
Practical
Webix

Learn to Expedite and Improve your
Web Development
—
Frank Zammetti

www.allitebooks.com

http://www.allitebooks.org

Practical Webix
Learn to Expedite and Improve

your Web Development

Frank Zammetti

www.allitebooks.com

http://www.allitebooks.org

Practical Webix

ISBN-13 (pbk): 978-1-4842-3383-2			 ISBN-13 (electronic): 978-1-4842-3384-9
https://doi.org/10.1007/978-1-4842-3384-9

Library of Congress Control Number: 2018936351

Copyright © 2018 by Frank Zammetti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484233832. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Frank Zammetti
Pottstown, Pennsylvania, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3384-9
http://www.allitebooks.org

This is my ninth book, and with each one it has become more difficult
to find people to dedicate them to. This time around, though, it was
fairly easy because I realized that I’ve missed a whole host of people

who influenced my life and career in computers in a major way
without them even knowing it. So, this one goes out to the following
individuals, without whom I’d probably be pumping gas or digging

ditches (not that there’s anything inherently wrong with those
vocations—work is work!):

Ian Williamson, Chris Curry, Jim Westwood, and Clive Sinclair

Steven T. Mayer, Joseph C. Decuir, Jay G. Miner, Douglas G. Neubauer,
George McLeod, Ronald E. Milner, Francois Michel, Mark Shieu, Steve

Stone, Steve Smith, Delwin Pearson, and Kevin McKinsey

Jack Tramiel, Chuck Peddle, Robert Russell, Bob Yannes,
Al Charpentier, Charles Winterble, Yash Terakura, Shiraz Shivji,

and David A. Ziembicki

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Table of Contents

Chapter 1: �Better Web Development with Webix��� 1

Web Development: The Toddler Years�� 1

Web Development: The Teen Years�� 2

Web Development: Blossoming Adulthood?��� 3

So, Uh, What Is Webix Exactly?�� 5

Why Webix?�� 11

Multiple Editions to Choose From�� 13

Online Tools�� 16

Code Snippet�� 16

Form Builder��� 19

Skin Builder�� 21

Getting Started��� 22

The NPM Way��� 22

The “Direct” Way�� 24

Fisher-Price’s My First Webix App�� 24

Summary��� 31

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: �Getting to Know Webix��� 33

How to Structure a Webix App��� 33

Webix Jet�� 39

Widgets, Controls, Complex Widgets, and Extensions�� 43

Components��� 43

Widgets��� 44

Specialized Widgets��� 44

Complex Widgets�� 44

Controls�� 45

Extensions�� 45

Layouts��� 45

The Basics of Layout�� 46

Specific Layout Components��� 53

abslayout�� 53

accordion�� 55

carousel�� 58

datalayout��� 60

multiview�� 62

portlet��� 64

tabview��� 68

toolbar�� 69

Summary��� 71

Chapter 3: �Getting to Know Webix Even More!�� 73

Forms and Data Entry Controls�� 73

form�� 76

htmlform��� 78

button��� 80

checkbox�� 81

toggle��� 82

colorpicker�� 82

combo��� 82

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

counter��� 84

datepicker�� 84

daterangepicker��� 87

dbllist�� 88

fieldset�� 89

icon��� 89

label�� 89

multicombo��� 89

multiselect�� 90

multitext��� 91

radio��� 91

segmented�� 91

select�� 92

richselect�� 92

slider��� 93

rangeslider��� 93

text��� 94

search��� 94

textarea�� 94

richtext��� 95

forminput�� 95

The Basics of Data��� 97

Loading Data from an External Source��� 97

Dynamic Data Loading�� 98

DataStore�� 98

Proxies�� 99

Specialized Data Components��� 101

chart��� 101

datatable�� 106

dataview��� 109

list��� 111

grouplist��� 113

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

unitlist��� 115

property�� 117

tree��� 118

treetable��� 121

treemap�� 123

gage�� 125

bullet�� 127

organogram�� 128

rangechart�� 130

Summary��� 132

Chapter 4: �Webix: The Final Frontier��� 133

Context Components�� 133

context and contextmenu��� 133

menu�� 136

popup��� 139

sidemenu�� 140

tooltip��� 143

window��� 144

New Concept: “Other”�� 145

HTML-Oriented Components�� 147

iframe��� 147

scrollview��� 148

template��� 150

Specialized Widgets��� 152

calendar�� 152

colorboard�� 152

excelviewer�� 152

google-map�� 154

video��� 156

barcode�� 158

daterange��� 158

pdfviewer�� 159

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

Premium Components�� 160

filemanager�� 161

kanban�� 162

pivot�� 163

scheduler�� 164

spreadsheet�� 165

Strutting with Style�� 166

Skins��� 169

Drag and Drop�� 170

Extensibility and Integration Points�� 173

Integration with jQuery��� 173

Integration with Third-Party Libraries�� 175

Summary��� 178

Chapter 5: �Getting Practical: Building wxPIM��� 179

First Things First: What’s a PIM, and What’s wxPIM?��� 179

High-Level Code Structure��� 182

index.html�� 183

core.js�� 186

Preamble�� 187

Constructor��� 187

Lifecycle Event Function: start()��� 189

Lifecycle Event Function: launchModule()�� 189

Utility Function: sortArray()��� 191

Utility Function: objectAsArray()��� 192

Module Helper Function: getModuleData()��� 192

Module Helper Function: saveHandler()�� 194

Module Helper Function: deleteHandler( )��� 196

animate.css�� 199

core.css�� 200

baseLayout.js��� 201

mainHeader.js�� 201

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

x

multiView.js�� 203

sideMenu.js�� 203

dayAtAGlance.js��� 206

getDayAtAGlanceConfig()�� 206

getAtAGlance()�� 207

Summary��� 210

Chapter 6: �Getting Practical: Building wxPIM Redux�� 211

Modules: Basic Structure��� 211

Notes.js�� 213

Constructor, activate(), and deactivate()��� 216

getUIConfig()��� 216

newHandler()�� 221

editExisting()��� 222

refreshData()��� 223

Tasks.js�� 224

Constructor, activate(), and deactivate()��� 227

getUIConfig()��� 227

newHandler()�� 231

editExisting()��� 232

refreshData()��� 233

Contacts.js��� 235

Constructor��� 237

activate() and deactivate()�� 238

getUIConfig()��� 238

newHandler()�� 245

editExisting()��� 246

refreshData()��� 248

validateFormsOnChange()�� 249

Appointments.js��� 249

Constructor��� 251

getUIConfig()��� 252

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

xi

activate() and deactivate()�� 257

newHandler()�� 257

editExisting()��� 258

refreshData()��� 259

selectDateHandler()�� 260

Summary��� 263

Chapter 7: �Taking wxPIM to the Desktop��� 265

First, Let’s Fix a Few Things!��� 265

Changing the Base Layout�� 268

Now the Fun Stuff: Day-at-a-Glance Changes�� 269

Letting a Module Provide Day-at-a-Glance�� 271

“Desktop-ization”: A Window unto the World�� 272

Modifying the Header��� 276

Modifying the sidemenu��� 278

The Big Change: Module Launching��� 279

Switching Modes�� 284

Module Changes: Notes�� 286

Module Changes: Contacts��� 287

Module Changes: Appointments��� 290

Getting Responsive with It: Tasks�� 290

A Few Leftover Bits: saveHandler( ) and deleteHandler( )��� 297

Summary��� 298

Chapter 8: �Taking wxPIM to the Cloud�� 299

Building a Server with Node…Wait, What’s Node?��� 299

Getting and Installing Node�� 301

My First Node Server�� 305

Node’s Partner in Crime: NPM�� 307

Taking a Very Active Break with REST�� 310

Hurry It Up, Kid: Express It!��� 311

Third-Party Data Help: NeDB�� 312

Table of Contents

xii

Writing the Server�� 314

(C)RUD: Create (POST Handler)��� 317

C(R)UD: Read (GET Handler)�� 319

CR(U)D: Update (PUT Handler)�� 321

CRU(D): Delete (DELETE Handler)�� 321

And, As an Added Bonus…�� 322

Hooking wxPIM Up to the Server��� 324

Modules: A Small but Necessary Change��� 324

Starting a Little Differently��� 325

Before You Go Any Further, Let’s Talk About Good Ol’ AJAX�� 326

Back to That getAllData( ) Method�� 327

Saving to the Server��� 331

Deleting from the Server�� 333

Summary��� 335

Chapter 9: �Packaging wxPIM with PhoneGap��� 337

The Problems with Mobile Development��� 337

Fragmentation of User Experience��� 338

Fragmentation of Features��� 339

Fragmentation of Development Tools��� 339

Enter the White Knight: PhoneGap��� 340

What Is It?��� 340

A Brief History of PhoneGap��� 341

How Does This Black Magic (Basically) Work?��� 342

A Simpler Build Approach: PhoneGap Build��� 343

Get Ready: Signing Up�� 343

Get Set: The Configuration File��� 346

Go: Starting the Build�� 348

Crossing the Finish Line: The Output Files��� 349

Getting Files onto Your Device��� 350

Deploying to Android Devices��� 350

Deploying to iOS Devices�� 351

Table of Contents

xiii

A Few Necessary Code Changes and Enhancements�� 352

Summary��� 357

Chapter 10: �The Fun Side of Webix: A Game!�� 359

The Story So Far�� 360

The Basic Layout�� 361

Basic Application Architecture��� 362

index.html�� 364

main.css��� 365

main.js��� 366

Over and Over Again: run( )��� 371

Up and Down: keyHandler( )�� 374

When Worlds Collide: collision( )��� 374

To and From: transferEnergy( )�� 377

Making It Worth It: adjustScore( )�� 379

Winning: blowUpAllEnemies( )�� 379

Object Orientation for Fun and Profit: The Game Object Hierarchy�� 381

GameObject.js�� 381

Pixar Would Be Proud: loadFrames( )�� 383

Make It Move: animate( )�� 385

Yes, I See You: show( )��� 386

Playing Hide (But Not Seek?): hide( )�� 386

A Little Randomness in Your Day: randomlyPosition( )��� 387

Go Where I Tell You: moveTo( )��� 388

Crystal.js�� 389

Planet.js��� 390

Explosion.js�� 391

Enemy.js��� 392

Player.js�� 396

Summary��� 400

�Index�� 401

Table of Contents

xv

About the Author

Frank Zammetti is a veteran software developer/architect of nearly 25 professional

years and another almost 15 on top of that of nonprofessional development work. He has

written eight other technical books for Apress and has served as a technical reviewer for

other publishers. Frank is also a fiction writer, though he’s still on the hunt for an agent to

represent his work. (Hey, if you happen to be an agent and you just happen to be on the

lookout for new talent and you just happen to be reading this…just sayin’!)

xvii

About the Technical Reviewer

Toby Jee is a software programmer currently located in Sydney, Australia. He loves

Linux and open source projects. He programs mainly in Java, JavaScript, TypeScript, and

Python. In his spare time, Toby enjoys walkabouts, reading, and playing guitar.

xix

Acknowledgments

I would like to acknowledge all of those who helped bring this book to reality at Apress,

among them Nancy Chen, Louise Corrigan, James Markham, and Dhaneesh Kumar

(and to anyone else not listed, I heretofore acknowledge you as well). Thanks, folks. I just

write the words; in my opinion, you all do the actual hard work!

I’d also like to acknowledge my technical reviewer, Toby Jee. This is actually the first

book, if memory serves (which it frequently does not these days, but I’m pretty sure

about this!), that I haven’t had the same tech reviewer (not for any specific reason; it’s

just the way things go). Toby did, in my estimation, an excellent job throughout on his

first tech reviewer job. Thanks, Toby!

Finally, I’d like to acknowledge XB Software, creators of Webix. Aside from creating

an excellent product, they helped me a number of times during the writing of this book

with issues (Maksim Kozkuhk, Nick Maksimenko, and Tasiana Drozd specifically) and

also graciously provided me with a Webix Pro license to use. Thank you, all. I very much

appreciate it!

xxi

Introduction

Creating a modern web app is tough. There are so many different technology choices, so

many different approaches, and so many different architectures, theories, and methods.

You can even forego all of that and just use “naked” HTML, CSS, and JavaScript. The

decisions can drive even an experienced developer nuts in short order!

I’ve been doing this exact thing for two decades now (seriously!), so I’ve seen it all,

many times over. One of the key things I’ve learned is that simplicity is one of the most

important considerations. Simplicity is easier to maintain, and writing maintainable

software is a key aspect of professional development.

So, when I stumbled upon Webix, I was immediately smitten with its simplicity! It

allows you to do some pretty advanced things with a minimum of code. It also doesn’t

require a big, complex toolchain nor does it require you to learn a bunch of specialized

domain-specific languages. It’s basic HTML, CSS, and JavaScript against a generally

clean API, and that’s about it!

In this book, I’ll take you through the many capabilities that Webix brings to the

table. We’ll explore things such as application architecture, the widgets that Webix

provides, and the components that you can build a user interface from. Eventually,

together we’ll build a real application using Webix, but before then you’ll have a solid

foundation of knowledge from which to build upon.

In keeping with the title of this book, the application we’ll build will be very practical,

meaning it won’t be some grossly simplified, dumbed-down, and contrived example. It’ll

be a real app, and along the way you’ll see many aspects that went into its development,

including in some cases the problems I faced in putting it together and the solutions I

came up with! In doing so, you’ll get solid, hands-on experience with using Webix in a

real-world way—a way that will prepare you for building your own apps later.

You’ll also learn some things tangential to building the app including how to make it

a mobile app using the popular PhoneGap (Cordova) library and how to build a server

for the app to interact with. See, it’s practical, not just some pointless sample that will

leave you wanting for more!

xxii

On top of that, you’ll get a bonus second app that’s drastically different from the

first: a game! Yes, we’ll build a game together using Webix, if for no other reason than to

highlight some other capabilities of Webix that the first app won’t necessarily touch on.

A game may not be quite as “practical” in a sense, but games sure are fun to make, and a

little fun never hurt nobody!

If you were a computer person in the 1980s, then you’re quite familiar with typing in

20 small-print magazine pages of machine code to play a game. You certainly could do

that with this book, but that would be a lot of typing! So, before you get started, I suggest

you head over to the Apress web site, search for this book, and grab the source code

bundle from there. That should give you everything you need to follow along without

having to type your fingers raw! That said, don’t forget that the best way to learn anything

is by doing, so definitely get in there and hack at the example code and see what happens

when you make changes. I think before long you’ll realize that because of the power

Webix provides, small changes can make big differences in what winds up on the screen.

So, get ready for what I hope you’ll find to be an enjoyable and informative ride

through the land of Webix (and other stuff) that will be a rewarding experience!

Introduction

1
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_1

CHAPTER 1

Better Web Development
with Webix
To paraphrase a well-known expression, web development has come a long way, baby!

It’s been a long road getting from there to here, from the “dark days,” when web

development was all about getting the best 15-year-old prodigy you could find to hack

HTML for you, to now, where legions of professional developers create advanced,

complex apps on the Web.

Before we get to Webix, the pièce de résistance of this book, let’s take a quick look

back to see where we’ve been and where we as web developers are in the process of

going.

�Web Development: The Toddler Years
In the dark ages, many eons ago (you know, the mid-to-late 1990s!), web development

was really pretty easy. You had static, unchanging HTML files sitting out on a web server

somewhere. These pages linked together via hyperlinks (the H in HTML, of course), and

that’s about all the Web was. Even things like graphics and other media were just starting

to hit the scene at that time (raise your hand if you remember when Gopher was the way

you accessed content rather than the Web!). For a developer, it wasn’t much harder than

firing up your favorite text editor, entering some HTML by hand, and pushing it out to

the server via FTP or something similar.

Before long, developers realized they needed to introduce some degree of

interactivity to the mix. This took several forms to start, but Common Gateway Interface

(CGI) was one of the earliest and most famous. This mechanism let the web servers of

the day execute small programs on behalf of the client requesting a page. The output

from these programs was typically inserted into an HTML document to provide for

2

some portion of it to be dynamic. Maybe that meant inserting markup to show a list of

products, how many visitors the page had over the past week, or myriad other things.

The big point was that it was the server that did the dynamic work. Every time some

content had to be generated or some user interaction handled, a request had to be made

to the server.

Eventually, the limitations of CGI became apparent (most notably the fact that it was

typically a one-request-at-a-time deal and so performance suffered when the number

of incoming requests increased too much), so dynamic server languages were created.

Things like Microsoft’s Active Server Pages (ASP) and Sun’s Java servlets came about,

among many others whose time mostly came and went quickly.

But, again, that key point remained: the server was doing the work of executing code.

The client simply displayed the content that the server created.

�Web Development: The Teen Years
At roughly the same time, JavaScript came on the scene. A creation of Brendan Eich (in

just ten days, unbelievably!), JavaScript provided developers with the ability to have

dynamic elements on their sites without the need for the server to do the work. No

longer did you need the server to do all the heavy lifting; the client itself could do some

of it by generating content or altering existing content.

There was a lot of experimentation that went on during that time and a lot of lessons

learned. One of the biggest that people began to realize quickly was simply that the Web

could do more than just simple static web pages or even dynamic content (which, in

many ways, still looked like static content to the end user). Developers started to realize

that what we had was, in fact, a platform to build applications on. There was a fair bit of

consternation about this at first and a lot of doubt about whether building applications

was possible with HTML and JavaScript. There was a lot of debate about whether the

classic model of having the server do everything was still better or not either way (and

frankly, that debate is still going on today in some circles). There was a lot of testing the

limits to see just how far this web app thing could be pushed, and that went on for quite

a few years.

Building a complex graphical user interface (GUI) with JavaScript at that point

in time was an exercise in frustration and you had to code everything yourself, not to

mention all the differences between browsers that you had to cope with. There wasn’t

the plethora of libraries, frameworks, toolkits, and developer tooling that we have in the

Chapter 1 Better Web Development with Webix

www.allitebooks.com

http://www.allitebooks.org

3

JavaScript world today that dealt with a lot of those details for you. While the situation

today can often be overwhelming and overly complicated when you face the plethora

of options available, if you lived through the other extreme where you did almost

everything yourself, then you realize neither is a perfect world, though the world today is

in most respects better for developers.

The key thing is that this period, as developers started to fully realize what the Web

was capable of, what could be built on top of it, was a sea change, and it was a big step

toward the Next Big Thing.

�Web Development: Blossoming Adulthood?
That big thing—something that really altered the landscape and represented a real

paradigm shift in web development—was the single-page app (SPA).

This history of SPAs is somewhat difficult to nail down, though the origin of it seems

to have been about 2003. Though, people undoubtedly were doing SPAs before then

even if they weren’t calling them that (or indeed even thinking they were some new,

extraordinary architecture). I can say this with complete certainty because in 1999.

I wrote an application for my employer at the time that we would recognize today as an

SPA. Had I thought I was doing something special, I might have thought to publicize my

work and maybe would be a lot richer and more famous than I am (which is to say not

really at all on either count!). Unfortunately for me, it simply seemed like the right way to

write a complex web app that looked and functioned more like a desktop app of the time

than a web site of the time, and I know I couldn’t have been the only one doing it around

that time.

What makes SPAs so special? Well, one thing is what I just alluded to: they allow you

to create a web app that looks, feels, and functions much more like a typical desktop app.

When you get to a point where users almost don’t realize that they’re using a web app at

all, then you’ve reached the ultimate goal where the delivery platform no longer matters;

it just becomes an implementation detail.

RIAs are dead, long live RIAs! A nother term you might have heard is Rich
Internet Application (RIA). This term seems to have fallen out of favor in recent
years, but it effectively means what SPA means today. You can generally treat them
as synonymous, though you probably won’t hear RIA as much anymore.

Chapter 1 Better Web Development with Webix

4

All of this was made even more difficult by the advent of mobile devices. Nowadays,

a web app needs to work on mobile devices as well and across the huge range of such

devices that are out in the wild. No longer is it sufficient for your app to work on a

desktop PC only. This has proven to be a huge challenge for developers because there

are differences that need to be accounted for that are very tricky. Screen size is the

obvious one, but just as big is interaction. Mobile devices today are nearly always touch-

oriented, whereas desktop PCs are just now starting to incorporate touch as a common

feature (and even if you’re talking about laptops, where touch is more prevalent, it’s still

not the primary interaction model most of the time). Writing an SPA that works well on

both desktop and mobile devices is a tough challenge to deal with and have the results

be good for all cases (and all of that ignores devices such as tablets that often straddle the

line between mobile and desktop from a development standpoint).

One thing that is critical to allowing for SPA development, especially when the need

for mobile exists, is a user interface (UI) toolkit. There are lots of options, including

Dojo, ExtJS, jQuery UI, and Angular components, just to name a few. The reason this

is so important is it makes developing a modern SPA immeasurably easier. Remember

all those years of trial and error and of building everything from scratch yourself that

I mentioned earlier? Well, all the lessons learned during that time have evolved into

modern UI toolkits, frameworks, and libraries thanks to many smart people who went

through that period. These tools provide power and flexibility that’s hard to achieve on

your own while also mostly abstracting away the ever-present browser differences that

can still present huge roadblocks during development.

What’s the difference between a library, toolkit, and framework? T his is
a frequent question that developers ask, and there isn’t necessarily a definitive
answer, at least not completely. The difference between a library and a framework
is relatively concrete and can be simply described via the Hollywood principle that
says “Don’t call us, we’ll call you.” A library, like the ever-popular jQuery, puts your
application code in control. You call it to perform functions. A framework, of which
Angular is a well-known example, is more like Hollywood in that it calls your code
and is essentially in control at execution time. Inversion of control is sometimes
invoked to describe the difference too: control is inverted with a framework to
the extent that your own code isn’t in control (largely); the framework’s code is.
A toolkit, by contrast, is somewhat nebulous and doesn’t have a clear, definitive

Chapter 1 Better Web Development with Webix

5

definition. However, it has nowadays come to be synonymous with the term UI
toolkit, which basically means a library that is specifically focused on providing UI
elements.

Each presents a different way of doing things, sometimes vastly different.

Framework7, for example, is a toolkit that takes a web page that contains special markup

elements and then parses it on the fly and creates a rich UI from it. You as a developer

write HTML, but the actual HTML that the browser renders at runtime is generated by

Framework7; your own HTML is transformed into the final HTML in other words. Many

toolkits use this model today.

An entirely different model is one that ExtJS is famous for, and that’s a model that

is very JavaScript-centric. Instead of writing HTML, you write JavaScript in the form,

largely, of JavaScript Object Notation (JSON) objects that describe the UI you want and

that is then handed off to ExtJS, which uses it to generate the markup required to show

the UI you described. You don’t end up writing very much HTML yourself with this

model.

This UI toolkit area is where Webix comes in.

�So, Uh, What Is Webix Exactly?
Simply put, Webix is an HTML5/CSS3-based UI toolkit that helps you build complex and

dynamic web apps that are cross-browser and even cross-platform. That means your

Webix-based apps will work consistently in virtually any modern browser on virtually

any modern platform, including mobile devices. Webix provides a robust set of UI

components that provide all the standard things you see in modern UIs including rich

form controls, grids, scrolling lists, calendars, charts, layout elements (tabs, accordions,

etc.), and so on. Also, it provides a strong collection of more general-purpose functions

that are frequently needed when developing SPAs.

Webix is very fast and lightweight, so performance is virtually never a concern.

As if that weren’t enough, Webix offers several useful online tools (Skin Builder, Form

Builder, and the Code Snippet “playground”) as well as integration with many third-

party libraries and frameworks.

In short, Webix provides virtually everything you need to build a modern SPA and, as

you’ll see soon, does so while being incredibly easy to use, with a very low bar to getting

started with.

Chapter 1 Better Web Development with Webix

6

A little history  Webix is the product of IT outsourcing company XB Software
in Minsk, Belarus. The initial public release of Webix was in July 2013, and since
then, a new version has been released every two to three months, enhancing the
library significantly with each release.

Take a look at Figure 1-1. This is your first look at Webix!

