
Practical
Scala DSLs

Real-World Applications Using
Domain Specific Languages
—
Pierluigi Riti

www.allitebooks.com

http://www.allitebooks.org

Practical Scala DSLs
Real-World Applications Using

Domain Specific Languages

Pierluigi Riti

www.allitebooks.com

http://www.allitebooks.org

Practical Scala DSLs: Real-World Applications Using Domain Specific
Languages

ISBN-13 (pbk): 978-1-4842-3035-0 ISBN-13 (electronic): 978-1-4842-3036-7
https://doi.org/10.1007/978-1-4842-3036-7

Library of Congress Control Number: 2017962308

Copyright © 2018 by Pierluigi Riti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Rohan Walia
Coordinating Editor: Mark Powers
Copy Editor: Michael G. Laraque

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484230350. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Pierluigi Riti
Mullingar, Westmeath, Ireland

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3036-7
http://www.allitebooks.org

To my wife, Mara Ester, who brought me the
best gift any man could receive: my two children,

Nicole and Mattia. I love you.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Introduction to Scala ���1

Basic Syntax ���2

Variable and Value in Scala ���3

Naming in Scala ��5

First Example in Scala ���5

Define a Method and Function in Scala ���6

Classes in Scala ��8

Singleton Object ��9

Types in Scala ���10

Converting Numeric Types ���10

String in Scala ���11

Expressions in Scala ���14

Conditional Expression ��16

Pattern Matching Expression ���16

Range and Loop ���20

Other Loops ���22

Data Structures ���24

Array ��24

List ���25

About the Author ���xi

About the Technical Reviewer ���xiii

Introduction ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Set ���26

Tuple ��26

Map��27

Summary���28

Chapter 2: Introduction to DSL ���29

Definition of DSL ���29

Difference Between Internal and External DSLs ��30

Designing a Good DSL ���31

Analyze the Domain ���32

Creating a Common Dictionary ��34

Sample DSLs ���35

DSL Goals ��36

Implementing a DSL ��38

Grammar and Data Parsing ���40

First DSL Implementation ��41

Common DSL Patterns���42

Conclusion ��43

Chapter 3: Internal DSL ���45

Creating an Internal DSL ���45

Method Chaining ��46

Creating a Fluent Interface ���48

Designing the Parsing Layer ���51

Design the Parsing Layer Using Functions ��54

Conclusion ��57

Chapter 4: External DSL ��59

Internal DSLs vs� External DSLs ��59

Grammar and Syntax ��60

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Creating an External DSL ��62

Producing the Output ���65

What Is a Parser? ��66

What Style of DSL to Use ���68

Conclusion ��69

Chapter 5: Web API and μService ���71

What Is a μService ��71

Communication ���75

The Team ���77

Innovation ��77

When to Use Microservices���78

REST Architecture ���79

Designing Microservices in Scala ���83

Installing the Play Framework ���83

Designing the REST Microservice��86

Creating a Microservice in Play ���87

Our Own DSL Microservice ��89

Conclusion ��95

Chapter 6: User Recognition System ��97

Grammar ���98

Scala Parser Combinator Library ���99

A Simple Sample Parser ��101

Defining a Domain Problem and the Grammar ���103

Preparing the Parser��105

Describing the Parser ��107

Improving the JSON Parser ���108

Conclusion ��112

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

viii

Chapter 7: Creating a Custom Language ��113

What Is a “Language”? ���114

Patterns for Designing a Language ���115

Designing the Language ���121

Creating the Language ��123

Creating the Reader Class ���123

Defining the Token ���130

Creating the Translator for the Language ���132

Executing the Language ��136

Conclusion ��137

Chapter 8: Mobile Development��139

Introduction to Mobile Development in Android ��139

Starting with Android Development���140

Anatomy of an Android Application ���144

Our First Scala-Android Application ��147

Creating Services in Android ���153

Defining Our DSLs ���155

Conclusion ��158

Chapter 9: Forex Trading System ��159

What Is a Forex Trading System? ��159

Designing the DSL System ��161

Implementing the System ���163

Improving the Basic Class ���165

Creating the Order ���166

Why It Is Important to Design a Good API ��167

Designing the New DSL API ��169

Consuming the First API ��172

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

Improving the API ��172

Adding the Last Functionality ��174

Conclusion ��179

Chapter 10: Game Development ���181

Game Team Structure ���181

Engineering Team ��182

Artist Team ���183

Other Actors Involved ��184

Definition of a Game Engine ��184

Designing Our New DSL Game Engine ��186

Defining the Generic Component ���188

Other Components ���200

Conclusion ��207

Chapter 11: Cloud and DevOps ���209

What Is DevOps? ���209

Common DevOps Practice ���211

Start with AWS ��212

Deployment and Build in AWS ���214

Creating the Project in AWS ���215

Creating the Basic Files ���216

Creating the Build File ���218

Final Conclusion ��220

Index ���221

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Pierluigi Riti has more than 20 years of extensive experience in the

design and development of different scale applications, particularly in the

telecommunications and financial industries. At present, he is a senior

DevOps engineer for a gaming company. He has expansive development

skills that encompass the latest technologies, including Java, J2EE, C#,

F#, .NET, Spring .NET, EF, WPF, WF, WinForm, WebAPI, MVC, Nunit,

Scala, Spring, JSP, EJB, Struts, Struts2, SOAP, REST, C, C++, Hibernate,

NHibernate, Weblogic, XML, XSLT, Unix script, Ruby, and Python.

Pierluigi loves to read about technology and architecture. When he

isn’t working, he enjoys spending time with his family.

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Technical Reviewer

Rohan Walia is a software consultant with extensive experience in

client- server, web-based, and enterprise application development. He is

an Oracle Certified ADF Implementation Specialist and Sun Certified Java

Programmer. He is responsible for designing and developing end-to-end

Java/J2EE applications consisting of various cutting-edge frameworks and

utilities. His areas of expertise include Oracle ADF, WebCenter, Spring,

Hibernate, and Java/J2EE. When not working, Rohan loves to play tennis,

travel, and hike. Rohan would like to thank his wife, Deepika Walia, for

helping him to review this book.

xv

Introduction

Hello, and welcome to Practical Scala DSLs. Scala has become very

popular, and with more companies adopting the language every day, its

popularity and growth have swelled.

DSLs, a way for designing software using its inherent techniques, is

essentially a set of patterns that can describe software in “plain English.”

This book does not attempt to cover all the theory behind DSLs. A fantastic

book, Domain-Specific Languages, by Martin Fowler (Addison-Wesley

Professional, 2010) provides a basic understanding of this.

With this book, I wish to describe how to use DSLs in everyday

projects. The scope of the book is to give the reader an idea of how to use

a DSL on the job and, by the end of the book, see how DSLs can be used in

different projects. What I intend to show is how to approach DSLs from a

practical standpoint and teach the reader how to think about integrating

DSLs in their daily work life.

To better understand the book, the reader must be familiar with

Scala, able to write a simple program in Scala, and have an idea about its

architecture. Ideally, the reader will have in addition some familiarity with

Java programming. This is because both Scala and Java use the Java virtual

machine (JVM), and some examples discussed in the text highlight the

differences between Scala and Java. Last, the reader should have an affinity

for an editor. I use IntelliJ, but any editor would be fine.

1© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_1

CHAPTER 1

Introduction to Scala
Scala has grown in popularity in the last years. Some describe the Scala

language as the new “golden boy” of programming languages. More large

companies have begun to adopt Scala for their core business needs, thus

improving the popularity of the language and, of course, the market for it.

The popularity of the language is connected to the nature of the language

itself. Scala borrows more of its syntax from other popular languages. For

example, the method is declared like C but with optional braces.

At first glance, Scala looks like a dynamic language, such as Ruby or

Python, but it is a strong static-type language, with all the advantages of

this type.

Adding to all this, Scala has such features as for statement expressions,

infix/suffix, and local type inference notation.

The nature of the language is perfect for domain specific languages

(DSLs). Scala combines functional programming with object-oriented

programming. Therefore, with Scala, when we must create a DSL, we

can rely on a functional language to help us to develop an immutable

function. On the one hand, this helps to ensure consistent results. On the

other, most of the patterns used to create a DSL employ an object-oriented

paradigm, which means that with Scala, we can also have the paradigm for

creating the DSL.

In this chapter, I provide a brief introduction to the Scala language and

highlight the main features of the language. The rest of the book is devoted

to improving the reader’s knowledge of the language, to create some DSL

projects.

2

I suggest using the REPL (Read-Evaluate-Print Loop) for use in the

sample code for this chapter, because it provides immediate feedback

about the operation we want to execute.

Note Since Scala 2.11, the syntax to exit from the REPL has
changed. If you have used the command exit() previously, you will
realize that this command is no longer valid. Now, to exit, users must
employ the sys.exit() command.

 Basic Syntax
Scala is basically a strongly typed language, this means that we can

annotate types for the following:

• Variable and value

• Method and function argument

• Method and function return type

For many programmers, this is nothing new. Languages such as Java

or C# use the same kind of syntax. The best way of seeing how to use the

syntax is to “get your hands dirty.” Therefore, open the REPL and try some

basic Scala commands.

Note Scala runs on a JVM, but a big difference with Java is how
Scala de-allocates unused memory. Scala automatically frees
memory when data is no longer used.

ChaPtER 1 INtRoduCtIoN to SCaLa

3

To open the REPL, go to the command line and insert the command

Scala. This will open the Scala interpreter, as follows:

$ scala

Welcome to Scala 2.12.2 (Java HotSpot(TM) 64-Bit Server VM,

Java 1.8.0_131).

Type in expressions for evaluation. Or try :help.

scala>

At first glance, the REPL looks like the interpreter of the interpreted

language, such as Ruby or Python, but there is a big difference. Scala is a

compiled language, which means that the REPL compiles the code and

executes first to present the result.

Start writing some code to see how Scala works, such as

scala> 2+2

res0: Int = 4

Now, we can see Scala execute the code and create a temporary

variable to assign the result. However, because Scala is typed, it defines the

type of variable, in this case Int.

In Scala, the operators +, -, etc., are a simple function. In this case,

writing 2 + 2 is equal to having a method with the left operand. The REPL

is very useful in learning Scala, because it provides immediate feedback

regarding the operation.

 Variable and Value in Scala
With Scala, we can define two kinds of variables:

• A mutable variable, which is created with the reserved

word var

• An immutable value, created with the reserved word val

ChaPtER 1 INtRoduCtIoN to SCaLa

4

This is probably the biggest difference from other languages. In Scala, it is

high advisable to use the immutable variable val, because this doesn’t break

the rule of functional programming. I will discuss this rule later in the chapter.

The syntax for creating a variable or a value is the same: <kind>

<name> : <type> = <value>. Now try the variable with the REPL and note

the difference between a mutable and immutable variable. The first type of

variable we declare is the mutable variable, declared with var.

scala> var num:Int = 4

num: Int = 4

scala> num = 8

num: Int = 8

Here, as you can see, we create a variable and assign the value of the

variable. In this case, we define the type of the variable. We can change the

value simply by calling the variable and assigning the new value. There is

no difference in how this is done in other languages.

scala> num * 2

res0: Int = 8

scala> res0 + 2

res1: Int = 10

The statement that follows is perfectly valid. In the event that we have

not assigned the name of the variable, Scala creates a temporary variable

and associates the result with this variable. In this way, we can easily use

the temporary variable to execute some other operations. Try to see now

how an immutable variable works.

scala> val new_num = 4

new_num: Int = 4

scala> new_num = 8

<console>:12: error: reassignment to val

 new_num = 8

ChaPtER 1 INtRoduCtIoN to SCaLa

5

In this case, we created a variable new_num, but we haven’t explicitly

specified a type. Scala inspects and assigns the correct type. The process

for creating the val is exactly the same as for creating a var. The only

difference is that if we try to reassign the value, we obtain an error. For

many developers, it can be strange to use an immutable variable instead of

a mutable variable, but if you look at your code, you can see how simple it

is to replace the mutable variable with an immutable one.

 Naming in Scala
Scala allows you to name a variable with any letter, number, or some

special operator characters. According to the following from the Scala

Language Specification, we learn how to define these operator characters:

…all other characters in \u0020-007F and Unicode categories
Sm [Symbol/Math]…except parentheses ([]) and periods.

Following are some rules for combining letters, numbers, and

characters when naming identifiers in Scala:

• A letter followed by zero or more letters or digits, for

example, var a, var AabcdA, var a1b

• A letter followed by zero or more digits, underscores

(_), or letters, for example, var a_b or val a_ = 10

• An underscore (_) followed by zero or more letters or

digits, for example, var _abcd_

 First Example in Scala
Now try to write a simple bubble sort algorithm in Scala.

def bubbleSort(arr_input: Array[Int]): Array[Int] = {

 val size = arr_input.size - 1

ChaPtER 1 INtRoduCtIoN to SCaLa

6

 for (a <- 1 to size) {

 for (b <- size to a by -1) {

 if (arr_input(b) < arr_input(b - 1)) {

 val x = arr_input(b)

 arr_input(b) = arr_input(b - 1)

 arr_input(b - 1) = x

 }

 }

 }

 arr_input

}

This simple example shows some Scala functionality. First, we see how

to use an immutable variable instead of a mutable one. Starting with this

simple example, we can define the principal Scala syntax.

 Define a Method and Function in Scala
The syntax for defining a function in Scala is similar to that of any other

language. The structure is the following:

def function_name ([list of parameter]) : [return type]

In the previous example, we defined the method bubblesort:

def bubbleSort (arr_input: Array[Int]): Array[Int]

The list of the parameter can be any valid object of Scala or another

function. This characteristic of Scala is called a higher-order function.

The higher-order function is a feature of a functional language such as

Scala. For example, imagine that we want to define the function apply and

use another function as a parameter.

def apply(internal: Int => String, value:Int) = internal(value)

ChaPtER 1 INtRoduCtIoN to SCaLa

7

The function apply takes a function internal as a parameter and

applies the function internal to the other parameter, value.

The higher-order function highlights an interesting difference in how

Scala defines a function. A function in Scala is an expression that takes a

parameter and returns a value.

val addOne = (num:Int) => num +1

Of course, we can have a function without a parameter.

val fixValue = () => 9

val theAnswer=() => 42

The principal difference between functions and methods in Scala is

that, this because a method requires a name, the anonymous function is

used normally with the functional programming. An anonymous function

is not a new concept to Java developers. In Java, when defining the

interface, we usually define the event in the anonymous class.

Scala uses the anonymous class in a different way. In Scala, it is

possible to define what is known as a first-class function. This function

accepts another function for parameters. An anonymous function can

be used, for example, to filter a list. The code for this would look like the

following:

scala> val list = List.range(1, 20)

list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19)

scala> val evens = list.filter((num : Int) => num % 2 == 0)

evens: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18)

In the preceding code, we create an anonymous function to create

the value of the variable evens: list.filter((num : Int) => num %

2 == 0). Here you can see that we used an anonymous function for the

parameter of another function.

ChaPtER 1 INtRoduCtIoN to SCaLa

8

 Classes in Scala
In Scala, a class is defined with this syntax:

class nameOfTheClass([list of parameters]){ body of the class }

The class is the core of object-oriented programming. For

experimenting with classes, it is best to open the REPL and try to create a

simple Scala class.

scala> class TheQuestion()

defined class TheQuestion

The following code shows the basic class in Scala. From what you can

see, it is not mandatory for a class to have a body. Of course, a body is not

really useful for a class such as that in the sample code, but the simple class

used helps us to understand some functionality of the class. For creating

an instance of a class, we must use the word new.

scala> val question = new TheQuestion()

question: TheQuestion = TheQuestion@1726750

Now it is possible to see that a class has been created for the name

and a hexadecimal number. This number is the JVM value associated

with the class. A class such as that is not very useful, but it does have all

the properties of a simple class. In the REPL, start to call the name of the

variable and then press tab. In this case, Scala shows all the commands

that can be used for the class.

scala> question.

!= ->

ensuring formatted isInstanceOf notifyAll wait

== eq getClass ne

synchronized ?

+ asInstanceOf equals hashCode notify toString

ChaPtER 1 INtRoduCtIoN to SCaLa

9

This code creates a class instance and associates it with a variable. Try

now to create a simple class in Scala.

class TheQuestion(){

 def theAnswer():Int = {

 return 42

 }

}

The preceding code shows how to create a simple class in Scala. Inside

the body of the class, we can define the method exposed by the class. This

method defines the operation executed by the class.

To create an instance of the class that uses this, we can employ the

following syntax:

scala> val question= new TheQuestion()

question: TheQuestion = TheQuestion@e5d3e1

To use the method, we can simply use the dot notation, as in other

languages.

scala> question.theAnswer

res1: Int = 42

 Singleton Object
Scala differs from other languages in how it creates a singleton object. For

creating a singleton object, the syntax is similar to what we use for creating

a class, but we substitute the word class with object.

object TheQuestion {

 def main(args: Array[String]): Unit ={

 val theAnswer:Int = 42

 println(theAnswer)

 }

}

ChaPtER 1 INtRoduCtIoN to SCaLa

10

You can see that the definition is similar to a simple class. In this case,

we have created a main method for use in the object. Because this is a

singleton, we don’t require the word new in order to create it. The syntax for

creating the instance is like the following:

scala> val answer = TheQuestion.main(null)

42

answer: Unit = ()

The singleton object follows the same rules as other languages. In this

case, however, because the method main has an array as a parameter, we

use the word null to create a null object.

 Types in Scala
In Scala, as in any other language, we can find two kinds of types:

numerical, such as Int or Double, and non-numerical types, such as char

and string.

The difference between Scala and other languages with regard to types

is principally one: in Scala, there is no primitive type. This means that any

type in Scala is an object. For example, when we define an Int, we create

an instance of an object Integer.

 Converting Numeric Types
Scala can automatically convert numeric types from one to another. This

can occur only in one direction: from a shorter type to a longer type.

Table 1-1 shows the numeric type ranked from the lowest to the highest.

Numeric types make it possible, for example, to convert a byte into any

other type listed. Note, however, that a Double cannot be converted into

any other type.

ChaPtER 1 INtRoduCtIoN to SCaLa

11

 String in Scala
A string in Scala is based on the same kind of string in the JVM. Scala adds

some unique features, such as multiline and interpolation.

For creating a String in Scala, we can use double quotes. Inside the

double quotes we can write our string.

scala> val theGuide = "don't panic"

theGuide: String = don't panic

From the previous example, you can see that a string is very easy to create.

You can create a string with special characters using the backslash (\).

scala> val theQuestion= "the Answer to the Ultimate Question of

life, \nthe Universe,\nand Everything"

theQuestion: String =

the Answer to the Ultimate Question of life,

the Universe,

and Everything

Table 1-1. Numerical Data Type in Scala

Name Definition Size

Byte Signed integer 1 byte

Short Signed integer 2 bytes

Integer Signed integer 4 bytes

Long Signed integer 8 bytes

Float Signed floating point 4 bytes

Double Signed floating point 8 bytes

ChaPtER 1 INtRoduCtIoN to SCaLa

12

In this case, Scala creates the string with a new line character. This

creates the string in multiple lines. It is possible to concatenate the string

with the plus sign (+), as follows:

scala> val sayHello = "Hello"+" reader"

sayHello: String = Hello reader

In this case, we can see Scala concatenate the string into one single

string. It is possible to compare the equality of a string by using the

operator ==. Scala differs from Java in that in Scala, we don’t check the

equality of the object but the equality of the string values, as follows:

scala> val string_compare_1 = "String 1"

string_compare_1: String = String 1

scala> val string_compare_2 = "String 1"

string_compare_2: String = String 1

scala> val compare = string_compare_1==string_compare_2

compare: Boolean = true

We can see that the two strings have the same value, which, in Scala,

are the same. If we try to compare the strings, the value true is returned.

 Multiline String

To create a multiline string in Scala, we use three double quotes after the

start of a string.

scala> val theFinalAnswer = """ Six by nine. Forty-two.

 | That's it. That's all there is.

 | I always thought something was fundamentally wrong with

the universe """

theFinalAnswer: String =

" Six by nine. Forty-two.

ChaPtER 1 INtRoduCtIoN to SCaLa

13

That's it. That's all there is.

I always thought something was fundamentally wrong with the

universe"

Multiline strings follow the same rules as other strings. This means that

we can use special characters and comparisons as in a normal string.

A multistring is very useful when we want to add specifically formatted

string in a code. For example, if we want to have a JSON string in the code,

to prepare a return for an output or simply for a test, we can write the string

as follows:

scala> val jsonString: String =

 | """

 | |{

 | |"name":"PracticalScalaDSL",

 | |"author":"Pierluigi Riti",

 | |"publisher":"Apress"

 | |}

 | """

jsonString: String =

"

{

"name":"PracticalScalaDSL",

"author":"Pierluigi Riti",

"publisher":"Apress"

}

 "

 String Interpolation

In Scala, it is easy to concatenate a string by using the plus sign (+),

but there is a niftier way of doing this: string interpolation. With this

interpolation, Scala replaces the variable with the string value. To use a

variable to interpolate a string, the dollar sign ($) is used.

ChaPtER 1 INtRoduCtIoN to SCaLa

14

scala> val hello = "world"

hello: String = world

scala> println(s"Hello $hello")

Hello world

We can see from the preceding sample code that we can create a

variable and then substitute it when we print out the string. This technique

allows us to maintain clear and compact code that is easy to read and,

of course, maintain. We can interpolate a string when assigning another

variable too. In this case, we must use the syntax ${<variable name>}.

scala> val sayHello= s"Hello ${hello}"

sayHello: String = Hello world

To use the interpolation, we must use the char s, which tells Scala to

create a string with the variable we write, and Scala then interpolates the

string with the variable.

Note From a memory perspective, it is better to interpolate a string,
because a string, as a JVM/Java object, is immutable. this means
that when we use the plus sign (+) to create a string, we create three
string objects when we concatenate only two strings. this is because,
first, Scala allocates memory to the first string, then the second
string, and, finally, the third string, as a concatenation of the previous
strings. When we interpolate, we have only two strings, because the
second is created based on the substitution of the variable.

 Expressions in Scala
Scala is a functional language and, as such, functional programming was

the primary intent of the inventor of the language. Given this context, I

want to describe what an expression means in Scala.

ChaPtER 1 INtRoduCtIoN to SCaLa

15

An expression in Scala is a single line of code that returns a value. This

is very important for reducing side effects, because they always have the

same response to an operation. The scope of functional programming is to

define the function in a mathematical way. This means that every function

must always return the same value, if it is always sent the same parameter.

This occurs because the function is essentially immutable and isn’t

influenced by changes occurring outside the function. This is done

to reduce or further eliminate side effects. Side effects are essentially

the result of a change to a variable or an expression that changes a

value. When the variable outside changes, this violates the functional

programming itself.

We can define different types of expressions in Scala:

• A simple string, int, or any other

• A variable

• A value

• A function

An expression is very useful for moving from object-oriented

programming to functional programming. Expressions are used in

everyday programming, but you may not have been aware of this. For

example, the syntax

var variable:String = "value"

defines an expression. Using a variable, of course, we can use the same

syntax to define a value, as follows:

val variable:String = "value"

In the preceding, an expression has been created with a function, but

suppose, for example, you want to define a function for calculating the

area of a square.

val square=(x: Int) => x*x

ChaPtER 1 INtRoduCtIoN to SCaLa

16

The preceding code indicates how to use a function to create an

expression.

 Conditional Expression
The conditional expression if..else is the core construction of all

programming languages. Scala uses the same logical base of other

languages for the if..else conditional expression.

The syntax of the if..else is

 if(<Boolean>) <expression>

If the Boolean condition is True, expression executes.

scala> if (10 % 3 > 0) println("Not a multiple")

Not a multiple

In this example, we use an expression for checking the Boolean value.

If 10 is not divisible by 3 it prints "Not a Multiple", so we can see the use

of an if..else in Scala is the same of other languages.

In case we want to define an else condition, we can use this syntax:

if(boolean) expression else expression

We can now write a more complex if..else condition:

scala> if (10 % 2 > 0) println("Not a multiple") else

("Multiple")

res2: Any = Multiple

 Pattern Matching Expression
Scala doesn’t have a switch command like Java or C#. In Scala, we have the

command match, which is more flexible than switch.

ChaPtER 1 INtRoduCtIoN to SCaLa

17

The syntax for the pattern matching is:

<expression> match{

 Case <pattern match> => <expression>

}

The pattern match can be a value or a regular expression; for example,

a simple pattern matching can be

scala> val number1 = 10

number1: Int = 10

scala> val number2 = 20

number2: Int = 20

scala> val max = number1 > number2 match{

 | case true => number1

 | case false => number2

 | }

max: Int = 20

Here we can see that we have created two values and that the

expression is essentially a simple check of these two values. When we

identify the bigger, we write out the number.

 Multiple Conditions

You can use more conditions in pattern matching. For example, it is

possible to check the month of the year to correspond with the season.

val month = "JAN"

val season = month match{

 case "DEC" | "JAN" | "FEB" =>

 "Winter"

ChaPtER 1 INtRoduCtIoN to SCaLa

18

 case "MAR" | "APR" | "MAY" =>

 "Spring"

 case "JUN" | "JUL" | "AUG" =>

 "Summer"

 case "SEP" | "OCT" | "NOV" =>

 "Autumn"

}

In this case, we match a string using an “or” and can see that the

pattern matching is similar but more powerful than with the switch

structure. My suggestion is to play with this pattern to learn best what you

can do with pattern matching. We can, of course, use a wildcard to parse

the case not actually present.

 val month = "JAN"

val season = month match{

 case "DEC" | "JAN" | "FEB" =>

 "Winter"

 case "MAR" | "APR" | "MAY" =>

 "Spring"

 case "JUN" | "JUL" | "AUG" =>

 "Summer"

 case "SEP" | "OCT" | "NOV" =>

 "Autumn"

 case _ =>

 "Not a month"

}

In this case, the code shows the result "Not a month". Of course, it

is possible to specify the type of variable we want to use for the pattern

matching. Here, we need to define the kind of variable following the case.

An example can be if we want to check a value, based on a specific type.

ChaPtER 1 INtRoduCtIoN to SCaLa

www.allitebooks.com

http://www.allitebooks.org

19

Val theAnswer:Int = 42

val anyAnswer:Any = theAnswer

anyAnswer match {

 case theAnswer:String => "String Value"

 case theAnswer:Int => "Integer Value"

 case theAnswer:Double => "Double Value"

}

With this simple example, we create a variable, and, after, we assign

this variable to a type Any. This kind of variable is the highest in numeric

value, and this means that it is possibly associated with any other kind

of variable. In the example, we try to check with the pattern matching to

identify which kind of value is associated with the variable of the kind Any.

 Pattern Guard

A pattern guard is an if expression to check a Boolean condition used for

executing the pattern matching. This is useful, for example, when we want

to check if a string or object is not null.

val empyString:String = null

val empStr = empyString match{

 case sea if sea!= null =>

 println(s"Received '$sea'")

 case sea =>

 println(s"Received a null value")

}

ChaPtER 1 INtRoduCtIoN to SCaLa

20

 Range and Loop
A for loop in Scala executes a block of code for a certain number of

executions. For example, we can use a loop when we want to iterate all

elements of an array.

val myArray:Array[String] = new Array[String](10)

for (i <- 0 until myArray.length){

 print(s"element of the array $myArray(i)")

}

In this example, we create an array of an empty element string. The code

initializes all elements to the default value, in the case of string, null. We then

use the length of the array to identify the number of the iteration. In Scala, it is

possible to use the object Range to create a maximum number of the element.

To create a Range object in Scala, we use the following syntax:

<start integer> to or until <end integer> <increment>

The increment is optional, but if it is not, specify it as 1. Imagine now

that we want to create a for loop to show some numbers, as follows:

scala> for (number <- 1 to 12) { println(s"Month $number") }

Month 1

Month 2

Month 3

Month 4

Month 5

Month 6

Month 7

Month 8

Month 9

ChaPtER 1 INtRoduCtIoN to SCaLa

21

Month 10

Month 11

Month 12

In this case, we count from 1 to 12 and show out a string with the

string month and number. We can specify different increments using the

word by.

scala> for (number <- 1 to 12 by 2) { println(s"Month $number")

}

Month 1

Month 3

Month 5

Month 7

Month 9

Month 11

In this case, we see the number is incremented by 2, and this reduces

the number of elements generated by the range object. In Scala, it is

possible to create a range from a List or Array easily. By using the method

toList or toArray, Scala converts the object range directly to a List or an

Array. It is preferable to use a List in Scala instead of an array, because a

List is an immutable structure. This means that when we create a List, we

can’t modify it. The List does not allow side effects, and it is important in

functional programming to avoid these.

scala> val day_of_week = (1 to 7).toArray

day_of_week: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7)

scala> val day_of_week = (1 to 7).toList

day_of_week: List[Int] = List(1, 2, 3, 4, 5, 6, 7)

ChaPtER 1 INtRoduCtIoN to SCaLa

22

Note It is possible to omit the parentheses, but in that case, you
must use postfixOps. the faster way of doing this is to import the
class postfixOps, as follows:

scala> import scala.language.postfixOps

import scala.language.postfixOps

scala> val day_of_week = 1 to 7 toList

day_of_week: List[Int] = List(1, 2, 3, 4, 5, 6, 7)

It is possible to use the word yield to create an IndexSeq object. This

object translated the value of the result in a Vector, as follows:

scala> val day_of_week = for (x <- 1 to 7) yield {s"$x"}

day_of_week: scala.collection.immutable.IndexedSeq[String] =

Vector(1, 2, 3, 4,5, 6, 7)

It is possible to use an iterator guard to execute the increment only

in certain conditions. An iterator guard is an if condition for verifying

whether to execute the increment first.

scala> val even = for(i <- 1 to 20 if i%2 == 0) yield i

odds: scala.collection.immutable.IndexedSeq[Int] = Vector(2, 4,

6, 8, 10, 12, 14, 16, 18, 20)

 Other Loops
In Scala, it is possible to create a loop not only by using the for syntax but

by using the while and do..while loops. These loops repeat a statement

until a Boolean is false.

var count = 10

while(count > 0){

 println(count)

 count -=1

ChaPtER 1 INtRoduCtIoN to SCaLa

23

}

10

9

8

7

6

5

4

3

2

1

The while syntax is very simple: the condition of execution is checked

after the loop. For example, when the value of the variable count is 0, the

code is executed. Only when the variable is -1, does the loop stop.

