
www.allitebooks.com

http://www.allitebooks.org

Practical Android

14 Complete Projects on Advanced
Techniques and Approaches

Mark Wickham

Practical Android: 14 Complete Projects on Advanced Techniques and Approaches

Mark Wickham
Dallas, Texas, USA

ISBN-13 (pbk): 978-1-4842-3332-0 ISBN-13 (electronic): 978-1-4842-3333-7
https://doi.org/10.1007/978-1-4842-3333-7

Library of Congress Control Number: 2017964267

Copyright © 2018 by Mark Wickham

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewers: Jeff Friesen and Chaim Krause
Coordinating Editor: Mark Powers
Copy Editor: Mary Behr

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/rights-
permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484233320. For more detailed
information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3333-7
https://doi.org/10.1007/978-1-4842-3333-7
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/rights-permissions
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484233320
www.apress.com/source-code
http://www.allitebooks.org

To my parents, who helped me discover computers and software when I was young.

v

Contents

About the Author ��� xiii

About the Technical Reviewers ���xv

Acknowledgments ���xvii

Preface ���xix

Introduction ��xxi

 ■Chapter 1: Introduction to JSON �� 1

1.1 Introduction ... 1

1.2 Chapter Projects .. 2

1.3 JSON Overview ... 2

1.4 JSON and Android ... 3

1.5 Designing JSON .. 4

 JSON Sample File ... 5

 Validating JSON .. 6

 Text File Encoding ... 7

1.6 Common JSON Operations .. 7

 Setting a JSON Value in a JSON Object .. 8

 Getting a JSON Value from a JSON Object .. 9

 Creating a JSON File Programmatically .. 9

www.allitebooks.com

http://www.allitebooks.org

vi

 Reading and Parsing a JSON File ... 10

 Printing JSON Strings ... 11

 Removing JSON Arrays ... 11

1.7 JSON Alternatives ... 13

 GSON .. 13

 Jackson .. 14

1.8 References .. 15

 Android JSON ... 15

 Google GSON .. 15

 Third Party .. 15

 ■Chapter 2: Connectivity ��� 17

2.1 Introduction ... 17

2.2 Chapter Projects .. 17

2.3 Connectivity Basics ... 18

2.4 Android HTTP Options.. 19

2.5 Connectivity Status ... 22

 Using the Built in APIs... 22

 WiFi Broadcast Receiver ... 23

2.6 Server Reachability ... 24

 Pinging with ICMP .. 25

 Pinging with HTTP .. 26

 HTTP Status Codes ... 27

Blocked Protocols and URL Redirects... 28

 Generating 204 Responses ... 29

2.7 Connections App ... 29

 Connections App Overview ... 30

 Connections Project .. 31

 Connections App Configuration .. 31

 MainActivity.java ... 32

 Interpreting Reachability Results.. 36

 Contents

vii

2.8 Splash App .. 37

 Splash App Overview .. 38

 Splash Project ... 39

 Splash.xml .. 39

 SplashActivity.java .. 41

2.9 Essential Tools ... 45

2.10 References .. 45

 Android HTTP and Connectivity .. 45

 ApacheHttpClient .. 46

 OkHttp ... 46

 Tools ... 46

 ■Chapter 3: Lazy Loading Images ��� 47

3.1 Introduction ... 47

3.2 Chapter Projects .. 47

3.3 Lazy Loading Libraries .. 48

3.4 Lazy Loading Architecture ... 49

 Memory Cache .. 50

 Disk Cache .. 51

3.5 Choosing a Library .. 52

 Google Volley .. 53

 Square Picasso ... 54

 Facebook Fresco .. 55

3.6 Handling Image Assets .. 56

 Size vs. Quality Tradeoff ... 57

 Image Downsampling ... 58

 Aspect Ratio ... 59

3.7 Lazy Loading App .. 60

 Lazy Loading App Overview .. 61

 Lazy Loading Project .. 62

 XML Layout Files .. 69

 ImageLoader.java .. 71

 Contents

www.allitebooks.com

http://www.allitebooks.org

viii

 MemoryCache.java ... 73

 FileCache.java ... 75

 Adapters ... 76

 Lazy List Adapter .. 76

 Lazy Grid Adapter ... 78

 Lazy Gallery Adapter ... 81

3.8 References .. 83

 Android and Java References ... 83

 Third-Party Lazy Loading Libraries ... 84

 ■Chapter 4: Remote Crash Logs �� 85

4.1 Introduction ... 85

4.2 Chapter Project ... 85

4.3 Remote Crash Log Solutions ... 86

 How Crash Logging Works .. 88

4.4 App Crash Report for Android .. 89

 ACRA Overview ... 89

4.5 ACRA Back-End Server .. 91

4.6 Open Street Map for Android ... 92

4.7 Remote Crash Log App .. 95

 Remote Crash Log App Overview ... 95

 Remote Crash Log Project .. 97

 PHP Self-Hosted Script ... 101

4.8 References .. 104

 Android ... 104

 Google Firebase .. 104

 OSMdroid .. 104

 Third Party .. 104

 ■Chapter 5: Uploading and Emailing ��� 105

5.1 Introduction ... 105

5.2 Chapter Projects .. 105

5.3 Overview ... 106

 Contents

ix

5.4 Server Spinner: Server Setup .. 107

5.5 Server Spinner App ... 110

 Server Spinner App Overview ... 110

 Server Spinner Project.. 111

 Deleting an Item ... 117

 Utils.java ... 118

 Uploading an Item ... 118

5.6 Mobile Email ... 120

5.7 Mobile Email Approaches .. 120

5.8 Email Protocols ... 121

5.9 Android Email Clients .. 122

5.10 Emailing App: AWS Server Setup... 122

5.11 Emailing App ... 124

 Android Intents ... 124

 JavaMail API ... 125

 External AWS Interface ... 125

 Emailing App Overview ... 125

 Emailing Project .. 126

 MainActivity.java ... 127

 GMailSender.java .. 132

 JSSEProvider.java ... 133

5.12 References .. 133

 Uploading Files ... 133

 Email ... 133

 ■Chapter 6: Push Messaging ��� 135

6.1 Introduction ... 135

6.2 Chapter Projects .. 136

6.3 Push Messaging Overview .. 136

 Push Technologies .. 137

 How Push Messaging Works .. 139

 Choosing a Technology ... 140

 Contents

www.allitebooks.com

http://www.allitebooks.org

x

6.4 Push Messaging Services ... 142

 Push Service Advantages ... 142

 Choosing a Push Service .. 143

 Services Setup Steps.. 144

6.5 Firebase Cloud Messaging .. 145

 GCM/FCM Migration .. 145

 FCM Setup .. 146

 FCM Quickstart App .. 148

 FCM App ... 149

 FCM Project .. 150

 Application Server Setup .. 154

 FCM Upstream Messaging .. 159

6.6 Open Source Push Messaging with MQTT .. 161

 MQTT Introduction .. 161

 MQTT App ... 163

 MQTT Project .. 164

 MQTT Message Brokers .. 169

 MQTT Broker Setup for AWS ... 169

 Sending Messages with MQTT Web Clients .. 170

 MQTT Wrap Up .. 171

6.7 References .. 171

 Firebase Cloud Messaging (FCM) ... 171

 MQTT Push Messaging ... 172

 ■Chapter 7: Android Audio �� 173

7.1 Introduction ... 173

7.2 Chapter Projects .. 175

7.3 Audio Overview ... 176

 API and Class Summary ... 176

 Choosing the Right API ... 178

 Contents

xi

7.4 Latency .. 178

 Latency Breakdown .. 180

 Audio Buffer Size App ... 182

 Audio Buffer Size Project .. 183

7.5 Playing Audio ... 186

 Playing Audio App ... 186

 Playing Audio Project .. 188

7.6 Playing Audio with a Background Service... 193

 Music Service App .. 193

 Music Service Project ... 194

7.7 Recording Audio .. 196

 Recording Audio App .. 196

 Recording Audio Project ... 197

7.8 Advanced Audio ... 203

 Built-in Audio Effects .. 203

 Encoding ... 205

7.9 Audio Synthesis ... 207

 Pure Data Overview .. 209

 Pure Data Player App .. 211

 Pure Data Player Project ... 212

 Pure Data Key Code .. 213

 Pure Data Circle of Fifths App ... 214

 Csound Overview .. 216

 Csound .csd files .. 216

 Csound Setup ... 217

 Csound App ... 218

 Csound Key Code .. 219

 Csound Summary ... 219

 Contents

www.allitebooks.com

http://www.allitebooks.org

xii

7.10 References .. 220

 Android References .. 220

 Specifications ... 221

 Third-Party Vendors .. 221

 Pure Data .. 221

 Csound .. 221

Index ��� 223

 Contents

xiii

About the Author

Mark Wickham is a Dallas-based Android developer who has lived and worked mainly in
Beijing since 2000. Mark has led software development teams for Motorola in China, and
also worked with product management and product marketing teams in the Asia-Pacific
region.

Mark has been involved in software and technology for more than 30 years and began to
focus on the Android platform in 2009, creating private cloud and tablet-based solutions for
the enterprise.

Mark majored in Computer Science and Physics at Creighton University, and later obtained
an MBA from the University of Washington and the Hong Kong University of Science and
Technology.

Mark can be contacted via his LinkedIn profile (www.linkedin.com/in/mark-wickham-94b3173/)
or Github page (www.github.com/wickapps).

www.allitebooks.com

www.linkedin.com/in/mark-wickham-94b3173/
www.github.com/wickapps
http://www.allitebooks.org

xv

About the Technical
Reviewers

Jeff Friesen is a freelance teacher and software developer with an emphasis on Java.
In addition to authoring Java I/O, NIO, and NIO.2 (Apress) and Java Threads and the
Concurrency Utilities (Apress), Jeff has written numerous articles on Java and other
technologies (such as Android) for JavaWorld (JavaWorld.com), informIT (InformIT.com), Java.
net, SitePoint (SitePoint.com), and other websites. Jeff can be contacted via his website at
JavaJeff.ca. or via his LinkedIn profile (www.linkedin.com/in/javajeff).

Chaim Krause presently lives in Leavenworth, KS, where the U.S. Army employs him
as a Simulation Specialist. In his spare time, he likes to play PC games; he occasionally
develops his own games as well. He has recently taken up the sport of golf to spend more
time with his significant other, Ivana. Although he holds a BA in Political Science from the
University of Chicago, Chaim is an autodidact when it comes to computers, programming,
and electronics. He wrote his first computer game in BASIC on a Tandy Model I Level I and
stored the program on a cassette tape. Amateur radio introduced him to electronics while
the Arduino and the Raspberry Pi provided a medium to combine computing, programming,
and electronics into one hobby.

http://www.linkedin.com/in/javajeff

xvii

Acknowledgments

Everybody has a story about their first computer. Mine was built by my father. It had 8K RAM
and was powered by the mighty Intel 8080 CPU. It allowed me to learn programming using
8080 machine language, and later, MITS Altair BASIC. I have been writing software ever
since.

I would like to thank Steve Anglin, Mark Powers, Matthew Moodie, Jeff Friesen, Chaim
Krause, Mary Behr and the rest of the team at Apress without whom this book could not
have been possible.

Thanks to Mary Sue Wickham for her help in editing the original manuscript, and to Tim
Dimacchia for his help at Android conferences and for collaboration on software projects
dating all the way back to college. A special shout out to Lily’s American Diner in Beijing for
the images shown in the Lazy Loading app, and to Nogabe, the band, for the live recording
used in the Music Service app.

www.allitebooks.com

http://www.allitebooks.org

xix

Preface

I have taught a series of popular classes at Android development conferences since 2013.
This book covers content from my most popular classes. Each chapter covers an important
concept and provides the reader with a deep dive into the implementation.

The book uses a project-based approach. Unlike most books on the market today, Practical
Android provides complete working code for all of the projects. Developers will appreciate
this approach because it enables them to focus on their apps, and not waste time trying to
integrate code snippets or troubleshoot environment setup issues.

Practical Android is an ideal resource for developers who have some development
experience but may not be Android or mobile development experts. Each chapter includes
at least one complete project to show the reader how to implement the concepts. In
Android, there are always multiple ways to accomplish a given task. Practical Android will
help you choose the best approach for your app and let you implement solutions quickly by
leveraging complete projects.

Audience
This book is intended for software developers who want to create apps for the Android
platform.

Because you are developing for Android, in addition to mastering the Java programming
language, you must also master the intricacies of the platform itself.

It’s not easy to create commercial apps for the Android platform. You can easily become
frustrated for a variety reasons:

	Project setup is not trivial in Android. Whether you are using the latest
version of Android Studio or an alternative development environment
such as Eclipse, it can sometimes be frustrating making sure all of the
libraries, manifest, and project assets are set up correctly.

xx

	When you identify the requirement for a specific functionality in your
Android app, it is often difficult to find working code or to integrate the
code snippets that are readily available from various online resources.

	The Android platform and the Java programming language offer a lot
of functionality. There are often multiple approaches to implementing a
particular desired feature. The book helps you decide the best approach
for your apps.

	You often need to make architecture decisions when writing Android
apps, especially when you require a server connection. It takes
experience to implement solutions to meet the right architecture, and
you can be faced with a code rewrite or refactoring effort after the app is
launched.

	There are a lot of code fragments available online. However, it is often
not easy to integrate these assets into your own project. They may be
incomplete, or they may contain errors and thus can’t be compiled.
The book contains 14 compete Android projects. It is easy to get the
projects up and running.

 Preface

www.allitebooks.com

http://www.allitebooks.org

xxi

Introduction

Chapter Layout
Each chapter in the book follows a consistent structure which includes

	Introduction

	Project(s) Summary

	Overview

	Detailed Section(s)

	References

Each chapter includes several detailed sections. The detailed sections explain the concepts
to be implemented. In many cases, the detailed sections explain the different approaches
available in Android and which one might be best depending on your app requirements.

Each Android project includes

	App introduction

	App screenshot

	Project setup and app overview

	Technical description of how the app works, including the key code. Not
all of the code is reproduced in this book. Typically only the key code
is presented. Readers are encouraged to download and view the full
project source code to see the complete working implementations.

A reference section is included at the end of each chapter. It is broken into subsections
based on the chapter contents. The reference section includes URL links to related technical
information.

xxii

Project Summary
This book intends to help beginning and experienced Android developers overcome typical
difficulties by providing complete Android projects for each of the chosen topic areas. These
projects can be imported into your development environment and tailored to meet your
specific requirements.

Table 1 contains a summary list of all 14 of the projects covered in the book, including a
snapshot of the main layout screen.

Table 1. Project Summary and Setup Notes

Chapter 2: Connectivity

Connections App:

A configurable app that shows current device connection status and
can repeatedly test reachability of servers. The app is configurable
by a JSON file. Reachability can be tested using two different
methods, as specified in the configuration file.

Splash App:

A splash screen implementation that downloads a large file when the
app first starts, while displaying the download progress information.
When the download is finished, a second activity is launched.

Chapter 3: Lazy Loading

Lazy Loading App:

This project connects to the server and downloads a JSON
configuration file which provides details for the images that will be
lazy loaded into the app. The app supports three different views for
the images: ListView, GridView, and Gallery.

(continued)

 Introduction

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3333-7_2
http://dx.doi.org/10.1007/978-1-4842-3333-7_3
http://www.allitebooks.org

xxiii

Chapter 4: Remote Crash Logs

Remote Crash Log App:

This project displays a map and performs a location lookup to show
the current device location. The main view contains a button that will
force a crash of the app. When the app crashes, a crash log will be
sent up to the server using the ACRA library.

Chapter 5: Uploading, Downloading, and Emailing

Server Spinner App:

The project implements a server-based version of the Android
Spinner widget. The server spinner contents are downloaded from
the server. The contents of the spinner can be dynamically updated.
The app demonstrates how to upload files. Pictures can be taken
with the camera and then uploaded to the server.

Emailing App:

When including email functionality within an app, there are
three different approaches that can be used. The Emailing app
demonstrates how each of them can be implemented.

Table 1. (continued)

 Introduction

(continued)

http://dx.doi.org/10.1007/978-1-4842-3333-7_4
http://dx.doi.org/10.1007/978-1-4842-3333-7_5

xxiv

Chapter 6: Push Messaging

FCM Push Messaging App:

A complete implementation of push messaging using the popular
Firebase Cloud Messaging (FCM) library. Google recently integrated
its popular Google Cloud Messaging (GCM) library into the Firebase
suite.

MQTT Push Messaging App:

MQTT (Messaging Queuing Telemetry Transport) is an open
source protocol which has been ported to Android. This project
will implement a complete push messaging solution using MQTT.
The protocol requires a broker to be set up on a server to handle
the routing and delivery of messages to all devices. MQTT uses a
publish/subscribe model, which is very scalable.

Chapter 7: Android Audio

Audio Buffer Size App:

An adaptation of Google’s Audio Buffer Size app, which shows
optimal audio settings for your device. The app has been extended
to provide a simple test to estimate the output latency of your
device. The app also has been extended to display the built-in audio
effects supported by the device.

Playing Audio App:

A configurable app that can play audio assets using the three
main Android audio playing APIs. The app is built using a JSON
configuration file. All of the samples that can be played by the app
are displayed in a GridLayout.

Table 1. (continued)

 Introduction

(continued)

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3333-7_6
http://dx.doi.org/10.1007/978-1-4842-3333-7_7
http://www.allitebooks.org

xxv

Music Service App:

Demonstration of how to play music or sounds using a background
service. The background service loads an .mp3 song into a
MediaPlayer object. The playing of the song can then be controlled
from the foreground activity.

Recording Audio App:

Demonstration of how to record audio and store the recording as an
uncompressed .wav file.

Ringdroid + App:

An open source Google app that demonstrates how to handle all
aspects of audio including recording and encoding into compressed
formats such as AAC (.mp4). The app has been extended so the user
can also save files as uncompressed .wav files.

Puredata Player App:

A player app that can load Puredata source files (.pd) and play them
using the Puredata audio synthesis engine.

Table 1. (continued)

 Introduction

xxvi

Table 2 includes a summary of the key setup notes for each of the apps.

Table 2. App Setup Notes

Chapter 2: Connectivity

Connections App Res ➤ Raw ➤ connectfile.txt

Specify the JSON configuration file in the project resources.

Splash App SplashActivity.java

String getURL = "http://www.yourserver.com/english-proper-
names.txt";
String ip204 = "http://www.yourserver.com/return204.php";

Chapter 3: Lazy Loading

Lazy Loading App MainActivity.java

String serverFileBase = "https://www.yourserver.com/";
String serverPicBase = "https://www.yourserver.com/fetch800/";
String fileName = "lazyloadconfig.txt";

Chapter 4: Remote Crash Logs

Remote Crash Log App MyApplication.java
formUri = "http://www.yourserver.com/crashed.php",

Chapter 5: Uploading, Downloading, and Emailing

Server Spinner App MainActivity.java

String serverPath = "http://www.yourserver.com/index.html";
String serverPicBase = "http://www.yourserver.com/";
String listFilesScript = "http://www.yourserver.com/listfiles-a.php";
String uploadFilesScript = "http://www.yourserver.com/uploadfile.php";
String deleteFileScript = "http://www.yourserver.com/deletefile.php";

Emailing App MainActivity.java

String sendEmailScript = "http://www.yourserver.com/sendmail.php";
String email Account = "yourAccount@gmail.com";
String emailPassword = "yourPassword";

Chapter 6: Push Messaging

FCM Push Messaging App Global.java

String SERVER_URL = " http://www.yourserver.com/register.php";
String SENDER_ID = "your Google Sender Id"; FCM.PHP

define("GOOGLE_API_KEY", "yourAPI");

MQTT Push Messaging App Global.java

String MQTT_BROKER = "your broker URL or IP address";

(continued)

 Introduction

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3333-7_2
http://www.yourserver.com/english-proper-names.txt
http://www.yourserver.com/english-proper-names.txt
http://www.yourserver.com/return204.php
http://dx.doi.org/10.1007/978-1-4842-3333-7_3
http://www.yourserver.com/
http://www.yourserver.com/
http://www.yourserver.com/fetch800/
http://dx.doi.org/10.1007/978-1-4842-3333-7_4
http://www.yourserver.com/crashed.php
http://dx.doi.org/10.1007/978-1-4842-3333-7_5
http://www.yourserver.com/index.html
http://www.yourserver.com/
http://www.yourserver.com/listfiles-a.php
http://www.yourserver.com/uploadfile.php
http://www.yourserver.com/deletefile.php
http://www.yourserver.com/sendmail.php
http://dx.doi.org/10.1007/978-1-4842-3333-7_6
http://www.yourserver.com/register.php
http://www.allitebooks.org

xxvii

Table 2. (continued)

Chapter 7: Android Audio

Audio Buffer Size + App The package name of this project is com.levien.audiobuffersize and it
cannot be changed due to dependencies on a Native library call.

Playing Audio App Project resources
Res ➤ Raw ➤ soundfile.txt
Res ➤ Raw ➤ all of the .mp3/wav/ogg/m4a sound files

Music Service App Project resources

Res ➤ Raw ➤ nogabe.mp3

Recording Audio App RecordWavActivity.java

String AUDIO_RECORDER_FOLDER = "media/audio/music";
String AUDIO_RECORDER_TEMP_FILE = "record_temp.raw";

Ringdroid + App None

Puredata Player App PdPlayer.java

filesDir=new File (android.os.Environment.getExternalStorage
Directory(),"PDPatches");

This project depends on the following 2 library projects:
PdCore
AndroidMidi

Conventions
Each chapter in the book uses a mix of figures, tables, and code blocks to explain the
chapter concept. Figures and tables are identified by a chapter-derived sequence number
and are referred to in the accompanying chapter text.

The technical italic font is used to represent technical terms. This includes Android-specific
terms, URLs, or general technical terms.

Reference URLs are included at the end of each chapter. Occasionally, a URL will be
included within the chapter details.

Code examples are presented within boxes as shown by the following example. The code
blocks do not have identifiers. They represent key code that will be discussed in the text that
immediately precedes or follows them.

switch (type) {
 case 0:
 // Release any resources from previous MediaPlayer
 if (mp != null) mp.release();
 mp = new MediaPlayer();
 Uri u = Uri.parse("android.resource://com.wickham.android.playaudio/" + resid);
 mp.setDataSource(MainActivity.this, u);
 mp.prepare();
 mp.start();
 break;

 Introduction

http://dx.doi.org/10.1007/978-1-4842-3333-7_7

xxviii

In order to help you locate the code within the associated project resources, the filename
associated with the code block will normally be included as a section header in the text
preceding the code block. The code blocks are not complete. They are often simplified to
help explain a key concept. Refer to the actual project source code to see the full Java code
implementation.

Development Environment
Increasingly, Android developers are migrating to Google’s Android Studio development
environment. This book will not cover the specifics of Android Studio. Rather, the focus
remains on the code. In the chapters that require an external library to be included, the
instructions are included to help you set up the library dependencies in Android Studio and
with external library files.

The complete Android projects are included as a companion asset for the book and are
available on GitHub. These projects can easily be imported into Android Studio.

Software License
Android is a trademark of Google Inc.

Most of the software contained in this book is licensed under the Apache 2.0 license.

Unlike many Android books, you are free to use and modify the code in its entirety according
to the terms of the license.

The projects written by the author include the following Copyright notice:

/*
 * Copyright (C) 2016 Mark Wickham
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

For full details of the license, please refer to the link referenced above.

Some of the projects in the book are derived from existing open source projects, which
already include their own copyright.

The Audio Buffer Size, Ringdroid, and FCM Quickstart projects are open source and

 Introduction

www.allitebooks.com

http://www.allitebooks.org

xxix

Google holds the copyright. They have been modified by the author to include additional
functionality. In such cases, the original copyright is included and a reference to
modifications made by the author is noted in the source code.

The book includes discussion of some open source apps whose code is not modified, such
as the Circle of Fifths, Csound, and K-9 Mail apps.

 Introduction

1© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7_1

Chapter 1
Introduction to JSON

1.1 Introduction
It may seem unusual to start an Android book off with a chapter on JSON, but writing great
apps is all about having great software architecture. Throughout the book, I will be using
projects to help teach key concepts, and one function that almost all of the projects have in
common is connectivity. Our apps need to connect to the Internet, and we need a simple yet
sophisticated way to interchange data with the server.

This is where JSON comes in. JSON, or JavaScript Object Notation, is a lightweight
data-interchange format. JSON has several important properties that have helped to make it
hugely popular across the Internet and especially within mobile app development.

	JSON is easy for us to read and write and is easy for machines to parse
and generate.

	There is a JSON library available for almost every platform and
language.

	JSON is based on a subset of the JavaScript programming language,
hence its name.

	JSON is a text format and is language independent.

	JSON uses conventions that are familiar to programmers of the
C- family of languages.

Many of the projects in this book will use JSON for configuration files. Using JSON as
the interchange format with your application server creates a flexible and expandable
architecture for your apps.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3333-7_1
http://www.allitebooks.org

2 CHAPTER 1: Introduction to JSON

1.2 Chapter Projects
This chapter contains no projects.

However, several of the chapters in this book use the JSON code and principles described
in this chapter to accomplish their server connectivity for configuration.

Table 1-1 shows the JSON usage summary for the projects in this book.

Note: The table does not include the projects that do not use JSON in their implementation.

1.3 JSON Overview
As a data-interchange format, JSON provides a method for us to communicate with the
server. JSON is built on two data structures that are common in nearly all programming
languages: a collection of name/value pairs, and an ordered list of values.

In JSON, there are two primitives that are used to represent these data structures. Using
only these primitives, you will be able to construct complex structures that can represent
almost any type of data relationship.

	JSONObject: An unordered set or collection of name/value pairs

	JSONArray: An ordered list of values

Both JSON objects and JSON arrays contain values. A value can be a string in double
quotes, or a number, or true or false or null, or another JSON object or JSON array. These
structures can be nested, which is why JSON is so powerful for data structures.

Figure 1-1 shows a graphical representation of the JSON syntax. The most important thing
to notice is the usage of the [(left bracket) and] (right bracket), and { (left brace) and }
(right brace) identifiers.

Table 1-1. JSON Project Usage Summary

Chapter Project Use

2 Connections The app loads a configuration file called connectionfile.txt
from the server.

3 Lazy Loading The app loads a configuration file called lazyloadconfig.txt
from the server.

7 Playing Audio The app loads a configuration file called soundfile.txt
from the server.

3CHAPTER 1: Introduction to JSON

A summary of the formatting:

	Objects begin with { (left brace) and end with } (right brace).

	Arrays begin with [(left bracket) and end with] (right bracket).

	Values can be of multiple types and are separated by , (comma).

The power and flexibility of JSON is established by the fact that values can be comprised
not only of strings, numbers, and Booleans, but also can contain arrays and objects
themselves.

1.4 JSON and Android
JSON has been included in Android since the earliest release of the SDK. Table 1-2 shows a
list of the Android JSON classes including the exception handler.

Figure 1-1. JSON building blocks

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1: Introduction to JSON

You shall see, in several of the projects in this book, how to use JSON to handle the app’s
configuration. This makes it easy to change the app without the need to recompile the code.

The JSONArray and JSONObject objects are all you need to manage JSON encoding and
decoding. The following code sample shows how these objects are defined and used in
Android:

// Define a new JSON Object
// Remember that JSON Objects start with { (left brace) and end with } (right brace)

JSONObject jsonObject = new JSONObject(myJsonDataString);

// Define a new JSON Array
// Remember that JSON Arrays start with [(left bracket) and end with] (right bracket)

JSONArray jsonArray = new JSONArray(myJsonDataString);

The trick to using JSON effectively lies in defining a JSON data structure to represent your data.

1.5 Designing JSON
The recursive nature of the JSON syntax makes it suitable to represent almost any
type of data.

Let’s take an example of a customer ordering application. When a customer orders items
from a menu, a ticket is generated to represent key aspects of the transaction. Think about
the receipt you get from a restaurant or coffee shop. It probably contains a number of
important data related to the transaction, including

	ID of the transaction

	Date/time of the transaction

	Name of the wait staff handling the transaction

	Number of guests on the ticket (important because restaurants
frequently calculate the amount spent per customer)

	Sale type identifier, such as take-out, in-restaurant, or internet-order

	Delivery information if the sale type is a take-out order

Table 1-2. Android JSON Package Summary (org.json)

Classes Description

JSONArray A dense indexed sequence of values

JSONObject A modifiable set of name/value mappings

JSONStringer Implements JSONObject.toString() and JSONArray.toString()

JSONTokener Parses a JSON-encoded string into the corresponding object

JSONException Thrown to indicate a problem with the JSON API

5CHAPTER 1: Introduction to JSON

	Order total, which is a sum of the individual totals of each item on the
ticket

	Details of all the individual items for the order

Let’s represent this data in JSON. JSON is ideal because once you have all the details
encoded, it is easy to pass the details off to other consumers of the data. For example, you
may have another internal activity that is responsible for printing out tickets, or you may wish
to upload or download tickets to and from cloud storage over the network.

 JSON Sample File
The code block below shows how you might wish to represent the ticket in JSON. Note that
whitespace does not have meaning in JSON, but I have included indenting in this JSON
example to show the nesting levels within the JSON structure.

At its simplest form, the JSON required to represent this order ticket is a single array of
11 objects. Note that the main array starts and ends with square brackets, and each
of the 11 objects within the main array start and end with curly braces. Also, note that the
first 10 objects are simple name/value pairs.

[{ "orderid": "151001-101300-9" },
 { "customername": "" },
 { "tablename": "9" },
 { "waiter": "Mark" },
 { "guests": "2" },
 { "saletype": "0" },
 { "time": "101940" },
 { "ticketnum": "15297" },
 { "ordertotal": 70 },
 { "deliveryaddress": "" },
 { "dishes": [
 [{ "dishId": 45 },
 { "dishName": "Vegetarian Burger" },
 { "categoryName": "Burgers" },
 { "qty": 1 },
 { "price": 35 },
 { "priceDiscount": 100 },
 { "specialInstruction": "" },
 { "options": [] }
],
 [
 { "dishId": 61 },
 { "dishName": "Spaghetti" },
 { "categoryName": "Italian" },
 { "qty": 1 },
 { "price": 35 },
 { "priceDiscount": 100 },
 { "specialInstruction": "" },
 { "options": [
 [{ "optionId": 0 },
 { "optionPrice": 0 },

www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1: Introduction to JSON

 { "optionName": "pesto" }
]
] }
]
] }
]

The last object, named “dishes”, is different. Its value is an array of dishes because each
ticket could contain multiple dishes. In this example, two dishes are included in the array.

Each dish itself has several name/value pairs, including the dish name, the dish category, the
dish price, quantity, special instructions, etc.

Note that there is a third level of nesting because each dish can have options. The first dish
has no options, but the second dish has one option, which defines “pesto” as the type of
dish and indicates that this option has no extra cost. Of course, a dish could have more than
one option, so this is a very flexible structure.

 Validating JSON
JSON structures can become complicated, and it is important to validate them when you
are designing them for use within your apps. There are several web-based JSON validators
available.

Figure 1-2 shows the JSON validator available at http://jsonlint.com. The site does a nice
job of telling you if the JSON is valid. When the validator detects problems, it can highlight
the problems so you can correct them.

Figure 1-2. Web-based JSON validation using http://jsonlint.com

http://jsonlint.com/
http://jsonlint.com/

7CHAPTER 1: Introduction to JSON

When designing JSON structures for your Android apps, it is important to validate them
before writing the code that will parse them. There is nothing more frustrating than trying to
debug JSON code that is trying to operate on invalid JSON structures.

 Text File Encoding
JSON files are text files. They can be stored remotely on a server or internally within your
apps. They often use the extensions of .txt or .json.

JSON text files can use any type of encoding. I recommend always using UTF-8 encoding.
The advantage of UTF-8 is that it is a multi-byte encoding and thus can handle special
characters such as Chinese, Kanji, Latin, or many others. Using UTF-8, you can easily
embed these non-ASCII characters inside your JSON strings. Almost all text editors,
including Windows Notepad, will allow you to specify the encoding when you save a file.

Android apps also allow you to set the default character encoding for text files. It is
important to set this to UTF-8 so it will match your UTF-8 encoded JSON text files.

Depending on your IDE, the character encoding can be set in the project Properties under
the Resource setting. There are typically two choices for text file encoding:

	Inherited from container (Cp1252)

	Other

If you select the drop-down box associated with “Other,” you will be able to choose UTF-8
character encoding from the list.

1.6 Common JSON Operations
Now that you know you have a valid JSON structure, let’s take a look at how to implement a
number of common JSON operations, including

	Setting a JSON value in a JSON object

	Getting a JSON value from a JSON object

	Creating a JSON file programmatically

	Reading in a JSON file and parsing it into Java ArrayLists

	Printing out JSON strings

	Removing a JSON array from within a JSON structure

You will see these operations used in several of the projects later in this book.

JSON is a low-level library. You will see at the end of this chapter that GSON (Google JSON)
is an alternative external library used for data interchange. GSON allows us to work with
Java objects rather than JSON objects.

www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1: Introduction to JSON

Since you are working directly with JSON without external libraries, let’s write some simple
helper functions that will allow you to access the data inside your JSON objects. You will see
these helper functions used in several projects in the book that incorporate JSON. The first
two operations, for setting and getting Object values, will use a helper function.

 Setting a JSON Value in a JSON Object
Recall that JSON objects begin and end with curly braces: { and }. The JSON order ticket
contains 11 JSON objects. You are going to define a helper function called jsonSetter to help
you set a value for any of the JSON objects in the JSON order ticket.

 jsonSetter Helper Function
The first helper function is called jsonSetter. It is passed a JSONArray, a key String, and a
replace Object. This function iterates over the JSON string and allows you to set the value of
a specific JSONObject.

private void jsonSetter(JSONArray array, String key, Object replace) {
 for (int i=0; i<array.length(); i++) {
 try {
 JSONObject obj = array.getJSONObject(i);
 if (obj.has(key)) {
 obj.putOpt(key,replace);
 }
 } catch (JSONException e) {
 // log("jsonSetter exception");
 }
 }
}

For example, in the JSON order ticket, you may want to set the value of “customername” to
“Hungry Person”.

This can be accomplished with the following single line of code using the helper function
and passing it the object name and the new desired value:

// Assume JSONTicket is a JSONArray assigned to the sample JSON order ticket shown earlier
// Call the helper function to set the value of the "customername" Object

jsonSetter(JSONTicket,"customername","Hungry Person");

Recall that the JSON order ticket is an array that contains 11 objects. The helper function
traverses over each of the objects until a key match is found. The function then replaces the
value for that key with the newly specified value.

9CHAPTER 1: Introduction to JSON

 Getting a JSON Value from a JSON Object
You can also use a helper function to retrieve values from JSON objects. The jsonGetter
helper function below returns an object that is the value of the corresponding key that was
passed in.

 jsonGetter Helper Function
This function allows you to retrieve the value of a specific JSONObject. The jsonGetter
helper function is passed a JSONArray and a key String.

private Object jsonGetter(JSONArray json, String key) {
 Object value = null;
 for (int i=0; i<json.length(); i++) {
 try {
 JSONObject obj = json.getJSONObject(i);
 if (obj.has(key)) {
 value = obj.get(key);
 }
 } catch (JSONException e) {
 // log("jsonGetter Exception=" +e);
 }
 }
 return value;
}

For example, in the JSON order ticket, you may want to get the value of “waiter”. This can
be accomplished with the following single line of code using the helper function:

// Assume JSONTicket is a JSONArray assigned to the sample JSON order ticket shown earlier
// Call the helper function to get the value of the "waiter" Object

String waiter = jsonGetter(JSONTicket,"waiter").toString();

Recall that the JSON order ticket is an array that contains 11 objects. The helper function
traverses over each of the objects until a key match is found. The function then retrieves the
value of the specified key and returns it as a Java object, which is then converted to a String
value.

 Creating a JSON File Programmatically
It is common when designing or creating JSON files to do so offline and then validate the
JSON using tools. However, you can also programmatically create a JSON file using the
JSONArray and JSONObject methods.

Recall that the order ticket consisted of 11 objects. The last object held the dishes of the
ticket, which itself was a JSON array. The following code shows how to set up a blank JSON
structure to represent the order ticket. It is a good practice to identify JSON variables as
arrays or objects within the name, such as ticketAry or dishesAry or tmpObj. This makes it
easier to work with the structures in your code.

www.allitebooks.com

http://www.allitebooks.org

10 CHAPTER 1: Introduction to JSON

// Create a blank JSON Order Ticket
try {

 JSONArray ticketAry = new JSONArray();
 JSONArray dishesAry = new JSONArray();
 JSONObject tmpObj = new JSONObject();

 ticketAry.put(tmpObj.put("orderid",""));
 ticketAry.put(tmpObj.put("customername",""));
 ticketAry.put(tmpObj.put("tablename",""));
 ticketAry.put(tmpObj.put("waiter",""));
 ticketAry.put(tmpObj.put("guests",""));
 ticketAry.put(tmpObj.put("saletype",""));
 ticketary.put(tmpObj.put("time",""));
 ticketAry.put(tmpObj.put("ticketnum",""));
 ticketAry.put(tmpObj.put("ordertotal",0));
 ticketAry.put(tmpObj.put("deliveryaddress",""));
 ticketAry.put(tmpObj.put("dishes",dishesAry));

} catch (JSONException e) {
 // log("JSONException Intial e=" + e);
}

Once you have the JSON structure set up using the put method, you can use the jsonSetter
helper function to update any of the values in the structure or the jsonGetter helper function
to retrieve object values from the structure.

 Reading and Parsing a JSON File
Several of the projects in this book read a local JSON configuration file. The file could just
as easily be downloaded over the network using HTTP. Reading and parsing JSON files is a
three-step process.

 1. Read in the JSON UTF-8 encoded text file as a string.

 2. Assign the string to a JSONArray.

 3. Iterate over the JSONArray and extract values into ArrayLists or other
local variables.

The following code shows how this is accomplished. In this example, the local file is named
Resources/Raw/jsonfile.txt and contains a simple array of values. There are no JSON objects
(name/value pairs).

Note that the required JSON and file exception handling are not included in the following code.

// This code will parse a JSON Array of values, such as the following:
// jsonfile.txt = ["value1","value2","value3","value4","value5"]

11CHAPTER 1: Introduction to JSON

// Define the ArrayList that we will populate from the JSON Array
private ArrayList<String> myArrayList = new ArrayList<String>();
myArrayList.clear();

// Step 1.
// Read in the JSON file from local storage and save it as a String
Resources res = getResources();
InputStream in_s = res.openRawResource(R.raw.jsonfile);
byte[] b = new byte[in_s.available()];
in_s.read(b);
String fileTxt = (new String(b));

// Step 2.
// Assign the text file String to a JSONArray
JSONArray fileJsonAry = new JSONArray(fileTxt);

// Step 3.
// Build the ArrayList by iterating over the JSON Array
for (int i=0; i<fileJsonAry.length(); i++){
 String value = fileJsonAry.get(i).toString();
 myArrayList.add(value);
}

 Printing JSON Strings
Printing out JSON strings is accomplished using the toString method. The toString
method can be invoked on JSON objects or JSON arrays. It encodes the content into a
human-readable JSON string, which can be useful for debugging or passing up to a server
using HTTP.

In the example of the JSON order ticket, the whole structure can be printed out or saved as
a string with the following code:

String jsonText = ticketAry.toString();

The toString() method can also accept an integer parameter called indentSpaces, which
represents the number of spaces to indent for each level of nesting. This makes the string
larger in size, but much more readable if you have many levels of nesting.

The following example sets a spacing of four spaces for each level of nesting:

String jsonText = ticketAry.toString(4);

 Removing JSON Arrays
JSON structures can become complex. Sometimes it is necessary to remove a JSON array
from a JSON structure that may contain multiple arrays.

For example, recall that the order ticket example contained a JSON object named “dishes”.
The value of this object is an array of arrays representing all of the dishes on the order ticket.
In your example, there were two dishes.

www.allitebooks.com

http://www.allitebooks.org

12 CHAPTER 1: Introduction to JSON

What if you want to remove one of the dishes? In the next example, you will delete a single
dish from the “dishes” object.

Deleting an array is pretty straightforward in newer versions of the Android SDK because
you can make use of the JSONArray remove() method. However, the remove() method is not
available on devices prior to Android SDK 4.4. You do not wish to exclude users of those
devices from using your app, so you need to write a helper function to handle the operation
for older devices.

The following helper function, removeJSONArray, will delete a JSON array. It takes two
parameters: the higher level input JSON array, and an integer position identifying the
sub-array to delete. It returns a new JSON array excluding the specified item.

public static JSONArray removeJSONArray(JSONArray inJSONArray, int pos) {
 JSONArray newJsonArray = new JSONArray();
 try {
 for (int i=0; i<inJSONArray.length(); i++) {
 if (i != pos)
 newJsonArray.put(inJSONArray.get(i));
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return newJsonArray;
}

You can perform a check for the device SDK version to determine if you can use the built-in
JSON function or if you need to invoke the helper function.

In either case, before you can remove the array, you need to access the JSON dishes array
inside the structure. Follow these steps to access and delete the desired dish:

 1. Use the jsonGetter helper function to grab the “dishes” object.

 2. Define JSONdishesAry, which is the JSON array that is the value of
the “dishes” object.

 3. JSONdishesAry contains all the dishes. You pass JSONdishesAry
along with the position ID of the dish to delete the remove() function.

These steps are accomplished by the following code:

try {
 // The next two lines access the dishes array assigned to the value of the "dishes" object
 JSONObject JSONdishObj = JSONOrderAry.getJSONObject(jsonGetter(JSONOrderAry,"dishes"));
 JSONArray JSONdishesAry = JSONdishObj.getJSONArray("dishes");

 int position = 1; // ID of the dish we want to remove

 // Check for SDK version to see if we can use the JSON .remove function directly
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 JSONdishesAry.remove(position);

13CHAPTER 1: Introduction to JSON

 } else {
 // We need to do it with a helper function
 JSONdishesAry = removeJSONArray(JSONdishesAry,position);
 }

JSON takes a while to get used to. But once you grasp the concept of arrays and objects
and how they can be nested and arranged, the possibilities are endless!

1.7 JSON Alternatives
Both the JSONObject and JSONArray classes follow the DOM (Directory Object Model)
method of parsing. Thus, they require you to load an entire JSON data/response into a string
before you can parse it. This is the main weakness of JSON and it becomes inefficient when
there are large JSON structures to be parsed.

The GSON and Jackson libraries can help to overcome this weakness if you have large
JSON files and performance is a concern for your app.

 GSON
GSON is a lightweight library that was developed by Google. It can be used to convert Java
objects into their JSON representation. It can also be used to convert a JSON string to an
equivalent Java object.

In other words, GSON is a JSON serialization and deserialization library that uses reflection
to populate your Java objects from JSON objects.

According to Google, there were several goals for GSON:

	Provide easy-to-use mechanisms like toString() and constructors to
convert Java to JSON and vice-versa.

	You can customize GSON by adding your own serializers and
deserializers.

	Allow pre-existing unmodifiable objects to be converted to and
from JSON.

	GSON can work with arbitrary Java objects including pre-existing
objects for which you do not have source code.

	Allow custom representations for objects.

	Support arbitrarily complex objects.

	Generate compact and readable JSON output.

In order to use GSON in your Android projects, you need to import the GSON library file
called gson-2.2.4.jar. The file is available at https://github.com/google/gson.

www.allitebooks.com

https://github.com/google/gson
http://www.allitebooks.org

14 CHAPTER 1: Introduction to JSON

The following serialization and deserialization examples give you an idea of how to use the
GSON toJson and fromJson methods:

Gson gson = new Gson();

Serialization Examples:

String str = gson.toJson(myObj);
String str = gson.toJson(1);
String str = gson.toJson("abcd");
String str = gson.toJson(new Long(10));
String str = gson.toJson(values);

Deserialization Examples:

int one = gson.fromJson("1", int.class);
Integer one = gson.fromJson("1", Integer.class);
Long one = gson.fromJson("1", Long.class);
Boolean false = gson.fromJson("false", Boolean.class);

 Jackson
Jackson is a relatively fast streaming JSON parser and generator. It is a multipurpose open
source Java library for processing the JSON data format. According to its website, Jackson
aims to be the best possible combination of fast, correct, lightweight, and ergonomic.

You can download the Jackson library from https://github.com/FasterXML/jackson.

Jackson version 1.6 and above contains the following six .jar files:

	Core.jar contains streaming JSON parser and generator interfaces and
implementations.

	Optional Mapper.jar contains functionality for data binding, including
TreeMapper and ObjectMapper.

	Optional jax-rs.jar contains the class(es) needed to make a JAX-RS
implementation.

	Optional xc.jar contains the classes needed to add XML compatibility
support.

	Optional MrBean.jar contains functionality for materialized beans.

	Optional Smile.jar contains support for JSON-compatible binary
format called Smile.

There is also a newly added jackson-all.jar that contains contents of all the jar files, making it
more convenient to use and upgrade.

https://github.com/FasterXML/jackson

15CHAPTER 1: Introduction to JSON

1.8 References

 Android JSON
	Android JSON Objects: http://developer.android.com/reference/org/

json/JSONObject.html

	Android JSON Arrays: http://developer.android.com/reference/org/
json/JSONArray.html

	Android JSON Package Summary: http://developer.android.com/
reference/org/json/package-summary.html

	JSON RFC Standard RFC 4627: www.ietf.org/rfc/rfc4627.txt

 Google GSON
	GSON User Guide: https://github.com/google/gson/blob/master/

UserGuide.md

	GSON GitHub: https://github.com/google/gson

 Third Party
	JSON Validator: http://jsonlint.com

	Jackson Library Download and Documentation:
https://github.com/FasterXML/jackson

www.allitebooks.com

http://developer.android.com/reference/org/json/JSONObject.html
http://developer.android.com/reference/org/json/JSONObject.html
http://developer.android.com/reference/org/json/JSONArray.html
http://developer.android.com/reference/org/json/JSONArray.html
http://developer.android.com/reference/org/json/package-summary.html
http://developer.android.com/reference/org/json/package-summary.html
http://www.ietf.org/rfc/rfc4627.txt
https://github.com/google/gson/blob/master/UserGuide.md
https://github.com/google/gson/blob/master/UserGuide.md
https://github.com/google/gson
http://jsonlint.com/
https://github.com/FasterXML/jackson
http://www.allitebooks.org

17© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7_2

Chapter 2
Connectivity

2.1 Introduction
The single most important characteristic of a successful app is connectivity. You can
accomplish most of your connectivity requirements with the ubiquitous HTTP protocol,
which makes up the backbone of all Internet communications. In this chapter, I will cover
the HTTP options available within Android.

Sometimes more specialized protocols are required. In Chapter 6, I will cover push
messaging and the unique protocols used for its implementation.

Let’s begin with the three important aspects of connectivity to determine the following:

	Is your device connected?

	Is your network available?

	Is your server reachable?

You will see that the reachability test is not trivial. To help you understand the key aspects of
connectivity, you will implement the Connections app. The Connections app is a useful tool
that will help you view your connectivity status and make decisions about how you can best
determine the reachability of your server.

You will also implement a simple splash screen, a useful and common pattern for apps
typically used to download content in the background when the app first launches.

2.2 Chapter Projects
This chapter will present the apps shown in Table 2-1.

https://doi.org/10.1007/978-1-4842-3333-7_2
http://dx.doi.org/10.1007/978-1-4842-3333-7_6

18 CHAPTER 2: Connectivity

The Connections app is a useful tool that can be used to explore the reachability of server
endpoints. It is configurable via a JSON file, and it implements a timer to repeatedly check
multiple connections using two different techniques.

Many apps use a splash screen display, a graphic, or text introduction while performing
network activity in the background at launch time. The splash app provides an example of
this common pattern.

2.3 Connectivity Basics
It is important to know the connectivity status of your device at all times for two main
reasons:

	You need to let your users know the connectivity status so they can take
action if the connectivity becomes degraded, such as enabling mobile
data if a hotspot is not available, or logging into a WiFi service if this is
required by the WiFi service provider.

	You may need to make logic decisions within your app based on the
connectivity status of the device. For example, you may want to prevent
users from downloading large files when they are connected by mobile
data, due to unfavorable data rates.

Of course, the nature of a mobile device is to be on the move, so the connectivity status
can change at any time, which is a fundamental difference from network programming for a
static connected device such as a server or workstation.

Let’s take a look at the networking model and see how it applies to you as an Android
developer. Figure 2-1 shows a typical network connection layer model.

Table 2-1. Chapter Projects

Title of Project File Name Description

Connections connections.zip A configurable app that shows current device connection
status and can repeatedly test reachability of servers
specified in the configuration file using multiple methods.

Splash splash.zip A splash screen implementation that downloads a large file
when the app first starts, while displaying a graphical image
and progress information.

www.allitebooks.com

http://www.allitebooks.org

19CHAPTER 2: Connectivity

The traditional seven layers of the OSI are shown in the left column, while the right column
shows a collapsed version that is typically used to represent TCP/IP communications.

