
www.allitebooks.com

http://www.allitebooks.org

David Berube

Practical Ruby Gems

8113Ch00CMP2 3/28/07 5:27 PM Page i

www.allitebooks.com

http://www.allitebooks.org

Practical Ruby Gems

Copyright © 2007 by David Berube

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-811-5

ISBN-10 (pbk): 1-59059-811-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Yan Pritzker
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole Flores
Copy Editor: Candace English
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Diana Van Winkle, Van Winkle Design
Proofreader: Liz Welch
Indexer: Julie Grady
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

8113Ch00CMP2 3/28/07 5:27 PM Page ii

www.allitebooks.com

http://www.allitebooks.org

Dedicated to my parents

8113Ch00CMP2 3/28/07 5:27 PM Page iii

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Author . xiii

Acknowledgments . xv

PART 1 ■ ■ ■ Using RubyGems
■CHAPTER 1 What Is RubyGems? . 3

■CHAPTER 2 Installing RubyGems . 7

■CHAPTER 3 Using RubyGems in Your Code . 13

■CHAPTER 4 Managing Installed Gem Versions . 25

PART 2 ■ ■ ■ Using Particular Gems
■CHAPTER 5 Data Access with the ActiveRecord Gem . 35

■CHAPTER 6 Easy Text Markup with the BlueCloth Gem . 45

■CHAPTER 7 Creating Web Applications with Camping . 53

■CHAPTER 8 Creating Command-Line Utilities with cmdparse 69

■CHAPTER 9 HTML Templating with erubis . 81

■CHAPTER 10 Parsing Feeds with feedtools . 89

■CHAPTER 11 Creating Graphical User Interfaces with fxruby 95

■CHAPTER 12 Retrieving Stock Quotes with YahooFinance 103

■CHAPTER 13 Parsing HTML with hpricot . 109

■CHAPTER 14 Writing HTML as Ruby with Markaby . 115

■CHAPTER 15 Parsing CSV with fastercsv . 121

■CHAPTER 16 Multiple Dispatch with multi . 127

■CHAPTER 17 Serving Web Applications with mongrel . 137

■CHAPTER 18 Transferring Files Securely with net-sftp . 145

■CHAPTER 19 Executing Commands on Remote Servers with net-ssh 149

■CHAPTER 20 Validating Credit Cards with creditcard . 155

■CHAPTER 21 Writing PDFs with pdf-writer . 159

■CHAPTER 22 Handling Recurring Events with runt . 167

iv

8113Ch00CMP2 3/28/07 5:27 PM Page iv

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 23 Building Websites with Rails . 175

■CHAPTER 24 Automating Development Tasks with rake . 183

■CHAPTER 25 Manipulating Images with RMagick . 191

■CHAPTER 26 Speeding Up Web Applications with memcache-client 199

■CHAPTER 27 Managing Zip Archives with rubyzip . 209

■CHAPTER 28 Speeding Up Function Calls with memoize . 215

■CHAPTER 29 Tagging MP3 Files with id3lib-ruby . 221

■CHAPTER 30 Shortening URLs with shorturl . 227

■CHAPTER 31 Creating Standalone Ruby Applications with rubyscript2exe . . . 231

■CHAPTER 32 Cleaning Dirty HTML with tidy . 237

■CHAPTER 33 Parsing XML with xml-simple . 245

PART 3 ■ ■ ■ Creating Gems
■CHAPTER 34 Creating Our Own Gems . 255

■CHAPTER 35 Distributing Gems . 261

■INDEX . 267

v

8113Ch00CMP2 3/28/07 5:27 PM Page v

www.allitebooks.com

http://www.allitebooks.org

8113Ch00CMP2 3/28/07 5:27 PM Page vi

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author . xiii

Acknowledgments . xv

PART 1 ■ ■ ■ Using RubyGems

■CHAPTER 1 What Is RubyGems? . 3

Why Use RubyGems? . 3
How Does RubyGems Compare to Other Packaging Systems? 6

■CHAPTER 2 Installing RubyGems . 7

Installing Ruby . 7

Installing RubyGems Under Linux and Mac OS X . 10

Updating Your RubyGems System After You’ve Installed It 11

■CHAPTER 3 Using RubyGems in Your Code . 13

Getting Started with a Ruby Gem . 13

Working with Source Gems . 20

Debugging RubyGems . 23

■CHAPTER 4 Managing Installed Gem Versions . 25

What Is Gem Versioning? . 25

Installing an Older Gem Version . 26

Updating Gems . 27

Uninstalling Gems . 28

Specifying Gem Versions . 29

vii

8113Ch00CMP2 3/28/07 5:27 PM Page vii

www.allitebooks.com

http://www.allitebooks.org

PART 2 ■ ■ ■ Using Particular Gems

■CHAPTER 5 Data Access with the ActiveRecord Gem 35

How Does It Work? . 36

Archiving RSS News with ActiveRecord . 39

Conclusion . 44

■CHAPTER 6 Easy Text Markup with the BlueCloth Gem 45

How Does It Work? . 45

BlueCloth-to-HTML Converter . 46

bluecloth2pdf BlueCloth-to-PDF Converter . 48

Conclusion . 51

■CHAPTER 7 Creating Web Applications with Camping 53

How Does It Work? . 53

Tracking Time with Camping . 56

Conclusion . 68

■CHAPTER 8 Creating Command-Line Utilities with cmdparse 69

How Does It Work? . 69

A Job-Search Tool Built with cmdparse . 71

Conclusion . 79

■CHAPTER 9 HTML Templating with erubis . 81

How Does It Work? . 81

HTML MySQL Table Viewer with erubis . 83

Conclusion . 88

■CHAPTER 10 Parsing Feeds with feedtools . 89

How Does It Work? . 89

A News Search Tool Built with feedtools . 91

Conclusion . 93

■CONTENTSviii

8113Ch00CMP2 3/28/07 5:27 PM Page viii

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 11 Creating Graphical User Interfaces with fxruby 95

How Does It Work? . 95

Dynamic MySQL Data Form with fxruby . 96

Conclusion . 102

■CHAPTER 12 Retrieving Stock Quotes with YahooFinance 103

How Does It Work? . 103

Displaying a Stock-Market Ticker with YahooFinance 104

Conclusion . 107

■CHAPTER 13 Parsing HTML with hpricot . 109

How Does It Work? . 109

Screen-Scraping a Catalog with hpricot . 111

Conclusion . 114

■CHAPTER 14 Writing HTML as Ruby with Markaby . 115

How Does It Work? . 115

Graphical HTML Stock Charts with Markaby . 116

Conclusion . 120

■CHAPTER 15 Parsing CSV with fastercsv . 121

How Does It Work? . 121

Processing Census Data with fastercsv . 123

Conclusion . 125

■CHAPTER 16 Multiple Dispatch with multi . 127

How Does It Work? . 127

Formatting SQL for Legibility Using multi . 129

Conclusion . 135

■CONTENTS ix

8113Ch00CMP2 3/28/07 5:27 PM Page ix

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 17 Serving Web Applications with mongrel 137

How Does It Work? . 137

Using mongrel as a Rails Development Server . 138

mongrel Running Rails as a Service on Win32 . 139

mongrel Running Camping . 140

mongrel as a Small Web Server . 140

mongrel Serving a Rails App via Apache 2.2 . 141

Conclusion . 143

■CHAPTER 18 Transferring Files Securely with net-sftp 145

How Does It Work? . 145

Sending Files via SFTP Using net-sftp . 146

Conclusion . 148

■CHAPTER 19 Executing Commands on Remote Servers with net-ssh . . . 149

How Does It Work? . 149

Editing Remote Files with net-ssh and Vim . 151

Conclusion . 154

■CHAPTER 20 Validating Credit Cards with creditcard 155

How Does It Work? . 155

Verifying Credit-Card Numbers in Batch with creditcard 156

Conclusion . 158

■CHAPTER 21 Writing PDFs with pdf-writer . 159

How Does It Work? . 159

Creating Reports with pdf-writer and Net/SFTP . 160

Conclusion . 165

■CHAPTER 22 Handling Recurring Events with runt . 167

How Does It Work? . 167

Planning User-Group Meetings with runt . 169

Executing Commands on a Recurring Schedule . 172

Conclusion . 173

■CONTENTSx

8113Ch00CMP2 3/28/07 5:27 PM Page x

■CHAPTER 23 Building Websites with Rails . 175

How Does It Work? . 175

A Simple Database Application with Rails . 176

Conclusion . 182

■CHAPTER 24 Automating Development Tasks with rake 183

How Does It Work? . 183

Easy Documentation with BlueCloth and rake . 184

Conclusion . 189

■CHAPTER 25 Manipulating Images with RMagick . 191

How Does It Work? . 191

Creating Thumbnails with RMagick . 192

Conclusion . 198

■CHAPTER 26 Speeding Up Web Applications with memcache-client . . 199

How Does It Work? . 199

Speeding Up the Ruby on Rails Session Cache with memcached 200

Accessing memcached Servers with a Graphical Client 205

Conclusion . 207

■CHAPTER 27 Managing Zip Archives with rubyzip . 209

How Does It Work? . 209

Reading Text from a Zip File . 210

Conclusion . 213

■CHAPTER 28 Speeding Up Function Calls with memoize 215

How Does It Work? . 215

Organizing a List of MP3s . 217

Conclusion . 220

■CHAPTER 29 Tagging MP3 Files with id3lib-ruby . 221

How Does It Work? . 221

Changing MP3 Tags with ID3 Mass Tagger . 222

Conclusion . 225

■CONTENTS xi

8113Ch00CMP2 3/28/07 5:27 PM Page xi

■CHAPTER 30 Shortening URLs with shorturl . 227

How Does It Work? . 227

Shortening RSS Feeds with shorturl . 228

Conclusion . 230

■CHAPTER 31 Creating Standalone Ruby Applications
with rubyscript2exe . 231

How Does It Work? . 231

Packaging the id3tool Script with rubyscript2exe 232

Conclusion . 236

■CHAPTER 32 Cleaning Dirty HTML with tidy . 237

How Does It Work? . 237

Tidying Up HTML on the Web with tidy . 240

Conclusion . 243

■CHAPTER 33 Parsing XML with xml-simple . 245

How Does It Work? . 245

Tracking OpenSSL Vulnerabilities with xml-simple 248

Conclusion . 251

PART 3 ■ ■ ■ Creating Gems

■CHAPTER 34 Creating Our Own Gems . 255

What Is Inside a Gem? . 255

What’s a Gemspec? . 255

Building a Gem Package from a Gemspec . 256

Conclusion . 260

■CHAPTER 35 Distributing Gems . 261

Distribution Methods . 261

Conclusion . 266

■INDEX . 267

■CONTENTSxii

8113Ch00CMP2 3/28/07 5:27 PM Page xii

About the Author

■DAVID BERUBE is a Ruby developer, trainer, author, and speaker. He’s used both Ruby and Ruby
on Rails since 2003, when he became a Ruby advocate after he wrote about the language for
Dr Dobb’s Journal. Prior to that he worked professionally with PHP, Perl, C++, and Visual Basic.

David’s professional accomplishments include creating the Ruby on Rails engine for Cool-
Ruby.com (http://coolruby.com), a site that tracks the latest Ruby developments, and working
with thoughtbot (www.thoughtbot.com) on the Rails engine that powers Sermo’s America’s Top
Doc contest. He also worked with the Casting Frontier on the Ruby on Rails backend that is
powering their digital casting services for Los Angeles. He has worked on several other Ruby
projects, including the engine powering CyberKnowHow’s BirdFluBreakingNews search engine.

David’s writing has been in print in over 65 countries, in magazines such as Linux Maga-
zine, Dr Dobb’s Journal, and International PHP Magazine. He’s also taught college courses and
spoken publicly on topics such as “MySQL and You” and “Making Money with Open Source
Software.”

Feel free to contact the author via his website at http://berubeconsulting.com or via his
email address at djberube@berubeconsulting.com.

xiii

8113Ch00CMP2 3/28/07 5:27 PM Page xiii

8113Ch00CMP2 3/28/07 5:27 PM Page xiv

Acknowledgments

I’d like to thank my parents and my sisters; I can’t imagine writing this book without them.
I’d also like to thank the many friends that have supported me; in particular, I’d like to thank
Wayne Hammar and Matthew Gifford.

I’d also like to thank the vast array of professional associates I’ve worked with and learned
from, and in particular I’d like to thank Terry Simkin, Ted Roche, Bill Sconce, Bruce Dawson,
K.C. Singh, and Joey Rubenstein. Thanks to Peter Cooper for introducing me to the possibility
of writing this book.

Finally, I’d like to thank my editors, originally Keir Thomas and later Jason Gilmore, as
well as my technical reviewer Yan Pritzker, my project manager Richard Dal Porto, and my
copy editor Candace English.

xv

8113Ch00CMP2 3/28/07 5:27 PM Page xv

8113Ch00CMP2 3/28/07 5:27 PM Page xvi

Using RubyGems

This section of the book introduces RubyGems and explains how you can start using them

in your code.

P A R T 1

■ ■ ■

8113Ch01CMP2 3/22/07 7:38 PM Page 1

8113Ch01CMP2 3/22/07 7:38 PM Page 2

What Is RubyGems?

In short, RubyGems lets you distribute and install Ruby code wherever you can install Ruby.
Specifically, RubyGems is a package-management system for Ruby applications and

libraries. It lets you install Ruby code—called gems—to any computer running Ruby. It can
resolve dependences for you, so if you want to install a given piece of software, RubyGems can
handle that for you. It can even resolve version dependencies—so that if a certain gem or your
code requires a certain version of another gem, it can take care of that. It also wraps all of this
functionality in a very easy-to-use package.

The gems come in a variety of types. For example, if you had a Web application to which
your users uploaded pictures from a digital camera, you’d likely need to resize the pictures,
which come in a variety of sizes. You could write the resizing code by hand, but it’d be consid-
erably faster to use the rmagick gem to resize the pictures—and you could add additional
features like cropping, rotation, sharpening, and so on with just a few extra lines of code, since
rmagick includes all of those features. (See Chapter 25 for more details.)

Alternatively, if you want to develop a Web application using Ruby on Rails—which is a full-
featured, very powerful Model View Controller (MVC) Web framework—you could install that
using RubyGems as well. Rails consists of a number of libraries and utilities—all of which can
be installed by RubyGems with just one command. (See Chapter 23 for more information.)

This chapter covers the features of RubyGems and how it differs from other package-
management systems.

Why Use RubyGems?
First of all, RubyGems makes it easy use to install Ruby software. For example, Instiki
(http://instiki.org/) is a wiki—a kind of content-management system—and if we wanted
to install the instiki gem, we could do so with the following command in the Linux/Mac
OS X shell or the Windows command prompt:

gem install instiki

Of course, to do that you’d need RubyGems installed, and we’ll cover that in the next two
chapters. For now, though, you can see how easy it is to install gems—just one command and
RubyGems takes care of the rest.

This can be extremely important; for example, if you had a Web application written in
Ruby and your server failed, you’d need to be able to quickly and easily install all of the soft-
ware that your application needs on a new server.

3

C H A P T E R 1

■ ■ ■

8113Ch01CMP2 3/22/07 7:38 PM Page 3

www.allitebooks.com

http://www.allitebooks.org

It Provides a Standard Way to Describe Ruby Software
and Requirements.
RubyGems lets you define gemspecs. A gemspec describes software—it includes the name,
version, description, and so forth. This gemspec can be built into a .gem file, which is a com-
pressed archive containing the gemspec and all of the files that the software requires.

This .gem file can be uploaded to RubyForge, which lets you install it from any Internet-
connected RubyGems installation, or it can be distributed via traditional means, like HTTP
or FTP. Because the .gem file contains a description of the program, you can also use the gem
list command to see the details of the gem or to search for similar gems. (You can find more
details on the gem list command in Chapter 3 and you can find out more about building
gems in Chapters 34 and 35.)

For example, if you upgrade a version of a gem and the new version has additional
requirements, you won’t need to scour the documentation for the changes—RubyGems will
automatically read the requirements from the gemspec since the format of the gemspecs is
standard.

It Provides a Central Repository of Software.
One of the aspects of RubyGems that makes it so appealing is it gives you access to RubyForge
—a central repository of Ruby software. You can find out more about RubyForge at, http://
rubyforge.org.Without RubyForge, you’d have to locate, download, and then install a gem and
its dependencies. With RubyForge, though, RubyGems can automatically locate the software
and its dependencies for you.

Although most Rubyists (Ruby programmers and enthusiasts) install gems only from the
central repository, you aren’t required you to use it—you can install gems from any location
you choose. (You can also set up your own gem server, which you’ll learn about next.) For
example, if you had to move your software from one operating system to another, your operat-
ing system’s packaging system and repository would be different, but RubyGems would stay
the same—you can use RubyForge wherever RubyGems is installed.

It Lets You Redistribute Gems Using a Gem Server.
The technology used to serve gems comes with RubyGems. You can set up your own RubyGems
server on a local network or on the Internet without much trouble; if, for example, you’d like to
cache all of the gems your development team uses on a local server to speed up downloads, you
can do that.

If you’d prefer not to use RubyForge and rather distribute gems via your own website or
gem server, you can do that too. You can find more details in Chapter 35.

CHAPTER 1 ■ WHAT IS RUBYGEMS?4

8113Ch01CMP2 3/22/07 7:38 PM Page 4

It Handles Software Dependencies for You.
RubyGems can take care of dependencies automatically. That means that when you install a
gem, it can automatically determine what other gems are required and ask you if you’d like to
install them.

This can make your life much easier, since a significant amount of Ruby software is built
using other Ruby software—and that other Ruby software might require still more software.
Without RubyGems, you might have to spend hours installing and researching dozens of
packages to get complex software working. With RubyGems, you can just install the gem and
let it resolve dependencies for you.

It Handles Multiple Software Versions Intelligently.
RubyGems can store multiple gem versions, and software that uses RubyGems can
request particular gem software versions—so, for example, an application that requests
the ActiveRecord gem (http://rubyforge.org/projects/activerecord/) could request a gem
that’s newer or older than a given version. This is very helpful if, for example, a later version of
a gem breaks your program, or if your program requires a feature from the latest version of a
gem. (You can find more details on how to do this in Chapter 4.)

It Can Be Used Transparently in Place of Regular Ruby Libraries.
RubyGems has a facility that makes it transparent to use gem software. For example, suppose
you wanted to use the Camping (http://rubyforge.org/projects/camping/) Web microframe-
work. If you installed Camping the traditional way, you would use the Camping library in your
code like this:

require 'camping'

If you installed it via RubyGems, you use the exact same code. As you can see, using code
via RubyGems is transparent, so you can switch back and forth easily; if you distribute your
software, the user does not need to have RubyGems installed—only the required library.

Note, however, that if you want to require that a certain version of the software is installed,
you’ll need to use a special RubyGems statement in your code. (See Chapter 4 for further details.)

It Lets You Use the Same Technology on Any Operating System.
RubyGems targets all platforms that run Ruby. If it runs Ruby, it runs RubyGems. A number
of other systems exist to make software installation easier; there’s everything from those that
simply install software—like Window’s MSI installation system—to full package-management
systems, like Debian Linux’s apt (Advanced Package Tool), Red Hat’s yum, or OS X’s DarwinPorts.
Such systems are generally operating system–dependent, though, as we’ll discuss next.

CHAPTER 1 ■ WHAT IS RUBYGEMS? 5

8113Ch01CMP2 3/22/07 7:38 PM Page 5

How Does RubyGems Compare to Other
Packaging Systems?
Operating system–specific packaging systems, such as apt or yum, can carry Ruby software as
well. Since Ruby software can be used by non-Rubyists, this is important. It’s also convenient if
you need just a few pieces of software. For Rubyists, though, it’s usually better to install gems
using RubyGems, since RubyGems has the best selection of Ruby software and the latest ver-
sions. Additionally, unlike RubyGems, OS-native packagers don’t handle multiple gem
versions installed simultaneously.

However, it is possible to install a limited selection of Ruby software using other packag-
ing systems. For example, you could install the MySQL Ruby bindings via gem like this:

gem install mysql

Alternatively, you could install the same library via apt-get under Ubuntu Linux like this:

apt-get install libmysql-ruby1.8

Finally, you could install it via DarwinPorts under OS X like this:

port install rb-mysql

Note that those three commands require you to be logged in as root—if you prefer, you
can prefix each command with sudo, which will execute that single command with the root-
user privileges.

In some cases you can install software via apt or another packaging system. Such systems
usually have a very limited selection of Ruby packages, but if they happen to include all of the
software you need, you may be able to use them. Consult the documentation that comes with
your Linux distribution or other packaging system.

Note, though, that installing gems from your OS distribution is not recommended. It
means you have to use the version of the software in your OS’s repository, and often this lags
significantly behind the RubyGems versions. Using the gem installer, as we do throughout this
book, will automatically give you access to the most recent gem versions.

Of course, you can always skip package-management systems entirely—you can install
Ruby software by running an install script manually or by copying files into the lib directory
of your Ruby installation. If you want to do so, download the software you want from its
homepage and consult the included README or INSTALL file.

CHAPTER 1 ■ WHAT IS RUBYGEMS?6

8113Ch01CMP2 3/22/07 7:38 PM Page 6

Installing RubyGems

You’ll need the RubyGems system to follow the examples from this book. The RubyGems
system lets you use a vast array of Ruby software packages—including all of the gems we cover
in this book. In general, it’s fairly easy to install RubyGems. Of course, before you can install
RubyGems, you need to install Ruby—we’ll cover both in this chapter. Finally, we’ll explain
how you can update a RubyGems system you’ve already installed.

■Note If you already have RubyGems installed, you can skip this chapter.

Installing Ruby
To follow the examples in this book, and before you install RubyGems, you must have the
Ruby programming language interpreter and libraries installed on your machine.

Mac OS X comes with Ruby preinstalled; if you have Mac OS X installed, you can skip
straight to the section, “Installing RubyGems under Linux and Mac OS X.” Many Linux distri-
butions include Ruby, so we’ll cover how you can check if your computer has Ruby installed.
Windows does not install Ruby by default, so if you are running Windows, skip straight to
“Installing Ruby on Windows Using the One-Click Installer.” (If you’re using Windows, the
One-Click Installer will install both Ruby and RubyGems at once.)

Is Ruby Already Installed on Your Computer?
If you’re not sure if you need to install Ruby, run the following command at the OS X/Linux
shell or the Windows command prompt:

ruby -v

If you receive a “command not found” error, you don’t have Ruby installed. You should get
a message like the following:

ruby 1.8.4 (2006-04-14) [i386-mswin32]

7

C H A P T E R 2

■ ■ ■

8113Ch02CMP3 3/28/07 8:46 AM Page 7

The version number is the number immediately after the “ruby”—in this case, 1.8.4. Note
that to use the RubyGems system (as well as to use a lot of other software that uses Ruby),
you’ll need version 1.8.4 or later. If you have a lower version, you should upgrade—look for
appropriate instructions for your operating system to upgrade your installation.

Installing Ruby on a Linux System
We’ll briefly cover three methods of installing Ruby on Linux. The first, apt, is a package man-
ager for Debian-based distributions, such as Ubuntu. The second, yum, is a package manager
for Red Hat–based distributions. These both offer an easy way to install Ruby. If your system
does not support either apt or yum, you can install Ruby by compiling the source code your-
self, which is slightly more complicated. We’ll cover that method last.

Installing Ruby on Debian Linux Distributions with apt
apt is a popular package-management system for Debian Linux and Debian-based distribu-
tions, such as Ubuntu Linux, Lindows, Xandros, and others. It bears some similarities to
RubyGems; for instance, it can download, install, and remove software from the command
line. (apt can also be used on non-Debian distributions, but it does not come installed by
default.)

If you’d like to use apt to install Ruby, you can do so as follows:

sudo apt-get install ruby*

This will automatically download and install Ruby, and you can proceed to the “Testing
Your Ruby Installation” section of this chapter.

■Note The last two apt-get commands install required libraries for installing RubyGems; if you don’t plan
on installing RubyGems, those aren’t absolutely necessary to run Ruby.

Installing Ruby on Red Hat Linux Distributions with yum
yum is another package-management system—it’s very similar to apt. It’s available on all
versions of Fedora Core. If you’d like to use yum to install Ruby, you can do so as follows:

yum install ruby

This will download and install Ruby and the required libraries for you, and you can pro-
ceed to the “Testing Your Ruby Installation” section of this chapter.

CHAPTER 2 ■ INSTALLING RUBYGEMS8

8113Ch02CMP3 3/28/07 8:46 AM Page 8

Installing Ruby on Linux from the Ruby Source
You’ll need to have gcc and make installed to compile Ruby; if you don’t have them installed,
consult your distribution’s documentation for the installation instructions. First download
and uncompress the latest Ruby source tarball from ftp://ftp.ruby-lang.org/pub/ruby/,
then compile and install Ruby with the following shell commands:

./configure
make
make test
make install

Once you’ve done so, your Ruby installation should be ready and you can proceed to the
“Testing Your Ruby Installation” section of this chapter.

Installing Ruby on Windows Using the One-Click Installer
The Ruby One-Click installer is very easy to use. It is a precompiled, self-contained Windows
installer. It’s developed by Ruby Central (http://rubycentral.org/), and provides Ruby in the
only real way to distribute software for Windows, which is as a binary—after all, Windows does
not have any method to compile software by default. (This is true under some Linux distribu-
tions as well.)

The installer is very simple, as you can imagine from the name—you won’t have to launch
multiple programs or type commands into the Windows prompt, so it fits in well with the
Windows way of doing things.

You can download the One-Click Installer from http://rubyinstaller.rubyforge.org/.
Once you’ve done so, run the program by double-clicking on the icon. You’ll be asked a few
questions, but if you select the default options you should be all set. Proceed to the “Testing
Your Ruby Installation” section of this chapter.

DOWNLOADING FILES WITH WGET

While the most familiar way to download files under Windows is to use a Web browser, there are other
options. A popular Linux utility, wget, comes in Win32 form—you can get it at http://users.ugent.be/
~bpuype/wget/.

wget lets you download files from the command line in just one command. Not all Windows users are
comfortable using the command prompt, but once you become comfortable, many people find it easier to use.

Once you’ve downloaded and installed wget, you can use it to download Ruby from the command
prompt like this:

wget http://rubyforge.org/frs/download.php/11926/ruby184-20.exe

This would save you a number of clicks and the hassle of launching a Web browser.

CHAPTER 2 ■ INSTALLING RUBYGEMS 9

8113Ch02CMP3 3/28/07 8:46 AM Page 9

Testing Your Ruby Installation
How can you be sure that Ruby works? Let’s try a very simple test. You can rerun the version
command discussed earlier by typing the following command in the Windows command
prompt or the Linux/OS X shell:

ruby -v

You should get a display similar to the following:

ruby 1.8.4 (2006-04-14) [i386-mswin32]

If you’d like to test an actual line of code, you can do so as follows:

ruby -e "puts 'hello world!'"

You should get the following output:

hello world!

Once you’ve verified that you have Ruby installed, you can install RubyGems; we’ll cover
that next. If you used the Windows One-Click Installer, it already installed RubyGems for you,
so you can skip straight to “Testing Your RubyGems Installation.”

Installing RubyGems Under Linux and Mac OS X
It’s fairly easy to install RubyGems on Linux, and you can use the same procedure to install
RubyGems on Mac OS X. On those systems, use the following shell commands to download
and install RubyGems:

curl -O http://rubyforge.org/frs/download.php/11289/rubygems-0.9.0.tgz
tar -xvzf rubygems-0.9.0.tgz
cd rubygems-0.9.0.tgz
ruby setup.rb

Once you’ve done so, set an environment variable, RUBYOPT, using a line in your .profile:

export RUBYOPT=rubygems

This environment variable causes RubyGems to be run whenever Ruby is run. You can get
an similar effect by including the line require "rubygems" in all of your Ruby scripts, but since
most Ruby scripts using RubyGems are written assuming that you have RUBYOPT set, that’ll
require you to modify all of the programs you download—no small task. You can also run your
Ruby script with the -rubygems option, but that’s a lot of extra typing.

CHAPTER 2 ■ INSTALLING RUBYGEMS10

8113Ch02CMP3 3/28/07 8:46 AM Page 10

■Note You shouldn’t have any negative effects from setting the RUBYOPT variable—even if some of your
scripts don’t use RubyGems. (Keep in mind that the Windows installer sets the RUBYOPT variable for you
unless you explicitly tell it not to.)

At this point, you should have a working RubyGems system, so you can install and use
gems. You can now check your installation by following the directions in the next section of
this chapter.

Testing Your RubyGems Installation
First let’s pull up a list of installed gems. You can use the following command at the Linux/OS X
shell or the Windows command prompt:

gem --version

You should get the following response:

x.y.z

Note that x.y.z will be replaced by the appropriate directions for your operating system.
If you get a “command not found” error, you’ve done something wrong and you’ll want to fol-
low the appropriate instructions again for your operating system; you’ll also want to make
sure you installed Ruby before you installed RubyGems. Also check that if you already had
Ruby installed, it’s a version later than 1.8.4. If not, you’ll want to install a more recent version.

At this point, you have a working RubyGems install—you can now try all of the examples
in this book.

Updating Your RubyGems System After You’ve
Installed It
Once you’ve installed RubyGems, you can update it easily. You can use the same command on
any operating system. Typing the following command at the Linux/OS X shell or the Windows
command prompt will update RubyGems:

gem update --system

This will automatically download and install the latest update of the RubyGems system;
you can then use whatever updates have been made available. To check for RubyGems
updates, visit http://rubygems.org/.

CHAPTER 2 ■ INSTALLING RUBYGEMS 11

8113Ch02CMP3 3/28/07 8:46 AM Page 11

8113Ch02CMP3 3/28/07 8:46 AM Page 12

Using RubyGems in Your Code

In this chapter you’ll learn how you can use RubyGems in your code. You’ll learn about
installing individual gems; see a practical example of using them; get debugging tips; and
consider a few miscellaneous issues, like unpacking gems so they can be edited, freezing
gems so they don’t change, and using plugins and engines under Rails.

Getting Started with a Ruby Gem
Before we use a gem, we must install it. The instructions in this chapter assume you have the
RubyGems system already installed; if you don’t, refer to the previous chapter.

Gems are usually downloaded automatically, since the gem program can fetch gems from
the Internet. In fact, you can install most gems with a single command:

gem install gemname

Replace gemname with the name of the gem you want to install. Of course, to do that, you
need to know what the gem is called. To demonstrate this and other aspects of gem use, we’re
going to follow a small demo project.

Suppose you are developing an ecommerce application, and you want a quick way to find
out if a credit card number is valid without actually charging the card; that way, you can have
immediate feedback in your user interface if a customer mistypes the number.

To find a gem that fits our criteria, we could do a Web search to determine if there are any
gems with the functionality we need. However, we can first search the gem repository directly
using the gem list command. We can guess that a gem dealing with credit will start with the
word credit; let’s search the repository and see what we get. We can do that with the following
shell or Windows Prompt command:

gem list -r credit

*** REMOTE GEMS ***

creditcard (1.0)
These functions tell you whether a credit card number is
self-consistent using known algorithms for credit card numbers.

A few things to note: the -r switch tells the gem command not to search the local reposito-
ries, since we’d probably know if we installed a gem that fits our needs. If you omit the -r
switch, it’ll search both local and remote gems. If you replace -r with the -l switch, you’ll
search local gems only. 13

C H A P T E R 3

■ ■ ■

8113Ch03CMP2 3/22/07 7:50 PM Page 13

The credit part of that command tells the gem command to search for gems whose
name starts with credit. Note that this is part of a regular expression, so if you say gem list
-r .*credit, you’ll search for any gem whose name contains credit anywhere in the string.

Also note that you do not need to specify a search criteria; gem list -r will give you a
complete list of remote gems, and gem list -l will tell you all of the gems you’ve installed
locally. (You can save a copy of the remote gem list using your operating system’s redirection
support: gem list -r > remote_gem_list.txt will save a list of all remote gems available into
remote_gem_list.txt.)

Now that we know the name of the gem, we can install it. Here’s the command that will
install the creditcard gem:

>gem install creditcard
Successfully installed creditcard-1.0.0

You’ll likely need to run this command as root under Linux/OS X. Once you’ve installed
the gem, you can create an application to use it.

Using the creditcard Gem
The creditcard gem verifies that credit card numbers are valid. At first glance, it might seem
like the gem actually runs cards through a credit card processor; it doesn’t. It also does not
verify that the account exists, that the expiration date is correct, or that there is sufficient
available balance in the account to make a charge; all of those require actually charging the
card via a payment gateway or merchant account, which takes time and isn’t done until an
order is complete.

■Note Keep in mind that any given gem won’t always solve your problem—you might need to look around
a bit to find one that fits, and even when you find it you’ll likely need to do some work to get it to solve your
particular problem. At times, it may be more work fitting the gem into place than it would be to solve the
problem from scratch, particularly if the gem were badly designed—in that case, you’d be better off using
custom code.

However, it does verify that a number isn’t invalid; it checks the internal checksum of the
card number, and that can be done immediately as a user is entering card information. As a
result, the creditcard gem can help ensure that users entered cards correctly and do not make
any typos. Let’s write a simple app to use the creditcard gem to test credit card numbers.

require 'creditcard'

if ARGV[0]
credit_card_number=ARGV[0]
if credit_card_number.creditcard?
puts "Credit card number is valid " <<
"with type #{credit_card_number.creditcard_type}."

else

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE14

8113Ch03CMP2 3/22/07 7:50 PM Page 14

puts "Credit card number is not valid."
end

else
puts "Please enter a valid credit card number."

end

That’s pretty simple code for some fairly complex functionality; the statement “require
creditcard” gives us the ability to use the full functionality of that gem quite easily on any
string.

■Note You can download all of the code from this book from the Source Code/Download section of
http://www.apress.com/ instead of typing it in.

The ARGV array is a Ruby global variable that contains the command-line arguments to the
program. Our program expects you to pass a credit card on the command line, so if there
aren’t any, the program will print “Please enter a valid credit card number.” It’ll then call the
creditcard? method. This returns true if the string is a valid credit card, and false otherwise.
This method takes an optional parameter—if we called it credit_card_number.creditcard?
visa, it would return true only if the number were a valid Visa credit card number, and false if
it were an invalid credit card number or a non-Visa credit card number. The other method we
use is the creditcard_type method; it’s also an extension to the String class. That method
returns the credit card type, and the preceding listing uses it to print out the credit card type.

Note that no special creditcard objects are created; the creditcard gem extends the
String class directly. This is not possible in most languages; however, in Ruby this is called
monkeypatching, and is common. Also note that both methods end in a question mark. This is
a Ruby convention indicating that the method returns a true or false value. The question mark
has no special syntactic value—it’s just an indication to the programmer. (The other symbol
commonly used at the end of method names is the exclamation mark, which means that a
method modifies the receiver in place.)

Let’s test the program. We’ll start by checking that a completely bogus input doesn’t work:

ruby creditcard_check.rb not-a-number

Credit card number is not valid.

It’s good so far. Now let’s try with a correctly formatted number that isn’t a valid card:

ruby creditcard_check.rb 0000-0000-0000-0000

Credit card number is valid with type unknown.

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE 15

8113Ch03CMP2 3/22/07 7:50 PM Page 15

The numbers in Table 3-1 are test card numbers used to debug payment gateways, termi-
nals, and merchant accounts. They are numerically correct, but aren’t attached to any charge
account. We can use them to test our script.

Table 3-1. Test Credit Card Numbers

Card Type Test Number

Visa 4111-1111-1111-1111

MasterCard 5431-1111-1111-1111

American Express 341-1111-1111-1111

Discover 6011-6011-6011-6611

Diners Club 3530-1113-3330-0000

Let’s grab the test numbers from the table and see how well they work:

ruby creditcard_check.rb 4111-1111-1111-1111

Credit card number is valid with type visa.

ruby creditcard_check.rb 5431-1111-1111-1111

Credit card number is valid with type mastercard.

ruby creditcard_check.rb 341-1111-1111-1111

Credit card number is valid with type american_express.

ruby creditcard_check.rb 6011-6011-6011-6611

Credit card number is valid with type discover.

>ruby creditcard_check.rb 35301113333300000

Credit card number is invalid.

You can see that the gem detects valid test cards without a problem. In a production envi-
ronment it may be wise to test with a few real cards as well. You can also see that it supports
both card numbers formatted with dashes and those without, and a fair number of card types.

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE16

8113Ch03CMP2 3/22/07 7:50 PM Page 16

So, you can see that the gem works. You can also conclude that it’s very simple to use
gems in your program: you need only to have the gem installed and use the require statement
to utilize it. We can’t tell from the source how the creditcard gem was installed; the script does
not care how the creditcard library is installed, and the only requirement is that it can be
accessed by the require statement. This means that if an alternative Ruby library packaging
system were developed, our code would work without changes; additionally, if a script is
installed manually, it will work out modifications.

Playing Nice with cmdparse Command-Line Parsing
The preceding example was fairly simple—what if we want to use some more-complex func-
tionality in our application? Fortunately, gems remain easy to use even when the gems
involved are complex. Our previous example was a command-line application; however, it
had a very simple interface. Let’s try to make our application more general-purpose: specifi-
cally, let’s add a gem that gives us the ability to parse complex command-line arguments and,
based on the user’s input, either give documentation on what the program does or perform an
action. Instead of our giving the user all available information, the user can ask for what he
wants and receive only that; that’s considered a superior approach, since the user can reuse
the information in other programs without having to parse our output for the desired answer.

First let’s install a gem to help us parse command-line arguments:

gem install cmdparse

Successfully installed cmdparse-2.0.2
Installing ri documentation for cmdparse-2.0.2...
Installing RDoc documentation for cmdparse-2.0.2...

■Note The gem install cmdparse command installed RDocs for us, which are documentation for the
gem; the RDocs are stored in the /path/to/your/ruby/install/lib/ruby/gems/1.8/doc directory.
They include a full class documentation and a browser in HTML format, which you can see with any Web
browser. The other gems are there as well, so feel free to browse that directory to see the documentation
for any gems you have installed.

Next let’s update our example script:

require 'creditcard'
require 'cmdparse'

cmd = CmdParse::CommandParser.new(true, true)
cmd.program_name = "creditcard_check"
cmd.program_version = [0, 2, 0]
cmd.add_command(CmdParse::HelpCommand.new,true)
cmd.add_command(CmdParse::VersionCommand.new,true)

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE 17

8113Ch03CMP2 3/22/07 7:50 PM Page 17

verify = CmdParse::Command.new('verify', false)
verify.short_desc = "Verifies a credit card"
verify.set_execution_block do |args|
args.each do |arg|
if arg.creditcard?
puts "Valid"

else
puts "Invalid"

end
end

end

type = CmdParse::Command.new('type', false)
type.short_desc = "Returns the type of credit card"
type.set_execution_block do |args|
args.each do |arg|
if arg.creditcard?
puts arg.creditcard_type

else
puts "Invalid"

end

end
end

cmd.add_command(verify, false)
cmd.add_command(type, false)
cmd.parse

That was a bit more complicated than our previous example, but still fairly simple. The
require cmdparse line lets us automatically include all of the functionality of the cmdparse
library—it’ll parse our command lines for us.

Specifically, cmdparse lets you parse command lines of the following form:

script command1 [options..] command2 [options…]

The Linux ifcfg command works like this; so does the Windows NET command. Since our
demo credit card program can fit into this mold fairly reasonably, cmdparse is a good option. It
won’t fit every program—in some cases switches would fit your program better—but it works
well here, particularly since you can pass multiple credit card numbers to check or verify at
once.

Cmdparse provides us with several predefined commands, which we simply instantiate
and add to our cmdparse object: a help command that lists the commands we’ve added to
our cmdparse object, and a version command that lists the current version we’ve set via
cmd.program_version. Cmdparse also gives us a framework to add our own commands: type
and verify. These commands will print the type and check the validity of a card number,
respectively.

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE18

8113Ch03CMP2 3/22/07 7:50 PM Page 18

To actually make it possible to use these commands, we create a new CmdParse::Command
object for each. We set its short desc, which controls its description in the help command, and
use set_execution_block to control what actually happens when the command is called.

While our example is fairly simple, it would be trivial to extend this to a great number of
options—and what’s even better is that cmdparse keeps it simple and clean, so that even at a
large number of possible commands our program stays easy to maintain.

Let’s take our new program for a test drive:

ruby creditcard_check.rb help

Usage: creditcard_check [options] COMMAND [options] [COMMAND [options] ...] [ar
gs]

Available commands:
help Provide help for individual commands (=default command)
type Returns the type of credit card
verify Verifies a credit card

>ruby creditcard_check.rb version

0.2.0

>ruby creditcard_check.rb verify not_a_number

Invalid

>ruby creditcard_check.rb verify 5431-1111-1111-1111

Valid

>ruby creditcard_check.rb type 5431-1111-1111-1111

mastercard

>ruby creditcard_check.rb type 5431-1111-1111-1111 verify 4111-1111-1111-1111

mastercard
Valid

In this version, we’ve not only added automatic help and option parsing, but we’ve made
the output cleaner and the interface more powerful; therefore, an outside script could call this
script and verify or check the type of card numbers, even if the outside script were written in a

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE 19

8113Ch03CMP2 3/22/07 7:50 PM Page 19

different programming language and did not have access to the creditcard gem. Also notice
the last example: you can pass multiple commands on the same command line.

Even a very simple program, such as a shell script, can have access to the functionality using
this method. Since we used a command-line parsing gem, we can be sure that we didn’t leave
subtle errors in our parsing routine, and we also saved significant development time and effort.

WHAT IS REQUIRE_GEM?

You may have seen the require_gem statement in a Ruby script, which might seem like the logical way of
requiring a gem. However, in the preceding examples, only the require statement was used. This is
because under normal conditions, you don’t need to use the require_gem statement. Both are necessary
only to access special gem-specific functionality.

In particular, require_gem allows you to specify what version of a gem you want to use. In other
words, you need use require_gem statements if you need to specify a particular gem version; otherwise
you can simply use require.

However, as mentioned previously, you may need more control at times. You might need a gem that's
earlier than a given version, since later versions might change the API and break your code. Or you might
need a gem that’s later than a given version, since earlier versions might not include the functionality you
need. Here are three examples of require_gem statements you might use inside Rails:

require_gem 'activesupport', '<= 1.0.4'
require_gem 'activesupport', '= 1.0.4'
require_gem 'activesupport', '>= 1.0.4'

The first asks for any version of the activesupport gem 1.0.4 or earlier. The second asks for 1.0.4
exactly, and the third asks for 1.0.4 or later. This functionality is very powerful, and quite useful, since much
of the Ruby world is changing very rapidly. As a result, specifying your gem versions can keep your applica-
tion from crashing ignominiously when a new version of a gem is released. It can also provide more
understandable error messages; by specifying version requirements, you can get helpful error messages
when you deploy on a host that doesn't meet the gem version requirements. That can make a gem-
incompatibility issue much easier to fix, since you can quickly and easily determine exactly what’s wrong.

Refer to Chapter 4 for more detailed information on how require_gem versioning works; but for now,
realize that you can use require for any script in which you don’t need a specific gem version, and that you
need require_gem only when you have to carefully control the gem versions in use.

Working with Source Gems
Most gems will work under both Linux and Windows since Ruby is an interpreted language
and most gems are written in Ruby. However, not all gems are pure Ruby source; some include
C extensions or libraries. Those gems must be compiled before they are used. This is normally
not an issue; however, many computers—Windows computers in particular—do not have a
C/C++ compiler, and not all machines have the proper libraries to install any given gem. As a
result, such gems typically come in multiple varieties: a special binary distribution for Win-
dows machines, and a source variety that is portable and will typically work on most Unix-like
systems, such as Linux or Mac OS X.

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE20

8113Ch03CMP2 3/22/07 7:50 PM Page 20

In some cases you’ll get a choice of what precompiled versions to install. Here’s a quick look
at what happens when you try to install Mongrel (see Chapter 17 for more details) on Win32:

C:\projects\my_proj>gem install mongrel

Need to update 10 gems from http://gems.rubyforge.org
..........
complete
Select which gem to install for your platform (i386-mswin32)
1. mongrel 0.3.13.3 (mswin32)
2. mongrel 0.3.13.3 (ruby)
3. mongrel 0.3.13.2 (mswin32)
4. mongrel 0.3.13.2 (ruby)
… snipped earlier versions…
42. Cancel installation
> 1
Successfully installed mongrel-0.3.13.3-mswin32
Installing ri documentation for mongrel-0.3.13.3-mswin32...
Installing RDoc documentation for mongrel-0.3.13.3-mswin32...

As you can see, the gem command presents you with a list of options. The (ruby) versions
work anywhere that has a C compiler; the (mswin32) versions work only under Windows.

However, not all binary gems for Win32 can be downloaded by the gem command; some
must be manually downloaded via a Web browser from the gem’s Web page. The reason for
this is that binary gems often require an extra step, such as running a postinstall.rb file,
and so can’t be distributed via the gem command. When binary gems are available via the gem
install command, you will be presented with a list of platforms and versions for that gem,
choose the gem version you’d like for the platform you’d like. Since only Windows typically
has difficulty compiling binary gems, the options are usually a Ruby version—which would
contain the compilable source—and a Win32 version.

Under Win32 you would download the binary gem, uncompress it, and then use a com-
mand like this Rmagick install command (see Chapter 25 for more details) to install the gem
from the file:

gem install RMagick-win32-x.x.x-mswin32.gem

Since it’s a local filename, the gem command knows that it should use the local copy
instead of downloading the gem. After this, most binary gems include a postinstall process,
which will take whatever steps can’t be completed by the gem command. You would then run a
postinstall command, like this:

>ruby postinstall.rb

Depending on the gem, of course, the installation process may vary. Binary gems may
have other issues, since they are compiled for a certain version of Ruby. Using source gems
and compiling them yourself avoids such issues, and you should always compile from source
if possible.

When you are installing a source gem on a Linux or Mac OS X system, you won’t typically
have a problem, assuming you have the dependencies installed properly. The mysql gem, for

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE 21

8113Ch03CMP2 3/22/07 7:50 PM Page 21

example, comes in two flavors: one for Win32 and one for everyone else. If you have the
MySQL client installed properly, the install should go smoothly.

Here’s an Ubuntu Linux example of installing the mysql gem. You’ll need to enter the fol-
lowing commands while logged in as root:

gem install mongrel

Attempting local installation of 'mongrel'
Local gem file not found: mongrel*.gem
Attempting remote installation of 'mongrel'
Updating Gem source index for: http://gems.rubyforge.org
Select which gem to install for your platform (i686-linux)
1. mongrel 0.3.13.3 (mswin32)
2. mongrel 0.3.13.3 (ruby)
3. mongrel 0.3.13.2 (mswin32)
4. mongrel 0.3.13.2 (ruby)
… snipped earlier versions…
42. Cancel installation

2

Building native extensions. This could take a while...
ruby extconf.rb install mongrel
checking for main() in -lc... yes
creating Makefile

make
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c http11.c
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c http11_parser.c
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c tst_cleanup.c
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c tst_delete.c
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c tst_grow_node_free_list.c
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c tst_init.c
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c tst_insert.c
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux -
I/usr/local/lib/ruby/1.8/i686-linux -I. -c tst_search.c
gcc -shared -L'/usr/local/lib' -Wl,-R'/usr/local/lib' -o
http11.so http11.o http11_parser.o tst_

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE22

8113Ch03CMP2 3/22/07 7:50 PM Page 22

cleanup.o tst_delete.o tst_grow_node_free_
list.o tst_init.o tst_insert.o tst_search.o
-lc -ldl -lcrypt -lm -lc

make install
/usr/bin/install -c -m 0755 http11.so
/usr/local/lib/ruby/gems/1.8/gems/mongrel-0.3.13.3/lib
Successfully installed mongrel-0.3.13.3
Installing RDoc documentation for mongrel-0.3.13.3...

As you can see, the extension compiles without much difficulty. There are quite a few
lines of output and a number of commands run automatically, but the only command we
typed in was 2—selecting the pure Ruby source version.

Debugging Source-Gem Problems
Source gems can sometimes pose difficulties on any operating system. RubyGems can handle
dependencies when they are other gems; however, if your source gem requires a system
dependency (such as a library) to compile, you’ll have to install it manually. Typically, a miss-
ing system dependency will result in an error message being displayed; a quick Google search
will often reveal the source of the difficulties.

There may also be a system compatibility issue; most source gems will not compile on
every platform and environment. Windows tends to be particularly tricky, even if a develop-
ment environment is installed. If your platform supports it, you may be able to use a binary
gem. In other cases, you can use the development environment suggested by the gem main-
tainers; some gems recommend using MinGW on Windows, and others recommend Cygwin
or a particular native compiler, such as MSVC or DJGPP. If you aren’t sure what the recommen-
dation of the gem maintainers are, check http://rubyforge.org—it has a page for most gems,
and you can typically find the information there. It’s likely you’ll have the best success when
you’re using the platform/gem combination that has been tested.

In some cases, you may want to directly edit the gem source to work on your platform.
This will result in a forked version of the gem, which means you can’t use any future updates
of that gem. If a future update contains a bug fix that you need, you’ll have to manually re-
create the bug fix for your forked version, and this can become time-consuming very quickly.
It may be wise to forward your patched version to the maintainers of the gem for possible
future inclusion; if they choose to include it you’ll have an officially maintained, unforked
version of the gem for your platform, which is preferable to maintaining it yourself.

Debugging RubyGems
Sometimes a gem that was working with your code stops working. Often this is a versioning
issue: Did you update the gem involved? If not, did you update another gem that updated the
first gem? If so, you can roll back to the previous version. Alternatively, because RubyGems
does not, by default, remove old versions of gems, you can instruct RubyGems to use an older
version instead; see Chapter 1 for details.

If you are using binary gems, your problem may be with your particular installation;
binary versions must be run on the Ruby version they were compiled for, or else very erratic

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE 23

8113Ch03CMP2 3/22/07 7:50 PM Page 23

behavior results. Even if this is not the case, the gem involved may depend on another gem
version; the latest version of Rails, for example, may have broken a plugin that your Rails
application uses.

You may also have an issue with locally patched or corrupted gems. RubyGems includes
checksums on all gems, so you can see if something has changed. You can use this option as
follows:

>gem check --alien
Performing the 'alien' operation

win32-file-stat-1.2.2-mswin32 is error-free

win32-process-0.4.2-mswin32 is error-free

RedCloth-3.0.4 is error-free

win32-sapi-0.1.3-mswin32 is error-free

win32-sound-0.4.0 is error-free

win32-dir-0.3.0-mswin32 is error-free

sources-0.0.1 is error-free

win32-file-0.5.2-mswin32 is error-free

windows-pr-0.5.1-mswin32 is error-free

fxruby-1.6.0-mswin32 is error-free

rake-0.7.1 is error-free

cmdparse-2.0.2 is error-free

creditcard-1.0 is error-free

fxruby-1.2.6-mswin32 is error-free

log4r-1.0.5 is error-free

win32-clipboard-0.4.0 is error-free

win32-eventlog-0.4.1-mswin32 is error-free

Of course, your output will vary depending on what gems you have installed. This display
shows all gems are error-free, but if a gem source file had been edited or if a file had been cor-
rupted, the alien check would have displayed an error, which you could correct by installing
the gem again using the gem install command, which should rewrite all of the files with new
versions.

CHAPTER 3 ■ USING RUBYGEMS IN YOUR CODE24

8113Ch03CMP2 3/22/07 7:50 PM Page 24

Managing Installed
Gem Versions

In this chapter you’ll learn how use multiple gem versions in your code. We’ll cover installing
new gem versions, getting rid of old ones, and making sure your code uses the correct ones.

Gem versioning is very useful—particularly because of the ever-changing nature of the
Ruby community. Many gems are changing very fast, and sometimes interfaces change as
well. In some ways, this is good—it means that software is improving. On the other hand, it
breaks older software. If you have to rely on a certain version of a gem—for example, because
a later version disables or changes functionality you currently use—then gem versioning can
make your old code run with just a one- or two-line change.

