jump straight into the provider without navigating down the tree. The GUI
enables us to work with local and remote servers. This extends to PowerShell as well. We
can use the provider against remote machines, but we have to type in the machine name
rather than it being automatically available. This is another way of working remotely.

 One thing we can do is load the SQL Server 2008 functionality into a standard Pow-
erShell session. Normally, with something like Exchange 2007 or IIS 7, it’s a simple mat-
ter of loading the appropriate snapins. With SQL Server 2008, it’s more complicated.
The script in listing 14.2 is adapted from that shown on Michiel Worie’s blog http://
blogs.msdn.com/mwories/archive/2008/06/14/SQL2008_5F00_Powershell.aspx.

$ErrorActionPreference = "Stop"

$sqlpsreg = "HKLM:\SOFTWARE\Microsoft\PowerShell\1\
ShellIds\Microsoft.SqlServer.Management.PowerShell.sqlps"

$item = Get-ItemProperty $sqlpsreg
$sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)

$assemblylist =
"Microsoft.SqlServer.ConnectionInfo ",
"Microsoft.SqlServer.SmoExtended ",
"Microsoft.SqlServer.Smo",
"Microsoft.SqlServer.Dmf ",
"Microsoft.SqlServer.SqlWmiManagement ",
"Microsoft.SqlServer.Management.RegisteredServers ",
"Microsoft.SqlServer.Management.Sdk.Sfc ",
"Microsoft.SqlServer.SqlEnum ",
"Microsoft.SqlServer.RegSvrEnum ",
"Microsoft.SqlServer.WmiEnum ",
"Microsoft.SqlServer.ServiceBrokerEnum ",
"Microsoft.SqlServer.ConnectionInfoExtended ",
"Microsoft.SqlServer.Management.Collector ",
"Microsoft.SqlServer.Management.CollectorEnum"

foreach ($asm in $assemblylist)
{[void][Reflection.Assembly]::LoadWithPartialName($asm)}

Set-Variable -scope Global -name SqlServerMaximumChildItems -Value 0
Set-Variable -scope Global -name SqlServerConnectionTimeout -Value 30
Set-Variable -scope Global -name SqlServerIncludeSystemObjects -Value $false
Set-Variable -scope Global -name SqlServerMaximumTabCompletion -Value 1000

Push-Location
cd $sqlpsPath
Add-PSSnapin SqlServerCmdletSnapin100
Add-PSSnapin SqlServerProviderSnapin100
Update-TypeData -PrependPath SQLProvider.Types.ps1xml
Update-FormatData -prependpath SQLProvider.Format.ps1xml
Pop-Location

I put this into a script that I call from my profile. That way, it’s always loaded when I
start PowerShell. The script starts by ensuring that the script will stop in the event of

Listing 14.2 Load SQL 2008 SQL server provider

http://blogs.msdn.com/mwories/archive/2008/06/14/SQL2008_5F00_Powershell.aspx
http://blogs.msdn.com/mwories/archive/2008/06/14/SQL2008_5F00_Powershell.aspx

418 CHAPTER 14 SQL Server
Apago PDF Enhancer

an error. We then read the registry key that gives us the path to sqlps.exe and use it to
derive the path.

 There are a large number of assemblies loaded in this script. The names are
defined, and then a foreach is used to perform the load. The first three assemblies on
the list are the direct equivalents of the SQL Server 2005 SMO assemblies. If only the
SMO functionality is required, just load the three assemblies.

 A few variables are set that control how the provider works, and then we load the
SQL Server 2008 snapins and update the type data. The provider has a few odd ideas
on formatting and the default data to display, so be prepared to override with Select-
Object and Format-Table as required.

ASSUMPTION All of the scripts in this chapter will be shown in an environ-
ment where either listing 14.1 or listing 14.2 has been run prior to execution.
In other words, SMO and/or the PowerShell provider is loaded into my Pow-
erShell session before I run any of the scripts. The default environment for
my scripts is SQL Server 2008, though they were originally developed on SQL
Server 2005.

The scripts in the bulk of the chapter will show alternative solutions using the SQL
Server provider and SMO where possible. Database systems don’t get refreshed as
often as other systems in many organizations. I know of organizations that are still in
the process of upgrading to SQL Server 2005, or can’t upgrade to SQL Server 2008
because the applications aren’t supported on that platform. There will be a need for
the SMO scripts for a good while yet.

 We’ve seen that SMO and the provider are both hierarchical in nature. The server
object is at the pinnacle of that hierarchy, so that’s where we’ll start.

14.2 Server administration
When we think about administering servers, whatever the application, we tend to con-
centrate on a few basic questions:

■ Are the correct services running?
■ Are we running the right versions of the software?
■ Have we configured our applications correctly?

We might also consider checking particular performance counters if we suspect a par-
ticular problem and need to investigate further. We also need to consider recording
performance counter data for baselining server performance.

TECHNIQUE 171 Checking service health

Service health is the basic question of whether the services our application needs are
running on the server. If they aren’t, we know at least part of one problem we have to
solve before we can restore user access.
PROBLEM
The SQL Server services must be checked to see whether they’re running. Any depen-
dencies must also be checked.

TECHNIQUE 171

419TECHNIQUE 171 Checking service health
Apago PDF Enhancer

SOLUTION
We don’t have a specific cmdlet for this as we do with Exchange, but we can use Get-
Service to solve this problem, as shown in listing 14.3. This script breaks down into
two nested calls to Get-Service. The first call B performs a Get-Service using *sql*
as a filter to catch all of the SQL Server services. A sort is performed on the display
names to produce an ordered output. The example shows it being run on the local
machine, but with PowerShell v2 we could make this work on a remote machine.

WMI An alternative would be to use the Win32_Service class, which would
also allow us to work with remote machines.

The status is checked and a message is written C to give the service name and its sta-
tus. Write-Host gives us the option to set the foreground and background colors. I’ve
been told many times that I have no color sense, so if this choice isn’t suitable the col-
ors can be altered. The help file for Write-Host should be checked for the allowable
color names.

Get-Service *sql* |sort -property Displayname | foreach{

 If ($_.Status -eq "Stopped") {
 Write-Host `n $_.DisplayName, "is" $_.Status
 -foregroundcolor Red -backGroundColor White}
 Else {
 Write-Host `n $_.DisplayName, "is" $_.Status }

 Get-Service $_.Name |
 select -ExpandProperty ServicesDependedOn |
 foreach{
 If ($_.Status -eq "Stopped") {
 Write-Host `t "is dependent on",
 $_.DisplayName, which is",
 $_.Status
 -foregroundcolor Red `
 -backGroundColor White}

 Else {Write-Host `t "is dependent on", $_.DisplayName, "which is",
 $_.Status }
 }
}

DISCUSSION
A second call to Get-Service is performed D. This uses the name of the individual
service to restrict the output. This time, though, we use the ExpandProperty parame-
ter of Select-Object to get the services SQL Server depends on. This will show us
whether our services have a problem because of a dependency. The status of each of
the services we’re dependent on is displayed E with suitable coloring of the text.

 There are often multiple versions of SQL Server running in an organization. It’s
important that we know which one is running on which server.

Listing 14.3 View SQL Service Health

Get servicesB

Check
status

C

Get dependenciesD

Check status E

420 CHAPTER 14 SQL Server
Apago PDF Enhancer

TECHNIQUE 172 Viewing the server version
The version of SQL Server that’s in use on our systems can become a vital piece of
information:

■ Does the application we need to install work with the versions of SQL Server we
have installed?

■ Are we up-to-date with service packs?
■ Do we need to upgrade or replace any of our current systems because that ver-

sion is no longer supported?

For a small number of systems, we might remember this information. If there are a
larger number of SQL Server instances, we may have it written down. Alternatively, we
can go and find the information.
PROBLEM
We need to determine the version of SQL Server installed on our systems so that we
can determine which machines would be suitable for installing a new application our
manager is keen to introduce.
SOLUTION
This information is stored in the VersionString property of the server object. Our first
SMO script, shown in listing 14.4, starts by getting the server object that represents our
SQL Server. The hierarchical nature of SMO means that you’ll be seeing lines similar to
this all through the chapter. The time to worry is when you start dreaming in SMO!

$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")

$ver = $Server.Information.Properties | Where {$_.name -eq "VersionString"}
 switch ($ver.Value.SubString(0,9))
 {
 "8.194.0" {Write-Host $svr "SQL Server 2000 RTM"; break}
 "8.384.0" {Write-Host $svr "SQL Server 2000 SP1"; break}
 "8.534.0" {Write-Host $svr "SQL Server 2000 SP2"; break}
 "8.760.0" {Write-Host $svr "SQL Server 2000 SP3"; break}
 "8.00.2039" {Write-Host $svr "SQL Server 2000 SP4"; break}
 "9.00.1399" {Write-Host $svr "SQL Server 2005 RTM"; break}
 "9.00.2047" {Write-Host $svr "SQL Server 2005 SP1"; break}
 "9.00.3042" {Write-Host $svr "SQL Server 2005 SP2"; break}
 "9.00.4035" {Write-Host $svr "SQL Server 2005 SP3"; break}
 "10.0.1300" {Write-Host $svr "SQL Server 2008 CTP6"; break}
 "10.0.1600" {Write-Host $svr "SQL Server 2008 RTM"; break}
 "10.0.2531" {Write-Host $svr "SQL Server 2008 SP1"; break}
 default {Write-Host $svr "version cannot be determined"; break}
 }

DISCUSSION
The only parameter we need to give is the server name—the hostname. Our example
is a default instance. If we need to access a named instance we can use:

Server_name\instance_name, port_number

Listing 14.4 View server version

TECHNIQUE 172

http://connectionstring.com
http://connectionstring.com

421TECHNIQUE 173 Viewing server configuration
Apago PDF Enhancer

instead of the server name, where the port_number is the TCP port used by the partic-
ular instance of SQL Server. The version string can be found on the information prop-
erties. We’ll see the different property groupings in the next section. The first nine
characters of the version string are sufficient for our purposes.

 A switch statement is used to test the value of the version string. Note the use of
break to force the switch statements not to test other options. It makes this code
slightly faster, and will avoid ambiguous answers in other switch statements. The
default statement is useful to find any versions you have missed and as a reminder to
upgrade the script when new service packs are released.

 The version numbers can be found in Microsoft KB article 321185, (http://
support.microsoft.com/kb/321185) which is updated as new service packs and ver-
sions are released. I haven’t gone further back than SQL Server 2000, as previous ver-
sions don’t support SMO.

 This script may seem like a lot of work for one property, but if we parameterize the
server name, we can use our usual trick with CSV files to determine this information
for all our servers. The script should be modified to output the server name as well.

 We’ve seen how to access one server-level property. How can we access the others?

TECHNIQUE 173 Viewing server configuration

In one respect, SQL Server doesn’t have many moving parts. There isn’t a lot of config-
uration tuning required. The defaults mostly work well. But there are a lot of proper-
ties that can be configured if required. If we use the GUI to examine the properties,
we’re talking about several tabs’ worth on the dialog.

 I recently had to examine some SQL Server machines to determine their configu-
ration properties. The total listing was quite a few pages, using a small font. Did I type
all of that? Of course I did, boss; how else do you think I could do it?
PROBLEM
We need to determine the configuration properties of our SQL Server systems.
SOLUTION

This information is available in the property collections on the server object, as
shown in listing 14.5. Create the server object B. We have four sets of properties to
discover. Each of them is preceded by `n (new line—though you may get two as a
bonus) and a label. The server information C includes things such as the SQL Server
version, paths to the master database and logs, language, and the collation.

$Server =
New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")

"`n"
"Server Information"
$Server.Information.Properties | Select-Object Name, Value |
Format-Table -auto

"`n"

Listing 14.5 View server configuration

TECHNIQUE 173

Server
object

B

Server
information

C

http://support.microsoft.com/kb/321185
http://support.microsoft.com/kb/321185

422 CHAPTER 14 SQL Server
Apago PDF Enhancer

"Server Settings"
$Server.Settings.Properties | Select-Object Name, Value |
Format-Table -auto

"`n"
"User Options"
$Server.UserOptions.Properties | Select-Object Name, Value |
Format-Table -auto

"`n"
"Server Configuration"
$Server.Configuration.Properties |
Select-Object DisplayName, ConfigValue, RunValue, Description |
Format-Table -auto

DISCUSSION
The properties under server settings D include auditing, default data file and log file
locations, and the login modes. User options E brings us to the defaults for the ANSI
settings such as nulls, padding, and abort settings for exceptions. These settings can
be overridden in individual queries, but it makes more sense to configure the default
to match expected usage. By default, all of these are set to false.

 The server configuration properties F are the most extensive. These properties
have both a configured value and a running value. Keep this section in mind when we
start discussing the configuration database and think how we could get this informa-
tion into the database.

 Discovering the information is one thing, but sometimes we need to change it.

TECHNIQUE 174 Modifying the server configuration

Once SQL Server is running, we don’t need to make changes that often. But if differ-
ent people configure the servers without there being any defined standards, it’s possi-
ble for the systems to have different configurations.
PROBLEM
We need to alter our server so that all of our SQL Server instances have a consistent
configuration.
SOLUTION
We can access the server properties to perform our alterations. We saw in the previous
example how to access the server and properties. The property collections are accessed
as a collection. We can read the value of an individual property by using its name:

$Server.UserOptions.Properties["AnsiNulls"]

Substitute the name of the appropriate property for "AnsiNulls". The quotes are
required. The value of a property can be modified by using the value property of the
property:

$Server.UserOptions.Properties["AnsiNulls"].Value = $false

Confusing but logical.
 The change is saved using the Alter() method, as shown in listing 14.6. This is

consistent with SQL Server usage as in ALTER DATABASE and so forth, but means that

Server
settings

D

User
options

E

FServer
configuration

TECHNIQUE 174

423TECHNIQUE 175 Network configuration
Apago PDF Enhancer

across .NET we’ve now seen Save(), CommitChanges(), and Alter() all doing the
same job. This will cause errors until we get used to it. If in doubt, check the docu-
mentation on MSDN.

$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")
$Server.UserOptions.Properties["AnsiNulls"].Value = $false
$server.Alter()

$Server = new-object Microsoft.SqlServer.Management.Smo.Server("SQL08")
$Server.UserOptions.Properties | Select-Object Name, Value |
Format-Table -auto

DISCUSSION
This script could be modified by adding more properties to change so that it sets every
property on the server to your organization’s requirements. This would be a good way
of enforcing consistency on a server estate. The script could even check the actual
value and only perform changes if the value had deviated from the standard. I’ll leave
that as an exercise for you; I don’t have the space to cover it here.

 There are other configuration options concerning the network that aren’t
included in the property sets we’ve been working with. These control the server’s net-
work communication and are vital to SQL Server’s usability.

TECHNIQUE 175 Network configuration

SQL Server is useless without a network. Just try pulling the network cable and see how
long it is before your users start shouting. Communication obviously depends on the
networking components in the Windows OS. It also depends on SQL Server’s network
configuration. There isn’t much to configure. There are the protocols to use, together
with the IP addresses and ports SQL Server is listening on.

 This is the information we want to know about. There’s a GUI tool for this, but it
isn’t accessible remotely. We must either visit the machine, remote desktop into it, or
try scripting.

 Unfortunately, SMO doesn’t give us a way to getting at this information. As with
many other areas of administering a Windows environment, WMI comes to the rescue.
Microsoft has made a huge effort with WMI, and I suspect that it’s one of the most
underappreciated and underrated technologies in the Windows infrastructure. Power-
Shell has given it a new lease on life, and now we apply it to SQL Server.
PROBLEM
Having inherited a number of SQL Server machines, and incomplete documentation
(nonexistent in many cases), we need to discover the network settings to ensure that
clients and servers are using the same protocols for communication.
SOLUTION
We can access the information remotely through the WMI provider, as in listing 14.7.
Our earlier looks at WMI showed us that WMI is organized into namespaces under
the root. The SQL Server WMI provider (automatically installed in SQL Server 2005

Listing 14.6 Modify configuration

TECHNIQUE 175

424 CHAPTER 14 SQL Server
Apago PDF Enhancer

and 2008) adds the namespace B. In SQL Server 2005, it’s Microsoft\SqlServer\
ComputerManagement, and in SQL Server 2008, it’s Microsoft\SqlServer\Computer-
Management10, just to be confusing.

 We can find the classes available by using the –List parameter. Best of all, we can
do this remotely by supplying a computer name.

 When we look at the available classes, those to do with protocols are quickly appar-
ent. SQL Server has two sets of protocols—client and server. The client and server pro-
tocols are configured on their respective machines. The server also has a client protocol
for local access. There must be a protocol in common for communication to occur.

Get-WmiObject -computername SQL05
-Namespace 'root\Microsoft\SqlServer\ComputerManagement' -List

Get-WmiObject -computername SQL05
-Namespace 'root\Microsoft\SqlServer\ComputerManagement'
-Class ClientNetworkProtocol |
Format-Table ProtocolDisplayName, ProtocolOrder -AutoSize

Get-WmiObject -computername SQL05
-Namespace 'root\Microsoft\SqlServer\ComputerManagement'
-Class ServerNetworkProtocol |
Format-Table ProtocolDisplayName, Enabled -AutoSize

Get-WmiObject -computername SQL05
-Namespace 'root\Microsoft\SqlServer\ComputerManagement'
-Class ServerNetworkProtocolProperty `
-Filter "ProtocolName='Tcp'" |
Format-Table PropertyName, PropertyStrval,
PropertyNumVal -auto

Get-WmiObject -computername SQL05
-Namespace 'root\Microsoft\SqlServer\ComputerManagement'
-Class ServerSettings

We find the client protocol settings (on the server) using the ClientNetworkProtocol
WMI class C. We only need to consider the ProtocolDisplayName and Protocol-
Order properties. A protocol order of zero (0) means that the protocol is disabled.

 The server protocols are discovered using the ServerNetworkProtocol class D.
This time we need the ProtocolDisplayName and Enabled properties, to be consistent.
If we drill deeper into the namespace, we’ll find the ServerNetworkProtocolProperty
class. We can use this to discover the properties associated with the protocols. Using a
filter E, we restrict our information to the TCP/IP settings by using the protocol name.
Properties either have numeric or string-based values, so we can display both as well as
the property name. Just be aware that some values will be blank (null). Of particular
interest are the properties named IP address, which stores the IP addresses associated
with the server, and the TcpPort property. The port is especially important on a named
instance or multi-instance server. as it will vary from the default 1433.

 We also have a class F to retrieve the server settings.

Listing 14.7 Network Protocols

Get
classes

B

Client
protocols

C

Server
protocols

D

TCP
settings

E

Server
settings

F

425TECHNIQUE 176 Viewing performance counters
Apago PDF Enhancer

DISCUSSION
Running this as a single script may cause formatting errors due to the interaction of
multiple calls to Format-Table and the default formatter. The commands can either
be run from the command line, or the Format-Table calls could be replaced by a
Select-Object cmdlet. If the information is destined for a file of some kind, the
select is probably a better choice.

 There’s a lot of documentation available about wrapping these WMI classes in SMO
code, but with PowerShell that’s an unneeded complication. I recommend accessing
the WMI classes directly through PowerShell.

SQL SERVER 2000 There’s a WMI provider for SQL Server 2000—root/Micro-
softSQLServer—but it has to be installed separately. The installation files are
on the CD. I haven’t investigated it, given the age of SQL Server 2000 and its
lifecycle position.

Server performance always needs to be monitored.

TECHNIQUE 176 Viewing performance counters

“The server is running slow.” How many times is a problem introduced to us this way?
An even worse version is, “Mr. X says the server is running slow” where we don’t even
get to talk to the user directly.

 The problem is knowing where to start with solving this issue. Often, it isn’t a
server problem but an application issue. We still need to check the server to rule it out
potential problems. One if the best ways is to use performance counters.

 Windows has a lot of performance counters covering every aspect of the server
operation including processor, memory, disk, and network. Applications such as SQL
Server add another layer of counters. Any long-term benchmarking may be better
done through the performance monitoring tools, but ad-hoc investigations can be
performed easily using the PowerShell v2 Get-Counter cmdlet.
PROBLEM
Our server’s performance counters need to be accessed and displayed to monitor pro-
cessor usage.
SOLUTION
PowerShell v2 introduces the Get-Counter cmdlet for this. Our first example,
listing 14.8, displays the total processor utilization on the system B. There’s a
-ComputerName parameter so we can access remote machines. This syntax will pro-
duce a single sample, because we’ve limited ourselves using the -Maxsamples param-
eter. We can keep producing values by using the -Continuous parameter, and we
can also modify the sampling interval from the default once per second.

PS> Get-Counter -Counter "\Processor(_total)\% Processor Time"
 -MaxSamples

Timestamp CounterSamples

Listing 14.8 View performance counters

TECHNIQUE 176

Default
display

B

426 CHAPTER 14 SQL Server
Apago PDF Enhancer

--------- --------------
30/06/2009 15:44:46 \\rslaptop01\processor(_total)\
 % processor time :
 1.53783037475346

PS> (Get-Counter -Counter "\Processor Information(_total)\
% Processor Time" -MaxSamples 1).CounterSamples |
Select *

Path : \\rslaptop01\processor information(_total)\
 % processor time
InstanceName : _total
CookedValue : 0.76859960552268
RawValue : 269354602620
SecondValue : 128908467546756000
MultipleCount : 1
CounterType : Timer100NsInverse
Timestamp : 30/06/2009 15:45:54
Timestamp100NSec : 128908503546756000
Status : 0
DefaultScale : 0
TimeBase : 10000000

PS> (Get-Counter -Counter "\Processor Information(_total)\
% Processor Time" -MaxSamples 1).CounterSamples |
Select CookedValue |
Out-Gauge -Type Digital -Refresh 00:00:01

DISCUSSION
The main problem with using this cmdlet is getting the counter names correct. We
can use:

Get-Counter -ListSet * | Select CounterSetName

to display the list of counters available. If we’re only interested in a particular subset,
then we can filter further using

Get-Counter -ListSet processor

The actual counter paths are found using:

(Get-Counter -ListSet processor).Paths

It’s worth the time investigating how the parameters are named, as it’s not always intu-
itive. The default display gives us more (and less) information than we require. We
can find the properties we really need by looking at the CounterSamples properties
C. This shows that the data value we want is in the CookedValue property.

 Selecting this value and piping into Out-Gauge (from PowerGadgets) gives a nice
digital counter D that can tick along, being refreshed every second showing the state
of the processor on our server. If PowerGadgets isn’t available, we could just display
the numeric values at a PowerShell prompt using the -Continuous parameter.

 There are a large number of SQL Server-specific counters that can be accessed via
this method. These include:

Property
list

C

Graphical
display

D

427TECHNIQUE 177 Finding databases
Apago PDF Enhancer

■ Buffer Management Object\Buffer Cache Hit ratio
■ Databases Object\Log Flush Waits/sec
■ Locks Object\Lock Waits/sec

Server administration tends to be intermittent. The real fun lies when we get down to
the databases.

14.3 Database administration
A SQL Server installation isn’t much use without databases. This section will look at
how we can use PowerShell to administer our databases. Creating databases and how
to work with the data inside a database is covered in the next section.

 Our starting point is discovering the databases that are actually on the system.

TECHNIQUE 177 Finding databases

There are two things we need to know immediately about our SQL Server. First, we
need to know what databases are installed on the system, and second, if they’re avail-
able to the users. If the databases are available, that means the users are working and
not phoning us. Important point—keep the users working; it’s quieter that way.
PROBLEM
Having just inherited a number of SQL Server systems, we need to discover the status
of the installed databases.
SOLUTION
We can find the databases using SMO or the provider. SMO objects need to be created
each time we want to use the functionality. That means we have to spend a lot of effort
typing in the names of the objects we want to create. One possible solution is to use a
variable to store the bulk of the object name, as in listing 14.9. This variable B can then
be used whenever we need to create an SMO object C such as a SQL Server object.

$Smo = "Microsoft.SqlServer.Management.Smo."
$server = New-Object ($Smo + 'server') "sql08"
$server.databases

Get-ChildItem SQLSERVER:\sql\SQL08\Default\databases

Get-ChildItem sqlserver:\sql\sql08\default\databases -Force

DISCUSSION
Once we have the server object, we can then access the databases collection D to pro-
duce the display shown in figure 14.1.

 In this example, we’re using the name of the SQL Server as the parameter. It’s pos-
sible to have multiple instances of SQL Server on a system. In this case, only the
default instance will be using port 1433 (the default TCP port for SQL Server). The
other instances require us to change the way we connect, either by using the server
name, the instance name, or the TCP port:

$server = New-Object ($Smo + 'server') "SQLXX\InstanceYY,Port_Number"

Listing 14.9 List databases

TECHNIQUE 177

B
C

View databasesD View through
provider

E

FView system
databases

428 CHAPTER 14 SQL Server
Apago PDF Enhancer

Or by using the IP address of the instance:

$server = New-Object ($Smo + 'server') "10.10.10.10,Port_Number"

Once the connection to the server is made, the other SMO objects behave as normal.

SQL SERVER 2000 If we’re connecting to SQL Server 2000, the default for-
matting may not work properly when objects are returned. In this case,
pipe into a foreach-object cmdlet or use select to choose the properties
to display.

An alternative method is to use the provider E. Get-ChildItem, used against the
SQL Server provider, will return similar information to figure 14.1. One major differ-
ence is that the system databases won’t show on the display. The provider doesn’t dis-
play the system databases by default. This means we don’t get a full view of our
server. How can we get around this? “Use the force, Luke.” Adding a –Force parame-
ter to Get-ChildItem F will override the providers default behavior and display the
system databases.

 The status column will show if database is offline. A status of Normal means that it’s
up and available for use. We can bring a database back online by using the provider:

$db = Get-Item sqlserver:\sql\sql08\default\databases\AdventureWorksLT
$db.SetOnline()

We can access the object through the provider and Get-Item. The SetOnline()
method will then bring the database back online. Alternatively, we can use SMO:

$server = New-Object ($Smo + 'server') "sql08"
$db = $server.Databases["AdventureWorksLT"]
$db.SetOnline()

A server object is created as before. We then need to access a particular database via
the databases collection. This is best done by using the database name, as shown. We

Figure 14.1 Viewing the databases using PowerShell and SMO

429TECHNIQUE 178 Viewing space used
Apago PDF Enhancer

can then call the SetOnLine() method. In case you were wondering, there’s a SetOf-
fline() method to take a database offline.

CAUTION The status of the database doesn’t always refresh correctly in Power-
Shell. If in doubt, try another way of viewing or open another instance of Pow-
erShell or SQLPS and view.

Now that we know what databases are available, our next task is to discover how much
disk space these databases are using.

TECHNIQUE 178 Viewing space used

Databases tend to keep getting bigger over time. It’s a rare database that actually
shrinks. One task we need to perform on a regular basis is monitoring the available
disk space on the server and checking our database sizes so we don’t run out of disk
space. That would be bad.

 I recently had to determine this information for a number of SQL Server instances.
Unfortunately, I didn’t have PowerShell available so I had to check each database indi-
vidually. There isn’t an easy way to get this information, as it’s stored with each data-
base rather than centrally. As you can imagine, this caused a lot of muttering and
unhappiness because I wasn’t able to do this in an efficient manner.
PROBLEM
We have to discover the size of the individual databases on our server so that we can
assign the correct amount of storage on a new server.
SOLUTION
The size of the data files and log files can be discovered on the database object, as in
listing 14.10. In the later versions of SQL Server, when we look at the front tab of a
database’s properties sheet we see the size and free space. Those numbers combine
the sizes of the data files and the log files. In this example, I’ve only considered a sin-
gle data file and log file for simplicity, but the scripts can be readily adapted to cope
with more complicated scenarios. We already access the log files via the collection as
we have to use LogFiles[0] to access the first log file.

Get-ChildItem sqlserver:\sql\sql08\default\databases | Format-Table Name,
@{Label="Size";Expression={($_.Size).ToString("F")}},
@{Label="Available";

Expression={($_.SpaceAvailable/1KB).ToString("F")}},
@{Label="LogSize";
Expression = {($_.LogFiles[0].Size/1KB).ToString("F2")}}
,@{Label="LogUsed";
Expression={($_.LogFiles[0].UsedSpace/1KB).ToString("F")}}

$Smo = "Microsoft.SqlServer.Management.Smo."
$server = New-Object ($Smo + 'server') "sql08"

"`n {0,20} {1,15} {2,15} {3,15} {4,15}" -f
"Name", "Size", "Available", "Log size", "Log Used"

Listing 14.10 View space used by databases

TECHNIQUE 178

Provider and
Format-Table

B

Server objectC

HeaderD

430 CHAPTER 14 SQL Server
Apago PDF Enhancer

foreach ($db in $Server.Databases)
{"`n {0,20} {1,15:n} {2,15:n} {3,15:n} {4,15:n}" -f
$db.Name, $db.Size, $($db.SpaceAvailable/1KB),
$($db.LogFiles[0].Size/1KB), $($db.LogFiles[0].UsedSpace/1KB)}

Our first example uses the provider to access the database information B. We then
use Format-Table to display the data. The name of the database is used directly, and
then we use a number of calculated fields to display the size and free space data.
We’ve seen calculated fields used in earlier chapters, but a brief recap may be use-
ful-especially if you aren’t reading the book cover to cover.

 We use a hash table to create the field. The key provides a name (in PowerShell v2
we can use Name as well as Label so the usage is consistent with Select-Object) and
the value is supplied as a script block via the Expression field. In this case, we’re tak-
ing the relevant property of the database or log file and dividing by 1KB where appro-
priate to convert everything to megabytes. The value is then converted to a string; use
the "F" formatter to restrict the display to two decimal places.
DISCUSSION
In PowerShell v2, we can be slightly more sophisticated, in that we can control the
alignment of the calculated fields. The default is to left align the fields but we can
change that by using:

@{Label="Size";Expression={($_.Size).ToString("F")};Alignment="Right"}

The alignment parameter can be used to right-align the fields and give a neater dis-
play. Check the -Property parameter in Format-Table help for full details of this and
the other changes to calculated fields.

 If we don’t have the provider available, we can use SMO. Our starting point is the
server object C. We then have to print our own header using the -f operator. The val-
ues on the right are substituted into their respective fields in the string on the left side
of the operator D. A foreach statement enables us to loop through the databases.
The same calculations to convert the values to megabytes are performed, but we don’t
need to worry about converting to strings and formatting when we substitute into the
display string E, as our clever friend -f does all that for us.

 An alternative approach would be to create an object with the appropriate values
for each property and use Format-Table to display.

 We can use listing 7.7 to get a report of free space on the appropriate volumes.
This together with the display from this example will provide the information we need
if we have to move a database to another volume or server.

 Databases, like all things, need regular maintenance. This is achieved by creating
SQL Server Agent jobs.

TECHNIQUE 179 Creating a job

SQL Server has a large number of features. One of the most useful from an adminis-
trator’s view is the SQL Server Agent service, which manages jobs, alerts, and associ-
ated tasks. SQL Server jobs are scheduled tasks that are managed by the SQL Server

Data
display

E

TECHNIQUE 179

431TECHNIQUE 179 Creating a job
Apago PDF Enhancer

Agent. They can have one or more steps, be run on demand or to a schedule, and can
use T-SQL, command-line utilities, and a number of other facets of SQL Server. In SQL
Server 2008, the job engine gained the ability to use PowerShell job steps.
PROBLEM
We need to create a number of jobs on our SQL Server system.
SOLUTION
We need to use the SMO classes that administer the SQL Server agent service for this
task, as shown in listing 14.11. Create a server object and then use that as a parameter
when creating the object for the job B. The other parameter is the job name. We can
add a description and a category. Jobs that we’ll create are usually in the [Uncatego-
rized (Local)] category. A job owner is established, and then we can create the job
on the server C. At this point, the job is a container that we need to fill with the work-
ing parts.

$Server =
New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")

$job =
New-Object Microsoft.SqlServer.Management.Smo.Agent.Job `
-ArgumentList $Server.JobServer, "Pip14"

$job.Description = "PowerShell - populate ConfigDB"
$job.Category = "[Uncategorized (Local)]"
$job.OwnerLoginName = 'MANTICORE\Richard'
$job.Create()

$step = New-Object Microsoft.SqlServer.Management.Smo.Agent.JobStep
($job, "Get-data")

$step.SubSystem = [Microsoft.SqlServer.Management.`
Smo.Agent.AgentSubsystem]::PowerShell
$step.Command = "get-service | out-file c:\scripts\serv.txt"

$step.OnSuccessAction =
[Microsoft.SqlServer.Management.Smo.Agent.`
StepCompletionAction]:: QuitWithSuccess
$step.OnFailAction =
[Microsoft.SqlServer.Management.Smo.Agent.`
StepCompletionAction]:: QuitWithFailure
$step.Create()

$job.ApplyToTargetServer($Server.Name)
$job.StartStepID = $step.id
$job.Alter()

$sched = New-Object Microsoft.SqlServer.`
Management.Smo.Agent.JobSchedule ($job, 'Schedule1')

$sched.FrequencyTypes =
[Microsoft.SqlServer.Management.Smo.Agent.`
FrequencyTypes]::Daily

$sched.FrequencySubDayTypes =

Listing 14.11 Create job

Job objectB

Create jobC

D Step object

E
PowerShell
step

F Work flow

G Create step

Set starting stepH

Schedule objectI

Schedule frequencyJ

432 CHAPTER 14 SQL Server
Apago PDF Enhancer

[Microsoft.SqlServer.Management.Smo.Agent.`
FrequencySubDayTypes]::Once

$schedstart = New-Object System.Timespan(22, 0, 0)
$sched.ActiveStartTimeOfDay = $schedstart
$schedend = new-object System.Timespan(23, 59, 59)
$sched.ActiveEndTimeOfDay = $schedend

$sched.FrequencyInterval = 1
$sched.ActiveStartDate = Get-Date
$sched.Create()

A job must have at least one job step, and can have multiple job steps. The job step
object is created using the job and a name as parameters D. Now we can add what
type of job step we’re creating E. In this case, it’s a PowerShell step.

SQL SERVER 2008 ONLY PowerShell job steps can only be used in SQL
Server 2008. If we need to run PowerShell on SQL Server 2005, we need to
use a command-line step and call PowerShell and the script we want to
run.

Other types include TransactSql for running SQL commands and CmdExec for run-
ning command-line programs. The command we’re running is added together with
simple workflow commands F regarding success and failure. The command in this
example is simple, but we can add multiple lines of PowerShell or call a Power-
Shell script.

 The step is saved G and set as the first step in the job. The alteration H is then
saved. Creating job steps may be repeated as many times as required. This is a prime
example of where a function would be useful.

 The last part of this script creates a schedule. We don’t want to keep running
things manually. There are no prizes for guessing that we start by creating a schedule
object I using the job and a schedule name as parameters. We set the schedule to
run once per day J and use timespan objects 1) to define the start and end of the
period in which it can run. We can set how many times the job runs in that period and
when it’ll start to run 1!. The schedule is saved 1@ using the Create() method.
DISCUSSION
We now have a SQL Server job that can run PowerShell scripts. PowerShell itself
doesn’t have a scheduling system. Even if one appears in PowerShell v3, it’ll be a few
years away. In the meantime, we could install SQL Server Developer Edition on a work-
station and use that to provide our scheduling capability. The existing jobs can be
viewed using:

ls sqlserver:\sql\sql08\default\jobserver\jobs

Remember that sql08 is the server name. One issue is accessing remote machines. We
overcome this by creating a SQL Server credential using a Windows account with per-
missions to access remote machines. We then create a SQL Server Agent Proxy that
has permission to run PowerShell jobs. Both tasks are detailed in SQL Server docu-
mentation. Our PowerShell jobs can then access remote machines using WMI or .NET.

Schedule frequencyJ

Timing1)

Start date1!
Create schedule1@

433TECHNIQUE 180 Creating a database
Apago PDF Enhancer

 Alternatively, with Windows Server 2008 R2 we can use the PowerShellPack from
the Windows 7 Resource Kit (also available as a separate download from http://
code.msdn.microsoft.com/PowerShellPack). It has a module for working with the
Windows Task Scheduler.

 This could even be used to schedule data collection for the configuration database
we’ll be discussing next.

14.4 Configuration database
In this section, we’ll create the skeleton on a configuration database. We first men-
tioned this idea in chapter 7 when we looked at retrieving configuration information.
We’ll look at creating and populating the database, working with the data, and taking
a backup of our data. The scripts in this section can be easily modified to work in
other database scenarios.