At the lowest layer, network access, there are two possibilities on mobile devices:

	Mobile data

	WiFi

These two different access methods are important for the users of your apps because data
rates are typically billed differently by the network operators. Luckily, in Android there are
several APIs that make it simple to detect the status of these access methods.

At the higher application layer in Android, you are going to be primarily using the HTTP
protocol over TCP/IP, the transport and Internet layers, for all of your communications.

You will implement the HTTP protocol at the application layer for both the Connections app
and the Splash app in this chapter.

2.4 Android HTTP Options
Historically, there are two HTTP stacks available internally in Android:

	HttpURLConnection

	AndroidHttpClient

The Google Android team has recently discontinued support for the AndroidHttpClient class.
This was primarily due to the large size of the stack and the inability to provide ongoing
support for it. So today it is best to go with the HttpURLConnection unless there is a
particular feature you require that is not supported by this popular built-in stack.

Figure 2-1. Digital communications network layer model

20 CHAPTER 2: Connectivity

In addition to these two choices, there are also external HTTP stacks, which can be included
in your projects. The two most popular and powerful external HTTP stacks are

	ApacheHttpClient

	OKHttp

Table 2-2 shows a summary of the HTTP stacks for Android along with a description and
major points for each stack.

Table 2-2. Android HTTP Stack Comparison

HTTP Stack Internal Notes

AndroidHttpClient Y Supports HttpBasicParams, Get, Post, HttpResponse,
CookieStore, AuthenticationHandler, RedirectHandler. Supports
multithreaded connection pools. Has many methods, but is no
longer supported by Google and is no longer included in Android
as of Android 6.0.

HttpUrlConnection Y Includes extensive session and cookie managers. Simpler API with
much smaller size than AndroidHttpClient. Some major issues
prior to Android 2.2. Supports basicHttpAuthentication, and SSL.
Can use getURL() to check for WiFi redirects (up to 5). Input and
Output streams are unbuffered.

OKHttp N Open source HTTP client from Square. It was forked from
URLConnection in Android 4.0 and maintains same API. Designed
for efficiency and to work well on mobile networks, which are not
always stable. Supports Android 2.3 and above.

HTTP/2 support allows all requests to the same host to share
a socket. Integrated cache, response compression, and
sophisticated connection pooling. Support for multipart forms.

ApacheHttpClient N Very large size. The library is 50K lines of code, but provides lots of
bells and whistles. HttpGet is included in SDK API 10+. Supports
MIME MPE (multipart encoding), which is useful for uploading
binary files and file entities. Supports HttpRequestRetryHandler,
which is useful if you are dealing with unstable networks.

Using the built-in HttpURLConnection stack is generally the best choice. Refer to Figure 2-2
for a summary of the HTTP stacks and a decision process. If you do decide to use one of
the external HTTP stacks, you will need to download the library files or set up the Gradle
dependency to include them in your project. Check the reference links at the end of the
chapter for download links.

www.allitebooks.com

http://www.allitebooks.org

21CHAPTER 2: Connectivity

The external OkHttp or ApacheHttpClient libraries are useful if you want to use multipart
forms for uploading files or if you want to use the advanced RetryHandler method, both of
which are not available in the AndroidHttpClient or HttpURLConnection stacks.

The ApacheHttpClient consists of the following four files that must be included in your
project setup:

	httpclient-4.1.jar

	httpcore-4.1.jar

	httpmime-4.1.jar

	httpmime4j-0.6.jar

Using the ApacheHttpClient also requires some additional setup because the package
names are identical to the internal AndroidHttpClient.

One of the advantages of using the external ApacheHttpClient library is the support it has
for some advanced features of the protocol, such as the ability to handle retries using the
HttpRequestRetryHandler interface.

The following code block shows how you can utilize this functionality:

httpclient.setHttpRequestRetryHandler(new DefaultHttpRequestRetryHandler() {
 @Override
 public boolean retryRequest(IOException exception,int executionCount,HttpContext context) {
 if (executionCount >= 4) {
 ... do your retry exceeded work here
 return false;
 }
 if (exception instanceof NoHttpResponseException) {
 return true;
 }

Figure 2-2. HTTP stack decision criteria

22 CHAPTER 2: Connectivity

 if (exception instanceof SSLHandshakeException) {
 return false;
 }
 if (exception instanceof java.net.SocketTimeoutException) {
 return true;
 }
 return false;
 }
});

OkHttp is an excellent HTTP stack from the team at Square. It is an open source project
and was forked from HttpURLConnection. It is very stable and loaded with features. I highly
recommend it, especially if you are just getting started with HTTP in your apps.

Using the OkHttp external library is very easy. Check the Square GitHub page at
https://square.github.io/okhttp/ for the Android Studio Maven and Gradle setup
instructions. For other development environments, the OkHttp library consists of two files
that must be included in your project:

	OkHttp-3-9-0.jar: The main library

	OkIo.jar: Used for fast I/O and resizable buffers

According to Square, OkHttp was designed to be efficient by default and includes the
following features:

	HTTP/2 support allows all requests to the same host to share a socket.

	Connection pooling reduces request latency (if HTTP/2 isn’t available).

	Transparent GZIP shrinks download sizes.

	Response caching avoids the network completely for repeat requests.

Square has many examples and recipes on its site to show you how to implement OkHttp.

2.5 Connectivity Status

 Using the Built in APIs
In Android, you can make use of the built-in APIs to determine network available and
connectivity type.

The following code shows how to use the ConnectivityManager and the NetworkInfo object
to obtain the connection type, and also to let the user know if the network is available and
connected:

ConnectivityManager cm = (ConnectivityManager) getSystemService(Context.CONNECTIVITY_
SERVICE);
NetworkInfo netInfo = cm.getActiveNetworkInfo();

if (netInfo.getTypeName().equalsIgnoreCase("WIFI")) {
 // Wifi connectivity
}

www.allitebooks.com

https://square.github.io/okhttp/
http://www.allitebooks.org

23CHAPTER 2: Connectivity

if (netInfo.getTypeName().equalsIgnoreCase("MOBILE")) {
 // Mobile data connectivity
}
if (netInfo.isAvailable()) {
 // Network is available
}
if (netInfo.isConnected()) {
 // Network is connected
}

Obtaining the connection type is achieved by using the getActiveNetworkInfo method to
populate a NetworkInfo object.

The connection status is obtained by using the isAvailable and isConnected methods.
To understand what these terms mean, let’s take a look at the definitions.

	Available means connectivity is possible and the radio is turned on.

	Connected means connectivity exists and you are able to pass data.

While helpful, you can see from these definitions that they do not guarantee that you are
able to reach your server or even the wider Internet.

You will need to implement the equivalent of a ping test to know if your network destination
is actually reachable. But before you do that, let’s review another important method for
connectivity status: the WiFi BroadcastReceiver.

 WiFi Broadcast Receiver
Another powerful construct for determining connectivity status in Android is the
BroadcastReceiver class. The onReceive method of the BroadcastReceiver will be
called each time there is a change in the WiFi state. The following code shows a basic
implementation:

BroadcastReceiver wifiStatusReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {);
 SupplicantState supState;
 WifiManager wifiManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);
 WifiInfo wifiInfo = wifiManager.getConnectionInfo();
 supState = wifiInfo.getSupplicantState();
 if (supState.equals(SupplicantState.COMPLETED)) {
 // wifi is connected
 } else if (supState.equals(SupplicantState.SCANNING)) {
 // no wifi is available, but scanning is in progress
 } else if (supState.equals(SupplicantState.DISCONNECTED)) {
 // wifi not connected
 }
 }
};

24 CHAPTER 2: Connectivity

Each time you implement a BroadcastReceiver, you need to register it in the onResume
method of your app and unregister it in the onPause method, as follows:

@Override
protected void onResume() {
 super.onResume();
 IntentFilter filter = new IntentFilter(WifiManager.SUPPLICANT_STATE_CHANGED_ACTION);
 this.registerReceiver(wifiStatusReceiver, filter);
}
@Override
public void onPause() {
 this.unregisterReceiver(wifiStatusReceiver);
 super.onPause();
}

You will be using each of these APIs later in the Connections project to give the user a look
at the device’s connectivity state.

2.6 Server Reachability
You saw in the previous example how using the ConnectivityManager makes it easy for you
to determine if your device has connectivity. However, you need to do additional work to
determine if your server is reachable.

Determining reachability is important because if your server is not reachable, you will likely
be forced to provide your users a degraded user experience, and you should notify them of
this condition while it exists.

Pinging a server is the approach you would typically take in an operating system to see if a
server or IP address is reachable. Android, of course, runs Linux. However, the Linux ping
function is not available unless the device is rooted. This is not something you can expect
from your users, so you need to look for alternative methods to implement the ping test.

There are two approaches you can use to implement a ping in Android. Recall from
Figure 2-1 that there is a transport layer and a protocol layer. The two approaches will use
different protocols on these two layers.

	Ping using ICMP (Internet Control Message Protocol) on layer 3. This will
be implemented in Android using the Java InetAddress class.

	Ping using HTTP on layer 4. This will be implemented in Android
using the Java HttpClient class. In the Splash app, you will use the
recommended HttpURLConnection class to determine reachability.

These two protocols typically are assigned to specific ports on TCP/IP. HTTP resides on
port 80, while ICMP resides typically on port 7.

www.allitebooks.com

http://www.allitebooks.org

25CHAPTER 2: Connectivity

 Pinging with ICMP
ICMP is one of the main protocols of the Internet. It is used to send error messages and can
also be used to relay query messages. The related Linux ping utility is implemented using
the ICMP “Echo request” and “Echo reply” messages.

In the Java world, the java.net package contains the InetAddress class, which provides the
IsReachable method you will use to implement a ping solution. This method can be invoked
by host name or by host address.

If you have a known fixed IP address for your server, you can implement the ping directly
using the IP address. This has the added advantage of bypassing any DNS (Domain Name
System) lookups, which will improve performance by reducing overhead.

The java.net.InetAddress.isReachable call uses the ICMP “Echo request” command and
falls back to TCP “Echo request” both on port 7. The method accepts a timeout and returns
either a Boolean or throws an IOException.

Pinging IP addresses using ICMP with the .isReachable method is accomplished with the
following code. The Android implementation shown here occurs inside an AsyncTask, which
is recommended for long running networking tasks.

You will see this example implemented in the Connections app.

public class PingIP extends AsyncTask<. . .>{
public PingIP(String ip, int i) {
 ip1 = ip;
 in1 = null;
 item = i;
 code = false;
}
protected Integer doInBackground(Void...params) {
 try {
 in1 = InetAddress.getByName(ip1);
 } catch (Exception e) {
 code = false;
 }
 try {
 if (in1.isReachable(timeoutReachable)) {
 code = true;
 } else {
 code = false;
 }
 } catch (Exception e) {
 code = false;
 }
return 1;
}

Note that a timeout parameter is included with the call to the .isReachable method. The
timeout value units are milliseconds. The .isReachable method is invoked on the IP address,
which is set up using the InetAddress.getByName method.

Pinging a server using this approach occurs at the transport layer (layer 3) and is a lower
level approach than using a layer 4 protocol such as HTTP, which I will discuss next.

26 CHAPTER 2: Connectivity

The main issue with relying on a lower level protocol like ICMP is that it may be blocked by
routers between your source and destination points. Unless you have a deterministic path
to your network destination, using ICMP for reachability testing will likely not be a reliable
approach.

 Pinging with HTTP
HTTP is the main protocol of the Internet and you can use it to implement a ping function in
Android.

The following code block shows how to implement a ping using the Android
HttpURLConnection class running inside AsyncTask. The AsyncTask is again used so you
can perform the network operation on a background thread.

public class PingHTTP extends AsyncTask<. . .> {
public PingHTTP(String ip) {
 boolean pinged = false;
 int response = -1;
 ip1 = ip;
}
protected Boolean doInBackground(Void...params) {
 URL url = new URL(urlString);
 URLConnection conn = url.openConnection();

 HttpURLConnection httpConn = (HttpURLConnection) conn;
 httpConn.setAllowUserInteraction(false);
 httpConn.setInstanceFollowRedirects(true);
 httpConn.setRequestMethod("GET");
 httpConn.connect();
 try {
 response = httpConn.getResponseCode();
 if (response == HttpURLConnection.HTTP_OK) {
 pipnged = true;
 }
 } catch (Exception e) {
 // Handle exception
 Pinged = false;
 }
Return pinged;
}

Pinging the server is as simple as performing the following steps:

 1. Setting up the URL to the IP address, which can be a name or be
represented in octet dot notation.

 2. Setting up the Get request.

 3. Executing it on the httpURLConnection object.

Using this approach, you can simply check the return response status code to know what
has happened to the request.

www.allitebooks.com

http://www.allitebooks.org

27CHAPTER 2: Connectivity

This method is efficient “over the wire” because you do not have to download the webpage
body content to see the response status code. HTTP has many response status codes that
can tell you if your server is reachable, and if not, why it was not reachable.

 HTTP Status Codes
Table 2-3 shows the valid HTTP response codes. There are many response codes that
cover a large set of circumstances. Normally, you are looking for a response code of 200 to
indicate that the response was received correctly. 300, 400, and 500 level response codes
indicate a variety of delivery failure scenarios.

Table 2-3. HTTP Response Codes

Status Code HTTP Response Code Reason

100

2xx

200

201

202

203

204

3xx

300

301

302

303

4xx

400

401

402

403

404

405

406

5xx

500

501

502

503

504

505

Continue

Success

OK

Created

Accepted

Non-Authoritative Information

No Content

Redirection

Multiple Choices

Moved Permanently

Found

See Other (since HTTP/1.1)

Client Error

Bad Request

Unauthorized

Payment Required

Forbidden

Not Found

Method Not Allowed

Not Acceptable

Server Error

Internal Server Error

Not Implemented

Bad Gateway

Service Unavailable

Gateway Timeout

HTTP Version Not Supported

28 CHAPTER 2: Connectivity

Using HTTP as a ping approach seems simple enough. But does a response code of 200, as
shown in the following code, really indicate that your server is reachable?

(httpResponse.getStatusLine().getStatusCode() == 200)

Unfortunately, it does not. You are going to need a more robust solution to determine
reachability.

Blocked Protocols and URL Redirects
You saw that ICMP has some good low-level messaging capabilities to determine if a server
is reachable. However, the issue with ICMP is that you can’t rely on the protocol to be
available throughout the network because, unlike HTTP, ICMP is often blocked by service
providers.

HTTP also has a fatal flaw: the URL redirect situation. When you connect your devices to
public WiFi, you may often be behind a firewall or connected to a wireless access point that
requires a login to gain network access. This is often the case at coffee shops or public
places such as airports. In such situations, until you successfully authenticate, almost any
HTTP request you send will receive a response code of 200, even though you are certainly
not able to send packets beyond the internal router control point.

Service providers who require authentication before connectivity redirect the HTTP requests
to a local page yet still return a response code of 200. In this scenario, the HTTP response
header should indicate that the request was redirected, but this is often not correctly
flagged. So, you have no way of knowing that you do not have a reachable destination just
by checking the response code.

In addition to incomplete or incorrect redirect flags in the HTTP header, URL redirects do not
work across protocols. HTTP and HTTPS are considered different protocols, so if your HTTP
request is forwarded to HTTPS, any redirect flags will be lost.

Given these complications with ICMP and HTTP approaches, how do you know if a server is
really reachable?

The Android source code provides the solution. Figure 2-3 shows a message in the
notification bar that you may have seen many times on your Android device.

Figure 2-3. Android WiFi detection

www.allitebooks.com

http://www.allitebooks.org

29CHAPTER 2: Connectivity

The Android Open Source Project contains code for the WiFi State Machine. It provides
this indication for you when you are behind a firewall or access point and must authenticate
before you have network connectivity.

But how does it know this condition given the issues you saw with ICMP and a false HTTP
response code 200? If you look at the Android source code, you will see that the following
HTTP request is being sent to determine if you have reachability:

	http://connectivitycheck.gstatic.com/generate_204

This script generates a HTTP response code of 204, which indicates “NO CONTENT”. If
a 204 is received, you know the server was reachable. If a 200 is received, you know the
server is not reachable and that a URL redirect has occurred.

 Generating 204 Responses
A generate 204 script is very easy to implement on a server. The simple PHP code follows.
It is just as easily implemented in any server-side scripting language.

<?php
http_response_code(204);
?>

Using this approach, determining if you have network connectivity becomes a simple two-
step process:

 1. Hit a known server page that generates a 204 return code
with no content.

 2. Check for return status code = 204.

If you have a match for the response code = 204, you know that your server is reachable and
you have full connectivity.

You can make use of the google generate_204 pages, like the Android system does, or place
your own script onto your server.

2.7 Connections App
The Connections app will put all of the previous concepts together to create a useful tool
that will allow you to monitor the connected status of your device and the reachability status
of a list of servers that you can specify in a configuration file.

http://connectivitycheck.gstatic.com/generate_204

30 CHAPTER 2: Connectivity

 Connections App Overview
Figure 2-4 shows a screenshot of the Connections app. It includes three informational
sections that are populated based on the connectivity status of the device.

	Update Status: The app implements a timer that specifies the update
interval for the reachability test. The current device time and the last
refresh time are displayed. The default update status interval is 10
seconds (10,000 milliseconds).

	Connection Status: The device connection status is displayed, including
connection type, network available, connected, and WiFi broadcast
receiver status.

	Reachability: The app processes a list of server destinations and tests
them for reachability using either the ICMP or HTTP ping method.

Figure 2-4. Connections app screenshot

www.allitebooks.com

http://www.allitebooks.org

31CHAPTER 2: Connectivity

 Connections Project
Table 2-4 displays the project structure of the app. The app consists of a single Java file and
a single XML layout file. All of the code is contained within MainActivity.java.

Table 2-4. Connections Project Setup

Sources Resources/layout Resources/raw

MainActivity.java main.xml connectionfile.txt

The layout file for the screen is contained in main.xml. Note that the reachability section is
built dynamically based upon the configuration file contents. This way, you don’t need to
make modifications to this file if you change the server reachability list.

The app requires the following permissions in the manifest file, which are typical for a
networking app with local storage access required to read a configuration file:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_CONFIGURATION"/>

 Connections App Configuration
The app has a main timer named updateInterval, which is set at 10,000 milliseconds
(10 seconds), which controls the refresh cycle of the app. Each time it expires, all of the
connections that are being tested for reachability will be reset and tested again.

The timeoutConnection and timeoutSocket are used by the HTTP reachability test, while the
timeoutReachable is used by the ICMP reachability test. These timers are set at 5 seconds.
The values can be adjusted depending on how frequently you want screen updates and how
long you want to wait for server responses. It is generally a good idea to keep the screen
updates at 2x the connection and socket timeout values.

A summary of the default timer values that are set internally in the code:

private static int timeoutConnection = 5000;
private static int timeoutSocket = 5000;
private static Integer timeoutReachable = 5000;
private static Integer updateInterval = 10000;

Aside from these timeout values, the most important configurable parameters in the app are
the server addresses that you would like to test for reachability. In order to provide a flexible
and expandable architecture, you will use a JSON configuration file to store the server list
information. Using this approach means you can easily make changes to the server list
without modifying the app source code.

32 CHAPTER 2: Connectivity

Each connection contains the following four fields, which can be set or updated by
modifying the connectionfile.txt text file. The connectionfile.txt file is stored internally in the
app Resources/raw folder. This file could easily be moved out of the app onto the SD card,
or even downloaded externally over the network.

	“type”: The type of ping used to test for reachability. Two ping types are
supported in the app: AndroidHttpClient and ICMP Inet.isReachable.
A “0” value indicates ICMP and a “1” value indicates HTTP. This
could easily be expanded to include more types, such as OKHttp,
HttpURLConnection, or even ApacheHttpClient.

	“name”: The name of the server, which is displayed along with the
results in the reachability section of the app user interface view.

	“url”: The URL of the server that will be tested for reachability.

	“res”: The response code or result from the ping test. This field should
be left blank in the JSON file, but will be displayed in the app user
interface view when ping results become available.

The following code block shows a complete JSON configuration file for the app:

[
 [{"type":0},{"name":"ICMP Internal IP"},{"url":"192.168.1.30"},{"res":""}],
 [{"type":0},{"name":"ICMP Server"},{"url":"www.baidu.com"},{"res":""}],
 [{"type":1},{"name":"HTTP Yahoo"},{"url":"http://www.yahoo.com"},{"res":""}],
 [{"type":1},{"name":"HTTP 204 Server"},{"url": " http://connectivitycheck.gstatic.com/

generate_204"},{"res":""}],
 [{"type":1},{"name":"HTTP Server"},{"url":"http://www.baidu.com"},{"res":""}],
 [{"type":1},{"name":"HTTP Google.com"},{"url":"http://www.google.com" },{"res":""}],
 [{"type":1},{"name":"HTTPS nyt.com"},{"url":"https://www.nyt.com"},{"res":""}],
 [{"type":1},{"name":"HTTPS nytimes.com"},{"url":"https://www.nytimes.com"},{"res":""}]
]

The JSON configuration file will be read in and parsed by MainActivity.java. Android
ArrayLists will be used to store the information when the JSON file is parsed.

 MainActivity.java
When the app is launched, the first thing you need to accomplish is to read in the
configuration file and parse the JSON into ArrayLists that will be used to perform the
reachability testing.

The following code demonstrates how to accomplish this. The four ArrayLists are defined,
the JSON file is read into a string called connectionFileTxt, and finally the four ArrayLists
are built inside the for() loop. The jsonGetter2 function is a JSON helper function that was
covered in the first chapter.

// Array List Definition:
//
// pingType (int) 0=isReachable 1=httpclient
// connName (Str) Name of the connection to test

www.allitebooks.com

http://www.allitebooks.org

33CHAPTER 2: Connectivity

// connURL (Str) URL or IP address of the connection
// Response (Str) Response back from ICMP or HTTP

ArrayList<Integer> pingType = new ArrayList<Integer>();
ArrayList<String> connName = new ArrayList<String>();
ArrayList<String> connURL = new ArrayList<String>();
ArrayList<String> response = new ArrayList<String>();

private static JSONArray connectionFileJson = null;
private static String connectionFileTxt = "";
// Read in the JSON file
Resources res = getResources();
InputStream in_s = res.openRawResource(R.raw.connectionfile);
byte[] b = new byte[in_s.available()];
in_s.read(b);
connectionFileTxt = (new String(b));

// build the Array lists
connectionFileJson = new JSONArray(connectionFileTxt);
for(int i=0; i<connectionFileJson.length(); i++){
 int type = (Integer) jsonGetter2(connectionFileJson.getJSONArray(i),"pingType");
 pingType.add(type);
 String cname = jsonGetter2(connectionFileJson.getJSONArray(i),"connName").toString();
 connName.add(cname);
 String url = jsonGetter2(connectionFileJson.getJSONArray(i),"connURL").toString();
 connURL.add(url);
 String resp = jsonGetter2(connectionFileJson.getJSONArray(i),"response").toString();
 response.add(resp);
}

With the four ArrayLists set up, the app starts a periodic timer and then begins to display
device connectivity status and server reachability status. The “Update Status” section of
the app is continuously updated with the timer status so you can see when the last refresh
occurred.

The “Connectivity Status” section of the user interface is refreshed each time the timer is
reset. As you saw earlier, the Android ConnectivityManager supplies all of the information
for you. It displays a green or red icon depending on if connectivity exists. You are
showing the connectivity type as either “WiFi” or “Mobile Data,” and according to the
ConnectivityManager, you are also showing the “Connect” and “Available” status.

Finally, if WiFi is enabled on the device, the BroadcastReceiver displays the latest status.
This update does not rely on the timer, but rather is updated in real time whenever the
BroadcastReceiver onReceive is sent an update by the system.

The “Reachability” section of the user interface is also updated each time the timer is reset.
The main loop for handling the server pings is found in updateConnectionStatus(). The
following code block shows the key code that takes care of updating the WiFi status and
performing the pings and updating the results.

34 CHAPTER 2: Connectivity

The view on the user interface is created dynamically. If you wish to see the entire code for
how the layouts are built, refer to the project code because the code block below shows
only the connectivity aspects in the main loop.

A simple if statement is used to determine which type of ping will be utilized for each of the
servers in the list. Note that the AsyncTask.THREAD_POOL_EXECUTOR is used so that the
network ping background tasks can all run concurrently.

private void updateConnectionStatus() {

 // update the wi-fi status
 img = (ImageView) findViewById(R.id.image1);
 img.setBackgroundResource(R.drawable.presence_invisible);
 if (checkInternetConnection()) {
 img.setBackgroundResource(R.drawable.presence_online);
 } else {
 img.setBackgroundResource(R.drawable.presence_busy);
 }

 // See the project files for full code of the following 4 sections
 // Grab the LinearLayout where we will dynamically add LL for the ping Work List
 // Set a LayoutParams for the new Layouts we will add for the ping Work List items status
 // LayoutParams for the TextViews
 // Setup a screen proportional font size

 // Loop through the work list, fire off a ping for each item based on the Type
 for(int i=0; i<pingType.size(); i++){
 if (pingType.get(i) == 0) {
 // send the ping with ICMP
 new PingICMP(connURL.get(i),i).executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
 }
 if (pingType.get(i) == 1) {
 // send the ping with Http
 new PingHTTP(connURL.get(i),i).executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
 }
 }

 // update the refresh time
 TextView textRefr = (TextView) findViewById(R.id.textUpdate);
 textRefr.setText(GetTime());
}

The code block for the PingICMP routine is shown next. A new AsyncTask will be started
each time a server with pingType = 0 is encountered. Note that the Inet.isReachable method
is used. The AsyncTask includes an onPostExecute method that gets called when the
AsyncTask completes. At this point, the user interface will be updated with the proper
color-coded result for the ping test. With ICMP there is no response code, so you can just
indicate whether the server was reachable or not reachable.

// check for connectivity using ICMP
public class PingICMP extends AsyncTask<Void, String, Integer> {
 private String ip1;
 private boolean code;

www.allitebooks.com

http://www.allitebooks.org

35CHAPTER 2: Connectivity

 private int item;
 private InetAddress in1;

 public PingIP(String ip, int i) {
 ip1 = ip;
 in1 = null;
 item = i;
 code = false;
 }
 protected void onPreExecute(Void ...params) {
 }
 protected Integer doInBackground(Void ...params) {
 try {
 in1 = InetAddress.getByName(ip1);
 } catch (Exception e) {
 code = false;
 }
 try {
 if (in1.isReachable(timeoutReachable)) {
 code = true;
 } else {
 code = false;
 }
 } catch (Exception e) {
 code = false;
 }
 return 1;
 }
 protected void onProgressUpdate(String msg) {
 }
 protected void onPostExecute(Integer result) {
 if (code) {
 pingTextView[item][2].setText("Reachable");
 pingTextView[item][2].setTextColor(Color.parseColor(textColor[0])); // green
 } else {
 pingTextView[item][2].setText("Not Reachable");
 pingTextView[item][2].setTextColor(Color.parseColor(textColor[1])); // red
 }
 }
}

The code block for the pingHTTP routine is shown next. A new AsyncTask will be started
each time a server with pingType = 1 is encountered. Note that in this case, you are setting
up the HTTP Get request and the AsyncTask onPostExecute method uses the HTTP
response code to determine the reachability result. If the response code = 200 or the
response code = 204, you will mark the results in green text (success). All other response
codes will be presented in red text (not reachable).

// check for connectivity using HTTP
private class pingHTTP extends AsyncTask<Void, String, Integer> {
 private String urlString;
 private boolean ping_success;

36 CHAPTER 2: Connectivity

 private int item;
 private int status;

 private pingHTTP(String ip, int i) {
 ping_success = false;
 item = i;
 urlString = ip;
 }
 protected void onPreExecute(Void ...params) { }
 protected Integer doInBackground(Void ...params) {
 try {
 URL url = new URL(urlString);
 HttpURLConnection httpConn = (HttpURLConnection) url.openConnection();
 httpConn.setAllowUserInteraction(false);
 httpConn.setInstanceFollowRedirects(true);
 httpConn.setRequestMethod("GET");
 httpConn.connect();
 status = httpConn.getResponseCode();
 // Check for successful status code = 200 or 204
 if ((status == HttpURLConnection.HTTP_OK) || (status == HttpURLConnection.HTTP_NO_

CONTENT)) ping_success = true;
 } catch (Exception e) {
 // Handle exception
 ping_success = false;
 }
 return 1;
 }
 protected void onProgressUpdate(String msg) { }
 protected void onPostExecute(Integer result) {
 if (ping_success) {
 pingTextView[item][2].setText("Status Code= " + status);
 pingTextView[item][2].setTextColor(Color.parseColor(textColor[0])); // green
 } else {
 pingTextView[item][2].setText("Status Code= " + status);
 pingTextView[item][2].setTextColor(Color.parseColor(textColor[1])); // red
 }
 }
}

 Interpreting Reachability Results
The Connections app is a useful tool to understand how to best manage connectivity in
your apps.

If you wish to understand how available ICMP is as a protocol in your network locality, you
can set up a server list and test each of them for connectivity using pingType = 0. You may
find that ICMP is more often available over mobile data access than WiFi. You might also
determine that ICMP is almost never available over commercial WiFi services such as at
coffee shops and airports.

www.allitebooks.com

http://www.allitebooks.org

37CHAPTER 2: Connectivity

Figure 2-5 shows typical results over a WiFi connection before authentication (left panel) and
after authentication has been completed (right panel).

Figure 2-5. Connection app left panel: WiFi connectivity with no reachability (response code = 200 when 204 was
expected). Right panel: WiFi connectivity with reachability (response code = 204).

Look specifically at the fourth entry using pingType = 1 (HTTP) and hitting a server with a
generate_204 script. Before authentication is complete, you can see that the response code
was 200, which means the server was not reached, but rather instead a WiFi redirect has
taken place. On the right panel, after authentication is complete, you can see a response
code of 204, which indicates that the server was successfully reached.

2.8 Splash App
Now that you know how to determine if a server is reachable, let’s put together the pieces
and implement a splash screen.

38 CHAPTER 2: Connectivity

 Splash App Overview
Splash screens are initial displays, usually graphical, that appear temporarily when an app
first launches. Splash screens can serve dual purposes:

	Provide an initial welcome or branding message for an app.

	Allow you a short time, usually just a few seconds, to take care of some
background tasks that the app requires, such as downloading required
content or setting up the app’s resources.

Typically while the splash screen is displayed, a progress indicator is provided, which
gives the user some idea about how long the splash will be displayed before the main app
functionality is available.

Figure 2-6 shows a screenshot of the Splash app, which includes the startup splash screen
activity and the secondary main activity.

Figure 2-6. Splash app left panel: splash activity. Right panel: main activity.

www.allitebooks.com

http://www.allitebooks.org

39CHAPTER 2: Connectivity

While the splash screen is displayed, a large file is downloaded from the server. The
progress of this download is shown via a progress bar using the Android ProgressBar
widget and a TextView object, which together indicate the percentage of the download
that has been completed.

Once the download has been fully completed, the splash screen is replaced by a new
screen, which displays “Welcome to the Main Activity.”

 Splash Project
Table 2-5 shows the structure of the project.

Table 2-5. Splash Project Setup

Sources Resources Libraries

SplashActivity.java

MainActivity.java

splash.xml

main.xml

There are two activities, one for the splash screen and the second to handle the main
activity, which is executed after the splash operation completes. Each of the activities has a
layout XML file. No external libraries are used in this project.

In this app, you use the HttpURLConnection class to handle the network downloading of the
large file while the splash screen is displayed.

 Splash.xml
The layout of the splash screen is defined in the splash.xml file, as shown:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/relLayout"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:text="Android Software Development"
 android:textColor="#111111"
 android:textSize="34sp"
 android:layout_gravity="center"
 android:gravity="center"
 android:layout_margin="40.0dip"
 android:textStyle="bold"
 android:typeface="serif" />"

40 CHAPTER 2: Connectivity

 <ProgressBar
 android:id="@+id/progBar"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_gravity="center"
 android:layout_marginBottom="100.0dip"
 android:layout_marginLeft="50.0dip"
 android:layout_marginRight="50.0dip"
 android:focusable="false"
 android:maxHeight="20dip"
 android:minHeight="20dip"
 android:paddingLeft="28dp"
 android:paddingRight="28dp" />

 <TextView
 android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="65.0dip"
 android:text="Connecting"
 android:textColor="#111111"
 android:textSize="24sp"
 android:textStyle="bold"
 android:typeface="sans" />

</RelativeLayout>

You are using a RelativeLayout, which allows you to more easily provide a centered layout
for the elements of the splash screen. The splash screen consists of three elements:

	The text displayed during the network operation is defined in the
TextView. This could just as easily be an ImageView if you wanted to
show a graphic image.

	A progress bar to display the completion status of the download.
This element is aligned to the bottom of the screen using the
layout_alignParentBottom attribute.

	A text view to display the message “Connecting:” followed by a
numerical representation of the percentage of the download that
has been completed. This element is also aligned to the bottom
of the screen, placed just below the progress bar using the
layout_marginBottom attribute.

The splash screen layout is used to display the splash screen inside the splash activity.
It is displayed immediately when the app is started by the onCreate method of
SplashActivity.java.

www.allitebooks.com

http://www.allitebooks.org

41CHAPTER 2: Connectivity

 SplashActivity.java
SplashActivity displays the splash screen and then performs a network download of a file in
the background. During the download, the progress is updated on the splash screen.

The file english-proper-names.txt will be downloaded from the server and its URL will be
stored in the string variable named getURL.

In this example, you are going to check if your server is reachable before you start the
download. The URL of the generate204 script is stored in the string variable named ip204.

Additionally, connection and read timeout values are set for the HTTP operation.

When the activity first starts, there is a simple check to see if your device has a network
connection. If the check passes, the HTTP download proceeds; otherwise, a message is
displayed and the user is forced to exit the app and resolve the device connection issue.

public class SplashActivity extends Activity {
 int i;
 String getURL = "http://www.yourserver.com/ARH/english-proper-names.txt";
 String ip204 = "http://www.yourserver.com/return204.php";
 public static int ConnectTimeout = 10000;
 public static int ReadTimeout = 10000;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getWindow().setFlags(
 WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 this.setContentView(R.layout.splash);
 if (haveNetworkConnection()) {
 new HttpDownload().execute();
 }
 else {
 noConnection();
 }
 }

Note that because this is a splash screen, you are setting the flags for LayoutParams.
FLAG_FULLSCREEN on the window. This allows the notification bar and the title bar to be
hidden for the splash screen; they would normally be present at the top of the screen. The
MainActivity does not set this flag, so the notification bar and title bar will reappear after the
splash activity completes and control is handed off to the MainActivity.

The HTTP download of the file is handled in Android AsyncTask. Within the AsyncTask you
are following a two-step process:

 1. Connect to the server and check for a 204 response using the
setRequestMethod(“HEAD”);.

 2. Open a connection to the server and retrieve the file using the
OpenHttpConnection(getURL);.

42 CHAPTER 2: Connectivity

Once the file download is started, the progress bar on the splash screen is updated each
time a buffer is read from the server.

The following code block shows how the HttpDownload is implemented:

public class HttpDownload extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 publishProgress("Connecting","0");
 String fromServer = "";
 int BUFFER_SIZE = 2000;
 float fsize = 890000;
 InputStream in = null;
 try {
 // Check for reachability
 URL url = new URL(ip204);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setConnectTimeout(ConnectTimeout);
 conn.setReadTimeout(ReadTimeout);
 conn.setRequestMethod("HEAD");
 in = conn.getInputStream();
 int status = conn.getResponseCode();
 in.close();
 conn.disconnect();
 if (status == HttpURLConnection.HTTP_NO_CONTENT) {
 // Server is reachable, so initiate the download
 publishProgress("Reachable", "0");
 in = OpenHttpConnection(getURL);
 InputStreamReader isr = new InputStreamReader(in);
 int charRead;
 char[] inputBuffer = new char[BUFFER_SIZE];
 while ((charRead = isr.read(inputBuffer))>0) {
 //---convert the chars to a String---
 String readString = String.copyValueOf(inputBuffer, 0, charRead);
 fromServer += readString;
 inputBuffer = new char[BUFFER_SIZE];
 //---update the progress
 float ratio = (fromServer.length() / fsize) * 100;
 int num = (int) ratio;
 publishProgress("Connecting: " + String.valueOf(num) + "%",
 String.valueOf(num));
 }
 in.close();
 } else {
 publishProgress("Not Reachable", "0");
 failedReach();
 }
 } catch (IOException e) {
 failedDownload();
 }
 publishProgress("Completed","100");
 return null;
}

www.allitebooks.com

http://www.allitebooks.org

43CHAPTER 2: Connectivity

Note that there are three separate failure cases that will result in a pop-up dialog being
displayed on the device when the conditions occur. When this happens, the user will be
forced to exit the app and correct the problem.

	Failure Case 1: noConnection() indicates that the device has no
connectivity.

	Failure Case 2: failedReach() indicates that the server was not reachable.

	Failure Case 3: failedDownload() indicates that the download failed
before it could be completed.

The Splash app uses the recommended HTTP stack, HttpURLConnection. The following
code block shows how this connection is set up. The HTTP GET method is used to retrieve
the network file requested. This is slightly different from the reachability check where you
used the HTTP HEAD method to check for a 204 response code in the header without
downloading the file contents.

public static InputStream OpenHttpConnection(String urlString) throws IOException {
 InputStream in = null;
 int response = -1;
 URL url = new URL(urlString);
 URLConnection conn = url.openConnection();
 if (!(conn instanceof HttpURLConnection)) throw new IOException("Not an HTTP connection");
 try {
 HttpURLConnection httpConn = (HttpURLConnection) conn;
 httpConn.setAllowUserInteraction(false);
 httpConn.setInstanceFollowRedirects(true);
 httpConn.setRequestMethod("GET");
 httpConn.connect();
 response = httpConn.getResponseCode();
 if (response == HttpURLConnection.HTTP_OK) {
 in = httpConn.getInputStream();
 }
 } catch (Exception ex) {
 throw new IOException("Error connecting");
 }
 return in;
}

Perhaps the most important function of the splash activity is to update the user of the
download progress. To accomplish this, you are going to use the onProgressUpdate method
of the AsyncTask that is performing the download. This method takes an array of strings as
its argument. The following two values are passed into the method for updates back to the
user on the splash screen:

	Item[0]: A string that will be displayed in the TextView so you can keep
the user informed about what is happening. This will be updated, for
instance, when the download is started, completed, in progress, if the
server is not reachable, or if the download fails.

44 CHAPTER 2: Connectivity

	Item[1]: An integer that represents the percentage of the download that
has been completed. This value is set to “0” before the download starts
and “100” when the download is complete. It is calculated and updated
during the downloading of the file.

The following code shows how the onProgressUpdate method is implemented using these
two values:

@Override
protected void onProgressUpdate(String... item) {
 TextView txt = (TextView) findViewById(R.id.text);
 txt.setText(item[0]);
 ProgressBar progressBar = (ProgressBar) findViewById(R.id.progBar);
 int num = Integer.parseInt(item[1]);
 progressBar.setProgress(num);
}

The calculation is performed by creating a ratio, which is defined as the total bytes
downloaded divided by the total file size. The file is downloaded in 2,000 byte blocks and
the total file size is fixed, as shown here:

int BUFFER_SIZE = 2000;
float fsize = 890000;

Typically in a splash screen, you have a fixed size of data you are downloading, so defining it
in this way is acceptable.

However, if you need to download a file of unknown size, you can obtain the size of the file
before you download it using the Content- Length attribute of the HTTP response header.
If the Content-Length header is not present in the server reply, the only way to determine the
size of the content on the server is to download it.

Two approaches for getting the file size from the server are as follows:

// Approach #1
URL myUrl = new URL("http://yourserver.com/file.mp3");
URLConnection urlConnection = myUrl.openConnection();
urlConnection.connect();
int file_size = urlConnection.getContentLength();

// Approach #2
URL myUrl = new URL("http://yourserver.com/file.mp3");
myConnection = myUrl.openConnection();
List headersize = myConnection.getHeaderFields().get("Content-Length");

www.allitebooks.com

http://www.allitebooks.org

45CHAPTER 2: Connectivity

2.9 Essential Tools
It can be difficult to debug network communications. HTTP is a robust protocol, and when
things are not working properly, you need a way to analyze what is happening over the wire.
This is when protocol analyzers become essential.

Wireshark is a very popular free network protocol analyzer. It lets you see what is happening
on your network at a low level. Figure 2-7 shows a snapshot of the Wireshark interface.

Wireshark is available for most platforms. It allows you to look at live traffic over the network,
or to save traffic to files for offline analysis. Wireshark makes it easy to see HTTP traffic,
including response codes coming back from the server.

If you have an app that submits HTTP form data to the server, Wireshark makes it easy to
see the name/value pairs as they are sent over the wire.

2.10 References

 Android HTTP and Connectivity
	Android HttpClient Removal: http://developer.android.com/about/

versions/marshmallow/android-6.0-changes.html

	HttpURLConnection: http://developer.android.com/reference/java/
net/HttpURLConnection.html

	Connectivity Manager: http://developer.android.com/reference/
android/net/ConnectivityManager.html

	Determining and Monitoring Connection Status: http://developer.
android.com/training/monitoring-device-state/connectivity-
monitoring.html

Figure 2-7. Wireshark protocol analyzer

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://developer.android.com/reference/java/net/HttpURLConnection.html
http://developer.android.com/reference/java/net/HttpURLConnection.html
http://developer.android.com/reference/android/net/ConnectivityManager.html
http://developer.android.com/reference/android/net/ConnectivityManager.html
http://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html
http://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html
http://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html

46 CHAPTER 2: Connectivity

 ApacheHttpClient
	Configuring Apache Http Client for Android: https://hc.apache.org/

httpcomponents-client-4.3.x/android-port.html

 OkHttp
	OkHttp for Java and Android Applications:

http://square.github.io/okhttp/

	Okio library for OkHttp: https://github.com/square/okio

	OkHttp jar file: https://square.github.io/okhttp/#download

	OkHttp Recipes: https://github.com/square/okhttp/wiki/Recipes

	SPDY Chromium Project: www.chromium.org/spdy

 Tools
Wire Shark: www.wireshark.org/

www.allitebooks.com

https://hc.apache.org/httpcomponents-client-4.3.x/android-port.html
https://hc.apache.org/httpcomponents-client-4.3.x/android-port.html
http://square.github.io/okhttp/
https://github.com/square/okio
https://square.github.io/okhttp/#download
https://github.com/square/okhttp/wiki/Recipes
http://www.chromium.org/spdy
http://www.wireshark.org/
http://www.allitebooks.org

47© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7_3

Chapter 3
Lazy Loading Images

3.1 Introduction
Lazy loading images is a very common pattern in mobile application development. You may
not be familiar with the term, but you will have certainly experienced it when navigating
almost any app. It is implemented whenever images are displayed inside lists or other views
that can be navigated with a “fling” motion.

“Lazy loading” describes the process of dynamically downloading and displaying images
when a user scrolls down or across a sequence of images on the device screen.

The ListView is possibly the most commonly used widget in app development. When images
are included within the ListView, it delivers a very powerful user experience.

Unfortunately, such a common and powerful pattern is not trivial to implement in Android.
There is no built-in library to accomplish lazy loading, and there are many factors that must
be considered, including threading, HTTP requests, memory management, and caching.

In this chapter, you will take a look at the lazy loading options available on the platform
and you will implement a lazy loading app that combines the best features of the available
approaches.

3.2 Chapter Projects
The chapter contains the project shown in Table 3-1.

Table 3-1. Chapter Projects

Title of Project File Name Description

Lazy Loading lazyloading.zip This project connects to the server and downloads a JSON
configuration file that provides details for the images that will be
lazy loaded into the app. The app supports three different views
for the images: ListView, GridView, and Gallery.

https://doi.org/10.1007/978-1-4842-3333-7_3

48 CHAPTER 3: Lazy Loading Images

3.3 Lazy Loading Libraries
Despite the complexities of implementing lazy loading, the good news is that there are many
good libraries that can make implementation much easier for you. There is no need to roll
your own code. It is easy to integrate a lazy loading library, even if you never really dig into
the code to understand how it works.

Table 3-2 shows a list of some of the popular third-party libraries available. All of the links for
these libraries are included in the end-of-chapter references.

Table 3-2. Android Lazy Loading Library Comparison

Class Features License and Copyright

Lazy Loader A basic functional implementation. Implements disc
and memory cache. Lightweight; no JAR file.

MIT Fedor Vlasov

Volley From Google. Automatic HTTP stack selection,
thread pools, disc and memory caching, and JSON
support. Support from Google is not great. JAR file.

Apache 2.0 Google

Picasso From Square. Image downloading and caching.
Supports debug indicators. Support for all types
of content resources. Distributed as a JAR file.
Library size is about 120Kb.

Apache 2.0 Square

Google Shelves Open source Google project that handles image
lazy loading. Disc and memory caching, supports
bitmap shadows and rounded images. Not easy to
extract the relevant code.

Apache 2.0 Google

Universal Image
Loader

Supports multiple views: ListView, GridView, Gallery.
Image load progress. Based on Lazy Loader. Library
is approximately 193KB.

Apache 2.0 Sergey
Tarasevich

Fresco From Facebook. Uses Drawee as image
placeholders. Excellent documentation, including
Chinese. Feature-rich, including image rotation and
persistent MYSQL storage. Large library size.

BSD Facebook

Glide Focus on smooth scrolling. Used in many open
source projects. Very similar to Picasso, but with
a bitmap format that results in lower memory
consumption. Library size is large at about 430KB.

Apache/BSD Bumptech

Android Query Feature-rich: aspect ratio, rounded corners,
anchors, callbacks, zooming. Supports AJAX
callbacks. Library size is about 100KB.

Apache 2.0 Android Query

Image Catcher
Class

Released as part of the Google IO 2015 app. The
Image catcher class uses an external library called
Disk LRU Cache. Library size is only about 20KB.

Apache 2.0 Jake Wharton

www.allitebooks.com

http://www.allitebooks.org

49CHAPTER 3: Lazy Loading Images

As you can see, many Android image loading libraries are available. The good news is that
they are all pretty similar in how they implement lazy loading.

You will look at the common architecture they share next and then you will implement a lazy
loading project using some of the best features found in these libraries.

3.4 Lazy Loading Architecture
The key feature of all lazy loading implementations is the ability to download and cache
images to the device disk cache (SD flash memory) and the memory cache (RAM memory).

When the users scroll up and down on the ListView, the images need to be retrieved and
displayed in the ImageView holder while they are on screen and subsequently removed
when they are scrolled off-screen.

Figure 3-1 shows a high-level lazy loading architecture.

Figure 3-1. Lazy loading architecture

Some common characteristics for a lazy loading implementation are summarized below:

	An external app server contains the collection of images that will be
initially loaded using HTTP.

	Each time an image is referenced by the app, there is a check to see
whether it currently exists in disk cache or memory cache. If the image
exists in one of the caches, it is loaded from cache.

	If the image does not exist in cache, the image is downloaded using
HTTP, typically using a thread pool manager, which allows for multiple
images to be downloaded simultaneously.

50 CHAPTER 3: Lazy Loading Images

	Most of the lazy loading libraries support image downsampling. This
allows for large images on the server to be reduced to a reasonable size
for consumption by the app.

	After each image download has completed, the image is placed into
disk and memory cache.

	The lazy loading code handles all of the disk and memory caching,
as well as all view recycling when the user interacts with the UI. This
helps to keep memory usage at a minimum, which is one of the key
responsibilities of the lazy loading library.

	The memory cache is critical for a smooth user experience because it
allows previously loaded images to be reloaded quickly.

	Some of the lazy loading libraries support advanced features such as
touch-to-zoom, rounded corners, and debugging modes so you can see
where images are being loaded from.

 Memory Cache
The memory cache is important because it provides fast access to images. The tradeoff is
that it also consumes valuable application memory.

The Android LruCache class is often used for the task of caching images. It keeps
recently referenced images in a strong referenced LinkedHashMap and discards the least
recently used (hence the acronym of LRU cache) members before the cache exceeds its
designated size.

In older versions of Android, prior to Android 2.3 (API Level 9), it was popular to use a
SoftReference or a WeakReference for the image caching. However, it is not recommended
to use these methods today because the Java garbage collector is more aggressive with
collecting soft/weak references, making the approach ineffective.

One of the key decisions in implementing the memory cache is choosing a suitable size for
the LruCache.

According to the Android documentation, a number of factors should be taken into
consideration:

	How memory intensive is the rest of your activity and/or application?

	How many images will be on-screen at once? How many need to be
available to come on-screen?

	What is the screen size and density of the device?

	What resolutions are the images and how much memory will each
take up?

	How frequently will the images be accessed?

www.allitebooks.com

http://www.allitebooks.org

51CHAPTER 3: Lazy Loading Images

In the chapter project you will set the memory cache at 25% of the device total memory.