What Is Gem Versioning?
RubyGems has an intelligent versioning-management system. This means that RubyGems
can take care of different versions of all installed gems for you; it can store as many versions of
as many different gems as you’d like. You can request a specific version of a gem, or you can
request any version of a gem that’s older or newer than a certain version, and RubyGems will
accommodate you.

By default, RubyGems assumes you want to work on the most recent version of a gem. For
example, if you use the gem install command to install a gem, RubyGems will install the most
recent version of a gem, but you can override this—we’ll cover that in the following section.

Normally you’d use the require statement to use a RubyGem in your code—just as in Chap-
ter 3. However, RubyGems lets you use version specifiers so that your code will use a specific
gem version—or, alternatively, any version of a gem older or newer than a given version. As you
can imagine, this makes the gem-versioning system quite important—you might have a 2.0
version of a gem installed for some programs and a 1.0 version installed for others. RubyGems
makes this possible—and easy. (We’ll cover this in detail under the heading “Specifying Gem
Versions.”)

25

C H A P T E R 4

■ ■ ■

8113Ch04CMP4 3/28/07 5:39 PM Page 25

■Tip If you’re not sure what versions of a gem you have installed locally, you can find out using the gem
list command. For example, if you’ve installed the cmdparse gem, you could find out which versions you
had installed by using the following command at the Linux/OS X shell or Windows command prompt:

gem list cmdparse

*** LOCAL GEMS ***

cmdparse (2.0.2, 2.0.0)
Advanced command line parser supporting commands

The numbers in parentheses represent the different versions you have installed—in this case, 2.0.2 and 2.0.0.

Installing an Older Gem Version
When installing gems using the gem install command, RubyGems will automatically down-
load and install the latest version of the requested gem for you. If you already have an older
version installed, RubyGems won’t replace the older gem—it will install the newest gem but
retain the older one. RubyGems will then automatically use the latest version of that gem; in
your code, however, you could use the require_gem statement to select which version you’d
like to use—see the section “Specifying Gem Versions” for details. If you don’t want the older
version of the gem installed, see the directions under “Uninstalling Gems” later in this chapter.

However, you may not want the newest version; you may want a particular version of a
gem. For example, a newer version may introduce a bug, so you’d like to use an older version
that does not contain that bug. Or the newer version might make a change to a method name
or class structure that breaks your code.

RubyGems can handle dependencies automatically. If a gem requires a particular version
of another gem, when you use the gem install command on the first gem, it will automati-
cally install the needed version of the second gem—even if you have a different version of the
second gem installed. As a result, you won’t need to install old versions manually. However, if
you are writing a program that isn’t packaged in a gem and you need a particular version for it,
you may need to install an older gem version.

If you’d like to install an older gem version manually, you can use the gem install com-
mand with the -v option to manually tell RubyGems which version you’d like to install. For
example, if you’d like to install the 1.0.5 version of the cmdparse gem, you could do so with the
following command in the OS X/Linux shell or the Windows command prompt:

gem install -v 1.0.5 cmdparse

Successfully installed cmdparse-1.0.5
Installing ri documentation for cmdparse-1.0.5...
Installing RDoc documentation for cmdparse-1.0.5...

CHAPTER 4 ■ MANAGING INSTALLED GEM VERSIONS26

8113Ch04CMP4 3/28/07 5:39 PM Page 26

You can also use a gem version constraint to do more-advanced specifications—you
could, for example, install any version later than 2.0.0 using this command:

gem install -v ">2.0.0" cmdparse'

Technically the double quotes aren’t necessary with the gem command, but without them
your shell or command prompt will think it’s an I/O redirection.

■Tip If you’d like to find out what gem versions are available, you can use gem list command with the
--remote option. For example, to see what versions of the cmdparse gem are available, we could use
the following command at the Linux/OS X shell or Windows command prompt:

gem list --remote cmdparse

*** REMOTE GEMS ***

cmdparse (2.0.2, 2.0.1, 2.0.0, 1.0.5, 1.0.4, 1.0.3, 1.0.2, 1.0.1, 1.0.0)
Advanced command line parser supporting commands

The numbers in parentheses represent all of the different versions of the gem available remotely. You can
omit the --remote option if you’d like to see what versions you have installed locally.

Updating Gems
You’ve learned how to install a gem using the gem install command and how to install an
older version of a gem. However, installing a gem once isn’t enough—you might need to
update the gem once it is installed.

For example, if we wanted to update the creditcard gem from the last chapter, we could
use the following command at the OS X/Linux shell or the Windows command prompt:

gem update creditcard

Need to update 5 gems from http://gems.rubyforge.org
.....
complete
Attempting remote update of creditcard
Successfully installed creditcard-1.0
Installing ri documentation for creditcard-1.0...
Installing RDoc documentation for creditcard-1.0...
Gems: [creditcard] updated

This automatically downloads the latest version of a gem and updates your installation
appropriately.

CHAPTER 4 ■ MANAGING INSTALLED GEM VERSIONS 27

8113Ch04CMP4 3/28/07 5:39 PM Page 27

Additionally, you can update all of your installed gems at once by entering the same gem
update command, but without giving it any arguments. Entering the following command in
the OS X/Linux shell or the Windows command prompt will do it:

gem update

Need to update 2 gems from http://gems.rubyforge.org
Updating installed gems...
Attempting remote update of cmdparse
Successfully installed cmdparse-2.0.2
Installing ri documentation for cmdparse-2.0.2...
Installing RDoc documentation for cmdparse-2.0.2...
Attempting remote update of fxruby
Select which gem to install for your platform (i386-mswin32)
1. fxruby 1.6.1 (ruby)
2. fxruby 1.6.1 (mswin32)
3. fxruby 1.6.0 (mswin32)
<snip>
Gems: [cmdparse fxruby] updated

In this case, the only gems that needed to be updated were cmdparse and fxruby, and so
the gem update command updated them automatically. If there’s a choice of different gem
platforms, as was the case with fxruby, you can choose which platform you’d like to use.

Uninstalling Gems
At times you’ll want to get rid of a certain version of a gem—perhaps an old gem you no longer
use or a new version of a gem that contains serious bugs. You might even want to delete all
traces of a gem if you are sure you will not need it.

If you’d like to uninstall a particular version of a gem—or if you’d like to remove a gem
completely—you can use the gem uninstall command at the OS X/Linux shell or the Windows
command prompt as follows:

gem uninstall cmdparse

Select RubyGem to uninstall:
1. cmdparse-2.0.0
2. cmdparse-2.0.2
3. All versions
> 2
Successfully uninstalled cmdparse version 2.0.2

If you have just one version of a gem installed, the gem uninstall command will simply
delete that version. If you have multiple versions, though, it will ask you which versions you’d
like to delete; the final option will delete all versions.

CHAPTER 4 ■ MANAGING INSTALLED GEM VERSIONS28

8113Ch04CMP4 3/28/07 5:39 PM Page 28

You can also specify a version to delete like this:

gem uninstall cmdparse -v 2.0.2

That command will uninstall the version 2.0.2 of the cmdparse gem—unlike the gem
uninstall cmdparse command, it won’t prompt you to select a version, since you specified
it on the command line. You can also use a gem version constraint, as detailed in the next
section.

■Tip Sometimes versioning isn’t enough; sometimes you need to start from scratch. You can remove the
entire RubyGems system from a Ruby install by deleting both the rubygems.rb file and the rubygems direc-
tory—both are in your ruby directory under site/ruby/1.8.

Specifying Gem Versions
At this point we’ve discussed the various ways you can manipulate gem versions on your local
machine—install old versions, upgrade to new versions, and delete unneeded versions. How-
ever, you also need to be able to use gems in code. If you use the require statement, as in
Chapter 3, RubyGems will always provide you with the latest installed version of a gem. If
that’s all you need, you’ll be set using the require statement.

At times, however, you might need more control over the version of the gem you want to
use. In that case, you can use the require_gem statement. Despite having require in its name,
require_gem is completely different from the require statement. require_gem activates a par-
ticular gem version. That means it tells RubyGems, “Of all the different versions of a gem, I
want this one.”

AUTOREQUIRE

Confusingly, RubyGems has a feature called autorequire— it’s an option you can set when you create a
gem. This means that if you use the require_gem statement on a gem with autorequire set, it will auto-
matically require a certain file from the gem. This saves a line of code, but it’s confusing because it blurs the
line between the require statement and the require_gem statement. It also creates two types of gems—
those with autorequire and those without—that are used differently. This makes life much harder for the
developer, since you need to know the correct syntax for each gem you use.

autorequire is now deprecated, so future gems should use require_gem only to specify a gem ver-
sion, and require to actually use the gem.

However, the require_gem statement has the ability to accept a second argument—a
version constraint. A version constraint lets you explicitly tell RubyGems which version or
versions you’d like to use. There are seven constraints, which are detailed in Table 4-1.

CHAPTER 4 ■ MANAGING INSTALLED GEM VERSIONS 29

8113Ch04CMP4 3/28/07 5:39 PM Page 29

d5014bfb03de489b6d7267ee0c61b2db

Table 4-1. RubyGems Version Constraints

Operator Description Example

= version Equal to version require_gem 'cmdparse', '=1.0.0'

!= version Not equal to version require_gem 'cmdparse', '!=1.0.0'

> version Greater than version require_gem 'cmdparse', '>1.0.0'

< version Less than version require_gem 'cmdparse', '<1.0.0'

>= version Greater than or equal to version require_gem 'cmdparse', '>=1.0.0'

<= version Less than or equal to version require_gem 'cmdparse', '<=1.0.0'

~> version Approximately greater than version. require_gem 'cmdparse', '~>1.0.0'
This works by dropping the final digit from
the version and comparing; for our example
of '~>1.0.0', it will match any version that
starts with 1.0, such as 1.0.1, 1.0.2, or 1.0.9.

As you can see in Table 4-1, the operators are fairly straightforward. Note that the exam-
ples given are for using a gem in your Ruby code via the require_gem statement.

■Tip You can use the same operators on the gem install and gem uninstall commands—so, for
example, if you wanted to delete any version of cmdparse earlier than 2.0.0, you could use the following
command:

gem delete "<2.0.0" cmdparse

Let’s test several of the version-constraint operators using the irb interactive Ruby shell.
First we can launch the shell using the following command at the Linux/OS X shell or the
Windows command prompt:

irb

Next use the following commands to test the require_gem statement:

require_gem 'creditcard', '>99.0.0'

Gem::LoadError: RubyGem version error: creditcard(1.0 not > 99.0.0)

from c:/ruby/lib/ruby/site_ruby/1.8/rubygems.rb:251:in `report_activate_
error'

from c:/ruby/lib/ruby/site_ruby/1.8/rubygems.rb:188:in `activate'
from c:/ruby/lib/ruby/site_ruby/1.8/rubygems.rb:66:in `active_gem_with_o

ptions'
from c:/ruby/lib/ruby/site_ruby/1.8/rubygems.rb:59:in `require_gem'
from (irb):1

CHAPTER 4 ■ MANAGING INSTALLED GEM VERSIONS30

8113Ch04CMP4 3/28/07 5:39 PM Page 30

require_gem 'creditcard', '=1.0.0'

=> true

'not-a-valid-card'.creditcard?

=> false

'4111-1111-1111-1111'.creditcard?

=> true

The first line, require_gem 'creditcard', '>99.0.0', requests a version of the creditcard
gem greater than 99. Since the only version of the creditcard gem available is 1.0, this fails,
giving a RubyGems version error. You’d then need to use the gem install command to install
the desired version of the gem—you could even copy the >99.0.0 part right into your gem
install command using the following on the Linux/OS X shell or the Windows command
prompt:

gem install creditcard -v ">99.0.0"

Note, of course, that this won’t work for our example, since there isn’t any version of the
creditcard gem greater than 99.

The second statement, require_gem 'creditcard', '=1.0.0', requests a version of the
creditcard gem equal to 1.0.0. The next statements test the gem. Since the creditcard gem
tests credit card numbers for validity (see Chapter 3), those two statements test an obviously
invalid card number and a Visa test-card number—both of which return correct values, so we
know that the creditcard gem—and the require_gem statement—works.

Normally you’d have a require statement actually use the gem. But because this particu-
lar gem, creditcard, uses the autorequire statement, you can skip the require statement and
just start using the gem. (See the sidebar “Autorequire” earlier in this chapter.)

As time goes on, gems will stop using autorequire because it’s been deprecated. This
doesn’t change things much—it just means that you need a require statement for every
require_gem statement. For example, if the author of creditcard hadn’t used autorequire,
the require_gem 'creditcard', '=1.0.0' line from the example would have been written
as follows:

require_gem 'creditcard', '=1.0.0'
require 'creditcard'

As you can see, there isn’t much difference between using require_gem and autorequire
and using require_gem and the require statement. You can also see that the require_gem state-
ment is fairly straightforward and lets you employ the full power of the RubyGems versioning
system in your Ruby applications and scripts.

CHAPTER 4 ■ MANAGING INSTALLED GEM VERSIONS 31

8113Ch04CMP4 3/28/07 5:39 PM Page 31

8113Ch04CMP4 3/28/07 5:39 PM Page 32

Using Particular Gems

RubyGems are powerful extensions to Ruby. In Part 2, I’ll provide detailed recipes for

exactly how to use a number of gems.

P A R T 2

■ ■ ■

8113Ch05CMP2 3/22/07 8:21 PM Page 33

www.allitebooks.com

http://www.allitebooks.org

8113Ch05CMP2 3/22/07 8:21 PM Page 34

Data Access with the
ActiveRecord Gem

ActiveRecord is an object relationship modeling system—it lets you access databases using
a simple object-oriented interface.

ActiveRecord manages database operations for you. It provides an entire set of operations
—adding new records, deleting old records, updating records, and searching via a variety of
criteria. It provides all of these services without extensive schema configuration. This means
that ActiveRecord can read the names and types of your fields from the database directly, so
you don’t have to specify them manually via a configuration file. You also don’t have to mix the
schema definition with your code as you do when writing raw SQL—your data and logic layers
can be separate. This is a huge boon, since it means that you can quickly change your schema,
and that your code becomes lighter and easier to use. It also means that bugs resulting from a
mismatch between your program schema and your database schema aren’t very likely.

ActiveRecord also makes it easier to manage connections to databases of different kinds;
normally when you write database code for a particular database system, it isn’t portable to
another database system. However, ActiveRecord provides database adapters that manage the
connections to the various databases—no matter which database adapter you use, you can
employ the same ActiveRecord code. There are a number of ActiveRecord database adapters
available, including those for MySQL, PostgreSQL, SQLite, DB2, and more.

■Note A few operations can’t be done from ActiveRecord, and you’ll need to write raw SQL for that; for
example, you can’t create triggers or stored procedures from ActiveRecord. However, most operations
don’t have that problem, and can be used across database systems without incident.

An additional way that ActiveRecord can make your life easier is through “configuration
by convention.” For example, ActiveRecord has a convention that all tables have an artificial
primary key called id, and that foreign keys for the table are the table’s name followed by id.
You can override this, of course, but following these conventions means that your code is
lighter and easier to use; it also means that you need to explicitly mention only the deviations
from the norm.

35

C H A P T E R 5

■ ■ ■

8113Ch05CMP2 3/22/07 8:21 PM Page 35

How Does It Work?
ActiveRecord works by letting you define a number of models, which are classes that inherit
from the ActiveRecord::Base class, and as such they gain a huge amount of functionality
automatically. Special information, such as a table name that ActiveRecord can’t infer from
the class name or a nonstandard primary key, is specified in the class definition; so are rela-
tionships to other models. However, because of configuration by convention, you may not
need to place anything in the class definition at all. Once you’ve created the model class, you
can use it to manipulate your data—you can add rows, update rows, delete rows, find rows
by primary key or by an arbitrary criterion, and more. The details on both these parts of
ActiveRecord—creating your models and using the models—are coming up next.

You can install ActiveRecord with the following command:

gem install activerecord

■Note You can find the ActiveRecord API documentation at http://api.rubyonrails.com/classes/
ActiveRecord/Base.html.

Rails depends on ActiveRecord, so if you have Rails installed you’ll already have ActiveRecord
installed.

ActiveRecord Models
ActiveRecord models are classes that describe your database. Each model is attached to one
table from your database; the name of the table is based on the name of your class. Some
developers view this as a weakness; it isn’t. You can override the name if you’d like, but you
should have as few distinct names in your application as possible. For example, if you have a
model named images and a table named pictures, it will be easy to transpose them mentally
and then use the wrong one in a given context, which slows down development. This could
be viewed as restricting your freedom, but it’s more accurate to say it increases your freedom
to create software with fewer bugs faster. (There are similar aspects to many elements of
ActiveRecord; for example, some developers balk that ActiveRecord insists on artificial pri-
mary keys named id by default. This choice, however, is often a good one, and the common
ground lets you create complex software quickly.)

■Tip If you don’t like the default ActiveRecord name for your table, and you’d like to set a custom
table name for a model, just include a set_table_name statement in your model: set_table_name
"my_custom_table_name" tells ActiveRecord that you want a table named my_custom_table_name,
for example. You can also use the set_primary_key method in much the same way to set the name of
the primary key.

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM36

8113Ch05CMP2 3/22/07 8:21 PM Page 36

Your ActiveRecord model will also read the structure of a table for you automatically; this
means that when you change the schema of your database, you don’t need to update anything.
It also means you never have to write accessor methods for database fields.

One aspect of your database design that typically can’t be read from your database automat-
ically is relationships; however, you can express these attributes in your ActiveRecord model!
There are several different kinds of relationships; we’ll cover them briefly here but you can get
more information at http://api.rubyonrails.com/classes/ActiveRecord/Associations/
ClassMethods.html.

For example, suppose you had a MySQL database schema like this:

CREATE TABLE clients (
id int(11) NOT NULL AUTO_INCREMENT,
name text,
… other fields required by the application…
PRIMARY KE Y (id)

);
CREATE TABLE orders (
id int(11) NOT NULL AUTO_INCREMENT,
client_id INT(11),
amount DECIMAL(9,2),
… other fields required by the application…
PRIMARY KE Y (id)

)

■Tip In general, it’s a good idea to define your table names in your schema as lowercase—some data-
bases don’t handle mixed-case table names well. In your code, you can still use mixed-case table names
—Ruby classes must start with an uppercase letter, and ActiveRecord will find the lowercase table names
just fine. However, you might have problems, particularly under PostgreSQL. Mixed-case tables are sup-
ported in PostgreSQL—the table ORDERS is different from orders. Unfortunately, PostgreSQL automatically
lowercases all identifiers that are not surrounded by double quotes, so the following SQL statement will fail
on a PostgreSQL table named ORDERS:

SELECT * FROM ORDERS;

Despite the fact that there is an ORDERS table, it won’t work because the table name ORDERS is being lower-
cased automatically to the table name orders. You’d need to do this:

SELECT * FROM "ORDERS";

That’s confusing, and having lowercase table names neatly avoids the confusion and possible porting issues.

In this case, your model would include a Clients table and an Orders table, and use a
has_many relationship to indicate that each customer has many orders. This would automati-
cally create an orders method for you in the customer class, so you could, for example, do the
following:

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM 37

8113Ch05CMP2 3/22/07 8:21 PM Page 37

class Client << ActiveRecord::Base
has_many :orders

end
class Order << ActiveRecord::Base
belongs_to :client

end

myclient = Client.find(3)
myclient.orders.each do |order|
puts order.amount

end

The example code will find a Client with the id 3, and loop through each of the client’s
orders and print the order amount. The Client table has a has_many relationship with the
Order table, and the Order table has a belongs_to relationship with the Client table.

The first model, client, has a has_many relationship with the orders model; this relationship
provides a number of things for you: it adds a collection to the Client table, which is accessible
via the orders method. This collection has a number of methods: it has an each method, just
like a Ruby array, and an add method, which can be used to associate an order with a client.
(You can find the full details of what belongs_to does in the Rails documentation at http://api.
rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html#M000530.)

The complement to this is that the second relationship, Order, belongs to Client, which
adds a .client method to the Order class. The Order class can be used to return the Client
object, which represents the Client associated with the Order.

There are two other relationships in ActiveRecord: has_one and has_and_belongs_to_many.
has_one represents a one-to-one relationship; in such a relationship, the foreign key is in a sec-
ond table. In a has_one relationship, the second table would have a belongs_to relationship
with the first table, so if a Client has a has_one ClientType, then ClientType belongs_to
Client. The second type of relationship, a has_and_belongs_to_many relationship (typically
called HABTM), represents a many-to-many relationship using a join table. The join table’s
name comes from the two table names in alphabetical order, separated by an underscore
(so a HABTM relationship between the Employees and Clients tables would have a join table
named clients_employees).

■Tip HABTM is not the only way to represent a many-to-many relationship in ActiveRecord—there’s

also a relationship called has_many :through, which is similar to HABTM except that the join table is a full

model with a primary key—with HABTM, it’s just a table with two columns: the primary keys of each table.

Note that some views of database design hold that if a join table has anything besides the two foreign keys,
it’s indicative of a missing domain model. In any case, you can find a breakdown of the difference between
HABTM and has_many :through at http://blog.hasmanythrough.com/2006/04/20/many-to-many-
dance-off.

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM38

8113Ch05CMP2 3/22/07 8:21 PM Page 38

You can find more details on all of the ActiveRecord associations at http://api.
rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html.

■Tip Confused about which class belongs to which? The table in which the foreign key resides in is con-
sidered the child table, so in our example the Order table would have a client_id column, and as a result,
it would have a belongs_to relationship with the Client table.

Manipulating Data
ActiveRecord provides us with a rich set of tools to manipulate data. For example, we could
use the following to add a number of new clients to our earlier example (from the section
“ActiveRecord Models”):

1.upto(100) do |number|

newclient =Client.new
newclient.name = "Client number #{number}"

neworder = Order.new
neworder.amount= 33.50
neworder.save

newclient.orders << neworder
newclient.save

end

This will create 100 clients with names like Client number 1, Client number 2, and so on.
It will also create a single order for each of them, and add the order to the orders association
of the client object—which automatically sets the client_id column for us. (We can also do
this on a client object that hasn’t been saved yet.)

As you can see, it’s reasonably natural to use ActiveRecord objects—fields get mapped to
methods, the new and save methods work much like you’d expect, and the code is very lean.
Let’s jump into a more detailed example of using ActiveRecord.

Archiving RSS News with ActiveRecord
To demonstrate ActiveRecord, we’re going to create a standalone ActiveRecord application to
archive RSS news into a MySQL database. You can find additional examples of ActiveRecord
usage in Chapters 7 and 23—both of which use ActiveRecord as part of a Web framework,
which is very common.

This example requires the mysql gem to be installed, so if you haven’t already installed it,
do so via the Linux/OS X shell or Windows command-prompt command gem install mysql.

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM 39

8113Ch05CMP2 3/22/07 8:21 PM Page 39

Listing 5-1 contains the code for our RSS archiver.

Listing 5-1. rss2mysql.rb

require 'active_record'
require 'feed_tools'

feed_url = ARGV[0]

This call creates a connection to our database.

ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => "127.0.0.1",
:username => "root", # Note that while this is the default setting for MySQL,
:password => "", # a properly secured system will have a different MySQL

username and password, and if so, you'll need to
change these settings.

:database => "rss2mysql")

class Items < ActiveRecord::Base
end

If the table doesn't exist, we'll create it.

unless Items.table_exists?
ActiveRecord::Schema.define do
create_table :items do |t|

t.column :title, :string
t.column :content, :string
t.column :source, :string
t.column :url, :string
t.column :timestamp, :timestamp
t.column :keyword_id, :integer
t.column :guid, :string

end
end

end

feed=FeedTools::Feed.open(feed_url)

feed.items.each do |feed_item|
if not (Items.find_by_title(feed_item.title)

or Items.find_by_url(feed_item.link)
or Items.find_by_guid(feed_item.guid))

puts "processing item '#{feed_item.title}' - new"

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM40

8113Ch05CMP2 3/22/07 8:21 PM Page 40

Items.new do |newitem|

newitem.title=feed_item.title.gsub(/<[^>]*>/, '')
newitem.guid=feed_item.guid
if feed_item.publisher.name

newitem.source=feed_item.publisher.name
end

newitem.url=feed_item.link
newitem.content=feed_item.description
newitem.timestamp=feed_item.published

newitem.save
end

else
puts "processing item '#{feed_item.title}' - old"

end
end

A few quick notes on this example: First, it has the connection parameters hard-coded
in the ActiveRecord::Base.establish_connection call near the top of the script; you might
want to change those if your MySQL install has a different username and password. Second, it
expects a database named rss2mysql; you can create the database using MySQL’s mysqladmin
command. (The script will automatically create the required table for you if it does not already
exist, so you won’t need to populate the table by hand.)

Once you’ve installed the mysql gem and created the rss2mysql database, you can test the
script using the following command:

ruby rss2mysql.rb http://coolruby.com/rss

processing item 'MySQL, some concrete suggestions!' - new
processing item 'Matz, the Khaki Pugilist' - new
processing item 'Senior Web Engineer - Helio' - new
processing item 'Software Development Engineer - Web UI - BINC' - new
processing item 'University of Notre Dame on Rails' - new
…snip..

As you can see, the rss2mysql.rb script pulls data from the site you provide and places it in
the rss2mysql database. It can then be served by a Web application, viewed with phpMyAdmin
or the MySQL command-line client, or processed further.

■Tip The rss2mysql.rb script is a simplification of production code used on http://coolruby.com/,
which aggregates news about Ruby from a number of sources.

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM 41

8113Ch05CMP2 3/22/07 8:21 PM Page 41

Dissecting the Example
Let’s examine a few lines from Listing 5-1.

ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => "127.0.0.1",
:username => "root",# Note that while this is the default setting for MySQL,
:password => "", # a properly secured system will have a different MySQL

username and password, and if so, you'll need to
change these settings.

:database => "rss2mysql")

The preceding snippet specifies the details for the connection to the database, such as the
database adapter, host, username, and so forth. Several adapters are available for ActiveRecord,
including for PostgreSQL, SQLite, DB2, and more—and as you can see from the line :adapter =>
"mysql", our example uses MySQL. Chapter 7 contains an example of using the SQLite adapter.

Next we’ll create a model that represents the news items stored in the database.

class Items < ActiveRecord::Base
end

It’s very simple, but those two lines create a model for our one table, Items. Because it’s
named Items, it’s automatically attached to the items table, which we will create next.

unless Items.table_exists?
ActiveRecord::Schema.define do
create_table :items do |t|

t.column :title, :string
t.column :content, :string
t.column :source, :string
t.column :url, :string
t.column :timestamp, :timestamp
t.column :keyword_id, :integer
t.column :guid, :string

end
end

end

The first line checks if the table for our model exists—if not, it will use
ActiveRecord::Schema.define to create it.

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM42

8113Ch05CMP2 3/22/07 8:21 PM Page 42

■Tip The create_table and column methods used in the preceding snippet are database-independent;
this code should work on almost any ActiveRecord adapter (as of this writing, all of the ActiveRecord
adapters except DB2 are supported), so you could switch to, say, PostgreSQL or SQLite without a problem.
You could also use an external method to create your database—read the commands in from a .SQL file, for
example—but by using ActiveRecord our schema becomes database-independent. (Incidentally, you can
execute SQL directly using the execute command. It takes a single SQL query string as a parameter and
executes it. If you need to do a database operation that isn't supported natively by ActiveRecord—creating
a stored procedure, for example—this could be very useful.)

In fact, the database schema code is a very simple, one-way use of ActiveRecord migrations—they can
also be used to automatically version schemas and to automatically upgrade or downgrade to any given
schema version. You can see the full details at http://rubyonrails.org/api/classes/ActiveRecord/
Migration.html.

Our last chunk of code uses the FeedTools gem to open the URL given on the command
line and parse through each of its news items. You can find more details on how FeedTools can
be used to parse RSS or Atom feeds in Chapter 10. The following is the ActiveRecord-specific
code:

Items.new do |newitem|

newitem.title=feed_item.title.gsub(/<[^>]*?>/, '')
newitem.guid=feed_item.guid
if feed_item.publisher.name

newitem.source=feed_item.publisher.name
end

newitem.url=feed_item.link
newitem.content=feed_item.description
newitem.timestamp=feed_item.published

newitem.save
end

As you can see, it’s very easy to use ActiveRecord to add new rows, and the process is very
similar for updating or deleting rows. There are a few small wrinkles—for example, not all
feeds have publisher data, so the publisher field is set only if the publisher.name value is
set—but all in all, it’s reasonably easy to follow the code.

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM 43

8113Ch05CMP2 3/22/07 8:21 PM Page 43

Conclusion
ActiveRecord makes database code easy to implement and understand—you don’t have to
spend time wrestling with the database. At times you may need to override ActiveRecord’s
defaults; fortunately that’s easy to do, so you’ll definitely gain time even if you need to tweak
the defaults to fit your naming convention. In short, ActiveRecord can make even complex
databases easier to use.

CHAPTER 5 ■ DATA ACCESS WITH THE ACTIVERECORD GEM44

8113Ch05CMP2 3/22/07 8:21 PM Page 44

Easy Text Markup with the
BlueCloth Gem

BlueCloth is an implementation of Markdown (http://daringfireball.net/projects/
markdown/), a text-to-HTML converter. It features a simple syntax, and is easy to understand
visually. It allows you to write documents and posts in an easy, standard format; additionally,
since it’s easy to learn, even nontechnical users become comfortable very quickly.

BlueCloth is a very simplified markup language, so not all features of HTML are available;
it’s very similar to a message-board markup language such as BBCode. BlueCloth isn’t
designed to replace HTML, but rather to make writing and editing text documents much eas-
ier—blog posts, message-board posts, articles, and so forth. As a result, BlueCloth documents
can be easily read and written—and even if you aren’t familiar with BlueCloth, it’s reasonably
easy to understand what’s going on.

How Does It Work?
BlueCloth’s syntax is reasonably simple. It’s a plain text format, and additional formatting, like
headers, lists, and so forth, all have a simple markup. A few symbols, like number signs, dashes,
and so forth, can control your output—as a bonus, they also look very understandable when the
document is in text form, in contrast to HTML. Let’s examine a few types of BlueCloth syntax.

A header is started with one or more hash marks—the more hash marks the higher the
header level, so a single hash mark means an <h1> tag, two means an <h2>, and so forth. For
example, the following BlueCloth will produce an <h1> and an <h2>:

I Always Wanted to Learn Lisp

I Never Wanted to Learn Cobol

<h1>I Always Wanted to Learn Lisp</h1>

<h2>I Never Wanted to Learn Cobol</h2>

45

C H A P T E R 6

■ ■ ■

8113Ch06CMP2 3/23/07 12:20 PM Page 45

Paragraphs are separated by a blank line. Some HTML-to-text converters turn all new
lines into line breaks; this means that if a paragraph is wrapped manually, the browser can’t
rewrap it automatically. BlueCloth is flexible—it will handle paragraphs that are one long line
or paragraphs that have multiple hand-wrapped lines.

You can do a number of other things in BlueCloth, of course; for example, code blocks are
produced by indenting every line with spacing—at least four spaces or a tab. (This means you
can’t have a paragraph of noncode text starting with a tab or four spaces, of course.) Consider
an example:

Some code:

9.times do
puts "test"

end

<p>Some code:</p>

<pre><code>9.times do
puts "test"

end
</code></pre>

You can get more details at the Markdown homepage, http://daringfireball.net/
projects/markdown/.

BlueCloth has a number of other options, for block quotes, tables, and more. You can
get more details on BlueCloth syntax at the BlueCloth homepage, http://www.deveiate.org/
projects/BlueCloth.

To install BlueCloth, use the gem install command:

gem install bluecloth

BlueCloth-to-HTML Converter
To demonstrate BlueCloth, let’s put together a tiny utility that will convert from Markdown to
HTML (see Listing 6-1).

Listing 6-1. bluecloth2html.rb

require 'bluecloth'

puts BlueCloth.new(ARGF.read).to_html

ARGF is a special variable Ruby provides for our use. It give stream methods, like read, to
any files passed on the command line. If no files are passed, then it will read from standard
input. A new BlueCloth object is created from the input, and then its to_html method is called
—which, of course, converts it to HTML. The HTML is then printed to the screen using puts.

CHAPTER 6 ■ EASY TEXT MARKUP WITH THE BLUECLOTH GEM46

8113Ch06CMP2 3/23/07 12:20 PM Page 46

Consider Listing 6-2; the text is placed n a file named test.txt.

Listing 6-2. test.txt

#Why you should use Ruby.

Ruby is an open source, powerful programming language. It's a scripting language,
much like Perl or Python. However, it's surprisingly elegant; complex techniques
can be implemented in just a few lines of code. It's also harmonious, in that
things—even complex things—work the way you might expect them to, even when
used in surprising ways.

For example, Ruby handles iterators in an interesting way. It defines a simple yet
powerful way to deal with arbitrary blocks of code.
The following code prints out 1 through 10:

1.upto(10){ |x|
print x

}

We could convert it like this:

ruby bluecloth2html.rb test.txt

The output would be this:

<h1>Why you should use Ruby.</h1>

<p>Ruby is an open source, powerful programming language. It's a scripting
language, much like Perl or Python. However, it's surprisingly elegant; complex
techniques can be implemented in just a few lines of code. It's also
harmonious, in that things—even complex things—work the way you might expect them
to, even when used in surprising ways.</p>

<p>For example, Ruby handles iterators in an interesting way. It defines a simple
yet powerful way to deal with arbitrary blocks of code.
The following code prints out 1 through 10:</p>

<pre><code>1.upto(10){ |x|
print x

}
</code></pre>

As you can see, the converter produces standard HTML. Headers become <h1> and <h2>
tags, ordered lists and tags, and so forth. Code blocks use both <pre> and <code>
tags—many Web programmers would use only the <pre> tags, but the <code> tag is an addi-
tional indicator to the browser that it’s not just any preformatted text, but specifically
preformatted code. (Incidentally, BlueCloth comes with a utility to convert BlueCloth to
HTML; it works similar to the example in Listing 6-1.)

CHAPTER 6 ■ EASY TEXT MARKUP WITH THE BLUECLOTH GEM 47

8113Ch06CMP2 3/23/07 12:20 PM Page 47

bluecloth2pdf BlueCloth-to-PDF Converter
In this section you’ll learn how to convert a file marked up with BlueCloth syntax to PDF. This
example script is called with two arguments—the input BlueCloth file and the output PDF. If
you pass a dash as the input file, it will read from STDIN instead. Figure 6-1 has an example of
what our converter looks like when run on the text in Listing 6-2.

Figure 6-1. The BlueCloth-to-PDF converter

To run this example, you will need html2ps and ghostscript installed. Many Linux distri-
butions come with both; for other platforms you can download them from the following URLs,
respectively:

http://user.it.uu.se/~jan/html2ps.html
http://www.cs.wisc.edu/~ghost/

Regardless of platform, you’ll need to fill in your full path to each utility in the script, as
shown in Listing 6-3.

Listing 6-3. bluecloth2pdf.rb

require 'tempfile' # Ruby builtin library - no need to install.
require 'bluecloth'

html2ps_command='/path/to/html2ps'
#on win32, you'll need to prefix this with 'perl '
- win32 won't know to run the perl interpreter on it.

ps2pdf_command='/path/to/ghostscript/lib/ps2pdf'
#ps2pdf comes with ghostscript - it'll be in your ghostscript/lib directory.

CHAPTER 6 ■ EASY TEXT MARKUP WITH THE BLUECLOTH GEM48

8113Ch06CMP2 3/23/07 12:20 PM Page 48

if ARGV[0]=='-'
input_string = $stdin.read

else
input_string = File.read(ARGV[0])

end
output_pdf_filename =ARGV[1]

Convert our BlueCloth input into HTML output

bc = BlueCloth::new(input_string)
html_string = bc.to_html

tmp_html_filename ="#{Dir::tmpdir}/#{$$}.html"
tmp_ps_filename = "#{Dir::tmpdir}/#{$$}.ps"

Next, we take our BlueCloth input and turn it
into a full HTML document, not just a fragment.

File.open(tmp_html_filename, 'w') do |f|
f << "<html><head><title>bluecloth2pdf</title></head>"
f << "<body>"
f << html_string
f << "</body>"
f << "</html>"

end

First, we convert the HTML and convert it into postscript using
html2ps, and then convert it into a PDF document using ps2pdf.

`#{html2ps_command} < "#{tmp_html_filename}" > "#{tmp_ps_filename}"`
`#{ps2pdf_command} "#{tmp_ps_filename}" "#{output_pdf_filename}"`

Assuming you still have the test.txt file from Listing 6-2, you can test your creation with
the following command:

ruby bluecloth2pdf.rb test.txt test.pdf

This will take the test.txt file and convert it into a PDF. If all goes well, you can verify it
by opening the test.pdf file in Ghostview or Adobe Acrobat. If not, check that you’ve installed
both html2ps and ghostscript. Check your paths; it’s easy to make a mistake.

Let’s briefly recap this relatively complicated script: we took a markdown input, turned it
into HTML using the BlueCloth gem, converted that into PostScript using html2ps, and then
finally converted the PostScript into PDF using ps2pdf. It’s a fairly convoluted process, but the
result is transparent to the user and the final PDF is very slick.

There are other options for each step, of course; you could modify the BlueCloth gem to
use the pdfwriter gem as output, although that would be fairly complicated. Depending on
your circumstance, you might wish to use an alternate HTML conversion tool, such as
HTMLDOC. You can get more information on HTMLDOC at http://www.htmldoc.org/.

CHAPTER 6 ■ EASY TEXT MARKUP WITH THE BLUECLOTH GEM 49

8113Ch06CMP2 3/23/07 12:20 PM Page 49

■Tip You also could use Ghostscript to output to formats other than PDF: you could output to PNG or JPEG
snapshots. For example, we could replace the last line of the script with this:

`gs -sDEVICE=jpeg -sOutputFile="#{output_pdf_filename}" "#{tmp_ps_filename}"`

That will print to a JPEG filename—just like the first version printed to a PDF. (You should probably refactor the
output_pdf_filename variable to a different name, of course, since you won’t be outputting to PDF files.)

Additionally, you could use Ghostscript’s printer drivers to create a hard copy; you can get the full details on
Ghostscript printer drivers—as well as other Ghostscript output devices—at http://www.cs.wisc.edu/
~ghost/doc/cvs/Devices.htm.

Dissecting the Example
Let's take a look at a few important lines from Listing 6-3. The first few lines set up the paths
to the two programs we’ll use in this script: html2ps and ps2pdf. The next few lines parse the
input—if the input argument is a dash, then parse from the standard in or STDIN—typically the
keyboard. Otherwise, read from the file provided. Next we hard-code the paths to the various
programs we will use later:

html2ps_command='/path/to/html2ps'

ps2pdf_command='/path/to/ghostscript/lib/ps2pdf'

Next we create a new BlueCloth object from the input and turn it into HTML using the
to_html method:

bc = BlueCloth::new(input_string)
html_string = bc.to_html

Next we create two temporary filenames: one for the HTML input to html2ps, and one for
the intermediate PostScript file. It uses the Dir::tmpdir variable to locate the temporary direc-
tory for your operating system; to access this variable, we must have the require tempfile
statement, even though we aren’t using the tempfile class.

tmp_html_filename ="#{Dir::tmpdir}/#{$$}.html"
tmp_ps_filename = "#{Dir::tmpdir}/#{$$}.ps"

The HTML temporary file is filled with the output from BlueCloth surrounded by the the
skeleton of an HTML document, as follows:

File.open(tmp_html_filename, 'w') do |f|
f << "<html><head><title>bluecloth2pdf</title></head>"
f << "<body>"
f << html_string
f << "</body>"
f << "</html>"

end

CHAPTER 6 ■ EASY TEXT MARKUP WITH THE BLUECLOTH GEM50

8113Ch06CMP2 3/23/07 12:20 PM Page 50

html2ps needs the <body> and <html> tags, but since BlueCloth produces only HTML frag-
ments and not complete documents, we need to add them ourselves. Note that this is a good
thing: it means you can use BlueCloth to represent blog posts, for example, and put the output
HTML inside a larger document.

Finally, we have two backtick commands:

`#{html2ps_command} < "#{tmp_html_filename}" > "#{tmp_ps_filename}"`
`#{ps2pdf_command} "#{tmp_ps_filename}" "#{output_pdf_filename}"`

These run system commands; specifically, the first runs html2ps, connecting its input to
the temporary HTML file and its output to the temporary PostScript flie. The second com-
mand calls ps2pdf, but unlike html2ps it takes input and output files as arguments, so we don’t
need the redirection. Its input is the temporary PostScript file that html2ps produced; its out-
put is our output PDF file. Once the second command is run, our program is finished.

Conclusion
BlueCloth is a powerful, easy-to-use way to write and edit documents, and it’d fit in well in a
variety of environments, including online content-management systems, blogs, forums, soft-
ware changelogs, and much more.

CHAPTER 6 ■ EASY TEXT MARKUP WITH THE BLUECLOTH GEM 51

8113Ch06CMP2 3/23/07 12:20 PM Page 51

8113Ch06CMP2 3/23/07 12:20 PM Page 52

Creating Web Applications
with Camping

Camping is a microframework for developing Web applications.
Whereas a typical Web framework is designed to make large Web applications easier to

write, a microframework is designed to make short scripts easier to write. Camping is very light-
weight, but still elegant. Further, because it uses ActiveRecord (discussed in Chapter 5) and is
similar to Rails in a number of ways, you can transition smoothly to Rails if necessary.

The small size of Camping apps is quite useful; you can create an entire application, with
separate views, models, controllers, and it will all fit in a single file. Rails apps have quite a
few files and directories before you even start writing custom code; it’s awkward for small
applications, since a relatively small amount of code will end up spread out over quite a few
files. Rails gives you a distinct advantage in a large project, but in a small project—with just a
few views and controllers—the single-file approach of Camping is superior.

Note, though, that Camping has a great deal of power despite being short—you can use
routing, generate fully compliant XHTML/HTML with Markaby (short for “markup as Ruby”),
use both layouts and views, and access databases with ActiveRecord models. For example,
Camping is great for writing guest books, blogs, and virtually any other short application.

How Does It Work?
Much like Rails, Camping is a Model View Controller (MVC) framework. MVC refers to the three
principal parts of the framework. The model is the code that controls the data stored in the data-
base—this includes the code that validates the data and all other data-level manipulations. The
view is the code that actually displays information to the user—in a Web application, this is typi-
cally HTML, but it may be formats like RSS, other XML, HTML, PDF, or plain text. Finally, the
controller is responsible for responding to user actions, like saving, deleting, and searching.

At first the distinction between models, views, and controllers may seem artificial; all pro-
gramming paradigms are artificial distinctions. However, this is a particularly useful one. It’s
an integral part of Ruby on Rails, and Rails has been reported to have nearly mythically fast
development speed compared to other solutions. Rails, though, is designed for larger appli-
cations; Camping, on the other hand, is designed to “fit in a backpack”—Camping apps are small,
they’re easily understood, and they fit in one file.

One of the big differences between Rails and Camping is that a Camping application is a
single Ruby script. Rails applications have an entire directory structure with a great number
of files and an entire array of generators to create often-used code; Rails’ competitors 53

C H A P T E R 7

■ ■ ■

8113Ch07CMP3 3/28/07 5:31 PM Page 53

CakePHP and Nitro are similar. Camping applications are much smaller; in fact, the distribu-
tion version of the entire Camping framework is under 4KB.

The Camping framework comes in two varieties: the first, Camping.rb, is for distribution,
and is stripped of whitespace and comments. This is slightly faster to load, and matches
Camping’s lightweight philosophy. The other version is Camping-unabridged.rb, which includes
comments and documentation. The two versions are functionally identical; the second just
has more comments, so unless you are reading the source code directly, you won’t notice the
difference.

Camping provides three modules: Camping::Models, Camping::Controllers, and
Camping::Views. Your script is responsible for placing classes in each module; models go
in Camping::Models, controllers in Camping::Controllers, and views in Camping::Views. You
can get the full details on Camping at the Camping homepage, http://code.whytheluckystiff.
net/camping. You can install Camping using the gem install command:

gem install camping

The Camping::Models Module
Camping::Models uses ActiveRecord. Here’s a short example:

module Blog::Models
class Actor; has_and_belongs_to_many :movies; end
class Movie; has_and_belongs_to_many :actor; end

end

That example creates two classes: Actor and Movie. Each represents a table in the data-
base. No specific fields are referenced; it automatically adds methods for each field based on
the table that each represents. Each model is automatically connected to the table of the same
name. The only thing that should be specified is the relationships between the tables; in this
case, we specify two has and belongs to many relationships. Other types of relationships
include belongs to, has one, and has many.

In this particular case, the has_and_belongs_to_many relationship is appropriate because
each actor belongs to many movies, but also each movie has many actors. The belongs_to
relationship would work if each actor had just one movie, or vice versa. The has_one relation-
ship is quite similar; the difference is that in a belongs_to relationship, the foreign key is in the
source table. In a has_one relationship, it’s the opposite: in a model_a has_one :model_b, the
key is in model_b. Typically, model_b would have a belongs_to relationship with :model_a.

A has_many relationship works much like a has_one, except that it can have more than
one row in the destination table. This also adds iterator methods, like each and reverse_each.
These methods let you loop over all over the items in a collection. You can access other func-
tionalities that ActiveRecord provides, like using the << operator to automatically add to a
collection. (See Chapter 5 for more details about features provided by ActiveRecord.)

The Camping::Controllers Module
The second module, Camping::Controllers, is different from Rails controllers. Rails con-
trollers and routes are separate; further, Rails controllers have many actions, each of which
can be given a POST, GET, or other HTTP request. Camping controllers can be given different

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING54

8113Ch07CMP3 3/28/07 5:31 PM Page 54

HTTP requests, but they don’t get separate actions. In other words, to delete a blog post in a
Rails application, your URL might be /blog/delete/3. In Camping, it might be /delete_blog/3,
or perhaps you’d use an HTTP DELETE action on /blog/3. (Since Camping applications are
small, you might even just do /delete/3—if your application includes multiple types of
resources to delete, you may want to consider splitting it up or moving to Rails or Nitro.
You can find out more about Nitro at http://nitroproject.org/.)

The Camping::Views Module
Unlike Rails, Camping controllers don’t have an associated view; you use render to specify
which view you’d like to use. Camping controllers can set class variables that views can see, so
you can pass controller-specific data to your view.

Views are fairly simple in Camping. They can be called by any number of controllers.
There is a special view, named layout, which is called to display each view. Layout is usually
used to add content to every page—like page titles, copyright notices, navigation menus, and
so forth. Typically, views are written using Markaby (http://redhanded.hobix.com/inspect/
markabyForRails.html). (You can get more details on Markaby in Chapter 14.) Markaby consists
of Ruby functions that produce HTML. Consider the following script, which outputs a
few lines of HTML:

require 'markaby'

builder = Markaby::Builder.new

builder.html do
head do
title "test tile"

end
body do
h1 "tests"
p "test paragraph"
ul do

li "item 1"
li "item 2"
li "item 3"

end
end

end

puts builder.to_s

Executing this script produces the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "DTD/xhtml1-trans
itional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING 55

8113Ch07CMP3 3/28/07 5:31 PM Page 55

<title>test tile</title>
</head>
<body>
<h1>tests</h1>
<p>test paragraph</p>

item 1
item 2
item 3

</body>
</html>

You’ll notice that Markaby automatically produces the <?xml..?> and <!DOCTYPE..> tags. It
also handles closing tags automatically. In fact, if Ruby Markaby code will run, it will produce
valid XHTML 1.0.

Tracking Time with Camping
To demonstrate Camping, we’ll develop an application to track time. Specifically, we’ll track bill-
able hours, by client, using stopwatch-style start and stop features. The application will use a
simple Web interface developed in Camping.

Since this is a fairly long listing, it’s split into three parts; each will be preceded by a brief
description, and I’ll cover them in detail under the heading “Dissecting the Examples.”

Listing 7.1 contains the model and schema for our application; that’s the part of the pro-
gram relating to the database. It also contains the code that detects if the table has been
created yet; if it hasn’t, the code will create the database.

Note that the listing is split into three parts for readability.

Listing 7-1. tracktime.rb, Part One

#!/usr/bin/ruby

%w(rubygems camping).each { |lib| require lib }

Populate our namespace with Camping functionality.
Camping.goes :TrackTime

#
Contains the application's single model, ClientTime.
#
module TrackTime::Models
#Sets or retrieves the schema.
def self.schema(&block)
@@schema = block if block_given?
@@schema

end

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING56

8113Ch07CMP3 3/28/07 5:31 PM Page 56

#
The single model for this application.
It inherits from ActiveRecord,
so you can use it like any Rails
model.
#
class ClientTime < Base

Returns the difference between the starting
and stopping times - if the entry hasn't been
stopped yet, it will return the time elapsed
since it was started.
def elapsed
diff=((stop || Time.now) - start)
format("%0.2f",(diff/3600))

end
end

end

#
Sets the schema, defining our single table.
#
TrackTime::Models.schema do
create_table :tracktime_client_times, :force => true do |t|
t.column :client, :string, :limit => 255
t.column :start, :datetime
t.column :stop, :datetime
t.column :created_at, :datetime

end
end

#
Get ready to run by creating the database
if it doesn't already exist.
#
def TrackTime.create
unless TrackTime::Models::ClientTime.table_exists?
ActiveRecord::Schema.define(&TrackTime::Models.schema)
TrackTime::Models::ClientTime.reset_column_information

end
end

Listing 7-2 contains our controllers, which contains the program logic.

Listing 7-2. tracktime.rb, Part Two

#
Contains all of the controllers for the application.

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING 57

8113Ch07CMP3 3/28/07 5:31 PM Page 57

#
module TrackTime::Controllers

#
Homepage for the application.
#
class Index < R '/'
def get

@times=ClientTime.find_all
render :homepage

end
end

#
Controller which creates a new timer.
#
class Start < R('/start/')
def get
@text='Started!'
new_time=ClientTime.create :client=>@input[:client], :start=>Time.now
render :statictext

end
end

#
Controller for stopping a timer.
#
class Stop < R('/stop/(\w+)')
def get(id)
@text='Stopped!'
old_time=ClientTime.find id

if !old_time
@text="failed on stopping time # #{id}"

else
old_time.update_attributes :stop=>Time.now

end

render :statictext
end

end

#
Deletes a timer.
#
class Kill < R('/kill/(\w+)')
def get(id)

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING58

8113Ch07CMP3 3/28/07 5:31 PM Page 58

@text='Killed!'

deleted_successfully=ClientTime.delete id

@text="failed on killing time # #{id}" unless deleted_successfully

render :statictext
end

end

end

Our next chunk of code (Listing 7-3) contains our views (the part of our application that
interacts directly with the user). It produces the HTML that is sent to the Web browser.

Listing 7-3. tracktime.rb, Part Three

#
Contains all of the views for the application.
#
module TrackTime::Views
TIME_FORMAT="%H:%M:%S"

#
View which statically shows a message with a
redirect back to the homepage.
#
def statictext
h1 { a @text, :href=>R(Index), :style=>’text-align:center’}

end

#
View which shows the homepage.
#
def homepage
div do

table :cellpadding=>5, :cellspacing=>0 do
tr do
th :colspan=>6 do
form :action=> R(Start) do
p do
strong 'start timer: '
br
label 'client name'
input :name=>'client', :type=>'text', :size=>'5'
input :type=>'submit', :value=>'start'

end
end

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING 59

8113Ch07CMP3 3/28/07 5:31 PM Page 59

end
end
tr do
th 'Client'
th 'Start'
th 'Stop'
th 'Elapsed'

end
(@times || []).each do |time|
tr :style =>"background-color: #{(time.stop ? 'white' : '#FFEEEE')}" do
td time.client
td time.start.strftime(TIME_FORMAT)

if time.stop
td time.stop.strftime(TIME_FORMAT)

else
td {a 'Stop now', :href=>R(Stop,time.id) }

end
unless !time.start

td "#{time.elapsed} hrs"
end

td {a 'kill', :href=>R(Kill, time.id)}
end

end

end
end

end

#
Layout which controls the appearance
of all other views.
#
def layout
html do
head do
title 'TrackTime'

end
body do
h1 "welcome to tracktime"
div.content do
self << yield

end
end

end
end

end

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING60

8113Ch07CMP3 3/28/07 5:31 PM Page 60

You can run the combined example as follows:

camping tracktime.rb

You can now see the example by pointing your Web browser to http://localhost:3301/.