Figure 1-1.  The Webix airline reservation manager sample app

Chapter 1 Better Web Development with Webix

7

This is one of the demos you’ll find on the Webix site (webix.com); it’s an airline

reservation system manager. You can see quite a few things right away, listed here:

•	 Webix offers a clean, modern look. In fact, one of the best things

about Webix is the skinning ability it provides that is easy to work

with and customize while providing a lot of flexibility to make your UI

look the way you want and need.

•	 Webix offers all the types of form controls you’re used to, plus maybe

a few that are less common, and it has robust grid capabilities, which

is a staple of modern GUIs.

•	 Webix provides a layout system that allows you to realize any

organizational structure you want. It also provides, optionally, user

control (being able to collapse the Register panel on the left, for example).

In Figure 1-2 you can see another example of what Webix can do.

Figure 1-2.  The Webix trade manager sample app

Chapter 1 Better Web Development with Webix

8

This sample app is a trade manager for processing financial trades. In it, you can see

a few more features Webix has to offer, listed here:

•	 More advanced data table capabilities such as real-time filtering (on

the Employee and Customer columns) and data ordering (clicking

any column header sorts the data)

•	 A tabbed interface structure, one of the most common layout

techniques

I’d like to mention at this point that you should visit the Webix site as soon as

possible. As you work with Webix, you’ll be visiting it a lot because there are tons of

resources to help you, including the API reference, which you’ll naturally spend a lot of

time looking at. Of course, being a great resource is the aim of this book too, but a good

developer uses every resource at their disposal, and the Webix site is one such excellent

resource. One of the things you’ll find is the nice set of demos showcasing the kinds of

things you can do with Webix that I’m showing you here (there are in fact more than I’ve

shown here). It’s always nice to be able to play with the demos, though, and see them

in action, something that of course isn’t possible on the printed page (contrary to what

seemingly every sci-fi movie tells us we should have by now!). Despite that technological

shortcoming, I’ll show you two more of the demos now, starting with Figure 1-3.

Chapter 1 Better Web Development with Webix

9

This time, you see a typical dashboard page with features such as the following:

•	 Charts and graphs (there are many types available)

•	 A portal-like interface structure

•	 Icon features and other interface elements such as collapsible

sections (which can be applied to many different Webix components

in various ways)

Figure 1-3.  The Webix dashboard sample app

Chapter 1 Better Web Development with Webix

10

Finally, Figure 1-4 shows some features that are available with a Webix Pro

pack. (Don’t worry, I’ll explain what that means in the next section, but for now just

understand that it means you may or may not be able to do what this demo shows.)

Here you can see the map capabilities, which highlight the integration with third-

party components that Webix offers (because as good as Webix is, sometimes it isn’t

enough and you need some help from “outside,” and Webix allows for that nicely, as

you’ll see later).

Ideally, at this point, you’re starting to think “Hey, this Webix thing looks pretty cool!”

and are starting to think it might be something you want to use (although I assume you

already thought that given you bought this book to learn about Webix, but I digress).

Choosing a UI toolkit is a decision that has many factors, though, and I’d like to tell you

some of the reasons I’ve chosen Webix for my projects. These are some of the things I

personally consider to be among its biggest strengths and the things I’ve seen that make

me such a fan of it.

Figure 1-4.  The Webix geo explorer sample app

Chapter 1 Better Web Development with Webix

11

�Why Webix?
With so many choices out there these days, why might you want to choose Webix?

Everyone has different priorities, of course, but here are a few that I personally view as

being big pluses in Webix’s favor:

•	 There is some excellent documentation available for it. It is

well-written (for the most part) and covers all the bases. Need a guide

for using a particular component? That’s available. Want to look

up methods available for a given component? There’s a robust API

guide for that. Want a more learning-oriented lesson on how to do

something a little more general, say, communicating with a server?

Webix has you covered! It’s all organized extremely well and is easy to

find and navigate on the Webix web site.

•	 It’s simple. This will be a recurring theme throughout this book

because I’ve worked with many libraries, frameworks, and toolkits

over the years, and Webix is truly one of the easiest I’ve ever used.

It’s incredibly simple to get started with (which you’ll see shortly!)

and easy to work with. An essential part of this is that it nearly always

works like you expect it to; there are minimal surprises when working

with Webix. There’s also a fantastic consistency to its API, which

means that even if you aren’t sure how to do something, given a little

experience you’ll frequently be able to guess the answer because

you’ve seen something similar with Webix before. Once again, few

surprises! I’ve had this experience many times while using it:

“Hmm, how do I X?” (Maybe X is “tell if a button is visible.”)

Then a few seconds of head-scratching later…

“Oh, I bet it’s Y.” (And Y is “a method named is Visible().”)

Then a few seconds of typing later…

“Yep, it was Y, just like I guessed!”

Especially if you haven’t had a lot of experience using lots of

different libraries, then you may not realize how unusual such a

conversation with yourself is, but I promise you, it doesn’t happen

as often as you’d hope with all JavaScript libraries.

Chapter 1 Better Web Development with Webix

12

•	 It has proper mobile support. One of the problems I’ve have dealt with

over the years is writing an app that works well on desktop and mobile

devices. If you have any experience at all with that, then you too will

know that it frequently means having to write a whole lot of separate

code, some targeted to the desktop and some to mobile, essentially

doubling your development effort. The advent of responsive design

has alleviated some of that pain, but there’s still plenty of it, especially

for more robust web apps. An excellent aspect of Webix, though, is

that a UI written with it will, for the most part, work well on mobile

as well as desktops. Now, to be fair, you do still sometimes have to

do some branching and writing some amount of “duplicate” code

to get everything just the way you want. But, Webix has developed

all its components to work on mobile and desktop equally well, so a

single UI can mostly be written that works on both with a minimum of

duplication of effort. Frankly, few competitors I’ve ever seen can make

that claim, and it’s a big advantage for Webix in my view.

•	 It is comprehensive. There’s a debate raging these days about whether

a single library is sufficient or whether a polyglot “choose whatever

is needed and combine it with everything else” approach is best. I’ve

frankly worked both ways, and as a result, I’ve become convinced

that one monolithic library is better. However, realizing that vision is

extremely difficult because few libraries are comprehensive enough

to cover all the bases, or enough of them at least to make that vision

work. In years past, the number of choices that met this criterion was

small enough that you could count them on one hand, but these days

there are more good options, and Webix is one of them. Aside from

the rich set of UI components it offers, Webix has enough “helper”

functions that you probably won’t need to go outside of it very often.

As I mentioned earlier, there are some integration capabilities that

Webix offers, both to bring in other libraries and use them within

Webix and also to use Webix within larger frameworks like Angular, so

you certainly can when needed go outside Webix. But, my experience

tells me that the amount you truly need to go outside Webix will

generally be less than with many other options out there, and I view

that as a big plus when it comes to long-term maintenance, something

professional developers worry a great deal about.

Chapter 1 Better Web Development with Webix

13

I presume you’re convinced now that Webix is an excellent choice! So, what offerings

are available exactly?

�Multiple Editions to Choose From
Webix is available in several editions, or packs in Webix parlance. Here is an instance

where I’m going to be a bit lazy: Figure 1-5 shows what the Webix web site says about the

available packs.

Figure 1-5.  The Webix editions table

The big differentiator in the packs, aside from the obvious of cost, is how many

developers your license covers. Another difference is which of the complex widgets

(which you’ll look at in the next chapter, but for now think of them almost as applications

unto themselves) you have access to (if any) and what type of support you have access to.

(for the Individual License pack, you don’t get any complex widgets by default; they

need to be purchased separately if you want them.) The Unlim Pack also offers a few

additional services such as live support chat and integration auditing.

In addition to these packs, Webix is offered for free as Webix Standard (as opposed

to any of the paid licenses, which are considered “Webix Pro”) and is covered under the

GPLv3 open source license. Standard lacks some things that the Pro packs provide, and

again, I’ll let the Webix site show that; see Figure 1-6. (Note that the details on the site

Chapter 1 Better Web Development with Webix

14

can and do change with each subsequent version as new components are added. In

fact, I can no longer find this information on the Webix web site as this chapter went to

print, but as far as I can tell, it’s still fundamentally valid.) Also note that the Webix web

site does not list the Standard version alongside the Pro licenses, and you have to dig

around the site just a little bit to find it. (This is a company after all, and its raison d’être is

to make money, so that’s to be expected.) At the time of this writing, you’ll find an Open

Source section below the table shown in Figure 1-5 (which you can access by clicking the

Pricing link on the site) that leads to the Standard download link.

Figure 1-6.  Open source (Standard) versus Pro versions

As you can see, the number of widgets and controls you get with Standard is reduced,

and you get none of the complex widgets or additional data table functionality. You

also cannot save and restore application state, which means that when the user resizes

components, if your design allows that, you can’t save those customizations and restore

them when your app is relaunched. Note that this does not have anything to do with the

Chapter 1 Better Web Development with Webix

15

ability to work with data; that is entirely intact in Standard. Pro also offers additional

capabilities regarding styling and customizing your app as well as additional localization

support.

What do you really miss out on by not going Pro?  So, what exactly do you
lose by not having a Pro license? Well, in terms of widgets and controls, you
lose these 21 (as of the time of this writing): barcode, bullet graph, check
suggest, data view suggest, date range, date range picker, date
range suggest, excel viewer, gage, grid suggest, maps, multicombo,
multiselect, multisuggest, multitext, organogram, PDF viewer,
portlet, range chart, treemap, and query builder. You know what some
of these are I’m sure, but don’t worry if you don’t because you’ll see them over the
next two chapters. 

Regarding lost data table functionality, with Standard, you can’t use the following:
advanced filtering, area selection, colspan and rowspan, grouped columns, header
menu, subrows/subviews, and vertical/rotate headers. 

At the time of this writing, there were five complex widgets that you can’t use with
standard: pivot, kanban, file manager, scheduler, and spreadsheet. 

Finally, as far as those additional styling and customization features go that you
only get with Pro, those are custom scrollbars and formatted text inputs.

As you can see, there’s a good bit that Pro provides (and don’t forget the added

support, which is a must for “professional” development). But, Standard still gives you

more than enough for a significant number of purposes, so if you don’t mind the GPLv3

caveat, then you can save some money for sure.

In fact, for the purposes of this book, or at least the purposes of developing the

application in Chapters 4–8 (and the second app in Chapter 9), Standard is all that is

needed. In Chapters 2 and 3, I’ll show you many of the things you get only with a Pro

license, but these won’t be necessary for the remainder of the book.

Chapter 1 Better Web Development with Webix

16

�Online Tools
In addition to what you get with Webix physically, meaning when you download the

Webix code to use in your project, Webix offers several online tools. These tools are

always available to anyone for free. In fact, they are an excellent way of experimenting

with Webix without having to download anything, install anything, or purchase anything.

One of the tools I especially think is one you’ll find yourself using in many cases is

the first one we’re going to look at now: Code Snippet.

�Code Snippet
Code Snippet is an online playground of sorts that lets you mess around with Webix code

without having to download anything and without having to do all the boilerplate code

that goes along with any kind of web development. Figure 1-7 shows what Code Snippet

is all about.

Figure 1-7.  Online tool Code Snippet

Chapter 1 Better Web Development with Webix

17

When you first launch Code Snippet, this is what you’ll see. As a helpful starting

point, it even gives you a snippet of code that works! To use Code Snippet, you enter

JavaScript code in the upper-left section and HTML (optionally) in the lower left.

Then, on the right, what you enter is interpreted in real time, and the UI you specify is

produced. Code Snippet even provides some preconfigured data sources that can be

used with the components that display data, as in the data table shown here (clicking the

Options button there provides a list of the data sources available).

Note that what you see on the right is a real UI at this point, meaning you can interact

with it fully. As you make changes to the code, the UI is automatically rebuilt, so you

don’t even need to publish or click a build button or anything like that (any time you

stop typing for a few seconds it automatically refreshes). You can even change the skin

that is used, so if you want to see what your UI will look like using the Android-inspired

Material skin, you can do that with a simple click of the Options button.

Also, Code Snippet gives you the ability to change how the UI is initialized, meaning

if you prefer to define your UI with XML, you can do so, as you can see in Figure 1-8.

Figure 1-8.  Code Snippet using XML to describe the UI

Chapter 1 Better Web Development with Webix

18

I’ve never used the XML init method, and I personally think it’s not the most

elegant way to use Webix, so I won’t be going into it in more detail in this book. However,

I wanted to make you aware of the option if it’s something you want to explore later on

your own.

If that weren’t enough, you can also use Code Snippet to test using Webix with the

popular frameworks Angular and Backbone. In Figure 1-9 you can see an example of the

Angular init method, which also demonstrates what happens when you need to enter

HTML code (it also shows a different skin, though that might be difficult to discern on

the printed page).

Figure 1-9.  Code Snippet using Angular

The last thing worth mentioning about Code Snippet is that big Share button you

see. This generates a link that you can provide to others to show your snippet. This is

especially handy when you have a question, like maybe you’re trying to solve a problem

Chapter 1 Better Web Development with Webix

19

and want to post it to the Webix support forums. Being able to link to a snippet that

demonstrates the issue you’re trying to solve is very handy indeed!

�Form Builder
Another great online tool that Webix offers is the Form Builder. This makes creating

forms with Webix a snap. In Figure 1-10 you can see an example of Form Builder.

Figure 1-10.  Form Builder

You simply enter a comma-separated list of field names and click the Generate

button. You can also adjust the number of columns you want the form to be laid out in

and how wide the field labels should be. You’ll then get to see the form on the left. From

there, you can click any field to see its properties on the bottom right and refine them

further. When you’re happy with how it all looks, you just need to click the Generated

Chapter 1 Better Web Development with Webix

20

Code tab and then click the Generate button and you’ll be given the code for your form!

Here’s an example:

{

 "view": "form",

 "elements": [

 {

 "view": "text",

 "name": "firstname",

 "label": "firstname",

 "labelWidth": "100"

 },

 {

 "view": "text",

 "name": "lastname",

 "label": "lastname",

 "labelWidth": "100"

 },

 {

 "view": "text",

 "name": "birthdate",

 "label": "birthdate",

 "labelWidth": "100"

 },

 {

 "view": "text",

 "name": "gender",

 "label": "gender",

 "labelWidth": "100"

 }

]

}

Don’t worry about understanding that right now; it’s just enough to know right now

that Form Builder is a no-hassle way to create forms visually and not have to worry about

writing the code from scratch by hand.

Chapter 1 Better Web Development with Webix

21

�Skin Builder
The last online tool that Webix has in its toolbox is the Skin Builder. As I’m sure you can

guess, it’s what you can use to create new skins to use with Webix. Figure 1-11 shows the

Skin Builder.

Figure 1-11.  Skin Builder

It may look complicated at first, but in reality it’s not. The first thing you do is choose

one of the available sample apps (some of which you saw earlier) so that you can see

your skin in real time. Then, you select one of the prepackaged skins to use as the basis

for your new skin. From there, you access the Colors, Fonts, or Sizes sections to adjust

the various facets of the skin. Once you have everything looking just the way you want,

click the Download button, and you’ll get an archive that contains your skin (as a single

CSS file) along with some useful information for using it. Like with Code Snippet, you

can share a link to your skin as well.

Chapter 1 Better Web Development with Webix

22

These three tools go a long way to making Webix a pleasure to work with. I encourage

you to play with them now to see what else they can do. Note that because of the nature

of the project, the rest of the book deals with building. I won’t be touching on these tools

again, so get in there and play a bit!

�Getting Started
Now that you’ve seen what Webix is all about and what it can do for you, let’s talk about

what is required to get started coding with Webix. There are two approaches that you

can take, and while I’ll show you both, for the purposes of this book I recommend using

the latter, for no other reason than it doesn’t assume you have anything installed already

and doesn’t ask you to install anything in terms of development tooling. Given that

one of the primary things I like about Webix is its simplicity, I’d like to keep necessary

tooling to a minimum to keep with that simplicity train of thought. However, if you’re

more comfortable with the (ever so slightly) less simple approach, then you’re more than

welcome to go that route, of course. Especially if you’re already familiar with it (in which

case you can skip the next section; just know that webix is the NPM package name), then

it’s not at all a bad option.

�The NPM Way
In the world of modern JavaScript development, it’s not unusual to start a new project

with Node Package Manager (NPM). If the packages you need are present in the NPM

repository, then it’s as simple as running a few basic commands at a command prompt,

and you’re off to the races. As it happens, Webix is available in the repository. So, if you’re

NPM inclined, all it takes to start a new project is to choose a directory to be the home of

your project and then run the following command:

npm init

Naturally, this assumes you already have NPM installed, which is typically installed

as part of Node.js (or just Node for short), so if you don’t have that installed already

and want to try this approach, then head over to nodejs.org and install the version

appropriate for your system.

Chapter 1 Better Web Development with Webix

23

Once you run that command, you’ll find a package.json file has been created in

the directory you run the command from. This file describes your project and, while it’s

somewhat Node-oriented, that doesn’t stop it from working fine for a Webix app.

For example, that command for me created a package.json file that looks like this:

{

 "name": "test",

 "version": "1.0.0",

 "description": "test",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC"

}

Your version might look different depending on what version of Node/NPM you have

installed and of course what choices you made during the interactive running of the

previous command, but it should look similar.

To now get Webix into the mix, a new element has to be added, as shown here:

 "dependencies": {

 "webix": "*"

 }

That can be added anywhere, as long as it’s at the same level as all the other

elements. This tells NPM that you want Webix to be imported in your project, and you

want it to be the latest version available (that’s what * means).

With that added, go back to a command prompt and execute the following:

npm install

Now, you’ll find that a package-lock.json file has been created. This is the file NPM

uses to store information about what was generated by its various commands. For the

purposes here, it doesn’t matter (other than the fact that you should simply leave it be).

In addition, and more relevantly, is that a new directory, node_modules, has been created.

This is where the modules you list in package.json and that NPM downloads for you are

Chapter 1 Better Web Development with Webix

24

stored (as well as any additional modules that the specified modules depend on; NPM

takes care of all of that for you, but in the case of Webix, there are no dependencies).

You’ll find that inside of it is a single directory, unsurprisingly named webix. You now

have Webix available to your project in this directory!

�The “Direct” Way
The other way to get started with Webix, without needing Node and NPM installed, is to

simply head over to the Webix web site and download the Webix package. Really, that’s

it! Once you do that, just unzip the zip file you downloaded (there’s a big Download

Webix button right there on the front page that you land on) in a directory that will be the

home to your project, and you’re all set! Note that unzipping the file puts the content in

the current directory, so you’ll probably want to unzip to a webix subdirectory instead.

This book assumes you’ll use this method to get started. One difference you’ll find

between these two approaches is that when you go the NPM route, you do not get all

the samples that you do when you grab the zip file from the Webix web site. You will get

only the necessary code for Webix itself, which essentially is the contents of the codebase

directory that is present in the zip file alongside the samples directory.

To put it more simply, when using NPM to set up a Webix project, you’ll only get

what you actually need in order to use Webix. When you get Webix from the Webix web

site, you’ll also get samples.

�Fisher-Price’s My First Webix App
Regardless of which route you took to get here, Webix should be ready to start building

an app with. Let’s throw together a basic Webix app so you can get a first look at Webix in

action. In the directory you created for your project, create an index.html file and in it

put the contents from Listing 1-1.

Chapter 1 Better Web Development with Webix

25

Listing 1-1.  A Simple Webix App to Pique Your Interest (the Code)

<!DOCTYPE html>

<html>

 <head>

 <title>My First Webix App</title>

 <link rel="stylesheet" type="text/css" href="../webix/codebase/webix.css">

 �<script type="text/javascript" src="../webix/codebase/webix_debug.js">

</script>

 <style>

 .col1 { background-color:#ffc0c0; }

 .col2 { background-color:#c0ffc0; }

 .col3 { background-color:#ffffc0; }

 </style>

 <script>

 webix.ready(function() {

 webix.ui({

 view : "layout", type : "wide",

 rows : [

 /* Row 1 */

 { type : "header", template : "Hello" },

 /* Row 2 */

 { template : "Greetings, human!" },

 /* Row 3 */

 { gravity : 2,

 cols : [

 { css : "col1", template : "Webix" },

 { view : "resizer" },

 { css : "col2", template : "Is" },

 { view : "resizer" },

Chapter 1 Better Web Development with Webix

26

 { css : "col3", template : "Cool" }

]

 },

 /* Row 4 */

 { type : "header", template : "Goodbye" },

 /* Row 5 */

 { height : 50,

 cols : [

 { template : "Farewell thee well!" },

 { view : "button", width : 150, type : "iconButton",

 Icon : "users", label : "Click for fun",

 click : function() {

 �webix.message({ type : "error", text :

"See?

Wasn't that fun?!" });

 }

 }

]

 }

]

 });

 });

 </script>

 </head>

 <body></body>

</html>

Once that’s done, fire up your browser of choice, load this file, and bask in the glory

that is Webix! Ok, I may be overselling things, but I think you’ll agree that although what

you see on the screen (shown in Figure 1-12) isn’t all that complex, neither is the code

that gets you there.

Chapter 1 Better Web Development with Webix

27

Don’t forget those paths! R emember that you may have to adjust the paths
to point to where Webix is relative to this directory since you’ll need to download
Webix separately from the source for this book, or if you decide to type this in
yourself manually.

Did you see an error?  You will likely see an error in the upper-right corner when
you try this indicating you can’t do this using the file:// protocol. That’s not
exactly true because it does work. However, to avoid that error, you can switch to
using webix.js instead of webix_debug.js, or you can put this source code on
a web server and access it using http://, but that is left as an exercise for you.
You can, for the purposes here, simply ignore the message.

As simple as this example is, it, in fact, shows quite a bit.

Figure 1-12.  A simple Webix app to pique your interest (the result of the code)

Chapter 1 Better Web Development with Webix

28

First, it shows that to use Webix, all you need to do is include a single stylesheet and

a single JavaScript file. Interestingly, if you want to use an alternate skin, it’s simply a

matter of changing which stylesheet you import, nothing more.

Second, it shows that there is a single webix object in global scope, and that’s how

you’ll interact with Webix for nearly everything.

Third, it shows calls to methods of the webix object, ready() and ui(). These are

easily the two most important methods you’ll learn about.

The ready() method is an event callback that Webix fires after the page has been

completely parsed. This is the right place to start building your interface. Speaking of

which, did you notice that there is an empty <body> section in this HTML document?

That’s by design! Although it’s possible to structure an interface by dynamically inserting

Webix components into a preexisting HTML structure (which is great if you already

have an app that you just want to enhance by sprinkling some Webix in here and there),

building the whole interface with Webix is often preferable. That’s because it gives you

a bit more flexibility and conceptually is easier to understand since you’re not mixing

HTML and JavaScript; it’s all JavaScript at that point. But, I’ll show examples of doing the

mixed approach in the coming chapters so that you know what it looks like.

The ui() method is how you’ll construct most Webix components (whether it’s a

single component or many, as in this app). You pass to it an object that describes the

component you want to construct. In most cases, you’ll specify the type of component by

setting the view attribute (in Webix, the term view essentially means the same as widget

or component in other toolkits). Here, I’m constructing a layout component (which is

also the default view attribute value if you don’t specify one as I’ve done here), which is

a ubiquitous component that allows you to construct a grid-based layout. The layout can

be as simple or as complex as you need. In this app, I’ve created a typical border layout

that gives north, south, east, west, and center areas for the app’s content, but also I’ve

added a header row above the north and south areas, so really, it’s five rows in total. The

third row is split into three columns, and the fifth row, the conceptual south region, is

divided into two columns. So, to think about this all another way, it’s five rows, with the

second row containing three columns and the fifth row containing two columns.

As you can see, you specify the layout by creating rows and cols arrays as attributes

of elements. The top-level component is the layout itself, which has a rows array (and if

your layout is more columnar in nature, you can specify cols instead, or don’t specify

either, and then you’ll have a layout that fills the screen). There are five elements in this

array, each a row in our layout. The third element, the third row, has a cols attribute,

Chapter 1 Better Web Development with Webix

29

which is again an array where each element is a column in that row. Note that there is

no explicit size for these. Webix will divide the available space evenly between them.