The code to accomplish this is shown next.

public class MemoryCache {
 private static final String TAG = "MemoryCache";
 private Map<String, Bitmap>
 cache=Collections.synchronizedMap(
 new LinkedHashMap<String, Bitmap>(10,1.5f,true));
 public MemoryCache() {
 //use 25% of available heap size
 setLimit(Runtime.getRuntime().maxMemory() / 4);
 }

This 25% decision is made based on the questions posed above. There is a total of 50
images and the average size of those images is about 70KB. No more than 5 images will be
shown on the screen at one time, so 350KB will be the maximum RAM required to cache
those images. Assuming most devices have 2MB available, 25% should give you plenty of
overhead.

A cache that is too small is ineffective because it will result in excessive overhead. A cache
that is too large can lead to out-of-memory exceptions because other applications and
system services can become starved of the memory they require.

A memory cache speeds up access to recently viewed images. However, you can’t always
rely on images being available in the memory cache due to several reasons:

 1. When users perform a fling option on a ListView or a GridView, it
can result in a lot of images being loaded, which will result in the
LruCache being filled up.

 2. The application could be interrupted by another event, such as a
phone call, and while your application is in the background, it could
be destroyed.

 3. The user may decide to place your app into the background by
performing another operation on their device. When this occurs,
the system may reclaim memory that had been allocated to your
application.

For these reasons, a well-designed lazy load implementation needs to implement a disk
cache as a fallback for the memory cache.

 Disk Cache
A disk cache is needed for those cases when images are no longer available in a memory
cache. Without the disk cache, you would need to go out to the network and perform
another HTTP request to obtain the image.

52 CHAPTER 3: Lazy Loading Images

Table 3-3 shows the approximate relative retrieve time required for images from the
various sources.

Table 3-3. Relative Lazy Load Retrieve Times

Method Approx. Retrieve Time (mSec.)

HTTP Network Request 300-1000

Device Disk Cache 100

Device Memory Cache 10

Because fetching images from a disk cache is relatively slow and these read operations are
not time-deterministic, these operations should be performed in a background thread.

You will see in the Lazy Loading app that files stored in the disk cache are not exactly the
same as the source files that were downloaded from the server. The files stored in the disk
cache may be downsampled or compressed. This occurs when the original source files are
determined to be too large based on a device-dependent setting you specify.

The filenames in the disk cache are also modified. If you inspect the files stored in the disk
cache on your device, you will see unrecognizable filenames. These filenames are hash map
keys that are generated from the original filenames.

You will examine the code that handles these transformations later in the Lazy Loading
project.

3.5 Choosing a Library
Many of the lazy loading libraries are distributed as JAR files. Let’s briefly discuss three such
open source libraries available from the big players:

	Google Volley

	Square Picasso

	Facebook Fresco

These libraries are excellent choices if you are able to use libraries from these vendors. They
are popular, very easy to integrate into your app, feature rich, well tested, and reasonably
well supported (Picasso and Fresco more so than Volley).

www.allitebooks.com

http://www.allitebooks.org

53CHAPTER 3: Lazy Loading Images

 Google Volley
Google originally announced the Volley library at Google I/O in 2013 in response to the
trouble that many Android developers were having with networking and AsyncTasks. The
Volley library has been popular.

To use Volley, follow these high-level steps:

 1. Clone it on GitHub and build your own volley.jar file.

 2. Include the volley.jar file as a library project within your Android
project.

 3. Use the classes such as NetworkImageView, RequestQueue, and
Request.

One downside of Google Volley is that it is not easy to set up, is not well documented, and
lacks support. However, it is popular, and once you have it set up, it is very simple to use.
You simply add networking requests to a RequestQueue and Volley handles everything.

Volley provides an excellent way for you to transition away from AsyncTasks in your apps.
The size of the volley.jar file is about 90KB.

Some of the key highlights of Google Volley:

	Volley has a custom view called NetworkImageView (subclassing
ImageView) that makes it easy to load images. You can set the URL
along with a default ViewHolder.

	Volley is a REST client that makes common networking tasks
easy. It takes care of requesting, loading, caching, threading, and
synchronization. You don’t have to worry about async tasks or thread
handling.

	Volley was designed for network operations that populate the UI. It
is good for short operations, but not so good for large downloads,
uploads, or streaming.

	Volley chooses the internal HTTP transport layer based on the device.
It chooses ApacheHttpClient on Froyo and HttpURLConnection on
Gingerbread and above. This is no longer such a critical benefit because
so few devices are running Froyo and the ApacheHttpClient is being
discontinued.

	Volley allows you to use external transports, such as OKHttp.

	Volley has built-in JSON to parse responses.

	Volley supports an extensive cancellation API, overcoming one of the
pitfalls of implementing your own AsyncTasks.

54 CHAPTER 3: Lazy Loading Images

 Square Picasso
Square Inc. has a very nice lazy loading solution called Picasso. The library provides
hassle-free image loading, disk and memory caching, and thread pools support.

To use Picasso in your apps, follow these high-level steps:

 1. Download the JAR file from the Picasso site.

 2. Install the JAR file into your IDE.

 3. In Android Studio, you can add Picasso to the build.gradle file in the
dependency section.

Once installed, lazy loading with the Picasso library can be accomplished with just one line
of code.

Picasso.with(context).load("http://imagename.png").into(imageView);

Picasso is very easy to use and supports many advanced features. For example, loading a
remote image into an ImageView while performing resizing, rotation, and supplying image
placeholders during the download looks like this:

Picasso.with(this)
 .load("https://URL goes here")
 .resize(50,50)
 .into(imageView)
 .rotate(180)
 .placeholder(R.drawable.image_name)
 .error(R.drawable.image_name_error);

The key features of Picasso are the following:

	Supports image transformations so you can crop and resize images
easily.

	Supports placeholder images with built-in retry (three times) before they
are displayed.

	Includes a debug mode that displays flags on the corner of images. This
allows you to see the image source such as network, disk, or memory.

	The Picasso library is distributed as a JAR file. The latest version is
picasso-2.5.2.jar. The library size is 117KB.

	One of the key benefits of the Picasso library is that it supports all
content sources: resources, assets, URLs, files, and content providers.

www.allitebooks.com

http://www.allitebooks.org

55CHAPTER 3: Lazy Loading Images

 Facebook Fresco
Facebook introduced the open source Fresco library in March 2015 with the goal of allowing
mobile devices to more efficiently manage images and eliminate out-of-memory crashes
caused by the Java heap and the process of garbage collection.

According to Facebook, the Fresco library takes the existing libraries to a new level by
using a new Producer/Consumer framework and a new type called Drawee. The Facebook
approach is new and different. It is thus not as battle tested as the other libraries.

To use Fresco, follow these high-level steps:

 1. In Android Studio or Gradle, just edit your build.gradle file to
include the dependency for the latest version of Fresco 0.9.0.

 2. In Eclipse, download the latest version of Fresco: frescolib-
v0.9.0.zip. Then import the existing code into Android. Five projects
should be added: drawee, fbcore, fresco, imagepipeline, and
imagepipeline-okhttp.

Initializing Fresco is simple.

public void onCreate() {
 super.onCreate();
 Fresco.initialize(this);
}

You will need to add a custom name space in your XML as shown:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:fresco="http://schemas.android.com/apk/res-auto"
 android:layout_height="match_parent"
 android:layout_width="match_parent">

 <com.facebook.drawee.view.SimpleDraweeView
 android:id="@+id/my_image_view"
 android:layout_width="130dp"
 android:layout_height="130dp"
 fresco:placeholderImage="@drawable/my_drawable" />

And finally, you can display images like this:

Uri uri = Uri.parse("https://path/fresco-logo.png");
SimpleDraweeView draweeView = (SimpleDraweeView) findViewById(R.id.my_image_view);
draweeView.setImageURI(uri);

One of the drawbacks of the Fresco library is that it is very large. Expect Fresco to add
several MBs to your app’s size. This is an order of magnitude larger than all the other lazy
loading libraries.

56 CHAPTER 3: Lazy Loading Images

Some of the key highlights of Facebook Fresco are as follows:

	Images are not stored in the Java heap, but instead in the ashmem
heap. This is a memory region in Android that operates like the native
heap, but has some additional system calls, including the ability to
“unpin” the memory rather than freeing it.

	Progressive JPG images can be streamed, which means you don’t have
to wait for images to fully load before display.

	Images can be cropped at any point, not just in the center.

	JPG images can be resized natively.

	Supports GIF and WEBP animation.

If you do not wish to integrate one of these third-party libraries from the big vendors, the
Universal Image Loader is an excellent alternative. It supports three different views: ListView,
GridView, and Gallery.

In the Lazy Loading project, you will not use an external library. Instead, you will implement
your own lazy loading class that implements memory and disk caching. You will see that this
approach is very efficient as the entire project is only 45KB. Compare this with the popular
lazy loading libraries discussed, which can be anywhere from 200KB up to more than 1MB
in size.

3.6 Handling Image Assets
Working with images in Android can be tricky, especially if you are loading external images
of unknown size. There are two important factors you need to consider:

	Image size

	Image aspect ratio

Attempting to load a large quantity of images can lead to out-of-memory exceptions,
especially if your images sizes are large. When a user “flings” a ListView, this can result in
dozens of image downloads.

If you have a deterministic set of images to be downloaded, you can ensure that they are
properly compressed and sized for your Android app on the server. If you do not have
this luxury, such as when you allow users to upload their own images or when you gather
unknown images from the Internet, then you need to perform compression when you
download to make sure you do not run into out-of-memory exceptions.

Images come in different aspect ratios. They are generally referred to as landscape or
portrait. The special case is a square aspect ratio, which is less common. When lazy
loading, it visually looks better in your layouts if you use a consistent aspect ratio for all the
images. However, your image set is not always consistent, so you need to take this into
consideration.

I will discuss some of the tools Android provides to compress images on the fly, and to
display images consistently in your lazy load views if the aspect ratio of the images is mixed.

www.allitebooks.com

http://www.allitebooks.org

57CHAPTER 3: Lazy Loading Images

 Size vs. Quality Tradeoff
In the Lazy Loading project you will be working with 50 images stored on a server. The
original photos were of very high resolution.

Downloading such large images in a lazy load operation is certain to cause out-of-memory
exceptions, even on the highest memory capacity devices available today. You need to
prepare the images for the lazy load. Image editing programs, like Adobe’s Photoshop, are
able to perform batch resizing and compression operations on images. The key question is
how large should your images be on your devices so they look sharp?

In the world of video, high definition is defined as 1920x1080 pixels (also known as full HD
or 1080p). This has been an acceptable resolution for large television displays for many
years now, and it certainly is acceptable for a high quality image display on any Android
tablet or device.

Table 3-4 shows a summary of screen resolutions and image files sizes. The approximate file
size depends on the image content and compression method used. Using JPG compression
at a 60% setting is a good compromise.

Table 3-4. Image Resolution and Approximate File Sizes

Resolution Description Approx.
File Size (KB)

Usage

1920x1080 Full HD 200 Full screen images on a tablet or Android TV

960x540 1/2 HD 75 High-quality image in an Android Gallery

480x270 1/4 HD 30 Acceptable thumbnail image for Android
ListView or GridView

Note that the 1/2 HD and 1/4 HD files are only 75KB and 30KB, respectively. This is in the
acceptable range for good lazy loading performance and will allow you to set your memory
cache size at a small fraction of the device’s available memory, assuming you don’t have
too many images. If you have thousands of images, then it would be best to have very small
thumbnail images of 10KB or smaller.

You will see in the Lazy Loading project that images are stored at approximately 1/2 HD
resolution on the server. Since you have a small number of images, you can store them in
this relatively large size so that the quality will look good in the largest view, which is the
Gallery.

If you require many more images, then you may wish to store multiple copies of the images
in both high and low resolutions. The low resolution images could be used by the GridView
and the ListView, and the higher resolution images could be used for the Gallery.

58 CHAPTER 3: Lazy Loading Images

 Image Downsampling
Most lazy loading implementations use some sort of downsampling when they process
images downloaded from a server. This ensures that you don’t try to process images that are
too large for your views.

In the following code, the Android BitmapFactory class is used to decode the original file.
This allows you to determine the actual height and width in pixels of the image. With this
image size information you can generate a scaling factor by comparing these sizes to your
required size. Once the scale factor is determined, you then perform another decode using
the scale factor to obtain an image of suitable size for your lazy load views.

// Decoding the original file 'f'
 BitmapFactory.Options o = new BitmapFactory.Options();
 o.inJustDecodeBounds = true;
 FileInputStream stream1 = new FileInputStream(f);
 BitmapFactory.decodeStream(stream1,null,o);
 stream1.close();
// Find the correct scale factor based on the required width
 final int REQUIRED_WIDTH = 70;
 int width_tmp = o.outWidth, height_tmp = o.outHeight;
 int scale = 1;
 while (true) {
 if (width_tmp/2 < REQUIRED_WIDTH || height_tmp/2 < REQUIRED_WIDTH) break;
 width_tmp /= 2;
 height_tmp /= 2;
 scale *= 2;
 }
// Decode with scaling. The resulting bitmap will be scaled and
// can be applied to our ImageView holder in the ListView, GridView and Gallery
 BitmapFactory.Options o2 = new BitmapFactory.Options();
 o2.inSampleSize = scale;
 FileInputStream stream2 = new FileInputStream(f);
 Bitmap bitmap = BitmapFactory.decodeStream(stream2, null, o2);
 stream2.close();

The BitmapFactory class has two methods that you use to accomplish the downsampling.

	decodeStream(): This method allows you to decode the original image
after it has been downloaded from the server or from local storage.

	options(): This method allows you to obtain image information using
.outWidth and .outHeight. With this sizing information from the original
image, you can calculate a scale factor. Using the scale factor, you can
then use .inSampleSize to decode the image again. The resulting bitmap
can be used safely for all of your lazy load views.

www.allitebooks.com

http://www.allitebooks.org

59CHAPTER 3: Lazy Loading Images

 Aspect Ratio
The Lazy Loading project uses portrait images with a consistent size of 960 pixels high by
540 pixels wide. All of the pictures are stored on the server with this size. The aspect ratio of
these pictures is thus 960 divided by 540, or 1.787.

When the images are lazy loaded, they will be downsampled to the size specified by the
REQUIRED_WIDTH setting (shown in the previous code excerpt), while maintaining the
aspect ratio. This code will be included in the ImageLoader class when you implement the
project.

When the images are placed into their ImageView containers, they will be scaled according
to the scaleType attribute.

The Android scaleType attribute provides several options to display images within the
ImageView container. Table 3-5 shows the available options.

Table 3-5. Android scaleType Options

Scale Type Description

Matrix Scales the image using a supplied Matrix class. The Matrix class can be used
to apply transformations, such as rotation.

fitXY Scales the image to exactly fit inside the view. This does not maintain the
aspect ratio and can result in images that appear distorted.

fitCenter Scales the image to fit inside the view while maintaining the aspect ratio.
At least one axis will exactly match the view and the result will be centered.

fitStart Same as fitCenter, but the image will be aligned to the top of the view.

fitEnd Same as fitCenter, but the image will be aligned to the bottom of the view.

center Displays the image centered in the view with no scaling.

centerCrop Scales the image so both dimensions are at least as large as the view,
maintaining the aspect ratio, cropping any part of the image that exceeds the
view. The image will not be distorted, but it will not be seen in its entirely.

centerInside Scales the image to fit inside the view, while maintaining the aspect ratio. If the
image is smaller than the view, this will produce the same result as center.

60 CHAPTER 3: Lazy Loading Images

If you are displaying photos and wish to avoid scaling distortions, it is usually best to use
the center or fitCenter scaleTypes. The following XML code shows how this might look for
an ImageView:

<ImageView
 android:id="@+id/list_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:scaleType="fitCenter"
 android:padding="4dp"
 android:layout_margin="2dp"
 android:layout_gravity="center"/>

If you have mixed aspect ratios and you do not mind some cropping of your images when
they are displayed in the lazy load view, centerCrop works well because it always produces
a consistent sized image that looks good in a ListView.

3.7 Lazy Loading App
For the lazy loading implementation, let’s define some simple requirements and then take a
look at the available libraries to find the best approach.

 1. Lazy load 50 pictures stored on a server, configurable with
a JSON file.

 2. Implement memory and disk caching.

 3. Support three switchable views including ListView, GridView,
and Gallery.

 4. Keep the app as lightweight as possible.

Of course, all of the available libraries can meet the caching requirement. Only the Universal
Image Loader has built-in support for switchable views, but at 200KB, it is not exactly
lightweight.

In order to keep the app as lightweight as possible, you will implement your own memory
caching and disk caching, and you will incorporate three switchable views.

If you require a lot of advanced features, such as zooming on images, rotation of
images, and effects such as rounded corners or support for animated images, then it
is probably better to choose one of the third-party libraries and not worry about rolling
your own code.

www.allitebooks.com

http://www.allitebooks.org

61CHAPTER 3: Lazy Loading Images

 Lazy Loading App Overview
Figure 3-2 shows a screenshot of the Lazy Loading app. The main layout contains an
ActionBar on the top with a drop-down navigation, which is used to select the layout view.
The default layout view is set to ListView. The main layout also contains two control buttons
at the bottom as well as an Exit button, which may be positioned in the overflow area
depending on device size. These buttons have the following functions:

	ActionBar drop-down navigation: Allows the user to select the view type
for the lazy load. Default is ListView. GridView and Gallery can also be
selected.

	Lazy Load button: When pressed, the device will check if the
configuration file exists on the device. If not, it will be downloaded. A lazy
load will then commence using the configuration file and the view type
specified in the ActionBar drop-down navigation.

	Delete Files button: When pressed, all of the files, images, and the
configuration file will be deleted from the local storage (disk cache) on the
device. This function is not typically available in a lazy loading app, but it
is included here to help you better understand how the app is working.

	Exit button: Exits the app by terminating the MainActivity. The button
may appear in the overflow area depending on device width.

Figure 3-2. Sample lazy loading ListView

62 CHAPTER 3: Lazy Loading Images

The Lazy Loading app meets each of the specified requirements. The app has a single
activity, MainActivity.java, which connects to the server and downloads a JSON configuration
file named lazyloadconfig.txt. This file specifies the images and their titles, and it includes a
description for each image.

The image assets on the server have fixed image sizes to help you avoid the pitfalls of large
images, which can lead to out-of-memory (OOM) exceptions.

The app supports three different Android views: ListView, GridView, and Gallery. Each view
has its own adapter and layout, which is controlled by the ActionBar drop-down navigation
setting.

The app has its own ImageLoader class, which implements the disk and memory caching.
The app uses a background thread to perform the initial download of the JSON file. The
app also uses a background thread when you delete files. The ImageLoader class uses a
ThreadPool for downloading the individual images.

Using these approaches to implement the required functionality, the app size is minimized.
The Lazy Loading app is only 43KB!

This is much smaller than if you used one of the open source libraries. I kept it simple
because we did not require all of the features the third-party libraries provide. But you might;
it just depends on your requirements and how you choose to meet those requirements.

 Lazy Loading Project
Table 3-6 shows the layout of the Lazy Loading project.

Table 3-6. Lazy Loading Project Setup

Sources Resources/layout Res/

FileCache.java

ImageLoader.java

MainActivity.java

MemoryCache.java

Utils.java

activity_main_gallery.xml

activity_main_grid.xml

activity_main_list.xml

gal_item.xml

grid_item.xml

list_item.xml

values/arrays.xml
menu/actions.xml

The main activity of the project is MainActivity.java. It handles all of the logic of the app
including implementation of the three display views. Each of the view layouts is accomplished
with an XML file for the main view (such as activity_main_gallery.xml, activity_main_grid.xml,
and activity_main_list.xml). There are also XML files for the items in the three views: list_item.
xml, grid_item.xml, and gal_item.xml.

The lazy loading class consists of three files: ImageLoader.java (which handles the main
logic) and two subclasses called MemoryCache.java and FileCache.java (which handle the
memory and disk caching).

www.allitebooks.com

http://www.allitebooks.org

63CHAPTER 3: Lazy Loading Images

 Server Setup
The Lazy Loading app downloads image files from a web server. The following code shows
the configuration URL for these assets. You can easily change these settings and rebuild the
app if you want to use your own image repository.

// Server settings
private String serverFileBase = "http://www.yourserver.com/";
private String serverPicBase = "http://www.yourserver.com/image_directory/";
private String fileName = "lazyloadconfig.txt";

The configuration file name is also set in the app. The configuration file is stored in the
serverFileBase directory and the images are stored in the serverPicBase directory.

The configuration file is a JSON text file that defines the list of pictures that will be displayed by
the lazy load. The advantage of using the configuration file is that you can also include a title
and description for each image. The app can then include these descriptors within the layouts.

The following example shows the layout of the JSON configuration file. It contains a title, a
filename, and a description for each image that will be lazy loaded. The filename of the image
needs to match an image that is stored in the serverPicBase directory on the web server. If it
does not exist on the server, a blank or stub image will be displayed by the lazy load.

[
 [{"title":"your_image1_title"},{"filename":"1.jpg"},{"desc":"Your image1 description"}],
 [{"title":"your_image2_title"},{"filename":"2.jpg"},{"desc":"Your image2 description"}],

[{"title":"your_image3_title"},{"filename":"3.jpg"},{"desc":"Your image3 description"}],
 [{"title":"your_image4_title"},{"filename":"4.jpg"},{"desc":"Your image4 description"}],
 [{"title":"your_image5_title"},{"filename":"5.jpg"},{"desc":"Your image5 description"}],
 [{"title":"your_image6_title"},{"filename":"6.jpg"},{"desc":"Your image6 description"}],

[{"title":"your_image7_title"},{"filename":"7.jpg"},{"desc":"Your image7 description"}],
[{"title":"your_image8_title"},{"filename":"8.jpg"},{"desc":"Your image8 description"}]

]

Note that when the JSON configuration file is first downloaded, it is stored locally on the
device. This allows the app to work offline when there is no connectivity. The configuration
file is only downloaded when it does not exist, so if you make changes to the configuration
file, be sure to delete the local copy using the Delete Files button on the app. This will cause
it to be downloaded again upon the next attempt, picking up the new changes.

 MainActivity.java
The Lazy Loading Project supports three individual views: ListView, GridView, and Gallery.
Each of the views is assigned a unique ID and adapter, as shown below. There are also
three ArrayLists that will contain the URLs of the images, the titles of the images, and the
descriptions of the image.

// IDs for the views
private static final int ID_LIST = 0;
private static final int ID_GRID = 1;
private static final int ID_GALL = 2;

64 CHAPTER 3: Lazy Loading Images

// The current View ID: 0=List, 1=Grid, 2=Gallery
private int currentViewID;

// Views
private ListView list;
private Gallery gallery;
private GridView grid;

// Adapters
private LazyGridAdapter gridAdapter;
private LazyGallAdapter gallAdapter;
private LazyListAdapter listAdapter;

// Array Lists for the View Adapters
private static ArrayList<String> fetchURL = new ArrayList<String>();
private static ArrayList<String> imageTitle = new ArrayList<String>();
private static ArrayList<String> imageDesc = new ArrayList<String>();

The onCreate method of MainActivity.java is very straightforward. It checks for the
existence of the disk cache folder and creates it if necessary. It clears each of the
ArrayLists, and it also sets up the ActionBar, which contains the drop-down navigation
choices that allow users to select a view. The default view is ListView and the
corresponding currentViewID is set to 0. Note that the text labels for the three views are
defined in the res/values/arrays.xml file.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 fileDir = new File(android.os.Environment.getExternalStorageDirectory(),"LazyloadImages");
 if (!fileDir.exists()) fileDir.mkdirs();

 // Setup the ActionBar and the Spinner in the ActionBar
 getActionBar().setDisplayShowTitleEnabled(true);
 getActionBar().setSubtitle("Android Software Development");
 getActionBar().setTitle("Lazyloading");

 Context context = getActionBar().getThemedContext();
 ArrayAdapter<CharSequence> listviews = ArrayAdapter.createFromResource(context, R.array.

Views, android.R.layout.simple_spinner_item);
 listviews.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 getActionBar().setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
 getActionBar().setListNavigationCallbacks(listviews, this);

 // Default to ListView
 currentViewID = 0;

 // Clear the ArrayLists
 fetchURL.clear();
 imageTitle.clear();
 imageDesc.clear();
}

www.allitebooks.com

http://www.allitebooks.org

65CHAPTER 3: Lazy Loading Images

To handle the drop-down navigation list, the onNavigationItemSelected method is implemented.
When the user selects one of the items, the following code will execute to update
currentViewID and then post the update to the UI thread handler so it can be displayed.

@Override
public boolean onNavigationItemSelected(int itemPosition, long itemId) {
 if (itemPosition == ID_LIST) {
 currentViewID = 0;
 mHandler.post(mUpdateResults);
 } else if (itemPosition == ID_GRID) {
 currentViewID = 1;
 mHandler.post(mUpdateResults);
 } else if (itemPosition == ID_GALL) {
 currentViewID = 2;
 mHandler.post(mUpdateResults);
 }
 return false;
}

There are three main buttons on the UI. These buttons are defined in Res/menu/actions.xml file.

The first button is the Lazy Load button. When pressed, this button performs the following
functions:

	Creates a thread for network operations so you will not block the UI
thread with a potentially long-running network operation.

	Checks to see if you have a local copy of the configuration file. If so, you
will use it. If not, it will be downloaded and stored locally on the device.

	The configuration file is parsed as a JSON object and the contents are
placed into three ArrayLists: fetchURL, imageTitle, and imageDesc.
The fetchURL ArrayList will be used by the handler when it performs
the lazy load.

	The handler is passed the mUpdateResults runnable if everything works
as expected. This will cause the content view to be set based on the
currentViewID.

	The handler is passed the mNoConnection runnable if something
went wrong. Typically this would occur if network connectivity was not
available.

The code to handle the Lazy Load button:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.load) {
 final ProgressDialog pd = ProgressDialog.show(MainActivity.this,"Loading",

"Loading file list and images...",true, false);
 new Thread(new Runnable(){
 public void run(){
 File masterFil = new File(fileDir, fileName);

66 CHAPTER 3: Lazy Loading Images

 if (masterFil.exists()) {
 try {
 lazyLoadConfig = Utils.ReadLocalFile(masterFil);
 masterAvail = true;
 } catch (IOException e) {
 }
 } else if (checkInternetConnection()) {
 lazyLoadConfig = Utils.DownloadText(serverFileBase + fileName);
 //save it to the local cache for later use
 File writeFile =new File(fileDir, fileName);
 BufferedWriter writer;
 try {
 writer = new BufferedWriter(new OutputStreamWriter(new

FileOutputStream(writeFile, true), "UTF-8"));
 writer.write(lazyLoadConfig);
 writer.flush();
 writer.close();
 masterAvail = true;
 } catch (Exception e) {
 }
 } else {
 mHandler.post(mNoConnection);
 }
 // We have a masterfile.txt so set up the ArrayLists
 if (masterAvail) {
 // setup the fetchURL ArrayLists
 try {
 configFileJson = new JSONArray(lazyLoadConfig);
 for (int i=0; i<configFileJson.length(); i++) {
 String fname =
 jsonGetter2(configFileJson.getJSONArray(i),"filename").

toString();
 fetchURL.add(fname);
 String title =
 jsonGetter2(configFileJson.getJSONArray(i),"title").

toString();
 imageTitle.add(title);
 String desc =
 jsonGetter2(configFileJson.getJSONArray(i),"desc").toString();
 imageDesc.add(desc);
 }
 } catch (JSONException e) {
 e.printStackTrace();
 }
 mHandler.post(mUpdateResults);
 } else {
 mHandler.post(mNoConnection);
 }
 pd.dismiss();
 }
 }).start();
 return(true);
}

www.allitebooks.com

http://www.allitebooks.org

67CHAPTER 3: Lazy Loading Images

The second button at the bottom of the main layout is the Delete Files button. This button
allows the user to delete all of the images that have been cached on disk.

If you inspect the directory, you will see many files. The file names do not match the original
file names stored on the server. This because the ImageLoader has created HashMap names
for each of the files stored on the device.

The delete button also deletes the local copy of the configuration file, which resides in the
same location. This will force the file to be redownloaded from the server the next time a lazy
load is requested.

The Delete Files button code performs the following tasks:

	Shows a ProgressDialog while a background thread performs the work.
This is done because deleting files can be a relatively long-running
task, so the work is performed on a background thread while an
indeterminate progress dialog is displayed.

	Deletes all the files stored on disk.

	Deletes the contents of the three ArrayLists.

	Updates the results on the UI thread.

The code to handle these functions looks like this:

if (item.getItemId() == R.id.delete) {
 // delete all the files on SD
 final ProgressDialog pd = ProgressDialog.show(MainActivity.this,"Deleting",

"Deleting files from device storage...",true, false);
 new Thread(new Runnable(){
 public void run(){
 switch (currentViewID) {
 case 0:
 listAdapter.imageLoader.fileCache.clear();
 break;
 case 1:
 gridAdapter.imageLoader.fileCache.clear();
 break;
 case 2:
 gallAdapter.imageLoader.fileCache.clear();
 break;
 }
 // delete all the images in the directory
 Utils.deleteDirectory(fileDir);
 // delete all items from the ArrayLists
 fetchURL.clear();
 imageTitle.clear();
 imageDesc.clear();
 // Update on the UI thread
 mHandler.post(mUpdateResults);
 pd.dismiss();
 }
 }).start();
 return(true);
}

68 CHAPTER 3: Lazy Loading Images

The third button is the Exit button. It simply performs a finish() call on the MainActivity.
This also triggers the onDestroy() method to be called, which will assist the Java garbage
collection by resetting the views and their adapters to null.

protected void onDestroy() {
 switch (currentViewID) {
 case 0:
 list.setOnItemClickListener(null);
 list.setAdapter(null);
 break;
 case 1:
 grid.setOnItemClickListener(null);
 grid.setAdapter(null);
 break;
 case 2:
 gallery.setOnItemClickListener(null);
 gallery.setAdapter(null);
 break;
 }
}

The mUpdateResults runnable, which gets posted back to the handler so the UI can be updated,
checks the currentViewID and then displays the appropriate view. This is accomplished for
each view by invoking the setContentView with the appropriate layout. The runnable also sets
up the onClickItem for each of the items in the view. In this simple project, you just display a
Toast message when any item is clicked.

In the following code, you pass the fetchURL ArrayList into each adapter. This ArrayList
contains the image URLs that will be lazy loaded.

final Runnable mUpdateResults = new Runnable() {
 public void run() {
 if (currentViewID == ID_LIST) {
 setContentView(R.layout.activity_main_list);
 list = (ListView) findViewById(R.id.list);
 listAdapter = new LazyListAdapter (MainActivity.this, R.layout.list_item,

fetchURL, MainActivity.this);
 list.setAdapter(listAdapter);
 list.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView parent, View v, final int position, long id) {
 Toast.makeText(MainActivity.this, "List item selected: " + position,
 Toast.LENGTH_SHORT).show();
 }
 });
 } else if (currentViewID == ID_GRID) {
 setContentView(R.layout.activity_main_grid);
 grid = (GridView) findViewById(R.id.grid);
 gridAdapter = new LazyGridAdapter(MainActivity.this, R.layout.grid_item, fetchURL,
 MainActivity.this);

www.allitebooks.com

http://www.allitebooks.org

69CHAPTER 3: Lazy Loading Images

 grid.setAdapter(gridAdapter);
 int picHeight = Utils.getGridPicHeight(MainActivity.this);
 int picLength = (int) ((float)picHeight / 1.5);
 grid.setColumnWidth(picLength);
 grid.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView parent, View v, final int position, long id) {
 Toast.makeText(MainActivity.this, "Grid item selected: " + position,
 Toast.LENGTH_SHORT).show();
 }
 });
 } else if (currentViewID == ID_GALL) {
 setContentView(R.layout.activity_main_gallery);
 gallery = (Gallery) findViewById(R.id.gallery);
 gallAdapter = new LazyGallAdapter (MainActivity.this, R.layout.gal_item,

fetchURL, MainActivity.this);
 gallery.setAdapter(gallAdapter);
 gallery.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView parent, View v, final int position, long id) {
 Toast.makeText(MainActivity.this, "Gallery item selected: " + position,
 Toast.LENGTH_SHORT).show();
 }
 });
 }

 XML Layout Files
Each of the views has an XML file to define its layout. Table 3-7 shows the contents of
these layout files. Within these files, attributes are specified for the high-level layout of the
ListView, GridView, and Gallery views.

70 CHAPTER 3: Lazy Loading Images

Table 3-7. XML Layouts for Three Lazy Loading Views

ListView

<LinearLayout

 android:layout_width="fill_parent"

 android:orientation="vertical"

 android:layout_height="wrap_content"

 android:layout_marginTop="0dip"

 android:layout_marginBottom="8dip">

 <ListView

 android:id="@+id/list"

 android:layout_height="0dip"

 android:layout_weight="1.0"

 android:layout_width="fill_parent"/>

</LinearLayout>

Gallery

<LinearLayout

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <Gallery

 android:id="@+id/gallery"

 android:layout_width="fill_parent"

 android:layout_weight="1"

 android:spacing="1dip"

 android:layout_marginLeft="12dp"

 android:layout_marginRight="12dp"

 android:layout_height="match_parent"/>

</LinearLayout>

(continued)

www.allitebooks.com

http://www.allitebooks.org

71CHAPTER 3: Lazy Loading Images

The lower level item layouts for each of the views are contained in the list_item.xml, grid_
item.xml, and gal_item.xml files. You can make adjustments to the files if you wish to change
the way each of the individual items appears with the three views.

The controls for the widgets in each of the views is straightforward. Each of the widgets,
ListView, GridView, and Gallery, are wrapped inside a LinearLayout. In order to fill the screen
optimally, both the ListView and Gallery widgets use a layout_weight="1" attribute setting.
The GridView widget sets the numColumns="3" attribute. If you wish to adjust the number
of columns in your GridView, you can change this setting. You could alternatively set it
programmatically.

 ImageLoader.java
Since you are implementing your own lazy loading class rather than using of one of the
third-party libraries, you need some code that will handle the image loading function, as
well as the disk and memory caching. If you take a close look at the available open source
libraries, you will see that, with the exception of the Facebook library, they all take a similar
approach to implement these functions.

When you display images in Android, you normally assign a bitmap to an imageView using
this approach:

ImageView img = (ImageView) findViewById(R.id.yourImageView);
img.setBackgroundResource(R.drawable.yourBitmapImage);

GridView

<LinearLayout

 android:orientation="horizontal"

 android:layout_width="wrap_content"

 android:layout_height="fill_parent"

 android:layout_marginTop="2dip"

 android:layout_gravity="center"

 android:gravity="center">

 <GridView

 android:id="@+id/grid"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:numColumns="3"

 android:horizontalSpacing="4dp"

 android:verticalSpacing="4dp"

 android:stretchMode="spacingWidthUniform"/>

</LinearLayout>

Table 3-7. (continued)

72 CHAPTER 3: Lazy Loading Images

However, when lazy loading, you are going to let the imageLoader handle all of the image
downloading, display, and caching for you.

Regardless of which of the three views the user has selected, you will invoke the imageLoader
inside the adapter using the following line of code to populate the lazy loading images:

imageLoader.displayImage(imageURL, imageView);

The displayImage method found in the ImageLoader class takes two parameters:

	imageURL: The full URL of the image on the server. This will be used to
download the image if necessary. It will also be used to generate a hash
map name for storage and retrieval of the image in the disk cache.

	imageView: The location of the image in either the ListView, GridView,
or Gallery. Upon retrieval of the image from memory, disk, or network
download, the bitmap resource will be assigned to the imageView.

Partial code for the ImageLoader.java class is shown below, including the DisplayImage
method. Note that displayImage first tries to retrieve the requested image from the memory
cache. If available, it is assigned to the ImageView using .setImageBitmap. If the image is not
available, it is queued for download and a blank stub image is assigned to the ImageView
temporarily, while the download is processed.

If the download fails or the image cannot be retrieved, the stub image will remain indefinitely
in the view.

public class ImageLoader {
 MemoryCache memoryCache = new MemoryCache();
 FileCache fileCache;
 private Map<ImageView, String> imageViews = Collections.synchronizedMap(
 new WeakHashMap<ImageView, String>());
 ExecutorService executorService;
 Handler handler = new Handler(); //handler to display images in UI thread

 public ImageLoader(Context context) {
 fileCache=new FileCache(context);
 executorService=Executors.newFixedThreadPool(5); // max number of worker threads
 }

 final int stub_id = R.drawable.blank150x225; // Define the stub image

 public void DisplayImage(String url, ImageView imageView) {
 imageViews.put(imageView, url);
 Bitmap bitmap = memoryCache.get(url);
 If (bitmap != null) imageView.setImageBitmap(bitmap);
 else {
 queuePhoto(url, imageView);
 imageView.setImageResource(stub_id);
 }
 }

www.allitebooks.com

http://www.allitebooks.org

73CHAPTER 3: Lazy Loading Images

 ...
 private void queuePhoto(String url, ImageView imageView) {
 // adds new image requests to the queue
 ...
 private Bitmap getBitmap(String url) {
 // code to make network requests using HttpURLConnection
 ...
 private Bitmap decodeFile(File f){
 // code using the BitmapFactory class to scale images automatically (downsampling)
 ...
 public void clearCache() {
 // code which clears all images from memory and disk cache

The hash file names for each of the images stored in the disk cache are derived from the
hash map that is created by the Java Collections.synchronizedMap class as follows. The
WeakHashMap is an implementation of Map with keys that are WeakReferences.

private Map<ImageView, String> imageViews = Collections.synchronizedMap(
 new WeakHashMap<ImageView, String>());

When a user performs a fling motion on the UI, this could trigger many images to be
retrieved. If network downloads are required, you need to manage all the background
threads that may be created. The executorService is the best way to handle this. You assign
a fixed thread pool of five threads using the newFixedThreadPool method.

executorService = Executors.newFixedThreadPool(5); // max number of worker threads

Given the small image sizes relative to device size, 5 is a reasonable number of simultaneous
threads. If you have a much larger screen size, or much smaller images, you may want to
increase this to 10 or even 20 threads. The executorService takes care of all the thread
management for you.

 MemoryCache.java
The memory cache class contains several public methods and one private method. The get
and put methods are the main public methods used by ImageLoader.java to manage the
bitmaps in the memory cache.

	setLimit: Allows the app to specify how much memory to reserve for the
memory cache. The factors that should be considered for the cache limit
were discussed earlier in the chapter.

	get: The main public method used by the ImageLoader to retrieve
images from the memory cache.

	put: The main public method used by the ImageLoader to add new
images to the memory cache.

74 CHAPTER 3: Lazy Loading Images

	checkSize: An internal method used to manage the cache as items are
added. The memory cache limit is set in the constructor method of
MemoryCache.java. It is set at 25% of available memory.

	clear: Allows the app to clear the memory cache. This method is invoked
when the user presses the Delete Files button on the app UI.

The main code for MemoryCache.java is shown next. The LRU cache is set up when the
LinkedHashMap is defined. The map has key/value pairs consisting of the URL string and the
bitmap image. It has the following three parameters:

	Initial capacity: Set to 10 buckets in the hash table. This will be
automatically expanded as the hash table grows.

	Load factor: Set to .75. This value tells the system how full the table can
be before the capacity is automatically increased up to the cache limit.

	Boolean flag: Specifies the ordering mode used by the cache. True
indicates access order, which is needed for LRU. False indicates
insertion order.

See the link in the references if you want to explore more about the LinkedHashMap used by
the MemoryCache.

// Note some of the exception handling has been removed in this excerpt for readability
public class MemoryCache {
 private Map<String, Bitmap> cache = Collections.synchronizedMap(
 new LinkedHashMap<String, Bitmap>(10, 0.75f, true));
 private long size = 0; //current allocated size
 private long limit = 2000000; //max memory in bytes
 public MemoryCache() {
 setLimit(Runtime.getRuntime().maxMemory()/4); // use 25% of available heap size
 }
 public void setLimit(long new_limit) {
 limit = new_limit;
 }
 public Bitmap get(String id) {
 if (!cache.containsKey(id)) return null;
 return cache.get(id);
 }
 public void put(String id, Bitmap bitmap) {
 if (cache.containsKey(id)) size -= getSizeInBytes(cache.get(id));
 cache.put(id, bitmap);
 size += getSizeInBytes(bitmap);
 checkSize();
 }
 private void checkSize() {
 if (size > limit) {
 Iterator<Entry<String, Bitmap>> iter=cache.entrySet().iterator();
 while(iter.hasNext()) {
 Entry<String, Bitmap> entry=iter.next();
 size-=getSizeInBytes(entry.getValue());
 iter.remove();

www.allitebooks.com

http://www.allitebooks.org

75CHAPTER 3: Lazy Loading Images

 if (size <= limit) break;
 }
 }
 }
 public void clear() {
 cache.clear();
 size=0;
 }
 long getSizeInBytes(Bitmap bitmap) {
 if (bitmap == null) return 0;
 return bitmap.getRowBytes() * bitmap.getHeight();
 }
}

 FileCache.java
The file cache class is used by the ImageLoader to retrieve images from the disk cache.
The following methods are implemented by FileCache.java:

	getFile: Retrieves a file from the disc cache based on the URL.

	clear: Deletes all of the files in the disc cache. The FileCache.java class
is implemented as follows:

public class FileCache {
 private File cacheDir;
 public FileCache(Context context) {
 cacheDir = context.getCacheDir();
 if (!cacheDir.exists() cacheDir.mkdirs();
 }
 public File getFile(String url) {
 String filename=String.valueOf(url.hashCode());
 File f = new File(cacheDir, filename);
 return f;
 }
 public void clear(){
 File[] files=cacheDir.listFiles();
 If (files==null) return;
 For (File f:files) f.delete();
 }
}

Note that there is no method to put files into the disc cache. This happens automatically
whenever an image needs to be downloaded over the network. The ImageLoader handles
this work inside the getBitmap() method. When images are downloaded from the server, the
call to Utils.CopyStream utility is where the bitmap is saved to the disk cache directory.

// Get image from web
URL imageUrl = new URL(url);
HttpURLConnection conn = (HttpURLConnection) imageUrl.openConnection();
conn.setConnectTimeout(connectTimeout);
conn.setReadTimeout(readTimeout);

76 CHAPTER 3: Lazy Loading Images

conn.setInstanceFollowRedirects(true);
InputStream is = conn.getInputStream();
OutputStream os = new FileOutputStream(f);
Utils.copyStream(is, os);
os.close();
conn.disconnect();
bitmap = decodeFile(f);

Now that you have the ImageLoader class set up, all that remains is to set up adapters for
each of the views.

 Adapters
Within MainActivity.java you must implement an adapter for each of the lazy load views.
Each of the three adapters handles the following actions:

	Implements ViewHolders for performance

	Calls the ImageLoader class to lazy load each of the images

	Inflates the view for each view type according to the item layout XML file
for each view type

	Retrieves the title and description for each of the images from the
ArrayLists

 Lazy List Adapter
Figure 3-3 shows a close-up view of the ListView items. Each item contains a left-justified
image together with left-justified text for the image title and image description. The layout is
defined in list_item.xml.

Figure 3-3. ListView item layout

The ListView is set up for display on the UI in the mUpdateResults handler within
MainActivity.java. The following code example implements the following steps:

	Sets up the content view

	Creates a local instance list of type ListView

www.allitebooks.com

http://www.allitebooks.org

77CHAPTER 3: Lazy Loading Images

	Assigns the LazyListAdapter to list using the setAdapter method

	Sets the setOnItemClickListener so that a pop-up can be displayed
whenever the user clicks on one of the items in the list

setContentView(R.layout.activity_main_list);
list = (ListView) findViewById(R.id.list);
listAdapter = new LazyListAdapter(MainActivity.this, fetchURL, this);
list.setAdapter(listAdapter);
list.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView parent, View v, final int position, long id) {
 Toast.makeText(MainActivity.this, "List item: " + position, Toast.LENGTH_SHORT).show();
 }
});

The LazyListAdapter code is shown below. Each of the adapters extends BaseAdapter and
implements a ViewHolder to optimize performance. The getView method does the work of
displaying each of the items in the list. The image title and image description are obtained
from the ArrayLists that were set up for them. A LayoutParams object named params
is defined and it allows you to set the height and width of the image. The values in this
example are derived from the device display size so that you have a proportional image size
across different devices.

Images are displayed by invoking the DisplayImage method on the ImageLoader class. All
three of the adapters use this approach.

private class LazyListAdapter extends BaseAdapter {
 private Activity activity;
 private ArrayList<String> data;
 private LayoutInflater inflater=null;
 public ImageLoader imageLoader;
 LinearLayout.LayoutParams params;

 public LazyListAdapter(Context context, ArrayList<String> d, Activity a) {
 super();
 imageLoader=new ImageLoader(context);
 this.data = d;
 inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 activity = a;
 data = d;
 }

 public int getCount() {
 return data.size();
 }
 public Object getItem(int position) {
 return position;
 }
 public long getItemId(int position) {
 return position;
 }

78 CHAPTER 3: Lazy Loading Images

 class ViewHolder {
 public ImageView image;
 public TextView title;
 public TextView desc;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 ViewHolder holder = null;
 // Inflate the view
 if (convertView == null) {
 convertView = inflater.inflate(R.layout.list_item, null);
 holder = new ViewHolder();
 holder.image = (ImageView) convertView.findViewById(R.id.list_image);
 holder.title = (TextView) convertView.findViewById(R.id.list_title);
 holder.desc = (TextView) convertView.findViewById(R.id.list_desc);
 convertView.setTag(holder);
 } else {
 holder = (ViewHolder) convertView.getTag();
 }

 String imageurl = data.get(position);
 holder.image.setTag(imageurl);

 int picHeight = gridPicHeight;
 int picLength = (int) ((float) picHeight / 1.5);

 params = new LinearLayout.LayoutParams(picLength,picHeight);
 params.gravity=Gravity.CENTER;
 params.height=picHeight;
 params.width=picLength;

 holder.image.setLayoutParams(params);
 holder.title.setText(imageTitle.get(position));
 holder.desc.setText(imageDesc.get(position));

 imageLoader.DisplayImage(serverPicBase + imageurl, holder.image);

 return convertView;
 }
}

 Lazy Grid Adapter
Figure 3-4 shows the grid layout for the Lazy Loading app. The layout is a three-image-wide
grid and includes a title below each of the images. In this layout, the description is not
displayed.

www.allitebooks.com

http://www.allitebooks.org

79CHAPTER 3: Lazy Loading Images

Figure 3-4. Lazy Loading app’s sample GridView

The setup is very similar to the ListView. In this case, you define a GridView object and set
its adapter accordingly. Sometimes working with the GridView layout can be tricky. The key
to achieving a proper layout is to set up the following attribute settings:

	Assign the setColumnWidth attribute to the GridView programmatically
as shown below. Set the column width equal to the image length.

	Assign the numColumns="3" as shown in the activity_main_grid.xml file.

setContentView(R.layout.activity_main_grid);
grid = (GridView) findViewById(R.id.grid);
gridAdapter = new LazyGridAdapter(MainActivity.this, fetchURL, this);
grid.setAdapter(gridAdapter);
int picHeight = gridPicHeight;
int picLength = (int) ((float)picHeight / 1.5);
grid.setColumnWidth(picLength);
grid.setOnItemClickListener(new OnItemClickListener() {
public void onItemClick(AdapterView parent, View v, final int position, long id) {
 Toast.makeText(MainActivity.this, "Grid item: " + position, Toast.LENGTH_SHORT).show();
 }
});

80 CHAPTER 3: Lazy Loading Images

The LazyGridAdapter follows the same structure as you saw in the ListView adapter. It uses
a ViewHolder for performance and calls the ImageLoader to display the image.

private class LazyGridAdapter extends BaseAdapter {
 private Activity activity;
 private ArrayList<String> data;
 private LayoutInflater inflater=null;
 public ImageLoader imageLoader;
 LinearLayout.LayoutParams params;

 public LazyGridAdapter(Context context, ArrayList<String> d, Activity a) {
 super();
 imageLoader=new ImageLoader(context);
 this.data = d;
 inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 activity = a;
 data = d;
 }

 public int getCount() {
 return data.size();
 }
 public Object getItem(int position) {
 return position;
 }
 public long getItemId(int position) {
 return position;
 }
 class ViewHolder {
 public ImageView image;
 public TextView title;
 }
 public View getView(int position, View convertView, ViewGroup parent) {
 ViewHolder holder = null;
 // Inflate the view
 if (convertView == null) {
 convertView = inflater.inflate(R.layout.grid_item, null);
 holder = new ViewHolder();
 holder.image = (ImageView) convertView.findViewById(R.id.image);
 holder.title = (TextView) convertView.findViewById(R.id.imgTit);
 convertView.setTag(holder);
 } else {
 holder = (ViewHolder) convertView.getTag();
 }

 String imageurl = data.get(position);
 holder.image.setTag(imageurl);

 int picHeight = Utils.getGridPicHeight(activity);
 int picLength = (int) ((float)picHeight / 1.5);

www.allitebooks.com

http://www.allitebooks.org

81CHAPTER 3: Lazy Loading Images

Figure 3-5. Lazy Loading app gallery view

 params = new LinearLayout.LayoutParams(picLength,picHeight);
 params.gravity=Gravity.CENTER;
 params.height=picHeight;
 params.width=picLength;

 holder.image.setLayoutParams(params);
 holder.title.setText(imageTitle.get(position));
 imageLoader.DisplayImage(serverPicBase + imageurl, holder.image);

 return convertView;
 }
}

 Lazy Gallery Adapter
Figure 3-5 shows the gallery view. Note that the Gallery widget is deprecated as of
Android 4.1 (API 16). While it can still be used, this is an indication that it could be
altogether removed in future versions of Android. Some alternatives for the Gallery widget
are shown in the references.