The do..while loop is similar to the while loop. The difference is that

the variable is checked before the execution of the loop.

scala> var count = 10

count: Int = 10

scala> do{

 | println(count)

 | count -=1

 | }while(count >0)

10

9

8

7

6

5

4

3

2

1

ChaPtER 1 INtRoduCtIoN to SCaLa

24

We can see that the result is exactly the same. The only difference

is that the conditional expression is checked first, to call the new loop.

This saves a computational execution and occurs because the do..while

loop checks the value after the statement. In this case, when the variable

reaches 0, the process is stopped.

 Data Structures
Until now, I have presented only the basic syntax for the language, but

a real program must memorize the data in the data structure in order to

manipulate it. I will now discuss the different data structures we can use in

Scala.

In Scala there are six basic data structures, as follows:

• Array

• List

• Set

• Tuple

• Map

In the next sections, I will attempt to identify the principal differences

between these data structures.

 Array
An array is a mutable collection and preserves the order of the element

we insert. The data in the array is all the same type. The data is not sorted

in order, which means that if we create an array with the value (2,1,3),

the element of the array remains in that order. An array can also contain

duplicated values.

ChaPtER 1 INtRoduCtIoN to SCaLa

25

scala> val myArray:Array[String] = new Array[String](10)

myArray: Array[String] = Array(null, null, null, null, null,

null, null, null, null, null)

In the preceding code, an empty array is defined for a string of ten

elements. Because we haven’t specified the value, Scala fills the array with

the default value of a string, in this case, the value null.

We can access an array for reading/modifying a value on the array,

by using the index of the array. Say, for example, that we want to change

the value of the first element of the array. The code would look like the

following:

scala> myArray(0) = "test"

scala> myArray

res7: Array[String] = Array(test, null, null, null, null, null,

null, null, null, null)

Is possible to create an array by just defining the elements of the array

itself.

scala> val myArray_new = Array(1,2,3,4,5,6,5)

myArray_new: Array[Int] = Array(1, 2, 3, 4, 5, 6, 5)

 List
A list is an immutable collection. A list preserves the order of the element

we insert in it and, like an array, stores only data of the same type, although

it can have a duplicated value.

scala> val myList = List("a","b","c","b")

myList: List[String] = List(a, b, c, b)

ChaPtER 1 INtRoduCtIoN to SCaLa

26

A list is an immutable collection, which means that it is not possible

to update the value. In fact, it is not possible to create a list with a default

value. If we try to update a value on a list, Scala returns an exception.

scala> myList(3) = 10

<console>:13: error: value update is not a member of

List[String]

 myList(3) = 10

 Set
A set is an unordered immutable sequence. A set doesn’t preserve the

order of the element, and it is not possible to add a duplicate element to

the set. If we add duplicate elements, the duplicates are deleted by the set

itself.

scala> val numbers = Set(1,2,3,4,4,5,3,3,2,1)

numbers: scala.collection.immutable.Set[Int] =

Set(5, 1, 2, 3, 4)

 Tuple
A tuple is a simple logical collection of data. We can store data, like, for

example, user data, without having to define a class.

scala> val servers=("localhost", 80)

servers: (String, Int) = (localhost,80)

It is possible to access to the element of a tuple by using the positional

index. Tuple is a 1-based container.

scala> servers._1

res0: String = localhost

ChaPtER 1 INtRoduCtIoN to SCaLa

27

Tuple can be used with pattern matching as a condition for case. If we

must create a tuple of only two elements, we can use the sugar syntax ->,

as follows:

scala> 1 -> 2

res1: (Int, Int) = (1,2)

Following is how, in a tuple, we can add more than two elements:

scala> val users=("Pierluigi","Riti",15,9,1975)

users: (String, String, Int, Int, Int) = (Pierluigi,Riti,

15,9,1975)

 Map
A map is an iterable, immutable collection of key/value pair. To create a

map, we use the syntax used for creating the tuple. Every tuple is a key/

value pair:

scala> Map("one" -> 1, "two" -> 2)

res1: scala.collection.immutable.Map[String,Int] = Map(one ->

1, two -> 2)

It is possible to associate another map to a key.

scala> Map("one" ->Map("one" ->1))

res2: scala.collection.immutable.Map[String,scala.collection.

immutable.Map[String,Int]] = Map(one -> Map(one -> 1))

ChaPtER 1 INtRoduCtIoN to SCaLa

28

 Summary
In this chapter, I introduced the basic syntax of Scala. I explained the

basic Scala syntax without delving into it deeply but only to provide an

understanding of how to use Scala. In the next chapter, we will dive deeper

into these basic concepts, and I will introduce other Scala concepts related

to design and implementation of DSLs. As I suggested, the best way to

learn Scala and unleash the potential of this language is to get your hands

dirty with the REPL.

ChaPtER 1 INtRoduCtIoN to SCaLa

29© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_2

CHAPTER 2

Introduction to DSL
DSLs (domain specific languages) are everywhere. When, for example,

we go for a pizza or a hamburger, we talk with a “specific” language to

place our orders. A DSL is a language used in a specific domain to solve a

problem.

A DSL is the opposite of a general-purpose language, such as, for

example, English or Italian. When we use a DSL, we are using a general-

purpose language (GPL). When we go to our coffee shop to order a

beverage, we use a general-purpose language, English, to solve a domain

problem—ordering—for example, a large, cold Frappuccino. A large, cold

Frappuccino is essentially a DSL.

In this chapter, I will identify the key concepts of DSLs and provide

some examples of existing DSLs.

 Definition of DSL
A DSL is a computer language specialized for a specific domain. A DSL is

essentially the opposite of a GPL. By GPL), I mean every language that can

be used to develop something. For example, Java, C#, and Scala are all GPL

languages. With a DSL, we want only to solve a specific domain problem,

so we design the language specifically for the domain. A DSL can’t be used

outside of the domain, because it is not designed for flexibility.

30

In IT, there are lots of DSLs. One example is Hypertext Markup

Language (HTML). This language is valid only when we want to design

a web page but is completely useless if, for example, we want to design a

graphical interface.

We can identify two kinds of DSLs, internal (or embedded) and

external. The difference between these two types is how they are created.

 Difference Between Internal and External DSLs
An internal, or embedded, DSL is one that is created internally in a GPL,

for example, when we create a set of classes with Java to solve a domain

problem. Internal DSLs are very useful for creating an application program

interface (API).

When we use an embedded DSL, we are using a subset of the GPL to

create our language, and, therefore, we lose all the flexibility associated

with the GPL). On the other hand, however, we can build software that is

more readable by the domain expert. This means that the developer can

solve an issue or change a functionality faster. For example, if we want to

parse an Excel file, we can have a code like the following:

LoadFile("C:\file.xls")

 .read_column("A1")

 .read_column("A2")

 .save_CSV("file.csv")

This code essentially uses a DSL to read two columns from an Excel

file and saves it in a comma-separated values (CSV) file. We can use any

language to create this chain. In case we have to change the Excel column,

we need only to create the chain with a different column value.

An external DSL is a kind of DSL that is not correlated with a language.

CSS or a regular expression are good examples of external DSLs.

Chapter 2 IntroduCtIon to dSL

31

The difference in DSLs is not only in their definition but in how they

are implemented. For example, when we create an external DSL, we must

define a language and parse it. Conversely, when we create an internal

DSL, we can create a fluent API. This means that we can define a specific

pattern that can be called as well as a fluent interface. The term, coined

by Eric Evans and Martin Fowler, reflects the fact that when we use this

pattern, we are essentially creating APIs as readable as plain English.

We can use this pattern for our language, because it improves the

readability of the code and helps to reach the goal of the DSL.

 Designing a Good DSL
When we design a DSL, it doesn’t matter if it’s an internal DSL or an external

DSL. We just have to follow some basic rules to achieve a good result.

• Encapsulation: A good DSL must hide the

implementation details of the problem by exposing

only what is necessary to solve the problem.

• Efficiency: Because the implementation details are

hidden, the developer should have less work to do when

changing the use of the DSL. Of course, to do that, the

engineer responsible for the creation of the DSL must

be careful to create the APIs in a good and simple way.

To do that, extra care must be given to the design of the

API and the DSL. Better API design translates into better

use of the same and reduced work when, for example,

a consumer requires an update. When a developer uses

our DSL, the important thing is for it to have the same

functionality. This means that when we have to change

the API, for example, to improve new functionality, we

must be careful not to break the actual functionality we

have implemented. This can be done using the correct

level of interface and design.

Chapter 2 IntroduCtIon to dSL

32

• Communication: Because the DSL is designed for fixing

a specific domain problem, methods must be given a

name that is understandable to the domain expert. This

means, for a domain expert, that it’s easier to identify a

problem in the creation of the software.

Of course, creating a good DSL isn’t easy. To respect all rules, we must

write code that is well-documented and essentially self-explanatory when

we configure, for example, the API for the internal DSL. We must be sure to

have a good level of abstraction, and we must design a good API.

When we create the DSL, we must identify the domain of the problem

and, based on that, define a common dictionary capable of solving the

problem. What we have to do is define the model domain. In this way, it is

easier to define a dictionary and share this dictionary with the developer.

In DSLs, it is essentially the domain that drives the definition of the

language. Some examples follow:

• RubyDSL, used in Puppet to define the manifest for the

configuration

• SQL

• HTML

These languages are all essentially DSL languages, because they are

specific to solving one problem and can’t be used to create a general-

purpose program.

 Analyze the Domain
When designing DSLs, we must identify the model for the domain we

have to use for work. Defining the model domain is the basis for defining a

correct DSL. When we analyze the model domain, essentially, we identify

all entities and relations connected to the domain. When we have designed

and identified the correct entity domain, we can start to define a common

dictionary for our DSL. A common dictionary is necessary to improve

Chapter 2 IntroduCtIon to dSL

33

the communication and, of course, gain one of the pillars for designing a

good DSL. The problem domain is the process whereby we identify entities

and constraints. Identifying these is an exercise we must perform to better

understand a problem with the domain. When we do this exercise, we

figure out the common language of the domain, that is, the language we

must use for communicating with the expert of the domain.

When we have identified the problem domain, we can define the

solution domain. The solution domain provides all the tools we can use to

solve the problem. After the problem is identified and the solution domain

established, we can start to model the domain.

Imagine, for example, that we want to identify and model a continuous

integration system. First, we must identify all the entities and, after that,

begin to design our system (see Figure 2-1).

Figure 2-1. Translating the problem domain into a solution
domain

When we identify the problem domain, we can design the solution

domain. The solution domain is the architecture of the system. Here, we

identify the major components we must implement to solve the problem.

Based on this, we can design a common dictionary for defining a common

language for the DSL.

Chapter 2 IntroduCtIon to dSL

34

 Creating a Common Dictionary
When we design the solution domain, we essentially identify all entities

involved in the DSL. The common dictionary is important for identifying

the language used to talk about the system, like when we go to our favorite

coffee shop and ask for a cold frappuccino. This is necessary for a mutual

understanding of the problem by an engineer and businesspeople. This

is also important for improving the quality of the communication and the

quality of the system. It is possible to identify some advantages related to

the creation of the common dictionary.

• The common dictionary can be easily used for testing

and is the basis for describing the test plan. Based on

that, we can easily identify the process of the software.

• The common dictionary is useful for describing the

process in plain English and, starting with that, the

design of the solution domain.

• The common dictionary can be used by the developer

to design software. In the common dictionary, we

not only define the term but, at the same time, some

phrases for describing the use of the term.

When we define a common dictionary, we identify and describe every

single entity involved in the system. This exercise is useful for helping

the developer to understand the domain and start the development.

Imagine, for example, describing some action that must be done from the

Continuous Integration (CI) system we want to define. The phrase might

be: “The Continuous Integration system must connect on Git, download

the source code for a specific language, and compile it.”

When we define this phrase, we essentially use a common dictionary

and create a use case for the software, starting to design our DSL for

solving the problem.

Chapter 2 IntroduCtIon to dSL

35

 Sample DSLs
Imagine now that we want to write a simple code sample of the DSL to

describe a Continuous Integration) system. The code would look like the

following:

object ContinousIntegration {

 object Connect { def git = (x: source.type) => x }

 object source { def control = (x: language.type) => x }

 object language { def kind = (x: language.type) => x}

 object compile { def scala = (x: language.type) => x }

 implicit def string(s : String) : language.type = language

 def main(args: Array[String]): Unit = {

 Connect git source control language kind "Scala"

 }

}

In this brief short example, a functionality for Continuous Integration)

is described. We have essentially created a set object, then used this

object to write a phrase that we can read in plain English. In this case, we

write “Connect Git source control language kind "Scala".” This is

essentially the business functionality, and it makes it easy to understand

whether we’ve made a mistake.

Scala is fantastic for this, and writing code in this way gives users very

clear and compact code that is simple to read and maintain.

Note In Scala, the “dot notation” is not mandatory. In the preceding
code, we call the function without using the dot to call the method.
this allows the developer to create code that can be read like plain
english.

Chapter 2 IntroduCtIon to dSL

36

In the case of a business, an expert can easily read the code we wrote

and tell where there is an error. In case, there is—in the business logic. This

is the true power of a DSL. By allowing a business to understand the code,

communication between the business and engineering teams is greatly

improved.

In this case, we have created an internal DSL. This is because we used

a GPL), Scala, to define a specific subset of the language, in this case, a

representation of a CI process. We can see that we wrote an internal DSL to

match the defined use case story. This is the real power of the DSL. We can

easily create a bond between the user story and the language we develop,

which allows everyone to validate our story from the start, with the test

case. This reduces bugs and improves the quality of the software.

 DSL Goals
When you create a DSL language, you must have a clear objective in your

mind. The DSLs should be understandable and verifiable to the business

user. To design a good DSL, some specific rules must be followed.

• DSLs design a “language.” This means that the

user doesn’t have to know the details about the

implementation. The developer only needs to use the

common dictionary to define the business and then

shift the focus to the correct implementation of the

method.

• DSLs define a very small language. We define restricted

sets of words that we can use to implement the solution

for the business domain. Because of this, it is possible

for a developer to learn the terms easily and improve

his/her knowledge.

Chapter 2 IntroduCtIon to dSL

37

• DSLs are born of the idea of mapping a business

domain in a common language. To allow this, we

define a common dictionary, in which we define

the word and the functionality, after the developer

translates the word into a function. Imagine, for

example, that we want to create a DSL for a financial

application. We have a specific term to define. This is

because the developer doesn’t have knowledge of, for

example, the terms bid or ask, or any other financial

term. Creating the common dictionary helps to define

the term and, therefore, the developer, to understand

the scope of the DSL.

Realizing all three of the preceding goals in designing a DSL requires

that the software we design with also be of good quality. Today, there is a

great variety of languages, and some, like Scala, allow developers to write

very good DSLs.

When we want to implement a DSL for our project, we start from day

zero of the project. In terms of the software and solution architecture,

this means that we begin to design the software by adhering to the

following rules: the function should be internally well-documented and,

at the same time, the name should be a valid name for the business.

A correct DSL implementation uses some defined architectural pattern.

For example, in Martin Fowler’s Domain-Specific Languages, it is

possible to find a good description of all the patterns that can be used

for design and implementation of our DSL.

Another big benefit associated with the use of DSLs is removal of the

communication barriers between a business user and developer. When we

design and implement a DSL, a developer must understand the business

domain. For this reason, we define a common dictionary, but the exercise

connected with the “design” of the common dictionary improves the

Chapter 2 IntroduCtIon to dSL

38

business knowledge of the developer. We use DSL languages nearly every

day, but without realizing this. Some common DSL languages are

• SQL

• RSpec

• Cucumber

• SBT

• ANT

• HTML

• CSS

• ANTLR

These languages represent only a fraction of DSLs. Everyone has likely

used one of these languages at one time or another in their lives without

being aware of it. All these languages, however, are designed to solve a

specific business domain issue.

 Implementing a DSL
We now move on to how we can implement a DSL. Until now, I presented

only the processes that we can follow to design a DSL. Our focus can now

shift to what we can do, from a developer’s point of view, to implement the

language.

The first decision we must make is how to structure the language. This

means that, first, we must decide whether we want to use an internal or

external DSL. This is not an easy decision, because using one or the other

technique drives the architecture definition and essentially defines how

the developer and the business transform the business solution into a

software.

Chapter 2 IntroduCtIon to dSL

www.allitebooks.com

http://www.allitebooks.org

39

To define the DSL, the first decisions we must make are to

• Define the grammar of the language for both kinds

of DSLs (internal and external) and define a specific

grammar for defining the business. This means that

we must define a complete grammar for creating the

“language.”

• Create the parser necessary for defining the semantic

model of the language. When we have the grammar, we

must also create the parser, to “translate” the language

into the software.

How to implement these steps defines the difference between an

external and internal DSL. A common point among DSLs is their grammar.

The differences occur when we have to parse the DSLs. In the case of

internal DSLs, essentially for parsing the grammar, we define some API,

using, for example, the Expression Builder pattern, for creating our final

phrase. For an external DSL, the parser normally reads the text, from an

external file, for example, parsing all files and then creating the call for the

proper API, to meet the business requirements.

In the end, both techniques solve the same problem. The only

difference is how to parse the grammar. For an internal DSL, the grammar

is solved using a set of the call to an internal API The sequence of the call

for the API defines the business requirements and, in the end, achieves the

business requirements.

One example of a fluent API for parsing a grammar is JMock. In JMock,

for example, we can write something like the following:

mock.expects(once()).method("my_method").with(or(stringContains

("hello"),stringContains("howyourday")));

This code essentially parses a grammar, in this case, the method for

checking if the name of the method contains the word we have to test.

Chapter 2 IntroduCtIon to dSL

40

In the case of an external DSL, for example, we use the grammar for

creating an external file. This file is called by the program and put in a

three-part syntax. When we have the three parts, we start to call the API

and use the results to define an action or call another API.

 Grammar and Data Parsing
When we define the DSL, one of the most important aspects of this is the

grammar. The grammar is retrieved from the common dictionary and

should be used to define the business solution.

By the term grammar, we are referring to a set of rules that we can use

to stream text and turn it into software. Every developer uses a grammar

every day. For example, when creating a variable in Scala, we use a specific

grammar. Imagine, for example, that we want to define a new grammar

for executing a sum of two numbers. The syntax might be sum:= number

'+' number. This would tell us how to execute an operation, and in case

we found the expression 2 + 2, this would be valid for the system. The

grammar doesn’t tell us how we must resolve the expression, only that the

expression is valid.

Who tells us what kind of operation to execute provides the context.

For example, we can define a two-sum operation, one by a number, the

other by a string. In the case of a number, we can execute the sum, so that

the operation 2 + 2 returns 4. In the case of two strings, the result of 2 + 2 is

22. The context of the operation is driven by the semantics of the operation

we want to define. In the previous example, we used a number or string.

After we have defined the grammar for the language, the other

important step involves parsing the data. The parser must read the

language, using the grammar we have defined and according to how

we have instructed this grammar to be used. This step is crucial for the

efficiency of the DSL. When we parse the data, we probably have to

store more information in memory. To speed the process, we can create

a symbolic table. This is nothing more than a dictionary. The key is the

Chapter 2 IntroduCtIon to dSL

41

grammar word we require to parse, for example, the +, and the value that is

the object of the operation we must call with the parameter. The symbolic

table is the core of our parser. This keeps in the memory all words and

functions, thus helping the developer to translate the language into code.

The parser uses the symbolic table for creating the call function that

translates the syntax into code.

 First DSL Implementation
Until now, the discussion has centered more on the theory behind DSLs.

Now I present a very short piece of code to show what a DSL looks like. It’s

time now to present some examples of real implementation, to see how to

create an actual DSL.

The first step in defining a DSL is to design the common dictionary.

Let’s see now how to define a common dictionary. I will use the example of

a CI) system (see Table 2-1).

Table 2-1. A Sample Common Dictionary

Word Definition

repository a place where software is stored. to connect to the repository, we

must know the urL, the user, and the password. We can specify

the kind of repository, for example, Git. every repository can have a

different parameter.

Compile to build a specific software language, when we compile, we must

define the language to be used. this requires a different tool with

which to execute the action. the result is always a message indicating

if the compilation is doing well or not.

Connect the basic operation for executing and downloading the software from

a repository. When the connection is made, it is possible to download

the software and then compile it.

Chapter 2 IntroduCtIon to dSL

42

This is a brief example of a common dictionary. According to what we

see in the common dictionary, we define the term and a brief description

of it. This description is useful, because it tells the developer exactly what

the word means and what meaning is for the business.

This knowledge is necessary in order to create good software. It allows

the developer to write a good test case, which is necessary to ensure the

quality required for a DSL.

 Common DSL Patterns
To translate a DSL into another language, we normally, use some specific

design pattern. The most common patterns are

• Fluent interface: The fluent interface allows the user to

call a chain of connected APIs We use this technique,

for example, when we call our CI process, as follows:

Connect git source control language kind

"Scala" with this call we essentially create a Fluent

interface for our software.

• Semantic model: In DSLs, a semantic model is a

representation of the structure we must parse in

memory. The semantic model is essentially the

connection between the object created from the

grammar.

• Parser generator: The parser generator is used for

generating the parser starting from the grammar of the

DSL. The result of the parse is essentially the semantic

model.

The preceding offered a brief description of some common patterns.

In the next chapter, we delve deeper and try to isolate and describe the

patterns that we can use for both internal and external DSLs.

Chapter 2 IntroduCtIon to dSL

43

 Conclusion
In this chapter, I discussed the basic theory behind DSLs The two types of

DSLs, internal and external, were defined, and a simple sample DSL was

provided. Of course, the theory behind DSLs is very extensive, and we will

go deeper into this in the following chapters. For now, some basic patterns

for designing our DSL have been identified. In the next chapters, I will

describe in greater detail what internal and external DSLs are and identify

common patterns we can use for design.

Chapter 2 IntroduCtIon to dSL

45© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_3

CHAPTER 3

Internal DSL
In the previous chapter, you received a brief introduction to the different

kinds of DSLs. In this chapter, you will see how to build an internal

DSL. Some languages use the acronym DSL to indicate a subset of a

language used in everyday life. As an example, we can think of software

such as Chef or Puppet, in which it is possible to use “RubyDSL” to write

the configuration files.

 Creating an Internal DSL
Until now, I discussed DSLs mostly in terms of theory and presented some

issues and benefits to consider when adopting DSLs. When we create an

internal DSL, we have some limitations connected with the language.

This means that all the expressions we create must be valid for the host

language. We shouldn’t forget that when we created an internal DSL, we

created a subset of new instructions inside a GPL. When you think of a

DSL, you must think of it as a language for creating another language.

The Ruby community uses and generates a lot of DSLs. This is because,

with the metaprogramming technique, it is easy to create good DSLs. Of

course, using the same techniques with another language can’t yield the

same results. Scala by nature has a very nifty syntax, and this allows it to

create very good and clear DSLs. When we have to create an internal DSL,

we normally use some specific pattern to help in the process. One of the

techniques used to define an internal DSL is a fluent interface. We can

think of a fluent interface as a synonym for internal DSL.

46

When we consider a fluent interface, we can contemplate building a

set of API functions for constructing the call in plain English. We can use

some different patterns to implement this technique. The most common

is method chaining. With this pattern, we create a “chain” of methods for

calling the object.

 Method Chaining
With method chaining, a set of methods is called in a chain to create an

object, which is typical of object-oriented programming. Imagine, for

example, that we want to create an object Student using method chaining.

 case class Student(private val name: String = null , private

val year: Int = 0) {

 def setName(newName: String) = Student(newName, this.year)

 def setYear(newYear: Int) = Student(this.name, newYear)

 def introduce { println(s"Hello, my name is $name and I am

on the $year .") }

}

object App {

 def main(args: Array[String]) {

 Student().setName("Peter").setYear(2).introduce

 }

}

Now we can see that we’ve established a chain of methods for creating

an object. So, method chaining is a sequence of methods called to set the

data on the object we want to create.

Chapter 3 Internal DSl

47

Note In the preceding code, we used a case class to define our
object. a case class is immutable by default and can be used in pattern
matching. It’s compared by structural equality, not by reference. the
instantiation of a case class doesn’t require the new keyword, and we
can see that the definition is very succinct and simple to use.

A case class is very useful when we want to define immutable data. We

can use the following syntax: case class User(name :String). This

syntax creates a case class called User. To use the class, we can simply call

and assign a value.

scala> case class User(name :String)

defined class User

scala> val user=User("Pierluigi Riti")

user: User = User(Pierluigi Riti)

The case class doesn’t require the keyword new to be instantiated. This

is because we have a method, apply, by default, and this takes care of the

instantiation of the class.

The function Apply in mathematics and computer science is one that

applies functions to arguments. In Scala, it is used to fill the gap between

object-oriented and functional programming. For example, the function

apply can override a value, as in the following:

scala> class TestApply {

 | def apply() = "Hello World"

 | }

defined class TestApply

Chapter 3 Internal DSl

48

scala> val test= new TestApply()

test: TestApply = TestApply@3b42121d

scala> test()

res0: String = Hello World

Here we can see that the function apply is being called when we create

the instance of the class, and this Apply is the function of the class.

With method chaining, the construction of the object is easier than

with the classic construction method. Remember the term fluent interface?

It is another name we can use for method chaining. These techniques

create a cascade of methods with which to build the final object. The

cascading of the object is made by each method returning an object with

its parameters set. In this way, when we build the chain, we add a value to

the object, and at the end, we have created a complete object.

 Creating a Fluent Interface
A fluent interface for creating a chain of API calls was described by

Martin Fowler and is essentially a way to change how to call an object.

Traditionally, in object-oriented programming, if we want to call an object,

we use a syntax such as the following:

Student s = new Student("Pierluigi Ri", 2);

Course c1 = new Course("Programming");

Course c2 = new Course("Mathematics");

return new Year(s, c1, c2);

You can see that we create the program using a set of calls, and, at the

end, the final object is passed in the previously created objects. This is

the classic technique every developer uses essentially every day to create

objects.

Chapter 3 Internal DSl

49

If we were to use method chaining for this example, we could create

a series of functions. Every function would return the object itself. In the

end, we would have one complete object, the syntax of which would be the

following:

Years()

 .student()

 .name("Pierluigi Riti")

 .class(2)

 .course("Programming")

 .course("Mathematics")

 .create()

The code now can be read more like plain English and is much easier

to understand by a domain expert. Don’t forget: The aim of a DSL is to

allow the communication between a developer and domain expert. With

a language such as Scala, we can use a function instead of an object, so we

can use what Fowler defines as a function sequence. We don’t use an object

and a method, but only a function. With Scala, we can use this pattern and

essentially build an English phrase for solving the problem.

Years()

 Student()

 name("Pierluigi Riti")

 class(2)

 course("Programming")

 course("Mathematics")

 create

The preceding string is simple to read and understand by a domain

expert. This reduces the possibility of misunderstanding between the

developer and domain expert and, of course, improves the quality of the

software.

Chapter 3 Internal DSl

50

The essence of the fluent interface concerns how we think about and

design an object. Normally, when we think of an object such as a box, we

think only about how to interact with it. We may define a method and then

access the method, all to create a box to solve the problem. If we think

about software using a fluent interface, we approach the object differently.

In this case, the object is not merely a black box. We must contemplate a

new way of interacting with it. We must consider a set of commands and

queries. Every command executes an action, in our example, create, and

every query selects a set of data, in our case, the other functions. Thinking

about the object in this way reflects not only a new way of defining an

object but a mind switch that, in particular, enables a developer to think

differently when using an internal or external DSL.

Separating the method of the object design into queries and

commands is not a new way of defining software; it is a methodology of

imperative programming, as elaborated by Bertrand Meyer, and takes the

name command-query separation. The separation of command and query

is based on a simple idea.

• Query: This returns a value but does not change the

status of the system. It doesn’t have side effects, thus is

ideal for functional programming.

• Command: This changes the status of the system but

doesn’t return any value.

The idea behind this paradigm is to have a clear division between the

function that changes the value of the system and the method reading only

the state of the system. Because the system reads only an immutable state

of the system, this paradigm is strictly connected with a fluent interface.

With this kind of pattern, we can create a command to change the status

of the system and, at the end, have a query for retrieving the status of

the system following the fluent API call. Because the query is essentially

without side effects, this is ideal for functional programming. The essence

Chapter 3 Internal DSl

51

of the command-query separation is that every method must return a query

or a command, and the result never changes, if we don’t change the initial

value. Basically, the method or function can’t have side effects.