The fifth row similarly has a cols attribute, this time with two elements. In this case, the

second element has an explicit width set, so Webix will size it as specified, and then the

first element, the first column, will fill the remaining horizontal space. The elements

of these arrays, which you can nest other rows and cols arrays in as much as you like,

combine to define the grid structure.

This layout also has a type of wide, which shows how you can further define the

attribute of a component (making the space between the child components a little wider

in this case).

You should also have noticed the gravity attribute on that third row. Usually,

Webix will divide the space available for a given component equally. So, for example,

if that gravity attribute weren’t present, then the five rows would be sized equally by

dividing up the available vertical space. Well, to be more accurate, the second, third,

and fifth rows would be, but the first and fourth wouldn’t because those are defined as

header types, and header components define a height based on pixels. So, they would

be sized to a fixed height, and then Webix would divide the remaining space between

those three rows. Well, to be even more accurate, only the second and third rows would

be automatically sized because the fifth row has a height in pixels explicitly specified.

Anything sized explicitly like that is always laid out first, and only then does anything that

gets sized automatically get sized, within the remaining space. But, the gravity attribute

allows you to control this and size things relative to others. In this case, the third row will

be sized to be twice as large as the second because of that gravity value of 2. The default

value is 1, but larger or smaller values tell Webix how to size that component relative to

the rest.

Fourth, this app shows you how you can put content in the areas of a layout. There

are two approaches demonstrated: using the template attribute and making other Webix

components children of the layout.

With the template attribute, you can insert arbitrary HTML content. Here, it’s just

some plain text, but you can insert anything you like and get as fancy as you like.

You can also directly create other Webix components as children in a layout. For

example, in the fifth row, there are two columns. The first is an ordinary element with

some HTML as you’ve seen before, but the second is a button. There are many types

of buttons in Webix, as you’ll see in the next chapter, but here you can see that an

iconButton is one that has an icon and some text. The icons can be specified several

Chapter 1 Better Web Development with Webix

30

ways, but one of the easiest is to use the many types available in the Font Awesome

package that Webix includes. Take a look at http://fontawesome.io/icons to see what’s

available, but be forewarned: there’s a lot, and you may be there for a while! You can also

see how event handlers can be attached to components; here a click event is used to

handle when the user clicks (or taps, if on a mobile device) the button.

Fifth, in the button’s click handler you can see one of the methods Webix provides

for giving feedback to the user; in this case, a simple webix.message() call gets you a

small message that appears in the upper-right corner and, after a time, slides away (or

when it’s clicked by the user). You can configure these messages in various ways, and in

this example, I’ve made it red to stand out by setting its type to error.

Sixth, in the third row, you may have noticed that I’ve been saying there are three

columns, but in fact there are five. Between the three “primary” columns are two

columns with a view value of resizer. This is another Webix component that provides

the little lines you can see in Figure 1-12. This allows the user to resize these columns by

dragging on these resize handles. You can put them between almost any components

you want, which makes for a compelling capability to let the user lay out the interface to

their liking and needs.

Seventh, the css attribute applied to the three primary columns in the third row

shows how you can apply a CSS class to a Webix element. This lets you do things such

as change the background color, as I’ve done here. This gives you a ton of flexibility

because whatever Webix generates for the browser to display can be further altered and

enhanced with the CSS methods you already know and (maybe) love.

Finally, it’s important to note that launching this example on a mobile device more

or less works fine. I say “more or less” because some elements don’t resize as you’d

ideally want, but note that things do in fact resize on the fly! You’ve got a (roughly)

responsive layout here with no effort, and Webix does it for you automatically! Moreover,

things like the button interaction work as expected. This is a critical point because most

things in Webix are like this; they’ll work basically as you’d expect whether you’re on a

mobile device with a small screen or on a powerful desktop with a huge monitor. You’ll

need to worry about being cross-platform very little with Webix in terms of things just

working, though you still may have to take into consideration reorganizing the layout

based on available screen real estate. But, that’s par for the course with cross-platform

development (and Webix has some help for you there too, as you’ll see in later chapters).

Chapter 1 Better Web Development with Webix

http://fontawesome.io/icons

31

�Summary
In this chapter, I talked about the evolution of web development, from simple, static

pages to the inclusion of scripting and to the modern age of rich SPAs. I then discussed

Webix a bit, what it is, how it came about, and what it has to offer at a high level. You

learned about the online tools it provides to make your development more efficient. You

looked at the various editions that are available, the differences between them, and why

you might choose one over the other.

You then took some first steps to getting started with Webix. You looked at the NPM

approach as well as the “old-fashioned” approach of “just go download it!” You then built

a small sample app that demonstrates many basic aspects of Webix, and you explored

that code to get your feet wet in the world of Webix.

In the next chapter, you’ll start diving into Webix in more detail and really see what it

can do for you. Hold on to your hat; it’s going to be a wild ride!

Chapter 1 Better Web Development with Webix

33
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_2

CHAPTER 2

Getting to Know Webix
In Chapter 1, you looked at web development in general and a brief history of it, all the

way into the age of the SPA. Then you took a high-level look at Webix itself and started to

see some of the ways that it helps you develop SPAs. In this chapter and the next, you’ll

take more of a deep-dive into Webix and start to become familiar with its core concepts.

You’ll look at the specific components it offers to build user interfaces.

The first topic that I’ll touch on is something that isn’t necessarily specific to Webix

because it’s something that you would have to consider with any SPA development, and

that’s how to structure your application and the code that comprises it.

�How to Structure a Webix App
Modern JavaScript development is quite a bit different from what came before. There

was a time when you would, as I did as an example in Chapter 1, just create a single

HTML file that would contain all your code, all your CSS, and everything. In fact, in an

odd turn of events, we in a sense created SPAs long before the real concept of what they

were came about!

However, the limitations of that approach become apparent quickly. For starters,

having one long source file to look at can be very unwieldy. Of course, the idea of code

reuse is made more difficult when you take this approach. Another issue is that if you

want to use a modern IDE or even just an advanced text editor, you typically run into

difficulties with a single source file because now you’ve got various types of content

mixed together (HTML, CSS, JavaScript). As a result, the IDE or editor can’t always do

things like syntax highlighting and coloring and autocomplete quite as well as you might

like (modern IDEs are pretty amazing and can usually manage OK, but not always). Plus,

the speed of these tools is often impacted negatively when the file starts to get too long.

There may be other reasons, but even at this point, it should be obvious that there

must be a better way!

www.allitebooks.com

http://www.allitebooks.org

34

Indeed, there is: break your application into manageable pieces. The thing is, there’s

no definitive guide on how you do this. However, at the lowest level, it usually means

separate CSS and JavaScript files, separate from the HTML files. Even just that level of

decomposition brings benefits.

Webix specifically is quite unopinionated about this. Some libraries and frameworks

are very opinionated, some to the point of outright requiring you to organize your code

in a certain way for it to work at all, but Webix isn’t like that. Webix gives you a lot of

flexibility but also a lot of responsibility.

That said, it’s a good idea to have at least a basic application structure, or code

organization. The Webix documentation does offer a suggested organization, and it’s one

I agree with, though perhaps with some minor embellishments.

Let’s take the simple example app from Chapter 1 and refactor it with better code

structure in mind. Let’s start with the index.html file, which with just some minor

changes now looks like this:

<!DOCTYPE html>

<html>

 <head>

 <!-- Webix itself. -->

 �<link rel="stylesheet" href="webix.css" type="text/css" media="screen"

charset="utf-8">

 <script src="webix.js" type="text/javascript" charset="utf-8"></script>

 <!-- Your application code. -->

 <link rel="stylesheet" type="text/css" href="styles.css">

 <script type="text/javascript" src="ui.js"></script>

 <script type="text/javascript" src="app.js"></script>

 </head>

 <body></body>

</html>

You’ve already examined the basics of this in Chapter 1, so there shouldn’t be any

surprises here. The few changes I’ve made to implement the new structure are the ui.

js, app.js and styles.css imports. Put simply, this is where the code and styles of your

application will live.

Chapter 2 Getting to Know Webix

35

Note  For your purposes here, you don’t need anything in the styles.css file.
I always like to include it just to remind myself to put my CSS definitions in there
when and if the time comes.

Why two JavaScript files, though? The goal is to separate your actual UI from the

logic that backs it up. As you saw in Chapter 1, Webix works by constructing UI objects

via code (at least in one mode of operation, the mode I’ll primarily be using throughout

this book). If you look back at that first example app, you’ll notice that the function

that gets executed when the button is clicked is embedded in the JSON that defines the

UI. Usually, it’s better to separate these two things. From a conceptual standpoint, it’s

better because it keeps related things together, meaning the code that defines the UI

layout is separate from the actions that the UI can perform (usually via user interaction,

though not exclusively). It’s also better from a code organization standpoint because you

can focus in on the construction of the UI or its operation separately. It also opens up the

possibility of easily changing the UI without altering the operational code, or vice versa,

which means the code overall is more flexible.

So, to restructure things, the ui.js file is where you have code to define the UI. If you

take the example app from Chapter 1 and re-architect it with this pattern, your ui.js file

would look like this:

const uiDefinition = {

 view : "layout", type : "wide",

 rows : [

 /* Row 1 */

 { type : "header", template : "Hello" },

 /* Row 2 */

 { template : "Greetings, human!" },

 /* Row 3 */

 { gravity : 2,

 cols : [

 { css : "col1", template : "Webix" },

 { view : "resizer" },

 { css : "col2", template : "Is" },

 { view : "resizer" },

 { css : "col3", template : "Cool" }

Chapter 2 Getting to Know Webix

36

]

 },

 /* Row 4 */

 { type : "header", template : "Goodbye" },

 /* Row 5 */

 { height : 50,

 cols : [

 { template : "Farewell thee well!" },

 { view : "button", width : 150, type : "iconButton",

 icon : "users", label : "Click for fun",

 click : buttonClick

 }

]

 }

]

};

The difference is that instead of passing a JSON object directly to the webix.ui()

function (which you’ll recall is the one-stop shopping function, so to speak, that allows

you to construct most Webix components), you instead hold that JSON in a variable.

That’s because in the app.js file you’ll now do this:

webix.ready(function() {

 webix.ui(uiDefinition);

});

Note T he Webix documentation suggests putting this code in the body of the
index.html file. This advice is usually given so that the parsing of the page
isn’t blocked and your code will execute only once that parsing has finished.
However, using webix.ready() effectively makes this redundant since it won’t
execute the function you pass to it before that anyway, so I suggest not doing this.
Putting all your JavaScript in a .js file to me makes more logical sense, and any
performance hit is going to be so negligible with this amount of code that it’s worth
paying in return for having a cleaner (in my eyes) structure.

Chapter 2 Getting to Know Webix

37

That essentially separates the definition of the UI from the code that builds it. But,

what about that button click handler function? Notice in the ui.js file the function is no

longer present and instead a reference to something called buttonClick is present. You

know this must be a function, but it hasn’t been defined yet. So, you add it to your app.js

file, shown here:

function buttonClick() {

 webix.message({ type : "error", text : "See?

Wasn't that fun?!"

});

}

Again, you separate the definition of the UI from its interaction logic. That’s the clean

separation we’re going for.

The final piece of the puzzle is an embellishment I suggest on top of the core idea

that Webix itself suggests, and that’s encapsulation of your code. What I mean is that

you’ll notice that the buttonClick function is in global scope here, as is the call to webix.

ready() and also the uiDefinition variable. While the webix.ready() call isn’t a big

deal because it doesn’t put anything in global scope, the other two could be issues since

not polluting global scope any more than you have to is a fundamental guideline in

JavaScript development to help avoid conflicts. So, my suggestion is to create an object

for your application code to live in and let that be the only thing in global scope. With

that in mind, the final app.js file would look like this:

const MyApp = {

 init : function() {

 webix.ready(function() {

 webix.ui(this.uiDefinition);

 }.bind(this))

 },

 buttonClick : function() {

 webix.message({ type : "error", text : "See?

Wasn't that fun?!"

});

 }

};

MyApp.init();

Chapter 2 Getting to Know Webix

38

Now, what happens when index.html is loaded? After Webix and the styles.css file

are loaded and parsed by the browser, app.js is loaded and parsed. This results in the

creation of an object named MyApp in global scope. This object has two functions, init()

and buttonClick. Right after the definition of MyApp is a call to that init() function,

which itself calls the webix.ready() function referencing the this.uiDefinition

member (but remember that the function passed to webix.ready() won’t execute at

this point, so it doesn’t matter that this.uiDefinition is currently undefined). That

function needs to be bound to MyApp, though, which it wouldn’t be within an explicit

call to bind(). This matters because without bind() there, you would need to reference

MyApp.uiDefinition, which means if you ever want to change the name of the MyApp

variable, then you’d need to change any code that uses it too. The bind() call allows you

to avoid that by ensuring the this reference points to what you need it to point at.

Next, ui.js is loaded and parsed, which results in uiDefinition now having

the appropriate JSON data defining the UI. Now, once the DOM is ready, Webix

calls the function passed to webix.ready(), which then builds your UI as defined in

uiDefinition.

Critically, though, all the code related to your application is now encapsulated

within MyApp, and MyApp is the only thing in global scope. That includes the function that

responds to the button click event. If you build out this application further, you would

continue to add members to MyApp, keeping global scope clean. That way, if you wanted

to bring in additional libraries or perhaps code from another team, you wouldn’t have to

be (as) worried about naming conflicts in global scope.

Note I f you prefer ES6 syntax, then there’s nothing wrong with creating a MyApp
class and then instantiating it and calling init() as shown here. However, classes
are perfect for when you may need to instantiate multiple instances of an object,
but in this case, there’s only ever going to be one canonical object associated with
the application, so to me it makes more sense to make it a simple object (and I
prefer it being a constant as well). But that’s an implementation detail that’s up to
you. The whole point here is to encapsulate your application code in some form—
that’s what matters.

It’s important to remember, though, having looked at this approach, that there is no

right or wrong way necessarily to structure a Webix application (or an SPA generally).

There certainly are ways that most developers view as better or worse than others, but

Chapter 2 Getting to Know Webix

39

nothing truly canonical. Many frameworks define an approach that they think is better,

some more rigidly than others. In keeping with most things with Webix, nothing truly

rigid exists. However, Webix does offer something else, another approach, to help define

a “good” application structure, and that’s Webix Jet.

�Webix Jet
Webix Jet is referred to as a microframework. That term sometimes means different

things to different people (and in different contexts!), but in terms of Webix, it means

a minimal framework for an application structure that allows Webix to take on some

repetitive, boilerplate tasks from your application code. In short, it means (in theory

at least) having to write less code yourself and having a logical, consistent application

architecture.

Note W ebix Jet could really have its own chapter, but because I’ve chosen to
not use it for this book beyond this chapter, I’m going to give you an overview here
only. If you find that Webix Jet meets your needs and mental model, then you’ll find
much more detail in the Webix documentation, and you should have a foundation
to build on from this section with it. My goal here is to give you just the basics so
that you can reasonably make that determination on your own. Importantly, though,
be aware that most, if not all, of the Webix concepts that will be talked about in this
book apply whether using Webix Jet or not, so virtually everything after this section
will be completely relevant and mostly unchanged with or without Webix Jet.

Webix Jet works by breaking an app into multiple views. These views are contained in

.js files stored in a views directory under the root of your app. These views are UIs built

like any other Webix UI. You then navigate to the various views by changing the URL of

the app. Well, to be more accurate, you change a portion of the URL, specifically the part

after the hashbang.

In other words, say you have an app with three views: mainmenu, userlist, and

activities (perhaps it’s an app that allows you to see what users are logged into your

server and what activity they’re performing). Each of these views would be defined in its

own .js file in the views directory named mainmenu.js, userlist.js, and activities.js.

The .js file for the mainmenu view (views/mainmenu.js), for example, might look like this:

Chapter 2 Getting to Know Webix

40

define([

 "app"

], function(app) {

 var menu = {

 view : "menu", id : "menu", select : true,

 template : "#value#",

 data : [

 { value : "User List", href:"#!/userlist" },

 { value : "Activities", href:"#!/activities" }

]

 };

 return { $menu : "menu" };

});

As you can see, using Webix Jet requires you to define your UI a little differently. But,

it’s still the same sort of UI definition you’ve seen before: the object returned here will

eventually be fed to webix.ui() to construct the view as you define.

First, the menu component is exactly what you’d expect; it’s a component that

shows a list of items that the user can select from (a menu in other words!). This type of

component accepts data to display, which is why it has a data attribute. Exactly what the

objects passed to this attribute are depends on the specific component, but you’ll see the

data attribute like this many times throughout this book. In this case, you pass an array

of objects, with each object having two attributes: value, which is the text to display, and

href, which is the URL to go to when the item is selected.

Before I talk about that, though, I need to discuss that template attribute. You’ve

seen that before, of course, but here is something new: using variables within a template.

When you pass data to a component, the attributes of those data objects become

available within the template string using the #xxx# syntax. In this way, you can make

each item in the menu (or whatever component you’re dealing with) display the data

in whatever fashion you need and the values of each data object will be inserted for the

#xxx# strings.

Finally, when using Webix Jet, you need to return the UI definition from the define()

function’s callback, which here you do by referencing the ID assigned to the menu

component.

Chapter 2 Getting to Know Webix

41

Now, when you want to navigate to the userlist view, you need to change the URL

of the page, which the menu component allows you to do without writing any code.

Webix Jet monitors the URL changes (the URL is the portion after the hashbang). When

it sees it (assuming the URL is one it recognizes as a view), then the page location won’t

actually be changed. Instead, Webix renders the specified view. So, the user list will be

displayed when you click that menu item, or the list of activities they’re performing will

be displayed when you click the second item.

Note the benefits here. You don’t need to write that navigation code, nor do you

have to deal with what it means to change views (meaning tearing down the existing UI

and the main menu and building the user list of activities with list UIs). The downside,

of course, is that you must adhere to the structure that Webix demands, as well as any

limitations it may impose. You’re giving up control in other words, and whether that’s

worth it or not is a decision only you can make.

Speaking of adhering to a structure, Webix Jet also requires that you have a models

directory (if you’re dealing with data, which most apps do). In this directory, you’ll find

data models, which are JavaScript files that provide the data your components (the ones

that deal with data at least) display. With a menu, as you saw, there’s no real point to

this, so you just specify the data inline as discussed. Although if your menu needs to be

dynamic, then there might well be a reason to have a model associated with it. However,

let’s take the list of users as a better example of something that is going to deal with

something other than static data. For that, you might create a file named users.js in the

models directory like so:

define([], function() {

 var users = new webix.DataCollection({

 url : "getUsers.php"

 });

 return { data : users };

});

Here, you have a DataCollection object, which is another Webix component that

stores a collection of nonhierarchical data. You can imagine it like a data table but

without a UI. It’s a place to store data that other components know how to work with.

Here, a request to a PHP page (on the server, presumably) is made, and that will return

Chapter 2 Getting to Know Webix

42

some JSON that provides records, one for each user. With that available, you might now

display those records in a data table, another Webix component, in the userlist.js

view file.

define(["models/users"],function(records) {

 var ui = {

 view : "datatable", autoConfig : true

 };

 return {

 $ui : ui,

 $oninit : function(view) {

 view.parse(users.data);

 }

 };

});

This view will now build a datatable component using the data retrieved and

populated in the users model. The object returned from here tells Webix Jet how to

build the UI, by referencing the ui variables, as well as providing a function to execute

when Webix Jet initializes this view. Here, it hands the data from the users model off to

the view.parse() function, which takes care of inserting the data into the data table. In

this way, you keep your data separate from your presentation but bind it all together at

runtime thanks to Webix Jet doing a lot of the work for you behind the scenes, which is

the whole point of Webix Jet (plus providing a standardized structure to your application).

As you can see, Webix Jet allows you to skip writing some generally boilerplate code

at the cost of having to adhere to a relatively strict application structure. It also, to my

eyes, makes people write code in a slightly more convoluted way. But again, the question

you need to ask yourself is whether any of the perceived negatives (which you may not

even consider negatives at all!) are worth the benefit. As I mentioned earlier, I won’t

be using Jet from this point on, if for no other reason than I feel it requires a little more

rigidity than I’d like, and I also think that it will make learning Webix a little tougher if for

no other reason than some details will be hidden from you, and thus you won’t get quite

as deep an understanding. At the end of the day, Webix Jet is essentially a layer that sits

on top of Webix, so I think that learning Webix without that layer in the way will be more

beneficial for you.

Chapter 2 Getting to Know Webix

43

But Webix Jet certainly has a good story to tell, so if at the end of this book you decide

that it’s the way you want to go, you’ll hear no argument from me! Best of all, you’ll have

a solid foundation with Webix on which to build with Webix Jet and really gain benefits

from it.

�Widgets, Controls, Complex Widgets, and Extensions
With an idea of how to structure an application at a high level now churning around in

that brain of yours, let’s dive into the components that are available for you to build UIs

with and how you actually lay those components out on the screen. Before doing that,

though, let’s talk some terminology.

In the world of Webix, several terms all mean similar things or are subsets of another

term. Typically, you’ll deal with a couple of terms.

•	 Components

•	 Widgets

•	 Specialized widgets

•	 Complex widgets

•	 Controls

•	 Extensions

•	 Layouts

Let’s take a brief look at each of these categories.

�Components
At a high level, you have the term components, which is a generic concept that

encapsulates all the others. A widget is a component, a control is a component, a layout

is a component, and so on. A component is simply a UI element that you can ask Webix

to create and put on the screen.

Chapter 2 Getting to Know Webix

44

�Widgets
Then you have widgets, which are components that have a visual element to them,

meaning something the user sees and can usually interact with. Widgets include things

such as data tables, lists, trees, grids, charts, and so on. Widgets tend to be a little

“bigger” in terms of what they do than controls, which you’ll look at soon, and widgets

tend to serve specific purposes such as the following:

•	 Visualizing data

•	 Managing data

•	 Working with dates and times

•	 Organizing other widgets and controls (layout, which you’ll get to

soon as well)

Widgets are, simply put, what you build UIs from.

�Specialized Widgets
Specialized widgets (which the Webix documentation calls specific widgets) are a

subset of widgets that serve a specialized purpose. For example, the barcode widget is

specialized to create barcodes. The colorboard widget is specialized to allow the user to

choose a color from a palette. The query builder widget is specialized to allow the user

to dynamically create a query that can grab specified data from a collection. While plain

old widgets tend to be fairly general-purpose, specialized widgets are more focused on

some specific task.

�Complex Widgets
Complex widgets are another subset of widgets and are differentiated by them being,

well, more complex! This means they look almost like full applications themselves and in

fact like they include other widgets as part of them, if not literally including them. Some

examples of these are the pivot, which is an advanced spreadsheet-like widget, the file

manager, which is like Windows Explorer in Windows or Finder in Mac, or the Kanban

board, which presents a lane-oriented interface typically seen in Agile development

progress-tracking contexts.

Chapter 2 Getting to Know Webix

45

�Controls
Controls are a subset of widgets as well in the sense that they have a UI and are

interactive, but they’re different in that they tend to be smaller and more focused on

a specific user interaction. Controls are mainly for dealing with user events and are

typically seen in forms (though not exclusively). Controls cover things such as buttons,

check boxes, text boxes, sliders, radio buttons, selects, and labels (and labels show that

controls don’t always need to be interactive because while labels could be coded to

interact with events like clicks, they typically aren’t).

�Extensions
Extensions are something that doesn’t fall neatly into the other categories, or, more

precisely, they may cross boundaries between a few. Extensions typically have a UI

like everything else, but they frequently provide integration with some other library or

facility. For example, the text editor extension allows you to easily use some third-party

editors like TinyMCE, Mercury, and CKEditor in your Webix app and makes it look like

any other complex widget. The map extension provides the ability to show a map in your

app backed by Google, Yandex, Here, or OpenStreet, again acting like a complex widget.