82 CHAPTER 3: Lazy Loading Images

In the Gallery view, you are displaying a large full screen image, along with a centered title
below each image. As with the GridView, the description is not shown in this view.

The setup for the Gallery view in MainActivity.java is shown below. It is structurally the same
as the ListView.

setContentView(R.layout.activity_main_gallery);
gallery = (Gallery) findViewById(R.id.gallery);
gallAdapter = new LazyGallAdapter(MainActivity.this, fetchURL, this);
gallery.setAdapter(gallAdapter);
gallery.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView parent, View v, final int position, long id) {
 Toast.makeText(MainActivity.this, "Gallery item: " + position, Toast.LENGTH_SHORT).

show();
 }
});

The custom adapter for the Gallery view is called LazyGallAdapter and the code is shown
below. Like the other adapters, it uses a ViewHolder for performance, sets the image size
using LayoutParams, and displays the images using the ImageLoader class.

private class LazyGallAdapter extends BaseAdapter {
 private Activity activity;
 private ArrayList<String> data;
 private LayoutInflater inflater=null;
 public ImageLoader imageLoader;
 LinearLayout.LayoutParams params;

 public LazyGallAdapter(Context context, ArrayList<String> d, Activity a) {
 super();
 imageLoader=new ImageLoader(context);
 this.data = d;
 inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 activity = a;
 data = d;
 }

 public int getCount() {
 return data.size();
 }
 public Object getItem(int position) {
 return position;
 }
 public long getItemId(int position) {
 return position;
 }
 class ViewHolder {
 public ImageView image;
 public TextView title;
 }

www.allitebooks.com

http://www.allitebooks.org

83CHAPTER 3: Lazy Loading Images

 public View getView(int position, View convertView, ViewGroup parent) {
 ViewHolder holder = null;
 // Inflate the view
 if (convertView == null) {
 convertView = inflater.inflate(R.layout.gal_item, null);
 holder = new ViewHolder();
 holder.image = (ImageView) convertView.findViewById(R.id.image);
 holder.title = (TextView) convertView.findViewById(R.id.imgCaption);
 convertView.setTag(holder);
 } else {
 holder = (ViewHolder) convertView.getTag();
 }

 String imageurl = data.get(position);
 holder.image.setTag(imageurl);

 int picHeight = Utils.getGallPicHeight(activity);
 int picLength = (int) ((float)picHeight / 1.5);

 params = new LinearLayout.LayoutParams(picLength,picHeight);

 holder.image.setLayoutParams(params);
 holder.title.setText(imageTitle.get(position));

 imageLoader.DisplayImage(serverPicBase + imageurl, holder.image);

 return convertView;
 }
}

3.8 References

 Android and Java References
	Caching Bitmaps in Android: http://developer.android.com/training/

displaying-bitmaps/cache-bitmap.html

	Java Hash Map: http://docs.oracle.com/javase/6/docs/api/java/
util/HashMap.html

	Alternative for Gallery Widget, Horizontal Scroll View: http://developer.
android.com/reference/android/widget/HorizontalScrollView.html

	Alternative for Gallery Widget, View Pager: http://developer.android.
com/reference/android/support/v4/view/ ViewPager.html

http://developer.android.com/training/displaying-bitmaps/cache-
http://developer.android.com/training/displaying-bitmaps/cache-
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://developer.android.com/reference/android/widget/Horizontal
http://developer.android.com/reference/android/widget/Horizontal
http://developer.android.com/reference/android/support/v4/view/
http://developer.android.com/reference/android/support/v4/view/

84 CHAPTER 3: Lazy Loading Images

 Third-Party Lazy Loading Libraries
	LazyLoader - Fedor Vlasov: https://github.com/thest1/LazyList

	Google Volley Framework and Examples:
https://android.googlesource.com/platform/frameworks/volley
https://github.com/ogrebgr/android_volley_examples

	Square Picasso Library: http://square.github.io/picasso/
https://github.com/square/picasso

	Google Shelves, Open Source Book Management App:
http://code.google.com/p/shelves/

	Universal Image Loader (version 1.9.5.jar):
https://github.com/nostra13/Android-Universal-Image-Loader

	Google Image Cacher Class as Part of the Google I/O App:

	 http://code.google.com/p/iosched/

	 http://goo.gl/1TGHi

https://github.com/google/iosched/tree/master/third_party/
disklrucache

	Facebook Fresco Image Management Library:
https://code.facebook.com/posts/366199913563917/introducing-
fresco-a-new-image-library-for-android/

http://frescolib.org/

	Glide Image Management Library for Android: https://github.com/
bumptech/glide

	Android Query Image Loading Library:
https://code.google.com/archive/p/android-query/wikis/
ImageLoading.wiki

https://github.com/androidquery/androidquery

www.allitebooks.com

https://github.com/thest1/LazyList
https://android.googlesource.com/platform/frameworks/volley
https://github.com/ogrebgr/android_volley_examples
http://square.github.io/picasso/
https://github.com/square/picasso
http://code.google.com/p/shelves/
https://github.com/nostra13/Android-Universal-Image-Loader
http://code.google.com/p/iosched/
http://goo.gl/1TGHi
https://github.com/google/iosched/tree/master/third_party/disklrucache
https://github.com/google/iosched/tree/master/third_party/disklrucache
https://code.facebook.com/posts/366199913563917/introducing-fresco-a-new-image-library-for-android/
https://code.facebook.com/posts/366199913563917/introducing-fresco-a-new-image-library-for-android/
http://frescolib.org/
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://code.google.com/archive/p/android
https://code.google.com/archive/p/android
https://github.com/androidquery/androidquery
http://www.allitebooks.org

85© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7_4

Chapter 4
Remote Crash Logs

4.1 Introduction
When creating and releasing Android apps, crashes are inevitable.

No matter how hard you try to prevent crashes, the nature of the mobile platform combined
with the large number of unknown and untested devices will lead to undesired crashes.

Defining a test methodology is important so you can know when your app is ready to be
shipped. Typically, you might only be able to test your apps on a few devices you own or
have access to. A more robust test methodology would include testing on many devices,
perhaps by making use of a third-party service. Unfortunately, regardless of the resources
you apply to your testing phase, once the app is released, it is inevitably going to crash.

How you manage these crashes is critical to your app’s longevity. Your users can tolerate a
crash, but they expect to see it resolved in future updated releases. You need to know when
crashes happen, and you need to have crash data so you can address the issue.

In this chapter, you will take a look at the popular remote crash logging options available in
Android. You will implement an app that can crash upon request and will send a crash log
including all pertinent information up to the server.

4.2 Chapter Project
The chapter contains the project shown in Table 4-1.

https://doi.org/10.1007/978-1-4842-3333-7_4

86 CHAPTER 4: Remote Crash Logs

4.3 Remote Crash Log Solutions
Similar to lazy loading, remote crash logging is a must-have feature in your app, especially if
you are releasing commercial apps. There is nothing worse than not knowing that your app
is crashing and your customers are unhappy. You need to know when and why your app
is crashing so you can fix the problem before your customers decide to uninstall your app.
With remote crash logging, you will know immediately about any crashes that occur and you
will have the data required to address the issue.

Table 4-2 shows some of the popular approaches for implementing remote crash logging in
Android.

Table 4-1. Chapter Projects

Title of Project File Name Description

Remote Crash Logging crashlog.zip This project displays a map and performs a location
lookup to show the current device location. The map
is implemented using the Open Street Map for Android
library. The main view contains a button that will force
a crash of the app. When the app crashes, a crash log
will be sent up to the server using the ACRA (Application
Crash Report for Android) library.

Table 4-2. Remote Crash Logs Approaches for Android

Library Description Link

Google Firebase
Crash Reporting

Google’s new integrated crash reporting
platform. Helps you diagnose and fix problems
in your app.

https://firebase.google.
com/docs/crash/

Crittercism/

Apteligent

Mobile application performance management
solution. Recently acquired by VMware.

www.apteligent.com

www.vmware.com

BugSense/

Splunk Mint

App analytics platform. Collects crash,
performance, and usage data from your app.

https://mint.splunk.com/

HockeyApp Owned by Microsoft. Platform for mobile app
developers that supports crash reporting. Open
source SDKs for all mobile platforms.

http://hockeyapp.net/
features/crashreports/

ACRA App Crash Report for Android. Free open
source. Interfaces to many back ends. Catches
exceptions and retrieves lots of context data.

http://acra.ch

Crashlytics Claims to be the most powerful and lightest.
Now part of Fabric. Android and iOS support.
Owned by Twitter.

https://try.crashlytics.com

www.allitebooks.com

https://firebase.google.com/docs/crash/
https://firebase.google.com/docs/crash/
http://www.apteligent.com/
http://www.vmware.com/
https://mint.splunk.com/
http://hockeyapp.net/featur
http://hockeyapp.net/featur
http://acra.ch/
https://try.crashlytics.com
http://www.allitebooks.org

87CHAPTER 4: Remote Crash Logs

There has been a lot of consolidation in the area of remote crash logging over the past
several years. A lot of venture capital money has been raised in the areas of analytics and
mobile app performance, and thus many of the entities who originally had libraries for
remote crash logging have been rolled into larger platform offerings.

A brief summary of this activity:

	Google has integrated crash reporting into its Firebase platform.

	Crittercism and Apteligent merged and then were acquired by VMware.

	BugSense and Splunk merged and created a platform called Mint.

	Microsoft bought HockeyApp.

	Twitter bought Crashlytics and rolled in into its Fabric platform.

Each of the services offers a wide variety of features, often much more than just basic
crash reporting. There’s usually a free or basic service, and then you can scale up to a paid
enterprise subscription package with higher services levels and features. If you decide to go
with one of these vendors, check on pricing because some of the top tier packages can run
up to $150 per month or more.

One of the exciting developments in crash reporting is that Google has recently integrated
the function into its Firebase suite. Firebase crash reporting is free and is available for
Android and iOS developers. This will undoubtedly shake up the crash reporting landscape.
Firebase Crash Reporting contains a number of features, including

	Monitoring of fatal and non-fatal errors

	Collecting the data you need to diagnose problems

	Email alerts

	Integration with Firebase Analytics

	Free and easy to set up

To get started with Firebase Crash Reporting in your Android app, explore the Google
information available at the link shown in Table 4-2.

ACRA, which stands for Application Crash Report for Android, has been around for quite
some time. It is a free and open source library that is easy to integrate into your apps.
You will use it in this chapter’s sample project. It does not include all the analytics and
performance features that exist in many of the libraries, but it does a fine job of basic remote
crash logging.

A majority of the apps you are using today probably use one of the approaches listed above
to implement remote crash logging.

88 CHAPTER 4: Remote Crash Logs

 How Crash Logging Works
Remote crash logging works by implementing a handler for uncaught exceptions. This Java
feature allows you to take action when your app crashes due to an uncaught exception. The
following code shows the basic outline for such a handler:

public class DefaultExceptionHandler implements UncaughtExceptionHandler{
 private UncaughtExceptionHandler mDefaultExceptionHandler;

 //constructor
 public DefaultExceptionHandler(UncaughtExceptionHandler pDefaultExceptionHandler)
 {
 mDefaultExceptionHandler= pDefaultExceptionHandler;
 }
 public void uncaughtException(Thread t, Throwable e) {
 //do some action like writing to file or upload somewhere

 //call original handler
 mStandardEH.uncaughtException(t, e);
 }
}

All of the third-party Android libraries use this same basic approach. They are able to
capture app exceptions by implementing the Java UncaughtExceptionHandler. Using this
approach, they are able to intercept the familiar app crash sequence and provide two key
functions:

	Notify you of the crash, usually in a more stylish and friendly manner
than the Android hard crash you are used to.

	Upload key context data to a server, so you can analyze the crash and
hopefully provide a fix.

Once an exception is caught, the library usually provides several options for you, depending
on how you would like to notify the user. Typically, at least the following crash notification
options are available:

	Silent notification: When the app crashes, reports are automatically sent
up to the server without notifying the user. A well-behaved app should
allow users to opt-in or approve this transmission of data.

	Toast notification: When the app crashes, a toast notification is
displayed for the user in place of the typical Android crash notification.
The toast can display any text you wish to communicate. You will use
this notification method in the sample project.

	Dialog notification: Upon app crash, the Android dialog is displayed. The
contents can be customized, such as including a form that allows the
user to submit additional information about the crash circumstances.

	Android notification bar: Upon crash, a notification is sent to the
Android notification bar. This method is not commonly used. It has been
deprecated in the ACRA library, but is still available if you wish to use it.

www.allitebooks.com

http://www.allitebooks.org

89CHAPTER 4: Remote Crash Logs

When a crash occurs, the library will perform system calls to obtain as much pertinent
information as possible. The collected information is then uploaded to the server, preferably
with the permission of the users, in order to help the developer understand and debug the
crash. The most important data you shall see is the stack trace data.

4.4 App Crash Report for Android
The free open source ACRA library is a great way to get started with remote crash logging.
At some point, you may decide you need analytics and performance monitoring for your
apps. However, for basic remote crash reporting, ACRA does a fine job.

 ACRA Overview
The latest version of ACRA is acra-4.10.0. Documentation for ACRA can be found at
http://acra.ch. For source and downloads, visit the GitHub page at https://github.com/
ACRA/acra.

If you are using Android Studio as your development environment, ACRA can be integrated
into your Android project as a dependency with Maven or Gradle. For older development
environments, the ACRA library (JAR or AAR file) can be downloaded and included directly
into your project.

For Android Studio, Table 4-3 shows the dependencies that need to be included in your
project to use ACRA.

Table 4-3. ACRA Build Integration

Maven Gradle

<dependency>

 <groupId>ch.acra</groupId>

 <artifactId>acra</artifactId>

 <version>4.8.5</version>

 <type>aar</type>

</dependency>

dependencies {

 ... your other dependencies ...

 compile 'ch.acra:acra:4.10.0'

}

The ACRA wiki page on GitHub contains a Getting Started page as well as an Advanced
Usage page that provides everything you will need to know. Links are included in the chapter
references.

Aside from notifying the user when a crash occurs, the most important task a remote crash
log implementation needs to do is send relevant crash data up to the server.

http://acra.ch/
https://github.com/ACRA/acra
https://github.com/ACRA/acra

90 CHAPTER 4: Remote Crash Logs

Table 4-4 shows a list of the all the variables that are available in ACRA. In the chapter
project, you will implement the app and server code required to send and receive all of these
variables. These variables each contain valuable information about the device and the state
of the system and running app at the time of the crash. The STACK_TRACE is the most
important of the ACRA data fields.

ACRA is a lightweight solution. Integrating the library into your app only adds about 150KB
to the size of your app. ACRA only provides crash data and does not provide any app
analytics, nor does it help you capture information about Application Not Responding (ANR)
errors within your app.

There are a couple of things to note when setting up your manifest.xml file. You will need to
add the following permissions:

	android.permission.INTERNET

	android.permission.READ_LOGS

These permissions are required to access log data and send it up to the server. In the
chapter project, additional permissions are required for the mapping functions you will
incorporate into the app.

Lastly, in order to implement ACRA, you will need to set up the MyApplication class file,
which I will cover in the chapter project.

Table 4-4. ACRA Available Data Fields

ANDROID_VERSION DROPBOX RADIOLOG

ANDROID_VERSION_CODE DUMPSYS_MEMINFO REPORT_ID

APP_VERSION_NAME ENVIRONMENT SETTINGS_GLOBAL

APPLICATION_LOG EVENTSLOG SETTINGS_SECURE

ANDROID_VERSION DROPBOX RADIOLOG

AVAILABLE_MEM_SIZE FILE_PATH SETTINGS_SYSTEM

BRAND INITIAL_CONFIGURATION SHARED_PREFERENCES

BUILD INSTALLATION_ID STACK_TRACE

BUILD_CONFIG IS_SILENT THREAD_DETAILS

CRASH_CONFIGURATION LOGCAT TOTAL_MEM_SIZE

CUSTOM_DATA MEDIA_CODEC_LIST USER_APP_START_DATE

DEVICE_FEATURES PACKAGE_NAME USER_COMMENT

DEVICE_ID PHONE_MODEL USER_CRASH_DATE

DISPLAY PRODUCT USER_EMAIL

www.allitebooks.com

http://www.allitebooks.org

91CHAPTER 4: Remote Crash Logs

4.5 ACRA Back-End Server
ACRA allows you to send reports to a back-end server of your choice. ACRA allows you to
send reports to a server using several different methods, including the following:

	POST request to your own self-hosted script.

	Send reports by email.

	Send JSON-encoded crash variable content to your own self-hosted
script.

	Implement your own sender.

	Use a variety of third-party senders and server back ends.

In the chapter project, you will implement your own self-hosted script to receive and store
the crash data from the app.

The official backend for ACRA is Acralyzer. It was created and is maintained by the author
of ACRA. It can be hosted on your own server. The only requirement for running Acralyzer is
that you install CouchDB as the database engine. The good thing about Acralyzer is that it
guarantees to display all of the possible data collected by ACRA.

If you do not wish to use Acralyzer and you also do not want to spend your time writing
back-end code for managing your crash log files, there are a number of other back-end
solutions that can simplify the task.

Because ACRA is open source, you are free to write your own back end and many people
have. Table 4-5 shows a list of some of the ACRA back-end options available. For a
complete list of back-end solutions, see the ACRA wiki page.

Note that Google Forms and Google Docs are no longer supported as back ends for ACRA.

Table 4-5. ACRA Back-End Solutions

Back-End Solution Description

Acralyzer Official open source backend for ACRA.

BugSense Commercial cross-platform analysis platform.

HockeyApp Commercial cross-platform crash report
collection solution from Microsoft.

Bugify Commercial PHP bug and issue tracker.

Zubhium Android platform dedicated to crash report
management.

ACRAViz, Crash Reports Viewer, Crash Reports
Dashboard, ACRA PHP Mailer, pacralyzer

PHP hosting solutions. There are many free
open source ACRA PHP back ends.

Acracadabra, Jonny Crash Ruby hosting solutions.

ACRA web.py, Django ACRA Python hosting solutions.

Acra-reporter, sdimmick android crash reports Google AppEngine hosting solutions.

92 CHAPTER 4: Remote Crash Logs

In the sample project, you will implement a self-hosted script to receive your crash log
reports from the app. For the project, you will use PHP, but you can use the scripting
language of your choice on the back-end server.

4.6 Open Street Map for Android
Although the main topic of this chapter is remote crash logging, you are going to need an
app to crash. Rather than just implementing a trivial activity that crashes, let’s try to do
something more useful. That is where Open Street Map for Android (OSMdroid) comes in. I
will cover all the code for implementing OSMdroid in this section.

OSMdroid’s MapView is a replacement for the Android MapView class. The latest version of
OSMdroid is version 5.6.5 and the download links for osmdroid-master are included in the
chapter references.

Like the ACRA library, you can integrate OSMdroid into your project using the Maven or the
Gradle build system if you are working in Android Studio.

If you wish to get a feel for the OSMdroid capabilities, you can download the sample app
called OpenStreetMapViewer. This app demonstrates most of the capabilities of the library.

Like the MapView class, the OSMdroid library provides overlays for items that can be
included on your maps. Figure 4-1 shows how the compass, minimap, myLocation, and
ScaleBar can be overlayed onto any map. Similarly, you can also implement a list of markers
if you have more than one location to highlight.

	MyLocation overlay: The default OSMdroid “person” icon will be
displayed on the MapView in the center of the map to designate the
current location of the device.

	ScaleBar overlay: The scale bar will appear centered at the top of the
MapView. It will provide the numerical scale values that convey the
zoom level information for the current view.

	Minimap overlay: The minimap overlay will display a small version of the
entire map in the bottom right corner of the view.

	Compass overlay: The compass overlay is displayed in the upper left
corner of the view. The compass will use the device sensors to display
an indication of North direction.

Figure 4-1. Open Street Map overlays: compass, ScaleBar, MyLocation, and minimap

www.allitebooks.com

http://www.allitebooks.org

93CHAPTER 4: Remote Crash Logs

One of the nice things about using OSMdroid maps in your apps is that the library allows
you to do some things that are not easily accomplished with the Android MapView class.
Some advantages of using the OSMDroid MapView class are as follows:

	No third-party dependency is required because the OSMdroid MapView
class is a replacement for Google’s MapView class.

	Boundaries can be defined to restrict the scrolling of the map.

	Offline map tiles are supported. This allows your map to be functional
even when connectivity is unavailable. The Android MapView class has
made some progress in this area with the recent addition of offline tiles.

	Several tile sources are available. Figure 4-2 shows a summary of some
of the tile sources you can use.

	Custom tiles are supported. You can create your own tiles and store
them locally or serve them over the network.

The code required to implement the map and overlays is straightforward and follows the
Google Maps API closely. In order to use the library, the MapView and overlay objects can
be created as shown below:

private MapView mMapView;
private IMapController mapController;
private ScaleBarOverlay mScaleBarOverlay;
private MyLocationNewOverlay mLocationOverlay;
private RotationGestureOverlay mRotationGestureOverlay;
private MinimapOverlay mMinimapOverlay;

Figure 4-2. Open Street Maps for Android tile sources

94 CHAPTER 4: Remote Crash Logs

mMapView = (MapView) findViewById(R.id.mapview);
mMapView.setBuiltInZoomControls(true);
mMapView.setMultiTouchControls(true);
mMapView.setClickable(false);
mMapView.setTileSource(TileSourceFactory.MAPQUESTOSM);

Note that the setTileSource method is used to specify the desired tile source for the map. One
of the nice things about OSM is that you can adjust the tile source to your liking. Figure 4-2
shows some of the tile sources available for the library. (Note that some of the tile sources, such
as MapQuest, are now requiring users to register before they can gain access to the tiles.)

Displaying a map requires a MapView control to be included in your layout. In the chapter
project, the following XML is included within the main view to hold the MapView inside a
RelativeLayout:

<RelativeLayout
 android:id="@+id/MapViewLayout"
 android:padding="0dip"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent" >
 <org.osmdroid.views.MapView
 android:id="@+id/mapview"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</RelativeLayout>

Centering the map at the current device location and setting a zoom level for the map is
accomplished with the mapController object. For a more precise location, you can use the
LocationManager.GPS_PROVIDER.

mapController = mMapView.getController();
LocationManager locationManager = (LocationManager) this.getSystemService(Context.LOCATION_
SERVICE);
String locationProvider = LocationManager.GPS_PROVIDER;
GeoPoint p1;
try {
 Location lastKnownLocation = locationManager.getLastKnownLocation(locationProvider);
 int lat = (int) (lastKnownLocation.getLatitude() * 1E6);
 int lng = (int) (lastKnownLocation.getLongitude() * 1E6);
 p1 = new GeoPoint(lat, lng);
 mapController.setCenter(p1);
} catch (SecurityException e) {
 // Let the user know there was a problem with GPS
}
mapController.setZoom(14);

Each of the overlays displayed in Figure 4-1 can be placed on any OSM map by including
the following code:

this.mLocationOverlay = new MyLocationNewOverlay(new GpsMyLocationProvider(this), mMapView);
mMapView.getOverlays().add(this.mLocationOverlay);
mLocationOverlay.enableMyLocation();

www.allitebooks.com

http://www.allitebooks.org

95CHAPTER 4: Remote Crash Logs

mScaleBarOverlay = new ScaleBarOverlay(mMapView);
mScaleBarOverlay.setCentred(true);
mScaleBarOverlay.setScaleBarOffset(dm.widthPixels / 2, 10);
mMapView.getOverlays().add(this.mScaleBarOverlay);

mMinimapOverlay = new org.osmdroid.views.overlay.MinimapOverlay(this,
mMapView.getTileRequestCompleteHandler());
mMinimapOverlay.setWidth(dm.widthPixels / 5);
mMinimapOverlay.setHeight(dm.heightPixels / 5);
mMapView.getOverlays().add(this.mMinimapOverlay);

mCompassOverlay = new org.osmdroid.views.overlay.compass.CompassOverlay(this, mMapView);
mCompassOverlay.enableCompass();
mMapView.getOverlays().add(this.mCompassOverlay);

For more advanced features of OSMdroid, such as enabling rotation gestures, placing icons
on maps with click listeners, or using your own tile sets, refer to the wiki page on GitHub.

While OSMdroid is not a line-for-line replacement for Google’s MapView, it is very similar. If
you find example code that uses Google’s MapView, porting the code to the OSMdroid class
will not be difficult.

4.7 Remote Crash Log App
To demonstrate remote crash logging with ACRA, you will implement a “crash feature” within
an app that implements the Open Street Map (OSM) alternative to Google Maps to display
the current location of the device on a map.

 Remote Crash Log App Overview
Figure 4-3 shows a screenshot of the Remote Crash Log app. The main layout contains a
MapView that fills the layout and two buttons centered at the bottom of the map:

	Exit: When pressed, the app will be terminated.

	Crash: When pressed, a crash will be triggered by executing code that
causes an array out-of-bounds exception that is not caught by any
exception handler.

96 CHAPTER 4: Remote Crash Logs

Similar to Google Maps, the user is able to navigate the map by swiping in any direction, and
zoom in or out by pressing the zoom controls, which appear upon any touch event.

Whenever the Crash button is pressed, an exception is generated and the app will crash.
In the project, ACRA is configured to notify the user by displaying a toast notification
while suppressing the standard Android crash message. Figure 4-4 shows how the crash
notification is displayed after the Crash button is pressed.

Figure 4-3. Remote Crash Log app screenshot including overlays

www.allitebooks.com

http://www.allitebooks.org

97CHAPTER 4: Remote Crash Logs

As with any toast message, the notification will be displayed for several seconds before the
app is terminated and the crash log information is sent up to the server. The text of the toast
notification is defined in the res/layouts/strings.xml file. The message content of the text box
can be defined by setting the string variable as follows:

<string name="msg_crash_text">\n\n\n\nSystem Error.\n\n\n\n Unfortunately, the App has unexpectedly
stopped, but dont worry, the crash logs have been sent to the server.\n\n\n\n\n\n\n\n</string>

In Figure 4-4, the extra line spacing before and after the text are created by including extra
blank lines in the strings using the \n representation.

The message text is set up similarly if you configure ACRA for other notification modes
including dialog notification or notification bar notification.

 Remote Crash Log Project
Table 4-6 shows the layout of the crash log project. It is a relatively simple project and
contains only two source files, a couple of layout files, and two libraries.

Figure 4-4. ACRA crash toast message

98 CHAPTER 4: Remote Crash Logs

The main activity of the project is MainActivity.java. It handles all of the logic of the app
including implementation for the OSM map display.

There are two libraries included in the app: acra-4.8.5.jar is used to implement the remote
crash logging function, while classes.jar handles the OSM mapping functionality.

 AndroidManifest.xml
Within the manifest file, you need to do the following:

	The application element needs to point to your application class.

	Configure the application element. The android:name attribute must
point to your application class.

	Define your MainActivity with intent-filter.

	Declare the INTERNET permission if you are sending other than by email.

	Declare the READ_LOGS permission, which is necessary for ACRA to
access system logs.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.wickham.android.crashlog"
 android:versionCode="1"
 android:versionName="1.0">
 <application
 android:icon="@drawable/ic_launcher"
 android:allowBackup="false"
 android:name="MyApplication"
 android:theme="@style/AppTheme"
 android:label="@string/app_name">
 <activity
 android:name="com.wickham.android.crashlog.MainActivity"
 android:label="@string/app_name"
 android:noHistory="true"
 android:uiOptions="splitActionBarWhenNarrow">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.READ_LOGS"/>
</manifest>

Table 4-6. Remote Crash Log Project Setup

Sources Resources/ Res/libs

MainActivity.java

MyApplication.java

layout/main_layout.xml

values/strings.xml

acra-4.8.5.jar

classes.jar (OSMdroid)

www.allitebooks.com

http://www.allitebooks.org

99CHAPTER 4: Remote Crash Logs

The application element in the manifest file will be defined next as you create a new
application class.

 MyApplication.java
For ACRA to work, you need to create an application class inside the package root. All of the
ACRA configuration is done within this MyApplication class. It should extend android.app.
Application. In the MyApplication class, you then define the @ReportCrashes variable. This is
where you configure ACRA. The following elements will be defined:

	Custom report content, which is included within a String Array

	The ACRA notification mode, shown here as a Toast

	The HTTP sending details, including method and URL

The following code shows the complete code for MyApplication.java:

Package com.wickham.android.crashlog;

import org.acra.annotation.ReportsCrashes;
import org.acra.*;
import android.app.Application;

@ReportsCrashes(formKey = "",
 customReportContent = { ReportField.REPORT_ID,
 ReportField.APP_VERSION_CODE,
 ReportField.APP_VERSION_NAME,
 ReportField.PACKAGE_NAME,
 ReportField.PHONE_MODEL,
 ReportField.ANDROID_VERSION,
 ReportField.STACK_TRACE,
 ReportField.TOTAL_MEM_SIZE,
 ReportField.AVAILABLE_MEM_SIZE,
 ReportField.DISPLAY,
 ReportField.USER_APP_START_DATE,
 ReportField.USER_CRASH_DATE,
 ReportField.LOGCAT,
 ReportField.DEVICE_ID,
 ReportField.SHARED_PREFERENCES },

 formUri = "http://www.yourserver.com/crashed.php",
 httpMethod = org.acra.sender.HttpSender.Method.POST,
 mode = ReportingInteractionMode.TOAST,
 resToastText = R.string.msg_crash_text)

public class MyApplication extends Application {
 @Override
 public void onCreate() {
 ACRA.init(this);
 super.onCreate();
 }
}

100 CHAPTER 4: Remote Crash Logs

The @ReportCrashes variable contains a number of name/value pairs that are used to
configure ACRA:

	customReportContent: String array of all the data fields that will be
reported. Refer to Table 4-4 for a complete list of fields available. The
fields included will be referenced later in the server-side script so they
can be retrieved and saved on the server. This example includes 15 of
the fields, but you could include any of the items from Table 4-4.

	formURI: Specifies the URL of the receiving script on the server.

	httpMethod: Specifies the sending method to the receiving script.

	mode: Specifies the notification mode. For ACRA, this can be DIALOG,
NOTIFICATION, SILENT, or TOAST.

	resToastText: Specifies the text message to be included in the
notification.

 MainActivity.java
The MainActivity will be used to implement the OSM map and its overlays. It will also allow
you to force a crash that will be handled by ACRA through the MyApplication class.

The layout is specified in main_layout.xml. It includes a MapView nested inside a
RelativeLayout wrapped in the main LinearLayout. See Listing 4-1.

Listing 4-1. main_layout.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/linearLayoutMain"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <RelativeLayout
 android:id="@+id/MapViewLayout"
 android:padding="0dip"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent" >
 <org.osmdroid.views.MapView
 android:id="@+id/mapview"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 </RelativeLayout>
</LinearLayout>

Aside from the OSMdroid code, which was covered earlier in the chapter, the only other
functionality handled by MainActivity are the two buttons placed at the bottom of the
MapView. Those buttons are handled by the onCreateOptionsMenu.

www.allitebooks.com

http://www.allitebooks.org

101CHAPTER 4: Remote Crash Logs

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.actions, menu);
 return(super.onCreateOptionsMenu(menu));
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.exit) {
 finish();
 return(true);
 }
 if (item.getItemId() == R.id.crash) {
 // simulate a crash right here, lets do an Index out of bounds condition ...
 String[] crashArray = new String[] {"one","two"};
 crashArray[2] = "oops";
 return(true);
 }
 return(super.onOptionsItemSelected(item));
}

The crash is accomplished by defining a string array with two members and then trying to
reference a third member. That will certainly throw an indexOutOfBoundsException, which
will be caught by ACRA and reported up to the server.

The labels for the two buttons are defined in the actions.xml file, shown in Listing 4-2.

Listing 4-2. actions.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/exit"
 android:showAsAction="always|withText"
 android:title="@string/exit"/>
 <item
 android:id="@+id/crash"
 android:showAsAction="always|withText"
 android:title="@string/crash"/>
</menu>

Once you have the app set up, all that remains is to choose and set up your ACRA back end.

 PHP Self-Hosted Script
When ACRA intercepts a crash, it will POST the requested content to the server URL
specified in the MyApplication.java class. All of the crash log data can then be received by
the script using the PHP $_POST method.

102 CHAPTER 4: Remote Crash Logs

On the server, you will create a PHP script called Crashed.php to perform the following
functions:

	Calculate the current time on the server. This will be used to generate
the filename for the crash data file.

	Open the file for writing in a subdirectory specified by the pathname
stored in the variable $FileLog.

	Write out each of the ACRA variable names and contents onto a new
line. This will be accomplished using the PHP $_POST environment
variable to read the data passed by ACRA.

	Close the file.

 Crashed.php
The following code shows the complete PHP file. In this example, you are creating a file in
a directory on the server called /crashlogs. The format of the filename is MMddhhmmss.txt,
where MM=month, dd=day, hh=hour, mm=minute, ss=second.

<?php
 $dt = new DateTime('now', new DateTimeZone('Asia/Hong_Kong'));
 // save the log to a filename with MMDDHHMMSS such as: "1123132456.txt"
 $orderday = substr($dt->format('Y-m-d H:i:s'),8,2);
 $ordermon = substr($dt->format('Y-m-d H:i:s'),5,2);
 $ordertim = substr($dt->format('Y-m-d H:i:s'),11,2) . substr($dt->format('Y-m-d H:i:s'),14,2)
 . substr($dt->format('Y-m-d H:i:s'),17,2);
 $fname = $ordermon . $orderday . $ordertim . ".txt";
 $FileLog = $_SERVER['DOCUMENT_ROOT'] . "/crashlogs/" . $fname;
 $HandleLog = fopen($FileLog, 'a');

 fwrite($HandleLog, "REPORT_ID=" . $_POST['REPORT_ID'] . "\r\n");
 fwrite($HandleLog, "APP_VERSION_CODE=" . $_POST['APP_VERSION_CODE'] . "\r\n");
 fwrite($HandleLog, "APP_VERSION_NAME=" . $_POST['APP_VERSION_NAME'] . "\r\n");
 fwrite($HandleLog, "PACKAGE_NAME=" . $_POST['PACKAGE_NAME'] . "\r\n");
 fwrite($HandleLog, "PHONE_MODEL=" . $_POST['PHONE_MODEL'] . "\r\n");
 fwrite($HandleLog, "ANDROID_VERSION=" . $_POST['ANDROID_VERSION'] . "\r\n");
 fwrite($HandleLog, "STACK_TRACE=" . $_POST['STACK_TRACE'] . "\r\n");
 fwrite($HandleLog, "TOTAL_MEM_SIZE=" . $_POST['TOTAL_MEM_SIZE'] . "\r\n");
 fwrite($HandleLog, "AVAILABLE_MEM_SIZE=" . $_POST['AVAILABLE_MEM_SIZE'] . "\r\n");
 fwrite($HandleLog, "DISPLAY=" . $_POST['DISPLAY'] . "\r\n");
 fwrite($HandleLog, "USER_APP_START_DATE=" . $_POST['USER_APP_START_DATE'] . "\r\n");
 fwrite($HandleLog, "USER_CRASH_DATE=" . $_POST['USER_CRASH_DATE'] . "\r\n");
 fwrite($HandleLog, "LOGCAT=" . $_POST['LOGCAT'] . "\r\n");
 fwrite($HandleLog, "DEVICE_ID=" . $_POST['DEVICE_ID'] . "\r\n");
 fwrite($HandleLog, "SHARED_PREFERENCES=" . $_POST['SHARED_PREFERENCES'] . "\r\n");
 fclose($HandleLog);
 fclose($Handle);
?>

www.allitebooks.com

http://www.allitebooks.org

103CHAPTER 4: Remote Crash Logs

Assuming your app has connectivity, whenever the app crashes, a text file will be written
on the server with the time-stamped filename into the directory specified by the $FileLog
variable.

The following code shows what one of these files might look like. The STACK_TRACE
variable is particularly useful. As you can see, it includes critical crash information such
as the ArrayIndexOutOfBounds exception that caused your app to crash. This critical
information will allow you to easily resolve the software defect that caused the crash. Note
that the same 15 fields are included in the PHP file defined in the MyAppliclation.java class.

APP_VERSION_CODE=1
APP_VERSION_NAME=1.0
PACKAGE_NAME=com.wickham.android.crashlog
ANDROID_VERSION=4.3
STACK_TRACE=java.lang.ArrayIndexOutOfBoundsException: length=2; index=2
 at com.wickham.android.crashlog.MainActivity.onOptionsItemSelected(
 MainActivity.java:103)
 at android.app.Activity.onMenuItemSelected(Activity.java:2566)
 at com.android.internal.policy.impl.PhoneWindow.onMenuItemSelected(PhoneWindow.java:986)
 at com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected
 (MenuBuilder.java:735)
 at com.android.internal.view.menu.MenuItemImpl.invoke(MenuItemImpl.java:152)
 at com.android.internal.view.menu.MenuBuilder.performItemAction(MenuBuilder.java:874)
 at com.android.internal.view.menu.ActionMenuView.invokeItem(ActionMenuView.java:547)

at com.android.internal.view.menu.ActionMenuItemView.onClick (ActionMenuItemView.java:115)
 at android.view.View.performClick(View.java:4240)
 at android.view.View$PerformClick.run(View.java:17721)
 at android.os.Handler.handleCallback(Handler.java:730)
 at android.os.Handler.dispatchMessage(Handler.java:92)
 at android.os.Looper.loop(Looper.java:137)
 at android.app.ActivityThread.main(ActivityThread.java:5103)
 at java.lang.reflect.Method.invokeNative(Native Method)
 at java.lang.reflect.Method.invoke(Method.java:525)
 at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:737)
 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:553)
 at dalvik.system.NativeStart.main(Native Method)

LOGCAT=10-01 12:07:36.465 D/OpenGLRenderer(1653): Enabling debug mode 0
10-01 12:07:36.495 I/org.osmdroid.tileprovider.LRUMapTileCache(1653): Tile cache increased . . .
10-01 12:07:36.515 D/dalvikvm(1653): GC_FOR_ALLOC freed 19K, 3% free 10079K/10308K, . . .
10-01 12:07:36.535 D/dalvikvm(1653): GC_FOR_ALLOC freed 38K, 3% free 10370K/10588K, . . .
10-01 12:07:36.555 D/dalvikvm(1653): GC_FOR_ALLOC freed <1K, 2% free 10659K/10848K, . . .

If your app has a large number of users, you may find that managing all the crash log text
files that are written to the server is not trivial. Rather than write out text files, you may wish
to store these crash log files into a database or use one of the third-party back ends to
manage the data.

Using a remote crash logging solution such as ACRA or another solution available from
third-party vendors allows you to take control of your crashes. It is inevitable that your apps
will crash, so when they do, you need to be aware of the situation and be able to provide
fixes through app updates so future similar crashes can be avoided.

104 CHAPTER 4: Remote Crash Logs

4.8 References

 Android
	Obtain Device Location: http://developer.android.com/guide/topics/

location/strategies.html

 Google Firebase
	Firebase Crash Reporting: https://firebase.google.com/docs/crash/

 OSMdroid
	Open Street Map for Android: https://github.com/osmdroid/osmdroid

 Third Party
	ACRA (Application Crash Report for Android): http://acra.ch

	ACRA Back Ends: https://github.com/ACRA/acra/wiki/Backends

	ACRA Advanced Topics: http://github.com/ACRA/acra/wiki/
AdvancedUsage

	Crittercism/Apteligent: www.apteligent.com

	Recently acquired by VMware, so possible future updates:
www.vmware.com/company/acquisitions/apteligent.html

	Bug Sense/Splunk Mint: https://mint.splunk.com/

	HockeyApp: http://hockeyapp.net/features/crashreports/

	Crashlytics: https://try.crashlytics.com

www.allitebooks.com

http://developer.android.com/guide/topics/location/obtaining-user-location.html
http://developer.android.com/guide/topics/location/obtaining-user-location.html
https://firebase.google.com/docs/crash/
https://github.com/osmdroid/osmdroid
http://acra.ch/
https://github.com/ACRA/acra/wiki/Backends
http://github.com/ACRA/acra/wiki/AdvancedUsage
http://github.com/ACRA/acra/wiki/AdvancedUsage
http://www.apteligent.com/
http://www.vmware.com/company/acquisitions/apteligent.html
https://mint.splunk.com/
http://hockeyapp.net/features/crashreports/
https://try.crashlytics.com/
http://www.allitebooks.org

105© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7_5

Chapter 5
Uploading and Emailing

5.1 Introduction
Earlier in the book, I covered connectivity, including HTTP and image lazy loading, and then
you learned how remote crash logs can be sent up to a server when your apps crash. While
these patterns are extremely useful, some applications will have additional connectivity
requirements, such as uploading files or sending emails.

In the Server Spinner project, you will implement a server-based spinner. The project will
implement basic camera functionality to take a picture, which can then be uploaded to the
server. As new pictures are uploaded to the server, the contents of the server spinner will be
updated to include the newly uploaded images. The chapter will cover the back-end server
setup to achieve this.

In the Emailing App project, you will learn how to send emails from your apps. Whether you
are trying to gather feedback from your users or just send a message to an outside party,
email is one of the simplest ways to accomplish a sharing functionality. The chapter project
will cover three methods to send emails.

5.2 Chapter Projects
This chapter contains the projects shown in Table 5-1.

https://doi.org/10.1007/978-1-4842-3333-7_5

106 CHAPTER 5: Uploading and Emailing

5.3 Overview
Android contains many widgets that can be used as user interface elements in your apps.
The spinner widget is popular because it allows you to present multiple options for the user
without taking up large amounts of precious screen real estate.

Figure 5-1 shows an example of a typical Android spinner widget.

Table 5-1. Chapter Projects

Title of Project File Name Description

Server Spinner ServerSpinner.zip The project implements a server-based version of the
Android spinner widget. The server spinner contents are
downloaded from the server. The contents of the spinner
can be dynamically updated. The app demonstrates how
to upload files. Pictures can be taken with the camera and
then uploaded.

Emailing Emailing.zip If you wish to include email functionality within your apps,
there are three different approaches that can be used. The
Emailing project demonstrates how each of them can be
implemented.

Figure 5-1. Android spinner widget

A typical Android spinner loads the drop-down resource tags internally within the app. These
tags are usually static string values that do not change. In the case of the Server Spinner
app, the spinner content values will be dynamically downloaded from the server. The user
will be able to take pictures using the smartphone camera and upload these pictures to the
server. Each time a new picture is uploaded, it will become visible on the drop-down spinner,
hence the term “server spinner.”

The chapter also includes a project that implements email sending. Working with email
within your apps has several advantages:

	Minimal server setup is required because most users already have
email configurations.

www.allitebooks.com

http://www.allitebooks.org

107CHAPTER 5: Uploading and Emailing

	Email can contain almost any content, including attachments and
diverse character sets.

	Email clients and the protocols they require are already present on
almost every smartphone.

The chapter project will implement emailing using three different approaches:

	Intent service, which provides an interface to local device email clients

	Interface to an external mail server using the JavaMail API library

	Interface to an external mail server via a dedicated PHP script

5.4 Server Spinner: Server Setup
To implement the server spinner, you require some simple functionality on the server side.
The following PHP scripts are required on the server:

	return204.php

	listfiles-a.php

	deletefile.php

	uploadfile.php

To determine if your server is reachable, you will implement the HTTP status code 204
check, which was covered in Chapter 2. See Listing 5-1 for the return204.php code.

Listing 5-1. return204.php

<?php
http_response_code(204);
?>

The basic function to populate the spinner widget in the app is handled by a PHP script
that lists out the files in a directory on the server. The script in Listing 5-2, listfiles-a.php,
handles this task. The script needs to reside in the directory of the files you wish to list. Note
that some files need to be excluded because you only want to list the image files. The if
statement in the script handles the file exclusion by excluding specific filenames based on a
pattern match.

Let’s display the filenames in alphabetical order. This will make it easier to review the
filenames when they appear in the spinner. The PHP asort function is used to accomplish the
alphabetic sequencing.

http://dx.doi.org/10.1007/978-1-4842-3333-7_2

108 CHAPTER 5: Uploading and Emailing

Listing 5-2. listfiles-a.php

<?php
$i = 0;
if ($handle = opendir('.')) {
 while (false !== ($file = readdir($handle))) {
 if ($file != "." &&
 $file != ".." &&
 $file != "listfiles-a.php" &&
 $file != "listfiles.php" &&
 $file != "phpfiles" &&
 $file != "deletefile.php" &&
 $file != "uploadfile.php" &&
 $file != "return204.php" &&
 $file != "deletefile.html" &&
 $file != "uploadfile.html") {
 $thelist = $thelist.$file." ";
 $files[$i] = $file;
 $i = $i + 1;
 }
 }
 closedir($handle);
}
// sort the files alphabetically
asort($files);
foreach ($files as $a) {echo $a." "; }
?>

The app allows users to delete items that appear in the server spinner. In order to
accomplish this, you need to be able to delete the associated file on the server. The
deletefile.php script handles this function.

From a security standpoint, deleting files on the server with a script can be potentially
dangerous. Because of this, you add a layer of security by building a list of files that can
be deleted, and then check if the requested file is contained in this list. Only when a match
occurs can the file be deleted.

The script receives the filename of the file to be deleted. The PHP str_replace function is
used to see if the requested file is contained in the list of acceptable files. A match occurs if
the returned count is greater than zero. In this case, the PHP unlink function is used to delete
the file. See Listing 5-3.

Listing 5-3. deletefile.php

<?php
$file_to_delete = $_POST['inputfile'];
$full_file_path = "/yourserverpath/".$file_to_delete;
// build the list of files in the directory which can be deleted
$i = 0;
if ($handle = opendir('..')) {
 while (false !== ($file = readdir($handle))) {

www.allitebooks.com

http://www.allitebooks.org

109CHAPTER 5: Uploading and Emailing

 if ($file != "." &&
 $file != ".." &&
 $file != "phpfiles" &&
 $file != "listfiles-a.php" &&
 $file != "listfiles.php" &&
 $file != "uploader.php" &&
 $file != "deletefile.html" &&
 $file != "return204.php" &&
 $file != "uploadfile.html") {
 $files[$i] = $file;
 $i = $i + 1;
 }
 }
 closedir($handle);
}
// only allow the delete if the file is in the list of files in the directory
$check = str_replace($files, '****', $file_to_delete, $count);
if($count > 0) {
 if(unlink($base_directory.$file_to_delete)) echo "File Deleted.";
}
?>

The main point of the Server Spinner project is to demonstrate uploading of files. To receive
a file on the server, you need another PHP script. The script in Listing 5-4 receives the name
of the file to be uploaded and then handles the upload operation by calling the PHP
move_uploaded_file function.

Listing 5-4. uploadfile.php

<?php
$fname = $_POST['filename'];
$target_path = "/yourserverpath/".$fname;
$upload_path = $_FILES['uploadedfile']['tmp_name'];
If (move_uploaded_file($upload_path, $target_path)) {
 echo "Moved";
} else {
 echo "Not Moved";
}
?>

These four scripts are required by and will be executed from the Android app.

It is a good idea to test your PHP scripts first, before implementing the Android app. You can
write simple HTML pages to test the upload and delete operations. Examples of such HTML
files (uploadfile.html and deletefile.html) can be found in the Server Spinner project assets
along with the PHP files.

To use these test HTML files, you need to upload them to your server alongside the PHP
scripts and then simply run these test HTML pages by pointing your browser at the URL.

110 CHAPTER 5: Uploading and Emailing

5.5 Server Spinner App
With the PHP files tested and working on the server, you are now ready to implement the
Android app.

 Server Spinner App Overview
Figure 5-2 shows a screenshot of the Server Spinner app.

The Server Spinner app consists of the following buttons and text views:

	Sync button: Connects to the server and synchronizes the app content
with the files currently stored on the server.

	Photo button: Allows the user to take a picture using the device camera.
The picture will be uploaded to the server.

	Server Files button: The server spinner widget that shows the filenames
of all the files stored on the server. The button text also shows the
number of files currently stored on the server.

Figure 5-2. Server Spinner app screenshot

www.allitebooks.com

http://www.allitebooks.org

111CHAPTER 5: Uploading and Emailing

	Selected Picture text: Displays the name of the currently selected
picture, as well as the file path of the picture on the server.

	Image: Displays an image of the currently selected picture.

	Delete button: When pressed, the currently selected picture will be deleted
from the server. The server spinner widget will be updated accordingly.

	List of server files: Displays a list of all of the picture files currently stored
on the server.

	Exit button: Exits the app.

The Sync, Delete, and Photo buttons interface with the PHP scripts described earlier to carry
out their functions. The Sync button makes a call to listfiles-a.php to retrieve a list of the files
on the server, which will be used to populate the server spinner. The Delete and Photo buttons
make calls to deletefile.php and uploadfile.php, respectively, to accomplish their functions.