Note the absence of side effects is one of the principles of every
functional language. as Scala is a functional language, using the
command-query separation doesn’t violate this principle but helps
the developer to respect it.

When we design internal DSLs, we must think of using this principle

in order to better isolate the function or method and avoid side effects.

Of course, fluent interface and command-query separation are not the

same. Specifically, a fluent interface is used when dealing with objects.

Conversely, a command-query separation is better for functions. Because

Scala has both paradigms, it is better to define and clarify how to use one

or the other. In each case, it is better to define the function or method with

a name understandable to the domain expert.

 Designing the Parsing Layer
Writing a good DSL requires a parsing layer. This layer is necessary to translate

the formal syntax into instructions for the GPL, the general- purpose language,

used to build the DSL. It doesn’t matter whether we’re talking about internal

or external DSLs. In each case, we must create the layer.

In terms of an internal DSL, the parsing layer is strictly connected to

the functions we offer for creating the DSL. When we create the parsing

layer, we must think of a specific pattern. We can use expression builders to

create the correct method for our fluent interface. An expression builder is

essentially an object whose sole task is to build a model of normal objects.

With expression builders, we can easily create a fluent interface.

Chapter 3 Internal DSl

52

We use expression builders because when we define our DSLs, we

can have a different interface, and in such a case, it is not always easy to

design a correct and fluent interface. The expression builder is our friend.

Imagine that we want to create a code to save or update a new user on the

system. The condition is the presence or absence of the user in the system.

The code can be like this:

class InsertUser {

 private val user = new User()

 def add(name: String, surname: String): User = {

 actualUser = new User(name, surname)

 user.addUser(actualUser)

 this

 }

 def setLevel(level:String): User = {

 user.level(level)

 this

 }

 def getUser: User = user

}

The class InsertUser defines the object and the method. We can use

the class in the following way:

val user = new InsertUser().add("Pierluigi","Riti").

setLevel("admin")

Now we can see that the call for creating the user can be read like plain

English, and the user we created essentially is different every time we call it.

When we define an expression builder, every method returns an

object, populated with the value of the method. This allows the user to

create the correct fluent interface.

Chapter 3 Internal DSl

53

Another important piece of the parser is the semantic model. This is

used to translate the grammar and the syntax defined in the DSL. This

pattern creates an object in memory with all data and translates it for DSL

generation. This pattern normally is used with the symbol table, another

pattern used for defining DSLs. With the symbol table, we basically store

a link between the object and each task. This is used for populating

the semantic model, which is a set comprising a model and class, used

for translating an input in a class. Graphically, we can imagine it to be

something like that shown in Figure 3-1.

Figure 3-1. Diagram of a semantic model

Chapter 3 Internal DSl

54

The code to populate the model can be something like the following:

events

 createUser

end

state create

 createUser create

end

This code creates the code that can be used to represent the model we

just created. Now, we can see that what we have to do is translate the code.

Normally, to do that, we use a parser combinator. Later in the book, you

will see how to write one.

The idea behind using three different patterns—semantic model,

expression builder, and symbol table—is that we can test each separately

and, of course, reduce the possibility of error. All these patterns are used to

construct an expression builder for creating our DSL.

 Design the Parsing Layer Using Functions
Until now, I’ve discussed only the patterns for building an internal DSL

using an object, but we can also employ a function to build it. For doing

this, we must use different patterns.

What we must do, obviously, is create the same results, and to do that,

we have to create a good expression builder, but with functions. We have

to replicate what we did with the object, which means we must create

some common variable that can be shared from one function to another.

Normally, we do this with global variables and global functions, but this

is not the best way of solving the problem. Because with global functions,

we can change the final result, another process can erroneously change

the value of the variable, and this can change the result of our process.

Imagine, for example, working in a multi-thread environment.

Chapter 3 Internal DSl

55

The best way of solving this problem is to use the pattern called

context variable. A context variable is used to capture a value in a variable

when parsing and after assigning a new one when we parse. Consider,

for example, that we call a function called Course. This function must

know what course Student is taking. With the context variable, we can

save this value and change it when we parse the new value. Suppose, for

example, that we wanted to write a class User. The class would look like

the following:

class User() {

 var name = ""

 var surname = ""

 var username = ""

 def saveUser():Unit ={

 println(username)

 }

}

Now, we can see that the variable defined in the context can be used

as the method. This is done, for example, when we want to define some

specific value to send to the parser when we initialize the class. We can set

the value of the variable in following way:

scala> val user=new User()

user: User = User@2001e48c

scala> user.username = "Pippo"

user.username: String = Pippo

scala> user.saveName()

Pippo

Chapter 3 Internal DSl

56

Of course, the variable is still global in some respects. If we want to

remove the global variable completely, we can use another pattern, called

object scoping. Every time we try to create a fluent interface, we must

memorize a set of variables, to allow the fluent interface to create our

final call to create the final object. We can avoid that with object scoping.

With object scoping, we create a common object used to store the data.

In other words, all variables are stored in a common area, and in this

way, we can use them to create our final call. This means that we don’t

have to memorize the value in a global variable, and we can better isolate

the scope of every variable. We use this technique when we create an

expression builder. The method is as follows:

 def add(name: String, surname: String): User = {

 actualUser = new User(name, surname)

 user.addUser(actualUser)

 this

 }

This is essentially a way to isolate the variable. By doing so, there is no

global variable, which reduces side effects.

The last pattern we can use for creating a fluent interface using

functions is called a nested function. With a nested function, we build a

function that can accept other functions, such as a variable. In functional

programming, these kinds of functions are called higher-order functions.

With a nested function, we can completely avoid the global variable and

can reduce to zero any possible side effects. This way, we don’t break any

rules of functional programming and can improve the quality and reduce

errors that can be raised by the program itself. An example of a nested

function can be written as follows:

object NestedFactorial {

 def factorial(i: Int): Int = {

 def nestedfactorial(i: Int, accumulator: Int): Int = {

Chapter 3 Internal DSl

57

 if (i <= 1)

 accumulator

 else

 nestedfactorial(i - 1, i * accumulator)

 }

 nestedfactorial(i, 1)

 }

}

In this example, we define a function factorial and also that we have

another function nestedfactorial. The function, in this case, executes the

factorial and returned the value to the previous one. Of course, the nested

function can execute completely different operations and completely

change the scope. Depending on the case we execute, this technique

completely isolates the core function from the outside word and essentially

eliminates side effects.

 Conclusion
This chapter presented a set of patterns that can be used to build internal

DSLs. Every pattern offers a solution to a specific problem. Writing a good

internal DSL is not simple and requires changing how we think about the

API. For example, different layers must be created in order to resolve a

global problem.

In this chapter, I highlighted the most frequently used patterns for

designing a DSL. Future chapters will consider how to use these patterns

to create an internal DSL. To create a good DSL, it is necessary to have

a greater understanding of theory as well as more experience. As I have

indicated, I prefer a “getting your hands dirty” approach, so I have tried

to offer only a brief introduction, in order to expand later on the concepts

involved in making superior DSLs.

Chapter 3 Internal DSl

59© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_4

CHAPTER 4

External DSL
External DSL is probably the most complex and, at the same time,

fascinating kind of DSL. When we design an internal DSL, we establish

a connection with the GPL used for defining it. With external DSLs, we

define our own language. This means that we can define any kind of rules

we want for the language.

Of course, when we define an external DSL, it requires more work to

define the grammar and the correct rules for applying the language. This

demands more effort than defining a simple internal DSL, but certainly

provides more satisfaction.

 Internal DSLs vs. External DSLs
First, to start to define our external DSL, I want to highlight the differences

between internal and external DSLs. This will give you some idea about the

design choices we must make when we talk about DSLs.

The first big difference between internal and external DSLs is

connected to the limitations of the syntax of the host language. We must

remember that an internal DSL is created starting from a GPL, for example,

Scala. This means that we cannot use a particular word, because it is

reserved for a specific language, or we cannot use some sign or syntax,

because it is not valid on the host language. When we define an external

DSL, on the other hand, we define our own language. This means that we

rewrite all the rules for the language, valid syntax, etc.

60

When we design an external DSL, we still de facto design a brand-new

language, and we can define for it all the rules and syntax we desire. The

steps we must take to implement an external DSL are the following:

• We must “read” in memory for all sources with the

program.

• We must “read” in memory for the grammar.

• We must “translate” the source with the grammar.

Implementing the three preceding steps is at the core of realizing a

good external DSL, but, first, we will have to define some key concepts

related to external DSLs.

 Grammar and Syntax
For an external DSL, the first decision we must make concerns the

grammar. With the grammar, we start to define the set of rules that we

must respect for our own language. As with any other grammar, for

example, English, we define some rules to “talk” with our external DSL.

When we define the grammar, we must define the rules for the syntax

we want our software to allow. This means, for example, defining the

character for the newline, or how we can define a function or perform an

operation.

The syntax is derived directly from the grammar. With the grammar, we

define the rules, and the syntax is what we have after we’ve implemented

these rules.

For defining our grammar in programming, we normally use a

notation called Backus-Naur Form, or BNF. A BNF, in computer science,

is a notation technique for defining language in a context-free grammar.

Chapter 4 external DSl

61

A BNF is used to define the syntax of the language. For example, we can

define an address to which to send mail, in the following way:

<postal-address> ::= <name-part> <street-address> <zip-part>

 <name-part> ::= <personal-part> <last-name> <EOL>

 | <personal-part> <name-part>

 <personal-part> ::= <initial> "." | <first-name>

 <street-address> ::= <house-num> <street-name> <EOL>

 <zip-part> ::= <ZIP-code> <EOL>

If we want to write a BNF notation, we can use a definition like this:

<symbol> ::= _expression_

where <symbol> is a nonterminal value, and _expression_ is a

sequence of one or more <symbol>s. If we have to define a choice of

expression, we use the sign | in this case, meaning OR. The symbol

::= means all the values to the left should be replaced with the value

to the right.

Note By a nonterminal symbol, we indicate that every symbol
can be replaced. a context-free grammar assumes that a set of the
symbol can be replaced, following the rules of the normal symbol. By
“normal symbol,” we mean all the nonterminal terms. In this case,
we wish to translate the symbol into a normal language that can be
read by a human. For example, if the code is created for a postal
address, the normal symbol is all symbols in quotes. the grammar
defines all the rules for changing the symbols, with the final value of
the language.

Chapter 4 external DSl

62

If, for example, we want to define a BNF for describing a CodeCommit,

we can write something like this:

<code> ::= <language> <version> <classes> <line end>

<language> ::= "Java" | "C#"| "Ruby"

<version> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

"8" | "9"

<classes> ::= <character>

<character> ::= "A" | "a" | "B" | "b" | "C" | "c" | "D" | "d" |

"E" | "e" | "F" | "f" | "G" | "g" | "H" | "h" | "I" | "i" | "J"

| "j" | "K" | "k" | "L" | "l" | "M" | "m" | "N" | "n" | "O" |

"o" | "P" | "p" | "Q" | "q" | "R" | "r" | "S" | "s" | "T" | "t"

| "U" | "u" | "V" | "v" | "W" | "w" | "X" | "x" | "Y" | "y" |

"Z" | "z"

<line end> ::= "\n"

Using the BNF notation, we can write something like this:

"Java" "1" "Test"

 Creating an External DSL
With a BNF, we can easily define our grammar, but this is not enough to

create an external DSL. An external DSL requires some specific steps and

components to be effective.

The BNF is used to define the grammar and write down all syntax we

can use for defining our program, but we need something to translate this

syntax into instructions. For doing that, we must create some layers for

processing our file in an efficient way.

First, we must define a layer for a syntactic analysis. This translates our

text and breaks down in an in-memory structure. The syntactic analysis

parses the file and uses the BNF to identify every line. What is normally

done is to parse the file and identify the end of the line. The first layer

Chapter 4 external DSl

63

is responsible for creating in memory all lines required to process the

execution of the program.

The first pattern we can apply to the syntactic analysis is called

delimiter-direct transaction. Using this pattern, we split the input into

chunks, usually lines, and then parse the line. The delimiter-direct

transaction reads every line of the input, which can be a stream or a file in

which we have defined our external DSL. Breaking this down into small

chunks with the delimiter, normally, at the end of the line, or another

specific character, then creates a semantic model of the DSL.

Imagine, for example, that we want to describe some action for

building a continuous integration system. The code can be like this:

event code-commit example.cs

event code-compile start

event code-compile end

command build code

In this case, the parser must recognize the end of the file, to identify

every single event we want to process. The parser uses the newline to

identify every line. This is common to many languages and is easy for a

developer to implement.

When we split the input into chunks, we have in memory every line,

with enough information to define the functionality of our DSLs. For

example, in the line event code-commit example.cs, we have a set of

information for executing an action.

The next step for parsing our DSL is to split the line in a single

command and execute it. For doing that we use a pattern called syntax-

direct translation. What this pattern does is apply the rules of the grammar

and create a syntax tree. In our case, we have created a BNF, and it is now

the moment to apply the rules of the BNF for validating our input and

recognize the different parts of the DSL. The syntax-direct translation

doesn’t define the parser but only how to apply the rules for the BNF. So,

how we can translate the syntax in a parser? We can use another pattern

Chapter 4 external DSl

64

called recursive descent parser. In the example of the postal address

grammar, imagine that we want to parse this line: <language> ::= "Java"

| "C#" | "Ruby". With this pattern, we create a top-down parser to

translate the input syntax. So, imagine that we want to write a meta code

for that. We can write something like the following:

boolean Language()

 if(Java())

 then true

 else if (CSharp())

 then true

 else if(Ruby())

 then true

 else

 false

Essentially, we create a recursive function for recognizing the

nonterminal values of the syntax. Sometimes, this is enough for parsing a

DSL, but if we want something more complex, we can use another pattern

called parser generator. This pattern builds a parser driven by the grammar

file defined for our DSL. This is the most complex but, at the same time,

more satisfactory task when we build our DSL. Fortunately, now we have

a large part of the library and software to perform this task for us, for

example, ANTLR (ANother Tool for Language Recognition). With ANTLR,

we can easily “design” our language graphically. The software generates the

grammar for us, and what we must do after is only to parse the grammar.

Unfortunately, not all libraries are available for our language. In Scala,

for example, we have an ANTLR port, but it does not have full functionality.

In this case, we can use a recursive descent parser to generate our parser,

without using a parser generator.

All the preceding patterns covered are used to produce the output of

the DSL. We can now learn some patterns for producing the output. These

patterns will help us to identify the correct strategy for the generation of

our DSL.

Chapter 4 external DSl

65

 Producing the Output
Until now, we created the parser and the parsing used for the syntax

generating the DSLs, but what we can do with the result of the parser?

The result of the parser is the basis for the next step in the process. In

reality, we introduce a solution when we mention the semantic model.

With the sematic model, we translate the input, file, or stream, and we can

use this as input for code generation.

For generating a semantic model when we parse the document, it is

possible to take two different approaches to the problem.

• A single-step approach: This means that we parse and

directly generate the semantic model.

• A two-step approach: First, we parse the input. We then

create a tree and, after parsing the tree, produce the

semantic model.

If we want to use the single-step approach, we can use a pattern called

embedded translation. Using embedded translation, we create the code

directly, starting from the parser. In one call, we gradually create the

semantic model, parsing every single line of the input.

We can use this approach, because the embedded translation provides

a simple way of handling the syntax analysis and the model population.

The big problem with the embedded translation, however, is that using

the embedded translation can create a complex grammar file, because we

use only one command to translate, without using a tree to parse the file.

On the one hand, we might think that this is a good thing, but that is not

really true. The first problem involves the maintenance of the grammar. If

we have a very complex grammar, it can be difficult to maintain, especially

if we want to expand our DSL.

Another issue is related to the variable we need to memorize all the

information. Because we use a single step for parsing the grammar, we

must create some context variable to manage that, and this can complicate

Chapter 4 external DSl

66

the parsing. Having only one step for parsing all the grammar complicates

the code that we need to generate. This is because the code needs to have

in memory all the variables required for the parsing. Taking care with the

parsing and being mindful of the three guidelines for creating the parser

reduces the flexibility of the code. If we want to change something, we

must review the entire code.

The other approach we can take is two-step parsing. In this case, we

use a pattern called tree construction. By this approach, the parser first

parses the input and produces a syntax tree. After, we parse the syntax tree

and populate the semantic model.

When we create a syntax tree, we create a simple tree we can

manipulate and traverse after creating the semantic model. This approach

is simpler than the single step. This is because we don’t use one single

action to create the semantic model. Using a tree gives the developer the

possibility to read the tree in a second pass and optimize the code for

parsing.

Using two simple steps is better, because we can create a better test

plan and, with that, a better check of the results of our parser.

In addition to that, creating two simple steps instead of one bigger one

can allow for better management by the developer, and this can help to

reduce time and errors.

 What Is a Parser?
To translate an external DSL, we need to write a parser into the code, but

what does this mean? What is a parser? By the term parser, we define a

piece of software used to translate input into executable code.

When we create our parser, we essentially translate the input in two

different stages:

• Identify the lexing

• Apply the grammar

Chapter 4 external DSl

67

The parser first needs to identify the lexical structure of the line we

have to parse. After that, we must apply the rules of the grammar defined

for the DSLs and, with the grammar, create our output.

To separate the lexing, we use the pattern syntax-delimiter translation.

With this pattern, we essentially identify every single word from our syntax.

For example, in the preceding code, we have something like this:

["event" , "code-commit" , "example.cs"]

Essentially, we create some tokens with the words of the input files,

meaning that we isolate the lexer. A lexer is essentially software for

performing the lexical analysis, used to create a token starting from a

string. A token is essentially a part of a string or letter. When we have spilt

our string, the pattern we can use to isolate the lexer is called regex table

lexer. As the name suggests, we create a lexical analyzer, using a list of

regular expressions. In this way, we can easily split the string and identify

the single word of the input.

When we have identified every single word, we can begin to create the

tree and apply the rules of the grammar for the language.

The next steps are checked, if the line respects the grammar of our

DSL. A regular grammar is important to us, because it defines the rules for

translation. If we define a good grammar, we can easily use a finite state

machine to parse the grammar.

It is possible to use a finite state machine, because, essentially, with a

good grammar, we can identify what is the next state of the machine, based

on the actual word. Parsing is the basis of an external DSL. A good parser

allows you to have a high level of maintainability of the software. Imagine,

for example, we want to parse this state:

event code-commit example.cs

event code-compile start

event code-compile end

command build code

Chapter 4 external DSl

68

The basic function for the parser can be something like this:

def event : Parser[Any] = """CODE-"""".r

def commit : Parser[Any] = "COMMIT"~string

def compile : Parser[Any] = "COMPILE"~string

This function is essentially the base for defining a parser in Scala.

The state machine is essentially a set of functions called when we must

translate the code.

For context-free grammar, such as that of our DSL, the best approach

to translate and create the state machine is to implement a push-down

machine. For creating this kind of state machine, we essentially create a

simple state machine with an internal stack. In Chapter 6, you will see how

to create a complete parser.

 What Style of DSL to Use
Until now, we’ve seen two styles of DSLs. I highlighted how to create one

style or the other, but the most important decision we must make when we

implement a DSL is what kind of DSL to choose.

The difficult part in making the choice is inadequate information.

More projects start without the correct level of information, and this can

create problems when you need to think about what style of DSLs you

must choose.

Another factor that must be considered when we make the choice

is the skill of the team. If the team is not skilled at working with DSLs,

what we must consider in this case is the learning curve. At first glance,

an internal DSL is simpler to learn compared to an external DSL This is

because for writing an internal DSL, we don’t require a grammar, but only

to define a set of API for solving the business problem.

Chapter 4 external DSl

69

On the other hand, for creating an external DSL, we have to implement

all parsers for processing the input and creating the output. Of course, the

power of a parser is not comparable to that of an internal DSL, but at the

same time, the cost is completely different.

The best approach is to use one step or two. if we work in an Agile

environment, explore the difference between the two approaches and

figure out what the best one is for you. This can drive the decision and, for

example, show what is the best for your work. Keep in mind that one style

doesn’t exclude another. You can always mix the two styles to solve the

problem. The only limit is your knowledge of the different styles.

 Conclusion
With this chapter, I have concluded my discussion of the theory informing

DSLs. It was intentionally short, as I didn’t want to overwhelm (or annoy)

the reader with more theory. Starting with the next chapter, you will see

how to make DSLs in practice. We will create some different projects and

use these to learn how to create and use DSLs more effectively.

External DSLs are the most complex type of DSLs. To create an external

DSL, we must implement our own grammar. This means that we must

define every single part of the language. After that, we have to create the

parser to translate our grammar into an executable software for solving our

problem.

External DSLs are the most powerful of the two types of DSLs. This

is because they are not restricted by the limitations of the GPL language

but can have their own grammar and rules for the syntax defined by the

developer.

Chapter 4 external DSl

71© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_5

CHAPTER 5

Web API and μService
To this point, I have presented the theory behind DSLs. In this chapter, I

discuss real use cases for DSLs, starting with the realization of some web

APIs and microservices.

A microservice (μservice) is the new paradigm used in web/cloud

development. The reason for this lies in the nature of the microservice

itself. In this chapter, I will show you how to create a microservice with

Scala, using DSLs. At the same time, you will learn about microservices

and how to develop and use them in Scala.

 What Is a μService
The first iteration of a service architecture was service-oriented

architecture (SOA). When an architect designs an SOA, he or she

essentially thinks of the software as a service, from which every small part

will be combined to build a bigger service.

When a service in an SOA is defined, normally the architect

determines the level of granularity of the service. This means how big and

how detailed the information granted by the service is. The granularity

of a service in an SOA) defines how many entities it involves to return

the desired information. To better explain this concept, see the following

graph (Figure 5-1).

72

We can see that to maintain a balance, we must call different entities.

The number of entities we call defines the kind of granularity the service

has. Having a small service means having to compose more of that service

to obtain the necessary information, and this is not always ideal. We create

a lot of call in the back end to receive the information we need. On the other

hand, having different services helps when we have to upgrade or change

one of the services. If we don’t change the interface, the other services

basically don’t care about the internal implementation of the service.

When we define a microservice, we still define a service that is loosely

coupled. This means that the service has less interdependency, less

information flow, and less coordination.

Figure 5-1. Dissection of a service

Chapter 5 WeB apI aND μSerVICe

73

Defining a loosely coupled service system has some advantages over a

system with high dependencies. First, the service has a limited knowledge

of the data and low interdependency. This means that every service can be

developed and used without having a big knowledge of the other service,

that is, only a basic knowledge of the interface of the service we need to

use. Having a loose coupling means the other service can change internally

but doesn’t affect our software.

A microservice is essentially just an evolution of the SOA). To design a

microservice, essentially we design a service that is locally coupled. This

means that we try to reduce the external dependencies on the system

to improve the maintenance of the system, in case of failure. With a

microservice, the system has hundreds of small services working together

to solve a problem.

A microservice is a fine-grained service. Every service specializes

in one specific aspect of the business, as the nature of the service

microservice is best for designing large systems. The reason is the nature

of the service itself: a microservice is intended to be small. We can think of

it like a piece of Lego. Every service is a piece, and together they build a big

architecture.

When we create a microservice, we must design it with three pillars in

mind.

• Communication

• The team

• Innovation

When we design a microservice architecture, it can be represented

graphically like in Figure 5-2.

Chapter 5 WeB apI aND μSerVICe

74

Essentially, when we design the service, we define every single server.

Every server is isolated and can be connected to a table or another service.

The service is isolated, like a mini application. Now we can see how to use

HTTP to establish a connection between the service and the external word.

Figure 5-2. Representation of a microservice

Chapter 5 WeB apI aND μSerVICe

75

 Communication
When we design a microservice, we must make sure to have in place the

correct communication practice—with the team and with other teams—

because a microservice is a highly specialized service. We must be sure to

have the correct communication across the team.

One of the most important principles for ensuring efficient

communication is called Conway’s Law. This study was presented for

the first time in an article by Mel Conway, entitled “How Do Committees

Invent?” in the Harvard Business Review in 1967. The most important

takeaway from that study is the following:

Any organization that designs a system will produce a design
whose structure is a copy of the organization’s communica-
tion structure.

Reading this simple sentence, we can understand how communication

is important for design of a quality microservice. If we don’t have good

communication across the company, it is impossible to design a good

service. It is equally true that bad communication means bad information

sharing and, of course, a bad understanding of requirements.

If in practice we have bad communication, we might have some hidden

dependency. This is because during meetings to discuss the service, other

departments within a company can’t reliably explain what they really need

from the service. This can raise unexpected responses when we start to test

the service, which, in turn, can translate into more time spent debugging

and fixing the issue and, potentially, failure of the project.

Chapter 5 WeB apI aND μSerVICe

76

We can take the following steps to improve communication:

• We must understand that it is normal to have

separation across the teams. We don’t have to fight with

that, but we must spend some time working together.

We must understand the natural difference and leave it

at that, but at the same time, we must have a common

way of communicating and resolving an issue. For

example, when we design the software, we must

discuss with the people responsible for maintaining

the software in production what they require to solve

problems efficiently.

• Use some communication tools to help improve the

way we communicate with each other. For example,

use tools like Slash or Skype to create virtual meetings,

when is necessary. These tools reduce barriers and

improve communication.

• Change the decision-making process. When we design

and make a decision about the software, we must

involve all company departments. This means that we

must take a global decision and change what we think

we know about the business. All company departments

must have in mind the same idea about the business

and what the final goal is.

Implementing the correct communication is one of the pillars of

designing a good microservice.

Chapter 5 WeB apI aND μSerVICe

77

 The Team
The team is the second pillar for designing a good microservice. If we have

a big team, for example, 20 or 30 people, it can be difficult to manage and

ensure good communication in situ. On the other hand, we can really

implement a system with only five or ten people.

The best solution, in the latter case, is to use Agile. Every team works

with a specific microservice and, after that, uses a communication tool

to share the knowledge. Having a small team work together to share

information can yield faster releases and better communication across

the team. In addition to that, work can be managed better, because we can

understand daily how the team is doing.

 Innovation
The most important reason for having good communication and a good

team structure is innovation. A microservice is very good for improving

a company’s innovation because the nature of a microservice allows a

business to have faster improvement and to reach its goals more quickly.

But how do teams and communication help? The answer is simple.

Imagine that the business has a new idea, born of a new necessity

resulting, in turn, from a new user requirement. If we have good

communication procedures, we can easily design a new service, based on

the new market requirements.

Once the proper communication is in place, and the design is

complete, it is important to have an agile team that can implement the new

microservice. With a small team, it is easier to distribute work and check

improvements daily.

At the same time, innovation drives knowledge sharing. If a company

has made innovations, usually the developer and every person involved

must increase their knowledge about the service. This is positive for the

company, because it improves the value of the company itself.

Chapter 5 WeB apI aND μSerVICe

78

 When to Use Microservices
The most important decision we must make regarding a microservice is

when to use it. Microservices, usually the are particularly useful when

we have to design large systems. This is because we can distribute work

more efficiently while at the same time improving the different areas

of the software. This reduces the time it takes to release the software to

production.

Microservices are inherently goal-oriented. This means that when we

create a microservice, we are thinking about solving a specific problem.

Every service usually solves a specific problem, and these solutions can be

combined to solve bigger ones.

One idea behind a microservice is its replaceability. Because a

microservice is a very small service, if we have to improve or add some

feature to it, it is best to replace the entire service rather than maintain or

improve the existing one.

Microservices have some unique features that can help businesses to

make better decisions.

• Microservices are small in size.

• Microservices work with messages.

• Every microservice is specific for a domain context.

• Every microservice develops work independently.

• Microservices can be deployed automatically and

released.

Now, we can see that microservices implement some big things. To

some architects, a microservice is simply a utopia, allowing many practices

to be implemented at the same time. In actuality, if we see that these

practices are what DevOps solve, a company will adopt the DevOps to

more easily implement the microservice.

Chapter 5 WeB apI aND μSerVICe

79

Another big advantage of adopting a microservice is the scalability of

the system. This means that the system can grow without issue. What we

require, in this case, is only to build more microservices. This characteristic

of microservices makes this kind of architecture ideal when we consider

large companies or any company that wants to stay aligned with the market.

 REST Architecture
Microservices use REST (representational state transfer) architecture to

allow communication with other services. This means that REST is the

basis for designing and implementing a good microservice architecture.

This is because the client doesn’t have to know anything about the

structure of the API, only how to communicate with it.

When we create a REST architecture, we think in terms of a “resource.”

This means that we don’t have to think only of how to use the server and

how to respond to the service. We don’t really care about how the API is

building and what the structure is. We just think about how to call the API.

When we use a REST API, we use four HTTP methods: GET, PUT, POST,

and DELETE. Every REST API uses these methods to activate the API on the

server. The client makes a call for this HTTP method and sends it back as an

HTTP status code. A microservice is normally built to be smaller, meaning

that when we build, we design with the idea of composition and reusability

in mind. Because the architecture promotes the use of a small service, a

microservice is normally used with REST. This is the opposite of a SOAP

(Simple Object Access Protocol) service. When we have an XML- based

service, a major difference, in particular, is related to the user of the service.

With a microservice, the end point is more simple to read and call. The other

big difference is that building REST architecture requires fewer technology

resources. Usually, when we use a SOAP, we must have a service discovery

service, used to get the end point. After, we must translate the WSDL (Web

Services Description Language) to an interface, and with the interface, the

method for reading the data.