So really, you could think of extensions as complex widgets that usually provide

some form of integration with something else, be it another library or some online

API (though not always: the sidebar extension, for example, is just a widget with no

integration, and it’s only an extension because it isn’t included with Webix itself and

must be pulled down from the Webix GitHub repo at https://github.com/webix-hub/

components).

�Layouts
Layouts are the final group, and they too are a subset of widgets (and thereby

components as well), but layouts serve a unique purpose: they help you organize your

interface and lay out other components. Layouts are an important topic, so you’re going

to look at that in a little more detail now.

Chapter 2 Getting to Know Webix

https://github.com/webix-hub/components
https://github.com/webix-hub/components

46

Let’s not rewrite the docs, m’kay? T his chapter, and the next, is meant to
give you an overview of what Webix can do and start to introduce some Webix
concepts here and there. What it’s not intended to do is to replicate the Webix
documentation. As such, understand that not every available configuration option
will be explored, and not every event hook, method, or styling option will be
demonstrated. My intent is to call out some of the items that I suspect you’ll use
most often, but I will in no way, shape, or form be trying to cover every last detail.
As such, these chapters aren’t meant as an API reference, they’re meant as a code-
level overview and to start getting your feet wet with Webix code and concepts.

�The Basics of Layout
In the sample app in Chapter 1, you saw some of the basics of layouts, specifically the

layout widget. This is the default widget that you get if you don’t specify one via the view

attribute, which I mentioned in Chapter 1. The view attribute is how you tell Webix what

component you want to create, but because creating a layout is such an integral task,

Webix considers that the default if you don’t supply a view attribute (though you can say

view:"layout" if you want to be explicit).

The basic layout widget allows you to create arbitrary structures using rows and

columns. As you’ll recall, you can specify the rows and cols attributes, nesting them as

you want, to create a grid structure into which you can put HTML content (using the

template attribute) or other Webix components. The cells (which is the generic term

for a row or column in a layout) of this grid have borders between them, though you can

control that with the type attribute.

•	 line: Cells with borders (this is the default)

•	 clean: Cells without borders

•	 wide: Cells with borders and extra-wide space between siblings

•	 space: Cells with borders and extra-wide space between siblings, plus

padding from the parent container

•	 head: Cells with borders and small space between siblings

•	 form: Cells without borders and with padding around all of them

Chapter 2 Getting to Know Webix

47

Figure 2-1 shows what each of these looks like.

Listing 2-1 shows the code that produces this.

Listing 2-1.  All the Layout Types on Parade

webix.ui({ type : "clean", rows : [

 { type : "line",

 �cols : [{ template : "line-1" }, { template : "line-2" },

{ template : "line-3" }

] },

 { type : "wide", cols : [

 �{ template : "wide-1" }, { template : "wide-2" },

{ template : "wide-3" }

] },

 { type : "space", cols : [

Figure 2-1.  The various type attribute values, all in one place

Chapter 2 Getting to Know Webix

48

 �{ template : "space-1" }, { template : "space-2" },

{ template : "space-3" }

] },

 { type : "head", cols : [

 �{ template : "head-1" }, { template : "head-2" },

{ template : "head-3" }

] },

 { type : "form", cols : [

 �{ template : "form-1" }, { template : "form--2" },

{ template : "form--3" }

] }

] });

In addition to the type attribute, there is also the borderless attribute that, when set

to true, does much the same as type:"clean" does. There is also the margin, padding,

paddingX, and paddingY attributes that you can use to adjust margin sizing, padding all

around a cell, and padding on just the sides or top and bottom of a cell, respectively. All

of this gives you an alternate way of doing what type does but with more control.

As you saw as well in Chapter 1, you can specify a width and height for cells in a

layout. You can also specify minWidth, minHeight, maxWidth, and maxHeight if you want,

which tell Webix the minimum and maximum sizes to allow the cells to be when the

browser window is resized.

One of the other things you saw in Chapter 1 is that you can specify a type of header,

resulting in a header element being created on a cell. This is in contrast to headerlayout,

which is the first layout widget other than layout of a few that I’ll discuss. These layout

widgets produce specific types of layouts that are common in applications. While it

would probably be possible to produce these layouts with just layout and some coding

on your part, they’re such common patterns that Webix supplies them for you. The

headerlayout is one that can produce a horizontal or vertical layout (not an arbitrary

grid like layout does) with an optional header (though given its name it’s reasonable to

think that you usually will have headers on the cells), and the cells can be collapsed by

the user.

Take a look at Listing 2-2 to see how this is coded.

Chapter 2 Getting to Know Webix

49

Just the facts, ma’am!  For most of the examples in this chapter, I’m going to
show only a snippet of code to save some space. Understand, though, that these
snippets are all executed from webix.ready(), and the HTML files they are in
(which you can, of course, find in the code package for this book) are complete
HTML documents, nearly identical to the earlier sample app (not the refactored
version; there’s no need for that type of structure for simple examples like these,
where it’s better to keep it all in one file so you can look at it holistically).

Listing 2-2.  A Simple headerlayout Example

webix.ui({ view : "headerlayout", cols : [

 { header : "Column 1", body : "Hello from column 1", width : 200 },

 { header : "Column 2", body : "Hello from column 2", width : 300 },

 { header : "Column 3", body : "Hello from column 3" }

] });

The view:"headerlayout" specifies the type of widget you want as always, and

this example produces a horizontal layout, so you want a series of columns. For each,

a header attribute specifies the header text, and this widget requires you to use a body

attribute rather than template. (I’m jumping ahead a little bit, but it uses these attributes

because headerlayout is based on the accordion widget, which is a container for

accordionitem components, and those use these attributes, so thanks to the object-

oriented nature of Webix, this is also true of the items inside a headerlayout). In

addition, you can optionally specify a width for the columns as I’ve done here (the third

column will fill the remaining space). Figure 2-2 shows what this looks like, and note that

I’ve collapsed the second column to show that’s possible with this widget.

Chapter 2 Getting to Know Webix

50

I should note at this point that you absolutely can nest this widget within another,

as is true for all the layouts. For example, let’s create a two-column layout that has a

headerlayout on the left and then just a couple of plain cells on the right. Listing 2-3

shows this code.

Listing 2-3.  A (Slightly) More Complex Layout Using Nested Layouts

webix.ui({ type : "wide", cols : [

 { view : "headerlayout", type : "wide", width : 200, rows : [

 { header : "Row1", body : "Row1" },

 { header : "Row2", body : "Row2" },

 { header : "Row3", body : "Row3" }

] },

 { type : "wide", rows : [

 { template : "Row-1" },

 { template : "Row-2" },

 { template : "Row-3" },

 { template : "Row-4" }

] }

] });

I’ve specified type:"wide" everywhere so that you can see the borders nicely. The

first column has view:"headerlayout" specified, so Webix creates that widget for you

and inserts it into that first column, which I’ve also specified a width for. The second

Figure 2-2.  The headerlayout in action

Chapter 2 Getting to Know Webix

51

column contains four rows, which are just plain old cells with some text in them.

Note that because that first column is itself a layout and one that allows its cells to be

collapsed, you can, of course, do that, as you can see in Figure 2-3.

You may have noticed that none of the cells in these layouts can be resized (not

counting being able to collapse the cells of a headerlayout). As you’ll recall from

Chapter 1, if you specify view:"resizer" for a cell, then that creates a widget, the

resizer, that knows how to allow the user to drag it and adjust the sizes of its neighbors.

The final layout concept I will talk about is resizer. This is a widget like resizer

that serves a special purpose. Let’s say you want to put a space between rows 1 and 2 and

rows 3 and 4 in Figure 2-3. Moreover, you want to specify heights on the existing rows,

let’s say 50 pixels, and you want that space in between to take up whatever is left. The

spacer widget allows you to do this, as you can see in Listing 2-4.

Figure 2-3.  That slightly more complex layout in all its, uh, glory

Chapter 2 Getting to Know Webix

52

Listing 2-4.  The Spacer Widget

webix.ui({ type : "wide", cols : [

 { view : "headerlayout", type : "wide", width : 200, rows : [

 { header : "Row1", body : "Row1" },

 { header : "Row2", body : "Row2" },

 { header : "Row3", body : "Row3" }

] },

 { type : "wide", rows : [

 { template : "Row-1", height : 50 },

 { template : "Row-2", height : 50 },

 { },

 { template : "Row-3", height : 50 },

 { template : "Row-4", height : 50 }

] }

] });

Figure 2-4 shows the result of this.

Figure 2-4.  The spacer creates…wait for it…space!

Chapter 2 Getting to Know Webix

53

Notice in the code that { } is all it takes. Optionally, you can do { view : "spacer" }

if brevity isn’t your thing (to paraphrase The Dude from The Big Lebowski). Because

there are no rows and cols specified, Webix makes this a spacer rather than a layout,

as is usually the default value of view. It makes sense if you think about it. If there are no

rows and cols, then all a layout could do is take up all the available space, which is what

a spacer does!

The spacer is handy when you need to align things in certain ways. For example, if

you want to have two buttons and you want to have one on the left of a cell and one on

the right, then all you need to do is something like this:

{ cols : [

 { view : "button", value : "button1" },

 { },

 { view : "button", value : "button2" }

] }

Of course, I’m giving you a little preview of the button widget, but I think you can

handle it! The important part is that spacer. The result is similar to Figure 2-4, but

horizontally instead of vertically, meaning each button gets “pushed” as far as it can

from the center of the cell this configuration is specified in, and assuming it’s a row

like in Figure 2-4, that means each button will be on the far left and far right of the row

(which also tells us that spacer works both horizontally and vertically, of course).

�Specific Layout Components
As I mentioned earlier, there are several what I would call “canned” layout widgets that

produce certain types of common layouts, with headerlayout being one of them. Let’s

take a quick look at the others now.

�abslayout
The abslayout, which is available only with a pro Webix license, is perhaps the easiest

to understand of all the layouts (though interestingly is probably the one you’ll use the

least). First, take a look at Listing 2-5 to get a sense what it looks like.

Chapter 2 Getting to Know Webix

54

Listing 2-5.  The abslayout

webix.ui({

 view : "abslayout", width : 200, height : 200, css : "container",

 cells : [

 �{ template : "UL", top : 5, left : 5, width : 30, height : 30,

css : "corner" },

 �{ template : "UR", top : 5, left : 165, width : 30, height : 30,

css : "corner" },

 �{ template : "LL", top : 165, left : 5, width : 30, height : 30,

css : "corner" },

 �{ template : "LR", top : 165, left : 165, width : 30, height : 30,

css : "corner" },

]

});

The idea here is to define an area of the screen, 200 pixels wide and 200 pixels tall, and

then within it place four elements, one at each corner of the container area. As you can

see, each of the four inner items has a top attribute and a left attribute that functions just

like top and left in CSS, defining the X and Y locations of its upper-left corner, all relative

to the container, which is the abslayout itself. Figure 2-5 shows the result of this.

Figure 2-5.  The abslayout

Chapter 2 Getting to Know Webix

55

�New Concept: Component Styling

A new concept here is the ability to specify a css attribute on most Webix components.

This lets you apply styles to the component, in this case based on a preexisting CSS class.

If you run the example, you’ll see that the container abslayout component has a red

background, and the four inner components have a yellow background, all thanks to the

container and corner CSS classes.

�accordion
The accordion layout is a layout that allows you to create either vertical or horizontal

panes where (usually) one and only one is expanded while the others are collapsed. This

expansion/collapsing is controlled by the user. Listing 2-6 shows the code for this.

Listing 2-6.  The accordion Layout

webix.ready(function() {

 webix.ui({

 view : "accordion", type : "wide",

 rows : [

 �{ header : "Babylon 5", body : "Sheridan
Delenn
Garibaldi

G'Kar
Londo" },

 �{ header : "Star Trek", body : "Kirk
Sisko
Archer
Picard

Janeway", collapsed : true },

 �{ header : "Stargate SG-1", body : "O'Neill
Danial
Carter

Teal'c", collapsed : true }

]

 });

});

Figure 2-6 shows the result of this code. In it, you’ll see that the Babylon 5 pane is

expanded, while the Star Trek and Stargate SG-1 panes are collapsed (as it should be

since Babylon 5 is the best!), with the arrows on the right indicating that by pointing

either up or down. The user can click the header of a pane to expand or collapse it.

When clicking a collapsed pane, it expands, while all others are collapsed. Clicking an

Chapter 2 Getting to Know Webix

56

expanded pane collapses it and expands, well, something! The truth is that in this case

I’ve seen some unexpected results, but some pane is always expanded.

Note that when you create an accordion, you also implicitly create one or more

accordionitem components. Webix does this for you automatically; you don’t need to

do it explicitly, but every pane of the accordion is an accordionitem component. In

some ways, this isn’t terribly important when using the accordion, but it can matter

when you need to find a property in the documentation. For example, if you want to

alter the height of the headers for each pane, you won’t find what you need if you look

up accordion in the documentation. But, look up accordionitem, and you’ll find a

headerHeight option that does what you want.

There are a few interesting configuration options available for an accordion,

including animate, which tells Webix whether to animate the expansion and collapse

of panes. This seems to not be implemented, but it’s available because of the object-

oriented nature of Webix components in that they extend base classes and thereby get

the features present in them. I mention it because my expectation is that this will be

implemented in a future version of Webix, and it’s an option that you’ll see on many

components, so it’s good to know about. This can be a simple Boolean to enable or

disable animation, or it can be an option that defines the type of animation you want.

Then there’s collapsed. When set to true, it initially collapses all panes (it defaults to

false). The disabled option you’ll see on most components, and its function is pretty

Figure 2-6.  The accordion layout

Chapter 2 Getting to Know Webix

57

obvious: set it to true to disable the component, and set it to false to enable it (which

is the default). Finally, multi allows multiple panes to be open at once when set to true.

This in effect makes an accordion not an accordion in the classic sense, but it’s an option

you might want in some situations.

�New Concept: Methods

One of the questions you may have right now is “OK, it’s nice that I can set disabled to

true when I define a component, but what good is that? Why create it if it’s always going

to be disabled? I need to be able to enable/disable it dynamically!” And of course, you’re

right! So far, I’ve been talking about configuration options exclusively (or properties,

as the Webix documentation refers to them as), but there’s a whole other aspect to

components, and that’s methods. After all, a component is also a JavaScript object, and

JavaScript objects frequently have methods associated with them (and remember, a

method is just a function that’s a member of an object).

However, as you know, calling a method requires you to have a reference to an

object. So, how do you get a reference to a Webix component? There are two ways.

var myComponent = webix.ui({ template : "Hello" });

The variable myComponent now holds a reference to the component that code

creates (remember, that’s the default component Webix creates if you don’t specify a

view attribute). Now, you can call methods on that reference as you would any other

JavaScript object reference. For example, to disable that layout, you can use this:

myComponent.disable();

Now, that works fine if you only need a reference to the component being created

and you remember to catch the return value from webix.ui(), which is always a

reference to the top-level component created, but what happens if there are nested

components so that more than one is created? For example, what if you do this:

var myComponent = webix.ui({

 rows : [

 { template : "row1" }, { template : "row2" }

]

});

Chapter 2 Getting to Know Webix

58

Here, you’ve really got three components being created: the outer view and the

two inner views, one for each row. What if you want to disable that first row only? The

variable myComponent is a reference to the outer view, not the row you want to disable, so

doing myComponent.disable() disables the wrong thing (well, it does actual disable the

right thing, but it also disables other things, and that you don’t want). One way you can

handle this is to use the getChildViews() method that all views expose. That will return

an array, in this case with two elements, and then you can do the following:

myComponent.getChildViews()[1].disable();

However, that’s a little verbose and also error-prone. What if you add a row between

1 and 2? Now the code would disable the wrong thing! A better way is this:

var myComponent = webix.ui({

 rows : [

 { id : "row1", template : "row1" }, { id : "row2", template : "row2" }

]

});

Notice the new id attributes on each row? Now, you can use a helper function that

Webix makes available to you to get a reference to the second row.

var myRow2 = $$("row2").disable();

The $$() function allows you to get a reference to a Webix component by ID. You can

define an ID for any component, though you don’t have to, and in fact you usually will

only do so when you know you will need to get a reference to it later (Webix will create an

ID automatically if you don’t, so every component does, in fact, have a unique ID even

if you do nothing). Then, you can call methods on the reference returned by $$() like

usual with JavaScript objects.

This is something you’ll see a lot of throughout this book, but this is the basic pattern

that I wanted to make you aware of now.

�carousel
The carousel layout is a component commonly seen on web sites. Typically they are

used to show images, though they don’t have to. A carousel layout provides some form

of user control that allows them to move from one item to another, back and forth, as

they see fit. The code for a carousel is like any other layout, as Listing 2-7 shows.

Chapter 2 Getting to Know Webix

59

Listing 2-7.  The carousel Layout

webix.ui({

 view : "carousel", width : 400, height : 300,

 cols : [

 �{ css : { "background-color" : "#ff0000", "color" : "#ffff00" },

template : "Gilligan" },

 �{ css : { "background-color" : "#00ff00", "color" : "#000000" },

template : "Professor" },

 �{ css : { "background-color" : "#0000ff", "color" : "#ffffff" },

template : "Mary Ann" }

]

});

This provides you with three castaways…er, items…that the user can navigate

between using the arrow buttons, as shown in Figure 2-7.

The dots to the left of the buttons show which item is showing out of the whole

set. One interesting thing about the carousel is that navigating between the items is by

default animated; you’ll see a nice little slide animation as you click the arrows. You

can, of course, disable this animation (or change the animation style) with the animate

option you saw earlier. Also, you can control the speed of the animation with the

scrollSpeed attribute (it defaults to 300ms).

Figure 2-7.  The carousel

Chapter 2 Getting to Know Webix

60

�New Concept: Inline CSS

Something else of note in this example is the new way to use the css attribute. Recall

earlier that you saw that you could specify an existing CSS class here. It turns out that

you can also define your styles inline by making the value of the css attribute an object,

where each attribute of the object is a CSS setting. Which you use is entirely up to you

and the use case you have.

�datalayout
The datalayout is another component that is available only with a Pro license, and its

goal is to allow you to create more complex layouts that use data, including things such

as sublists, multipage forms, and binding several data components together. Although

data is something you’ve seen a little bit of and it’s something you’ll dive into more

details about in the next chapter, I wanted you to get a look at this layout now since I’m

talking about layout. Listing 2-8 shows some code for creating this kind of layout.

Listing 2-8.  The datalayout

webix.ui({

 view : "datalayout", type : "wide",

 rows : [

 { name : "$value", type : "header", template : "Alien species: #name#" },

 { name : "data", view : "list", template : "Eyes: #eyes#, Arms: #arms#" }

],

 data : [

 { name : "Krelmacians",

 data : [

 { eyes : "2 (at adulthood)", arms : 2 },

 { eyes : "1 (at birth)", arms : 2 }

]

 },

Chapter 2 Getting to Know Webix

61

 { name : "Gentooans",

 data : [

 { eyes : 4, arms : 8 }

]

 }

]

});

This one is a bit harder to visualize just by looking at the code, so Figure 2-8 shows

you what this code does, and as you can see, there’s more to it than usual!

You start by defining either rows or cols for the layout, as you do with virtually all

layouts. Each row, in the case of this sample, represents part of a template for an item to

be displayed. The name attribute for each row tells Webix what part of the data attribute

to pass to the view (remember, a row is a view). For the first row, the name $value is a

special key that tells Webix to pass the entire data object to the view, and it will decide

what to do with it. The second row specifies data, which means that the data attribute

(the one within the object that is the value of the data config option of the datalayout

Figure 2-8.  The datalayout

Chapter 2 Getting to Know Webix

62

itself) will be passed to the view. The first view for row 1 then uses the #name# string as a

replacement token that Webix replaces with the value of the name attribute from the data.

Likewise, the second row uses #eyes# and #arms# to get at those data elements. Webix

knows that there is more than one element in the data array for the Krelmacians item, so

it repeats the second row, so both items are displayed.

The datalayout is clearly a much more complex component than the other layout

types, but that complexity brings lots of power and flexibility for displaying data. You’ll

meet the list component later, which is conceptually similar, and it’s the one you’ll

probably use most for displaying a list of data, but keep the datalayout component in

mind should your needs be more advanced.

�multiview
The multiview layout component is a simple one that lets you have multiple layers of

content on top of each other, with one on top and visible at any given time. See Listing 2-9

for an example here.

Listing 2-9.  The multiview (Not to Be Confused with the Multiverse from

Physics!)

webix.ui({

 �type : "clean", width : 600, height : 400, css : { "border" :

"2px solid #ff0000" },

 rows : [

 { view : "segmented", value : "left", multiview : true,

 options : [

 { value : "Rick", id : "rick"}, { value : "Morty", id : "morty" }

]

 },

 { cells : [

 �{ id : "rick", template : "Alcoholic
Science Genius
Father of

Beth" },

 { id : "morty", template : "14 years old
Mortiest Morty
Sidekick" }

] }

]

});

Chapter 2 Getting to Know Webix

63

This example also shows the segmented component, which has some special wiring

available to allow it to control a multiview. Figure 2-9 shows what all of this looks like.

When you click either Rick or Morty up top, the associated content slides into view

(you can, of course, disable that animation). To do this, you first create a basic layout,

using your friend the css attribute to show a border around it. Then, you define two

rows, with the first containing the segmented component. The multiview attribute, when

set to true, is what enables that special logic I mentioned and makes the component

control the multiview. The key is that the multiview cells and the segmented cells must

have the same IDs. As long as that’s true, you don’t need to write any code to allow this

switching.

Now, one thing you may be wondering is why you don’t see view:"multiview"

on the component containing the cells attribute. If you added it, you would find that

everything looks and works the same. The trick here is that when that component

is inside of a segmented component that has multiview:true on it, the view type

of the component with the cells is implicitly set to multiview. You could have a

multiview component outside of a segmented, in which case you would have to specify

view:"multiview" yourself (and you of course would then not have the automatic

navigation plumbing that a segmented gives you—you’d have to build that yourself and

switch between multiview cells programmatically).

Figure 2-9.  The multiview

Chapter 2 Getting to Know Webix

www.allitebooks.com

http://www.allitebooks.org

64

Alternatively, if you don’t want to use a segmented, you can use the setValue()

method, passing it the ID of the subview to show. You can trigger that through any

interaction you want (the press of a button, the loading of some content from the

network, whatever). You can dynamically add and remove views from a multiview using

the addView() and removeView() methods (which are available for most views in fact).

You can call getActiveId() to see which subview is currently visible. These are just

some of the things you can do with multiview, which really is one of the more useful

layouts!

�portlet
The portlet layout (which requires a Pro license) is, frankly, an amazing layout because

it takes something that is typically pretty complicated to implement and makes it

shockingly easy. To begin, take a peek at Listing 2-10, and note how very little code there

actually is.

Listing 2-10.  The portlet Layout

webix.ui({

 type : "space",

 cols : [

 { view : "portlet", body : { template : "Portlet #1" }},

 { view : "portlet", body : { template : "Portlet #2" }},

 { view : "portlet", body : { template : "Portlet #3" }},

]

});

Figure 2-10 shows what this looks like when Webix renders it. Well, that’s not entirely

true. What’s shown is what Webix renders and what it allows me as the user to do.

Chapter 2 Getting to Know Webix

65

See how Portlet #3 is floating on top? That’s a result of me dragging the little handle

in the upper-right corner to drag the whole Portlet #3 around. You can see where it

started on the right; its “ghost” remains there. Now I can drop that anywhere I like! If I

want it between Portlet #1 and Portlet #2, I can drop it there. If I want it to be half as tall

and just take up the top of the third column, I can do that too. This layout gives complete

control to the user to arrange the UI how they see fit and all without you writing really

any code to support it! This sort of portal UI usually takes more effort to create (trust me,

I know from experience!), but with Webix it’s a piece of cake!

Portlets can contain any content, as specified in the body attribute, so you can build

arbitrarily complex UIs in them (yes, that can be HTML content, as shown here or other

Webix components) and then move them around how you want.

However, if you’ve ever worked with actual portals, then you may be wondering

about a problem that’s easy to run into, and that’s the problem of ID collision.