 Server Spinner Project
Table 5-2 shows the layout of the Server Spinner project.

Table 5-2. Server Spinner Project Setup

Sources Resources/ Res/libs

FileCache.java

ImageLoader.java

MainActivity.java

MemoryCache.java

Utils.java

activity_main.xml

newpic_name.xml

photo_layout.xml

The project contains three Java sources files that you will recognize from the lazy loading
project: FileCache.java, ImageLoader.java, and MemoryCache.java are used to handle the
lazy loading of the image selected from the server spinner. I will not cover them again here.

MainActivity.java and Utils.java contain the key source code of the project and I will cover
them next.

 Working with the Camera
The purpose of the Server Spinner app is to demonstrate uploading of files to a server. In
order to generate interesting content to upload, the app will allow the user to take photos
using the device camera.

Working with the camera on Android devices is not trivial. Most of the problems arise from
the huge variety of devices available. Each manufacturer enables different functionality
depending on the physical camera hardware on the device.

In this project, you will stick with simple camera functions that should work on most devices.

112 CHAPTER 5: Uploading and Emailing

Taking a photo with Android involves the following steps. The code is located in
MainActivity.java.

	Set up a button that will be used to take the picture. This button will
implement the CameraClickHandler class.

Button btnPhoto = (Button) findViewById(R.id.photo);
btnPhoto.setOnClickListener(new CameraClickHandler());

	Set up the CameraClickHandler, which will start an activity using the
MediaStore.ACTION_IMAGE_CAPTURE intent.

public class CameraClickHandler implements View.OnClickListener {
 public void onClick(View view){
 File file = new File(path1);
 Uri outputFileUri = Uri.fromFile(file);
 Intent intent = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, outputFileUri);
 startActivityForResult(intent, 0);
 }
}

	Implement the onActivityResult callback method to process the picture
after it has been taken.

protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 switch(resultCode) {
 case 0:
 break;
 case -1:
 onPhotoTaken();
 break;
 }
}

	Process the picture, including uploading of the file, within the
onPhotoTaken method.

The first three steps allow you to take a picture using the device camera by means of the
Android MediaStore.ACTION_IMAGE_CAPTURE intent.

Once an image is captured, you can then process the image by using the onPhotoTaken
method. In the Server Spinner project, you are going to perform the following functions
inside the onPhotoTaken method:

	Display a dialog box so the user can accept and save the image.

	Process the image name that is entered so it excludes any special
characters that do not work well inside a filename.

	Perform orientation and scaling operations using the matrix operator.

	Save a scaled-down bitmap image.

www.allitebooks.com

http://www.allitebooks.org

113CHAPTER 5: Uploading and Emailing

	Update the image in the app’s ImageView.

	Update the server spinner with the new image filename.

	Upload the new image to the server.

The first step is accomplished using a dialog box. The dialog box allows you to accept a
name for the picture that was just taken. It includes two buttons, CANCEL and SAVE, which
allow the user to decide if they wish to proceed with the picture that was taken.

protected void onPhotoTaken() {
 pictureTaken = true;
 // pop up a dialog so we can get a name for the new pic and upload it
 final Dialog dialogName = new Dialog(MainActivity.this);
 dialogName.setContentView(R.layout.newpic_name);
 dialogName.setCancelable(true);
 dialogName.setCanceledOnTouchOutside(true);
 TextView picText=(TextView) dialogName.findViewById(R.id.newPicText);
 picText.setText(getString(R.string.new_pic_text1));

Figure 5-3 shows this dialog box. The XML layout file associated with the dialog box is
newpic_name.xml.

Figure 5-3. Dialog box: choosing a picture name

114 CHAPTER 5: Uploading and Emailing

When the user presses the SAVE button in this dialog, the setOnClickListener code inside
the onPhotoTaken method will be executed. This code handles all of the processing,
including the uploading of the image, as follows:

picSave.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 EditText nameET = (EditText) dialogName.findViewById(R.id.newPicEdit);
 String name = nameET.getText().toString();
 name = name.replaceAll("[^\\p{L}\\p{N}]", "");
 if (name.equalsIgnoreCase("")) name = "newpic";
 name = name.toLowerCase() + ".jpg";
 selectedPicName = name;

 //adjust for camera orientation
 Bitmap bitmapOrig = BitmapFactory.decodeFile(path1);
 int width = bitmapOrig.getWidth();
 int height = bitmapOrig.getHeight();
 // the following are reverse
 // we are going to rotate the image 90 due to portrait pics always used
 int newWidth = 150;
 int newHeight = 225;
 // calculate the scale
 float scaleWidth = ((float) newWidth) / width;
 float scaleHeight = ((float) newHeight) / height;
 // create a matrix for the manipulation
 Matrix matrix = new Matrix();
 // resize the bit map
 matrix.postScale(scaleWidth, scaleHeight);

 // save a scaled down Bitmap
 Bitmap resizedBitmap = Bitmap.createBitmap(bitmapOrig, 0, 0,
 width, height, matrix, true);
 File file2 = new File (path2 + selectedPicName);
 FileOutputStream out = new FileOutputStream(file2);
 resizedBitmap.compress(Bitmap.CompressFormat.JPEG, 100, out);
 out.flush();
 out.close();

 // update the picture
 ImageView img = (ImageView) findViewById(R.id.spinnerImg);
 img.setImageBitmap(resizedBitmap);

 // save new name
 TextView txt = (TextView) findViewById(R.id.selectedTitle);
 txt.setText(name);
 txt = (TextView) findViewById(R.id.selectedURL);
 txt.setText(serverPicBase + name);
 spinList.add(name);

 // upload the new picture to the server
 new fileUpload().execute();
 dialogName.dismiss();
 }
});

www.allitebooks.com

http://www.allitebooks.org

115CHAPTER 5: Uploading and Emailing

An EditText is used to accept the name of the image from the user. The replaceAll string
function is used to remove unwanted characters. The file extension of .jpg is added to the
entered name to create a valid filename for storing on the server.

The code also includes logic to adjust for camera orientation. You may find on certain
devices that pictures are rotated unexpectedly. This can happen because camera hardware
is sometimes mounted differently by the manufacturers depending on if the device is a tablet
or phone. If you need to rotate pictures to correct for this behavior, you can use the matrix
operator on the bitmap, as shown. The matrix operator is a very useful and powerful way to
transform bitmap images.

You can also see in this code that the image is compressed and saved in JPG format
using the bitmap compress function. In this example, the value is set at 100, which means
no compression is performed. If you wish to reduce image file sizes, you can set the
compression value to smaller values, such as 50, which would represent 50% compression.

Lastly, you can see the file is uploaded to the server by calling fileUpload(), which is shown
next. The work is performed on a separate thread using AsyncTask. The actual file upload is
performed first by calling Utils.Uploader. This utility is covered in the next section. After the
upload completes, the server spinner is updated by making another network access to the
listFilesScript, which returns a list of files on the server, which are then parsed to repopulate
the server spinner.

private class fileUpload extends AsyncTask<Void, String, Void> {
 protected Void doInBackground(Void... unused) {
 // upload new picture to the server
 String postURL = uploadFilesScript;
 File file = new File(path2, selectedPicName);
 // upload the new picture
 Utils.Uploader(postURL, file, selectedPicName);
 // update the spinner and count
 fileList = Utils.DownloadText(listFilesScript);
 fileList = fileList.substring(0,fileList.length()-1);
 items = fileList.split(" ");
 spinList.clear();
 for(int i=0;i<items.length;i++) {
 spinList.add(i,items[i]);
 }
 mHandler.post(updateResults);
 }
}

 MainActivity.java
At the top of MainActivity.java, the following five server path variables are defined. Adjust
them to point at your own server. If you are running a local web server, you can simply use
localhost for the top level URL.

private static String serverPath = "http://yourserver.com/return204.php";
private static String serverPicBase = "http://yourserver.com/";
private static String listFilesScript = "http://yourserver.com/listfiles-a.php"
private static String uploadFilesScript = "http://yourserver.com/uploadfile.php";
private static String deleteFileScript = "http://yourserver.com/deletefile.php";w

116 CHAPTER 5: Uploading and Emailing

I covered all of the code required to handle taking a photo in the previous section. Now
let’s take a look at the remaining functionality of the app, including syncing with the server,
uploading pictures, and deleting pictures from the server spinner.

 Syncing with the Server
The server spinner widget itself is populated from the contents of an ArrayList, specifically
spinList as defined in the following code:

ArrayList<String> spinList = new ArrayList<String>();

When the server spinner button is pressed, a drop-down list will appear, giving the user
the opportunity to select a picture. When a picture is selected from the drop-down list,
the picture will be loaded into the ImageView and the picture name will be loaded into the
TextView.

The SYNC button performs the task of updating (syncing) the server spinner with the assets
on the server. The button handler is implemented as follows:

// sync server button
Button btnSync = (Button) findViewById(R.id.sync);
btnSync.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 clearPicture();
 sync();
 }
});

When the SYNC button is pressed, the current picture and picture name will be cleared. This
is handled by a call to clearPicture():

private void clearPicture() {
 // clear the selected image
 TextView tv = (TextView) findViewById(R.id.selectedTitle);
 tv.setText("---");
 ImageView img = (ImageView) findViewById(R.id.spinnerImg);
 img.setImageResource(R.drawable.nopic);
 tv = (TextView) findViewById(R.id.selectedURL);
 tv.setText("---");
}

The syncing is handled by the following code, which displays a progress dialog and then
proceeds to download a file list from the server. This operation is handled on a background
thread.

Server availability is confirmed using the HTTP status code 204 technique discussed in
Chapter 2.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3333-7_2
http://www.allitebooks.org

117CHAPTER 5: Uploading and Emailing

The spinList ArrayList is updated by parsing the file list that is returned from the server. A call
to the updateResults handler updates the actual server spinner widget on the device.

public void sync() {
 // download the file list for the server spinner
 final ProgressDialog pd = ProgressDialog.show(MainActivity.this,"Syncing","Syncing file
list from server...",true, false);

 new Thread(new Runnable() {
 public void run() {
 // see if we can ping the server first
 try {
 OkHttpClient httpClient = new OkHttpClient();
 Request request = new Request.Builder()
 .url(serverPath)
 .build();
 Response response = httpClient.newCall(request).execute();
 if ((response.code() == 200) || (response.code() == 204)) {
 Log.v("SYNC", "syncing");
 fileList = Utils.DownloadText(listFilesScript);
 fileList = fileList.substring(0,fileList.length()-1);
 items = fileList.split(" ");
 spinList.clear();
 for(int i=0;i<items.length;i++) {
 spinList.add(i,items[i]);
 }
 mHandler.post(updateResults);
 } else {
 Log.v("SYNC", "No Conn");
 mHandler.post(noConnection);
 }
 } catch (Exception e) {
 Log.v("SYNC", "Ex=" + e);
 mHandler.post(exceptionConnection);
 }
 pd.dismiss();
 }
 }).start();
}

 Deleting an Item
Whenever a picture is selected, its name is stored in the following string variable:

private String selectedPicName;

Deleting an item from the server spinner can be accomplished by pressing the Delete button.
When this happens, the currently selected picture will be deleted.

The Delete button handler is shown below. It performs calls to clearPicture followed by the
fileDelete class.

118 CHAPTER 5: Uploading and Emailing

// delete button
Button btnDel = (Button) findViewById(R.id.delete);
btnDel.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 clearPicture();
 new fileDelete().execute();
 }
});

The fileDelete class performs the delete by passing the selectedPicName to the deletefile.
php script on the server.

After the delete is completed, the server spinner is reloaded by again executing the
listfiles-a.php script on the server and rebuilding the spinList.

private class fileDelete extends AsyncTask<Void, String, Void> {
 protected Void doInBackground(Void... unused) {
 // delete picture from server
 String postURL = deleteFileScript;

 if (spinList.contains(selectedPicName)) {
 Utils.Deleter(postURL, selectedPicName);
 // did the delete, so update the spinner and count
 fileList = Utils.DownloadText(listFilesScript);
 fileList = fileList.substring(0,fileList.length()-1);
 items = fileList.split(" ");
 spinList.clear();
 for(int i=0;i<items.length;i++) {
 spinList.add(i,items[i]);
 }
 mHandler.post(updateResults);
 }
 }
}

Utils.java
The Utils.java class contains two utilities that are called to perform the actual uploading and
deleting of files on the server.

 Uploading an Item
Uploader handles the uploading of image files taken by the camera. This class calls the
uploadfile.php script on the server. Uploading files can be tricky, but we have a secret
weapon that makes it much easier. You are going to use HTML multipart forms to pass the
filename and the actual binary image up to the server. You will recall from Chapter 2 that
the DefaultHttpClient stack has been deprecated, so we no longer have easy access to
its sophisticated MultipartEntity method. Similarly problematic, multipart form support is
not available for HttpUrlConnection. If you wish to extend the built-in HttpUrlConnection
stack so it can handle files, the end-of-chapter links contain a reference showing how a file
handling wrapper can be added.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3333-7_2
http://www.allitebooks.org

119CHAPTER 5: Uploading and Emailing

Fortunately, there is an easier solution. The OkHttp stack can handle multipart forms using
its MultipartBody.Builder class. MultipartBody allows you to simply specify the file name and
the file contents using the addFormDataPart method. In the following example, the variable
names match with those expected by the receiving PHP script on the server:

public static void Uploader(String postURL, File file, String fname) {
 try {
 OkHttpClient httpClient = new OkHttpClient();
 RequestBody requestBody = new MultipartBody.Builder()
 .setType(MultipartBody.FORM)
 .addFormDataPart("MAX_FILE_SIZE", "100000")
 .addFormDataPart("filename",fname)
 .addFormDataPart("uploadedfile", fname, RequestBody.create(MediaType.parse

("image/jpg"), file))
 .addFormDataPart("result", "my_image")
 .build();

 Request request = new Request.Builder()
 .header("Content-Type", "multipart/form-data; boundary=--32530126183148")
 .url(postURL)
 .post(requestBody)
 .build();
 Response response = httpClient.newCall(request).execute();
 if ((response.code() == 200) || (response.code() == 204)) {
 Log.v("UPLOAD", "Success: URL=" + postURL + " fname=" + fname + " file.length=" +

file.length() + " response=" + response.code());
 } else {
 // Handle upload fail
 Log.v("UPLOAD", "Fail: URL=" + postURL + " fname=" + fname + " file.length=" +

file.length() + " response=" + response.code());
 }
 } catch (Throwable e) {
 Log.v("EX", "ex=" + e);
 }
}

Similarly, the Deleter function also uses OkHttp’s MultipartBody.Builder to pass the filename to be
deleted up to the deletefile.php script on the server. The variable name of the file to be deleted is
inputfile, which corresponds to the HTTP Post variable received by the deletefile.php script.

public static void Deleter(String delURL, String fname) {
 try {
 OkHttpClient httpClient = new OkHttpClient();
 RequestBody requestBody = new MultipartBody.Builder()
 .setType(MultipartBody.FORM)
 .addFormDataPart("inputfile",fname)
 .build();
 Request request = new Request.Builder()
 .header("Content-Type", "multipart/form-data; boundary=--32530126183148")
 .url(delURL)
 .post(requestBody)
 .build();

120 CHAPTER 5: Uploading and Emailing

 Response response = httpClient.newCall(request).execute();
 if ((response.code() == 200) || (response.code() == 204)) {
 Log.v("DELETE", "Success: URL=" + delURL + " fname=" + fname + " response=" +

response.code());
 } else {
 // Handle upload fail
 Log.v("DELETE", "Fail: URL=" + delURL + " fname=" + fname + " response=" +

response.code());
 }
 } catch (Throwable e) {
 Log.v("EX", "ex=" + e);
 }
}

5.6 Mobile Email
Before smartphones existed, there was a lot of speculation about what would become
the “killer app” on a feature phone. Many people thought email would be that killer app.
Hindsight is 20/20, and it is pretty obvious now that the killer app turned out to be the app
itself! Nonetheless, email remains one of the most useful functions we carry out every day on
our mobile devices.

Initiating outbound emails is something we do regularly. We take it for granted. While
technically not complicated, it is fraught with pitfalls, largely because of the negative effect
caused by all of the spam email being generated.

It is estimated that 98% of all emails sent are spam. That is a staggering number. If you
have ever hosted your own email server, you will appreciate the gravity of the problem.
Fortunately, third-party email providers such as Google and Yahoo do a great job at shielding
us from the problem.

5.7 Mobile Email Approaches
When sending emails from Android, you need to interface with an email server to accomplish
the actual transmission of the email. The following approaches are commonly used:

	Use a web browser to access a web-based email interface.

	Use an email client already existing on the device to manage the
sending.

	Use a third-party library to access a remote mail server.

	Interface directly to a mail server using a script.

Figure 5-4 shows a graphical view of the four approaches, including the protocols used to
reach the web server and email server.

www.allitebooks.com

http://www.allitebooks.org

121CHAPTER 5: Uploading and Emailing

The first approach involves connecting to the email server using the device browser. This
approach is external to your own applications: useful, but not really of interest if you wish to
include the functionality in your own apps. The remaining approaches can be implemented
within your apps and I will discuss the implementation in detail. First, however, let’s take a
brief look at email protocols and email clients available for Android.

5.8 Email Protocols
A browser, using HTTP or HTTPS, can allow users to view and manage their email accounts.
However, email clients, using specialized protocols, provide a more convenient access
method on mobile devices.

Table 5-3 shows the common protocols and the specifications they rely on for sending and
receiving emails.

Figure 5-4. Android email approaches

Table 5-3. Email Protocols and Specifications

Protocol Description

IMAP Internet Message Access Protocol. Provides a method to access messages stored and
possibly shared on a mail server. Permits client email apps to access remote messages
as if they were stored locally. Transmitted over port 143 or 993 securely. Defined by
RFC2060.

POP Also referred to as POP3. Stands for Post Office Protocol version 3. It is a limited
protocol for accessing a single mailbox. It is less capable than IMAP and is
implemented by RFC1939. Typically transmitted over port 110 or 995 securely.

SMTP Simple Mail Transfer Protocol. SMTP is widely used. It originated in 1982 and is defined
by RFC821 and RFC822. It is used to transfer mail messages between hosts as well as
to submit new messages to a host for delivery. Typically transmitted over port 25 or 465
securely.

MIME Message Input Multibyte Encoding is the encoding standard used to describe the
emails that are sent across the Internet. MIME is specified by RFC2046 and RFC2047.
It is fully implemented by the JavaMail API you will use in the chapter project.

122 CHAPTER 5: Uploading and Emailing

In order to effectively send or receive emails from your Android apps, you need to implement
these popular mail protocols. Implementing these protocols from scratch would involve a high
degree of effort. Implementing them by using a third-party library makes the task much simpler.

5.9 Android Email Clients
If you perform a quick search for email clients on the Android Play Store, you will see
there are many options available. Some of the popular Android Email clients are shown
in Table 5-4.

Table 5-4. Android Email Clients

Email Client Description

Yahoo! Mail Yahoo’s popular email client.

Gmail Google’s popular email client. Tied to Google Play Services on Android devices.

K-9 Mail Popular open source email client.

Boomerang Startup company with Android email client and some other email plugins.

Boxer Integrated suite of productivity apps incuding Android Email client.

Outlook Microsoft’s widely popular email client. Can be configured to use IMAP or POP3.

K-9 Mail is of particular note because it is an open source project. If you wish to implement
your own email client, K-9 Mail is a great place to start. A link to the open source project is
included in the chapter references.

5.10 Emailing App: AWS Server Setup
One of the methods you will implement to send emails involves calling a script on an
external server to send out the email on behalf of your app. In the project, you will make use
of Amazon Web Services (AWS) to set up the server.

On the server, you can choose from many of the popular server-side scripting languages,
such as PHP, ASP, or Ruby. Listing 5-5 shows a PHP script that can send an email using the
PHP mail() function. The PHP mail() function opens and closes an SMTP socket for each
email that is sent.

Listing 5-5. sendemail.php

<?php
 $name = $_POST['name'];
 $to = $_POST['to'];
 $from = $_POST['from'];
 $subject = $_POST['subject'];

 $message = "From: ".$name."\r\n";
 $message .= $_POST['message'];
 $headers = "From:" . $from;
 mail($to,$subject,$message,$headers);
?>

www.allitebooks.com

http://www.allitebooks.org

123CHAPTER 5: Uploading and Emailing

The sendmail.php script needs to be installed on the AWS instance to handle the PHP
EMAIL functionality of the Emailing app. Setting up a simple server on AWS is a simple and
effective way to send emails from Android without relying on third-party servers.

The easiest way to configure your AWS server is to install a LAMP web server, sometimes
referred to as a LAMP stack on Amazon Linux. LAMP stands for Linux, Apache web server,
MySQL database, and PHP scripting language, a reference to the four key packages needed
to implement a public web server. The steps to installing LAMP on AWS are shown below.
For further details, refer to the AWS link at the end of the chapter.

	Create an EC2 instance on AWS with public DNS. AWS has some
affordable pricing plans for small virtual servers. New AWS users,
depending on geographic region, are typically eligible for a free first
year trial.

	Connect to your instance and update all packages.

[ec2-user ~]$ sudo yum update -y

	Install Apache, MySQL, and PHP software packages.

[ec2-user ~]$ sudo yum install -y httpd24 php70 mysql56-server php70-mysqlnd

	Start the Apache web server.

[ec2-user ~]$ sudo service httpd start

	Use the chkconfig command to configure the web server to
automatically start.

[ec2-user ~]$ sudo chkconfig httpd on

	Add a security rule for the instance to allow HTTP traffic over port 80.
Access the Amazon EC2 console at https://aws.amazon.com/console/

	Apache httpd serves file that are kept in the Apache document root,
which can be found at /var/www/.

	Install and configure FTP (File Transfer Protocol). You can use FTP to
transfer the sendmail.php script discussed earlier. The Emailing app will
make use of this script to send emails via AWS.

[ec2-user ~]$ sudo yum install vsftpd

	Open the FTP ports on your instance in the AWS console, typically
ports 20, 21, and 22.

https://aws.amazon.com/console/

124 CHAPTER 5: Uploading and Emailing

	Edit the FTP config file and restart it.

Use your favorite Linux editor to update the FTP configuration file
[ec2-user ~]$ sudo vi /etc/vsftpd/vsftpd.conf

Make the following edits to the file
anonymous_enable=NO
pasv_enable=YES
pasv_min_port=1024
pasv_max_port=1048
pasv_address=<Public IP Address of your EC2 Instance>

Restart
[ec2-user ~]$ sudo /etc/init.d/vsftpd restart

5.11 Emailing App
Like all good things in Android, there are multiple approaches for sending emails. Table 5-5
summarizes the approaches you will implement.

Table 5-5. Emailing Approaches for Android

Approach Description

Android Intents Intents provide a way to access functionality that is registered by other
applications on your devices. Most smartphones have email apps, and
their functionality can be accesses through their published Android
Intents.

JavaMail API A set of APIs from Oracle. The library is open source and can be used
to connect to external email servers using email protocols such as
SMTP, IMAP, or POP.

Script Interface to AWS By implementing your own AWS-hosted PHP script, you can collect
email content information from your users and then pass this
information up to the server, which can deliver the email.

Each of these approaches has its merits and drawbacks.

 Android Intents
Using Android Intents is the simplest of the approaches. It relies on the user having an email
client installed on the device. This is likely, as most users have at least one email client. The
user is able to choose which external email client will be used.

The main drawback of using Intents is that the user will be taken out of your app and into the
email client app to complete the sending operation. The email fields can be prepopulated to
minimize the time spent outside your app.

www.allitebooks.com

http://www.allitebooks.org

125CHAPTER 5: Uploading and Emailing

Figure 5-1 showed that special protocols are used to interface with mail servers. In order to
interface directly with mail servers from your apps, you need to implement these protocols.
The K-9 Mail open source project shows how this can be accomplished.

 JavaMail API
However, there is an easier way: the JavaMail API.

The JavaMail API is a free open source library from Oracle. It can be included in your
projects and makes interfacing to mail servers using the specialized protocols very simple. It
is an extensive library that will let you implement nearly any email function that you require.
Among its many features, the JavaMail API includes

	Platform-independent platform to build mail applications

	Protocol-independent platform to build mail applications

	Facilities for reading and sending emails

	Royalty-free implementation for SMTP, POP, and IMAP protocols

	Completely written in Java so it plays well with Android

The library is fairly lightweight, coming in at only 500KB. Thus, the JavaMail API is a good
solution if you wish to implement email sending within your app without adding too much
bloat, and without relying on Android Intents.

 External AWS Interface
If you do not wish to add a library to your project, you can still send emails within your app
by sending the required details up to the server for processing. This will require a receiving
script on the server that can provide an interface to the mail server. In the chapter project,
you will take a look at how to accomplish this by invoking a PHP script, sendmail.php, on a
virtual server you configure using AWS.

The sendmail.php script relies on the server to have email sending capabilities. On the AWS
LAMP server, this is handled by the open source PHPMailer class. The PHPMailer class is a
full-featured email creation and transfer class used by many open source projects. Its source
code is available on GitHub.

 Emailing App Overview
Figure 5-5 shows a screenshot of the Emailing app. It allows users to specify each field for
the outgoing email, including From Address, To Address, Subject, and Body. The app does
not support attachments, but it could easily be extended using the JavaMail API method.

126 CHAPTER 5: Uploading and Emailing

At the bottom of the layout are three buttons that allow the user to choose which sending
method to use to send the email. In your app you probably don’t need to implement all three
methods; you can decide which one works best for your requirements.

 Emailing Project
Table 5-6 shows the layout of the Emailing project.

Figure 5-5. Emailing app screenshot

Table 5-6. Emailing Project Setup

Sources Resources/ Res/libs

MainActivity.java
GMailSender.java
JSSEProvider.java

layout/activity_main.xml

www.allitebooks.com

http://www.allitebooks.org

127CHAPTER 5: Uploading and Emailing

The project contains three source files, and a single XML layout file. To set up JavaMail and
OKHttp for your Android Studio project, include the following dependencies in your Build.
Gradle file:

dependencies {
compile files('lib/javax.mail.jar')
compile files('lib/activation.jar')
compile 'com.squareup.okhttp3:okhttp:3.9.0'
}

The layout file contains the basic fields required to compose emails and the following
buttons, which allow the user to select which emailing method to use when sending the
email:

	AWS Email: Interfaces with a PHP script on an AWS server instance to
send the email.

	Intent Email: Uses Android Intents to pass the message to an existing
email client on the device.

	Java Email: Uses the JavaMail API to send outgoing emails.

The main source file is MainActivity.java and I will cover the key code next.

 MainActivity.java
Configure the following variables according to your server and email settings. The
sendEmailScript variable should point at your sendmail.php server script, which is called by
the app when the user requests the server to send out the email.

The emailAccount and emailPassword variables are passed to the JavaMail API.

private static String sendEmailScript = "http://www.yourserver.com/sendemail.php";
private static String emailAccount = "your_email_account";
private static String emailPassword = "your_email_account_password";

Figure 5-6 shows a screenshot of the app with the email content fields populated. Each of
these fields is represented by an EditText in the XML layout file. The From Email Address and
the To Email Address each include the following inputType setting, which forces a valid email
address to be entered:

android:inputType="textEmailAddress"

128 CHAPTER 5: Uploading and Emailing

The content of these EditText boxes are consumed by the handlers for each of the buttons
when they are pressed.

The easiest way to send an email from the app is by using the Android Intents. In the
following code, you copy the completed fields from the EditText boxes, construct a URI
using StringBuilder, and then start a new activity using Intent.ACTION_SENDTO:

// Intent button - Send email by using Android Intent
Button btnInt = (Button) findViewById(R.id.butIntent);
btnInt.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 EditText fromET = (EditText) findViewById(R.id.box1);
 EditText toET = (EditText) findViewById(R.id.box2);
 EditText subjET = (EditText) findViewById(R.id.box3);
 EditText bodyET = (EditText) findViewById(R.id.box4);

 String emailFrom = fromET.getText().toString();
 String emailTo = toET.getText().toString();
 String emailSubj = subjET.getText().toString();
 String emailBody = bodyET.getText().toString();
 StringBuilder builder = new StringBuilder("mailto:" + Uri.encode(emailTo));
 if (emailSubj != null) {
 builder.append("?subject=" + Uri.encode(Uri.encode(emailSubj)));

Figure 5-6. Composing an email

www.allitebooks.com

http://www.allitebooks.org

129CHAPTER 5: Uploading and Emailing

 if (emailBody != null) {
 builder.append("&body=" + Uri.encode(Uri.encode(emailBody)));
 }
 }
 String uri = builder.toString();
 Intent intent = new Intent(Intent.ACTION_SENDTO, Uri.parse(uri));
 startActivity(intent);
 }
});

Figure 5-7 shows the layout that is generated when the user presses the Intent Email button.

Figure 5-7. Sending emails via Android Intent

On the device shown, it provides the option for the user to send the email using any of the
three email clients that were detected on the device, including, Yahoo, Gmail, and Outlook.
The nice thing about the ACTION_SENDTO intent is that it is able to discriminate narrowly
for email clients. It will exclude messaging clients such as Skype, Hangout, SMS, etc.

Sending email through the JavaMail API follows a similar approach. First, you copy the email
details from the EditText fields. Then you create a GMailSender object, using the email user
and password defined at the top of the MainActivity.java.

130 CHAPTER 5: Uploading and Emailing

There is one difference. Note in the following code that you are performing these operations
on a background thread and displaying progress via a ProgressDialog. This is required
because sending the email is potentially a long-running network operation. You did not have
to worry about this with the Intents approach because the client email app handled the
sending of the email for you in the background.

// JavaMail send button
Button btnJava = (Button) findViewById(R.id.butJava);
btnJava.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 final ProgressDialog pd = ProgressDialog.show(MainActivity.this,
 "Sending",
 "Sending Gmail Java API Email...",
 true, false);
 new Thread(new Runnable(){
 public void run(){
 try {
 EditText fromET = (EditText) findViewById(R.id.box1);
 EditText toET = (EditText) findViewById(R.id.box2);
 EditText subjET = (EditText) findViewById(R.id.box3);
 EditText bodyET = (EditText) findViewById(R.id.box4);

 String emailFrom = fromET.getText().toString();
 String emailTo = toET.getText().toString();
 String emailSubj = subjET.getText().toString();
 String emailBody = bodyET.getText().toString();

 GMailSender sender = new GMailSender(emailAccount, emailPassword);
 sender.sendMail(emailSubj,
 emailBody,
 emailFrom,
 emailTo);
 } catch (Exception e) {
 Log.e("SendMail", e.getMessage(), e);
 }
 pd.dismiss();
 }
 }).start();
 }
});

Figure 5-8 shows a screen capture of the ProgressDialog while the email is being sent by the
JavaMail API. Once the email is successfully sent, the ProgressDialog box is dismissed.

www.allitebooks.com

http://www.allitebooks.org

131CHAPTER 5: Uploading and Emailing

Figure 5-8. Sending email via the JavaMail API

The final email approach involves sending the email via script located on a remote AWS
server. In this case, you also have a potential long-running network operation, so you include
the ProgressDialog and background thread.

You are using HttpClient to send the email via the Post method. The sendEmailScript
variable points to your server script. In this case, you are using an ArrayList of Name/Value
pairs to store all of the email content from the layout EditText boxes. The following code
shows the full implementation of the PHP Email button handler:

// AWS button
Button btnPHP = (Button) findViewById(R.id.butPhp);
btnPHP.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 final ProgressDialog pd = ProgressDialog.show(MainActivity.this,"Sending","Sending AWS

Email...",true, false);
 new Thread(new Runnable() {
 public void run() {
 try {
 EditText fromET = (EditText) findViewById(R.id.box1);
 EditText toET = (EditText) findViewById(R.id.box2);
 EditText subjET = (EditText) findViewById(R.id.box3);
 EditText bodyET = (EditText) findViewById(R.id.box4);

132 CHAPTER 5: Uploading and Emailing

 String emailFrom = fromET.getText().toString();
 String emailTo = toET.getText().toString();
 String emailSubj = subjET.getText().toString();
 String emailBody = bodyET.getText().toString();

 OkHttpClient httpClient = new OkHttpClient();
 RequestBody formBody = new FormBody.Builder()
 .add("name", emailFrom)
 .add("to", emailTo)
 .add("from", emailFrom)
 .add("subject", emailSubj)
 .add("message", emailBody)
 .build();
 Request request = new Request.Builder()
 .url(sendEmailScript)
 .post(formBody)
 .build();
 Response response = httpClient.newCall(request).execute();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 pd.dismiss();
 }
 }).start();
 }
});

 GMailSender.java
In addition to MainActivity.java, the project contains two additional source files, GMailSender.java
and JSSEProvider.java.

The JavaMail API uses SMTP to send outgoing emails. In this case, the mail host needs
to be defined in the GMailSender.java file, as shown in the following code. In this example,
you are using GMail as the mail host. There is also a setting for the port number, so you can
specify the unencrypted or encrypted port.

public class GMailSender extends javax.mail.Authenticator {
 private String mailhost = "smtp.gmail.com";
 private String user;
 private String password;
 private Session session;

 static {
 Security.addProvider(new com.wickham.android.emailing.JSSEProvider());
 }

 public GMailSender(String user, String password) {
 this.user = user;
 this.password = password;

www.allitebooks.com

http://www.allitebooks.org

133CHAPTER 5: Uploading and Emailing

 Properties props = new Properties();
 props.setProperty("mail.transport.protocol", "smtp");
 props.setProperty("mail.host", mailhost);
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.port", "465");
 props.put("mail.smtp.socketFactory.port", "465");
 props.put("mail.smtp.socketFactory.class",
 "javax.net.ssl.SSLSocketFactory");
 props.put("mail.smtp.socketFactory.fallback", "false");
 props.setProperty("mail.smtp.quitwait", "false");
 session = Session.getDefaultInstance(props, this);
 }

 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(user, password);
}

 JSSEProvider.java
When using the JavaMail API, the JSSEProvider.java class also needs to be included. This
class does not need to be modified. This class is only required to handle the key manager
and trust manager for TLS/SSL secure connections.

5.12 References

 Uploading Files
	OkHttp Version 3: http://square.github.io/okhttp/3.x/okhttp/

	Posting a Multipart Request Using OkHttp: https://github.com/square/
okhttp/wiki/Recipes

	Using the OkHttp3 MultipartBody.Builder: https://square.github.io/
okhttp/3.x/okhttp/okhttp3/MultipartBody.Builder.html

	Extending HttpURLConnection for Multipart Form Support: https://
stackoverflow.com/questions/34276466

 Email
	JavaMail: https://javaee.github.io/javamail/

	JavaMail API FAQ (contains some very helpful information): https://
javaee.github.io/javamail/FAQ

	K-9 Mail Open Source Project: https://github.com/k9mail/k-9

	POP/POP3: https://en.wikipedia.org/wiki/Post_Office_Protocol

http://square.github.io/okhttp/3.x/okhttp/
https://github.com/square/okhttp/wiki/Recipes
https://github.com/square/okhttp/wiki/Recipes
https://square.github.io/okhttp/3.x/okhttp/okhttp3/MultipartBody.Builder.html
https://square.github.io/okhttp/3.x/okhttp/okhttp3/MultipartBody.Builder.html
https://stackoverflow.com/questions/34276466
https://stackoverflow.com/questions/34276466
https://javaee.github.io/javamail/
https://javaee.github.io/javamail/FAQ
https://javaee.github.io/javamail/FAQ
https://github.com/k9mail/k-9
https://en.wikipedia.org/wiki/Post_Office_Protocol

134 CHAPTER 5: Uploading and Emailing

	SMTP: https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

	MIME: https://en.wikipedia.org/wiki/MIME

	IMAP: https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol

	Installing LAMP on AWS: https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/install-LAMP.html

www.allitebooks.com

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/MIME
https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-LAMP.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-LAMP.html
http://www.allitebooks.org

135© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7_6

Chapter 6
Push Messaging

6.1 Introduction
Push messaging is everywhere. You can see it used in almost all of the top apps today. If
you take a look at your most frequently used apps, they tend to have a couple of things in
common. They almost always provide a very useful service and they typically employ push
messaging to deliver the service in a timely manner.

Push implementations are not the most high-profile, visible aspect of any app, but they are
critical in ensuring that our devices receive that important update, notification, or content at
precisely the right moment.

In this chapter, I will cover

	How push messaging works

	When it makes sense to use push messaging

	The different approaches for implementing push messaging

	The different technologies behind push messaging

	How to choose the right solution for your Android app

	Pros and cons of the push messaging approaches

	Implementation of two different Android push approaches:
Google’s Firebase Cloud Messaging, and open source push
messaging with MQTT

https://doi.org/10.1007/978-1-4842-3333-7_6

136 CHAPTER 6: Push Messaging

6.2 Chapter Projects
The projects shown in Table 6-1 will be presented in this chapter.

Table 6-1. Chapter Projects

Title of Project File Name Description

FCM Push Messaging FCMpush.zip Google Firebase Cloud Messaging implementation

MQTT Push Messaging MQTTpush.zip MQTT open source push implementation

6.3 Push Messaging Overview
Push messaging can be described as a permission-based mobile communications channel.
It is described by one of the vendors as possibly the most powerful communication channel
ever created—lofty praise for a technology that is not exactly new, but the rise of the
smartphone has positioned push messaging as perhaps the most useful feature we can
implement in our apps.

A quick scan of apps reveals the many use cases for push messaging. Notification of
breaking news stories, airline flight status, sporting event scores, email notifications,
stock market quotes and alerts, update notifications for apps, completion of long-running
networking tasks, calendar event reminders, shopping alerts, social networking status
changes, and travel notifications are just a few use cases.

There are several key characteristics of push messaging that make it so prominent in
Android apps today:

	Push messaging is a powerful communication channel because there
is no middle man to control the access. Think about the infrastructure
required to broadcast a radio or television signal to a receiving device,
or the expense required to distribute a message using print media. And,
of course, these traditional channels do not provide a feedback path.

	The ongoing migration to Android smartphones provides us the
opportunity to directly access a large captive audience. Over the past
two decades, mobile device penetration rates in many developed
markets have topped 1.0, indicating that each person has more than
one device. Today, smartphone shipments are growing rapidly; it is
estimated currently that over one billion Android smartphones are being
actively used each month.

	Push messaging implementations on Android devices make use of the
reliable service-based architecture. This software architecture is well
suited for push message handling.

www.allitebooks.com

http://www.allitebooks.org

137CHAPTER 6: Push Messaging

	Push messaging provides a near real-time delivery of messages. You will
see that not all push technologies provide guaranteed delivery or quality
of service (QoS) levels, but generally speaking, we can expect messages
to be delivered to our devices in less than one second. The results are
not deterministic and depend on network configurations.

	Push messaging saves battery life compared to the alternative of using
polling to check a server periodically for new content. With a push
messaging implementation, the application server knows exactly when a
new message needs to be delivered and is able to deliver messages to
the specific device.

	There are multiple methods that can be used to initiate or send push
messages, which provides us with a lot of flexibility. We can use client
SDKs to send messages from devices, restful APIs can be used to Post
to a server URL, simple web-based consoles can be used, or most
commonly, an application server can directly send out push messages
when a condition is met.

 Push Technologies
You saw earlier that implementing HTTP in Android is fairly straightforward. HTTP is the
protocol that handles almost all Internet traffic. As useful as it is, HTTP was not designed
with push messaging in mind. Yet HTTP is often abused as a substitute for push messaging
for two primary reasons.

	HTTP is relatively easy to implement when compared to the specialized
push messaging solutions.

	Push messaging requires a server. It is the server that maintains the
record of registered devices to whom messages can be pushed. This
added complexity can act as a barrier to entry for developers.

It is amazing how much push messaging functionality you can overload onto HTTP. Through
a combination of versioning, synchronization, and polling the server, you can approximate
the functionality of push messaging. However, if you take this approach, you will eventually
discover that such solutions are no match for the simplicity, scalability, delivery times, and
battery performance of implementing a proper push messaging solution.

Table 6-2 provides a summary of the push technologies I will cover in this chapter. The demo
apps will implement push using Google Firebase Cloud Messaging and the open source
technology MQTT.

138 CHAPTER 6: Push Messaging

Google first introduced push messaging in 2012 with a new service called Cloud to Device
Messaging (C2DM). In 2014, it evolved into what was known as Google Cloud Messaging
(GCM) and in 2016 was further integrated into the Firebase suite and is now known as
Firebase Cloud Messaging (FCM). FCM is a fully functional, feature rich, push messaging
solution that Android developers can easily integrate into their apps. FCM is also used as
the underlying transport by many third-party push service vendors. Figure 6-1 shows the
timeline of Google’s push messaging offerings.

Table 6-2. Push Technology Overview

Technology Name Description

HTTP Hyper Text Transfer Protocol Foundation of the Web. Can be used to provide push-
like capabilities, but is not designed for this purpose.

FCM Google Firebase Cloud
Messaging

Previously called C2DM and then GCM. Used by many
of the third-party push services. Google makes it easy.

AMQP Advanced Message Queuing
Protocol

Huge feature set and fine-grain control. No good
library available for Android yet. Reliable, scalable, and
interoperability for the enterprise. www.amqp.org

MQTT Message Queue Telemetry
Transport

Originally developed at IBM. Moved into the Open
Source community. Has become a standard. Low
footprint is ideal for the Internet of Things. www.mqtt.org

STOMP Simple (Streaming) Simple, lightweight, text-based. You can connect to a
broker with a Telnet client. No queues or topics, you
simply send to a destination. www.stomp.github.com

Figure 6-1. Google push messaging evolution

www.allitebooks.com

http://www.amqp.org/
http://www.mqtt.org/
http://www.stomp.github.com/
http://www.allitebooks.org

139CHAPTER 6: Push Messaging

There are times when you may not be able to rely on the Google push messaging solution.
I will discuss some of those situations later in the chapter. If your requirements dictate an
alternative to Google’s push solution, the open source Message Queue Telemetry Transport
(MQTT) may be an option.

MQTT originated out of IBM and is now open source. It was originally developed to control
remote telemetry equipment, but has now found a strong position within mobile devices and
the Internet of Things (IoT) due to its low bandwidth requirements and light footprint. MQTT
has completed standardization and has recently been gaining popularity in the Android and
IoT communities.

Two additional push messaging protocols are worth mentioning: Advanced Message
Queuing Protocol (AMQP) and Simple Text Orientated Message Protocol (STOMP). AMQP
is widely used in banking, finance, and other industries that require a mission-critical push
messaging solution. STOMP, as its names implies, is very simple. The protocol implements
just a few basic messages and can handle binary messages by using UTF-8 encoding.

AMQP and STOMP implementations will not be presented in this chapter because Android
libraries are not readily available. However, both AMQP and STOMP have open source and
commercial Java clients and brokers that could be ported to Android. If you would like to
further explore similarities and differences between MQTT and AMQP, the end-of-chapter
links contain a helpful reference blog paper.

 How Push Messaging Works
There are several push messaging solutions available to us as developers. Under the hood,
they all rely on basically the same functionality and messaging flow. Push messaging
achieves its magic by setting up and delivering messages to devices with three distinct
phases:

	One-time registration of the device with the push provider, FCM in this
case. ①

	One-time notification to the app server of the successful device
registration. ② This includes storing the device ID into a database on
the app server.

	The app server pushes the message(s) to the registered device(s). ③

Figure 6-2 shows a message ladder diagram indicating these three distinct phases:
registration, notification, and delivery.

140 CHAPTER 6: Push Messaging

It is Important to highlight step ②where the registered device ID is stored in the database of
the app server. This pre-registering, accomplished by steps ① and ②, allows the device to
be directly identified whenever a message needs to be pushed down the magic of push.

Note that each push messaging provider has its own specific nomenclature to represent the
device ID and the registration ID within these messages.

 Choosing a Technology
When you require a push messaging solution for your app, you must decide on the
technology and approach you are going to use. The approaches can be classified into the
following categories:

	Third-Party Services

	Firebase Cloud Messaging

	Open Source Messaging Protocols

In addition to these approaches, the underlying messaging technology could include one or
more of the protocols shown in Table 6-3.

Figure 6-2. Push messaging message ladder diagram of the three push phases: registration, notification, and delivery

www.allitebooks.com

http://www.allitebooks.org

141CHAPTER 6: Push Messaging

Table 6-3. Push Messaging Protocols

Protocol Description Ports

XMPP Extensible Messaging and Presence
Protocol; used by many popular instant
messaging services.

TCP or HTTP transport port 80 or 443 (secure)

MQTT Message Queuing Telemetry Transport;
great for mobile devices and the IoT.

TCP port 1883 or 8883 (secure)

HTTP Hyper Text Transport Protocol; powers
the Internet we all know and love.

TCP port 80 or 443 (secure)

AMQP Advanced Message Queuing Protocol;
high performance and robust feature set.

Frame-based binary protocol TCP port 5672

I will discuss more about FCM in the next section, but note that it can use either the HTTP or
XMPP protocol.

Given this combination of approaches and implementation protocols, how do you choose
the right implementation for your Android app? There are a few key questions that you need
to answer to help you choose the correct implementation. Refer to Figure 6-3 for a logical
representation of the decision process.

Figure 6-3. Choosing a push technology

One of the key considerations when choosing a push approach is whether or not you
require an application server. Recall from Figure 6-2 that push messaging requires both an
application server and a service provider. In your first project, you will be using Google’s CM
as the service provider. You will implement your own app server using some basic scripting
on the server side. In the second project, you will use a publish/subscribe model and
implement a server known as a broker.

142 CHAPTER 6: Push Messaging

6.4 Push Messaging Services
Third-party push messaging services are the easiest way to get started with push messaging
in Android. These services allow you to get your app up and running quickly with a very
small amount of effort.

They have become popular because they handle all of the application server setup. This is
very advantageous as it allows you to focus on your app development and not worry about
the back-end app server setup. It is worth noting that as Google has greatly enhanced its
Firebase offering; the Google Firebase console can now provide many of the same features.

One potential drawback of using a third-party service is that you may have limited
capabilities on the app server, especially if you need to implement complex logic to handle
the pushing of messages to your registered subscriber base.

I will cover some of the popular third-party services in the next section.

 Push Service Advantages
There are a number of advantages to using push services, and there are many vendors who
provide them. The most important advantages are the following:

	Implementation is painless, so you are able to get your push messaging
app up and running fast.

	You can create an account and configure the server back-end in just a
few minutes.

	Almost all third-party push services provide a sample Android app which
you can modify. You can have your own app up and running in only an
hour or two.

	You don’t need to spend time developing the server back end so you
can focus on your Android apps.

	Cross-platform support is available. You can have a single provider
support Android, IOS, or other platforms.

	It’s not just limited to FCM transport on Android, although FCM is the
only transport many of them use.

	It scales easily. They allow you to break the 1,000 device limit by
handling the iterations automatically for you.

	Server bandwidth is available on demand. Most of the third-party push
services allow you to start with a free trial account. Of course, as you
add registered devices or functionality, costs can increase.

Note that pricing varies for each of the push services. Many of them are free to set up so
you can test your app. However, as you begin to commercialize your app and scale your
message volume, prices can become substantial.

www.allitebooks.com

http://www.allitebooks.org

143CHAPTER 6: Push Messaging

 Choosing a Push Service
There are a large number of third-party services available. Table 6-4 shows a summary of the
popular push services. Most of them supply the needed developer resources (SDKs) to help
you get push up and running in your Android app quickly.

Table 6-4. Push Messaging Third-Party Services

Name Features URL

Microsoft Azure Microsoft cross-platform push
solution

www.microsoft.com

Amazon Push Services Excellent solution if you use
Amazon App Store to distribute
your apps

www.amazon.com

Push Whoosh International language, remote
APIs, uses FCM/API11

www.pushwhoosh.com

Urban Airship Portland based, uses FCM,
Analytics, Wallet

www.urbanairship.com

Xtify New York based, IBM affiliated,
global support, cross platforms

www.xtify.com/pricing.html

PushBots Simple, cross platform, claims
to be the price leader

www.pushbots.com

Parse Push SaaS push service, cloud support,
maximum back end flexibility

www.parse.com/products/push

Push.io B2B push provider, billions served,
ease of use, analytics

http://push.io

Quick Blox Scalable, secure, 256-bit AES,
reportedly offers good support

http://quickblox.com/developers/
Android

These services have several key aspects in common, including

	They include a demonstration Android app you can download and tailor
to get started quickly

	They have a website back end where you can set up and manage your
account

	They include a push message control panel on the back-end website

	Many utilize FCM for the underlying transport mechanism

http://www.microsoft.com
http://www.amazon.com/
http://www.pushwhoosh.com/
http://www.pushwhoosh.com/
http://www.urbanairship.com/
http://www.xtify.com/pricing.html
http://www.pushbots.com/
http://www.parse.com/products/push
http://push.io/
http://quickblox.com/developers/Android
http://quickblox.com/developers/Android

144 CHAPTER 6: Push Messaging

 Services Setup Steps
The first step to incorporate a push service into your app is registration.