Chapter 5 WeB apI aND μSerVICe

80

The REST API normally uses JSON (JavaScript Object Notation) for

communicating. Of course, some services use XML, but in general, the

system technology is associated with JSON. When using a REST service, we

call the API, using a JSON structure, and process the response. For example,

if we must get information about a user, we use the HTTP method GET to

ask for the resource information and get back the result. If, for example, we

wanted to interrogate a service using CURL, we would write the following:

CURL -X GET http://myservice/user/1

You can see that we use an HTTP method for calling the site. The

response from the API will be something like this:

{

"id":1

"name":"Pierluigi"

"surname":"Riti"

}

This is a simple JSON structure and is the only response the REST

API sends to the client. We can see that the JSON is a simple text file,

in a structure that is readable by humans. The REST architecture is the

backbone of microservices architecture.

When we talk about a REST architecture, we are referring to an

architecture with some properties. The features can be summarized as

follows:

• Performance: We design the architecture to be faster

and easier to connect to. Because we use the status of

the HTTP, we can immediately understand the status of

the response, rather than parsing a WSDL.

• Scalability: Because the service is designed to be small,

we can afford the horizontal or vertical scalability,

which adds more to the server and deploys the service

in the server.

Chapter 5 WeB apI aND μSerVICe

81

• Simplicity of maintenance: Most REST web services

are generally deployed in the cloud. This means that in

the event of a problem, it is easy to replace the broken

microservice. In the meantime, because the area of the

microservice is really restricted, it is easy to isolate and

fix the broken code.

• Portability: Because a microservice is designed to be

small and usually is deployed in the cloud, data is

detached from the service. This means that we can

easily deploy the service in another server without

losing data.

REST web services are born to be independent of one another. When

we contemplate and design the service, we consider the service itself.

We define one or more actions to communicate with the service, and

we expose some end point. This kind of design allows the developer

to use the web service without really having to know the details of its

implementation. In this way, it is easy to build and reuse the web service in

different contexts.

REST architecture is designed with some constraints in mind.

• Separation of concerns: When we define a microservice

architecture, we must still define a client-server

architecture. We must have a clear separation of

responsibility between every single piece of the

application.

• Must be cache-free: A microservice is normally built

into a web server. This means that the information

can be cached for use the next time, but when we use

the microservice, we must be sure to remove the last

information from the server.

Chapter 5 WeB apI aND μSerVICe

82

• Must be stateless: When we design a microservice, we

must be sure that it is stateless. This means that we

don’t memorize the state of the service. Every time we

call, we have a new state for the service.

• The service must be reach by a uniform interface: The

microservice is based on the Web using URIs (Uniform

Resource Identifiers). To identify the service, for

example, when we create a resource for an end point,

we use something such as the following: <server>/

user/1. This opens another point of our architecture.

• The resource should be indicated in the request: For

example, when we ask for /user, we identify what

resource we must use and what resource we want to

manipulate.

• The microservice must use the Hypermedia as the Engine

of Application State (HATEOAS): This constriction is

specific to REST architecture. It means that the client

can interact with the server only via hypermedia. The

client doesn’t have to know anything about the server.

Unlike other server applications, such as SOA) or

CORBA (Common Object Request Broker), in which

the client must know what protocol to use to talk with

the server and what kind of information is required to

send for initiating the communication, in REST, only

the information matters to the client. The client sends a

request via hypermedia and asks for the typical kind of

result for a response. This is done by using the content-

type specification in the request.

Using this constriction helps to design a good microservice. If we want

to identify a philosophy behind the microservice, we can consider the Unix

philosophy: “Write programs that do one thing and do it well.”

Chapter 5 WeB apI aND μSerVICe

83

 Designing Microservices in Scala
To this point, I have presented some basic theory behind microservices,

but the goal of the book is how to write DSLs using Scala. So, it is now

time to dirty our hands with some code. Our guiding principal is that the

microservice must allow for better transparency and communication.

DSLs help the consumer of the microservice to enhance communication.

How we teach the DSL is not only a technique for writing code but one

for writing code that can be read like plain English. The DSLs are used to

define the resource of the microservice, in particular, the principle behind

the DSLs, and, internally, to write code that reads like plain English.

Scala has a fantastic framework for writing web applications. I’m

referring to Play. Play is an MVC framework and can be used in Java or

Scala, so the first step we must take is to install Play on our machine.

 Installing the Play Framework
For installing the Play framework, we first must download it. To download

the software, go to the following web address: www.playframework.com/

download.

The best point from which to start to use Play is to download a “Starter

Project.” Download the zip file of the Scala project (Figure 5-3).

Unzip the file and open the folder. The structure should be something

like Figure 5-4.

Figure 5-3. Selecting a Starter Project from Play

Chapter 5 WeB apI aND μSerVICe

http://www.playframework.com/download
http://www.playframework.com/download

84

To start a new Play project, we can execute the following simple

command, if we are in a Linux environment:

./sbt run

If we are using Windows, the command is

sbt.bat run

The command starts the sbt build, and this downloads all the

necessary files for executing the Play project.

Note SBt (Simple Build tool) is an open source software similar
to Maven for building projects in Scala and Java. SBt is widely used
in Scala and offers native support to build Scala code. this makes
it the preferred choice when it comes to building our Scala project.
the build descriptor is written in Scala using a specific DSL. another
important feature is the full integration with the Scala interpreter for
faster debugging.

Figure 5-4. The Play template structure

Chapter 5 WeB apI aND μSerVICe

85

When sbt has finished to build the Scala project, we can see that the

server is up and running.

[info] Done updating.

--- (Running the application, auto-reloading is enabled) ---

[info] p.c.s.NettyServer - Listening for HTTP on

/0:0:0:0:0:0:0:0:9000

(Server started, use Ctrl+D to stop and go back to the console...)

To see the Play, open the browser and call the web address http://

localhost:9000. Figure 5-6 shows the Play site.

Figure 5-5. The Play server up and running

Figure 5-6. The Play site up and running

Chapter 5 WeB apI aND μSerVICe

86

You can see that Play is now up and running. The next step is to create

our own site for the web app and microservice. This operation is really

simple and requires only a couple of commands.

First, we must create the folder from which we want to run our project.

media practicalscala_dsl

cd practicalscala_dsl

When the folder is created, we can copy into our new folder the code

present in the Play folder we downloaded previously. We can run the

application using the following command:

sbt run

This runs our site, and we can see if all is working.

 Designing the REST Microservice
The first step is to implement the REST microservice and, of course, the

web API, to design the response for every HTTP method. This helps to

define the resource of the microservice and how to communicate with it.

At the same time, we create a common dictionary. That common

dictionary can be used as well, not only for defining the resource, but, at

the same time, to establish the common language from the developer and

the business.

So, let’s start to define some resources for the project. In this case,

we want to define a site for managing the continuous integration of the

system, so we have some basic resources to define (see Table 5-1).

Table 5-1. A Simple Resource Table That Can Be Used to Indicate

the Resources in the System

Resource HTTP Method Response

\Language Get List of all languages

Chapter 5 WeB apI aND μSerVICe

87

With Scala and Play, it’s very easy to implement these resources, so the

first step is to open your preferred Scala editor and create our Play project.

 Creating a Microservice in Play
Creating a microservice is essentially building a web API with fine granularity.

This can be done easily with Play. In the conf folder, there is a file called

routes. This file is responsible for identifying the resource in the application.