■Tip You can use the camping command to run on different ports and addresses. For example, you can
use the -h option to specify an IP address to bind to—the default is all available addresses. You can also
use the -p option to specify which port you want to use—the default port is 3301. The following command
would run Camping on the localhost (127.0.0.1) address only and on port 3030:

camping tracktime.rb -p 3030 -h 127.0.0.1

You should see a Welcome to Tracktime greeting and a Start Timer option. You’ll also see a
blank table with no entries in it—it will hold our saved times. Enter a name in the client’s name
box (any name will do), then click Start.

You’ll see a Starting! screen. Click on the link, and you’ll be sent to the main screen again,
but you’ll see an entry—it’ll be highlighted in red, which indicates that the timer is running.
You can add another entry if you’d like, although your customers might not appreciate double
billing.

Click Stop to stop the timer. Click past the Stopped! message, and you’ll see that your
entry is no longer white—this indicates that the timer has stopped.

On the left, there’s a link marked Kill. This link will delete an entry.
At this moment, we’re using Camping to run the application, but there are other ways. As

I mentioned, you can run the app through a Web server in a variety of ways. You can also use
postambles to let Ruby apps run stand-alone, with a command like ./tracktime.rb on OSX or
Linux and ruby tracktime.rb on Win32. Postambles are added to the end of the program; if
the program is run stand-alone, the postamble kicks in and starts a mini Web browser. The
documentation for Camping has a number of postambles; you can use either WEBrick, which is
pure Ruby but fairly slow, or Mongrel, which is fast but is written in a mixture of C and Ruby.

For example, if you use the mongrel postamble, you can run it easily without a stand-alone
launcher; it allows you to use the command ruby tracktime.rb to launch the server. The
mongrel postamble is as follows:

if __FILE__ == $0
TrackTime::Models::Base.establish_connection :adapter => 'sqlite3',

:database => 'tracktime.db'
TrackTime::Models::Base.logger = Logger.new('tracktime.log')
TrackTime::Models::Base.threaded_connections=false
TrackTime.create
require 'mongrel'
server = Mongrel::Camping::start("0.0.0.0",3301,"/",TrackTime)
puts "**TrackTime is running on Mongrel - check it out at http://localhost:3301/"
server.run.join

end

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING 61

8113Ch07CMP3 3/28/07 5:31 PM Page 61

You’ll need Mongrel installed—you can install it via the command gem install mongrel.
Once it’s installed, you can launch the app as follows:

ruby tracktime.rb

**TrackTime is running on Mongrel—check it out at http://localhost:3301/

You can get other postambles for serving Camping apps in different ways at http://code.
whytheluckystiff.net/camping/wiki/PostAmbles.

Dissecting the Examples
Let’s examine a few lines from Listings 7-1 through 7-3.

The first statement requires two libraries:

%w(rubygems camping).each { |lib| require lib }

The %w(…) is Ruby syntax for arrays; it returns an array of the words inside the parentheses,
separated by spaces. The .each iterates over each one, and the require lib statement requires
each library. Although slightly more compact, functionally it’s identical to require rubygems
followed by require Camping.

This line uses Camping’s method to fill the :TrackTime module with the Camping framework:

Camping.goes :TrackTime

You could modify the Camping module directly, but that’d prevent you from mounting
multiple applications in the same process, and so it’s always preferable to use Camping.goes.

This module was populated by the Camping.goes line:

module TrackTime::Models
def self.schema(&block)
@@schema = block if block_given?
@@schema

end

class ClientTime < Base
def elapsed
diff=((stop || Time.now) - start)
format("%0.2f",(diff/3600))

end
end

end

It has our single model, ClientTime. Camping uses ActiveRecord, and so the table name for
the ClientTime model is tracktime_client_times. You can find out more about ActiveRecord’s
pluralization and table-naming rules by turning to Chapter 5, which discusses ActiveRecord.
(Camping changes the typical ActiveRecord convention slightly: Camping apps have table names
that start with the current application name.)

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING62

8113Ch07CMP3 3/28/07 5:31 PM Page 62

The self.schema method lets us set the class variable @@schema to a block, which can then
be run if our tables don’t exist. (Incidentally, the database connection is created by the Web
server, not by our script. By default, it uses a sqlite3 database, but you can use any database
adapter ActiveRecord supports, including MySQL, PostgreSQL, and more.)

The next block of code sets the schema for our application:

TrackTime::Models.schema do
create_table :tracktime_client_times, :force => true do |t|
t.column :client, :string, :limit => 255
t.column :start, :datetime
t.column :stop, :datetime
t.column :created_at, :datetime

end
end

While most functions that take a block execute the code immediately, this isn’t required
and this example doesn’t do it. The block then sets the @@schema variable to this block of code,
and if the database is blank, this block of code (which creates our single table) will run.

This ActiveRecord schema is database-agnostic—you can run it on almost any database
supported by ActiveRecord, including MySQL, PostgreSQL, or, as we are doing here, SQLite 3
or later. In some cases, you might need to use database-specific functionality; ActiveRecord
includes an execute command to execute arbitrary SQL.

You’ll notice that the table name is tracktime_client_times; this is different from
Rails table names, which would usually be client_times. Camping has the application name
prepended to the table name, which lets you have multiple applications in the same database
without a risk of table-name collisions.

The following code defines a method, TrackTime.create, which is called by the Camping
framework when the application is first launched:

def TrackTime.create
unless TrackTime::Models::ClientTime.table_exists?
ActiveRecord::Schema.define(&TrackTime::Models.schema)
TrackTime::Models::ClientTime.reset_column_information

end
end

If the ClientTime table doesn’t exist, then the code will create it by using
ActiveRecord::Schema.define and the schema that we set earlier. It will then call
reset_column_information—which will cause ActiveRecord to load the column names
and types that we just created.

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING 63

8113Ch07CMP3 3/28/07 5:31 PM Page 63

www.allitebooks.com

http://www.allitebooks.org

Our next block of code is for controllers, which specify the logic for the pages that will be
displayed:

module TrackTime::Controllers
class Index < R '/'
def get
@times=ClientTime.find_all
render :homepage

end
... snip ...

The first controller is Index; it's represented by a class inside of TrackTime::Controllers.
This controller is attached to the route '/'—this means that the root of our application will
call the Index controller, in this case http://localhost:3301/. You might find the < R '/' con-
fusing—it looks like inheritance, but the end looks like a function call. Both are correct—the
function returns a class. It takes a regular expression that indicates what kind of URL will
respond to this controller.

If you’d like, you can specify multiple routes like this: R '/', '/index', '/home'. That
would specify http://localhost:3301/, http://localhost:3301/index, and http://local-
host:3301/home all to correspond to the same action.

Inside of that class, a single method is defined—get. This corresponds to the GET HTTP
method—you can also definite POST, DELETE, and PUT methods. This is different from Rails—
in Rails, you have controller names followed by action names. In Camping, a single route is
mapped to a single controller.

Inside of the get method, @times is assigned to ClientTime.find_all. The find_all call
returns all of the records in the ClientTime array. It’s assigned to @times, which is an instance
variable, since it is prefixed with @. Since it’s an instance variable, the view can access it.

The view is then called by the render :homepage statement. In Rails, unless you specify
otherwise, the view with the same action and controller name as the current request is auto-
matically called; in Camping, you create your views and decide when to call which—no
automatic mapping.

The following controller, Start, creates a new ClientTime record, setting the client name
to whatever the user enters and setting the start time to the current time.

... snip ...
class Start < R '/start/'
def get
new_time=ClientTime.create :client=>@input[:client], :start=>Time.now
if new_time

@text='Started!'
else
@text='Failed!'

end
render :statictext

end
end
... snip ...

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING64

8113Ch07CMP3 3/28/07 5:31 PM Page 64

If the save succeeded then the @text variable is set to Started!, and if it failed it’s set to
Failed!. The statictext view is then shown—as we’ll see in the listing after next, the statictext
view shows the text present in the @text class variable.

Our next controller will stop a running timer:

... snip ...
class Stop < R('/stop/(\w+)')
def get(id)
@text='Stopped!'
old_time=ClientTime.find id

if !old_time
@text="failed on stopping time # #{id}"

else
old_time.update_attributes :stop=>Time.now

end

render :statictext
end

end
... snip ...

The Stop controller uses slightly different routing—it includes capturing parentheses,
(\w+). The get function takes a single parameter. The \w+ means any number of nonwhitespace
characters, and the contents of the capturing parentheses are passed to the id function. This
means that if you request http://localhost:3301/TrackTime/Stop/5, it passes 5 to the Stop
controller.

It uses the find method of the ClientTime model to find the record. Since the find method
looks for records by primary key, we just pass ID to the method and it returns the matching
record. If there isn’t a matching record, we set @text to a failure message. If there is, we use
the update_attributes method to set the stop time to the current time. We then render the
statictext view, as we did in the previous controller. Incidentally, if we didn’t want to find
by primary key, we could use a :conditions parameter, which would let us use any arbitrary
condition.

This is our first view, statictext:

module TrackTime::Views

def statictext
h1 { a @text, :href=>R(Index), :style=>"text-align:center;" }

end
... snip ...

It’s pretty simple, and it’s also not much like an eRuby or other type of Ruby HTML view
you might find in Rails or Nitro. It’s Markaby. (Chapter 14 has more details on Markaby.) It’s
Ruby syntax converted into HTML; the h1 takes a block and wraps the result in appropriate
<h1> and </h1> tags. Inside the h1 block is an a tag—an anchor tag that we can hyperlink back
to the index page. The :href parameter to that anchor specifies the URL for the link. The URL
is generated by the R function—that’s the same function that produces the classes for the

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING 65

8113Ch07CMP3 3/28/07 5:31 PM Page 65

controllers, but when you pass it an existing class, it produces the URL for that class instead.
Finally, it’s also passed an :style=>"text-align:center;" parameter. This is a cosmetic
change to let us center the link.

The last view is the homepage view:

... snip ...
TIME_FORMAT="%H:%M:%S"

def homepage
div do

table :cellpadding=>5, :cellspacing=>0 do
tr do
th :colspan=>6 do
form :action=> R(Start) do
p do
strong 'start timer: '
br
label 'client name'
input :name=>'client', :type=>'text', :size=>'5'
input :type=>'submit', :value=>'start'

end
end

end
end

... snip ...

The homepage view displays the home, or index, page for our app. It uses Markaby to pro-
duce the HTML, as we did before. It creates a table with cell padding of 5 and no cell spacing,
and then creates a form in a table header that spans the entire table width. There are other
ways to do the formatting, of course.

At the top of the function is a constant, TIME_FORMAT, which controls the output of the
times. You can modify this if you’d like—you might want to change it to display a date,
although that will clutter the output.

The following code outputs the headers for the table, and then loops through each timer
and displays a new row for it:

... snip ...
tr do
th 'Client'
th 'Start'
th 'Stop'
th 'Elapsed'

end
@times.each do |time|
tr :style =>"background-color: #{(time.stop ? 'white' : '#FFEEEE')}" do
td time.client
td time.start.strftime(TIME_FORMAT)

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING66

8113Ch07CMP3 3/28/07 5:31 PM Page 66

if time.stop
td time.stop.strftime(TIME_FORMAT)

else
td {a 'Stop now', :href=>R(Stop,time.id) }

end

td "#{time.elapsed} hrs"

td {a 'kill', :href=>R(Kill, time.id)}
end

end

end
end

end

If the timer has been stopped, it’ll be displayed in white; running timers will be displayed
in red. Stopped timers will also have a display of the stop time; running timers get a Stop Now
link. All rows also get an Elapsed Time display and a Kill link.

The Kill and Stop links use the R function to generate the URL—but this time, it also
passes the time.id link to it. The R function can handle this, fortunately, and produce valid
URLs. This is very convenient for you—if the routing changes or if the format of the URLs
changes somehow, the R function will work seamlessly.

The layout function, demonstrated in the following snippet, produces the layout for the
application—this is HTML code above and below every view in the application.

def layout
html do
head do
title 'TrackTime'

end
body do
h1 "welcome to tracktime"
div.content do
self << yield

end
end

end
end

In this case, it produces the header, which has the title tag setting the title of the page,
and then produces a welcome to tracktime <h1> tag. Camping doesn’t call view methods
directly—instead it passes the views to the layout function. Since these views are blocks, the
layout function uses yield to append the output of the block to the current object, self.

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING 67

8113Ch07CMP3 3/28/07 5:31 PM Page 67

Conclusion
Camping apps are tiny, easy to write, and easy to comprehend—perfect for writing small Web
applications very quickly.

CHAPTER 7 ■ CREATING WEB APPLICATIONS WITH CAMPING68

8113Ch07CMP3 3/28/07 5:31 PM Page 68

Creating Command-Line
Utilities with cmdparse

The cmdparse gem provides support for writing command toolkits. Specifically, you can cre-
ate command-based command-line programs—programs that take a number of commands,
with each command able to have a varying number of arguments. This style of program is
what the gem command uses, and it is a bit more flexible than parsing based on switches,
which is what many other Linux, OS X, and Windows commands use. In any event, cmdparse
lets you create such programs quickly and efficiently—letting you worry about your program
and not about how it receives input from the user. cmdparse also gives you free functionality,
such as a help command which will go through all of your available commands and display
them, their descriptions, and their options to the user.

How Does It Work?
Command-line programs use a variety of different methods to specify arguments. The most
familiar method comes in the format of switches or options, which is how most Linux and
Windows programs specify arguments for most of their commands. For instance, traditional
shell commands use switches, like the familiar Linux/OS X ls command—in ls -al for exam-
ple, the -al specifies two options, -a and -l. Those two options tell the ls command to behave
differently—the first tells it not to hide files whose names start with a period, and the second
tells to use the long list format, which contains more information.

The Windows command dir works similarly, so if you specify dir /ad /P, it will specify
the /ad and the /P options. These types of commands often take filenames—for example, in
the command tail -f /var/log/somefile it runs tail, which uses the -f option on the file
/var/log/somefile. If you’d like to use this style of arguments, you can use Ruby’s built-in
library optparse. (See Chapter 18 for an optparse example.)

The second method involves using a command-based syntax, such as that supported by
cmdparse. This method is more verbose and is often used for commands that don’t manipulate
files—such as the Windows NET command. RubyGems also works like this; the gem command,
for example, takes cmdparse-style arguments. Your program has multiple “commands” that
you allow the user to run, and each command has multiple possible arguments—as well as
options and switches. Let’s see a quick example at the Windows command prompt:

net send my_machine Hello!

69

C H A P T E R 8

■ ■ ■

8113Ch08CMP3 3/28/07 5:33 PM Page 69

That will send the message Hello to the computer named my_machine—assuming it’s run-
ning the Windows Messenger service, of course. send is the command, and my_machine and
Hello! are the arguments.

For example, we could create a simple Hello World application using cmdparse as follows:

require 'cmdparse'

cmd = CmdParse::CommandParser.new(true, true)

cmd.program_name = "helloworld"

cmd.add_command(CmdParse::HelpCommand.new, true)

new_command= CmdParse::Command.new('hello', false)
new_command.short_desc = 'Say hello.'
new_command.set_execution_block do
puts 'Hello World'

end

cmd.add_command(new_command)
cmd.parse

This creates a simple application using cmdparse: it has two commands, help and hello.
The first lists the available commands along with a short description; the second simply prints
the phrase “Hello World!” Note that the help command is built into cmdparse—we didn’t need
to write it by hand. Also note that the help command uses the short_desc property of the
hello command; that’s how the help command gets descriptions of the functionality.

Let’s take a look at how the application works:

ruby hello_world.rb help

Usage: helloworld [options] COMMAND [options] [COMMAND [options] ...] [args]

Available commands:
hello Say hello.
help Provide help for individual commands (=default command)

ruby hello_world.rb hello

Hello World

As you can see, it’s reasonably easy to put together a simple application with cmdparse.
You can use the following command to install cmdparse:

gem install cmdparse

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE70

8113Ch08CMP3 3/28/07 5:33 PM Page 70

A Job-Search Tool Built with cmdparse
To demonstrate cmdparse, we’re going to build a short program that will assist in performing
Web-based job searches. It will have three different commands, each of which can take
options to modify the way they behave. The first will be a search of Indeed.com, the Internet
search engine; it will take a search phrase and return all of the jobs found at that location. Next
will be a Ruby job lister; it will take jobs from jobs.coolruby.com and display them. Finally, our
last command will be a Craigslist searcher—it will generate a Google URL you can visit, which
will display all of the Craigslist entries updated in the last 30 days and that match your search.

Listing 8-1. Searching Jobs with cmdparse (jobsearch.rb)

require 'feed_tools'
require 'cmdparse'
require 'date'
require 'uri'

Create a new CmdParse object -
we're going to use this to parse
our command line arguments.

cmd = CmdParse::CommandParser.new(true, true)
cmd.program_name = "jobsearch "
cmd.program_version = [0, 1, 0]

These are two commands that come with CmdParse -
the first displays a list of commands, and the
second displays the current program version.

cmd.add_command(CmdParse::HelpCommand.new, true)
cmd.add_command(CmdParse::VersionCommand.new)

This object will represent our first command -
- the indeed command, which searches Indeed.com

indeed = CmdParse::Command.new('indeed', false)
indeed.short_desc = "Searches for jobs via Indeed.com "
indeed.short_desc << " and prints the top ten results."

indeed.description = 'This command searches Indeed.com for jobs matching [ARGS].'
indeed.description << 'You can specify a location to search via '
indeed.description << 'the -l and -r switches.'

This block of code sets the optional switches for our command.
indeed.options = CmdParse::OptionParserWrapper.new do |opt|
opt.on('-l', '--location LOCATION',
'Show jobs from LOCATION only') { |location| $location=location }
opt.on('-r', '--radius RADIUS',

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE 71

8113Ch08CMP3 3/28/07 5:33 PM Page 71

'Sets a distance in miles from LOCATION to search from. ' <<
'This option has no effect ' <<
'without the -l option.') { |radius| $radius=radius }

end

This block sets the code which will be executed when the
command is run.

indeed.set_execution_block do |args|
search_string= args.join(' ')
feed_url = 'http://rss.indeed.com/rss?'
feed_url << 'q=#{URI.escape(search_string)}'
feed_url << '&l=#{$location}&sort=date&radius=#{$radius}'
puts "Jobs matching \"#{search_string}\" from indeed.com"
puts "for more detail, see the following URL:\n\t#{feed_url}\n\n"

feed= FeedTools::Feed.open(feed_url)
feed.items.each do |item|
puts "#{item.title}"

end
end

This is similar to the previous command, but
searches jobs.coolruby.com.

coolruby = CmdParse::Command.new('coolruby', false)
coolruby.short_desc = "Shows Ruby jobs from jobs.coolruby.com"
coolruby.description = "This command takes no arguments."
coolruby.set_execution_block do |args|
feed_url = "http://jobs.coolruby.com/rss"
puts "Jobs from coolruby.com"
puts "for more detail, see jobs.coolruby.com.\n"

feed= FeedTools::Feed.open(feed_url)
feed.items.each do |item|
puts "#{item.title}"

end
end

This final command searches Craigslist sites.

craigslist = CmdParse::Command.new('craigslist', false)
craigslist.short_desc = "Searches all Craigslist sites for jobs"
craigslist.description = "Displays results from all craigslist sites which "
craigslist.description << " match [ARGS]. Only displays recent results - "
craigslist.description << " by default, results from the last "

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE72

8113Ch08CMP3 3/28/07 5:33 PM Page 72

craigslist.description << " thirty days, but this can be overridden "
craigslist.description << " with the -d option."

craigslist.options = CmdParse::OptionParserWrapper.new do |opt|
opt.on('-d', '--days DAYS',
'Show jobs from last DAYS days only') { |days| $days=days }
opt.on('-s', '--section SECTION',
'Show jobs from SECTION section of craigslist only. ' <<
'cpg searches computer gigs, for example, ' <<
'and sof searches software jobs.') { |section| $section=section }

end
craigslist.set_execution_block do |args|
search_string= args.join(' ')
$days||=30

query_string = "#{search_string}"
query_string << " site:craigslist.org"
query_string << " inurl:/#{$section}/" unless $section.nil?

query_string << " daterange:#{(Date.today-$days.to_i).jd}-#{Date.today.jd}"

google_url="http://www.google.com/search?q=#{URI.encode(query_string)}"

puts "Jobs matching \"#{search_string}\" in the last "
puts #{$days} days from all craigslist via google.com"
puts "You can use the following Google search string:"
puts "\t#{query_string}"
puts "You can also use the following URL:"
puts "\t#{google_url}"

end

We've created the command objects, but we haven't added
them to our parser, so we'll do that next:

cmd.add_command(indeed)
cmd.add_command(coolruby)
cmd.add_command(craigslist)

Finally, we need to actually parse the command.
This runs the commands indicated
on the command line

cmd.parse

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE 73

8113Ch08CMP3 3/28/07 5:33 PM Page 73

Save this example as jobsearch.rb. You can run our example using the following command:

ruby jobsearch.rb help

Usage: jobsearch [options] COMMAND [options] [COMMAND [options] ...] [args]

Available commands:
coolruby Shows Ruby jobs from jobs.coolruby.com
craigslist Searches all Craigslist sites for jobs
help Provides help for individual commands
indeed Searches for jobs via Indeed.com and prints the top ten results
version Show the version of the program (=default command)

As you can see, cmdparse provides us with a help command that will summarize our
commands. When called without any arguments, it lists all of the commands that our script
supports. When called with a specific argument, it provides us with detailed help on any
particular command:

ruby jobsearch.rb help indeed

indeed: Searches for jobs via Indeed.com and prints the top ten results.
This command searches Indeed.com for jobs matching [ARGS]. You can specify a
location to search via the -l and -r switches.

Usage: jobsearch indeed [options] [ARGS]

-l, --location LOCATION Show jobs from LOCATION only
-r, --radius RADIUS Sets a distance in miles from LOCATION to

search from. This option has no effect without the -l option.

Note that this is built from our program itself; if we add an option to the indeed com-
mand, it will automatically appear here, so our documentation needs less maintenance.

Let’s try out the coolruby command—it will display Ruby jobs from jobs.coolruby.com.
We can use it by entering the following command:

ruby jobsearch.rb coolruby

Jobs from coolruby.com
for more detail, see jobs.coolruby.com.
Web Application Database Developer - AIDT
Web Developer - Indianapolis Star
Web Designer/Flash Developer - Indianapolis Star
Software Engineer - Intern - Snapvine
...snip...

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE74

8113Ch08CMP3 3/28/07 5:33 PM Page 74

As you can see, the command successfully connected to jobs.coolruby.com, downloaded
the RSS feed, and displayed it for us. In most cases, of course, it’s easier to simply visit jobs.
coolruby.com via a Web browser, but this way, you could put it into a cron job or a Windows
Scheduler task and have the output emailed to you automatically.

Next let’s try the Craigslist search functionality. This won’t display any results, but it will let
us produce a very useful Google URL.

ruby jobsearch.rb craigslist java developer

Jobs matching "java developer" in the last 30 days from all craigslist via
google.com
see the following URL:

http://www.google.com/search?q=java%20developer%20site:craigslist.org%20daterange:24
53981-2454011

The daterange: and site: operators are the keys: the first shows us recent results only,
and the second restricts the results to craigslist.com and its subdomains.

We can also search for listings updated within the last five days, and we can even pin it
down to a certain section of Craigslist. For example, let’s say we wanted to search all of the
Craigslist sites for Rails developer jobs, but we didn’t want to visit them all by hand. First we’d
visit just one of the Craigslist sites and note that the software jobs all had sof in the URL—
that’s the category shorthand for software job. We can then use our script to construct a
Google query to search all of the Craigslist sites for software-developer jobs that match our
criteria. We can do so using the following command:

ruby jobsearch.rb craigslist rails developer -s cpg -d 5

Jobs matching "rails developer" in the last 5 days from all craigslist via
google.com
You can use the following Google search string:

rails developer site:craigslist.org inurl:/cpg/ daterange:2454006-245401
1
You can also use the following URL:

http://www.google.com/search?q=rails%20developer%20site:craigslist.org%20inurl:/cpg/
%20daterange:2454006-2454011

Finally, we can also search Indeed.com using the indeed command. The indeed command
even lets us specify a location and a maximum distance from that location, so we can pin our
jobs down by preferred city or state. Let’s try it out using the following command:

ruby jobsearch.rb indeed rails developer

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE 75

8113Ch08CMP3 3/28/07 5:33 PM Page 75

Jobs matching "rails developer" from indeed.com
for more detail, see the following URL:

http://rss.indeed.com/rss?q=rails%20developer&l=&sort=date&radius=

SDE MT502024 - Comsys - Seattle, WA
Web Developer (PHP, MySQL, AJAX) - A Prime Solution - Charleston, SC
Server Developer - Ruby on Rails - Portland, OR
Sr. Software Developer - East Bay, CA
Something so much better than Social Ntwkg looking for Lead Developer - Manhatt
an, NY
Web Designer Developer - DIRECT MAIL EXPRESS - Daytona Beach, FL
Sr. Software Developer to $110k+ DOE - Act 1 Technical - San Francisco, CA
...snip...

As you can see, we’ve gained quite a bit of power using the cmdparse interface. Let’s take a
look at exactly how our code works.

Dissecting Our Example
After we’ve used the require statement on the various libraries used by our code, our code cre-
ates a new command parser object and describes our program as follows:

cmd = CmdParse::CommandParser.new(true, true)
cmd.program_name = "jobsearch "
cmd.program_version = [0, 1, 0]

The first line creates a new CommandParser object for us—the first argument tells our
program to handle exceptions gracefully by showing an error message and then the help
screen, and the second argument tells CommandParser that we would like to use partial com-
mand matching—this means that if someone types ruby jobsearch.rb cool instead of ruby
jobsearch.rb coolruby it will still work. Next, the program_name and program_version proper-
ties are set, which describe the name and version of the program. Those are used by
cmdparse’s built-in commands, which will we use next:

cmd.add_command(CmdParse::HelpCommand.new, true)
cmd.add_command(CmdParse::VersionCommand.new, false)

These two lines each add a command to our parser; the first adds the built-in command
help, and the second the built-in version command. The second argument specifies whether
the command should be a default command—since the second argument is true for the com-
mand help, the help command will be the default command. Both commands work via the
data we’ve already entered: help works by listing all of the available commands and their
descriptions and arguments, and version works by printing out the version we entered earlier
in our code.

Next let’s look at how the indeed command works:

indeed = CmdParse::Command.new('indeed', false)
indeed.short_desc = "Searches for jobs via Indeed.com "

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE76

8113Ch08CMP3 3/28/07 5:33 PM Page 76

indeed.short_desc << "and prints the top ten results."
indeed.description = 'This command searches Indeed.com for jobs matching [ARGS].'
indeed.description << 'You can specify a location to search '
indeed.description << 'via the -l and -r switches.'

The first line creates a new generic command named indeed, and the next two lines set up
a short and a long description. The short description is shown on the help page summarizing
available commands; both the short and the long descriptions are shown on the specific help
page for the indeed command. Next we’ll specify which options the indeed command can
accept.

indeed.options = CmdParse::OptionParserWrapper.new do |opt|
opt.on('-l', '--location LOCATION',
'Show jobs from LOCATION only') { |location| $location=location }
opt.on('-r', '--radius RADIUS',
'Sets a distance in miles from LOCATION to search from. ' <<
'This option has no effect without the -l option.') { |radius| $radius=radius }

end

This code creates a new OptionParserWrapper class, which parses optional arguments for
us. The opt.on calls each specify a short and a long version of a given argument, as well as
what to do when that argument is called. Each argument sets a variable that we can retrieve
when the indeed command is called.

■Note Internally it uses the optparse library to parse options; the library is used in Chapter 18, among
others.

indeed.set_execution_block do |args|
search_string= args.join(' ')
feed_url = 'http://rss.indeed.com/rss?'
feed_url << 'q=#{URI.escape(search_string)}'
feed_url << '&l=#{$location}&sort=date&radius=#{$radius}'
puts "Jobs matching \"#{search_string}\" from indeed.com"
puts "for more detail, see the following URL:\n\t#{feed_url}\n\n"

feed= FeedTools::Feed.open(feed_url)
feed.items.each do |item|
puts "#{item.title}"

end
end

This block of code uses the set_execution_block method to set what actually happens
when the indeed command is run from the command line. It takes the command-line argu-
ments, joins them into one search string, and produces an rss.indeed.com URL from them.
Note that this is only the arguments to the indeed command—options such as -l and -r are

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE 77

8113Ch08CMP3 3/28/07 5:33 PM Page 77

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE78

stripped out, as is the word indeed itself; only actual arguments and not options or commands
are passed to this code. Finally, FeedTools—an RSS parsing and output library for Ruby—is
used to open the feed and print out each of its items. You can find out more about FeedTools
in Chapter 10. (Note that the generated URL includes the $location and $radius variables
even if you don’t set them—this is because Indeed.com still works when those fields are
blank.)

The coolruby and craigslist commands work similarly—the first takes an RSS feed from
jobs.coolruby.com/rss and displays it, and the second simply produces a URL from the pro-
vided arguments. Let’s look at how this all ties together:

cmd.add_command(indeed)
cmd.add_command(coolruby)
cmd.add_command(craigslist)

cmd.parse

The first three lines add our newly created commands to our parser, giving us a total of
five commands—the custom indeed, coolruby, and craigslist commands, and the two built-
in commands help and version. The final line, cmd.parse, hands control off to the parser,
which will then call whichever command the user asked for on the command line.

HOW DOES THE GOOGLE SEARCH WORK?

The google command creates a search string that will search all of the Craigslist sites for recent listing. It
uses Google’s operators to cut down on extra results—specifically, it uses the daterange: operator to
ensure that the listings are recent. It also uses the site: operator to make sure that the results are all from
craigslist.org, and the inurl: operator to let you display only results from a certain section. This is
quite useful, since you can search only one Craigslist site at a time using Craigslist’s built-in tools.

For example, the following command will produce a URL to search for Craigslist jobs matching ruby
programming in the Computer Gigs section of all the different Craigslist sites:

ruby jobsearch craigslist ruby programming -s cpg

Note that the Computer Gigs section is slightly different from the Software Jobs section—computer
gigs are typically jobs for freelancers or moonlighters. You can search the software jobs section with the
argument -s sof. Note that the argument isn’t set by our program—it’s an artifact of the way Craigslist sets
up its sites. All of the Computer Gigs sections are in a cpg directory, so by searching for cpg in the URL, we
can find results only from that section. Software jobs, likewise, are in the sof directory; there are other
options, such as crg for Creative Gigs, and so on—you can find out more by visiting any Craigslist site and
looking for the directory for the section you’d like to search.

Here’s the algorithm we use to produce a Google string:

1. Start with the search string—this will be passed directly into the result search string as the q parameter.

2. Use Google’s site: operator to add a term that will require the results to be from craigslist.org.

3. If the user wants to search only part of Craigslist, add an inurl: term which restricts the results to
URLs containing that string.

8113Ch08CMP3 3/28/07 5:33 PM Page 78

4. Finish the query string by using the datetime: operator to restrict the results to those posted within
the last $days days. Note that the daterange: operator requires the dates to be in Julian date for-
mat, and so we use the jd method to retrieve the Julian date. (Julian dates are the number of days
that have elapsed since Monday, January 1, 4713 BC—like most date systems, it’s fairly arbitrary, but
fortunately it’s easy to convert the dates appropriately.)

5. Finally, print the search string for cutting and pasting into Google. We’ll also interpolate our query string
into a Google search URL and then print the result, so you can just cut and paste the URL into your
browser.

Conclusion
As you can see, cmdparse is a powerful and lightweight solution to providing a command-
based interface. You could easily customize the example shown in this chapter for your own
ends, and fortunately cmdparse is easy enough to use that most of the code in your program
will be dealing with its unique issues and not with parsing commands.

CHAPTER 8 ■ CREATING COMMAND-LINE UTIL IT IES WITH CMDPARSE 79

8113Ch08CMP3 3/28/07 5:33 PM Page 79

8113Ch08CMP3 3/28/07 5:33 PM Page 80

HTML Templating with erubis

erubis is an implementation of the eRuby markup language, which allows you to weave
Ruby code into HTML pages. In fact, eRuby lets you use the entire power of Ruby to output
HTML. Of course, you could achieve similar functionality with puts statements embedded in
Ruby code, but it’d be awkward and very difficult to maintain. As a bonus, some editors, such
as gvim and radrails, support editing eRuby templates directly. Embedding code manually is
painful and difficult—you have to constantly weave your HTML inside of your double quotes,
your HTML isn’t syntax-highlighted, and it’s easy to miss a double quote, breaking your code.

There are three notable eRuby implementations. Specifically, there is erb, which ships
with Ruby, and there’s also a confusingly named implementation of eRuby called eRuby, which
is faster than erb but slower than erubis. (Incidentally, erb is the implementation of eRuby
used by Ruby on Rails.) Additionally, erubis is very extensible. For example, it ships with a
number of extensions that change the way it parses eRuby, and you can easily create your
extensions. It’s also a pure Ruby library, so it can run wherever Ruby can run.

How Does It Work?
First let’s look at how eRuby works in general, and then we’ll discuss erubis in particular.

As mentioned, eRuby is a mix of Ruby and HTML. HTML code is passed to the browser as
is but embedded Ruby code is executed. In particular, there are several kinds of delimiter tags
that mark text as being embedded Ruby code, the most common being <%=..%> and <%..%>.
The first executes code and inserts it into the output; the second simply executes code, which
is useful for loops, conditional statements, and so forth. Here’s a brief example:

<p>5 + 1 = <%=5+1%></p>

When executed by an eRuby parser, that line of eRuby will output the following:

<p>5 +1 = 6</p>

However, HTML can also be placed inside blocks of Ruby code —you can have a loop that
outputs HTML on each iteration. Here’s eRuby code that does just that:

<% 1.upto(3) do |item_number| %>
List item #<%=item_number%>!

<% end %>
 81

C H A P T E R 9

■ ■ ■

8113Ch09CMP3 3/28/07 5:34 PM Page 81

The output is as follows:

List item #1!
List item #2!
List item #3!

As you can see, eRuby is reasonably easy to work with; it lets you use both Ruby code and
HTML easily, and neither makes the other hard to read—which is quite unlike using hard-
coded strings and puts statements.

erubis is an implementation of eruby. It’s purported to be faster than any other available
implementation, which is a bonus. It’s also easily customized via subclasses, and it has a few fea-
tures other libraries don’t have. For example, it has a <%==..%> tag, which automatically sanitizes
HTML—that is, it encodes the data as HTML so that HTML tags in your data become literal text
instead of being misinterpreted. Text misinterpreted as HTML could cause your display to be
really messed up—suppose, for example, you were viewing data that had the value </table> in
it. This would cause your table to end prematurely, leaving all of the subsequent data to be dis-
played wrongly. In fact, if this was a publicly accessible system, this could even be used to insert
malicious JavaScript code, which could be a very big security problem indeed.

Of course, you don’t always want to sanitize HTML, since at times you may insert HTML
into your output. Often, though, when you are reading data from a database that may contain
HTML, you’ll want to sanitize the output since you want to display the data as text and not
HTML. The same is likely true of user-submitted input.

Let’s look at an erubis example.

require 'erubis'

template = "<html><head>This is a test document!</head>
<body>
<h1>Hi!</h1>
<%1.upto(10) do |number|%>
<p>This is paragraph number <%=number%>!</p>

<%end%>
</body>
"
eruby_object= Erubis::Eruby.new(template)

puts eruby_object.evaluate()

The output of the snippet is as follows:

<html><head>This is a test document!</head>
<body>
<h1>Hi!</h1>

<p>This is paragraph number 1!</p>
<p>This is paragraph number 2!</p>

CHAPTER 9 ■ HTML TEMPLATING WITH ERUBIS82

8113Ch09CMP3 3/28/07 5:34 PM Page 82

<p>This is paragraph number 3!</p>
<p>This is paragraph number 4!</p>
<p>This is paragraph number 5!</p>

</body>

As you can see, it’s reasonably easy to evaluate an eRuby template using erubis; you
simply call Erubis::ERuby.new and pass it the template as a string; you then use the object’s
evaluate method to get the output.

Incidentally, Ruby on Rails uses eRuby templates, although it uses the erb library instead
of the erubis gem. If you’d like to use erubis instead of erb in a Rails application, see the
instructions on the erubis home page. You can get those instructions as well as the erubis
documentation at the erubis home page:

http://www.kuwata-lab.com/erubis/

■Tip There’s an optional parameter to the evaluate method. It specifies the binding for which the eRuby
code is evaluated, so you can specify what scope all of the local variables will come from. This is the same
kind of facility used by Ruby on Rails to pass values from controllers to views.

To install erubis, enter the following OS X/Linux shell or Windows command-prompt
command:

gem install erubis

HTML MySQL Table Viewer with erubis
The following script will demonstrate erubis by creating a MySQL table viewer. It will open a
MySQL connection using ActiveRecord and then dump the table using an erubis template.
(See Chapter 5 for more details.) The erubis template will be in a separate file; this separates
the presentation of the data from the flow control of the program so you can edit the template
easily without disrupting the program’s main logic. The script handles things like reading
command-line arguments, setting up the connection to the database, loading the data, and so
forth, and the template has to handle only the actual display of the data.

You’ll need ActiveRecord installed; if you don’t have it installed, you can install it via the
Windows command prompt or OS X/Linux shell command gem install activerecord.

require 'erubis'
require 'active_record'
require 'optparse'

$options = {}

opt=OptionParser.new do |opts|
opts.banner = "Usage: #{$0} [options] hostname.com file1 file2 file3..."

CHAPTER 9 ■ HTML TEMPLATING WITH ERUBIS 83

8113Ch09CMP3 3/28/07 5:34 PM Page 83

opts.on("-H", "--host HOST", "host") { |h| $options[:hostname] = h }
opts.on("-u", "--username USERNAME",

"username") { |u| $options[:username] = u }
opts.on("-p", "--password PASSWORD",

"password") { |p| $options[:password] = p }
opts.on("-o", "--port PORT", "port") { |p| $options[:port] = p }
opts.on("-d", "--database DATABASE", "DATABASE") { |d|

$options[:database] = d }
opts.on("-t", "--table TABLE", "TABLE") { |t| $options[:table] = t }
opts.on_tail("-h", "--help", "Show this message") { puts opts.help; exit }

end
opt.parse!

(puts "Please specify a table name to print.\n" << opt.help;
exit) unless $options[:table]

(puts "Please specify a database to print.\n" << opt.help;
exit) unless $options[:database]

$options[:hostname] ||= 'localhost'
$options[:username] ||= 'root'
$options[:password] ||= ''
$options[:port] ||= 3306

ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => $options[:hostname],
:username => $options[:username],
:password => $options[:password],
:database => $options[:database])

class OutputTable < ActiveRecord::Base
set_table_name $options[:table]

end

context={:table=> OutputTable, :print_data=>OutputTable.find_all}

eruby_object= Erubis::Eruby.new(File.read('template.rhtml'))

puts eruby_object.evaluate(context)

Save this as mysql2html.rb, and the save the following erubis code as template.rhtml:

<html>
<head>
<title>MySQL Dump of <%=@table.table_name.titlecase%></title>

</head>
<body>

CHAPTER 9 ■ HTML TEMPLATING WITH ERUBIS84

8113Ch09CMP3 3/28/07 5:34 PM Page 84

<h1><%=@table.table_name.titlecase%><h1>
<table>

<tr>
<%@table. column_names.each do |col|%>

<th><%=col %></th>
<%end%>

</tr>

<%@print_data.each do |row|%>
<tr>
<%@table.column_names.each do |col|%>

<td><%==row[col]%></td>
<%end%>
</tr>

<%end%>

</table>
</body>

</html>

To test the example, let’s create a simple MySQL database using the following Windows
command prompt or Mac OS X/Linux shell commands:

mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40 to server version: 4.1.9-nt

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database mysql2html_test;

Query OK, 1 row affected (0.00 sec)

mysql> use mysql2html_test;

Database changed

CHAPTER 9 ■ HTML TEMPLATING WITH ERUBIS 85

8113Ch09CMP3 3/28/07 5:34 PM Page 85

mysql> create table users (logon text, password text, joined timestamp);

Query OK, 1 row affected (0.08 sec)

mysql> insert into test (logon, password) values ('Mister X','eagle/beagle//3');

Query OK, 1 row affected (0.00 sec)

mysql> insert into test (logon, password) values ('Star Captain Y','tender++camel');

Query OK, 1 row affected (0.00 sec)

mysql> insert into test (logon, password) values ('Doctor Z','beable+proge-3');

Query OK, 1 row affected (0.00 sec)

Note that if the default username and password aren’t correct for your system, you can
use the -u and -p options to change them—if you had username fred and password john, you
could do the following as the initial command: mysql -u fred -p john. The remainder of the
commands would be the same.

At this point, you should have a working MySQL database with a few tables in it. You can
then test the script using the following command:

ruby mysql2html.rb -d mysql2html_test -t test

<html>
<head>
<title>MySQL Dump of Users</title>

</head>
<body>
<h1>Users<h1>
<table>

<tr>
<th>Logon</th>
<th>Password/th>
<th>Joined</th>

CHAPTER 9 ■ HTML TEMPLATING WITH ERUBIS86

8113Ch09CMP3 3/28/07 5:34 PM Page 86

</tr>

<tr>
<td>Mister X</td>
<td>eagle//beagle/3</td>
<td>Mon Oct 09 14:56:58 Eastern Daylight Time 2006</td>

</tr>

<tr>
<td>Star Captain Y</td>
<td>tender++camel</td>
<td>Mon Oct 09 14:57:01 Eastern Daylight Time 2006</td>

</tr>

<tr>
<td>Doctor Z</td>
<td>beable+proge-3</td>
<td>Mon Oct 09 14:57:04 Eastern Daylight Time 2006</td>

</tr>
</table>

</body>
</html>

As you can see, our script and template will produce nicely formatted HTML output from
a MySQL database; let’s take a look at how it works behind the scenes.

Dissecting the Example
Let’s examine our program. First we retrieve the various connection settings from the com-
mand line and then we create an ActiveRecord object. The program will die if the command is
not called with both a database name and a table name, since both are required to locate the
table. The parsing of the various switches is done using optparse. If you are curious as to how
the optparse library works, you can get the full details at the following URL:

http://www.ruby-doc.org/stdlib/libdoc/optparse/rdoc/classes/OptionParser.html

After creating a connection to the database, the bulk of the work is accomplished by
the following lines. First we create an ActiveRecord model to represent our table. By default,
ActiveRecord models have a table name based on their class name. In this case, though, we’ll
be accessing a user-specified table, so we override the default with the $options[:table] vari-
able—which corresponds to the table set by the user on the command line.

class OutputTable < ActiveRecord::Base
set_table_name $options[:table]

end

Next we create a context variable—this is a hash of all of the variables that will be accessi-
ble to our Ruby template. The first is the variable OutputTable, which will be accessible

CHAPTER 9 ■ HTML TEMPLATING WITH ERUBIS 87

8113Ch09CMP3 3/28/07 5:34 PM Page 87

through the variable @table; the second is all of the data from that table, retrieved using the
find_all method, which will be accessible through the variable print_data. Note that the
names used by the template correspond to the keys in the hash, and not to the original vari-
able names.

context={:table=> OutputTable, :print_data=>OutputTable.find_all}

The next line creates an erubis object by calling Erubis::ERuby.new() with the contents
of our template file as an argument. All that’s left is to print the results of evaluating—that is,
running—the code using the variables we created on the context=… line. At this point, the con-
trol is handed off to the template, and then the result is printed.

eruby_object= Erubis::Eruby.new(File.read('template.rhtml'))

puts eruby_object.evaluate(context)

As you can see, the control code is very simple and clean—it’s easy to extend this to hav-
ing multiple templates or storing the templates in the database, or to scale it up to more
templates and more data.

Next let’s look at the template internals:

<table>

<tr>
<%@table. column_names.each do |col|%>

<th><%=col %></th>
<%end%>

</tr>

<%@print_data.each do |row|%>
<tr>
<%@table.column_names.each do |col|%>

<td><%==row[col]%></td>
<%end%>
</tr>

<%end%>

</table>

This is the heart of our template—it contains three loops, the first of which prints out all
of the column names from the @table variable passed from our controller. The second loops
through each row of data, and the third loops through each column of each row, printing the
data. As you can see, it’s fairly simple—and you can easily modify the presentation of the code
without changing the logic behind the controller.

Conclusion
erubis is a great way to use eRuby templates. It’s fast, it’s customizable, and it’s easy to use; any
time you need eRuby, you should think about using erubis.

CHAPTER 9 ■ HTML TEMPLATING WITH ERUBIS88

8113Ch09CMP3 3/28/07 5:34 PM Page 88

Parsing Feeds with feedtools

The feedtools gem helps you parse feeds in either the RSS or Atom format. RSS and Atom are
formats used to publish frequently updating digital content, such as blogs, news, wikis, or
podcasts. Both formats allow programs to programmatically retrieve the information from
such sites; often, programs will aggregate multiple feeds together and display the results of
several sites at once.

feedtools is an excellent choice for writing those sorts of aggregators. It can be useful in a
variety of contexts; for example, you could use it to add a sidebar displaying news from CNN
or BBC to your rails application. You could also use it to display search-engine results, such
as a job search on Indeed.com or a blog search on Google Blog Search. You can even use it to
display videos from Yahoo! News or YouTube.

How Does It Work?
The feedtools gem helps you parse newsfeeds. Newsfeeds—typically in the Atom or RSS for-
mat—let you track changes to your favorite websites. Since there is a huge number of sites on
the Internet and since many of them change incredibly fast, such feeds can make your life
much easier. RSS and Atom both provide a standard XML file format for describing news—
such as current events, blog posts, or changes to a site. Nearly all blogs offer RSS and Atom
feeds, and so do most news sites, like Google News, CNN, BBC, and so forth.

Atom and RSS are both XML formats, so you could parse them using a Ruby library like
the standard Ruby library REXML or the xml-simple gem (see Chapter 33 for more details.) How-
ever, using feedtools means that you can take advantage of a powerful newsfeed-specific
interface, which makes your life much easier. For example, here’s how easy it is to print out the
titles from a newsfeed:

require 'feed_tools'
newsfeed=FeedTools::Feed.open('http://rss.coolruby.com/')
newsfeed.items.each do |item|
puts item.title

end

LAMP developers - S & A Associates
using iText in JRuby to Create PDF
Computer Systems Analysts - BAE SYSTEMS
The Least Surprised #13: Those Are Stars In Our Eyes

89

C H A P T E R 1 0

■ ■ ■

8113Ch10CMP2 3/26/07 5:56 PM Page 89

Server Engineer - Cross Creek Systems
Senior Software Engineer - Harvard Law School
Developer, Internet Software - Tribune Company
Senior Software Engineer - Harvard University
Ajax Web Developer - Global Software Technologies
CSS Web Developer - Global Software Technologies
Software Architect - J2EE/.NET - Riviera Partners

The second line creates a new FeedTools:Feed object using the open method. The URL
specified is http://rss.coolruby.com/, which is the RSS feed for http://coolruby.com. The
next line uses the .items method of the feed and call its .each method to iterate through each
feed item, then the .title method of each item is used to print out the item titles. You can
access other attributes of each item, of course—the URL of the full view of the item, the date it
was updated, and so forth. In some cases—many blogs, for example—the full text of an item is
included in the .description attribute.

You can use the following command to install feedtools:

gem install feedtools

CACHING WITH FEEDTOOLS

feedtools has caching built in; it can store RSS data locally, and download the feeds only when they have
changed. This is useful, since it means that your application won’t use any more bandwidth than necessary.
Unfortunately, it’s designed for Rails applications. It can’t be used without a database connection, and it
expects Rails-style paths, with a YAML markup file specifying the database details. (YAML is the markup
language Rails uses to specify the database-configuration information.) This is convenient for use in
Rails, but awkward outside of Rails.

Note, though, that feedtools will cache transparently, without any extra code in the script, if you fulfill
two requirements. First, you’ll need a database.yml file, using the same format that Rails does, and it
needs to be placed in a config/ directory—so if your script is in /home/someuser/myscript, the full
path to your database.yml file will be /home/someuser/myscript/config/database.yml. You’ll
need a database specified for the production environment—see Chapter 23 for more details on Rails
database.yml files. Second, the database needs to have the feedTools caching table in it—you can find
the schema definition for your database in the ruby\lib\ruby\gems\1.8\gems\feedtools-x.y.z\db
directory, where x.y.z is the version of the feedtools gem that you have installed. (Note that if you are
using feedtools from inside a Rails app, the first requirement will be taken care of—you’ll only need to
add the feedtools caching table to your app.)

You can find out more about using the feedtools cache at the following URL:

http://dekstop.de/weblog/2005/12/feedtools_cache_in_ruby_scripts/

CHAPTER 10 ■ PARSING FEEDS WITH FEEDTOOLS90

8113Ch10CMP2 3/26/07 5:56 PM Page 90

A News Search Tool Built with feedtools
To demonstrate feedtools, we’re going to build a short program (Listing 10-1) that will show
the top ten or so Yahoo! News results. It will use feedtools to download and parse the feed,
and then use Camping to serve a web page that has the news items on it. We can then use our
Web browser to see the feed. (You can see more feedtools examples in Chapters 5 and 8.)

Note you’ll need Camping installed—you can use the gem install camping command at
the windows command prompt or Linux/OS X shell to install it. You can find out more about
Camping in Chapter 7.

Listing 10-1. Searching News Feeds with feedtools (news.rb)

require 'camping'
require 'feed_tools'
require 'uri'

Camping.goes :News

module News::Controllers
class Index < R '/'
def get
render :frontpage

end
end

end

module News::Views
@@search_term= 'ruby on rails'
def frontpage
h1 "News about #{@@search_term.titlecase}"

ul do
url="http://news.search.yahoo.com/news/rss?" <<

"ei=UTF-8&p=#{URI.encode(@@search_term)}&eo=UTF-8"
feed=FeedTools::Feed.open(url)

feed.items.each do |feed_item|
div do
a :href=>feed_item.link do
feed_item.title

end
end

end
end

end
end

CHAPTER 10 ■ PARSING FEEDS WITH FEEDTOOLS 91

8113Ch10CMP2 3/26/07 5:56 PM Page 91

Save this example as news.rb. You can run the code using the following Windows command
prompt or Linux/OS X shell command:

camping news.rb

** Camping running on 0.0.0.0:3301.

You can now access the application in your Web browser at the following address:

http://127.0.0.1:3301

You’ll then see a simple Web page with the latest Ruby on Rails news on it.

Dissecting the Example
First, our script requires the Camping gem, the feedtools gem, and the URI module that is part
of Ruby. The Camping gem is a Web framework—it’s covered in detail in Chapter 7. The URI
module is used to dynamically the create the Google search string—its encode method lets us
encode our search string into our Google search URL. Next, it uses the Camping.goes method
to create a new Camping application namespace—you can find out more about this in Chapter
7 as well. You can see all of our controller code in this section of the code:

module News::Controllers
class Frontpage < R '/'
def get
render :frontpage

end
end

end

This snippet defines just one controller—Frontpage—which renders our one and
only page. This corresponds to the root of our Web server—by default, the Web address
http://localhost:3301/. This controller simply calls our singular view, which is shown here:

module News::Views
@@search_term= 'ruby on rails'
def frontpage
h1 "News about #{@@search_term.titlecase}"
url="http://news.search.yahoo.com/news/rss?" <<

"ei=UTF-8&p=#{URI.encode(@@search_term)}&eo=UTF-8"
feed=FeedTools::Feed.open(url)

feed.items.each do |feed_item|
div do
a :href=>feed_item.link do
feed_item.title

end
end

end

CHAPTER 10 ■ PARSING FEEDS WITH FEEDTOOLS92

8113Ch10CMP2 3/26/07 5:56 PM Page 92

end
end

This module contains our single Camping view. It uses Markaby to output HTML—you can
find out more about the Markaby gem recipe in Chapter 14. The @@search_term variable is a
class-level variable, which has a permanently hard-coded search term—by default, it’s ruby on
rails, but you can change that if you’d like. The h1 method outputs a header for the page, and
then we create a URL for the page by inserting the search term into our template URL.