Frequently, portals are built by multiple teams working separately. As such, it’s easy for

two teams to use the same IDs for things, and this is a problem. Just like in plain HTML

where DOM IDs must be unique across the document, Webix IDs need to be unique

across the app. That’s only logical. If I have two buttons with an ID of myButton, how

does $$("myButton") know which you want?

Figure 2-10.  The portlet layout

Chapter 2 Getting to Know Webix

66

�New Concept: Isolation

This gives me a chance to introduce another neat concept in Webix, something that

I’ve only seen a few other times in other libraries, and that’s the isolate configuration

option. When set to true, this ensures that there are always unique IDs in play and

avoids those nasty collisions.

So, let’s say two teams develop two portlets. In each, you have that myButton I

mentioned. The code might look something like this when you integrate the code from

both teams:

webix.ui({

 type : "space",

 rows : [

 �{ view : "portlet", body : { view : "button", id : "myButton",

�value : "myButton" }},

 �{ view : "portlet", body : { view : "button", id : "myButton",

value : "myButton" }}

]

});

First, if you execute this, you’ll see that Webix gives you an error message in the

upper-right corner or a page that says: “Non unique view id: myButton.” First, thank you,

good guy Webix, that’s very helpful (and I don’t mean that sarcastically!). Note, however,

that this is true only if you use webix_debug.js. When using the “production” webix.js

file, you will not see this message.

Second, if you try to do $$("myButton"), which button do you get a reference to? It’s

a good bet it isn’t the one you want at least 50 percent of the time!

Thanks to Webix’s excellent debug message, you know exactly what the problem is,

but how do you fix it?

One thing you could do is assign a code to each team and tell them they have to

prefix their IDs with it. So, maybe you wind up with the following:

webix.ui({

 type : "space",

 rows : [

 �{ view : "portlet", body : { view : "button", id : "team1_myButton",

value : "myButton" }},

Chapter 2 Getting to Know Webix

67

 �{ view : "portlet", body : { view : "button", id : "team2_myButton",

value : "myButton" }}

]

});

Sure, that’ll do the trick, but it’s kind of annoying and means you have to coordinate

with both teams. That isn’t always easy in the modern development world with teams

geographically separate, even in different time zones. Plus, if they forget anywhere,

which is easy to do in a more complex portlet than this, then the risk of collision is

introduced.

So, Webix provides you with an elegant answer in the form of the isolate attribute.

webix.ui({

 type : "space",

 rows : [

 { view : "portlet", isolate : true, id : "portlet1",

 body : { view : "button", id : "myButton", value : "myButton"

 }},

 { view : "portlet", isolate : true, id : "portlet2",

 body : { view : "button", id : "myButton", value : "myButton"

 }}

]

});

I’ve added isolate:true to both of the portlets, and I’ve also assigned an id to each

portlet. While the latter isn’t strictly speaking necessary (because Webix assigns a unique

ID internally if you don’t explicitly), without doing that it becomes harder to do this:

$$("portlet1").$$("myButton").disable();

See what I did there? I can now get a reference to portlet1, and from that, I can

ask for a reference to myButton, and Webix knows which button I mean, even though it

has the same id as the button in the other portlet. I’ve disambiguated things thanks to

isolate!

You can use isolate in virtually any context where a naming conflict might arise and

anywhere that you think it makes sense to have two components with the same id that

you may still want to address individually. isolate is not specific to portlets, layouts, or

anything else.

Chapter 2 Getting to Know Webix

68

�tabview
The tabview layout is a common layout that provides for a tabbed interface that lets the

user jump between multiple panes of content at the click of a button (or touch of a finger

on a touch display). Listing 2-11 shows the code for a tabview, which is just like most

of the others you’ve seen (there’s that simplicity and consistency I’ve mentioned a few

times now).

Listing 2-11.  The tabview

webix.ui({

 view : "tabview", width : 400, height : 300,

 cells : [

 { header : "Entry", template : "Some form controls here", css : "entry" },

 �{ header : "Results", template : "Show results of the data entry here",

css : "results" }

]

});

Figure 2-11 shows what you get when this code is processed by Webix.

Figure 2-11.  The tabview

Chapter 2 Getting to Know Webix

69

Here, two tabs are presented, and the user can jump between them as they see fit.

The tabview has most of the same options as multiview does, along with some from

the accordion (again owing to the object-oriented nature of Webix, which the Webix

documentation does a good job calling out via the “Based on” line that accompanies the

high-level explanation of pretty much all Webix components).

�toolbar
The next layout component to discuss is arguably not a layout component at all, but

that’s the way the Webix documentation classifies it, so I won’t argue! This component is

used for creating a toolbar as seen in most applications, and you define it just like most

other components, as Listing 2-12 shows.

Listing 2-12.  The toolbar

webix.ui({

 view : "toolbar", height : 50,

 cols : [

 �{ view : "button", label : "New", width : 90, type : "iconButton",

icon : "file" },

 �{ view : "button", label : "Open", width : 90, type : "iconButton",

icon : "folder-open" },

 �{ view : "button", label : "Close", width : 90, type : "iconButton",

icon : "window-close" }

]

});

Now, there’s something new here that applies to many Webix components, so after

you gaze longingly at Figure 2-12, I’ll talk about those icons.

Figure 2-12.  The toolbar

Chapter 2 Getting to Know Webix

70

Webix ships with the Font Awesome collection of font-based icons, and they are used

throughout Webix, but they are available for your use as well. In typical fashion, Webix

makes this easy. Simply specify the icon attribute and the name of the Font Awesome

icon you want (the list of which you can find at fontawesome.io/icons), and you’re

done! Well, not quite; in the case of a button, you have to specify its type as iconButton.

Otherwise, a button just shows text. But, I’m getting ahead of myself a bit as you’ll look at

buttons later.

A toolbar is always horizontal, but not to worry, there are other components for

doing what a toolbar does vertically that I’ll get to later. For now, a few interesting config

options to mention include elementsConfig, which allows you to define attributes for all

the child elements of the toolbar. For example, if you want all buttons to be iconButton

types, you can use elementsConfig:{type:"iconButton"} and not have to specify the

type for each button.

�New Concept: Visibility Batching

I’ll introduce one new concept before I finish with the layout components. Look at this

bit of code:

webix.ui({

 view : "toolbar", height : 50, visibleBatch : 1,

 cols : [

 { label : "New", icon : "file", batch : 1 },

 { label : "Open", icon : "folder-open", batch : 2 },

 { label : "Close", icon : "window-close", batch : 1 },

 { label : "Save", icon : "save", batch : 2 }

],

 elementsConfig : { view : "button", width : 90, type : "iconButton" }

});

First, note the use of elementsConfig to shorten everything and remove redundancy.

Nice, right? But, more important, when this is rendered, only the New and Close buttons

are shown. Why is that? It’s because of the visibleBatch and the batch attributes. You

can create a collection of components, calling them a batch, and then you can make a

given batch visible or hidden. You can do this initially by setting visibleBatch to the

appropriate value, 1 here, or you can do it programmatically using the showBatch()

method on the container (the toolbar here). This gives you a clean way to hide and

Chapter 2 Getting to Know Webix

71

show groups of components as needed during the lifetime of your application. Note that

you can name a batch anything you like, it doesn’t have to be a number. Want to call it

“buttons that are only needed after the user logs in”? You can do that! It’s all up to you!

�Summary
In this chapter, you looked at a great many Webix components and saw many core Webix

concepts in action. You became familiar with a lot of what Webix offers and saw the code

that goes into using it. Ideally, you feel like you have a decent grasp on the basics and a

good idea of the types of UIs you can build with Webix.

In the next chapter, you’ll continue looking at the rest of the Webix widget set,

including those that deal with data entry and data, which you’ll of course look at in

more detail. You’ll also look at some more advanced types of UI interactions that Webix

supports.

Chapter 2 Getting to Know Webix

73
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_3

CHAPTER 3

Getting to Know Webix
Even More!
In the previous chapter, you started getting to know Webix by looking at some core

concepts such as application structure, layout, and component interaction. You then

started surveying many of the components that Webix offers you as a developer.

In this chapter, you’ll continue that exploration, and you’ll be introduced to some

new concepts and new widgets, continuing to build on the foundational knowledge

you’ll need to build the real applications that the remainder of the book will deal with.

This chapter starts with something that you’ve seen a little bit of but that is a larger

topic, namely, forms.

�Forms and Data Entry Controls
Let’s discuss data entry. In the interest of killing fewer trees, I’ll present a single unified

example here, in Listing 3-1, and then cover the individual pieces. This example contains

every data entry control covered in this chapter, so as you go through the rest of the

chapter, please refer to this listing and the associated figure as I discuss each component.

(Note that I left out some surrounding code in the interest of keeping a long chapter from

getting any longer, but rest assured, this is the part that matters for this chapter.)

Listing 3-1.  All Form/Data Entry Control Widgets in One Place (the Code)

let dataObj = [

 { id : "1", value : "Dream Theater" },

 { id : "2", value : "Kamelot" },

 { id : "3", value : "Circus Maximus" }

];

74

webix.ui({

 view : "form", id : "form1", width : 1000, height : 820,

 css : { "border" : "2px solid #000000", "margin" : "10px" },

 elementsConfig : { labelWidth : 120 },

 elements : [{

 cols : [

 /* Column 1 */

 { width : 420, rows : [

 { view : "button", label : "button" },

 { view : "checkbox", label : "checkbox" },

 { view : "colorpicker", label : "colorpicker" },

 { view : �"combo", label : "combo", value : "2", options : dataObj,

required : true },

 { view : "counter", label : "counter" },

 { view : "datepicker", label : "datepicker" },

 { view : "dbllist", height : 200, value : "1,3",

 css : { "margin-top" : "10px!important" }, data : dataObj

 },

 { view : �"label", label : "This is a label, and below is an icon",

align : "center" },

 { view : "icon", icon: "envelope", align : "left" },

 { view : "fieldset", label : "Pro-Only Widgets",

 body : { rows : [

 { view : "daterangepicker", label : "daterangepicker" },

 { view : �"multicombo", label : "multicombo", value : "1,3",

options : dataObj },

 { view : �"multiselect", label : "multiselect", value : "2,3",

options : dataObj },

 { view : "multitext", label : "multitext" }

] }

 }

] },

Chapter 3 Getting to Know Webix Even More!

75

 /* Column 2 */

 { },

 /* Column 3 */

 { width : 520, rows : [

 { view : "radio", label : "radio", value : "1", options : dataObj },

 { view : "rangeslider", label : "rangeslider" },

 { view : �"richselect", label : "richselect", value : "2", options :

dataObj },

 { view : "richtext", label : "richtext", height : 150 },

 { view : "search", label : "search" },

 { view : �"segmented", label : "segmented", value : "3", options :

dataObj },

 { view : "select", label : "select", value : "1", options : dataObj },

 { view : "slider", label : "slider" },

 { view : "text", id : "myText", name : "myText", label : "text",

 validate : webix.rules.isNumber,

 invalidMessage : "Must be a number", bottomPadding : 20,

 on : {

 onBlur : function() { $$("form1").validate() }

 }

 },

 { view : "textarea", label : "textarea", height : 220 },

 { view : "toggle", onLabel : "toggle ON", offLabel : "toggle",

 width : 100, align : "right"

 }

] }

]

 }]

});

Of course, a code listing wouldn’t be complete without a screenshot to go along with

it, and that’s exactly what Figure 3-1 is. There will be a few other figures later for things

that I couldn’t show in this one, but for the most part, this is the one you’ll need to look

back at during the subsequent discussions.

Chapter 3 Getting to Know Webix Even More!

76

Now, let’s break down what you see here so you can begin to understand what each

element is, starting with the container for all of this, the form component.

�form
In the HTML world, data entry usually means forms, and that’s what it by and large

means in the Webix world too (which, of course, ultimately is the HTML world after all!).

Webix provides a form component that can host a, uh, host of data entry controls. It’s

similar to the plain HTML <form> element, though it provides extra capabilities that its

plain HTML brethren does not.

Figure 3-1.  All form/data entry control widgets in one place (the screenshot)

Chapter 3 Getting to Know Webix Even More!

77

A Webix form component inherits from the Webix view component, so you can do

all the same sorts of layout tricks you can otherwise, using rows and cols. However,

forms also have an elements attribute, which effectively acts like the rows attribute does

in that it lays out your elements in a vertical arrangement. For all the features of the

form component to work, though, all your data entry controls need to be children of the

elements attribute. But, you can use rows and cols within elements just fine, so you can

lay out forms as you want; you just need to nest everything within elements.

The form component provides convenience methods for setting and getting values:

the aptly named setValues() and getValues() methods. To use setValues(), ensure

that every element in the form has a name attribute and then just pass the method an

object where the attributes are those names. Conversely, setValues() returns to you an

object in that form. You can also get the value of a single field by using $$("<form_id>").

elements.<field_name>.getValue(), or if you give an id to an individual entry control,

then you can use $$("<control_id").getValue().

Speaking of values, Webix also enhances a plain form by keeping track of which

fields have been changed and which haven’t; this then allows the form component to

provide the getDirtyValues() and getCleanValues() methods to get the fields that

have been changed and those that haven’t, respectively.

�New Concept: A Brief Introduction to Events

Components in Webix, in addition to having lots of configuration properties you can

adjust, attributes you can look at after creation, and methods to interact with them, also

provide a robust event model. You’ve seen a little bit of this already in the form of the

click handler attached to buttons. What events a given component exposes can vary

greatly, so you’ll need to check the documentation to look them up.

Some events you can configure when the component is created, as with the click

handler for buttons. Other times, you may need to hook into them after the call to webix.

ui() completes. Once that’s done, the component exists, and you can then do the

following:

$$("myButton").attachEvent("onItemClick", function(id, event) {

 // Do something useful!

});

Chapter 3 Getting to Know Webix Even More!

78

The attachEvent() method is available for virtually all components, and all you

need to do is pass it the type of event you want to listen for (as determined from the

documentation) and then pass it a function to execute when that event happens. The

arguments to that function are also determined by the documentation because they are

different for every type of event.

Alternatively, you can define event handlers “inline” by using the on attribute during

construction. The value you provide will be an object where the keys are event names,

and the values are the functions to execute. So, the previous code could look like this

instead:

{ id : "myButton", view : "button", label : "My button",

 on : {

 onItemClick : function() {

 // Do something useful!

 }

 }

}

For form fields, you can also attach events, for example, to do something when the

value of a text field changes.

$$("<form_id>").elements["<field_name>"].attachEvent("onChange",

function(newVal, oldVal) {

 webix.message(`Value changed from ${oldVal} to ${newVal}`;

});

One thing that often comes up in event handlers for form fields is needing access

to the form within the event handler. You can certainly use $$() to get a reference to it,

but you can also do this.getFormView() within the event handler because this will

reference the control.

�htmlform
Before you get to the actual data entry controls, let’s look at something that’s kind of a

helper widget, so to speak, the htmlform. To demonstrate this, I need to show an entire

HTML document; see Listing 3-2.

Chapter 3 Getting to Know Webix Even More!

79

Listing 3-2.  Using htmlform to Wrap an Existing Plain HTML Form (the Code)

<!DOCTYPE html>

<html>

 <head>

 <title>htmlform</title>

 �<link rel="stylesheet" type="text/css" href="../webix/codebase/webix.css">

 �<script type="text/javascript" src="../webix/codebase/webix_debug.js">

</script>

 <script>

 webix.ready(function() {

 �let frm = webix.ui({ id : "myFormView", view : "htmlform", content

: "myForm" });

 frm.setValues({ firstname : "Frank", lastname : "Zammetti" });

 });

 </script>

 </head>

 <body>

 <div id="myForm">

 <div>

 <label for="firstName">First Name</label>

 <input type="text" name="firstName" placeholder="Required"/>

 </div>

 <div>

 <label for="lastName">Last Name</label>

 <input type="text" name="lastName" placeholder="Required"/>

 </div>

 </div>

 </body>

</html>

Chapter 3 Getting to Know Webix Even More!

80

The purpose of htmlform is to take an existing plain old HTML <form> element

and wrap it in a Webix form component, thereby giving it all the features a Webix form

provides as previously discussed. To use it, all you need to do is specify the HTML ID

of the <form> element when constructing the htmlform component as the value of the

content attribute. You wind up with what you see in Figure 3-2.

If that doesn’t look much different from the plain <html> form, you’re right! In

fact, there’s a slight styling difference, but it’s easy not even to notice it. (If you try the

sample code there, you can see it switch over quickly when the page loads if you watch

carefully enough.) But, the point of this is that now you can do things such as using the

setValues() method, which of course isn’t available with an HTML <form> element.

Also note that when Webix wraps the original form in an htmlform component, the

field names become lowercased. Note that in the original form, the fields are named

firstName and lastName, but when setValues() is called, firstname and lastname

must be used. I frankly am not able to tell whether this is a bug or a feature, but I can find

no reference to it in the documentation. It’s just something to be aware of either way.

In my opinion, it’s usually better to build Webix UIs entirely in code, so this

component wouldn’t get much use in my mind. But, I did want to point it out because

if you’re trying to just add a little bit of Webix to an existing app, then this might be

something that you find useful.

Now, let’s move on to the actual data entry components that you see in Figure 3-1,

starting with one you’ve seen several times already: the button.

�button
C’mon, you know very well what a button is! You push it and something happens.

That’s it!

Figure 3-2.  Using htmlform to wrap an existing plain HTML form (the screenshot)

Chapter 3 Getting to Know Webix Even More!

81

What you may not know, though, is that Webix offers a wide variety of forms a

button component can take. You can see a plain button in Figure 3-1, and you’ve seen

buttons with icons a couple of times. All of the various types are specified with the type

attribute when you construct a button. No type attribute gives you a plain button, and

iconButton gives you one with an icon to the left. You can also do iconButtonTop to put

the icon on the top, or iconTop, which is the same except without a border. Then there’s

type form, which gives you a plain button that’s green, and danger, which gives you a

red button. There are also prev and next, which give you buttons with left or right edges

that are arrows, respectively.

You can specify type image, which then requires you to supply an image config

option that points to an image file. (Just like an icon button, an image button can have

text, but it doesn’t have to; you can put the image on the left or top as you want.)

A type of htmlbutton creates a button that you define with HTML and CSS. (The css

attribute works as always, and the label attribute provides the markup to show in the

button.)

Buttons can also have badges, which are little circles that typically show numbers

for things such as unread e-mails in your inbox, for example. In point of fact, any button

type can have a badge; you just need to provide a value for the badge attribute.

Naturally, a button without a click handler isn’t going to be of much use, and as

you’ve seen already, that’s just a function you supply. Also, as you’ve seen, buttons

can be sized with width and height like most components. Buttons also support an

autowidth option that when true will size the button to its content automatically.

�checkbox
A checkbox widget allows the user to make a binary yes/no choice.

Usually, a checkbox has its label to the left, but you can put the checkbox itself on the

left and the label on the right by setting labelRight to true during construction.

When you get the value of the checkbox, what value do you actually get for either

state? By default, you’ll get 1 for checked and 0 for unchecked, but you can change that

by setting one or both of checkValue or uncheckValue.

Finally, most of the time, the skin you’re using in your application (where skinning

is something I’ll discuss more in the next chapter) defines what a checkbox looks like.

However, if you want to force Webix to render it as a plain HTML check box, then you can

set customCheckbox to false (it defaults to true).

Chapter 3 Getting to Know Webix Even More!

82

�toggle
The toggle component is conceptually a lot like a checkbox in that it’s used to allow a

user to make an either-or decision. It’s essentially a different presentation of a yes/no or

on/off type of choice.

By default, the toggle component appears like a button, but when clicked, its

appearance changes to indicate that it is pressed, and it stays pressed. It’s “sticky” in a

sense—a stuck button! However, toggle supports several presentations by altering the

type property, and the available values mimic the plain button: iconButton, image,

imageButton, imageTop, imageButtonTop, next, and prev. Also like a button, you can

specify an icon, and you can, of course, set the label text. In addition, toggle offers an

onIcon and offIcon configuration option that works like icon does but will change the

icon depending on whether the toggle is on or off.

As a matter of opinion, I suggest only ever using the toggle widget in its image

variants. The reason is that, to my eyes, the default toggle look is too subtle to be usable.

However, also note that this can be impacted by what skin you choose, so take this advice

with a grain of salt, and decide for yourself, but take the time to make the comparison

and base your decision on it. That’s the key!

�colorpicker
The colorpicker widget is kind of a special drop-down element where what drops down

is a color swatch palette that the user can choose a color from.

Try the example code in Listing 3-1 and click the box next to the colorpicker label

and you’ll get a box below it with a bunch of colors in it. Clicking one sets the value of the

component, which you can retrieve like any other.

There really isn’t much in the way of options or methods for a colorpicker; it’s a

pretty simple component.

�combo
The combo component combines a drop-down select component with a text edit box.

This allows the user to either enter a value directly or select one from the list.

Chapter 3 Getting to Know Webix Even More!

83

You specify a list of options to display in the drop-down portion (you can do this

statically as a value to the option attribute, or you can do this with a collection of data, as

the example shows), and you can optionally specify some text to show in the edit portion

when the user hasn’t entered anything by specifying a value for placeholder during

construction.

�New Concept: Required Fields and Form Validation

In Figure 3-1, you may notice that there is a little asterisk next to the combo field. That’s

because it has been marked required:true. You can mark any form field as required.

This affects form validation: a form will be considered valid or invalid based on whether

all its required fields have values.

In addition, you can define some rules for fields on your form by adding a rules

attribute to your form definition. These rules then play into whether the form is valid or

not. The value will be an object along these lines:

rules : {

 "email" : webix.rules.isEmail,

 "firstName" : webix.rules.isNotEmpty,

 "hasChildren" : webix.rules.isChecked,

 "age" : webix.rules.isNumber

}

Each property of the rule object must match the name attribute of a form field, and

the value is one of these four rules that Webix supplies. The first ensures the entry is in

the form of an e-mail address. The second checks if the field is empty or not. (This is

redundant with the required option, though required gives you the asterisk to indicate

the field is required, whereas just defining a rule does not; that’s the key difference.)

The third checks to see whether a checkbox field is selected (which is kind of pointless

frankly). Finally, the fourth ensures the entry is numeric in nature.

With these rules and the required option in play, you can then call validate() on

the form at any time and get back a Boolean that tells you if the form is currently in a

valid state according to these rules or not.

You can also define these rules on a per-field basis by setting the validate property

and giving it one of the same four rule values shown here. Listing 3-1 shows that done

on the text field. Note too that validation won’t work if the field doesn’t have a name

defined.

Chapter 3 Getting to Know Webix Even More!

84

These four rules are actually functions, and it’s entirely possible for you to add your

own; you aren’t limited to just these four. You’ll see an example of this in a later chapter.

Form fields also allow you to specify an error message to show when the value

isn’t valid by setting the invalidMessage attribute, as you can see that I’ve done for the

text field. If you do this, you’ll need to ensure there’s space below the field to show the

message in. That’s the reason I added bottomPadding:20 to the text field definition.

Finally, as with the text field, you’ll probably want to perform validation on each

field as the user moves through them. To do this, you need to attach an event handler

to the field, most probably in response to the onBlur event that fires when focus leaves

the field. In the example, you can see where I’ve done this, and the function executed for

that event calls the validate() method on the form. If you type some letters into the text

field and then tab out of it, you’ll see the field turns red and the invalidMessage appears

below it because I’ve attached the isNumber rule to it.

�counter
The counter control is for entry of numbers within a defined range and is sometimes

referred to as a spinner. It’s a small text box with a plus and minus button on the left and

right sides (at least with the Webix version; with other UI toolkits they are frequently

arrows and are together on the right side). The user can click the buttons to increase or

decrease the value, or they can enter a number manually.

With the counter widget, you can set min and max values to define the upper and

lower limits, and you can also change the step to tell it how much the value changes

with each click of either button (defaults to 1).

Aside from those three, this component really doesn’t offer any other special

configuration options or methods, just the typical ones available to most components

and data entry controls.