 One aspect of the lifecycle I won’t cover is deleting objects such as databases or
tables. We can manage that using the provider and Remove-Item or we can use SMO
and the delete method on the various objects

 Our objective in this section is to provide an outline of how we can use PowerShell
to manage our configuration database. I’ll only be providing a couple of examples of
the sort of data we’d want to install, but it should be possible to extrapolate to cover
other sets of information.

DATABASE DESIGN I’m not providing any information on database design in
this section. The examples I’m using are designed to be a practical use of
PowerShell that shows how to use it with SQL Server.

The first step in this is to create a database.

TECHNIQUE 180 Creating a database

Databases can be created using the SQL Server GUI tools or T-SQL. Using PowerShell,
we can create the database on remote machines and we also have a consistent, repeat-
able process that we can use against multiple machines.
PROBLEM
Our configuration database has to be created on the SQL Server system so that we
have a storage area for our configuration data.
SOLUTION
The SMO database object has a create method that we can use for this purpose. We’ll
discuss variations on creating our database. The first is quick and dirty—the scripter’s
ideal. The second extends the first by explicitly defining the database properties
rather than using the defaults.

TWO OPTIONS The following script contains two separate options for creating
the database. Use one option or the other. Running the whole script will
cause an error on the final create statement, as the database will already
exist.

TECHNIQUE 180

http://code.msdn.microsoft.com/PowerShellPack
http://code.msdn.microsoft.com/PowerShellPack

434 CHAPTER 14 SQL Server
Apago PDF Enhancer

We’re using SMO for this, so our first act is to create an object to represent the SQL
Server we’ll use to create the database. In listing 14.12, I’m using the full SMO class
name rather than putting part into a variable as I’ve done earlier. We follow this by
creating a database object on the server. Our parameters are the server object and the
database name. Do you like the imaginative name for the database? That was a major
decision point for the chapter. Finally, we call the Create() method B to create
the database.

 That was easy. Too easy. We don’t know where our database is located or even how
big it is, as it’s created with all default parameters. The database will be 1MB in size by
default and the data file and log file will be situated on the paths indicated by the fol-
lowing properties:

$server.Information.MasterDBPath
$server.Information.MasterDBLogPath

Other properties such as growth factors will also take the default values. If all we need
is a quick test database, this is great. Usually we want to be able to control these prop-
erties, so we need to be a bit more complicated in our approach:.

Using defaults
$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")
$db =
New-Object Microsoft.SqlServer.Management.Smo.Database($server, "ConfigDB")
$db.Create()

Setting options
$Server =
New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")

$db =
New-Object Microsoft.SqlServer.Management.`
Smo.Database($server, "ConfigDB")

$fg =
New-Object Microsoft.SqlServer.Management.`
Smo.FileGroup ($db, 'PRIMARY')
$db.Filegroups.Add($fg)

$mdf =
New-Object Microsoft.SqlServer.Management.`
Smo.DataFile($fg, "ConfigDB_Data")

$fg.Files.Add($mdf)
$mdf.FileName = "C:\SQLdata\ConfigDB_Data.mdf"
$mdf.Size = 25.0 * 1KB
$mdf.GrowthType = "Percent"
$mdf.Growth = 25.0
$mdf.IsPrimaryFile = "True"

$ldf =
New-Object Microsoft.SqlServer.Management.`
Smo.LogFile($db, "ConfigDB_Log")

Listing 14.12 Create database

B Create with defaults

Create database objectC

Add filegroupD

Add fileE

File
properties

F

435TECHNIQUE 181 Creating a table
Apago PDF Enhancer

$db.LogFiles.Add($ldf)
$ldf.FileName = "C:\SQLlog\ConfigDB_Log.ldf"
$ldf.Size = 20.0 * 1KB
$ldf.GrowthType = "Percent"
$ldf.Growth = 20.0

$db.Create()

DISCUSSION
We can start by creating the server and database objects as before C. Our next job is
to create the data file, which we start by creating a file group and adding it to the file
group collection D. The first file group is named PRIMARY, as in the example. A file
group is a logical collection of database files. One use is that database tables are cre-
ated on file groups rather than on files. You need to read a good SQL Server book if
you want more on the physical structure of SQL Server databases (for example, SQL
Server 2008 Administration in Action by Rodney Colledge, published by Manning).

 The next step is to create the data file. The filename we give here is the logical
name that’s used by SQL Server. We can then add it to the files collection of the file
group E. Now we can configure the file properties F. The filename is the full path to
the file. An .mdf file is a primary data file (one per database). If we create additional
files, they’ll be secondary files with the extension of .ndf.

 The file size is a bit awkward to define. It should be in megabytes according to the
documentation, but that doesn’t actually work. We need to supply a size greater than
(or equal to) 1MB, but it has to be input as kilobytes. This is as bad as defining
Exchange mailbox limits in the GUI! Luckily, PowerShell makes this easier, because we
can take our number of megabytes, 25.0 in this case, and multiply by 1KB (1024) to
get the correct value. Treating it in this way also makes using parameters with the
script a lot easier. The data file is set to grow by 25% when required.

 We’re nearly finished. We complete our database by creating a file G for the trans-
action logs. Just to keep things interesting, log files don’t exist in file groups. We set the
log file properties H in a similar way to the data file and then create the database I
as before.

 Most databases on SQL Server will have a single data file and log file, though the
script can be adapted to create multiples of both, and multiple file groups, if required.
The database is the container for our data, roughly analogous to a folder in the filesys-
tem. If we want to do anything with the database, we need to create some tables.

TECHNIQUE 181 Creating a table

A database table is a two-dimensional, tabular arrangement of data. The horizontal
dimension is called a row and the vertical is called a column. There is a lot of theory
around relational databases such as SQL Server, which we’re going to cheerfully
ignore in this example. If you do decide to extend this database, I’d recommend
designing it properly before creating additional tables.
PROBLEM
Our database needs a table to store the data from listing 7.1

Add log fileG

Log
properties

H

Create databaseI

TECHNIQUE 181

436 CHAPTER 14 SQL Server
Apago PDF Enhancer

SOLUTION
We can use the SMO database object to execute a script that’ll create the table, as in
listing 14.13. In some respects this is the best and easiest way to create a table, but it
involves PowerShell, SMO, and T-SQL. If this is too much SQL, then try listing 14.14,
which is an SMO-only version.

$Server =
New-Object Microsoft.SqlServer.Management.`
Smo.Server("SQL08")

$script =
New-Object -Type System.Collections.Specialized.StringCollection
$script.Add("SET ANSI_NULLS On")
$script.Add("SET QUOTED_IDENTIFIER ON")

$script.Add("
CREATE TABLE [dbo].[Computers](
[ComputerID] [int]IDENTITY(1,1) NOT NULL,
[Computer] [char](12) NOT NULL,
[Manufacturer] [char](30) NOT NULL,
[Model] [char](25) NOT NULL,
[Timezone] [int] NOT NULL,
[RAM] [bigint] NOT NULL,
CONSTRAINT [PK_ComputerID] PRIMARY KEY CLUSTERED ([ComputerID] ASC))
ON [PRIMARY]")

$db = $server.Databases["ConfigDB"]
$extype =
[Microsoft.SqlServer.Management.Common.ExecutionTypes]::ContinueOnError
$db.ExecuteNonQuery($script, $extype)

The server object is created B. We then create a StringCollection C, which is best
thought of as a multiline string for this purpose. The execution options D define how
SQL Server will react to null values and putting quotes around names.

 The table creation is performed using a T-SQL CREATE TABLE statement E. The
table will be called Computers. Each column in the table is defined with a name, a
data type, size where appropriate, and whether the column can accept null values.
Compare this to listing 7.1. The first column, ComputerID, is used to uniquely identify
the row (IDENTITY). The value is automatically generated when the field is created. It
may seem odd to put [] around many of the values, but it’s SQL Server’s method of
dealing with nonstandard identifiers (for example, if we used [Computer Name]
instead of [Computer]).

 The primary key is an index used to ensure that the identities remain unique. The
table is ordered by this key. ON [PRIMARY] refers to the file group on which we’ll cre-
ate the table.

 The database is defined F and after setting the error action to continue, we exe-
cute the script against the database G. A nonquery means that there won’t be any
results returned by the query.

Listing 14.13 Create table via a script

Create serverB
Create
script

C

Set execution
options

D

Table scriptE
Set databaseF

Create
table

G

437TECHNIQUE 181 Creating a table
Apago PDF Enhancer

DISCUSSION
There are a couple of real advantages to using this method. First, we can add more
members to the StringCollection, which means that we could create multiple tables
in the same script. Second, we’re using T-SQL, which means we can take the output of
scripting out a database and turn it into a PowerShell script. This process could be
automated. The drawback is that we need to know enough T-SQL to work with the
CREATE TABLE command. Listing 14.14 shows an alternative, in that we can use a
purely SMO approach.

$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")
$db = $server.Databases["ConfigDB"]

$table =
New-Object Microsoft.SqlServer.Management`
.Smo.Table($db, "OS")

$col1 =
New-Object Microsoft.SqlServer.Management.`
Smo.Column ($table, "OSID")

$col1.DataType = [Microsoft.SqlServer.Management.Smo.Datatype]::Int
$col1.Nullable = $false
$col1.Identity = $true
$col1.IdentitySeed = 1
$col1.IdentityIncrement = 1
$table.Columns.Add($col1)

$col2 =
New-Object Microsoft.SqlServer.Management`
.Smo.Column ($table, "Computer")

$col2.DataType =
[Microsoft.SqlServer.Management.Smo.Datatype]::Char(12)

$col2.Nullable = $false
$table.Columns.Add($col2)

$col3 = New-Object Microsoft.SqlServer.Management.`
Smo.Column ($table, "Name")

$col3.DataType = [Microsoft.SqlServer.Management.`
Smo.Datatype]::Char(100)

$col2.Nullable = $false
$table.Columns.Add($col3)

$col4 =
New-Object Microsoft.SqlServer.Management.`
Smo.Column ($table, "Version")

$col4.DataType = [Microsoft.SqlServer.Management.`
Smo.Datatype]::Char(10)

$col2.Nullable = $false
$table.Columns.Add($col4)

Listing 14.14 Create table with SMO

Table objectB

Column objectC

D Add
column

438 CHAPTER 14 SQL Server
Apago PDF Enhancer

$col5 =
New-Object Microsoft.SqlServer.Management.`
Smo.Column ($table, "ServicePack")

$col5.DataType = [Microsoft.SqlServer.Management.`
Smo.Datatype]::Int

$col5.Nullable = $false
$table.Columns.Add($col5)

$col6 =
New-Object Microsoft.SqlServer.Management.
Smo.Column ($table, "WinDir")

$col6.DataType = [Microsoft.SqlServer.Management.`
Smo.Datatype]::Char(20)

$col6.Nullable = $false
$table.Columns.Add($col6)

$col7 =
New-Object Microsoft.SqlServer.Management.`
Smo.Column ($table, "TotalVM")

$col7.DataType = [Microsoft.SqlServer.Management.Smo.Datatype]::Int
$col7.Nullable = $false
$table.Columns.Add($col7)

$table.Create()

Examining the script shows that we start by creating the server and database objects.
A table object is created B using the database and table name as parameters. This is
followed by a series of code blocks that create a column object C; set the data type,
nullability, and any other options; and then add it to the table D. The Create()
method E is used to finally create the table in the database.

 This script could be improved by using a function to create the columns. Awkward
items would include data type handling and the identity properties on the first
column.

 However we create our table, at some stage we’ll need to modify it.

TECHNIQUE 182 Modifying a table

The two tables we’ve created need to be linked so that the operating system informa-
tion in one table can be directly related to the computer information in the other
table. It’s at this point that database design gets complicated due to the number of
links. That’s a problem for another book.
PROBLEM
We need to create an index on a column in our table so that the values are unique.
SOLUTION
SMO supplies an object to work with indexes that we can use to solve this problem, as
shown in listing 14.15. After quickly creating a server and database object, we create
an object for the table to which we’ll add an index B. Indices aren’t standalone
objects; they belong to tables. The index is created in the usual way with the table and

Add column D

Create tableE

TECHNIQUE 182

439TECHNIQUE 183 Adding keys
Apago PDF Enhancer

name C as parameters. The index type is then defined D. In this case, it’s a unique
constraint, which means that no two values in the column can have the same value.

$Server =
New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")

$db = $server.Databases["ConfigDB"]
$table = $db.Tables["Computers"]

$uk =
New-Object Microsoft.SqlServer.Management.`
Smo.Index($table, "UK_Computer")

$uk.IndexKeyType =
[Microsoft.SqlServer.Management.`
Smo.IndexKeyType]::DriUniqueKey

$ic =
New-Object Microsoft.SqlServer.Management.`
Smo.IndexedColumn($uk, "Computer")
$uk.IndexedColumns.Add($ic)
$table.Indexes.Add($uk)
$table.Alter()

DISCUSSION
We have to decide which column will be affected by the index E and add it to the list
of columns in the index F. The index is added to the table’s collection of indices G and
saved using the Alter() method H. If at this point you think that SMO is like one of
those Russian dolls with objects inside objects inside objects, you’re probably not wrong.

 Constraining the computers column so that it can only have unique values means
that we can link to it and know we’ll get the correct machine.

TECHNIQUE 183 Adding keys

Building on the previous example, we need to create a foreign key from the OS table
to the Computer table. This enforces the referential integrity between the tables. Sim-
plistically, referential integrity keeps the data and links correct. We do this by adding
some more keys.
PROBLEM
We need to add a primary key and a foreign key to our OS table.
SOLUTION
We can adapt the script from the previous example to add a primary key. The foreign
key is added using the ForeignKey object, as shown in listing 14.16.

 We can skip through creating the server, database, and table objects B, which
we’ve seen before. The primary key object is created as an index with the table and its
name as parameters. We set the index type, in this case a primary key, and we add the
column on which we’ll create the index C. This column must already exist in the
table. The next job is to add the column to the index, add the index to the table, and
remember to alter the table D so that we save the changes.

Listing 14.15 Add a unique key

Get tableB

Index objectC

Index typeD

Indexed columnE
Add columnF

Add indexG
SaveH

TECHNIQUE 183

440 CHAPTER 14 SQL Server
Apago PDF Enhancer

$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")
$db = $server.Databases["ConfigDB"]
$table = $db.Tables["OS"]

$pk =
New-Object Microsoft.SqlServer.Management.`
Smo.Index($table, "PK_OSID")

$pk.IndexKeyType =
[Microsoft.SqlServer.Management.`
Smo.IndexKeyType]::DriPrimaryKey

$ic = New-Object Microsoft.SqlServer.Management.`
Smo.IndexedColumn($pk, "OSID")
$pk.IndexedColumns.Add($ic)
$table.Indexes.Add($pk)
$table.Alter()

$Server =
New-Object Microsoft.SqlServer.Management.`
Smo.Server("SQL08")

$db = $server.Databases["ConfigDB"]
$table = $db.Tables["OS"]

$fk =
New-Object Microsoft.SqlServer.Management.`
Smo.ForeignKey($table, "FK_Computer")

$fkcol =
New-Object Microsoft.SqlServer.Management.`
Smo.ForeignKeyColumn($fk, "Computer", "Computer")
$fk.Columns.Add($fkcol)
$fk.ReferencedTable = "Computers"
$fk.Create()

DISCUSSION
Adding a foreign key is a bit different. We still start by creating the same server, database,
and table objects E Now, though, we create a specific foreign key object with the usual
parameters. Remember our discussion on patterns in earlier chapters. The foreign key
needs a foreign key column F whose parameters are the foreign key, the column in the
table it applies to, and the column in the table that’ll be referred to by the key.

 The column is added to the key G, and we remember to add the table we’ll be ref-
erencing H. The final act is to create the key I. Once created, we can’t create a value
in the computers column of the OS table that doesn’t exist in the computers column
of the computers table. In other words, we have to have a computer before we can
have an operating system.

 Our database is finished but empty. A database without data isn’t much use to us,
so our next step is to learn how to populate these tables with data.

TECHNIQUE 184 Populating a table

PowerShell has the *-Csv and *-Content cmdlets for working with files. It doesn’t have
any cmdlets for working with the data in SQL Server databases. PowerGadgets has a

Listing 14.16 Add a primary and foreign key

Table objectB

Indexed columnC

Create primary keyD

Table objectE

Foreign
key

column

F
G Column

added
to key

Foreign tableH

Create the keyI

TECHNIQUE 184

441TECHNIQUE 184 Populating a table
Apago PDF Enhancer

cmdlet, Invoke-SQL, that can be used to access databases. There’s also a cmdlet supplied
with SQL Server 2008. We’ll start by learning how to work with databases by scripting.
PROBLEM
The data that we receive from our configuration scripts has to be written into our
database.
SOLUTION
We can use the ADO.NET classes to execute a T-SQL insert command to populate the
tables, as in listing 14.17. The idea behind this script is that we run some WMI com-
mands against a remote machine and write the results into our database tables. The
WMI statements B are based on those from listing 7.1 and find information about the
computer, make and model, and about the operating system. Not all of the data will be
written to the database. If you wish to extend the tables, the opportunity is available.

ADO.NET ALTERNATIVES You’ll find many different ways of using the ADO.NET
classes to work with databases. They all use the same classes and achieve the
same goals, but have syntax variations. I use this format because I’m comfort-
able with it and I know it works. Experimentation is encouraged if you want to
try a different format.

We need to create a connection to the database C so that we can insert the data. The
connection uses a connection string with the server, database, and security type as the
parameters. The connection must then be opened before we can use it.

$computer = "DC02"
$comp = Get-WmiObject -ComputerName $computer `
-Class Win32_ComputerSystem |
Select Name, Manufacturer, Model,
CurrentTimeZone, TotalPhysicalmemory

$os = Get-WmiObject -ComputerName $computer `
-Class Win32_OperatingSystem | Select Name, Version,ServicePackMajorVersion,

ServicePackMinorVersion,
Manufacturer, WindowsDirectory, Locale,
FreePhysicalMemory, TotalVirtualMemorySize,
FreeVirtualMemory

$conn =
New-Object System.Data.SqlClient.SqlConnection`
("Data Source=SQL08; Initial Catalog=ConfigDB;
Integrated Security=SSPI")

$conn.Open()

$cmd1 = $conn.CreateCommand()

$cmd1.CommandText ="INSERT Computers VALUES ('$($comp.Name)',
'$($comp.Manufacturer)', '$($comp.Model)',
$($comp.CurrentTimeZone),
$($comp.TotalPhysicalmemory))"

$cmd1.ExecuteNonQuery()

Listing 14.17 Insert data

Get data B

Create
connectionC

Populate
computers

D

442 CHAPTER 14 SQL Server
Apago PDF Enhancer

$cmd2 = $conn.CreateCommand()
$cmd2.CommandText =
"INSERT OS VALUES ('$($comp.Name)', '$($OS.Name)',
'$($OS.version)', $($OS.ServicePackMajorVersion),
'$($OS.WindowsDirectory)',
$($OS.TotalVirtualMemorySize))"

$cmd2.ExecuteNonQuery()

$conn.Close()

DISCUSSION
The CreateCommand() method of the connection object is used to create the command
object we need. The text property holds the T-SQL query we’ll execute to insert the data
into the table. The ExecuteNonQuery() method is used to perform the query D. This
method is used because we’re not expecting any results to be returned.

 Data has been inserted into the Computers table. The process can be repeated to
insert data into the OS table E. The last line of the script closes the connection F.
This is important to conserve resources on the server.

 This script is used to insert data into the database. We can use a similar pattern to
read the data in the database.

TECHNIQUE 185 Reading data

A T-SQL SELECT statement is used to read data from a database.
PROBLEM
We need to report on the computers and their operating systems held in our configu-
ration database.
SOLUTION
The ADO.NET solution we saw when inserting data can be modified to extract data, as
in listing 14.18. We start by creating and opening a connection to the database B.
The connection string is identical to the one used previously. Incidentally, if you find
yourself having trouble with connection strings, look at http://connectionstring.com.
The site has more connection strings than you ever want to see.

 The command we’ll run is created as before C. This time we’re running a SELECT
statement because we want to read data from the database D. The query joins our two
tables using the foreign key we established earlier (I knew that would come in useful)
and picks out a number of columns across the two tables. We use the Exe-
cuteReader() method to execute the query and put it into a datareader object E.
The datareader objects give us a method of working with the results by iterating on a
row by row basis, but we really want to be dealing with objects.

$conn =
New-Object System.Data.SqlClient.SqlConnection`
("Data Source=SQL08; Initial Catalog=ConfigDB;
Integrated Security=SSPI")

$conn.Open()

Listing 14.18 Read data

Populate
OS

E

Close connectionF

TECHNIQUE 185

Open connectionB

http://connectionstring.com

443TECHNIQUE 185 Reading data
Apago PDF Enhancer

$cmd1 = $conn.CreateCommand()
$cmd1.CommandText ="
SELECT comp.Computer, comp.Model, comp.RAM, os.Version, os.ServicePack
FROM Computers As comp
JOIN OS AS os ON comp.Computer = os.Computer
"
$data = $cmd1.ExecuteReader()

$dt = New-Object "System.Data.DataTable"
$dt.Load($data)

$dt | Format-Table -Autosize

$conn.Close()

There’s a datatable object that we can use. Think of it as an in-memory representa-
tion of a SQL Server table that we’ve created. We can use New-Object F to make one
of these and then use the Load() method to get the data from our data reader G. A
quick trip to Format-Table and we have our display H, and then we can close the con-
nection I. In PowerShell v2, we could think about using the Out-GridView cmdlet to
display the data.
DISCUSSION
The PowerShell snapin in SQL Server 2008 provides an Invoke-SQLcmd cmdlet that we
could use instead of a script. The parameters supply the server, database, and the
query to execute:

Invoke-Sqlcmd -ServerInstance "SQL08" -Database "ConfigDB"
-Query "SELECT comp.Computer, comp.Model, comp.RAM, os.Version,
os.ServicePack
FROM Computers As comp
JOIN OS AS os ON comp.Computer = os.Computer"

It’s often a bad idea to let users write their own queries. Raise your hands if you’ve
seen an end user query that tries to extract all the data in a gigantic set of joins that
grind the server to a halt. One way around this is to use stored procedures, which are pre-
written queries that we know will work properly. Often parameters will be used to
make the procedure more flexible (use the parameters property of our $cmd1 vari-
able). Listing 14.19 rewrites our example to use a stored procedure. The stored proce-
dure can be created using pip14.sql in the accompanying scripts collection to create
the stored procedure.

$conn =
New-Object System.Data.SqlClient.SqlConnection`
("Data Source=SQL08; Initial Catalog=ConfigDB;
Integrated Security=SSPI")

$conn.Open()

$cmd1 = $conn.CreateCommand()
$cmd1.CommandType = [System.Data.CommandType]::StoredProcedure
$cmd1.CommandText ="pip14"

Listing 14.19 Read data using a stored procedure

Create commandC

Select dataD

Data readerE
Create datatableF

G Load datatable

H Display data
Close connectionI

444 CHAPTER 14 SQL Server
Apago PDF Enhancer

$data = $cmd1.ExecuteReader()

$dt = new-object "System.Data.DataTable"
$dt.Load($data)

$dt | Format-Table -Autosize

$conn.Close()

The main change is that we use a different command type, in this case a stored proce-
dure rather than the default Text that we used earlier. The CommandText is much
shorter, as we use exec with the name of the procedure. Stored procedures can be
used with Invoke-SQLcmd:

Invoke-Sqlcmd -ServerInstance "SQL08" -Database "ConfigDB"
-Query "exec pip14"

Figure 14.2 shows the results of running our script to read the data. It also shows how
we can access the rows and columns of the data table we’ve created.

 Data isn’t cast in concrete; sometimes we need to modify it.

TECHNIQUE 186 Modifying data

Data modification is a task that becomes necessary when things change. In terms of
our configuration database, we may want to change the way we group things or even
correct data if it has been entered manually and mistakes have crept in.
PROBLEM
The values in the model column of our Computers table need to be modified.

Figure 14.2 Accessing the rows and columns of a data table object

TECHNIQUE 186

445TECHNIQUE 187 Deleting data
Apago PDF Enhancer

SOLUTION
We use the standard ADO.NET pattern with a T-SQL UPDATE command. The script in
listing 14.20 is a variation on the one we used to put the data into the database in the
first place. ADO.NET is a great example of reuse. If we examine the scripts, the only
changes are the command type and the actual query.

$conn =
New-Object System.Data.SqlClient.SqlConnection`
("Data Source=SQL08; Initial Catalog=ConfigDB;
Integrated Security=SSPI")

$conn.Open()

$cmd1 = $conn.CreateCommand()
$cmd1.CommandType = [System.Data.CommandType]::Text
$cmd1.CommandText ="
UPDATE Computers
SET Model = 'Virtual'
WHERE Model = 'Virtual Machine'
"
$cmd1.ExecuteNonQuery()
$conn.Close()

We need to use a Text command type for this solution. It’s the default, but it’s shown
here for completeness. The other point is that we use the NonQuery() method
because we’re not expecting any results to be returned.

 The last aspect of our data manipulation is deleting data.

TECHNIQUE 187 Deleting data

Everything in IT has a lifecycle, and eventually we’ll need to remove data from our
database. This could be because the machine has been decommissioned or we’ve
decided that we don’t need to store a particular type of data. One thought would be to
link removal from the database to removal from Active Directory when a machine is
decommissioned. Computer accounts are a variation of user accounts, so the informa-
tion in chapter 5 can be modified to work with the information in this chapter. That is
true automation!
PROBLEM
A server has failed and won’t be repaired. We need to remove the entry for that
machine from the database.
SOLUTION
We can use a delete T-SQL statement, as in listing 14.21. The connection to the data-
base follows our normal pattern. The learning point is how we deal with the links
between the tables.

$conn =
New-Object System.Data.SqlClient.SqlConnection`
("Data Source=SQL08; Initial Catalog=ConfigDB;

Listing 14.20 Update data

Listing 14.21 Delete data

TECHNIQUE 187

446 CHAPTER 14 SQL Server
Apago PDF Enhancer

Integrated Security=SSPI")

$conn.Open()

$cmd1 = $conn.CreateCommand()
$cmd1.CommandType = [System.Data.CommandType]::Text
$cmd1.CommandText ="
DELETE FROM OS WHERE Computer = 'DC02';
DELETE FROM Computers WHERE Computer = 'DC02'
"
$cmd1.ExecuteNonQuery()
$conn.Close()

DISCUSSION
We created a foreign key so that we couldn’t have a computer in the OS table that
didn’t exist in the Computers table. If we delete from the Computers table first, we’ll
get an error. Delete from the OS table and then from the Computers table.

 The semicolon is an end-of-line marker for T-SQL.

FOREIGN KEYS AND DELETE It’s possible to create the foreign key such that a
deletion in the parent table will cascade into the child table. I thought that
was too much of a digression into database theory for a PowerShell book.
More information can be found at http://msdn.microsoft.com/en-us/
library/aa933119(SQL.80).aspx.

We’ve created a database and populated it with data. We’ve seen how to manipulate
that data. The last thing we need to learn is how to back up the database.

TECHNIQUE 188 Backing up a database

Data! Protect! The concept is drummed into us from day one at admin school. Data-
bases must be backed up, and our configuration database is no exception.
PROBLEM
We need to create a backup of our configuration database in order to protect the data.
SOLUTION
SMO has a backup class we can use for this task, as shown in listing 14.22. I’ve used this
script in a number of demonstrations when talking about PowerShell, so I know it
works exactly as advertised. We start with a server object B and then create an SMO
backup object C. The database we want to back up is given as a property rather than
a parameter.

$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("SQL08")

$bkup = New-Object Microsoft.SQLServer.Management.Smo.Backup
$bkup.Database = "ConfigDB"

$date = Get-Date
$date = $date -replace "/", "-"
$date = $date -replace ":", "-"
$date = $date -replace " ", "--Time-"

Listing 14.22 Back up a database

TECHNIQUE 188

B

C

D

http://msdn.microsoft.com/en-us/library/aa933119(SQL.80).aspx
http://msdn.microsoft.com/en-us/library/aa933119(SQL.80).aspx

447Summary
Apago PDF Enhancer

$file = "C:\Backups\ConfigDB" + "--" + $date + ".bak"

$bkup.Devices.AddDevice($file,
[Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$bkup.Action =
[Microsoft.SqlServer.Management.Smo.BackupActionType]::
Database

$bkup.SqlBackup($server)

DISCUSSION
I like to include the date in the backup file name because it makes finding the correct
data to restore so much easier D. Start with Get-Date and then replace the / and :
characters, which are illegal characters in filenames. There are more elegant ways of
performing this, but this way has the advantage of being obvious, so the script needs
fewer comments.

 The date is used as part of the filename E. The filename is used to create the
backup device F and we define the type of backup we need G—in this case, a full
database backup.

 The last action of the script is to start the backup H. Note that the server is used as
the parameter, rather than the database.

 In section 14.3.3, we looked at creating a SQL Server Agent job and stated that
we could run PowerShell scripts as a job step. By creating our backups using Power-
Shell scripts, we can run them through SQL Server Agent as a scheduled task. We
can also run them manually if required. We get multiple uses from the same piece of
scripting. Excellent.

14.5 Summary
SQL Server has many facets that can be administered with PowerShell. We’ve seen how
to administer our servers and databases. The configuration database can form the
basis of any application based on SQL Server and controlled by PowerShell. Within
that context, we’ve seen how to create databases, tables, and other objects. The ability
to use the data in our databases via PowerShell gives us a powerful reporting tool, in
that we now know how to extract the data, and by using chapter 7 we know how to
write it to a spreadsheet. Script this and it can be run whenever needed. We could
even schedule it from within SQL Server.

 The ability to run PowerShell in SQL Server Agent job steps provides a level of flex-
ibility and sophistication that opens up many possibilities for scheduling and automa-
tion. Built-in PowerShell support in SQL Server 2008 brings a provider that gives
direct access through PowerShell as well as extending the GUI tools.

 SQL Server is the last of the major applications we’ll cover in the book. But we’re
not finished with PowerShell just yet. The PowerShell world is continually evolving
and innovating. As administrators, we’ve seen how we can achieve more with less
effort by using PowerShell. In chapter 15 we’ll look at some of the cutting edge areas
that we need to be aware of so that we can increase our knowledge and versatility.

E

F

G

H

PowerShell innovations
Apago PDF Enhancer

This chapter is a collection of topics that represent leading-edge technologies and
recent innovations in the PowerShell world. Some are still be in beta. The topics
are those we need to consider to round out our PowerShell knowledge and to posi-
tion us for the future. PowerShell is evolving internally and in the breadth and
depth of applications that have PowerShell support. We need to be aware of these
changes to ensure we stay on top of automating our administration tasks.

 The chapter starts with an examination of how we can use PowerShell jobs to
make ourselves more productive...without doing any more work. We can use back-
ground jobs to run PowerShell asynchronously, meaning we can start a set of jobs,
go do other things, and come to our results.

 Windows 2008 R2 and Windows 7 install PowerShell v2 by default. A huge amount
of extra PowerShell functionality is available between v2 and Windows 2008 R2.
We’ve seen a lot of the PowerShell v2 functionality in various chapters of the book.

This chapter covers
■ PowerShell jobs
■ Windows Server 2008 R2
■ Active Directory provider
■ PowerShell Hyper-V library
448

449PowerShell jobs
Apago PDF Enhancer

In this chapter, we’ll briefly peek at Windows 2008 R2 and some of the good PowerShell
things that it brings to us.

 Virtualization is a big topic in IT at the moment. PowerShell is there, helping to
administer our virtual machines. This is true for VMware, which has a PowerShell tool-
kit available, and Hyper-V, which can be managed from PowerShell via System Center
Virtual Machine Manager and/or the PowerShell Hyper-V library.

 Cloud computing is probably the “next big thing.” As a heads-up for the future,
we’ll look at how PowerShell is already working in this environment. Our investigation
of these topics starts with PowerShell jobs.

15.1 PowerShell jobs
Much of the discussion around PowerShell v2 is concerned with the ability to administer
remote machines. We discussed this in chapter 13 when we looked at administering IIS
as an example. In chapter 1 we discovered that PowerShell v2 has the capability of run-
ning PowerShell tasks as background jobs. In my opinion, the ability to run background
jobs will have at least as big an impact on administering our systems as remoting.

 What’s a background job?
 When we start a PowerShell script, the prompt is locked up until the script has fin-

ished. If this is a few seconds, it isn’t much of a problem. But if it’s a few minutes, or
longer, it can be a pain. We could of course have multiple PowerShell windows open,
but that can get messy and invariably an instance of PowerShell will be closed before
the results have been examined. That is a major source of frustration. These scenarios
describe PowerShell running synchronously—the task is running in the foreground
and takes over the PowerShell instance.

 What we need is a way to get the prompt back so we can carry on working while our
task churns away in the background. This is a background job. A job can be started
using the job-related cmdlets.

■ Get-Job
■ Receive-Job
■ Remove-Job
■ Start-Job
■ Stop-Job
■ Wait-Job

Alternatively, there are a number of cmdlets that can start jobs in their own right. We
can discover these cmdlets using Get-Help:

PS> Get-Help * -Parameter AsJob | Format-Wide Name -Column 3

Invoke-Command Get-WmiObject Invoke-WmiMethod
Remove-WmiObject Set-WmiInstance Test-Connection
Restart-Computer Stop-Computer

Get-Help’s -Parameter parameter is useful for discovering which cmdlets can perform
which tasks. Replace AsJob with ComputerName to see how many cmdlets have built-in

450 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

remoting capability. I counted 35 in Windows 7. It’s an interesting mix. Format-Wide we
haven’t seen much, but it’s useful when we need to produce a more compact display.

 PowerShell jobs can be run against the local machine, or we can use the remoting
functionality to run against remote machines. As an example, we’ll consider this task:

Get-ChildItem -Path c:\ -Filter "*.txt" -Recurse

This will iterate through the whole of our C: drive to find all of the text files. On any
machine that has a reasonable number of applications installed, this will take a while
to run. So how can we run this task in the background?

TECHNIQUE 189 Creating a job

Before we can do anything with our jobs, we have to create them.
PROBLEM
A long-running task has to be run in the background so that we can continue working.
SOLUTION
The task can be run as a job. We use Start-Job to create a new job, as shown in list-
ing 15.1. This may seem odd, as we’ve used New-* everywhere else, and it does cause
the odd error message when we forget.

$job1 = Start-Job -Name j1
-ScriptBlock {Get-ChildItem -Path c:\ -Filter "*.txt" -Recurse}

$job2 = Start-Job -Name j2 -ScriptBlock {Get-Service}

I usually give my jobs names. The system will allocate names such as Job1, Job3, and so
on, but giving the jobs descriptive names can help you distinguish between them. The
commands the job will run are presented in the script block. This can contain a sim-
ple command, as in these examples, or can call a script.
DISCUSSION
Cmdlets that have the -AsJob parameter are used as follows. Using this parameter
causes the command to be added to the job queue and to function as a job:

$job4 = Get-WmiObject -Class Win32_Service -AsJob

Once our job has started, the prompt is returned to us and can perform other tasks,
such as creating more jobs or viewing the status of our current jobs, as is shown in fig-
ure 15.1.

TECHNIQUE 190 Viewing jobs

Submitting tasks to run in the background is a good way of multitasking. You can even
sit with your feet on the desk and tell the boss you’re working hard because you have
all these jobs running. He might even believe you.
PROBLEM
The status of our jobs needs to be viewed so that we can determine when we can access
the data.

Listing 15.1 Create a PowerShell job

TECHNIQUE 189

TECHNIQUE 190

451TECHNIQUE 190 Viewing jobs
Apago PDF Enhancer

SOLUTION
There’s a standard PowerShell answer to this question. We need to look at some data,
so we need a Get-Job cmdlet, as shown in listing 15.2.

Get-Job

Get-Job -Name j1

$job1

There are a number of ways of viewing the job data. The easiest way is to view all the
jobs that are on the system using Get-Job. Figure 15.1 illustrates the data returned
from Get-Job. The state property shows how the job is progressing. States of Running
or Completed are good and have the meanings you’d expect. A state of Failed is bad
and means something has gone wrong. The usual culprit is a typo in the command.
Scripts should be tested manually before using in jobs, so look at the data being input
as a possible cause.
DISCUSSION
The other property of interest is HasMoreData. A value of true means that the job has
results sitting on the job queue waiting for us to do something with them. A value of
false means that no data is associated with the job. If you want to see what a failed job
looks like, try:

Start-Job -ScriptBlock {get-srvice}

No prizes for guessing the reason why the job failed!