Next we use the FeedTools::Feed.open method to create a new feedtools object. This
automatically opens and downloads our newsfeed. Finally, we loop through the feed.items
array, creating a div element with the title of the item and a link to the news item.

Conclusion
As you can see, the feedtools interface is very intuitive, and you can quickly create sites and
applications that use RSS and Atom feeds using feedtools.

CHAPTER 10 ■ PARSING FEEDS WITH FEEDTOOLS 93

8113Ch10CMP2 3/26/07 5:56 PM Page 93

8113Ch10CMP2 3/26/07 5:56 PM Page 94

Creating Graphical User
Interfaces with fxruby

While Ruby is perhaps best known for the Rails Web-application toolkit (introduced in
Chapter 23), it’s also possible to create excellent graphical applications using Ruby. The FOX
GUI toolkit is a cross-platform (Mac OS X, Linux X11, and Windows) toolkit, and the fxruby
gem lets you use Ruby to create FOX applications.

How Does It Work?
Since FOX is designed for multiple platforms, programming FOX is slightly different than pro-
gramming graphical applications on each individual platform. It’s reasonably easy to pick up,
however, even if you have no experience writing graphical applications.

FOX applications are composed of one or more windows, and each window can have var-
ious widgets: menus, text boxes, check boxes, command buttons, and so forth. Each of these
items can have events—which are composed of methods in our Ruby code that respond to a
given user’s action.

For example, in a hypothetical text editor written in Ruby, when the user clicks the File
menu and then the Save As menu item, it will create a click event. The Ruby application will
respond to the click event, just like a Rails application would respond to a request for a Web
page. When no events are happening, your application is essentially in a holding pattern—wait-
ing to receive an event. Fortunately, fxruby takes care of the difficult work, leaving us with a nice
object-oriented interface to let us create windows and controls and then attach code to them.

Listing 11-1 contains a brief example.

Listing 11-1. test_application.rb

require 'fox16'

include Fox

myApp = FXApp.new

FXMainWindow objects are windows;
our single control will be inside this
window.

95

C H A P T E R 1 1

■ ■ ■

8113Ch11CMP3 3/28/07 8:56 AM Page 95

mainWindow=FXMainWindow.new(myApp, "Test App")

FXButton objects are clickable buttons.

my_button= FXButton.new(mainWindow, 'Click Me!')
my_button.connect(SEL_COMMAND) do
my_button.text="I've been Clicked!"

end

myApp.create

mainWindow.show(PLACEMENT_SCREEN)

myApp.run

This example will show a single, small window with the caption Test App; it will have a sin-
gle clickable button labeled Click Me (Figure 11-1), and when you click it, the label changes to
I’ve been Clicked (Figure 11-2).

Figure 11-1. The example before being clicked

Figure 11-2. The example after being clicked

You can use the following command to install fxruby:

gem install fxruby

Under Linux or OS X, you’ll need to have the FOX toolkit installed before you install
fxruby; you can get it here:

http://www.fox-toolkit.org/

Dynamic MySQL Data Form with fxruby
The script in Listing 11-2 demonstrates fxruby by creating a form to insert data into a MySQL
table. It uses ActiveRecord to read the table information, and then create a form based on
those table names. (You’ll need to install the ActiveRecord gem as well; see Chapter 5 for more

CHAPTER 11 ■ CREATING GRAPHICAL USER INTERFACES WITH FXRUBY96

8113Ch11CMP3 3/28/07 8:56 AM Page 96

information.) It will use ActiveRecord’s Inflector.Humanize method to create friendly table
labels, and it will work on any MySQL table, since ActiveRecord provides database reflection.
You can see the result in Figure 11-3.

You’ll also need to be running a graphical interface, of course, such as the default interface
on Mac OS X, Windows, and X11 Linux.

■Note Chapter 26 has an additional example of using fxruby.

Figure 11-3. The application in use

Listing 11-2. fxruby.rb

require 'fox16'
require 'active_record'
require 'optparse'

$options = {}

opt=OptionParser.new do |opts|
opts.banner = "Usage: #{$0} [options]"
opts.on("-H", "--host HOST", "host") { |h| $options[:hostname] = h }
opts.on("-u", "--username USERNAME", "username") { |u| $options[:username] = u }
opts.on("-p", "--password PASSWORD", "password") { |p| $options[:password] = p }
opts.on("-o", "--port PORT", "port") { |p| $options[:port] = p }
opts.on("-d", "--database DATABASE", "DATABASE") { |d| $options[:database] = d }
opts.on("-t", "--table TABLE", "TABLE") { |t| $options[:table] = t }
opts.on_tail("-h", "--help", "Show this message") { puts opts.help; exit }

end
opt.parse!

(puts "Please specify a table name.\n" << opt.help; exit) unless $options[:table]
(puts "Please specify a database.\n" << opt.help; exit) unless $options[:database]

CHAPTER 11 ■ CREATING GRAPHICAL USER INTERFACES WITH FXRUBY 97

8113Ch11CMP3 3/28/07 8:56 AM Page 97

$options[:hostname] ||= 'localhost'
$options[:username] ||= 'root'
$options[:password] ||= ''
$options[:port] ||= 3306

#First, we connect to the database that the user specified...
ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => $options[:hostname],
:username => $options[:username],
:password => $options[:password],
:database => $options[:database])

and then we create an ActiveRecord model to represent it...

class OutputTable < ActiveRecord::Base
set_table_name $options[:table]

end

include Fox

fox_application=FXApp.new

we're going to create a single window for our application;
it will be titled according to the name of our table.

main_window=FXMainWindow.new(fox_application, "Insert record into " <<
#{Inflector.humanize($options[:table])}", nil, nil, DECOR_ALL)

This matrix is like a table for our controls;
it's a MATRIX_BY_COLUMNS matrix with two columns,
which means that our app will have two columns of
controls, which will line up nicely. The first
column will be our labels, and the second column
will be our text boxes.

control_matrix=FXMatrix.new(main_window,2, MATRIX_BY_COLUMNS)

This array will contain all of our data entry controls -
we'll need this to insert the data into our model.

field_controls = []

OutputTable.columns.each do |col|
FXLabel.new(control_matrix, Inflector.humanize(col.name))
field_controls << [col.name,FXTextField.new(control_matrix, 30)]

end

CHAPTER 11 ■ CREATING GRAPHICAL USER INTERFACES WITH FXRUBY98

8113Ch11CMP3 3/28/07 8:56 AM Page 98

This is a blank frame; it does nothing but take up a space in
the matrix.
if this wasn't here, our "Insert button" would line up with
our labels, but it looks nicer lined up with the text boxes.

FXHorizontalFrame.new(control_matrix, LAYOUT_FILL_X)

This creates our "Insert button", and attaches some code
to the SEL_COMMAND event; this event controls what happens
when we click on it.

FXButton.new(control_matrix, 'Insert').connect(SEL_COMMAND) do
OutputTable.new do |rec|
field_controls.each do |field_control|
name, control = *field_control
rec.send("#{name}=", control.text)

end
rec.save

end

FXMessageBox.new(main_window, "Data Inserted",
"Data inserted into table '#{Inflector.humanize($options[:table])}'.\n\nThanks!",
nil, MBOX_OK | DECOR_TITLE).execute

end

fox_application.create

main_window.show(PLACEMENT_SCREEN)

fox_application.run

Save this as fxruby_demo.rb. To test our example, let’s create a simple MySQL database
using the following commands:

mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40 to server version: x.y.z

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

CHAPTER 11 ■ CREATING GRAPHICAL USER INTERFACES WITH FXRUBY 99

8113Ch11CMP3 3/28/07 8:56 AM Page 99

mysql> create database fxruby_test;

Query OK, 1 row affected (0.00 sec)

mysql> use fxruby_test;

Database changed

mysql> create table users (first_name text, last_name text, secret_password text);

Query OK, 1 row affected (0.08 sec)

Note that if the default username and password aren’t correct for your system, you can
use the -u and -p options to change them—if you had username fred and password john, you
could do the following as the initial command: mysql -u fred -p—you can then enter the
password when prompted. The remainder of the commands would be the same.

At this point, you should have a working MySQL database with a single table in it. You can
then test the script using the following command:

ruby fxruby_demo.rb -H localhost -u root -d fxruby_test -t test

As you can see, this brings up a new record form. You can enter some test data, and click
Insert—you’ll then get a dialog confirming the insertion and the data will be added.

Dissecting the Example
Let’s examine Listing 11-2—first we retrieve the various connection settings from the com-
mand line and then we create an ActiveRecord object. This works the same as the optparse
example in Chapter 9; additionally, you can find the API reference at the following URL:

http://www.ruby-doc.org/stdlib/libdoc/optparse/rdoc/classes/OptionParser.html

We then set up an example table model, just like we did in Chapter 9. This table is called
OutputTable, and represents whatever table is specified on the command line. Next we create
a new application window based on the data from that table.

fox_application=FXApp.new

main_window=FXMainWindow.new(fox_application, "Insert record into " <<
"#{Inflector.humanize($options[:table])}", nil, nil, DECOR_ALL)

The first line creates an FXApp object that represents the new application. The next line
creates a new FXMainWindow object—the first parameter specifies that the parent FXApp object

CHAPTER 11 ■ CREATING GRAPHICAL USER INTERFACES WITH FXRUBY100

8113Ch11CMP3 3/28/07 8:56 AM Page 100

will be the one we just created. The second parameter is the table title—the call to Inflector.
humanize means that it “humanizes” the table name; for example, it converts underscores into
spaces, capitalizes the first character of each word, and so forth.

control_matrix=FXMatrix.new(main_window, 2, MATRIX_BY_COLUMNS)

field_controls = []

OutputTable.columns.each do |col|
FXLabel.new(control_matrix, Inflector.humanize(col.name))
field_controls << [col.name,FXTextField.new(control_matrix, 30)]

end

The first line creates an FXMatrix—it’s an object that holds controls in a matrix or table
format. It will fill up either top to bottom or left to right, depending on the third parameter.
Additionally, the second parameter specifies the number of columns or rows. The first param-
eter specifies the parent object.

We then loop through each column in the table, and create a label and a new FXTextField
control for each. The label is purely cosmetic—it shows the humanized label for the text field,
based on the name of the table. We create a new text field as well, which will be used for the end
user to enter their data for each field. We also add the text field control to the field_controls
array, which means we can access it later when we add the record into the table.

Because we specified two columns for each row in the FXMatrix creation line, each label
and text-field combination will be on its own row.

Next we need to create a button that actually adds the data to the table. This chunk of
code does just that:

FXHorizontalFrame.new(control_matrix, LAYOUT_FILL_X)
FXButton.new(control_matrix, 'Insert').connect(SEL_COMMAND) do
OutputTable.new do |rec|
field_controls.each do |field_control|
name, control = *field_control
rec.send("#{name}=", control.text)

end
rec.save

end

FXMessageBox.new(main_window, "Data Inserted",
"Data inserted into table '#{Inflector.humanize($options[:table])}'.\n\nThanks!",
nil, MBOX_OK | DECOR_TITLE).execute

end

We create a new FXHorizontalFrame—since we ended the loop on a new row, the
horizontal frame will take up the first cell. The horizontal frame can also hold controls, but
in this example we use it only as a placeholder. The new FXButton control is what Windows
programmers call a “command button”—in HTML it would be called a “submit control.” It’s
a control with a label you can click on to perform an action. In this case, it’s an action to add
the new record, and we connect the block of code we specify to the SEL_COMMAND message. The

CHAPTER 11 ■ CREATING GRAPHICAL USER INTERFACES WITH FXRUBY 101

8113Ch11CMP3 3/28/07 8:56 AM Page 101

SEL_COMMAND message kicks in when the control is clicked or activated using the keyboard.
(Under Windows, for example, you can tab to the control and then press the spacebar.)

When the FXButton control is activated, the OutputTable.new line prepares a new record
to be added into the table. We then loop through each control and set the appropriate field for
each control to the entered value. Finally, we save the new record using the .save method.

The last three lines create the application object, which loads all of the controls we cre-
ated already; after that, we just need to show our main window and run the program.

fox_application.create

main_window.show(PLACEMENT_SCREEN)

fox_application.run

The first of these three lines creates the application’s resources; that is, it calls the operating-
system-specific APIs to instantiate our main window, our labels and text boxes, and so forth. The
second line shows the main window, since it’s invisible by default. The sole parameter to that
function call is the PLACEMENT_SCREEN constant, which centers the window on the screen. The
final call takes over control of the program—turning it into an event-driven program that simply
responds to user events. The function call will return when the application is exited.

Conclusion
fxruby provides access to a fast, flexible, cross-platform GUI toolkit, and you can quickly
create virtually any kind of graphical application with it.

CHAPTER 11 ■ CREATING GRAPHICAL USER INTERFACES WITH FXRUBY102

8113Ch11CMP3 3/28/07 8:56 AM Page 102

Retrieving Stock Quotes
with YahooFinance

The YahooFinance gem provides an interface to the Yahoo! Finance API for the retrieval of
stock quotes. This service is free, unlike many other services, and it’s much easier to use the
YahooFinance gem to extract quotes from Yahoo! than it is to extract quotes via screen scraping.

Using the YahooFinance gem, you can easily retrieve current stock quotes on most inter-
national stock markets, and get information on some indexes and mutual funds. You could
use the gem to create a stock ticker, for example, or a program that automatically downloads
the current value of your stock portfolio and emails it to you. Finally, you can also use it to get
historical information on stocks (for more information on this, see the sample application in
Chapter 22).

How Does It Work?
The YahooFinance gem retrieves stock quotes from http://finance.yahoo.com. Of course, this
means that you’ll need an Internet connection to use the YahooFinance gem. The gem is fairly
easy to use. For example, suppose you wanted to print the most recent quotes for Yahoo! and
Microsoft stock. You can use the following code to do that:

require 'yahoofinance'

YahooFinance::get_standard_quotes('MSFT,YHOO').each do |symbol, quote|
puts "#{symbol}: #{quote.lastTrade}"

end

The get_standard_quotes function takes a comma-separated list of symbols and returns
a hash with symbol and quote information; the quote information is in the form of an object
with reasonably straightforward properties: lastTrade represents the last trade price, open
represents the opening price, previousClose represents the previous day’s closing price, and
so forth. In the preceding snippet example, we use the lastTrade property.

Running that Ruby code produces a result similar to this:

YHOO: 29.74
MSFT: 28.98

103

C H A P T E R 1 2

■ ■ ■

8113Ch12CMP2 3/23/07 12:24 PM Page 103

Of course, the exact values will vary—both Yahoo! and Microsoft stocks will change values
throughout the trading day. In any case, as you can see, it’s pretty easy to retrieve quotes on
various symbols. Note that Yahoo! Finance delays its quotes by about 20 minutes, so the values
you retrieve with YahooFinance won’t be up-to-the-minute.

You can find the documentation for the YahooFinance gem here:

http://www.transparentech.com/projects/yahoofinance

■Note The YahooFinance gem is at the heart of the Grism stock-market tool—Grism lets you watch
stocks graphically using a GTK interface. You can find out more at the following Web address:

http://www.grism.org/

The following command installs the YahooFinance gem:

gem install yahoofinance

Displaying a Stock-Market Ticker
with YahooFinance
The example application in Listing 12-1 uses the YahooFinance gem and the fxruby gem (see
Chapter 11) to display a graphical stock ticker. The example takes stock symbols on the com-
mand line, and for each symbol specified, it will constantly scroll the name and price in a
graphical window. The prices are updated once a minute.

Listing 12-1. A Graphical Stock Ticker with YahooFinance (ticker.rb)

require 'yahoofinance'
require 'fox16'
include Fox

Exit if the user did not pass any symbols
on the command line.
(puts "Usage: ruby #{$0} STOCK_SYMBOL STOCK_SYMBOL..."; exit) unless ARGV.length>0

These values can be changed; they represent
time in milliseconds.

@scroll_interval = 25
@update_interval = 6000

@fox_application=FXApp.new

CHAPTER 12 ■ RETRIEVING STOCK QUOTES WITH YAHOOFINANCE104

8113Ch12CMP2 3/23/07 12:24 PM Page 104

@main_window=FXMainWindow.new(@fox_application, "Stock Ticker ",
nil, nil,
DECOR_ALL | LAYOUT_EXPLICIT)

@tickerlabel = FXLabel.new(@main_window, '', nil, 0, LAYOUT_EXPLICIT)

The following method updates the ticker text.
It's called by a timer once a minute.

def update_label_text
label_text = ' '
Loop through all of the symbols, retrieve
the most recent quotes, and update the
label with the most recent information.
YahooFinance::get_standard_quotes(ARGV.join(',')).each do |symbol, quote|
label_text << "#{symbol}: #{quote.lastTrade} ... "

end
@tickerlabel.text = label_text

end

The following method scrolls the ticker across
the screen.
#
It's called by a timer every 25ms.

def update_label_position

@left_position = @tickerlabel.x if @left_position.nil?

Move the ticker back to the left once
it reaches the right edge.

if(@left_position > @main_window.width)
@left_position = -@tickerlabel.width

end

@left_position = @left_position + 3

@main_window.padLeft = @left_position
end

update_label_text

@left_position=nil

These following two functions manage
the timing of the update and scroll
functions; FOX doesn't have a permanent

CHAPTER 12 ■ RETRIEVING STOCK QUOTES WITH YAHOOFINANCE 105

8113Ch12CMP2 3/23/07 12:24 PM Page 105

timer - just one-shot timeouts - so
every time one of these functions is called,
we need to set the timeout again.
#
def scroller(sender, sel, ptr)
update_label_position
@fox_application.addTimeout(@scroll_interval, method(:scroller))

end

def updater(sender, sel, ptr)
update_label_text
@fox_application.addTimeout(@update_interval, method(:updater))

end

Initialize the two timer functions...

@fox_application.addTimeout(@scroll_interval, method(:scroller))
@fox_application.addTimeout(@update_interval, method(:updater))

Create the window, show it,
and then run the application.

@fox_application.create

@main_window.show(PLACEMENT_SCREEN)

@fox_application.run

Save this script as ticker.rb. You can then run it using the following command:

ruby ticker.rb msft yhoo

As you can see in Figure 12-1, this script displays a graphical ticker with the stock symbols
specified on the command line; they scroll from left two right. Every minute, the stock prices
update.

Figure 12-1. The stock ticker

Dissecting the Example
Most of the program in Listing 12-1 uses fxruby to prepare the stock-ticker window; the stock-
label ticker, for example, is scrolled across the rest of the screen by the update_label_position
function, which simply moves the label toward the right of the window and resets it once it
scrolls out of view.

CHAPTER 12 ■ RETRIEVING STOCK QUOTES WITH YAHOOFINANCE106

8113Ch12CMP2 3/23/07 12:24 PM Page 106

However, the heart of the the program is a single function, update_label_text, which
grabs the values and places them in the stock ticker as follows:

def update_label_text
label_text = ' '
Loop through all of the symbols, retrieve
the most recent quotes, and update the
label with the most recent information.
YahooFinance::get_standard_quotes(ARGV.join(',')).each do |symbol, quote|
label_text << "#{symbol}: #{quote.lastTrade} ... "

end
@tickerlabel.text = label_text

end

The get_standard_quotes function returns a hash; each element returns a symbol and a
quote object. The quote object has various properties that describe the stock quote that was
retrieved; the property used here is lastTrade, which refers to the last price at which the stock
traded. Each stock’s symbol and last trading price is concatenated into a single string, which is
then assigned to the label.

Conclusion
YahooFinance lets you quickly access stock quotes from the Yahoo! Finance service; it’s not as
quickly updated as various commercial providers are, but it’s free and it’s easy to use.

CHAPTER 12 ■ RETRIEVING STOCK QUOTES WITH YAHOOFINANCE 107

8113Ch12CMP2 3/23/07 12:24 PM Page 107

8113Ch12CMP2 3/23/07 12:24 PM Page 108

Parsing HTML with hpricot

The hpricot gem provides a fast Ruby HTML parser; it’s partially implemented in C to
increase performance. hpricot has two big advantages: it’s easy to use and it’s fast. It com-
bines an elegant interface with the ability to search by CSS selectors, element IDs, tag types,
and so forth. At the same time, it’s also high-performance, so you can process even fairly large
HTML documents quickly.

For example, you can use hpricot to pull information from virtually any Web page. This
process, called screen scraping, allows you to take information provided by a Web page and
translate it into a different form. You could download information provided by a site and index
it into a Web page, for example, or you could write a script that automatically logs on to, say,
your bank’s website, downloads your latest statement, and then places the result in a MySQL
database. You could also use hpricot to automatically parse your website and check for accu-
racy by comparing the data your site is displaying to a source that is known to be accurate.

■Note If you are performing any significant amount of data retrieval—and doubly so if it’s commercial—
you should obtain written permission from the site in question before starting. Bandwidth costs money, and
otherwise you may find your IP banned. In a worst-case scenario, you could face legal action.

How Does It Work?
The hpricot gem helps you do two things: First, it lets you parse HTML, including possibly
broken HTML, such as is commonly found on the Web. Second, it lets you update HTML so
that you could, for example, add a certain attribute to all tags of a certain CSS class. hpricot
lets you use an intuitive interface to parse HTML in a variety of ways.

Let’s look at a brief example (Listing 13-1). We’ll pull all of the list items out of an HTML
list and print them out using hpricot.

Listing 13-1. Parsing HTML with hpricot (hpricot_parse_by_tag.rb)

require 'hpricot'

document= <<END
<p>This is the first test paragraph.</p>

109

C H A P T E R 1 3

■ ■ ■

8113Ch13CMP2 3/23/07 10:34 AM Page 109

This is the first list item.
This is the second list item.

END

parser=Hpricot.parse(document)

(parser/:li).each do |list_item|
puts list_item.inner_html

end

Save this code as hpricot_parse_by_tag.rb. You can run this code with the following com-
mand:

ruby hpricot_parse_by_tag.rb

This is the first list item.
This is the second list item.

The first line requires the hpricot library, and the next few lines use a “here document” to
have the HTML stored directly in the Ruby script. The next line uses the .parse method of
hpricot to parse the HTML. The line after that looks like this:

(parser/:li).each do |list_item|

The use of the divide operator (/) is convenient—it is equivalent to the .search method in
this line:

parser.search(:li).each do |list_item|

Both lines search the HTML for the specified tag. Also note that the divisor—in this case,
:li—can be either a string literal or a symbol. That means that the following lines are also the
same as the preceding two lines:

(parser/'li').each do |list_item|
parser.search('li').each do |list_item|

There are other specifiers, as well. For example, you can use the [] operator to pull out
just one element, and there are a number of other selectors—such as by the ID of the element
or by class. Listing 13-2 shows both of those techniques.

Listing 13-2. Selecting HTML Elements by ID (hpricot_ select_by_id.rb)

require 'hpricot'
document= <<END
<h1 class="big_header">This is a header.</h1>
<h1 class="big_header">This is the second big header.</h1>
<p>This is the first test paragraph.</p>

This is the first list item.

CHAPTER 13 ■ PARSING HTML WITH HPRICOT110

8113Ch13CMP2 3/23/07 10:34 AM Page 110

This is the second list item.

<p id="footer_paragraph">Lorem dolor sit amet...</p>
END

parser=Hpricot.parse(document)

puts (parser/'#footer_paragraph').inner_html

(parser/'h1.big_header').each do |list_item|
puts list_item.inner_html

end

Save this code as hpricot_select_by_id.rb. You can run this code with the following com-
mand:

ruby hpricot_select_by_id.rb

Lorem dolor sit amet...
This is a header.
This is the second big header.

Just like before, we use a here document to load the HTML fragment. In this case, there are
two <h1> tags with the CSS class big_header and one paragraph with the id footer_paragraph,
and we are going to pull out those three elements using hpricot. As before, we use the divide
operator and two types of selectors. The first is the #id selector, which specifies the ID of the
element we want—we just have to precede the ID we want with a hash mark (#). The second
selector is the .classname selector, as in h1.big_header, which specifies that we want all h1 tags
with a classname of big_header.

You can use the following Linux/OS X shell or Windows command-prompt command to
install the hpricot gem:

gem install hpricot

■Note There are two versions of this gem: one for Windows and one for every other operating system. If
you’re on Windows, use the win32 distribution—otherwise use the ruby distribution.

Screen-Scraping a Catalog with hpricot
Our sample application (Listing 13-3) will use hpricot to search an ecommerce site, http://
practicalrubygems.com/examplestore. It’s a fictional musician’s catalog full of products like
guitars and saxophones. You can search and view products, but you can’t actually order any-
thing. This is somewhat similar to our job-search script in Chapter 8, but unlike that example,
this script doesn’t require an RSS feed. Of course, this code may break if the site changes
significantly.

CHAPTER 13 ■ PARSING HTML WITH HPRICOT 111

8113Ch13CMP2 3/23/07 10:34 AM Page 111

Listing 13-3. Screen-Scraping an Online Catalog with hpricot (search_catalog.rb)

require 'uri'
require 'open-uri'
require 'hpricot'

(puts "usage: #{$0} search_term "; exit) unless ARGV.length>0

search_term = ARGV.join(' ')

url = "http://practicalrubygems.com/examplestore/search/#{URI.encode(search_term)}"

doc = Hpricot(open(url))

products=[]
doc.search("table#products").each do |item|
(item/'tr td').each do |td|
product=Hash.new

(td/"a").each do |navigation|
product[:title]= navigation.inner_html
product[:link]= navigation.attributes['href']

end

price= (td/"span.price")
product[:price]= price.inner_html if price.any?

products << product
end

end

products.each do |product|
puts "#{product[:title]}, #{product[:price]}\n#{product[:link]}\n\n"

end

Save this script as search_catalog.rb. You can then run it using the following command:

ruby search_catalog.rb example manufacturer

Example Manufacturer Ultra Acoustic Guitar, Price: $599.95
http://practicalrubygems.com/examplestore/product/Example-Manufacturer-Ultra-
Acoustic-Guitar?sku=463131

Example Manufacturer Speaker Cab, Price: $499.98
http://practicalrubygems.com/examplestore/product/Example-Manufacturer--Speaker-
Cab?sku=463131

CHAPTER 13 ■ PARSING HTML WITH HPRICOT112

8113Ch13CMP2 3/23/07 10:34 AM Page 112

Ultra Light CD player, Price: $199.98
http://practicalrubygems.com/examplestore/product/Ultra-Light-CD-player?sku=463131

Example Manufacturer Super Acoustic Guitar, Price: $399.99
http://practicalrubygems.com/examplestore/product/Example-Manufacturer-Super-
Acoustic-Guitar?sku=463131

Learning Jazz Bass Amp by Example Manufacturer, Price: $299.99
http://practicalrubygems.com/examplestore/product/Learning-Jazz-Bass-Amp-by-Example-
Manufacturer?sku=463131

As you can see, this script will print out the various the results of the search we specified
on the command line. If we wanted to, we could have exported into a CSV file or used
ActiveRecord to export it into a MySQL database. (See Chapter 5 for more detail.)

Dissecting the Example
The program in Listing 13-3 essentially works in two parts: the first loops through the various
TD elements. Note that TD is short for table data; each one represents a single cell of data in an
HTML table, and in this case, each TD element represents a result. For each result, we pull out
the link:

doc.search("/table#products").each do |item|
(item/'td.nav_content').each do |td|
product=Hash.new

(td/"a").each do |navigation|
product[:title]= navigation.inner_html
product[:link]= navigation.attributes['href']}

end

price= (td/"span.price")
product[:price]= price.inner_html if price.any?

products << product
end

end

We search for the table with the ID product, and then we look for all of the cells inside
that table. Each of those cells represents one result, and for each result we look for an <a> tag
inside it—this represents the name of the result and the URL for the full page. Finally, we grab
the price from the span with the CSS class price. We then add the data we’ve collected to our
array of products:

products.each do |product|
puts "#{product[:title]}, #{product[:price]}\n#{product[:link]}\n\n"

end

CHAPTER 13 ■ PARSING HTML WITH HPRICOT 113

8113Ch13CMP2 3/23/07 10:34 AM Page 113

Once we’ve looped through all of the elements, we can then loop through the stored
elements and print out the results, as shown in the preceding code.

Conclusion
hpricot is a powerful, easy way to parse HTML, and it’s fast and flexible enough to be used on
projects ranging from the very small to the very large.

CHAPTER 13 ■ PARSING HTML WITH HPRICOT114

8113Ch13CMP2 3/23/07 10:34 AM Page 114

Writing HTML as
Ruby with Markaby

Markaby—short for “markup as Ruby”—is a Ruby library that lets you output HTML using
Ruby code. Whenever you output HTML from a Ruby application, you have a number of
options, ranging from manually outputting the HTML with puts statements to using a tem-
plating system like erubis (see Chapter 9). Markaby, though, has a distinct advantage over the
other options: it turns HTML tags into Ruby methods so that instead of having a mixture of
HTML strings and Ruby code, you only have Ruby code. It’s elegant, it’s easy to read, and it
gives your entire program a harmonious feel because it’s all pure Ruby code.

■Caution Most graphical HTML editors, such as Dreamweaver or FrontPage, can’t edit Markaby files. This
can be a problem if you need to work extensively with graphic designers. (On the other hand, Markaby can
utilize CSS style sheets provided by graphic designers without a problem.)

How Does It Work?
You can use Markaby to produce HTML using simple, easy-to-write and easy-to-read Ruby
code. Unlike eRuby—which we covered in Chapter 9—Markaby code is not mixed Ruby and
HTML. It’s Ruby code that produces HTML—that is, it’s a series of Ruby classes and methods
converted into HTML. This is very valuable for a number of reasons—for one, you don’t have
any long strings interspersed with short bits of Ruby code, which can be visually confusing.
Instead, you simply have Ruby code—which the Ruby interpreter can verify is correct.

■Note Markaby also guarantees correct HTML output, since the Ruby interpreter checks the validity of
your Ruby code—if you missed a closing table tag, for example, your program wouldn’t run.

Listing 14-1 displays a brief example of creating HTML with Markaby.

115

C H A P T E R 1 4

■ ■ ■

8113Ch14CMP2 3/23/07 11:20 AM Page 115

Listing 14-1. Short Markaby Demo (test_markaby.rb)

require 'markaby'

mab=Markaby::Builder.new
mab.html do
head do
title 'Test Title'

end
body do
h1 'Test Header'
p 'Lorem ipsum dolor sit amet.'

end
end

puts mab.to_s

This example outputs the following HTML:

<html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>
<title>Test Title</title></head><body><h1>Test Header</h1><p>Lorem ipsum dolor s
it amet.</p></body></html>

You’ll note that HTML start and end tags are automatically created from the Ruby code
blocks, and that the various methods called on the Markaby::Builder object—html, head, body,
h1, and p—all correspond to tags in the output HTML.

You’ll also note that Markaby automatically adds a <meta> tag with encoding information.
Markaby also maintains a list of valid attributes for each tag, so you can’t set inappropriate
attributes for any tags—you can’t have a <P> tag with an HREF attribute, for example. If you
attempt to do so, Markaby will throw an exception.

Markaby helps in other ways, too—it automatically escapes data passed to the helper func-
tions, so that you can be sure that your display output is exactly what you want. As a result,
Markaby ensures that you output valid HTML.

For full details on the Markaby gem, visit this URL:

http://markaby.rubyforge.org/

You can use the following OS X/Linux shell or Windows command-prompt command to
install Markaby:

gem install markaby

Graphical HTML Stock Charts with Markaby
The script in Listing 14-2 will demonstrate Markaby by drawing stock charts. We’ll retrieve the
stock quotes using the code from Chapter 12, and then use Markaby to produce an HTML graph.

CHAPTER 14 ■ WRITING HTML AS RUBY WITH MARKABY116

8113Ch14CMP2 3/23/07 11:20 AM Page 116

You’ll need YahooFinance installed; if you don’t have it installed, install it via the Windows
command prompt or OS X/Linux shell command gem install yahoofinance. You can find
more information on YahooFinance in Chapter 12.

You’ll also need a Web browser to view the resulting HTML, although if you are familiar
with HTML, you can get the gist of the example without a Web browser.

Listing 14-2. Graphical HTML Stock Chart Application (markaby_stock_charts.rb)

require 'markaby'
require 'yahoofinance'

(puts 'Usage: ruby stockgraph_markaby.rb ' <<
'STOCK_SYMBOL STOCK_SYMBOL...'; exit) unless ARGV.length>0

graph=Hash.new

max=nil
min=nil

ARGV.each do |symbol|
graph[symbol]=[]
quotes=YahooFinance::get_HistoricalQuotes_days(symbol, 30) do |s|
open_price=s.open
date=s.date
graph[symbol] << [date , open_price]
max=open_price if max.nil? or (open_price > max)
min=open_price if min.nil? or (open_price < min)

end
end

builder=Markaby::Builder.new

builder.html do
head do
title "Stock Charts for #{ARGV.join(', ')}"

end
body do
graph.each do |key, value|
table :style=>"float:left; margin-right:2em;" do
th "#{key.upcase}"
value.each do |val|
tr do
td

date, open = *val
td "#{date} (#{open}) \t"
td do
div :style=>"width: #{((open.to_f - min)/(max - min) * 100) }px;" <<

CHAPTER 14 ■ WRITING HTML AS RUBY WITH MARKABY 117

8113Ch14CMP2 3/23/07 11:20 AM Page 117

"background-color:black;" do
" "

end
end

end
end

end
end

end
end

puts builder.to_s

Save this as markaby_stock_charts.rb. To test our example, use the following command:

ruby markaby_stocks.rb msft yhoo amd > output.html

The arguments to the script—msft yhoo amd—specify the stocks we’d like to graph, and
the > output.html portion tells the operating system to redirect the output of the script to the
file output.html. You can open output.html in a Web browser; you should see a page similar to
the one in Figure 14-1.

Figure 14-1. The stock-graph HTML

CHAPTER 14 ■ WRITING HTML AS RUBY WITH MARKABY118

8113Ch14CMP2 3/23/07 11:20 AM Page 118

Dissecting the Example
Let’s examine Listing 14-2—first we use YahooFinance to produce an array of stock values. We
start the document using the .html method, as follows:

builder.html do
head do
title "Stock Charts for #{ARGV.join(', ')}"

end

The head section contains a call to a title method, which produces a <title> tag; the
text of the <title> tag will show up in the title bar of your Web browser. We could also put style
sheet or JavaScript links there if so desired. Let’s take a quick look at the body of our code:

body do
graph.each do |key, value|
table :style=>"float:left; margin-right:2em;" do
th "#{key.upcase}"
value.each do |val|
tr do
td

date, open = *val
td "#{date} (#{open}) \t"
td do
div :style=>"width: #{((open.to_f - min)/(max - min) * 100) }px;" <<

" background-color:black;" do
" "

end
end

end
end

end
end

end
end

The body block contains the <body> part of our HTML. We then loop through each of the
stock symbols and create a table for it. Then we loop through each of the days we retrieved
from the Yahoo! Finance service, and for each item we add a new div code element with a
width based on the stock value. It’s much like our Chapter 12 example, except that we use divs
instead of asterisks inside of tables.

CHAPTER 14 ■ WRITING HTML AS RUBY WITH MARKABY 119

8113Ch14CMP2 3/23/07 11:20 AM Page 119

USING MARKABY IN RAILS

Markaby can also be used as a Rails plugin—this gives you an additional type of view to use in your proj-
ects. You can install it as follows:

script/plugin install http://code.whytheluckystiff.net/svn/markaby/trunk

Once you’ve installed it, you can then create .mab templates—they work identically to .rhtml tem-
plates, but they have Markaby code inside instead of eRuby code. You can get the full details at RedHanded,
the blog of Markaby’s author:

http://redhanded.hobix.com/inspect/markabyForRails.html

Conclusion
As you can see, Markaby methods can be used to easily produce even complex HTML objects
fairly easily. There are other options, of course, but Markaby is an elegant, easy way to encode
HTML from your application.

CHAPTER 14 ■ WRITING HTML AS RUBY WITH MARKABY120

8113Ch14CMP2 3/23/07 11:20 AM Page 120

Parsing CSV with fastercsv

The fastercsv gem is a fast CSV parsing library. CSV—short for comma-separated values—is
an unstandardized data-exchange format. Unlike XML—which has a formal standard and
programs that can check a data file for validity—CSV has a great many different forms. How-
ever, CSV is also extremely easy to output, and quite common; for example, you can easily
export and import CSV from desktop applications such as Microsoft Office or OpenOffice.org.
Additionally, CSV is often used for business purposes, such as transferring millions of rows of
inventory data.

For example, if you wanted to sell inventory from a partner's website on your website, you
might get his inventory in CSV form; that way, you’d have access to all of your partner’s prod-
uct descriptions, images, and so forth.

Unfortunately, despite its being very common, the many different forms in which CSV
can come makes parsing it very difficult, and parsing it quickly even harder. Fortunately,
fastercsv makes CSV parsing both easy and fast so you can concentrate on other aspects of
your application.

How Does It Work?
fastercsv is a pure Ruby library for parsing CSV. We’ll cover the details in this chapter. (Inci-
dentally, if you’d like to parse XML, you can see how to do that in Chapter 33.)

■Note fastercsv isn’t the only option (though it is the fastest); if you don’t want to install an external
gem, you can also parse CSV using Ruby’s built-in CSV module—you can get the full details at http://
www.ruby-doc.org/stdlib/libdoc/csv/rdoc/index.html.

The simplest scenario is when you have a string consisting of CSV, and you’d like to parse
it one row at a time, as in this example:

require "fastercsv"
csvdata = "jones,bob,165\n"
csvdata << "smith,tim,100\n"
csvdata << "doe,john,135\n"

121

C H A P T E R 1 5

■ ■ ■

8113Ch15CMP2 3/23/07 12:28 PM Page 121

fastercsv.parse(csvdata) do |row|
lastname, firstname, iq = *row
puts "#{firstname} #{lastname} has an IQ of #{iq}"

end

This example uses the parse method of fastercsv to loop through each row. As you can
imagine, you can also use this exact same technique on data read from a file. This example has
the following result:

bob jones has an IQ of 165
tim smith has an IQ of 100
john doe has an IQ of 135

fastercsv can also create CSV from a Ruby array:

require "fastercsv"

inventory_array = [['Expensive DVD', '$39.95'],
['Normal DVD', '$19.95'],
['Cheap DVD', '$9.95']]

inventory_array.each do |line|
puts line.to_csv

end

This example loops through each element of our array, calls the to_csv method (provided
by fastercsv) on it, and prints out the result. (We can’t just call to_csv on the entire array
because to_csv expects just one row at a time—if we did that, it would treat our entire array as
one long row of data.) This example has the following result:

Expensive DVD,$39.95
Normal DVD,$19.95
Cheap DVD,$9.95

This CSV data could then be loaded into a CSV-compliant application, like Microsoft
Access, Microsoft Excel, or OpenOffice.org. Additionally, many businesses accept CSV input for
interbusiness communication—for example, if you want to upload a few hundred vehicle adver-
tisements at once to AutoTrader.com, you can upload your data in CSV format; that will save you
a significant amount of time, since otherwise you’d need to enter all of the data by hand.

CHAPTER 15 ■ PARSING CSV WITH FASTERCSV122

8113Ch15CMP2 3/23/07 12:28 PM Page 122

■Note Unfortunately, unlike XML, CSV is not standardized. There are a great many kinds of CSV. As you can
imagine, fields are separated by commas. What happens, though, when your data contains commas? Some
CSV implementations surround fields with double quotes, which means you need a way to escape the dou-
ble quotes when you want to store double quotes. Some people solve this by doubling up the double quotes,
and others use backslashes to escape the double quote. Fortunately, fastercsv is fairly flexible, so it can
handle the various situations well.

You can use the following Windows command-prompt command or Linux/OS X shell
command to install fastercsv:

gem install fastercsv

Processing Census Data with fastercsv
To demonstrate fastercsv, we’re going to build a short program that will download and then
display census data for all of the U.S. states (Listing 15-1).

Listing 15-1. Census Data Viewer (census_data_viewer.rb)

require 'fastercsv'
require 'open-uri'

url='http://www.census.gov/popest/national/files/NST_EST2005_ALLDATA.csv'

data=open(url)

fastercsv.parse(data) do |row|
area=row[4]
population=row[5]
puts "#{area} #{population}"

end

Save this example as census_data_viewer.rb. You can run the example using the following
command:

ruby csv_test.rb

STNAME CENSUS2000POP
United States 281421906
Alabama 4447100
Alaska 626932
Arizona 5130632
Arkansas 2673400
California 33871648

CHAPTER 15 ■ PARSING CSV WITH FASTERCSV 123

8113Ch15CMP2 3/23/07 12:28 PM Page 123

Colorado 4301261
Connecticut 3405565
Delaware 783600
District of Columbia 572059
Florida 15982378
Georgia 8186453
Hawaii 1211537
Idaho 1293953
Illinois 12419293
Indiana 6080485
Iowa 2926324
Kansas 2688418
Kentucky 4041769
Louisiana 4468976
Maine 1274923
Maryland 5296486
Massachusetts 6349097
Michigan 9938444
Minnesota 4919479
Mississippi 2844658
Missouri 5595211
Montana 902195
Nebraska 1711263
Nevada 1998257
New Hampshire 1235786
New Jersey 8414350
New Mexico 1819046
…

As you can see, our script will print out the 2000 census population figures, which were
automatically downloaded from the U.S. Census Bureau website. Note that the first line of our
output—STNAME CENSUS200POP—is the column headers, which some CSV files include. (Note
that those headers come from the input file—there’s quite a few more fields available in the
input file.) If you desired, you could strip these out by ignoring the first line of the file, but in
this case it’s a nice visual aid for the following lines of output.

Dissecting the Example
Let’s take a quick look at the core of Listing 15-1:

fastercsv.parse(data) do |row|
area=row[4]
population=row[5]
puts "#{area} #{population}"

end

CHAPTER 15 ■ PARSING CSV WITH FASTERCSV124

8113Ch15CMP2 3/23/07 12:28 PM Page 124

The .parse method loops through each row of CSV data and grabs two different CSV cells
from it. The single argument to our block is the row variable, which is an array containing all of
the data parsed from the CSV file. In particular, we grab indexes 4 and 5 and print them out.
Note that this corresponds to the fifth and sixth field, since the indexes start at zero.

The data file has a number of other fields—you can see the full details on the census data
here:

http://www.census.gov/popest/datasets.html

Conclusion
CSV is far from perfect, but it’s common and you’ll need to deal with it often. At times you may
need to deal with only a few rows of CSV, and at other times you may be working with several
million rows—in either case fastercsv is an effective and efficient way to deal with CSV.

CHAPTER 15 ■ PARSING CSV WITH FASTERCSV 125

8113Ch15CMP2 3/23/07 12:28 PM Page 125

8113Ch15CMP2 3/23/07 12:28 PM Page 126

Multiple Dispatch with multi

multi adds support for multiple dispatch to Ruby. In short, multiple dispatch is a powerful
functional programming technique that makes it possible to have some or all of the arguments
to a function be used in determining which function to call.

Let’s look a little deeper into multiple dispatch. Programming languages separate code
into blocks—called, depending on the language, functions, methods, subroutines, and so
forth. Each one of these blocks—called methods or functions in Ruby—takes one or more
arguments, which communicate between the function and its caller. For example, the puts
method—which prints text to the screen—takes a single argument, which specifies the text to
be printed. There is only one puts function; that same function will be called no matter what
arguments are specified. That’s fine for the puts function—its behavior will always be the
same—but what if a function’s behavior varies widely based on the arguments?

Multiple dispatch essentially allows you to have multiple versions of a function that are
differentiated based on the type or value of their arguments. For example, suppose you had
an ecommerce site, and you had a function that calculated the tax rate of the user’s order;
the calculations for each state would likely be very different and unrelated to each other. You
could use multiple dispatch to separate those behaviors into separate function definitions,
but to the caller the function would appear harmonious and still be easy to use.

How Does It Work?
Normally, Ruby has single dispatch. This means that for each function name, you have one
definition. Using multiple dispatch, on the other hand, you can have a function that is split up
into multiple versions: one version that takes a string, one version that takes an integer, and
one version that takes both a string and an integer.

For example, let’s briefly implement a Fibonacci number finder using both single dispatch
and multiple dispatch. We’ll write a program to find the 17th number in the sequence. The fol-
lowing is a simple example with single dispatch:

def fib(i)
if i==0 or i==1
i

else
fib(i-1) +fib(i-2)

end
end

print fib (16)
127

C H A P T E R 1 6

■ ■ ■

8113Ch16CMP2 3/23/07 1:14 PM Page 127

It could be more complicated, but it’s not especially elegant and it only gets worse with
more special cases. On the other hand, the following code uses multiple dispatch thanks to
the multi gem:

require 'multi'

multi(:fib, 0) {0}
multi(:fib, 1) {1}
multi(:fib, Integer) { |i| fib(i-1)+fib(i-2)}

print fib(16)

As you can see, the multiple dispatch is a bit clearer; it’s even more so if you have a great
many special cases. It’s also nice since the unrelated special cases are grouped in different
functions—the edge cases can be completely separated. Of course, with a simple case like a
Fibonacci sequence it’s quite possible to wrap your mind around the two special cases, but in
a more complex algorithm it may be more difficult.

In any case, there’s an even more powerful aspect of the multi gem we’ll discuss next:
destructuring.

Destructuring means taking a complex structure and breaking it down. Many languages—
Ruby included—can do some kinds of automatic destructuring for you, such as for parallel
assignment or for turning an array into a list of parameters. multi includes support for a kind
of destructuring in which the argument to the function will be partially destructured and two
arguments will be passed: the element that was extracted and the remainder of the structure.
This lets you parse complex data structures using a few simple functions, which are differenti-
ated based on what part of the structure they expect next; for example, if you were parsing
HTML, you might have a version of a function that expects a <p> tag and responds accordingly,
one that expects an <h1> tag, and so forth. Of course, this is possible to do without multi; multi
can simply make the process faster and easier.

multi offers two kinds of destructuring: array and string. Array destructuring takes a
piece off of the front of the array and passes it to the function. This is offered by multi’s amulti
library. String destructuring works by stripping off a piece of the string—delimited by a regular
expression—and passing that to the function. This is offered by the smulti library, which is
part of multi. A powerful benefit is that each implementation of the function can have a differ-
ent regex, so the various implementations don’t need to parse by one fixed delimiter. The
other significant benefit is that because the string destructurer handles only one bit of the
string at a time, you can pass control onto a completely different parser and then back again
at will. Therefore, you can apply totally different rules easily to, say, a certain part of a string.

You can install multi using the following command:

gem install multi

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI128

8113Ch16CMP2 3/23/07 1:14 PM Page 128

Formatting SQL for Legibility Using multi
Listing 16-1 will demonstrate parsing text using multiple dispatch and string destructuring via
the multi gem. Specifically, it will parse SQL and output HTML-formatted SQL—highlighting
keywords, logical operators, and typenames. Since SQL queries can be very long, it can be
useful to view a nicely formatted version of the query.

Note that this approach is not exhaustive—for one thing, your particular database will
likely have a different set of keywords and types.

Listing 16-1. Formatting SQL with multi (sql_hilighter.rb)

require 'multi'
require 'smulti'

class SQL
def keyword_regex
/^(SELECT|FROM|WHERE|ORDER\s+BY|GROUP\s+BY|INSERT\s+INTO|
UPDATE|INNER|OUTER|LEFT|RIGHT|JOIN|AS|ON|CREATE|
TABLE|VIEW|SEQUENCE|FUNCTION|TRIGGER)$/ix

end
def logical_regex
/^AND|OR|NOT$/i

end
def types_regex
/^CHAR|VARCHAR|TINYTEXT|TEXT|BLOB|MEDIUMTEXT|MEDIUMBLOB|
LONGTEXT|LONGBLOB|BLOB|INTEGER|TINYINT|SMALLINT|MEDIUMINT|
INT|BIGINT|FLOAT|DOUBLE|DECIMAL|DATE|DATETIME|TIMESTAMP|
TIME|ENUM|SET$/ix

end

LITERAL_COLOR = '#0e6e6e'
LOGICAL_COLOR = '#8e4e2e'
TYPE_COLOR = '#9eaeae'

def initialize(in_sql)
@sql=in_sql
@output=''
smulti :parse, /[\s,\(\)\n]+/ do |match, remainder|
@output << match
parse remainder

end
smulti :parse, /;/ do |match, remainder|
@output << "#{match}
"
parse remainder

end

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI 129

8113Ch16CMP2 3/23/07 1:14 PM Page 129

smulti :parse, /$/ do |match, remainder|
@output

end
smulti :parse, /[^0-9"'\s(),]+/ do

|match,remainder|
if keyword_regex.match(match)
@output << "#{match.upcase}"

elsif logical_regex.match(match)
@output << "#{match.upcase}"

elsif types_regex.match(match)
@output << "#{match.upcase}"

else
@output << "<i>#{match}</i>"

end
parse remainder

end
smulti :parse, /["']/ do |match, remainder|
@string_delimiter=match
@output << "#{match}"
string_parse remainder

end
smulti :parse, /[0-9]/ do |match, remainder|
@output << ""
number_parse "#{match}#{remainder}"

end

smulti :string_parse, /[^'"]+/ do |match, remainder|
@output << match
string_parse remainder

end
smulti :string_parse, /['"]/ do |match, remainder|
if match==@string_delimiter
@output << "#{match}"
parse remainder

else
@output << match
string_parse remainder

end
end
smulti :string_parse, /$/ do |match, remainder|
@output

end

smulti :number_parse, /[0-9.]+/ do |match, remainder|
@output << match
number_parse remainder

end

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI130

8113Ch16CMP2 3/23/07 1:14 PM Page 130

smulti :number_parse, /[^0-9.]/ do |match, remainder|
@output << ""
parse "#{match}#{remainder}"

end
smulti :number_parse, /$/ do |match, remainder|
@output

end
end
def highlight
parse(@sql)

end
end

puts '<pre>'

STDIN.read.each_line do | line |
puts SQL.new(line).highlight

end
puts '</pre>'

Save this file as sql_hilighter.rb.
As mentioned, this program will read from the standard input and write to the standard

output when the user runs it. As a result, we’ll need some SQL in a text file before we can run
the code from Listing 16-1, so put the following in a text file called create_users_table.sql:

CREATE TABLE "users" (
"id" integer auto_increment not null,
"total_paid" decimal(9,2),
"customer_id" integer,
"date" timestamp

);

You can then run the program as follows:

ruby sql_hilighter.rb < create_users_table.sql

CREATE TABLE "users" (
"id" INTEGER
<i>auto_increment</i> NOT <i>null</i>,
"total_paid" DECIMAL

(9,2),
"customer_id" INTEGER,
"date" TIMESTAMP

);

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI 131

8113Ch16CMP2 3/23/07 1:14 PM Page 131

If you view the output in a Web browser, you’ll see a multicolored output highlighting
types, strings, and numbers, as in Figure 16-1.