�datepicker
The datepicker component is a text field with a calendar icon next to it that when

clicked shows a calendar for the user to select a date from. Figure 3-3 shows what this

looks like when the user clicks the calendar icon.

Chapter 3 Getting to Know Webix Even More!

85

The user can enter a date manually if editable is set to true (it defaults to false),

but by default clicking anywhere in the field, not just the calendar icon, triggers the

calendar drop-down. As you can see, the user can select a month and year, either by

scrolling through them with the left and right arrows or by clicking the month/year

displayed, which brings up an alternate display for them to select from, shown in

Figure 3-4.

Figure 3-3.  The datapicker component

Figure 3-4.  Selecting a month/year, alternate view

Chapter 3 Getting to Know Webix Even More!

86

A few interesting config options are available for this component. The format

attribute sets the date format and uses a Java-like format specifier such as %d-%M-%Y, for

example. The documentation lists all the specification values available, and there are

quite a few, so you can get whatever format you need. The timepicker option allows you

also to support the entry of time. When this is set to true, you get a small clock icon and

the time in the bottom left of the calendar (on the same row as Today and Clear, which

are clickable items the user can use to quickly select the current day or clear the current

value, respectively). Figure 3-5 shows what happens when you click that icon or the time.

Figure 3-5.  Selecting a time with the datepicker

As you can see, the date is displayed in the text field portion and is subject to

formatting via the format specification. Additionally, you can use the timeIcon attribute

to specify a different Font Awesome icon to show on the calendar to trigger time entry if

you want.

Finally, as far as methods go, there’s nothing really specific to this component.

However, I’ll use this opportunity to point out the setBottomText() method, which is

available for most form controls. This allows you to put a small bit of static text below the

control, similar to a validation failure message, but it is by default a slightly gray, small

bit of text, not red like a validation failure message is. It’s good for setting things like hints

and tips for a field.

Chapter 3 Getting to Know Webix Even More!

87

�daterangepicker
The daterangepicker, which is available only with a Pro license and which you can see

in Figure 3-6, is probably best described as the datepicker component on steroids.

If you need your users to select two dates to indicate a range, then this is the

component for you. It does all the same things the datepicker does, including allowing

for time input, but it presents two calendars together and displays the date as a range

in the text box. It also highlights the range in the calendar, as you can see. This is a

convenient and obvious way for users to select a date range.

There doesn’t appear to be any methods of config options specific to this

component, but everything that the datepicker can do, this can do too.

Figure 3-6.  Don’t do drugs kid! No need for steroids, get swole naturally! (Oh yeah,
and this is the daterangepicker.)

Chapter 3 Getting to Know Webix Even More!

88

�dbllist
The dbllist component is sometimes called a swapper, a list builder, a shuttle, or a

swap list (I’ve even seen it called a slushbucket!). Point being, there’s no official name for

this, so Webix calling it a dbllist is as good as any.

You most certainly know what it is, though. You’ve got two boxes next to each other

(or on top of each other perhaps), and you can move items from one list to the other,

either by dragging and dropping or by clicking buttons. There are usually buttons to

move a single selected item as well as buttons to move all the items between the lists.

The point, generally, is to take a list of possible items and construct a list that is usually

a subset (but doesn’t have to be) that the application then uses for some purpose. In my

example, I’m able to move some of my favorite bands between the lists, and perhaps I’ll

take the list on the right and order tickets when a button is clicked, for example.

To use it, you need to supply data, and as I’m sure you’ve noticed, all the

components that use data in this example use the same data collection. You can specify

an initial value, which for a dbllist since more than one item can be selected, can be a

comma-separated list. Those items are initially put over on the right, which Webix treats

as the “target,” meaning the list you’re going to do something with ultimately.

This component actually supports both interaction models, meaning drag-and-drop

as well as buttons. Interestingly, I don’t see a way to disable either form of interaction

directly; it seems you get both whether you want them or not. (In a case like this, you

might be able to intercept some events and effectively cancel them, the drag-and-drop

events specifically, though I don’t see a way to do that, so it might be in this case that

you’re getting drag-and-drop functionality whether you like it or not!)

The buttons in the middle are something you can change, though, by using the

buttons config attribute. Setting it to false hides the buttons entirely (which, hey, gives

you a way to disable that interaction model at least!). Alternatively, you can supply a

template to change their appearance.

buttons : `<button class='dbllist_button'>Select</button>

 <button class='dbllist_button'>Remove</button>`

Aside from that, the most important method you’ll need is getValue(), which

returns to you a comma-separated string that is a list of the IDs of the items in the box on

the right.

Chapter 3 Getting to Know Webix Even More!

89

�fieldset
The fieldset component isn’t a data entry control per se, but it’s included in the list because

it’s very much related to data entry. This component is what provides the border with the text

Pro-Only Widgets in the example. That is its only purpose: to group components together in a

visual way. It has no impact on data entry otherwise and as such has really no config options,

methods, or events beyond the basics that every component has.

�icon
The icon component is exactly what you think. It’s a static icon image, nothing more.

You can provide a click handler to make it active to perform some function. Similarly,

you can provide a popup attribute, which is the ID of an existing pop-up component,

and Webix will automatically show the pop-up when the icon is clicked, allowing you

to skip writing your own click handler. As with most components, you can also provide

a tooltip attribute that is text to display in a tooltip when the control is hovered over.

Beyond that, like the fieldset component, this is a simple one that doesn’t offer much

beyond the basics that all components provide, plus these few that I’ve mentioned here.

�label
The label component is, like fieldset and icon, a simple component that just displays

something statically with little configuration or methods available, this time displaying

some static text. In fact, beyond the label attribute, which is the text to display, and the

inputWidth attribute, which defines the width of the component, the only interesting

option is the align attribute, which defines how the text is aligned with relation to the

parent container. The possible values are left, right, and center, and I’m going to go

out on a limb here and assume you can guess what they do!

�multicombo
The multicombo control, another Pro-only widget, is an interesting one. What it does is

provides a drop-down that you can choose options from (via check boxes), and then it

displays those options in a box as what are frequently called chips. These chips can be

removed with an X icon. It’s a neat way to allow a user to select multiple options and be

able to remove them later if necessary.

Chapter 3 Getting to Know Webix Even More!

90

For the most part, you configure a multicombo just like a combo, but with some

additional features. Setting the keepText option to true (which happens to be the

default) means that when you select an item, it stays in the list (and shows up as selected,

as you can see in Figure 3-7. Setting it to false means the items are removed from the list

when selected (and they’ll return to the list if removed with the X icon).

The getValue() method returns to you a comma-separated string of the selected

items. When you set initially selected values by supplying a comma-separated list

for the value attribute, you can use something other than a comma to separate your

items by setting the separator config attribute (so value:"1-2" works if you also set

separator:"-", for example).

The multicombo also performs a suggest feature, meaning that as you type in the

text box portion, it will try to find a match from the options below. By default, what you

enter must match one of the options, but if you set newValues to true, then what the user

enters will remain as an option represented by a chip, thus allowing values not in the list

to be entered.

�multiselect
Keeping with the theme of Pro-only components (as well as “multi” components), you

now have the multiselect component. This component is like multicombo. In fact,

when you click it, you’ll see the same sort of drop-down that you see in Figure 3-7. The

only real difference is that while multicombo shows you the selected items as chips,

multiselect instead shows them as a comma-separated list.

Figure 3-7.  The multicombo (when just one combo won’t do!)

Chapter 3 Getting to Know Webix Even More!

91

This component also does suggest like multicombo does; however, multiselect

doesn’t allow the user to enter arbitrary values like multicombo does.

�multitext
The final “multi,” Pro-only widget to look at is multitext. This component allows the

user to enter an arbitrary number of arbitrary items, meaning they can enter any string

they want, and they can enter as many as they want. The control has a plus icon next to it

and each press of it adds a new text entry field below it (expanding its container, it should

be noted). Each row has a minus icon next to it, allowing the user to remove that row.

For all practical purposes, this control is just like the plain text component you’ll

see shortly, so it doesn’t have much in the way of extra features. The only thing of note

is the subConfig attribute. This allows you to define characteristics of each added row,

such as the label to show for each. Also note that adding rows expands the container

the multitext is in, which is something you may want to take into consideration as you

design your interface.

�radio
A radio widget, sometimes called a radio button, is a group of mutually exclusive

options from which the user is expected to choose (only) one. You simply supply it

with a list of options to display and optionally an initial value for which is selected,

and that’s it.

By default, radio will lay its options out horizontally, but setting vertical to

true switches to a vertical layout with each option going down in a column. Like the

checkbox, which had a customCheckbox config option, radio has a customRadio option

that you can use to switch to a plain HTML radio button rather than a skinned one

according to the theme currently in effect.

�segmented
Like the radio component, the segmented component is a way for a user to select one

and only one choice from a group of choices. Technically, a segmented is a collection of

buttons, but they are buttons that toggle their appearance (a color change) when one is

selected.

Chapter 3 Getting to Know Webix Even More!

92

As shown when the multiview was discussed, there is special plumbing built into

the segmented to connect it to a multiview to let the user switch between the views by

setting the multiview config option on the segmented. As you can see from the example

code, the options attribute is how you define the labels for each of the buttons.

The segmented widget provides a showOption() method and a hideOption()

method that accepts an ID to hide and show options (segments) dynamically.

This component is especially good for touch-based interfaces since it provides a

bigger touch target and so is generally easier to use with that form of interaction than a

radio is.

�select
The select component basically mimics the plain HTML <select> element in that it

presents a list of options in a drop-down for the user to choose from. This widget does

not allow arbitrary entries, so the user must always select an option from the list. This

widget also does not allow multiple selections.

As with most components that require data to populate the available options, you set

the options attribute to define them, and you can select an initial value by specifying the

value attribute during construction. Beyond that, there aren’t any special config options

or methods for this component, but all the usual suspects are there: bottomLabel,

bottomPadding, css, id, label, tooltip, validate, required, enable(), disable(),

getValue(), show(), hide(), and setValue(), to name just the most commonly used.

�richselect
The richselect, for the most part, looks and works like select does, but the big

difference is that with richselect, the drop-down portion is a popup component. As

such, you can create a richer display in the drop-down by specifying the template

attribute and tell it how to render each option. It can be as simple or as complex as

you want, including images next to each item as one example. You can also specify a

labelHeight value as part of an object that is the value of the type attribute to adjust the

height of each item in the list.

Aside from those few, there aren’t really any other richselect-specific options or

methods. If you’ve seen one select, you’ve seen ’em all, even the rich variety essentially!

Chapter 3 Getting to Know Webix Even More!

93

�slider
The counter component that you saw earlier allows the user to select a numeric value

from a defined range and do so in discrete steps. The slider component does the same,

but with a different presentation: a horizontal line with a knob that the user drags to

change the value.

Like the counter widget, you can define min, max, and step values to define the range

and how the value changes as you move the knob.

At present, a slider cannot be vertical, nor can you allow values other than numbers

(some sliders in other toolkits allow you to define string values for each position, but

Webix does not as of this writing).

Those things aside, a slider has essentially the same set of properties, methods, and

events that the counter does. It really is almost the same control, just with a different

look and of course a different way for the user to interact with it. Which you use depends

on your use case. A slider is usually better when there’s a wider range of values, but it

takes up more space, so you should consider that. (You can, of course, define its width,

so you can make it as small as you want, but if it gets too small, then interacting with a

slider becomes difficult, so you have to consider that as well.)

�rangeslider
Like the difference between a datepicker and a daterangepicker, the rangeslider

allows you to select a range, a starting number, and an ending number. It does this by

simply presenting a slider with two knobs that can be dragged instead of just one with

the slider. The value you get back when you call getValue() is a comma-separated

string listing the starting and ending values if you set the stringResult attribute to true.

Otherwise, it’ll be an object with the start and end values as attributes (the latter is the

default).

As the user drags the knobs, they can never cross each other, so the one on the left is

always the starting value, and the one on the right is the ending value (they can, however,

occupy the same space and hence the same value).

As far as config options, methods, and events go, they are identical to those of the

slider.

Chapter 3 Getting to Know Webix Even More!

94

�text
The text widget is simply a one-line field where a user can enter text. You can optionally

provide a placeholder value during construction to show a label inside the field, which

is primarily what distinguishes this from the plain HTML <input type="text"> field.

You can also, like the HTML version, specify a type attribute and give it a value of

text (which is the default), password (which masks the input as the user types), or email

(which specifies the entry is to be in the form of an e-mail address).

In addition, you can supply a pattern config option that defines a formatting

pattern. The value of this option is an object with two attributes: mask and allow.

The mask attribute defines a pattern using the # symbol and pattern symbols such as

hyphens, periods, and spaces. This allows the field to format the value as the user types.

The allow attribute allows you to define a regular expression to limit what the user can

input. Using these two together allows for some powerful entry fields that limit user

errors greatly. Webix also supplies a few patterns itself, and they are defined as webix.

patterns.phone, webix.patterns.card, and webix.pattern.date. These are objects

that define the appropriate mask and allow values, so you can reference them as the

value of your pattern attribute.

�search
The search component is really nothing more than a text component with a search

icon integrated into it. This is such a common pattern that Webix supplies a special

component for it. There isn’t any extra functionality beyond what the plain text

component offers, though. It really is just the addition of the search icon that makes this

different! You can change the icon shown using the icon attribute like for many other

controls, but beyond that, there really isn’t much to say about this component frankly.

�textarea
The textarea widget is just like its <textarea> plain HTML brethren, but in Webix

clothing. It has all the same options and methods as a text component does, but of

course, you’ll need to specify a width and height for this one since it allows for multiple

lines of text to be entered. A scrollbar will appear when the user enters more than can fit

in the box as initially sized.

Chapter 3 Getting to Know Webix Even More!

95

Like search, there isn’t much more to say on this one. It’s just a big text component

that allows multiple lines. Otherwise, its API is identical to the text component.

�richtext
The final component to look at is another text entry component called the richtext.

This one is similar to textarea, so is of course similar to text as well, but the big

difference here is that richtext allows you to do some formatting of entered text,

specifically bold, italic, and underlining. It does this by providing three buttons at the

top. When you click them, whatever text is selected will have the appropriate style

applied (or removed if it already had it set since the buttons are toggles).

You might imagine that there are a lot of extra config options and methods available

for this widget, but in fact, there aren’t. Its API is pretty much the same as the other three

text entry ones.

�forminput
The final data entry component to look at is one that in a sense isn’t a data entry

component, at least not like the others you’ve seen. The forminput component is instead

a component that allows you to take other Webix components and use them as form

components. Check out Listing 3-3 to see what the code for this looks like.

Listing 3-3.  The forminput Widget

let myDataTable = {

 view : "datatable", height : 200,

 columns : [

 { id : "name", header : "Employee Name" },

 { id : "position", header : "Position" },

 { id : "phone", header : "Phone Number", fillspace : 1 },

],

 data : [

 { name : "Jack", position : "Dillon", phone : "111-222-3333" },

 { name : "Susan", position : "Everest", phone : "444-555-6666" },

 { name : "Charlie", position : "Jackson", phone : "777-888-9999" }

]

};

Chapter 3 Getting to Know Webix Even More!

96

webix.ui({

 view : "form",

 elementsConfig : { labelWidth: 120 },

 rows : [

 { view : "text", width : 300, label : "Manager ID" },

 { view : "forminput", label : "Employees Grid", body : myDataTable },

 { view : "button", value : "Save", inputWidth : 200, align : "right" }

]

});

What I’ve done here is created a datatable component, which is a component you’ll

look at in the next chapter, but in essence, it’s like an HTML <table> and is used to

display columnar data. But, critically, it isn’t a component you can usually put in a Webix

form. However, once you wrap it in a forminput, then you can, as Figure 3-8 shows.

All you really do is add a component with a view:"forminput" to the form and

then specify another component as the body (and yes, this can be a Webix view that

contains any number of components; it doesn’t have to be just one). Then, as long

as the components that forminput wraps has a name attribute, they’ll show up in the

form’s values when you call getValues(), and you can use most of the form logic config

Figure 3-8.  Beware datatables in forminput’s clothing

Chapter 3 Getting to Know Webix Even More!

97

attributes on them—things such as required and validate and all that. Of course, what

values you get from various components, especially when it’s a group of components,

can be an object with a complex structure, but that’s the price you pay for being able to

use widgets that aren’t ostensibly data entry controls in a form!

�The Basics of Data
In this chapter, you’ll be looking at many data-aware components, though you’ve

already seen some in the previous chapter. And, as part of seeing those, you saw that for

many components you can supply a data attribute when you construct the component

to provide data to it. This is, in a broad way, the basics of using data, and for many

applications, it’ll be all you need. However, there’s more to data with Webix than that, as

you have probably guessed!

�Loading Data from an External Source
First, you aren’t required to provide the data “inline” via the data attribute; you can also

load it from an external source, and you can do that with the url config option. As the

name implies, this is a URL to a resource that the component will retrieve and parse

as data to feed to the component. By default, it is assumed that the resource returned

is in JSON form, so if you had a file on your server named data.json, then you might

do url:"http://myserver.com/data.json" to load the data. The contents of data.

json would look just like what you provide to the data attribute, perhaps this if it was

returning a list of users:

[

 { id : "user1", numberOfLogons : 3 },

 { id : "user2", numberOfLogons : 5 }

]

Of course, you absolutely can specify the URL of a dynamic resource, perhaps a JSP

or PHP file, which produces the JSON on the fly. The response doesn’t even need to

be JSON, though that’s the default. If you want to use XML instead, for example, then

you just need to provide a datatype attribute in addition to url and specify one of the

supported values: json, xml, jsarray, or csv.

Chapter 3 Getting to Know Webix Even More!

98

�Dynamic Data Loading
Of course, loading data when the component is constructed isn’t always what you want.

Sometimes you’ll need to load data later, maybe in response to some user action. That’s

easy to do by calling the load() method on the component. There are three arguments

to this method: the URL of the data to load, the data type (which can be omitted if it is

JSON), and a callback function to call when the data loads (which is also optional). So, in

simplest terms, you can just pass the URL to load to the load() method and, as they say,

thy will shall be done, and the data will be loaded into the component!

If you want to load some data that doesn’t come from an external source or maybe

does come from an external source but you prefer to write your code to retrieve and load

it, then the parse() method is your friend. This takes in a string of JSON or a JavaScript

object (like you would specify for the data attribute), and parses it and adds the records

to the component. Note that it does, in fact, add them to any existing data in the

component, so if you want to replace the data entirely with the new data, then you need

to call the clearAll() method on the component before calling parse().

�DataStore
Now, the clearAll() method is interesting because it’s not a member of data-aware

components directly; it is, in fact, a member of something called DataStore, which is

something that Webix creates behind the scenes when dealing with data. In fact, if you

specify a data attribute for a data-aware component, you’ll find after the component is

constructed that the value of the data attribute is now a Webix DataStore object and is

no longer the plain JavaScript object you provided!

A DataStore is a collection of records, which are themselves just JavaScript objects.

The two users in the previous data.json example are examples of records.

The DataStore provides a host of data-related functionality, besides that clearAll()

method, including things such as filtering of data via the filter() method, sorting

of data via the sort() method, and even getting the data in the DataStore as a JSON

object via the serialize() method. The importData() method allows you to copy the

data from one DataStore to another, so to copy the data from a list component named

myOtherList to a list component named myList, you might do the following:

$$("myList").data.importData($$("myOtherList")

Chapter 3 Getting to Know Webix Even More!

99

Note that the importData() method is called on the data property of the component,

and that’s because of what I previously said: Webix has created a DataStore object for

you and assigned it to the data reference, replacing whatever you might have specified

there when the component was configured.

With a DataStore, you can also retrieve a count() of records in it, and you can

perform an operation on each record by using the each() method and providing it with

a function to call for each record. You can search for a record with the find() method

by providing it with a function that determines whether a record matches the criteria

you set out. You can also get records from a DataStore by specific ID using getItem().

You can, of course, add and remove (with add() and remove()) items to a DataStore,

and by extension the component using it, and you can update an existing item using

updateItem() too.

Remember, the operations you perform on a DataStore that mutate data are

immediately reflected in the component using that DataStore. That’s the key concept

here and is what makes the Webix data API that this is all part of so powerful.

�Proxies
The final data topic I want to talk about is proxies. Proxies are JavaScript code that knows

how to read a particular type of data or read data in a certain kind of way and provide it

to a DataStore. In essence, proxies provide addition loading logic to a DataStore.

The way you specify a proxy is by means of a prefix to the value passed to the load()

method or the value of the data attribute. As an example, let’s say you want to store

your data for a datatable component (which you’ll see in the next section, but for now

just imagine it like an HTML table that is aware of how to use data from a DataStore) in

IndexedDB in-browser storage. (IndexedDB is a low-level API for client-side storage of

significant amounts of structured data, including files/blobs.) When you construct the

datatable, you need to tell it this with a prefix to the url attribute:

{ view : "datatable", id : "myDatatable", url : "indexdb->myDB/

myCollection" }

The indexdb-> prefix tells Webix that you want to use the indexdb proxy to load (and

save) data for this datatable. If you want to load the data after component construction,

you can do the same with the load() method.

$$("myDatatable").load("indexdb->myDB/myCollection");

Chapter 3 Getting to Know Webix Even More!

100

To support saving data back to the database, you need to specify the save config

option, using the same value as the url option.

Of course, this won’t do much good if you don’t create that database first, so Webix

provides a means to do that via the proxy API.

webix.proxy.indexdb.create("myDB", {

 myCollection : [

 { id : 1, firstName : "Luke", lastName : "Skywalker", jedi : true },

 { id : 2, firstName : "Han", lastName : "Solo", jedi : false }

],

}, null, function() { });

The first argument is the name of the database; the second is an object that contains

data for a collection (or multiple collections if you need to). The third is the database

version, though the Webix documentation says to typically not bother with this and just

pass null, and the fourth is a callback that is called once the data has been loaded. If

you do this before constructing a component like the datatable described, then the

component will display the data from the database (assuming the browser supports

IndexedDB, of course).

Webix supports a number of proxies out of the box, including the following:

•	 offline and cache: For offline support of applications that use

server-side data

•	 local: For saving component data into a browser local storage and

working with it

•	 connector: For saving data via a server-side connector

•	 rest: For working with a server in the REST mode

•	 post: For loading data in a POST request (GET by default)

•	 sync: For loading data via a synchronous Ajax request (by default,

loading is performed by an asynchronous request)

•	 indexdb: For working with IndexedDB in-browser database storage

Chapter 3 Getting to Know Webix Even More!

101

•	 faye: For enabling live data update on all clients currently using the

application

•	 binary: For loading and reading files as arraybuffer

•	 json: For sending JSON data to a server via RESTful “save” requests

with the application/json content type

Given the wide variety in these, I won’t be covering each one, but they all function

similarly to the indexdb proxy as far as how you deal with it goes. Of course, you also

have the ability to create your own proxy if needed; Webix provides extension points for

doing that.

�Specialized Data Components
With the basics of data in Webix covered, it’s time to move on to specialized data

components, or data-aware components. Specialized data components are those

components that are specifically designed to deal with a collection of data. They display

data, visualize it in some way, and, in some cases, allow the user to interact with or even

edit that data. Let’s look at these components now.

�chart
The chart component is without a doubt the most flexible data component Webix offers.

It allows you to visualize data in a wide variety of ways, some of which will be familiar to

you, some maybe not. For example, given this bit of data, all of the types of charts shown

in Figure 3-9 can be produced:

let chartData = [

 { count : 65, dollars : 130, color : "#ff0000", type : "AA" },

 { count : 120, dollars : 280, color : "#00ff00", type : "BB" },

 { count : 50, dollars : 98, color : "#0000ff", type : "CC" },

 { count : 90, dollars : 110, color : "#ffff00", type : "DD" }

];

Chapter 3 Getting to Know Webix Even More!

102

Not all charts use all the elements of the data, but that’s fine because Webix will just

ignore the data elements that a given chart type doesn’t need. Listing 3-4 shows the code

to produce this display, which includes the ten charts you see as well as the layout they

all fit into (in order to have space between them).