Listing 15.2 View the running jobs

Figure 15.1 Viewing the current jobs on a system

452 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

If we only want to view the status of a single job, we can use its name with Get-Job.
Alternatively, we can use the variable we assigned to the job when we created it.

SCHEDULING AND NOTIFICATION PowerShell v2 doesn’t have a scheduling
mechanism for jobs or a system of notifying us of a completed job. Hopefully,
these will be made available in future versions.

At some time after our job has completed, we’ll need to access the data associated with
the job.

TECHNIQUE 191 Viewing data

Jobs produce data unless they fail, and then they produce headaches. The data is what
we’re really interested in. We may just want to look at the data the job produced, or we
may need to do some further analysis.
PROBLEM
Our job has completed and we need to view the results.
SOLUTION
The simplest way to access the job results is to use Receive-Job. Supply the name of a
job, as in listing 15.3, and the data appears. The -Keep parameter ensures that the
data is left with the job on the queue.

 -Keep is an important parameter. If we don’t use -Keep, the data is stripped off the
job and will no longer be accessible. The HasMoreData property is set to false. I rec-
ommend using -Keep as a standard part of your processing. It really should’ve been
the default setting.

Receive-Job -Name j2 -Keep

$job2 | Receive-Job -Keep

$job2 | Receive-Job -Keep | where{$_.Status -eq "Stopped"}

$srv = $job2 | Receive-Job -Keep | where{$_.Status -eq "Stopped"}

DISCUSSION
If we don’t use -Keep, only the shell of the job remains, which we have to remove man-
ually. The job data can be treated as any other dataset in PowerShell. We can pipe the
job variable into Receive-Job instead of using the name. The data from the job can
be put onto the pipeline for further processing, or we can even read the data into a
variable so we can perform further manipulations.

 Eventually we’ll no longer need the data in our jobs and we can delete them.

TECHNIQUE 192 Deleting a job

We can delete the contents of the job queue by closing PowerShell. That’s an inele-
gant way of performing the task, and runs the risk of deleting data we need. It’s better
to manually clean the job queue before closing PowerShell. This also helps ensure
that we don’t inadvertently delete data we want.

Listing 15.3 Retrieve results from a job

TECHNIQUE 191

TECHNIQUE 192

453TECHNIQUE 192 Windows 2008 R2
Apago PDF Enhancer

PROBLEM
The job queue isn’t self-cleaning. We need to manually remove the jobs from the queue.
SOLUTION
Remove-Job will be our cmdlet of choice for this task, as in listing 15.4. We need to
identify which jobs we want to remove. The “big hammer” approach is to use Get-Job
to pipe the jobs into Remove-Job.

Get-Job | Remove-Job

$job1 | Remove-Job

Remove-Job -State Failed

Get-Job -State Failed
Get-Job -State Failed | Remove-Job

Get-Job | where{!$_.HasMoreData}
Get-Job | where{!$_.HasMoreData} | Remove-Job

This will empty the job queue and remove all of the data. It’s a good way to ensure
that the queue is empty before we close PowerShell, but we probably need a bit more
finesse most of the time.

WHATIF Remove-Job has a -WhatIf parameter. It can be used in these exam-
ples to double-check that we’re deleting the correct jobs.

We can identify individual jobs to Remove-Job by using the job name, piping in the
results of a Get-Job that selects a job, or using the variable to represent the job. This
gives us the option of picking out and eliminating individual jobs.
DISCUSSION
There are two properties we can use to filter jobs. We can work with the state of the
job (Remove-Job can work directly with the state) or we can use Get-Job to check on
the state and then remove. We need to make sure that we know why the job failed
before deleting it. If it’s just our miserable typing, that’s okay, but if there’s a flaw in
the script logic, we should get to the bottom of it before deleting the job.

 The other property we should consider is HasMoreData. If a job doesn’t have any
data for us, we don’t need it, so it’s time for it to go. Unfortunately, we can’t work
directly with this property in the *Job cmdlets, but we can use Where-Object as a filter.
We can check which jobs don’t have any data then pipe those results into Remove-Job.
Instant clean up!

 PowerShell jobs will become an important part of the administrator’s tool kit now
that v2 is fully available. This will be especially true on Windows 2008 R2.

15.2 Windows 2008 R2
Windows 2008 R2 and Windows 7 have PowerShell v2 installed and enabled by
default. Server Core has PowerShell v2 as an optional feature. PowerShell ISE is
installed by default on Windows 7, but is an optional feature on the server.

Listing 15.4 Delete a job

454 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

 According to TechNet, the following areas of Windows administration get direct
PowerShell support:

This is in addition to the extra Windows PowerShell cmdlets and the Windows Power-
Shell Integrated Scripting Environment (ISE) that come with PowerShell v2. Active Direc-
tory Federation Services 2.0 will also be manageable by PowerShell. We took an in-
depth look at the IIS provider in chapter 13 and the AD cmdlets in chapters 5 and 10.
In this section we’ll examine highlights of PowerShell in Windows Server 2008 R2.

TECHNIQUE 193 Modules

In PowerShell v2, the snapin has been superseded by the module. A module can be
either a compiled DLL (effectively a snapin) or can be written in PowerShell. Using
the advanced function capabilities enables us to create modules where the functions
can behave as cmdlets. PowerShell functionality is delivered as modules. We’ll look at
creating our own modules in appendix B. When the appropriate administration tools
such as Active Directory are installed, the matching PowerShell module is installed in
the Modules folder in the PowerShell home directory. The discovery method for the
installed modules is shown in listing 15.5; alternatively a simple ls $pshome\modules
will show the modules installed in the PowerShell folder.

64 OR 32 Some modules are installed in 64-bit and 32-bit versions whereas
others only seem to be installed in 32-bit flavors. Check PowerShell carefully
so you access in the right way.

The modules can then be installed as required.
PROBLEM
We need to determine which modules are installed and which are available to us.
SOLUTION
A cmdlet called Get-Module is available to do this, as in listing 15.5.

PS> Get-Module -ListAvailable

ModuleType Name ExportedCommands
---------- ---- ----------------

■ Active Directory Domain Services cmdlets ■ Active Directory Rights Management
Services cmdlets

■ Best Practice Analyzer cmdlets ■ Windows BitLocker Drive Encryption cmdlets

■ BITS cmdlets ■ Diagnosis and Supportability cmdlets

■ Failover Clustering cmdlets ■ Group Policy cmdlets

■ Web Server (IIS) cmdlets ■ Network Load Balancing cmdlets

■ Server Manager cmdlets ■ Server Migration cmdlets

■ Remote Desktop Services cmdlets ■ Windows Server Backup cmdlets

■ WS-Management cmdlets

Listing 15.5 Discover available modules

TECHNIQUE 193

455TECHNIQUE 194 Server Manager
Apago PDF Enhancer

Manifest ActiveDirectory {}
Manifest ADRMS {}
Manifest AppLocker {}
Manifest BestPractices {}
Manifest BitsTransfer {}
Manifest GroupPolicy {}
Manifest PSDiagnostics {}
Manifest ServerManager {}
Manifest TroubleshootingPack {}

DISCUSSION
Get-Module used by itself will display a list of the installed modules. Those modules
that are available for install can be found by using the -ListAvailable parameter.
The important part of the display is the name used to install the module. When install-
ing from the prompt, it’s worth using Get-Module to display the names. We can then
use cut and paste to save typing.

 Modules can be installed from a script or by a call from the profile. If a module is
already installed and another attempt is made to install it, an error is issued but the orig-
inal install is unaffected. How can we use these modules now that we’ve found them?

TECHNIQUE 194 Server Manager

Server Manager is used to add or remove roles and features from a Windows 2008
server. In the RTM version, we have a GUI tool and a command-line tool. In R2, we also
get access to this functionality through PowerShell.
PROBLEM
The DHCP role must be added to our server.
SOLUTION
The ServerManager cmdlets need to be loaded to do this. We can start by loading the
module into PowerShell using Import-Module, as in listing 15.6. The parameter is the
name of the module we discovered using Get-Module in the previous example. If we
try Get-Module again without any parameters, we’ll see the modules we’ve loaded.
The ExportedCommands column, in this case, shows the cmdlets that the module adds
to PowerShell. If our module consists of advanced PowerShell functions, we can
restrict which functions are exported (exposed) to PowerShell and which are kept in
the background as unseen functionality.

PS> Import-Module ServerManager
PS> Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest ServerManager {Remove-WindowsFeature,
 Get-WindowsFeature,
 Add- WindowsFeature}

PS> Get-Command -Module ServerManager

CommandType Name

Listing 15.6 Adding DHCP role to server

TECHNIQUE 194

456 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

----------- ----
Cmdlet Add-WindowsFeature
Cmdlet Get-WindowsFeature
Cmdlet Remove-WindowsFeature

PS> Add-WindowsFeature -Name DHCP, RSAT-DHCP -Concurrent

Success Restart Needed Exit Code Feature Result
------- -------------- --------- --------------
True No Success {DHCP Server, DHCP Server Tools}

The cmdlets from the module can be checked using Get-Command. The parameter
-Module has replaced -Pssnapin, though -Pssnapin can be used an alias if required.
The results show the same three cmdlets shown in the ExportedCommands output earlier.
DISCUSSION
Get-WindowsFeature displays the roles and features currently installed on the server.
We can add features and roles using Add-WindowsFeature. In this case, we’re adding
the DHCP server role and the DHCP administration tools. Unless it’s a feature you’re
dealing with a lot, it’s worth using Get-WindowsFeature to check the names before
running the add command. Alternatively, we can have the fun of trying out Remove-
WindowsFeature to get rid of the mistakes.

DHCP TechNet states that there are cmdlets for the DHCP server. This
appears to be incorrect.

One task that comes around periodically is troubleshooting. We don’t want to see this
one too often, as it means something is very wrong with our infrastructure, but when it
does occur, it’d be nice to have some help.

TECHNIQUE 195 Troubleshooting

Windows 7 and Windows Server 2008 R2 introduce the PowerShell-based trouble-
shooting packs.
PROBLEM
Our users are having problems connecting to a server. We need to check the
networking.
SOLUTION
We can run the networking trouble shooting pack, as in listing 15.7.

Import-Module TroubleshootingPack

Get-TroubleshootingPack c:\windows\diagnostics\system\networking

Get-TroubleshootingPack c:\windows\diagnostics\system\networking |
Invoke-TroubleshootingPack

The first step is to import the TroubleshootingPack module. We can then get the net-
working pack. This gives us a bit of information about the pack. Pipe into select * for
all its guilty secrets.

Listing 15.7 Using the TroubleshootingPack module

TECHNIQUE 195

457TECHNIQUE 196 Best practice
Apago PDF Enhancer

DISCUSSION
Wait a minute! How do we know what packs are available? Unfortunately, we don’t get
this information directly through the troubleshooting cmdlets. It’s easy to discover, as
we know where the packs are stored, so we can perform a directory listing:

PS> Get-ChildItem -Path "C:\Windows\diagnostics\system" |
Format-Wide -Property Name -Column 3

On my Windows 7 machine I got these results:

The pack can be started by piping the results of the get action into Invoke-Trouble-
shootingPack. The pack will then step through a series of interactive questions to
help you determine the problem and get advice on how to fix it.

PRIVILEGES The troubleshooting packs have a property RequiresElevation
which indicates whether the cmdlet needs to run in a PowerShell instance
with elevated privileges.

It’s possible to create answer files for common scenarios to speed the process. One
way to avoid a lot of troubleshooting is to ensure we adhere to the recommended best
practices.

TECHNIQUE 196 Best practice

Best practice covers a multitude of configuration points for the particular technology.
Starting with checklists, the application of best practice has become more sophisti-
cated with the development of analyzers that examine our environment and make rec-
ommendations based on the information they hold. The best of them have models
that are updatable to ensure that the analysis keeps track of any changes to recognized
best practice.
PROBLEM
We need to apply best practices to our environment.
SOLUTION
The BestPractices module answers our need. We can start by importing the module,
as shown in listing 15.8. The use of Get-Command shows that we have four cmdlets in
the module dealing with models and results.

■ AERO ■ Audio

■ Device ■ DeviceCenter

■ HomeGroup ■ IEBrowseWeb

■ IESecurity ■ Networking

■ PCW ■ Performance

■ Power ■ Printer

■ Search ■ WindowsMediaPlayerConfiguration

■ WindowsMediaPlayerMediaLibrary ■ WindowsMediaPlayerPlayDVD

■ WindowsUpdate

TECHNIQUE 196

458 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

PS> Import-Module BestPractices
PS> Get-Command -Module BestPractices

CommandType Name
----------- ----
Cmdlet Get-BpaModel
Cmdlet Get-BpaResult
Cmdlet Invoke-BpaModel
Cmdlet Set-BpaResult

PS> Get-BpaModel

Id LastScanTime
-- ------------
Microsoft/Windows/DirectoryServices Never
Microsoft/Windows/DNSServer Never

The models will show us what we can work with—in this case DNS or Directory Ser-
vices. Note that the last scan time is recorded. Other models are available for AD Cer-
tificate Services, IIS, and Remote Desktop Services (Terminal Services). Presumably
other aspects of Windows servers will be covered in due time.
DISCUSSION
Using the analyzer is shown in listing 15.9. We invoke the particular model and it’ll
generate the results. Invoke-BpaModel doesn’t directly display the results; we need to
use Get-BpaResult to show the data. I recommend outputting the results to a file pos-
sibly for future comparisons because there’s a lot of data to display that may overflow
the PowerShell screen buffer, resulting in data loss.

PS> Invoke-BpaModel -BestPracticesModelId Microsoft/Windows/DNSServer

ModelId Success Detail
------- ------- ------
Microsoft/Windows/DNSServer True (InvokeBpaModelOutputDetail)

PS> Get-BpaResult `
-BestPracticesModelId Microsoft/Windows/DNSServer |
 Out-File dnsbpa.txt

There are 59 results for DNS. The following is an example of one item:

ResultNumber : 1
ModelId : Microsoft/Windows/DNSServer
RuleId : 0
ResultId : 2049755913
Severity : Information
Category : Other
Title : DNS: IP addresses must be configured on Local Area
 Connection - Virtual Network
Problem :
Impact :
Resolution :

Listing 15.8 Discovering best practice models

Listing 15.9 Analyze DNS for best practice

459TECHNIQUE 197 Active Directory provider
Apago PDF Enhancer

Compliance : The DNS Best Practices Analyzer scan has determined that you
 are in compliance with this best practice.
 For additional information about this best practice and its
 configuration steps, click the More information link.
Help : http://go.microsoft.com/fwlink/?LinkId=121988
Excluded : False

To see the categories, we could use Select-String to filter on the title field. The ana-
lyzer gives a clear indication as to whether our systems are in compliance with best
practice. You didn’t think I’d show a category that was out of compliance, did you?
This is a good tool for showing auditors that our systems are configured correctly. If
the analysis is performed on a regular basis, it can help keep our systems compliant.

 The best practice cmdlets don’t have a ComputerName parameter, but we can easily
use PowerShell remoting to access this functionality on other servers.

 One of the big moans about PowerShell v1 was that there were no native cmdlets
for Active Directory. This has been remedied in Windows 2008 R2, with a set of cmd-
lets and an Active Directory provider.

TECHNIQUE 197 Active Directory provider

In chapters 5 and 10, we took a good look at administering Active Directory using scripts
and a mixture of the Quest and Windows Server 2008 R2 cmdlets. A provider for Active
Directory is installed as well as the cmdlets. An AD provider is available as part of the Pow-
erShell Community Extensions (PSCX). I’ve used it extensively, and used to include it
in demos of PowerShell. It worked well and I didn’t have any problems with it. The only
real issue is that it wasn’t from Microsoft, so many organizations wouldn’t use it.

 Providers versus cmdlets is an interesting and often heated debate. A good, well-
written provider can reduce the learning curve, because we already know how to navi-
gate and access the data. It comes down to how you like to work. I’ve used various
scripting languages over the years and prefer to work that way. I know others who
really like the provider concept. As long as we can get the job done, it doesn’t matter
how we have to do it. If you’re relatively new to scripting and/or PowerShell, investing
time in learning the providers would definitely be beneficial.
PROBLEM
How can we check the schema version using the provider?
SOLUTION
This AD provider and the core commands can be used to perform this task, as in list-
ing 15.10. A provider makes a data store accessible in the same way as the filesystem—
by a drive. In this case, we have a drive called AD B. Possibly not the most imaginative
of names, but it’s obvious what it is. We can use the core commands to navigate and
work with the provider.

PS> cd ad:

PS> Get-ChildItem

Listing 15.10 Schema version by AD provider

TECHNIQUE 197

Enter providerB
Display top-level itemsC

460 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

PS> Get-ItemProperty `
-Path "CN=Schema,CN=Configuration,DC=sphinx,DC=org" `
-Name ObjectVersion

PS> cd "CN=Users,DC=sphinx,DC=org"
PS> Get-ADUser "CN=Richard,CN=Users,DC=sphinx,DC=org"

DISCUSSION
If we perform a Get-ChildItem on the root of the AD drive C, we see a number of
containers:

■ Sphinx
■ Configuration
■ Schema
■ DomainDnsZones
■ ForestDnsZones

The good news about this is that we can access the Schema, Configuration, and DNS
partitions directly through the provider as well as the data we normally see in ADUC.
By contrast, the PSCX provider only shows the latter. The distinguished name D can
used to access the object directly.

 We need to access the ObjectVersion property of the schema D. As it’s a property,
we can use Get-ItemProperty. The results show that we’re using version 47, which is
the Windows 2008 R2 value.

 The distinguished name can be used directly to navigate to a container E. The AD
cmdlets can be used to access the AD objects in the container F when working in the
provider. It’ll be worth spending time getting to know the provider. The following
examples illustrate how to perform a number of the common AD administrative tasks
via the provider.

 We can start by navigating into the provider and then into the domain:

cd ad:
cd "DC=Manticore,DC=org"

We can navigate into and out of OUs as easily as we can folders in the filesystem:

cd ou=England
cd ..

One thing we have to be careful about is supplying the name of the OU correctly. We
can’t just supply the name:

PS> ls england
Get-ChildItem : Cannot find path
//RootDSE/england,DC=Manticore,DC=org' because it does not exist.

This can be frustrating, because we can see the OU. We need to identify it correctly to
the provider; for example:

ls ou=england

Get-Item -Properties * '.\CN=SORBY Henry'

Access
schema

D
Enter Users
container

E
Access user
information

F

461TECHNIQUE 197 Active Directory provider
Apago PDF Enhancer

A huge bonus is that tab completion works on the items in the folder—type cn=s and
tab through choices. Similarly, in the root of the domain, we can type ou=E and use tab
completion to complete the name. This is a handy speed boost to navigation.

 We have to be aware that the Windows Server 2008 R2 cmdlets, and the provider,
don’t work with the DirectoryEntry class we saw in chapter 5. If we modify our earlier
Get-Item so that we create a variable and then put it through Get-Member:

PS> Get-Item -Properties * '.\CN=SORBY Henry'
PS> $user | gm

 TypeName: Microsoft.ActiveDirectory.Management.ADObject

we can see that it uses a completely different type. The AD provider and cmdlets work
through a web service running on the domain controllers. This web service is avail-
able for download to run on Windows Server 2008 or Windows Server 2003 domain
controllers, but a Windows Server 2008 R2 or Windows 7 machine is required to run
the cmdlets.

 Be aware that not all properties are returned as with the cmdlets. If we want prop-
erties beyond the default, we have to explicitly include them or tell it to bring back
everything by using *. I tend to bring back everything, on the principle that I never
know how scripts will be modified in the future, so removing ambiguity about the
properties available works best for me. If you prefer a neat and tidy existence and only
want to work with a subset of properties, feel free.

 Changing the attributes of an object is a common administrative task. The *-Item-
Property cmdlets perform this task for us. We can view the value of a particular property:

Get-ItemProperty -Path '.\CN=SORBY Henry' -name department

It’s a simple matter to change values:

Set-ItemProperty -Name department -Value "Geology Sheffield"
-Path '.\CN=SORBY Henry'

The previous example assumes that we’ve navigated to the OU containing the particu-
lar user to be modified. We can perform this action from any location when using the
PowerShell prompt. I don’t recommend it as a practice, but it’d be possible to navi-
gate into the registry and then make a change in Active Directory!

 One point to be careful about is that the common cmdlets used in providers (for
example the *-Item and *-ItemProperty cmdlets) can be changed by the provider.
As an exercise, compare the help information for New-Item when in the filesystem
provider and in the Active Directory provider:

Get-Help New-Item -Full

These dynamic parameters can be a source of confusion if you aren’t aware of the
changes. When we use New-Item in the filesystem, we can create folders and files. These
change to groups, users, and organizational units in the Active Directory provider:

New-Item -Path "ou=england,DC=Manticore,DC=org"
-Name "CN=ProvUser" -ItemType user
-Value @{samAccountName='provuser';description='test user'}

462 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

Other attributes can be added to the -Value parameter as required or can be modi-
fied later via the *-ItemProperty cmdlets. One interesting quirk of the Active Direc-
tory provider is that if we use directory for the item type an OU is created:

md ou=test

It really works and creates an OU!! If we create objects, then we’ll have occasion to
delete objects. When using Remove-Item in the AD provider, we’re automatically
prompted to confirm the deletion:

PS> Remove-Item '.\CN=ProvUser'

Are you sure you want to remove?
CN=ProvUser,OU=England,DC=Manticore,DC=org
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

This can be bypassed by using the -Force parameter:

PS> Remove-Item -Force .\OU=test
Remove-Item : Access is denied

In both cases, we’ll fail miserably in our attempt to delete the offending object. We
need to remove the Protected from Accidental Deletion setting:

PS> Set-ADObject -ProtectedFromAccidentalDeletion $false
-Identity "OU=test,OU=England,DC=Manticore,DC=org"
PS> Remove-Item .\OU=test

Are you sure you want to remove?
OU=test,OU=England,DC=Manticore,DC=org
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

Now it goes away. Group administration is just as straightforward:

New-Item -ItemType group -Name "cn=English"
-value @{samAccountName='English';description='English users'}

The properties are supplied as a hash table in a similar manner to when we created a
user account earlier. We can also work with group memberships. In this case, I want to
add all of the users in the current OU into the group we just made:

Get-ChildItem | where{$_.objectclass -eq 'user'} |
foreach {Add-ADGroupMember
-Identity "CN=English,OU=England,DC=Manticore,DC=org"
 -Members $_.DistinguishedName
}

We use Get-ChildItem to iterate through the objects in the OU. The Where-Object
cmdlet is used to only accept those objects that are users. Within a loop created by the
foreach-object cmdlet, Add-GroupMember adds each user in turn to the designated
group. We can test the membership of a group using Get-Item:

Get-Item -Properties * .\CN=English |
select -ExpandProperty Member

The -ExpandProperty parameter on the select-object cmdlet enables us to view the
whole membership list.

463TECHNIQUE 198 Creating an AD drive
Apago PDF Enhancer

 Many of the Active Directory cmdlets have a -Filter parameter and an -LDAPFil-
ter parameter. Both of these parameters are used to filter the data. It’s usually more
efficient to perform the filtering when originally getting the data, rather than using
Where-Object as the next step on the pipeline. The two parameters produce similar
results but have different syntax:

Get-ADUser -Filter {title -eq 'scientist'} |
select distinguishedname

The Filter parameter uses PowerShell operators for the comparison as illustrated
here. LDAP filters are used in the LDAPFilter parameter. We saw these filters in chap-
ter 5, and there’s a full explanation in appendix D.

Get-ADUser -LDAPFilter "(Title=scientist)" |
select distinguishedname

We have two ways to filter this data. Which should we use? My answer, as always, is
whichever works best for you. If you’re used to writing LDAP filters, keep using them,
but if you’re new to all this then try the PowerShell filters, as you can build on what
you already know.

 When I first saw this AD provider in the beta versions of Windows Server 2008 R2, I
wasn’t that impressed, but I have to say that it’s growing on me. I still tend to think of
scripting first, but there are some actions that are easier in the provider, which is
always a plus for me. Navigation in the provider is a bit cumbersome, but there’s a way
to make life easier for ourselves.

TECHNIQUE 198 Creating an AD drive

PowerShell providers are exposed as drives. We’ve seen the use of Get-PSDrive to dis-
cover drives. Most providers will create a single drive, though the registry creates two.
One excellent addition to the information shown by Get-PSDrive in Windows 7/Win-
dows 2008 R2 (PowerShell v2) is that the filesystem drives now show the used and free
space on the drives.

 In Windows we’ve always been able to map additional drives to position us at a par-
ticular point in the filesystem. This concept extends to the drives exposed by providers
as well.
PROBLEM
We need to make a shortcut to the Users container.
SOLUTION
We can create a PowerShell drive using the provider, as in listing 15.11. Many organi-
zations will group their AD user accounts into a small number of OUs or containers.
We can create a shortcut to those OUs by creating a PowerShell drive. The new-
PSDrive cmdlet requires a name for the drive, which provider we’re using, and the
root of the drive.

 This drive can be accessed as any other, and enables us to navigate directly to the
data we need to work with. A number of drives could be created for the common loca-
tions in AD and the definitions placed into the profile so that they’re always available.

TECHNIQUE 198

464 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

New-PSDrive -Name Users -PSProvider ActiveDirectory
-Root "AD:\CN=Users,DC=sphinx,DC=org"

PS> cd users:
PS> ls

DISCUSSION
More information on how to work with Active Directory objects can be found in the
help files. Use:

get-help about_ActiveDirectory_ObjectModel

This concludes our look at Windows 2008 R2. There’s a lot more to discover, but by
concentrating on the new functionality, we get a good flavor of the benefits it brings to
our administration efforts using PowerShell. The last major topic in this chapter is vir-
tualization, which brings its own administrative challenges.

15.3 Virtualization
Virtualization is the technique of hosting a number of virtual servers on a single physi-
cal machine. Introduced into the mainframe world more than 40 years ago, it has
become a major component of Windows-based infrastructures in the last few years.
Virtualization reduces the number of physical machines we need to administer, but
can increase the overall total of machines, as we now have to administer the host
machine as well as the virtual machines. PowerShell becomes even more necessary.

 A number of virtualization technologies are available. What’s even better is that we
can use PowerShell with most of them. VMware is the one most people think of first.
VMware has released a PowerShell snapin for managing their environment. Some
excellent information on using PowerShell with VMware can be found on the blogs of
Hal Rottenberg, Alan Renouf, and Jonathan Medd. A PowerGUI power pack is also
available that uses the VMware cmdlets.

 Microsoft has Virtual Server, for which Ben Pearce has posted a number of Power-
Shell scripts. Windows 2008 introduced Hyper-V. These can be managed with System
Center Virtual Machine Manager.

 An alternative for Hyper-V is to use the Hyper-V PowerShell library of functions
that can be found on http://www.codeplex.com. Written by James O’Neill, it’s a free
download. The zip file will need to be unblocked before extraction; otherwise Power-
Shell will keep asking for permission to run the scripts. Unblock a file by opening the
properties and clicking on Unblock. The zip file contains two files:

■ hyperv.format.ps1xml
■ hyperv.ps1

Hyperv.ps1 is a library of functions that’s based on WMI. It would be possible to use
WMI directly, but it would involve a lot more work and effort to create your own
scripts. Use what’s available.

Listing 15.11 Create an AD drive as a shortcut

http://www.codeplex.com

465TECHNIQUE 199 Discovering Hyper-V functions
Apago PDF Enhancer

 Run PowerShell with elevated privileges and dot-source the file:

. ./hyperv.ps1

This will load the functions and update the format data using the hyperv.format.
ps1xml file. This is a good example of a format file if you need to create your own.

FUNCTIONS VERSUS MODULES The Hyper-V library is currently a set of func-
tions. This makes it usable with PowerShell v1 and v2. PowerShell v2 intro-
duces the concept of modules, which make the use of function libraries more
dynamic. The library is being updated to a module that should be available by
the time you read this.

Now that we’ve loaded the functions, let’s see how to use them.

TECHNIQUE 199 Discovering Hyper-V functions

The first thing we need to know is what functions are available. A help file is available
for download in PDF format, but it may not always be accessible. Often we only need a
reminder of the name. PowerShell v2 includes function names in tab completion.
PROBLEM
We need to know which functions have been loaded by the Hyper-V library.
SOLUTION
The function provider can be used to access the information, as shown in listing 15.12.

PS> Get-WmiObject -Namespace "root\virtualization" -List |
select name | Format-Wide -Column 3

PS> Get-ChildItem -Path function: -Filter *v*
Get-ChildItem : Cannot call method. The provider
does not support the use of filters.

PS> Get-ChildItem -Path function: |
where{$_.Name -like "*-V*"} |
select Name | Format-Wide -Column 3

PS> ls function:\get-vm | select definition | fl

The Hyper-V library is based on WMI. We can view the WMI classes B. It’s sometimes
useful to use WMI directly, but the functions make life easier. The obvious way to
access the function names is to interrogate the function provider using Get-
ChildItem C. But we can’t use a filter on the function provider. If we take a step side-
ways, we can use where instead of a filter D. If we just select the name, we can reduce
the output to an amount that’s easily viewable.
DISCUSSION
There are some 80 functions in total. In PowerShell v2, Get-Verb creeps in just to be
confusing. If we want to see the code for a particular function, we can view the defini-
tion property E, which holds the code. If you want to see more than one function’s
worth then open the library file in an editor.

 Let’s start by using the functions to view the status of our virtual machines.

Listing 15.12 Discover Hyper-V functions

TECHNIQUE 199

View WMI
classes

B

C
View
functions(fail)

View functionsD
View function
definition

E

466 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

TECHNIQUE 200 Virtual machine status
Before we can do any work with our virtual machines, we need to know their status.
Are they running? Can we switch them on from PowerShell? PowerShell takes fewer
resources than the Hyper-V manager, and using a Remote Desktop Connection pro-
vides a better experience than connecting from the GUI.
PROBLEM
The status of virtual machines has to be changed—stopped and started. In addition,
we need to be able to view the status of our VMs.
SOLUTION
We can test the status using two functions from the Hyper-V library, as shown in list-
ing 15.13.

PS> Start-VM -VM DC08

PS> "dc08", "exch10" | Ping-VM |
Format-Table VMName, ResponseTime, Status -auto

VMName ResponseTime Status
------ ------------ ------
DC08 194 Success
Exch10 VM Stopped

PS> Get-VM

Host VMElementName State Up-Time (mS) Owner
-------- ------------- ----- ------------ -----
SERVER01 Exch10 Stopped 0
SERVER01 DC08 Running 298568

PS> Shutdown-VM -VM dc08

DISCUSSION
Starting a virtual machine under Hyper-V involves Start-VM B. The name of the VM is
provided as a parameter. A server parameter can be supplied to all of the functions to
work with a remote system. Remember that the library is based on WMI, so remote
administration is built in.

FIREWALL Using Netsh to configure the firewall on our servers, to allow
remote administration via WMI, is probably the quickest and easiest way to
perform the task. See listing 9.1 for details

Ping-VM can be used as a quick check on our VMs C. If we need to check more serv-
ers, the name and server could be put into a CSV file. One thing that isn’t shown is the
uptime, which is a statistic that seems to fascinate managers for some reason. We can
access this through Get-VM D, which also shows the state of the VM.

 I use virtual machines a lot for experimenting with technologies and preparing
demos. It’s useful to be able to stop and start machines. We can use Shutdown-VM E to
cleanly close down the virtual machine.

Listing 15.13 Test virtual machine status

TECHNIQUE 200

StartB

PingC

Check statusD

StopD

467TECHNIQUE 202 Checking disk status
Apago PDF Enhancer

 In addition to using the functions from the command line, we can incorporate
them into our scripts.

TECHNIQUE 201 VM uptime

Formatting of output has been an issue since the earliest days of computing. Power-
Shell gives us access to the properties of an object so that we can easily modify how we
display the data.
PROBLEM
The uptime reported by Get-VM is in milliseconds. Working at this scale isn’t intuitive,
so I want to view the uptime in a more easily understood format.
SOLUTION
We can write a function that displays the uptime in a more easily understood format,
as shown in listing 15.14.

function get-uptime{
param ([string]$name = "")
 $vm = Get-VM -Name $name
 $time = New-TimeSpan -Seconds $($vm.OnTimeInMilliseconds/1000)
 Write-Host "Uptime for $name =
 $($time.Hours):$($time.Minutes):$($time.Seconds)"
}

PS> . .\get-uptime.ps1
PS> get-uptime dc08
Uptime for dc08 = 0:15:21

DISCUSSION
We’ll do this as a function so that it’s always available. The function accepts a server
name as a parameter. It then uses Get-VM to retrieve the information about the virtual
machine. We can create a timespan object using the using the OnTimeInMilliseconds
(uptime) property. Write-Host is used to display the data as hours:minutes:seconds.

 The function is loaded by dot-sourcing it and can be accessed from the command
line or within a script by passing the name of a virtual machine. If required, the format
file that ships with the library could be modified to output the uptime in this format.

 Virtual machines have virtual hard disks. Though it sounds like the beginning of a
nursery rhyme, this means that we have another object to investigate and test.

TECHNIQUE 202 Checking disk status

One of PowerShell’s strengths is its composable nature. This means we can take pieces
of functionality and easily combine them to provide a more sophisticated outcome.
We can use Get-VMDisk to view all the virtual hard disks associated with our Hyper-V
server. The status of individual disks can be checked using Test-VHD.
PROBLEM
We need to view the status of all the virtual hard disks known to our Hyper-V server.

Listing 15.14 Determine uptime of a virtual machine

TECHNIQUE 201

TECHNIQUE 202

468 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

SOLUTION
We have to combine a couple of functions to do this, as shown in listing 15.15.

$disks = Get-VMDisk
foreach ($disk in $disks) {
 $test = Test-VHD -vhdPath $disk.DiskPath
 Add-Member -InputObject $disk -MemberType NoteProperty
 -Name disktest -Value $test
}
$disks | Format-Table VMElementName, DriveLUN, DiskPath, disktest -AutoSize

DISCUSSION
Start by reading all of the disk information in an array using Get-VMDisk. We can then
iterate through the disks, testing each in turn. The results are added to the disk object
as a NoteProperty. We can then use Format-Table to display the data.

 Adding a property in this manner is a simple way to carry data through the rest of
the script for future display or processing. It’s especially useful because we don’t need
to worry about keeping track of extra variables.

 In a similar way, we can test the disk sizes.

TECHNIQUE 203 Checking disk usage

Disk space is always an issue. We need to be able to monitor the size of the virtual hard
drives. If they become too large, we may need to investigate, as running out of disk
space on the volumes that host the VHD files would be generally considered a bad
thing to happen.
PROBLEM
We need to examine the space used by our VHD files.
SOLUTION
This time we combine Get-VHDInfo with Get-VMDisk, as in listing 15.16.

Get-VMDisk | foreach {
 Get-VHDInfo -vhdPath $_.Diskpath
} | Format-Table Path, FileSize, MaxInternalSize -AutoSize

DISCUSSION
Use Get-VMDisk to retrieve the list of disks. A foreach-object cmdlet is used to pass
the disk path of each disk into Get-VHDInfo. Format-Table displays the disk and size
information.

TECHNIQUE 204 Compacting disks

Virtual hard disks can be compacted to reclaim unused disk space. Ideally, we’d com-
bine this with defragmenting. We can mount the VHD file in the filesystem of the
Hyper-V server. We can use the standard Windows defragmentation tool to remove the

Listing 15.15 Check virtual disk status

Listing 15.16 Check virtual disk capacity

TECHNIQUE 203

TECHNIQUE 204

469TECHNIQUE 204 PowerShell in the cloud
Apago PDF Enhancer

file fragmentation. Compacting the disks has to be performed when the virtual
machine is switched off. If this is a production machine, we need to schedule this as
part of the standard maintenance window. Doing this during business hours won’t win
many friends.
PROBLEM
We need to compact the hard disks of virtual machines.
SOLUTION
Compact-VHD provides the answer, as shown in listing 15.17.

PS> Get-VMDisk | foreach {Compact-VHD -vhdPath $_.diskPath}
Job Started
\\SERVER01\root\virtualization:`
Msvm_StorageJob.InstanceID=`
'9c77237c-3a08-4c21-9086-4e3e5730a2fe'

Job Started
\\SERVER01\root\virtualization:`
Msvm_StorageJob.InstanceID=`
'10be0cf1-b295-4690-9d82-a9fe44be7017'

DISCUSSION
Get-VMDisk supplies a list of disks that we pipe into a foreach. Compact-VHD takes the
path to the disk as a parameter and starts a job (not a PowerShell job) to perform the
compaction. We can check status with:

Get-WmiObject -NameSpace root\virtualization msVM_storagejob |
 ft jobStatus, description, percentcomplete -auto

We can perform a large number of other tasks to manage our Hyper-V environment.
We can combine other functions from the Hyper-V library to complete these tasks.