Figure 16-1. The HTML-highlighted SQL

Dissecting the Example
Let’s examine a few lines from Listing 16-1.

def keyword_regex
/^(SELECT|FROM|WHERE|ORDER\s+BY|GROUP\s+BY|INSERT\s+INTO|
UPDATE|INNER|OUTER|LEFT|RIGHT|JOIN|AS|ON|CREATE|
TABLE|VIEW|SEQUENCE|FUNCTION|TRIGGER)$/ix

end
def logical_regex
/^AND|OR|NOT$/i

end
def types_regex
/^CHAR|VARCHAR|TINYTEXT|TEXT|BLOB|MEDIUMTEXT|MEDIUMBLOB|
LONGTEXT|LONGBLOB|BLOB|INTEGER|TINYINT|SMALLINT|MEDIUMINT|
INT|BIGINT|FLOAT|DOUBLE|DECIMAL|DATE|DATETIME|TIMESTAMP|
TIME|ENUM|SET$/ix

end

The first few methods of our class define three methods that return a regular expression
describing one of three classes of words, each of which are highlighted differently: keywords,
logical operators (AND, OR, and NOT), and data types. If you so desire, you can fairly easily change
the distinctions made—for example, you could have highlighted all operators. Or you could have
highlighted operators by class—one color for arithmetic operators, one for Boolean, and one for
set operators, for example.

smulti :parse, /[\s,\(\)\n]+/ do |match, remainder|
@output << match
parse remainder

end
smulti :parse, /;/ do |match, remainder|
@output << "#{match}
"

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI132

8113Ch16CMP2 3/23/07 1:14 PM Page 132

parse remainder
end
smulti :parse, /$/ do |match, remainder|
@output

end
smulti :parse, /[^0-9"'\s(),]+/ do

|match,remainder|
if keyword_regex.match(match)
@output << "#{match.upcase}"

elsif logical_regex.match(match)
@output << "#{match.upcase}"

elsif types_regex.match(match)
@output << "#{match.upcase}"

else
@output << "<i>#{match}</i>"

end
parse remainder

end

These lines constitute the core parser of our SQL highlighter. The first definition of the
parse function grabs all of the delimiters—specifically whitespace, commas, and parenthe-
ses—and simply passes them on to the output buffer. (The output buffer holds the HTML
output.) The parse function is called again—passing the remainder of text back to the same
parser we are currently running.

The next definition handles a semicolon—note that because we later pass control to a
different parser while parsing strings, semicolons inside of a string won’t cause this to trigger.
When this function definition is called, it will send a line break to the output buffer—that
means the next output will be displayed on a different line in our Web browser. The call to
parse means that control remains with the current parser.

The next definition handles the end of the string—if we hit the end of the string in this
parser, we’ll just return the output buffer. Since we have no more string remaining to parse,
we won’t call the parse function.

Next, the definition /[^0-9"'\s(),]+/ handles almost everything else. It grabs all the
characters in a row that aren’t digits, string delimiters, whitespace, parentheses, or commas—
this includes keywords like CREATE or INSERT as well as barewords like unquoted table names.
Inside of this function it checks the match against the regular expressions we defined at the
beginning of our class and highlights it appropriately. Keywords are displayed in bold, logical
operators and data types are displayed in colored text, and everything else is displayed in ital-
ics. parse is then called so that the rest of the string will be processed.

smulti :parse, /["']/ do |match, remainder|
@string_delimiter=match
@output << "<font color=\"#{LITERAL_COLOR}\"#{match}"
string_parse remainder

end
smulti :parse, /[0-9]/ do |match, remainder|
@output << ""
number_parse "#{match}#{remainder}"

end

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI 133

8113Ch16CMP2 3/23/07 1:14 PM Page 133

This is the final part of our main parser—it’s responsible for passing off control to our
other two parsers. The first function matches a double quote or a single quote. The particular
one that caused the function call is saved into the @string_delimiter instance variable so that
the string_parse function can later ensure it exits only on a matching delimiter—a double-
quoted string can have single quotes inside of it, for example. The next line outputs a
tag to the output buffer. The string_parse function is called, which passes control of the pars-
ing to our special string parser.

■Note All three delimiters are considered string delimiters by this parser, but often one or more will actu-
ally delimit identifiers, not strings—you may wish to highlight differently for identifiers, in which case you
should be able to modify the highlighting function fairly easily. The exact meaning of each delimiter will
depend on your database engine.

The second function matches any digit. It outputs a tag, which will color the num-
ber in the HTML output. Next, control is passed to our number_parse function, which is a
specialized parser that handles numbers. Note that we pass both the match and the remainder
variables into the number_parse function—this is because the delimiter is part of the number,
which we want the number_parse function to parse.

smulti :string_parse, /[^' "]+/ do |match, remainder|
@output << match
string_parse remainder

end
smulti :string_parse, /[' "]/ do |match, remainder|
if match==@string_delimiter
@output << "#{match}"
parse remainder

else
@output << match
string_parse remainder

end
end
smulti :string_parse, /$/ do |match, remainder|
@output

end

The aforementioned three function definitions define our special string parser. The first
function matches anything that’s definitely not a delimiter and sends it to the output buffer.
The second function matches anything that might be a delimiter—it checks it against the
@string_delimiter variable, which contains the opening delimiter for our string. If the two are
different, we output the match and continue parsing. If the two are the same, then our string
is over and we output the match and pass control back to our main parser. (Note that handling
escaped string delimiter is left as an exercise to the reader.)

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI134

8113Ch16CMP2 3/23/07 1:14 PM Page 134

The last function definition handles the situation of our query ending inside of a string.
This isn’t valid SQL, of course, but it might happen in any event, particularly if we had the job
of highlighting only a SQL fragment and not an entire query. In this case, we simply return the
output buffer.

smulti :number_parse, /[0-9.]+/ do |match, remainder|
@output << match
number_parse remainder

end
smulti :number_parse, /[^0-9.]/ do |match, remainder|
@output << ""
parse "#{match}#{remainder}"

end
smulti :number_parse, /$/ do |match, remainder|
@output

end

These definitions constitute our number parser. It will accept any combination of 0
through 9 and periods, and once it reaches something that isn’t a digit 0 through 9 or a period,
it will return control to the main parser. Like our string parser, the last function definition han-
dles the string ending before we exit this parser; if it does end before the parser is finished, it
simply returns the output buffer.

Conclusion
You can see that the multiple-dispatch and string-deconstruction techniques that multi pro-
vides are powerful. Of course, neither is absolutely required—it’s definitely possible to write a
SQL highlighter using regular expressions alone—but they can definitely help you write code
that is both powerful and simple.

CHAPTER 16 ■ MULTIPLE DISPATCH WITH MULTI 135

8113Ch16CMP2 3/23/07 1:14 PM Page 135

8113Ch16CMP2 3/23/07 1:14 PM Page 136

Serving Web Applications
with mongrel

mongrel is an HTTP library and server for Ruby. It’s very fast, since critical areas have been
optimized with C code. It can be used to run Rails, Camping, or Nitro apps; you can also use it
to create custom Web-server applications.

One of the occasional criticisms of Ruby is that it is not fast enough for heavy-duty Web
applications. mongrel can speed up Ruby Web applications significantly; it is much more sta-
ble than using FastCGI or CGI, so your visitors can be sure that they are going to receive the
Web page that they requested. Note that mongrel is designed specifically for hosting Ruby
applications, so you can’t host, say, PHP scripts with it; typically, static portions of the site—
such as graphics and static HTML—will be served with a different Web server, such as Apache,
since servers are faster at serving such content than mongrel is.

You can use mongrel to host any application written in any popular Ruby Web framework.
For example, you could have an Apache Web server that uses several Mongrel processes to serve
Rails or Camping applications. Static content would be served by Apache, and all dynamic
requests to the Rails application would be sent to Mongrel; in that way, you can have the best of
both worlds. This is a powerful setup that can scale very well, and is used by many Ruby on Rails
deployments, including startups like The Casting Frontier (http://castingfrontier.com/), a dig-
ital film/television casting firm, and DormItem (http://www.dormitem.com), a Web 2.0 college
classifieds site.

How Does It Work?
mongrel is designed to be simple and fast. It’s designed to provide HTTP services to a Web
application behind a larger Web server, such as Apache or LightTPD; it can also be used to
directly provide simple Web-server needs directly during development. It works well in either
usage. mongrel is capable of working as a stand-alone file server, but it’s slower than Apache or
LightTPD at serving static files, so typically a combination of both is used.

It’s very fast; it’s optimized by using a C extension to do the URI and HTTP parsing. How-
ever, traditional Web servers can still be faster for serving large numbers of static files, and can
provide a number of other services that mongrel doesn’t; in those cases, you can use mongrel
between the Rails application and the Web server, as described under the subheading “mon-
grel Serving a Rails App via Apache 2.2.”

You can install mongrel using the command gem install mongrel, but there’s a small
caveat: mongrel is a source gem with C components, so it comes in two flavors—win32 and 137

C H A P T E R 1 7

■ ■ ■

8113Ch17CMP3 3/28/07 9:24 AM Page 137

ruby. The first is for Windows environments, and the second is for other environments that
have a C compiler, which include Linux and Mac OS X. When you install mongrel, it’ll ask
which you want. The win32 flavor comes precompiled; it doesn’t need any special configura-
tion, unlike some binary gems, so you can pick the win32 option when prompted by the
installer if you are on Windows 2000 or later, and it should work seamlessly. The ruby option is
for all other environments; it’ll compile the C source for you, and should also work seamlessly.
Here’s the command again:

gem install mongrel

If you are running on Windows, and you want to run mongrel as a service, you can install
service support for mongrel as follows:

gem install mongrel_service

This will give you a number of additional options to use with mongrel under Windows—
you can stop and start mongrel from the Windows Services console, and so on. I’ll cover the
details later in this chapter in the “mongrel Running Rails as a Service on Win32” section. You
won’t need mongrel_service to do development with mongrel—just to have long-running
background services under Win32.

Using mongrel as a Rails Development Server
One of the great aspects of Rails is that it can be used easily on a development machine; you
can test Rails locally on virtually any development system. Note, though, that the default
server, WEBrick, is quite slow—mongrel is faster, and the faster your development environment
is, the faster you can develop. To use mongrel as a development server, you can employ the
mongrel_rails helper script.

For example, using the sample Rails app we developed in Chapter 23, you can start using
mongrel_rails like this:

cd /path/to/example/rails/application
mongrel_rails start

* Starting Mongrel listening at 0.0.0.0:3000
* Starting Rails with development environment ...
* Rails loaded.
* Loading any Rails specific GemPlugins
* Signals ready. INT => stop (no restart).
* Mongrel available at 0.0.0.0:3000
* Use CTRL-C to stop.

At this point, you can browse to http://localhost:3000 and access the Rails application.
It will work much like the default WEBrick server that ships with Rails, but it will be much
quicker, and since you are likely to load and reload pages hundreds or thousands of times dur-
ing a development session, that can add up to a lot of time saved.

CHAPTER 17 ■ SERVING WEB APPLICATIONS WITH MONGREL138

8113Ch17CMP3 3/28/07 9:24 AM Page 138

■Note The server states that it is listening at 0.0.0.0:3000—the 3000 is the port, but 0.0.0.0 is not a valid
IP address. It is shorthand for “listening on all adapters,” however—in many environments, that means that
it’s listening on both localhost and on your network adapter. This may be undesirable; during develop-
ment you might want it to listen on localhost only, in which case you can do mongrel_rails start
-a 127.0.0.1, which will accept requests from your local machine only.

There are other command-line options, as well: you can use -e to specify the Rails envi-
ronment, such as development or production environments. You can use -p to specify a port
to listen to, which can be very useful during development. Additionally, -l can specify a log-
file location. You can get a full listing of the mongrel_rails options by running the following
command:

mongrel_rails start -h

mongrel Running Rails as a Service on Win32
If you are running mongrel on Windows, you’ll probably want to install mongrel as a service.
This allows you to start and stop mongrel services from the Windows Services management
console—just like any other long-running Windows process.

If you haven’t already installed the mongrel_service gem, do it now:

gem install mongrel_service

You can create the mongrel service as follows:

mongrel_rails_service install -n name_of_your_rails_application
-r path/to/rails/application -p 3000 -e production

Note that the above is split onto two lines, but you'll need to type it on one line. You’ll
need to substitute the name of your Rails application and its full path for name_of_your_rails_
application and /path/to/rails/application, respectively. That example starts a Rails
server service on port 3000 and using the production environment. It doesn’t start the service,
though: you can use the Services applet inside of the Microsoft Management console to start it.
You can also create multiple services from the same application, as in the following example:

mongrel_rails_service install -n app_name -r C:\rails\path -p 3000 -e production
mongrel_rails_service install -n app_name -r C:\rails\path -p 4000 -e development

This will start two Windows services: one on port 3000 and running in the production
environment, and one on port 4000 and running in development. You could also have them
run on the same port and start and stop them as needed.

CHAPTER 17 ■ SERVING WEB APPLICATIONS WITH MONGREL 139

8113Ch17CMP3 3/28/07 9:24 AM Page 139

mongrel Running Camping
mongrel also works well with Camping, which was introduced in Chapter 7. Camping is a Web
microframework—much like Rails, but smaller and designed to make small applications easy
to write. mongrel is much faster than WEBrick, so using mongrel to serve Camping applications is
an easy way to get extra speed in a Camping application.

For example, if we’d like to use mongrel to serve our TrackTime example from Chapter 7,
we can do so by adding the following code, called a postamble, to the end of the example:

if __FILE__ == $0
TrackTime::Models::Base.establish_connection :adapter => 'sqlite3',

:database => 'tracktime.db'
TrackTime::Models::Base.logger = Logger.new('camping.log')
TrackTime::Models::Base.threaded_connections=false
TrackTime.create

server = Mongrel::Camping::start("0.0.0.0",3000,"/tracktime",TrackTime)
puts "**TrackTime is running on Mongrel - " <<

"check it out at http://localhost:3000/tracktime"
server.run.join

end

We can then run the app as follows:

ruby tracktime.rb

This will start mongrel and mount our app at /tracktime, much like the Camping server did
in Chapter 7. We can then access it at http://localhost:3000/tracktime/.

This postamble uses sqlite3 to set up our database connection. Camping is generally data-
base agnostic; the database connection is considered part of the application setup and not
part of the application itself. If we prefer, we could change the establish_connection line to
use MySQL or another database.

Incidentally, the first line of the postamble, if __FILE__ =$0, causes the postamble to kick
in only when the script is run directly—you can still run it using the camping command.

The last line, server.run.join, runs the server and joins it to the current thread. Note
that this means no code will run after this line. If you simply replace that with server.run,
the mongrel thread will exit when the main thread exits, which is a problem. You could loop,
waiting for the mongrel thread to exit, but since our application has no work left in any case, it
is simplest to replace the current thread with the Mongrel thread.

As you can see from the mongrel::Camping::start line, mongrel has Camping support built
in. However, mongrel can do more than run Web frameworks—you can use it as a Web frame-
work directly. The example in the following section does just that.

mongrel as a Small Web Server
mongrel can act as a small Web server. While it’s relatively uncommon to write your own Web
server, there may be times when you wish to have a very lightweight Web server—if you have a
large Ruby application running on a server, for example, you could add a mongrelWeb server

CHAPTER 17 ■ SERVING WEB APPLICATIONS WITH MONGREL140

8113Ch17CMP3 3/28/07 9:24 AM Page 140

displaying the current application status, and it’d likely have a much smaller footprint than a
larger Web server like Apache. The following is a small example that will display the current
time:

require 'mongrel'

class TimeHandler < Mongrel::HttpHandler
def process(request, response)
response.start(200) do |headers, output_stream|
headers["Content-Type"] = "text/plain"
output_stream.write("My current time is #{Time.now}.\n")

end
end

end

puts "** Time server on Mongrel started!"

mongrel_server = Mongrel::HttpServer.new("0.0.0.0", "3000")
mongrel_server.register("/", TimeHandler.new)
mongrel_server.run.join

If you browse to http://localhost:3000/, you’ll get a page showing the current time. This
application is fairly simple: it creates a new class, derived from mongrel:HttpHandler, and con-
nects it to /—the root of the Web server. You could, if you so desire, connect additional classes
to other mount points underneath.

The HttpHandler class, TimeHandler, has just one custom method—process. This method
takes two parameters: request and response. The first is an object describing the request, and
the second is an object describing the response. The method always returns an HTTP code of
200, a content-type header of text/plain, and an output containing the current time. It
ignores the path and filename of the request, so all requests return the same result—
http://localhost:3000/test and http://localhost:3000/ return the same result.

This server is pretty simple, but you can extend the example to suit your needs. In fact,
extending it is simple enough that mongrel can be added on to an existing application as, say, a
status monitor without much effort. Because it is so trivial, Web interfaces become feasible in
situations where they normally aren’t, and you can use them to save significant time, effort,
and money.

mongrel Serving a Rails App via Apache 2.2
mongrel is slower than a regular Web server for some tasks—serving static files, for example;
Additionally, mongrel does not distinguish between different domains; Apache can serve hun-
dreds of domains, each with different content. For both those reasons, Rails apps are often
deployed with mongrel running inside of another server. An excellent way to do this is via
proxying: set up a Apache 2.2 or higher server to automatically send requests to a different
server—in this case, a mongrel server.

CHAPTER 17 ■ SERVING WEB APPLICATIONS WITH MONGREL 141

8113Ch17CMP3 3/28/07 9:24 AM Page 141

In this example, we’ll use Apache to serve a Rails app via the proxy mechanism—we’ll run
five mongrel servers on different ports, and we’ll use mod_proxy_balancer to balance between
them.

Add the following lines to the end of your httpd.conf file:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule proxy_http_module modules/mod_proxy_http.so

<Proxy balancer://my_cluster>
BalancerMember http://127.0.0.1:6001
BalancerMember http://127.0.0.1:6002
BalancerMember http://127.0.0.1:6003
BalancerMember http://127.0.0.1:6004
BalancerMember http://127.0.0.1:6005

</Proxy>

Next, comment out this line in your railsapp/public/.htaccess file:

RewriteRule ^(.*)$ dispatch.cgi [QSA,L]

Insert this line:

RewriteRule ^(.*)$ balancer://my_cluster%{REQUEST_URI} [P,QSA,L]

At the shell or the Windows prompt, use the following commands to start up the five
mongrel instances we’ll need:

cd /path/to/rails/application
mongrel_rails cluster::configure -p 6001 -N 5
mongrel_rails cluster::start

The preceding code is equivalent to these shell or prompt commands:

cd /path/to/rails/application
mongrel_rails start -d -p 6001
mongrel_rails start -d -p 6002
mongrel_rails start -d -p 6003
mongrel_rails start -d -p 6004
mongrel_rails start -d -p 6005

You can access the application at http://locahost/—the other ports are only for mod_proxy.
The number of mongrel processes and the specifics can vary, of course—you may find you get
the best performance with more or fewer processes.

This example works by having Apache automatically send the requests to the mongrel
servers. When you request a dynamic page, Apache’s mod_proxy_balancer will distribute it to
one of the mongrel processes; if it’s a static element, like an image, Apache will serve it directly.

CHAPTER 17 ■ SERVING WEB APPLICATIONS WITH MONGREL142

8113Ch17CMP3 3/28/07 9:24 AM Page 142

Some people have reported problems with mod_proxy_balancer balancing unevenly; in
that case, you may wish to use an external load balancer, such as nginx (http://nginx.net/).
You’d still use mod_proxy, but with just a single entry pointing to the nginx server, and nginx
would distribute the incoming requests to the remaining nginx processes.

Conclusion
mongrel is a powerful, easy-to-use way to host Ruby Web applications. It scales well, so
whether you’re catering to one user or one million users, mongrel is an excellent starting point.

CHAPTER 17 ■ SERVING WEB APPLICATIONS WITH MONGREL 143

8113Ch17CMP3 3/28/07 9:24 AM Page 143

8113Ch17CMP3 3/28/07 9:24 AM Page 144

Transferring Files Securely
with net-sftp

The net-sftp gem provides an SFTP library, which lets you upload, delete, and otherwise
manipulate files and directories via over the SSH File Transfer Protocol, or SFTP. FTP is a
widely used protocol to transferring files between systems. FTP servers and clients can be
found on nearly every platform. However, that FTP does not provide secure authentication—
it’s possible to intercept a username and password, since the username and password are sent
unencrypted. The data is sent unencrypted as well, so it’s conceivable for sensitive data trans-
mitted over FTP to be intercepted by a third party. SFTP, on the other hand, is based on SSH,
which provides both secure authentication and encryption for any transferred data. Addition-
ally, SFTP works over SSH, so it doesn’t use multiple ports like FTP—you only need to have the
SSH port open in your firewall, and SFTP should work fine.

The net-sftp gem can be used for file transfers in a variety of situations. For example,
you could use it to transfer user data uploaded to your website—image files or video files, for
example. You could also use net-sftp to make a regular backup of a project you are working
on—you could transfer it every night (or even every hour!) to a Web server, and since net-sftp
is encrypted, you won’t need to worry about sensitive data being intercepted (assuming, of
course, that your Web server is reasonably secure).

How Does It Work?
The net-sftp library provides a host of functions for manipulating remote filesystems via
SFTP. You can read an FAQ that provides more details on the different net-sftp operations at
the following URL:

http://net-ssh.rubyforge.org/sftp/faq.html

■Note Confusingly, there are two other protocols that use the name SFTP. The first is traditional FTP over
SSH; it’s possible to implement FTP over SSH, but it’s difficult and uncommon. Simple File Transfer Protocol
is another uncommon—and unsecure—file-transfer protocol. Here, however, we’re discussing only the SSH
File Transfer Protocol—it’s the most common of the three, and the only one the net-sftp gem supports.

145

C H A P T E R 1 8

■ ■ ■

8113Ch18CMP3 3/28/07 5:35 PM Page 145

For example, suppose we wanted to transfer the file very_important_financial_data.xls
to the remote host BigImportantCompany.com, using the username ImportantVIP and password
BigSecret. We could use the following code to do so:

Net::SFTP.start('BigImportantCompany.com',
:username=>'ImportantVIP',
:password=>'BigSecret') do |sftp_connection|

sftp_connection.put_'very_important_financial_data.xls',
"some_secret_directory/very_important_financial_data.xls"

end

■Note You can find an additional example of the net-sftp gem in action in Chapter 21.

■Note You may also want to execute arbitrary commands using SSH—if so, look into the net-ssh gem,
which the net-sftp gem uses. You can learn more about net-ssh in Chapter 19.

You can use the following command to install the net-sftp gem:

gem install net-sftp

Sending Files via SFTP Using net-sftp
Listing 18-1 demonstrates sending files over SFTP using the net-sftp gem. It will take a num-
ber of command-line options, such as hostname, username, password, and so forth, as well as
a list of files to send.

Listing 18-1. Sending Files via SFTP (net-sftp_upload.rb)

require 'net/sftp'
require 'optparse'

options = {}
opt=OptionParser.new do |opts|
opts.banner = "Usage: netsftpput.rb [options] hostname.com file1 file2 file3..."

opts.on("-u", "--username USERNAME", "username") { |u| options[:username] = u }
opts.on("-p", "--password PASSWORD", "password") { |p| options[:password] = p }
opts.on("-o", "--port PORT", "port") { |p| options[:port] = p }
opts.on("-d", "--director DIRECTORY", "directory") { |d|

options[:directory] = d }
opts.on_tail("-h", "--help", "Show this message") { puts opts.help; exit }

end

CHAPTER 18 ■ TRANSFERRING FILES SECURELY WITH NET-SFTP146

8113Ch18CMP3 3/28/07 5:35 PM Page 146

opt.parse!

options[:hostname] = ARGV.shift
options[:username] ||= 'root'
options[:password] ||= ''
options[:port] ||= 25
options[:directory] ||= '/tmp'

Net::SFTP.start(options[:hostname],
:port=>options[:port],
:username=>options[:username],
:password=>options[:password]) do |sftp_connection|

ARGV.each do |filename|
sftp_connection.put_file filename, "#{options[:directory]}/#{filename}"

end
end

Save the code as net-sftp_upload.rb. You can run the example as follows:

ruby net-sftp_upload.rb yourhostname.com -u yourusername
-p password your_file_1.txt your_file_2.txt

Note that you’ll need to type the above command onto just one line. Of course, change
the italicized values to the appropriate values for the machine you’d like to send your files to.
The files will be placed in the /tmp directory by default, which is probably not where you want
them; you can override that with the -d option.

Dissecting the Example
First we use the optparse library to read our various options. You can get the details on exactly
how optparse works at http://www.ruby-doc.org/stdlib/libdoc/optparse/rdoc/index.html.
The script has a few defaults, which kick in only if you don’t specify the options on the com-
mand line. Specifically, it will default to root as the username, a blank password, port 25, and
/root as the output directory. Of course, you’ll likely have a root directory set on your
machine, so you’ll typically have to set this option to have the command work.

The optparse library will strip all of the options from the ARGV array. This means, for exam-
ple, that the -H hostname part of the command will be stripped—so will all of the other options
and their arguments. All that will be left in the ARGV array are the hostname and the files to
send. The shift call removes the first argument remaining in the ARGV array and places it in
the options[:hostname] variable.

The following chunk of code connects to the server and actually transfers the file:

Net::SFTP.start(options[:hostname],
:port=>options[:port],
:username=>options[:username],
:password=>options[:password]) do |sftp_connection|

ARGV.each do |filename|
sftp_connection.put_file filename, "#{options[:directory]}/#{filename}"

end
end

CHAPTER 18 ■ TRANSFERRING FILES SECURELY WITH NET-SFTP 147

8113Ch18CMP3 3/28/07 5:35 PM Page 147

The Net::SFTP.start call opens a connection to the remote server. We then loop through
the ARGV array—which, at this point, contains only files—and we call put_file for each file.
This will send the file to the remote server. As you can see, the put_file function is fairly
straightforward—it takes two parameters, the first being the local filename and the second
being the remote filename. As you can imagine, there’s a corresponding get_file function that
retrieves a file from the server, which might be useful depending on your exact circumstance.
There is a host of other methods, too—such as rename, which renames a file on the remote
machine.

Conclusion
net-sftp is a powerful way to transfer files. In many cases, SFTP can be an excellent choice for
transferring files between two systems. When you have a choice, it’s more secure to send files
via SFTP than via traditional FTP, so net-sftp can be an excellent choice.

CHAPTER 18 ■ TRANSFERRING FILES SECURELY WITH NET-SFTP148

8113Ch18CMP3 3/28/07 5:35 PM Page 148

Executing Commands on
Remote Servers with net-ssh

The net-ssh gem lets you connect to remote servers via the SSH protocol and then execute
commands. SSH, short for Secure Shell, is a widely used protocol that lets you securely con-
nect to remote servers and, among other features, execute commands. You can also forward
arbitrary TCP ports so that you can send packets from your machine through the remote
machine and onto a third machine. SSH is encrypted, so usernames and passwords are
protected against eavesdropping.

Since you can execute any shell command via SSH, you can use net-ssh to perform a
wide range of tasks. For example you could stop and restart a database server or Web server, or
you could check the current server-CPU usage. You could also perform system-administration
or security tasks, like listing the logged-in users or checking for rootkits.

How Does It Work?
net-ssh supports both of the SSH features I just mentioned—command execution and port
forwarding. You can execute programs either interactively or non-interactively—that is, you
can send a command and just let it run, or you can feed data to it as it runs. There are two ver-
sions of the SSH protocol available—SSH1 and SSH2. net-ssh supports SSH2, which is the
newer version.

Of course, net-ssh is more useful on Unix-like operating servers such as Linux and OS X
than it is on Windows machines, since you are severely constrained as to what you can do
from the command line under Windows. The examples in this chapter all use Linux/OS X
shell commands. (Note that the client can be running on any operating system.)

You can use the following command to install net-ssh:

gem install net-ssh

■Note Ruby versions earlier than 1.8.2 don’t work with the net-ssh gem—you’ll need to get a patched
version of OpenSSL to use net-ssh. For further details visit http://net-ssh.rubyforge.org/api/.

149

C H A P T E R 1 9

■ ■ ■

8113Ch19CMP3 3/28/07 9:21 AM Page 149

Here’s an example of a regular SSH command:

ssh user@example.com ls -al
user@example.com's password: some_password

total 96356
drwxr-xr-x 23 user user 12288 Jan 24 14:32 .
drwxr-xr-x 5 root root 4096 Jan 4 18:46 ..
-rw-r--r-- 1 user user 414 Mar 30 2006 .bash_profile
-rw-r--r-- 1 user user 2273 Dec 18 12:15 .bashrc
drwxr-xr-x 5 user user 4096 Oct 3 10:21 .cpan
drwx------ 2 user user 4096 Jan 6 11:31 .elinks
…snip…

That command connects via SSH; it runs the command ls -al via SSH and prints the
results. (Of course, your results may vary and you’ll have to substitute user@example.com for
your username, followed by an at sign, followed by your hostname.)

We can do the same thing using net-ssh as follows:

require 'net/ssh'

Net::SSH.start('example.com', :port=>13110,
:username=>'some_user',
:password=>'some_password') do |ssh_connection|

ssh_connection.open_channel do |channel|
channel.on_data do |data|
puts data

end
channel.exec "ls -al "

end
ssh_connection.loop

end

The results of running that snippet are identical to running the ssh script; however, the
net-ssh snippet can be used as part of a larger Ruby program, so you can use it to automate
many different tasks.

The open_channel call creates a channel—this is, an input/output channel on the remote
machine. (You can have more than one channel open at once, so you could have multiple
commands running at the same time.) The on_data call specifies what code should run when
data is sent from the server to the client—in this case, it just uses puts to print it. Next, the ls
-al command is run using the channel’s exec method, and because of the on_data call, the
output of the ls -al command is printed to the screen. Finally, the ssh_connection.loop line
waits for the command to finish—otherwise our program might exit before the ls -al com-
mand is done executing.

CHAPTER 19 ■ EXECUTING COMMANDS ON REMOTE SERVERS WITH NET-SSH150

8113Ch19CMP3 3/28/07 9:21 AM Page 150

Editing Remote Files with net-ssh and Vim
To demonstrate net-ssh, we’ll build a script (Listing 19-1) that logs into a remote server via
SSH and then uses Vim to edit a text file. Specifically, the example opens the file and replaces
one string with a different string, and then saves the file. This could be used to change a con-
figuration line on the server, such as a Web-server configuration or a MySQL configuration
—this is especially useful if you are managing a number of servers, since you can just run the
command once for each server.

You’ll need a few things to run this example: a Linux or OS X machine with SSHD running
and Vim installed, plus some familiarity with accessing that machine via an SSH client, and
some basic familiarity with editing text files on Linux/OS X.

Listing 19-1. Remote File Editing with net-ssh (netssh_replace.rb)

require 'net/ssh'
require 'optparse'

This use of OptionParser lets the user
specify the username, password, and port
options on the command line.

options = {}
opt=OptionParser.new do |opts|
opts.banner = "Usage: net_ssh_replace.rb [options] " <<

"hostname.com file search_string replacement_string"

opts.on("-u", "--username USERNAME", "username") { |u| options[:username] = u }
opts.on("-p", "--password PASSWORD", "password") { |p| options[:password] = p }
opts.on("-o", "--port PORT", "port") { |p| options[:port] = p }
opts.on_tail("-h", "--help", "Show this message") { puts opts.help; exit }

end
opt.parse!

Exit if the user didn't specify enough
command line arguments.

(puts opt.help; exit) unless ARGV.length == 4

options[:hostname] = ARGV.shift
options[:filename] = ARGV.shift
options[:search_string] = ARGV.shift
options[:replacement_string] = ARGV.shift

options[:username] ||= 'root'
options[:password] ||= ''
options[:port] ||= 22

CHAPTER 19 ■ EXECUTING COMMANDS ON REMOTE SERVERS WITH NET-SSH 151

8113Ch19CMP3 3/28/07 9:21 AM Page 151

Create a new SSH connection.

Net::SSH.start(options[:hostname],
:port=>options[:port],
:username=>options[:username],
:password=>options[:password]) do |ssh_connection|

Open a channel for I/O.

ssh_connection.open_channel do |channel|

Execute our command.

channel.exec "vim #{options[:filename]} -c '%s/#{options[:search_string]}/" <<
"#{options[:replacement_string]}/g' -c 'wq!' "

end

Wait for our command to finish.

ssh_connection.loop
end

Save this example as netssh_replace.rb. The example itself can be run from a Linux, OS
X, or Windows machine—you just need an Linux/OS X machine running SSHD to point the
script toward. You’ll also need to create a text file on the server with the following text in it:

ServerSignature On

This is the same line you might find in an Apache httpd.conf file—it’s a default setting
that specifies that error pages have the full version number of the server on them. That can
reveal potentially damaging information to attackers, so that default setting is a bad idea from
a security perspective. (Of course, you can also try this listing on a real httpd.conf file if you
have one handy.)

You can run the example using the following Windows command prompt or Linux/OS X
shell command:

ruby netssh_replace.rb hostname.com /complete/path/to/test/file/
"ServerSignature On" "Server Signature Off" -u username -p password

Note that although this command is printed on two lines, you should type it on one line;
additionally, you’ll need to replace the italicized parameters with the appropriate filename,
hostname, username, and password for your test machine. You can then log into your remote
machine via SSH and execute the following command:

cat /complete/path/to/test/file/

ServerSignature Off

CHAPTER 19 ■ EXECUTING COMMANDS ON REMOTE SERVERS WITH NET-SSH152

8113Ch19CMP3 3/28/07 9:21 AM Page 152

As you can see, our file had our unsecure line replaced with a more secure version. Of
course, you can use this for any other text-configuration option as well. There are myriad
other ways to do this, such as using Sed or manually editing the file with Vim, but net-ssh
served us well in this case. It lets us access remote machines easily and execute arbitrary com-
mands, which, as you can imagine, can be very useful for automated system administration or
system-monitoring tasks.

Dissecting the Example
The first half or so of our script fills our options array with various options we’ll need: the host-
name of the remote server, the SSH port number, the username, and so forth. Several of these
have defaults: the SSH port number, for example, is standard, but is often changed for security
reasons. We use the optparse library to parse the command-line arguments—you can see
another excellent example of this in Chapter 18, and you can find the optparse documenta-
tion online at the following URL:

http://www.ruby-doc.org/stdlib/libdoc/optparse/rdoc/index.html

Let’s take a quick look at the core of Listing 19-1. First we create the connection to the
remote server as follows:

Net::SSH.start(options[:hostname],
:port=>options[:port],
:username=>options[:username],
:password=>options[:password]) do |ssh_connection|

This code snippet essentially passes our various options as named parameters to the
Net::SSH.start method—it creates a new connection for us. Note that this line passes a block
to this method—the block contains all of the code that manipulates this connection, and
automatically closes the connection when the block is finished. In some languages, this
would be implemented with start and stop methods, but the block idiom is clearer and
more elegant.

Next, we use the open_channel method to open a new channel, which is an input/output
connection within our SSH session. You can have multiple channels open at once—for exam-
ple, you could open several tail -f commands to watch log files, and then perform some
action whenever one changed. In this example, though, we are using just one channel, and
we’ll use it to execute only one command.

ssh_connection.open_channel do |channel|
channel.exec "vim #{options[:filename]} -c '%s/#{options[:search_string]}/" <<
"#{options[:replacement_string]}/g' -c 'wq!' "
end

■Tip If you’d like more details on channels with net-ssh, or on any other part of the net-ssh gem, con-
sult the online net-ssh documentation at http://net-ssh.rubyforge.org/.

CHAPTER 19 ■ EXECUTING COMMANDS ON REMOTE SERVERS WITH NET-SSH 153

8113Ch19CMP3 3/28/07 9:21 AM Page 153

Note that the call to vim has a number of arguments—first we specify the file we want to
edit, which was passed from the command line. Second we use the -c option to execute two
different ex commands: a %s command that will replace all instances of our search string with
the replacement string, and a wq! command that will write the file to the disk and then quit.
The ex editing engine, which comes with Vim, has a great deal of flexibility—you can get the
online documentation at

http://vimdoc.sourceforge.net/

Finally, we need to call one more method:

ssh_connection.loop

This command waits until our single channel is finished, and then our program continues.
Without this line of code, our script would exit without waiting for the channel to open and then
execute the routine; the call to .loop ensures that our replacement code gets executed.

Conclusion
net-ssh is an easy-to-use gem that lets you manipulate any remote machine running SSHD. It
makes virtually any kind of operation easier, from starting and stopping services to reconfig-
uring a server or patching an application.

CHAPTER 19 ■ EXECUTING COMMANDS ON REMOTE SERVERS WITH NET-SSH154

8113Ch19CMP3 3/28/07 9:21 AM Page 154

155

C H A P T E R 2 0

■ ■ ■

Validating Credit Cards
with creditcard

The creditcard gem lets you verify credit-card numbers; it does not run the card, but rather
checks only its numerical validity. This can be useful in a variety of situations; for example, Web
applications that process credit cards need to know if a credit card is valid. Of course, when your
credit-card gateway is called, it will verify that the card number is correct. However, this is typi-
cally at the very end of the checkout, since you can’t run the card through the gateway until
the shopper has confirmed that he wishes to purchase the item. The creditcard gem can be
used at any stage of the process, such as on the Payment Details page to catch typing mistakes—
in fact, it can be used even without an Internet connection, which could be useful in bulk
card-processing applications. The creditcard gem can give instant feedback on the validity
of a card—it could even autoselect the appropriate type of card for the user based on the card
number.

How Does It Work?
The creditcard gem lets you validate credit cards in a Ruby script, such as in a Rails or Camping
Web application. (See Chapters 7 and 23 for more details on Rails and Camping, respectively.)
The creditcard gem doesn’t actually check that a given card is valid and has credit available—
it simply checks if the card is self-consistent according to the formula for each credit-card
company.

However, if you use the creditcard gem to verify credit cards on your site, you’ll have to
be very careful about storing the information properly—after all, your server logs may contain
credit-card information, which could be a significant problem. It unsafe and likely illegal in
some areas to store unencrypted credit cards; in addition, your merchant account provider or
credit-card processor likely places additional restrictions on the storage and security of credit
cards, and your local government may have additional restraints as well. You should check
with a lawyer for applicable laws and regulations regarding an ecommerce application that
handles credit-card data.

Essentially, the creditcard gem adds two valuable functions to the String class: creditcard?
and .creditcard_type. The creditcard? function returns true if the credit card is valid, and false
otherwise—the .creditcard_type function returns the card type (Visa, MasterCard, or another
card type).

You can use the following Linux/OS X shell or Windows command-prompt command to
install the creditcard gem:

gem install creditcard

8113Ch20CMP2 3/23/07 2:08 PM Page 155

Verifying Credit-Card Numbers in Batch
with creditcard
The example script in Listing 20-1 uses the creditcard gem to read a CSV file, verify every
credit card in the file, and then print a new CSV file with a field that indicates whether the card
is valid. Essentially, the script will act as a filter, taking in data from a file, processing data, and
outputting the new data.

Specifically, the script will be passed a few arguments—first the name of a CSV file, and
then a field number that specifies which field has the credit-card number in it. It will then
print a new CSV file, but with an extra field—containing either valid or invalid depending on
the card’s validity. The extra field will be immediately after the credit-card field, and the
remainder of the fields will be left as is.

■Note We also use the creditcard gem as an example in Chapter 3; you can see more code using the
creditcard gem there.

Listing 20-1. Verifying Credit-Card Numbers from CSV (creditcard_csv_filter.rb)

require 'creditcard'
require 'fastercsv'

Exit if the user didn't pass at least one argument.

(puts "#{$0} - a batch creditcard validator\n" <<
"usage: #{$0} csv_file record_number"; exit) unless ARGV.length>0

filename = ARGV[0]
option_number = ARGV[1].to_i - 1

Use FasterCSV to read the CSV from the file.
Chapter 15 covers FasterCSV in detail.

lines=FasterCSV.read(filename)

At times, CSV files may have blank lines -
particularly if they are generated by hand.
The following call deletes all of the blank lines.

lines.delete_if do |line|
line == []

end

CHAPTER 20 ■ VALIDATING CREDIT CARDS WITH CREDITCARD156

8113Ch20CMP2 3/23/07 2:08 PM Page 156

lines.each do |line|
Here we insert a new field at user-specified location -
it indicates whether the card is valid or not.
line.insert(option_number+1, (line[option_number].creditcard? ?

'valid' : 'invalid'))
end

Finally, we write out the completed CSV file to the screen.

lines.each do |line|
puts line.to_csv

end

Save this script as creditcard_csv_filter.rb. We’ll need to create a test CSV file, so save
the following text as test.csv:

Test Name,Test Address,Testville,TX,4111-1111-1111-1111,$399.00,Test Order
Test Name,Test Address,Testville,TX,not-a-number,$99.00,Test Order
Test Name,Test Address,Testville,TX,5431-1111-1111-1111,$35.35,Test Order
Test Name,Test Address,Testville,TX,5001-1000-1000-0000,$29.00,Test Order
Test Name,Test Address,Testville,TX,341-1111-1111-1111,$19.99,Test Order
Test Name,Test Address,Testville,TX,6011-6011-6011-6611,$9.35,Test Order

We can then run a test using the following Linux/OS X shell or Windows command-
prompt command:

ruby creditcard_csv_filter.rb test.csv 5

Test Name,Test Address,Testville,TX,4111-1111-1111-1111,valid,$399.00,Test Order

Test Name,Test Address,Testville,TX,not-a-number,invalid,$99.00,Test Order
Test Name,Test Address,Testville,TX,5431-1111-1111-1111,valid,$35.35,Test Order
Test Name,Test Address,Testville,TX,5001-1000-1000-0000,invalid,$29.00,Test Order
Test Name,Test Address,Testville,TX,341-1111-1111-1111,valid,$19.99,Test Order
Test Name,Test Address,Testville,TX,6011-6011-6011-6611,valid,$9.35,Test Order

As you can see, this script will print out a new version of the CSV file with one new field—
the validity field. If we wanted to, we could have exported the data into a CSV file with a
different format, or used ActiveRecord to export it into a MySQL database. (See Chapter 5 for
more detail.)

Dissecting the Example
First the program reads the CSV file into the lines array. After that, the program essentially
works in three parts: the first loop deletes all of the empty lines. The second loops through all
of the lines and adds a new field for each line—the valid/invalid field. The last part prints
each line.

CHAPTER 20 ■ VALIDATING CREDIT CARDS WITH CREDITCARD 157

8113Ch20CMP2 3/23/07 2:08 PM Page 157

lines.delete_if do |line|
line == []

end

lines.each do |line|
line.insert(option_number+1, (line[option_number].creditcard? ?
'valid' : 'invalid'))

end

lines.each do |line|
puts line.to_csv

end

The call to delete_if deletes all of the elements for which the block evaluates to true—
in other words, all elements that are equal to [], or all elements that are an empty array.

The first loop through the lines array uses the insert method of the array to add a new
element at option_number+1— right after our credit-card field. The value we insert into the
array is based on a call to the .creditcard? function—this function returns true if it is a valid
card, and false otherwise. We use the ? (ternary) operator to make this value valid if the func-
tion returns true and invalid otherwise.

Conclusion
The creditcard gem verifies credit cards easily and efficiently, and it is an easy way to check
cards for validity before they are processed. If your application calls for checking credit cards,
the creditcard gem is an excellent choice.

CHAPTER 20 ■ VALIDATING CREDIT CARDS WITH CREDITCARD158

8113Ch20CMP2 3/23/07 2:08 PM Page 158

Writing PDFs with pdf-writer

pdf-writer is a Ruby library for producing PDF files. PDF (Portable Document Format)
documents are ubiquitous and flexible. Typically, they are read-only and have the advantage
of appearing exactly the same on the screen as they do when they are printing; other docu-
ment formats designed for the screen, such as HTML, often appear vastly different in print.
Often businesses use PDFs for certain type of presentations, such as proposals or press
releases. By using the pdf-writer library, you can programmatically create PDFs in Ruby.

How Does It Work?
pdf-writer creates PDF documents. Specifically, it provides you with a set of methods to draw
text, places images, and so forth, as well as a method to save the resulting document as a PDF
file. pdf-writer is written in pure Ruby, so there are no external dependencies. (In Chapter 6
we used the external programs html2ps and ghostscript to produce a PDF—that method also
works, but it requires external programs. pdf-writer will work on any Ruby environment.)

One of the great benefits of PDF documents is that they are highly portable—they will
look very similar whether viewed on a Mac, or a PC, or whether printed onto paper. Addition-
ally, PDF documents are compact—they can contain multiple pages, hyperlinks, and other
features and still be saved and emailed easily. This is different from HTML pages, which typi-
cally involve multiple files and are awkward for the average computer user to redistribute.

The pdf-writer library provides us with an entire library of methods for displaying text,
images, tables, and graphs in PDF documents. Listing 21-1 will provide a more detailed exam-
ple, but let’s first consider a simple demonstration:

require 'pdf/writer'

pdf_document = PDF::Writer.new

pdf_document.select_font "Times-Roman"
pdf_document.text "Hello world!"
pdf_document.save_as "out.pdf"

This example simply creates a new PDF::Writer object, prints out the string Hello world!
in Times-Roman font, and finally, writes the PDF to the file out.pdf. As you can see, it’s rea-
sonably straightforward to create PDF documents using pdf-writer. Note that Times-Roman
is one of the 14 standard fonts available to any PDF reader. You can find the complete list of
fonts—and the other details on pdf-writer—from the online documentation:

http://ruby-pdf.rubyforge.org/pdf-writer/ 159

C H A P T E R 2 1

■ ■ ■

8113Ch21CMP2 3/23/07 2:12 PM Page 159

You can use the following command to install pdf-writer:

gem install pdf-writer

Creating Reports with pdf-writer and Net/SFTP
Often, programming involves creating reports. Reports can take many forms, but frequently
you’ll find that PDFs are a very convenient output format; PDFs can be easily displayed, printed,
or emailed to coworkers, and that makes them an excellent choice for report formatting.

Of course, the source of data for such reports varies widely; one common source is files.
Files can be anything from proposals to sales data to invoices; often you’ll find that you need
statistics on files, such as a list of files in a directory or a comprehensive list of how much
space is being used by which files. The example in Listing 21-1 will do just that; it will demon-
strate using pdf-writer by creating a PDF with a report of files and their disk usage in remote
directories on a remote server. You can also specify multiple directories.

You’ll need the Net/SFTP gem installed; if you don’t have it installed, you can install it via
the Windows command prompt or OS X/Linux shell command gem install net-sftp. You can
find out more information on net-sftp in Chapter 18.

Additionally, you’ll need access to a remote Linux or OS X machine with sshd installed to
run this example. The example itself, though, can be run from a Linux, OS X, or Windows
machine—you just need an equipped Linux/OS X machine to point the script at.

■Note You'll also need a PDF viewer, such as Adobe Acrobat Reader (http://www.adobe.com/products/
acrobat/readstep2.html) or Ghostscript Ghostview (http://www.cs.wisc.edu/~ghost/), to see the
output.

Listing 21-1. Writing File Reports to a PDF File (sftp_2_pdf.rb)

require 'pdf/writer'
require 'net/sftp'
require 'optparse'

options = {}
opt=OptionParser.new do |opts|
opts.banner = "Usage: #{$0} [options] hostname.com " <<

"directory1 directory 2 directory3..."

opts.on("-u", "--username USERNAME", "username") { |u| options[:username] = u }
opts.on("-p", "--password PASSWORD", "password") { |p| options[:password] = p }
opts.on("-o", "--port PORT", "port") { |p| options[:port] = p }
opts.on("-O", "--order FIELDNAME", "fieldname") { |f|

options[:sortcolumn] = f }

CHAPTER 21 ■ WRITING PDFS WITH PDF-WRITER160

8113Ch21CMP2 3/23/07 2:12 PM Page 160

opts.on("-s", "--sort ASC_OR_DESC", "sort") { |s| options[:sortorder] = s }
opts.on_tail("-h", "--help", "Show this message") { puts opts.help; exit }

end
opt.parse!

options[:hostname] = ARGV.shift
options[:directories] = ARGV
options[:username] ||= 'root'
options[:password] ||= ''
options[:sortcolumn] ||= 'filename'
options[:port] ||= 25

pdf_document = PDF::Writer.new

Connect to the server specified on the command line.

Net::SFTP.start(options[:hostname],
:port=>options[:port],
:username=>options[:username],
:password=>options[:password]) do |sftp_connection|

options[:directories].each do |directory|
pdf_document.select_font "Times-Roman"
pdf_document.text "Directory #{directory} on " <<

"host #{options[:hostname]}", :font_size=>32
directory = sftp_connection.opendir(directory)
files = sftp_connection.readdir(directory)

Build the table of data from the remote directory.

table_data = []
files.each do |file|
table_data << {"filename"=>file.filename,

"size"=> file.attributes.size,
"mtime"=> file.attributes.mtime
} unless file.filename =~ /^\.+$/

end

Sort the data according to the options
specified on the command line.

table_data.sort! do |row1, row2|
if options[:sortorder] == 'ASC'
row1[options[:sortcolumn]] <=> row2[options[:sortcolumn]]

CHAPTER 21 ■ WRITING PDFS WITH PDF-WRITER 161

8113Ch21CMP2 3/23/07 2:12 PM Page 161

else
row2[options[:sortcolumn]] <=> row1[options[:sortcolumn]]

end
end

Format all of the dates.

table_data.collect do |row|
row["mtime"] = Time.at(row["mtime"]).strftime('%m/%d/%y')

end

pdf_document.move_pointer 20

Create the table.

require 'PDF/SimpleTable'

table= PDF::SimpleTable.new
table.shade_color = Color::RGB::Grey90
table.position = :left
table.orientation = 30
table.data = table_data
table.column_order = ["filename", "size", "mtime"]
table.render_on pdf_document

pdf_document.move_pointer 50

end
end

pdf_document.save_as "out.pdf"

Save this as sftp_2_pdf.rb. To test the example, you can use the following Windows com-
mand prompt or Mac OS X/Linux shell command:

ruby sftp_2_pdf.rb yourhost.com /var/log -u username -p password

The argument to the script—yourhost.com—specifies the host name you’d like to connect
to, and the /var/log argument specifies the path. You’ll also need to put your username and
password in place of username and password, respectively. Figure 21-1 shows the resulting
PDF document.

CHAPTER 21 ■ WRITING PDFS WITH PDF-WRITER162

8113Ch21CMP2 3/23/07 2:12 PM Page 162

Figure 21-1. The resulting PDF document

Dissecting the Example
Let’s examine Listing 21-1. First we use optparse to parse the command-line arguments—you
can see another excellent example of this in Chapter 18, and you can find the optparse docu-
mentation online at the following URL:

http://www.ruby-doc.org/stdlib/libdoc/optparse/rdoc/index.html

Next we create a new PDF::Writer object, as follows:

pdf_document = PDF::Writer.new

We’ll use this object to create our PDF file. We’ll then loop through each directory specified
on the command line, and print a header for each of them; the following code does just that:

pdf_document.select_font "Times-Roman"
pdf_document.text "Directory #{directory} on " <<

"host #{options[:hostname]}", :font_size=>32

The call to select_font specifies which font we’ll use, and the call to the text method
actually prints the text. The text method has a number of optional parameters—you can see
the full documentation at http://ruby-pdf.rubyforge.org/pdf-writer/.

CHAPTER 21 ■ WRITING PDFS WITH PDF-WRITER 163

8113Ch21CMP2 3/23/07 2:12 PM Page 163

Next we create an array containing the data for the files—it will contain filenames, file
sizes, and file timestamps. It will also be sorted and the timestamp column will be formatted
properly. The code which does that is as follows:

directory = sftp_connection.opendir(directory)
files = sftp_connection.readdir(directory)

table_data = []
files.each do |file|
table_data << {"filename"=>file.filename,

"size"=> file.attributes.size,
"mtime"=> file.attributes.mtime
} unless file.filename =~ /^\.+$/

end
table_data.sort! do |row1, row2|
if options[:sortorder] == 'ASC'
row1[options[:sortcolumn]] <=> row2[options[:sortcolumn]]

else
row2[options[:sortcolumn]] <=> row1[options[:sortcolumn]]

end
end

table_data.collect do |row|
row["mtime"] = Time.at(row["mtime"]).strftime('%m/%d/%y')

end

As you can see, the first block of code populates the table_data array with the data
retrieved from the net-sftp connection. The second block sorts by the column and order
specified by the command line. (Ascending order, specified by ASC, means that the values
ascend—earlier dates followed by later dates, A followed by Z, and so forth.)