Routes

This file defines all application routes (Higher priority

routes first)

~~~~

An example controller showing a sample home page

GET /

controllers.HomeController.index

An example controller showing how to use dependency injection

GET /count

controllers.CountController.count

An example controller showing how to write asynchronous code

GET /message

controllers.AsyncController.message

Map static resources from the /public folder to the /assets

URL path

GET /assets/*file

controllers.Assets.versioned(path="/public", file: Asset)

You can see that we define all resources with the HTTP method and

the controller method for a response to the call.

Chapter 5 WeB apI aND μSerVICe

88

For creating our system, we have only to add the resource on the

routes files and then the method on the controller class. What we

want to do is use the DSLs to create our microservice. This means that

we must start from the resource. The name of the resource should be

understandable by the domain experts. What we must do is write all the

code in a DSL way, so let’s start to write our first resource in as such. To

create a microservice in Play, we essentially must build a controller to

respond to the end point we have defined in the routes.

Every controller must reply to a specific end point, because the

microservice is developed to be independent, but we can have a “service”

use more than one controller to build the new end point. Imagine, for

example, that we want to create a billing service. We can define the end

point for the user, to create, update, and delete the user.

Another microservice can create a new order for the user. The

microservice can create an order and use the microservice user to

compose a call. All that this microservice has indicated in the route file and

defined is moved to the controller part. Now, we can see that the route files

have an API defined in three parts:

• The HTTP action: GET, POST, etc., is all GET in our case.

• The path of the end point: For example, /count or /

message

• The controller for responding to the endpoint: For

example, controllers.Assets.versioned(path="/

public", file: Asset)

The controller is the central point for managing our end point, as it is

the central core of the microservice. We see now how we can develop our

microservice, using a real sample scenario.

Chapter 5 WeB apI aND μSerVICe

89

 Our Own DSL Microservice
The first step in creating our own microservice is to insert resources into

the routes file. To do this, we add the resource name in the file. Suppose,

for example, that we want to work with the language GET HTTP method.

The first step is to add the route, as follows:

GET /Language

controllers.LanguageController.language

This line defines the HTTP method GET and the action to resolve the

method. So, to run the software, we must define the controller to initiate

the action.

We have defined a new controller called LanguageController, which

has the following code:

package controllers

import javax.inject.Inject

import play.api.mvc.{Action, Controller}

/**

* Created by User on 29/05/2017.

*/

class LanguageController @Inject() extends Controller{

 def language = Action{

 Ok(views.html.language("language."))

 }

}

This simple method responds to the GET HTTP method and returns a

page. The last step, then, is to define the page that shows the result.

Chapter 5 WeB apI aND μSerVICe

90

In Play, we can create a template to define the page. A template is

defined using Scala and HTML. The controller sends the value that should

be rendered in the page. For our simple page, the template looks like this:

@(message: String)

@main("Language Render") {

<h1>@message</h1>

}

We can run our application and navigate to the language to see the

result (Figure 5-7).

We will now define all our MVC (model–view–controller) routes, from

start to finish. This is a simple page, so we want to use the DSL. Normally,

the controller is not so simple, so we prefer to use DSLs to design the

business logic and the controller only to send data that is to be rendered.

So, the business logic for this specific function is easy. We must read a

configuration file and show in a table all language: active and inactive. The

structure of the file is very simple. We can define it like this:

language.list = "Scala,Java,C"

language.status = "active,active,inactive"

We create a file called language.conf, in the conf folder with the

language configuration. What we want now is to read the file and use it in

our controller.

Figure 5-7. The language page

Chapter 5 WeB apI aND μSerVICe

91

We can use the DSL to create a text parser to read the file and form a

memory structure. We can use this structure to respond to the controller

and then design the page. The code for the class follows:

package utils

import com.typesafe.config.ConfigFactory

final class ConfigurationReader {

 //Create the global variable for use in the parser,

this is essentially the use for define global variable

 private var language_list = Map[String,String]()

 private var language_status = Map[String,String]()

 var result = Map[String,String]()

 //this method read the file and get the language, we

can see how we create the map language and status

 def language() = {

 val language = ConfigFactory.load("language.

conf").getString("language.list").split(",")

 val status = ConfigFactory.load("language.

conf").getString("language.status").split(",")

 for(i <- 0 to (language.length - 1)){

 this.language_list += (language(i) ->

status(i))

 }

 this

 }

 //this method is used for read the status of the file

 def status(status:String) = {

 if (status == "all"){

 for((_key,_value) <- this.language_

list) {

Chapter 5 WeB apI aND μSerVICe

www.allitebooks.com

http://www.allitebooks.org

92

 this.language_status += (_key

-> _value)

 }

 else{

 for((_key,_value) <- this.language_

list) {

 if (_value.

equalsIgnoreCase(status)) this.

language_status +=

(_key -> _value)

 }

 }

 this

 }

 //create a filter based on the status of the language,

if there is no filter the function send out all active

 def filter():Map[String, String] = {

 this.language_status

 }

}

This code creates method chaining using Scala. For method chaining

pattern in Scala, we need only use the word this at the end of the method.

The word this tells Scala to return the method itself, essentially, every

time we return the value of the method. By doing this, we can concatenate

the method and create a method chain. We use the global variable

technique to allow the code to work with the same variable. Basically,

we just define a global private variable and define the value inside the

method. In this way, the object is always filled with the previous value. The

object is incrementally processed, passing from method to method.

Chapter 5 WeB apI aND μSerVICe

93

To use the method, we must change the default controller that we created

to design the language view. The code for the controller is the following:

package controllers

import javax.inject.Inject

import play.api.mvc.{Action, Controller}

import utils._

import play.api.libs.json.Json

import play.api.libs.json._

class LanguageController @Inject() extends Controller{

 def language = Action{

 val configurationReader=new ConfigurationReader()

 val filter_language = configurationReader

 .language()

 .status("active")

 .filter()

 Ok(views.html.language(filter_language.

toString()))

 }

}

The core of method chaining is this piece of code. This code is the part

of the controller used to define the language controller. Now, we can define

it in our end point. This controller is used to respond to the browser call:

http://localhost:9000/Language. The DSL part is the “chain” we create

to read the result.

val configurationReader=new ConfigurationReader()

val filter_language = configurationReader

 .language()

 .status("active")

 .filter()

Chapter 5 WeB apI aND μSerVICe

94

This code shows how to call the method in the controller, using

method chaining. We can see that filtering the status of the response

sets a value on the function status. In our case, we want only the active

languages. If we now run Play, we can see the view with the filtered

languages (Figure 5-8).

We can see the method return a list of all languages filtered by the

active status. This is exactly what we asked of our code.

We can see that it is simple to create a DSL code. In our case, we used

an internal DSL pattern to compose our code. The advantage of using a

DSL is related to the improvement in the communication we can have with

the domain expert. Method chaining allowed the user to read the call for

filtering the language like plain English.

Microservice uses JSON, so we must change how the controller works

with a JSON response. We can instruct the controller to do that.

def language = Action{

 val configurationReader=new ConfigurationReader()

 val filter_language = configurationReader

 .language()

 .status("active")

 .filter()

 Ok(Json.toJson(filter_language))

}

Figure 5-8. List of filtered languages

Chapter 5 WeB apI aND μSerVICe

95

We change the response and remove the view. We use the JSON Play

library to return the response in JSON. Now, if we run the code, we can see

the new response on the page (Figure 5-9).

We’ve now seen how to create a simple microservice and how we can

view that service’s reply in JSON. In our case, we have applied a filter to the

microservice. If, for example, we were to ask for all languages, all languages

would appear in the list. Starting from that we can format the response, but

that is not within the purview of this book. The response can be read by

mobile phone or any UI software.

Now, we can start to design our controller to use the DSL technique.

Of course, the data source can be a database, for example. The scope of

this chapter has been to show how we can use DSLs to write our controller,

and how this can help us to instruct the controller output to read like

plain English. This improves productivity and, of course, clarifies what the

controller does.

 Conclusion
We just created our first simple microservice. Essentially, we built a simple

service, and we initiated a JSON response to our web service. We used

simple method chaining to filter results.

Figure 5-9. The JSON response from the microservice

Chapter 5 WeB apI aND μSerVICe

96

This microservice is just a basic example of what we can do with Play,

using only a few DSLs. Analyzing the code, we can see external DSLs. This

is particularly so, because we use a configuration file to define the list of

languages that we must process.

We saw how simple it is to create a DSL using the normal development

process. Basically, we didn’t have to consider using great complexity but

only the host language, for building the most simple functionality required

for the DSL. Creating a DSL should not be daunting. DSLs allow us to focus

on business and communication, so simple functionality can help us to

solve domain problems.

In the following chapters, we will increase the complexity of our

DSL. This means that we will begin to use more complex patterns and

design more complex functionality.

Chapter 5 WeB apI aND μSerVICe

97© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_6

CHAPTER 6

User Recognition
System
A common problem in building IT systems is recognizing the user and

assigning to him or her the correct role. Every system has this kind of

functionality, and, usually, we use a database to store the data connected

to the user.

What we normally do is connect to a database, execute some query,

and, with the result of the query, create a parser for understanding the role

of the user.

What we want to do in this chapter is create a free grammar parser

for establishing our own rules for recognizing the user. This requires that

we define our set of rules and apply these to the result of the data we’ve

gathered. This parse can be easily applied to any source, meaning that we

can detach the user from a database and use a JSON or XML file for storing

the user’s data.

We use the Scala Parser Library to create this parser. This library is

perfect for a domain specific language, so the best way to master it is to

review the basics of parsers and begin to write some code.

98

 Grammar
First, to work with the Scala Parser Library, it is useful to review the basic

concepts of the grammar and the theory behind a formal language.

A grammar is a set of rules following a specific format that are used to

define a string.

A grammar consists, for example, of the rules followed to write a

sentence in plain English. A grammar can also be followed to write a

mathematical expression, thus ensuring that the operation is executed

properly and yields the desired result. Imagine, for example, that we want

to define the grammar for a basic operation. We can write some rules for

this, such as the following:

• Each number is an arithmetical expression.

• The basic operators we have are addition (+),

subtraction (-), division (/).

• If the left and the right operators are both arithmetical

expressions, we can have an operator in the middle,

and this creates a new arithmetical expression.

To write the grammar, we can use the BNF (Backus-Naus Form)

notation, and in this case, if we want to create a simple grammar in BNF, it

would look like this:

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9"

numbers ::= digit | digit numbers

operator ::= "+" | "-" | "/"

expression ::= numbers | expression operator expression |

"(" expression ")"

Chapter 6 User reCognition system

99

Normally, to define a grammar, we use a refinement of BNF, called

EBNF (Extended Backus-Naus Form). With EBNF, we can define a better

compact syntax. This is the type of grammar defined in the preceding code

example.

It is also possible to use the operators ? (0 or 1), * (0 or more), and +

(1 or more). These operators are used in regular expressions. We can

redefine the grammar using these new operators.

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9"

numbers ::= digit | digit numbers

expression ::= term (("+" | "-") expression)

term ::= operation ("\" operation)*

operation ::= number | "(" expression ")"

With EBNF, we can write, for example, something like (3+5)*6. This

syntax is perfectly valid for our EBNF. With EBNF, we essentially define a

grammar to define our “sentence.” In our case, we define a new operation.

 Scala Parser Combinator Library
Scala has a very powerful library for creating a parser. This library defines

different kinds of parsers that we can use to write our own parser.

By “parser combinator,” we mean the ability of a language to combine

different parsers to create only one parser. By “parse,” we mean the ability

of the language to translate an input string into something different.

When we create a parser, we identify two primitives: the element and

the parser. Every parser must define more than one parser element for use

in “combination” for parsing the string.

Chapter 6 User reCognition system

100

Table 6-1 contains a list of the basic helper parsers we can find in Scala.

Table 6-1. Basic Scala Helper Parsers

Kind of Parser Operation

parser1 ~ parser2 sequencing: Using this helper tells the parser what should

be checked accordingly as well as parser2 and parser1 of

values in the input string. this means that when we use this

helper, the parser Combinator in scala creates a sequence of

objects created by the relevant part of the parser.

parser1 | parser2 alternation: this checks the presence of both values parser1

and parser2, with a preference value of parser1. this means

that if it finds the value of parser1, not to check the other

value. suppose we wrote something like this: 0 | 9. this

would mean that the parser should check the values 0 or 9

only. all other values should not be checked by the parser.

this can be assimilated to a logical operation OR.

parser1.? optional: Checks for parser1 or nothing.

parser1.* repetition: Checks for each occurrence of parser1. in case

there is more than one, parser1 returns the number of

occurrences.

… Literal: parses a literal expression.

r regular expression: Uses a regular expression to create the

parser. a regular expression is created, parsing every value

from [and inserted between the quotation marks.

parser1 <~ parser2,

parser1 ~> parser2

sequential composition: performs a sequential composition,

starting from right to left or from left to right. this means that

when we have the parser, we start from parser1 and move

to parser2. Both values are evaluated, and the result of both

parsers is what we have in response.

(continued)

Chapter 6 User reCognition system

101

Every parser returns a value of success, if the parsing operation

terminates properly, or of failure, if the operation terminates in an error.

It is possible to read this value from the object ParserResult. We can use

this object to know exactly what’s going wrong in our parser operation.

 A Simple Sample Parser
Until now, I have discussed only how to create a parser combinator. What

we want to do now is create a simple parser for executing some basic

mathematical operation.

The parsing library defines some basic operations that we can combine

to create a more complex operation. The basic operations that we can find

in the library are

• Matching token

• Choosing operator (|)

Table 6-1. (continued)

Kind of Parser Operation

opt

(parser1 | parser2)

optional: this creates an optional parser, meaning that we

can choose between two values. this is used when we make

a choice about the value of the input string.

rep (parser1) repetition: this creates a parser repetition, returning a list of

all occurrences detected.

repseq

(parser1, separator)

separated repetition: this is similar to a repetition parser, but

in this case, we identify the separator for the separation. For

example, we can use a comma “,” to indicate the value of

separation.

parser1 ^ ^ f Functional combinator: this creates a function with the

output value of the parser.

Chapter 6 User reCognition system

102

• Repeat an operation (rep)

• Optionality of an operation. We can apply an operation

from a choice (opt).

• Execute two operations in sequence (~).

What we do now is use the previous grammar to create a mini

mathematical parser. The code is

import scala.util.parsing.combinator._

class ExprParser extends RegexParsers {

 val digit = "[0-9]+".r

 def expression: Parser[Int] = term ~ opt(("+" | "-")

~ expression) ^^ {

 case t ~ None => t

 case t ~ Some("+" ~ e) => t + e

 case t ~ Some("-" ~ e) => t - e

 }

 def term: Parser[Int] = factor ~ rep("/" ~> factor) ^^ {

 case f ~ r => f / r.product

 }

 def factor: Parser[Int] = digit ^^ { _.toInt } |

"(" ~> expression <~ ")"

}

We can see that the code creates a class that extends the sub-trait

RegexParsers of the trait Parsers. The first step in “translating” the EBNF

in the code is to define the digit. We define this by using a simple regular

expression. After that, we start to define every component of our parser. In

this case, we work with Int type. For this reason, every function returns a

type Parser[Int].

Chapter 6 User reCognition system

103

As you can see, creating a parser with Scala is very simple. The

function expression and term use both a case class to determine what

kind of operation must be executed. For example, the expression checks

if the values + or - are present in the expression and executes the relevant

operation. Now we can see that we use the basic operator present in the

library to build our operation.

To execute the parser, we must use the parseAll command. This

method executes every parser until the end of the string. We can execute

the program using the following call:

object Main extends App {

 val parser = new ExprParser

 val result = parser.parseAll(parser.expression, "10/2+5")

 if (result.successful) println(result.get)

 if(!result.successful) println("failure")

}

Note instead of the function parseAll, we can use the function
parse, but this is not really functional. the function parse doesn’t
read all lines but stops when the first occurrence is found. For
example, in our expression 10/2+5, the function parse exits after
the command 10/2.

 Defining a Domain Problem
and the Grammar
As we know, a DSL exists to respond to a specific domain problem. In our

case, we want to define a language that can be used to define the creation

or the maintenance of existing users.

Chapter 6 User reCognition system

104

We can define some simple rules to create our language.

• The administrator can create, delete, and update users.

• An administrator can assign and/or remove roles from

one or more users.

• A user can use the system according to the restrictions

defined in the rules.

• The rules are “Read,” “Write.”

• The syntax we want to use should be similar to a JSON.

Based on these rules, we can define our EBNF, as follows:

value ::= objson | array | string | floatingPointNumber.

object ::= "{" | members | "}".

array ::= "[" | values | "]".

members ::= member {"," member }.

member ::= stringLitteral ":" value.

values ::= value {"," value}.

The grammar shows the rules for defining a new user in the system.

We employ a simple JSON to define the user. This is because it is more

humanly readable and simple to use for defining more complex rules.

Based on the syntax, we now define a simple input for our parser.

{

 "Username" : [

 {

 "Name" : "Pierluigi Riti",

 "Roles" : ["Administrator", "User"],

 "Groups" : ["Test1","Test2"],

 "Permissions": ["All", "Read"]

 },

Chapter 6 User reCognition system

105

 {

 "name" : "John Smyth",

 "Roles" : ["User"],

 "Groups" : ["Test1"],

 "Permissions": ["Read"]

 }

]

}

Using the preceding rules, we have defined two new users. You can see

we’ve simply defined the role and used the grammar to define every aspect

of the user.

 Preparing the Parser
The first step we must take to create the parser is essentially to recognize

the work input. To do this, we can create a simple lexical parser.

A lexical parser is a kind of parser specialized to recognize the lexical

structure of the input. In our case, we use this parser to identify a word,

split by the delimitation, and create the parser tree for creating the call in

the functionality of the software. So, start to create the first version of the

lexical parser, as follows:

import scala.util.parsing.combinator._

class ParserJson extends JavaTokenParsers {

 def value : Parser[Any] = obj | array |

 stringLiteral |

 floatingPointNumber

 def objson: Parser[Any] = "{" ~repsep(member, ",")~"}"

 def array : Parser[Any] = "[" ~repsep(value, ",")~"]"

 def member: Parser[Any] = stringLiteral~":"~value

}

Chapter 6 User reCognition system

106

We can execute the parser and see the response of the software. We

then create the software for the call and use our JSON input file.

This is the file we use:

 {

 "Username" : [

 {

 "Name" : "Pierluigi Riti",

 "Roles" : ["Administrator", "User"],

 "Groups" : ["Test1","Test2"],

 "Permissions": ["All", "Read"]

 },

 {

 "Name" : "John Smyth",

 "Roles" : ["User"],

 "Groups" : ["Test1"],

 "Permissions": ["Read"]

 }

]

 }

This is the code to invoke the parser:

object SimpleJSONParser extends ParserJson {

 def main(args: Array[String]): Unit ={

 val reader = Source.fromFile(args[0]).getLines.mkString

 println(parseAll(value, reader))

 }

If we execute the code, we see the result of the parser.

parsed: (({~List((("Username"~:)~(([~List((({~List((("Name"~:)

~"Pierluigi Riti"), (("Roles"~:)~(([~List("Administrator",

"User"))~])), (("Groups"~:)~(([~List("Test1", "Test2"))~])),

Chapter 6 User reCognition system

107

(("Permissions"~:)~(([~List("All", "Read"))~]))))~}),

(({~List((("Name"~:)~"John Smyth"), (("Roles"~:)

~(([~List("User"))~])), (("Groups"~:)~(([~List("Test1"))~])),

(("Permissions"~:)~(([~List("Read"))~]))))~})))~]))))~})

 Describing the Parser
What we do now is describe the parser and see what it does. At first glance,

the result of the parse is not very useful for a human read. It is essentially

just a sequence of lists and ~ signs. This is not exactly humanly readable

but undoubtedly more readable by a computer.

A Scala parser has some rules we need to know first, to translate the

output into something more useful for the computer. These are the rules:

• Each parser written as a string returns the parsed

string.

• Regular expressions also return a string.

• When we have a sequential composition P~Q, this

returns the result of both P and Q. These results are

returned in an instance of a case class.

• When we have an alternative composition P|Q, the

parse returns the result of either P or Q, depending on

what element yields success.

• When the parser uses a repletion rep(P) or repsep(P,

separator), this returns a result that lists all runs on P.

• When the parse runs an option opt(P), this returns an

instance of the Scala’s option type. It returns Some(P),

in the case of success, or None, if P fails.

Using these rules, we can understand now why the result of the parser

is what we have. In any case, the output is not very useful. The next step is

to evolve the parser to get a structure we can use to build our own call.

Chapter 6 User reCognition system

108

 Improving the JSON Parser
To make the result of the parser more humanly readable, we have to

change the result of the parser a little. The most useful structure we

can use is a simple Scala Map, in which the key is the name of the JSON

property, and the value is the associated value.

The first step of the parser is now to create a Map when we parse the

entire JSON object. The new code for the function looks like the following:

def objson: Parser[Map[String, Any]] =

 "{"~> repsep(member, ",") <~"}" ^^ (Map() ++ _)

You can see that we’ve changed the signature of the method. First, we

use the value Any. This means that we return any value from our parser.

In this case, the parser returns a value Map[String, Any]. This tells the

parser to cast the result into a map of value string and any.

To make this transformation, we use a new parser operator: ^^. This

operator transforms the result of the parser operation. To use this operator,

the parser must have the syntax P ^^ r. In our case, we use a repetition

control on the member, which means that we have a result transformed in

a case class, and this initiates the transformation.

At the same time, we change another method to improve the parser.

We change the member, as follows:

def member: Parser[(String, Any)] =

 stringLiteral~":"~value ^^

 { case Name~":"~value => (Name, value) }

For the other method, we use the operator ^^ to transform the result

of the operation. In this case, we use a pattern matching to select the value

Name. The entire parser code now looks like this:

import scala.util.parsing.combinator._

class ImprovedJsonParser extends JavaTokenParsers {

Chapter 6 User reCognition system

109

 def obj: Parser[Map[String, Any]] =

 "{"~> repsep(member, ",") <~"}" ^^ (Map() ++ _)

 def array: Parser[List[Any]] =

 "["~> repsep(value, ",") <~"]"

 def member: Parser[(String, Any)] =

 stringLiteral~":"~value ^^

 { case name~":"~value => (name, value) }

 def value: Parser[Any] = (

 obj

 | array

 | stringLiteral

 | floatingPointNumber ^^ (_.toDouble)

)

}

object ImprovedJsonParserTest extends ImprovedJsonParser {

 def main(args: Array[String]) {

 val reader = "{\n\t\"Username\" : " +

 "[{\"Name\" : \"Pierluigi Riti\"," +

 "\"Roles\" : [\"Administrator\", \"User\"]," +

 "\"Groups\" : [\"Test1\",\"Test2\"]," +

 "\"Permissions\": [\"All\", \"Read\"]" +

 "}," +

 "{\"Name\" : \"John Smyth\"," +

 "\"Roles\" : [\"User\"]," +

 "\"Groups\" : [\"Test1\"]," +

 "\"Permissions\": [\"Read\"]}]} "

 println(parseAll(value, reader))

 }

}

Chapter 6 User reCognition system

110

If we execute the code, we actually have a result like the following:

Map(

 "Username" -> List(

 Map(

 "Name" -> "Pierluigi Riti", "Roles" ->

List("Administrator", "User"),

 "Groups" -> List("Test1", "Test2"),

 "Permissions" -> List("All", "Read")

),

 Map(

 "Name" -> "John Smyth",

 "Roles" -> List("User"),

 "Groups" -> List("Test1"),

 "Permissions" -> List("Read")

)

)

)

We can see the result is now more readable to humans than the

previous result. We finally realize that our own parser is using an external

DSL to define it. When we create an external DSL, we have a set of patterns

that we can use to generate a parser. We have, for example, a parser

generator pattern, and this is exactly what we use here. This pattern uses

an external grammar to generate the language. An external DSL essentially

generates a code used as an external source. In this case, we use a JSON

file. A JSON file offers us the grammar we need to read and parse to

generate the code.

We can use different techniques for parsing the file. In this case, I used

a short introduction and a JSON, but we can create more complex parsers

using DSLs. For example, we can create a syntax-directed translation. This

pattern translates a source, normally a text, by defining a grammar and

then using this grammar to create a structured translation. We see the use

Chapter 6 User reCognition system

111

of this pattern, for example, when we translate the EBNF into a software.

We take a grammar, the EBNF, and then generate an input, based on the

grammar. The software gets the grammar and then translates the source

into software.

This parse uses a JSON format notation, which allows us to create our

grammar. This is because it is easy to parse and create our own syntax for

the software we want define.

What we have learned until now is sufficient to start to create our own

simple parser, but we need to know what element we used to create the

parser (see Table 6-2).

Table 6-2. Parser Operator Used to Create Our Simple JSON Parser

Operator Description

… Literal

“…”.r regular expression

p~Q sequence of composition

p<~Q , p~>Q sequence of composition: follow only move left/right

p | Q alternative: the result is p or Q

opt(p) optional: in case of success p

rep(p) repeat the parser on p

repsep(p,Q) interleaved repetition

p ^^ f result of the conversion

In the preceding table, we see how many combinator parsers use

symbolic names to describe an operation, for example, <~ or ^^.

This notation has the big advantage of being compact to write but, on

the other hand, is difficult to remember and can be very cryptic for people

with little experience. The big advantage of using a symbolic name is the

short length of the code and the possibility of implementing the correct

precedence in the parser itself.

Chapter 6 User reCognition system

112

What we have created until now is an in-memory parser. We can use

this parser to develop a sequence call of methods to execute operations on

the system. For example, we can create the function and use it to update a

table in a database or file system.

 Conclusion
In this chapter, you received a brief introduction to the Scala’s Parser

Combinator Library. This library is very powerful and can be used to create

equally powerful code.

We scratched only the surface of the Parser Combinator Library, but in

spite of that, we were able to create a powerful parser to read and create in

memory three others with the structure of the code.

In the next chapter, you will see how to a create more complex parser,

when I cover the rest of Scala’s Parsing Combinator Library.

Chapter 6 User reCognition system

113© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_7

CHAPTER 7

Creating a Custom
Language
So far, we have gone little by little deep inside the DSL. At this stage, we are

able to create external and internal DSLs. In this chapter, we go deeper into

external DSLs and begin to develop a custom language.

A lot of software has an internal language. An example is RubyDSL

used in Chef to produce cookbooks. This language started from a GPL

language and, with a DSL implementation, became a new language. The

language is normally used to solve a specific issue. In the case of Chef

or Puppet, we use a “new language” to automatically install patches and

software in the system.

The language we create can be of any scope we have in mind. We can

create, for example, a language exclusively for math or to “copy” another

language. In our case, we want to create a language similar to the old BASIC.

In this chapter, I will discuss the general rules for creating our own

language. Of course, we don’t have a compiler, so it will not be an actual

new GPL language. What we want is to create a new language based on

Scala. For doing this, we must learn to write an AST, Abstract Syntax Tree,

to parse in memory the command and then execute the function. But, first,

to start with the implementation, it is best to cover a little bit of theory.

114

 What Is a “Language”?
By language we mean a syntax that respects a grammar used to define a set

of words that we can combine to communicate and solve a problem.

When we define a language, we define a set of rules we can use to

define our own language structure. This can be used to solve some specific

problems.

We use language every day of our lives when we talk in English or

Italian or French. We use a set of words connected to respect a specific

grammar to build a phrase understandable by every person who knows

our same syntax and grammar.

What we write is a programming language. By the term programming

language, we define a formal language used to define a set of instructions

to produce an output. Every programming language is normally defined by

two components.

• Syntax: How to write the language, what words are

basic to the language, such as if… then, for loop, etc.

• Semantics: What the language means, for example,

when we write for or if then

Every programming language is used to solve an algorithm. When we

use the language, we use the syntax to define a semantic specific to solving

a particular algorithm.

The first step we must take to define our own language is to define the

syntax we want our language to use. By syntax, we mean all the words and

the rules we combine to design the semantics of the language.

For example, we must define reserved words, the words we use

specifically for the language, for example, to identify the end of the line or

if we have an if…else.

Chapter 7 Creating a Custom Language

115

 Patterns for Designing a Language
When we design a language, we must consider many of its aspects.

We must define the grammar, the syntax, and think about how we can

translate the input into instructions.

There are some specific phases we must initiate to correctly translate

an input into a language.

 1. Recognize the syntax and build the IR, intermediate

representation. This is done by a reader.

 2. Execute the semantic analysis. This is done through

an interpreter.

 3. Generate the language. This uses a translator.

 4. Produce the output.

All these phases are important when we want to build our own

language. As you can see, we have essentially three macro components in

every phase. This component is basic to every language parser. Now, we

can try to describe the components.

• Reader: The reader is responsible for building a data

structure from the input. Essentially, the reader is

where the input is translated into a data structure.

• Interpreter: The interpreter walks through the structure

created by the reader and executes the operation.

• Translator: The translator is a combination of the

reader and interpreter. Basically, it receives an input

and produces an output.

To implement all the phases, we can use different patterns. The

principal pattern we can use are recursive descent recognizers. These are

used to translate phrases and sentences into the basic grammar of the

language.

Chapter 7 Creating a Custom Language

116

The most basic and used reader component is the recursive descent

lexer. This pattern creates a set of tokens from a character that is used to

recognize the words of the language. This pattern is normally used with

the recursive descent recognizers to create the parser. Suppose we want

to parse an expression. We can design the parser in the following way

(Figure 7-1).

Now, we can see that we start from the basic expression 1+4. This is the

first input. Next, the expression goes through another step and is split into

individual parts. At this point, every single character is split into parts, such

as operators and numbers.

This pattern is basic to most language parsers, but the starting point of

every parser is to define the three components of the syntax. The common

pattern for doing that is called an abstract syntax tree (AST). With an AST,

we create a node for every important token used in the grammar. The AST

is built using the classic three-node structure. To create the AST, we can

use two different patterns.

Figure 7-1. A tree syntax grammar

Chapter 7 Creating a Custom Language

117

• We can use the parse tree pattern. This pattern

describes how to recognize the input sentence and

parse it. The following diagram (Figure 7-2) illustrates

this. Now you can see how we check the operator. As

the numbers descend, the parser terminates the start of

the operation and applies the operation to the number.

• Another pattern we can use is the homogenous AST.

This kind of pattern has a simpler implementation than

the previous one. In this pattern, we implement an

AST using a single-node data type, and we normalize

it after the child list represents a diagram similar to the

following (Figure 7-3).

Figure 7-2. The parser applied to a specific function, in this case the
function + with the two parameters

Figure 7-3. Homogenous AST tree parser

Chapter 7 Creating a Custom Language

118

This pattern spits the first node directly into a subset of children. Every

child is a representation of a part of the expression that we must parse.

We can normalize the node using a normalized heterogeneous AST.

This is used for trees having a multitude of node types and/or when we

want to develop a homogenous AST with more than a single-node data

type. But all children can be normalized. A homogenous AST is used

when we have more complex languages, for example. All the parsers

have in common what we can define as an AST. An AST is essentially a

tree—nothing new in programming. How we build and create the tree

is how we define the parser. In the case of a homogenous AST, we have

something like the following:

class HomogenousAST()

{

 var token:ParserToken = null

 var children:List[ParserToken] = null

 def this(token: ParserToken) {

 this()

 this.token = token

 }

 def apply(tokenType: Int) {

 this.token = new AST(tokenType)

 }

 def getNodeType: Int = token.`type`

 def addChild(t: AST): Unit = {

 if (children == null) children = new util.ArrayList[AST]

 children.add(t)

 }

}

Chapter 7 Creating a Custom Language

119

Another pattern we can use to create an AST is the irregular

heterogeneous AST. This pattern is the most complex of the three, as it uses

more than one node. These nodes are not all regular and have different

child representation. This pattern differs from the homogenous AST in that

names have a name. Usually, the pattern is a linked list. We can define the

pattern this way:

var previous:ParserNode

var next:ParserNode

 def addingNode(previous:ParserNode, next:ParserNode):Unit =

{

 this.next = next

 this.previous = previous

 }

All these patterns can be used to create our AST. They are the basis for

creating a tree that we can walk to create our language. To walk a tree, we

can use another specific pattern for doing so. Every pattern has a different

use. Following is a brief list of these:

• Embedded heterogeneous tree walker: This pattern

walks through a heterogeneous AST using a recursive

function. A pseudo code for this parser follows. Here

we can see that the actual node is derived from the

root, then we identify the operation of the actual node

and execute the operation. After that, we begin to read

the other children of the actual node.

class <ActualNode> extends <root>

{

 def <node operation>():Unit = {

 <basic operation for this level of tree>

 <read the children>

 }

}