 Our final topic is looking ahead to cloud computing and what this may mean for
using PowerShell.

15.4 PowerShell in the cloud
Cloud computing delivers resources over the internet. These resources may be virtual-
ized, they may be dynamically scalable, but they’re delivered as a service rather than
your organization investing in the infrastructure. This could take a number of forms:

■ Partially hosting applications—some data is held in the cloud and other data is
stored on-premises

■ Hosting applications such as SQL Server, Exchange, or SharePoint and making
them available across the Web

■ Providing a platform for the development of applications based in the cloud

My examples will concentrate on Microsoft offerings for two reasons. One, I’m most
familiar with the Microsoft product stack, and two, the examples fit better with the
topics we’ve already discussed in the book.

Listing 15.17 Compact a virtual disk

470 CHAPTER 15 PowerShell innovations
Apago PDF Enhancer

 The question of where an application is administered is an interesting one and
often will be resolved by the commercial agreement for the service. The options are:

■ By the provider
■ By the customer
■ Mixed management

The management tools need to be applicable from the customer’s premises, the sup-
plier’s premises, or another location that accesses the data across the web.

 Exchange 2010 provides an example of our first category. It provides for a mix-
ture of on- and off-premise data which needs to be managed regardless of its loca-
tion. With Exchange, it’s relatively straightforward to move mailboxes or even whole
databases between servers and therefore between locations. We’ve already seen how
Exchange 2010 supplies a method to use PowerShell against remote servers. This
capability is web-based so there’s no reason it can’t translate to the cloud. This means
our knowledge, skills, and scripts transfer directly into the new environment. We’re
up and running and ready to go.

 We’ve already seen how we can manage Exchange 2007 and SQL Server 2005/8
with PowerShell. SharePoint 2007 and earlier don’t have PowerShell, but the 2010 ver-
sion does. It’s currently possible to use the SharePoint .NET classes to perform admin-
istrative tasks. This means that we can administer the applications in our second
category using PowerShell. It gets even easier when SharePoint 2010 is available.

Figure 15.2 Cloud computing. The applications can be based anywhere and can be accessed from
anywhere. Our administrator can be anywhere.

471Summary
Apago PDF Enhancer

The third category is covered by the Microsoft Azure platform. The management tools
for this include PowerShell. In addition, some of the examples include PowerShell
cmdlets for managing the applications or even working directly with the applications.
For instance, the Cloud Drive sample provides a PowerShell interface in the form of a
provider that gives access to Blob (named files and metadata) and Queue (storage
and delivery of messages) data as if they were a network drive. It’s possible to get
access to a test environment and experiment with managing Azure with PowerShell.

 Cloud computing (see figure 15.2) isn’t going to remove the need to manage our
applications. It’s probable that as administrators, we’re going to be asked to do more
rather than less. Automation will still be required, and probably in larger amounts. Pow-
erShell is only on its second version and is a young product. There’s much more to
come in this story.

15.5 Summary
PowerShell is still evolving, with new functionality appearing in PowerShell v2, Win-
dows 7/Windows 2008 R2, and applications being PowerShell-enabled. One of the
new features in PowerShell v2 is background jobs. These can be run asynchronously,
so we can set the task running and come back when it’s complete. Though not as
glamorous as the remoting functionality, background jobs have the capability to signif-
icantly increase our productivity.

 Windows Server 2008 R2 will install PowerShell v2 as part of the base operating sys-
tem install. In addition, a significant number of features now come with PowerShell
modules including Active Directory, Server Manager, and the Troubleshooting pack-
ages. Some functionality such as Windows Backup is still supplied as a snapin. This
functionality is installed when the appropriate administration tools are installed and is
also available for remote administration via the RSAT download.

 Virtualization is becoming a mainstream component in the infrastructure of many
organizations. PowerShell is able to manage VMware and Hyper-V. The Hyper-V Pow-
erShell library from Codeplex provides many functions we can use directly or incorpo-
rate into our scripts.

 Cloud computing increases the reach of our PowerShell administration. The sys-
tems we’re managing may not be in our data center but will be found via the Web.
This adds complexity, but with PowerShell built into the applications and the manage-
ment tools, we’re well placed to ride the computing wave of the future.

Apago PDF Enhancer

Apago PDF Enhancer

afterword
PowerShell is for you

We’ve seen a lot of PowerShell by this point. Is this the end of it? Have we learned
all there is to know about PowerShell?

 The short answer is no, but I have to stop; otherwise the book will never be fin-
ished. I’ve learned a lot about PowerShell while writing this book. Most of it’s in the
book but there are some bits that didn’t make it for space reasons. The PowerShell
team likes to say, “To ship is to choose.” That has been driven home by the choices
I’ve had to make regarding what to include. These topics will appear somewhere,
even if it’s a blog post. PowerShell is a completely open topic. There’s always some-
thing new to learn, whether it’s a new set of cmdlets or a new technique. PowerShell
is still evolving, and while we don’t know where it’s going, it’ll be fun getting there.

 The techniques we’ve learned so far mean we can start experimenting with Pow-
erShell to solve our own unique problems. We’d need a book of infinite length to
cover all possible scripts, and my fingers would be even more worn down from all
that typing. It’s time to fly the nest and write your own scripts.

 The enjoyment produced by writing a script to solve your unique problem is
very real. Savor it and look for the next problem. PowerShell, like all skills, needs
constant practice. Don’t be too upset looking back on scripts you created six
months ago. Think instead of the things you’ve learned.

 I said at the beginning of the book that there’s a fantastic PowerShell community.
Join it. Bring your scripts and problems, and share with that community. If you get
really excited about something you’ve discovered, I’m always looking for speakers
for User Group meetings. Help build a bigger and better PowerShell community.

 The closing words belong to Jeffrey Snover, the man who invented PowerShell:
 “Experiment! Enjoy! Engage!”

473

Apago PDF Enhancer

Apago PDF Enhancer

appendix A:
PowerShell reference

This isn’t designed to be a full PowerShell reference, as that would duplicate the
help system and possibly double the length of the book. I’m including the informa-
tion that I tend to look up and forget where it can be found, some useful defini-
tions, and a few pieces that aren’t in the documentation.

A.1 About files
The help files supplied with PowerShell contain information on the cmdlets as well
as the about files. These are files that contain help information about PowerShell.
The topics covered include:

■ Keywords such as if, for, and do
■ Advanced functions
■ Remoting
■ Operators

To view the available about files, access them as follows:

Get-Help about | select Name | Format-Wide -Column 3

The individual files can then be accessed using Get-Help.

A.2 Add-Type
We’ve seen, over the course of 15 chapters, how to manipulate various types of .NET
objects with PowerShell. This section covers how to create our own objects. Add-
Member was available in PowerShell v1. Using it, we can create an object and add
properties to the object. We can work with that object in the same way as any other
PowerShell object.

 The drawback to Add-Member is that we can’t define types for the property—we
can’t restrict the property to only accepting an integer or a string value. Add-Member
475

476 APPENDIX A PowerShell reference
Apago PDF Enhancer

is great if we only want to add a property or two to an existing object, but the whole
approach looks messy and seems like more work than is required if we need to create
a completely new object.

 Add-Type is introduced in PowerShell v2 and allows us to use .NET code to create a
new class from which we can create objects. It sounds like this is something for devel-
opers, but the code is simple, as shown in listing A.1.

function Get-RouteTable {
param (
 [parameter(ValueFromPipeline=$true)]
 [string]$computer="."
)

$source=@"
public class WmiIPRoute
{
 public string Destination {get; set;}
 public string Mask {get; set;}
 public string NextHop {get; set;}
 public string Interface {get; set;}
 public int Metric {get; set;}
}
"@
Add-Type -TypeDefinition $source -Language CSharpversion3

 $data = @()
 Get-WmiObject -Class Win32_IP4RouteTable -ComputerName $computer|
 foreach {
 $route = New-Object -TypeName WmiIPRoute -Property @{
 Destination = $_.Destination
 Mask = $_.Mask
 NextHop = $_.NextHop
 Metric = $_.Metric1
 }

 $filt = "InterfaceIndex='" + $_.InterfaceIndex + "'"
 $ip = (Get-WmiObject -Class Win32_NetworkAdapterConfiguration
 -Filter $filt -ComputerName $computer).IPAddress

 if ($_.InterfaceIndex -eq 1) {$route.Interface = "127.0.0.1"}
 elseif ($ip.length -eq 2){$route.Interface = $ip[0]}
 else {$route.Interface = $ip}

 $data += $route
 }
 $data | Format-Table -AutoSize
}

Our function takes a computer name as a parameter B. An IP address would work
equally well. The C# code is defined in a here string C. The new class is given a name,
in this case WmiIPRoute, and we define a set of properties for the class. I’ve not
defined any methods—that’s getting a bit advanced. Each property has a name, a data

Listing A.1 Using Add-Type to create a class

Computer parameterB

C# codeC

Create classD

Use classE

Add to arrayF

Display dataG

477Alias
Apago PDF Enhancer

type and a code block to get and set the property. When we create objects from the
class, we can use the properties because we defined the class and properties as public.

 Other data types are available beyond integer and string. A full list is available on
MSDN. Be aware that C# is case sensitive. Ensure that the correct case is used for the
C# keywords or your code won’t compile. Add-Type takes the source code as an input
parameter D. We set the language type to C# 3.0 so that we can keep the syntax for
defining the properties as simple as possible.

 The rest of the script is pure PowerShell. We can use WMI to get a list of IP routes
defined on the machine. A foreach loop creates an object from our new class for each
route E. One of the improvements to New-Object is that we can set the property val-
ues at the same time as we create the object. This creates neater-looking code and
involves less coding.

 A filter string is created using the IP route’s InterfaceIndex and used with the
Win32_NetworkAdapterConfiguration class to get the IP address associated with the
adapter.

 There are normally a number of routes associated with a machine, so we store the
result from each iteration of the loop in an array F. The script finishes G by display-
ing the data using Format-Table.

A.3 Alias
The full list of built-in aliases for PowerShell v2 is supplied in table A.1.

Table A.1 Standard aliases

Name Definition Name Definition Name Definition

% ForEach-Object gi Get-Item ps Get-Process

? Where-Object gjb Get-Job pushd Push-Location

ac Add-Content gl Get-Location pwd Get-Location

asnp Add-PSSnapIn gm Get-Member r Invoke-History

cat Get-Content gmo Get-Module rbp Remove-
PSBreakpoint

cd Set-Location gp Get-
ItemProperty

rcjb Receive-Job

chdir Set-Location gps Get-Process rd Remove-Item

clc Clear-Content group Group-Object rdr Remove-PSDrive

clear Clear-Host gsn Get-PSSession ren Rename-Item

clhy Clear-History gsnp Get-PSSnapIn ri Remove-Item

cli Clear-Item gsv Get-Service rjb Remove-Job

478 APPENDIX A PowerShell reference
Apago PDF Enhancer

clp Clear-
ItemProperty

gu Get-Unique rm Remove-Item

cls Clear-Host gv Get-Variable rmdir Remove-Item

clv Clear-Variable gwmi Get-WmiObject rmo Remove-Module

compare Compare-Object h Get-History rni Rename-Item

copy Copy-Item history Get-History rnp Rename-
ItemProperty

cp Copy-Item icm Invoke-Command rp Remove-
ItemProperty

cpi Copy-Item iex Invoke-
Expression

rsn Remove-
PSSession

cpp Copy-
ItemProperty

ihy Invoke-History rsnp Remove-PSSnapin

cvpa Convert-Path ii Invoke-Item rv Remove-Variable

dbp Disable-
PSBreakpoint

ipal Import-Alias rvpa Resolve-Path

del Remove-Item ipcsv Import-Csv rwmi Remove-
WMIObject

diff Compare-Object ipmo Import-Module sajb Start-Job

dir Get-ChildItem ipsn Import-
PSSession

sal Set-Alias

ebp Enable-
PSBreakpoint

ise powershell_ise.
exe

saps Start-Process

echo Write-Output iwmi Invoke-
WMIMethod

sasv Start-Service

epal Export-Alias kill Stop-Process sbp Set-
PSBreakpoint

epcsv Export-Csv lp Out-Printer sc Set-Content

epsn Export-PSSession ls Get-ChildItem select Select-Object

erase Remove-Item man help set Set-Variable

etsn Enter-PSSession md mkdir si Set-Item

exsn Exit-PSSession measure Measure-Object sl Set-Location

fc Format-Custom mi Move-Item sleep Start-Sleep

Table A.1 Standard aliases (continued)

Name Definition Name Definition Name Definition

479Computer name
Apago PDF Enhancer
This will be of use when trying to unravel a highly aliased script you’ve found on the
web.

A.4 Computer name
A number of cmdlets have a computer name parameter that allows them to access
remote machines without using the full PowerShell remoting infrastructure. This
number is greatly expanded in PowerShell v2.

 We can use PowerShell to discover this information:

Get-Help * -Parameter computername | Format-Wide -Column 4

fl Format-List mount New-PSDrive sort Sort-Object

foreach ForEach-Object move Move-Item sp Set-
ItemProperty

ft Format-Table mp Move-
ItemProperty

spjb Stop-Job

fw Format-Wide mv Move-Item spps Stop-Process

gal Get-Alias nal New-Alias spsv Stop-Service

gbp Get-PSBreakpoint ndr New-PSDrive start Start-Process

gc Get-Content ni New-Item sv Set-Variable

gci Get-ChildItem nmo New-Module swmi Set-WMIInstance

gcm Get-Command nsn New-PSSession tee Tee-Object

gcs Get-PSCallStack nv New-Variable type Get-Content

gdr Get-PSDrive ogv Out-GridView where Where-Object

ggh Get-GuiHelp oh Out-Host wjb Wait-Job

ghy Get-History popd Pop-Location write Write-Output

■ Get-WinEvent ■ Get-Counter ■ Test-WSMan ■ Invoke-
WSManAction

■ Connect-WSMan ■ Disconnect-WSMan ■ Get-WSManInstance ■ Set-WSManInstance

■ Remove-
WSManInstance

■ New-WSManInstance ■ Invoke-Command ■ New-PSSession

■ Get-PSSession ■ Remove-PSSession ■ Receive-Job ■ Enter-PSSession

■ Get-EventLog ■ Clear-EventLog ■ Write-EventLog ■ Limit-EventLog

■ Show-EventLog ■ New-EventLog ■ Remove-EventLog ■ Get-WmiObject

Table A.1 Standard aliases (continued)

Name Definition Name Definition Name Definition

480 APPENDIX A PowerShell reference
Apago PDF Enhancer

A similar syntax can be used to discover other common parameters.

A.5 Functions
The syntax for functions is:

function Name {
 param(
 [type]$ParameterA = default_value,
 [type]$ParameterB = default_value
)
 begin {< PowerShell code> }
 process {< PowerShell code> }
 end {< PowerShell code> }
}

The syntax for advanced functions is dealt with in appendix B. If the begin, process,
and end blocks aren’t supplied, the code is treated as a process block.

A.6 Format files
If we look in the PowerShell install folder, we’ll find a number of files with an exten-
sion of .ps1xml. We can see discover them with:

Get-ChildItem -Path $pshome -Filter "*.ps1xml" | sort name

This will generate the following list of files:

Certificate.format.ps1xml
Diagnostics.Format.ps1xml
DotNetTypes.format.ps1xml
FileSystem.format.ps1xml
getevent.types.ps1xml
Help.format.ps1xml
PowerShellCore.format.ps1xml
PowerShellTrace.format.ps1xml
Registry.format.ps1xml
types.ps1xml
WSMan.Format.ps1xml

$pshome is a PowerShell automatic variable that contains the path to the PowerShell
install folder. There are a number of automatic variables. They can be found using
Get-Variable on a newly opened instance of PowerShell. These files control the
default output when an object is displayed. We can demonstrate this by creating and
displaying an arbitrary timespan object:

PS> $ts = (get-date) - (get-date).AddDays(`
$(get-random -Minimum -57 -Maximum -3))
PS> $ts

(continued)

■ Invoke-WmiMethod ■ Get-Process ■ Remove-WmiObject ■ Register-WmiEvent

■ Get-Service ■ Set-Service ■ Set-WmiInstance ■ Get-HotFix

■ Test-Connection ■ Restart-Computer ■ Stop-Computer

481Format files
Apago PDF Enhancer

Days : 39
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 0
Ticks : 33696000000000
TotalDays : 39
TotalHours : 936
TotalMinutes : 56160
TotalSeconds : 3369600
TotalMilliseconds : 3369600000

There are default displays for table, list, and wide formatting. Table is usually first,
which is why we see tabular data by default. These files are XML-based. We can export
the XML using:

Get-FormatData -TypeName System.TimeSpan |
Export-FormatData -Path demo.ps1xml -IncludeScriptBlock -Force

After producing a pretty-printed version of the XML, we see:

<?xml version="1.0" encoding="utf-8"?>
<Configuration>
 <ViewDefinitions>
 <View>
 <Name>System.TimeSpan</Name>
 <ViewSelectedBy>
 <TypeName>System.TimeSpan</TypeName>
 </ViewSelectedBy>
 <ListControl>
 <ListEntries>
 <ListEntry>
 <ListItems>
 <ListItem>
 <PropertyName>Days</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Hours</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Minutes</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Seconds</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Milliseconds</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Ticks</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TotalDays</PropertyName>
 </ListItem>
 <ListItem>

482 APPENDIX A PowerShell reference
Apago PDF Enhancer

 <PropertyName>TotalHours</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TotalMinutes</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TotalSeconds</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TotalMilliseconds</PropertyName
 </ListItem>
 </ListItems>
 </ListEntry>
 </ListEntries>
 </ListControl>
 </View>
 <View>
 <Name>System.TimeSpan</Name>
 <ViewSelectedBy>
 <TypeName>System.TimeSpan</TypeName>
 </ViewSelectedBy>
 <TableControl>
 <TableHeaders />
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>Days</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Hours</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Minutes</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Seconds</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Milliseconds</PropertyName>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
 </View>
 <View>
 <Name>System.TimeSpan</Name>
 <ViewSelectedBy>
 <TypeName>System.TimeSpan</TypeName>
 </ViewSelectedBy>
 <WideControl>
 <WideEntries>
 <WideEntry>
 <WideItem>

483Format files
Apago PDF Enhancer

 <PropertyName>TotalMilliseconds</PropertyName>
 </WideItem>
 </WideEntry>
 </WideEntries>
 </WideControl>
 </View>
 </ViewDefinitions>
</Configuration>

The file is included as pretty.xml in the book’s download file (in the appendix A
folder). In this case, the default display is a list including the following properties:

Days
Hours
Minutes
Seconds
Milliseconds
Ticks
TotalDays
TotalHours
TotalMinutes
TotalSeconds
TotalMilliseconds

Under some circumstances, we may just want the total values. This can be achieved by
using a select statement (good if it’s only now and again), or we can change the
default display if we want to use the new format all of the time.

WARNING Don’t modify the files in the PowerShell folder. They’ll be over-
written when new versions of PowerShell are released and the changes will be
lost.

We can create a new format file (AppB_new_timespan_format.ps1xml in the download):

<?xml version="1.0" encoding="utf-8"?>
<Configuration>
 <ViewDefinitions>
 <View>
 <Name>System.TimeSpan</Name>
 <ViewSelectedBy>
 <TypeName>System.TimeSpan</TypeName>
 </ViewSelectedBy>
 <ListControl>
 <ListEntries>
 <ListEntry>
 <ListItems>
 <ListItem>
 <PropertyName>TotalDays</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TotalHours</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TotalMinutes</PropertyName>
 </ListItem>

484 APPENDIX A PowerShell reference
Apago PDF Enhancer

 <ListItem>
 <PropertyName>TotalSeconds</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TotalMilliseconds</PropertyName>
 </ListItem>
 </ListItems>
 </ListEntry>
 </ListEntries>
 </ListControl>
 </View>
 </ViewDefinitions>
</Configuration>

This file will only display the total values. We can load our format file into PowerShell
using:

Update-FormatData -PrependPath AppB_new_timespan_format.ps1xml

This forces our format to be loaded and used ahead of the standard PowerShell for-
matting. When we display our timespan object, we now see just the total times:

PS> $ts

TotalDays : 39
TotalHours : 936
TotalMinutes : 56160
TotalSeconds : 3369600
TotalMilliseconds : 3369600000

Any time you create an object to display, or you need to control an object’s formatting
on a frequent basis, think about creating a format file to do the work. They can be
loaded from the PowerShell profile to be always available.

A.7 Loops
We’ve seen how loops are used throughout the book. This gives a quick syntax refer-
ence. The use of each individual style of loop is given in chapter 2.

A.7.1 Foreach

Use the following syntax for a foreach loop:

foreach ($item in $collection_of_items) {
 < PowerShell code>
}

A.7.2 For

Use the following syntax for a for loop:

for ($i = 0; $i -lt somevalue; $i++) {
 < PowerShell code>
}

485Operators
Apago PDF Enhancer

A.7.3 While

Use the following syntax for a while loop:

while (<condition>) {
 < PowerShell code>
}

A.7.4 Do

The syntax of the do loop has two versions:

do {
 < PowerShell code>
} until (<condition>)

do {
 < PowerShell code>
} while (<condition>)

A.8 Operators
In PowerShell, operators are used to perform some operation on data. This can be a
comparison, arithmetic, or a logical operation. It’s probable that some operators will
be used more frequently than others. The operator information is spread across a
number of help files. It’s gathered here for completeness.

A.8.1 Arithmetic operators

The arithmetic operators +, -, *, and / mean plus, subtract, multiply, and divide as
normal when dealing with numbers.

 Strings are concatenated using a + sign.
 Modulo arithmetic is performed using a % sign. It returns the remainder of a

division:

PS> 28 % 5
3

Be careful not to confuse the modulo operator with % when it’s used as an alias of
Foreach-Object. Further information can be found using:

Get-Help about_arithmetic_operators

ARITHMETIC PRECEDENCE

Arithmetic operators are computed in the following order:

1 Parentheses ()
2 - (negative number)
3 *, /, %
4 +, - (subtraction)

486 APPENDIX A PowerShell reference
Apago PDF Enhancer

A.8.2 Assignment operators

Table A.2 lists the available assignment operators.

For more information, run the following command:

Get-Help about_assignment_operators

A.8.3 Bitwise operators

Bitwise operators work on the binary version of a number. They see extensive use
when working with the useraccountcontrol flags in Active Directory—see appendix
D and chapter 5. In PowerShell v2, the bitwise operators work with 64-bit integers.
Table A.3 lists the bitwise operators.

 I’ll leave it as an exercise for the reader to work through the binary versions of the
examples!

Table A.2 Assignment operators

Operator Meaning Example

= Sets the value of a variable $x = 5

+= Increases variable by given value PS> $x = 5
PS> $x += 4
PS> $x
9

PS> $y = "aa"
PS> $y += "bb"
PS> $y
aabb

-= Decreases variable by given value PS> $x -= 3
PS> $x
6

*= Multiplies variable by given value PS> $x *= 3
PS> $x
18

/= Divides variable by given value PS> $x /= 6
PS> $x
3

%= Divides variable by given value and
assigns remainder to the variable

PS> $x = 28
PS> $x %= 5
PS> $x
3

487Operators
Apago PDF Enhancer

A.8.4 Comparison operators

There are two flavors of comparison operators: equality and containment.
EQUALITY OPERATORS

The equality comparison operators compare two values and decide whether they’re
equal, or whether one is greater than or less than the other. These are shown in table A.4.

 A common typing error is to type -neq for not equal to. Another common mistake
is to use = instead of -eq. These don’t work!

 There was a lot of discussion about the comparison operators in the early Power-
Shell (Monad) betas, with many people preferring the symbol approach: > rather than
-gt. The final decision was not to use symbols. These operators may seem familiar if
you’ve seen Fortran in the past.

 The default mode of comparison is that the operators are implicitly case insensi-
tive. PowerShell as a whole is case insensitive. The comparison can be forced to be
case sensitive by adding a c as a prefix; for example –eq becomes –ceq. Case insensitiv-
ity can be made explicit by adding an i as a prefix. These prefixes also apply to the
replace operator (see string operators).

Table A.3 Bitwise operators

Operator Meaning

-band Bitwise AND. The resultant bit is set to 1 when both input bits are 1.
PS> 15 -band 5
5

-bor Bitwise OR (inclusive). The resultant bit is set to 1 when either or
both input bits are 1. If both bits are 0, the result is 0.
PS> 15 -bor 5
15

-bxor Bitwise OR (exclusive). The resultant bit is set to 1 only if one input
bit is equal to 1.
PS> 15 -bxor 5
10

Table A.4 Equality comparison operators

Operator Meaning

-eq
-ceq, -ieq

Equal to. Returns true if both sides are equal.
 8 -eq 8, "me" -eq "you"

-ne
-cne, -ine

Not equal to. Returns true if the two objects are different.
8 -eq 8, "me" -eq "you"

-gt
-cgt, -igt

Greater than. Returns true if left side is greater than right side.
8 -gt 7

-ge
-cge, -ige

Greater than or equal. Returns true if left side is greater than or equal to right side.
8 -ge 7, 8 -ge 8

488 APPENDIX A PowerShell reference
Apago PDF Enhancer

CONTAINMENT OPERATORS

These could also be called matching operators because we’re trying to get a match to
a pattern of some sort. The operators are shown in table A.5.

A.8.5 Logical operators

The logical operators connect expressions or statements. Multiple conditions can be
tested. Expect to use them in:

■ If statements
■ Where filters
■ Switch statements

The logical operators are listed in table A.6.

-lt
-clt, -ilt

Less than. Returns true if left side is less than or equal to right side.
7 -lt 8

-le
-cle, -ile

Less than or equal to. Returns true if left side less than or equal to right side.
7 -le 8, 8 -le 8

Table A.5 Containment equality operators

Operator Meaning

-like, -clike,
-ilike

Returns values that match strings based on wildcards * or ?
Get-Process | where {$_.Name -like "win*"}

-notlike,
-cnotlike,
-inotlike

Returns values that don’t match strings based on wildcards * or ?
Get-Process | where {$_.Name -notlike "w*"}

-match, -cmatch,
-imatch

Returns values that match strings based on regular expressions. In the following
example, two characters, an n, a character, an n, and then one or more characters
Get-Process | where {$_.Name -match "\w\w[n]\w[n]."}

-notmatch,
-cnotmatch,
-inotmatch

Returns values that don’t match strings based on regular expressions.
Get-Process | where {$_.Name -notmatch "\w\w[n]\w[n]."}

-contains
-ccontains,
-icontains

Returns true if the right side is contained in the set on the left side
"red", "blue", "green" -contains "red"

-notcontains
-cnotcontains,
-inotcontains

Returns true if the right side isn’t contained in the set on the left side
"red", "blue", "green" -notcontains "purple"

Table A.4 Equality comparison operators (continued)

Operator Meaning

489Operators
Apago PDF Enhancer

A.8.6 Range operator

The range operator can be used to identify a contiguous set of values:

PS> $a = 1..10
PS> $a[0]
1
PS> $a[9]
10

A.8.7 String operators

The string operators are listed in table A.7. The replace operator is included in the
comparison operators in the help files.

Table A.6 Logical operators

Operator Meaning

-and Logical AND. Returns true when both statements are true.
get-process | where{ ($_.Name -like "w*") -and ($_.CPU -gt 100.0)}

-or Logical OR. Returns true when either statement is true.
get-process | where{ ($_.Name -like "w*") -or ($_.Name -like
"a*")}

-xor Logical exclusive OR. Returns true when one statement is true and the other is false.
PS> (1 -eq 1) -xor ("a" -eq "b")
True
PS> (1 -eq 1) -xor ("a" -eq "a")
False

-not
!

Logical NOT. (Two ways of writing). Negates the following statement.
get-process | where{-not($_.Name -like "w*") }
get-process | where{!($_.Name -like "w*") }

Table A.7 String operators

Operator Meaning

-replace
-creplace
-ireplace

Replaces the specified part of a string with another string.
PS> "abcdef" -replace "B", "X"
aXcdef
PS> "abcdef" -ireplace "B", "X"
aXcdef
PS> "abcdef" -creplace "B", "X"
abcdef
compare with
"My name is Joe".Replace("Joe", "Richard")

490 APPENDIX A PowerShell reference
Apago PDF Enhancer

A.8.8 Type operators

The type operators, shown in table A.8, can be used to test the .NET type of an object
or to perform a type conversion.

A.8.9 Unary operators

The unary operators are listed in table A.9.

-split Splits single string into one or more strings.
PS> "PowerShell is great" -split " "
PowerShell
is
great

-join Joins multiple strings into a single string. The elements are separated by the supplied
delimiter. Will also join contents of an array into a single string.
PS> "PowerShell", "is", "great" -join " "
PowerShell is great

Table A.8 Type operators

Operator Meaning

-is Returns true when the left side is an instance of the .NET type given on the right side.
2.0 -is [System.Double]
2 -is [System.Double]

-isnot Returns true when the left side isn’t an instance of the .NET type given on the right side.
2 -isnot [System.Double]
2.0 -isnot [System.Double]

-as Converts the input on the left side into the type given on the right side.
2 | gm
(2 -as [System.Double]) | gm
Compare with direct casting
[double]2 | gm

Operator Meaning

- Sets to negative; i.e., multiplies by -1
PS> $x = -4
PS> $x
-4

++ Attempts cast to a number
PS> $x = +"12"
PS> $x
12
PS> $x.GetType() - returns Int32

Table A.7 String operators (continued)

Operator Meaning

Table A.9 Unary operators

491Operators
Apago PDF Enhancer

A.8.10 Special operators

There are a number of special operators within PowerShell that we need to consider
to complete this section, as shown in table A.10.

-- Decrements the variable
PS> $x = 5
PS> $x--
PS> $x
4

++ Increments the variable
PS> $x = 5
PS> $x++
PS> $x
6

[<type>] Type cast. Sets the .NET type of the variable
PS> $x = [string]1
PS> $x.GetType() - returns String

Table A.10 Special operators

Operator Meaning

& Call or invocation operator. Used to execute commands contained within
a string.
$e = "Get-Process"
& $e

. Used to indicate a property and for dot-sourcing a script when the vari-
ables are to be kept in memory.
$str.Length
. ./myscript.ps1

:: Used to execute a static method of a class. Static methods are explained
in chapter 3.
PS> [Math]::PI
3.14159265358979
PS> [Math]::SQRT(16)
4

-f Format operator. Used to format strings.
PS> "{0:F2}" -f 5.678890
5.68

$() Subexpression. The commands in the braces are executed and returned
as the value of the “variable.”

Operator Meaning

Table A.9 Unary operators
(continued)

492 APPENDIX A PowerShell reference
Apago PDF Enhancer

The difference between the call (invoke) operator and Invoke-Expression isn’t
immediately obvious. These examples should help to clear the ambiguity:

$bk = "Get-Process"
&$bk
Invoke-Expression $bk

Both statements work, so either method can be used for a single command. If we want
to extend our expression to multiple commands on the pipeline:

$bk = "Get-Process | sort cpu"
&$bk

using the call operator fails, but we can successfully use Invoke-Expression:

Invoke-Expression $bk

But if we try to use a script block instead of encapsulating the commands as a string:

$bk = {Get-Process | sort cpu}
& $bk

the call operator fails but Invoke-Expression $bk works. Life doesn’t stay simple
unfortunately, because if we put multiple commands in a script block:

$x = {$a=2+2; $a}
&$x

we find that the call operator works, but the following fails:

Invoke-Expression $x.

Just in case you thought to try multiple commands in a string:

$x = "$a=2+2; $a"
&$x
Invoke-Expression $x

both options fail.

@ (), @{ } Return an array or hash table, respectively. Array elements are separated
by commas; the elements in a hash table are separated by semicolons.
$a = @(1,2,3,4,,5)
$h = @{"a"=1; "b"=2; "c"=3; "d"=4; "e"=5}

, Creates an array.
PS> $a1 = ,1
PS> $a1
1
PS> $a2 = 1,2,3
PS> $a2
1
2
3
Note that the first example creates an array with a single member.

Table A.10 Special operators (continued)

Operator Meaning

493Standard names
Apago PDF Enhancer

 There are ways to invoke any expression, as we’ve seen. Use these examples as tem-
plates when invoking commands.

A.9 Special characters
Special characters are listed in table A.11.

A.10 Standard names
In PowerShell, a cmdlet is always given a name that consists of a verb-noun pair with
the two words separated by a hyphen. It’s good practice to use this convention for
functions and scripts as well.

 Capitalization seems to be a huge issue for some folks. I tend to follow the Power-
Shell team’s lead and capitalize the first letter of the verb and noun unless I’m using a
prefix on the noun, in which case that’s also capitalized. This isn’t set in stone, and I
often use lowercase for functions. Even the PowerShell team don’t always follow these
conventions (as shown by ls function:).

A.10.1 Verb

The verb should be drawn from the list of standard verbs. PowerShell doesn’t check
whether the verb is part of the standard set, but expect loud comments from the Pow-
erShell community if you step outside the standards. The list of standard verbs can be
found by using the Get-Verb function in PowerShell v2.

Get-Verb | Sort verb | Format-Wide -Property Verb -Column 5

The standard verbs are:

Character Meaning

`0 Null

`a Alert

`b Backspace

`f Form feed

`n New line

`r Carriage return

`t Horizontal tab

`v Vertical tab

■ Add ■ Approve ■ Assert ■ Backup ■ Block

■ Checkpoint ■ Clear ■ Close ■ Compare ■ Complete

■ Compress ■ Confirm ■ Connect ■ Convert ■ ConvertFrom

■ ConvertTo ■ Copy ■ Debug ■ Deny ■ Disable

Table A.11 Special characters

494 APPENDIX A PowerShell reference
Apago PDF Enhancer
The verbs are grouped by function. The groups and the number of verbs in each
group are shown in table A.12. The content of the table can be generated by this piece
of PowerShell:

Get-Verb | Group group

The names of the groups refer to the their purpose. Examining the group contents
will help explain the group’s purpose; for example:

Get-Verb | where {$_.group -eq 'Security'}

We can test whether a verb is part of the standard list:

(continued)

■ Disconnect ■ Dismount ■ Edit ■ Enable ■ Enter

■ Exit ■ Expand ■ Export ■ Find ■ Format

■ Get ■ Grant ■ Group ■ Hide ■ Import

■ Initialize ■ Install ■ Invoke ■ Join ■ Limit

■ Lock ■ Measure ■ Merge ■ Mount ■ Move

■ New ■ Open ■ Out ■ Ping ■ Pop

■ Protect ■ Publish ■ Push ■ Read ■ Receive

■ Redo ■ Register ■ Remove ■ Rename ■ Repair

■ Request ■ Reset ■ Resolve ■ Restart ■ Restore

■ Resume ■ Revoke ■ Save ■ Search ■ Select

■ Send ■ Set ■ Show ■ Skip ■ Split

■ Start ■ Step ■ Stop ■ Submit ■ Suspend

■ Switch ■ Sync ■ Test ■ Trace ■ Unblock

■ Undo ■ Uninstall ■ Unlock ■ Unprotect ■ Unpublish

■ Unregister ■ Update ■ Use ■ Wait ■ Watch

■ Write

Count Group Name

32 Common

24 Data

20 Lifecycle

 7 Diagnostic

 6 Communications

 6 Security

 1 Other
Table A.12 Verb groups

495Type shortcuts
Apago PDF Enhancer

$verbs = @()
get-verb | foreach {$verbs += $_.verb.ToString()}
$verbs -contains "grant"
$verbs -contains "choose"

This is also a nice demonstration of the -contains operator.
 In PowerShell v1, we don’t have a Get-Verb function, but we can find the verbs

that are currently in use:

get-command | sort verb | group verb

A.10.2 Nouns

Nouns should be singular and should relate exactly to the object being accessed.

A.11 Type shortcuts
A number of type shortcuts or accelerators have been mentioned throughout the
book. They’re used as a shortcut for a .NET type. We can use the shortcut instead of
typing the whole name of the type. The most commonly used are probably [adsi] for
System.DirectoryServices.DirectoryEntry and the data type short cuts [int] and
[string] for integer and string, respectively.

 A full list doesn’t seem to have been published but, Oisin Grehan, a PowerShell
MVP, has shown how to obtain the list from PowerShell itself on his blog (search for
“nivot ink”). The full list for PowerShell v2 is shown in table A.13.