Next, we draw a table with all of this data—the filenames, sizes, and timestamps. Let’s
take a look at that code:

pdf_document.move_pointer 20

require 'PDF/SimpleTable'

table= PDF::SimpleTable.new
table.shade_color = Color::RGB::Grey90
table.position = :left
table.orientation = 30
table.data = table_data
table.column_order = ["filename", "size", "mtime"]
table.render_on pdf_document

pdf_document.move_pointer 50

The first and last lines call the move_pointer method, which increments the pointer that
specifies the current vertical location on the page—in other words, it creates some blank
space for us. The units of distance are in points, and a point is 1/72 of an inch, so the first

CHAPTER 21 ■ WRITING PDFS WITH PDF-WRITER164

8113Ch21CMP2 3/23/07 2:12 PM Page 164

blank space will be 20/72 of an inch. Note that you can use scaling options to redefine how big
a point is; also note that since it’s a physical measurement, and not a measurement in pixels, it
may appear differently on different screen sizes, zoom levels, and so forth.

Next we create a PDF::SimpleTable object. We set the shade_color to
Color::RGB::Grey90—this is a gray color roughly equal to #E6E6E6 in hex notation. This color
will be used to shade every other row to make the rows easy to distinguish from each other.

The next step is to set the position to :left, and the orientation equal to 30—the position
value sets the origin of the orientation value, meaning that the table will be drawn 30 points
away from the left margin of the page. If position had been set to :right, then the table would
be drawn 30 points from the right of the page.

We then set the data property to the table_data variable—that’s the data we carefully
retrieved, sorted, and formatted earlier. We set the column_order variable to set the order of the
columns we want to display. Finally, we use the render_on method to actually place the table
in our PDF.

There’s just one step left:

pdf_document.save_as "out.pdf"

This simple call writes our completed PDF document to the file out.pdf.

Conclusion
The pdf-writer gem is a powerful way to write PDFs using pure Ruby code. In some cases the
pdf-writer code can be complex, but the flexibliity and power it affords to create portable,
printable documents is quite useful.

CHAPTER 21 ■ WRITING PDFS WITH PDF-WRITER 165

8113Ch21CMP2 3/23/07 2:12 PM Page 165

8113Ch21CMP2 3/23/07 2:12 PM Page 166

Handling Recurring Events
with runt

The runt gem is a library for creating temporal expressions—expressions that describe date
recurrence. For example, you can create a temporal expression that represents the first Mon-
day of each month, or one that represents every 28th day; you could also, for instance, create
a temporal expression that represents the first day of a particular accounting period—like a
quarter year. You can use runt in a variety of ways; for example, you could use it if you had to
run a special report every Monday, or you could run a backup script every other day.

How Does It Work?
With runt, you can create regular expressions that represent recurring events—even fairly
complex ones. You could create a schedule with an event that repeats every ten days, except
for weekends or holidays. You could also create an event that repeats once a month on the
third Monday or the last Thursday of the month. runt can handle these kinds of events and
then match them against a range of dates—it can retrieve all of the first Thursdays in every
month in a given year, for example.

Once you’ve created an expression, you can do a few things with it. First, you can test a
date against it—basically, “Is this date one of these?” The following code creates an expression
for “Every last Thursday “ and checks if 5/28/2020 is within that timeframe:

require 'runt'
include Runt

date_expression = DIMonth.new(Last, Thursday)

puts "It's a last Thursday." if date_expression.include?(Date.new(2020,5,28))

The result of running the code is as follows:

It's a last Thursday.

The class DIMonth performs the bulk of the work here—the constants Last and Thursday
and defined by runt, and the DIMonth.new call returns a date expression matching every last
Thursday. After that, the .include? call checks if the specified date, 5/28/2020, is the last
Thursday of the month, and if so, prints out a brief message. 167

C H A P T E R 2 2

■ ■ ■

8113Ch22CMP3 3/28/07 9:26 AM Page 167

You can check time, as well—you could, for example, have part of your website that is
available only from 8AM–10AM on the last Thursday of the month. The following code creates a
date expression for the time 8 AM–10 AM on the last Thursday, and checks a few times against it:

require 'runt'
include Runt

date_expression = DIMonth.new(Last, Thursday) & REDay.new(8,0,10,0)

puts '7am on 5/28/2020 Included!' if date_expression.include?(
DateTime.new(2020,5,28,7,0))

puts '8am on 5/28/2020 Included!' if date_expression.include?(
DateTime.new(2020,5,28,7,0))

Running this code produces the following results:

8am on 5/28/2020 Included!

The call to REDay.new produces a date regular expression matching any time from 8AM

to 10PM; the & operator is used to combine it with the results of the DIMonth.new call, which
matches the last Thursday of each month, and as a result of the & operator combining the two
expressions, we get a combined temporal expression that matches any time variable from 8AM

to 10PM on the last Thursday of each month. In other words, we can compare this date regular
expression with a DateTime object and find out whether the DateTime object falls within 8 AM to
10 PM on the last Thursday of the month.

You can also apply a time expression to a range of dates and find all of the dates that lie
within that range—we’ll use this in Listing 22-1. Here’s a brief example that lists all of the last
Thursdays in 2020:

require 'runt'
include Runt

date_expression = DIMonth.new(Last, Thursday)

date_expression.dates(DateRange.new(PDate.day(2020,1,1),
PDate.day(2020,12,31))).each do |date|

puts date.strftime('%m-%d-%Y')
end

Running this example produces the following result:

01-30-2020
02-27-2020
03-26-2020
04-30-2020
05-28-2020
06-25-2020

CHAPTER 22 ■ HANDLING RECURRING EVENTS WITH RUNT168

8113Ch22CMP3 3/28/07 9:26 AM Page 168

07-30-2020
08-27-2020
09-24-2020
10-29-2020
11-26-2020
12-31-2020

The call to .dates takes two dates—in this case, the first and the last day of 2020—and
returns an array of dates that match that criteria. The PDate class used to create those two
arguments is much like the Date class that is built into Ruby, but allows you to specify preci-
sion; in this case, we used the .day method, which specifies that our dates are accurate only
to the day—they have no hour, minute, or second component.

You can find the full details on runt at the runt homepage:

http://runt.rubyforge.org/

You can use the following Linux/OS X shell or Windows command-prompt command to
install the runt gem:

gem install runt

Planning User-Group Meetings with runt
Our sample script (Listing 22-1) will use the runt gem to generate a schedule for a theoretical
Ruby user group. It will take options like 3rd Monday 2026, which will generate a schedule for
all of the third Mondays in every month of 2026.

You’ll also need the linguistics gem to use this example; we’ll use it to generate ordinals
and pluralize day names. You can install it via the following command:

gem install linguistics

■Note The linguistics gem isn’t discussed specifically in this book—it’s a very short gem, with just a few
self-explanatory methods—but you can find out more about it at its homepage:

http://www.deveiate.org/code/Linguistics/

Listing 22-1. Group Meeting Planner with runt (group_planner.rb)

require 'runt'
include Runt

require 'linguistics'
Linguistics::use(:en)

require 'date'

CHAPTER 22 ■ HANDLING RECURRING EVENTS WITH RUNT 169

8113Ch22CMP3 3/28/07 9:26 AM Page 169

(puts "#{$0} - plans monthly gatherings\nusage: #{$0} day_number day_name year\n";
exit) if ARGV.length != 3

day_number= ARGV.shift.dup.gsub(/(st|nd|rd|th)$/,'').to_i

day_names= Date::DAYNAMES.collect { |day| day.downcase }
day_name_argument = ARGV.shift.dup
day_name_value= day_names.index(day_name_argument.downcase)

year = ARGV.shift.dup.to_i

header= "All of the #{day_number.en.ordinal} " <<
"#{day_name_argument.en.plural} of #{year}"

puts header
puts "=" * (header.length)

date_expression = DIMonth.new(day_number, day_name_value)

date_expression.dates(DateRange.new(PDate.day(year,1,1),
PDate.day(year,12,31))).each do |date|

puts date.strftime('%m-%d-%y')
end

Save this script as group_planner.rb. You can test it using the following command:

ruby group_planner.rb 3rd Monday 2026

All of the 3rd Mondays of 2026
==============================
01-19-2026
02-16-2026
03-16-2026
04-20-2026
05-18-2026
06-15-2026
07-20-2026
08-17-2026
09-21-2026
10-19-2026
11-16-2026
12-21-2026

As you can see, the script printed out a list of every third Monday in 2026, and we could
pass it any arrangement we wanted—every second Thursday, every third Wednesday, and
so forth.

CHAPTER 22 ■ HANDLING RECURRING EVENTS WITH RUNT170

8113Ch22CMP3 3/28/07 9:26 AM Page 170

Dissecting the Example
Let’s take a look at a few important lines from Listing 22-1:

day_number= ARGV.shift.dup.gsub(/(st|nd|rd|th)$/,'').to_i

daynames= Date::DAYNAMES.collect { |day| day.downcase }
day_name_argument = ARGV.shift.dup
day_name_value= daynames.index(day_name_argument.downcase)

year = ARGV.shift.dup.to_i

This code pulls various arguments from the command line. ARGV.shift.dup pulls one
argument off of the command-line options. We use this to grab our three options—day num-
ber, day name, and year. Specifically, the call to .shift pulls the element off, and then the
call .dup duplicates the object for us. (This is useful because strings from the ARGV array are
frozen—that is, they can’t be modified, but a duplicate of them can be modified since it does
not copy the “frozen or not frozen” setting.)

We then process each argument—for the day number, we strip off any trailing ordinal ele-
ments. This means that 3rd becomes 3, 4th becomes 4, and so on. (However, this is optional;
you can also pass in a literal 3 instead of 3rd.)

For the day name, we first use .collect on the Date::DAYNAMES array to create a copy of
the array, which is all lowercase. We can then use the .index function—which returns the
index number of a value in an array—to find the appropriate index for the day name we’ve
been passed. (Note that this would be simpler if there were a case-insensitive version of the
.index function. We could use a .each block, but the .collect method is a bit simpler.)

Next, the following chunk of code prints a header for our output—it uses the linguistics
gem to make the label look nicer:

header= "All of the #{day_number.en.ordinal} " <<
"{day_name_argument.en.plural} of #{year}"

puts header
puts "=" * (header.length)

The first line uses the .en.ordinal method to insert the ordinal—it transforms 1 into 1st,
for example, and 2 into 2nd; the .en part specifies the language as English, since other lan-
guages follow other ordinalization rules. The second call uses the .en.plural method to create
the plural of our day name. (Of course, in this particular case, we could have simply tacked an
s onto the end, since all of the English day names end in -day, but it is a nice demonstration of
what you can do with the linguistics gem.)

The last two lines print the header line and then a line of equals signs the same length as
the header line.

Finally, the last chunk of code uses the DIMonth class to match our chosen day for each
month. Note that the class name DIMonth stands for Day In Month—DIWeek, likewise, is a runt
class name meaning Day In Week.

date_expression = DIMonth.new(day_number, day_name_value)

date_expression.dates(DateRange.new(PDate.day(year,1,1),

CHAPTER 22 ■ HANDLING RECURRING EVENTS WITH RUNT 171

8113Ch22CMP3 3/28/07 9:26 AM Page 171

PDate.day(year,12,31))).each do |date|
puts date.strftime('%m-%d-%Y')

end

The first line here creates a date expression using DIMonth.new. DIMonth.new takes a day
number and a weekday number—that is, DIMonth.new(1, 1) means the first Monday,
DIMonth.new(2, 3) means the second Wednesday, and so forth.

Next we call the .dates method on the date expression. We pass it a newly created
DateRange object, which specifies a range between the 1st of January and the 31st of Decem-
ber. (A PDate object is much like a regular Date object, except that PDate can have precision,
from as short a time as a millisecond to as long as a year.)

The .dates method returns an array of dates that match our date expression, so we use
.each to iterate through each one, and then we print it out using puts.

Executing Commands on a Recurring Schedule
Suppose you needed to perform a backup on the first Monday of every month. The script
in Listing 22-2 will let you do just that, as well as run any arbitrary command on a similar
schedule.

■Note Both Windows Task Scheduler and cron—the automatic schedulers for Windows and OS X/Linux,
respectively—have fairly similar facilities to runt’s, and it may be easier in some cases to use them instead.
Of course, runt’s recurring-event facilities are available to you for any purpose, not just for running com-
mands. Note that cron can schedule events on a weekly basis—every Monday, for example—but not every
first Monday, so this particular script may be useful in adding that capability to Linux machines. (Of course,
runt can be used inside of a larger application, unlike Windows Task Scheduler, so in general it’s also useful
under Windows.)

Listing 22-2. Running Commands on a Recurring Schedule with runt (run_on.rb)

require 'runt'
include Runt

(puts "#{$0} - runs commands on the indicated Nth weekday of the month\n" <<
"usage: #{$0} day_number day_name command\n";
exit) if ARGV.length <= 3

day_number= ARGV.shift.dup.gsub(/(st|nd|rd|th)$/,'').to_i

daynames= Date::DAYNAMES.collect { |day| day.downcase }

day_name_argument = ARGV.shift.dup
day_name_value= daynames.index(day_name_argument.downcase)

CHAPTER 22 ■ HANDLING RECURRING EVENTS WITH RUNT172

8113Ch22CMP3 3/28/07 9:26 AM Page 172

date_expression = DIMonth.new(day_number, day_name_value)

if(date_expression.include?(Date.today))
puts `#{ARGV.join(' ')}`

end

Save this script as run_on.rb. You can execute it as follows:

ruby run_on.rb 1st Monday echo 'Time to do a backup!'

Time to do a backup!

Of course, your result will vary depending on the day—if it’s not the first Monday of the
month, the script will print nothing. The echo 'Time to do a backup!' command could be
replaced with an actual backup command instead of a reminder, and you’d still need a way to
get this command to run recurrently; you could create a crontab entry, for example. You can
get more information on crontab here:

http://www.adminschoice.com/docs/crontab.htm

Dissecting the Example
The first portion of the script in the Listing 22-2 is the same as Listing 22-1, so you can see the
dissection of Listing 22-1 for details on how to construct the date expression. Here we’ll look at
the last three lines of Listing 22-2:

if(date_expression.include?(Date.today))
puts `#{ARGV.join(' ')}`

end

The .include? method returns true if the date expression includes the specified date—in
this case, it’s checking whether the date expression specified on the command line matches
the current date. If it does, then backticks are used to run the command specified on the com-
mand line, and puts is used to print the output to the screen.

Conclusion
Managing complex recurring dates can be very complicated, but runt lets you use familiar
idioms to simply manage even very complex date expressions; as a result, runt is an excellent
choice for any Ruby project that involves recurring dates.

CHAPTER 22 ■ HANDLING RECURRING EVENTS WITH RUNT 173

8113Ch22CMP3 3/28/07 9:26 AM Page 173

8113Ch22CMP3 3/28/07 9:26 AM Page 174

Building Websites with Rails

Rails—often called Ruby on Rails—is a very popular Ruby Web framework. Web frame-
works make writing Web applications easier. Ruby on Rails is a particularly popular Web
framework. It won a Jolt “Web Development Tools” product excellence award in 2006, and
quite a few tech start-ups have been created with a business plan centered on Ruby on Rails.

Ruby on Rails offers quite a few advantages to a Web developer. It uses ActiveRecord
for data access, which is a very popular ORM (object-relational mapping) library, and
ActiveRecord can make relational database development much easier. (You can find out
more about ActiveRecord in Chapter 5.) Rails has numerous other features, including a
powerful templating system, a wide variety of plugins, automated testing and deployment,
and more.

Ruby on Rails is a great choice for Web applications of almost any variety. For
example, you could use Rails to develop an ecommerce site—CDBaby.com sells CDs,
and the site runs Rails. You could also use Ruby on Rails to digitize your office’s paper trail,
like CastingFrontier.com does for actors, or you could use it to develop virtually any other Web
application you might need to develop.

How Does It Work?
Because Rails uses ActiveRecord as its data source, it’s able to use a number of different data-
base backends, such as MySQL and PostgreSQL.

Ruby on Rails is an MVC framework. MVC stands for Model View Controller, which are
the three parts of the framework. The first, the model, represents the database structure and
data, as well as associated logic—validation and so forth. The view represents the actual pres-
entation of the data—how it appears on the Web browser. Finally, the controller represents the
actual business logic—it controls what can be done where, and how the view and the model
are used. This is very beneficial for development speed and maintainability; it means that
each component needs to worry about only a designated area so that, say, the presentation
can be changed without worrying about changing the backend logic. This can make develop-
ment much faster and easier, and is one of the great benefits of Rails in particular and MVC
frameworks in general. You can learn more about MVC frameworks at the following URL:

http://en.wikipedia.org/wiki/Model-view-controller

Ruby on Rails is arguably more than just a Web framework—it’s a phenomenon. A
remarkable number of technology start-ups are switching to Ruby on Rails or are starting
with Ruby on Rails software as a cornerstone of their business plan.

175

C H A P T E R 2 3

■ ■ ■

8113Ch23CMP2 3/26/07 6:04 PM Page 175

Ruby on Rails is also remarkable because of the wide availability of plugins for it—they
are available for a great many purposes, ranging from automatically resizing image uploads
to entire user-authentication systems. A Rails plugin differs from a regular gem in that it’s
intended to run only inside a Rails application, and so it’s installed into a particular Ruby on
Rails application and not into your system as a whole. (Confusingly enough, many general-
purpose Rails plugins are also available as gems, giving you a choice of how to install and use
the plugin.)

For example, we’ll use the AjaxScaffold plugin in Listing 23-1 to create a database inter-
face. There are tons of other plugins, many of which can make complex tasks simple. Of
course, you can use Ruby gems in your Rails applications as well. You can find the official list
of plugins at the following URL:

http://wiki.rubyonrails.org/rails/pages/Plugins

You can get links to Ruby on Rails sites, mailing lists, wikis, and tutorials on the Ruby on
Rails homepage:

http://api.rubyonrails.org/

You can use the following command to install Rails:

gem install rails

A Simple Database Application with Rails
Our example will be a small database application. We’ll create a simple database, and then use
Rails, along with the Rails plugin AjaxScaffold, to manage the database. Specifically, we’re
going to create a tiny application to manage a collection of sports cars. We’ll use MySQL as the
database backend, so if you don’t have the mysql gem installed, you’ll need to install it using
the command gem install mysql.

First let’s create a MySQL database using the SQL source shown in Listing 23-1.

Listing 23-1. Sportscar Database Schema (schema.sql)

CREATE DATABASE sportscar_development;
USE sportscar_development;
CREATE TABLE sportscars(
id INT(11) AUTO_INCREMENT NOT NULL PRIMARY KEY,
model VARCHAR(30),
make VARCHAR(30),
year INT(11),
description TEXT,
purchase_price DECIMAL(9,2));

CREATE DATABASE sportscar_test;
USE sportscar_test;
CREATE TABLE sportscars(
id INT(11) AUTO_INCREMENT NOT NULL PRIMARY KEY,
model VARCHAR(30),

CHAPTER 23 ■ BUILDING WEBSITES WITH RAILS176

8113Ch23CMP2 3/26/07 6:04 PM Page 176

make VARCHAR(30),
year INT(11),
description TEXT,
purchase_price DECIMAL(9,2));

CREATE DATABASE sportscar_production;
USE sportscar_production;
CREATE TABLE sportscars(
id INT(11) AUTO_INCREMENT NOT NULL PRIMARY KEY,
model VARCHAR(30),
make VARCHAR(30),
year INT(11),
description TEXT,
purchase_price DECIMAL(9,2));

Save the code file as schema.sql. Next use the following command to build the structure of
the database:

mysql < schema.sql

Now that we’ve created the database, let’s create a Ruby on Rails frontend for it. Instead
of listing all of the code, let’s walk through the application-creation process, since Ruby on
Rails creates a number of files for you automatically. You can use the following command to
begin creating the application:

rails sportscar

This command will create a large number of files and directories for us automatically; the
exact files and directories will vary depending on your Rails version, but it should look similar
to the following:

create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create components
create db
create doc
create lib
create lib/tasks
create log
create public/images
create public/javascripts
create public/stylesheets
create script/performance
create script/process
create test/fixtures
create test/functional

CHAPTER 23 ■ BUILDING WEBSITES WITH RAILS 177

8113Ch23CMP2 3/26/07 6:04 PM Page 177

create test/integration
create test/mocks/development
create test/mocks/test
create test/unit
create vendor
create vendor/plugins
create tmp/sessions
create tmp/sockets
create tmp/cache
create Rakefile
create README
create app/controllers/application.rb
create app/helpers/application_helper.rb
create test/test_helper.rb
create config/database.yml
create config/routes.rb
create public/.htaccess
create config/boot.rb
create config/environment.rb
create config/environments/production.rb
create config/environments/development.rb
create config/environments/test.rb
create script/about
create script/breakpointer
create script/console
create script/destroy
create script/generate
create script/performance/benchmarker
create script/performance/profiler
create script/process/reaper
create script/process/spawner
create script/runner
create script/server
create script/plugin
create public/dispatch.rb
create public/dispatch.cgi
create public/dispatch.fcgi
create public/404.html
create public/500.html
create public/index.html
create public/favicon.ico
create public/robots.txt
create public/images/rails.png
create public/javascripts/prototype.js
create public/javascripts/effects.js
create public/javascripts/dragdrop.js
create public/javascripts/controls.js

CHAPTER 23 ■ BUILDING WEBSITES WITH RAILS178

8113Ch23CMP2 3/26/07 6:04 PM Page 178

create public/javascripts/application.js
create doc/README_FOR_APP
create log/server.log
create log/production.log
create log/development.log
create log/test.log

Next we’ll need to configure our application to access our database. Edit the sportscar\
config\database.yml file, which was created by the rails sportscar command, and replace it
with the following text:

development:
adapter: mysql
database: sportscar_development
username: your_user_name
password: your_password
host: localhost

test:
adapter: mysql
database: sportscar_test
username: your_user_name
password: your_password
host: localhost

production:
adapter: mysql
database: sportscar_production
username: your_user_name
password: your_password
host: localhost

You’ll have to replace your_user_name and your_password with the appropriate MySQL
username and password, of course. Additionally, note that the default username is root and
the default password is a blank password; if these settings are correct for your system, you
won’t need to change the file.

At this point, our Rails application is connected to the database, but we don’t have any
code in it. We need to create a model—this is a class that uses ActiveRecord to represent a
table in our database. Since we have only one table, sportscars, we need to create only one
model. You can create that single model using the following command:

cd /path/to/your/rails/application
ruby script/generate model sportscar

exists app/models/
exists test/unit/
exists test/fixtures/

CHAPTER 23 ■ BUILDING WEBSITES WITH RAILS 179

8113Ch23CMP2 3/26/07 6:04 PM Page 179

create app/models/sportscar.rb
create test/unit/sportscar_test.rb
create test/fixtures/sportscar.yml
create db/migrate
create db/migrate/001_create_sportscar.rb

We are going to use the AjaxScaffold plugin to generate code to access our database.
We first need to install the AjaxScaffold plugin via the following command:

ruby script/plugin install svn://rubyforge.org/var/svn/ajaxscaffoldp/trunk

A C:\path\sportscar\vendor\plugins\ajaxscaffoldp
A C:\path\sportscar\vendor\plugins\ajaxscaffoldp\test
A C:\path\sportscar\vendor\plugins\ajaxscaffoldp\test\ajax_scaffold_test.rb
A C:\path\sportscar\vendor\plugins\ajaxscaffoldp\app
...
Exported revision 90.

At this point we need to create a new controller—that’s the controller part of the MVC
Web framework. We then need to add a few lines of code to access our AjaxScaffold plugin
from our controller.

ruby script/generate controller sportscar_scaffold

exists app/controllers/
exists app/helpers/
create app/views/sportscar_scaffold
exists test/functional/
create app/controllers/sportscar_scaffold_controller.rb
create test/functional/sportscar_scaffold_controller_test.rb
create app/helpers/sportscar_scaffold_helper.rb

Next we need to add the code. Edit the file sportscar\app\controllers\sportscar_
scaffold_controller.rb file, and place the following code in it:

class SportscarScaffoldController < ApplicationController
ajax_scaffold :sportscar

end

Finally, let’s create the file sportscar\app\views\layouts\application.rhtml with the fol-
lowing code:

<html>
<head>
<title>Sportscar Inventory Tracker</title>
<%= ajax_scaffold_includes %>

CHAPTER 23 ■ BUILDING WEBSITES WITH RAILS180

8113Ch23CMP2 3/26/07 6:04 PM Page 180

</head>
<body>
<%=@content_for_layout%>

</body>
</html>

This file controls the look of our application. It’s an HTML template; the HTML output
from our application is inserted into it. It has only two dynamic components: first it calls the
helper function ajax_scaffold_includes, which inserts links to the various CSS and JavaScript
files that the Ajax scaffolding needs; and second, it includes the @content_for_layout variable,
which is the actual HTML output from our application.

Our application is now ready to run; we have an Ajax Web interface with the ability to view
add, delete, edit, and sort records. Let’s take it for a spin using the following shell command:

ruby script/server

You should be able to see the application (as in Figure 23-1) with a Web browser at the fol-
lowing URL:

http://localhost:3000/sportscar_scaffold

Figure 23-1. The completed Web application

Dissecting the Example
As you’ve likely noticed, there wasn’t much code involved in creating a great deal of function-
ality. In fact, most of our application was invoked with the following line in the controller:

ajax_scaffold :sportscars

CHAPTER 23 ■ BUILDING WEBSITES WITH RAILS 181

8113Ch23CMP2 3/26/07 6:04 PM Page 181

Essentially, this line passes control for the controller to the AjaxScaffold plugin. Note that
if you replaced the method ajax_scaffold with scaffold, you’d use the default Rails scaffold-
ing and not the AjaxScaffold scaffolding—the default is considerably less attractive, but
doesn’t require software besides Rails to be installed. Incidentally, there are a number of other
scaffolding plugins available—Streamlined, for instance, is another powerful scaffolding sys-
tem for Rails. You can obtain it at the following URL:

http://streamlined.relevancellc.com/

Although scaffolding is a powerful technique, it’s not always appropriate (it’s often an
excellent fit for the backend of the application, such as an administration area). Nonetheless,
scaffolding is both a powerful starting point and a great example of how quickly you can
develop with Rails. It’s also a great example of how you can write code in Rails—if you exam-
ine the sportscar\vendor\plugins\ajaxscaffoldp directory, you can see all of the code that
the plugin uses to create our interface. (The AjaxScaffold plugin detects the fields and field
types via the ActiveRecord gem, which is an integral part of Rails—check out Chapter 5 for
more details.)

Conclusion
Ruby on Rails is a complex subject—one that could (and does) fill several books. Most Ruby
on Rails applications will be much more complex than our example, and will include many
controllers and views. Fortunately, there’s a wealth of information available to help you learn
Rails quickly—a good start would be http://rubyonrails.org; you can also get Ruby on Rails
news at the meta-news-blog-job site I run, http://coolruby.com. If you’d like to try a more
complex application, examine the Ruby on Rails wiki tutorial at the following URL:

http://sl33p3r.free.fr/tutorials/rails/wiki/wiki-en.html

Ruby on Rails is a great way to develop websites—whether you’re developing a small
internal site or a large-scale Internet site, you’d be wise to consider using Rails.

CHAPTER 23 ■ BUILDING WEBSITES WITH RAILS182

8113Ch23CMP2 3/26/07 6:04 PM Page 182

Automating Development
Tasks with rake

rake is a Ruby utility that can automate software-development tasks of virtually any variety.
Often, of course, software development involves text files—source code, documentation, and
so forth—and rake excels at manipulating such files. It lets you develop “tasks” that can be
called easily from the command line using the rake utility.

For example, you can use rake to run tests on source code, to generate documentation
from source, to upgrade a database to the latest, or for many other tasks; often you’ll need to
create files from other files—compile code, for example—and rake works great for that. You
may also need to perform housekeeping of other kinds—for example, the default session store
in Rails creates a great many temporary files, so you could create a rake task that deletes
them for you.

How Does It Work?
rake helps you automate development tasks, such as transforming files into other files, run-
ning SQL commands, or virtually any other simple repetitive task. There are a number of other
tools that do this—ant and make, for example. However, rake, like RubyGems, requires only
Ruby. It’s also more flexible, since tasks in rake are written in Ruby—a full programming lan-
guage, and not just a configuration file. It also provides some additional help for writing tasks,
so it’s not only flexible, but it also has the power that both of the aforementioned tools have.

Specifically, rake has two types of tasks: file tasks and regular tasks. File tasks transform
files into other files, and regular tasks perform arbitrary tasks. File tasks, for example, are the
kinds of tasks that a makefile would use to transform a C source-code file into an object file,
or that you could use to automatically transform an XML source file into an output file.

In any case, it’s pretty straightforward to create a rake task. Here’s a simple example:

task :test do
puts "I'm alive!"

end

Save that as rakefile. You can use the following commands:

cd /path/to/rakefile
rake test

183

C H A P T E R 2 4

■ ■ ■

8113Ch24CMP4 3/28/07 5:41 PM Page 183

I'm alive!

You can put virtually any kind of Ruby code in a rake task. You can get the full rake docu-
mentation here:

http://rake.rubyforge.org/

To install rake, use the following command:

gem install rake

Easy Documentation with BlueCloth and rake
Projects of all kinds often involve digital documentation; a well-managed project will have
everyone involved contributing to the documentation, so that it covers the full range of the
available knowledge. However, because writing documentation takes time, it’s important to get
documentation created and updated quickly. One way to do this is by writing in an easy-to-use
format; in fact, the BlueCloth gem (introduced in Chapter 6) allows us to use MarkDown, which
is an easy-to-use markup language designed for easily and quickly writing textual documents.
(Many Ruby projects use RDoc, which is a common and easy-to-use way to include documenta-
tion in Ruby code; however, BlueCloth may be easier to use for nontechnical personnel, like
graphic designers or even clients.)

The sample script in Listing 24-1 uses the rake gem to take a directory full of BlueCloth
files and convert them into output files in HTML. Using this scheme, you could keep an entire
tree of BlueCloth documentation and use rake to keep a directory full of HTML files up-to-
date with the source BlueCloth files; you can have publicly accessible HTML files, which are
easy to view with the HTML, but you also get the benefit of having easy-to-edit BlueCloth
documentation.

You’ll need the BlueCloth gem to use this example; we’ll use that gem to convert the
source files into the output HTML files. You can install the BlueCloth gem using the following
command:

gem install bluecloth

Listing 24-1 contains the code for our example.

Listing 24-1. Convert BlueCloth Documentation to HTML (rakefile)

input_dir='documentation'
output_dir='public'

task :default => [:build_directories, :build_html]

task :build_directories do |t|
mkdir output_dir unless File.exists?(output_dir)
mkdir input_dir unless File.exists?(input_dir)

end

CHAPTER 24 ■ AUTOMATING DEVELOPMENT TASKS WITH RAKE184

8113Ch24CMP4 3/28/07 5:41 PM Page 184

Loop through all of the BlueCloth files and create
HTML documentation from them.

task :build_html do |t|
require 'bluecloth' # Note that this is here,

and not at the top of the file;
that way, we can add tasks later
that don't require bluecloth,
and developers can run those tasks
without having bluecloth installed.

cd input_dir

files=FileList["*.bc"].to_a

cd ".."

files.each do |filename|
input_file="#{input_dir}/#{filename}"

output_file= "#{output_dir}/" <<
filename.gsub(/^(.*)\.bc$/,'\1') << ".html"

File.open(output_file,'w').puts BlueCloth::new(
File.open(input_file).read
).to_html

puts "processing #{input_file} into #{output_file}"

end

end

Save this example as rakefile. Use the following command to run the example:

rake build_directories

(in /path/to/your/directory)
mkdir documentation
mkdir public
cd public
cd ..

CHAPTER 24 ■ AUTOMATING DEVELOPMENT TASKS WITH RAKE 185

8113Ch24CMP4 3/28/07 5:41 PM Page 185

You’ll see that rake created two directories: documentation and public. Next we’ll create a
BlueCloth file with some sample documentation in it (a justification for our project being writ-
ten in Ruby). In the input directory, create a new text file called language_justification.bc,
and save the following text into it:

Project Language Justification
==============================

Ruby is an open source, powerful programming language. It's
a scripting language, much like Perl or Python. However,
it's surprisingly elegant; complex techniques can be
implemented in just a few lines of code. It's also
harmonious, in that things - even complex things - work the
way you might expect them to, even when used in surprising
ways.

Additionally, there are Ruby libraries - called "gems" -
that are available to perform a wide variety of tasks.
These libraries can be used to automate tasks such as
the following:

- Authenticating users
- Processing credit cards
- Manipulating images
- And much more.

Now let’s run the rake command:

rake build_html

(in /path/to/your/directory)
cd input
cd ..
processing documentation/language_justification.bc into

public/language_justification.html

If we now open language_justification.html with a text editor, we can see the following
result:

<h1>Project Language Justification</h1>

<p>Ruby is an open source, powerful programming language. It's a scripting
language, much like Perl or Python. However, it's surprisingly elegant; complex
techniques can be implemented in just a few lines of code. It's also harmonious,
in that things - even complex things - work the way you might expect them to,
even when used in surprising ways.</p>

CHAPTER 24 ■ AUTOMATING DEVELOPMENT TASKS WITH RAKE186

8113Ch24CMP4 3/28/07 5:41 PM Page 186

<p>Additionally, there are Ruby libraries - called "gems" - that are available
to perform a wide variety of tasks. These libraries can be used to automate
tasks such as the following:</p>

Authenticating users
Processing credit cards
Manipulating images
And much more.

As you can see, our file was run through BlueCloth and turned into an output file. If you
create more test files in the documentation directory, they’ll be automatically converted via
BlueCloth into HTML files in the public directory when you run the rake command. Figure
24-1 shows what the example HTML file will look like when viewed in a Web browser.

■Note In our example, we process only files ending in .bc, so you could have multiple file types, each with
a different action.

■Note If you wanted to use this rakefile with a Ruby on Rails application, you could just paste it onto
the end of the Ruby on Rails default rakefile; it’ll work fine.

Figure 24-1. Language_justification.html displayed in a Web browser

CHAPTER 24 ■ AUTOMATING DEVELOPMENT TASKS WITH RAKE 187

8113Ch24CMP4 3/28/07 5:41 PM Page 187

Dissecting the Example
Let’s take a look at a few important lines from Listing 24-1.

task :default => [:build_directories, :build_html]

This line specifies the default task—the task that will run if rake is called from the
command line with no arguments. In this case, it simply runs the build_directories and
build_html tasks.

task :build_directories do |t|
mkdir output_dir unless File.exists?(output_dir)
mkdir input_dir unless File.exists?(input_dir)

end

This task creates the output_dir and input_dir directories, which we specify at the top of
the script. Of course, we use File.exists? to verify that each directory doesn’t already exist.

task :build_html do |t|

cd input_dir

files=FileList["*.bc"].to_a

cd ".."

files.each do |filename|
input_file="#{input_dir}/#{filename}"

output_file= "#{output_dir}/" << filename.gsub(/^(.*)\.bc$/,'\1') << ".html"

require 'bluecloth'

File.open(output_file,'w').puts BlueCloth::new(
File.open(input_file).read
).to_html

puts "processing #{input_file} into #{output_file}"

end

end

This task enters the input_dir directory and gets a list of all of the files ending in bc. Note
that FileList is a facility provided by rake; it automatically skips text-editor backups and
source control files, which is convenient. The build_html task opens each file, converts it into
HTML using BlueCloth, and then writes the new version into a similarly named file in the out-
put directory. The output file is named according to a fairly simple convention: the line that
calls gsubs strips the .bc extension and adds an .html extension. You could have a more com-
plicated naming convention if your application required it, of course.

CHAPTER 24 ■ AUTOMATING DEVELOPMENT TASKS WITH RAKE188

8113Ch24CMP4 3/28/07 5:41 PM Page 188

Conclusion
rake is an excellent way to automate repetitive tasks; it can make virtually any time-consuming
and uncreative development task easier.

CHAPTER 24 ■ AUTOMATING DEVELOPMENT TASKS WITH RAKE 189

8113Ch24CMP4 3/28/07 5:41 PM Page 189

8113Ch24CMP4 3/28/07 5:41 PM Page 190

Manipulating Images
with RMagick

RMagick is a Ruby interface to the ImageMagick image-manipulation libraries. You can use
RMagick to perform virtually any operation on an image from within a Ruby script. You could,
for example, resize a directory full of images for a Web photo gallery. You could also use this
feature to add a “watermark” to a directory full of images on a Web store so that competitors
can’t steal your product images to use on their sites.

How Does It Work?
RMagick is a Ruby interface to ImageMagick, which lets you create and edit images from within
a Ruby script. You can resize, crop, composite, and perform a variety of effects on images in a
number of formats. You can, for example, double the size of an image and then use a filter,
such as Gaussian blur. You can also crop images, resample images, increase and decrease
color depth, and more.

You can read an image from any file that ImageMagick supports, and then write to any file
that ImageMagick supports—you can, therefore, read an image supplied by a user in any size
and a variety of formats and then output it in a standardized size and format.

A variety of tasks are fairly easy using RMagick. For example, it’s pretty effortless to resize
images with RMagick. The following code resizes an image called example.png and writes it to
the file example_resized.png:

require 'rmagick'

image= Magick::Image.read('example.png').first

image.change_geometry(
"64x64") do |cols, rows, img|
img.resize!(cols, rows)

img.write 'example_resized.png'
end

191

C H A P T E R 2 5

■ ■ ■

8113Ch25CMP2 3/26/07 6:11 PM Page 191

The Magick::Image.read method returns an array; if we opened, say, a GIF animation
with multiple frames, we could step through this array to manipulate each frame of the image.
However, our image has just a single frame, so the .first call returns the first element of the
array, which is an object that represents our image.

The change_geometry method takes a new size as an argument and passes a set of new
dimensions to the associated block. The size it passes to the block might be different than the
size we initially passed to the change_geometry method. This is because the change_geometry
method takes into account the aspect ratio of the image in question, so that a square image
resized will stay a square image. (You can add exclamation points to one or more of the
dimensions to fix that dimension, so if you passed the size 64!x64! to the change_geometry
call, you’d get 64✕64 image every time, even if the image needed to be distorted to do so.)

Finally, the call to .resize! resizes our image, and the call to .write actually writes it to
the file.

It’s also easy to change image formats with RMagick. For example, the following code
reads an image called example.png, converts it into .jpg format, and writes it to the file
example_converted_to_jpeg.jpg:

require 'rmagick'

image= Magick::Image.read('example.png').first.write 'example_converted_to_jpeg.jpg'

RMagick automatically detects the format of the file extension and writes the file appropri-
ately, so the above example needs only to specify a file ending in .jpg to convert the file to our
new format.

Of course, there are many other operations RMagick is capable of. You can get the full
details about the RMagick gem API at the following URL:

http://rmagick.rubyforge.org/

You can use the following command to install RMagick

gem install rmagick

Note that RMagick requires either ImageMagick or GraphicsMagick to be installed, since it
uses either of those to perform the actual image manipulation. You can find out the details on
ImageMagick and GraphicsMagick at the following URLs:

http://www.imagemagick.org/script/download.php
http://www.graphicsmagick.org/www/download.html

Creating Thumbnails with RMagick
The example in Listing 25-1 is a small application to create an index for a directory full of pic-
tures. We’ll create a thumbnail for each picture, and then create an HTML document that we
can use to view all of them at once.

Note that this example requires Markaby to produce the output HTML. You can install
Markaby with the following command:

gem install markaby

CHAPTER 25 ■ MANIPULATING IMAGES WITH RMAGICK192

8113Ch25CMP2 3/26/07 6:11 PM Page 192

Listing 25-1. Creating Thumbnails with rmagick (create_thumbnails.rb)

require 'rmagick'
require 'markaby'
require 'optparse'

options = {}
opt=OptionParser.new do |opts|
opts.banner = "Usage: #{$0}.rb [options] image_directory"

opts.on("-u", "--thumbnail_directory directory",
"thumbnail_directory") { |u|
options[:thumbnail_directory] = u }

opts.on("-h", "--thumbnail_height HEIGHT",
"thumbnail_height") { |h|
options[:thumbnail_height] = h.to_i }

opts.on("-w", "--thumbnail_width WIDTH",
"thumbnail_width") { |w|
options[:thumbnail_width] = w.to_i }

opts.on("-c", "--background_color COLOR",
"background_color") { |c|
options[:background_color] = c }

opts.on("-t", "--crop_top HEIGHT", "crop_vertical") { |ct|
options[:crop_top] = ct.to_i }

opts.on("-b", "--crop_bottom HEIGHT", "crop_bottom") { |cb|
options[:crop_bottom] = cb.to_i }

opts.on("-l", "--crop_left WIDTH", "crop_left") { |cl|
options[:crop_left] = cl.to_i }

opts.on("-r", "--crop_right WIDTH", "crop_right") { |cr|
options[:crop_right] = cr.to_i }

opts.on_tail("-h", "--help", "Show this message") { puts opts.help; exit }

end
opt.parse!

(puts opt.help; exit) unless ARGV.length==1
options[:directory] = ARGV.shift
options[:thumbnail_directory] ||= "#{options[:directory]}/thumbnails"
options[:thumbnail_height] ||= 64
options[:thumbnail_width] ||= 64
options[:background_color] ||= 'black'

CHAPTER 25 ■ MANIPULATING IMAGES WITH RMAGICK 193

8113Ch25CMP2 3/26/07 6:11 PM Page 193

background = Magick::Image.new(options[:thumbnail_height],
options[:thumbnail_width]) do

self.background_color=options[:background_color]
end

Dir.mkdir(options[:thumbnail_directory]) unless
File.exists?(options[:thumbnail_directory])

html=Markaby::Builder.new

html.html do
html.head do
html.title "Picture Index for #{options[:directory]}"

end
html.body do

Dir.foreach(options[:directory]) do |file|

Manipulate the files only if they are images.

if file =~ /.*\.(jpg|gif|bmp|png|tif|tga)$/i

full_filename= "#{options[:directory]}/#{file}"
thumbnail_filename= "#{options[:thumbnail_directory]}/#{file}"

Read the image from the disk.

image= Magick::Image.read(full_filename).first

Crop the image if any of the crop options were specified
on the command line.

image.crop!(Magick::SouthGravity, image.columns, image.rows -
options[:crop_top]) unless options[:crop_top].nil?

image.crop!(Magick::NorthGravity, image.columns, image.rows -
options[:crop_bottom]) unless options[:crop_bottom].nil?

image.crop!(Magick::WestGravity, image.columns - options[:crop_right],
image.rows) unless options[:crop_right].nil?

image.crop!(Magick::EastGravity, image.columns - options[:crop_left],
image.rows) unless options[:crop_left].nil?

CHAPTER 25 ■ MANIPULATING IMAGES WITH RMAGICK194

8113Ch25CMP2 3/26/07 6:11 PM Page 194

Perform the actual resizing.

image.change_geometry(
"#{options[:thumbnail_width]}x" <<
"#{options[:thumbnail_height]}") do |cols, rows, img|

img.resize!(cols, rows)

composite= background.composite(img, Magick::CenterGravity,
Magick::OverCompositeOp)

composite.write thumbnail_filename
end

Add a div to our output HTML which
displays our new thumbnail.

html.div :style=>"padding:1em; float:left; text-align:center" do
a :href=>full_filename do
html.img :src=>thumbnail_filename, :align=>:center

end
p do
small file

end
end

end
end

end
end

print html.to_s

Save the code file as create_thumbnails.rb. Next, create a directory named thumbnails
underneath where you saved the file. Copy some images in JPEG or GIF format into the direc-
tory. Finally, let’s create our thumbnail index using the following command:

ruby create_thumbnails.rb thumbnails > test.html

CHAPTER 25 ■ MANIPULATING IMAGES WITH RMAGICK 195

8113Ch25CMP2 3/26/07 6:11 PM Page 195

If you view the file test.html in a Web browser, you can see the completed thumbnail
index (see Figure 25-1).

Figure 25-1. The Web browser showing our thumbnails

Dissecting the Example
The first chunk of code in our example parses the command line using optparse—that lets the
user specify options like the thumbnail size, the directory to create thumbnails for, and so
forth. After that, we create a background image for our thumbnails:

background = Magick::Image.new(options[:thumbnail_height],
options[:thumbnail_width]) do

self.background_color=options[:background_color]
end

This RMagick code creates a single-color background image that is the height of our
thumbnail. This will be used as a backdrop so that if the thumbnail is not the same aspect
ratio (width-to-height ratio) as the source image, the remainder of the thumbnail will be
colored the background color. (The thumbnail height, width, and background color are all
part of the options array, which can be overridden from the command line.)

CHAPTER 25 ■ MANIPULATING IMAGES WITH RMAGICK196

8113Ch25CMP2 3/26/07 6:11 PM Page 196

Dir.mkdir(options[:thumbnail_directory]) unless
File.exists?(options[:thumbnail_directory])

This line creates a directory for our thumbnails to be stored in—unless, of course, the
directory already exists.

Next the code creates a Markaby builder object, which is used to create our output HTML
page. Each method call on the Markaby object corresponds to an HTML tag; you can find out
more in Chapter 14.

Our script then loops through each of the directory’s files that have any of a few exten-
sions: JPG, PNG, and so forth. (The script doesn’t have an exhaustive list of formats that RMagick
supports—it covers only the most common ones. See http://RMagick.rubyforge.org/ for
more details.)

Finally, let’s take a look at the code that actually manipulates each image. Note that this
code is called in a loop—once for each file in our directory:

image= Magick::Image.read(full_filename).first

image.crop!(Magick::SouthGravity, image.columns, image.rows -
options[:crop_top]) unless options[:crop_top].nil?

image.crop!(Magick::NorthGravity, image.columns, image.rows -
options[:crop_bottom]) unless options[:crop_bottom].nil?

image.crop!(Magick::WestGravity, image.columns - options[:crop_right],
image.rows) unless options[:crop_right].nil?

image.crop!(Magick::EastGravity, image.columns - options[:crop_left],
image.rows) unless options[:crop_left].nil?

Perform the actual resizing.

image.change_geometry(
"#{options[:thumbnail_width]}x" <<
"#{options[:thumbnail_height]}") do |cols, rows, img|

img.resize!(cols, rows)

composite= background.composite(img, Magick::CenterGravity,
Magick::OverCompositeOp)

composite.write thumbnail_filename
end

The first line reads the image using RMagick’s .read method; we then call .first on it,
which gives us the first layer. (Of course, if we had multiple layers in our image we might want
to manipulate each differently, but for our example we’re assuming that each picture has just
one layer.) We don’t have to specify the file format—RMagick can automatically determine the
format for each image.

The next four lines, each of which starts with image.crop!, apply optional cropping. If the
user uses the option --crop_top 30 on the command line, for example, the program will crop
30 pixels off the top of each image before resizing it for thumbnails. Note that the program

CHAPTER 25 ■ MANIPULATING IMAGES WITH RMAGICK 197

8113Ch25CMP2 3/26/07 6:11 PM Page 197

CHAPTER 25 ■ MANIPULATING IMAGES WITH RMAGICK198

doesn’t actually modify the source image—it only changes the thumbnail. This may be useful,
for example, if you have a watermark or other artifact that is of a fixed size and has a specific
location.

The final block of code—starting with image.change_geometry—might be a bit confusing
at first, but it’s very helpful. The change_geometry code takes an ImageMagick size specifier
and returns a width and a height. This automatically respects aspect ratios, which means that
your image won’t be distorted. For example, if you had a 100✕200 source image that you want
to resize to 100✕100, the change_geometry method would calculate a new size of 50✕100—if
you resized to 100✕100 directly, you’d stretch the image to twice the proper width.

Once we are inside the block, we resize our image using the .resize! method; note that
we used the calculated cols and rows (in other words, width and height) values.

Next we composite the image with our background image into one single image—we use
the CenterGravity option, which dictates that if the new image is smaller than our background
image, it will be centered on the background.

Conclusion
There is an almost infinite variety of operations you might want to perform on an image, and
you can use RMagick from your Ruby scripts to easily automate nearly any of them.

8113Ch25CMP2 3/26/07 6:11 PM Page 198

Speeding Up Web Applications
with memcache-client

memcache-client is a Ruby interface to memcached; memcached is a distributed caching system.
Originally, memcached was developed for LiveJournal.com, which was one of the earliest popu-
lar blogging communities. It is reported that the newly developed memcached was able to
decrease LiveJournal’s database load to nearly nothing using only existing hardware. For a site
that at the time handled over 20 million page views a day and had over a million different
users, that’s very significant. A number of other popular sites use memcached, including Slash-
dot and Wikipedia.

Of course, to use memcached you need an interface, and memcache-client is a powerful,
easy-to-use memcached interface for Ruby. For example, you could use memcache-client as a
way to speed up an ecommerce site by caching slow database queries, and the faster your
application is, the cheaper it will be to scale to handle more users.

How Does It Work?
memcache-client lets you access memcached from a Ruby program; typically, memcached would
be used to supplement a database server or database-server clusters, although memcached
could be used to implement virtually any kind of caching. The model works like this: When
you have a complicated read-only query, you first check if the value is stored in the memcached
cache, and if it is you use the value from the cache, saving time and CPU power. However, if it’s
not present you run the query and cache the result.

Note that memcached doesn’t replace a database, since it is only a cache. However, it’s a
very useful cache: You can have as many memcached servers as you’d like, and they can fail as
necessary—when you can’t contact a memcached server, you can simply pull the result from the
database. Additionally, since memcached works over TCP/IP, different processes on different
machines can use the same memcached server transparently.

Here’s a simple example of setting and then retrieving a value on a memcached server using
memcache-client:

require 'memcache'
mem = MemCache.new '127.0.0.1'
mem[:test_key] = 'Hello world!'
puts mem[:test_key]

199

C H A P T E R 2 6

■ ■ ■

8113Ch26CMP3 3/28/07 9:29 AM Page 199

As you can see, it’s pretty easy to set and retrieve values using memcache-client; the first
line loads the memcache library, the second line creates our connection, and the last two lines
simply use the memcached connection as if it were a hash.

You can get the full memcache-client documentation here:

http://dev.robotcoop.com/Libraries/memcache-client/index.html

The following command lets you install memcache-client:

gem install memcache-client

■Note You’ll need to run a memcached server on your machine to follow the examples in this chapter. You
can get a Linux/OS X version at the memcached homepage:

http://www.danga.com/memcached/

You can get a Windows verison of memcached at the following URL:

http://jehiah.com/projects/memcached-win32/

Speeding Up the Ruby on Rails Session Cache
with memcached
Suppose you are creating an ecommerce site that sells audio-visual equipment. You’re imple-
menting your site in Ruby on Rails (see Chapter 23 for more details), and want to have a very
full set of features. Unfortunately, you have a limited budget, so you need to make the most of
your Web-server resources. memcache-client can help with this, and an excellent place to start
is by replacing the rails built-in session cache; session caches store information like a user’s
login info and shopping cart, but unfortunately, Ruby on Rails’s built-in session cache is file-
based and very slow. However, memcache-client offers a fast, easy-to-use alternative.

To demonstrate the speed of memcache-client, we’ll build a short test Rails application
that simulates a user logging in; we’ll then build a simple test rig, which will time 10,000
logins, and then we’ll time both the memcache-client version and the unmodified test version.

First let’s create a test Rails application, which simulates a user signing into the site. You’ll
need to have Rails installed; you can install it with the command gem install rails. (Ruby on
Rails is covered in detail in Chapter 23.) You can create the frame of our test application using
the following command:

rails default_store_test
cd default_store_test
ruby script/generate controller user

Now place the code from Listing 26-1 into the file app/controllers/user_controller.rb.