Registration is typically free and can be completed at the provider’s website. Once you
register, you will need to download the provider’s Android .jar library file and the Android
sample app project file.

The following are the generic steps you must complete to use a push service:

1. Set up your account on the provider’s website. You will typically log
into the provider’s dashboard and define a new application project
and configure your notification services. You will need to procure
your FCM credentials from your Google Web Services dashboard.

2. Download the library .jar file, which you will need to import into
your app.

3. Download the sample app from the provider.

4. Adjust and build your app using your package name and FCM
credentials. This usually involves copying keys assigned to your
application by the provider. See Figure 6-4 for examples of how
this looks.

5. Launch the app on your device(s).

6. Set up the push service console.

Figure 6-4. Setting up FCM credentials in a push service

With a minimal amount of effort, you will be able to implement push messaging into your
app using a push service. This approach is ideal if you don’t need to develop your own app
server and you just need to be able to push out messages from an easy-to-use back end to
some or all of your users.

www.allitebooks.com

http://www.allitebooks.org

145CHAPTER 6: Push Messaging

6.5 Firebase Cloud Messaging
Firebase Cloud Messaging is now part of Google’s Firebase Suite. All of the Firebase
components are cross platform, which means they not only work on Android but also for iOS
and the Web.

FCM is free to use. According to the official Firebase pricing page, the following additional
Firebase features are also free:

	Analytics (covered in Chapter 4)

	App Indexing

	Authentication

	Dynamic Links

	Invites

	Notifications

	Crash Reporting (covered in Chapter 4)

	Remote Configuration

For a complete list of the latest Firebase library versions, refer to the “Available Libraries”
section at https://firebase.google.com/docs/android/setup.

For Android developers, Google provides all the resources you need to implement your own
push messaging solution with FCM including the client app and back-end server.

There is extensive support available on the Google and Android developer sites that covers
the setup of FCM push messaging. Refer to the end-of-chapter links for a complete list of
the most important FCM resources.

 GCM/FCM Migration
Figure 6-1 showed how FCM evolved from GCM and is now the recommended replacement
for GCM. Google has not deprecated GCM and it is not clear if and when they might do
so. According to Google, they will continue to support the current version of GCM because
they know a lot of developers are using GCM today, and they recognize that it takes time to
update released client apps.

However, all the new client-side features will only be added to FCM. For this reason, it is
recommended that developers use FCM for all new development, and begin the process of
migrating existing GCM apps to FCM.

The good news is that because FCM relies on the underlying GCM engine, the differences
between GCM and FCM are pretty minor. If you have an app that relies on GCM for push
messaging, Google provides detailed instructions for migrating apps from GCM to FCM at
https://developers.google.com/cloud-messaging/android/android-migrate-fcm.

http://dx.doi.org/10.1007/978-1-4842-3333-7_4
http://dx.doi.org/10.1007/978-1-4842-3333-7_4
https://firebase.google.com/docs/android/setup
https://developers.google.com/cloud-messaging/android/android-migrate-fcm

146 CHAPTER 6: Push Messaging

FCM is easier to set up and implement due to a number of improvements:

	The AndroidManifest.xml file has been simplified by reducing the
amount of permissions required. It no longer requires permissions for
C2DM and WakeLock.

	The AndroidManifest.xml file no longer needs to include GcmReceiver
because FCM handles this automatically.

	No library files (such as gcm.jar) need to be included in the project.
For FCM, this is handled by the build.gradle files for Android Studio.

	The device registration message flow has been simplified with a new
token management approach.

 FCM Setup
Setting up an FCM project involves the following high-level steps. For more details, refer to
the following links, which describe adding Firebase to your apps and setting up your FCM
client app:

https://firebase.google.com/docs/android/setup

https://firebase.google.com/docs/cloud-messaging/android/client

A high-level summary of these steps is shown next.

 Adding Firebase to Your Android Project

	Google FCM requires a device running Android 4.0 or newer and Google
Play Services 11.4.2 or higher.

	FCM requires you to use Android Studio version 1.5 or higher.

	You will need the applicationID or instanceID from the build.gradle
file in your Android project’s module folder (typically app/). You will
enter this ID in the Firebase console.

	Set up your project for FCM at the Firebase console at
https://console.firebase.google.com. You have the choice to
use the Firebase Assistant or you can manually add Firebase.

	To manually add Firebase, you can either import a Google project
or create a new project. After you enter your app’s package name,
download the google-services.json file. You can download this file at any
time; see the end-of-chapter links for details.

	Copy the google-services.json file into your projects app/ folder.

www.allitebooks.com

https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/cloud-messaging/android/client
https://console.firebase.google.com/
http://www.allitebooks.org

147CHAPTER 6: Push Messaging

 Setting Up Your FCM Client App
	In Android Studio, add the FCM dependency to your gradle files:

Root-level build.gradle file:

buildscript {
 dependencies {
 classpath 'com.google.gms:google-services:3.1.1'
 }
}

App-level build.gradle file:

Dependencies {
 compile 'com.google.firebase:firebase-messaging:11.4.2'
}

	Add a service that extends FirebaseMessagingService to your
AndroidManifest.xml file. This is needed if you want to use features
beyond just receiving notifications.

<service
 android:name=".MyFirebaseMessagingService">
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT"/>
 </intent-filter>
</service>

	Add a service that extends FirebaseInstanceIdService to your
AndroidManifest.xml file. This is needed to handle creation, rotation, and
updating or registration tokens.

<service
 android:name=".MyFirebaseInstanceIDService">
 <intent-filter>
 <action android:name="com.google.firebase.INSTANCE_ID_EVENT"/>
 </intent-filter>
</service>

	If FCM is critical to your app’s function, be sure to set minSDKVersion 8
or higher in the app’s build.gradle to ensure it can only be installed on
devices that support FCM.

	On initial startup of your app, FCM generates a registration token for
the client app instance. You can retrieve and monitor the token with the
following code:

@Override
public void onTokenRefresh() {
 // Get updated InstanceID token.
 String refreshedToken = FirebaseInstanceId.getInstance().getToken();

148 CHAPTER 6: Push Messaging

 Log.d(TAG, "Refreshed token: " + refreshedToken);
 // If you want to send messages to this application instance send the
 // Instance ID token to your app server here ...
}

Once the Firebase and FCM setup are completed, you are ready to push messages down
to your device. You will see how to do this first with the FCM Quickstart app. Then you will
move onto the fully functional FCM Android client app.

 FCM Quickstart App
If you wish to introduce yourself to push messaging and would like to experiment with FCM,
Google provides the Firebase Cloud Messaging Quickstart app to make it easy. The app is
available on GitHub at https://github.com/firebase/quickstart-android/tree/master/messaging.

Figure 6-5 shows a snapshot and some highlights of the FCM Quickstart app.

Figure 6-5. FCM Quickstart app

The app demonstrates registering an Android app for notifications and handling the receipt of
messages through InstanceID and Tokens. The Quickstart app does not require an app server,
and it will let you send downstream messages to your device from the Firebase console.

The FCM Quickstart app is a great way to get started, but what if you want advanced
functionality, such as

	Sending downstream messages from your app,

	Sending topic messages with a publish/subscribe model,

	Sending to device groups, and

	Sending upstream messages?

www.allitebooks.com

https://github.com/firebase/quickstart-android/tree/master/messaging
http://www.allitebooks.org

149CHAPTER 6: Push Messaging

To handle each of these advanced functions, you will need an application server. For the
upcoming FCM project, you will implement your own app server on Amazon AWS.

 FCM App
The FCM app presented in this chapter is a fully functional FCM push solution, adding the
advanced capabilities of the app server that were not available for the Quickstart app. When
you launch the FCM app, you will see the screen shown in Figure 6-6.

Your device will automatically register with the FCM server. Recall that this was step ①
in the push messaging ladder diagram. When the app receives the ID, it will register the
device with your app server (recall step ② in the message flow). Now your device is ready to
receive push messages.

Next, you will take a look at the code in the FCM project and how to set up your FCM
application server. After implementation of the app server, you will be able to push messages
down to registered devices from the app server, similar to the FCM Quickstart app used with
the Google Firebase console.

Figure 6-6. FCM push messaging demo app registering the device and receiving messages

150 CHAPTER 6: Push Messaging

 FCM Project
Table 6-5 shows the overall file structure of the project.

Table 6-5. FCM Push Project Structure

Sources Resources

MyFirebaseMessagingService.java
MyFirebaseInstanceIDService.java

Global.java

MainActivity.java

activity_main.xml

The key aspects of each of the source files are summarized next.

 AndroidManifest.xml
FCM greatly simplifies the AndroidManifest.xml file. You only need to define two services. The
MyFirebaseMessagingService is required to handle messages. The MyFirebaseInstanceIdService
is required to handle tokens. All of the cryptic c2dm references that were required for GCM are
no longer required with FCM! A subset of the AndroidManifest.xml follows:

<service
 android:name=".MyFirebaseMessagingService">
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT"/>
 </intent-filter>
</service>

<service
 android:name=".MyFirebaseInstanceIDService">
 <intent-filter>
 <action android:name="com.google.firebase.INSTANCE_ID_EVENT"/>
 </intent-filter>
</service>

The activity used in the app is defined in the manifest file, as shown below. The MainActivity
runs when the app is launched. It obtains a unique ID for the device and then registers
the device with FCM. Once registration is complete, the MainActivity receives incoming
messages and displays them in a ListView.

<activity
 android:name="com.wickham.android.MainActivity"
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>
<activity
 android:name="com.wickham.android.MainActivity"
</activity>

www.allitebooks.com

http://www.allitebooks.org

151CHAPTER 6: Push Messaging

 Global.java: Setting Up the FCM Credentials
Both the activity and the services used in the project will need references to your FCM
credentials and URL interface to the app server. To centralize the access to the variables, the
project will use a public Global.java class.

public class Global {
 public static final String SERVER_URL = "http://www.your-server.com/register.php";
 public static final String EXTRA_MESSAGE = "Extra_Message";
 public static final String REGISTRATION_COMPLETE = "registrationComplete";
 public static final String PUSH_NOTIFICATION = "pushNotification";
 public static String DEVICE_NAME = "deviceName";
}

 MainActivity.java
The MainActivity.java launches at startup and generates a unique id for the device. The
unique deviceID is obtained with the following code.

// Set a name for the device and truncate to last four characters
Global.DEVICE_NAME = Secure.getString(this.getContentResolver(), Secure.ANDROID_ID);
Global.DEVICE_NAME = Global.DEVICE_NAME.substring(Global.DEVICE_NAME.length()-4,
Global.DEVICE_NAME.length());
((TextView) findViewById(R.id.uniqueid)).setText(Global.DEVICE_NAME);

MainActivity.java next performs the following functions:

	Registers the device if it is not already registered.

	Sets up a broadcast receiver and listens for incoming messaging.

	Displays any new messages in a ListView. The ListView can be cleared
by pressing the Clear List button.

	Displays a toast upon arrival of a new message

The broadcast receiver is implemented as follows. Whenever new messages are received by
the broadcast receiver, the message payload is added to the items ArrayList and a Toast is
also generated to notify the user.

mRegistrationBroadcastReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // Check the intent type
 if (intent.getAction().equals(Global.REGISTRATION_COMPLETE)) {
 // FCM successfully registered
 Log.i (TAG, "Receiver=" + Global.REGISTRATION_COMPLETE);
 items.add(0, "FCM Device has been registered");
 incomingPushMsg.notifyDataSetChanged();
 Toast.makeText(getApplicationContext(), "FCM Registered!", Toast.LENGTH_LONG).show();

152 CHAPTER 6: Push Messaging

 // Display the token
 String token = FirebaseInstanceId.getInstance().getToken();
 ((TextView) findViewById(R.id.token)).setText(token);
 Log.i (TAG, "Refreshed Token");
 } else if (intent.getAction().equals(Global.PUSH_NOTIFICATION)) {
 // FCM message received
 Log.i (TAG, "Receiver=" + Global.PUSH_NOTIFICATION);
 //String newMessage = intent.getExtras().getString(Global.PUSH_NOTIFICATION);
 String newMessage = intent.getStringExtra(Global.EXTRA_MESSAGE);
 items.add(0, newMessage);
 incomingPushMsg.notifyDataSetChanged();
 Toast.makeText(getApplicationContext(), "New Message: " + newMessage,

Toast.LENGTH_LONG).show();
 }
 }
};

 MyFirebaseInstanceIDService
When implementing FCM, you need to include the onTokenRefresh method in the
MyFirebaseInstanceIDService.java.

This small code block enables you to manage tokens. FCM has simplified registration with
the FirebaseInstanceID.getToken() method.

public class MyFirebaseInstanceIDService extends FirebaseInstanceIdService {
 private static final String TAG = MyFirebaseInstanceIDService.class.getSimpleName();

 @Override
 public void onTokenRefresh() {
 super.onTokenRefresh();
 String refreshedToken = FirebaseInstanceId.getInstance().getToken();
 Log.i(TAG, "onTokenRefresh token=" + refreshedToken);
 // sending reg id to your server
 register(Global.DEVICE_NAME, refreshedToken);
 }

 private void register(String name, final String token) {
 Log.i(TAG, "Registering device with token=" + token);
 String serverUrl = Global.SERVER_URL;
 Map<String, String> params = new HashMap<String, String>();
 params.put("name", name);
 params.put("token", token);
 post(serverUrl, params);

 // Tell the UI we have been registered by FCM
 Intent registrationComplete = new Intent(Global.REGISTRATION_COMPLETE);
 registrationComplete.putExtra("token", token);
 registrationComplete.putExtra("name", name);
 LocalBroadcastManager.getInstance(this).sendBroadcast(registrationComplete);
 }

www.allitebooks.com

http://www.allitebooks.org

153CHAPTER 6: Push Messaging

 private static void post(String endpoint, Map<String, String> params) {
 URL url;
 try {
 url = new URL(endpoint);
 } catch (MalformedURLException e) {
 throw new IllegalArgumentException("invalid url: " + endpoint);
 }
 StringBuilder bodyBuilder = new StringBuilder();
 Iterator<Map.Entry<String, String>> iterator = params.entrySet().iterator();
 // constructs the POST body using the parameters
 while (iterator.hasNext()) {
 Map.Entry<String, String> param = iterator.next();
 bodyBuilder.append(param.getKey()).append('=')
 .append(param.getValue());
 if (iterator.hasNext()) {
 bodyBuilder.append('&');
 }
 }
 String body = bodyBuilder.toString();
 Log.i(TAG, "Posting '" + body + "' to " + url);
 byte[] bytes = body.getBytes();
 HttpURLConnection conn = null;
 try {
 Log.i(TAG, "url=" + url);
 conn = (HttpURLConnection) url.openConnection();
 conn.setDoOutput(true);
 conn.setUseCaches(false);
 conn.setFixedLengthStreamingMode(bytes.length);
 conn.setRequestMethod("POST");
 conn.setRequestProperty("Content-Type","application/x-www-form-

urlencoded;charset=UTF-8");
 // post the request
 OutputStream out = conn.getOutputStream();
 out.write(bytes);
 out.close();
 // handle the response
 int status = conn.getResponseCode();
 Log.i(TAG, "Status Code=" + status);
 if (status != 200) {
 // Handle failure
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (conn != null) {
 conn.disconnect();
 }
 }
 }
}

154 CHAPTER 6: Push Messaging

The code above is required to manage registration tokens because a token can change for a
number of reasons, including

	The app deletes the Instance ID.

	The app is restored on a new device.

	The user uninstalls/reinstalls the app.

	The user clears the app’s data.

The following single line of code shows how to obtain a FCM token. This token can then be
sent up to your app server to manage your push subscribers.

String myToken = FirebaseInstanceId.getToken(); // You can send this token to your app server

 MyFirebaseMessagingService.java
MyFirebaseMessagingService.java is the service that runs in the background and handles
the messaging interface with Google FCM. The service implements the following important
FCM method:

	onMessage is called whenever a message is received

The following code shows how the method is implemented in the FCM project. When a
message is received, you create an Intent to display the message in the ArrayList on the
Main Activity screen layout, and you then generate a notification for the user.

public class MyFirebaseMessagingService extends FirebaseMessagingService {

 private static final String TAG = MyFirebaseMessagingService.class.getSimpleName();

 @Override
 public void onMessageReceived(RemoteMessage remoteMessage) {
 String message = remoteMessage.getNotification().getBody();
 String data = remoteMessage.getData().toString();
 Log.i(TAG, "Message= " + message);

 if (remoteMessage.getNotification() != null) {
 Intent intent = new Intent(Global.PUSH_NOTIFICATION);
 intent.putExtra(Global.EXTRA_MESSAGE, message);
 LocalBroadcastManager.getInstance(this).sendBroadcast(intent);
 }
 }
}

 Application Server Setup
In Chapter 5, you saw how to set up a server on AWS for sending emails from your Android
app. For the FCM project, you will use a similar approach to set up an FCM application
server. Other back-end technologies such as Ruby or ASP could just as easily be used.
Google has many resources available to help you set up your application server; refer to
Server Setup in the FCM links section of this chapter.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3333-7_5
http://www.allitebooks.org

155CHAPTER 6: Push Messaging

The process involves the following steps:

	Set up a publicly available LAMP server. You can use Amazon Web
Services or other cloud-based providers. See the AWS LAMP server
setup instructions in Chapter 5.

	Set up a MySQL database. You can use PHPMyAdmin or other
managers. More about this later.

	Create a script on the server to store the tokens. You will use a MySQL
database to store the registered users on the app server.

	Build a user interface. In the project you will use a simple HTML
webpage with some basic JavaScript (index.php). You could make this
much more sophisticated by leveraging popular content management
systems (CMS) such as Joomla or Drupal.

	Add basic functions to the user interface so users can view registered
devices and push messages to devices.

In order to complete the setup described above, you need to install several files on your app
server. File Transfer Protocol (FTP) can be used to transfer these PHP files onto the app server.

If you are not familiar with PHP and AWS, do not be intimidated. The PHP scripts are only
about a hundred lines of code, combined. Their purpose is to merely provide an interface to
the Google FCM API and allow access to your app server database.

Next, let’s review each of the required files that need to be installed on your AWS application
server.

 db_connect.php
This file contains a function that will connect to the database and store the registered
devices. The database variables and GOOGLE_SERVER_KEY shown below must match the
FCM project Server Key and MySQL database you will create.

public function connect() {
 define("DB_HOST", "localhost");
 define("DB_USER", "fcm_user1");
 define("DB_PASSWORD", "fcmuser1");
 define("DB_DATABASE", "fcm");
 $con = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD);
 mysql_select_db(DB_DATABASE);
 return $con;
}

 db_functions.php
This file contains two functions that will be used to store users into the database and to
access all users currently registered. Function storeUser will insert a newly registered device
into the database. Function getAllUsers is called by index.php and is used to display a list of
all the users currently registered in the database.

http://dx.doi.org/10.1007/978-1-4842-3333-7_5

156 CHAPTER 6: Push Messaging

 FCM.php
This file contains the send_notification function. The function is called whenever you need
to send a push notification down to a device. FCM requires you to send a push notification
by calling the FCM Send API with a JSON-encoded message. The following FCM.php code
handles this for you:

<?php
class FCM {
 function__construct() {
 }
 public function send_notification($token, $message) {

 define("FIREBASE_API_KEY", "your-api-key");

 $url = 'https://fcm.googleapis.com/fcm/send';
 $fields = array(
 'to' => $token,
 'data' => $message,
);
 $headers = array(
 'Authorization: key=' . FIREBASE_API_KEY,
 'Access-Control-Allow-Origin: *',
 'Content-Type: application/json'
);

 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);
 curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($fields));
 $result = curl_exec($ch);
 if ($result === FALSE) {
 die('Curl failed: ' . curl_error($ch));
 }
 curl_close($ch);
 echo $result;
 }
}
?>

 register.php
This script will serve as the interface with your Android app. Recall that you set up a
reference to this file in the Android app’s Global.java file. Whenever your app needs to
register a new user on the application server, this script will be called. The code that stores
the user in the database and sends the initial push notification is as follows:

www.allitebooks.com

http://www.allitebooks.org

157CHAPTER 6: Push Messaging

<?php
if (isset($_POST['name']) && isset($_POST['token'])) {
 $name = $_POST['name'];
 $token = $_POST['token'];

 include_once $_SERVER['DOCUMENT_ROOT'] . "/db_functions.php";
 include_once $_SERVER['DOCUMENT_ROOT'] . "/FCM.php";

 $db = new DB_Functions();
 $fcm = new FCM();

 $res = $db->storeUser($name, $token);
 $result = $fcm->send_notification($token, $name);
 echo $result;
}

fclose($handle);

?>

 index.php
This is a simple HTML and JavaScript webpage that will display a list of your registered
devices and also allow you to push a message down to any of the registered devices.
Figure 6-7 shows a screenshot of the basic interface.

Although very crude, this simple webpage achieves some of the basic functions available on
the Firebase console, which allows you to manage your devices or push down messages.
Not quite as glamorous, but it gets the job done and it can easily be extended.

 send_message.php
This simple script is used by index.php to send a push message to a registered device.
This FCM example only allows you to push messages down to individual subscribers, but
it would be very simple to modify index.php to call send_message within a loop to send
messages to a group of devices or even to all of the registered devices on the application
server. This type of group sending operation is sometimes referred to as “audiences” or
“campaigns” when being set up on back-end push servers such as Firebase or Urban Airship.

 Setting Up the Database
You will use a MySQL database on the application server to store the registered devices.
There are different ways to set up this database depending on your choice for back-end
technology. In a Linux/Windows PHP environment, myPHPAdmin is commonly used to
create and manage the database and tables.

When you create your database and database user, make sure that the credentials match
the variables that you set up in the db_connect.php file.

158 CHAPTER 6: Push Messaging

After the database is successfully created, you will need to create a table called fcm_users.
This table will be used to store all of the devices that register with FCM and the application
server. Refer to the sidebar for the SQL code to create this table.

 MySQL Database Table Setup
After successful creation of your MySQL database, you will need to create an empty table
to hold your registered devices. The table will have fields including gcm_regid, name, and
device_id. Using myPHPAdmin, create the gcm_users table with the following SQL code:

CREATE TABLE IF NOT EXISTS `fcm_users` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `fcm_token` text,
 `name` varchar(50) NOT NULL,
 `created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

After you execute this code, you can use the myPHPAdmin tool and you should see the
empty fcm_users table that has been successfully created.

 Pushing Down a Message
Now that you have your database set up, pointing your browser at the index.php script on
your server will show you the currently registered devices on your application server, as
shown in Figure 6-7.

Figure 6-7. FCM demo app pushing a message from the server to a registered device

The index.php file has some basic JavaScript and HTML code that allows it to display
registered users and push individuals messages down to them.

Note that the Name and DeviceID for each registered are displayed. These were entered by
the user when they first registered their device in RegisterActivity.java.

www.allitebooks.com

http://www.allitebooks.org

159CHAPTER 6: Push Messaging

To send a push message down to any registered device, simply enter the message in the
text box and press the Send button.

 FCM Upstream Messaging
The FCM implementation presented in this chapter uses the FCM Http Connection Server.
Upstream messaging works a bit differently and uses Cloud Connection Server (CCS) with
XMPP protocol. Upstream messaging has a slightly different message flow. Figure 6-8 shows
the key difference, highlighted in the oval box, when upstream messaging is used with CCS.

What does upstream messaging do for you? There are three main advantages:

	Upstream messaging provides a simplified API. There are only a few
methods, so implementing your Android app will be less complex when
you move to upstream messaging with CCS.

	Upstream messaging allows you to reuse upstream connections. Notice
that with upstream messaging, your Android app only needs to send
messages to FCM, and you do not need to send messages directly to
your application server.

	Upstream messaging allows you to cancel notifications. This is very useful
when you are using multiple devices. There is no easy way to do this
when using the traditional FCM HTTP Connection Server. This valuable
feature will likely drive the migration to upstream messaging in the future.

In the FCM project, you did not implement upstream messaging with XMPP. To see how to
add this protocol and the enhanced features it provides, see the end-of-chapter links.

Figure 6-8. FCM traditional model using HTTP (highlighted box light arrows) and FCM with upstream messaging using
CCS (dark arrows)

160 CHAPTER 6: Push Messaging

 Topic Messaging
Another advanced FCM feature is topic messaging. Topic messaging allows your app server
to send messages to devices that are subscribed to a specific topic. This functionality is
based on the publish/subscribe model, which you will learn more about in the next part of
this chapter.

In FCM, topic messaging supports unlimited subscriptions per app. Sending messages to
topics is very similar to sending messages to individual devices. Check the Google resource
pages to see how to send messages to topics using HTTP and XMPP. The main advantage
of using topic messaging is that it is a more scalable push messaging model. You will
explore this approach in detail with MQTT later in the chapter.

 Considering FCM Alternatives
Firebase Cloud Messaging is the most popular push messaging implementation on Android
today. Looking at the Android client app and the application server presented here, only a
small amount of code was required to implement a complete push messaging solution.

However, there may be situations where using FCM is not the best option for your app.
The following list includes some of those situations:

	You require guaranteed delivery of messages. Although FCM does not
guarantee delivery of messages, it does allow some tracking of message
delivery status on the FCM dashboard.

	Despite solid security with HTTPS, Google still knows who your
registered users are and to which devices you are pushing messages. It
is possible your clients don’t wish to share this information with Google,
even though the payload can be encrypted.

	You require a more scalable architecture such as a publish/subscribe
model. Note that FCM has recently introduced topic messaging, which
can provide a publish/subscribe architecture.

	FCM message size is limited to 4KB, messages are held up to four
weeks, and queue data is pushed to the device when the app is running.
These limits cannot be changed.

	FCM stores up to 100 messages if a device is offline. This limit cannot
be adjusted. If you require greater offline storage, you will need a
solution like MQTT where you have control over your own broker
configuration.

	Up to 1,000 devices can be accessed per push request. This limitation
can be overcome by sending multiple requests. Most of the third-party
services using FCM handle this for you automatically, but it is something
you need to handle yourself if you implement your own application
server. Topic messaging is a good alternative.

	Depending on your requirements, a major drawback with FCM or
third-party services based on FCM may be their lack of service-level
agreement (SLA) or Quality of Service (QoS) features.

www.allitebooks.com

http://www.allitebooks.org

161CHAPTER 6: Push Messaging

	Prior to Android SDK level 4.1, Google Cloud Messaging required a
registered Google account. On newer devices, it requires the Google
Services Framework (Android Play Store) to be present on the device.
Keep in mind that Google Services Framework is not available on some
devices, such as Kindle, etc.

	Google doesn’t work (well enough) where you live due to server availability.

	With the FCM push solution, there is also no guarantee about the order
of message delivery.

	You, or more importantly your client(s), require a completely in-house
solution.

If you decide not to use FCM because of one or more of these reasons, there are some
alternatives. If your application requires high performance or advanced features such as
QoS, then MQTT or AMQP could be your best options. Both MQTT and AMQP allow for
guaranteed delivery of messages. MQTT is ideal for mobile devices and the IoT.

You will implement MQTT on Android next.

6.6 Open Source Push Messaging with MQTT
MQTT is the acronym for the Message Queuing Telemetry Transport protocol. It was originally
developed by IBM for telemetry applications. It has since been moved to open source world as
an Eclipse project and version 3.1.1 of the protocol has completed standardization.

MQTT runs over TCP and works very well over low-bandwidth networks. The protocol is
ideal for low power usage or connecting the IoT. The protocol was designed for low latency
messaging over fragile networks, is battery efficient, and places the focus on sending
messages rather than staying connected. The protocol was designed with a focus on
minimal bytes flowing over the wire.

Applications that use MQTT send and receive messages by calling an MQTT library.

	The library acts like a mailbox, sending and receiving messages.

	The MQTT client library is small. It is also simple, with only five API calls.

	It is becoming more popular in the Android world, and stable Android
libraries are freely available.

The protocol and library are totally abstracted and independent of the message content.
The maximum message size is limited to 256MB; contrast this with the FCM limitations!
However, the protocol was not designed for large data transfers. MQTT excels at high
volume of small size messages, such as sensor data, stock quotes, game scores, or other
typical push message content.

 MQTT Introduction
MQTT uses a highly scalable publish/subscribe model. Not until Google recently added topic
messaging to FCM was FCM able to match the scalability of MQTT.

162 CHAPTER 6: Push Messaging

MQTT messages are exchanged through a MQTT broker. MQTT clients can publish or
subscribe to MQTT topics. Think of the publish/subscribe model as a hub-and-spoke model
for messaging. Every client who wants to exchange MQTT messages needs to connect to
the broker.

In the publish/subscribe model, a message is published once to a given topic, and every
client who is subscribed to the topic will receive a copy of the message.

Figure 6-9 shows the typical publish/subscribe model. Always remember that MQTT clients
can do both of the following:

	Publish messages to topics.

	Subscribe to topics for messages to be received.

Table 6-6. MQTT QoS Levels

QoS Level MQTT QoS Level Description

0 Indicates that a message should be delivered at most once (zero or one times). The
message will not be persisted to disk and will not be acknowledged across the network.
This QoS is the fastest, but should only be used for messages that are not valuable. Note
that if the server cannot process the message (for example, there is an authorization
problem), then an exception will not be thrown. Also known as “fire and forget.”

1 Indicates that a message should be delivered at least once (one or more times). The
message can only be delivered safely if it can be persisted, so the application must
supply a means of persistence using MqttConnectOptions. If a persistence mechanism
is not specified, the message will not be delivered in the event of a client failure. The
message will be acknowledged across the network. This is the default QoS.

2 Indicates that a message should be delivered once. The message will be persisted to
disk and will be subject to a two-phase acknowledgement across the network. The
message can only be delivered safely if it can be persisted, so the application must
supply a means of persistence using MqttConnectOptions. If a persistence mechanism
is not specified, the message will not be delivered in the event of a client failure.

Figure 6-9. MQTT publish/subscribe model

One of the best things about using MQTT is that it supports three QoS levels. Table 6-6
shows how the MQTT QoS is similar to how FCM implementations perform.

www.allitebooks.com

http://www.allitebooks.org

163CHAPTER 6: Push Messaging

 MQTT App
Figure 6-10 shows a screenshot of the MQTT app. The project is a full-featured Android
MQTT client that you can use as a foundation for your push messaging requirements.

Figure 6-10. MQTT demo app

The app is fairly straightforward and consists of a main activity and a background service.
Upon launch, a unique Device ID is displayed. A simplified device Target ID is generated.
This Target ID will be used to push messages down from the broker to the device.

The app also contains a horizontal linear layout with three control buttons which perform the
following functions:

	Start Service starts the background MQTT service.

	Stop Service stops the background MQTT service.

	Clear List clears the list of received push messages from the ArrayList.

Below the control buttons, an ArrayList displays all of the push messages received. At the
bottom of the screen is an additional button that will exit the app.

164 CHAPTER 6: Push Messaging

 MQTT Project
Table 6-7 shows the high level architecture of the MQTT demo app.

PushActivity.java runs when you launch the app. It displays control buttons to start and
stop the service, and to exit the app. It also displays a unique Device ID needed to push
messages to the device from the broker, and also displays any received push messages
from the broker in an ArrayList.

MqttService.java is the long-lived service that manages the MQTT connection with the broker.

Next, let’s take a closer look at the key code inside the project, which includes a main activity,
a service that implements the connection to the message broker, and a JAR library file.

 MQTT Libraries for Android
There are currently two commonly used Android libraries for MQTT:

	paho-mqtt-client-1.0.1.jar

	wmqtt.jar

One of the advantages of MQTT over AMQP or STOMP is the availability of these well-
tested libraries for Android. Paho is the Open Source Eclipse client library for Android. It
is recommended because it is very stable and it implements version 3.1.1 of the protocol,
which has been standardized.

In the MQTT project, both paho-mqtt-client-1.0.1.jar and paho- mqtt-client-1.0.1-source.jar are
included. You can add the library to your Android Studio project by copying the files to the /libs
directory of your Android project, right-clicking the .jar file, and clicking “Add as a Library.”

As mentioned in the introduction, the MQTT Android library is simple, with only five API calls.

	Connect: Connect to a MQTT broker.

	Publish: Publish a message to an MQTT topic.

	Subscribe: Subscribe to a topic.

	Unsubscribe: Unsubscribe from a topic.

	Disconnect: Disconnect from a MQTT broker.

You will see in MqttService.java how these methods are used to implement push messaging
with MQTT.

Table 6-7. MQTT Project Structure

Source Resources Libraries

ConnectionLog.java

Global.java

MqttService.java

PushActivity.java

Main.xml Paho-mqtt-client-1.0.1.jar

Paho-mqtt-client-1.0.1-sources.jar

www.allitebooks.com

http://www.allitebooks.org

165CHAPTER 6: Push Messaging

 Global.java
The Globa.java class is used to define some variables that will be used by the activity and
the service in the Android MQTT client app.

Note that the MQTT_BROKER must point to the IP address of the MQTT broker, and MQTT_
PORT is the port on which the broker is listening, typically 1883.

public class Global {
 public static ArrayList<String> items = new ArrayList<String>();

 // MQTT params
 public static final String MQTT_URL_FORMAT = "tcp://%s:%d"; // URL Format
 public static final String MQTT_BROKER = "MQTT Broker URL";
 public static final int MQTT_PORT = 1883;
 public static final int MQTT_QOS_0 = 0; // QOS Level 0 (Delivery Once no confirmation)
 public static final int MQTT_QOS_1 = 1; // QOS Level 1 (Delivery at least Once with conf)
 public static final int MQTT_QOS_2 = 2; // QOS Level 2 (Delivery only once with conf)
 public static final int MQTT_KEEP_ALIVE = 300000; // KeepAlive Interval in MS
 public static final String MQTT_KEEP_ALIVE_TOPIC_FORMAT = "%s/keepalive";
 public static final byte[] MQTT_KEEP_ALIVE_MESSAGE = { 0 }; // Keep Alive message to send
 public static final int MQTT_KEEP_ALIVE_QOS = MQTT_QOS_0; // Default Keep alive QOS
 public static final boolean MQTT_CLEAN_SESSION = true; // Start a clean session?
 // If the server is setup, we can use password access
 public static final String MQTT_USER = "mqttuser1";
 public static final char[] MQTT_PASSWORD = new char[]{'a','b','c','1','2','3'};
}

 PushActivity.java
When the app is launched, PushActivity.java uses the following code to display a unique
DeviceID and also generates a device TargetID, such as “adc7-982”:

mUniqueID = Secure.getString(this.getContentResolver(), Secure.ANDROID_ID);
((TextView) findViewById(R.id.uid_text)).setText(mUniqueID);

// set up our device ID with the "adc7-" + the last 3 chars of the uniqueID
mDev iceID = mClientID + "-" + mUniqueID.substring(mUniqueID.length()-3,

mUniqueID.length());
((TextView) findViewById(R.id.target_text)).setText(mDeviceID);

The DeviceID will be used to push messages down to the device from the broker or server.

There is a function in the PushActivity.java called pushItOut that allows you to publish
a message to a topic. The following code shows how this is accomplished. Once the
MqttClient and MqttTopic and MqttMessage objects are set up, you simply call the
connect(), publish(), and disconnect() methods to send the message.

166 CHAPTER 6: Push Messaging

private void pushItOut(final String top, final String msg) {
 // publish the message
 String url =
 String.format(Locale.US, Global.MQTT_URL_FORMAT, Global.MQTT_BROKER, Global.MQTT_PORT);
 mMemStore = new MemoryPersistence();
 mClient = new MqttClient(url,mUniqueID,mMemStore);

 // publish the msg to the topic
 MqttTopic mqttTopic = mClient.getTopic(top);
 MqttMessage message = new MqttMessage(msg.getBytes());
 message.setQos(Global.MQTT_QOS_2);
 mOpts = new MqttConnectOptions();
 mOpts.setCleanSession(Global.MQTT_CLEAN_SESSION);

 mClient.connect(mOpts);
 mqttTopic.publish(message);
 mClient.disconnect();
}

A BroadcastReceiver is used to communicate with the service. The key code is shown
below. It handles starting and stopping of the service when buttons are pressed, as well as
displaying of received messages via Toast.

BroadcastReceiver messageReceiver = new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 String topic = "";
 String action = intent.getAction();
 If (action.equalsIgnoreCase(MqttService.NEW_MESSAGE)){
 Bundle extra = intent.getExtras();
 message = extra.getString("message");
 topic = extra.getString("topic");
 Toast.makeText(PushActivity.this, "A new message with topic="
 + topic + " hasarrived: " + message, Toast.LENGTH_LONG).show();
 incomingPushMsg.notifyDataSetChanged();
 list.scrollTo(0, 0);
 }
 if(action.equalsIgnoreCase(MqttService.STOP_SERVICE)){
 Button startButton =
 ((Button) findViewById(R.id.start_button));
 Button stopButton = ((Button) findViewById(R.id.stop_button));
 startButton.setEnabled(true);
 stopButton.setEnabled(false);
 }
 If (action.equalsIgnoreCase(MqttService.START_SERVICE)){
 Button startButton =
 ((Button) findViewById(R.id.start_button));
 Button stopButton = ((Button) findViewById(R.id.stop_button));
 startButton.setEnabled(false);
 stopButton.setEnabled(true);
 }
 }
};

www.allitebooks.com

http://www.allitebooks.org

167CHAPTER 6: Push Messaging

 MqttService.java
The key to the MQTT app lies in the implementation of a long-lived service that handles the
MQTT protocol.

The service is started by PushActivity.java when the user presses the Start Service button.
At this time, the service connects to the MQTT broker/server according to the connection
parameters set at the top of the service.

private static final String MQTT_BROKER = "MQTT Broker URL";
// Broker URL or IP address
private static final int MQTT_PORT = 1883;
// broker port

When the service is started, the connect() method is called to establish the connection.
The following is the key code to establish a MQTT connection with the broker:

mClient = new MqttClient(url,mDeviceId,mDataStore);

mClient.connect(mOpts);

// Subscribe to an initial topic, which is combination of client ID and device ID. String
initTopic = mDeviceId;

mClient.subscribe(initTopic, MQTT_QOS_0);

mClient.setCallback(MqttService.this);
mStarted = true; // Service is now connected

log("Successfully connected and subscribed starting keep alives");
startKeepAlives();

Note that you are specifying the QOS level and the initTopic, which is the Device ID, when
you call the MQTT subscribe method.

At the end of the connect() code block, you should note the call to startKeepAlives. MQTT
uses keepAlive messages to accomplish the long-lived TCP connection. A keepAlive
message is published to the topic at the specified interval and with the specified QoS.

private static final int MQTT_KEEP_ALIVE = 60000;
// KeepAlive Interval in millisecs
private static final String MQTT_KEEP_ALIVE_TOPIC_FORMAT = "%s/keepalive";
// Topic format for KeepAlives
private static final byte[] MQTT_KEEP_ALIVE_MESSAGE = { 0 };
// Keep Alive message to send
private static final int MQTT_KEEP_ALIVE_QOS = MQTT_QOS_0;
// Default Keepalive QOS

MqttMessage message = new MqttMessage(MQTT_KEEP_ALIVE_MESSAGE);
message.setQos(MQTT_KEEP_ALIVE_QOS);
return mKeepAliveTopic.publish(message);

168 CHAPTER 6: Push Messaging

When a message is received on a subscribed topic, the MQTT library will notify your service
with a callback to messageArrived. The following code will receive the message, add it to
the Global.items ArrayList, broadcast it back to PushActivity.java via Intent, and generate a
notification for the user.

// Received Message from broker
@Override
public void messageArrived(MqttTopic topic, MqttMessage message) throws Exception {
 String msg = new String(message.getPayload());
 String top = new String(topic.getName());
 log("Topic=" + top + " Message=" + msg + " QoS=" + message.getQos());
 generateNotification(getApplicationContext(), msg);
 Global.items.add(0, msg);
 log("Got message=" + msg);
 Intent i = new Intent(NEW_MESSAGE);
 i.putExtra("message", msg);
 i.putExtra("topic", top);
 sendBroadcast(i);
}

 ConnectionLog.java Logging and Debugging
In addition to the PushActivity.java and MqttService.java classes, this app also includes a
ConnectionLog.java class.

This class logs debug messages to text files. The text files use a time-stamped file name
and are stored as set by the following lines of code:

File logDir;
// Set the directory to save text files
logDir = new File(android.os.Environment.getExternalStorageDirectory(),"PushMQTT");

The log class can be seen used throughout the service to give you a running log of the
underlying MQTT messaging activity:

if ((mClient == null) || (mClient.isConnected() == false)) {
 // quick sanity check - don't try and subscribe if we don't have a connection
 log("Connection error. No connection while trying to subscribe");
} else {
 log("Subscribing to: " + initTopic);
 mClient.subscribe(initTopic, MQTT_QOS_0);
}

This ConnectionLog.java class is a very important tool for debugging issues when you first
are deploying MQTT and wish to make sure that everything is running properly.

www.allitebooks.com

http://www.allitebooks.org

169CHAPTER 6: Push Messaging

 MQTT Message Brokers
Because MQTT employs a publish/subscribe model, a message broker is required to send
MQTT messages to the Android client. The Android client connects to the broker typically on
TCP port 1883.

There are public brokers available that you can use for testing your MQTT Android app. You
can also set up your own MQTT broker on Amazon Web Services (AWS). In the MQTT demo
app, you are required to specify the URL of the MQTT broker.

There are several free and commercial MQTT broker packages that you can install on your
server. The list below and Figure 6-11 show three of the most popular MQTT brokers. Setting
up these brokers on a server is fairly straightforward. They are available in many back-end
server technologies. I will cover installation of Mosquito on AWS in the next section.

	RSMB was one of the original MQTT brokers from IBM. It is not widely
used but works well. Some vague language in the licensing terms needs
to be considered if you wish to deploy RSMB commercially.

	HiveMQ is a popular commercial MQTT broker. It is a multi- protocol
broker, which means that it can support many messaging protocols in
addition to MQTT.

	Mosquito is a very popular broker because it is open source. It is easy to
install and supports all of the latest features in the standardized protocol
version 3.1.1. If you are looking at setting up your own MQTT broker to
serve your Android client apps, Mosquito is an excellent choice.

Figure 6-11. MQTT message brokers

 MQTT Broker Setup for AWS
It is straightforward to set up an MQTT broker on Amazon AWS. The steps below summarize
how to install the latest MQTT broker software on an AWS Linux instance:

	Create a new AWS Linux instance with a public DNS. This is similar
to what you saw in Chapter 5; however, MQTT doesn’t require the
full LAMP setup. Of course, you can install the additional web server
packages if you wish.

http://dx.doi.org/10.1007/978-1-4842-3333-7_5

170 CHAPTER 6: Push Messaging

	Using the Security Group feature, adjust your server settings so that port
1883 is open to incoming/outgoing MQTT messages. You can complete
this by using a custom TCP rule for port 1883.

	Log into your Linux instance and add the CentOS mosquitto repository
to YUM’s list of repositories.

$ cd /etc/yum.repos.d
$ sudo wget http://download.opensuse.org/repositories/home:/oojah:/mqtt/CentOS_
CentOS-6/home:oojah:mqtt.repo

	Update your Amazon Linux Server.

$ sudo yum update

	Install Mosquito.

$ sudo yum install mosquitto
$ sudo yum install mosquitto-clients

	Start Mosquito.

$ sudo su
$ /usr/sbin/mosquitto -d -c /etc/mosquitto/mosquitto.conf > /var/log/mosquitto.log 2>&1

At this point, Mosquito should now be running on your server. Your Android client will be
able to connect to it, publish, and receive messages. In your Android client app, just include
the IP address of your AWS instance as the MQTT_BROKER URL.

 Sending Messages with MQTT Web Clients
With MQTT, you can also use public servers with web socket clients to publish MQTT
messages. You can also deploy your own JavaScript web socket client to publish MQTT
messages. Open source packages are available. Two of the popular public web socket
clients are

	www.hivemq.com/demos/websocket-client/

	iot.eclipse.org

Figure 6-12 shows an example of the interface maintained by HiveMQ. These interfaces
typically have a two-step process to publish a message to your Android client.

	Connect phase: You need to specify the address of the MQTT broker
you are using and press Connect.

	Publish phase: Enter the unique Device ID from the app on the web
client to publish a message to a device. As soon as you publish the
message, it will almost instantly appear on your Android device!

www.allitebooks.com

http://www.hivemq.com/demos/websocket-client/
http://www.allitebooks.org

171CHAPTER 6: Push Messaging

 MQTT Wrap Up
MQTT is a powerful, highly scalable alternative to FCM-based push messaging. You saw
in the MQTT project how a small amount of code and a very lightweight library can bring
the power of push messaging to your apps, while allowing you to retain total control of the
infrastructure.

Sitting at the crossroads of Mobile and IoT, there is a lot of momentum behind MQTT. Many
commercial apps are now using MQTT, including Facebook Messenger. MQTT is indeed a
useful tool to have in your toolbox as you consider push implementations for your apps.

6.7 References
 Firebase Cloud Messaging (FCM)

	Firebase Console: https://console.firebase.google.com/

	Google FCM Android Quickstart Demo App: https://github.com/
firebase/quickstart-android/tree/master/messaging

	Add Firebase to Your App: https://firebase.google.com/docs/
android/setup

	FCM Setup on Android: https://firebase.google.com/docs/
cloud-messaging/android/client

	FCM Server Setup: https://firebase.google.com/docs/
cloud-messaging/server

	FCM Receiving Messages on Android: https://firebase.google.com/
docs/cloud-messaging/android/receive

	FCM Topic Messaging: https://firebase.google.com/docs/
cloud-messaging/android/topic-messaging

	FCM Upstream Messaging: https://firebase.google.com/docs/
cloud-messaging/android/upstream

Figure 6-12. MQTT web client

https://console.firebase.google.com/
https://github.com/firebase/quickstart-android/tree/master/messaging
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/server
https://firebase.google.com/docs/cloud-messaging/server
https://firebase.google.com/docs/cloud-messaging/android/receive
https://firebase.google.com/docs/cloud-messaging/android/receive
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://firebase.google.com/docs/cloud-messaging/android/upstream
https://firebase.google.com/docs/cloud-messaging/android/upstream

172 CHAPTER 6: Push Messaging

	Migrating a GCM App to FCM: https://developers.google.com/cloud-
messaging/android/android-migrate-fcm

	FCM Downloading the JSON config File: https://support.google.com/
firebase/answer/7015592

 MQTT Push Messaging
	MQTT Wiki on GitHub: https://github.com/mqtt/mqtt.github.io/wiki

	MQTT and Android: https://github.com/mqtt/mqtt.github.io/wiki/
mqtt_on_the_android_platform

	MQTT Software: https://github.com/mqtt/mqtt.github.io/wiki/software

	MQTT Brokers: https://github.com/mqtt/mqtt.github.io/wiki/brokers

	MQTT Comparison to AMQP: http://vasters.com/blog/From-MQTT-to-
AMQP-and-back/

	Implementing a Keep-Alive Service: https://github.com/gipi/Android-
keep-alive

www.allitebooks.com

https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://support.google.com/firebase/answer/7015592
https://support.google.com/firebase/answer/7015592
https://github.com/mqtt/mqtt.github.io/wiki
https://github.com/mqtt/mqtt.github.io/wiki/mqtt_on_the_android_platform
https://github.com/mqtt/mqtt.github.io/wiki/mqtt_on_the_android_platform
https://github.com/mqtt/mqtt.github.io/wiki/software
https://github.com/mqtt/mqtt.github.io/wiki/brokers
http://vasters.com/blog/From-MQTT-to-AMQP-and-back/
http://vasters.com/blog/From-MQTT-to-AMQP-and-back/
https://github.com/gipi/Android-keep-alive
https://github.com/gipi/Android-keep-alive
http://www.allitebooks.org

173© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7_7

Chapter 7
Android Audio

7.1 Introduction
Android smartphones offer amazing audio capabilities.

Long before the modern smartphone existed, feature phones of the 1990s only had the
capability to play and record audio using very low-quality codecs. This limitation was mainly
due to the lack of device processing power and the limited bandwidth available on the
networks at the time. Feature phones at the time did not have the bandwidth required to
support high quality audio.

Two major advancements placed us on the path for what would become today’s modern
smartphones:

	Advances in network technology: Digital network protocols progressed
from GSM to GPRS to UMTS and finally to today’s LTE. These
advancements represent the so-called 2G, 3G, and 4G generations
which provided the increases in data bandwidth that would allow for
much higher-quality audio codecs to be supported in mobile devices.

	Advances in compression technology: MP3 compression algorithms
provide an acceptable balance between audio quality and file size.
Personal music players were the first devices to adopt this technology,
and it was only a matter of time for this technology to be merged into
the mobile phone.

Table 7-1 shows a simplified version of the supported Android audio formats. There are
many special rules and exceptions depending on device.

https://doi.org/10.1007/978-1-4842-3333-7_7

174 CHAPTER 7: Android Audio

You care most about MP3, WAV (uncompressed), and AAC/MP4. Note that you can decode
almost all of the codecs on any Android device, but if you want to encode, you have
limited choices. You’ll see how to implement encoding later in the chapter. Recall that AMR
(Adaptive Multi-Rate) is the low quality codec (5-24 kbps) that is used for phone call audio.