Table A.13 Type shortcuts or accelerators

Shortcut .NET type

adsi System.DirectoryServices.DirectoryEntry

adsisearcher System.DirectoryServices.DirectorySearcher

array System.Array

bool System.Boolean

byte System.Byte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

hashtable System.Collections.Hashtable

int System.Int32

ipaddress System.Net.IPAddress

long System.Int64

496 APPENDIX A PowerShell reference
Apago PDF Enhancer

This gets confusing, because we can also do this:

$d = [datetime]"1 january 2010"
$d | gm

In this case, we aren’t using an accelerator; we’re using the fact that we can drop the
System part off the type name. We’ve actually written:

$d = [System.DateTime]"1 january 2010"
$d | gm

Remember, too, that these shortcuts are in themselves shortcuts for using New-Object.

powershell System.Management.Automation.PowerShell

pscustomobject System.Management.Automation.PSObject

psmoduleinfo System.Management.Automation.PSModuleInfo

psobject System.Management.Automation.PSObject

psprimitivedictionary System.Management.Automation.PSPrimitiveDictionary

ref System.Management.Automation.PSReference

regex System.Text.RegularExpressions.Regex

runspace System.Management.Automation.Runspaces.Runspace

runspacefactory System.Management.Automation.Runspaces.RunspaceFactory

scriptblock System.Management.Automation.ScriptBlock

single System.Single

string System.String

switch System.Management.Automation.SwitchParameter

type System.Type

wmi System.Management.ManagementObject

wmiclass System.Management.ManagementClass

wmisearcher System.Management.ManagementObjectSearcher

xml System.Xml.XmlDocument

Table A.13 Type shortcuts or accelerators (continued)

Shortcut .NET type

Apago PDF Enhancer

appendix B:
Modules and

 advanced functions

Functions have been a useful part of PowerShell v1, in that they allow us to reuse
code and cut down the size of our scripts by avoiding repetition. We can also save
the functions into memory so that they’re available from within our PowerShell ses-
sion. It’s possible to organize functions into libraries and perform a bulk load.
These functions can be used from the command line or within scripts. The struc-
ture of functions was discussed in section 2.4.5.

 PowerShell v2 provides a new way of organizing functions into modules. A mod-
ule can be a collection of functions or even a compiled DLL. Windows 7 and Win-
dows Server 2008 supply their PowerShell functionality as modules, as we saw in
chapter 15. We’ll discover how to write our own modules and how we can use this
functionality.

 If we want to use our PowerShell v1 functions on the pipeline, we have to create
them as filters because a function only runs once. A filter will run once for every
object on the pipeline. Advanced functions in PowerShell v2 enable us to write our
functions and use them as if they were cmdlets—on the command line, in scripts,
and on the pipeline.

B.1 Modules
Modules are stored, by default, in two places—a modules folder in the Windows-
PowerShell folder of the user’s documents and the modules folder within the Pow-
erShell install folder. An x64 machine will add an additional folder in the 64-bit
PowerShell install folder. The current paths to the modules are stored in a Power-
Shell variable:

PS> $env:psmodulepath -split ";"
C:\Users\Richard\Documents\WindowsPowerShell\Modules
C:\Windows\system32\WindowsPowerShell\v1.0\Modules\
497

498 APPENDIX B Modules and advanced functions
Apago PDF Enhancer

It’s possible to add other folders to that path if required.
 The list of currently available modules can be seen:

PS> Get-Module -ListAvailable

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest FileFunctions {}
Script MathFunctions {}
Script ServiceFunctions {}
Manifest UserFunctions {}
Manifest AppLocker {}
Manifest BitsTransfer {}
Manifest PSDiagnostics {}
Manifest TroubleshootingPack {}

This is the list on my Windows 7 RTM system. There are two types of module:

■ Manifest which may contain scripts or a DLL. It has a manifest file that controls
how the module is loaded. We’ll see a manifest file later.

■ Script which contains scripts and loading is controlled by the module.

The first four modules are loaded from my WindowsPowerShell folder, and the sec-
ond four are modules that PowerShell supplies. Each modules folder contains a series
of subfolders, each of which contains a module, which is a file of PowerShell functions
with a .psm1 extension. The manifest file, if present, will have a .psd1 extension.

 Modules are a good way of storing and loading scripts that are functionally related.
As an example, let’s consider the script we saw in listing 5.1 (creating an account on the
local machine). We’ll take that concept and extend it by adding the functions needed
to create a random password for the account. This gives us a total of four functions:

■ new-user—Creates the user account. This is essentially the same as listing 5.1
except we are generating a strong random password within the script.

■ new-password—Generates the random password.
■ get-randchar—Generates a random character from a defined set.
■ add-character—Controls the adding of new characters into the password.

Listing B.1 incorporates the four functions that comprise our module. The code is a
mixture of functions that we use directly and background helper functions that aren’t
directly exposed.

#Requires -version 2.0
acceptable symbols (23 symbols)
$symbols = "(", "!", "@", "#", "$", "%", "^", "&", "*", "_", "+", "=", "?",

"/", "~", ";", ":", ",", "<", ">", "\", ")", "."
function get-randchar {
 param ([int]$value)
 switch ($value) {
 ## number
0 {[string][char](Get-Random -Minimum 48 -Maximum 58)}

Listing B.1 UserFunctions module

B Set requirements

C
Generate
character

499Modules
Apago PDF Enhancer

 ## upper case
1 {[string][char](Get-Random -Minimum 65 -Maximum 91)}
 ## lower case
2 {[string][char](Get-Random -Minimum 97 -Maximum 123)}
 ## symbol
3 {$symbols[$(Get-Random -Minimum 0 -Maximum 23)]}
 }
}
function add-character{
 param (
 [int]$count,
 [int]$type
)

 while ($count -gt 0) {
 $index = Get-Random -Minimum 0 -Maximum $length
 if ($characters[$index] -eq "") {
 $characters[$index] = get-randchar $type
 $count --
 }
 }
}
function new-password {
 [CmdletBinding()]
 param (
 [Parameter(Position=0,HelpMessage=
 "The length of password. Default is random between 8 and 12")]
 [int]$length = (Get-Random -Minimum 8 -Maximum 13),

 [Parameter(Position=1,HelpMessage=
 "The number of numeric characters the password should contain.
 Minimum is 1")]
 [int]$number = 1,

 [Parameter(Position=2,HelpMessage=
 "The number of upper case characters the password should contain.
 Minimum is 1")]
 [int]$upper = 1,

 [Parameter(Position=3,HelpMessage=
 "The number of lower case characters the password should contain.
 Minimum is 1")]
 [int]$lower = 1,

 [Parameter(Position=4,HelpMessage=
 "The number of punctuation characters the password should contain.
 Minimum is 1")]
 [int]$punc = 1
)
 ## test password length
 $sumchars = $number + $upper + $lower + $punc
 if ($sumchars -gt $length){
 Write-Host "Password complexity will be preserved"
 Write-Host "Resetting password length to sum of input characters =
 $sumchars"
 $length = $sumchars
 }

Add charactersD

Set positionE

Create new passwordF

Check lengthG

500 APPENDIX B Modules and advanced functions
Apago PDF Enhancer

 $characters = New-Object string[] $length
 for($i=0;$i -le ($length-1);$i++){$characters[$i] = ""}
 ## requirements
 for($i=1;$i -le 4;$i++){
 switch ($i){
 1 {add-character $number 0} ## numbers
 2 {add-character $upper 1} ## upper case
 3 {add-character $lower 2} ## lower case
 4 {add-character $punc 3} ## punctuation
 }
 Write-Debug "$characters"
 }

 ## complete password
 for ($i=0;$i -le ($length-1);$i++){
 if ($characters[$i] -eq "") {
 $characters[$i] = get-randchar ($i % 4)
 }
 }
 $characters -join ""
}
function new-user {
 [CmdletBinding()]
 param (
 [Parameter(Position=0,HelpMessage="The loginid")]
 [string]$id ,

 [Parameter(Position=1,HelpMessage="The Display name")]
 [string]$name

)
 ## create a password
 $password = ConvertTo-SecureString
 -String $(new-password 8) -AsPlainText -Force
 $cred =
 New-Object -TypeName System.Management.Automation.PSCredential
 -ArgumentList "userid", $password

 ## get the machine
 $pc = $env:computername
 ## create the context i.e. connect to the domain
 $ctype =
 [System.DirectoryServices.AccountManagement.ContextType]::Machine
 $context = New-Object
 -TypeName System.DirectoryServices.AccountManagement.PrincipalContext
 -ArgumentList $ctype, $pc

 ## create the user object
 $usr = New-Object
 -TypeName System.DirectoryServices.AccountManagement.UserPrincipal
 -ArgumentList $context

 ## set the properties
 $usr.SamAccountName = $id
 $usr.SetPassword($cred.GetNetworkCredential().Password)
 $usr.DisplayName = $name
 $usr.Enabled = $true

Add charactersH

Complete passwordI

Join charactersJ

New user function1)

Create password1!

Get machine1@

Create user object1#

Set properties1$

501Modules
Apago PDF Enhancer

 $usr.ExpirePasswordNow()

 ## save the user
 $usr.Save()
}

The important point to remember about these function is the order in which they’re
used. We’ll normally use them in this order:

1 new-user
2 new-password
3 add-character
4 get-randchar

Functions 1 and 2 can be used directly. We normally wouldn’t call 3 or 4 directly. In
fact, we’ll hide them when we come to look at manifests.

 Our module starts with a Requires statement B. This is used to ensure that we
only run the script on PowerShell v2. We also set the symbol list. This contains the
symbols we can use in our passwords. The password is created as an array of characters
to begin with so that we can randomize the position of characters. We want to be able
to create a strong password that consists of at least one of each of the following:

■ Uppercase characters
■ Lowercase characters
■ Numbers
■ Symbols

The function get-randchar C is used to generate the individual characters. It accepts
a type (0-4) as input and generates a random character of the appropriate type; for
example, numbers are ASCII characters 48-57. The number 9 is generated by
[char]57, for instance. Get-Random uses a maximum and minimum value when pro-
ducing a random number. The cmdlet always produces a value less than the value sup-
plied to the maximum parameter!

 Our next function is add-character D. It accepts two integers as parameters.
$count dictates how many characters to create, and $type controls the type of charac-
ter. The function runs through a loop E, picking a random position in the array of
characters that represents the password. If that position is empty, a character of the
appropriate type is generated using get-randchar and the counter is decremented.
The loop runs until the counter reaches zero.

 These two functions are used by new-password F. This can accept a number of
parameters, including:

■ Password length—Default is 8-12.
■ Number of numeric characters—Default is 1.
■ Number of uppercase characters—Default is 1.
■ Number of lowercase characters—Default is 1.
■ Number of symbols—Default is 1.

502 APPENDIX B Modules and advanced functions
Apago PDF Enhancer

The defaults ensure that a strong password is created that’ll meet the Active Direc-
tory password complexity requirements. The number of characters defined for each
type is summed, and if the total is greater than the stated length then the length is
increased to match that value G. I always assume that I want to strengthen
pass words, not weaken them. The defaults can be altered to suit your requirements
if different.

 An array of characters is created and we loop through the four character types,
calling add-character to supply the contents H. If we use the –debug parameter
when calling new-password, we’ll see the characters being assigned after each pass.
Once we have the stated requirements in place, we can fill in the rest of the characters
randomly I. We loop through the array of characters and if a character is empty (""),
we fill it using get-randchar. The type of character assigned is determined by taking
the modulus of its position. As the preset character types are positioned randomly, this
is a pseudorandom way of filling in the rest. If desired, get-random could be used
instead. The final act of this function is to create a character string J from the char-
acter array using the join operator.

 The new-user function takes the login ID and user name as parameters 1). A
password is generated using new-password 1! and used to create a credential object.
The machine we want to create the user account on is defined 1@ and the user is cre-
ated 1#. The appropriate properties are set 1$, including the password with a final
save operation.

 One thing to note is that we never see the password. This means that the account
can be created ahead of time and the password reset when it’s needed.

 In its present form, the module exports all of the functions—makes them available
for use. We can control which functions are exported by using:

Export-ModuleMember –function new-password, new-user

as the last line of the module. Alternatively, we can create a manifest for the module,
which gives more flexibility.

 A module manifest can be created using New-Modulemanifest. This cmdlet will
step through asking for the information to complete the manifest. The other option is
to copy one and hand-edit it, but you’ll need to create a GUID.

 If a manifest is present, it’s executed in preference to the module file. It can load
multiple modules using the NestedModules section. The lines dealing with versioning,
ownership, copyright, and descriptions are self-explanatory. The GUID is created by
New-ModuleManifest and uniquely identifies the module.

 The manifest controls the functions, aliases, variables, and cmdlets that can be
exported. It’s conceivable that a situation could arise in which different functions
were exported by different manifests. The manifest also organizes the scripts, type
files, modules, and assemblies that must be loaded for the functions in the module to
work. The manifest that accompanies the module discussed in listing B.1 is shown in
listing B.2.

503Modules
Apago PDF Enhancer

#
Module manifest for module 'userfunctions'
#
Generated by: Richard Siddaway
#
Generated on: 22/02/2009
#

@{
These modules will be processed when the module manifest is loaded.
NestedModules = 'userfunctions.psm1'

This GUID is used to uniquely identify this module.
GUID = 'b55021a4-5a21-4cf6-9b76-29eef95db0cf'

The author of this module.
Author = 'Richard Siddaway'

The company or vendor for this module.
CompanyName = 'Macdui'

The copyright statement for this module.
Copyright = '(c) Richard Siddaway'

The version of this module.
ModuleVersion = '1.0'

A description of this module.
Description = 'Module of scripts for working with local user accounts'

The minimum version of PowerShell needed to use this module.
PowerShellVersion = '2.0'

The CLR version required to use this module.
CLRVersion = '2.0'

Functions to export from this manifest.
FunctionsToExport = 'new-password', 'new-user'

Aliases to export from this manifest.
AliasesToExport = '*'

Variables to export from this manifest.
VariablesToExport = '*'

Cmdlets to export from this manifest.
CmdletsToExport = '*'

This is a list of other modules that must be loaded before this module.
RequiredModules = @()

The script files (.ps1) that are loaded before this module.
ScriptsToProcess = @()

The type files (.ps1xml) loaded by this module.
TypesToProcess = @()

The format files (.ps1xml) loaded by this module.
FormatsToProcess = @()

Listing B.2 Module manifest

504 APPENDIX B Modules and advanced functions
Apago PDF Enhancer

A list of assemblies that must be loaded before this module can work.
RequiredAssemblies = @()

Module specific private data can be passed via this member.
PrivateData = ''
}

The module is loaded using Import-Module as shown in figure B.1. Get-Module will
display the modules currently loaded and the functions that are exported. We can test
that the functions are present by testing the function drive for the exported functions.

 An example of using New-Password is also shown in figure B.1. Tab completion
also works on the functions for the name and the parameters.

 The module can be removed from use by using Remove-Module UserFunctions,
which also removes the functions.

PowerShell v2 also allows us to write cmdlets in PowerShell. These were known as script
cmdlets in the early beta versions but are now called advanced functions.

B.2 Advanced functions
Advanced functions enable us to write functions that act as first-class citizens on the
pipeline. The cmdletbinding attribute is used to identify a function as an advanced
function. The $args parameter doesn’t work in advanced functions, so we have to

Figure B.1 Loading and using a module.

505Advanced functions
Apago PDF Enhancer

define all parameters. A positional parameter that doesn’t match with the defined
parameters will cause the function to fail. In other words, you can’t pass three param-
eters if you’ve only defined two!

 Another innovation for functions (advanced or normal) is the ability to provide
help information. This can be through comment-based help as we’ll see in the exam-
ple, or by a link to an external help file.

 These concepts are illustrated in listing B.3 using a function that provides a color-
ized output for Get-ChildItem.

function Format-Colorfile {
<# 1
.SYNOPSIS
 Creates a colored listing of a folders files
.DESCRIPTION
 Uses [System.Console]::ForegroundColor to control
 the color used to write out the file name.
 This is based on a PowerShell filter from
 the very first Monad book.
.NOTES
 Author: Richard Siddaway
 File: variable
 Requires: PowerShell V2
 Modifications:
 Several
.LINK
.EXAMPLE

 "Get-ChildItem c:\windows | Format-Colorfile"
.INPUTS
 output of Get-ChildItem
.OUTPUTS
 None
.PARAMETER file
#>
[CmdletBinding(SupportsShouldProcess=$True)]
param (
[Parameter(ValueFromPipeline=$true)] $file
)
 begin {
 $colors=@{ps1="Cyan"; exe="Green"; cmd="Green"; directory="Yellow"}
 $defaultColor = "White"
 }
 process{
 if ($file.Extension -ne "") { $ext = $file.Extension.Substring(1) }
 if ($file.Mode.StartsWith("d")) { $ext = "directory" }
 if ($colors.ContainsKey($ext)) {
 [System.Console]::ForegroundColor = $colors[$ext] }

 $file
 [System.Console]::ForegroundColor = $defaultColor
 }

Listing B.3 Advanced function

Comment-
based help

B
cmdletbindingC

Parameter
from pipeline

D

Set colorsE

Display fileF

506 APPENDIX B Modules and advanced functions
Apago PDF Enhancer

 end {
 [System.Console]::ForegroundColor = $defaultColor
 }
}

Everything starts off normally with a function keyword and the name of the function.
We then meet our first new item B. The comment-based help uses a block comment
that defines all lines between the opening defined by <# and the closing defined by
#>. Block comments can be used anywhere in your scripts and functions. They look a
lot more elegant than commenting every line and are easier to type. Block comments
are especially useful if you need to comment out a bunch of code while testing.

 The comment-based help can be placed at the beginning or the end of a function
or script. I prefer to put it at the front because I can use it to document the script and
it’s immediately viewable when the script or function is opened in an editor.

 There are a number of keywords used in comment-based help. They’re always pre-
ceded by a full stop, as shown. My experience with using comment-based help suggests
that if you get one of the keywords wrong then the comment-based help stops work-
ing. This means that any script acquired from the internet, or other third party, con-
taining comment-based help should be carefully checked. The syntax for comment-
based help changed a number of times over the evolution of PowerShell v2.

 The keywords should be recognizable from the using the PowerShell help system.
Comment-based help is accessed in exactly the same way as any other PowerShell help
file, as shown in figure B.2.

 The name, syntax, parameter list, parameter attribute table, common parameters,
and remarks are automatically generated by the Get-Help cmdlet. There’s also the
possibility of using the Get-Help parameters such as -examples or -full with this sys-
tem. The full list of keywords for the comment based-help can be found with:

Get-help about_comment_based_help

Now we get into the function C. The important attribute is:

[CmdletBinding(SupportsShouldProcess=$True)]

This causes the function to behave in the same way as a compiled cmdlet. The Sup-
portsShouldProcess=$True part causes the automatic addition of the -whatif and
-confirm parameters for when system changes are being made. This isn’t essential for
this particular function, but it’s a good habit to get into. Other parameters are
described in the about_functions_cmdletbindingattribute help file.

 Our function accepts a single parameter D, which is file information. The way the
function is written, it only accepts input from the pipeline, which is fine for what we
want to achieve. The attribute ValueFromPipeline=$true on the parameter indicates
that input can be accepted from the pipeline. Other parameters are available. See
about_functions_advanced_parameters for details. These parameters are another
place where syntax has changed over PowerShell v2’s evolution. Check scripts care-
fully for the correct syntax.

Set default
color

G

507Recommendations
Apago PDF Enhancer

The function is split into three script blocks labeled begin, process, and end. These
run once before the pipeline enters the cmdlet, once for each object on the pipeline,
and once after the last item on the pipeline has been processed respectively.

 The begin script block E defines the hash table of the colors that’ll be used for each
different type of file and sets a default color. The process block F checks the file exten-
sion (or determines whether it’s a directory) and uses the hash table to set the fore-
ground color. The file information is printed to screen and the default color applied.

 The end script block ensures that the default color is applied. G

B.3 Recommendations
Is this new functionality worth the effort of learning it? Modules are a great way to
organize our scripts. I definitely recommend using them if you’ll be working in a Pow-
erShell version 2 environment.

 Advanced functions aren’t necessary for everyone. If the task you’re working on
benefits from treating the function as a cmdlet then use it; otherwise it’s extra effort
for no gain. I won’t be converting all of my functions to advanced functions, but I see
a lot of places where it’s worth doing, and will no doubt find more as time progresses.

Figure B.2 Comment-based help being displayed by Get-Help

Apago PDF Enhancer

appendix C:
PowerShell events

The Windows OS and everything you do in it is based on events:

■ Start a program and an event occurs.
■ Deleting a file records another event.
■ Changing a configuration is yet another event.

Some of these events we’re interested in, and others can be treated as noise we can
ignore. PowerShell v2 provides the functionality to access these events, which pro-
vides another way to monitor system activity in real time. “Yes, I do want to know if
xyx.exe is started on that machine during the day or if someone changes a file in a
particular folder.”

 This material is somewhat advanced, which is why it’s in an appendix. Not all
administrators will need access to this, but if you do, it’ll be really useful. The Pow-
erShell isn’t too bad, but the underlying concepts and the interaction with .NET
and WMI can be a bit much.

 The eventing system works as follows:

1 We define something that we want to track. This can be a new process start-
ing to show when applications are started, or a watch on a particular folder
so that we’re notified if one of its files is changed.

2 We register this object with the event system and define the actions we want
to happen when the event occurs. This can range from the default of adding
information to the event queue to running a script that’ll write a message to
the screen, put an entry in a log file, or do something to negate the action.
For example, we can make it so that if a particular application is started dur-
ing the working day, the process is immediately killed.

3 The events raised by our object are put on to the event queue, or the defined
actions are performed, when event occurs.

4 We can act on the information supplied by the event.
5 When we’ve finished with the object, we can unregister it and the system

stops reacting to that event.
508

509APPENDIX C PowerShell events
Apago PDF Enhancer

The event registrations and the event queue only exist in the session in which they’re
created. If PowerShell is closed, the registrations and any data on the event queue are
lost. The events won’t automatically be registered when PowerShell restarts unless
there’s a call in the profile to perform this action.

 PowerShell v2 supplies a number of cmdlets to work with the event system. Full
details and examples can be found in the help files:

PS> get-command *event | where {$_.Name -ne "Get-WinEvent"}

CommandType Name
----------- ----
Cmdlet Get-Event
Cmdlet New-Event
Cmdlet Register-EngineEvent
Cmdlet Register-ObjectEvent
Cmdlet Register-WmiEvent
Cmdlet Remove-Event
Cmdlet Unregister-Event
Cmdlet Wait-Event

GET-WINEVENT Get-Winevent doesn’t belong with the eventing cmdlets,
which is why it’s deliberately excluded from the list. It’s used to access the
new style of event logs introduced in Windows Vista/2008 and subsequent
versions.

The three Register* and New-Event cmdlets are used to create event registra-
tions (also known as subscriptions). Unregister-Event deletes an event subscription.
The other *Event cmdlets are used to manage the events on the event queue as their
verbs suggest.

 If we start by looking at application startup, we know that WMI can be used to
access the process information on a system. An event to monitor creation of a new
Win32_Process object—a new process—can be created like this:

PS> Register-WmiEvent -Query "select * from __InstanceCreationEvent
 within 3 where targetinstance isa 'Win32_Process'"
 -SourceIdentifier "WMI Process Start"
 -MessageData "WMI Process Started"

A WMI system class, __InstanceCreationEvent, is used to access the creation of a new
process. The number 3 refers to the number of seconds between checks for new pro-
cesses. We can see the event subscriber information:

PS> Get-EventSubscriber

SubscriptionId : 1
SourceObject : System.Management.ManagementEventWatcher
EventName : EventArrived
SourceIdentifier : WMI Process Start
Action :
HandlerDelegate :
SupportEvent : False
ForwardEvent : False

510 APPENDIX C PowerShell events
Apago PDF Enhancer

We can start a process from within our PowerShell session, from another session, or from
Windows Explorer. The event information recorded can be accessed using Get-Event.
If multiple event subscriptions exist, use the EventIdentifier property to access indi-
vidual events or the SourceIdentifier to access a group of events from the same source:

PS> Start-Process notepad
PS> Get-Event

ComputerName :
RunspaceId : 3c4a9b12-5ee4-456c-85e7-87c2ec6c31aa
EventIdentifier : 1
Sender : System.Management.ManagementEventWatcher
SourceEventArgs : System.Management.EventArrivedEventArgs
SourceArgs : {System.Management.ManagementEventWatcher,
 System.Management.EventArrivedEventArgs}
SourceIdentifier : WMI Process Start
TimeGenerated : 08/11/2009 16:57:25
MessageData : WMI Process Started

This gives us the ability to know when a new process has started, but unfortunately we
can’t discover what that process is from the information supplied by the event. In
addition, we don’t get information about processes stopping. There are three proper-
ties that could hold information:

■ Sender
■ SourceEventArgs
■ SourceArgs

Investigating these doesn’t give us what we need, but don’t forget them because we’ll
return to them later. We need to remove this subscription and try something different:

PS> Unregister-Event -SourceIdentifier "WMI Process Start"

There are two WMI classes that trace the stopping and starting of processes:
■ Win32_ProcessStartTrace
■ Win32_ProcessStopTrace

We can use them to monitor the process activity on our systems. The script in listing
C.1 logs the event information to a file for easy access and analysis. Our script starts by
requiring PowerShell 2.0. We then define a header string B that’ll be used in the log
file. If the log file exists, we remove it and then create the log file C for this session by
using Add-Content to write the header into the file.

#Requires -version 2.0
$str = '"{0}","{1}","{2}","{3}","{4}"'
$hdr = $str -f "Computer", "Id", "Name", "Time", "Source"

if (Test-Path process.log) {Remove-Item process.log}
Add-Content -Value $hdr -Path process.log

$q1 = "Select * from Win32_ProcessStartTrace"
$q2 = "Select * from Win32_ProcessStopTrace"

Listing C.1 Log process start and stop events to a file

Define headerB

Create log fileC

Define queriesD

511APPENDIX C PowerShell events
Apago PDF Enhancer

$a = {
 $eSEANE = $Event.SourceEventArgs.NewEvent
 $str = '"{0}","{1}","{2}","{3}","{4}"'
 $data = $str -f $Event.Sender.Scope.Path.Server, $eSEANE.ProcessId,
 $eSEANE.ProcessName, $Event.TimeGenerated, $Event.SourceIdentifier
 Add-Content -Value $data -Path process.log
}

Register-WmiEvent -Query $q1 -SourceIdentifier "Process Start" -Action $a
Register-WmiEvent -Query $q2 -SourceIdentifier "Process Stop " -Action $a

Two queries are defined to retrieve the information from the WMI classes D. An action
block is created to process the event information and add records to the log file E. The
action block starts by creating a variable representing a new event. $Event is an auto-
matic PowerShell variable that represents an event that’s being processed. It only exists
in the action blocks of event registration commands!

 A template for the record is created and populated with the required information.
Refer to the following dump of the process log file to fully understand the contents.
The final actions of the script are to register our two WMI Event subscriptions. F

 The registration creates PowerShell jobs to monitor process start and stop events.
The jobs can be viewed using Get-Job:

Id Name State HasMoreData Location Command
-- ---- ----- ----------- -------- -------
1 Process Start NotStarted False ...
2 Process Stop NotStarted False ...

If you’re in a hurry to see the results, we can get our machine to stop and start a few
processes to generate some activity:

PS> 1..3 | foreach {start-process notepad; start-process calc}
PS> 1..3 | foreach {stop-process -Name calc; stop-process -name notepad}

Alternatively, we can be patient and leave the jobs running in the background while
we do some work. The log file can be viewed as shown. It clearly shows when individ-
ual processes stop and start:

PS> cat process.log
"Computer","Id","Name","Time","Source"
"localhost","4916","SearchProtocol","08/11/2009 20:28:31","Process Stop "
"localhost","4588","SearchFilterHo","08/11/2009 20:28:31","Process Stop "
"localhost","4940","notepad.exe","08/11/2009 20:29:01","Process Start"
"localhost","5500","calc.exe","08/11/2009 20:29:01","Process Start"
"localhost","4704","ielowutil.exe","08/11/2009 20:29:59","Process Stop "
"localhost","5508","Solitaire.exe","08/11/2009 20:30:09","Process Start"
"localhost","4732","audiodg.exe","08/11/2009 20:30:09","Process Start"
"localhost","5508","Solitaire.exe","08/11/2009 20:32:33","Process Stop "
"localhost","5500","calc.exe","08/11/2009 20:32:57","Process Stop "
"localhost","2728","notepad.exe","08/11/2009 20:32:57","Process Stop "

The contents of this file could be analyzed to match process start and stop events to
determine for how long each individual process was active.

Define script blockE

Register events F

512 APPENDIX C PowerShell events
Apago PDF Enhancer

 When we’ve finished with our event monitoring, we can unregister the subscriber
and delete the jobs:

Get-EventSubscriber | Unregister-Event
Get-Job | Remove-Job

Make sure that you close down in this order; otherwise it’ll be difficult to remove the
subscriptions unless you close down PowerShell. Other types of events are available.
We can also monitor .NET events.

 One useful .NET event to monitor is the filesystem watcher event. We can use it to
discover when things happen to our files, as in listing C.2.

$folder = "C:\test"
$filter = "*"
$events = @("Changed", "Created", "Deleted", "Renamed")

$fsw = New-Object -TypeName System.IO.FileSystemWatcher
-ArgumentList $folder, $filter
$fsw.IncludeSubDirectories = $true

foreach ($event in $events){
 Register-ObjectEvent -InputObject $fsw -EventName $event
 -SourceIdentifier "File System $event"
}

The folder B and files C to monitor are defined. A value of * means that all files will
be monitored. There are a number of events that can occur in the filesystem D. In
this case we’re interested in all changes, deletions, creations, and file rename actions.

 An object of System.IO.FileSystemWatcher type is created E using the folder
and file filters as arguments. We then ensure that the subfolders are monitored as well
by setting the IncludeSubDirectories property to true.

 We register an ObjectEvent F for each of the event types we defined earlier. The
event type is used to individualize the source identifier and the event name.

 If we examine the whole list of events, we’ll see that for each creation, deletion,
and rename event, a change event is also raised. We can ignore this in most cases.
Accessing the events for the creation, deletion, and rename events is straightforward,
as these examples indicate:

Get-Event -SourceIdentifier "File System Created" | foreach {
 "{0}, {1}, {2}" -f $_.SourceIdentifier,
 $_.SourceEventArgs.FullPath, $_.TimeGenerated

}

Get-Event -SourceIdentifier "File System Deleted" | foreach {
 "{0}, {1}, {2}" -f $_.SourceIdentifier, $_.SourceEventArgs.FullPath,
 $_.TimeGenerated

}

Get-Event -SourceIdentifier "File System Renamed" | foreach {

Listing C.2 Capture filesystem events

B
C
D

Define
events

E

F

Register
subscriptions

513APPENDIX C PowerShell events
Apago PDF Enhancer

 "{0}, {1}, {2}, {3}" -f $_.SourceIdentifier,
 $_.SourceEventArgs.OldFullPath, $_.SourceEventArgs.FullPath,
 $_.TimeGenerated

}

The change event is slightly more problematic, in that it generates two event records
each time the event occurs, both labeled with a source identifier of File System
Changed. The following example shows how we can deal with this.

 We use Get-Event to retrieve the events for the changes. These events are grouped
based on the time the events were generated. A filter is applied to only accept groups
where there are two members. (We’re accepting true change events and filtering out
the secondary change event raised by creation, deletion, and rename events.)

 The accepted events are used to supply the information we use to retrieve the first
of the pair of events:

Get-Event -SourceIdentifier "File System Changed" |
Group TimeGenerated | where {$_.Count-eq 2} |
foreach {$time = $_.Name; Get-Event |
 where {$_.TimeGenerated.ToString() -eq $time}| select -First 1}

This look at PowerShell events has only scratched the surface of what we can do with
this functionality. As administrators get more familiar with this concept, I expect to
see a lot more examples appearing in the PowerShell community.

Apago PDF Enhancer

appendix D:
Reference data

This appendix contains a collection of reference data that I’ve found useful. This
information is available on the web, but can some of it can be awkward to track
down.

D.1 Active Directory: user account control
The user account control flags are used to set the properties on a user account,
including whether it’s enabled or disabled. The attribute is a 32-bit integer where
various bits have a particular meaning, as shown in table D.1.

Table D.1 User account control flags

Property Decimal value Hexadecimal value

Script (logon script will run) 1 0x01

Account Disabled 2 0x02

Home Directory Required 8 0x08

Account Locked Out 16 0x10

Password Not Required 32 0x20

Password Cannot Change 64 0x40

Encrypted Text Password Allowed 128 0x80

Temporary Duplicate Account 256 0x100

Normal Account 512 0x200

Interdomain Trust Account 2048 0x800

Workstation Trust Account 4096 0x1000

Server Trust Account 8192 0x2000
514

515TECHNIQUE 205 Understanding the user account control values
Apago PDF Enhancer

NOTE Account Locked Out, Password Cannot Change, and Password Expired
are not controlled through the useraccountcontrol attribute in Windows 2003
and later.

The expected values for a user, computer, and domain controller are given in table
D.2. These values are applied to accounts in a normal usable state. Expect to see the
values of 2 and 16 on a regular basis, as they represent disabled and locked out
accounts, respectively.

Further information can be found at http://support.microsoft.com/kb/305144.
 The final value of the useraccountcontrol attribute is the sum of the individual

flags. A disabled normal account would have a value of 514 (512 + 2). These values
can become difficult to unravel.

TECHNIQUE 205 Understanding the user account control values

As we have seen the useraccountcontrol attribute cannot be be directly understood.
It is a bitmap that needs to be picked apart for full understanding. This technique
acan be applied to any other bitmap attribute that is present in Active Directory or any
other application.

Do not Expire Password 65536 0x10000

MNS Logon account 131072 0x20000

Smartcard Required 262144 0x40000

Trusted for delegation 524288 0x80000

Not Delegated 1048576 0x100000

Use DES Key Only 2097152 0x200000

Do Not Require Kerberos Preauthentication for Logon 4194304 0x400000

Password Expired 8388608 0x800000

Trusted to Authenticate for Delegation 16777216 0x1000000

Table D.2 Normally expected values

Object Decimal value Hexadecimal value

Normal user 512 0x200

Workstation or server 4096 0x4096

Domain Controller 532480 0x82000

Table D.1 User account control flags (continued)

Property Decimal value Hexadecimal value

TECHNIQUE 205

http://support.microsoft.com/kb/305144

516 APPENDIX D Reference data
Apago PDF Enhancer

PROBLEM
We need to understand the meaning of the useraccountcontrol attribute on an
Active Directory object.
SOLUTION
The function in listing D.1 will take the value of the useraccountcontrol attribute as
input and compare each of the possible settings to determine the full meaning of the
value. The domain controller setting isn’t part of the useraccountcontrol settings
but is a useful test in its own right.

function get-uac{
param([int]$uac)

$flags = @(1,2,8,16,32,64,128,256,512,2048,4096,8192,
65536,131072,262144,524288,532480,1048576,2097152,
4194304,8388608,167772160)
$uacflags = @{1="Script (logon script will run)";
2="Account Disabled";
8="Home Directory Required";
16="Account Locked Out";
32="Password Not Required";
64="Password Cannot Change";
128="Encrypted Text Password Allowed";
256="Temporary Duplicate Account";
512="Normal Account";
2048="Interdomain Trust Account";
4096="Workstation Trust Account";
8192="Server Trust Account";
65536="Do not Expire Password";
131072="MNS Logon account";
262144="Smartcard Required";
524288="Trusted for delegation";
532480="Domain Controller";
1048576="Not delegated";
2097152="Use DES Key only";
4194304="Does not require Kerberos PreAuthentication for logon";
8388608="Password Expired";
167772160="Trusted to Authenticate for Delegation"}

foreach($flag in $flags){

 if($uac -band $flag){Write-Host $uacflags[$flag]}

 }
}

DISCUSSION
This is presented as a function for maximum flexibility in using. You can include it in
your scripts, load it as required, or have it as a permanently available utility by loading
it in your profile.

 The function accepts an integer as the input parameter B. If you input a string or
any other data type, it’ll throw an error. The first task is to create an array of values

Listing D.1 User account control listing

Must be
integer

B

Array of
possible values

C

D
Hash table
of meanings

Loop through
possible values

E

List meaningsD

517TECHNIQUE 205 LDAP Filters
Apago PDF Enhancer

that we want to test against C. These values are taken from tables D.1 and D.2. A hash
table D is used to hold the meanings of the values, with the value forming the key.