Chapter 7 Creating a Custom Language

120

• External tree visitor: This pattern creates a visitor class,

used to walk through the tree nodes. This pattern

follows the same logic as the embedded version.

The only difference is that the code is external, so we

call another class to do the walking. We can define a

pseudo code like this:

trait <Node>

{

 def operationNode()

 def numberNode

}

• Now what we see is essentially an interface in which

every part defines a way to read the node.

• Tree grammar: This pattern is used to create the

external visitor. This pattern essentially defines the

grammar we must use for the external visitor. This

is normally done with ANTLR. An example of the

grammar to define an operation could be as follows:

match(operation);

match(number);

match(operation);

• This grammar is used to identify the piece of the tree

grammar used for the parser.

• Tree pattern matcher: This pattern is used to trigger an

action when it finds some term relevant to the pattern.

This pattern doesn’t have a real implementation but

is a way of translating graphically how the parser is

working. We can see an example of this pattern when

we design the grammar for the different parser, as

shown in Figure 7-4.

Chapter 7 Creating a Custom Language

121

All these patterns are used when we want to build our external DSL. In

the end, when we create our own language, we must still create an external

DSL. We take an input and parse it to create a specific output.

 Designing the Language
So far, we have defined the different patterns we can use for parsing the

language, but there is another step we must define when we design a new

language. The first decision must make is the syntax for the language. To

define the syntax and the grammar, we use the EBNF language. The language

we want to design is similar to the BASIC language, so the EBNF is like this:

Unary_Op ::= - | !

Binary_Op ::= + | - | * | / | %

 | = | < | > | <= | >=

| <>

 | & | ' | '

Expression ::= integer

 | variable

 | "string"

Figure 7-4. A tree pattern matcher generator

Chapter 7 Creating a Custom Language

122

 | Unary_Op Expression

 | Expression Binary_Op Expression

 | (Expression)

Command ::= REM string

 | GOTO integer

 | SUB MAIN block

 | DIM variable = Expression

 | PRINT Expression

 | INPUT variable

 | IF Expression THEN integer

Line ::= integer Command

Program ::= Line

 | Line Program

Phrase ::= Line | RUN | LIST | END

Here, we define every single element of our language. Remember:

We want to try to re-create a BASIC language, so we use the syntax of the

elder BASIC. Essentially, we define every single part of the language. This

definition gives to us the model to create the basis of the language.

Using the grammar described previously, we can write a program such

as this:

PRINT "Table of Squares"

PRINT

PRINT "How many values would you like?"

INPUT num

Chapter 7 Creating a Custom Language

123

 Creating the Language
With the grammar defined, we can start to create our language. First,

starting with our language, we can identify three major components for

our parser.

• The reader: Essentially, the parser in which we define

all grammar and reserved words. This creates an AST.

• The interpreter: This walks the AST created in the reader.

• The translator: Some Scala classes use this to translate

the result of the interpreter in an output.

When we define the parser, we must use the reserved words of the

language, so let’s start to create the Reader class.

 Creating the Reader Class
The core of our parser is the Reader class. This class extends the

StandardTokenParsers of Scala. This is the backbone for our parser. We

start by creating the reserved words used by the language, as follows:

class Reader extends StandardTokenParsers {

 lexical.reserved += ("DIM", "PRINT", "IF", "SUB", "THEN",

"FUNCTION", "SUB", "MAIN", "RETURN", "END FUNCTION")

 lexical.delimiters += ("*", "/", "%", "+", "-", "(", ")",

"=", "<", ">", "==", "!=", "<=", ">=", ",", ":")

You can see that we first define all the reserved words and delimiters

that will be used by the Scala parser. These are the words we can use to

tokenize our language.

Chapter 7 Creating a Custom Language

124

As noted earlier, we can use different techniques to create our AST, so

we have to define the rules we must apply to our language. These rules

are used to create the tree we can use later to translate the language. To

compile the rules, what we need to do is translate the EBFN that we have

defined in Scala syntax.

The first rule we want to establish is the entry point for our program. In

BASIC, this is usually the SUB MAIN. The code for this is as follows:

def mainPoint: Parser[Program] = (rep(function) <~ ("SUB" ~

"MAIN")) ~ block ^^ {

 case f ~ c => new Program(f, c)

}

We can stop for a moment to analyze this first function. We can see that

this function uses the element that I introduced in Chapter 6.

(rep(function) <~ ("SUB" ~ "MAIN")) ~ block

The program has a number of functions that can be repeated. After the

word SUB MAIN, we find a block. This is essentially another part of the rules,

and it identifies the block of code we can write inside the main function.

We can now continue to write other simple rules for defining the language.

/*

with this function we define the node "function" this node is

created when we found the word FUNCTION(), we build essentially

a complex node, we have FUNCTION, and some argument, after

the () we expect a "block" and optiona a return statement,

this function use the Helper parser define in the chapter 6,

the function want and END FUNCTION for close it. The block is

something like that:

FUNCTION Test()

 PRINT "Test"

END FUNCTION

Chapter 7 Creating a Custom Language

125

*/

def function: Parser[Function] = ("FUNCTION" ~> ident) ~ ("("

~> arguments) ~ (")" ~> block) ~ opt(returnStatement) <~ "END

FUNCTION" ^^ {

 case a ~ b ~ c ~ None => new Function(a, b, c, Number(0))

 case a ~ b ~ c ~ d => new Function(a, b, c, d.get)

}

//With this function we define the RETURN word, used in the

FUNCTION method

def returnStatement: Parser[Expr] = "RETURN" ~> expr ^^ {

 e => e

}

def arguments: Parser[Map[String, Int]] = repsep(ident, ",") ^^

{

 argumentList => {

 (for (a <- argumentList) yield (a -> 0)) toMap

 }

}

//This function defines a block, the block is a set of

statements used to define the functionality of the code

def block: Parser[List[Statement]] = rep(statement) ^^ { a => a

}

def statement: Parser[Statement] =

positioned(variableAssignment | outStatement | ifStatement |

executeFunction | outStatement) ^^ { a => a }

//This defines the reserved word DIM used to define the

variable

def variableAssignment: Parser[VariableDefinition] = "DIM" ~>

ident ~ "=" ~ positioned(executeFunction | expr) ^^ { case a ~

"=" ~ b => { new VariableDefinition(a, b) } }

Chapter 7 Creating a Custom Language

126

def outStatement: Parser[PrintStatement] = "PRINT" ~>

positioned(expr) ^^ { case a => new PrintStatement(a) }

//This defines the statement if, this means when the code finds

an if, now we can see we found the code conditional ~ block

this means we must use the function conditional to define the

word to use, this is essentially a node, with a definition of

child inside

def ifStatement: Parser[IfStatement] = conditional ~ block ^^ {

 case a ~ b ~ c => {

 c match {

 case None => new IfStatement(a, b, List())

 case _ => new IfStatement(a, b, c.get)

 }

 }

}

//This defines a conditional statement used in the block of

code, now we can see in the word IF() THEN we can define some

condition, the code can be IF(TRUE)THEN

def conditional: Parser[Condition] = "IF" ~ "(" ~> condition <~

")" ~ "THEN"

//the condition, is used to define the operator we can use in

the if , for example ==, > or < the if now can be write //like

that:

// IF (VALUE==TRUE)THEN

def condition: Parser[Condition] = positioned(expr) ~ ("<" |

">" | "==" | "!=" | "<=" | ">=") ~ positioned(expr) ^^ {

 case a ~ b ~ c => {

 new Condition(b, a, c)

 }

}

Chapter 7 Creating a Custom Language

127

def iterations: Parser[Int] = numericLit ^^ { _ toInt }

//This essentially is responsible for parsing the FUNCTION,

what we do is use the Parser Helper from Scala and call

the function involved, this helps to translate the code in

functionality

def executeFunction: Parser[CallFunctionMethod] = ((ident) <~

"(") ~ callFunctionMethod <~ ")" ^^ {

 case a ~ l => new CallFunctionMethod(a, l)

}

def functionCallArguments: Parser[Map[String, Expr]] =

repsep(functionArgument, ",") ^^ {

 _ toMap

}

def functionArgument: Parser[(String, Expr)] = (ident <~ "=") ~

expr ^^ {

 case a ~ b => (a, b)

}

//This function executes a parser of the operation, apply the

operation + or – to a term, the term is a number used to create

the operation, we can see in this case another little piece of

parser kept alive

def expr: Parser[Expr] = term ~ rep(("+" | "-") ~ term) ^^ {

 case a ~ List() => a

 case a ~ b => {

 def appendExpression(c: Operator, p: Operator): Operator =

{

 p.left = c

 p

 }

Chapter 7 Creating a Custom Language

128

 var root: Operator = new Operator(b.head._1, a, b.head._2)

 for (f <- b.tail) {

 var parent =

 f._1 match {

 case "+" => new Operator("+", null, f._2)

 case "-" => Operator("-", null, f._2)

 }

 root = appendExpression(root, parent)

 }

 root

 }

}

//This function defines a term, essentially identify every

single part of an expression

def term: Parser[Expr] = multiplydividemodulo ^^ { l => l } |

factor ^^ {

 a => a

}

def multiplydividemodulo: Parser[Expr] = factor ~ rep(("*" |

"/" | "%") ~ factor) ^^ {

 case a ~ List() => a

 case a ~ b => {

 def appendExpression(e: Operator, t: Operator): Operator =

{

 t.left = e.right

 e.right = t

 t

 }

Chapter 7 Creating a Custom Language

129

 var root: Operator = new Operator(b.head._1, a, b.head._2)

 var current = root

 for (f <- b.tail) {

 var rightOperator =

 f._1 match {

 case "*" => Operator("*", null, f._2)

 case "/" => Operator("/", null, f._2)

 case "%" => Operator("%", null, f._2)

 }

 current = appendExpression(current, rightOperator)

 }

 root

 }

}

def factor: Parser[Expr] = numericLit ^^ { a => Number(a.toInt)

} |

 "(" ~> expr <~ ")" ^^ { e => e } |

 ident ^^ { new Identifier(_) }

The preceding code represents all the code for the Reader. We write

the code to parse every element of the language, and we introduce the

concept we used to create the parser. Essentially, we split every single

command, for example, the if or the function, in a piece of code used to

create a token. We essentially tokenize the element. With this element, we

can create the AST. We can now define the last function for the language

and close the reader. We must implement the function parseAll from the

trait we have extended for starting the parser, as follows:

def parseAll[T](p: Parser[T], in: String): ParseResult[T] = {

 phrase(p)(new lexical.Scanner(in))

}

Chapter 7 Creating a Custom Language

130

The function parseAll calls the lexical.Scanner and creates the

parser for our language. This function creates the token for every element

of the language.

This piece of code introduces some elements we must develop for

creating the language. Basically, we create a call from some structure we

need to define to generate the output of the reader. This code solves the

first step of our parser and addresses the first requirement of the creation

of our own language. The next step is to create the translator. This is not a

simple class but a branch of the class used to translate the language. First,

to describe the translator, we must define how the code builds the AST.

 Defining the Token
For building the AST in memory, we must define the token used to create

the AST. This is the first step to translate our code into something else.

These classes are used to define every single operation we have in our

language. To build our AST, we start to create the basic class Expr and the

trait Statement, as follows:

import scala.util.parsing.input.Positional

trait Statement extends Positional

The preceding code shows the trait Statement. This class is used by the

other class to generate the token. We thus create a set of classes we can use to

parse every single operation in the language. A trait in Scala is similar to an

interface in Java or other languages. In this case, the trait defines an interface

we can use to define the parser. In this case, we extend a Positional

method. This specific trait is used when we want to define a specific position

for an element of the language. Imagine, for example, that we want to define

an If. We must have in an exact position the element we want to check. In

this case, the trait Positional helps us to define exactly that.

Chapter 7 Creating a Custom Language

131

We generate a class for every command, for example, the If statement

is defined in this class, as follows:

package practical.dsl.parsers.model

case class IfStatement(condition: Condition, trueBranch:

List[Statement], falseBranch: List[Statement]) extends

Statement

We can see that the class extends the Statement trait and uses a case

class to define the functionality. Using this kind of technique to create

the parser allows us to create an AST in a simple way. The only class that

doesn’t use the Statement trait is the Expr class.

package practical.dsl.parsers.model

import scala.util.parsing.input.Positional

class Expr extends Positional

case class Number(value: Int) extends Expr

case class Operator(op: String, var left: Expr, var right:

Expr) extends Expr

case class Identifier(name: String) extends Expr

This class is used to define every operation in the language. We define

the Number, the Operator, and the Identifier. The Expr class extends the

Positional trait. This trait gives the position of the object. Essentially, we

can identify the object of every single object in the code. This is useful if we

want to translate the software in an operation.

Chapter 7 Creating a Custom Language

132

 Creating the Translator for the Language
The Translator class is the starting point for translating our AST into

something different. The code for the Translator follows:

class Translator(program: Program) {

 var currentScope = new Scope("global", null)

 def run() {

 walk(program.statements)

 }

 private def getVariable(ident: Identifier): Expr = {

 var s: Scope = currentScope

 while ((!s.name.equals("global")) && !s.variables.

contains(ident.name)) s = s.parentScope

 if (s.variables.contains(ident.name)) s.variables(ident.name)

 else {

 sys.error("Error: Undefined variable " + ident.name)

 }

 }

//With this method we want to identify what operation we can

apply to the number

 private def calculateExpr(e: Expr): Int = {

 e match {

 case Number(value) => value

 case Identifier(name) => {

 calculateExpr(getVariable(e.asInstanceOf[Identifier]))

 }

 case Operator(op, left, right) => {

 op match {

Chapter 7 Creating a Custom Language

133

 case "*" => calculateExpr(left) *

calculateExpr(right)

 case "/" => calculateExpr(left) /

calculateExpr(right)

 case "%" => calculateExpr(left) %

calculateExpr(right)

 case "+" => calculateExpr(left) +

calculateExpr(right)

 case "-" => calculateExpr(left) -

calculateExpr(right)

 }

 }

 }

 }

 private def isConditionTrue(condition: Condition): Boolean =

{

 val a = calculateExpr(condition.left)

 val b = calculateExpr(condition.right)

 condition.op match {

 case "==" => (a == b)

 case "!=" => (a != b)

 case "<=" => (a <= b)

 case "<" => (a < b)

 case ">=" => (a >= b)

 case ">" => (a > b)

 }

 }

 private def executeFunction(f: Function, arguments:

Map[String, Expr]) {

 currentScope = new Scope(f.name, currentScope)

Chapter 7 Creating a Custom Language

134

 for (v <- arguments) currentScope.variables(v._1) = v._2

 walk(f.statements)

 currentScope = currentScope.parentScope

 }

 private def walk(tree: List[Statement]) {

 if (!tree.isEmpty) {

 tree.head match {

 case FunctionCall(name, values) => {

 val f = program.functions.filter(x => x.name == name)

 if (f.size < 1) sys.error("Error: Undefined function

'" + name + "')

 else {

 executeFunction(f(0), values)

 walk(tree.tail)

 }

 }

 case Variable (name, value) => {

 if (value.isInstanceOf[FunctionCall]) {

 val functionCall = value.asInstanceOf[FunctionCall]

 val function = program.functions.filter(x => x.name

== functionCall.name)

 if (function.size < 1) sys.error("Error: Undefined

function '" +

 functionCall.name + "' being called at position

[" +

 tree.head.pos.column + "] on line: " +

 tree.head.pos.line)

 else {

Chapter 7 Creating a Custom Language

135

 executeFunction(function(0), functionCall.values)

 currentScope = currentScope.parentScope

 currentScope.variables(name) = function(0).

returnValue

 }

 } else {

 currentScope.variables(name) = value

 }

 walk(tree.tail)

 }

 case PrintStatement(value) => {

 println(calculateExpr(value))

 walk(tree.tail)

 }

 case IfStatement(condition, trueBranch, falseBranch) => {

 if (isConditionTrue(condition)) walk(trueBranch) else

walk(falseBranch)

 currentScope = currentScope.parentScope

 walk(tree.tail)

 }

 case _ => ()

 }

 }

 }

}

The translator uses the token created by the AST to walk through the

tree. For the translator, we essentially use a walk tree pattern. The different

tokens are created with the AST and are defined in the model. The model

is essentially the plain class used to create the syntax.

Chapter 7 Creating a Custom Language

136

The interpreter basically implements an external tree visitor pattern.

We use the class to create in the model a package to read AST and translate

it into a language. The class involved is a plain Scala class, and taken

together, they are designed for translating the input as an output.

At the core of all the translators is the walk function. This implements

the pattern. The function gets the tree, a list of statements, and checks

every statement and calls the class for translating the AST into a language.

 Executing the Language
The last step we must take is to create the code to execute the language. An

object is responsible for reading the input file and calling the parser. The

relevant code follows:

object Language {

 def main(args: Array[String]) {

 val inputFile = Source.fromFile("source/practical.bascala")

 val inputSource = inputFile.mkString

 val parser = new SmallLanguageParser

 parser.parseAll(parser.program, inputSource) match {

 case parser.Success(r, n) => {

 val interpreter = new Interpreter(r)

 try {

 interpreter.run

 } catch {

 case e: RuntimeException => println(e.getMessage)

 }

 }

 case parser.Error(msg, n) => println("Error: " + msg)

 case parser.Failure(msg, n) => println("Error: " + msg)

 case _ =>

Chapter 7 Creating a Custom Language

137

 }

 }

}

The code is very simple. It calls the input file, practical.bascala, and

executes it to get the result. The file input is the following:

FUNCTION printVoid()

 PRINT "Hello World"

END FUNCTION

SUB MAIN

 printVoid()

END SUB

 Conclusion
In this chapter, we delved further into external DSLs. We created a new

language using an external DSL, and you saw that this can be fun if not

always easy.

You learned about the different kinds of patterns for implementing the

language and the three main objects involved. Finally, we created our own

parser and language.

Of course, this is only a simple example of a language, but we

discovered more interesting techniques related to external DSLs and using

the Parser Combinator of the Scala language. You can now easily create

your own language, and this can be used for our project.

Chapter 7 Creating a Custom Language

139© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_8

CHAPTER 8

Mobile Development
Mobile development has taken on more importance in everyday

development. An ever-increasing number of companies now has

mobile development teams. In this chapter, you will learn the basics of

mobile development and how to use Scala and DSLs to create your own

applications.

 Introduction to Mobile Development
in Android
Android is an open source operating system developed by Android, Inc.,

later a subsidiary of Google. The nature of Android allows a developer

to use the same source code for different devices, for example, a desktop

computer or mobile phone.

Android is not just an operating system but an ecosystem. The

community offers you tools for total development. Android is a game-

changer in the mobile community. To understand why Android is

becoming so important to the technology community, it is necessary to

understand the history of mobile software development.

The first mobile development was essentially based on a proprietary

operating system. For development, all the mobile companies defined

and released WAP, the Wireless Application Protocol, a technical standard

140

used to define web navigation. With WAP, it was possible to initiate

web development for mobile. Every company released a WAP browser,

which allowed developers to create the first mobile site. Nokia was the

first to improve the development. With Nokia, we begin to have our

own framework, and this allowed developers to create their own games.

Following Nokia, other companies developed their own libraries for

mobile development. Of course, the software was proprietary and could

only be used in phones made by the corresponding brand.

When Android was born, it allowed developers to create better

applications for a large number of devices, without much change to the

code. For Android development, Google released Android Studio, a tool

to develop Android applications in a simple way. We will use this tool to

develop our Scala application, so first, we must install Android Studio.

 Starting with Android Development
To begin Android development, the first step is to download the SDK

(Software Development Kit). The new version of Android SDK is connected

to Android Studio. This is an editor based on JetBrains IntelliJ. The link

for downloading the SDK is https://developer.android.com/studio/

index.html.

Download the software for the correct operating system and follow

the instructions for installing Android Studio. When Android Studio is

installed and started, you will see something similar to Figure 8-1.

Chapter 8 Mobile DevelopMent

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html

141

To begin our Scala Android project, we must install Scala Plugin), by

selecting Plugins from the Configure menu (Figure 8-2).

Figure 8-1. The Android Studio start page

Figure 8-2. The Configure menu

Chapter 8 Mobile DevelopMent

142

From the Plugins menu, select Browse From Repository, and then, in

the new menu, write Scala. This will show all plug-ins in Scala. Select the

plug-in) Android Scala, as shown in Figure 8-3.

Install the plug-in and then restart the program. This installs Scala

Plugin on Android Studio. We are now ready to create our first Android

project.

To create an application, from the start page, select the link Start new

Android Studio Project. This shows the steps involved in creating the

project. First, we must indicate the name of the project and the package

(Figure 8-4).

Figure 8-3. Selection of the Android Scala plug-in

Chapter 8 Mobile DevelopMent

143

Click Next and select the target Android Device. Select the device and

click Next. The following screen shows the kind of basic project we want

create. Select Basic Activity (Figure 8-5).

Figure 8-4. Create the new Android Project

Figure 8-5. Activity mobile selection

Chapter 8 Mobile DevelopMent

144

The next step is to customize Main Activity. For the main activity of

our application, we can leave the default details and click Next. Finally, the

project is ready, and, if you follow all the steps, you will see something like

Figure 8-6.

 Anatomy of an Android Application
First, to write our code, we must understand how an Android application is

structured. We can see the structure on the left side of our Android Studio

project (Figure 8-7).

Figure 8-6. The Android project is ready

Chapter 8 Mobile DevelopMent

145

We can identify three main folders.

• manifests This folder contains AndroidManifest.xml.

This file provides the essential information about the

application.

• java: This folder contains all Java code.. Android is

primary developed in Java. In our case, the Scala files

are as well.

• res: This folder contains all no-code files necessary

for the application. Here we can find XML files, UI,

graphics files, etc.

Figure 8-7. The Android application anatomy

Chapter 8 Mobile DevelopMent

146

AndroidManifest.xml is mandatory for every Android application

and is used to define the resource used in our application. Android uses

Activity to define a set of tasks to be executed by our App. For example, in

our basic program, you can find the main activity defined, as follows:

<activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.

LAUNCHER" />

 </intent-filter>

</activity>

You can see that, essentially, Android uses its own external DSL. To

define the activity, when we read the XML, we see some specific work and

action used to define that. This is essentially a definition for a grammar

with which to parse an external DSL. Every activity of each application is

unique to the purpose of the task. All activity extends the Activity class.

This is a building block for every Android application.

The Activity class derives from the Context class. In Android, an

activity is essentially a window. From what we see in the application,

Context is the central command center for an Android application. Most

application functionality can be accessed directly using the Context class.

This is essentially an abstract class. This class allows access to all the

resources for the application, for example, configuration files, etc. From

this class, we can derive all other classes for the operating system.

Chapter 8 Mobile DevelopMent

147

 Our First Scala-Android Application
As of now, to create our Scala Android application, we can call the

application PracticalScalaDSL. This is because the previous project

cannot be an empty project. For a better understanding of the process, it

is preferable to start from an empty project. To do that, we start Android

Studio and begin a new empty project (Figure 8-8).

Figure 8-8. Creating a new project with no activity

Having created an empty Android project, we can use this project to

start to add our Scala class and develop our Scala Android application.

What we need to do first is create a Main window to show a

simple “Hello World.” In this way, we can see how to use Scala to

write our Android application. To do this, we right-click the folder

practicalscaladsl.com.practicalscaladsl and select the new file, as

shown in Figure 8-9.

Chapter 8 Mobile DevelopMent

148

We call the file MainActivity.scala, because there is no Scala SDK set

up. The editor asks us to set up one, as shown in Figure 8-10.

Clicking the link Setup Scala SDK ➤ AndroidStudio shows us all the

Scala editors. Select one for our project, as shown in Figure 8-11.

Figure 8-9. Creating a new file

Figure 8-10. We are asked to set up the Scala SDK

Figure 8-11. Adding Scala support

The first code we wrote is the code to create the main windows. The

code is very simple and looks like the following:

package practicalscaladsl.com.chapter_8

import android.app.Activity

import android.os.Bundle

Chapter 8 Mobile DevelopMent

149

class MainActivity extends Activity {

 override def onCreate(savedInstanceState: Bundle) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.main_layout)

 }

}

The code is very simple and easy. We extend the Activity class and

override the function onCreate. With this method, we call our layout, in

our case, activity_main.xml.

The layout is essentially a resource in Android. We can define the

layout in the res package. It is a simple .xml file. This file is created in the

folder res, under the folder layout, as shown in Figure 8-12.

The content of this file is very simple.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/

res/android"

 android:orientation="vertical" android:layout_width="match_

parent"

 android:layout_height="match_parent">

//This code is used to define a TextView, is essentially a view

with a text the resource we define is basically the kind of

layout, how we want the text and the text itself

Figure 8-12. The folder layout

Chapter 8 Mobile DevelopMent

150

 <TextView

 android:id="@+id/textView"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Hello Scala" />

</LinearLayout>

This simple file creates the layout. In our case, we add a simple

TextView, an Android component to show text, and define some property

of that.

An Android application defines the Context for calling the other

resources, so we must create another resource file to define that. In this

case, in the same folder, we create another file, called content_main. The

content of the file follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_

behavior"

 tools:context="practicalscaladsl.com.chapter_8.Main

Activity"

 tools:showIn="@layout/activity_main">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

Chapter 8 Mobile DevelopMent

151

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

This file defines the resources we can use in our Android app. These

are the basics for starting the application. What we want to do now is start

the code. To do this, we just click the Run button on Android Studio, as

shown in Figure 8-13.

Figure 8-13. Running the application

Chapter 8 Mobile DevelopMent

152

Select the device we have, and start the code. You will see something

like Figure 8-14.

Figure 8-14. The Scala Android app

Chapter 8 Mobile DevelopMent

153

We now have defined our layout, and we can see how Android uses

an external DSL to define the resources. But now it’s time to create our

DSL. Our DSL will be used to create a service application, a back-end type

of application used to connect with a web service, and get some data. In

our case, we create an internal DSL, to create a service, another piece of

software that we can define in our Android app.

 Creating Services in Android
An Android app is not created only with a user interface. An important

part of the application is defined by the service. An Android service is like

a back-end component for a web application. It doesn’t have any interface;

it works in the background; and it doesn’t have any particular interaction

with the user.

We can define different kinds of services. For example, we can define

services for the following:

• Check mail: We can have a service working in the

background to check new mail received and show that

in the interface.

• Check our social network: We can have a service dedicated

to checking our social networks, for example, Facebook,

Twitter, LinkedIn, and show a notification in our interface.

These are just two examples of services we can use every day in our

mobile phones. Our service need only check a web service and show some

updates. For now, we will concentrate on creating the DSL necessary to

connect to that.

From a developer’s point of view, the creation of a service is relatively

simple. We extend the class android.app.Service and then write the code

for the service. In our case, the service calls our DSL, via a fluent API, to build

our action from component parts. What we do is essentially make a call to an

external web service to get some result and draw it to the Android application.

Chapter 8 Mobile DevelopMent

154

package practicalscaladsl.com.chapter_8

import android.app.{Activity, Service}

import android.content.Intent

import android.os.{Bundle, IBinder}

class WebServiceExample extends Service {

 val mStartMode:Int

 var mBinder:IBinder

 val mAllowRebind:Boolean

 override def onCreate():Unit

 override def onStartCommand(intent:Intent, flags:Int,

startId:Int):Int = return mStartMode

 override def onBind(intent:Intent):IBinder = return mBinder

 override def onUnbind(intent:Intent):Boolean = return

mAllowRebind

 override def onRebind(intent:Intent)

 override def onDestroy():Unit

}

Our code extends the class Service. This class defines some interface

we need to override when we create our method. You’ll see more about

the method when we integrate our code. We start now to create our DSL to

call the service. A service is a component started in the background of our

Android application. This class is used when, for example, the application

must connect to a network or must execute some background operations.

The service starts when an application calls the operation serviceStart.

When this is started, the service works in the background and continues to

work, even if the application is destroyed. To stop the service, we must close

it via the code. To stop the code, we must call the stopService method.

Chapter 8 Mobile DevelopMent

155

 Defining Our DSLs
As we know, a DSL is used to improve communication and allow a

developer to better define the interface and the method used to create

an API. So, we start with some method we can use for the fluent API. The

first step is to define the common dictionary and the action we want solve

(Table 8-1).

We define three simple actions for our service. We don’t really need to

add more action to show how to create the DSL. Our goal is to show how

we can integrate the DSL in Android development.

We start now to create our DSL, using the fluent API interface. This

kind of method is used to create a chain of calls that we can read like

English. So, we now create the code for the interface and see that it looks

like the following:

package practicalscaladsl.com.chapter_8.util

import java.util

import sun.net.www.http.HttpClient

class WebFluentInterface {

 private var entity=""

 private var httpResponse= ""

 private var httpClient=""

Table 8-1. The Basic Definition of Our DSL

Method Definition

Connect execute the connection on the web service

Find(string Name) Find a user using the web service

Add(string Name) add a new user to the system

Chapter 8 Mobile DevelopMent

156

 private var webService = ""

 case class Username(username:String)

 def Connect(webservice:String):Unit ={

 this.webService= webservice

 this

 }

 def Find(username:String):Unit ={

 httpClient = new DefaultHttpClient()

 httpResponse = httpClient.execute(new HttpGet(webservice))

 entity = httpResponse.getEntity()

 this

 }

 def add(username:String):Unit = {

 val user = new Username(username)

 val userJson = new Gson().toJson(user)

 val post = new HttpPost(this.webService)

 val nameValuePairs = new util.ArrayList[NameValuePair]()

 nameValuePairs.add(new BasicNameValuePair("JSON",

userJson))

 post.setEntity(new UrlEncodedFormEntity(nameValuePairs))

 val client = new DefaultHttpClient

 val response = client.execute(post)

 println("--- HEADERS ---")

 response.getAllHeaders.foreach(arg => println(arg))

 this

 }

}

Chapter 8 Mobile DevelopMent

157

The code is a simple fluent API call. We have the three methods we

can use to call the web service and post the data. The important part of the

code is how we can use it in Android.

We can do that by improving the Service class we just wrote, as

follows:

package practicalscaladsl.com.chapter_8

import android.app.{Activity, Service}

import android.content.Intent

import android.os.{Bundle, IBinder}

import practicalscaladsl.com.chapter_8.util.WebFluentInterface

class WebServiceExample extends Service {

 val mStartMode:Int

 var mBinder:IBinder

 val mAllowRebind:Boolean

 val webFluentInterface:WebFluentInterface

 override def onCreate():Unit

 override def onStartCommand(itent:Intent, flags:Int,

startId:Int):Int = {

 webFluentInterface.

 Connect("http://localhost:8080/add").

 Add("Test")

 return mStartMode

 }

Chapter 8 Mobile DevelopMent

158

 override def onBind(intent:Intent):IBinder = return mBinder

 override def onUnbind(intent:Intent):Boolean = return

mAllowRebind

 override def onRebind(intent:Intent)

 override def onDestroy():Unit

}

You can see that we created the call for the method in the method

onStartCommand. This creates the call necessary to add a new user in

the web service. This is the simplest way to create a connection from the

Android app and our DSL.

 Conclusion
Mobile development is a hot prospect at the moment. In this chapter,

we’ve just scratched its surface. You’ve seen how to create an Android

project and learned the basics of Android development. Of course, this is

merely a start.

For a good description of mobile development, another book is

probably required. We will now use Scala instead of Java and, at the same

time, see how we can use DSLs to define some utility class for the service.

Using a DSL in our development is just a new way of working. We don’t

need to think of the DSL as some strange technique, but only as a simple

way of writing our code.

In the next chapter, we see other uses of DSLs and how simply they can

be used in our daily work.

Chapter 8 Mobile DevelopMent

159© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_9

CHAPTER 9

Forex Trading System
So far, we’ve used DSLs in different areas. What you’ll see now is how

to create a Forex (foreign-exchange) trading system. Today, more and

more people are interested in investment, and an increasing number of

developers work in finance.

In this chapter, you will see how to use Scala and DSLs to create a

complete library for Forex trading. You will also see how DSLs make using

the system simple.

 What Is a Forex Trading System?
A Forex trading system is a tool created to buy and sell in the Forex

market. The system is based on a set of rules used to buy and sell

currency. A Forex trading system usually is based on a set of signals.

By signal is meant some specific indicator and value we identify and use

that is derived from technical analysis.

Every system can be configured to better manage the system. We can

tell the system how to open and close a position and define the kinds of

instruments we want to use for technical analysis.

In Forex, there are some specific terms used commonly to define a

position and identify a gain or loss in the market. To start to create our

system, we must define the words and their meanings. This becomes our

new common dictionary for defining the method and syntax of our DSL

(Table 9-1).

160

Table 9-1. Dictionary of Items Used in Our Forex Trading System

Term Description

PIP Price interest point. This is indicated by the last digit in the

rate, which represents the cost of every point that changes

in value. For example, EUR/USD 1 point = 0.0001 is used

to calculate the standard rate, which rises or falls with the

change in the value of 1 point. A PIP measures the amount

of change in the exchange rate for a currency pair. For

currency pairs displayed to four decimal places, one pip is

equal to 0.0001. Yen-based currency pairs are an exception

and are displayed to only two decimal places (0.01).

BID Price of the demand; the price you sell for

ASK Price of the offer; the price you buy for

CARRY TRADE Holding a position with a positive overnight interest return,

in hope of gaining profits, without closing the position; just

for the central banks’ interest rate differences

BANK RATE The percentage rate at which the central bank of a country

lends money to the country’s commercial banks

COMMISSION Broker commissions for operation handling

CURRENCY PAIRS The duo of currencies to buy/sell, for example, EUR/USD

(euro/US dollar) or EUR/GBP (euro/Great British pound)

RATE The agreed exchange rate between two currencies.

For example, the value of the EUR/USD for a specific day

being 1.500

PRINCIPAL AMOUNT Called sometimes “face” or “nominal,” the amount of

currency involved in the deal

TIME FRAME The time of a current operation

(continued)

CHAPTER 9 FOREx TRADING SYSTEM

161

Using this table, we can now define the problem and design our DSL.

 Designing the DSL System
With the common dictionary defined, we can begin to design the system

and see what we need to implement it. The first step in designing the

system is to identify the rules we want to use for it. As we know that a DSL

can be used to implement a system using calls, similar to plain English,