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT200

8113Ch26CMP3 3/28/07 9:29 AM Page 200

Listing 26-1. User Controller for Test Application (user_controller.rb)

class UserController < ApplicationController
def login
referring_page = session['referring_page']
session['user_id'] = 33
session['cart_contents']= [

{ :id=>1,
:quantity=>3,
:description=>'23 inch Television'},

{ :id=>2,
:quantity=>1,
:description=>'Misc DVD Lot'},

{ :id=>3,
:quantity=>1,
:description=>'Digitial Video Recorder'}

]
render :text=>'Thank you for signing in!'

end
end

The following commands will create a second Rails application, which will be the version
of our test application that uses memcached:

rails memcached_store_test
cd memcached_store_test
ruby script/generate controller user

Copy the code from Listing 26-1 into the memcached_store_test/app/controllers/
user_controller.rb file, just like you did for the default_store_test application.

Finally, add the code from Listing 26-2 to the end of the memcached_store_test/
config/environment.rb file, which was created for us by Ruby on Rails.

Listing 26-2. Memcache Session Store Connection (memcache_session_store.rb)

MEMCACHE_CONNECTION = MemCache.new(['localhost:17898'],
:namespace=>"memcached-store-test-#{RAILS_ENV}")

ActionController::Base.session_options[:cache] = MEMCACHE_CONNECTION

At this point, you should have two applications in two different directories: The default_
store_test directory has the default session store example, and the memcached_store_test has
the memcached version.

Now that we have the two examples, we need to test them to compare their speeds.
Listing 26-3 contains a brief tester that uses the rwb gem to test the speeds.

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT 201

8113Ch26CMP3 3/28/07 9:29 AM Page 201

■Note rwb stands for Ruby Web Bench; it’s a small gem that runs performance tests on Web applications.
You’ll need it installed to test the speed of your applications. You can install it using the following command:

gem install rwb

You can find out more about rwb at the following URL:

http://www.red-bean.com/~pate/

Listing 26-3. Application Speed Tester (performance_tester.rb)

require 'rwb'

number_of_runs=ARGV.shift.to_i

url_list = RWB::Builder.new()
url_list.add_url(1, 'http://localhost:3000/user/login')

tester = RWB::Runner.new(url_list, number_of_runs, 50)
tester.run

tester.report_header
tester.report_overall

Save the code from Listing 26-3 as performance_tester.rb. To determine the speed of the
two applications, let’s first test them both. Execute the following command:

cd /path/to/default_store_example
ruby script/server

We need to be running the Rails server in the background, so open a new window to exe-
cute the next command. (You can also use a different terminal or SSH connection under Linux
or OS X, depending on whether you are running this example locally.) The command to test
this server is as follows:

ruby performance_tester.rb 10000

completed 1000 runs
completed 2000 runs
completed 3000 runs
completed 4000 runs
completed 5000 runs
completed 6000 runs
completed 7000 runs
completed 8000 runs
completed 9000 runs
completed 10000 runs

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT202

8113Ch26CMP3 3/28/07 9:29 AM Page 202

Concurrency Level: 1
Total Requests: 10000
Total time for testing: 687.969 secs
Requests per second: 14.5355386652596
Mean time per request: 68 msecs
Standard deviation: 35
Overall results:

Shortest time: 31 msecs
50.0%ile time: 62 msecs
90.0%ile time: 110 msecs
Longest time: 406 msecs

As you can see, it took 687.969 seconds to run this example. Note that the example used
10,000 requests, but you could just as easily use 1000 or 100 requests, which would be much
faster—and less accurate, of course, but you may not wish to wait ten minutes for each test
to run. To make the test faster, simply replace the number 10000 in the command ruby
performance_tester.rb 10000 with a lower number.

Next, let’s try the memcached optimized version; if you have the previous server still running,
stop it. Run the following command:

cd /path/to/memcached_store_example
ruby script/server

In a different window, run this command:

ruby performance_tester.rb 10000

completed 1000 runs
completed 2000 runs
completed 3000 runs
completed 4000 runs
completed 5000 runs
completed 6000 runs
completed 7000 runs
completed 8000 runs
completed 9000 runs
completed 10000 runs
Concurrency Level: 1
Total Requests: 10000
Total time for testing: 459.157 secs
Requests per second: 21.7790428981808
Mean time per request: 45 msecs
Standard deviation: 31
Overall results:

Shortest time: 15 msecs
50.0%ile time: 32 msecs
90.0%ile time: 78 msecs
Longest time: 625 msecs

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT 203

8113Ch26CMP3 3/28/07 9:29 AM Page 203

Whereas the default version ran in a total of 687.969 seconds, the memcached-client version
ran in 459.157 seconds. That means that the unoptimized version took roughly 50 percent
longer. Of course, your exact results will vary depending on your application, operating system,
computer speed, and many other factors, but in any case memcached-client is an excellent
choice for a Rails session store.

Dissecting the Example
Let’s take a look at a few relevant lines from Listings 26-1, 26-2, and 26-3. First, a few lines from
26-1:

def login
referring_page = session['referring_page']
session['user_id'] = 33
session['cart_contents']= [

[:id=>1,
:quantity=>3,
:description=>'23 inch Television'],

[:id=>2,
:quantity=>1,
:description=>'Misc DVD Lot'],

[:id=>3,
:quantity=>1,
:description=>'Digitial Video Recorder']

]
render :text=>'Thank you for signing in!'

end

This single action simulates the storing and reading of the kinds of session data you have
in an ecommerce application. Of course, this example isn’t connected to a database, and you
can’t actually buy anything, but it is an accurate enough test to show the speed differences
between memcached and the default Rails session store.

Next, let’s take a look at the code from Listing 26-2; this code is added to the end of the
config/environment.rb file to enable our memcached session store:

MEMCACHE_CONNECTION = MemCache.new(['localhost:17898'],
:namespace=>"memcached-store-test-#{RAILS_ENV}")

ActionController::Base.session_options[:cache] = MEMCACHE_CONNECTION

As you can see, it’s fairly straightforward to attach the memcached session store to the Rails
application; it involves only two lines of code. The first line creates a connection; note that the
array ['localhost:17898'] contains the address and port number for our single server, and
that you could add more elements into that array if necessary.

Also note that the second parameter to the MemCache.new call, :namespace, sets a namespace
according to the current environment—this separates the session store for the different environ-
ments: the development environment, the production environment, and the test environment.
The advantage of this separation is that if you have data stored in, say, the development environ-
ment, it won’t be used in either the production or testing environment.

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT204

8113Ch26CMP3 3/28/07 9:29 AM Page 204

The last line sets the ActionController::Base.session_options[:cache] variable to our
connection to our memcached server, and that’s all we need to have a memcache-client session
store in Rails.

Finally, let’s take a look at a few lines from Listing 26-3; these don’t relate directly to
memcache-client, but it’s useful to know how you can use rwb to benchmark Web applications.

url_list = RWB::Builder.new()
url_list.add_url(1, 'http://localhost:3000/user/login')

tester = RWB::Runner.new(url_list, number_of_runs, 50)
tester.run

tester.report_header
tester.report_overall

The first line creates an RWB::Builder object; this lets us create a list of URLs to visit. The
second line adds a single URL into our list; it specifies the URL to our test login action, and it
specifies that it has a weight of 1. In this case, the weight doesn’t have any effect, but if we had
multiple URLs, we could use the weight parameter to make one URL be visited more often
than another.

The third line creates an RWB::Runner object that will run our tests and report the results.
The first argument to the RWB::Runner.new call will specify the list of URLs; the second argu-
ment is the number of times to run the test ,which was specified on the command line. The
third argument to the RWB::Runner.new call is the concurrency: how many open connections
are permitted at once.

The call to tester.run on the fourth line begins the tests; once they are finished, report_
header is called—this outputs some statistics like total time elapsed, total number of connec-
tions, and so forth. Next report_overall is called, which gives some statistics about the 50th-
percentile connection time, the longest time, and so forth. (Technically the 50th-percentile
time is slightly different than the average time, but the difference isn’t important in this case,
so if you aren’t familiar with statistics you can consider it an average.)

Accessing memcached Servers
with a Graphical Client
The script in Listing 26-4 uses the fxruby gem (see Chapter 11) to create a graphical interface
to a memcached server. You’ll be able to set a key and a value; you can also select a key and
retrieve the value. This serves as a debugging tool for memcached servers, and also demon-
strates how easy it is to use memcache-client.

Listing 26-4. Graphical memcached Interface (graphical_memcached_client.rb)

require 'memcache'
require 'fox16'

(puts "usage: #{$0} server1 server2..."; exit) unless (ARGV.length >= 1)

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT 205

8113Ch26CMP3 3/28/07 9:29 AM Page 205

server_addresses=ARGV

mem = MemCache.new server_addresses

include Fox

fox_application=FXApp.new

main_window=FXMainWindow.new(fox_application, "Memcached Client",
nil, nil, DECOR_ALL)

control_matrix=FXMatrix.new(main_window,3, MATRIX_BY_COLUMNS)
controls={}

#first row of controls: the 'get value' row.

FXLabel.new(control_matrix, 'Get:')
controls[:get_key] = FXTextField.new(control_matrix, 30)
FXButton.new(control_matrix, 'Get').connect(SEL_COMMAND) do
controls[:get_key_result].text = mem[controls[:get_key].text].to_s

end

#second row of controls: the 'results of get value' row

FXLabel.new(control_matrix, 'Result:')
controls[:get_key_result] = FXLabel.new(control_matrix, '')
FXFrame.new(control_matrix, 0)

#third row of controls: the 'set value' row

FXLabel.new(control_matrix, 'Set:')

textbox_matrix=FXMatrix.new(control_matrix,3, MATRIX_BY_COLUMNS, 0, 0, 0, 0, 0)
controls[:set_key]= FXTextField.new(textbox_matrix, 15)

FXLabel.new(textbox_matrix,'Value:')
controls[:set_value] = FXTextField.new(textbox_matrix, 15)

FXButton.new(control_matrix, 'Set').connect(SEL_COMMAND) do
mem[controls[:set_key].text] = controls[:set_value].text

end

fox_application.create

main_window.show(PLACEMENT_SCREEN)

fox_application.run

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT206

8113Ch26CMP3 3/28/07 9:29 AM Page 206

Save this example as graphical_memcached_client.rb. Use the following command to run
the example:

ruby graphical_memcached_client.rb 127.0.0.1

You should see a screen with a few options. (If not, did you start your memcached server?)
The first text box lets you retrieve a value from the memcached server; the second lets you set it.

To test the client, enter an example key next to the Set label, and then enter any value in
the Value box. Hit Set to set a value in the memcached server. Enter the same key under the Get
option, and then hit Get.

Feel free to use multiple clients on the same server—it will work fine. You can also easily
use multiple servers—just specify multiple IP addresses on the command line.

■Caution Keep in mind that memcached servers don’t have authentication, so your memcached deploy-
ment should not be accessible from the Internet.

Dissecting the Example
Let’s look at a few important lines from Listing 26-4.

mem = MemCache.new server_addresses

This first line opens connections to the memcached servers specified on the command line.
Generally, there is more than one memcached server in an environment—for example, if you
have a number of Web servers and a few database servers, you’d typically run memcached on the
Web servers—which often have memory to spare. That way, you’d offload work off of the data-
base server so that even noncached queries run faster.

controls[:get_key_result].text = mem[controls[:get_key].text].to_s

This line retrieves a result from the database when you click the Get button. The call, as
you can see, is pretty simple—the mem object works like a hash, and we access it like one, using
the [] method.

mem[controls[:set_key].text] = controls[:set_value].text

This line sets the key by using the []= method. As you can see, assigning values to a
memcached server is straightforward.

Conclusion
memcache-client is a fast, easy way to connect to memcached servers, and is a great choice any
time you want to use memcached servers from a Ruby site or application.

CHAPTER 26 ■ SPEEDING UP WEB APPLICATIONS WITH MEMCACHE-CLIENT 207

8113Ch26CMP3 3/28/07 9:29 AM Page 207

8113Ch26CMP3 3/28/07 9:29 AM Page 208

209

C H A P T E R #

■ ■ ■

Managing Zip Archives
with rubyzip

The rubyzip gem is a library for manipulating Zip archives. The Zip file format is a compressed
archive format that is very popular on Windows systems. However, there is support for it on
nearly all major operating systems; tools that uncompress Zip files are now distributed with
Windows, OS X, and most Linux distributions. Zip files can contain multiple files, like tar
archives, and are compressed, so in many ways they are similar to tar.gz files. The Zip format
shows up in some surprising places; for example, OpenOffice.org documents consist of a num-
ber of XML files and other files stored in a Zip archive. They don’t have .zip extensions, but you
can verify this by renaming an OpenOffice document to have the .zip extension and then view-
ing it with a Zip archiver.

Many times the Zip format is used as a container for data formats of other kinds, and
when you encounter such formats, you can use the rubyzip gem to extract the data before you
can process it. For example, data from a financial or ecommerce site might come to you as a
CSV file inside of a Zip file; you can use rubyzip to pull the CSV file out of the Zip container
and then you could process it using the fastercsv gem. (Chapter 15 has more details on
fastercsv.)

How Does It Work?
rubyzip provides a familiar object-oriented interface for Zip files. You can use the zipfilesystem
class to access Zip files as if they were regular filesystems—you can read files, write to files, read
the contents of directories, and so forth.

For example, we could create a new Zip file named a_new_zip_file.zip and create a new
file in it with the following code:

require 'zip/zipfilesystem'

Zip::ZipFile.open('a_new_zip_file.zip', Zip::ZipFile::CREATE) do |zipfile|
zipfile.file.open("a_file_in_the_archive", "w") do |filehandle|
filehandle.puts "The contents of this file are "
filehandle.puts "extremely important and "
filehandle.puts "should not be taken lightly."
end

end

C H A P T E R 2 7

■ ■ ■

8113Ch27CMP3 3/28/07 12:01 PM Page 209

As you can see from this example, the interface is very similar to Ruby’s built-in File class,
and you can use the puts method on a file in the archive just like you would for a regular file.

You could also list the contents of that same Zip file as follows:

require 'zip/zipfilesystem'

Zip::ZipFile.open('a_new_zip_file.zip') do |zipfile|
zipfile.dir.foreach('/') do |file|
print file

end
end

This code uses the foreach method to iterate through all of the filenames in the Zip file’s
top-level directory and prints out the name of each file.

You can find the full details on rubyzip here:

http://rubyzip.sourceforge.net/

The following command lets you install the rubyzip gem:

gem install rubyzip

Reading Text from a Zip File
Listing 27-1 uses the rubyzip gem to display text from a Zip file. This is useful because often
Zip files are used as packaging for other types of files; for example, OpenOffice.org documents
are XML documents packed inside of Zip files. Suppose you store invoices in OpenOffice.org
format. You can use this example to extract the meta information for all of the documents in a
directory, then read the XML to produce a list of document titles and authors—this summary
would be a useful reference. In fact, you could even use OpenOffice.org meta info to store
application-specific information—say, invoice numbers or client numbers.

Listing 27-1. Displaying Text from a Zip File (rzipcat.rb)

require 'zip/zipfilesystem'

(puts "usage: #{$0} zipfile [filename]
prints out one file or all files from a zip file"; exit) unless ARGV.length

zipfile=ARGV.shift
filename=nil
filename=ARGV.shift unless ARGV.length==0

def print_file(filename, fs)
puts filename
puts "=" * filename.length
puts fs.file.read(filename)

end

CHAPTER 27 ■ MANAGING ZIP ARCHIVES WITH RUBYZIP210

8113Ch27CMP3 3/28/07 12:01 PM Page 210

Open the zip file.

Zip::ZipFile.open(zipfile) do |fs|
If the user specified just one file,
print only that file.
if filename

print_file filename, fs
else
If not, print all of the files.

fs.dir.foreach('/') do |filename|
print_file filename, fs

end
end

end

Save this script as rzipcat.rb. Create a few text files with text of any kind in them, and
place them in a Zip file. Run the following command to test the script:

ruby rzipcat name_of_your_zipfile.zip

first_text_file.txt
===================
contents of first text file...

second_text_file.txt
====================
contents of second text file...

The script should display the contents of the text files you placed in the Zip archive. You
can also pick out just one Zip file using our script:

ruby rzipcat name_of_your_zipfile.zip first_text_file.zip

first_text_file.txt
===================
contents of first text file...

As you can see, we’ve created a utility that reads from Zip files with just a few lines of code.
Incidentally, as mentioned above, OpenOffice.org documents are Zip files—you can verify this
by running the following command on an OpenOffice.org document of your choice:

ruby rzipcat.rb your_file_name.sxw meta.xml

CHAPTER 27 ■ MANAGING ZIP ARCHIVES WITH RUBYZIP 211

8113Ch27CMP3 3/28/07 12:01 PM Page 211

meta.xml
========
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE office:document-meta PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0
//EN" "office.dtd"><office:document-meta xmlns:office="http://openoffice.org/200
0/office" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:dc="http://purl.org/d
c/elements/1.1/" xmlns:meta="http://openoffice.org/2000/meta" office:version="1.
...snip...

The file listed here, meta.xml, is just one of many files in an OpenOffice.org document; it
specifies meta information about the document, such as author information, the document
title, and so forth.

Dissecting the Example
Let’s look at a few important lines from Listing 27-1:

def print_file(filename, fs)
puts filename
puts "=" * filename.length
puts fs.file.read(filename)

end

The function here is used to print out the contents of each file; it’s called by the code later
in the script. It is passed two arguments—our filesystem object and a filename. The function
then does three things—it prints the filename, it prints a line of equal signs below the file-
name, then it prints out the contents. The expression fs.file.read(filename) reads the file
from the Zip filesystem.

The following lines open the original Zip file and process each filename we’ve specified on
the command line:

Zip::ZipFile.open(zipfile) do |fs|

if filename
print_file filename, fs

else
fs.dir.foreach('/') do |filename|
print_file filename, fs

end
end

end

The first line here contains a call to the Zip::ZipFile.open function. This opens the Zip
file, and creates a ZipFileSystem object. This function has a number of methods, all of which
you can find at the online documentation at http://rubyzip.sourceforge.net/, but there are
two that concern us here: the file and dir methods. Each returns an object that is similar to
Ruby’s built-in File and Dir classes; we use this functionality to loop through all of the files in

CHAPTER 27 ■ MANAGING ZIP ARCHIVES WITH RUBYZIP212

8113Ch27CMP3 3/28/07 12:01 PM Page 212

the Zip file’s root directory. The specific call that loops through the files is fs.dir.foreach('/');
we then call our print_file function for each filename, which then prints out the file.

Conclusion
Zip files are a very common way to compress and contain multiple files; they’re used in a vari-
ety of settings. rubyzip is a fast and easy way to both read and write Zip files.

CHAPTER 27 ■ MANAGING ZIP ARCHIVES WITH RUBYZIP 213

8113Ch27CMP3 3/28/07 12:01 PM Page 213

8113Ch27CMP3 3/28/07 12:01 PM Page 214

Speeding Up Function Calls
with memoize

memoize is an easy way to speed up function calls. It does this by caching the return value of
the function for each set of arguments—a process called memoization. This can dramatically
speed up the function, and it can be particularly helpful for calculations involving recursion.
It’s also very useful for functions that are repetitive and involve reading data from a hard drive.
For example, you could use this to speed up a photo gallery that retrieves EXIF data from
JPEGs, or a media player that reads ID3 tags.

How Does It Work?
memoize caches function calls by intercepting those calls, checking if the value is contained in
the cache, and substituting the result if the cache has a match. If not, the original function is
called and that value is stored in the cache for the next time. As you can imagine, this can
speed up some types of calculations by quite a bit. You can get the full details about memoize
at the following URL:

http://www.gemjack.com/gems/memoize-1.2.2/index.html

For example, Listing 28-1 calculates factorials; it first calculates without memoize, and then
with memoize speeding up the process. The factorial of a given number is the product of all
positive integers smaller than or equal to that number; in other words, the factorial of 4 is
equal to 1 ✕ 2 ✕ 3 ✕ 4. As you can imagine, this can be time-consuming to calculate for very
large numbers; Listing 28-1 calculates the factorial of a relatively small number, but we’ll do it
quite a few times.

■Note Ruby’s built-in benchmark module is used in Listing 28-1 to produce timing statistics; you can find
more details here:

http://www.ruby-doc.org/core/classes/Benchmark.html

215

C H A P T E R 2 8

■ ■ ■

8113Ch28CMP2 3/26/07 6:21 PM Page 215

Listing 28-1. Factorial Calculations with and without memoize (fast_factorial.rb)

require 'memoize'
require 'benchmark'

(puts "usage: #{$0} number_of_times_to_calculate_factorial " <<
"factorial_to_calculate " ;

exit) unless ARGV.length==2

runs = ARGV.shift.to_i
factorial_number = ARGV.shift.to_i

include Memoize # This brings the Memoize module into the
current object namespace.

def factorial(n)
return 1 if n==0
return factorial(n-1) * n

end

Benchmark.bm(11) do |bm|
bm.report("without memoize") { runs.times { factorial(factorial_number) } }

memoize :factorial
bm.report("with memoize ") { runs.times { factorial(factorial_number) } }

end

Save this as fast_factorial.rb. You can run our demo using the following command:

ruby fast_factorial.rb 10000 200

user system total real
without memoize 22.031000 0.016000 22.047000 (23.187000)
with memoize 0.140000 0.000000 0.140000 (0.141000)

Note that the total column shows the total time for the function to calculate the factorial;
as you can see, the memoize version of the function is quite a bit faster—specifically, it’s around
157.5 times faster. (Your results will vary significantly—your machine may be slower or faster,
but the memoize version should always be much faster than the non-memoize version.) Of
course, this is a dramatic example since it involves a huge number of calls with identical
parameters, but nonetheless it illustrates how caching can help significantly. (Keep in mind
that this works well only when you have multiple calls to the same function with the same
parameters.) The more repeat calls that you have, the more memoize can speed up your calcu-
lations. However, currently you can’t expire results in the cache, so if you have rapidly
changing data, memoize may not work well for you.

CHAPTER 28 ■ SPEEDING UP FUNCTION CALLS WITH MEMOIZE216

8113Ch28CMP2 3/26/07 6:21 PM Page 216

You can use the following command to install memoize:

gem install memoize

Organizing a List of MP3s
memoize can speed up any function call that is called repeatedly with the same parameters, not
just those that perform calculations. For example, suppose you wanted to create a graphical
list of an MP3 collection sorted by an arbitrary criteria, such as track length, artist, title, and
so forth. You can do this with the id3lib-ruby gem (which is detailed in Chapter 29). However,
looking up the id3 tag information is fairly time-consuming, and without the memoize gem, it’d
be very slow on a large collection of MP3 files. Listing 28-2 uses both the id3lib-ruby gem and
memoize to sort a collection of MP3s very quickly.

Listing 28-2. Sorting an MP3 collection (id3list.rb)

require 'id3lib'
require 'optparse'
require 'memoize'

include Memoize

$options = {}
$options[:set]={}

opt=OptionParser.new do |opts|
opts.banner = "Usage: #{$0} directory_name OPTIONS... "

opts.on("-s", "--sort OPTION=VALUE", "Sorts by the given ID3.") do |sort|
$options[:sort] = sort

end
opts.on("-d", "--do-not-memoize", "Turns off memoization.") do |sort|
$options[:do_not_memoize] = true

end
opts.on_tail("-h", "--help", "Show this message") { puts opts.help; exit }

end
opt.parse!

(puts "Please specify a directory of mp3 files to work with.";
exit) unless ARGV.length == 1

def get_file_id3_value(file, tag_name)
tag = ID3Lib::Tag.new(file)
tag.send(tag_name)

end

CHAPTER 28 ■ SPEEDING UP FUNCTION CALLS WITH MEMOIZE 217

8113Ch28CMP2 3/26/07 6:21 PM Page 217

def get_file_display_name(file)
tag = ID3Lib::Tag.new(file)
return "<p><i>#{tag.title}</i> from <i>#{tag.album}</i> by " <<

"#{tag.artist}
<small>#{file}</small></p>"
end

list_of_mp3_files = Dir.glob("#{ARGV[0]}/*.mp3")

memoize :get_file_id3_value unless $options[:do_not_memoize]

list_of_mp3_files.sort! do |a,b|
get_file_id3_value(a, $options[:sort]).to_s <=>

get_file_id3_value(b, $options[:sort]).to_s
end

puts "<html><body>"

list_of_mp3_files.each do |file|
puts get_file_display_name(file)

end

puts "</html></body>"

Save the code from Listing 28-2 as id3list.rb. You can run the example as follows—note
that you’ll have to substitute /path/music with the correct path to your music collection:

time ruby id3list.rb -s artist "/path/music" --do-not-memoize > without.html

real 1m8.462s
user 0m0.015s
sys 0m0.000s

time ruby id3list.rb -s artist "/path/music" > memoized.html

real 0m26.267s
user 0m0.015s
sys 0m0.015s

CHAPTER 28 ■ SPEEDING UP FUNCTION CALLS WITH MEMOIZE218

8113Ch28CMP2 3/26/07 6:21 PM Page 218

■Note These two commands use the time utility, which is available only under Linux or OS X. You can run
the example with the following commands under Windows:

ruby id3list.rb -s artist "C:\music" --do-not-memoize > without.html
ruby id3list.rb -s artist "C:\music" > memoized.html

You’ll need to replace C:\music with the appropriate path to your music collection. Although you won’t get
precise statistics without having the time utility, you should see that the first command is much slower than
the second.

As you can see, the first run—which did not use memoize—took 1 minute 8 seconds,
whereas the second run—which did use memoize—took just 26 seconds. Of course, the results
will vary depending on the size of your music collection, the speed of your computer, and so
forth.

You can open either of the two result documents (without.html or memozied.html) in a
Web browser, and you’ll get a result similar to the one in Figure 28-1. (Note that the two docu-
ments are identical; they were both created in Listing 28-2 only to show that memoizing does
not affect the output.)

Figure 28-1. The output Web page

CHAPTER 28 ■ SPEEDING UP FUNCTION CALLS WITH MEMOIZE 219

8113Ch28CMP2 3/26/07 6:21 PM Page 219

Dissecting the Example
There is essentially one function call you need to understand to use memoize, and it is named,
unsurprisingly enough, memoize. Our example calls it using the following code:

memoize :factorial

That single line replaces our factorial function with the memoize wrapper—which, of
course, calls the original the first time a particular set of parameters is encountered. As a
result, it behaves just like the original version of the factorial function, but with one crucial
difference: it won’t do unnecessary work.

Note that the memoize function takes an optional parameter: a filename. If we used the
following line, for example, we’d store our cache on disk instead of in memory:

memoize :factorial, 'cache_file_name'

That version of the memoize call is identical to the first except for the location of the cache,
so you can use it the same way as we did in Listing 28-2.

■Note Unlike the memory cache, the file cache sticks around between sessions—which could speed up
performance quite considerably in the long run. On the other hand, this may be a problem if your results
change from run to run—you can, of course, delete the cache file if you’d like.

Incidentally, the code behind the memoize gem is fairly short—which says quite a bit about
the flexibility of the Ruby programming language. You can read the actual memoize source on
RubyForge at the following URL:

http://raa.ruby-lang.org/gonzui/markup/memoize

Conclusion
memoize isn’t for all types of functions or for all caching needs, but it can easily speed up com-
putation-heavy problems—while keeping your code easy to read and to maintain. (If you need
a more powerful caching solution, check out the memcached gem in Chapter 26.)

CHAPTER 28 ■ SPEEDING UP FUNCTION CALLS WITH MEMOIZE220

8113Ch28CMP2 3/26/07 6:21 PM Page 220

Tagging MP3 Files
with id3lib-ruby

id3lib-ruby is a Ruby library for manipulating ID3 tags, which are embedded audio descriptors
found in MP3 files. When an MP3 file is played in an MP3 player—such as an iPod, a car stereo,
or a software audio player—ID3 tags provide the data that allows you too see the artist, track,
and album information. You can learn more about them at http://en.wikipedia.org/wiki/ID3.

Because MP3 is such a commonplace compression and encoding scheme for digital
music, any application that uses MP3 files will find this library useful. For example, you could
use this library to create an organizer for MP3 files or a digital jukebox. You could also use it to
create a mass tagger, which is a program that sets the attributes of a number of MP3 files at
once, so if you have a number of incorrectly tagged files, you could correct a great many of
them at once. Since poorly tagged MP3 files are quite common, this can be important, so an
MP3 mass tagger is the prime example for this chapter.

How Does It Work?
ID3lib-ruby provides a set of tools for reading and writing ID3 tags to and from MP3 files; you
specify an ID3 tag to load using the ID3Lib::Tag.new method, and then you can access the ID3
attributes using intuitively named methods. For example, you could print out the artist and
album from example.mp3 using the following code:

require 'id3lib'
example_tag=ID3Lib::Tag.new('example.mp3')
puts "#{example_tag.artist} #{example_tag.album}"

Your output might look like this:

A Fresh New Artist - A Popular Song

It’s reasonably easy to set the tags, as well:

require 'id3lib'
example_tag=ID3Lib::Tag.new('example.mp3')
example_tag.artist='This Is A Band'
example_tag.update!

221

C H A P T E R 2 9

■ ■ ■

8113Ch29CMP2 3/23/07 2:15 PM Page 221

The call to .update! writes the updated information to the file. Note that the method
is update! and not update—this is perhaps because the method modifies the file in place,
although that is slightly against the normal Ruby convention, which reserves the ! suffix for
methods that modify the receiver in place.

ID3lib-ruby also provides support for less-commonly used tasks, such as for attaching
album-cover art to MP3 files; you can get the full details about id3lib-ruby at the following URL:

http://www.gemjack.com/gems/id3lib-ruby-0.4.1-mswin32/index.html

You can use the following command to install id3lib-ruby:

gem install id3lib-ruby

Under Windows, you can choose to install the Win32 gem when prompted. Under other
operating systems, choose the Ruby gem. Under non-Win32 operating systems, you’ll need
the id3lib library installed; you can get it at the following URL:

http://id3lib.sourceforge.net/

Changing MP3 Tags with ID3 Mass Tagger
Listing 29-1 shows a small command-line utility to view and set ID3 tags. By default, the
program will view the ID3 tags of the MP3 files it receives as arguments on the command line.
You can also pass it an option to set one or more ID3 attributes, so if you had a number of
mistagged files—for instance, a misspelled artist or album name—you could correct them
all at once.

Listing 29-1. Creating a Mass ID3 Tagger (id3tool.rb)

require 'id3lib'
require 'optparse'

$options = {}
$options[:set]={}

opt=OptionParser.new do |opts|
opts.banner = "Usage: #{$0} file1 file2 file3... "

opts.on("-s", "--set OPTION=VALUE",
"Sets the ID3 option OPTION to VALUE.") do |options|
option, value = options.split(/=/)
(puts 'Please set the ID3 in the format option=value.';
exit) unless option and value

$options[:set][option] = value

end
opts.on_tail("-h",

"--help", "Show this message") {
puts opts.help; exit }

CHAPTER 29 ■ TAGGING MP3 F ILES WITH ID3LIB-RUBY222

8113Ch29CMP2 3/23/07 2:15 PM Page 222

end
opt.parse!

IF they didn't specify at least one file,
display a brief message and exit.

(puts "Please specify one or more mp3 files to work with.";
exit) unless ARGV.length > 0

Loop through all of the files on the command
line...
ARGV.each do |file|
.. read their tags...
tag = ID3Lib::Tag.new(file)
... display the info we found...
display= "#{file} - #{tag.title} from #{tag.album} by #{tag.artist}"

... update the info if necessary...
if $options[:set].length>0
$options[:set].each { |key, value| tag.send("#{key}=",value) }
tag.update!
display << " ...updating... "

end

... and finally print out the result.
puts display

end

Save this file as id3tool.rb. Next we’ll need to get an MP3 file to test it—download the file
test.mp3 from the following URL:

http://practicalrubygems.com/test.mp3

Next let’s test our tool by displaying the ID3 tag from this file:

ruby id3tool.rb test.mp3

test.mp3 - Demo Song from Test Album by Test Band

As you can see, it will display the ID3 tag information—in this case, the file is “Demo
Song” from Test Album by Test Band. If you’d like, you can also try it on other MP3 files.

Next let’s try setting an attribute using the following command:

ruby id3tool.rb test.mp3 -s "artist=John Doe"

test.mp3 - Demo Song from Test Album by Test Band ...updating...

CHAPTER 29 ■ TAGGING MP3 F ILES WITH ID3LIB-RUBY 223

8113Ch29CMP2 3/23/07 2:15 PM Page 223

ruby id3tool.rb test.mp3

test.mp3 - Demo Song from Test Album by John Doe

As you can see, our program will successfully update the ID3 tag. In this case, our demo
only sets tags, but you could perform any substitutions—for example, you could have a data-
base with a list of common artist misspellings, and automatically load each MP3, check for
misspellings, and replace them as necessary.

You can also use this program on more than one MP3 at a time; if you have multiple files
on your hard drive, you can retag multiple files at once. For example, suppose you had a num-
ber of files whose name started with test_artist, and which were tagged with the artist Test
Artist, but should be tagged Example Artist. You can fix the files as follows:

ruby id3tool.rb test_artist_*.mp3 -s "artist=Example Artist"

test_artist_first_song.mp3 - Test Song from Example Album by Test Artist
..updating...
test_artist_second_song.mp3 - Test Song from Example Album by Test Artist
...updating...

This example won’t rename the files—it will just redo the tags, so they will still have the
name test_artist in the filename. Of course, you could use id3lib-ruby to modify the script
to rename the files based on their ID3 tags.

Dissecting the Example
Let’s take a look at a few important lines from Listing 29-1.

tag = ID3Lib::Tag.new(file)

This line loads the tag information from each file we’re processing; afterward, we can
access the various attributes as methods, as we do next:

display= "#{file} - #{tag.title} from #{tag.album} by #{tag.artist}"

This line places a short description of the file and its ID3 attributes in the display variable
—we’ll print it at the end of the loop:

if $options[:set].length>0
$options[:set].each { |key, value| tag.send("#{key}=",value) }
tag.update!
display << " ...updating... "

end
puts display

CHAPTER 29 ■ TAGGING MP3 F ILES WITH ID3LIB-RUBY224

8113Ch29CMP2 3/23/07 2:15 PM Page 224

First, this block of code checks if any attributes need to be set; if so, we’ll loop through
each of the options and set them. (The technique used to set them is somewhat tricky: it’s
calling the method named after the option name and an equals sign, so that if you are setting
the artist attribute, it calls the artist= method.)

Next we call the tag.update! method—this writes our changes out to the file.
Finally, we print out the display variable, which contains the name of the file, a few of its

ID3 attributes, and whether the file was updated.

Conclusion
id3lib-ruby is a powerful, easy-to-use way to manipulate ID3 tags. Of course, you won’t always
need to use it, but when you are dealing with MP3 files—particularly with large numbers of
them—it’s an invaluable tool.

CHAPTER 29 ■ TAGGING MP3 F ILES WITH ID3LIB-RUBY 225

8113Ch29CMP2 3/23/07 2:15 PM Page 225

8113Ch29CMP2 3/23/07 2:15 PM Page 226

Shortening URLs with shorturl

shorturl is an easy-to-use Ruby library for accessing URL-shortening services such as
TinyURL.com, which can take long URLs and map them into smaller ones. For example,
the following is a link to this book’s Amazon.com page:

http://www.amazon.com/o/ASIN/1590598113/ref=pd_rvi_gw_1/105-4006969-0930819

The following is an equivalent TinyURL.com link:

http://tinyurl.com/yk4che

As you can see, the second link is much shorter; it’s easier to paste into chat rooms, e-mails,
and so forth. Additionally, some e-mail clients don’t correctly handle URLs longer than a single
line—they erroneously split up the URL so they won’t work correctly.

You can use the shorturl functionality in a variety of ways. For example, you could have a
message board that automatically replaces complicated URLs with much shorter ones. You
could do much the same for a blog, photo gallery, or virtually any other kind of site. You can
use shorturl for outside sites too; for example, if you had a site that aggregates news from a
variety of other sites, you could use shorturl to give a short version of the URL for every news
story—that way, your visitors could easily share the stories with their friends and coworkers.
In fact, that’s a particularly good example; since you have no control of the format of the links
of the external sites, they may be extremely long and complicated.

How Does It Work?
shorturl allows you to use UR- shortening services through a Ruby interface. Normally you’d
use these services via a Web browser, so shorturl uses the Ruby standard library Net/HTTP
to simulate a Web browser. It supports a number of services, including http://tinyurl.com,
http://shortify.com, and http://rubyurl.com. You can get the list of supported services by
calling the WWW::ShortURL.valid_services function.

As a brief example, we could use the following Ruby code to shorten a URL:

require 'shorturl'
puts WWW::ShortURL.shorten('http://example.com/somelongpath?someparameters=true')

227

C H A P T E R 3 0

■ ■ ■

8113Ch30CMP2 3/23/07 2:19 PM Page 227

That will print out a shortened version of the http://example.com/… URL. We could add
an additional parameter to the call to .shorten that would specify the service we’d like to use.
By default it uses rubyurl, but we could use a different service such as TinyURL like so:

require 'shorturl'
puts WWW::ShortURL.shorten('http://example.com/somelongpath?someparameters=true',

:tinyurl)

The services are very similar, and the biggest difference between them is the resulting
domain name—rubyurl URLs start with rubyurl.com, tinyurl URLs start with tinyurl.com,
and so forth.

In any case, it’s pretty straightforward to use the shorturl gem. You can get the full docu-
mentation here:

http://www.gemjack.com/gems/shorturl-0.8.3/index.html

The following shell command lets you install shorturl:

gem install shorturl

Shortening RSS Feeds with shorturl
Our example script will use the shorturl gem to create shortened links for an entire RSS feed
—specifically, an RSS feed with the Google Blog Search results for the phrase “Ruby on Rails.”

It will also use the Camping gem as the Web framework, and the feedtools gem for retriev-
ing the results—see Chapters 7 and 10, respectively, for more details. You can install them with
the following two commands:

gem install feedtools
gem install camping

Listing 30-1 provides the code for this example.

Listing 30-1. Blog Search with shorturl (shortblogs.rb)

require 'camping'
require 'feed_tools'

URI is a module built into Ruby for manipulating URIs;
we'll use it for encoding our data into our
Google search URL. You can get more details here:
#
http://www.ruby-doc.org/stdlib/libdoc/uri/rdoc/index.html
#

require 'uri'
require 'shorturl'

Camping.goes :ShortBlogs

CHAPTER 30 ■ SHORTENING URLS WITH SHORTURL228

8113Ch30CMP2 3/23/07 2:19 PM Page 228

This module contains our single view, frontpage.

module ShortBlogs::Controllers
class Frontpage < R '/'
def get
render :frontpage

end
end

end

module ShortBlogs::Views

@@search_term= 'ruby on rails'
@@number_of_results = 15

def frontpage
h1 "Blogs about #{@@search_term.titlecase}"

Create a Google blog search URL from our
search term, and then pull the RSS items
from it.

url = "http://blogsearch.google.com/blogsearch_feeds?"
url << "hl=en&q=#{URI.encode(@@search_term)}&ie=utf-8"
url << "&num=#{@@number_of_results}&output=rss&scoring=d"

feed=FeedTools::Feed.open(url)

Loop through each item, and
print out a shortened link to it.

feed.items.each do |feed_item|
url=WWW::ShortURL.shorten(feed_item.link)
div do
a(:href=>url) {feed_item.title} << ' - ' << url

end
end

end
end

Save this example as shortblogs.rb. You can use the following command to run the example:

camping shortblogs.rb -h 127.0.0.1

** Camping running on 127.0.0.1:3301.

CHAPTER 30 ■ SHORTENING URLS WITH SHORTURL 229

8113Ch30CMP2 3/23/07 2:19 PM Page 229

■Note The -h 127.0.0.1 argument is not required, but it makes Camping bind only to our loopback
address; this means that only we can access our application. (Omit the -h 127.0.0.1 argument if you
want other hosts to be able to access this or any other Camping application.)

At this point, you should be able to point your Web browser at http://127.0.0.1:3301 and
see the application.

Dissecting the Example
Let’s take a look at a the core of this application—the lines that actually loop through the
results, shorten the URLs, and display them to the user:

feed.items.each do |feed_item|
url=WWW::ShortURL.shorten(feed_item.link)
div do
a(:href=>url) {feed_item.title} << ' - ' << url

end
end

The feed.items array contains all of the items for our RSS feed; we then use the
WWW::ShortURL.shorten method to shorten the link. The next three lines create a div element
with a link it in, followed by a line that contains a dash and then the URL repeated as text so
that it can be copied and pasted easily.

Note that we have parentheses around the arguments to the a method—specifically,
(:href=>url). Otherwise the block {feed_item.title} would be interpreted as belonging to
the keyword url—which would make it a method, not a variable. Since there isn’t a url
method, it will raise a method not found error.

Conclusion
As you can see, the shorturl gem is an easy way to reduce the length of links by using external
link-shortening services. Often, you can’t control the format of outside links, and using
shorturl can make painfully long links manageable.

CHAPTER 30 ■ SHORTENING URLS WITH SHORTURL230

8113Ch30CMP2 3/23/07 2:19 PM Page 230

Creating Standalone
Ruby Applications with
rubyscript2exe

rubyscript2exe is a utility that creates standalone Ruby applications for the Windows, OS X,
and Linux platforms.

Ruby programs require a Ruby interpreter; with rubyscript2exe, you can include the
Ruby interpreter and your script in a single file, which can be executed by the end user just
like any other program. It can also include Ruby libraries, such as the gems covered in this
book—as a result, you can use it as a complete solution for distributing complex Ruby scripts.

Additionally, since rubyscript2exe uses your local copy of Ruby and of all of your gems,
you can be sure that your Ruby script will run as intended—a newer or later version of Ruby
installed on the end user’s machine won’t break your code, since it’s running your Ruby
interpreter.

As you can imagine, rubyscript2exe can be quite useful; you could use rubyscript2exe
to distribute packaged software written in Ruby, for example; you could also use it to create a
simple script to perform an administrative task—say, patching a security hole—on a number
of users workstations and then distribute it via CD-R media. The end users could then easily
run it by double-clicking on an icon. Because of rubyscript2exe, neither example would
require that the end users have Ruby or any gems installed.

How Does It Work?
rubyscript2exe creates a single, combined executable consisting of your script, the Ruby
interpreter and standard libraries, and any Ruby code you use, such as Ruby gems or other
libraries. Note that it is not a compiler—when you run the combined executable, it extracts
the Ruby interpreter, libraries, your code, and its dependencies into a temporary directory
and runs it from there.

Additionally, it uses the version of the gems, libraries, and Ruby interpreter that you
have installed on your development computer—it can’t create, say, a Linux executable on a
Windows machine or vice versa. Also, even if there is a newer version of Ruby or of a given
gem on the end user’s machine, a rubyscript2exe executable will use the version it was
created with.

231

C H A P T E R 3 1

■ ■ ■

8113Ch31CMP3 3/28/07 9:37 AM Page 231

Finally, since rubyscript2exe isn’t a compiler, it will be a larger executable than would be
produced by a Ruby-to-bytecode compiler—it includes all of the files rather than producing
only what’s necessary. However, this is also a strength: a Ruby compiler would possibly intro-
duce bugs and inconsistencies, but when you run a rubyscript2exe script, you are running the
program as the author intended—in fact, you are running it with the exact version of Ruby he
used to develop it.

In any case, you can get the full rubyscript2exe gem documentation here:

http://www.erikveen.dds.nl/rubyscript2exe/index.html

You can use the following command to install rubyscript2exe:

gem install rubyscript2exe

■Note You’ll need to take an additional step under Mac OS X; you’ll either need to compile eee_darwin or
download a precompiled version. (Typically, the precompiled route is easier.) You can find out the details at
the rubyscript2exe homepage:

http://www.erikveen.dds.nl/rubyscript2exe/index.html#toc_6.1.0

Packaging the id3tool Script with rubyscript2exe
For this example, we’re going to package the id3tool mass-tagging MP3 script found in Chap-
ter 29 into a standalone executable. This has the advantage of not needing Ruby installed on
the system that is running the executable. We’re going to make a small alteration to the code—
modifying the script so that it won’t run fully when it is being compiled—so we’ll use the code
provided in Listing 31-1 rather than the code from Chapter 29.

Listing 31-1. Standalone ID3 Retagger (id3tool_rs2e.rb)

require 'id3lib'
require 'optparse'
require 'rubyscript2exe'

exit if RUBYSCRIPT2EXE.is_compiling?

$options = {}
$options[:set]={}

opt=OptionParser.new do |opts|
opts.banner = "Usage: #{$0} file1 file2 file3... "

opts.on("-s", "--set OPTION=VALUE",
"Sets the ID3 option OPTION to VALUE.") do |options|

option, value = options.split(/=/)

CHAPTER 31 ■ CREATING STANDALONE RUBY APPLICATIONS WITH RUBYSCRIPT2EXE232

8113Ch31CMP3 3/28/07 9:37 AM Page 232

(puts 'Please set the ID3 in the format option=value.';
exit) unless option and value

$options[:set][option] = value

end
opts.on_tail("-h", "--help",

"Show this message") { puts opts.help; exit }

end
opt.parse!

(puts "Please specify one or more mp3 files to work with.";
exit) unless ARGV.length > 0

ARGV.each do |file|
tag = ID3Lib::Tag.new(file)

display= "#{file} - #{tag.title} from #{tag.album} by #{tag.artist}"

if $options[:set].length>0
$options[:set].each { |key, value| tag.send("#{key}=",value) }
tag.update!
display << " ...updating... "

end

puts display
end

Save this example as id3tool_rs2e.rb. Next we’ll need to convert this into a standalone
executable using the following command:

rubyscript2exe id3tool_rs2e.rb

Tracing id3tool_rs2e ...
Gathering files...
Copying files...
Creating id3tool_rs2e.exe ...

Next let’s test our new executable—note that your command will be different depending
on your environment: Your executable will be named id3tool_rs2e.exe for Windows, id3tool_
rs2e_darwin for OS X, and id3tool_rs2e_linux for Linux; of course, you can always rename the
executable after it’s created. (The name of the executable is listed on the last line of the output
of the rubyscript2exe command.)

We need a test MP3 file to verify that the program is working, so download the file
test.mp3 from the following URL:

http://practicalrubygems.com/test.mp3

CHAPTER 31 ■ CREATING STANDALONE RUBY APPLICATIONS WITH RUBYSCRIPT2EXE 233

8113Ch31CMP3 3/28/07 9:37 AM Page 233

Next use one of the following commands.
Use this command under Windows:

id3tool_rs2e.exe test.mp3

Use this command under Linux:

./id3tool_rs2e_linux test.mp3

Use this command under OS X:

./id3tool_rs2e_darwin test.mp3

You should get this result on all platforms:

test.mp3 - Test from test by test

You can now copy the executable to a machine without Ruby or id3lib installed—it will
still work.

Dissecting the Example
Let’s take a look at a few important lines from Listing 31-1.

require 'id3lib'
require 'optparse'
require 'rubyscript2exe'

exit if RUBYSCRIPT2EXE.is_compiling?

When we use the rubyscript2exe command to create the executable, this is the only code
that actually runs; the exit if RUBYSCRIPT2EXE.is_compiling? line causes the script to exit at
that point if it’s a rubyscript2exe trial run. (In a trial run rubyscript2exe runs our program as
a test; when it does so, it checks all of the require statements to find all of the gems and other
libraries that our program uses.)

■Caution During a trial run, rubyscript2exe really only needs to see the require statements; the
rest of the program just wastes CPU cycles, and in some cases may even be dangerous—for example,
you might want to use rubyscript2exe on a program that empties a database, but you might not want
to actually empty the database when you create the executable. In that case, you can use the exit if
RUBYSCRIPT2EXE.is_compiling? line of code to prevent that from happening. In other words, the
exit if RUBYSCRIPT2EXE.is_compiling? line exits the program early during the compilation of
the executable. (Note that you don’t need the require 'rubyscript2exe' line if you don’t need the
ability to exit during the compilation of the executable; in that case, you can safely omit the last two lines
in Listing 31-1.) Additionally, the RUBYSCRIPT2EXE module provides you with a few other flags—check
out the rubyscript2exe homepage at http://www.erikveen.dds.nl/rubyscript2exe/index.html
for more details.

CHAPTER 31 ■ CREATING STANDALONE RUBY APPLICATIONS WITH RUBYSCRIPT2EXE234

8113Ch31CMP3 3/28/07 9:37 AM Page 234

Special rubyscript2exe Command-Line Options
When our compiled executable is run, rubyscript2exe will perform some argument process-
ing before our compiled script receives the arguments; there are three special arguments that
have special behavior. If rubyscript2exe detects one of these arguments, rubyscript2exe will
intercept it. (Other arguments—just like the ones we used in Listing 31-1 when we passed the
name of the MP3 file—work fine, though.)

For example, the following command will list the contents of our executable:

id3tool_rs2e --eee-list

d bin
f bin\digest.so (20557)
f bin\etc.so (20551)
f bin\fcntl.so (20555)
f bin\id3lib_api.so (690688)
f bin\LIBEAY32.dll (842752)
f bin\msvcrt-ruby18.dll (905276)
f bin\MSVCRT.DLL (290869)
f bin\openssl.so (180303)
f bin\ruby.exe (20531)
f bin\rubyw.exe (20532)
f bin\sha2.so (28752)
f bin\SSLEAY32.dll (148992)
..snip...

This example is for Windows—your files will vary on other operating systems, and your
command will be different (./id3tool_rs2e_linux --eee-list for Linux and
./id3tool_rs2e_darwin --eee-list for OS X).

You can also use the --eee-just-extract option to extract all of these files into the current
directory; the --eee-info option displays information about the executable—size, number of
files, and so forth. Most of the time, you won’t need to use these special options, but they are
available for debugging purposes. You can find out more about these command-line options
at the following URL:

http://www.erikveen.dds.nl/rubyscript2exe/index.html#3.2.0

■Note The eee part of the --eee... options stands for Environment Embedding Executable; this is the
part of rubyscript2exe that actually packs and unpacks the executable. It can also be used for other pur-
poses, such as distributing scripts in other languages or for creating standalone Ruby installations; you can
find out more about it here:

http://www.erikveen.dds.nl/eee/index.html

CHAPTER 31 ■ CREATING STANDALONE RUBY APPLICATIONS WITH RUBYSCRIPT2EXE 235

8113Ch31CMP3 3/28/07 9:37 AM Page 235

Conclusion
As you can see, it’s easy to produce a standalone application using rubyscript2exe—even if
that application has external dependencies. Although the Ruby world is large and varied, you
will often have to interface with non-developers and others without Ruby installations; when
that happens, rubyscript2exe can be a powerful tool.

CHAPTER 31 ■ CREATING STANDALONE RUBY APPLICATIONS WITH RUBYSCRIPT2EXE236

8113Ch31CMP3 3/28/07 9:37 AM Page 236

Cleaning Dirty HTML with tidy

HTML is a standard file format for pages that can be viewed in a Web browser. There are a
great many ways to create HTML pages, ranging from graphical editors such as Dreamweaver
to text editors such as Notepad, Emacs, or Vim. Unfortunately, graphical editors generally do
not work well with most Web frameworks, including Rails, and HTML produced with text
editors may not be standards-compliant; it may lack closing tags or use invalid tag combina-
tions or attributes. Additionally, some graphical editors produce bad HTML; the problem is
exacerbated by the fact that modern browsers are very tolerant of HTML that is not standards-
compliant, so very incorrect HTML will often still display properly.

Unfortunately, if you are writing tools that need to read HTML files, you may not have the
same flexibility—you might need to have well-formed HTML. tidy can help you with this. For
example, if you have to read handcrafted HTML from the Internet, you can’t be sure it will be
standards-compliant, but you can use tidy to deal with badly formatted HTML. tidy has
other applications as well—for example, if you had a Rails application that let the user enter
his own HTML, you can’t be sure he’ll format his tags properly. You could use tidy to reformat
the user’s HTML—ensuring that your site produces proper HTML, which lets you have sup-
port for the widest audience possible, since not all browsers can handle bad HTML easily. Bad
HTML can also cause problems with your layout—an extra ending tag can prematurely end a
container, which can seriously damage your page’s appearance.

tidy is a Ruby library for handling improperly formatted HTML. It can also be used to
make HTML source easier to read; for example, you can take a long HTML file without line
breaks and use tidy to spread them out over multiple lines.