 A foreach loop is used to iterate through the possible values in our initial array E.
A comparison is perfomed using a bitwise AND operation F. If the corresponding bits
in $flag and $uac are both 1, the resultant bit is 1; in other words we’re checking to
see whether $flag is contained within $uac. If we match at the bit level then the
appropriate meaning is written out by a call to the $uacflags hash table using $flag
as the key.

D.2 Local user accounts: userflags
We saw the userflags attributes in chapter 5 when dealing with local accounts. Table
D.3 lists the common userflags values. They’re a subset of the useraccountcontrol
flags seen earlier.

D.3 LDAP Filters
In listings 5.12 and 5.13, we used a filter to limit the results returned by an Active
Directory search, like so:

$search.Filter = "(cn=$struser)"

The filter is in effect performing an LDAP query to determine which accounts to
return. The LDAP filter takes the form of a string with the following syntax:

"(<attribute> <operator> <value>)"

The parentheses () are required. A search can be performed on any attribute that’s
valid for the object for which you’re searching. If an Active Directory object doesn’t
have an attribute set then in effect the attribute doesn’t exist and we can’t search on it.

Table D.3 User account control flags

Property Decimal value Hexadecimal value

Script (logon script will run) 1 0x01

Account Disabled 2 0x02

Home Directory Required 8 0x08

Account Locked Out 16 0x10

Password Not Required 32 0x20

Password Cannot Change 64 0x40

Encrypted Text Password
Allowed

128 0x80

Do Not Expire Password 65536 0x10000

Smartcard Required 262144 0x40000

Password Expired 8388608 0x800000

518 APPENDIX D Reference data
Apago PDF Enhancer

 There are a limited number of operators available to an LDAP filter, as shown in
table D.4.

Note that > and < (“greater than” and “less than”) aren’t supported as operators.
 The extensible matching rule is used to perform and/or operations on bit flags.

The AND rule is 1.2.840.113556.1.4.804 whereas the OR rule is 1.2.840.113556.1.4.803.
These examples show how to use them.

 "(useraccountcontrol: 1.2.840.113556.1.4.803:=2)" finds all useraccount-
control attributes with the 2 bit set—all disabled accounts.

 Filters can be combined using three operators:

■ AND (&)
■ OR (|)
■ NOT (!)

To find users with surname of Smith and given names of John:

"(|(givenname=John)(sn=Smith))"

To find all users with surnames of Smith or Jones:

"(|(sn=Jones)(sn=Smith))"

To find users not called Smith:

 "(!(sn=Smith))"

Table D.4 LDAP filter operators

Symbol Name Meaning

= Equal Simple equality check:
"(sn=Jones)"

~= Approximately equal This can produce unpredictable results and should be
avoided.

>= Equal or greater than Returns values greater than or equal to the given value:
"(badpwdCount>=1)"

<= Equal or less than Returns values less than or equal to the given value:
"(badpwdCount<=2)"

Attrib:rule Extensible Enable provider-specific matching rules. Most common
use is for bitwise operations.

=* Presence This checks whether an attribute is present:
"(sn=*)"

= [start] any [final] Substring A match is performed on part of the string. We can supply
the start and/or the end of the string and the match will
be performed against that portion of the string. We don’t
use the word any it’s represented by the *symbol.
"(sn=Smi*)"
"(sn=S*th)"
"(sn=*h)"

519TECHNIQUE 205 Special folders
Apago PDF Enhancer

Both the Microsoft and Quest AD cmdlets have a parameter that accepts an LDAP filter
when searching—Get-*.

D.4 Identity in Active Directory cmdlets
The Active Directory cmdlets (Quest and Microsoft) have a parameter that gives the
identity of the object to be returned or manipulated.

 The Microsoft cmdlets accept:

■ Distinguished name
■ GUID
■ SID
■ SAM account name

The Quest cmdlets accept the following values where appropriate:

■ Distinguished name
■ Canonical name
■ GUID
■ ‘domain_name\name’
■ UPN
■ SID

There are differences between these lists that can make moving between the two sets
of cmdlets difficult. As stated earlier, it’s better to pick one if possible, though the
combination does give better functionality.

D.5 PowerShell filters in Active Directory cmdlets
Instead of using LDAP filters, it’s possible to use a PowerShell-based filter. This is han-
dled slightly differently in the two sets of cmdlets. A standard LDAP filer would be:

"(sn=Jones)"

In the Microsoft cmdlets, the LDAP filter would be:

Get-ADUser -LDAPFilter "(sn=Jones)"

Using a PowerShell filter, we’d have:

Get-ADUser -Filter {sn -eq "Jones"}

The Quest cmdlets would handle this as:

Get-QADUser -LDAPFilter "(sn=Jones)"
Get-QADUser -SearchAttributes @{sn='Jones'}

It’s also possible to use a large number of names attributes with either system.

D.6 Special folders
Windows special folders were discussed in chapter 7. They’re folders that the OS cre-
ates and manages; for example, the desktop and the recycle bin. The full list of special
folders is presented in table D.5.

520 APPENDIX D Reference data
Apago PDF Enhancer

Table D.5 Windows special folders

Value Variable Meaning

 0 $Desktop = 0x0 Desktop

 1 $ie = 0x1 Internet Explorer

 2 $progs = 0x2 Programs

 3 $cp = 0x3 Control Panel

 4 $printers = 0x4 Printers and Faxes

 5 $mydocs = 0x5 My Documents

 6 $favs = 0x6 Favorites

 7 $startup = 0x7 Startup

 8 $myrecdocs = 0x8 My Recent Documents

 9 $sendto = 0x9 SendTo

10 $recycle = 0xa Recycle Bin

11 $start = 0xb Start Menu

13 $music = 0xd My Music

13 $videos = 0xe My Videos

16 $desktop = 0x10 Desktop

17 $mycomp = 0x11 My Computer

18 $mynet = 0x12 My Network Places

19 $nethood = 0x13 NetHood

20 $fonts = 0x14 Fonts

21 $templates = 0x15 Templates

22 $allsm = 0x16 All Users Start Menu

23 $allprogs = 0x17 All Users Programs

24 $allstart = 0x18 All Users Startup

25 $alldesk = 0x19 All Users Desktop

26 $appdata = 0x1a Application Data

27 $printhood = 0x1b PrintHood

28 $lsapps = 0x1c Local Settings\Application Data

32 $lstempie = 0x20 Local Settings\ Temporary Internet Files

33 $cookies = 0x21 Cookies

521TECHNIQUE 205 Special folders
Apago PDF Enhancer

34 $lshist = 0x22 Local Settings\History

35 $allappdata = 0x23 All Users Application Data

36 $windows = 0x24 Windows

37 $system32 = 0x25 System32

38 $progfiles = 0x26 Program Files

39 $mypics = 0x27 My Pictures

40 $profile = 0x28 User Profile

43 $common = 0x2b Common Files

46 $alltemplates = 0x2e All Users Templates

47 $admintools = 0x2f Administrative Tools

49 $netconn = 0x31 Network Connections

Table D.5 Windows special folders (continued)

Value Variable Meaning

Apago PDF Enhancer

appendix E:
Useful links

These are the links that I’ve found useful during my investigations of PowerShell
and while writing this book.

E.1 PowerShell downloads

.NET 2.0
32-BIT

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-
4B0D-8EDD-AAB15C5E04F5&displaylang=en
64-BIT

http://www.microsoft.com/downloads/details.aspx?familyid=B44A0000-ACF8-
4FA1-AFFB-40E78D788B00&displaylang=en

.NET 3.5

http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-
413D-8319-81DA479AB0D7&displaylang=en

Also download and install the hotfixes from:

http://support.microsoft.com/kb/959209
http://www.microsoft.com/downloads/details.aspx?FamilyID=c411b91e-4dab-
4550-915c-e119204d0732&displaylang=en

PowerShell v1

http://www.microsoft.com/windowsserver2003/technologies/management/pow-
ershell/download.mspx

PowerShell v2

http://support.microsoft.com/kb/968929
522

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=B44A0000-ACF8-4FA1-AFFB-40E78D788B00&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=B44A0000-ACF8-4FA1-AFFB-40E78D788B00&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-413D-8319-81DA479AB0D7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-413D-8319-81DA479AB0D7&displaylang=en
http://support.microsoft.com/kb/959209
http://www.microsoft.com/downloads/details.aspx?FamilyID=c411b91e-4dab-4550-915c-e119204d0732&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c411b91e-4dab-4550-915c-e119204d0732&displaylang=en
http://www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
http://www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
http://support.microsoft.com/kb/968929

523PowerShell downloads
Apago PDF Enhancer

Microsoft MSDN

http://msdn.microsoft.com/en-us/library/w0x726c2.aspx

.NET class library

http://msdn.microsoft.com/en-us/library/ms229335.aspx
.NET CLASSES

System.Random-random numbers:
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
SYSTEM.MATH—MATH FUNCTIONS

http://msdn.microsoft.com/en-us/library/system.math.aspx
SYSTEM.DIRECTORYSERVICES.ACCOUNTMANAGEMENT
http://msdn.microsoft.com/en-us/magazine/cc135979.aspx
WMI CLASSES

System.Management.Management Object:
http://msdn.microsoft.com/en-us/library/system.management.managementob-
ject.aspx
System.Management.ManagementClass:
http://msdn.microsoft.com/en-us/library/system.management.management-
class.aspx
System.Management.ManagementObjectSearcher:
http://msdn.microsoft.com/en-us/library/system.management.managementob-
jectsearcher.aspx
WQL
http://msdn.microsoft.com/en-us/library/aa394606(VS.85).aspx

PowerShell
POWERSHELL OBJECTS, - PSBASE, AND SO ON

http://blogs.msdn.com/powershell/archive/2006/11/24/what-s-up-with-psbase-
psextended-psadapted-and-psobject.aspx.
WINDOWS SCRIPTING GUIDE

http://www.microsoft.com/technet/scriptcenter/guide/
sas_ent_qpyo.mspx?mfr=true
ADSI SDK
http://msdn.microsoft.com/en-gb/library/aa772170.aspx
WMI SDK
http://msdn2.microsoft.com/en-us/library/aa394582.aspx
WMIEXPLORER

http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-
explorer-part-1.aspx
OPENXML POWER TOOLS

http://staffdotnet.com/services/powertools.html

http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/ms229335.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/system.math.aspx
http://msdn.microsoft.com/en-us/magazine/cc135979.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobject.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobject.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementclass.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementclass.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobjectsearcher.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobjectsearcher.aspx
http://msdn.microsoft.com/en-us/library/aa394606(VS.85).aspx
http://blogs.msdn.com/powershell/archive/2006/11/24/what-s-up-with-psbase-psextended-psadapted-and-psobject.aspx
http://blogs.msdn.com/powershell/archive/2006/11/24/what-s-up-with-psbase-psextended-psadapted-and-psobject.aspx
http://www.microsoft.com/technet/scriptcenter/guide/sas_ent_qpyo.mspx?mfr=true
http://www.microsoft.com/technet/scriptcenter/guide/sas_ent_qpyo.mspx?mfr=true
http://msdn.microsoft.com/en-gb/library/aa772170.aspx
http://msdn2.microsoft.com/en-us/library/aa394582.aspx
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
http://staffdotnet.com/services/powertools.html

524 APPENDIX E Useful links
Apago PDF Enhancer

OPEN XML SDK
http://go.microsoft.com/fwlink/?LinkId=120908

.NET 3.5 is also required. See the .NET 3.5 download link supplied earlier.

PowerShell blogs

This isn’t meant to be an exhaustive list, but it represents a good cross section of the
PowerShell community. These blogs will include links to many other areas of the Pow-
erShell community.
RICHARD SIDDAWAY

My primary blog
http://msmvps.com/blogs/RichardSiddaway/Default.aspx

The next one concentrates on PowerShell and WMI:

http://itknowledgeexchange.techtarget.com/powershell/

Many of the code examples from my blogs will be published as PowerShell modules

http://psam.codeplex.com/
POWERSHELL TEAM BLOG

http://blogs.msdn.com/PowerShell/
JAMES O’NEILL

http://blogs.technet.com/jamesone/
DMITRY SOTNIKOV

http://dmitrysotnikov.wordpress.com/
LEE HOLMES

http://www.leeholmes.com/blog/
MARCO SHAW

http://marcoshaw.blogspot.com/
THOMAS LEE

http://tfl09.blogspot.com/
THE POWERSHELL GUY (MOW)
http://thepowershellguy.com/blogs/posh/
SHAY LEVY

http://blogs.microsoft.co.il/blogs/ScriptFanatic/
Shay also has a PowerShell IE toolbar download available with many useful links.
JONATHAN MEDD

http://www.jonathanmedd.net/
ACTIVE DIRECTORY POWERSHELL

http://blogs.msdn.com/adpowershell/default.aspx

Other PowerShell downloads
POWERSHELL COMMUNITY EXTENSIONS
http://www.codeplex.com/Wiki/View.aspx?ProjectName=PowerShellCX

http://go.microsoft.com/fwlink/?LinkId=120908
http://msmvps.com/blogs/RichardSiddaway/Default.aspx
http://itknowledgeexchange.techtarget.com/powershell/
http://psam.codeplex.com/
http://blogs.msdn.com/PowerShell/
http://blogs.technet.com/jamesone/
http://dmitrysotnikov.wordpress.com/
http://www.leeholmes.com/blog/
http://marcoshaw.blogspot.com/
http://tfl09.blogspot.com/
http://thepowershellguy.com/blogs/posh/
http://blogs.microsoft.co.il/blogs/ScriptFanatic/
http://www.jonathanmedd.net/
http://blogs.msdn.com/adpowershell/default.aspx
http://www.codeplex.com/Wiki/View.aspx?ProjectName=PowerShellCX

525PowerShell downloads
Apago PDF Enhancer

POWERGUI
http://www.powergui.org
Check on a regular basis for new power packs.
QUEST AD CMDLETS

http://www.quest.com/powershell/activeroles-server.aspx
POWERSHELL PLUS

http://www.idera.com/Products/PowerShell/
SDM GPO CMDLETS

http://www.sdmsoftware.com/freeware.php
POWERSHELL MANAGEMENT LIBRARY FOR HYPER-V
http://pshyperv.codeplex.com/

Code Sources

Check codeplex on a regular basis for new projects.
 Code examples can be found at:

The TechNet script center
http://technet.microsoft.com/en-gb/scriptcenter/default.aspx
www.poshcode.org

Podcasts

http://powerscripting.wordpress.com/
http://get-scripting.blogspot.com/

User Groups

http://powershellgroup.org/

http://www.powergui.org
http://www.quest.com/powershell/activeroles-server.aspx
http://www.idera.com/Products/PowerShell/
http://www.sdmsoftware.com/freeware.php
http://pshyperv.codeplex.com/
http://technet.microsoft.com/en-gb/scriptcenter/default.aspx
www.poshcode.org
http://powerscripting.wordpress.com/
http://get-scripting.blogspot.com/
http://powershellgroup.org/

Apago PDF Enhancer

index
Apago PDF Enhancer

Symbols

` 19, 51
; 50
:: 70
! 20
? 17–18
() 57
{} 52, 105
* 148
% 17–18
<= 18
=> 18
$ 16, 19, 34, 46
$_ 16, 98
$() 147

A

A records. See glue records
AAAA records. See DNS IPv6

records
about files 475
About_Automatic_variables 46
about_break 50
about_continue 50
About_preference_variables 46
about_Reserved_Words 107
About_Shell_variables 46
About_variables 46
accelerators 25, 77, 495

[ADSI] 76, 78, 124, 145
[ADSISEARCHER] 141
.NET-based 85

[WMI] 89
[WMIClass] 87
[WMISearcher] 88

access levels
cmdlets 358

Account Disabled property 514
Account Locked Out

property 514
Account tab 139
accounts

moving 145
ACLs 8
actions 34

GUI 167
multiple 174

Active Directory 5, 23, 25, 64,
67, 73, 75

access methods 77
accessing 78
action on single user 9
administering 241
ADSI 75
attributes 78
authentication 165
authorization 164
automating 76
automation 133
cmdlets 75, 77, 112, 137, 241

moving users 145
creating a user account 133
creating sites 336
database 80
directory entry 125
disable or enable account 144
display specifiers 294
distribution lists 176

DNS records 272
Domain Services cmdlets 454
domain structure 300
drive, creating 463
Exchange cmdlets 161
finding group

membership 157
forest 292
forward DNS zones 267
group membership 153
Group Policy 113
group scope 155
group types 152
groups 131, 152, 176

bulk creation 152
changing scope 154
creating 152
managing membership 153

mailbox 164
maintenance 337
modifying user accounts 138
module 289
moving users 145
namespace 77
.NET classes 130
object recovery 318
objects 68, 78, 281

methods 80
OU structure 298
OUs 295
password complexity 502
and PowerShell 126
PowerShell provider 115
protection and recovery 315
protocols 77
527

INDEX528
Apago PDF Enhancer

Active Directory (continued)
provider 241, 459

administrative tasks 460
schema version 459

recycle bin 318
removing subnets 341
search 105
searching 81

PowerShell 82
searching users 140
sites 334–338
structure 287
third-party tools 76
topology 288, 321–323,

335, 342
universal group 176
Users and Computers 80, 156
VBScript 80
vs VBScript 65
Windows 2000 146
Windows machine

renaming 201
WinNT provider 129

Active Directory Lightweight
Directory Services. See AD
LDS

Active Directory Rights Manage-
ment Services cmdlets 454

Active Directory Users and Com-
puters. See ADUC

ActiveDirectorySiteLink
class 344, 346, 348
object 346

ActiveDirectorySubnet class 339
ad hoc development 93, 96, 178
AD LDS 76, 125
ADAM. See AD LDS
Add() method 132, 153, 296,

386
Add-ADPermission cmdlet 354
add-character function 498

usage 501
AddCode 61
Add-Content cmdlet 234, 413,

510
creating files 236

add-data function 216
AddDays() method 143, 249
Add-DistributionGroup--

Member 182
add-header function 219
Add-Member cmdlet 70, 148

drawback 475
listing subnets 338

Add-OpenXmlContent
cmdlet 219

Add-PSSnapin 36–37
Add-QADGroupMember 154
address lists 171

hiding a user 172
Add-SDMgplink cmdlet 309
add-text function 219
Add-Type cmdlet 67, 143,

386, 476
loading assemblies 73

administration
Active Directory 133–288
automating 415
automation 94
interactive 95
remote 223
scripting 95–96
styles 92, 95
tasks 95
who will perform 161

administrators
automation 93
development 95
groups 164
.NET 71
PowerShell features 8
privileges 38
sharing scripts 101
tools 9
UNIX 94

ADO 81
recordset 105, 142

ADO.NET classes 441
ADO.NET pattern 445
ADSI 25, 63, 76

deleting a site 337
listing site links 342
modifying site

information 337
modifying subnets 340
.NET classes 73
using 75
wrappers 76

[ADSI] accelerator
300, 304, 316

deleting OUs 306
getting group

membership 158
moving user accounts 145
relationship between

wrappers 76
ADSIEdit tool 78, 161, 343
ADUC 134, 138–139, 317

discovering OUs 304

display name 293
viewing membership 181

-after parameter 248
-Alias parameter 162
aliases 41, 207

advise against using in
scripts 13

built-in 477
case insensitive 17
core commands 24
create your own 12
production-ready script 101
script readability 101
in scripts 105, 107
Set-Alias 12
UNIX commands 12
usage 13
utility cmdlets 43

AllSigned policy 38, 115
Alter() method 422–423, 439
appcmd.exe command-line

tool 385
-Append parameter 192, 236
application logs 250
application pool 393

assigning 398
controlling 397–398
creating 396
default 398
removing 399

$args 57
arithmetic operators 485
arrays

about 48
associative array 47
empty 47
objects 46
values 47

-AsJob parameter 285, 450
-AsSecureString option 128
assemblies

shared 71
assignment operators 486
attachments 370
audit trail

creating DNS records 273
registry 246

auditing 422
-Authentication parameter

381, 388
value 395

autocompletion 31
autodiscovery 374, 376
automatic variables 27, 480

INDEX 529
Apago PDF Enhancer

automating
Active Directory 288
SQL Server

administration 415
automation 92

Active Directory 75
administration 94
benefits 94
cost benefit 94
definition 315
engine 5, 7
layer 4
scripting 93
scripts 96
toolkit 109–115

B

backtick character 19
See also continuation character

BackupEventLog() method 254
Backup-WebConfiguration

cmdlet 404, 409
BadItemLimit parameter 173
basicAuthentication node 412
batch files 38
-before parameter 248
Begin parameter 52
best practice 57, 93,

104–109, 360
analyzing DNS 458
cmdlets 459
Exchange Server 2007 355
models 458
sessions 381
Test-SystemHealth

cmdlet 356
Best Practice Analyzer

cmdlets 454
BestPractices module 457
BIOS

information 215, 218
BiosCharacteristics

property 194
BITS cmdlets 454
bitwise

exclusive 144
operators 486

branching 48
keywords 48

break 50
Buffer Cache Hit ratio 427
Buffer Management Object 427
bugs, hotfixes 196

C

C# 6, 67
cmdlets 102
PowerShell syntax borrows

from 54
CA 375
calculated fields 98, 200

sorting 231
calendar settings 380
canonical name 519
CAS 168–169
-CaseSensitive parameter 239
*CASMailbox 170
casting 46
catch{} block 104
CCR 359
cd 12, 24

alias 242
HKCU 241
HKLM 241

certificate authority
commercial 116
See also CA

certificates 372
commercial code-signing 116
creation syntax 117
installing 377
requesting 375
root syntax 116
securing 117
self-signed 116, 374–375
skipping certificate check 381
third-party 375

change records 103
child scope 57
children collection 317
CIM_DataFile class 239
Citrix 8, 109
class library

classes 67
namespaces 67
See also .NET Framework

-Class parameter 13, 260
ClearCache() method 266
clear-host command 299–300
Client Access

node 357
role 355

client access server. See CAS
client protocol 424
ClientNetworkProtocol WMI

class 424
clone() method 86
cloud computing 469

CLR 67
cluster continuous replication.

See CCR
CmdExec 432
cmdletbinding attribute 504
cmdlets 4–5, 289

bulk creating users 137
capitalization 493
common parameters 14
-ComputerName

parameter 228, 479
creating users 134
default formatter 44
defined 11
developing 102
-ErrorAction 104
event log 27
Exchange PowerShell 95
file contents 234
files 233
Foreach-Object 16
Format- 16
generic 145
Get-Command 11, 43
Get-Process 15
Group Policies 113
Group Policy 312
grouping 19
help file 17
IIS 385
information 41
interaction 15
large script 101
LDAP filter 519
linking 17
module 125
naming 11
naming conventions 57, 106
.NET 63
.NET objects 66
.NET-based 85
new 27
number of 11
*-Object 13
parameters 13
pipeline input 17
Quest AD 65
remote capability 224
safety net 88
Set-Alias 12
snapins 37
sorting 19

INDEX530
Apago PDF Enhancer

cmdlets (continued)
Test-Script 104
utility 17, 43
verb-noun syntax 11
Where-Object 12, 15, 21
wrapping 12
Write- 16
XML-specific 406

CNAME records. See DNS alias
records

code
formatting 108
signing 93

CodeMethod 69
CodePlex 114, 415
CodeProperty 69
Codeset property 195
code-signing certificate 107, 115

viewing 117
Colledge, Rodney 435
COM 60, 63–64

accessing 75
ADSI 64
functionality 73
interfaces 8
Internet Explorer 64
Microsoft Office 64
objects 203

documentation 74
Excel.application 209
naming convention 74
New-Object 75

ScriptControl object 61
similarity to .NET 73
using 73
VBScript 64
Windows Registry 73
WMI 64, 73, 75

comma, avoid 294
command line 39, 92

administration 9
PowerShell 95
script 98
shell 5
tab completion 12
tools 95
utilities 14

command prompt 95
commands

aliases 12
concatenating 50
core 24
predefined 36

comment-based help 506
comments

block 106
in loops 106

Common Engineering
Criteria 7, 109

Common Language Runtime.
See CLR

Compare-Object cmdlet
17-19, 263

comparison operator 144, 487
Completed state 451
Component Object Model. See

COM
$computer

computer name 196
Computer System

information 192–193,
215, 217, 479

-ComputerName
parameter 198, 230,
254, 391

best practice cmdlets 459
cmdlets 228
creating HTML 412
dealing with remote

servers 226
DNS tests 260
DNS zone contents 269
Get-Counter cmdlet 425
Invoke-WmiMethod

cmdlet 232
remote DNS servers 263
remote running 191
remote services 228
service cmdlets 228
specifying remote

machine 208
conditional forwarding

configuring 264
-ConditionalDepartment 180
ConfigData style 219
configuration 32–33

context 337
database 194, 261
files 403
information

configuration database 261
naming context 342, 337
properties 421
report, creating 214

Configuration subcontainer 460

-ConfigurationName
parameter 381

-Confirm parameter 14, 54, 174,
211, 233

connectivity cmdlets 357
Connect-Mailbox 175
ConsecutiveFailureCount 332
consistency 423
console files, creating 36
contact 162, 166

creating 166
mail-enabled 174

ContainerName property 269
-ContextType parameter

128, 143, 334
continuation

character 19
line 20

-Continuous parameter 425
ConvertTo-Html cmdlet 412
ConvertTo-XML cmdlet 406
CookedValue property 426
cookies, discovering 205
Copy-Item cmdlet 233
Copy-ItemProperty cmdlet 244
Count property 12
CounterSamples properties 426
CountryCode property 195
CPU

cycles 229
display formatting 98
property 16
resources 96
usage 97, 230

processes consuming
excessive 231

Create Mailbox Wizard 162
Create() method 86

creating database 434
Saving with 432
used with SMO 438
using WinNT 129, 131

CreateCommand() method 442
CreateDialog property 295
CreateEventSource method 251
CreateInstance() method 86
CreateInstanceFromProperty-

Data() method 274, 277
creating multiple glue

records 274
CreateInstanceFromTextRepre-

sentation() method 279

INDEX 531
Apago PDF Enhancer

CreateZone() method 265, 267
CreationTime property 410
CRUD

registry data 245
CSV file 136, 163

opening in Excel 212
culture

en-GB 210
en-US 210
U.S. English 210

D

data files
single 435
size 429

data stores 23, 76, 233, 240
database

administration 427
ADO.NET classes 441
backing up 446
configuring 433
creating 360, 433

example 434
creating tables 435
design 433
discovering 427
mounting 361
moving 365
viewing disk space used 429
viewing using Powershell 428

database tables
creating 435

with SMO 437
with T-SQL 436

deleting data 445
inserting data 440
modifying 438
reading data 442
updating data 444

datareader objects 442
datatable object 443
dcpromo utility 323
-Debug parameter 14
default

formatter 44, 193
gateway

modifying 191
group 152
instance 427
namespace 191, 193

Default Domain Policy 314
Delete() method 270, 346, 433
DeleteTree permission 316–317

DeleteTree() method
306, 338, 341

DependentServices
parameter 226

-descending parameter
17, 97, 183

Description property 336
desktop

desktop namespace 205
folder 203
preserving files 205
viewing contents 204

desktop configuration
automating 189
default namespace 191
presenting 190

DHCP client
dependencies 227

DHCP role 455
Diagnosis and Supportability

cmdlets 454
DifferenceObject parameter 18
dir 12, 20, 23, 241, 245
Direct Reports 140
directory context 334
directory entry 134, 141, 311

creating 301
group scope 155
user attributes 138

DirectoryServices.Directory-
Entry 304

Disable Mail-User cmdlet 174
Disable-DistributionGroup 179
DisableGlobalCatalog()

method 326
DisableIPSec() method 284
disaster recovery 269
DisconnectDate 174
disks, classes 199
Dismount-Database cmdlet

361, 365
display names 293

format 294
DisplayOU function 301, 312
distinguished name

162, 301, 519
displaying 303–304

distribution groups 176
creating 177
delegation 178
dynamic 179
modifying membership 182
query-based 179
scripts 182

static groups 179
viewing members 181

distribution lists 155
viewing membership 181
See also distribution groups

DistributionGroup
cmdlets 177–178

DLLs 37
DN. See distinguished name
DNS

automating
administration 258

building blocks 271
Conditional Forwarders

node 265
configuration 258
management console 260
objects hierarchy 258
records 258
round robin 263, 280
servers 259
Service records 260
tools 258
troubleshooting 260, 279
WMI provider 259
zones 259

DNS alias records 271
creating 277

DNS configuration
network connectivity 281

DNS IPv4 records 273
DNS IPv6 records 271

creating 275
DNS mail server records 271

creating 276
DNS Manager Administration

console 259, 262
conditional forwarders 265

DNS PTR records
creating 278

DNS records
audit records 273
creating 271, 277
deleting 280
discovering 271
querying 279
stale 280
types 271
viewing 268

DNS servers 225
clearing caches 265
configuration 263
discovering 267
documenting 263

INDEX532
Apago PDF Enhancer

DNS servers (continued)
enabling remote

administration 261
round robin

configuration 264
Service records 272
tests 260
Windows firewall 261

DNS zones
Active Directory-

integrated 265–266
creating 265, 267
deleting 270
filter viewing information 268
types 266

do loop 50, 54, 485
testing 56
underused 55

Do not Expire Password
property 515

Do Not Require Kerberos Preau-
thentication for Logon
property 515

DOCX extension 214
domain

cross-domain moves 145
distinguished name 301
listing OUs 300, 303
moving users 145
root 150

Domain Admin 322
domain controllers 125, 225,

323–334
data replication 331
expected values 515
last logon information 146
last logon time 146, 148
services offered 272
Set-ExchangeServer

cmdlet 358
domain function level 290

discovering 292
FSMO roles 327

domain_name 519
DomainController class 326
DomainDnsZones

subcontainer 460
dot sourcing 32, 58
dynamic distribution

groups 179
creating 179
viewing membership 181

Dynamic Host Configuration
Protocol. See DHCP client

E

Edge servers 355, 358
editors 105, 110
elevated privileges 372, 389
else statement 49
elseif statement 49
EMAC 95, 160, 357

connecting a mailbox 175
disabling a mailbox 174
dynamic distribution

group 179
script to create distribution

groups 178
viewing membership 181

email
adding an address 171
address 367

policy 357
alias 164, 175
contacts 167
enabling 164
external 166
external system 165
internal system 165
user aspects 161

-EmailAddresses parameter 171
EMC 370
Enable-JournalRule cmdlet 372
Enable-Mailbox 164
Enable-MailUser 166, 178
Enable-PSRemoting cmdlet 391
Encrypted Text Password

Allowed property 514
End parameter 52
en-GB culture 210
Enterprise Admin 322
Enter-PSSession cmdlet 392
EntryType property 238
en-U.S. culture 210, 212
[enum] 253
enumerations 70
environment

multidomain 106
error

divide by zero 103
event type 253
handling 104
messages 35

-ErrorAction parameter 14, 104
-ErrorVariable parameter 14
ETS 6
event

creating 252
information 510

monitoring 512
queue 508
registrations 509
types 253
viewer 247

event log 8, 27
audit records 273
backing up 254
clearing 255
cmdlets 247
configuration 254
copying 250
creating 251
creating OUs 297
default 251
default information 248
domain controllers 331
exporting 249
main 250
managing 253–254
new style 254
reading 247, 249
registry 246
source example 252
standard 247
writing to 71, 253

$Event variable 511
EventIdentifier property 510
eventing system 508

cmdlets 509
EventType property 238
Excel 209

opening a CSV file 212
Excel 2007

bug 209
Excel 2010 209
Excel spreadsheets

opening with Invoke-
Item 237

Excel.application COM
object 209

Exchange
address lists 176
administrators 167, 177
certificate 373
cmdlets 161
database 163, 186
GUI scripts 163
infrastructure 367
maintains address lists 171
organization 176, 357
organization policies 171
Server 2007

distribution group
cmdlets 176

INDEX 533
Apago PDF Enhancer

Exchange (continued)
server, mailboxes 164
services 227
terminology 159, 165, 174
user aspects 161

Exchange 2007 28
admin tools 28
RTM version 95

Exchange 2010 28
cloud computing 470
remote access 125

Exchange Management Con-
sole. See EMAC

Exchange Management
Shell 160

Exchange Server 2007 7, 36,
95, 159

administration
automating 353

best practice
configuration 355

cmdlets for Active
Directory 354

configuration 358
Exchange services 227
moving mailboxes 172
for production use 160
roles 355
scripts 355
server roles 168
SP3 161
Windows Vista 161

Exchange Server 2010 380
remote connection 380

EXE files 38
execution policy 33

AllSigned 115
current setting 38
default 96
ExecutionPolicy 37
recommended setting 38

-ExpandProperty parameter 194
Export-* 58
Export-CliXML cmdlet

263, 405–406
Export-Console parameter 36
Export-Csv cmdlet 198, 234,

251, 270
creating files 236
exporting to CSV file 250
preserving desktop files 205

Export-OpenXMLWordProcess-
ing cmdlet 218

Export-PSSession cmdlet 382
extensibility 9, 36, 70, 110
Extensible Type System. See ETS

F

-f 147
operator 99, 250

Failover Clustering cmdlets 454
FailureAudit log 247
$false 128
fan-in approach 391
Feed drive 24
File System Changed source

identifier 513
FileExists 60
-FilePath parameter 393
$files 49, 53
files

cmdlets 233
comparing 18
content 19

cmdlets 234
counting 19
creating 235
deleting 236
format 44
organizing 234
permissions 235
reading 237
removing 236
searching 238–239
size statistics 21

filesystem 8
administering 233
as a provider 233
tools 233
watcher event 512

-Filter parameter 199, 282, 411
filtering hotfixes 197
services information 229

filtering 15
built-in 21
combining filters 21
correct use 21
multiple filters 21
Select-Object 22
single filter 21
where to 21
Where-Object 16

cmdlet 21
filters 497

combining 518
PowerShell-based 519

finally{} block 104
FindAll() method 81, 141–142,

150–151, 343
FindOne() 81
firewall 224

Flexible Single Master Opera-
tions. See FSMO

folder
creating 234
desktop 203
special 203
subfolders 238
virtual directories 402

for
in scripts 105

for loop 50, 54, 484
test files 57
when test occurs 55

foreach cmdlet 165, 237, 299
services 226

foreach command 194, 196
foreach loop 50, 52,

136–137, 484
creating full name 163
difference with Foreach-

Object 53
ForEach-Object alias 54
reads group membership 157
using 53

ForEach-Object cmdlet 16–17,
48, 50, 136, 196, 361

alias foreach 54
directory listing 52
domain controllers 334
example 51
loop 163
script block 177

foreign key
adding 440

ForeignKey object 439
Forest 176

context type 336, 342
forest function level

290, 292, 322
discovering 292
FSMO roles 327

ForestDnsZones container 460
ForestMode property 292
Format-* cmdlets 16, 44, 58
Format-List cmdlet

83, 192–193, 238
Format-Table cmdlet 23, 98,

184, 392, 418
calculated fields 98, 231
discovering disk free

space 200
domain controllers 324
formatting errors 425
listing OUs 303
listing subnets 339

INDEX534
Apago PDF Enhancer

Format-Table cmdlet (continued)
mailboxes 362
table format 413

FORTRAN 55
forward DNS zones 266

creating example 267
FQDN 274
free disk space

discovering 199
reclaiming 207
See also disks

Freespace property 200
FreeVirtualmemory property 85
FSMO roles

discovering
example 331

discovering role holders 327
transferring 328–329

fully qualified domain name. See
FQDN

function keyword 100
functions

action functions 106
advanced 56, 497
aliases 100
creating 34, 37
exporting 502
Get-Command 43
library 109

files 58
naming conventions 108
order 501
scripts 108
startup 37, 58
storing 34
syntax 480
usage 501
variable names 107