Listing 3-4.  The Code for Lots of Different Types of Charts

webix.ui({

 rows : [

 { height : 10 },

 /* Row 1 */

 { cols : [

 { width : 10 },

 /* Area chart. */

 { view : "chart", type : "area", value : "#count#", label : "#count#",

Figure 3-9.  A ton of beautiful charts, if you’re in to that sort of thing

Chapter 3 Getting to Know Webix Even More!

103

 width : 300, height : 200, data : chartData

 },

 { width : 10 },

 /* Bar chart. */

 { view : �"chart", type : "bar", value : "#count#", label : "#count#",

barWidth : 100,

 radius : �10, gradient : "3d", width : 300, height : 200, data :

chartData

 },

 { width : 10 },

 /* Horizontal bar chart. */

 { view : �"chart", type : "barH", value : "#count#", label :

"#count#", barWidth : 20,

 gradient : �"falling", width : 300, height : 200, data : chartData,

padding : 40

 },

 { }

]},

 { height : 10 },

 /* Row 2 */

 { cols : [

 { width : 10 },

 /* Donut chart. */

 { view : �"chart", type : "donut", value : "#count#", color : "#color#",

label : "#count#",

 shadow : 20, data : chartData,

 pieInnerText :

 "�<span style=\"color:#82c0ff;font-weight:bold;padding:10px;\"

>#type#",

 },

 { width : 10 },

 /* Line chart. */

 { view : "chart", type : "line", value : "#count#", label : "#count#",

 width : 300, height : 200, data : chartData,

 line : { color : "#ffa0d0", width : 10 }

 },

Chapter 3 Getting to Know Webix Even More!

104

 { width : 10 },

 /* Pie chart. */

 { �view : "chart", type : "pie", value : "#count#", color : "#color#",

label : "#count#",

 shadow : 20, data : chartData,

 legend : { width : 90, align:"right",

 values: [

 { text : "AA", color : "#ff0000" },

 { text : "BB", color : "#00ff00" },

 { text : "CC", color : "#0000ff" },

 { text : "DD", color : "#ffff00" },

]

 }

 },

 { }

]},

 { height : 10 },

 /* Row 3 */

 { cols : [

 { width : 10 },

 /* 3D pie chart. */

 { �view : "chart", type : "pie3D", value : "#count#", color :

"#color#", label : "#count#",

 data : chartData

 },

 { width : 10 },

 /* Stacked area chart. */

 { �view : "chart", type : "stackedArea", value : "#count#", label :

"#count#",

 width : 300, height : 200, data : chartData

 },

 { width : 10 },

 /* Spline chart. */

 { �view : "chart", type : "spline", value : "#count#", label :

"#count#",

Chapter 3 Getting to Know Webix Even More!

105

 width : 300, height : 200, data : chartData

 },

 { }

]},

 { height : 10 },

 /* Row 4 */

 { cols : [

 { width : 10 },

 /* Stacked horizontal bar chart. */

 { v�iew : "chart", type : "stackedBarH", value : "#count#", label :

"#count#",

 radius : �10, gradient : "falling", width : 300, height : 200, data

: chartData

 },

 { }

]},

 { }

]

});

Overall, this is a simple layout that is four rows with seven columns in the first three

and three columns in the final row. (You can see some spacers in there, specifically as

the last column in each row, as well as for a fifth row to fill out the page completely.)

Each chart is one of the columns in a given row.

Each chart, as you’d guess, has its own specific config options available depending

on the features of a given chart type, but they all have the same basis, so you’ll find the

all-important data attribute on each. They all have the same type and chart, and the

type attribute defines the type of chart you want.

Because there’s quite a variety of charts and options available for each, I won’t

go into describing each here and instead leave that job to the documentation. For

the most part, though, I think you’ll find this code fairly self-explanatory. Even if you

aren’t familiar with a given chart type, I suspect you can make sense of how a chart is

constructed pretty easily.

Chapter 3 Getting to Know Webix Even More!

106

�datatable
A datatable component is what most other libraries and UI toolkits call a grid. It’s

a tabular form of data and in the case of the Webix datatable also allows for editing

the data (optionally, of course). A datatable provides functionality such as sorting,

filtering, pagination of large data sets, and more. Figure 3-10 shows what a basic

datatable looks like.

In this example, I’ve sorted the data on the Show Title column by clicking the column

header. This feature is enabled by default for every datatable you create. How do you

create one, you ask? Listing 3-5 answers that question!

Listing 3-5.  Not a Coffee Table, But a datatable

webix.ui({

 view : "datatable", width : 460, height : 216, editable : true,

 css : { margin : "10px" }, borderless : false,

 columns : [

 { id : "marker", header : "", width : 38, editor : "color",

Figure 3-10.  A simple datatable

Chapter 3 Getting to Know Webix Even More!

107

 template : function(inObj) {

 return "<span style=\"background-color:" + inObj.marker +

 ";border-radius:20px;padding-right:10px;\"> ";

 }

 },

 { id : "title", header : "Show title", width : 140, sort : "string" },

 { id : "network", header : "Network", width : 100, editor : "text" },

 { id : "seasons", header : "Seasons", fillspace : true }

],

 data : [

 { �marker : "#ff0000", title : "Star Trek: TOS", network : "CBS",

seasons : 3 },

 { �marker : "#00ff00", title : "Firefly", network : "Fox", seasons :

"TOO FEW!!" },

 { marker : "#0000ff", title : "Cheers", network : "NBC", seasons : 11 },

 { �marker : "#ffff00", title : "Suits", network : "USA", seasons : "7

(and counting)" },

 { �marker : "#ff00ff", title : "Babylon 5", network : "PTN",

seasons : "5" }

]

});

As you can see, you define the columns that your datatable will provide. The id

attribute for each column must match the name of an attribute in your data collection.

For each column, you can specify column header text. You can also optionally specify a

template that will generate the HTML for the header text if you need to do something

more complex, as I’ve done here, to show a colored circle based on the marker color

specified in the data. You can also specify the type of sorting a column provides when

the user clicks the header by specifying a sort value from one of int (for numeric

sorting), date (for date sorting obviously), string (for textual sorting), or string_strict

(which is a case-sensitive version of string sorting). The fillspace option, when set to

true, indicates that the column should stretch to fill the remaining horizontal space of

the container the datatable is in, if any.

Chapter 3 Getting to Know Webix Even More!

108

A column can also specify that its data can be edited by adding an editor attribute

and specifying the type of editor the column provides. Webix offers a number of editors

(and you can create your own too), including the following:

•	 text: A simple text editor box

•	 password: A text editor box that masks its input

•	 inline-text: A more advanced and customizable version of text (for

example, allows you to supply a template to format the entry with)

•	 select: Just like an HTML <select> element

•	 combo: A select that the user can also edit the text of and thereby can

enter values not in the list

•	 richselect: A select that allows more customization of its display

•	 multiselect: Only available in Webix Pro, allows for selecting

multiple values from a select list

•	 checkbox: A simple check box

•	 inline-checkbox: A more customizable check box (for example, if

you want to have a Boolean selection that toggles between the words

yes and no)

•	 color: Allows the user to select a color from a palette

•	 date: A pop-up calendar for date entry

•	 popup: Allows virtually any type of input you care to code since you

provide the code for what the editor shows in essence

The datatable widget is extremely rich and provides many other options. There are

too many to go into all of them, but some of the most interesting include headermenu that,

when set to true, provides a menu when you right-click a column header that then allows

you to hide or show columns. There’s also topSplit, which defines the number of rows,

if any, that you want to freeze, meaning they won’t scroll out of view as the user scrolls

through the rest of the data in the datatable. The leftSplit option does the same but

allows you to freeze columns on the left. The blockselect option allows the user to select a

block of rows and columns. Similarly, setting multiselect to true allows the user to select

multiple noncontiguous cells in the datatable (which the getSelectedItem() method lets

you get; it returns an array of objects for each selection if there is more than one).

Chapter 3 Getting to Know Webix Even More!

109

The datatable provides a rich API in terms of methods that allow you to manipulate

virtually every aspect of the component. You can even group your data by calling the

group() method and passing it an object that defines how you want the data grouped.

Then there’s collectValues(), which returns to you an array of unique values for the

specified column. You can get the count() method of currently visible data items, and

you can use the eachColumn() or eachRow() method to iterate over the visible columns

or rows in the table (both require you to supply a function to be executed for each

column or row, respectively). You can use freezeRow() to fix a row to the top of the

datatable on the fly. Finally, you can move rows around using moveBottom(), moveTop(),

or move() to reorganize your list.

The datatable is one of the most robust widgets Webix offers and will likely meet

any need you have to display data in a tabular form, though that’s not the only widget

that provides this capability, as you’ll see.

�dataview
The dataview component is another widget that displays data in a tabular format, but

unlike a datatable, this one doesn’t explicitly have rows and columns. Instead, the data

items it displays get laid out in what winds up being a grid, which of course is effectively

rows and columns, but you aren’t explicitly defining them as such in your code as you do

with a datatable.

Figure 3-11 shows a dataview in all its non-rows-and-columns-but-still-kinda-rows-

and-columns glory, listing some of my favorite video games (well, mine and my mom’s—

she’s the Ladybug fan!).

Figure 3-11.  A dataview component for kids who spend too much time indoors

Chapter 3 Getting to Know Webix Even More!

110

As you can see, it does kind of look like there are rows and columns, but there really

aren’t, not explicitly at least. The display of the individual items, however, is entirely

under your control as the programmer via a template, as you can see in Listing 3-6.

Listing 3-6.  The Code Behind the dataview

webix.ui({

 �view : "dataview", xCount : 4, type : { height : 100 }, width : 640,

height : 250,

 �borderless : false, css : { margin : "10px" }, select : true,

multiselect : true,

 �template : "<div class=\"webix_strong\" style=\"background-color:#ffeaea;\">" +

 "#title#</div> Year: #year#
System: #system#",

 data : [

 { title : "Pitfall", year : 1982, system : "Atari 2600" },

 { title : "Pick Axe Pete", year : 1982, system : "Odyssey2" },

 { title : "Ladybug", year : 1981, system : "Colecovision" },

 { title : "Altered Beast", year : 1988, system : "Sega Genesis" },

 { title : "Halo", year : 2001, system : "Xbox" },

 { title : "Crash Bandicoot", year : 1996, system : "Playstation" },

 { title : "Guitar Hero", year : 2005, system : "Playstation 2" }

]

});

Well, I’m kind of fibbing here, aren’t I? As you might guess, the xCount config

attribute does in a sense define columns to the extent that it tells the dataview how many

items across you want to display. However, still, it’s not defining columns per se, so I’ll

stick with what I said! Note that there is also a yCount option available that of course does

the same for the vertical direction.

As alluded to earlier, the template attribute defines the HTML that will be generated

for each data item. Note that there are some built-in classes that Webix provides, such as

webix_strong that I’ve used here, though it’s entirely optional whether you use them or

not; you can, of course, create your own.

A dataview allows the user to select items if you set select to true and even allows

them to select multiple items by holding select while they click when multiselect is set

to true. You can even handle these clicks if you like by specifying a function to call for the

onClick or onDblClick config options (the latter if you want to handle double-clicks).

Chapter 3 Getting to Know Webix Even More!

111

The dataview component provides a number of interesting methods. One is

showItem(), which will scroll the dataview to make a given item visible. You can move

items around using move(), moveBottom(), moveTop(), and moveSelection(), which

allows you to move an item in any direction. Of course, you have getSelected() to find

out what’s selected, and even isSelected() if you just want to tell whether an item is

selected or not. Finally, exists() can be used to tell if an item in the dataview is selected

based on ID.

As usual, this is just a sampling of the options, events, and methods available for this

component; there’s a fair bit more that the official Webix documentation lists.

�list
The list component is a bit of a workhorse in that it’s probably the most common

component you’ll use when developing mobile apps, especially to display a list of

data items. Although it works perfectly fine for nonmobile applications too, it really

is designed for mobile devices, especially devices with touch screens (which doesn’t

necessarily mean mobile anymore!). Figure 3-12 shows a basic list.

Figure 3-12.  A true workhorse component: the list

Chapter 3 Getting to Know Webix Even More!

112

This example uses some data that the Webix examples that you’ll find on the Webix

documentation site uses (which is why you can’t yell at me for the typo on line 10 there;

I didn’t create the data!) and displays it in a simple list. I haven’t shown all the data

because it’s rather large, but it’s not all that important for this example frankly, the code

for which is shown in Listing 3-7.

Listing 3-7.  The List Example Code

webix.ui({

 rows : [

 { height : 10 },

 { cols : [

 { width : 10 },

 { view : "pager", id : "moviePager", animate : true, size : 10 },

 { }

] },

 { cols : [

 { width : 10 },

 { view : "list", width : 500, height : 360, borderless : false,

 �template : "#rank#. #title# (#year#)", select : true,

multiselect : true,

 scroll : false, pager : "moviePager", data : big_film_set

 },

 { }

] },

 { }

]

});

Skip the pager component for now; I’ll circle back around to that in a moment. The

list component configuration below that is pretty straightforward. You can supply a

width and height like for most components, and the template attribute provides the

information the list needs to know how to display each item. The data is of course

referenced by the aptly named data attribute, and you can allow or disallow user

selection of options by setting the select attribute, and you can further allow multiple

Chapter 3 Getting to Know Webix Even More!

113

selections by holding Control when they click by setting multiselect to true. In this

example, I’ve also directed the list to not scroll by setting scroll to false, but by default

that’s true since most of the time you want a list to allow scrolling.

�New Concept: Data Paging

Now, let’s go back to that pager attribute and component, shall we?

For many data components, you can provide a paging mechanism to allow the user

to navigate through a large data set. When you provide a value for the pager option, this

points to a pager component that you’ve defined elsewhere, as I’ve done here above

the list. The pager is just another Webix component, of course, (you know this because

there’s a view attribute), and for it, you describe how many items should be in each

group by specifying the size attribute. So here, you’ll see ten movies per group, and

the pager will then take care of providing buttons for as many groups as there are. In

addition to size to specify the number of records per page, you can specify how many

buttons you want with the group option (the default seems to be five). As the user clicks

the buttons, they will be renumbered accordingly. (Picture it as a number line, and as the

user clicks a button to the right, they are scrolling down the number line, so to speak.)

As I mentioned, you can use a pager with many data components, though whether it

actually makes sense to do so is something you’ll need to decide on a case-by-case basis.

It’s the object-oriented nature of Webix that allows it to work seamlessly with a variety of

components.

�grouplist
A grouplist component is nothing but a list that…wait for it…allows grouping! Take a

look at it in Figure 3-13 to see how this presents itself.

Figure 3-13.  Grouping a list with grouplist

Chapter 3 Getting to Know Webix Even More!

114

Being based on the list component means the API for grouplist is very similar, as

the code in Listing 3-8 demonstrates. You could, in fact, change the view to list, and it

would work (although probably not in as useful a way as you might hope given what the

grouplist does for you).

Listing 3-8.  The grouplist Example Code

webix.ui({

 �view : "grouplist", scroll : true, width : 300, height : 100, borderless

: false,

 css : { margin : "10px" },

 data : [

 { value : "Movies", open : true, data : [

 { value : "Star Trek", open : true, data : [

 { value : "The Motion Picture" },

 { value : "The Wrath of Khan"},

 { value : "The Search for Spock"}

]},

 { value : "Star Wars", open : true, data : [

 { value : "A New Hope" },

 { value : "The Empire Strikes Back"},

 { value : "Return of the Jedi"}

]}

]},

 { value : "Books", open : true, data : [

 { value : "Harry Potter", open : true, data : [

 { value : "The Sorcerer's Stone" },

 { value : "The Chamber of Secrets"},

 { value : "The Prisoner of Azkaban"}

]},

 { value : "The Dark Tower", open : true, data : [

 { value : "The Gunslinger" },

 { value : "The Drawing of the Three"},

Chapter 3 Getting to Know Webix Even More!

115

 { value : "The Waste Lands"}

]}

]}

]

});

This provides for grouping the data and navigating through it based on the hierarchy

of the data. Starting with the top-level items in the list, Movies and Books in this

example, these form the first groups you see. Then, as the user clicks one of them, the

user in effect drills down into the data, navigating through the subgroups. This example

shows that I’ve drilled down into movies, and I’m now at the second-level grouping

showing Star Trek and Star Wars, the next level of data under Movies. If I were to click

either of those, then, of course, I’d see the movies below them, three in each group. The

component also draws group headers above the data that can be clicked to go back up

the hierarchy tree.

Virtually all of the config options available for list are available for grouplist, and

the same is true of its methods and events. The group headers can be specified with the

templateGroup attribute (this is a template string like you’ve seen elsewhere), and the

same is true for the group headings that signify going back up the data tree by using the

templateBack attribute.

�New Concept: Filtering

The grouplist, as well as most other data-oriented components, allows you to call its

filter() method to filter the data presented. For example, assuming you catch the

reference returned by webix.ui() in the variable grpList, you could do the following:

grpList.filter("#value#", "Books");

This would, of course, result in only the data from the Books branch of data being

shown. As I said, this isn’t unique to the grouplist component; almost any that uses

data can have filter() called on it. You simply pass it the field from the data records to

filter on as the first argument and the value to allow as the second, and you’re good to go.

�unitlist
The unitlist component is essentially a list where the items are grouped based on

some function that you specify. Figure 3-14 shows what this looks like.

Chapter 3 Getting to Know Webix Even More!

116

As you can tell, I’ve grouped these songs by the first letter of their title. What does the

code for this look like? Listing 3-9 is your answer!

Listing 3-9.  The unitlist Example Code

webix.ui({

 �view : "unitlist", width : 300, height : 280, type : { height : 30 },

template : "#title#",

 borderless : false, css : { margin : "10px" },

 uniteBy : function(inObj) {

 return inObj.title.substr(0,1);

 },

 data : [

 { id : 1, title : "Images and Words (Dream Theater)" },

 { id : 2, title : "Dark Side of the Moon (Pink Floyd)" },

 { id : 3, title : "Jagged Little Pill (Alanis Morrissette)" },

 { id : 4, title : "Ten (Pearl Jam)" },

 { id : 5, title : "The Stranger (Billy Joel)" },

 { id : 6, title : "Thriller (Michael Jackson)" },

 { id : 7, title : "21 (Adele)" }

]

});

Figure 3-14.  Those who work with The Doctor, the UNITlist

Chapter 3 Getting to Know Webix Even More!

117

As you can see, this looks an awful lot like code for a list but with the addition of the

uniteBy config option. This function takes in each object and returns a value that is used

for grouping. In other words, every time this function is called, once for each data record,

some value is returned. All the similar values are grouped together (after the data has

been sorted). You could return anything here, maybe a rating for each song, for example,

or whatever makes sense for your data.

Although the API of unitlist looks a lot like list since it’s based on list, there are

some differences. For one, you can get an array of the groups by calling the getUnits()

method. You can also call getUnitList(), passing it the name of one of the groups, to

get an array of record IDs for that group. For example, calling getUnitList("T") on the

example returns [4, 5, 6].

�property
The property widget is used to build what is usually referred to as a property sheet,

which is a display of two columns where the first column is the name of a property

and the right is its value, usually editable in some way. This is typically seen in IDEs to

describe the properties of an object. In Figure 3-15, the objects are baseball players.

In the first column, you have some properties of baseball players: their name,

position, and whether they are currently injured. The Name property is a text field as you

can see, and the injury status is a Boolean, so a check box makes sense there. What you

can’t see is that if you click into the Position box, you’ll get a drop-down list of positions.

Listing 3-10 shows the code behind this example.

Figure 3-15.  Hey you kids, get off my property!

Chapter 3 Getting to Know Webix Even More!

118

Listing 3-10.  The Property Sheet Example Code

webix.ui({

 �view : "property", width : 260, height : 112, nameWidth : 120, borderless

: false,

 css : { margin : "10px" },

 elements : [

 { label : "Baseball Player", type : "label"},

 { label : "Name", type : "text" },

 { label : "Position", type : "select",

 options : ["1B", "2B", "3B", "LF", "CF", "RF", "SS", "C", "P"]

 },

 { label : "Injured?", type : "checkbox" }

]

});

Each field displayed in a property sheet takes a type, which must be one of the

following: color (a colorboard used to select a color), text (a plain old text editor),

password (a masked text field), select (like an HTML <select> control), combo (like

select, but also editable like a text field), richselect (like a select but allowing for

richer display of the available options), and of course checkbox as shown in the example.

It’s also possible to register your own editor, but then you’ll need to provide the code for

that (you can find an example of doing this in the Webix documentation).

�tree
Like the grouplist, the tree component allows for the display of hierarchical data,

but this time as a series of nodes where each can be expanded or collapsed by the user.

You’ve no doubt seen plenty of trees in many different applications, but if not,

Figure 3-16 shows one.

Chapter 3 Getting to Know Webix Even More!

119

A tree starts with a root node, Songs here, and then below it are branches for bands

or artists and then the songs for each. The plus/minus symbols next to each branch allow

it to be expanded or collapsed so the user can drill down into the data. Being essentially

just a grouplist in a different form, the code for a tree is quite a lot like the grouplist,

as Listing 3-11 shows.

Listing 3-11.  The Tree Example Code

webix.ui({

 view : "tree", select : true, borderless : false,

 css : { margin : "10px" }, width : 240, height : 200,

 data : [

 { value : "Songs", open : true,

 data : [

 { open : true, value : "Metallica",

 data : [

 { value : "Enter Sandman" },

 { value : "Ride the Lightning" },

 { value : "Hero of the Day" }

]

 },

 { value : "Billy Joel",

Figure 3-16.  Swaying in the wind: an example tree component

Chapter 3 Getting to Know Webix Even More!

120

 data : [

 { value : "Movin' Out" },

 { value : "Piano Man" }

]

 }

]

 }

]

});

The data here is just like grouplist in that each node can have a data element that

contains further nodes. This time, you can specify an open attribute to tell Webix if the

node should be opened (expanded) or not when initially shown.

A tree can be filtered by calling its filter() method, and they can be sorted by

calling the sort() method, to which you supply a callback to make the comparison

between each set of nodes passed into it (or use the default sort provided).

�New Concept: Extending Webix Components

The tree widget also has the capability to allow editing. However, this isn’t built in. To

do this, you need to extend the tree component. For this, Webix provides the webix.

protoUI() method. This merges several objects together and creates a new one. To

create an editable tree, you can do the following:

webix.protoUI({ name : "edittree" }, webix.EditAbility, webix.ui.tree);

The first argument is the destination object. Here, you want to create a new

component, and components have a name property, so you define that. The arguments

after that are the objects you want to merge into the destination. Here, you, of course,

want to start with the basic tree component, and into it, you want to merge the webix.

EditAbility object. This is an object that Webix supplies that implements common

edit interactions. The result of doing this is that Webix will now know what an edittree

component is, which means you can alter the example code to specify view:"edittree"

now. However, that won’t be enough: you also have to tell Webix that this tree is editable.

Fortunately, that’s easy. Simply add the following to the tree’s definition:

editable : true, editor : "text", editValue : "value",

Chapter 3 Getting to Know Webix Even More!

121

Once that’s done, you’ll find that a single click of any item in the tree allows you to

edit it. This sort of component extension is a great capability to have at your disposal

because it means that even when Webix doesn’t exactly meet your needs, there is a

mechanism at the ready that allows you to extend it to do so.

�treetable
The treetable component is an extended tree widget and is a bit of a hybrid in that it

combines a datatable with a tree, as you can see in Figure 3-17.

One of the advantages of this combination is that things such as column sorting can

then be provided just by setting a config option, as Listing 3-12 demonstrates.

Listing 3-12.  The treetable Example Code

webix.ui({

 �view : "treetable", width : 550, height : 300, borderless : true, css : {

margin : "10px" },

 columns : [

Figure 3-17.  What trees get turned into: the treetable

Chapter 3 Getting to Know Webix Even More!