what we do now is define these rules and implement them.

Table 9-1. (continued)

Term Description

DAY TRADING Position on trading open and close on the same day

LEVERAGE The money invested when starting a new position.

For example, a leverage with a value of 1,000 with

100 dollars invested translates into a real investment of

1000 × 100 = 1,000,000 dollars. Leverage is important for

ascribing a value to a PIP.

PROFIT Positive amount of money gained after closing the position

LOSS The money lost in an already closed position

STOP LOSS The amount of PIP or money lost at the close of a position

TAKE PROFIT The amount of PIP or money gained at the close of a

position

STANDARD ACCOUNT Account position with $100,000

MINI ACCOUNT Account position with $10,000

MICRO ACCOUNT Account position with $1,000

CHAPTER 9 FOREx TRADING SYSTEM

162

First, to design the system, we must understand how the Forex trading

market works. The Forex trading market primarily buys and sells currency.

This is done using specific platforms that allows clients to buy currency

pairs, for example EUR/USD (euros/US dollars). A gain or loss is the

difference in the number of PIP from when we started to hold a position

and when we closed that position.

We can define a stop loss or take a profit to close the position when we

have gained or lost a certain number of PIP. When we place an order in a

Forex trading system, it looks like the following:

BUY EUR/USD $1,000 with a LEVERAGE of 10, with

a TAKE PROFIT of 10 PIP and a STOP LOSS of 10 PIP

With the rules we can use to describe our system in place, we can place

an order to buy a currency pair, define a leverage and a stop loss, and the

take a profit. Using a command, we can define our system rules and, based

on that, define our system.

The rules we want to implement in our system are simple.

• The system must be allowed to buy currency.

• The system must be allowed to sell currency.

• The system must be able to set a stop loss.

• The system must be able to set a profit.

• The system must be able to define the currency pair.

• The system must be able to define a leverage.

These defined rules allow the system to create exactly the same line we

defined previously. What we need to do now is define the object involved

in the DSL.

We can start now to write the code we need to define the system. The

first piece of code we need is for implementing the rules. What we require

is a set of objects. These objects can be brought together to carry out the

rules.

CHAPTER 9 FOREx TRADING SYSTEM

163

 Implementing the System
The first step is to design the object necessary for defining our currency

pairs. The first object we can define is the currency. The code for the

currency is as follows:

trait CurrencyType{

 def pair: String

}

What we define with the preceding code is essentially the generic way

of defining the currency we use in the system. The scope of the trait is

defined by a generic object that we can “specialize” for use in the creation

of the currency pair.

The next code we must write is that necessary for defining the

currency pair.

class CurrencyPair(val accountType:String) extends

CurrencyType{

 override def pair(currency_name:String):String

={ currency_name }

 def PIP(): Double={

 val first_currency=pair("USD")

 val second_currency=pair("EUR")

 var returnPIP:Double=0.0

 if (secondary.toString.equalsIgnoreCase("USD")){

 if (accountType.equalsIgnoreCase("MICRO")){

 returnPIP=0.10

 }

CHAPTER 9 FOREx TRADING SYSTEM

164

 else if (accountType.equalsIgnoreCase("MINI")){

 returnPIP=1

 }

 else if (accountType.equalsIgnoreCase("STANDARD")){

 returnPIP=10

 }

 }

 return returnPIP

 }

}

The preceding code shows how we can define a CurrencyPair and

define the PIP we gain, depending on the account. Now you can see that

we use the trait class to define the kind of currency pair we want to use in

the system.

The CurrencyPair class allows us to create the currency pair and

to show some features of Scala. The line of code class CurrencyPair

(val accountType:String) extends CurrencyType shows how trait

is used. We can see that this simply extends the class and overrides

the method of the trait. This creates the concrete method based on the

interface.

The class then takes care of calculating the value of the PIP of each

account, depending on the type. By definition, when the secondary

currency is the US dollar (USD), we can define the default values of the

three types of accounts—micro, mini, and standard—which are $0.10, $1,

and $10.

This results from the PIP method, which does nothing but confirm the

type of object and then return the value of the PIP.

CHAPTER 9 FOREx TRADING SYSTEM

165

 Improving the Basic Class
Based on the previous code, we can make some improvements. For

example, we can create a new class, Account, to remove the if then and

create a better code, as follows:

trait AccountType{

 def account:Double

}

The first improvement we make is to create another trait to define the

account type. The account can be of three types: MICRO, MINI, or STANDARD.

We can use the new trait extending the class that was written previously. In

Scala, it is possible to have multiple inheritance using the word with. Here

is the new code.

class CurrencyPair(accountType:String) extends CurrencyType

with AccountType{

 override def pair(currency_name:String):String

={ currency_name }

 override def account(account_type:String):Double={

 if (account_type.equalsIgnoreCase("MICRO")){

 return 0.1

 }else if(account_type.equalsIgnoreCase("MINI")){

 return 1

 }else if(account_type.equalsIgnoreCase("STANDARD")){

 return 10

 }

 }

CHAPTER 9 FOREx TRADING SYSTEM

166

 def PIP(): Double={

 val first_currency=pair("EUR")

 val second_currency=pair("USD")

 val pip=new account("MINI")

 return pip

 }

}

 Creating the Order
The next step is to create an order. This is essentially the basic operation of

the trading system. The system should be able to create an order using the

basic parameter, so let’s now create the class.

class Order(val pair: CurrencyPair){

 def ask(profit:Int,loss:Int):Unit={

 println("Profit:"+profit)

 println("Loss:"+loss)

 println("PIP:"+pair.PIP)

 }

 def bid(profit:Int,loss:Int):Uint={

 println("Profit:"+profit)

 println("Loss:"+loss)

 println("PIP:"+pair.PIP)

 }

}

The class is very simple. It has only two methods: one to buy, ask(),

and one to sell, bind(). Both methods accept two parameters, profit and

loss.

CHAPTER 9 FOREx TRADING SYSTEM

167

Now we can see that the name of the method uses the name defined

in the dictionary. This is because we want to define a software that can be

read like plain English. The next step is to create the code for placing an

order. To do this, we have only to create a variable called _order, with a

syntax like the following:

val _order = new Order(new CurrencyPair("MICRO","EUR","USD")).

ask(10,10)

The call uses the fluent style. This is essentially a DSL call, but its

syntax is not exactly good for defining that, because one of the core

elements of DSLs is how we define the API. The code until now is very

basic and somewhat confusing. The API is not very clear, and creating a

call with it is not as smooth as we would like. Of course, we can read it like

English, but a good DSL should be very simple to read and understand.

So, what we need to do to have a good DSL is first to design a good

API. This is not an easy job but is the crucial difference in having a good

DSL or not. If we see to the actual DSL, for example, the HTML, or the

RubyDSL used in Chef, we can see a clear and simple definition of some

APIs. An API with a clear name and documentation helps a developer to

write the code. What we need to identify now is why and how to write a

good API.

 Why It Is Important to Design a Good API
The API is essentially the interface used by the software to communicate

with the outside world. Designing a good API is the key to having

successful software.

If we design a good API, the API “talks” by itself. If we use a good name

to define it, or a good interface, it’s easily understandable and simple to

use. Designing a good API requires rules and experience, so let’s identify

some rules that we can use when we have to design our API.

CHAPTER 9 FOREx TRADING SYSTEM

168

• Use a simple and clear name. The name must be

understandable to the people using the API. So, if

the API is for Forex, the name of the method must be

something related.

• Every API must have a specific version. Versioning is

the developers’ check if the software is compatible or

not. Versioning the API can better communicate to the

developer which features are available and which are not.

• The API must have good documentation. Good

documentation creates good APIs. Having good

documentation allows the developer who consumes

the API to understand clearly what the API can or can’t

do. Spending time to create good documentation is a

wise investment.

These three pillars are essentially the basics for designing and

maintaining a good API. When we write a DSL, we essentially create a

set of APIs to solve a specific problem. By adhering to these three pillars,

we can rewrite the software we have created until now and make it more

readable and more DSL-efficient.

The way to use these three pillars is connected to the user experience

and having a good plan. The first step we can take to implement the pillars

is planning the API. Using the common dictionary provides a good start

for planning the name of the API. Essentially, every API must be one

functionality of the system. In our case, we must have an API like PIP, BID,

ASK, etc.

Using these names helps us to respect another pillar: the

documentation. We can use the common dictionary for documentation.

Because we have the same name for the API we use in the common

dictionary, we can use it for documenting the API. In essence, the system

must respond with a specific functionality described in the common

dictionary, and to use the API, this is enough.

CHAPTER 9 FOREx TRADING SYSTEM

169

The last consideration we must keep in mind is versioning. When we

create an API, we must understand that we can have different versions of

the same API. This can be managed, for example, by creating a different

end point or by slightly changing a name, for example, change that of the

package.

Based on my experience, the best approach is to use the package to

manage the versioning. This is because every developer can easily identify

what he/she needs and then import the correct package for the software.

Versioning allows us to have different versions of the software but one

common response. Versioning is normally used to resolve an issue or.

make improvements to software.

Based on that, we can identify the next steps to improve our code.

What we have to do is create a version of our API and, of course, improve

the interface for it, because we want to upgrade our DSL to the next

level. When we version an API, we essentially create a different end point

for it. To do this, we create a new package. For example, if we create

a structure practicalscaladsl/v1/api, a second version would be

practicalscaladsl/v2/api.

Because we change the package, we create two different versions for

the code. This is used, for example, when we must update the version

of the software, such as by adding some functionality, but we want to

maintain the old API.

 Designing the New DSL API
To improve the quality of the first version of the DSL code that we started

with, and respecting the design pillars we just defined, we must update

the code. We define a version of the code. This helps to manage the

improvement and creates the API to respect the common dictionary we

have defined.

CHAPTER 9 FOREx TRADING SYSTEM

170

The first step in creating a good API is to define a package. So, the first

modification that we make to the code is the definition of the package. In

Scala, we can define a package with the following code:

package com{

 package practicalscala{

 package v1{

 class TradingSystem{

 }

 }

 }

}

In Scala, we define a package simply by using the reserved word

package, followed by the name of package. In our code, for example, we

defined a package com.practicalscala.v1. When we create a package in

Scala, it is not mandatory for the language to create the folder structure

of the package. In Java, for example, it is mandatory to create the same

package structure.

We can now start to rewrite the class TradingSystem. What we want to

do first is define the pair of currencies, so let’s start to create the method

pair to do that.

package com {

 package practicalscala {

 package v1 {

 class TradingSystem {

 protected var _pair: String = ""

 def pair(first: String, second: String): this.type = {

 this._pair = s"$first/$second"

 this

 }

CHAPTER 9 FOREx TRADING SYSTEM

171

 def execute() ={

 println(_pair)

 }

 }

 }

 }

}

You can see that the method pair has been added to the class

TradingSystem. The method only creates the pair and nothing more, but

this gives us an idea of how we can use the package for versioning. To

call the class, we must first import the class TradingSystem. Of course,

because we still use the fluent API, we must execute a method to return

the value calculated by the class. An interesting feature of the preceding

code is the string interpolation. In Scala, the char s before a string tells the

interpreter to interpolate it. This is a new feature added in Scala 2.10. With

the string interpolation, the developer can use variables processed by

Scala, and their result, to build a string. This is useful when, for example,

we want the string to change according to the value of some variable’s or

operation’s result. We can also use operations, in this case the syntax ${

}, to define the operation. In our case, we use this functionality to create

the currency pair. The code s"$first/$second" interpolates the string at

runtime and changes the variables first and second with the parameter

for the method.

The _pair variable is shared in the class. Using a class variable, in this

case, is protected. This means that no method outside the package can

be used by the variable. This is fine for us, because the package essentially

contains only the method we want to expose for our DSL. So, let’s consume

this first version of the API and see the result.

CHAPTER 9 FOREx TRADING SYSTEM

172

 Consuming the First API
Having written the first API, it is now time to consume it. The main method is

import com.practicalscala.v1._

object TestMain{

 def main(args:Array[String]):Unit ={

 val _pair = new TradingSystem()

 println(_pair.pair("USD","EUR").execute())

 }

}

The code is quite simple. To import the API, we use this line of code:

import com.practicalscala.v1._. There is no significant difference in

the Java syntax, only that when we want to import all classes of a package

in Java, we use the * (asterisk). In Scala, we use the _ (underscore). The

rest is very simple. We create the class TradingSystem and call the pair

method. This returns to us the value of the currency pair. If we execute the

code, we have a result like the following:

USD/EUR

The next step that we need to take is to improve the API and define the

function for the Forex trading system. We continue to improve the API with

the other method and create the method chain we must use to place an

order in bid or ask.

 Improving the API
The API we have designed for the trading system is very basic. We must

add more operations to the system. The first adjustment we must make is

to define the kind of account we want. This is used to calculate the value of

the PIP. The code for that is

CHAPTER 9 FOREx TRADING SYSTEM

173

def account(_type:String):this.type = {

 this._account_value = (_type: @switch) match {

 case "MICRO" => 0.1

 case "MINI" => 1

 case "STANDARD" => 10

 }

 this

}

The code sets the value of _account_value. This is done by using the

notation @switch. This changes how we use pattern matching. For that, we

have to import the package scala.annotation.switch. This annotation

compiles the code in a tableswitch or a lookupswitch. This offers better

performance, because the compiler internally translates the switch in a

branch table instead of a decision tree.

We can see in the code that the annotation @switch allows us to create

a very compact decision code, connected to a variable. What we want is

to match the type of the account with any difference in the PIP. The PIP is

used to calculate the profit/loss resulting from every transaction.

We can now rewrite the main method in the following way:

object TestMain{

 def main(args:Array[String]):Unit ={

 val _pair = new TradingSystem()

 println(_pair.pair("USD","EUR").account("MINI").execute())

 }

}

We can see that we have a better fluency in API for now. Next, we

define an account, a pair, and, finally, execute. If we execute now, we get

the following result:

USD/EUR

PIP Value:1.0

CHAPTER 9 FOREx TRADING SYSTEM

174

The execution returns the pair and the PIP value. It is now time to add

more complexity to our system.

 Adding the Last Functionality
The Forex trading system requires additional functionality to be complete,

so let’s start to add more. The first functions to add functionality to, such as

stop loss or take profit, define the capital to be invested.

The first function we add is to take profits. The code for that is

def take_profit(pip:Int):this.type ={

 this._pip_profit = pip

 this._max_capital_profit =(this._capital+(this._pip_value * pip))

 this

}

The take_profit function has the parameter pip. This indicates the

number of PIP we can accept to lose before closing the position. Internally,

the function defines the value max_capital_profit. This is used to

calculate the new capital and close the position.

Note The function uses this.type to define the return type. This
is used in Scala to return the type of method. Because we still have a
fluent API pattern, we must be clear about what type we must return.
Using this.type allows the function to return the type at runtime,
without specifying the type of return first. This is useful when we
build a DSL, in particular, when we want functionality that can have
more than one type of return.

CHAPTER 9 FOREx TRADING SYSTEM

175

The other function we can add is stop_loss. This is used to close the

position when it loses too much PIP. The function looks like this:

def stop_loss(pip:Int):this.type ={

 this._pip_lost = pip

 this._max_capital_lost = (this._capital-(this._pip_value * pip))

 this

}

We can see that the function is similar to take_profit. At the end, both

have the same function: they continue to add functionality to the system.

The end of the code looks like this:

import scala.annotation.switch

import scala.math.BigDecimal

package com {

 package practicalscala {

 package v1 {

 class TradingSystem {

 protected var _pair: String = ""

 protected var _pip_value: BigDecimal = 0.0

 protected var _pip_profit:Int = 0

 protected var _pip_lost:Int = 0

 protected var _start_position:BigDecimal =0.0

 protected var _actual_value:BigDecimal = 0.0

 protected var _capital:BigDecimal = 0

 protected var _max_capital_lost:BigDecimal = 0

 protected var _max_capital_profit:BigDecimal =0

 def pair(first: String, second: String): this.type = {

 this._pair = s"$first/$second"

 this

 }

CHAPTER 9 FOREx TRADING SYSTEM

176

 def account(_type:String):this.type = {

 this._pip_value = (_type: @switch) match {

 case "MICRO" => 0.1

 case "MINI" => 1

 case "STANDARD" => 10

 }

 this

 }

 def take_profit(pip:Int):this.type ={

 this._pip_profit = pip

 this._max_capital_profit =(this._capital+(this._pip_

value * pip))

 this

 }

 def stop_loss(pip:Int):this.type ={

 this._pip_lost = pip

 this._max_capital_lost = (this._capital-(this._pip_

value * pip))

 this

 }

 def start_position(start_value:Double):this.type ={

 this._start_position=start_value

 this

 }

 def actual_position(actual_value:Double):this.type ={

 this._actual_value=actual_value

 this

 }

CHAPTER 9 FOREx TRADING SYSTEM

177

 def capital(investment:Int):this.type ={

 this._capital=investment

 this

 }

 def execute() ={

 val _gain=(this._actual_value - this._start_position)

 val _check_profit =((_gain * this._pip_value) + _

capital)

 if(_check_profit > _max_capital_profit){

 println("Max Profit gain")

 }else if(_check_profit > _max_capital_lost){

 println("Stop loss gain")

 }

 println("PIP gained:"+_gain)

 println("Actual Capital:"+_check_profit)

 }

 }

 }

 }

}

You can see that BigDecimal has been imported. This is used in Scala

to define the currency type. Because a currency can have more decimal

numbers, BigDecimal helps to define that. The function that has changed

most is execute. This essentially is the core of the system. This calculates

the gain and checks the profit. If the value is as specified, we close the

position, whether there is a gain or loss.

Now let’s see how we can use the Forex trading system to set a position

that takes a profit and stops a loss.

CHAPTER 9 FOREx TRADING SYSTEM

178

import com.practicalscala.v1._

object TestMain{

 def main(args:Array[String]):Unit ={

 val _pair = new TradingSystem()

 println(_pair.pair("USD","EUR")

 .account("MINI")

 .start_position(1.0455)

 .actual_position(1.0554)

 .stop_loss(10)

 .take_profit(10)

 .capital(10000)

 .execute())

 println(_pair.pair("USD","EUR")

 .account("MINI")

 .start_position(1.0455)

 .actual_position(1.0354)

 .stop_loss(10)

 .take_profit(10)

 .capital(10000)

 .execute())

 }

}

We create a chain to call the method. We specify the currency pair, the

kind of account, the start position, the value at which we buy the currency,

the actual position, the position updated, the stop loss and the take profit,

and, finally, the capital.

At the end, we call execute, to determine whether we have as a result

of the position a gain or loss. Of course, it is best to connect the system

with a real-time Forex and let it change the value. In this case, we can use

the system for real.

CHAPTER 9 FOREx TRADING SYSTEM

179

When we execute the system, we have a result such as the following:

Max Profit gain

PIP gained:0.0099

Actual Capital:10000.0099

Stop loss gain

PIP gained:-0.0101

Actual Capital:9999.9899

The system calculates the PIP gained or lost and updates the capital.

Then, based on the PIP, it decides what is needed to close the position.

 Conclusion
You have now seen how to use a DSL to create a trading system. This is not

complex; we only need to re-think how we work every day.

The big advantage of using a DSL is how easily it reads the code and

how simple it is to understand. Another small advantage is the complexity

of the function. Because we define a method chain, we can write very

simple functions that can be connected. This allows us to write a simple

functionality that we can connect with others to solve big problems, write

simple functions, and simplify the maintenance of the code itself. It is

always easier to maintain a small function than one with more than one

hundred lines of code.

In this chapter, you discovered additional Scala functionality, such

as the switch notation and this.type, both of which allow us to write

simple and efficient code, which, of course, is crucial when we want write

a good DSL.

In the next chapter, I will discuss another important topic: games. You

will see how to build a video game using a DSL.

CHAPTER 9 FOREx TRADING SYSTEM

181© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_10

CHAPTER 10

Game Development
Games are as old as humankind and continue to be important in

contemporary societies. The first electronic game was Pong. A two-

dimensional sports game, it essentially involved only a ball moving from

the left side of the screen and two bars trying to stop the ball from scoring

points. The first iteration of an electronic game dates from 1966.

Since 1966, the game industry has evolved, and now we can find games

with sophisticated graphics and gameplay. Now, it is possible even to find

games with 3D graphics on a mobile phone. In this chapter, you will see

how to begin to create a simple game engine with Scala. We will create a

set of APIs using a DSL. In this way, we can create a call for our game in a

simple, understandable way.

 Game Team Structure
Working with a DSL means that we create software that can be “read”

and understood not only by technical folks. To do that, we must know the

domain of the problem.

The first step in understanding a domain is to know the structure

and the actor involved in our software development. So, in our case, the

first step is to understand a team game structure. This is important when

it comes to designing and defining our DSL. We try now to define the

different teams and see how they interact with each other.

182

 Engineering Team
The engineering team is responsible for all the engineering work. This

means developing the game, designing the tools necessary for the game,

and maintaining the build.

Engineers can be divided into two basic categories: runtime engineers,

or game engineers, the people responsible for developing the game engine

itself, and tools engineers, those responsible for developing the sets of tools

to be used in the engine, or by other engineers, to develop the game.

Generally, these engineering categories also have subcategories.

For example, there are also AI engineers, who specialize in defining

artificial intelligence (AI), or graphic engineers, specialists in the graphic

interfaces. In recent years, other engineering specialties related to games

have emerged, such as server engineers. These engineers specialize

in developing the server side of the game. For more and more games,

particularly mobile games, the server is a big part of the engine driving the

game. It is used in cooperation with the client to manage the game.

All the engineers mentioned work together to build a game. Of course,

every type of engineer talks a specific language directly connected to the

type of job he or she does. In the games field creating a good DSL can

be crucial for defining and promoting good communication across a

team. Some companies employ a technical director, who is responsible

for managing one or more projects, coordinating the development, and,

sometimes, managing communication across the team. In this context,

having a good common dictionary for designing the DSL can help the

technical director to manage that communication and do a better job.

Like any other software company, some studios have a chief technical

officer (CTO). This is a higher-level engineer and is essentially an executive

position. The CTO provides technical direction to all the engineers in a

company.

Chapter 10 Game Development

183

 Artist Team
The artist is another important person necessary for building a good video

game. Artists, like the engineers, can be divided into several different

categories. The basic divisions are as follows:

• 3D artists: These artists work exclusively with 3D, for

example, modeling the environment and characters in

a game.

• Environment artists: The artists are responsible for

designing the environment of the game.

• Light artists: Artists specializing in the lighting design

for a game

• Concept artists: These artists are responsible for

designing new games or developing new concepts for

older ones.

• Animators: Artists responsible for animating 3D models

and giving “life” to game characters

• Texture artists: In game design, a model should be very

easy, with a very low poly (having the fewest possible

polygons in a polygon mesh). Improvement of the

texture in the final design is accomplished by texture

artists. These artists design textures for the entire game.

These are only a few varieties of artists. Although there are a lot of

different artists, generally one works with one of those mentioned. Some

other artists are relegated to only one phase of the development of a game

and are never in direct contact with an engineer. However, to talk to each

other, roles and responsibilities must be defined.

Chapter 10 Game Development

184

 Other Actors Involved
Realizing a video game requires teamwork. Figures assuming roles other

than the technical ones I have described are also essential to managing the

development life cycle.

 Producer

The producer is the person responsible for managing the nontechnical

aspects of the development, managing tasks, human resources, and

helping to remove obstacles in the development.

 Marketing and Customer Service

Crucial aspects of a game’s release are marketing and customer service,

particularly for modern game development for mobile or MMOs

(massively multiplayer online games) to maintain a correct approach to

users, and to help the team driving changes in a game to execute their

goals. At the same time, marketing is responsible for the advertising

campaign and promoting the sale of a game.

 Game Designer

The game designer is responsible for the design of the game. Every game

has one or more game designers responsible for defining all the logic and

the story for the game. This is an artist role and is crucial for defining a

good story. A good game design is like a good direction in a film. A good

director makes a good film. The same is true for a game.

 Definition of a Game Engine
A “game engine” is software used to create a video game. The first time the

term was used was for the game Doom, in themid-1990s. The game is a

first-person shooter, or FPS, type, wherein the hero must shoot everything

that moves around the screen.

Chapter 10 Game Development

185

The novelty of Doom is the perfect division of the different

areas of the game. The AI is defined in one part and the 3D graphic

programming in another. This separation between areas allowed the

developer to create an “engine,” part of the software that could be

reused for another game.

For example, the area of the code to calculate the physics can

be reused. This separation created the first game engine. Through

the years, many other engines were born; for example, Unity 3D and

Unreal. All these engines have in common the possibility of creating a

game using the common library of the engine. For example, the AI has

some specific paradigm ready to define the objects and the interactions

among them.

Over the years, game engines have evolved and are now used for

specific game genres. Newer engines for FPS, such as Unreal, or for

generic 3D purposes, such as Unity 3D, have specific characteristics

and, sometimes, a specific language. This means that a developer must

change engines frequently, making it necessary to re-learn the basic

syntax.

The specific game engines for platform or racing games, for example,

define some specific rules for the physics and interaction between the

different objects in the game. This creates the need for different libraries.

Of course, all the engines have some specific characteristics in common,

such as the control, but each engine is essentially different.

We can summarize the basic functionality of a game engine as follows:

• Renders the object on the screen; can be 2D or 3D

• Manages the AI for interactions between objects

• Allows use of the control to move the object(s)

• Includes some basic physics laws for the game

These are some generic and minimal guidelines. Every game engine

starts with these simple rules, with which we can define our game engine.

Chapter 10 Game Development

186

 Designing Our New DSL Game Engine
So far, I have described what a game engine is and what common

functionalities it must have. First, we want a game engine with a good

UI, so we must define this feature. Second, we want to define the control

necessary to move the object(s) around the screen. Finally, we want to

have some generic feature connected to the AI of the game. With these

requirements in mind, let’s start to define some code.

The first functionality we must define is the game life cycle. This is

essentially the entire cycle of a game. It can vary, depending on the game,

but generally, there are some steps to be taken in every single game.

The life cycle is independent of the story. For example, a game can have

a total gameplay of 20 hours. The gameplay is the total time required to finish

the game, and this is strictly connected to the story. The life cycle indicates the

state in which the player(s) can be during the execution of the gameplay.

Normally, we have a status start, which indicates when the game

begins; pause, used when we include a pause in the action of the game;

resume, used when we want to resume a game, for example, after when we

have paused the game; and end, for example, when a player is dead.

By adding these basic statuses, we can include other statuses specific

to the game. For example, we can have a status “menu,” which can be used

in some games to enter a status when the game menu is shown. For now,

we take care only of the basic status.

To define the status, we create a specific class. This class is used to

define all the statuses in the game. When we think about software for a

game, essentially, we consider a complex state machine. Every state of the

machine can have within it more complex states. This is basically the core

of our game. We can define some basic states, as follows:

• Start

• Pause

• Resume

• End

Chapter 10 Game Development

187

All these states are basically conditions for managing the game. Every

game has a starting point, used to manage the other interactions in the

game. The first class we must write is the game core to manage status.

package ch10

trait StateMachine {

 def start(): Unit

 def resume(): Unit

 def pause(): Unit

 def end(): Unit

}

StateMachine is a Scala trait. A trait is a kind of interface in Scala. A trait

is similar to the Java interface. The main difference between a trait and a Java

interface is that the trait can be initialized and doesn’t accept parameters.

Classes can extend the trait and use it to define the common method

defined in the trait. In our case, this trait defines the basics of our game

engine. This trait defines the basic action of our state machine.

A game has an interface and sound, so we must define five macro areas

for building our engine, as follows:

• Graphic

• Audio

• System

• Windows

• Input

We must define all these classes for use in the game engine. For

example, the graphics class can be used to define a 2D or 3D game. In our

case, we will use a 2D graphic engine. The next step is to define the main

class for the game.

Chapter 10 Game Development

188

 Defining the Generic Component
What we must do now is define the basic component for the game engine.

First, we define the audio.

package ch10

trait Audio {

 abstract class Sound {

 type PlaySound

 def play(volume: Float): PlaySound

 def play(): PlaySound = play(1f)

 def loop(volume: Float): PlaySound

 def loop(): PlaySound = loop(1f)

 def pause(id: PlaySound): Unit

 def resume(id: PlaySound): Unit

 def stop(id: PlaySound): Unit

 def dispose(): Unit

 }

 type SoundType <: Sound

 def loadSoundFromSource(path: String): SoundType

 abstract class Music {

 def play(): Unit

 def pause(): Unit

 def stop(): Unit

 def setVolume(volume: Float): Unit

Chapter 10 Game Development

189

 def setLooping(isLooping: Boolean): Unit

 def dispose(): Unit

 }

 type MusicType <: Music

 def loadMusicFromSource(path: String): MusicType

}

The Audio file contains some traits, used to define the method and the

functionality used for managing the music. We can see that the methods are

self-explanatory. We can simply read and understand what the method does.

Another class we must define is the class connected with the graphics.

To define the graphic component, we add a helper. This is used to

maintain some general methods of the class. The code is the following:

package ch10

trait GraphicHelper {

 this: Graphic =>

 implicit class UpdateCanvas(canvas: Canvas) {

 def RepeatBitmap(bitmap: Bitmap, x: Int, y: Int, width:

Int, height: Int): Unit = {

 val imageWidth = bitmap.width

 val imageHeight = bitmap.height

 val columns: Int = width/imageWidth

 val rows: Int = height/imageHeight

 for(i <- 0 until columns) {

 for(j <- 0 until rows) {

 canvas.drawBitmap(bitmap, x+i*imageWidth,

y+j*imageHeight)

 }

 }

Chapter 10 Game Development

190

 val missingWidth = width - columns*imageWidth

 if(missingWidth > 0) {

 for(i <- 0 until rows)

 canvas.drawBitmap(bitmap, x+columns*imageWidth,

y+i*imageHeight, 0, 0, missingWidth, imageHeight)

 }

 val missingHeight = height - rows*imageHeight

 if(missingHeight > 0) {

 for(i <- 0 until columns)

 canvas.drawBitmap(bitmap, x+i*imageWidth,

y+rows*imageHeight, 0, 0, imageWidth, missingHeight)

 }

 if(missingWidth > 0 && missingHeight > 0) {

 canvas.drawBitmap(bitmap, columns*imageWidth,

rows*imageHeight, 0, 0, missingWidth, missingHeight)

 }

 }

 def drawBitmap(region: ImageRegion, x: Int, y: Int): Unit =

{

 canvas.drawBitmap(region.bitmap, x, y, region.x,

region.y, region.width, region.height)

 }

 }

 case class ImageRegion(

 val bitmap: Bitmap, val x: Int, val y: Int,

 val width: Int, val height: Int) {

Chapter 10 Game Development

191

 def this(bitmap: Bitmap) = this(bitmap, 0, 0, bitmap.width,

bitmap.height)

 }

 class Animation(

 var frameDuration: Long,

 frames: Array[ImageRegion],

 var playMode: Animation.PlayMode = Animation.Normal

)

 {

 def currentFrame(time: Long): ImageRegion = {

 val frameNumber: Int = ((time/frameDuration) % Int.

MaxValue).toInt

 val frameIndex = playMode match {

 case Animation.Normal =>

 math.min(frames.size - 1, frameNumber)

 case Animation.Reversed =>

 math.max(frames.size - frameNumber - 1, 0)

 case Animation.Loop =>

 frameNumber % frames.size

 case Animation.LoopReversed =>

 frames.length - (frameNumber % frames.size) - 1

 frames(frameIndex)

 }

 def isCompleted(time: Long): Boolean = time > animation

Duration

 def animationDuration: Long = frames.size*frameDuration

 }

 object Animation {

Chapter 10 Game Development

192

 sealed trait Play

 case object Normal extends Play

 case object Reversed extends Play

 case object Loop extends Play

 case object LoopReversed extends Play

 }

}

This code is a little complex, but inside it, we find every single piece

of interface we require to manage the graphics of the game. The trait

GraphicHelper introduces a new functionality of Scala 2.10, the implicit

class.

This feature is very helpful, because it helps to define that a class can

have a primary constructor available when we create it. This means, for

example, that we can use this class to create different types of game objects

using different constructors, but we call all with the same type of call.

Note an implicit class is a new type of class introduced in
Scala 2.10. an implicit class is a normal Scala class created with
the word implicit ahead of the word class. an implicit class
follows the same rules of every other class. the implicit makes
the class the primary constructor available when we require an
implicit conversion with the class in the scope. an implicit class
can be defined only inside an object, trait, or class.

GraphicHelper defines a class UpdateCanvas. This is used to override

the canvas of the game. We can see in all game engines elements that are

designed to be used for other parts of the engine. The UpdateCanvas class

is designed to be used in different kinds of graphics contexts, for example,

to draw the graphics in an Android app or in a AWT graphics interface.

In our case, the important part of the code is the name we give to the

Chapter 10 Game Development

193

method. We must always remember that the DSL is not just a technique

for programming but, most important, is the name we use to define the

method and the variables inside the software.

GraphicHelper defines some other classes inside it, such as the

Animation class. This is used to manage the animation during the game.

 class Animation(

 var frameDuration: Long,

 frames: Array[ImageRegion],

 var playMode: Animation.PlayMode = Animation.Normal

)

 {

 def currentFrame(time: Long): ImageRegion = {

 val frameNumber: Int = ((time/frameDuration) % Int.