G

Gac drive 24
GAC store 71
garbage collection 404
Get-Acl cmdlet 12
Get-ADDomain cmdlet 293
Get-ADDomainController

cmdlet 148
Get-ADForest cmdlet 293
Get-ADGroup cmdlet 158
Get-ADGroupMember

cmdlet 157
Get-ADObject cmdlet 291, 295
Get-ADSite cmdlet 354

Get-ADSiteLink cmdlet 354
Get-ADUser cmdlet 140, 158
Get-CASMailbox cmdlet

169–170
Get-ChildItem cmdlet 21, 100,

460, 505
aliases 20
control application pool 396
directory listing 52
discovering cookies 206
display registry 243
-Force parameter 428
generate listing directory 46
output 49
reading 410
-Recurse switch 48
registry data 243
registry entries 244
restarting an application

pool 398
synopsis 233
using alias with 394
viewing a key 245
viewing certificates 373
viewing desktop folder 204
viewing multiple HTML

files 413
Get-ClientAccessServer

cmdlet 358
Get-Command cmdlet 5, 40,

171, 177
complementary to Get-

Help 42
Exchange 2007 cmdlets 353
filtered by using Where 112
generates list of

commands 11
nouns 57
Out-* 58
retrieves cmdlets

information 12
Get-ComputerRestorePoint

cmdlet 238
Get-Content cmdlet 195, 234,

377, 407, 410, 425–426
reading files 237

Get-Date cmdlet 22, 53, 447
backup IIs

configuration 409–410
creating configuration

report 218
with locked user accounts 143

Get-EmailAddressPolicy
cmdlet 367

Get-Event cmdlet 510, 513
Get-EventLog cmdlet 247

reading event logs 250
Get-ExchangeCertificate

cmdlet 373
Get-ExchangeServer cmdlet 358
Get-ExecutionPolicy cmdlet 38
GetFile cmdlet 60
Get-GuiHelp cmdlet 42
Get-Help cmdlet 13–14, 40, 42,

475, 506
help files 58
use with cmdlet name 18

Get-Item cmdlet 233
Get-ItemProperty cmdlet 244

registry key value 245
viewing registry key value

change 246
Get-Job cmdlet 449, 451,

453, 511
Get-Location cmdlet 313
Get-Mailbox cmdlet 167,

171–172, 363, 366, 378
moving a mailbox 173

Get-MailboxCalendarSettings
cmdlet 380

Get-MailboxServer cmdlet 358
Get-MailboxStatistics

cmdlet 174, 182, 361–362
disconnected mailboxes 187
mailbox sizes 184

Get-Member cmdlet 5, 16, 40,
66, 69, 171, 203, 208

Active Directory 78–79
deleting DNS records 281
deleting OUs 306
discovering recycle bin 206
DNS server configuration 264
hashtable 47
listing subnets 338
.NET objects 15
object properties 44
process properties 230
psbase 80
retrieves information about

objects 43
variables 46, 78
WMI 84

objects 86
Get-Module cmdlet 455
Get-OpenXmlStyle cmdlet 219
Get-OrganizationConfig

cmdlet 357

INDEX 535
Apago PDF Enhancer

Get-Process cmdlet 15–16, 22,
43, 96, 405

creating files 236
default output 230
preserving desktop files 205
process properties 230
processes consuming exces-

sive memory 231
resource usage 230
sorted output 97

Get-PSDrive cmdlet 5, 24, 40,
44, 171, 390, 463

discovering disk free
space 201

Get-PSProvider cmdlet 24
Get-PSSnapin–Registered

cmdlet 37
Get-QADGroup cmdlet 158
Get-QADObject cmdlet

304, 312
listing OUs 302

Get-QADUser cmdlet
154, 158, 182

Get-SDMADTombstone
cmdlet 319

Get-SDMgplink cmdlet 312
Get-SDMgpo cmdlet 313

GPO backup 315
Get-Service cmdlet 11, 22, 87,

260, 413, 419
built-in filtering 21
creating files 236
default mode 226
discovering services 227
managing services 228

Get-StorageGroup cmdlet 359
Get-TransportRuleAction

cmdlet 369
Get-TransportRulePredicate

cmdlet 369
Get-TransportServer cmdlet 358
GetType cmdlet 86
Get-UMServer cmdlet 358
Get-User cmdlet 165, 182,

354, 364
Get-Variable cmdlet 480
Get-Verb cmdlet 465
Get-VHDInfo cmdlet 468
Get-VM cmdlet 466
Get-VMDisk cmdlet 467
Get-WebApplication cmdlet 402
Get-WebAppPool cmdlet 397
Get-WebConfigFile cmdlet 410
Get-WebConfiguration

cmdlet 404, 412

Get-WebConfigurationProperty
cmdlet 404

Get-WebSite cmdlet 394–395
Get-WebVirtualDirectory

cmdlet 403
Get-WindowsFeature

cmdlet 456
Get-Winevent cmdlet 509
Get-WMIObject cmdlet 86–87,

89–90, 216, 259, 388
alternate credentials 228
creating a Powershell job 450
default formatter 193
deleting DNS records 281
deleting DNS zones 271
discovering disk free

space 199
discovering hotfixes 197
discovering service pack

information 196
DNS records 279
DNS server

configuration 263–264
filter example 272
IP addresses 280
-Property parameter 85
remote machines 198, 230
viewing DNS zones

configuration 268
givenname attribute 295
Global Address List 164
Global Assembly Cache. See GAC
global catalog servers 179, 358

disabling 326
enabling 325

global catalog. See global catalog
servers

global scope 57, 372
$global:members 157
GlobalCatalog class 326
glue records

creating 273–274
GPMC 307

listing GPO contents 313
GPO 188, 287, 295

creating 308
creating backup 314
deleting 309
displaying links 310
linking 308
listing contents 313
managing 307
unlink 309

Graphical PowerShell 110
Grehan, Oisin 495

grep command 238
Group 17, 20
group alias 249
Group Policy 113, 188

cmdlets 307, 454
creating 308
using PowerShell 203
See also GPO

Group Policy Management Con-
sole. See GPMC

Group Policy object. See GPO
group scope

grouptype attribute 155
$group.member 156
grouping 18

cmdlets 19
Group-Object cmdlet 17, 21,

249, 305, 363
GroupPolicy module 289
GroupPrincipal class 131

group membership 131
groups 78, 146

Active Directory vs local 152
activities 127
creating 130
creating local 130
distribution groups 155
finding members 156
group name 131
group policies 145
group policy 149
local 124, 126, 133
mail-disabling 178
mail-enabling 178
members 156
membership 131
modifying membership with

WinNT 132
nested membership 156
removing members 132
scope 130–131

GUI
front end 111
tools 94, 145
tools, display names 294
vs. using a script 9

GUID 175, 187, 519

H

Handle property 16, 90
hardware problems

adversely affect
replication 331

INDEX536
Apago PDF Enhancer

HasMoreData property 451–453
header blocks 106
help files 17, 23, 25, 171, 475

about_associative_array 48
about_break 50
cmdlets 176
compiled 42
Get-Help 43
graphical 42
XML 404

help system 25, 40
cmdlets 41
environment information 41
graphical 42, 110
language information 41
PowerShell version 1 50
two shells 41

here strings 51
terminators 52

hexadecimal
conversions 204
format 204

HiddenFromAddressLists-
Enabled 172

HKEY_CLASSES_ROOT
tree 241

HKEY_CURRENT_CONFIG
tree 241

HKEY_CURRENT_USER
tree 241

HKEY_LOCAL_MACHINE
tree 241

HKEY_PERFORMANCE_DATA
tree 241

HKEY_USERS tree 241
Holmes, Lee 34, 73
Home Directory Required

property 514
$host

typing at prompt 35
$host.privatedata

displays colors 35
HostHeader parameter 389
hotfixes

discovering 195–197
remote machine 391

Hub Transport
node 357
role 355

Hyper-V 114, 322
functions

vs libraries 465
manager 466
PowerShell library 464

I

$i 55, 57
scope 58

IBM 8, 109
-Identity parameter

142, 154, 171
Idera 415
if statement 48

script blocks 52
switch alternative 50

IIS 23, 383
cmdlets 385
drive 24
loading interface into

PowerShell 66
PowerShell Management

Console 389
provider 385
remote administration 385
tools 384

IIS 7 7, 64, 73
administration

automating 384
tools 384

backing configuration 409
cmdlets 388

creating a site 389
viewing websites 394

configuration
backing up 409

configuration files 404
reading 406

.NET namespace 386
PowerShell provider 36
provider 388, 390

creating a website 390
remoting 392
WMI provider 387
XML files 404

IIS Manager console 393, 395
IIS: drive 390
IMAP 168

enabling 169
-IMAPEnabled parameter 169
Import-Clixml cmdlet 405
Import-Csv cmdlet 177, 195–196,

234, 260, 309, 393
reading a .csv file 237

Import-Module cmdlet 125,
289, 504

Import-PSSession cmdlet 392
Import-SDMgpo cmdlet 315
IN record 274
IncludedRecipients 180

Infrastructure Master 327
InfrastructureRoleOwner 327
InsertionPoint parameter 219
install folder 497
installation 32

install directory 34
package 37
prerequisite 32
profiles created manually 34
update mechanism 33

installed software
discovering 198
Windows installer 198

InstanceCreationEvent class 509
Int64 148
integers 46
Integrated Scripting Environ-

ment. See ISE
IntelliSense 11, 31
interactive 96, 175

prompt 110
Interdomain Trust Account

property 514
InterfaceIndex property 477
Internal scope 372
Internet Explorer

COM 73
private key 118

Internet Information Server. See
IIS

internet record. See IN record
InterSiteReplicationSchedule

property 346, 350
InterSiteReplicationSched-

ule.RawSchedule
property 348

Invoke-Command cmdlet
382, 392, 401

Invoke-Expression cmdlet 492
Invoke-Item cmdlet 233

reading files 237
Invoke-SQL cmdlet 441
Invoke-SQLcmd cmdlet 443
Invoke-Troubleshooting-

Pack 457
InvokeVerb() method

emptying recycle bin 207
opening recycle bin 206

Invoke-WmiMethod cmdlet
87, 232

IP addresses
configuration example

282–283
creating an array of 265
DNS 264

INDEX 537
Apago PDF Enhancer

IP addresses (continued)
DNS service 261
glue records 273
information 215, 218
modifying 191
preserving information 205
sample file 195
static 283
subnet 338

IP configuration
network connectivity 281
tools 258

IP connectivity 284
testing example 285

ipconfig utility 282
IPEnabled property 282
IPv4

addresses 285
records 275

IPv6
addresses 275, 285
records 273

ISE 27, 36, 105, 454
ISO codes 139
Issue Warning Quota 167
itemcount 183–184
ItemProperty cmdlets 399, 404
itemsize 183
-ItemType parameter 235

J

jobs
background 449
creating and viewing 450
deleting 452
scheduling and

notification 452
viewing data 452
viewing status 451

journal rules 371
scopes 372

K

-Keep parameter 452
keywords 475, 506
Kill() method 233

L

last logon time 146
approximate 149

LastAccessTime property 54

LastBootTime property 85
LastKnownParent property 319
lastlogon property 146–147
lastlogondate property 148
lastlogontimestamp

property 146–147, 149
LastSyncMessage property 332
LastWriteTime parameter 206
LCR 359
LDAP

APIs 76
connectivity strings 133
distinguished name 143
filter 65, 140, 142, 149, 517

for finding a user 141
provider 129
query 179
search 141, 153
string 147, 294

-LDAPFilter parameter 463
ldaprecipientfilter property 182
Lee, Thomas 206
libraries, scripts 109
library files 58
like operator 11, 183
Limit-EventLog cmdlet 247
Linux

administrators 5
platforms 5
shells 15

-ListAvailable parameter 455
load statement 127
Load() method 443
loadfrom() method 386
LoadWithPartialName

method 416
local continuous replication. See

LCR
local hard disks 200
local machine

-computername
parameter 254

discovering installed
software 198

IIS 386
PowerShell jobs 450
report creation example 198
running scripts on 191
sample file 195
service cmdlets 228
Stop-Process cmdlet 232

local user accounts 517
Lock Waits/sec 427
lockout time 143
Locks Object 427

log file 360, 510
locations 422
single 435
size 429

Log Flush Waits/sec 427
logging, problems 331
logical operators 488
login ID 130
login modes 422
-LogName parameter 248
logname parameter 248
logon hours 139
logon scripts 6
logon time 140

last 146
logs, exploring 249
looping mechanisms 50, 56
loops 50, 54

comments 106
conditions 105
inner 56
script blocks 52
syntax reference 484
test folders 54

ls 20
alias 394
command 245

M

machine configuration
classes 191
data subset 192
modifying 191
reporting on 191
See also desktop configuration

machine name 127–128
Mail Exchange records. See DNS

mail server records
mail servers

configuring multiple 277
preference 277

Mailbox
node 357
role 355

mailbox
adding email address 171
automation 161
bulk creation 163
changing quota limits 168
cleaning 167
configuring 170
connecting to a user

account 175
consolidating 366

INDEX538
Apago PDF Enhancer

mailbox (continued)
creating 162
creating for existing

accounts 164
database 360
deleting 185–186
disabling 173–174, 186
disconnected 174
disconnecting 173
distributing 363
distributing by name 364
distribution 361–362
enabling IMAP 169
entitlement 165
hiding 172
identifying 175
largest 183
lifecycle 172
matching identities 175
modifying 167
moving 167, 172–173, 184
number per database 363
permissions 175
protocols 168
purging 186
quota limits 167
reconnecting 173, 175
reporting sizes 184
resource 377
server 168
size 167, 183
sizes 184

distribution 184
statistics 182
system 183

*-Mailbox cmdlets 167
mailbox database

moving example 365
removing 366

mailbox-enabled 166
users 177, 180

mail-enabled 165, 167, 174
distribution groups 177
group 178
security group 176

makecert
syntax details 116

Manager settings 140
manifest module 498
MAPI 169

protocol 357
matching rule 518
MatchType 144
Math class 70
MaxFileSize parameter 254

-Maxsamples parameter 425
-MaxThreads parameter 367
md alias 235
Measure 17
Measure-Object cmdlet

17–18, 21
Medd, Jonathan 159, 464
-Member parameter 154
memberof attribute 157
members

adding to a group 131
Members tab 156
membership

changing 153
distribution group 179
finding group 158
nested 156

memory 32, 229
memory usage 230

physical 230
processes consuming

excessive 231
virtual 230

messages
transport cmdlets 358

Microsoft
2008Scripting Games 105
Active Directory cmdlets 125
autocompletion 31
cmdlets 140, 519

account expiry 151
AD group scope 155
bulk creating users 137
disabled accounts 142
group membership 154
last logon times 148
moving users 146
searching 142

CodePlex 114
Common Engineering

Criteria 109
Common Engineering Crite-

ria for 2009 7
Exchange Server 5
lockedout accounts 144
PowerShell built into

products 7
PowerShell integration 5
Script Center 60
scripting guide 74
SQL Server 5
Technet Script Center 102
TechNet Scripting Center 31
Trustworthy Computing

initiative 37

Microsoft Azure platform 471
Microsoft Excel. See Excel
Microsoft Exchange. See

Exchange
Microsoft Office 73
Microsoft Office applications. See

Office applications
Microsoft Script Center 41, 64
Microsoft TechNet Script

Center 82
VBScript examples 209

Microsoft Windows PowerShell.
See PowerShell

Microsoft Word. See Word
Microsoft_DNS class 263
Microsoft.P* 11–12
Microsoft.PowerShell shell 34
Microsoft.Web.Administration

classes 386
MicrosoftDNS namespace

259, 266–267
MicrosoftDNS WMI

namespace 263
MicrosoftDNS_AAAAType

class 275
MicrosoftDNS_AType class

269, 272
creating DNS A records 273

MicrosoftDNS_Cache class 266
MicrosoftDNS_MXType class

creating DNS mail server
records 276

MicrosoftDNS_PTRType
class 272, 278

MicrosoftDNS_ResourceRecord
class 271, 276, 278–279

MicrosoftDNS_ResourceRecord
class 279

MicrosoftDNS_Zone class 268
mime types 357
MinimizeAll() method 203
mkdir alias 235
MMC 7, 95

GUI tools 7
MNS Logon account

property 515
*-Module 37
module manifest 503
modules 26, 37, 58, 109, 497

discovering 454
loading 504
types 498

Monad. See SQLPS
Mount-Database cmdlet

361, 365

INDEX 539
Apago PDF Enhancer

Move-DatabasePath cmdlet 365
Move-Item cmdlet 233
Move-ItemProperty cmdlet 244
Move-Mailbox cmdlet

173, 363, 366
Move-QADObject cmdlet 305
Move-StorageGroupPath

cmdlet 365
MoveTo() method 145, 305
MSDN 66
MX records. See DNS mail server

records

N

name 147
-Name parameter 135
named instance 420
namespaces 67, 191

default namespace 191
installed 83

naming conventions 57, 108,
175, 493

verb-noun 57, 108
Windows machine 201

-NamingProperty
parameter 297

NamingRoleOwner
property 327

.NET 63
accessing 71
approach 240
arrays 47
assemblies 72
casting 46
classes 67, 73
cmdlets 102
creating a website 386–387
development tools 102
documentation 66, 71
exception (error) 103
Math functions 66
namespaces 76
new cmdlets 37
new snapins 37
PowerShell 5, 32, 39, 64–65
string formatting 99
syntax 61
versions 33, 66

.NET 2.0 33, 66, 76

.NET 3.0 33

.NET 3.5 33, 76–77, 126
documentation 66
finding a locked account 143

.NET 3.5 SP 1 27, 32, 66

.NET Framework 66–67
class library 67
Windows Server 2008 225

.NET objects 4, 6, 68, 73
class properties 68
cmdlets 66
creating 68, 475
extending 70
Get-Member 15
Get-Process cmdlet 15
Handles property 16
persisting 404
pipeline 17, 66
piping 15
System.Diagnostics.Process 16
using 75
variables 45
wrappers 78

NETBIOS name 191
Netmap tool 227
Netsh 466
network card

go into properties 283
network configuration 423

modifying 424
network graphs 227
Network Load Balancing

cmdlets 454
network resources 164
NetworkAdapterConfiguration

class 282
networking issues

adversely affect
replication 331

NetWorkingAdapterConfigura-
tion class 283

New-ADGroup cmdlet 152
New-DistributionGroup

cmdlet 177
New-DynamicDistribution-

Group cmdlet 180
New-EmailAddressPolicy

cmdlet 368
-newest parameter 248
New-Event cmdlet 509
New-EventLog cmdlet 247
New-ExchangeCertificate

cmdlet 374–375
usage example 376

New-Item cmdlet 24, 233–234,
236, 385

creating a key 245
creating a website 390

creating an application
pool 397

creating application
pools 396

New-ItemProperty cmdlet
244, 401

registry key value 245
New-JournalRule cmdlet 371
New-Mailbox cmdlet 162–163,

354, 377
New-MailboxDatabase

cmdlet 360
New-MailContact cmdlet 167
New-ModuleManifest

cmdlet 502
New-Object cmdlet 61, 68,

203, 304
adding Word document

text 213
creating a spreadsheet

209–210
InternetExplorer.Application

75
listing subnets 338
type shortcuts 496

NewParentContainer 146
New-Password function

usage example 504
New-QADGroup cmdlet 152
New-QADObject cmdlet

297, 299–300
New-QADUser cmdlet 135
New-SDMgpo cmdlet 308
New-Service cmdlet

managing services 228
New-StorageGroup cmdlet 360
New-TransportRule cmdlet 369
New-WebApplication

cmdlet 401
New-WebAppPool cmdlet

396–397
New-WebSite cmdlet 389
New-WebVirtualDirectory

cmdlet 402
NLB cluster 401
Noble, Jonathan 174, 338
NonQuery() method 445
Normal Account property 514
Not Delegated property 515
Notepad 39, 59, 110

experimental test bed 232
NoteProperty property 6, 69,

338, 468
-notlike 183

INDEX540
Apago PDF Enhancer

-NoTypeInformation
parameter 198, 205,
236, 251

nouns 495
list 112

Novell SPX protocol 282
ntdsutil utility 328
NTFS permissions 115
$null password 134

O

O’Neill, James 464
*-Object 13, 18
Object Identifier. See OID
object recovery 318
-ObjectAttributes

parameter 140
objectcategory property 142,

150
objectclass property 142, 150
ObjectEvent class 512
objects 67

Active Directory 68
arrays 46
collection 49
foreach 53
Get-Member 43
.NET 68
New-Item 55
PowerShell 68

ObjectSecurity
collection 317
property 316–317

objectSID property 328
ObjectVersion

attribute 290
property 460

Office 9
Office 2007 209, 214
Office applications

COM objects 209
OID 116
OneNote drive 24
OnTimeInMilliseconds

property 467
Open method 212
OpenXML 114

documents 214
Power Tools 214
usage example 217

OpenXML format 209, 214
creating Word document 216

ease of usage 219
setting the style 218

operating system
information 192, 215, 217
See also OS 217

operators 46, 475, 485
assignment 47
range operator 47

Organization tab 140
Organizational Unit. See OU
organizationalUnit object 296
Orsouw, Marc van 83
OS

discovering information 194
OU 124, 133–136, 295–307

Active Directory provider 460
bulk creation 297–298
child 165
child objects

discovering 303
delete accounts 145
deleting 306

using cmdlets 307
displaying linked GPOs 310
geography-based 298
groups 178
hierarchy 162
linking Group Policy

Objects 308
listing 300, 311

example 300
using cmdlets 302

listing contents example 304
moving 305
moving users 145
one at a time 164
protecting 317
report 301
setting Protection from Acci-

dental Deletion 316
structure 287

display example 303
displaying 300

Out-* cmdlets 58
$out1 51
$out2 51
-OutBuffer parameter 14
Out-File cmdlet 192–193,

234, 270
creating files 236

Out-GridView cmdlet 443
Out-Host cmdlet 41
Outlook

accessing mailbox using 168

Outlook Anywhere 374
Outlook Web Access. See OWA
Out-Null cmdlet 416
output 58

administrative scripts 58
cmdlets 59

Out-SDMgpSettingsReport
cmdlet 313

Out-String cmdlet 216
-OutVariable parameter 14
OverWritePolicy property 254
OWA 7, 168

enabling 170
self-signed certificates 374

-OWAEnabled parameter 170
OwnerName 269

P

Packet Privacy 388, 395
Page File

information 215
Paged Memory. See PM
PageSize 141
param statement 57, 108
parameters 41

common 14
dynamic 24
Get-Help 13
naming 12
new 25
paging 41
preceded by hyphen 13
property 443
Required? option 13
safety 14
startup 26
wildcards 21

ParentContainer 135
parser 15
partitions

discovering 199
replication 332

PASH 5
-Password 163
password

expiring 150
expiry 149
secure string 128
setting 129
symbols 501

Password Cannot Change
property 514

Password Expired property 515

INDEX 541
Apago PDF Enhancer

Password Not Required
property 514

PasswordExpired 130
password-masking

technique 133
patches. See hotfixes
-Path parameter 135, 242
Payette, Bruce 45, 70, 74
PDC Emulator 327, 329
PdcRoleOwner 327
Pearce, Ben 464
performance 21

large scripts 101
performance counters 418

SQL Server-specific 426
viewing 425

-permanent parameter 186
permissions

delegation 178
physical disks

discovering 199
ping utility 258, 282, 284
Ping-VM cmdlet 466
pipeline 12, 14

$ 46
$files 53
in action 15
current object 16
filtering 15
Foreach-Object 50, 53
information 17
.NET objects 15, 17
objects 22
readability 20
steppable 26
terminating 16

PM 231
policies

address 367
attachments 370
email address policy 368

Policy-Based
Administration 415

POP 168
cmdlet 357
enabling 169

-PopEnabled parameter 170
Pop-Location cmdlet 243–244
popup method 61
portability 81, 109, 141

scripts 106
Position? option 14
PowerGadgets 85, 395, 426

Invoke-SQL cmdlet 440

PowerGUI 39, 59, 83, 85,
105, 159

power packs 111
script security 115
scripts 108

PowerShell
32-bit version 33
64-bit version 33
accelerators 78
accessing IIS 385
Active Directory 75, 126
administrative privileges 259
administrator 64
alternative method of

configuring 36
Analyzer 34
approved verbs 11
automating

administration 415
automation 92
automation layer 5
based on .NET 60
basics 10
beta 30
blogs 407, 524
case insensitive 11
case sensitivity 136
clearing display 299
cmdlets 11
command line 5, 7, 9
command structure 45
commands 11, 242
commands as background

jobs 197
commands produce .NET

objects 6
community 67, 111, 114
Community Extensions

12, 71, 85, 127, 305
Community Extensions

cmdlets 73
comparison with C# 6
configuration 32–36
Conversion Guide 60
convert from VBScript 31
creating files 235
creating spreadsheet 209
credential 128
deleting DNS zones 270
differing implementation

styles 55
discovering classes 191
DNS systems 257
downloads 522
elevated privileges 249

environment 102
Eventing library 114
execution policy 37
extensibility 10, 36
extensions 10
filters 519
flexibility 10
functionality 85
functions 24
greatest strength 10
Guy 12
help system 25
importance 7
innovations 448
installation 32
installed drives 23
interactive mode 38
interactive nature 32
ISE 110
language features 45–59
loading .NET assemblies 39
looping mechanisms 50
Mac port 5
in Microsoft environment 4
Microsoft products 7
.NET 32
.NET assemblies 72
.NET objects 4
.NET-based 39
not case insensitive 8
objects 68, 78

persisting 405
wrapper 69

one liner 99, 198
operators 11
overview 4
pipeline 14–15
pipes .NET objects 15
Plus 110
profile 31
prompt 37
provider for IIS 7 388
providers 23, 233
remote administration 223
remoting 391

usage example 391
Remoting project 114
scripts 59
security features 115–119
self-documenting 106
session 392
SharePoint 2010 7
shell 11
snapin 11
Space Invaders 94

INDEX542
Apago PDF Enhancer

PowerShell (continued)
stages 96
startup 37
support 454
team 34, 73

blog 110
Team blog 89
Toolkit 34
toolkit 59
tools 40, 63, 93
unique features 4
User Group 241
using Active Directory to

search 81
variables 19
variables inside strings 200
in VBScript 61
VBScript 60
VBScript objects 60
vs. other scripting

languages 11
weakness 10
Windows 2000 32
Windows platform 5
Windows Server 2008 32
WMI 82–83
writing commands 11
WScipt.Shell object 61

PowerShell Community Exten-
sions. See PSCX

PowerShell file
do not double-click 38

PowerShell jobs. See jobs
PowerShell Plus 105, 113
PowerShell V1

problem areas 6
PowerShell version 1 4, 11

remote machines 64
service cmdlets 228

PowerShell version 2 4, 7–8, 11,
42–43, 96

$psculture 210
Add-Type 73
beta process 201
calculated fields 98
deleting DNS records 281
DNS tests 260
event logs cmdlets 247
functions 107
Get-ComputerRestorePoint

cmdlet 238
Get-Hotfix cmdlet 197
Get-PSDrive cmdlet 201
graphical version 110

Invoke-WMIMethod 87
Invoke-WmiMethod

cmdlet 232
modules 109
new features 25
new parameters for

services 226
psbase 80, 89
remote services 228
remoting 224
Remove-WMIObject

cmdlet 87, 232
Restart-Computer cmdlet 202
Server Core machine 225
Start-Process cmdlet 231
upgrading 27
WMI support 64
wrapping registry

changes 246
XML examples 406

PowerShellPlus 59
PowerTools 114
primary DNS zones 267
PRIMARY file group 435
primary key

adding 439
PrincipalContext 128, 143
printer

sending a test page 207
printer drivers

discovering 208
printing

problems 208
PrintTestPage() method 208
private key 117

importing 117
privileges 88, 322

Administrator-level 38
elevated 113, 126, 372, 389
elevation of 38
security logs 249

Process parameter 52
processes 8, 96, 225

creating 231
usage example 232

current state 235
error messages 22
filtering 22, 230
Get-Process cmdlet 230
identifying CPU and memory

usage 230
identifying resource

usage 230
launching 231
longest-running 23

managing 229–230
PowerShell 225
previous state 235
remote machines 230
resource usage 231
running 16, 22
sorted by number of

handles 15
Task manager 44
terminating 232
top four CPU using

97, 100–101
Processor

information 192, 215, 218
production

environment 31
scripts 106
systems 103

Profile tab 140
profiles 33

actions 34
avoid multiple 34
current folder 35
locations 34
sample 35, 41
scripts 37

Prohibit Send and Receive
Quota 167

Prohibit Send Quota 167
prompt 45
properties 69

extra 6
Properties dialog 156
-Property parameter 269
PropertyValueCollections 339
protection

from accidental deletion 315
protection and recovery

mechanism 315
Protection from Accidental

Deletion
feature 315–316
property 318

ProtocolDisplayName
property 424

ProtocolOrder property 424
protocols

SQL Server 424
Protocols namespace 77
providers 4, 23, 233

active 24
cmdlets access 24
data stores 240
filesystem 233
Get-PSDrive cmdlet 44

INDEX 543
Apago PDF Enhancer

providers (continmued)
Get-PSProvider cmdlet 24
installed 24
navigation 24
Registry 24
remote machines 224
snapins 37

PS> prompt 36
.ps1 extension 59, 101
.ps1xml extension 480
.psbase 69
.psbase extension 145
.psbase qualifier 305
$psculture 210
PSCX 114, 241, 459

PowerShell Community
Extensions 114

PSDrives 23
$pshome variable 239, 480
!PsIsContainer 20
.psm1 extension 498
PSSession 392
PSSnapin

name 242
parameter 354
property 12

-Pssnapin parameter 456
.PST file 175
Push-Location cmdlet 242

registry data 243
Put() method 81, 254, 264, 329
pwdLastSet property

134, 149–150

Q

QAD 124
query-based distribution groups.

See also dynamic distribu-
tion groups

Quest 8, 110–111
Active Directory cmdlets 241
AD cmdlets 124, 161

group membership 181
cmdlets 126, 289, 297,

305, 519
account expiry 151
AD group scope 155
bulk creating users 137
creating a user 135
disabled accounts 143
group membership 154
last logon times 148
locked-out accounts 144

moving users 146
searching 142

domain controllers 148
snapin 112

Quest Active Directory 36
Quest AD 65
quota

changing limits 167
limits

database level 184
properties 168
settings 168

R

range operator 489
readability 101
Read-Host cmdlet 128, 162
Reboot() method 202
Receive-Job cmdlet 449, 452
RecipientContainer 180
-RecipientFilter parameter 368
recommendations 507
RecordData property 280
recreating contents 269
-Recurse parameter 20, 236, 238
recursion 156
-Recursive parameter 157
recycle bin

discovering 206
emptying 207
opening 206
viewing contents 206

REF 214
reference data 514
reference object 18
ReferenceObject parameter 18
Regedit.exe 240, 245
Regional and Language

settings 210
registry 240

accessing 241, 243
altering 240
changing key value 246
creating entries 244
deleting data 246
displaying 243
key values 243
managing data 245
path 242
provider 240
reading 243
sections 241
updating and deleting

data 246

regular expressions
searching files 239

ReleaseDHCPLease()
method 284

remote administration 223
remote capability

firewall 224
PowerShell version 2 224, 233

remote desktop 423
Remote Desktop

Connection 466
Remote Desktop Services

cmdlets 454
remote machine

accessing 432
accesss 224
copying scripts to 393
creating databases 433
discovering installed

software 198
Get-WmiObject cmdlet 259
PowerShell 391
printing a test page 208
running scripts on 191
service cmdlets 228

Remote Server Administration
Tools 28

remote services
ComputerName

parameter 228
WMI 229

remote sessions 392
RemoteSigned policy 38
remoting 26, 32, 475

in Exchange 2010 161
IIS 384
PowerShell 391
usage example 391

remoting capabilities 380
Remove() method 132, 154
Remove-DistributionGroup-

Member cmdlet 182
Remove-EmailAddressPolicy

cmdlet 368
Remove-EventLog cmdlet 247
Remove-Item cmdlet 48, 54,

207, 211, 233, 433
deleting subnets 342
removing backups 410
removing files 237
removing registry key 246
removing web

applications 403
removing websites 400

INDEX544
Apago PDF Enhancer

Remove-ItemProperty
cmdlet 244

deleting registry key
value 246

Remove-Job cmdlet 449, 453
Remove-Mailbox cmdlet

186–187
Remove-Module cmdlet 504
Remove-PSSnapin cmdlet 37
Remove-SDMgplink cmdlet 309
Remove-SDMgpo cmdlet 309
Remove-WebAppPool

cmdlet 399
Remove-WebConfigurationProp-

erty cmdlet 404
Remove-WebSite cmdlet 399
Remove-WindowsFeature

cmdlet 456
Remove-WmiObject cmdlet

87, 232
deleting DNS records 281
deleting DNS zones 271

Rename() method 201
Rename-Computer cmdlet 201
Rename-Item cmdlet 233
Rename-ItemProperty

cmdlet 244
RenewDHCPLease()

method 284
Renouf, Alan 189, 464
-replace operator 251
Replace() method 339
replication

domain controllers
multiple 332
single 331

examining 331
force 333
interval 344
monitoring 331
problems 342
schedules 346
site links 342, 344
state 333
synchronization

examining 331
topology 345
triggering 333

replication latency 329
replication schedules

displaying 347
setting 349

ReportHTML parameter 313
RequiredServices

parameter 226

RequiresElevation property 457
-ResetPassswordOnNextLogon

parameter 163
ResetSchedule() method 349
Resolve-Assembly 127

import parameter 73
resolve-group 157
resolve-membership

function 158
resource mailboxes 377

creating 377
viewing 378

resources
cmdlets 358
processes 229

Restart-Service cmdlet
managing services 228

Restart-WebAppPool
cmdlet 398

Restart-WebItem cmdlet 396
restarting an applicaiton

pool 398
Restart-WebSite cmdlet 396
Restore-GPO cmdlet 315
Restore-QADDeletedObject

cmdlet 319
Restore-SDMADTombstone

cmdlet 319
Restore-WebConfiguration

cmdlet 404
Restricted policy 96
Resultant Set of Policy

report 310
Resume-Service cmdlet

managing services 228
reverse DNS zones 266

creating example 267
RID Master 327
RidRoleOwner 327
rootDSE 328, 337

connecting to 330
deleting a site 338
listing subnets 338
modifying subnets 340

RootDSE domain 294–295
Rottenberg, Hal 464
RoundRobin property 264
routing

priorities xxv
RSAT download 125
Run as Administrator 38, 126,

208, 249, 284, 372
RunSpace 392

S

S.DS 76, 124
assembly 322
namespace 289
wrapper 77

S.DS.AD 67, 76–77
discovering function

levels 292
namespace 289–290, 322

safety parameters 14
SAM database 129, 519
samaccountname 175, 177
SAN 375
SAPIEN 61
schema 289–295

version 290
Schema subcontainer 460
SchemaRoleOwner

property 327
scope

types and how they work 57
SCR 359
script

cmdlets 504
debugging 27
internationalization 26
module 498
vs. using a GUI 9

script blocks 6, 45, 49, 52
-Begin parameter 52
catch{} 104
enclosed with braces 12
-End parameter 52
finally{} 104
functions 100
indenting 108
-Process parameter 52
scope 57
try{} 104

Script property 514
-ScriptBlock parameter 392
ScriptControl object 61
scripting 93

for administration 95
ADSI 73
aesthetics 104
automation 64
environments 93
guidelines 104
similarity to interactive 96
WMI 73

scripting languages 5, 45
actions 45

ScriptMethod method 69

INDEX 545
Apago PDF Enhancer

ScriptProperty method 69
scriptproperty property 6
scripts 59–61

advantage 100
aliases 107
automation 96
avoid heavily aliased 13
code signing 93
comments 101, 106
debugging 105, 107, 129
default behavior 39
error handling 103
Exchange Server 2007 355
execution 39
functions 108
Get-Command 43
GUI examples 95
guidelines 104
header 101
IntelliSense 31
large 101
lifecycle 102
local machine 191
maintainability 107
maintenance 102, 109
naming conventions 108
parameters 108
portability 106, 109
potential errors 104
PowerShell 93
production 105
production-ready 101
.ps1 extension 101
removing 103
repositories 102
running 37–38
safety 102
script-design 96
security 115, 162
signing 107, 115
storage 108
testing 103–104, 106
things to avoid 105
variable names 107
VBScript 31
when to stop 105

SDM Software 8
cmdlets 113, 289, 314
GPMC cmdlets 308
Group Policies 307
tombstone cmdlets 318

SDMSoftware.Power-
Shell.AD.Tombstones
snapins 319

search
creating 141
disabled accounts 142
end date 151
filter 151
index 355
number of results 141
path 39

current folder 39
root 141

$search.PageSize 141
secondary DNS zones 267
secure certificate 117
secure string 128, 133
security 8, 93, 107

automation 115
blocking execution 39
groups 131, 155
principals 77

Security Account Manager. See
SAM

Security event log
elevated privileges 253

security groups 176
security identifier. See SID
security logs 249

elevated privileges 249–250
Select 13, 17, 169
select statement

calculated fields 200
Selected.System.String class 338
Select-Object cmdlet 17, 408,