How Does It Work?
The tidy gem uses an external library, called HTML Tidy, to clean the HTML. Specifically, it pro-
vides an object-oriented Ruby wrapper around HTML Tidy; all of the options that you can pass
to HTML Tidy you can also pass to tidy. This includes the ability to correct HTML mistakes,
thereby hopefully making a non-standards-compliant HTML page standards-compliant and
therefore more compatible; it also includes purely visual formatting options, such as automat-
ically indenting the code, which can make the HTML code much easier to read.

In particular, HTML Tidy fixes a number of common mistakes automatically. For example,
 tags without a closing are automatically closed and DOCTYPE declarations are auto-
matically added. It can also make quite a few other changes. You can find out more about the
particular changes that HTML Tidy can make for you at the following URL:

http://www.w3.org/People/Raggett/tidy/ 237

C H A P T E R 3 2

■ ■ ■

8113Ch32CMP3 3/28/07 5:38 PM Page 237

■Note For the following examples, you’ll need to change the Tidy.path = line to reflect the path to your
tidy .dll or .so file.

Consider the following code, which you could use to turn an HTML fragment into a full
page:

require 'tidy'

Tidy.path = './tidy.dll'
dirty_html_fragment='<h1>This is a very important business header</h2> ' <<

'<p>"Quite important," said a leading businessman ' <<
'when asked about this paragraph. "I never leave ' <<
'home without it." '

clean_html_page= Tidy.open() { |tidy| tidy.clean(dirty_html_fragment)}

puts clean_html_page

Running this code produces the following result:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 14 February 2006), see www.w3.org">
<title></title>
</head>
<body>
<h1>This is a very important business header</h1>
<p>"Quite important," said a leading businessman when asked about
this paragraph. "I never leave home without it."</p>
</body>
</html>

Note how tidy added the <!DOCTYPE> declaration and the <head> and <body> tags, and how
it closed our unclosed paragraph tag. It also detected that the <h1> tag was incorrectly closed
with an </h2> tag and replaced the </h2> with the appropriate </h1> tag.

You can also pass optional parameters like this:

require 'tidy'

Tidy.path = './tidy.dll'
dirty_html_fragment='<h1>This is a very important business header</h2> ' <<

'<p>"Quite important," said a leading businessman ' <<
'when asked about this paragraph. "I never leave ' <<
'home without it." '

CHAPTER 32 ■ CLEANING DIRTY HTML WITH T IDY238

8113Ch32CMP3 3/28/07 5:38 PM Page 238

clean_html_page= Tidy.open('indent'=>'auto',
'uppercase-tags'=>'yes') do |tidy|

tidy.clean(dirty_html_fragment)
end

puts clean_html_page

Running this code produces the following result:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<HTML>
<HEAD>
<META name="generator" content=
"HTML Tidy for Windows (vers 14 February 2006), see www.w3.org">

<TITLE></TITLE>
</HEAD>

<BODY>
<H1>This is a very important business header</H1>

<P>"Quite important," said a leading businessman when asked about
this paragraph. "I never leave home without it."</P>

</BODY>
</HTML>

Note that in this example, we use two options: 'indent'=>'auto' and 'uppercase-
tags'=>'yes'. The first lets tidy use automatic indenting; the second directs it to use uppercase
HTML tags. (Some people prefer uppercase tags stylistic reasons, but they are discouraged in the
W3C HTML 4 standard and not permitted in XHTML.)

There are various other formatting options; you can find out more about HTML Tidy at the
following URL:

http://tidy.sourceforge.net/

You can use the following command to install tidy:

gem install tidy

This requires you to have the HTML Tidy library installed on your system; you can get it at
http://tidy.sourceforge.net/.

Under Windows, you’ll need to the install the DLL version of the HTML Tidy library; make a
note of where you unzip it, since you’ll need it to use tidy.

Under Mac OS X and Linux, you’ll need to compile the HTML Tidy library from source;
once you’ve done so, you can get the path to the HTML Tidy library using the following
command:

locate tidylib.so

CHAPTER 32 ■ CLEANING DIRTY HTML WITH T IDY 239

8113Ch32CMP3 3/28/07 5:38 PM Page 239

You can learn more about the tidy gem at the following URL:

http://tidy.rubyforge.org/

Tidying Up HTML on the Web with tidy
Our example (Listing 32-1) will be a small Web application that will let us paste HTML code
into a text box, press a button, and have it display the resulting clean HTML.

Our application will use the CampingWeb framework; this framework provides us with
support for easily creating Web applications. Chapter 7 has more details on how the Camping
Web framework works. You can install the Camping gem as follows:

gem install camping

Listing 32-1. A Web Application to Clean HTML (webtidy.rb)

%w(rubygems camping tidy).each { |lib| require lib }

#
Set the path for our Tidy DLL or .so file.
#
The default here is for a DLL in the current directory under Windows;
If you've put it elsewhere, you'll need to enter the value in the line below.
#
Under Linux or Mac OS X, you can use the command 'locate libtidy.so'
to retreieve the path to Tidy.
#

Tidy.path = './tidy.dll'

Camping.goes :WebTidy

module WebTidy::Controllers

#
Homepage for the application.
#
class Index < R '/'
def get
if @input[:html]
@html_output= Tidy.open('indent'=>'auto') do |tidy|
tidy.clean(@input[:html])

end
end
render :homepage

end
end

CHAPTER 32 ■ CLEANING DIRTY HTML WITH T IDY240

8113Ch32CMP3 3/28/07 5:38 PM Page 240

end

#
Contains all of the views for the application.
#

module WebTidy::Views
TIME_FORMAT="%H:%M:%S"

#
View which shows the homepage.
#

def homepage
p 'Input Text:'
form do
textarea @input[:html], :cols=>45, :rows=>5, :name=>:html
br :clear=>:left
input :type=>:submit, :value=>'Send'

end

if @html_output
textarea @html_output, :cols=>45, :rows=>5, :name=>:html

end
end

def layout
html do
head do
title 'WebTidy'

end
body do
h1 "welcome to webtidy"
div.content do
self << yield

end
end

end
end

end

Save this file as webtidy.rb. You can run the application as follows:

camping webtidy.rb

You should be able to see the application at the following URL:

http://localhost:3301/

CHAPTER 32 ■ CLEANING DIRTY HTML WITH T IDY 241

8113Ch32CMP3 3/28/07 5:38 PM Page 241

Next, enter the following HTML into the Input HTML box:

<h2>List Of Things I Don't Have</h2>

A moon rock
A firm grasp of Spanish
An orangutan

Click the Tidy button. You should get the following HTML response:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 14 February 2006), see www.w3.org">

<title></title>
</head>

<body>
<h2>List Of Things I Don't Have</h2>

A moon rock

A firm grasp of Spanish

An orangutan

</body>
</html>

As you can see, tidy fixed the various mistakes: it added the ending tags and the
ending tag, and made a number of other changes. In fact, the output is valid HTML 3.2;
if you’d like, you can test it using the W3C validator at the following URL:

http://validator.w3.org/

Dissecting the Example
One of the lines at the top of Listing 32-1 is very important:

Tidy.path = './tidy.dll'

This line tells the tidy gem where the HTML Tidy library can be found; if you are running
Windows and your DLL file is not in the same directory as the script from Listing 32-1, you’ll
need to change this line.

CHAPTER 32 ■ CLEANING DIRTY HTML WITH T IDY242

8113Ch32CMP3 3/28/07 5:38 PM Page 242

If you are running Linux or Mac OS X, you’ll need to change this line; the library will be
called libtidy.so, so you can locate it using the following command:

locate libtidy.so

Let’s take a look at the portion of our example that does the actual HTML cleaning:

@html_output= Tidy.open('indent'=>'auto') do |tidy|
tidy.clean(@input[:html])

end

This line creates a Tidy object using the .open call, and then inside of the block we call the
.clean method of the Tidy object. That’s essentially the bulk of the typical use of tidy.

There are other options—for example, tidy produces an error log with all details on the
errors it has changed, and you can retrieve these errors with the .errors method, but typically
that won’t be particularly important. If you’d like more details on such options, consult the
tidy site:

http://tidy.sourceforge.net/

Conclusion
tidy is a powerful utility for fixing and visually formatting HTML, and, fortunately, it’s easy to
use. Whether you are filtering the output from a Web application or scraping HTML sites with
questionable HTML, tidy can make your life much easier.

CHAPTER 32 ■ CLEANING DIRTY HTML WITH T IDY 243

8113Ch32CMP3 3/28/07 5:38 PM Page 243

8113Ch32CMP3 3/28/07 5:38 PM Page 244

Parsing XML with xml-simple

XML is a standard file format for exchanging data. It’s an SGML-based markup language,
and it appears similar to HTML. xml-simple is a Ruby library for parsing XML. It’s a port of the
Perl xml-simple library, and it has a similar interface, which is easier to use than Ruby’s built-in
REXML library. (You can get more information on REXML at http://www.germane-software.com/
software/rexml/.)

You can use xml-simple to work with any program or site that can use XML as a data-
exchange format. For example, RSS, which is a format for exchanging news, is an XML-based
file format, and you could parse RSS with xml-simple. Microsoft Access and Microsoft Excel
can both import and export XML; additionally, all OpenOffice documents are stored as XML
compressed in a ZIP file. XML is also commonly available from a wide variety of websites,
as it’s commonly used to transfer information pertinent to products, affiliates, and other
commerce-related data.

How Does It Work?
xml-simple is, as the name implies, a very simple XML parser. It provides just two methods:
xml_in and xml_out. The former reads XML from either a file or from a string and returns a
hash that represents the XML file. The latter does the opposite: it takes a hash and returns a
string of XML that represents the hash.

Reading an XML File with xml_in
Consider the following XML file:

<items>
<item>
<description>Dangerous Stingray Holding Tank</description>
<price>$45,000.00</price>

</item>

<item>
<description>Perilous Stingray Holding Tank</description>
<price>$35,000.00</price>

</item>

<item>
245

C H A P T E R 3 3

■ ■ ■

8113Ch33CMP2 3/26/07 6:27 PM Page 245

<description>Pacifistic Stingray Holding Tank</description>
<price>$20,000.00</price>

</item>

</items>

The xml_in method would return a hash that looks like this:

{"item"=>
[
{"price"=>["$45,000.00"],

"description"=>["Dangerous Stingray Holding Tank"]},

{"price"=>["$35,000.00"],
"description"=>["Perilous Stingray Holding

Tank"]},

{"price"=>["$20,000.00"],
"description"=>["Pacifistic Stingray Holding

Tank"]}
]

}

If we saved the sample XML file to input.xml, we could run the following code:

require 'xmlsimple'

XmlSimple.xml_in('input.xml')['item'].each do |item|
puts "#{item['description']}, #{item['price']}"

end

Running this code produces this result:

Dangerous Stingray Holding Tank, $45,000.00
Perilous Stingray Holding Tank, $35,000.00
Pacifistic Stingray Holding Tank, $20,000.00

As you can see, the xml_in method turns XML into a very easy-to-use hash.
You can use the following shell command to install xml-simple:

gem install xml-simple

For the full details about the xml-simple gem, visit the following URL:

http://xml-simple.rubyforge.org/

CHAPTER 33 ■ PARSING XML WITH XML-SIMPLE246

8113Ch33CMP2 3/26/07 6:27 PM Page 246

Converting a Hash to XML with xml_out
The xml_out method does the opposite of the xml_in method—it takes a hash like the one we
just looked at and turns it into an XML string. You could use xml_out as follows:

require 'xmlsimple'

hash= {:items=>{"item"=>
[
{"price"=>["$45,000.00"],

"description"=>["Dangerous Stingray Holding Tank"]},

{"price"=>["$35,000.00"],
"description"=>["Perilous Stingray Holding

Tank"]},

{"price"=>["$20,000.00"],
"description"=>["Pacifistic Stingray Holding

Tank"]}
]

}}

puts XmlSimple.xml_out(hash, 'keeproot' => true)

Running that code produces this result:

<items>
<item>
<price>$45,000.00</price>
<description>Dangerous Stingray Holding Tank</description>

</item>
<item>
<price>$35,000.00</price>
<description>Perilous Stingray Holding

Tank</description>
</item>
<item>
<price>$20,000.00</price>
<description>Pacifistic Stingray Holding

Tank</description>
</item>

</items>

As you can see, the xml_out method is an easy way to produce valid XML from a Ruby
hash. Note that the keeproot option prevents XmlSimple from adding an additional root node;
the advantage of this behavior is that since the document can have only one root node, you
don’t need to add a root node to use xml_out on any arbitrary array.

CHAPTER 33 ■ PARSING XML WITH XML-SIMPLE 247

8113Ch33CMP2 3/26/07 6:27 PM Page 247

Tracking OpenSSL Vulnerabilities with xml-simple
OpenSSL.org publishes vulnerability advisories in XML format. These can be important—if
you are running a vulnerable version of OpenSSL, you might end up with security breach that
is likely to cost you headaches at best and significant amounts of money at worst.

Since the data is in XML format, it includes not only a brief textual description of the vulner-
ability, but also a machine-readable list of version numbers. Therefore, our example (Listing
33-1) will take a version number on the command line, connect to http://www.openssl.org/,
see if any of the vulnerabilities apply to our version, and print any that apply. The source XML
file looks like this:

<security updated="20060928">

<issue public="20020730">
<cve name="2002-0656"/>
<affects base="0.9.6" version="0.9.6"/>
<affects base="0.9.6" version="0.9.6a"/>
<affects base="0.9.6" version="0.9.6b"/>
<affects base="0.9.6" version="0.9.6c"/>
<affects base="0.9.6" version="0.9.6d"/>

<fixed base="0.9.6" version="0.9.6e" date="20020730"/>
<advisory url="http://www.openssl.org/news/secadv_20020730.txt"/>

<reported source="OpenSSL Group (A.L. Digital)"/>
<description>

A buffer overflow allowed remote attackers to execute
arbitrary code by sending a large client master key in SSL2 or a
large session ID in SSL3.

</description>
</issue>
...

Essentially, our code wants to find all of the issue elements—which are contained in a
parent security element—and determine whether each one has an affect element with
a version attribute equal to our version of OpenSSL.

Listing 33-1. Checking for OpenSSL Vulnerabilities (check_openssl_vulnerabilities.rb)

require 'xmlsimple'
require 'net/http'
require 'yaml'

If they did not specify a version to search
for, exit with a brief message.
(puts "usage: #{$0} version" ; exit) if ARGV.length!=1

my_version=ARGV[0]

CHAPTER 33 ■ PARSING XML WITH XML-SIMPLE248

8113Ch33CMP2 3/26/07 6:27 PM Page 248

This is the URL where we are going to
download the vulnerability list.

url='http://www.openssl.org/news/vulnerabilities.xml'

Next, we actually download the file
and save the results in the data variable.

xml_data = Net::HTTP.get_response(URI.parse(url)).body
data = XmlSimple.xml_in(xml_data)

data['issue'].each do |vulnerability|
outstring=''
affected=false
If the vulnerability affects at least one
openSSL version - which should always
be true, but we check just in case.

if vulnerability['affects']
vulnerability['affects'].each do |affected|
if affected['version']==my_version
affected=true
If it affects our version, we'll
print it out below.

end
end

end

if affected
(outstring <<
"from #{vulnerability['reported'][0]['source']} "

) unless vulnerability['reported'].nil?

(outstring <<
"at #{vulnerability['advisory'][0]['url']} "

) unless vulnerability['advisory'].nil?
end

If we have something to print out, then
print it out.

puts "Advisory #{ outstring}" unless outstring==''
end

Save this file as check_openssl_vulnerabilities.rb. You can run the application as fol-
lows:

ruby check_openssl_vulnerabilities.rb 3.0

CHAPTER 33 ■ PARSING XML WITH XML-SIMPLE 249

8113Ch33CMP2 3/26/07 6:27 PM Page 249

Executing this command produces the following output:

Advisory from OpenSSL Group (A.L. Digital) at http://www.openssl.org/news/secadv
_20020730.txt
Advisory from OpenSSL Group (A.L. Digital) at http://www.openssl.org/news/secadv
_20020730.txt
Advisory at http://www.openssl.org/news/secadv_20030219.txt
Advisory at http://www.openssl.org/news/secadv_20030319.txt
Advisory at http://www.openssl.org/news/secadv_20030317.txt
Advisory from NISCC at http://www.openssl.org/news/secadv_20030930.txt
Advisory from NISCC at http://www.openssl.org/news/secadv_20030930.txt
Advisory from NISCC at http://www.openssl.org/news/secadv_20030930.txt
Advisory from Novell at http://www.openssl.org/news/secadv_20031104.txt
Advisory from OpenSSL group at http://www.openssl.org/news/secadv_20040317.txt
Advisory from OpenSSL group at http://www.openssl.org/news/secadv_20030317.txt
Advisory from OpenSSL group (Stephen Henson) at http://www.openssl.org/news/
secadv_20040317.txt
Advisory from researcher at http://www.openssl.org/news/secadv_20051011.txt
Advisory from openssl at http://www.openssl.org/news/secadv_20060905.txt
Advisory from openssl at http://www.openssl.org/news/secadv_20060928.txt
Advisory from openssl at http://www.openssl.org/news/secadv_20060928.txt
Advisory from openssl at http://www.openssl.org/news/secadv_20060928.txt
Advisory from openssl at http://www.openssl.org/news/secadv_20060928.txt

As you can see, our application connected to openssl.org, retrieved the results that
affected our version of OpenSSL, and displayed them.

Dissecting the Example
Let’s look at the code that iterates through all of the issue elements, each of which represents
one security vulnerability.

data['issue'].each do |vulnerability|

As you can see, it’s pretty easy to do—we use the hash returned by xml_in just like any
other hash. The expression data['issue'] returns an array that contains all of the elements
named issue; we then use the .each method to iterate through it. Note that the top-level ele-
ment— security—is excluded automatically because XML documents always contain a
top-level container.

For each issue we find, we need to check if the vulnerability affects our particular version:

affected = false

if vulnerability['affects']
vulnerability['affects'].each do |affected|
if affected['version']==my_version
affected=true

CHAPTER 33 ■ PARSING XML WITH XML-SIMPLE250

8113Ch33CMP2 3/26/07 6:27 PM Page 250

end
end

end

Note the second line here—it checks if the XML element contains an affects element. All
of the issue elements should contain an affects element, but we want to ensure our program
can proceed even if there is an invalid issue element; otherwise, it may crash upon encoun-
tering the invalid issue element and not catch an important vulnerability later.

if affected
(outstring << "from #{vulnerability['reported'][0]['source']} "
) unless vulnerability['reported'].nil?

(outstring << "at #{vulnerability['advisory'][0]['url']} "
) unless vulnerability['advisory'].nil?

puts "Advisory #{outstring}"
end

The first line here checks if our affected flag was set to true; if so, we need to construct a
warning message and print it. First we try to print the source of the information if there isn’t
a reported element; afterward, we print the URL of the advisory—assuming that one is pro-
vided, of course.

Note that the expression vulnerability['reported'][0]['source'] refers to the source
element or attribute in the first reported element; typically, we have only one, but xml-simple
will always place it in an array in any case—it has no way of knowing the structure of our data.

Conclusion
xml-simple is an easy-to-use library for reading and writing XML. It’s not always appropriate—
it does not offer XPath support, for example—but code written using xml-simple is easy to
read and maintain. As a result, xml-simple can simplify complex XML parsing routines, leaving
you to concentrate on the unique part of your application.

CHAPTER 33 ■ PARSING XML WITH XML-SIMPLE 251

8113Ch33CMP2 3/26/07 6:27 PM Page 251

8113Ch33CMP2 3/26/07 6:27 PM Page 252

Creating Gems

All applications involve custom code. By creating and packaging your custom code, you’ll

have access to the power of the RubyGems system for deployment and dependency reso-

lution, combined with the debugging power of the thriving Ruby community.

P A R T 3

■ ■ ■

8113Ch34CMP2 3/26/07 6:29 PM Page 253

8113Ch34CMP2 3/26/07 6:29 PM Page 254

Creating Our Own Gems

In this chapter, you’ll learn how to create your own RubyGems. This can be useful for a variety
of reasons: It gives you access to the gem-dependency system, it helps reusability between
multiple programs, and more. For example, suppose you ran an ecommerce site that sold
CDs, and the custom code you wrote to calculate shipping costs was used by several in-house
programs; you could package the code as a gem, and then you could reuse it easily among the
different programs.

This chapter covers how to create a gemspec, what the various fields mean, how to use
the gem build command to create a gem package, and what you can do when things go wrong.

What Is Inside a Gem?
In Chapter 1 I covered installing gems; we used the gem utility to automatically download and
set them up. However, to create our own gems, we'll need to know what the gem files them-
selves consist of. Specifically, gems are .gem files; .gem files are essentially archives, like a Zip or
TAR file. This archive contains all of the files the gem uses. Typically, the archive contains sub-
directories: a lib/ directory containing the library source, a test/ directory containing tests,
and so forth. The structure of the gem is up to the developer. At the very least, there’ll also be a
README file with a short description and licensing information. A gem also contains some
metadata, like the name of the developer, the homepage of the gem, and so forth. Both the list
of files used in the gem and the metadata come from a gemspec.

What’s a Gemspec?
Before we create our own gem, we must create a custom gem specification, commonly called
a gemspec. The gemspec specifies various things about the gem: what it’s called, its version
number, what files are inside of it, who wrote it, what platforms it runs on, and so forth. This
specification comes in the form of a Ruby script that creates a Gem::Specification object.
Once you have this gemspec, you can use the gem build command to create a .gem file from it.

The Gem::Specification object has a number of attributes that describe the gem. These
include the name of the gem, the author name, the dependencies, and so forth. This descrip-
tion also includes a list of all the files in the project.

Incidentally, you can find the RubyGems documentation for gemspecs at the following URL:

http://docs.rubygems.org/read/chapter/20

255

C H A P T E R 3 4

■ ■ ■

8113Ch34CMP2 3/26/07 6:29 PM Page 255

Building a Gem Package from a Gemspec
Often, preexisting software needs to be redistributed; gems are a great way to do that. To redis-
tribute your software as a gem package, you'll need to create a gemspec file and then pack it,
along with your source code and documentation, into a .gem file. As an example of doing just
that, let’s modify the TrackTime example we created in Chapter 7 to run in gem form. The
TrackTime server is a small Web app, based on Camping; however, most gems are libraries, so
for the sake of the example we’ll create a shell class around TrackTime. This shell class will
launch TrackTime instances, and we’ll package the shell class in a gem. This allows us to redis-
tribute to code as we wish, so that anyone with Ruby and RubyGems installed can install our
software from the gem file.

■Note Our naming conventions will be different here than in Chapter 7; in that chapter, we named the
TrackTime application TrackTime.rb. In this chapter, the TrackTime application will be saved in a file
named TrackTime_app.rb and the shell class, which uses the TrackTime application, will be saved in
tracktime.rb; as a result, when the end user employs the statement require 'tracktime', she’ll
get the shell class and not the original code.

Our gem will use a simple flat directory structure with just three files. Place the code from
Listing 34-1 in a file called tracktime.rb.

Listing 34-1. Class That Starts Tracktime Instances (tracktime.rb)

This file contains a single class that will let you
start a TrackTime server easily.
#
You can use this file as follows:
#
require 'tracktime'
TrackTimeServer.start
#
You can also use it in a Ruby one-liner:
#
ruby -e "require 'tracktime'; TrackTimeServer.start"
#

require "tracktime.rb"
require "mongrel"

class TrackTimeServer

Starts a TrackTime server on the specified interface,
port, and mountpoint.
#

CHAPTER 34 ■ CREATING OUR OWN GEMS256

8113Ch34CMP2 3/26/07 6:29 PM Page 256

Note that since this joins the server thread to the current thread,
no code after this call will be executed.
#
def TrackTimeServer.start(interface='0.0.0.0', port=3000, mountpoint='tracktime')

TrackTime::Models::Base.establish_connection :adapter => 'sqlite3',
:database => 'tracktime.db'

TrackTime::Models::Base.logger = Logger.new('tracktime.log')
TrackTime.create

@server = Mongrel::Camping::start(interface, port, "/#{mountpoint}", TrackTime)
puts "**TrackTime is running on Mongrel - " <<

"check it out at http://localhost:#{port}/#{mountpoint}"
@server.run.join

end
end

The code produces a very simple class: It has just one method, which will start a
TrackTime server using mongrel. It uses sqlite3 to host the database, just like the camping
command, which we looked at in Chapter 7. It logs all errors to a tracktime.log file. For more
details on hosting Camping apps using mongrel, see Chapter 17.

Next, copy the TrackTime example from Chapter 7 into tracktime_app.rb; this will con-
tain the actual code that our shell class calls to run the server.

Next we’ll create a gem-specification file called gemspec.rb. It will specify two things: what
files are part of our gem, and the metadata (who wrote the gem, what it’s named, its version,
the gems it depends on, and so forth). This code is presented in Listing 34-2.

Listing 34-2. Gem Specification for the TrackTime Gem (gemspec.rb)

SPEC = Gem::Specification.new do |spec|

Descriptive and source information for this gem.
spec.name = "TrackTime"
spec.version = "1.0.0"
spec.summary = "A small web application to manage billable hours"

spec.author = "David Berube"
spec.email = "djberube@berubeconsulting.com"
spec.homepage = "http://www.berubeconsulting.com/TrackTime"

spec.add_dependency("camping", ">1.0.0")
spec.add_dependency("sqlite3-ruby", ">1.0.0")
spec.add_dependency("mongrel", ">0.3.0")

require 'rake'

unfiltered_files = FileList['*']
spec.files = unfiltered_files.delete_if do |filename|

CHAPTER 34 ■ CREATING OUR OWN GEMS 257

8113Ch34CMP2 3/26/07 6:29 PM Page 257

filename.include?(".gem") || filename.include?("gemspec")
end

spec.has_rdoc = true
spec.extra_rdoc_files = ["README"]

spec.require_path = "."
spec.autorequire = "tracktime.rb"

end

This code creates a new Gem::Specification object and sets a few descriptive parameters:
name, version, and so forth. It then uses the add_dependency method to add two dependen-
cies—camping and mongrel.

It then uses rake’s FileList function to create a list of files in the current directory; this is
convenient since this automatically excludes a number of files we don’t want to include: back-
ups from editors, version-control files, and so forth. (rake comes with Ruby on Rails, but if
you don’t have rake installed, you can install it easily via gem install rake. You will only need
rake to build this gem, though, not to install it. For more on rake, see Chapter 24.)

■Tip If you’re unsure that the correct files are being grabbed, you can add the following lines to print them
to the screen:

spec.files.each do |file|
puts file

end

The next property set is the has_rdoc method, which controls whether the gem has RDoc
documentation. (RDoc is a document generator that works from Ruby source code; you can
find out more at http://rdoc.sourceforge.net/.) The next line, extra_rdoc_files, tells the
RDoc generator to include our README file—that means you can view our README file as
the first page of the documentation.

The final two statements specify the path and name of the file on which RubyGems
should automatically execute a require statement whenever a require statement is executed
on our gem.

Next let’s make a README file—it’ll contain a short description and a few pieces of meta-
data, such as the author and license. The practice of including a short overview of the gem in a
text file named README is very common for gems, and will be included in the RDoc docu-
mentation automatically. Put the text from Listing 34-3 in a file named README.

Listing 34-3. README File for the TrackTime Server (README)

TRACKTIME

TrackTime is a simple web application to track billable hours.

CHAPTER 34 ■ CREATING OUR OWN GEMS258

8113Ch34CMP2 3/26/07 6:29 PM Page 258

It's written using Camping and Mongrel.

You can run it as follows:

ruby -e "require 'tracktime'; TrackTimeServer.start"

Author:: David Berube (mailto:djberube@berubeconsulting.com)
Copyright:: Copyright (c) 2006 David J Berube
Homepage:: http://practicalRubyGems.com
License:: GNU GPL - http://www.gnu.org/copyleft/gpl.html

At this point, you should have four files in a directory: tracktime_app.rb, tracktime.rb,
README, and gemspec.rb. Next we can build our gemspec into a .gem file as follows:

>gem build gemspec.rb
Successfully built RubyGem
Name: TrackTime
Version: 1.0.0
File: TrackTime-1.0.0.gem

We now have a .gem file: TrackTime-1.0.0.gem. Now we can install it like this:

>gem install tracktime-1.0.0.gem
Successfully installed TrackTime, version 1.0.0
Installing ri documentation for TrackTime-1.0.0...
Installing RDoc documentation for TrackTime-1.0.0...

Note that we use the fully qualified filename; if our gem were on RubyForge, we could
simply execute gem install tracktime. However, since it’s available only locally, we have to
tell the gem command where to find it.

We’ve created a gem specification and a gem from that specification. We’ve even installed
the gem we created. Now let’s test it as follows:

>ruby -e "require 'tracktime'; TrackTimeServer.start"
-- create_table(:tracktime_client_times, {:force=>true})

-> 0.0310s
**TrackTime is running on Mongrel - check it out at http://localhost:3000/tracktime

The first line of output is from ActiveRecord (see Chapter 5 for more details on
ActiveRecord)—it’s telling us that it created the single table that TrackTime uses, tracktime_
client_times, for us. (It’s a sqlite3 table, so you won’t need to do any configuration; it’ll be
created in the same directory you run the code from; sqlite is a tiny database system—
you can find out more at http://sqlite-ruby.rubyforge.org/.) The second is from our
TrackTimeServer class, notifying us that it has started correctly.

If you open a Web browser and go to http://localhost:3000/tracktime, you’ll find that
you can, indeed, use the TrackTime app—it’s being served via our gem.

CHAPTER 34 ■ CREATING OUR OWN GEMS 259

8113Ch34CMP2 3/26/07 6:29 PM Page 259

Conclusion
There is a number of options for packing gems we didn’t use in our small example—it doesn’t
include test files or a directory tree, for example, but creating both of those is straightforward.
You can find the complete reference to all the available options at the gemspec documenta-
tion: http://docs.rubygems.org/read/chapter/20.

However, creating a gem isn’t enough—for it to be useful, we need to distribute it. I’ll
cover the details of gem distribution in the next chapter.

CHAPTER 34 ■ CREATING OUR OWN GEMS260

8113Ch34CMP2 3/26/07 6:29 PM Page 260

Distributing Gems

In this chapter you’ll learn how you can distribute gems you’ve created. Typically, you’d either
add your gem to an existing gem server or create your own. Either way, your gem will be avail-
able to other users.

By default, when you use the gem command, it searches the RubyForge repository. You
can add your gems to the RubyForge repository; that will allow anyone anywhere to use the
gem install command to install your gem. The gem command lets you specify a custom gem
server, so I’ll cover setting one up; this can be useful to speed up gem downloads for, say, an
entire office.

Distribution Methods
The first and simplest way to distribute a gem is via direct HTTP or FTP download. You simply
place the gem file on a Web or FTP server, and your users download the file as they would any
downloadable file. They can then install the gem using the full name of the gem file, as you
saw in the previous chapter.

For example, if you visited http://practicalrubygems.com and downloaded the
TrackTime-1.0.0.gem file, you could install it as follows:

cd /path/to/downloaded/gem/file
gem install TrackTime-1.0.0.gem

This method involves virtually no setup, and it’s very high-performance. You can upload
the gem in the same manner you’d update your website—typically via an FTP client. However,
using this method involves extra steps for the end user—it’s simpler to use the gem install
command to download the gem directly. You can do that with the rest of the methods that we
will examine in this chapter.

If you distribute your gem on RubyForge, as I’ll discuss next, your gem will have the
widest distribution possible; users will be able to download and install the gem from any
Internet-connected computer worldwide. RubyForge lets any user install your gem with the
very simplest form of the gem install command, as follows:

gem install tracktime

261

C H A P T E R 3 5

■ ■ ■

8113Ch35CMP3 3/28/07 12:00 PM Page 261

The next method is to distribute your gem locally via a gem server—either using the
gem_server script or via a Web server such as Apache. You might want to take this route if for
some reason using the RubyForge server is undesirable—if your gem isn’t open source, for
example. However, using the gem-server method results in a more complicated gem install
command:

gem install tracktime http://yourserver.hostname:yourport/

Let’s dive into adding your gem to RubyForge and setting up your own gem server.

Adding Gems to RubyForge
RubyForge provides free resources for open source Ruby projects. It’s also the repository the
gem install command uses by default, so hosting your project on RubyForge will give your
gem the most exposure. It will also provide you with a number of other services, including
Web hosting, Subversion version control, bug tracking, forums, and more. It’s patterned after
SourceForge (http://sourceforge.net/), and much like SourceForge, its services are offered
free of charge.

Before you can add your gem to RubyForge, you need to create a RubyForge account. You
can do that by visiting http://rubyforge.net and clicking the New Account link in the upper-
right corner (Figure 35-1). You’ll be asked a few questions, and once you’re registered and
logged in, you can create a new account by clicking the Register Project link.

Figure 35-1. Creating a RubyForge account

CHAPTER 35 ■ DISTRIBUTING GEMS262

8113Ch35CMP3 3/28/07 12:00 PM Page 262

You’ll be asked a few questions about your project—the project name, description, license,
and so forth. You’ll also be asked which license your project will be available under. Different
licenses have vastly different impacts on what end users can do with your gem, so choose care-
fully—the GPL, for example, allows users to redistribute modified versions of a gem under the
GPL, whereas a BSD or BSD-like license would let users modify your gem and redistribute it
under a proprietary license. There are innumerable other licenses, all of which offer slightly
different terms. Figure 35-2 has an example of the kinds of questions RubyForge asks.

Figure 35-2. Registering a new RubyForge project

■Note You can also specify a custom license in the event that one of the previously selected options isn’t
appropriate; simply type in the license terms you prefer. However, this will result in your project’s license
being reviewed by the RubyForge staff, which will slow down the project’s approval. Note that RubyForge
accepts only open source projects, so if your license does not meet the open source definition provided by
the Open Source Institute (http://www.opensource.org/docs/definition.php), it will be rejected.

CHAPTER 35 ■ DISTRIBUTING GEMS 263

8113Ch35CMP3 3/28/07 12:00 PM Page 263

Once you’ve created the project, it’ll be a few days before it is approved. In some cases, it
may not be—for instance, if your project is inappropriate, such as a closed-source project or a
project unrelated to Ruby.

Next, you can add files to your project—typically these files are source code, but you can
add any type of file associated with your project. If you add a gem file to your project, within a
few hours it will be grabbed by an automated process and added to the central gem reposi-
tory—and then anyone can use the gem install command to install it anywhere.

Serving Gems Using gem_server
One easy way to serve gems is using RubyGems’ built-in Web server. It can be used on any
machine that has RubyGems installed, so it’s very simple to get running. Note that the built-in
server is low-performance and intended for local use; however, it’ll work well if you need to
share gems on a local network—for your team of developers, for example. It has not been rig-
orously tested for security, though, so it’s probably not wise to use the gem server on public
servers. You can start the gem server like this:

gem_server

Once you’ve done that, you can access the server on localhost:8808. This serves all of the
gems installed on your local machine, so you can use this feature to mirror a number of gems
easily.

For example, you could have one machine act as a server for your entire network—install
the desired gems on that computer, and then run the gem_server command. Because that
server would be local to your network—and because it would be used by only a few people—
it’d be very fast.

Let’s say you’d like to serve the tracktime gem from the previous chapter from a computer
with the IP address 192.168.0.1.

First you’d start the gem server on the server machine with the following command:

gem_server

Then, assuming you have an additional machine you’d install the tracktime gem on, you
can install it as follows:

gem install tracktime --source 192.168.0.1:8808

As you can see, it’s fairly simple to set up a gem server using the gem_server script. The
--source argument of that command specifies the host name and IP address—in this case, IP
address 192.168.0.1 and port 8808.

However, you can also publish your gems using a traditional Web server, such as Apache,
LightTPD, or IIS—I’ll cover that next.

CHAPTER 35 ■ DISTRIBUTING GEMS264

8113Ch35CMP3 3/28/07 12:00 PM Page 264

HOW DOES THE GEM_SERVER SCRIPT WORK?

gem_server starts a tiny Web server that serves pages using WEBrick. WEBrick is a small Web-server-
construction framework—it’s similar to mongrel, which we covered in Chapter 17. gem_server includes
just enough server code to serve gems and no more—it hooks into WEBrick to provide the gem index,
which tells the gem install command where the gems can be found, and it provides the gems them-
selves.

gem_server does a lot of the work for us. Specifically, it provides a tiny Web server and automatically
indexes all of our gems. As a result, it’s easy to use, but you pay the price in flexibility—you can’t serve any
content other than gems; additionally, gem_server isn’t safe to use on a public server (it hasn’t been thor-
oughly vetted for security) and it’s also not particularly fast. It is, however, excellent for use on a private
network.

Serving Gems with a Full Web Server
You can also use a regular Web server to serve gems. This gives you all of the advantages of a
full Web server such as Apache, IIS, or LightTPD—scalability, performance, and the ability to
serve non-gem content. You could, for example, have one subdomain with the documentation
for your gem and one with the downloadable gem.

Suppose you had an Apache server installed on a computer. Assuming that your webroot
is in /var/www/html, you could create a gem repository served with Apache with the following
shell command on Linux or OS X:

cd /var/www/html
mkdir gems
cp /path/to/my/gems .
index_gem_repository.rb -d /var/www/html

The default webroot for Windows is C:\Program Files\Apache Group\Apache\htdocs, so under
Windows you would use the following commands at the command prompt:

cd C:\Program Files\Apache Group\Apache\htdocs
mkdir gems
copy C:\path\to\my\gems .
index_gem_repository -d C:\Program Files\Apache Group\Apache\htdocs

In both examples, you’d have to replace /path/to/my/gems with the path to the gems you want
to serve.

The index_gem_repository command creates an index of the gem directory—it contains
all of the information needed to search, locate, and download gems from our repository. Once
that command is run, and assuming our Web server is started, our repository can be accessed
via the gem command.

Just as we did for the previous example, we can use the --source argument of the gem
install command to install the gem. Use the following command to do so:

gem install tracktime --source 192.168.0.1:8808

CHAPTER 35 ■ DISTRIBUTING GEMS 265

8113Ch35CMP3 3/28/07 12:00 PM Page 265

As you can see, it’s slightly more complicated to use Apache to serve gems than it is to use
gem_server, but it’s still relatively simple—and since we have access to all of Apache’s abilities,
we can add other content, such as HTML pages, as desired.

Conclusion
There are a few different ways to distribute gems, and they each fill a different niche. However,
between distributing your gems to the world at large using SourceForge, running a small local
gem server, and running your own gem-distribution site on a full Web server, you’re sure to
find a solution that fits your needs.

CHAPTER 35 ■ DISTRIBUTING GEMS266

8113Ch35CMP3 3/28/07 12:00 PM Page 266

Index

267

■Numbers and Symbols
[] operator, 110
<%..%> delimiter tag, 81
<%=..%> delimiter tag, 81
<%==..%> delimiter tag, 82
/ (divide operator), 110
(hash mark), 45
%w(...) syntax, 62
@@ schema variable, 63
@string_delimiter, 134

■A
ActiveRecord, 175

API documentation, 36
archiving RSS news with, 39–43
Camping and, 53–54, 62–63
data manipulation, 39
installation, 36
introduction to, 35–36
models, 36–39
schema, 63

add_dependency method, 258
AjaxScaffold plugin, 176–182
amulti library, 128
Apache 2.2, mongrel on, 141–143
archives,

gem files as, 255
managing ZIP, 209–213

ARGF variable, 46
arguments, 69–70, 127
ARGV array, 15
arrays

destructuring, 128
syntax, 62

Atom format, 89
autorequire feature, 29–31

■B
BBCode, 45
belongs_to relationship, 54
binary gems, 21–23
blank lines, 46
BlueCloth gem, 45–51, 184–188

conversion to PDF, 48–51
installation, 46
syntax, 45–46

■C
caching

function calls, with memoize, 215–220
with feedtools, 90
with memcache-client, 199–207

CakePHP, 53
Camping, 53–68, 92

Camping::Controllers module, 54–55
Camping::Models module, 54
Camping::Views module, 55–56
installation, 54
modules, 54–56
mongrel running, 140
overview, 53–54
vs. Rails, 53–54
time tracking application (example),

56–67
Camping-unabridged.rb, 54
Camping.goes, 62
Camping.rb, 54
checksums, for debugging, 24
cmdparse gem, 69–79

command-line parsing, 17–20
command parse object creation, 76
Hello World application, 70
help command, 70, 74
indeed command, 74–77
installation of, 70
job-search application (example), 71–78

code transparency, 5
columns method, 43
comma separated values (CSV), parsing,

121–125
command parse objects, 76
command-based syntax, 69
command-line options, 235
command-line parsing, 17–20
command-line utilities

creating, with cmdparse, 69–79
specifying arguments in, 69–70

commands. See also specific commands
executing on recurring schedule, 172–173
executing on remote servers with net-ssh,

149–154
gem list, 4, 13–14

configuration by convention, 35–36
context variables, 87

8113Ch36CMP1 3/29/07 5:39 PM Page 267

controllers, 53, 175
Camping, 54–59, 64–65
Rails, 54

Craigslist, searching, 78–79
create_table method, 43
credit cards

information storage, 155
validating, with creditcard gem, 14–17,

155–158
creditcard gem, 14–17, 155–158
creditcard? method, 15
creditcard_type method, 15
CSV (comma separated values), parsing with

fastercsv, 121–125
Cygwin, 23

■D
data access, with ActiveRecord, 35–44
data form creation, with fxruby, 96–102
data layer, separating from logic layer, 35
database adapters, 35
database application, building simple with

Rails, 176–182
database connections management, and

ActiveRecord, 35
dates, managing recurring, 167–173
Debian Linux, installing Ruby on, 8
debugging

RubyGems, 23–24
source gems, 23

delimiters
eRuby, 81–82
string, 134

dependencies
automatic handling of, 26
resolving, with RubyGems, 3–5
with source gems, 23

destructuring, 128–129
development task, automating with rake,

183–189
DIMonth class, 171
dir command, 69
distribution methods, 261–266
divide operator (/), 110
documentation, automating with rake,

184–188
double quotes, in CSV data, 123

■E
---eee... options, 235
Environment Embedding Executable (eee),

235
erb, 81
erubis

installation, 83
introduction to, 81–83
MySQL table viewer (example), 83–88

erubis object, creating, 88
eRuby markup language

erubis example, 83–88
introduction to, 81–83
implementations, 81

evaluate method, 83
execute command, 43

■F
factorial calculations, 215–216
fastercsv gem, 121–125
feeds, parsing, 89–93
FeedTools gem, 43, 78, 89–93
field_controls array, 101
file tasks, 183
file transfers, with net-sftp gem, 145–148
file downloads, with wget utility, 9
find method, 65
forked gem versions, 23
FOX GUI toolkit, 95–102
FTP download, for gem distribution, 261
function calls, speeding up with memoize,

215–220
functions, multiple dispatch, 127–128
FXButton object, 101
FXHorizontalFrame object, 101
FXMatrix object, 101
fxruby gem

creating GUI with, 95–102, 205–207
dynamic MySQL data form (example),

96–102
installation, 96
introduction to, 95

FXTextField object, 101

■G
gem build command, 255
gem files, 4, 255
gem install command, 26, 261–262
gem list command, 4, 13–14, 26–27
gem package, distributing software as,

256–259
gem repository, searching, 13–14
gem servers, 4, 262
gem versions

installing older, 26–27
introduction to, 25–26
managing, 5

Gem::Specification object, 255, 258
gems. See also RubyGems; specific gems

binary, 21–23
command-line parsing, 17–20
creating own, 255–260
defined, 3
distributing, 261–266
forked versions of, 23
installation, 13–14

■INDEX268

8113Ch36CMP1 3/29/07 5:39 PM Page 268

redistributing, with gem server, 4
searching for, 13–14
source, 20–23
specifying versions, 29–31
structure of, 255
types of, 3
uninstalling, 28–29
updating, 27–28
using, 14–17

gemspecs (gem specifications), 4, 255–259
gem_server function, 264–265
get method, 64
get_standard_quotes function, 103, 107
Ghostcript, 48–50
Google search, 78–79
graphical HTML editors

Markaby and, 115
problems with, 237

graphical user interfaces (GUIs), creating
with fxruby, 95–102, 205–207

Grism tool, 104

■H
–h option, 61
hash marks (#), 45
hashes, converting to XML, 247
has_and_belongs_to_many (HABTM)

relationships, 38–39, 54
has_many relationships, 37–38, 54
has_one relationships, 38–39, 54
has_rdoc method, 258
help command, 18, 70, 74
hpricot gem, 109–114
hrml2ps, 51
HTML

cleaning up, with tidy utility, 237–243
parsing with hpricot, 109–114
sanitizing, 82
updating, with hpricot, 109
writing as Ruby, with Markaby, 115–120

HTML templating, with erubis, 81–88
html2ps, 48, 50–51
HTTP download, for gem distribution, 261
HttpHandler class, 141

■I
id3lib-ruby gem, 217–225
id3tool, 232
ifcfg command, Linux, 18
ImageMagick, 191
images

creating thumbnail, 192, 195–198
manipulating, with RMagick, 191–198
resizing, 191–192

indeed command, 74–77
installation, 7–11, 13–14. See also specific gems
Instiki, 3

■L
layout function, 67
layout view, 55
linguistics gem, 169
Linux

installing Ruby, 8–9
installing RubyGems, 10–11

LiveJournal.com, 199
logic layer, separating from data layer, 35
ls command, 69

■M
Mac OS X

installing RubyGems, 10–11
Ruby on, 7

Markaby gem, 56, 65, 93, 115–120
CSS style sheets and, 115
graphical HTML stock charts (example),

116–119
installation, 116
using in Rails, 120
workings of, 115–116

Markdown, 45–46
memcache-client, 199–207

accessing memcached using, 199–207
speeding up Ruby on Rails session cache,

200–205
memcached, 199

accessing, with memcache-client, 199–207
speeding up Web applications with,

200–205
memoization, 215
memoize gem, 215–220
methods, 127. See also specific methods
microframeworks, 53. See also Camping
MinGW, 23
Model View Controller (MVC) framework, 53,

175
models, 53–54, 175
mod_proxy_balancer, 142
mongrel gem, 137–143

installing, 21, 137–138
as Rails development server, 138–139
running Camping, 140
running Rails as a service on Win32, 139
serving as Rails app via Apache 2.2,

141–143
as small Web server, 140–141

mongrel postamble, 61–62
mongrel_service gem, 139
MP3 files, tagging with id3lib-ruby, 221–225
multi gem, 127–135
multiple dispatch, 127–135
MVC (Model View Controller) framework, 53,

175
MySQL database, creating, 99–100
mysql gem, 21–23

■INDEX 269

Find it faster at http://superindex.apress.com
/

8113Ch36CMP1 3/29/07 5:39 PM Page 269

MySQL Ruby, 6
MySQL table viewer (example), 83–88

■N
names, table, 36–37, 63
NET command, Windows, 18
net-sftp gem, 145
net-ssh gem, 146–154
Net/SFTP, 160–163
newsfeeds, parsing, 89–93
Nitro, 53
number_parse function, 134

■O
One-Click Installer, 9
on_data call, 150
OpenSSL vulnerabilities, tracking, with xml-

simple, 248–251
open_channel method, 150, 153
operating system compatibility, 5
OptionParserWrapper class, 77
optparse library, 77, 147, 163

■P
–p option, 61
packaging systems, comparisons among, 6.

See also RubyGems
parse function, 133
parsing

command-line, 17–20
CSV, 121–125
feeds, 89–93
HTML, 109–114
SQL, 129–135
XML, 245–251

PDate class, 169
PDF files

conversion from BlueCloth syntax to,
48–51

writing, with pdf-writer, 159–165
pdf-writer, 159–165

report creation, 160–165
workings of, 159

PLACEMENT_SCREEN constant, 102
plugins, for Rails, 176. See also specific

plugins
postambles, 61–62
PostgreSQL, 37
ps2pdf, 50–51

■R
Rails. See Ruby on Rails
rake gem, 183–189, 258
RDoc documentation, 17, 258
README file, 255, 258
recurring events, handling with runt,

167–173

Red Hat Linux, installing Ruby on, 8
regular tasks, 183
relationships, expressing in ActiveRecord

model, 37–39
remote servers, executing commands on,

149–154
require statement, 17–18, 20, 25
require_gem statement, 20, 26, 29–31
RMagick, 3, 21, 191–198
RSS feeds

archiving with ActiveRecord, 39–43
parsing, 89–93, 245
shortening, with shorturl, 228, 230

RSS format, 89
rss2mysql.rb script, 41
Ruby

installation, 7–10
version number, 8

Ruby applications, creating standalone,
231–236

Ruby code
transparency, 5
writing HTML as, with Markaby, 115–116,

118–120
Ruby on Rails, 3

advantages of, 175
building websites with, 175–182
vs. Camping, 53–54
as development server, 138–139
eRuby templates and, 83
installation, 176
mongrel and, 138–143
MVC framework for, 175
plugins, 176
running as services on Win32, 139
speeding up session cache with

memcached, 200–205
using Markaby with, 120

RubyForge
access to, 4
account creation, 262
distributing gems on, 261–265

RubyGems. See also gems; specific gems
advantages of, 3–5
debugging, 23–24
installation, 7, 10–11
introduction to, 3
vs. other packaging systems, 6
updating, 11
versioning-management system, 25–26

RUBYOPT variable, 10
rubyscript2exe utility, 231–236
rubyzip gem, 209–213
runt gem, 167–173
rwb (Ruby Web Bench) gem, 201, 205

■INDEX270

8113Ch36CMP1 3/29/07 5:39 PM Page 270

■S
scaffolding, 182
schema definitions, separating from code, 35
screen scraping, 109–114
Secure Shell (SSH), 149–154
self.schema method, 63
SEL_COMMAND message, 101
servers, mongrel, 137–143. See also Web

servers
set_execution_block method, 77
set_table_name statement, 36
shorturl gem, 227–230
smulti library, 128
software, gemspecs for, 4
software dependencies, 5
software repository. See RubyForge
software versions, managing multiple, 5
source code

installing Ruby from, 9
transparency, 5

source gems, 20–23
SQL, parsing, 129–135
SSH (Secure Shell), 149–154
SSH File Transfer Protocol (SFTP), 145–148
standalone applications, creating with

rubyscript2exe, 231–236
stock quotes, retrieving with YahooFinance

gem, 103–107
string delimiters, 134
string destructuring, 128
stringe_parse function, 134
switches, 69
system compatibility issues, 23
system dependencies, 23

■T
table names, 36–37, 63
tables, ActiveRecord models and, 36–39
tasks

automating, with rake, 183–188
types of, 183

temporal expressions, 167–173
text editors, 237
text-to-HTML converter, 45–51
thumbnails creation, with RMagick, 192,

195–198
tidy utility, 237–243
time utility, 219
TinyURL.com, 227
to_csv method, 122
to_html method, 46, 50
transparency, code, 5

■U
uninstall command, 28–29
update command, 27–28
updates, installing, 11
update_attributes method, 65
URLs, shortening, 227–230

■V
version command, 18
version constraints, 29–31
version dependencies, 3
versions

installing older, 26–27
specifying, 29–31
uninstalling, 28–29
updating, 27–28

views, 53, 175. See also Camping

■W
Web applications

creating, with Camping, 53–68
serving, with mongrel, 137–143

Web servers
mongrel as small, 140–141
serving gems with, 265–266

websites, building with Rails, 175–182
wget utility, 9
wikis, 3
win32 mongrel, 138
Windows

installing Ruby on, 9
running mongrel in, 139

■X
XML

converting hash to, 247
parsing, with xml-simple, 245–251

xml-simple library, 245–251
xml_in method, 245–246
xml_out method, 245–247

■Y
YahooFinance gem, 103–107

■Z
Zip archives, managing, with rubyzip,

209–213
zipfilesystem class, 209

■INDEX 271

Find it faster at http://superindex.apress.com
/

8113Ch36CMP1 3/29/07 5:39 PM Page 271