MaxValue).toInt

 val frameIndex = playMode match {

 case Animation.Normal =>

 math.min(frames.size - 1, frameNumber)

 case Animation.Reversed =>

 math.max(frames.size - frameNumber - 1, 0)

 case Animation.Loop =>

 frameNumber % frames.size

 case Animation.LoopReversed =>

 frames.length - (frameNumber % frames.size) - 1

 }

 frames(frameIndex)

 }

 def IsCompleted(time: Long): Boolean = time > animation

Duration

 def Duration: Long = frames.size*frameDuration

 }

Chapter 10 Game Development

194

The class has two methods. currentFrame is used to define the frame

index of the animation. An animation is nothing more than a set of frames,

one following the other within a short time. We can define different kinds

of animation. These are identified by playMode. The calculation of the

frame is achieved by using the math library. We define the minimum and

the maximum for every frame.

The code of the class is a little bit complex. First, we define the kind of

animation we want to create. This is done when we create the class, and we

send the following parameters:

var frameDuration: Long,

frames: Array[ImageRegion],

var playMode: Animation.PlayMode = Animation.Normal

These parameters are used to initialize the class. Now, we can see

defined the values used to define the animation. An animation is a set

of frames. A frame is a single image. We can define the velocity of the

animation, meaning how many frames per second we must have to realize

the animation. The normal speed of an animation is 24 fps (frames per

second). Tree parameters are used to define this value. Usually, the frame

is designed in what we call sprite sheets. This file contains a set of images

of the animation we want to create. Every image has a dimension, and

this dimension is used to calculate how many frames are present in the

animation. ImageRegion essentially defines the “area” of the frame.

This utility class is used by the graphic component.

package ch10

import util.Loader

trait GraphicsSystem extends GraphicHelper {

 this: SystemProvider =>

 trait Graphics {

Chapter 10 Game Development

195

 def loadImage(path: System.ResourcePath): Loader[Bitmap]

 }

 val Graphics: Graphics

 //Define and abstract class Bitmap, this is used for define the

size of the image we need to use

 abstract class AbstractBitmap {

 def height: Int

 def width: Int

 }

 type Bitmap <: AbstractBitmap

 def loadImageFromResource(path: String): Bitmap

//This class is used to define the type of Font we want to

create

abstract class AbstractFont {

 def withSize(size: Int): Font

 def withStyle(style: Font.Style): Font

 def isBold(): Boolean

 def isItalic(): Boolean

 }

 type Font <: AbstractFont

 abstract class FontCompanion {

 def create(family: String, style: Style, size: Int): Font

 val Default: Font

 val DefaultBold: Font

 val Monospace: Font

 val SansSerif: Font

 val Serif: Font

Chapter 10 Game Development

196

 sealed trait Style

 case object Bold extends Style

 case object BoldItalic extends Style

 case object Italic extends Style

 case object Normal extends Style

 }

 val Font: FontCompanion

 type Color

 //Define the abstract to define the different kinds of colors

 abstract class ColorCompanion {

 def rgb(r: Int, g: Int, b: Int): Color

 def rgba(r: Int, g: Int, b: Int, a: Int): Color

 def Black: Color = rgb(0, 0, 0)

 def Blue: Color = rgb(0, 0, 255)

 def Cyan: Color = rgb(0, 255, 255)

 def DarkGray: Color = rgb(68, 68, 68)

 def Gray: Color = rgb(136, 136, 136)

 def Green: Color = rgb(0, 255, 0)

 def LightGray: Color = rgb(204, 204, 204)

 def Magenta: Color = rgb(255, 0, 255)

 def Red: Color = rgb(255, 0, 0)

 def White: Color = rgb(255, 255, 255)

 def Yellow: Color = rgb(255, 255, 0)

 }

 val Color: ColorCompanion

//Define the alignment for the text and the element

 object Alignments {

 sealed trait Alignment

 case object Center extends Alignment

Chapter 10 Game Development

197

 case object Left extends Alignment

 case object Right extends Alignment

 }

 //Define how to draw the font, with what color and what

alignments

 trait AbstractPaint {

 def font: Font

 def withFont(font: Font): Paint

 def color: Color

 def withColor(color: Color): Paint

 def alignment: Alignments.Alignment

 def withAlignment(alignment: Alignments.Alignment): Paint

 }

 type Paint <: AbstractPaint

 def defaultPaint: Paint

 trait AbstractTextLayout {

 def height: Int

 }

 type TextLayout <: AbstractTextLayout

 //Define the graphic elements for the interface

 trait AbstractCanvas {

 def width: Int

 def height: Int

 def withSave[A](body: => A): A

 def translate(x: Int, y: Int): Unit

 def rotate(theta: Double): Unit

 def scale(sx: Double, sy: Double): Unit

Chapter 10 Game Development

198

 def clipRect(x: Int, y: Int, width: Int, height: Int): Unit

 def drawBitmap(bitmap: Bitmap, x: Int, y: Int): Unit

 def drawBitmap(bitmap: Bitmap, dx: Int, dy: Int, sx: Int,

sy: Int, width: Int, height: Int): Unit

 def drawRect(x: Int, y: Int, width: Int, height: Int,

paint: Paint): Unit

 def drawOval(x: Int, y: Int, width: Int, height: Int,

paint: Paint): Unit

 def drawLine(x1: Int, y1: Int, x2: Int, y2: Int, paint:

Paint): Unit

 def drawCircle(x: Int, y: Int, radius: Int, paint: Paint):

Unit = drawOval(x, y, 2*radius, 2*radius, paint)

 def drawString(str: String, x: Int, y: Int, paint: Paint):

Unit

 def drawText(text: TextLayout, x: Int, y: Int): Unit

 def drawColor(color: Color): Unit

 def clearRect(x: Int, y: Int, width: Int, height: Int):

Unit

 def clear(): Unit = clearRect(0, 0, width, height)

 def renderText(text: String, width: Int, paint: Paint):

TextLayout

 }

 type Canvas <: AbstractCanvas

 def getScreenCanvas: Canvas

 def releaseScreenCanvas(canvas: Canvas): Unit

}

Chapter 10 Game Development

199

Now we can see how the GraphicsSystem uses the GraphicHelper.

What it does is define all methods for drawing primitives on the screen. In

this case, we define the method as in English. This helps when we need to

use that.

This code sometimes requires explanation and is what we do now.

The class first defines GraphicsSystem. This is an extension of the

GraphicHelper trait. As we’ve seen, a trait is similar to a Java interface. The

code we use follows:

trait Graphics {

 def loadImage(path: System.ResourcePath): Loader[Bitmap]

}

This trait defines the method loadImage. Now, the method indicates

that we load an image from a path. This is basic to every game engine.

Now, the engine must have the size of the image to calculate the

duration of the animation. For this reason, we create an abstract class

called AbstractBitmap. This class has two methods to define the

dimension of the bitmap: height and length. These are used to identify the

bitmap exactly.

Something else we must define for the graphics is the font. To do this,

we create another abstract class to define the kind of font we use. The class

is AbstractFont. Now, we can define all typographic necessary for the font.

In the class, we define all the graphic components we require to create

the graphics. The note of this class is the AbstractCanvas trait. This trait

is essentially the core of the software. We use this trait to define every type

of image we want to draw. For example, we define the circle, the rectangle,

etc. All these elements are used to define that of the user interface. One

note is the use of type. Type in Scala is used to create an alias for some

complex piece of code. In our case, we use a type to connect to some

different kind of class.

Chapter 10 Game Development

200

 Other Components
So far, we have defined the components for graphics, but in a game engine,

we must define other components to control the game. This class de facto

intercepts the key of the keyboard, or the mouse, and responds to a specific

event, as follows:

package ch10

trait InputHelper extends StateMachine {

 this: Input =>

 //The input helper is used for define all the input method

defined in the game in this class we define every type of input

we can use in the game for example the keyboard and the mouse

 object InputHelper {

 import Input._

 //This is used to define the "event" the event is used to

define what's happening on the game, it is similar to the

event in normal graphic development, there is a poll, a set

of events, the software must be able to process every event

and reply with the correct functionality to the event

 def pollEvent(): Option[InputEvent] = {

 val ev = Input.pollEvent()

 ev foreach processEvent

 ev

 }

 def processEvents(function: (InputEvent) => Unit): Unit = {

 var oev = Input.pollEvent()

 while(!oev.isEmpty) {

 val ev = oev.get

 processEvent(ev)

 function(ev)

Chapter 10 Game Development

201

 oev = pollEvent()

 }

 }

 //the method processEvent is used to identify the event,

this method essentially checks what event is raised and

then creates the class to respond to the event itself

 def processEvent(event: InputEvent): Unit = event match {

 case KeyDownEvent(key) => setKeyboardState(key, true)

 case KeyUpEvent(key) => setKeyboardState(key, false)

 case MouseMovedEvent(x, y) => Inputs.Mouse.position =

(x, y)

 case MouseDownEvent(x, y, mouseButton) => {

 Inputs.Mouse.position = (x, y)

 mouseButton match {

 case Input.MouseButtons.Left =>

 Inputs.Buttons.leftPressed = true

 case Input.MouseButtons.Right =>

 Inputs.Buttons.rightPressed = true

 case Input.MouseButtons.Middle =>

 Inputs.Buttons.middlePressed = true

 }

 }

 case MouseUpEvent(x, y, mouseButton) => {

 Inputs.Mouse.position = (x, y)

 mouseButton match {

 case Input.MouseButtons.Left =>

 Inputs.Buttons.leftPressed = false

 case Input.MouseButtons.Right =>

 Inputs.Buttons.rightPressed = false

 case Input.MouseButtons.Middle =>

 Inputs.Buttons.middlePressed = false

 }

Chapter 10 Game Development

202

 }

 case MouseScrolledEvent(amount) => ()

 case TouchMovedEvent(x, y, pointer) => (

 Inputs.Touch.pointerPressed += (pointer -> (x, y))

)

 case TouchDownEvent(x, y, pointer) => (

 Inputs.Touch.pointerPressed += (pointer -> (x, y))

)

 case TouchUpEvent(x, y, pointer) => (

 Inputs.Touch.pointerPressed -= pointer

)

 }

 //This method is used to define the input state of the

keyboard, when we press a key, essentially we change the

state of the key we press, this class is used to intercept

that and then change the state. The change of state is used

to create the response on the game

 private def setKeyboardState(key: Input.Keys.Key, down:

Boolean): Unit = key match {

 case Keys.Left => Inputs.Keyboard.left = down

 case Keys.Up => Inputs.Keyboard.up = down

 case Keys.Right => Inputs.Keyboard.right = down

 case Keys.Down => Inputs.Keyboard.down = down

 case Keys.Space => Inputs.Keyboard.space = down

 case Keys.ButtonStart => Inputs.Buttons.startPressed

= down

 case Keys.ButtonSelect => Inputs.Buttons.selectPressed

= down

 case Keys.ButtonBack => Inputs.Buttons.backPressed = down

 case Keys.ButtonMenu => Inputs.Buttons.menuPressed = down

Chapter 10 Game Development

203

 case Keys.A => Inputs.Keyboard.a = down

 case Keys.B => Inputs.Keyboard.b = down

 case Keys.C => Inputs.Keyboard.c = down

 case Keys.D => Inputs.Keyboard.d = down

 case Keys.E => Inputs.Keyboard.e = down

 case Keys.F => Inputs.Keyboard.f = down

 case Keys.G => Inputs.Keyboard.g = down

 case Keys.H => Inputs.Keyboard.h = down

 case Keys.I => Inputs.Keyboard.i = down

 case Keys.J => Inputs.Keyboard.j = down

 case Keys.K => Inputs.Keyboard.k = down

 case Keys.L => Inputs.Keyboard.l = down

 case Keys.M => Inputs.Keyboard.m = down

 case Keys.N => Inputs.Keyboard.n = down

 case Keys.O => Inputs.Keyboard.o = down

 case Keys.P => Inputs.Keyboard.p = down

 case Keys.Q => Inputs.Keyboard.q = down

 case Keys.R => Inputs.Keyboard.r = down

 case Keys.S => Inputs.Keyboard.s = down

 case Keys.T => Inputs.Keyboard.t = down

 case Keys.U => Inputs.Keyboard.u = down

 case Keys.V => Inputs.Keyboard.v = down

 case Keys.W => Inputs.Keyboard.w = down

 case Keys.X => Inputs.Keyboard.x = down

 case Keys.Y => Inputs.Keyboard.y = down

 case Keys.Z => Inputs.Keyboard.z = down

 case Keys.Num0 => Inputs.Keyboard.num0 = down

 case Keys.Num1 => Inputs.Keyboard.num1 = down

 case Keys.Num2 => Inputs.Keyboard.num2 = down

 case Keys.Num3 => Inputs.Keyboard.num3 = down

 case Keys.Num4 => Inputs.Keyboard.num4 = down

Chapter 10 Game Development

204

 case Keys.Num5 => Inputs.Keyboard.num5 = down

 case Keys.Num6 => Inputs.Keyboard.num6 = down

 case Keys.Num7 => Inputs.Keyboard.num7 = down

 case Keys.Num8 => Inputs.Keyboard.num8 = down

 case Keys.Num9 => Inputs.Keyboard.num9 = down

 }

 }

//The object input is used to define the input for the game, the

input can be sent by the keyboard or by a mouse

 object Input {

 object ButtonPressed {

 var left: Boolean = false

 var middle: Boolean = false

 var right: Boolean = false

 var back: Boolean = false

 var menu: Boolean = false

 var start: Boolean = false

 var select: Boolean = false

 }

 //This defines the object touch, this is used to identify

where the player points and touches during the game

 object Touch {

 var pointerPressed: Map[Int, (Int, Int)] = Map()

 def pressed: Option[(Int, Int)] = pointerPressed.toSeq.

headOption.map(_._2)

 def pressed(pointer: Int): Option[(Int, Int)] =

pointerPressed.get(pointer)

 def allPressed: Seq[(Int, (Int, Int))] = pointerPressed.

toSeq

 }

Chapter 10 Game Development

205

 //The object Mouse is used to identify and describe the

mouse, every game actually uses a mouse for play and then

our engine needs one object

 object Mouse {

 var position: (Int, Int) = (0, 0)

 def pressed: Option[(Int, Int)] = leftPressed

 def leftPressed: Option[(Int, Int)] = if(Buttons.

leftPressed) Some(position) else None

 def rightPressed: Option[(Int, Int)] = if(Buttons.

rightPressed) Some(position) else None

 }

 //This object simulates the keyboard, what we do there is

essentially re-create all layouts for the keyboard

//we define the key with a boolean, this is used to define if the

key is pressed or not

 object Keyboard {

 var left: Boolean = false

 var right: Boolean = false

 var up: Boolean = false

 var down: Boolean = false

 var space: Boolean = false

 var a: Boolean = false

 var b: Boolean = false

 var c: Boolean = false

 var d: Boolean = false

 var e: Boolean = false

 var f: Boolean = false

 var g: Boolean = false

 var h: Boolean = false

 var i: Boolean = false

Chapter 10 Game Development

206

 var j: Boolean = false

 var k: Boolean = false

 var l: Boolean = false

 var m: Boolean = false

 var n: Boolean = false

 var o: Boolean = false

 var p: Boolean = false

 var q: Boolean = false

 var r: Boolean = false

 var s: Boolean = false

 var t: Boolean = false

 var u: Boolean = false

 var v: Boolean = false

 var w: Boolean = false

 var x: Boolean = false

 var y: Boolean = false

 var z: Boolean = false

 var num0: Boolean = false

 var num1: Boolean = false

 var num2: Boolean = false

 var num3: Boolean = false

 var num4: Boolean = false

 var num5: Boolean = false

 var num6: Boolean = false

 var num7: Boolean = false

 var num8: Boolean = false

 var num9: Boolean = false

 }

 //This class is used to identify the usage of the mouse,

now we can see we use the object Mouse, this object tells

to //the programm what key is pressed

Chapter 10 Game Development

207

 object PointDevice {

 def pressed: Option[(Int, Int)] = Mouse.leftPressed.

orElse(Touch.pressed)

 }

 }

}

This method defines all events we can use to define all keys and events

raised in the game. This allows the engine to respond to the keys pressed

or to the mouse’s click. This class is simple and another example of a key

principle of DSLs: defined methods can be read like plain English.

 Conclusion
So far, you have seen DSL used in different fields. The last I discussed is

the video game. In this chapter, I have highlighted how a DSL can be used

in everyday development, not only to define a specific pattern or use a

specific technique, but, for example, to define a name for a method and

variable that can be used in plain English. The DSL can be integrated in

everyday development, starting with simple steps. The most important

change we can make with the DSL is to begin to think about the method

and the variable in plain English. After that, we can start to improve the

method and the pattern involved in that.

Chapter 10 Game Development

209© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7_11

CHAPTER 11

Cloud and DevOps
Cloud and DevOps are currently the hot tickets for many organizations.

Increasingly, businesses are migrating to the cloud and adopting DevOps

to meet their everyday requirements.

DevOps helps organizations to reduce the time to market of their

products and/or services, and cloud computing helps to reduce

infrastructure costs. By freeing a business from having to maintain its

own servers, and by helping to solve problems faster, costs are reduced.

For example, if there is a problem with a server, if it is in the cloud, a

new server can be created, instead of spending resources to repair the

broken one.

In particular, DevOps and cloud are used for microservices, as

discussed in Chapter 5. In this chapter, I introduce some DevOps practices

and describe how to use Scala and DSLs to create and deploy services in

the cloud.

 What Is DevOps?
DevOps is a portmanteau word formed from the union of “dev,” for

developer, and “ops,” for operational. These two words encompass the

entire software life cycle and represent a set of practices born of the idea

of removing every friction during the development life cycle. The growth

of DevOps coincided with that of the cloud. It is not unusual to see cloud

companies adopt DevOps for managing their development life cycles.

210

DevOps was described as “on the rise” by Gartner in 2013. That

description was characterizing what was then an emerging technology.

In the last four years, DevOps has become the latest sensation at many

companies.

If we wanted to define DevOps, we could say that it is a set of practices

across a company, with the goal of reducing the time to market of every

initiative and improving the quality of the product releases.

This simple definition is at the core of DevOps.

• Quality: The goal of DevOps is to improve and

guarantee the quality of the software in every single

deployment. This is done to put in practice some

common procedures during development and

deployment.

• Reduce the time to market: It is important to reduce

the time from the release of the code in the repo to

the final build. To do that, DevOps adopts continuous

integration (CI). Every component of the code is built

and tested immediately.

• Improve the communication across the company:

The purpose of DevOps is to reduce friction across

the company. To accomplish that, it shares common

practices company-wide.

Of course, the successful adoption of DevOps requires some common

practices. These help to introduce them across the company and ensure

the success of their implementation.

Chapter 11 Cloud and devops

211

 Common DevOps Practice
To be successful, DevOps introduces some practices that help make

operations smoother and more efficient. These practices can be

summarized as follows:

• Ops professionals should be the leading citizens of the

software architecture. They are the people responsible

for maintaining the code. Involving them in the design

of the architecture helps to create better logs, and this

translates into less downgrade time in case of error.

• Developers should be responsible for breaking the

code in production. Usually, after developers complete

a job, their involvement ends. This creates a mentality

by which the developer doesn’t really care about what

happens in production. Allowing developers to be

responsible when there is a problem in production has

two significant benefits. First, the developer can help to

fix the issue faster, and second, the developer is able to

know what happens when the code is broken.

• The company should ensure that all its employees

use the same build process. Having a clear build and

deployment process across the company helps to

improve quality and reduce time to market.

• Continuous deployment (CD)and CI should be

adopted for a better build process and better release.

Both practices ensure a smoother and faster build.

These processes involve only the new part of the code

and not all the code, which reduces build time and

helps to identify errors more quickly.

Chapter 11 Cloud and devops

212

• The infrastructure-as-code design should be

implemented, which ensures better and more reliable

infrastructure, particularly in the cloud.

All these practices should be taken together to help to initiate good

DevOps procedures and reduce the time to market. They should be

approved and sponsored by management. It is important for management

to understand the value of these procedures and help to put them in place

in the correct manner. DevOps is important for every company to be

successful in business right now.

At this point, what we want to do is begin to create some code that can

be used to design our infrastructure. The software we use to do this is Scala

and AWS. These will support the CI and CD in every project. Of course,

we must have some basic methodologies that allow, in particular, test-

driven development (TDD). With this kind of software development, using

XP programming, a developer writes the test for the code first. The test is

based on user input, and then the code for passing the test is written. This

is basically what takes place in the practice of CI and CD.

 Start with AWS
The first step in AWS development is to create a free AWS account.

To create a free one-year account, go to https://aws.amazon.com/.

Remember: You must enter a valid credit card credential to begin the trial.

When you have logged in to the new account, you will see something like

Figure 11-1.

Chapter 11 Cloud and devops

https://aws.amazon.com/

213

We can see that a lot of different services are at our disposal. What we

want to concentrate on in this chapter is EC2 and Lambda.

To begin to develop, we must install an SDK. Unfortunately, Amazon

doesn’t produce an SDK for Scala, but we can use the Java version, so

the next step is to install the SDK from Java. To download the SDK, go to

https://aws.amazon.com/sdk-for-java/ install and try via the console

to see if the SDK has been correctly installed. For this, just write aws in the

console. If all is working correctly, you will see something like Figure 11-2.

This shows that the AWS is installed. Now we can start to write our code.

Figure 11-1. The AWS console

Figure 11-2. The AWS command line interface

Chapter 11 Cloud and devops

https://aws.amazon.com/sdk-for-java/

214

 Deployment and Build in AWS
As stated, the essence of DevOps is to reduce time to market. So far, you’ve

learned how to use DSLs and Scala to build and deploy a new service. For

doing that now, we use AWS CodeBuild.

AWS CodeBuild is a fully built manager in the cloud. With this AWS

service, it is possible to build our code directly in the cloud. The process

follows all the CI and CD practices. First, we execute the test, and when

the test is passed, we compile and release the code. When a company

adopts CI and CD for development, this reduces and speeds up the release

process. This is because, as I’ve noted, component is built and tested

immediately. One of the best tools for these is Jenkins. With Jenkins, we

can create a set build that allows us to run and check the status of every

single build. Every build is made at the same time we release the code, and

this helps us to uncover any errors at the time of the build.

The service is very useful when we have to create a microservice and

release it in a fast and reliable way. Now, what we want to do is prepare

some code and see how to use DSL techniques for this.

Because we are executing the code for the cloud, I suggest using a

docker image for sbt. This is because it is easy to set up and use. Following

is the command to download the docker image I used:

docker pull hseeberger/scala-sbt

This has all we need to start our project.

With the image downloaded, we can start to write some code. In our

case, the directory structure is very important. The final directory will be

like Figure 11-3.

Chapter 11 Cloud and devops

215

This is the structure we use for our first sample code. Now, it is time to

start to write some code.

 Creating the Project in AWS
First, to create the AWS for the project, we must use the AWS CLI. The code

for this follows:

{

 "name": "chapt_11_practicalscala",

 "source": {

 "type": "S3",

 "location": "codebuild-region-ID-account-ID-input-bucket/

PracticalScalaDSL.zip"

 },

 "artifacts": {

 "type": "S3",

 "location": "codebuild-region-ID-account-ID-output-bucket",

 "packaging": "ZIP",

 "name": "PracticalScalaDSLOutput.zip"

 },

 "environment": {

 "type": "LINUX_CONTAINER",

Figure 11-3. AWS Scala macro package structure

Chapter 11 Cloud and devops

216

 "image": "scala-image-ID",

 "computeType": "BUILD_GENERAL1_SMALL"

 },

 "serviceRole": "arn:aws:iam::account-ID:role/role-name",

 "encryptionKey": "arn:aws:kms:region-ID:account-ID:key/

key- ID"

}

The code can be executed using the following command:

aws create-project aws_project.json

This creates in our AWS instance the structure of the code.

Note In the code, some data should be added by the user,
particularly the account-id and the region-id. all this data can be
received when the user creates his or her own aWs account.

This code creates the basic artifact for our code. Now, we can start to

create the other file necessary for our project.

 Creating the Basic Files
The first file we create is buildspec.yml. This file is used to define all the

commands we use to build our software. For example, we may have a file

such as the following:

version: 0.2

phases:

 build:

 commands:

 - echo Build started on `date`

Chapter 11 Cloud and devops

217

 - echo Run the test and package the code...

 - sbt run

 post_build:

 commands:

 - echo Build completed on `date`

 - sbt package

artifacts:

 files:

 - core/target/scala-2.11/core_2.11-1.0.0.jar

We can see that this file uses a DSL, a specific language for defining

every state of the build. This file is used to build our project. You can see

that we are using the sbt command to build our Scala project.

In DevOps, it is necessary to write tests, so the next file we create is a

simple test file.

object PracticalScalaDSLTest extends App {

 PracticalScalaDSL.sayHello

}

This code is very simple and calls the method sayHello from another

object. This Scala file is what we execute when we build our code.

What we want now is to write the code to pass the test. The code for that is

import scala.language.experimental.macros

import scala.reflect.macros.Context

object PracticalScalaDSL {

 def impl(c: Context) = {

 import c.universe._

 c.Expr[Unit](q"""println("Hello Scala AWS")""")

 }

 def sayHello: Unit = macro impl

}

Chapter 11 Cloud and devops

218

This code uses Scala macros. Macros, a new way to define code, were

introduced in Scala version 2.10 and are very useful for defining DSL

code. Macros are essentially a function called by the compiler during the

compilation. In our case, the function impl is called and created during

the compilation. This is another use for the DSL. We can define different

functions and don’t use them until we compile. This technique is called

metaprogramming.

You’ve now seen how to call the macro in the function sayHello.

The line macro impl essentially calls the execution of our macro. The

function doesn’t know what the macro does, only to take care to call

the implementation of the macro. This can be used to define different

functions in different contexts, and this flexibility is the essence of DSLs.

 Creating the Build File
What we must do now is create the Scala build file for the project. The file is

import sbt._

import Keys._

object BuildSettings {

 val buildSettings = Defaults.defaultSettings ++ Seq(

 organization := "practical.scaladsl",

 version := "1.0.0",

 scalaVersion := "2.11.8",

 crossScalaVersions := Seq("2.10.2", "2.10.3", "2.10.4",

"2.10.5", "2.10.6", "2.11.0", "2.11.1", "2.11.2", "2.11.3",

"2.11.4", "2.11.5", "2.11.6", "2.11.7", "2.11.8"),

 resolvers += Resolver.sonatypeRepo("snapshots"),

 resolvers += Resolver.sonatypeRepo("releases"),

 scalacOptions ++= Seq()

)

}

Chapter 11 Cloud and devops

219

object PracticalScalaDSLBuuld extends Build {

 import BuildSettings._

 lazy val root: Project = Project(

 "root",

 file("."),

 settings = buildSettings ++ Seq(

 run <<= run in Compile in core)

) aggregate(macros, core)

 lazy val macros: Project = Project(

 "macros",

 file("practicalscaladsl"),

 settings = buildSettings ++ Seq(

 libraryDependencies <+= (scalaVersion)("org.scala-lang" %

"scala-reflect" % _),

 libraryDependencies := {

 CrossVersion.partialVersion(scalaVersion.value) match {

 // if Scala 2.11+ is used, quasiquotes are available

in the standard distribution

 case Some((2, scalaMajor)) if scalaMajor >= 11 =>

 libraryDependencies.value

 // in Scala 2.10, quasiquotes are provided by macro

paradise

 case Some((2, 10)) =>

 libraryDependencies.value ++ Seq(

 compilerPlugin("org.scalamacros" % "paradise" %

"2.1.0-M5" cross CrossVersion.full),

 "org.scalamacros" %% "quasiquotes" % "2.1.0-M5"

cross CrossVersion.binary)

 }

 }

Chapter 11 Cloud and devops

220

)

)

 lazy val core: Project = Project(

 "core",

 file("core"),

 settings = buildSettings

) dependsOn(macros)

}

This code essentially creates our build process and defines all we need

to install our service in the cloud. The code is essentially a big DSL specific

to the build.

 Final Conclusion
You have seen how to create and use DSLs across different platforms and

requirements. This chapter showed how to build software made in the

cloud. This can be used in tandem with the microservice to deploy our

architecture and release it in the cloud. I defined some DevOps practices

and showed, as well, how these can be used with a DSL. This concludes

our journey, and I hope you have enjoyed it.

Now you understand that DSLs are not only a programming technique

but, essentially, a way of developing better code.

Chapter 11 Cloud and devops

221© Pierluigi Riti 2018
P. Riti, Practical Scala DSLs, https://doi.org/10.1007/978-1-4842-3036-7

Index

A
AbstractBitmap, 199
Abstract syntax tree (AST)

pattern, 116
heterogeneous, 119
homogenous, 116–119
irregular heterogeneous, 119
normalized heterogeneous, 118

Account type, 165
Android Studio, 140–142, 147
Application program interface

(API), 30–32, 39–40
_account_value, 173
import, 172
package, 170–171
rules and experience, 167–168

AWS
command line interface, 213
project creation, 215–216
Scala macro package, 214–215

B
Backus-Naus Form (BNF), 98–99

definition, 60
rules, 63
syntactic analysis, 62

C
Comma-separated values (CSV), 30
Conditional expression, 16
Continuous integration (CI),

34–35, 41
Conway’s Law, 75
CurrencyPair class, 163–164

D
Data structure

array, 24–25
list, 24–26
map, 24, 27
set, 24, 26
tuple, 24, 26–27

Delimiter-direct transaction, 63
DevOps

definition, 210
practices, 211–212
Scala build file, 218–220

Domain problem
EBNF, 104
grammar, 104
JSON parser, 108, 110–111
parser preparation, 105–106
rules

https://doi.org/10.1007/978-1-4842-3036-7

222

create language, 104
parser, 107

Domain specific
language (DSL), 1, 103

coding, 35
common dictionary creation, 34
definition, 29
design

communication, 32
efficiency, 31
encapsulation, 31

goals, 36–38
implementation, 38–40

common patterns, 42
grammar and data

parsing, 40
sample common

dictionary, 41
internal and external

difference, 30–31
model domain, 32–33

E
Embedded heterogeneous

tree walker, 119
Expressions

conditional, 16
pattern matching

multiple conditions, 17–19
pattern guard, 19

range and loop, 20–22
types, 15

Extended Backus-Naus Form
(EBNF), 99, 102, 104, 111

External DSLs
BNF (see Backus-Naus Form

(BNF))
creation, 62

ANTLR, 64
context variable, 65
delimiter-direct

transaction, 63
grammar, 62–64
parser, 66, 68
parser generator, 64
recursive descent parser, 64
semantic model, 63, 65–66
styles, 68–69
syntactic analysis, 62–63
syntax-direct translation, 63

grammar, 59–62
vs. internal DSLs, 59–60
syntax, 60–62

F
First-class function, 7
Fluent interface, 42, 46, 52, 56

command-query
separation, 50–51

function sequence, 49
side effects, 50–51
syntax, 48

Forex trading system
Account class, 165
BigDecimal, 177

Domain problem (cont.)

Index

223

currency pair, 162–164
dictionary of items, 160–161
take_profit, 174–175, 177–178

Formal language, 114
Function sequence, 49

G
Game engine

audio, 188–189
currentFrame, 194
definition, 184–185
graphic component, 189–192
GraphicsSystem, 199
ImageRegion, 194–198
implicit class, 192
playMode, 194
state machine, 186–187
structure, 181–184

General-purpose language
(GPL), 29–30, 36, 45, 51

GraphicHelper, 192–193
animation, 193
keys and events, 200–203,

205–207
UpdateCanvas, 192

H
Higher-order function, 6–7
HTTP methods, 79–80, 86–87, 89
Hypertext Markup Language

(HTML), 30, 32, 38

I
Immutable value, 3–5
Internal DSL

fluent interface, 45, 48–49
method chaining, 46–47

J, K
JavaScript Object

Notation (JSON), 80, 94–95
parser, 108, 110–111

L
Language

creation
define token, 130–131
reader class, 123

designing, 121–122
execution, 136
parser component

interpreter, 123
reader, 123
translator, 123

patterns designing
AST, 116
component, language

parser, 115
embedded heterogeneous

tree walker, 119
external tree visitor, 120
irregular heterogeneous

AST, 119

Index

224

normalized heterogeneous
AST, 118

phases, translate, 115
recursive descent lexer, 116
tree grammar, 120
tree pattern matcher, 120

semantics, 114
syntax, 114
translator creation, 132

Lexical parser, 105
Loop

do while, 22, 24
for, 20
while, 22

Loosely coupled service system, 73

M
Metaprogramming, 218
Method chaining, 46–47
Microservice (μservice)

architecture, 73
creation, web API, 87–88
definition, 73
dissection, 72
designing, REST Microservice, 86
design pillars

communication, 75–76
innovation, 77
the team, 77

DSL
coding, 91–93
filtered languages, 94

global variable technique, 92
JSON, 94–95
language.conf, 90–92
language controller, 89, 93
language page, 90
method chaining pattern, 92
routes file, 89
template, 90
text parser creation, 91

features, decision, 78
fine-grained service, 73
loosely coupled service

system, 73
play framework installation

play template structure, 84
server up and running, 85
starter project selection, 83
sbt build, 84

REST architecture, 79–82
routes file, 87
Scala design, 83
SOA, 71
solutions, 78–79

Mobile development
Android

activity class, 146
activity mobile

selection, 143
AndroidManifest.xml, 146
Android Studio, 141
application anatomy, 145
configure menu, 141
Context class, 146
project, 143–144

Language (cont.)

Index

225

Scala plug-in, 141–142
software development kit

(SDK), 140
Scala-Android application

activity class, 149
adding scala support, 148
content_main, 150
DSLs, 155–158
folder layout, 149
MainActivity.scala, 148
onStartCommand

method, 158
PracticalScalaDSL, 147
running

application, 151
services creation, 153–154
set up, Scala SDK, 148

WAP, 139
Multiline string, 12–13
Mutable variable, 3–5

N
Naming identifiers, 5
Normalized heterogeneous

AST, 118
Numerical data type, 11

O
Object-oriented

programming, 46, 48
Operating system (OS), 146
Order, 166–167

P, Q
Parser combinator, 99–102, 111, 112
Parser generator, 42
Parsing layer designing

expression builders, 51–52, 54
fluent interface, 52
functions, 54

context variable, 55
expression builders, 56
nested function, 56
object scoping, 56
reduce errors, 56
variable defined, 55

InsertUser, 52
parser, 53
parser combinator, 54
semantic model, 53
symbol table, 53–54

Pattern guard, 19
Programming language, 114

R
Read evaluate print

loop (REPL), 2–3
Recursive descent lexer, 116
Recursive descent recognizers, 115
Representational state transfer

(REST) architecture
constraints, 81–82
features

performance, 80
portability, 81

Index

226

scalability, 80
simplicity of maintenance, 81

HTTP methods, 79, 80
Ruby community, 45

S
Scala

Android app, 152
bubble sort algorithm, 5
class, 8–9
helper parsers, 100–101
method and function, 6–7
numerical data type, 11
parser, 107, 112
parser combinator

library, 98–101
singleton object, 9–10
string, 11–12
syntax, 2
variable and value, 3–5

Semantic model, 42
Service-oriented architecture

(SOA), 71, 73, 82
Simple Object Access Protocol

(SOAP), 79

Singleton object, 9–10
String interpolation, 13–14

T
Test-driven development

(TDD), 212
TradingSystem, 170–172
Translator code, 132
Tree construction, 66
Tree pattern matcher, 120
Tree grammar, 120

U, V
User recognition system, grammar

BNF, 98
definition, 98
EBNF, 99
mathematical expression, 98
operators, 99
parsing library, 101–102

W, X, Y, Z
Web Services Description

Language (WSDL), 79–80
Wireless Application

Protocol (WAP), 139

Representational state transfer
(REST) architecture (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Scala
	 Basic Syntax
	 Variable and Value in Scala
	 Naming in Scala
	 First Example in Scala
	 Define a Method and Function in Scala

	 Classes in Scala
	 Singleton Object
	 Types in Scala
	 Converting Numeric Types
	 String in Scala
	 Multiline String
	 String Interpolation

	 Expressions in Scala
	 Conditional Expression
	 Pattern Matching Expression
	 Multiple Conditions
	 Pattern Guard

	 Range and Loop
	 Other Loops

	 Data Structures
	 Array
	 List
	 Set
	 Tuple
	 Map

	 Summary

	Chapter 2: Introduction to DSL
	 Definition of DSL
	 Difference Between Internal and External DSLs
	 Designing a Good DSL
	 Analyze the Domain
	 Creating a Common Dictionary

	 Sample DSLs
	 DSL Goals
	 Implementing a DSL
	 Grammar and Data Parsing
	 First DSL Implementation
	 Common DSL Patterns

	 Conclusion

	Chapter 3: Internal DSL
	 Creating an Internal DSL
	 Method Chaining
	 Creating a Fluent Interface

	 Designing the Parsing Layer
	 Design the Parsing Layer Using Functions
	 Conclusion

	Chapter 4: External DSL
	 Internal DSLs vs. External DSLs
	 Grammar and Syntax
	 Creating an External DSL
	 Producing the Output
	 What Is a Parser?
	 What Style of DSL to Use

	 Conclusion

	Chapter 5: Web API and μService
	 What Is a μService
	 Communication
	 The Team
	 Innovation

	 When to Use Microservices
	 REST Architecture
	 Designing Microservices in Scala
	 Installing the Play Framework
	 Designing the REST Microservice
	 Creating a Microservice in Play
	 Our Own DSL Microservice

	 Conclusion

	Chapter 6: User Recognition System
	 Grammar
	 Scala Parser Combinator Library
	 A Simple Sample Parser

	 Defining a Domain Problem and the Grammar
	 Preparing the Parser
	 Describing the Parser
	 Improving the JSON Parser

	 Conclusion

	Chapter 7: Creating a Custom Language
	 What Is a “Language”?
	 Patterns for Designing a Language
	 Designing the Language
	 Creating the Language
	 Creating the Reader Class
	 Defining the Token

	 Creating the Translator for the Language
	 Executing the Language
	 Conclusion

	Chapter 8: Mobile Development
	 Introduction to Mobile Development in Android
	 Starting with Android Development
	 Anatomy of an Android Application

	 Our First Scala-Android Application
	 Creating Services in Android
	 Defining Our DSLs

	 Conclusion

	Chapter 9: Forex Trading System
	 What Is a Forex Trading System?
	 Designing the DSL System
	 Implementing the System
	 Improving the Basic Class
	 Creating the Order
	 Why It Is Important to Design a Good API

	 Designing the New DSL API
	 Consuming the First API
	 Improving the API
	 Adding the Last Functionality

	 Conclusion

	Chapter 10: Game Development
	 Game Team Structure
	 Engineering Team
	 Artist Team
	 Other Actors Involved
	 Producer
	 Marketing and Customer Service
	 Game Designer

	 Definition of a Game Engine
	 Designing Our New DSL Game Engine
	 Defining the Generic Component
	 Other Components

	 Conclusion

	Chapter 11: Cloud and DevOps
	 What Is DevOps?
	 Common DevOps Practice
	 Start with AWS
	 Deployment and Build in AWS
	 Creating the Project in AWS
	 Creating the Basic Files
	 Creating the Build File

	 Final Conclusion

	Index