Note: Y indicates encoding or decoding is available (all SDK versions) for a codec.
N indicates encoding is not available for a codec.

This chapter will start with a quick review of audio basics, covering the Android audio APIs
and codecs, which will help you to decide the best audio approach for your app.

The chapter will cover Android audio capabilities in the Android SDK (software development
kit) and will not cover the Android NDK capabilities (native development kit). The primary
addition the NDK provides is direct access to the OpenSL audio library. The SDK makes life
much easier by providing APIs to handle the interface to this low-level library.

Android audio has come a long way. I will review the progress the platform has made and
discuss the biggest remaining challenge for Android audio-latency. You will implement the
Audio Buffer Size app to determine the latency of your devices.

You will implement the basic playing of audio assets using the high-level APIs such as Media
Recorder and Sound Pool.

You will implement the common pattern of using a background service to play music while
your app is free to perform its core functions in the foreground.

You will implement recording of uncompressed PCM audio using the internal smartphone
microphone. You will then take a look at options for interfacing external microphones which
can allow you to record professional quality audio directly from your Android devices.

You will explore the code required to accomplish basic audio effects processing and
encoding of audio to compressed formats such as .mp3 and .mp4.

Table 7-1. Supported Audio Formats

Codec Encode Decode Details File Type/Container

AAC 4.1+ Y Mono/Stereo/5.0/5.1 up to
48khz sample

3GPP,MP4,ADTS AAC/.3gp,.
mp4,.m4a,.aac,.ts

AMR NB/WB Y Y 5-12 kbps 12-24 kbps 3GPP/.3gp

FLAC N Y (3.1+) Mono/Stereo/up to
44.1/48khz

FLAC/.flac

MP3 N Y Mono/Stereo/8-320kbps MP3/.mp3

MIDI N Y Support for ringtones Type 0, 1/.mid, .ota, .imy

Vorbis N Y OGG, Matroska/.ogg, .mkv

PCM Y (4.1+) Y 8-bit/16-bit Linear PCM
rates to hardware limit

WAVE/.wav

Opus N Y (5.0+) Matroska/.mkv

www.allitebooks.com

http://www.allitebooks.org

175CHAPTER 7: Android Audio

It is not always optimal to load up your app with audio samples. This is where audio
synthesis comes into play. Pure Data and Csound are open source visual programming
languages for sound synthesis and they run well on Android. You will implement Pure Data
and take a look at Csound using the available libraries for each.

7.2 Chapter Projects
Table 7-2 shows the projects that will be presented in this chapter.

Table 7-2. Chapter Projects

Title of Project File Name Description

Audio Buffer Size + AudioBufferSize.zip Adaptation of Google’s Audio Buffer Size app that
shows optimal audio settings for your device and
can estimate latency.

Playing Audio PlayingAudio.zip A configurable app that can play audio assets using
the three Android audio-playing APIs.

Music Service MusicService.zip Demonstration of how to play music or sounds
using a background service.

Recording Audio RecordingAudio.zip Demonstration of how to record audio and store the
recording as PCM uncompressed .wav file.

Ringdroid + Ringdroid.zip Open source Google app that demonstrates how to
handle all aspects of audio including recording and
encoding into compressed formatted such as AAC
(.mp4).

Pure Data Player PDplayer.zip A player app that can load Pure Data source files
(.pd) and play them using the Pure Data audio
synthesis engine.

Additionally, the third-party apps in Table 7-3 will be discussed.

Table 7-3. Third-Party Apps

App Name Description

Splatency App released by Superpowered, a vendor of low latency Android audio
drivers, that can calculate the round trip audio latency of your device.

Circle of Fifths Open source Pure Data app that demonstrates how to interface to the
Pure Data library with a GUI. The app can play guitar chords using
the Pure Data engine.

Csound6 Open source Csound app for Android that allows you to play Csound (.csd)
files directly on your Android device using the Csound synthesis engine.

176 CHAPTER 7: Android Audio

7.3 Audio Overview
Android audio is comprehensive. The platform gives you access to many advanced audio
functions. As you have seen in many parts of Android, working with audio is a matter of
mastering the classes and APIs that are available on the platform.

 API and Class Summary
It can get confusing with all of the audio APIs and classes in Android. Let’s break it down.
Table 7-4 summarizes the classes and APIs for Android audio. As you can see, many of
these APIs have been around since the beginning of Android with API of level 1. Others have
been added into Android more recently.

Table 7-4. Android Audio APIs and Classes

Name Description API Level

AudioTrack Low-level API, not meant to be real time. Used
in most audio apps. Manages and plays a single
audio resource for Java applications. Streaming/
decoding of PCM audio buffers to the audio
sink for playback by “pushing” the data to the
AudioTrack object. Supports .wav playback.

22 Low

AudioRecord Manages the audio resources for Java applications
to record audio from the hardware by “pulling”
(reading) the data from the AudioRecord object.
Can set rate, quality, encoding, channel config.

22 Low

AudioManager AudioManager provides access to volume and
ringer mode control.

1

MediaPlayer MediaPlayer class can be used to control playback
of audio/video files and streams. Playback control
of audio/video files and streams is managed as a
state machine.

1 High

MediaRecorder High-level API used to record audio and video.
The recording control is based on a simple state
machine. Does not support .wav or .mp3. Generally
better to use Audio Record for more flexibility.

18 High

MediaStore The media provider contains metadata for all
available media on both internal and external
storage devices.

1

MediaFormat MediaFormat is useful to read encoded files and
every detail that is connected to the content. The
format of the media data is specified as string/value
pairs. Keys common to all audio/video formats.

16

(continued)

www.allitebooks.com

http://www.allitebooks.org

177CHAPTER 7: Android Audio

Pay particular attention to the “Level” column, which indicates if the particular API is a
high- or low-level API. You will take a closer look at how to use these APIs in the projects
that follow.

The high-level APIs MediaPlayer, MediaRecorder, and SoundPool are very useful and easy
to use when you need to play and record audio without the need for low level controls. The
low-level APIs AudioTrack and AudioRecord are excellent when you need low-level control
over playing and recording audio. I will cover each of these APIs in greater detail in the
projects that follow.

Note that I will not be covering the final three APIs listed, TextToSpeech, SpeechRecognition,
and MediaExtractor, in this chapter. They are beyond the scope of this chapter, but keep in
mind they are present in Android if you need these functionalities.

Name Description API Level

MediaCodec MediaCodec class can be used to access
low-level media codecs, such as encoder/decoder
components. It is part of the Android low-level
multimedia support infrastructure (normally
used together with MediaExtractor, MediaSync,
MediaMixer, MediaCrypto, MediaDrm, Image,
Surface, and AudioTrack.)

Low

SoundPool SoundPool uses the MediaPlayer service to decode
the audio into a raw 16-bit PCM stream and play
the sound with very low latency, helping the CPU
decompression effort. Multiple audio streams at
once.

8 High

AudioFormat The AudioFormat class is used to access a number
of audio formats and channel configuration
constants that can be used in AudioTrack and
AudioRecord.

8

TextToSpeech Synthesizes speech from text for immediate
playback or to create a sound file. The constructor
for the TextToSpeech class, using the default TTS
engine.

4/21

SpeechRecognition This class provides access to the speech
recognition service. The implementation of this
API is likely to stream audio to remote servers to
perform speech recognition.

8

MediaExtractor MediaExtractor facilitates extraction of demuxed,
typically encoded, media data from a data source.
Reads bytes from the encoded data whether it is an
online stream, embedded resources, or local files.

16

Table 7-4. (continued)

178 CHAPTER 7: Android Audio

 Choosing the Right API
As with most of the functions available on the Android platform, there is almost always
more than one way to accomplish a given task. Audio is no exception. Figure 7-1 shows the
various classes and APIs you can employ to accomplish common audio tasks.

Choose the approach that best matches your needs. You will see most of these approaches
implemented in the example projects.

7.4 Latency
No discussion on audio would be complete without talking about latency. Audio latency has
been one of the most annoying issues on the entire platform, as you shall see.

Audio performance on Android is device dependent; however, it is safe to say that we
Android developers are second-class citizens when it comes to audio latency on our mobile
platform. Android audio latency has seen improvements but still lags other platforms. The
most recent significant improvements include

	OpenSL supported was added on Android 2.3+.

	USB Audio is included in Android 5.0+ (API 21), but is not yet supported
by most devices.

Table 7-5 must be the most depressing chart in this book. It shows that, aside from a special
group of Samsung devices, all Android devices suffer from roundtrip audio latencies of more
than 35ms. Most musicians would agree that we require about 10ms to 15ms latency for
professional audio.

Figure 7-1. Android audio decision flowchart

www.allitebooks.com

http://www.allitebooks.org

179CHAPTER 7: Android Audio

In summary, almost every iOS device ever produced has better audio latency than every
Android device ever produced. Think about that statement; it is quite astonishing. It is not
because we are running Linux. Many Linux platforms, such as Chromebooks and Macbooks,
have excellent audio latency performance. I will break down the Android latency contributors
in the next section.

Note that the new Google Pixel devices and Samsung devices are the lowest latency
Android devices. Why is that? Samsung released the Samsung Pro Audio SDK for many of
their high-end phones and tablets. How did they implement it? They ported an open source
low-level audio interconnect library called JACK to Android. By using the Samsung Pro
Audio SDK, developers are able to bypass the Android APIs that contribute to latency, thus
overcoming this deficiency.

In the case of the new Google Pixel devices, Google has relied on the latest Android 8.0
release along with the increased CPU performance of the device to reduce the buffer size
from 192 bytes to 96 bytes. For the first time, the Google Pixel XL is approaching the 10ms
latency barrier.

Table 7-5. Android Device Latency Summary Data (Source: Supowered splatency.apk, subset of data)

Device OS Latency (ms) Sample rate (Hz) Buffer Size

iPad Air (first) + USB audio iOS 6 48,000 64

iPhone 4s iOS 7 48,000 64

iPhone 5s iOS 7 48,000 64

iPhone 6 Plus iOS 9 48,000 64

iPad Air (first) iOS 10 48,000 64

iPad mini 2 iOS 11 48,000 64

Google Pixel XL Android 8.1.0 11 48,000 96

Google Pixel XL Android 7.1 26 48,000 192

Sony Experia Android 7.1 28 48,000 192

Htc Nexus 9 Android 7.1.2 13-29 48,000 128

Motorola Nexus 6 Android 7.0 11-32 48,000 192

Samsung SM-G Pro Audio SDK Android 5.0 15 48,000 240

Samsung Galaxy S5 Android 6.0.1 23-72 48,000 240

Samsung Note 4 Pro Audio SDK Android 5.0.1 24 48,000 240

Google Pixel Android 7.1.1 28 48,000 192

LGE Nexus 5 Android 6.0 35-72 48,000 240

Htc Nexus 9 + USB audio Android 5.0.1 35 48,000 256

Samsung Galaxy Nexus Android 5.1 40 44,100 144

Samsung Nexus 10 Android 5.1.1 43 44,100 256

Huawei Nexus 6P Android 6.0 44 48,000 192

180 CHAPTER 7: Android Audio

How does this dismal audio latency performance affect us as Android developers?
Monetizing audio apps has greatly lagged on Android. According to App Annie, audio app
downloads are No. 5 on iOS in terms of popularity and No. 3 in terms of revenues, only
trailing the games and social media app categories. On Android, the audio category does
not even register in the top 10.

If you want to write a professional low-latency audio app on Android at this time, you
basically have three choices:

1. Target your professional audio app for Samsung devices with the
Samsung Pro Audio SDK or the latest Google Pixel XL.

2. Use a proprietary third-party audio driver such as the one available
from Extreamsd at www.extreamsd.com/index.php/2015-07-22-12-
01-14/usb-audio-driver.

3. Wait for USB audio to become fully supported in future versions of
Android. USB audio first appeared in Android 5.0 (API 21), but has
not yet been widely supported by any device manufacturers.

 Latency Breakdown
Let’s review some definitions for the different types of audio-related latency.

	Output Latency: The time from when you press a button or piano key
until you hear the sound. As suggested before, concert pianists are not
going to be happy if this latency is much greater than 10ms.

	Control Input Latency: Display reaction time.

	Application Latency: Everything that happens in the app layer.

	Audio System Latency: Everything that happens in the system layer.

Figure 7-2 shows a breakdown of the latency contributors on the Android platform. Audio
enters through the microphone, makes the roundtrip through the stack, and then exits
through the speaker.

www.allitebooks.com

http://www.extreamsd.com/index.php/2015-07-22-12-01-14/usb-audio-driver
http://www.extreamsd.com/index.php/2015-07-22-12-01-14/usb-audio-driver
http://www.allitebooks.org

181CHAPTER 7: Android Audio

The timings in the center column of the diagram represent the latency contributions. Recall
that we have to pass through the stack twice. Generally, the hardware processes things
pretty quickly and has a minimal impact on latency. Most of the low-level layers only
contribute a few milliseconds to the overall latency. The HAL (Hardware Abstraction Layer) is
provided by the device manufacturer as the interface to the Android libraries and framework
where the more significant latency contributions occur.

Notice that at many of the higher levels in the latency roundtrip, we are processing buffers of
audio, and it turns out that the audio buffer size is a key contributor to device latency. Notice
in the rightmost column of Table 7-5 the buffer size for Android devices is much larger than
for iOS devices, which always have a buffer size of just 64 samples. The buffer size for most
Android devices is 240 samples. This directly correlates to higher latency.

To fully understand why this is, it is important to understand a few key terms and how they
are related.

	Byte Buffers: When we process digital audio (PCM) on Android, we
process byte buffers, which are 16-bit integers.

	Audio Buffer Size: The number of samples in the PCM audio buffer. This
is determined by the device manufactured. You will see in the Audio
Buffer Size app how to determine this on your device.

	Sample Rate: The rate at which the system processes audio. For
Android devices processing PCM audio, this is either 44,100 Hz or
48,000 Hz (samples per second). The Audio Buffer Size app will also
allow you to see how this is set for your device.

	Sample: When you record or play audio, you may have stereo or mono
source audio. A stereo source will have a left and a right channel for
each sample, whereas mono audio will just have a single channel for
each sample. Note that we could have up to five or even seven channels
of audio data per sample if we were using surround sound encoding.

Figure 7-2. Android roundtrip latency

182 CHAPTER 7: Android Audio

When we process audio in Android using the low-level APIs such as AudioRecord and
AudioTrack, we are processing byte buffers and the audio buffer size is the key contributor
to a device latency.

For example, if we are processing audio with an audio buffer size of 240 samples and a
sample rate of 48,000 Hz:

Time to process 1 sample = 1 / 48000 = .0208 milliseconds * 240 samples = 5 milliseconds

Thus, each time we need to process the audio buffer in the Android stack, we incur
additional 5 ms of latency. This adds up quickly, especially when we consider the necessary
roundtrip.

The most important guidelines for minimizing audio latency in Android are

	Match up your app’s audio buffer size with the device setting. You will
see how to detect audio buffer size in the next project.

	Match up your app’s sample rate with the device setting. You will see
how to detect sample rate in the next project.

	Minimize the number of times you process audio buffers at your
application level. There is not much you can do about the latency added
in the API, framework, and libraries layers if you choose to use the low-
level APIs such as AudioRecord and AudioTrack.

 Audio Buffer Size App
Despite the latency issue, Android audio has come a long way. To help developers
understand the capabilities of their devices, Google introduced the open source Audio Buffer
Size app some time ago. It is now part of the AOSP (Android Open Source Project).

Figure 7-3 shows the Audio Buffer Size app. I added a “+” to its icon to distinguish it from
the original Google project. This app allows you to determine your device buffer size and
sample rate. After launching and starting by pressing the button, it first reads the settings
from the platform and then performs some calculations to derive them.

www.allitebooks.com

http://www.allitebooks.org

183CHAPTER 7: Android Audio

The app reports back your buffer size and sample rate.

This app includes two additional features not available in the original version of the app:

	A simple latency test

	A device effects query

After the initial test is completed, you can run the latency test by pressing the button. The
latency calculated is an output latency test and you will look at the code next.

The device effects query is a simple API call and you will also take a look at this code.

 Audio Buffer Size Project
Audio on Android is device dependent. If you need to know what your device capability is,
you can use the Audio Buffer Size app. See Table 7-6 for the project structure.

Figure 7-3. Audio Buffer Size + app

184 CHAPTER 7: Android Audio

All of the work is performed in the single activity called AudioBufferSize.java. After you run
the buffer size and sample rate calculation, you will have the opportunity to run a latency test
I added.

An Upload button uploads the buffer size and sample rate to an application server that
Google has apparently used to maintain a list of results for all devices. This is similar to how
the splatency.apk has recorded latency for thousands of Android devices, discussed earlier.

 Device Effects Query
You will see that the app populates a field titled “Your supported affects are:”. I added this
device effects query to the app, and it is accomplished with the following code:

Sring list;
Descriptor[] effects =
 AudioEffect.queryEffects();
 for (final Descriptor
 effect : effects) {
 list = list + effect.name.toString() + ", ";
 }

Most devices support at least ten built-in audio effects. I will discuss more about these
built-in audio effects and how you can use them later in the chapter.

 Measuring Latency
There are a few ways to measure audio latency in Android:

1. Connect an oscilloscope to your smartphone. This is not very
practical.

2. Use an external microphone to record the sound of pressing a
button, which plays a tone. The recorded waveform can be used to
determine the time between the tap sound and the subsequent tone
(output latency).

3. Use a custom app such as the modified Audio Buffer Size app or a
third-party app such as splatency.apk from Supowered.

The third method is the most practical and I added this feature to the Audio Buffer Size app.
It provides a simple test of output latency. You will be measuring the time it takes for a sound
to be played after a button is pressed.

Table 7-6. Audio Buffer Size Project Structure

Sources Resources/layout Libraries

AudioBufferSize.java main.xml

www.allitebooks.com

http://www.allitebooks.org

185CHAPTER 7: Android Audio

Once the app completes its initial calculations and returns your buffer size and sample rate,
you will be able to press the latency button to perform the latency test. The test can be
repeated as many times as you wish.

Let’s take a look at the key code to perform the latency test. Don’t worry about the code for
GenerateTone for now; you will review this code in the next app.

final Button latencyButton = (Button) findViewById(R.id.latencyButton);
latencyButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mLatencyStartTime = getCurrentTime();
 latencyButton.setEnabled(false);

 // Do the latency calculation, play a 440 hz sound for 250 msec
 AudioTrack sound = generateTone(440, 250);
 sound.setNotificationMarkerPosition(count /2); // Listen for the end of the sample

 sound.setPlaybackPositionUpdateListener(new OnPlaybackPositionUpdateListener() {
 public void onPeriodicNotification(AudioTrack sound) { }
 public void onMarkerReached(AudioTrack sound) {
 // The sound has finished playing, so record the time
 mLatencyStopTime = getCurrentTime();
 diff = mLatencyStopTime - mLatencyStartTime;
 // Update the latency result
 TextView lat = (TextView)findViewById(R.id.latency);
 lat.setText(diff + " ms");
 latencyButton.setEnabled(true);
 logUI("Latency test result= " + diff + " ms");
 }
 });
 sound.play();
 }
});

As you can see in this code, when the latencyButton gets pressed, a sound begins to play.
Not shown in the code is the generateTone routine, which, in addition to playing the tone,
also records a mLatencyStartTime.

You are using an AudioTrack object called sound to play the tone. On the sound object, you
are setting two important methods:

	sound.setNotificationMarkerPosition

	sound.setPlaybackPositionUpdateListener

The first method tells AudioTrack to notify you when the end of the sound is reached
because you are providing a parameter of count/2, which is the total number of samples
since the tone has left and right channels.

The second method contains the code that is executed when the marker is reached. It
calculates mLatencyStopTime. The difference between the start and stop times is the
latency, and the result is populated back to the main view for the user to see.

186 CHAPTER 7: Android Audio

The latency results on average should be about half the round trip latency because this code
is measuring output latency (the time difference between when the button is pressed and the
sound is heard).

Repeating the test multiple times can give you an idea of the standard deviation or variance
in your latency results. You will notice that you can get widely varying results depending on
the state of your device at the time of the test. Remember: Android and Linux are not real-
time operating systems, which means these results are not deterministic and can vary.

7.5 Playing Audio
If you want to play audio in your Android apps, there are three APIs to choose from. You
need to choose the approach that best matches your needs. Table 7-7 shows a summary
of the APIs.

Table 7-7. Android Audio APIs for Playing Sounds

API Description

MediaPlayer Streams and decodes in real time for local or remote files Good for long clips
and applications such as background music. More CPU and resource intensive.
Relatively long initialization time. MediaPlayer is a state machine!

SoundPool Good for short audio effects or clips. Stored uncompressed in memory, 1MB limit.
Clips must be fully loaded before playing. Supports volume and speed control,
looping, simultaneous sounds, priorities.

AudioTrack Lowest-level audio API on Android. Provides a channel you can configure. Push
and pull byte data to the channel. Configure rate, samples, audio format, etc.
You can decode audio in unsupported formats

In summary, MediaPlayer is the good general-purpose class to play a file, SoundPool is
well suited for short audio effects, and AudioTrack lets you get into the low-level audio
configurations.

OPEN SL ES was included in Android starting at version 2.3. You are not going to work
directly at the native level and call OPEN SL ES in the chapter projects, but keep it in mind
when you are using the low-level APIs such as AudioTrack and AudioRecord. These APIs
make use of OPEN SL ES.

 Playing Audio App
Figure 7-4 shows the inspiration for the Playing Audio app. It is the Novation Launchpad.
This is a popular device used by musicians and DJs to play music. It is technically
considered a USB controller and does not actually produce any sounds itself, but I used its
functional layout and style to inspire our Android app.

www.allitebooks.com

http://www.allitebooks.org

187CHAPTER 7: Android Audio

There are several requirements for this app:

	A responsive platform to play sounds.

	The ability to use any of the three APIs to play those sounds.

	A way to easily add more sounds without having to change the code.

	A way to easily adjust how sounds are played so we can experiment
with the APIs.

	A color-coded grid similar to the many buttons on the Launchpad in
which different colors represent the different APIs that can be used to
play sounds.

Figure 7-5 shows a snapshot of the Playing Audio app.

Figure 7-4. Novation Launchpad, inspiration for the Play Audio app

Figure 7-5. Playing Audio App

Note that you are using a GridView in the app and distinct colors represent the different
playing methods for the various sounds. I will cover the code required to achieve this in the
next section.

188 CHAPTER 7: Android Audio

 Playing Audio Project
The project structure is shown in Table 7-8. All of the code is included in MainActivity.java.
There is a single .xml file for the main view and another .xml file for the array_list_items.
However, the GridView is built dynamically from the audio resources, so there is no need to
make any edits to the .xml files.

Note that audio resources for the app are stored within the project in the Resources/raw
directory. The app could be easily modified so that these resources are loaded from the
device SD card or even remotely loaded from the Internet.

Note there is a special file in Resources/raw called soundfile.txt. This is the configuration file
for app and I will discuss it next.

 JSON Configuration
In this app, you will use JSON to configure the app. This will allow you to achieve a flexible
and expandable architecture.

There are four sound types that can be used to play sounds in the app. This could easily
be expanded to include more. Three of the types relate directly to the APIs previously
discussed, and an additional fourth type is a special case type (SoundType = 2) that plays
tones.

Table 7-9 shows how the soundType object will be defined. Note that type 2 allows the
setting of a parameter as additional information for that type.

Table 7-8. Playing Audio Project Structure

Sources Resources/layout Resources/raw

MainActivity.java activity_main.xml

array_list_item.xml

birds1.mp3

dog1.mp3

laugh.mp3

markplay2.wav

markstorm.ogg

mjwcondsr.m4a

soundfile.txt

Table 7-9. Playing App Sound Types

Sound Type API Parameter

0 MediaPlayer None

1 SoundPool None

2 Generate Tone using AudioTrack Frequency in Hz

3 AudioTrack None

www.allitebooks.com

http://www.allitebooks.org

189CHAPTER 7: Android Audio

The JSON configuration file for the project is stored locally on the device in the following
location:

Resources/raw/soundfile.txt

It is stored in the same location as the sound files that will be played by the app.
The following code shows what the JSON file soundfile.txt might look like:

[
 [{"name":"markplay.wav"}, {"resID":"markplay"}, {"soundType":0}, {"param1":0}],
 [{"name":"markplay2.wav"}, {"resID":"markplay2"}, {"soundType":0}, {"param1":0}],
 [{"name":"nogabe.mp3"}, {"resID":"nogabe"}, {"soundType":0}, {"param1":0}],
 [{"name":"mjwcondsr.m4a"}, {"resID":"mjwcondsr"}, {"soundType":0}, {"param1":0}],
 [{"name":"markstorm.ogg"}, {"resID":"markstorm"}, {"soundType":0}, {"param1":0}],
 [{"name":"tone 1000 hz 500 ms"}, {"resID":""}, {"soundType":2}, {"param1":1000}],
 [{"name":"tone 440 hz 500 ms"}, {"resID":""}, {"soundType":2}, {"param1":440}],
 [{"name":"stream1.mp3"}, {"resID":"stream1"}, {"soundType":1}, {"param1":0}],
 [{"name":"telephone1.mp3"}, {"resID":"telephone1"},{"soundType":1}, {"param1":0}],
 [{"name":"thunder1.mp3"}, {"resID":"thunder1"}, {"soundType":1}, {"param1":0}],
 [{"name":"train1.mp3"}, {"resID":"train1"}, {"soundType":1}, {"param1":0}],
 [{"name":"wind1.mp3"}, {"resID":"wind1”}, {"soundType":1}, {"param1":0}],
 [{"name":"windchimes.mp3"}, {"resID":"windchimes"},{"soundType":1}, {"param1":0}]
]

Within the JSON array, you can see subarrays that each contain four objects with key:value
pairs of data.

Each array in the JSON file represents a sound that can be played and includes the following
four objects:

	name: The name of the sounds that appears on the button in the
GridView

	resourceID: The resource ID of the sound, which is stored internally in
the app

	soundType: The sound type as defined earlier

	parameter: A parameter that can be used to further specify how the
sound is played

Note that JSON file or the audio resources could be stored externally or even lazy loaded. In
this project they reside internal to the app.

Once the JSON file is loaded and parsed, a GridView and GridAdapter are used to display
the sounds for the user.

The GridView and GridAdapter are defined with the following code:

gridview = (GridView) findViewById(R.id.gridView1);
gridAdapter = new GridAdapter(MainActivity.this, R.layout.array_list_item, buttonName);
gridview.setAdapter(gridAdapter);

190 CHAPTER 7: Android Audio

I won’t show the entire GridAdapter code here, but you can easily look it up in the project.
It is a standard GridAdapter and it sets the title of each button based on the name field and
the color of each button based on the soundType field.

Next, let’s look at the code to play sounds using each of the APIs.

You will use a case statement based on the soundType to determine which API to use. First,
you will look at the high-level APIs MediaPlayer and SoundPool, followed by the low-level
API AudioTrack.

 Playing Audio with the MediaPlayer
MediaPlayer has a lot of functionality and yet it is pretty simple to just play simple sounds.
In this app, it will be used to play all sounds with soundType = 0.

Once you generate your audio URI from the resourceID, you just start the MediaPlayer.

The code is shown below. Notice that it is a simple process to invoke the .setDataSource,
.prepare, and .start methods on the MediaPlayer object.

switch (type) {
 case 0:
 // Release any resources from previous MediaPlayer
 if (mp != null) mp.release();
 mp = new MediaPlayer();
 Uri u = Uri.parse("android.resource://com.wickham.android.playaudio/" + resid);
 mp.setDataSource(MainActivity.this, u);
 mp.prepare();
 mp.start();
 break;

 Playing Sounds with SoundPool
Recall that SoundPool is ideal when you need to play short sounds. SoundPool will be used
when soundType = 1.

Setup for SoundPool is a little more involved than with MediaPlayer because you have to
load your sound, which can take a bit of time, so you use a listener to know when it is ready.

Once loaded, the onLoadComplete method will be triggered and you can then use the .play
method to play the sound.

Notice the extra control you get on Priority, Volume, Repeat, and Frequency. This is one of
the advantages for SoundPool. See the following key code:

private void playSoundPool(int soundID) {
 int MAX_STREAMS = 20;
 int REPEAT = 0;
 SoundPool soundPool = new SoundPool(MAX_STREAMS, AudioManager.STREAM_MUSIC, REPEAT);
 soundPool.setOnLoadCompleteListener(new OnLoadCompleteListener() {

www.allitebooks.com

http://www.allitebooks.org

191CHAPTER 7: Android Audio

 @Override
 public void onLoadComplete(SoundPool soundPool, int soundId, int status) {
 int priority = 0;
 int repeat = 0;
 float rate = 1.f; // Frequency Rate can be from .5 to 2.0
 // Set volume
 AudioManager mgr = (AudioManager)getSystemService(Context.AUDIO_SERVICE);
 float streamVolumeCurrent =
 mgr.getStreamVolume(AudioManager.STREAM_MUSIC);
 float streamVolumeMax =
 mgr.getStreamMaxVolume(AudioManager.STREAM_MUSIC);
 float volume = streamVolumeCurrent / streamVolumeMax;
 // Play it
 soundPool.play(soundId, volume, volume, priority, repeat, rate);
 }
 });
 soundPool.load(this, soundID, 1);
}

 Playing Audio with AudioTrack
AudioTrack is the low-level API for playing audio. In this project, it will be used to play
sounds when soundType = 2.

The PlaySound function shown below uses AudioTrack to play the sound with soundID.
Notice that AudioTrack is run on a thread.

Inside the thread, the first thing you do is set up the sample rate and buffer size parameters.
Remember to match the buffer size and sample rate for your device. In the code below, the
buffer size is automatically calculated using the .getMinBufferSize method, while the sample
rate is specified directly as 44,100 Hz.

You then invoke the .play method on the object and then invoke the .write method on the
AudioTrack object to copy the raw PCM audio data to the object.

You can see this is a much lower level approach to producing audio. But, this ability to
directly read and write buffers to the audio hardware gives you a lot of power including the
ability to encode and decode.

private void playSound(final int soundID) {
 playingThread = new Thread(new Runnable() {
 public void run() {
 int minBufferSize = AudioTrack.getMinBufferSize(44100, STEREO, PCM_16BIT);
 AudioTrack audioTrack = new AudioTrack(STREAM, 44100, STEREO, PCM_16, BUFSZ, STREAM);
 audioTrack.play();

 int i = 0;
 int bufferSize = 512;
 byte [] buffer = new byte[bufferSize];
 InputStream inputStream = getResources().openRawResource(soundID);
 while((i = inputStream.read(buffer)) != -1) audioTrack.write(buffer, 0, i);
 inputStream.close();

192 CHAPTER 7: Android Audio

 }
 },"AudioRecorder Thread");
 playingThread.start();
}

 Generating a Tone with AudioTrack
To emphasize the power of using the AudioTrack low-level API, you will implement a tone
generator using AudioTrack.

GenerateTone is used to handle soundType = 3 in the app. When it is called, you determine
the frequency in Hz of the tone from the JSON parameter.

In the code below, you load up the raw PCM data with sin wave values using the math.sin
function. Of course that produces a tone. Why do you load up [i + 0] and [i + 1] into the byte
array? The duplicate sample makes up the left and right audio channels. You are producing
a stereo sound, even though it won’t sound like stereo because the exact same tone is
produced in each channel.

private AudioTrack generateTone(double freqHz, int durationMs) {
 int count = (int)(44100.0 * 2.0 * (durationMs / 1000.0)) & ~1;
 short[] samples = new short[count];
 for(int i = 0; i < count; i += 2){
 short sample = (short)(Math.sin(2 * Math.PI * i / (44100.0 / freqHz)) * 0x7FFF);
 samples[i + 0] = sample;
 samples[i + 1] = sample;
 }
 AudioTrack track = new AudioTrack(AudioManager.STREAM_MUSIC, 44100,
 AudioFormat.CHANNEL_OUT_STEREO, AudioFormat.ENCODING_PCM_16BIT,
 count * (Short.SIZE / 8), AudioTrack.MODE_STATIC);
 track.write(samples, 0, count);
 return track;
}

This gives you an idea of what you can do with low-level control of the PCM data that can
be used to produce audio using AudioTrack.

 Experiment with the Playing Audio App
The Playing Audio app is an excellent way to experiment with audio assets and see which
API is best suited for playing your audio assets.

For example, you may have an .mp3 song that has a very long duration. What happens if
you try to play it using SoundPool? You will see that it is truncated after only a few seconds
of playing. This is due to the SoundPool limitations with file size.

What happens if you try to play .mp3 files with AudioTrack? You will see this leads to
unhandled exceptions, as AudioTrack only works with raw PCM data.

Play around and experiment by configuring your JSON file to play your audio assets using
the different APIs

www.allitebooks.com

http://www.allitebooks.org

193CHAPTER 7: Android Audio

7.6 Playing Audio with a Background Service
For playing background music in your apps, the background service is the best architecture.
This architecture allows you to play long-running music tracks in the background while
performing other more critical operations in the foreground.

 Music Service App
Figure 7-6 show a screenshot of the Background Service app.

Figure 7-6. Background Service app

The Music Service app plays the track nogabe.mp3 in the background. The song file is
stored locally in the /Resources/raw folder. The length of the song is approximately five
minutes. I will discuss more about this interesting recording later.

Once the app is launched, the song will begin to play. You can see there are some very basic
controls available, including Play and Pause buttons.

There is also an undocumented feature that allows you to skip forward in the track. The
skip forward can be accomplished by long-pressing the Pause button. Each time you long-
press the Pause button, the track will skip forward 30 seconds. This type of function is often
implemented by providing a SeekBar with seek forward and seek backward buttons to move
the position within the track.

194 CHAPTER 7: Android Audio

 Music Service Project
Table 7-10 shows the structure of the Music Service project.

Table 7-10. Music Service Project Structure

Sources Resources/layout Resources/raw

MainActivity.java

MusicService.java

activity_main.xml nogabe.mp3

The project contains an activity MainActivity.java, and a service MusicService.java.

You need to register your service in the manifest.xml file, so be sure to include the following
code in your manifest file:

<application
 <service
 android:name="com.wickham.android.musicservice.MusicService"
 android:label="Music Service"
 android:enabled="true">
 </service>

 MainActivity.java
Within the activity, three steps are required to interface with the service that will be running in
the background.

1. Bind the service to the activity.

2. Start and connect to the service.

3. Control the service from the activity.

The following code shows how the three steps are accomplished:

// Bind the Service
bindService(new Intent(this,MusicService.class), Scon,Context.BIND_AUTO_CREATE);

// Connect to Service
public void onServiceConnected(ComponentName name, IBinder binder) {
 mServ = ((MusicService.ServiceBinder)binder).getServiceInstance();}

// Start the service
Intent music = new Intent();
music.setClass(this,MusicService.class);
startService(music);

// Controlling the service
mServ.resumeMusic();
mServ.pauseMusic();

The services .resumeMusic and .pauseMusic methods are used within the activity to control
the playing of the song by the service when the corresponding buttons are pressed.

www.allitebooks.com

http://www.allitebooks.org

195CHAPTER 7: Android Audio

 MusicService.java
Once you have the service defined in the manifest.xml, implementing the service is fairly
straightforward.

Inside the service, you use MediaPlayer to play the song. It is the best choice for playing
long audio files in a background service. Using MediaPlayer, you just need to create
the object and specify the song you wish to play. Notice that there are a couple of extra
methods you are using to set looping and volume controls.

The key source code follows, which shows how to set up a service for background playing
with MediaPlayer:

public class MusicService extends Service implements MediaPlayer.OnErrorListener{
 private final IBinder mBinder = new ServiceBinder();
 MediaPlayer mPlayer;
 private int length = 0;

 public MusicService() { }
 public class ServiceBinder extends Binder {
 public MusicService getServiceInstance() {
 return MusicService.this;
 }
 }
 @Override
 public IBinder onBind(Intent arg0){return mBinder;}

 @Override
 public void onCreate () {
 super.onCreate();
 mPlayer = MediaPlayer.create(this, R.raw.nogabe);
 mPlayer.setOnErrorListener(this);
 mPlayer.setLooping(false);
 mPlayer.setVolume(100,100);
 mPlayer.setOnErrorListener(new OnErrorListener() {
 public boolean onError(MediaPlayer mp, int what, int extra) {
 onError(mPlayer, what, extra);
 return true;
 }
 });
 }
}

With the service bound to the activity, you are free to control the playing of the song at any
point during the lifecycle of the activity.

Note that in this project you have specified the song to be played inside the service, but this
could easily be adjusted so that you can pass a song ID into the service and play any song.
This is how most music player apps are structured.

196 CHAPTER 7: Android Audio

7.7 Recording Audio
Similar to playing sounds in Android, you can use the Android APIs to record audio. You will
implement the Recording Audio app to learn how this can be accomplished. In the project,
you will use the AudioRecord low-level API to record uncompressed PCM audio data and
store the results to a .wav file.

 Recording Audio App
Figure 7-7 shows the Recording Audio app. The main layout reports the buffer size and
sample rate determined by querying the device.

Figure 7-7. Record Audio app

In the project, you will record audio from the built-in mic and save the uncompressed file as
a .wav. Recordings are saved onto the SD card as .wav files to sdcard/media/audio/music/.

There is a single button that begins the audio recording when pressed. When the app is
recording audio, a dialog box is shown and it displays accumulated recording time. The
dialog box includes a Stop button, which will stop the recording.

When recordings are stopped, an additional dialog box is shown, which allows the user to
enter the filename of the recording that will be saved.

www.allitebooks.com

http://www.allitebooks.org

197CHAPTER 7: Android Audio

 Recording Audio Project
Table 7-11 shows the structure of the project.

Table 7-11. Recording Audio Project Structure

Source Resources/layout Libraries

RecordWavActivity.java

FileSaveDialog.java

activity_main.xml

file_save.xml

record_audio.xml

The main code is found within RecordWavActivity.java. The main layout file is activity_main.xml.
There are no external libraries used. The code for the file saving dialog box is handled in
FileSaveDialog.java.

 RecordWavActivity.java
In the app, you are going to be recording 16-bit PCM audio. The settings are defined in the
beginning of the app, including the location where the recorded files will be saved:

private static final int RECORDER_BPP = 16;
private static final String AUDIO_RECORDER_FILE_EXT_WAV = ".wav";
private static final String AUDIO_RECORDER_FOLDER = "media/audio/music";
private static final String AUDIO_RECORDER_TEMP_FILE = "record_temp.raw";
private static int RECORDER_SAMPLERATE; // Samplerate is derived from the platform
private static final int RECORDER_CHANNELS = AudioFormat.CHANNEL_IN_STEREO;
private static final int RECORDER_AUDIO_ENCODING = AudioFormat.ENCODING_PCM_16BIT;

The app automatically sets buffer size and sample rate using the following code, which you
saw in the Audio Buffer Size app:

// Get the buffer size from the platform
bufferSize = AudioRecord.getMinBufferSize(8000,
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 AudioFormat.ENCODING_PCM_16BIT);
// Get the sample rate from the platform
AudioManager audioManager = (AudioManager) this.getSystemService(Context.AUDIO_SERVICE);
String sr = audioManager.getProperty(AudioManager.PROPERTY_OUTPUT_SAMPLE_RATE); RECORDER_
SAMPLERATE = Integer.parseInt(sr);

Within the main recording loop you will use the AudioRecord API to record audio to a
temporary file. The AudioRecord object is set up as follows:

private AudioRecord recorder = null;
recorder = new AudioRecord(MediaRecorder.AudioSource.MIC,
 RECORDER_SAMPLERATE,
 RECORDER_CHANNELS,
 RECORDER_AUDIO_ENCODING,
 bufferSize);

198 CHAPTER 7: Android Audio

When the user presses the Start Recording button, a main recording loop will be activated.
Inside the main recording loop, you will be copying byte buffers from the AudioRecord
object into a temporary file.

A few key points about the recording audio main loop:

	WriteAudioDataToFile is where the magic happens!

	You use a Boolean flag called isRecording to show that recording has
started and remains in progress.

	You read from the AudioRecord Object into a byte buffer

	After each buffer is read, you then write data out to the temporary file
until the user presses the STOP RECORDING button.

	The Recording progress counter is updated periodically so the user can
see the recording is in progress.

The main loop for recording PCM audio is as follows:

private void writeAudioDataToFile() {
 byte data[] = new byte[bufferSize];
 String filename = getTempFilename();
 FileOutputStream os = null;
 os = new FileOutputStream(filename);
 int read = 0;
 float elapsedSamples = 0;
 if (null != os) {
 while(isRecording) {
 read = recorder.read(data, 0, bufferSize);
 elapsedSamples = elapsedSamples + bufferSize / 4; // Left and Right channels
 if (AudioRecord.ERROR_INVALID_OPERATION != read) {
 os.write(data);
 }
 long now = getCurrentTime();
 if (now - mRecordingLastUpdateTime > 100) { // Update the recording clock 1/10 sec
 mRecordingTime = elapsedSamples / RECORDER_SAMPLERATE;
 runOnUiThread(new Runnable() {
 public void run() {
 int min = (int)(mRecordingTime/60);
 float sec = (float)(mRecordingTime - 60 * min);
 mTimerTextView.setText(String.format("%d:%05.1f", min, sec));
 }
 });
 mRecordingLastUpdateTime = now;
 }
 }
 os.close();
}

www.allitebooks.com

http://www.allitebooks.org

199CHAPTER 7: Android Audio

After the recording is stopped, the user is then given a dialog where a filename can be
entered. Once entered, the recorded file will be written out in .wav format. This operation will
be performed on a background thread.

The .wav file contains a header and the body. Since you are working with raw PCM data, you
do not have to worry about encoding for this operation.

The code below, mSaveSoundFileThread, shows how you accomplish saving the .wav file
which is comprised of the following components:

	Read in the temporary file, which was saved in the recording loop. The
temporary filename is inFilename.

	Write out the .wav file header according to the .wav specification. The
.wav file header is always 44 bytes, as shown in the next example.

	Write out the audio data, which is comprised of all the samples stored in
the temporary file.

	Delete the temporary file.

mSaveSoundFileThread = new Thread() {
 public void run() {
 try {
 FileInputStream in = null;
 FileOutputStream out = null;
 long totalAudioLen = 0;
 long totalDataLen = totalAudioLen + 36;
 long longSampleRate = RECORDER_SAMPLERATE;
 int channels = 2;
 long byteRate = RECORDER_BPP * RECORDER_SAMPLERATE * channels / 8;
 byte[] data = new byte[bufferSize];
 in = new FileInputStream(inFilename); // Read from the tmpfile

 // And save the output file (.wav)
 out = new FileOutputStream(outFilename);
 totalAudioLen = in.getChannel().size();
 totalDataLen = totalAudioLen + 36;

 // First the header
 WriteWaveFileHeader(out, totalAudioLen, totalDataLen,
 longSampleRate, channels, byteRate);

 // Followed by the audio samples
 while(in.read(data) != -1) {
 out.write(data);
 }
 in.close();
 out.close();
 deleteTempFile(); // Clean up the tmp file since we wrote out the wav file
 }
 }
};
mSaveSoundFileThread.start();

200 CHAPTER 7: Android Audio

Every audio file has a format header. The .wav file header is 44 bytes. If you ever have a
problem with audio apps and only 44 bytes are written, then you know the header was
written but not the actual audio samples. For details of all the fields, please refer to the
specification link as shown in the chapter references.

The following code excerpt shows how the .wav header is set up:

private void WriteWaveFileHeader(
 FileOutputStream out, long totalALen, long totalDataLen, long longSampleRate,
 int channels,long byteRate) throws IOException {
 byte[] header = new byte[44];
 header[0] = 'R'; // RIFF/WAVE header
 header[1] = 'I';
 header[2] = 'F';
 header[3] = 'F';
 header[4] = (byte) (totalDataLen & 0xff);
 header[5] = (byte) ((totalDataLen >> 8) & 0xff);
 header[6] = (byte) ((totalDataLen >> 16) & 0xff);
 header[7] = (byte) ((totalDataLen >> 24) & 0xff);
 header[8] = 'W';
 header[9] = 'A';
 header[10] = 'V';
 header[11] = 'E';
 header[12] = 'f'; // 'fmt ' chunk
 header[13] = 'm';
 header[14] = 't';
 . . .
 header[34] = RECORDER_BPP; // bits per sample
 header[35] = 0;
 header[36] = 'd';
 header[37] = 'a';
 header[38] = 't';
 header[39] = 'a';
 header[40] = (byte) (totalAudioLen & 0xff);
 header[41] = (byte) ((totalAudioLen >> 8) & 0xff);
 header[42] = (byte) ((totalAudioLen >> 16) & 0xff);
 header[43] = (byte) ((totalAudioLen >> 24) & 0xff);
 out.write(header, 0, 44);
}

The resulting .wav file can be played by any audio application across platform that supports
the .wav standard. Keep in mind that .wav files can be quite large, especially with 16-bit
samples and sample rates of 44 kbps or 48 kbps. Encoding can help you reduce the size of
audio files by using compressed formats. You will look at this later in the chapter.

 Interfacing External Microphones
Even though you have recorded the .wav files as uncompressed audio, they still often don’t
sound that great. Why is that? The poor audio quality is due to the limitations of the internal
microphone on the smartphone.

www.allitebooks.com

http://www.allitebooks.org

201CHAPTER 7: Android Audio

Adding external microphones could eliminate the following shortcomings of the mobile
device’s microphone:

	Device microphones are not designed for high fidelity. Manufacturers do
not have the space or wish to incur the cost of integrating high-quality
microphones into smartphones.

	Low-cost device microphones are not able to discriminate. They just
amplify and capture everything, and lack the ability to separate the
sounds you really want to record from all of the background noise.

Interfacing a professional mic to our smartphones by connecting them to an external
pre-amp can dramatically improve recordings. There are a number of third-party products
available. Figure 7-8 shows the iRig Pre, which works well on Android devices.

Figure 7-8. Interfacing professional microphones

These devices allow us to connect professional microphones with three-pin XLR connections
to our devices using the audio jack. Most of the interfaces support dynamic microphones,
which are typically used for live performances, as well as condenser microphones, which are
typically used for studio recording. Condenser microphones require 48-volt phantom power
and this can be supplied by devices like the iRig Pre because they have a 9-volt battery that
is used to generate the phantom power for condenser microphones.

To illustrate the difference in audio quality between internal and external microphone,
I produced a set of four recordings. Each recording was made with the recording audio
app I previously covered. The recordings were stored as .wav files and each was recorded in
the same noisy environment (a noisy Starbucks in Beijing!).

The following four microphones were used in the recording test:

	Internal smartphone microphone

	Senheiser omni-directional condenser microphone (a high-end
microphone that requires 48-volt phantom power and has a wide pickup
pattern)

	Senheiser shotgun condenser microphone (a high-end microphone that
has a very narrow pickup pattern and is often used on a boom pole in
film production)

	Shure SM-58 dynamic microphone (inexpensive industry standard for
live performance vocals)

202 CHAPTER 7: Android Audio

You can listen to the recordings in the file mic-compare.mp3. Figure 7-9 shows how the
audio waveforms look when imported into a digital audio workstation (DAW) and analyzed.

Figure 7-9. Microphone comparison

Notice in the waveforms how the smartphone internal mic records everything with high gain.
Compare the signal-to-noise ratios and notice how clean the external mics are because they
have the ability to discriminate.

When I covered the Music Service Project, recall that the track Nogabe.mp3 was played
in the background. I recorded this track in Beijing using only smartphones with external
microphone interfaces.

Figure 7-10 shows the setup for this four-track recording.

Figure 7-10. Multitrack recording with smartphones

www.allitebooks.com

http://www.allitebooks.org

203CHAPTER 7: Android Audio

I mixed the four individual .wav file recordings in Cubase, but you can use any digital audio
workstation software to complete the final mix. Simply import each .wav file, align them,
and add some basic effects processing (you will see how to do this with Android in the next
section).

This is a powerful capability that Android enables for us. In the past, we needed expensive
dedicated multi-track recording equipment, but today, inexpensive smartphones with the
availability of external interfaces makes the live recording process much more economical.

7.8 Advanced Audio
You have seen how to play and record audio in Android using the high-level and low-level
APIs. Now let’s take a look at processing audio by adding effects and encoding audio, which
is necessary if you wish to save audio in compressed audio formats such as .mp3 and .mp4.

 Built-in Audio Effects
Built-in audio effects make it easy to apply audio effects in Android. Recall in the Audio
Buffer Size app you displayed built-in supported effects on the device. The built-in effects
query was accomplished with the following code:

Sring list;
Descriptor[] effects = AudioEffect.queryEffects();
for (final Descriptor effect : effects) {
 list = list + effect.name.toString() + ", ";
}

This function returns a list of supported effects on the device. Different devices support
different built-in effects. My Nexus device supports 12 effects:

	Loudness Enhancer

	Insert Preset Reverb

	Virtualizer

	Acoustic Echo Canceler

	Visualizer

	Dynamic Bass Boost

	Auxiliary Preset Reverb

	Insert Preset Reverb

	Insert Environmental Reverb

	Volume

	Equalizer

	Auxiliary Environmental Reverb

204 CHAPTER 7: Android Audio

Most devices include all of these effects or a large subset of these effects. Refer to the
Android documentation for a description of each effect. The built-in effects can be attached
to any MediaPlayer or AudioTrack object and typically require two parameters: Priority and
AudioSessionID.