418, 425, 430
alternative form of

filtering 22
calculated fields 98
discovering installed

software 198
domain controllers 324
ExpandProperty

parameter 419
selecting processes 231

Select-String cmdlet 238, 459
advantages 239
usage example 407

Select-WebConfiguration
cmdlet 404

Select-XML cmdlet 408
usage example 407

self-signed certificate
creating 116

Sender property 510
Send-MailMessage cmdlet 150
server

objects 421

protocol 424
roles 168

server administration 225
automating 224
diagnostic information 224
remote 223

Server Core
managing 225
Windows Server 2008 R2 225

Server Trust Account
property 514

ServerManager cmdlets 455
ServerManager object 386
ServerNetworkProtocol

class 424
ServerNetworkProtocolProperty

class 424
Servers property

refers to domain
controllers 335

service cmdlets 228
WMI 229

service packs 33, 420
discovering 195
version numbers 196

Service records 260
discovering 272

services 8, 225
display 356
display name 226
management cmdlets 228
status 226
testing 356
troubleshooting 226

Services administration tool 226
sessions

best practice 381
Set-ADObject cmdlet 295, 318
Set-ADSite cmdlet 354
Set-ADSiteLink cmdlet 355
Set-AdUser cmdlet 140
Set-Alias cmdlet 12, 35
Set-AuthenticodeSignature

cmdlet 118–119
Set-CASMailbox cmdlet

169–170
Set-Content cmdlet 55, 234, 413

creating files 236
SetDailySchedule() method 349
SetDNSDomain() method 284
SetDNSServerSearchOrder()

method 284
SetDynamicDNSRegistration()

method 284

INDEX546
Apago PDF Enhancer

Set-EmailAddressPolicy
cmdlet 368

Set-ExchangeServer cmdlet 358
Set-ExecutionPolicy cmdlet

38–39
SetGateways() method 284
SetInfo() method 81, 130–131,

152, 154, 296
SetIPConnectionMetric()

method 284
SetIPXFrameTypeNetwork-

Pairs() method 284
Set-Item cmdlet 233
Set-ItemProperty cmdlet

244, 399
changing registry key

value 246
Set-Location cmdlet 24

parameter 242
registry data 243

Set-Mailbox cmdlet
167, 171–172

Set-MailboxCalendarSettings
cmdlet 379–380

SetOffline() method 429
SetOnline() method 428
Set-OpenXmlContentStyle

cmdlet 219
Set-OrganizationConfig

cmdlet 357
SetPassword method 129
Set-QADObject cmdlet 295
Set-QADUser cmdlet 140
SetSchedule() method 349–350
Set-Service cmdlet

managing services 228
remote services 229

SetTcpipNetbios() method 284
Set-TransportServer cmdlet 358
Set-WebBinding cmdlet 389
Set-WebConfiguration

cmdlet 404, 412
Set-WebConfigurationProperty

cmdlet 404
SetWINSServer() method 284
SharePoint 2003 7
SharePoint 2007 7
SharePoint 2010 7
shell

base 34
command 11
functionality 36
interactive 45
multiple 36, 41
piping data 14

Shell object
creating 203
minimizing windows 203
viewing desktop contents 204

Show-EventLog cmdlet 247
Shutdown-VM cmdlet 466
SID 328, 519
SideIndicator property 18
#SIG 119
signed script

signature block 119
signing 107, 115
simplematch parameter 311
Site Active Directory 343
site bindings 401
Site class 388
site links 322

creating 344–345
deleting 345
forest level 349
listing 342

by site 344
modifying properties 345
See also links

sitelink object class 343
siteobject property 339
sites 322

container 340, 342
creating 336
deleting 337
discovering single site 335
links 342
listing 335, 342
metadata 337
modifying 337
properties

modifying 337
SizeLimit property 141
Small Business Server 2008 7
Smartcard Required

property 515
SMO 64, 415

backing up databases 446
creating database tables

436–437
creating databases 433
discovering databases 427
loading into PowerShell 66
modifying database tables 439
SQL Server Agent jobs 431

sn attribute 295
snapins 34, 102

assemblies 72
compiled DLLs 37
Exchange cmdlets 161

Get-Command 43
new cmdlets 37
new providers and cmdlets 37
registered 37

Snover, Jeffrey 89, 96
software asset management

system 198
Sort cmdlet 17, 206
sort direction

default 97
sorting 18

cmdlets 19
Sort-Object cmdlet 17, 20, 206

processes 231
Sotnikov, Dmitry 225
source

event 251
server 332

spam
confidence level junk

threshold 357
statistics 355

special characters 493
special folder 203, 519

representative values 204
Special Operations Software

8, 110
special operators 491
specialized log 251
sphinx container 460
-split operator 311
split() method 312
Split() operator 339
spreadsheets 209

adding data 211
creating 209, 211
opening with Invoke-

Item 237
workbooks 210

SQL Server 4–5, 23
administration 418

automating 415
configuration

modifying 422
viewing 421

PowerShell Extensions 415
protocols 424
provider 24
services 418
usability 423
viewing versions 420
WMI provider 423

SQL Server 2000
WMI provider 425

INDEX 547
Apago PDF Enhancer

SQL Server 2008 7, 415
Administration in Action 435
loading functionality 417
remote machines 224
snapins 418

SQL Server Agent jobs 415
creating 430

example 431
SQL Server Agent Proxy 432
SQL Server Agent service 430
SQL Server Management

Objects. See SMO
SQL Server Management

Studio 417
SQL Server provider 417
SQLPS 416
SRV records. See Service records
stack 242

default 242
named 243

-StackName parameter 242
stale records 266
standard

development lifecycle 96
names 493
verbs 493

standby continuous replication.
See SCR

Start-Job cmdlet 449–450
StartMode service 87
Start-Process cmdlet 232
Start-Service cmdlet

managing services 228
Start-Sleep cmdlet 389
startup

functions 37
parameters 26

Start-WebAppPool cmdlet 397
Start-WebItem cmdlet 397
Start-WebSite cmdlet 395
static

groups 179
methods 70
properties 70

Steppable pipelines 26
Stop-Computer cmdlet 202
Stop-Job cmdlet 449
Stop-Process cmdlet 231–232
Stop-Service cmdlet 88

managing services 228
stopping services 228

StopService() method
-whatif parameter 229

Stop-WeAppPool cmdlet 397

Stop-WebItem cmdlet 397
Stop-WebSite cmdlet 395
storage groups

creating 359–360
folder structure 360

stored procedures
reading data example 443

string concatenation 147
string operators 489
StringCollection 436–437
stub DNS zones 267
subject alternate name. See SAN
subnet 322, 338–342

container 338, 340
creating 338–339
deleting 341
listing 338–339
location 339
mask 282, 284
modifying 340–341
sites 337

SuccessAudit log 247
-SuppressBackups

parameter 218
Suspend-Service cmdlet

managing services 228
switch statement 48–49,

194, 291
default clause 50

symbol
comment 106

symbol list 501
syntax

borrows from C# 54
system

remotely restarting 202
shutting down remotely 202

System Center Virtual Machine
Manager 464

system configuration 191
discovering 192
information 192

System Documentation 194
system log 248, 250
System.Convert class 204
System.DayofWeek class 348
System.Diagnostics.EventLog

class 251–252
System.Diagnostics.Process

class 16
objects 405

System.DiagnosticsEventLog
class 253

System.DirectoryServices. See
S.DS

System.DirectoryServices.
AccountManagement 67,
77, 124, 126–127, 130, 143

System.DirectoryServices.Active-
Directory. See S.DS.AD

System.DirectoryServices.Active-
Directory.ActiveDirectory-
Schedule 346

System.DirectoryServices.Active-
Directory.ActiveDirectory-
Schema class 290

System.DirectoryServices.Active-
Directory.Domain
class 146, 297, 301, 323

System.DirectoryServices.Active-
Directory.DomainCon-
troller class 325, 329

System.DirectoryServices.Active-
Directory.Forest class
292, 324, 335

System.DirectoryServices.Active-
DirectoryAccessRule
class 317

System.DirectoryServices.Active-
DirectoryRights class 316

System.DirectoryServices.Direct
oryEntry 78

class 495
System.DirectoryServices.Direc-

toryEntry class 67, 78
System.DirectoryServices.Direc-

torySearcher class
67, 78, 141

System.DirectoryServices.Proto-
cols classes 67, 77, 319

System.Enum class 253
System.IO.FileInfo class 46
System.IO.FileSystemWatcher

class 512
System.Management.Manage-

mentClass class 86
System.Management.Manage-

mentObject class 86, 89
System.Math class 70
System.Security.AccessCon-

trol.AccessControlType
class 316

System.Security.Principal.
NTAccount class 317

T

tab completion 12, 39, 100, 168
parameters 12

tab expansion function 25

INDEX548
Apago PDF Enhancer

TargetPath property 146
Task manager

processes 44
tasks 93

Exchange-related 161
TCP/IP

properties 283
protocol 282
stack 275

TcpPort property 424
TechEd EMEA 27
TechNet Script Center 110
Tee alias 17
Tee-Object cmdlet 17, 23
Telephones tab 140
Temporary Duplicate Account

property 514
test folders

creating 385
Test-Connection cmdlet

258, 285
testing 9

do loop 56
for loop 56
scripts 104
stopping 106
test files and folders 56

Test-Path cmdlet 60, 211,
237, 399

Test-ServiceHealth cmdlet 355
Test-SystemHealth cmdlet 356
Text command 445
text files

searching 239
text() method 408
time to live. See TTL
TimeGenerated property 249
TimeSpan objects 99, 151, 249,

432, 480
TimeWritten property 249
ToFileTime() method 149
tombstone

cmdlets 318
object 318

toolkit
ADSI 63
automation 109–115

tools 40
Active Directory 78

top four CPU using 97
totalitemsize property 184–185
TotalProcessorTime property 99
TotalVirtualMemorySize

property 85
transactions 26

TransactSql job step 432
transfer, vs. seize 328
TransferRoleOwnership

method 329
transport database 355
transport rules 368

attachments 370
cmdlets 369

traps
drawback 104
statement 103

TriggerSyncReplicaFromNeigh-
bors() method 334

Trim method 216
troubleshooting

event logs 247
IP connectivity 284
PowerShell-based 456
testing network

connectivity 279
TroubleshootingPack

module 456
$true 128
Trusted for delegation

property 515
Trusted to Authenticate for Del-

egation property 515
Trustworthy Computing

initiative 37
try{} block 104
try-catch blocks 104
Try-Catch-Finally 26
T-SQL

automating
administration 415

creating database tables 436
insert command 441
SELECT statement 442
UPDATE command 445

TTL property 266
TTL value

DNS records 274
type 3 disks. See local hard disks
type files

XML 404
type operators 490
-Type parameter 297, 302
type shortcuts 495
TypeParagraph() method 214

U

U.S. locale 210
unary operators 490

UndoMinimizeAll()
method 203

Unified Messaging
node 357

unique key
adding 439

-Unique parameter 157
universal groups 176
UNIX

administrators 5, 9, 94
aliases 41
command aliases 12
grep command 238
help system 40
platforms 5
PowerShell 9
shells 15

unlimited 168
Unregister-Event cmdlet 509
Unrestricted policy 38
update mechanism 33
update sequence number. See

USN
Update-EmailAddressPolicy

cmdlet 368
UPN 519
up-to-dateness vector. See Upto-

DatenessUSN
UptoDatenessUSN 332–333
Use DES Key Only property 515
user

mailbox enabled 162
user account control

flags 514, 517
listing 516

user accounts 162
Active Directory 133, 151
ADSI 124
automating local 133
bulk creation 163
consistency 123
creating 124, 127, 133, 162
creating local 127, 129
deleted 140, 145
disabled 142
disabled accounts 140
disabling 144
display names 293
empty 128
enabled state 163
enabling and disabling 144
existing 164
expiring 151
Get-User 165
local 517

INDEX 549
Apago PDF Enhancer

user accounts (continued)
locked 143
locked-out accounts 144
mail enabled 166
management automation 133
mass creation 133
migrating 303
modifying 138
moving 145
New-Mailbox cmdlet 354
New-QADUser 135
searching xxiv, 141

user features 203
user name

attributes 134
user principal name 163
user, expected values 515
useraccountcontrol

134–135, 142
attribute 515
disabling an account 144

User-Display specifier 295
userflags attributes 517
UserFunctions module 498
UserPrincipal class 128
users 78

accounts 77
See also user accounts

activities 127
and passwords 143
bulk creation 135
creating 134, 164
creating in bulk 133, 136
finding 140
hidden 172
IMAP 169
linked 176
local 124, 126, 133
logging problems 331
mail-enabled 174
mobile 170
organizing 145
passwords 149
permissions 130
searching 140
single user 94, 135
visible 172

Users container 463
-UsersOnly parameter 151
USN 332
utility

cmdlets 17
See also cmdlets

V

-value parameter 236
Value Proposition 414
variables

$ 34
automatic 27, 46, 128,

169, 480
camel case 107
capitalization 107
definition 45
environment 46
Hungarian notation 107
initialization 105, 107
inside strings 200
memory 32
names 46

descriptive 107
.NET objects 45
predefined 46
references 32
scope 58
shell 46
start with $ 19
system 24
user-defined 24
values 46

VBScript 7–8, 95
administration scripts 60
based on COM 60
COM-based 9
converting to PowerShell

31, 42, 59
debugging 82
files 38
native tools 9
PowerShell 61
in scripts 105
testing 82
when introduced 9
WMI 82

VBScript-to-Windows 60
verb groups 494
verb naming conventions 244
verb-noun 57

naming 108, 368
syntax 173, 234

-Verbose parameter 14, 401
verbs

list of approved 11
verbs() method 207
VersionString property 420
VHD

compacting 468

disk usage 468
status 467

virtual directories 401–402
creating 402
removing 403

virtual disk capacity
checking 468

virtual hard disk. See VHD
virtual machines 31

compacting 469
determining uptime 467
status 466

virtualization 449, 464
Vista 28
Visual Studio 114
VMware 8, 109, 322

cmdlets 464
[void] 127

W

Wait-Job cmdlet 449
warning event type 253
Warning information 247
web applications

creating 401
removing 403

web configuration file
modifying 411
reading 410

web farm 384
configuring multiple

machines 400
removing websites 399

web pages
creating 413

webadministration
namespace 386, 394

WebItem cmdlet 396
websites

configuring on multiple
machines 400

controlling status 395
creating with IIS cmdlet 389
creating with WMI and

.NET 387
modifying configuration 398
recycling 396
removing 399
restarting 395
viewing 393–394

-WhatIf parameter 14, 49, 54,
105, 174, 202, 228, 233

StopService() method 229

INDEX550
Apago PDF Enhancer

WHERE clause 13, 17, 20, 112
as a filter 200

where cmdlet 174
Where-Object cmdlet 12–13,

17–18, 21, 46, 170, 172
filtering 16
running services 228
Where 11

while loop 50, 54, 56, 75, 485
in scripts 105
test folders 57
when test occurs 55

wildcards 14
Win32_Bios 194
Win32_ComputerSystem

class 83, 216
renaming Windows

machine 201
Win32_DiskDrive class 199
Win32_DiskDrivePhysicalMedia

class 199
Win32_DiskDriveToDisk-

Partition class 199
Win32_DiskPartition class 199
Win32_DiskQuota class 199
Win32_LogicalDisk class 199
Win32_LogicalDiskRoot-

Directory class 199
Win32_LogicalDiskToPartition

class 199
Win32_LogonSessionMapped-

Disk class 199
Win32_MappedLogicalDisk

class 199
Win32_NetworkAdapterConfigu

ration class 477
Win32_NTEventLogFile

class 254
Win32_OperatingSystem

class 193–194
remotely starting and shut-

ting down 202
service pack version 196

Win32_PingStatus class 285
Win32_Printer class 208
Win32_PrinterDriver class 208
Win32_Process 85–86

class 232, 413
object 509

Win32_Process WMI class
remote machines 230

Win32_Processor 83
Win32_ProcessStartTrace

class 510

Win32_ProcessStopTrace
class 510

Win32_Product class
discovering installed

software 198
Win32_QuickFixEngineering

class 196
Win32_Service class 229, 419
Win32_Service WMI class 228
Win32Shutdown() method 202

parameter values 202
Windows 9

Active Directory 133
administration 18, 73, 92, 94
administrators 65
Automation Snapin 114
capitalization 239
event logs 246
executables 38, 43
Explorer 71
findstr command 238
firewall 261, 284
Forms 64
GUI 92, 95
interactive shell 94
NT 9
operating systems 32
OS failure 5
registry 240
SDK 116
Server 2003 126
services 22
special folders 519
storage area for

certificates 372
VBScript 95
versions 9

Windows 2000 95
PowerShell cannot be

installed on 32
scripting guide 74

Windows 2003 32, 38
Vista 33
XP 33

Windows 2008
ADUC 161

Windows 2008 R2 453
Windows 2008 Server Core 6
Windows 7 4, 25, 28, 33, 38, 453

PowerShell enabled by
default 32

tools for IIS 7 385
Windows BitLocker Drive

Encryption cmdlets 454

Windows Essential Business
Server 2008 7

Windows Explorer 38
Windows Installer 33
Windows machine

minimizing windows 203
renaming 201

Windows Management
Framework 32

Windows Management Instru-
mentations. See WMI

Windows Registry 23
COM object installed 73

Windows Remote Management.
See WMI

Windows scheduler 231
Windows Server 2003 28

DNS 258
provider for DNS 259
SP2 32

Windows Server 2008 4, 7, 25,
32–33, 38

ADUC 139
ASP.NET 225
DNS 258
DNS IPv6 records 275
DNS WMI provider 259
event logs 248
My Documents replaced 34
new event log 255
Protection from Accidental

Deletion feature 316
Server Core 32, 225
tools for IIS 7 385

Windows Server 2008 R2 28, 38,
75, 113, 161, 284

Active Directory cmdlets 125
AD 65
DNS 258
lastlogondate 148
OUs 297
PowerShell enabled by

default 32
PowerShell v2 installed on 7

Windows Server 2008 SP1 32
Windows Server 2008 SP2 32
Windows Server Backup

cmdlets 454
Windows Server Core. See Server

Core
Windows Task Scheduler 433
Windows Vista 32–33, 38, 83

DNS IPv6 records 275
event logs 248

INDEX 551
Apago PDF Enhancer

Windows Vista (continued)
installing Exchange Server

2007 tools on 161
My Documents replaced 34
new event log 255
tools for IIS 7 385

Windows Vista SP1 32
Windows XP 38, 126

Service Pack 2 32
SP 3 32

WindowsPowerShell folder 497
WinNT

ADSI provider 129
creating local groups 131
modifying group

membership 132
provider 129

WinPe environments 6
WinRM 2.0 32
winrm service 391
[WMI] 89–90
WMI 8, 60, 63, 82–90, 191, 391

authentication 388
class 14
class naming 193
configuration

information 262
creating a site 387
creating objects 387
creating PTR records 278
deleting DNS records 280
desktop information 191
discovering hotfixes 196
discovering installed

software 198
DNS configuration 258
DNS server configuration 262
enabling remote access 261
events 508
filter example 283
filtering DNS zones

information 269
IIS administration 385
managing services 229
namespaces 191, 386
network configuration 423
object properties 193
paths in cmdlets 239

PowerShell 82–83
printing 208
provider for DNS 258
remote machines 216
remote services 229
remote systems 224
service pack version 196
services 228
starting processes 231
subscriptions 511
support for PowerShell 64
system configuration 192
system information 193
VBScript 82
viewing DNS zones

contents 269
vs VBScript 65
Win32_OperatingSystem 194
Windows Vista 83

WMI provider for DNS
administrative privileges 259
conditional forwarding 265
creating multiple mail server

records 276
deleting DNS zones 270
displaying text

representation 272
text representation of

records 271
WMI namespace 259

WMI Query Language. See WQL
[WMIClass] accelerator 86–87,

265, 387
creating a DNS zone 267
creating DNS A record

example 273
starting a process 232

WMIExplorer 83
WmiIPRoute class 476
[WMISearcher] accelerator

87–88
when to use 89

Word 209
Word COM object 214
Word documents

adding text 213
creating 213

creating a configuration
report 214

from a PowerShell script 214
Word.Application object 213
Worie, Michiel 417
workbooks

Open method 213
working set size 230
Working Set. See WS
Workstation Trust Account

property 514
WQL 87, 199

query 88
Write-* cmdlets 16, 58
Write-EventLog cmdlet 247
Write-Host cmdlet 49, 52,

419, 467
services 226

WS 231
WScript.Shell object 61
WS-Management

protocol 381
See also Windows Remote Man-

agement

X

Xen 322
XML 209

configuration files 240, 403
files 40

searching 239
format files 481
reading 406
reading example 406
selecting node data 408
Select-String cmdlet 407
verbosity 405

XPath
cmdlets 404
creating Word document 214
Select-XML cmdlet 407

Z

Zone forwarder 267

Apago PDF Enhancer

P
owerShell is a powerful scripting language that lets you automate
Windows processes you now manage by hand. It will make you a
better administrator.

PowerShell in Practice covers 205 individually tested and ready-to-use
techniques, each explained in an easy problem/solution/discussion
format. Th e book has three parts. Th e fi rst is a quick overview of
PowerShell. Th e second, Working with People, addresses user accounts,
mailboxes, and desktop confi guration. Th e third, Working with Servers,
covers techniques for DNS, Active Directory, Exchange, IIS, and much
more. Along the way, you’ll pick up a wealth of ideas from the book’s
examples: 1-line scripts to full-blown Windows programs.

What’s Inside
Basics of PowerShell for sysadmins
Remotely confi guring desktops and Offi ce apps
205 practical techniques

Th is book requires no prior experience with PowerShell.

Richard Siddaway is an IT Architect with 20 years of experience as a
server administrator, support engineer, DBA, and architect. He is a
PowerShell MVP and founder of the UK PowerShell User Group

For online access to the author, and a free ebook for owners of this
book, go to www.manning.com/PowerShellinPractice

$49.99 / Can $62.99 [INCLUDING eBOOK]

WINDOWS ADMINISTRATION

M A N N I N G

SEE INSERT

“A defi nitive source.”
—Wolfgang Blass

Microsoft Germany

“A must read!”
—Peter Johnson

Unisys Corp.

“A new perspective on
PowerShell!”

—Andrew Tearle
Th oughtware N.Z.

“Real-world examples…
in a language

you can understand.”
—Marco Shaw

 Microsoft MVP

Richard Siddaway
PowerShell IN PRACTICE

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code and typographical conventions
	Author Online

	about the author
	about the cover illustration
	Getting started with PowerShell
	PowerShell fundamentals
	1.1 What’s PowerShell?
	1.1.1 .NET—not necessarily

	1.2 Why PowerShell?
	1.2.1 Eureka 1
	1.2.2 Importance to you
	1.2.3 Designed for you
	1.2.4 Quicker and more powerful
	1.2.5 Extensible and flexible

	1.3 Major features
	1.3.1 Cmdlets
	1.3.2 Pipeline
	1.3.3 Utility cmdlets
	1.3.4 Providers
	1.3.5 Help system

	1.4 PowerShell v2
	1.4.1 PowerShell 2 Eureka
	1.4.2 Should I upgrade?

	1.5 Summary

	Learning PowerShell
	2.1 Open the book—learn by doing
	2.2 Installation and configuration
	2.2.1 Installation
	2.2.2 Configuring PowerShell
	2.2.3 Extending PowerShell
	2.2.4 Potential issues

	2.3 Your four best friends
	2.3.1 Get-Help
	2.3.2 Get-Command
	2.3.3 Get-Member
	2.3.4 Get-PSDrive

	2.4 Language features
	2.4.1 Variables
	2.4.2 Arrays
	2.4.3 Branches
	2.4.4 Loops
	2.4.5 Functions
	2.4.6 Output

	2.5 Scripts
	2.5.1 PowerShell scripts
	2.5.2 Converting from VBScript
	2.5.3 VBScript in PowerShell
	2.5.4 PowerShell in VBScript

	2.6 Summary

	PowerShell toolkit
	3.1 Eureka 2
	3.2 Using .NET
	3.2.1 Understanding .NET
	3.2.2 Accessing .NET

	3.3 Using COM
	3.3.1 Understanding COM
	3.3.2 Accessing COM

	3.4 Using ADSI
	3.4.1 Understanding ADSI
	3.4.2 Accessing Active Directory

	3.5 Using WMI
	3.5.1 Understanding WMI
	3.5.2 WMI type accelerators

	3.6 Summary

	Automating administration
	4.1 Benefits of automation
	4.2 Administration styles
	4.3 Development for administrators
	4.3.1 Ad hoc development
	4.3.2 Lifecycle
	4.3.3 Error handling

	4.4 Best practice
	4.4.1 Guidelines
	4.4.2 Functions and libraries

	4.5 Automation toolkit
	4.5.1 Microsoft
	4.5.2 Commercial
	4.5.3 Community

	4.6 Securing PowerShell
	4.6.1 Script security
	4.6.2 Script signing

	4.7 Summary

	Working with people
	User accounts
	5.1 Automating user account management
	5.1.1 Microsoft AD cmdlets
	5.1.2 Recommendations

	5.2 Local users and groups
	Technique 1: User creation
	Technique 2: Group creation
	Technique 3: Group membership

	5.3 Active Directory users
	Technique 4: User creation
	Technique 5: User creation (bulk)
	Technique 6: User modification
	Technique 7: Finding users
	Technique 8: Enabling and disabling accounts
	Technique 9: Moving accounts
	Technique 10: Last logon time
	Technique 11: Password expiration
	Technique 12: Account expiration

	5.4 Active Directory groups
	Technique 13: Group creation
	Technique 14: Changing membership
	Technique 15: Changing scope
	Technique 16: Finding group members
	Technique 17: Finding a user’s group membership

	5.5 Summary

	Mailboxes
	6.1 Automating mailbox management
	Technique 18: Create a mailbox

	6.2 Enabling mail
	Technique 19: Mailboxes
	Technique 20: Mail-enabled
	Technique 21: Contact

	6.3 Modifying mailboxes
	Technique 22: Mailbox size limits
	Technique 23: Enabling IMAP
	Technique 24: Enablin
	Technique 25: Enabling OWA
	Technique 26: Adding an email address
	Technique 27: Hiding an address from the address list
	Technique 28: Moving a mailbox
	Technique 29: Disabling mail
	Technique 30: Reconnecting a mailbox

	6.4 Distribution groups
	Technique 31: Creating a distribution group
	Technique 32: Mail-enabling a group
	Technique 33: Dynamic distribution group
	Technique 34: View distribution group membership
	Technique 35: Modify distribution group membership

	6.5 Mailbox statistics
	Technique 36: Determining the largest mailboxes
	Technique 37: Reporting on mailbox sizes

	6.6 Deleting mailboxes
	Technique 38: Deleting a mailbox
	Technique 39: Purging a mailbox

	6.7 Summary

	Desktop
	7.1 Automating desktop configuration
	7.2 Machine configuration
	Technique 40: System configuration
	Technique 41: Discovering the operating system
	Technique 42: Discovering service packs on the OS
	Technique 43: Hotfixes
	Technique 44: Listing installed software
	Technique 45: Monitoring free disk space
	Technique 46: Renaming a computer
	Technique 47: Restarting a computer

	7.3 User features
	Technique 48: Minimizing windows
	Technique 49: Desktop contents
	Technique 50: Adding a file to the desktop
	Technique 51: Listing cookies
	Technique 52: Viewing recycle bin contents
	Technique 53: Emptying the recycle bin
	Technique 54: Sending a printer test page
	Technique 55: Printer drivers

	7.4 Office applications
	Technique 56: Creating an Excel spreadsheet
	Technique 57: Adding data to a spreadsheet
	Technique 58: Opening a CSV file in Excel
	Technique 59: Creating and writing to a Word document
	Technique 60: Creating a configuration report

	7.5 Summary

	Working with servers
	Windows servers
	8.1 Automating server administration
	8.1.1 Server Core

	8.2 Services and processes
	Technique 61: Service health check
	Technique 62: Managing services
	Technique 63: Managing processes
	Technique 64: Launching processes

	8.3 Filesystem
	Technique 65: Creating folders
	Technique 66: Creating files
	Technique 67: Reading files
	Technique 68: Searching files
	Technique 69: Searching for files

	8.4 Registry
	Technique 70: Accessing the registry
	Technique 71: Reading registry data
	Technique 72: Creating registry entries
	Technique 73: Managing registry data

	8.5 Event logs
	Technique 74: Reading event logs
	Technique 75: Exporting logs
	Technique 76: Creating an event log
	Technique 77: Creating events
	Technique 78: Managing event logs

	8.6 Summary

	DNS
	9.1 Automating DNS administration
	9.2 DNS server
	Technique 79: Enable remote administration
	Technique 80: View server configuration
	Technique 81: Configuring round robin
	Technique 82: Configuring conditional forwarding
	Technique 83: Clearing the server cache

	9.3 DNS zones
	Technique 84: Creating a DNS zone
	Technique 85: Viewing zone configuration
	Technique 86: Viewing zone contents
	Technique 87: Deleting a DNS zone

	9.4 DNS records
	Technique 88: Creating DNS A records
	Technique 89: Creating DNS AAAA records
	Technique 90: Creating DNS MX records
	Technique 91: Creating DNS CNAME records
	Technique 92: Creating DNS PTR records
	Technique 93: Querying DNS records
	Technique 94: Deleting DNS records

	9.5 Client settings
	Technique 95: IP address configuration
	Technique 96: Setting an IP address
	Technique 97: Testing IP connectivity

	9.6 Summary

	Active Directory structure
	10.1 Automating Active Directory administration
	10.1.1 .NET
	10.1.2 Cmdlets

	10.2 Schema
	Technique 98: Schema version
	Technique 99: Forest and domain level
	Technique 100: Default display name

	10.3 Organizational units
	Technique 101: Creating an OU
	Technique 102: Bulk creation and nesting
	Technique 103: Listing OUs in a domain
	Technique 104: Discovering child objects
	Technique 105: Moving an OU
	Technique 106: Deleting an OU

	10.4 Group Policies
	Technique 107: Creating a GPO
	Technique 108: Linking a GPO
	Technique 109: Listing GPOs
	Technique 110: Listing GPO contents
	Technique 111: GPO backup

	10.5 Protection and recovery
	Technique 112: Protection from accidental deletion
	Technique 113: Object recovery

	10.6 Summary

	Active Directory topology
	11.1 Automating AD topology administration
	11.2 Domain controllers
	Technique 114: Discovering domain controllers
	Technique 115: Discovering global catalog servers
	Technique 116: Promoting to a global catalog server
	Technique 117: Discovering FSMO roles
	Technique 118: Transferring FSMO roles
	Technique 119: Monitor replication
	Technique 120: Triggering replication

	11.3 Sites
	Technique 121: Listing sites
	Technique 122: Creating a site
	Technique 123: Modifying a site
	Technique 124: Deleting a site

	11.4 Subnets
	Technique 125: Listing subnets
	Technique 126: Creating a subnet
	Technique 127: Modifying a subnet
	Technique 128: Deleting a subnet

	11.5 Site links
	Technique 129: Listing site links
	Technique 130: Creating a site link
	Technique 131: Deleting a site link
	Technique 132: Determining replication schedules
	Technique 133: Setting replication schedules

	11.6 Summary

	Exchange Server 2007 and 2010
	12.1 Automating Exchange Server 2007 administration
	12.1.1 Exchange AD cmdlets
	12.1.2 Exchange scripts
	Technique 134: Exchange Server health
	Technique 135: Exchange organization
	Technique 136: Exchange Servers

	12.2 Data stores
	Technique 137: Creating storage groups
	Technique 138: Creating databases
	Technique 139: Mailbox distribution
	Technique 140: Distributing mailboxes
	Technique 141: Moving a database
	Technique 142: Removing a database

	12.3 Policies
	Technique 143: Email address
	Technique 144: Transport rules
	Technique 145: Attachments
	Technique 146: Journal rules

	12.4 Certificates
	Technique 147: Viewing certificates
	Technique 148: Self-signed certificates
	Technique 149: Third-party certificates

	12.5 Resource mailboxes
	Technique 150: Creating a resource mailbox
	Technique 151: Viewing resource mailboxes
	Technique 152: Calendar settings

	12.6 Exchange Server 2010
	Technique 153: Remote capabilities

	12.7 Summary

	IIS 7 and XML
	13.1 Automating IIS 7 administration
	13.1.1 IIS administration tools
	13.1.2 .NET
	13.1.3 WMI
	13.1.4 IIS cmdlets and provider
	Technique 154: PowerShell remoting

	13.2 Websites and application pools
	Technique 155: Viewing websites
	Technique 156: Controlling websites
	Technique 157: Creating an application pool
	Technique 158: Controlling an application pool
	Technique 159: Modifying website configuration
	Technique 160: Removing a website and application pool
	Technique 161: Configuring a new website on multiple machines

	13.3 Web applications and virtual directories
	Technique 162: Creating a web application
	Technique 163: Add a virtual directory
	Technique 164: Removing virtual directories and web applications

	13.4 XML and configuration files
	Technique 165: Persisting objects
	Technique 166: Reading XML
	Technique 167: Backing up the IIS configuration
	Technique 168: Reading web configuration files
	Technique 169: Modifying web configuration files
	Technique 170: Creating HTML

	13.5 Summary

	SQL Server
	14.1 Automating SQL Server administration
	14.1.1 SMO
	14.1.2 SQLPS

	14.2 Server administration
	Technique 171: Checking service health
	Technique 172: Viewing the server version
	Technique 173: Viewing server configuration
	Technique 174: Modifying the server configuration
	Technique 175: Network configuration
	Technique 176: Viewing performance counters

	14.3 Database administration
	Technique 177: Finding databases
	Technique 178: Viewing space used
	Technique 179: Creating a job

	14.4 Configuration database
	Technique 180: Creating a database
	Technique 181: Creating a table
	Technique 182: Modifying a table
	Technique 183: Adding keys
	Technique 184: Populating a table
	Technique 185: Reading data
	Technique 186: Modifying data
	Technique 187: Deleting data
	Technique 188: Backing up a database

	14.5 Summary

	PowerShell innovations
	15.1 PowerShell jobs
	Technique 189: Creating a job
	Technique 190: Viewing jobs
	Technique 191: Viewing data
	Technique 192: Deleting a job

	15.2 Windows 2008 R2
	Technique 193: Modules
	Technique 194: Server Manager
	Technique 195: Troubleshooting
	Technique 196: Best practice
	Technique 197: Active Directory provider
	Technique 198: Creating an AD drive

	15.3 Virtualization
	Technique 199: Discovering Hyper-V functions
	Technique 200: Virtual machine status
	Technique 201: VM uptime
	Technique 202: Checking disk status
	Technique 203: Checking disk usage
	Technique 204: Compacting disks

	15.4 PowerShell in the cloud
	15.5 Summary

	afterword: PowerShell is for you
	appendix A: PowerShell reference
	A.1 About files
	A.2 Add-Type
	A.3 Alias
	A.4 Computer name
	A.5 Functions
	A.6 Format files
	A.7 Loops
	A.7.1 Foreach
	A.7.2 For
	A.7.3 While
	A.7.4 Do

	A.8 Operators
	A.8.1 Arithmetic operators
	A.8.2 Assignment operators
	A.8.3 Bitwise operators
	A.8.4 Comparison operators
	A.8.5 Logical operators
	A.8.6 Range operator
	A.8.7 String operators
	A.8.8 Type operators
	A.8.9 Unary operators
	A.8.10 Special operators

	A.9 Special characters
	A.10 Standard names
	A.10.1 Verb
	A.10.2 Nouns

	A.11 Type shortcuts

	appendix B: Modules and advanced functions
	B.1 Modules
	B.2 Advanced functions
	B.3 Recommendations

	appendix C: PowerShell events
	appendix D: Reference data
	D.1 Active Directory: user account control
	Technique 205: Understanding the user account control values

	D.2 Local user accounts: userflags
	D.3 LDAP Filters
	D.4 Identity in Active Directory cmdlets
	D.5 PowerShell filters in Active Directory cmdlets
	D.6 Special folders

	appendix E: Useful links
	E.1 PowerShell downloads
	.NET 2.0
	.NET 3.5
	PowerShell v1
	PowerShell v2
	Microsoft MSDN
	.NET class library
	PowerShell
	PowerShell blogs
	Other PowerShell downloads
	Code Sources
	Podcasts
	User Groups

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back cover