The following code demonstrates how to attach a PresetReverb effect. Note that there are
several presets available. The presets make it easy to achieve a desired effect. In the code
below, I am using the .PRESET_LARGEHALL preset.

The chosen effect needs to be attached to an AudioTrack object, as is the case for each of
the following examples.

PresetReverb mReverb = new PresetReverb(1, mAudioTrack.getAudioSessionId());
mReverb.setPreset(PresetReverb.PRESET_LARGEHALL);
mReverb.setEnabled(true);
mAudioTrack.attachAuxEffect(mReverb.getId());
mAudioTrack.setAuxEffectSendLevel(1.0f);

The following code shows how to add the BassBoost effect. You can specify the strength of
the bass boost.

BassBoost bassBoost = new BassBoost(1,mAudioTrack.getAudioSessionId());
bassBoost.setEnabled(true);
BassBoost.Settings bassBoostSettingTemp = bassBoost.getProperties();
BassBoost.Settings bassBoostSetting = new BassBoost.Settings(bassBoostSettingTemp.
toString());
bassBoostSetting.strength=2000;
bassBoost.setProperties(bassBoostSetting);
mAudioTrack.attachAuxEffect(bassBoost.getId());

The following code shows how to add the EnvironmentalReverb effect. It allows for finer
control than you saw with the PresetReverb effect. EnvironmentalReverb accepts a number
of parameters, including ReverbLevel, DecayTime, and Diffusion.

EnvironmentalReverb reverb = new EnvironmentalReverb(1,0);
mAudioTrack.attachAuxEffect(reverb.getId());
reverb.setDiffusion((short) 1000);
reverb.setReverbLevel((short) 1000);
reverb.setDecayTime(10000);
reverb.setDensity((short) 1000);
mAudioTrack.setAuxEffectSendLevel(1.0f);
reverb.setEnabled(true);

You can see in these examples that all of the built-in effects work in a similar manner. After
setting up the object, you just need to attach the effect to your audio object, set the level,
and make sure the effect is enabled.

www.allitebooks.com

http://www.allitebooks.org

205CHAPTER 7: Android Audio

 Encoding
When you record audio using AudioRecord in Android, you get uncompressed PCM. You
saw this in the main recording loop in the Record Audio project. How do you get .mp3 or
.mp4 or other compressed audio data? The answer is encoding.

In Android, codecs encode audio data to compressed formats. Codecs operate on three
kinds of data: compressed, raw audio, and raw video. All three can be processed using byte
buffers, although typically for video we would use a surface.

Raw audio buffers contain entire frames of PCM audio data, which is one sample for each
channel in channel order. Each sample is a 16-bit signed integer in native byte order.

 Ringdroid App
Ringdroid is a Google open source project that is an excellent example of how to architect
encoding into an Android audio app. The link to the latest version of Ringdroid can be found
in the chapter references.

The main purpose of Ringdroid is to let you record your own ringtones, hence the name.
But I will use it to explain encoding, which it performs very well. Ringdroid needs to encode
ringtones because saving them as uncompressed .wav files would not be feasible since the
files would be too large.

Note that Ringdroid also has a very useful debugging method called DumpSamples. If you
want to see what the raw PCM data looks like, you can use this method to dump out a CSV
file of your audio samples, which you can then read using Excel or a spreadsheet program of
your choice.

When you launch the Ringdroid app, you will see that many audio files on your device are
detected, including

	Ringtones

	Notifications

	Alarms

	Music

A content manager is used to manage the four audio types. I will not cover the content
manager or assigning ringtones. If you are interested in how this is accomplished, just refer
to the code because it is pretty straightforward.

The app also has some good examples of setting up a surface view and drawing the audio
waveform.

 Setting up a Codec
Ringdroid has a class called SoundFile.java. Inside this class is a good example of audio
encoding. It consists of two steps:

	Setting up a codec

	A main encoding loop

206 CHAPTER 7: Android Audio

The following code excerpt shows how to set up a codec in Android using the MediaCodec
API. It requires setting up input and output byte buffers, setting the bitrate, number of
channels, and mimeType.

Notice that in this example you are specifying to encode to AAC/mp4. Table 7-1 listed
the available encoding formats supported by Android. The bit rate of 64 kbps per channel
provides a stereo bitrate of 128 kbps, which is pretty good quality for music.

public void WriteFile(File outputFile, float startTime, float endTime) throws java.
io.IOException {
 int startOffset = (int)(startTime * mSampleRate) * 2 * mChannels;
 int numSamples = (int)((endTime - startTime) * mSampleRate);
 int numChannels = (mChannels == 1) ? 2 : mChannels;

 String mimeType = "audio/mp4a-latm";
 int bitrate = 64000 * numChannels; // for good quality: 64kbps per channel.

 MediaCodec codec = MediaCodec.createEncoderByType(mimeType);
 MediaFormat format = MediaFormat.createAudioFormat(mimeType, mSampleRate, numChannels);
 format.setInteger(MediaFormat.KEY_BIT_RATE, bitrate);
 codec.configure(format, null, null, MediaCodec.CONFIGURE_FLAG_ENCODE);
 codec.start();

 // Get an estimation of the encoded data based on the bitrate. Add 10% to it.
 int estimatedEncodedSize = (int)((endTime - startTime) * (bitrate / 8) * 1.1);
 ByteBuffer encodedBytes = ByteBuffer.allocate(estimatedEncodedSize);
 ByteBuffer[] inputBuffers = codec.getInputBuffers();
 ByteBuffer[] outputBuffers = codec.getOutputBuffers();
 MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();

After this code is completed, the codec is defined and started, and you have a MediaCodec info
object that will be used by the encoding main loop to accomplish the encoding.

 Encoding Main Loop
Once you have the codec set up, you need to implement the encoding main loop. Note the
following:

	You retrieve byte buffers from mDecodedBytes.

	You queue those bytes to the codec where the encoding work will be
performed.

	You retrieve encoded bytes from the codec and place them into
encodedBytes.

This process continues while you have bytes to process.

ByteBuffer encodedBytes = ByteBuffer.allocate(estimatedEncodedSize);
ByteBuffer[] inputBuffers = codec.getInputBuffers();
ByteBuffer[] outputBuffers = codec.getOutputBuffers();
ByteBuffer[] = new byte[frame_size * numChannels * 2];
byte[] encodedSamples = null;

www.allitebooks.com

http://www.allitebooks.org

207CHAPTER 7: Android Audio

while (true) {
 // Feed the samples to the encoder.
 int inputBufferIndex = codec.dequeueInputBuffer(100);
 if (!done_reading && inputBufferIndex >= 0) {
 inputBuffers[inputBufferIndex].clear();
 mDecodedBytes.get(buffer, 0, bufferSize);
 inputBuffers[inputBufferIndex].put(buffer);
 presentation_time = (long) (((num_frames++) * frame_size * 1e6) / mSampleRate);
 codec.queueInputBuffer(inputBufferIndex, 0, buffer.length, presentation_time, 0);
 }
 // Get the encoded samples from the encoder.
 int outputBufferIndex = codec.dequeueOutputBuffer(info, 100);
 if (outputBufferIndex >= 0 && info.size > 0 && info.presentationTimeUs >=0) {
 outputBuffers[outputBufferIndex].get(encodedSamples, 0, info.size);
 outputBuffers[outputBufferIndex].clear();
 codec.releaseOutputBuffer(outputBufferIndex, false);
 encodedBytes.put(encodedSamples, 0, info.size);
 }
}

int encoded_size = encodedBytes.position();
encodedBytes.rewind();
codec.stop();
codec.release();
codec = null;

The Android MediaCodec API greatly simplifies audio encoding. See the full code in the
Ringdroid SoundFile class. Don’t forget, much like you saw when writing out .wav files,
compressed audio formats such as .mp3 and .mp4 also have headers that must be
constructed when writing out the final compressed audio file.

7.9 Audio Synthesis
One thing you will notice with apps that contain internally stored audio files is that the size
of these apps can grow quite large. You saw that uncompressed files get big fast, and even
when you encode audio assets, file sizes can still be large especially if you are encoding with
reasonably high bitrates to ensure audio quality.

This is where audio synthesis comes into play. With the emergence of the Android
smartphone, we now have the availability of audio synthesis engines on our mobile devices.
These engines have the ability to play complex audio sounds that can be represented by
simple, small-sized, text-based instructions.

Some of these synthesis engines have been around for quite a long time. Csound goes
back to the 1970s. Table 7-12 shows a listing of the most popular audio synthesis engines
available today, including those available on Android.

208 CHAPTER 7: Android Audio

On Android, there are now three choices:

	Pure Data: Excellent stable library ported to Android by Google.
Recommended as a general purpose synthesis engine for Android.

	Csound: Powerful synthesis engine. Higher learning curve and not
quite as light a resource footprint as Pure Data, but can produce some
amazing sounds. Chosen as the audio engine for the OLPC (One Laptop
Per Child) initiative.

	Supercollider: An excellent choice for live coding. The Android library
is not very stable at this time. It is an excellent synthesis engine, but
unfortunately at this time there are just not enough Android resources
available for me to recommend it.

Table 7-12. Audio Synthesis Engines

Name Purpose OS Cost/License Latest Version

Chuck Real-time synthesis,
live coding, pedagogy,
acoustic research,
algorithmic composition

Mac OS
X, Linux,
Windows

Free/GPL 2014-12 ver 1.3.5.0

Csound Real-time performance,
sound synthesis,
algorithmic composition,
acoustic research

Mac OS
X, Linux,
Windows,
Android, iOS

Free/GPL 2014-07 ver 6.03

Impromptu Live coding, algorithmic
composition, hardware
control, real-time
synthesis

Mac OS X Free/Proprietary 2010-10 ver 2.5

Max/MSP Real-time audio + video
synthesis, hardware
control

Mac OS X,
Windows

Non-free/

Proprietary

2014-12 ver 7.0.1

Pure Data Real-time synthesis,
hardware control,
acoustic research

Mac OS
X, Linux,
Windows,
Android, iOS

Free/BSD-like 2015-03 ver 0.46.6

Reaktor Real-time synthesis,
hardware control, GUI
design

Mac OS X,
Windows

Non-free/
Proprietary

2014-09 ver 5.9.2

Super Collider Real-time synthesis,
live coding, algorithmic
composition, acoustic
research, all-purpose
programming language

Mac OS
X, Linux,
Windows,
FreeBSD,
Android, iOS

Free/GPL 2013-04 ver 3.6.6

www.allitebooks.com

http://www.allitebooks.org

209CHAPTER 7: Android Audio

Although these engines have been around for many years, the Android ports are fairly
recent. If you want to use audio synthesis in your apps, it basically comes down to choosing
between Pure Data and Csound. Table 7-13 shows a comparison.

Table 7-13. Android Audio Synthesis Comparison

Pure Data Csound

Excellent Android support Minimal Android support

Huge number of operators Huge number of operators

Medium learning curve High learning curve

Graphical based, GUI is easy to use Document based, GUIs available (winXsound,
cabbage, blue)

Composing is difficult, you have to build a GUI Easy to compose in document-based file

No IDE CuteCsound IDE

Limited GUI architecture Expandable architecture

Small library size Large library size

In summary, Pure Data is easier to learn, but Csound is more advanced. This is due to
the Pure Data architectural decision that defines its GUI approach. Csound maintains a
document-based approach, which makes it harder to learn and use, but it is extremely
flexible and powerful in terms of what it can do.

Both engines can produce amazing sounds.

 Pure Data Overview
Pure Data is a real-time graphical programming environment for audio. It was originally
developed by Miller Puckett and the Android port was done by Peter Brinkmann and others.

There are two “flavors” of Pure Data available: plain vanilla and extended. Plain vanilla is
the version that is supported in Android. The main difference is that the extended version
includes changes that allow it to work better on desktop GUI platforms.

Pure Data uses patches to synthesize audio. A Pure Data patch is an ASCII text file that
always ends with the .pd extension. There are many patches available online that can be
played by Pure Data. And, of course, you can create your own patches. It is amazing what
you can create using Pure Data. Just check YouTube for some examples of what the Pure
Data community has created.

Pure Data is cross-platform and has been ported to almost every platform, including
Windows, Mac, Linux, and of course, Android.

The easiest way to understand Pure Data and the patches it plays is to see it visually.

210 CHAPTER 7: Android Audio

In Pure Data, you create sounds by defining operators and then connecting them together. In
the Hello World example, a simple oscillator operator produces a 440 Hz tone. This operator
is connected to the ADC operator, which is the analog to digital converter that represents the
hardware output of your device.

Patches can be saved. In the Hello World example, the Tone440.pd file is the Pure Data
ASCII text file that represents the graphical patch. When this patch file is loaded into Pure
Data and played, the 440 Hz tone can be heard.

You typically build Pure Data patches in a desktop GUI environment and play them back on
an Android device with apps incorporating the Pure Data library. I recommend you install
Pure Data on your laptop and do your GUI Pure Data editing in this environment. Then
you can play patches you create on your Android device with the Pure Data Player app
presented later in this chapter.

I am not going to teach you how to create PD patches here as it is beyond the scope of this
chapter. However, there are many resources available to help you to learn the vast array of
Pure Data operators and how to use them to produce all kinds of interesting sounds.

Figure 7-12 shows one such example. It is a complex Pure Data patch titled Readymade,
written by Martin Brinkmann. You can load it into Pure Data on your desktop to see what it
looks like and play it. You can also play it on your device using the Pure Data Player app.

Figure 7-11. Pure Data Hello World example

Figure 7-11 show the trivial Hello World example for Pure Data.

www.allitebooks.com

http://www.allitebooks.org

211CHAPTER 7: Android Audio

As you can see, this is a much more complex Pure Data patch. It creates some very
interesting music and gives you a good idea of the power behind these audio synthesis
engines.

Next, let’s take a look at how to implement a Pure Data Player app on Android.

 Pure Data Player App
Whether you create your own Pure Data patches or have pre-existing patches that you want
to use for your audio, you need an app that supports Pure Data to play the patches.

It is hard to find a good Pure Data player, so I created this app by modifying the Pure Data
Test app that comes in the Pure Data distribution. This app will work well for you if you do
not need a graphical interface in your app and just want to use Pure Data to play sounds
that you load into your Android App via .pd files.

Figure 7-12. Complex Pure Data example

212 CHAPTER 7: Android Audio

If you need a graphical interface for Pure Data, I will cover the open source Circle of Fifths
Pure Data app in the next section. It is an excellent example of how to achieve a graphical
interface to Pure Data.

Figure 7-13 shows a snapshot of the Pure Data Player app.

Figure 7-13. Pure Data Player app

The app allows the user to select a Pure Data patch file. After a patch is selected, the .pd
file will be loaded and then played. There is also a button to stop a patch that is currently
playing and reload a new patch. The bottom button on the GUI allows the user to set the
audio preferences, including mono/stereo output and sample rate.

There is a TextView at the bottom of the layout which shows Pure Data messages while the
patch is running.

 Pure Data Player Project
Table 7-14 shows the Pure Data Player project structure. It consists of the main activity
PdPlayer.java and the main screen layout main.xml. Note there are two required libraries.
More about the setup of these libraries later.

www.allitebooks.com

http://www.allitebooks.org

213CHAPTER 7: Android Audio

The .pd files for the PD Player app are stored in the /sdcard/PDPatches folder. If you want
to play external .pd patches with the Pure Data Player app, just copy your .pd files to this
directory.

You need the following libraries included in your Android Studio project:

	PdCore: A required library project that depends on AndroidMidi

	AndroidMidi: A low-level midi library required by Pure Data

Figure 7-14 shows the setup dependencies for Pure Data.

Table 7-14. Pure Data Player Project Structure

Sources Resources Libraries

PdPlayer.java

CustomDialog.java

main.xml

list_item.xml

load_dialog.xml

pdcore.jar

androidmidi.jar

Figure 7-14. Pure Data setup

The project references contain several links to help if you have any trouble setting up
Pure Data. Once you have Pure Data set up, using the library in your app to play audio is
straightforward.

 Pure Data Key Code
The core of Pure Data is a service called PdService. You will see it included in the Manifest file.
PdPreferences is also part of the library and handles changes to the audio configuration.

214 CHAPTER 7: Android Audio

 PDPlayer.java
Interface to the Pd library is accomplished through the PdBase and PdService classes.
The following code shows how to connect to the service and open a patch file:

private PdService pdService = null;
private final ServiceConnection pdConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName name, IBinder service) {
 pdService = ((PdService.PdBinder)service).getService();
 PdBase.setReceiver(receiver);
 PdBase.subscribe("android");
 PdBase.openPatch(patchFile);
 }
 public void onServiceDisconnected(ComponentName name) {
 }
};

In the onCreate method of the activity, you are required to initialize the audio parameters and
bind the service. This is completed with the following code:

protected void onCreate(android.os.Bundle savedInstanceState) {
 AudioParameters.init(this);
 bindService(new Intent(this, PdService.class), pdConnection, BIND_AUTO_CREATE);
};

To control the audio output, you use stopAudio and startAudio methods. The .initAudio
method uses stub parameters (-1 values) because those are automatically picked up by the
PdPreferences class.

private void startAudio() {
 pdService.initAudio(-1, -1, -1, -1);
 pdService.startAudio(new Intent(this, PdPlayer.class), icon, name, "Return”);
}
private void stopAudio() {
 pdService.stopAudio();
 pdService.release();
}

The PD Player app is a good example of play .pd patches that do not require a GUI
interface. In the next example, you will see a Pure Data app that does require on a GUI
interface.

 Pure Data Circle of Fifths App
A well-known open source Pure Data example is the Circle of Fifths app. It allows you to
explore guitar chords. It includes a graphical interface that is used to select a chord. When
you press on a chord, Pure Data messages are sent to the Pure Data service to instruct it
what to play.

www.allitebooks.com

http://www.allitebooks.org

215CHAPTER 7: Android Audio

PD patches for the Circle of Fifths app are stored in the /Resources/raw folder as a
compressed .zip file. They are opened, extracted, and loaded into Pure Data in the same
way you saw with the previous app. The following code shows how to open the patch file:

File dir = getFilesDir();
File patchFile = new File(dir, "chords.pd");
IoUtils.extractZipResource(getResources().openRawResource(R.raw.patch), dir, true);
PdBase.openPatch(patchFile.getAbsolutePath());

When the surface is pressed, the data for the corresponding chord is sent to Pure Data using
the PdBase.sendList command as shown in the following code:

Public void playChord(boolean major, int n) {
 PdBase.sendList("playchord", option _ (major ? 1 : 0), n);
}

Using this approach to send messages into Pure Data to play sounds allows you to build
interactive apps with Pure Data.

I won’t cover the code for the Circle of Fifths GUI here, but you can view the source to see
how it is set up. Inside the Circle of Fifths project, you can view the GUI code inside the
CircleView.java file. The Pure Data code is located inside the CircleOfFifths.java file.

Figure 7-15. Pure Data Circle of Fifths app

Figure 7-15 shows the main GUI.

216 CHAPTER 7: Android Audio

 Csound Overview
The Csound synthesis engine is available on Android. The following is a quick look at the
Csound highlights:

	Csound is a mind-blowing computer music synthesis system based on
Linux that was created in 1986.

	Csound was recently ported to Android (Csoundandroid.jar). The latest
update is Csound 6.06. The CsoundObj API is used to interface with
your apps (Java API).

	Like Pure Data, it is also cross platform. You can create sounds on your
laptop or desktop and then play them on your Android device.

	The One Laptop Per Child project chose Csound as its sound engine.

	Csound patches consist of a Synthesis block and a Score block.

	There are several GUI front ends available for Csound.

	The default audio mode uses the OpenSL API offered by the NDK. There
is a native shared library built using the NDK.

	There is a significant learning curve if you want to master Csound.

 Csound .csd files
Csound performs all its magic with .csd files. These are text-based files that contain three
sections as follows:

<CsOptions> </CsOptions>
<CsInstruments> </CsInstruments>
<CsScore> </CsScore>

As you did with Pure Data, let’s take a look at a simple Csound file that allows you to play a
tone. You are going to define the Csound instructions to accomplish the following:

	Set up an 880hz oscillator as instrument 1.

	Play instrument 1.

	Start playing instrument 1 at 0 seconds.

	Stop playing instrument 1 ending at 5 seconds.

The following is the code for Tone880.csd:

<CsoundSynthesizer>

<CsOptions>
 -odac -b240 -B16384
</CsOptions>

www.allitebooks.com

http://www.allitebooks.org

217CHAPTER 7: Android Audio

<CsInstruments>
 sr=48000
 ksmps=8192
 nchnls=2
 instr 1
 aSin oscils 0dbfs/2, 880, 0
 out aSin
 endin
</CsInstruments>

<CsScore>
 i 1 0 5
 e
</CsScore>

</CsoundSynthesizer>

This .csd file can be played by any Csound engine. Next, you will take a look at running
Csound on Android.

 Csound Setup
When you grab the Csound for Android project, it will include all of the projects listed in
Figure 7-16.

1. Grab Csound for Android version 6 and import into your IDE.

2. Getting it built on Android Studio is much easier than Eclipse.

3. Csound-android-6.06.0 is available at the Csound SourceForge page.

4. See the csound_android_manual.pdf.

Figure 7-16. Csound setup

218 CHAPTER 7: Android Audio

 Csound App
The Csound Player app is the best way to get started exploring Csound. You can install the
pre-built app and start playing .csd files.

Figure 7-17 shows the Csound Player app.

Figure 7-17. Csound Player app

The app contains a simple GUI interface with five sliders, five buttons, and an X-Y trackpad.
Csound files have the hooks available to interface with these GUI widgets.

You can load internal .csd files or open external .csd files which you copy onto your device.
Some of the internal .csd files are very impressive, so I recommend that you check them out.
The internal files can be accessed using the overflow icon (three little dots) and selecting
examples.

Like the Pure Data Player app, there is a TextView in the lower part of the screen that shows
the Csound messages as the .csd file is played.

www.allitebooks.com

http://www.allitebooks.org

219CHAPTER 7: Android Audio

 Csound Key Code
It is very simple to play a sound with Csound. There are many code examples in the Android
release package. Several .csd patches are included in the Android CSD Player.

Like Pure Data, just decide if you need GUI control or not, and then proceed accordingly.

To interface with the Csound library, you simply set up a Csound object and then use the
.startCsound and .stopCsound methods to control the audio.

 CsoundHaikuIVActivity.java
One of the examples included in the app is a Csound file called HaikuIV. It is a nice
sounding patch. The code for controlling the patch follows and is an excerpt from the file
CsoundHaikuIVActivity.java:

public class CsoundHaikuIVActivity extends BaseCsoundActivity {
 protected CsoundObj csoundObj = new CsoundObj();
 public void onCreate(Bundle savedInstanceState) {
 String csd = getResourceFileAsString(R.raw.iv);
 File f = createTempFile(csd);
 csoundObj.startCsound(f);
 }
}

 SimpleTestActivity.java
Interfacing to the GUI widgets is accomplished by adding widgets and listeners to your
Csound objects. The SimpleTest Csound activity provides a good example of how to do this.
It attaches a slider to control the sound.

String csd = getResourceFileAsString(R.raw.test);
File f = createTempFile(csd);
CsoundUI csoundUI = new CsoundUI(csoundObj);
csoundUI.addSlider(fSlider, "slider", 0. , 1.);
csoundObj.addListener(SimpleTest1Activity.this);
csoundObj.startCsound(f);

Note that some of the example .csd files use the GUI widgets so that you can interact with
the sounds being generated, while many of them do not.

 Csound Summary
Csound is really an amazing synthesis engine for Android. There is a huge library of effects
available on Csound. It is an excellent choice if you want to write an equalizer or effects app.
The engine supports virtually every kind of audio synthesis. Csound is a great choice if you
want to write a synth or musical instrument. Learning the Csound language is not easy, but
its instrument and scoring capabilities are unmatched.

220 CHAPTER 7: Android Audio

7.10 References
 Android References

	Android Audio Media Formats Support: http://developer.android.com/
guide/appendix/media-formats.html

	Media Codec: http://developer.android.com/reference/android/
media/MediaCodec.html

	Media Player: http://developer.android.com/reference/android/
media/MediaPlayer.html

	USB Digital Audio: https://source.android.com/devices/audio/usb.html

	Audio Track: http://developer.android.com/reference/android/media/
AudioTrack.html

	Audio Record: http://developer.android.com/reference/android/
media/AudioRecord.html

	Audio Manager: http://developer.android.com/reference/android/
media/AudioManager.html

	Media Recorder: http://developer.android.com/reference/android/
media/MediaRecorder.html

	Media Extractor: http://developer.android.com/reference/android/
media/MediaExtractor.html

	Media Format: http://developer.android.com/reference/android/
media/MediaFormat.html

	Sound Pool: http://developer.android.com/reference/android/media/
SoundPool.html

	Audio Format: http://developer.android.com/reference/android/
media/AudioFormat.html

	Text to Speech: http://developer.android.com/reference/android/
speech/tts/TextToSpeech.html

	Speech Recognition: http://developer.android.com/reference/
android/speech/SpeechRecognizer.html

	Media Store: http://developer.android.com/reference/android/
provider/MediaStore.html

	High Performance Audio Blog: http://bit.ly/high-performance-audio

www.allitebooks.com

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/reference/android/media/MediaCod
http://developer.android.com/reference/android/media/MediaCod
http://developer.android.com/reference/android/media/MediaPlay
http://developer.android.com/reference/android/media/MediaPlay
https://source.android.com/devices/audio/usb.html
http://developer.android.com/reference/android/media/AudioTrac
http://developer.android.com/reference/android/media/AudioTrac
http://developer.android.com/reference/android/media/AudioReco
http://developer.android.com/reference/android/media/AudioReco
http://developer.android.com/reference/android/media/AudioMan
http://developer.android.com/reference/android/media/AudioMan
http://developer.android.com/reference/android/media/MediaReco
http://developer.android.com/reference/android/media/MediaReco
http://developer.android.com/reference/android/media/MediaExtr
http://developer.android.com/reference/android/media/MediaExtr
http://developer.android.com/reference/android/media/MediaFor
http://developer.android.com/reference/android/media/MediaFor
http://developer.android.com/reference/android/media/SoundPool
http://developer.android.com/reference/android/media/SoundPool
http://developer.android.com/reference/android/media/AudioForm
http://developer.android.com/reference/android/media/AudioForm
http://developer.android.com/reference/android/speech/tts/TextTo
http://developer.android.com/reference/android/speech/tts/TextTo
http://developer.android.com/reference/android/speech/SpeechRec
http://developer.android.com/reference/android/speech/SpeechRec
http://developer.android.com/reference/android/provider/MediaSt
http://developer.android.com/reference/android/provider/MediaSt
http://bit.ly/high-performance-
http://www.allitebooks.org

221CHAPTER 7: Android Audio

 Specifications
	OpenSL ES: www.khronos.org/opensles/

	OpenSL ES Specification: www.khronos.org/registry/sles/specs/
OpenSL_ES_Specification_1.0.1.pdf

	JACK Audio Connection API: www.jackaudio.org/api/

	SWIG and Android: www.swig.org/Doc2.0/Android.html

	JSON (JavaScript Object Notation): http://json.org

	JSON Validation Checker: http://jsonlint.org

 Third-Party Vendors
	Latency Results Compiled for Thousands of Devices:

http://superpowered.com/latency/#axzz3oxPTUDpq

	Third-Party USB Audio Driver: www.extreamsd.com/index.php/2015-07-
22-12-01-14/usb-audio-driver

	Samsung Professional Audio SDK:
www.youtube.com/watch?v=7r455edqQFM

	Ring Droid: https://github.com/google/ringdroid

	Latency: https://audioprograming.wordpress.com/

	Google I/O 2013 High Performance Audio:
www.youtube.com/watch?v=d3kfEeMZ65c

	JACK Audio Interconnection Kit: www.jackaudio.org/

 Pure Data
	Pure Data for Android Wiki:

https://github.com/libpd/pd-for-android/wiki

	Pure Data for Android: https://github.com/libpd/pd-for-android

	Pure Data HTML Manual: https://puredata.info/docs/manuals/pd

	Pure Data Modular Synthesis: www.youtube.com/watch?v=p7XzBHoWOV4

	Pure Data Downloads: https://puredata.info/downloads

	Pure Data Vanilla Patches: www.martin-brinkmann.de/pd-patches.html

 Csound
	Csound: http://sourceforge.net/projects/csound/

	Csound Manual: http://csound.github.io/docs/manual/index.html

http://www.khronos.org/opensles/
http://www.khronos.org/registry/sles/specs/OpenSL_ES_Specificati
http://www.khronos.org/registry/sles/specs/OpenSL_ES_Specificati
http://www.jackaudio.org/api/
http://www.swig.org/Doc2.0/Android.html
http://json.org/
http://jsonlint.org/
http://superpowered.com/latency/#axzz3oxPTUDpq
http://www.extreamsd.com/index.php/2015-07-22-12-01-14/usb-audio-driver
http://www.extreamsd.com/index.php/2015-07-22-12-01-14/usb-audio-driver
http://www.youtube.com/watch?v=7r455edqQFM
https://github.com/google/ringdroid
https://audioprograming.wordpress.com/
http://www.youtube.com/watch?v=d3kfEeMZ65c
http://www.jackaudio.org/
https://github.com/libpd/pd-for-android/wiki
https://github.com/libpd/pd-for-android
https://puredata.info/docs/manuals/pd
http://www.youtube.com/watch?v=p7XzBHoWOV4
https://puredata.info/downloads
http://www.martin-brinkmann.de/pd-patches.html
http://sourceforge.net/projects/csound/
http://csound.github.io/docs/manual/index.html

222 CHAPTER 7: Android Audio

	Csound Manual: www.csounds.com/manual/html/index.html

	Csound Optimizing Latency: www.csounds.com/manual/html/
UsingOptimizing.html

	Csound for Android Paper: http://lac.linuxaudio.org/2012/
papers/20.pdf

	Csound Resources: http://iainmccurdy.org/csound.html

	Csound Web Player: http://csound.github.io/learn-csound-site/
pieces/trapped/index.html

	Csound Player APK: http://github.com/csound/csound/tree/develop/
android/CSDPlayer

	Csound Command Line Flags: www.csounds.com/manual/html/
CommandFlags.html

	Csound Book – Chapter 1: www.csounds.com/chapter1/index.html

www.allitebooks.com

http://www.csounds.com/manual/html/index.html
http://www.csounds.com/manual/html/UsingOptimizing.html
http://www.csounds.com/manual/html/UsingOptimizing.html
http://lac.linuxaudio.org/2012/papers/20.pdf
http://lac.linuxaudio.org/2012/papers/20.pdf
http://iainmccurdy.org/csound.html
http://csound.github.io/learn-csound-
http://csound.github.io/learn-csound-
http://github.com/csound/csound/tree/develop/android/CSDPlayer
http://github.com/csound/csound/tree/develop/android/CSDPlayer
http://www.csounds.com/manual/html/CommandFlags.html
http://www.csounds.com/manual/html/CommandFlags.html
http://dx.doi.org/10.1007/978-1-4842-3333-7_1
http://www.csounds.com/chapter1/index.html
http://www.allitebooks.org

223© Mark Wickham 2018
M. Wickham, Practical Android, https://doi.org/10.1007/978-1-4842-3333-7

 ■A
Acralyzer backend solution, 91
Advanced Message Queuing Protocol

(AMQP), 139
Amazon Web Services (AWS), 122–124
Android

email approaches, 120–121
email clients, 122
Intents, 124
JSON and, 3
spinner widget, 106

Annie app, 180
App Crash Report for Android (ACRA)

back-end server, 91–92
data fields, 90
Maven/Gradle, 89
permissions, 90

Audio
APIs and classes, 176–177
decision flowchart, 178
formats, 174
projects, 175
third-party apps, 175

Audio Buffer Size app
device effects query, 184
features, 183
measure audio latency, 184–185
project structure, 184

Audio latency
application, 180
audio buffer size, 181
audio system, 180
byte buffers, 181
control input, 180
device, 179
features, 178
Google Pixel XL, 179–180

guidelines, 182
output, 180
roundtrip, 180–181
sample rate, 181
Samsung Pro Audio SDK, 179–180

Audio synthesis
Csound, 208
engines, 208
Pure Data, 208–211
supercollider, 208

 ■B
Background service app

activity steps, 194
manifest file, 194
MediaPlayer, 195
project structure, 194
screenshot, 193

Built-in audio effects, 203–204
Byte buffers, 181–182

 ■C
Condenser microphones, 201
Connections app

ArrayLists, 32
connectionfile.txt file, 32
connection status, 30
connectivity status section, 33
default timer values, 31
HTTP, 35–36
ICMP, 34
JSON file, 32–33
network ping, 34
project setup, 31
reachability, 30
reachability results, 36–37
reachability section, 33

Index

https://doi.org/10.1007/978-1-4842-3333-7

224 Index

screenshot, 30
updateInterval, 31
update status, 30
WiFi BroadcastReceiver, 33

Connectivity
networking model, 18–19
status, 18
using built-in APIs, 22–23
WiFi broadcast receiver, 23–24

Csound Player app
CsoundHaikuIVActivity.java, 219
GUI interface, 218
SimpleTestActivity.java, 219
snapshot, 218

Csound synthesis
.csd files, 216
highlights, 216
setup, 217
Tone880.csd files, 216

Customer ordering application
ticket, 5–6
transaction, 4
UTF-8 encoding, 7
validators, 6

 ■D
Device effects query, 184
Directory Object Model (DOM), 13
Disk cache, 51
Drawee, 55

 ■E
Emailing app

Android Intents, 124
approaches for Android, 124
AWS server setup, 122–124
external AWS Interface, 125
JavaMail API, 125
screenshot, 125–126

Emailing project
GMailSender.java, 132
JSSEProvider.java, 133
layout, 126–127
MainActivity.java

Android Intents, 128–129

composing email, 128
EditText boxes, 128
emailAccount and emailPassword

variables, 127
email address, 127
email clients, 129
Intent Email button, 129
PHP Email button handler, 131
ProgressDialog box, 130
sending email, JavaMail

API, 129–131
setup, 126

Email protocols and
specifications, 121–122

 ■F
Facebook Fresco, 55–56
FCM Quickstart App, 148
Firebase Cloud Messaging (FCM)

adding Android project, 146
advantages, 146
application server

database, 157–158
db_connect.php, 155
db_functions.php, 155
FCM.php, 156
index.php, 157
MySQL database, 158
pushing down message, 158–159
register.php, 156
send_message.php, 157
steps, 155

client app, 147
considering alternatives, 160–161
free features, 145
MainActivity.java, 151
manifest file, 150
migrating GCM apps to, 145
MyFirebaseInstanceID

Service.java, 152–154
MyFirebaseMessagingService.java, 154
push messaging demo app, 149
quickstart app, 148
RegisterActivity.java, 151
structure, 150
Global.java, 151
upstream messaging

Connections app (cont.)

www.allitebooks.com

http://www.allitebooks.org

225Index

advantages, 159
topic messaging, 160

Firebase crash reporting, 87
Fresco library, 55–56

 ■G
Gallery adapter, 81–83
GMailSender.java, 132
Google Cloud Messaging (GCM), 138, 145
Google JSON (GSON), 13–14
Google Volley, 53
Gradle dependency, 89

 ■H
HiveMQ broker, 169
HTTP stacks

AndroidHttpClient, 19–20
ApacheHttpClient, 20–21
decision process, 20
HTTP/2, 20
HttpRequestRetryHandler, 21
HttpURLConnection, 19, 20
OKHttp, 20, 22

Hyper Text Transfer Protocol (HTTP)
in connections app, 35–36
pinging with, 26
push technologies, 137
response codes, 27
URL redirect situation, 28–29

 ■I
Internet Control Message Protocol

(ICMP), 25, 28, 34

 ■J, K
Jackson, 14
JavaMail API, 125
JavaScript Object Notation (JSON)

and Android, 3
array, 2
create blank order ticket, 10
customer ordering application

ticket, 5–6
transaction, 4

UTF-8 encoding, 7
validators, 6

GSON, 13–14
Jackson, 14
jsonGetter helper function, 9
jsonSetter helper function, 8
object, 2
project usage, 2
properties, 1
reading and parsing, 10–11
removing arrays, 11–12
syntax, 2
toString method, 11

JSSEProvider.java, 133

 ■L
Lazy Loading app

ArrayLists, 63
Delete button, 67
Delete Files button, 61
Exit button, 61, 68
fetchURL ArrayList, 68–69
FileCache.java, 75
gallery adapter, 81–83
grid adapter, 78–81
ImageLoader, 62, 71, 73
list adapter, 76–78
ListView, 61–62
MemoryCache.java, 73–75
onCreate method, 64
onNavigationItemSelected method, 65
project setup, 62
res/values/arrays.xml file, 64
server setup, 63
XML layout files, 69, 71

Lazy loading images
aspect ratio, 56, 59–60
BitmapFactory class, 58
characteristics, 49–50
description, 47
disk cache, 51
downsampling, 58
Fresco library, 55–56
high-level architecture, 49
image downsampling, 58
libraries, 48

226 Index

LruCache class, 50–51
memory cache, 50–51
Picasso library, 54
sizes, 56
size vs. quality tradeoff, 57
Volley library, 53

 ■M
Maven dependency, 89
Memory cache, 50–51
Message Queuing Telemetry Transport

(MQTT)
Android library, 164
AWS Linux, 169
ConnectionLog.java, 168
demo app, 163
Global.java, 165
HiveMQ, 169
libraries, 161
Mosquito, 169
MqttService.java, 167–168
project structure, 164
protocol, 161
publish/subscribe model, 162
PushActivity.java, 165–166
QoS levels, 162
RSMB, 169
web client, 170–171

Microphones
condenser, 201
dynamic, 201
four-track recording, 201
iRig Pre, 201
low-cost device, 201

Mobile email approaches, 120–121
Mosquito broker, 169–170
Music Service app

activity steps, 194
manifest file, 194
MediaPlayer, 195
project structure, 194
screenshot, 193

 ■N
Network layer model, 18–19

 ■O
Open Street Map for Android (OSMdroid)

compass overlay, 92
current location, 94
MapView class, 93
minimap overlay, 92
mylocation overlay, 92
overlays map, 94–95
RelativeLayout, 94
scale bar overlay, 92
setTileSource method, 94

 ■P, Q
PHP script, 102
Picasso library, 54
Pinging

defined, 24
with HTTP, 26
with ICMP, 25

Playing audio app
APIs, 186
with AudioTrack, 191–192
GenerateTone, 192
JSON configuration, 189
with MediaPlayer, 190
Novation Launchpad, 186
project structure, 188
requirements, 187
snapshot, 187
with SoundPool, 190–191

Pure Data Circle of Fifths app, 214–215
Pure Data Player app

patch file, 214
project structure, 213
setup, 213
snapshot, 212

Pure Data synthesis, 208–211
Push messaging

approaches, 140

Lazy loading images (cont.)

www.allitebooks.com

http://www.allitebooks.org

227Index

cases, 136
characteristics, 136
decision process, 141
description, 136
evolution, 138
FCM (see Firebase Cloud Messaging

(FCM))
HTTP, 137
phases, 139
protocols, 139, 141
technologies overview, 138
third-party service

advantages, 142
choosing, 143
drawback, 142
setup steps, 144

 ■R
Recording audio app

layout, 196
microphones

condenser, 201
dynamic, 201
four-track recording, 201
iRig Pre, 201
low-cost device, 201

recording 16-bit PCM audio
Audio Buffer Size app, 197
AudioRecord, 197
location, 197
main loop, 198
.wav file, 199–200

project structure, 197
Remote Crash Logs app

ACRA (see App Crash Report for
Android (ACRA))

Android notification bar, 88
approaches, 86
Crashed.php, 102–103
description, 86
dialog notification, 88
layout, 95–96
MainActivity.java, 100–101
manifest file, 98–99
MyApplication.java, 99–100

project setup, 98
silent notification, 88
toast notification, 88
uncaught exception, 88

204 Responses, 29
Ringdroid app

audio types, 205
encoding main loop, 206–207
setting up codec, 205–206

RSMB broker, 169

 ■S
Server spinner

buttons and text views, 110–111
description, 106
project setup, 111
screenshot, 110
server setup

deletefile.php, 108
listfiles-a.php, 107–108
PHP scripts, 107
return204.php, 107
uploadfile.php, 109

working with camera
Android MediaStore.ACTION_

IMAGE_CAPTURE intent, 112
compression, 115
delete button, 117–118
dialog box, 113
EditText, 115
fileUpload(), 115
listFilesScript, 115
MainActivity.java, 112, 115
matrix operator, 115
onPhotoTaken method, 112, 114
setOnClickListener code, 114
SYNC button, 116
uploading files, 118
Utils.java, 118

Simple Text Orientated Message Protocol
(STOMP), 139

Smartphones, 173
Splash app

check server reachability, 41
Content-Length attribute, 44

228 Index

dual purpose, 38
elements, 40
failure cases, 43
HTTP download, 41
HTTP stack, 43
onProgressUpdate method, 44
project setup, 39
screenshot, 38
splash.xml file, 39

Square Picasso, 54
Supercollider, 208

 ■T
Third-party service

advantages, 142

choosing, 143
drawback, 142
setup steps, 144

Topic messaging, 160

 ■U
URL redirects, 28–29
UTF-8 encoding, 7

 ■V
Volley library, 53

 ■W, X, Y, Z
WiFi broadcast receiver, 23–24
Wireshark protocol analyzer, 45

Splash app (cont.)

www.allitebooks.com

http://www.allitebooks.org

	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Preface
	Introduction
	1
	Chapter 1: Introduction to JSON
	1.1 Introduction
	1.2 Chapter Projects
	1.3 JSON Overview
	1.4 JSON and Android
	1.5 Designing JSON
	 JSON Sample File
	 Validating JSON
	 Text File Encoding

	1.6 Common JSON Operations
	 Setting a JSON Value in a JSON Object
	 jsonSetter Helper Function

	 Getting a JSON Value from a JSON Object
	 jsonGetter Helper Function

	 Creating a JSON File Programmatically
	 Reading and Parsing a JSON File
	 Printing JSON Strings
	 Removing JSON Arrays

	1.7 JSON Alternatives
	 GSON
	 Jackson

	1.8 References
	 Android JSON
	 Google GSON
	 Third Party

	2
	Chapter 2: Connectivity
	2.1 Introduction
	2.2 Chapter Projects
	2.3 Connectivity Basics
	2.4 Android HTTP Options
	2.5 Connectivity Status
	 Using the Built in APIs
	 WiFi Broadcast Receiver

	2.6 Server Reachability
	 Pinging with ICMP
	 Pinging with HTTP
	 HTTP Status Codes
	Blocked Protocols and URL Redirects
	 Generating 204 Responses

	2.7 Connections App
	 Connections App Overview
	 Connections Project
	 Connections App Configuration
	 MainActivity.java
	 Interpreting Reachability Results

	2.8 Splash App
	 Splash App Overview
	 Splash Project
	 Splash.xml
	 SplashActivity.java

	2.9 Essential Tools
	2.10 References
	 Android HTTP and Connectivity
	 ApacheHttpClient
	 OkHttp
	 Tools

	3
	Chapter 3: Lazy Loading Images
	3.1 Introduction
	3.2 Chapter Projects
	3.3 Lazy Loading Libraries
	3.4 Lazy Loading Architecture
	 Memory Cache
	 Disk Cache

	3.5 Choosing a Library
	 Google Volley
	 Square Picasso
	 Facebook Fresco

	3.6 Handling Image Assets
	 Size vs. Quality Tradeoff
	 Image Downsampling
	 Aspect Ratio

	3.7 Lazy Loading App
	 Lazy Loading App Overview
	 Lazy Loading Project
	 Server Setup
	 MainActivity.java

	 XML Layout Files
	 ImageLoader.java
	 MemoryCache.java
	 FileCache.java
	 Adapters
	 Lazy List Adapter
	 Lazy Grid Adapter
	 Lazy Gallery Adapter

	3.8 References
	 Android and Java References
	 Third-Party Lazy Loading Libraries

	4
	Chapter 4: Remote Crash Logs
	4.1 Introduction
	4.2 Chapter Project
	4.3 Remote Crash Log Solutions
	 How Crash Logging Works

	4.4 App Crash Report for Android
	 ACRA Overview

	4.5 ACRA Back-End Server
	4.6 Open Street Map for Android
	4.7 Remote Crash Log App
	 Remote Crash Log App Overview
	 Remote Crash Log Project
	 AndroidManifest.xml
	 MyApplication.java
	 MainActivity.java

	 PHP Self-Hosted Script
	 Crashed.php

	4.8 References
	 Android
	 Google Firebase
	 OSMdroid
	 Third Party

	5
	Chapter 5: Uploading and Emailing
	5.1 Introduction
	5.2 Chapter Projects
	5.3 Overview
	5.4 Server Spinner: Server Setup
	5.5 Server Spinner App
	 Server Spinner App Overview
	 Server Spinner Project
	 Working with the Camera
	 MainActivity.java
	 Syncing with the Server

	 Deleting an Item
	Utils.java
	 Uploading an Item

	5.6 Mobile Email
	5.7 Mobile Email Approaches
	5.8 Email Protocols
	5.9 Android Email Clients
	5.10 Emailing App: AWS Server Setup
	5.11 Emailing App
	 Android Intents
	 JavaMail API
	 External AWS Interface
	 Emailing App Overview
	 Emailing Project
	 MainActivity.java
	 GMailSender.java
	 JSSEProvider.java

	5.12 References
	 Uploading Files
	 Email

	6
	Chapter 6: Push Messaging
	6.1 Introduction
	6.2 Chapter Projects
	6.3 Push Messaging Overview
	 Push Technologies
	 How Push Messaging Works
	 Choosing a Technology

	6.4 Push Messaging Services
	 Push Service Advantages
	 Choosing a Push Service
	 Services Setup Steps

	6.5 Firebase Cloud Messaging
	 GCM/FCM Migration
	 FCM Setup
	 Adding Firebase to Your Android Project
	 Setting Up Your FCM Client App

	 FCM Quickstart App
	 FCM App
	 FCM Project
	 AndroidManifest.xml
	 Global.java: Setting Up the FCM Credentials
	 MainActivity.java
	 MyFirebaseInstanceIDService
	 MyFirebaseMessagingService.java

	 Application Server Setup
	 db_connect.php
	 db_functions.php
	 FCM.php
	 register.php
	 index.php
	 send_message.php
	 Setting Up the Database
	 MySQL Database Table Setup
	 Pushing Down a Message

	 FCM Upstream Messaging
	 Topic Messaging
	 Considering FCM Alternatives

	6.6 Open Source Push Messaging with MQTT
	 MQTT Introduction
	 MQTT App
	 MQTT Project
	 MQTT Libraries for Android
	 Global.java
	 PushActivity.java
	 MqttService.java
	 ConnectionLog.java Logging and Debugging

	 MQTT Message Brokers
	 MQTT Broker Setup for AWS
	 Sending Messages with MQTT Web Clients
	 MQTT Wrap Up

	6.7 References
	 Firebase Cloud Messaging (FCM)
	 MQTT Push Messaging

	7
	Chapter 7: Android Audio
	7.1 Introduction
	7.2 Chapter Projects
	7.3 Audio Overview
	 API and Class Summary
	 Choosing the Right API

	7.4 Latency
	 Latency Breakdown
	 Audio Buffer Size App
	 Audio Buffer Size Project
	 Device Effects Query
	 Measuring Latency

	7.5 Playing Audio
	 Playing Audio App
	 Playing Audio Project
	 JSON Configuration
	 Playing Audio with the MediaPlayer
	 Playing Sounds with SoundPool
	 Playing Audio with AudioTrack
	 Generating a Tone with AudioTrack
	 Experiment with the Playing Audio App

	7.6 Playing Audio with a Background Service
	 Music Service App
	 Music Service Project
	 MainActivity.java
	 MusicService.java

	7.7 Recording Audio
	 Recording Audio App
	 Recording Audio Project
	 RecordWavActivity.java
	 Interfacing External Microphones

	7.8 Advanced Audio
	 Built-in Audio Effects
	 Encoding
	 Ringdroid App
	 Setting up a Codec
	 Encoding Main Loop

	7.9 Audio Synthesis
	 Pure Data Overview
	 Pure Data Player App
	 Pure Data Player Project
	 Pure Data Key Code
	 PDPlayer.java

	 Pure Data Circle of Fifths App
	 Csound Overview
	 Csound .csd files
	 Csound Setup
	 Csound App
	 Csound Key Code
	 CsoundHaikuIVActivity.java
	 SimpleTestActivity.java

	 Csound Summary

	7.10 References
	 Android References
	 Specifications
	 Third-Party Vendors
	 Pure Data
	 Csound

	Index
	Index