122

 { id : "id", header : "", width : 50, sort : "string" },

 { id : "value", header : "Candy Bars", width : 300,

 template : "{common.treetable()} #value#", sort : "string"

 },

 { id : "nutsOrNot", header : "Nuts?", width : 180, sort : "string" }

],

 data : [

 { id : "1", value : "Hershey", open : true,

 data : [

 { id : 1.1, value : "Almond Joy", nutsOrNot : "Has Nuts" },

 { �id : 1.2, value : "Hershey's Kisses", nutsOrNot : "No Nuts", open

: true,

 data : [

 { id : "1.2.1", value : "Milk Chocolate With Almonds",

 nutsOrNot : "Oh Yeah, Except These" }

]

 }

]

 }

]

});

In this way, you can display hierarchical data in tabular form, providing the benefits

of both visualizations. Sorting is one example, but also things such as filtering and

grouping can be offered, as well as editing capabilities. You can also export the data as

you can with a datatable.

Given that this is essentially just two components combined, the API for treetable is

likewise basically just a combination of the tree and datatable APIs. With no exceptions

that I can identify, you can do everything you can with each individual component. It’s

just a question of how it’s visualized that makes this a unique component.

Before moving on, let’s talk a little about the value of template there. With a tree or

by extension treetable, you can present almost any kind of content on each node. It

doesn’t have to be just text, and if it is text, you can define it however you want. But, by

default, each node will show an icon for expanding/collapsing the node, a folder or file

icon depending on whether it has children, and some text string (the data value from

the data source). The default template value is therefore "{common.icon()} {common.

Chapter 3 Getting to Know Webix Even More!

123

folder()}#value#". You can, of course, change this however you like,

and further, you are allowed to reuse those {common.xxx()} tokens to get values that

Webix provides. In this example, I’ve used {common.treetable()}, which is specific to

the treetable component and is essentially a combination of {common.icon()} and

{common.folder()}. There is also {common.checkbox()} to render a checkbox for the

node. The Webix documentation has more information on defining node templates, and

there’s quite a bit of flexibility there, but this gives you the basics.

�treemap
There is one other hybridized form of the tree component, and that’s treemap, but this

one is only available with a Webix Pro license. Figure 3-18 shows what this looks like. Fair

warning: it doesn’t look much like a tree at all!

Figure 3-18.  A tree that won’t be lost for long: an example of a treemap

Chapter 3 Getting to Know Webix Even More!

124

I have to be honest and say that I had never heard of a treemap before I began using

Webix! The attraction of it, as stated in the Webix documentation, is that it’s a way to

display hierarchical data in a compact way. It also shows the relative size of a number of

data sets in an interesting way. Let’s take a look at the code for this thing; see Listing 3-13.

Listing 3-13.  The treemap Example Code

webix.ui({

 �view : "treemap", template : function(inItem)

{ return inItem.curriculum || ""; },

 �value : "#students#", width : 400, height : 400, borderless : false,

css : { margin : "10px" },

 type : {

 cssClass : function(inItem){

 let className = "";

 if (inItem.students <= 20) {

 className = "level1";

 } else if(inItem.students <= 40) {

 className = "level2";

 } else if(inItem.students <= 60) {

 className = "level3";

 }

 return className;

 }

 },

 data: [

 { id : "stem", curriculum: "STEM",

 �data : [{ students : "20" }, { students : "40" },

{ students : "90" }]

 },

 { id : "theArts", curriculum: "The Arts",

 �data : [{ students : "60" }, { students : "15" },

{ students : "40" }]

 }

]

});

Chapter 3 Getting to Know Webix Even More!

125

This example shows the number of students in a series of (unnamed) school classes,

where each class is part of a specific curriculum, either STEM (Science, Technology,

Engineering, and Math) or The Arts (that’s how it’s a hierarchy: curriculum ➤ class ➤

number of students). The color of each block, one per class, will change based on the

number of students in the class. The CSS classes referenced, level1, level2, and level3,

are simply the following:

.level1 { background-color : #ff0000; }

.level2 { background-color : #00ff00; }

.level3 { background-color : #a0a0ff; }

You’ll notice that the type attribute, which defines how each data record should be

presented, specifies a cssClass attribute. This is a function that performs the logic to

determine which CSS class to apply. This ability to use a function to choose a CSS class

to apply dynamically is something that many Webix components provide, so it’s good to

see in action here.

The other key thing is the template attribute, which as usual informs Webix what

data item to use for each record and how to display it. Here, it’s simply the value of

the students property. However, here’s something else new: the value of template

is a function. Webix will call this function for every record, and it will return either

the curriculum value to display or an empty string. This way, only the block for the

curriculum as a whole will have any text in them. The individual classes will not

(because the objects in the data for them don’t have a curriculum property).

One interesting config option is subRender. By default, this is true, which means that the

subitems of the top-level records will be rendered. Here, that means whether the classes will

have blocks rendered or not. If you set this to false, then you’ll wind up with just two blocks

rendered, one for each curriculum, with the STEM block being a little bigger than the block

for The Arts because the total number of students is greater in STEM by a little bit.

Assuming your data records have IDs, you can call showBranch(), passing it

an ID, to display just the records from a particular branch. For example, calling

showBranch("theArts") on this example treemap instance will show you just the three

blocks under The Arts.

�gage
A gage is a component that is available only with a Webix Pro license and that allows for

visualizing data in a format similar to the speedometer in your car. In fact, the example of

this shown in Figure 3-19 is this very thing, from the perspective of the police!

Chapter 3 Getting to Know Webix Even More!

126

The thing you can’t see from a screenshot is that when the gage is initially loaded,

the value animates. In other words, the pointer line starts at 0 and, like a speedometer,

moves up to 72, while the color of the line changes from green to yellow. The code for a

gage is straightforward, as Listing 3-14 demonstrates.

Listing 3-14.  The Code for a Gage

webix.ui({

 �view : "gage", width : 400, height : 340, borderless : false, css :

{ margin : "10px" },

 �value : 72, minRange : 0, maxRange : 120, label : "Police RADAR",

placeholder : "MPH",

 animation : true, stroke : 6

});

You can see that the animation can be enabled or disabled by setting the Boolean

animation config option. The width of the line, the stroke of it, can be controlled as well.

You can set minRange and maxRange to define the range of values visualized, and you can

Figure 3-19.  A gage component

Chapter 3 Getting to Know Webix Even More!

127

put a label above the gage and a placeholder, which is essentially a secondary label,

below it. This component also offers basic methods such as setValue() to dynamically

control the displayed value, as well as all the basics such as enable(), disable(),

hide(), and show().

Note  Just to save a little typing, I’ll tell you here that for most of these examples
you’ll see the borderless option set to false and the css option specifying a
margin of 10. This is done just so that when I show you individual components in
a screenshot, they have a clear border and are also moved down and to the right
from the upper-left corner of the page. It really is just to make the screenshots
better! But, I think it’s good to see because borderless is an option all
components have, and knowing how to adjust basic CSS properties via the css
attribute is good basic knowledge that you can also apply to all components as
necessary.

�bullet
The bullet component, another Pro-only widget, is based on the gage component

and is, in fact, the same thing but displayed differently and with a few more features.

Figure 3-20 shows a bullet in action.

If you picture the bullet bent in an upside-down U shape, you can begin to see

how it’s similar to a gage. However, the bullet component allows you the flexibility to

define bands of color to give meaning to ranges of values, as well as to place a marker

bar if you want. The code for all of this is not much more complex than that of the gage,

as Listing 3-15 shows.

Figure 3-20.  A bullet! Take cover!

Chapter 3 Getting to Know Webix Even More!

128

Listing 3-15.  The Code for a bullet

webix.ui({ view : "bullet", minRange : 0, maxRange : 240, value : 150,

color : "#ffff00",

 label : "Monthly Sales", placeholder : "Count: #value#", marker : 200,

 borderless : false, css : { margin : "10px" }, width : 800, height : 100,

 bands : [

 { value : 240, color : "#00ff00"},

 { value : 100, color : "#ff0000"},

 { value : 50, color : "#0000ff"}

]

});

Since the bullet is based on the gage, the API for it is similar, so things such as

minRange, maxRange, value, label, and placeholder are the same (although label and

placeholder are now found on the left side). The marker option allows you to place a

black line at a given value, perhaps to indicate a target that sales are supposed to reach

in this example. The bands attribute allows you to define ranges of values and demarcate

them with a specific color. The bands are listed in reverse order, and the value attribute

defines the highest value the range covers, so the low value of the range is effectively the

band defined below it (except for the final one, which assumes a lower range value of 0).

The methods available are the same as those for the gage, as are the remainder of the

config options available.

�organogram
The organogram component is one of the components you get only with a Pro Webix

license and is used to generate hierarchical charts, most frequently seen in org charts for

companies. Figure 3-21 shows what this looks like.

Chapter 3 Getting to Know Webix Even More!

129

You might imagine that generating such a thing requires some complex coding, but

in fact, it’s as easy as any other Webix data widget, as Listing 3-16 demonstrates.

Listing 3-16.  The organogram Example Code

new webix.ui({

 �view : "organogram", borderless : false, css : { margin : "10px" },

width : 600, height : 240,

 data : [

 { value : "Gru",

 data : [

 { value : "Dr. Nefario",

 data : [

 { value : "Minion Kevin", data : [] },

 { value : "Minion Stuart", data : [] }

]

 },

 { value : "Minion Carl", data : [] },

 { value : "Minion Dave",

 data : [

 { value : "Kyle", data : [] }

]

 }

Figure 3-21.  Showing some organization with an organogram

Chapter 3 Getting to Know Webix Even More!

130

]

 }

]

});

You simply provide a hierarchical data structure in the good ol’ data config option,

and the component takes care of drawing the diagram for you. Each element in the data

can itself have a data attribute, which is how the hierarchy is established. You can have

as many branches of data as you need this way.

You can configure a number of properties of the organogram using the type attribute.

You can specify the lineColor that connects the boxes, as well as define fixed width

and height if you want. The marginX and marginY options let you set the space between

two items. Of course, template is how you specify what each item looks like if you want

something other than just the value attribute of your data to be displayed.

You can get the ID of specific items based on relationships using the getParentId(),

getNextSiblingId(), getPrevSiblingId(), and getNextId() methods (which allow

you to get an item a specified number of steps from another item).

�rangechart
The rangechart, another Pro-only component, is based on the chart component that

you’ve already seen, but now with the added ability to view large sets of data based on

frame limits. Figure 3-22 shows what this can look like.

Figure 3-22.  Not Strider the ranger, or even ranger actually, but code for a rangechart

Chapter 3 Getting to Know Webix Even More!

131

To be precise, it’s the bottom line chart that is the rangechart. What’s above it is a

plain old bar chart. However, a rangechart is frequently paired with another type of

chart, and changing the range in the rangechart (by dragging that shaded section left or

right or expanding or shrinking it by dragging its edges) will reflect in the paired chart.

That’s what this example does if you load it in your browser and play with it a bit, and

that’s why I said this is what it can look like. Actually, tying them together isn’t hard, as

Listing 3-17 shows.

Listing 3-17.  The rangechart Example Code

let salesData = [];

for (let i = 0; i <= 100; i++) {

 salesData.push({ days : i, sales : Math.round(Math.random() * 3000) });

}

webix.ui({

 type : "wide", width : 1400, height : 600, borderless : false,

 css : { margin : "10px", border : "2px solid #00ff00" },

 rows : [

 { view : "chart", type : "barH", id : "myChart",

 value : "#sales#", yAxis : { template : "#days#" }

 },

 { �view : "rangechart", height : 100, type : "line", value : "#sales#",

padding : 0,

 frameId : "days", item : { radius : 4 }, data : salesData,

 range : { start : 40, end : 60 },

 line : { color : "#ff0000" },

 on : {

 onAfterRangeChange : function() {

 let mc = $$("myChart");

 mc.clearAll();

 mc.parse(this.getFrameData());

 }

 }

 }

]

});

Chapter 3 Getting to Know Webix Even More!

132

First, some random sales data is generated. This is just the number of sales on

each of the last 100 days. Next, you build a chart, which holds no surprises given your

previous look at that widget.

The rangechart comes next, and here you have some configuring to do! Aside from

the basics such as view and height, first you have to tell it what kind of chart to draw, a

line chart in this case. Next, you tell it the name of the attribute in your data that defines

your frame by specifying the frameId option, and I’m using days in this case. After that,

you tell it the initial values for the range, 40 and 60 in this case, by specifying an object as

the value of the range attribute that has two properties: start and end. You can do some

styling-type stuff too if you like, such as defining the radius of the circles that are the

data points in the rangechart, as well as tell the rangechart what color to make the line.

The next bit that’s important is what to do when the range is adjusted. For that,

you use the on attribute, which is generic to all components and allows you to define

event handlers. Here, you want to handle the onAfterRangeChange event. When this

event fires, what you do is get a reference to the plain chart and clear it by calling its

clearAll() method. Then, you take the data that is now encapsulated in the new range,

which you get via a call to getFrameData(), and pass it to the parse() method of the

chart. That method is also one you’ll see on many data-aware components and causes

the component to parse the passed-in data and use it as its new data to display.

As I said, tying a rangechart to another type of chart is typical but by no means

required. What you do in response to the onAfterRangeChange event is up to you. Maybe

you’ll just pass the data to a server or perhaps serialize it to JSON and copy it to the

clipboard. Whatever your needs are, rangechart can address it if you need to deal with

data ranges like this.

�Summary
Whew, this was a biggie as far as chapters go! In this chapter, you learned about many

more Webix facilities including forms, data entry controls, data handling, and data-

aware components. You also saw a bit more of the general Webix API with which you

work with the various components that comprise a Webix-built UI.

In the next chapter, I’ll complete the overview of Webix and the key concepts you

need to be successful building Webix applications.

Chapter 3 Getting to Know Webix Even More!

133
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_4

CHAPTER 4

Webix: The Final Frontier
In the previous two chapters, you saw a great deal of components and concepts that

are keys to success with Webix. In this chapter, I’ll introduce a few more concepts, and

I’ll complete the overview of the components Webix offers, including those that are

“premium,” meaning those you must pay for separately from Webix.

Note that for many of the examples shown in this chapter, they will need to be run

from a web server of some sort. For example, the excelviewer and pdfviewer examples

load data from a specified URL, which typically won’t work if you simply load the

examples in your browser off the local file system (although there are usually browser

settings that allow you to do so). Whether you put them on a web server or want to mess

with browser settings, this is left as an exercise for you.

�Context Components
Let’s begin with some more components, shall we?

�context and contextmenu
<sarcasm>In an effort to be as confusing as possible, there is a context context

component.</sarcasm> There is also a contextmenu component, and they are different

despite their similar names (but in some ways, they are pretty similar too, which is

why I’ve grouped them together). Check out Listing 4-1. (Note that unlike most of the

examples, this one requires seeing the whole HTML document to understand what’s

going on—to get the context, you might say!)

134

Listing 4-1.  The context and contextmenu Widgets

<!DOCTYPE html>

<html>

 <head>

 <title>context</title>

 <link rel="stylesheet" type="text/css" href="../webix/codebase/webix.css">

 �<script type="text/javascript" src="../webix/codebase/webix_debug.js">

</script>

 <script>

 webix.ready(function() {

 webix.ui({

 view : "context", master : "div1", width : 250, height : 150,

 �body : { template : "Exterminate the Doctor! Exterminate!

Exterminate!" }

 });

 webix.ui({

 view : "contextmenu", master : "div2",

 data : [

 { value : "Send To...", submenu : ["Clara", "Billie", "Rose"] },

 { value : "Add Companion" }

]

 });

 });

 </script>

 </head>

 <body>

 �<div id="div1" style=" background-color:#ff0000;width:200px;

height:200px;"></div>

Chapter 4 Webix: The Final Frontier

135

 �<div id="div2" style=" background-color:#00ff00;width:200px;

height:200px;"></div>

 </body>

</html>

You can see the difference between the two in Figure 4-1. Basically, the context

component is a pop-up window triggered from the mouse right-click event into which you

can put any arbitrary content you like. This is useful for things such as context-sensitive

help for a control.

Figure 4-1.  The context and contextmenu widgets

Chapter 4 Webix: The Final Frontier

136

Notice the master attribute supplied when creating either the context or the

contextmenu? This tells Webix what element should be the source of the right-click. In

other words, you don’t want the user to right-click anywhere on the page and trigger

either of these; you want a right-click on div1 to show the context, and you want a right-

click on div2 to show the contextmenu. That’s where the master attribute comes into play.

As mentioned, the contextmenu component allows you to create nested lists of

options if you want, which you do with the submenu option, and you can have submenus

inside submenus inside submenus, as deeply as you need. (Keep in mind that too deep a

hierarchy won’t be especially usable for your users, so a little discipline goes a long way.)

You can make either of these components modal, meaning the component blocks

the user from doing anything else on the page until they dismiss it, by setting modal to

true. Of course, all the usual options are present, such as width and height to set the

size and left and top if you want to force a position when shown. You can also have

a header on by specifying the head attribute, and you can adjust the height of it with

headHeight.

For the contextmenu widget, you can allow multiple selections by setting

multiselect to true. If you set navigation to true, then the menu can be navigated

with the keyboard as well as the mouse. You can specify the items of the menu with the

data attribute as you’ve seen for other components, and you can set scroll to true to

make the menu scroll if there are too many items (usually used in conjunction with the

height attribute). These are just some of the options, and there are quite a few more,

especially for the contextmenu, so the documentation is your friend!

The contextmenu, by contrast, is for showing a menu of options from a right-click.

You can nest options as deeply as you like, creating a hierarchy of options.

�menu
The menu component is actually the base class of the already seen contextmenu

component, but its typical usage is different enough that it’s worth seeing separately.

Check out Listing 4-2.

Chapter 4 Webix: The Final Frontier

137

Listing 4-2.  The menu Widget

webix.ui({

 view : "menu", type : { subsign : true },

 data : [

 {value : "Man Tactical", submenu : ["Worf", "Data", "Riker"] },

 {value : "Fire Phasers" },

 {value : "Fire Torpedoes" }

]

});

webix.ui({ height : 20 });

webix.ui({

 view : "menu", layout : "y", width : 180, height : 300,

 select : true, type : { subsign : true },

 data : [

 {value : "Man Tactical", submenu : ["Worf", "Data", "Riker"] },

 {value : "Fire Phasers" },

 {value : "Fire Torpedoes" }

]

});

I’ve shown the code for the two forms the menu can take, horizontal and vertical,

and Figure 4-2 shows both. By default, you’ll get a horizontal layout, but the layout:"y"

attribute changes that and provides the vertical layout (which most times will probably

mean you’ll also want to specify a size for your menu with width and height, but neither

is required).

Chapter 4 Webix: The Final Frontier

138

A menu is for allowing the user to select options; sometimes that will mean choosing

from a single list, and other times it might mean you need to nest items. You can do both

easy enough with submenu, when nesting is necessary, just as you saw with contextmenu.

The type attribute allows you to configure your menu a little more. In this case, the

subsign:true option is responsible for showing the down or right arrow, depending on

menu orientation, to indicate when there are submenu items to select.

Some other interesting options include the submenuConfig option, which takes

an object as a value and allows you to define some characteristics of your submenus,

including their width, a template to use to display them, and event handlers for

the items in the submenu. There are also some neat methods, including move(),

moveBottom(), moveTop(), moveUp(), and moveDown(), each of which lets you move a

specified menu item around on the fly.

Note that when you specify a submenu, Webix will create an actual submenu

component behind the scenes. This is another of those things that you don’t usually have

to know, but if you need do something with a submenu specifically, then it’s good to know

so you’ll be able to find what you need in the documentation.

Figure 4-2.  The menu widget

Chapter 4 Webix: The Final Frontier

139

�New Concept: Clipboard Support

Another interesting option is clipboard, which when true allows you to copy a selected

menu item to the system clipboard. This is available on most data-aware components.

The datatable, tree, and list components have it by default, but for others you’ll need

to extend the component to include the webix.CopyPaste mixin—but I’m getting ahead

of things because extending components is something I’ll talk about in the next chapter.

For now, let’s stick with this clipboard stuff!

When clipboard support is enabled via the clipboard option, you can optionally

also provide a templateCopy attribute. This is a template that will be used to render the

text copied to the clipboard. In this way, you can have a different format for your items

when copied as when displayed on the screen. There is not an associated templatePaste

option as you might guess; however, you can achieve the same basic thing by handling

the onPaste event. The function that you write is called in response to this event and is

sent the text from the clipboard as its argument, which you can then manipulate in any

way you want and insert into the data of the component as needed.

If you want to see this in action, simply take the code in Listing 4-2 and add the

following to the second menu configuration:

clipboard : true,

templateCopy : "You copied: #value#",

onPaste : function(inText) {

 this.data.push({ value : inText });

}

After doing that, you’ll find that you can copy the items in the second menu, and what

you’ll get on the clipboard is a string in the form “You copied: XXX” where XXX is “Man

Tactical,” “Fire Phasers,” “Fire Torpedoes,” and so on. You’ll also be able to select an item

and paste in some text on the clipboard. (The text will actually replace the item you have

selected, but that’s just a result of whatever is written in the onPaste handler function,

which could be anything you want.)

�popup
The popup component is generally intended to show small pieces of temporary

information that the user doesn’t usually have to react to. They aren’t usually intended

to steal the user’s focus, just to present some information quickly that may be helpful to

them. They’re simple components, as you can see in Listing 4-3.

Chapter 4 Webix: The Final Frontier

140

Listing 4-3.  The popup Widget

webix.ui({

 view : "popup", width : 375, height : 75, position : "center",

 body : { template : "I am the very model of a modern Major-General" }

}).show();

They’re just as simple when rendered on the screen, as Figure 4-3 shows.

You can size them using width and height, along with minWidth, minHeight,

maxWidth, and maxHeight if you are displaying dynamic content and want to ensure it

never grows too big or gets too small. The position attribute allows you to place the

pop-up either center on the screen or down from the top, horizontally centered. You

can make a popup modal if you like, but that kind of defeats the usual intent. When the

move attribute is set to true, then the user can drag the pop-up around, which can be

handy if this is information they might need to fill out a form, for example.

As far as methods go, you can hide and show (with hide() and show(), of course) a

pop-up like you can virtually any Webix component, and you can dynamically set the

position (with setPosition()) if you want.

�sidemenu
The sidemenu component is how you can easily implement a function tray in an

application, which you’ve certainly seen before. It’s the menu that slides in, usually from

the left, when you click a menu button, containing a list of functions you can access. The

code for this component in Listing 4-4 gives you one or two new things to look at.

Figure 4-3.  The popup widget

Chapter 4 Webix: The Final Frontier

141

Listing 4-4.  The sidemenu and submenu Widgets

let sideMenu = webix.ui({

 view : "sidemenu", width : 200, position : "left",

 body : {

 view : "list", borderless : true, scroll : false,

 template : " #value#",

 data : [

 { value : "New", icon : "file" },

 { value : "Open", icon : "folder-open" },

 { value : "Close", icon : "window-close" }

]

 }

});

webix.ui({

 rows : [

 { cols : [

 { },

 �{ view : "button", type : "iconButton", width : 36, height : 50,

icon : "bars",

 click : function() {

 sideMenu.isVisible() ? sideMenu.hide() : sideMenu.show();

 }

 }

] },

 { }

]

});

When you click the menu icon, you get what you see in Figure 4-4, after the sidemenu

has slid smoothly in from the left.

Chapter 4 Webix: The Final Frontier

142

First, you build the sidemenu itself. The position attribute tells Webix where you

want the menu to slide in from (you can also do top, bottom, or right). When sliding it

from left or right, it usually makes sense to define a width, so I have here. The body of

the sidemenu can be anything you want, which could be statically defined rows, buttons,

or any combination you want. (It’s just a view, in other words, a simple layout, so you

can do all the usual Webix things with that.) However, a typical pattern is to use a list

component, which I won’t go into too much detail here as I’ll cover it later, but I’ll give

you a little taste.

A list lets you use data to define the items you want to display, which is a nice

way to do it in case you need to define the items dynamically. This again uses the data

replacement tokens you saw earlier. In addition, the borderless attribute hides the

border that is normally placed around the list, which makes the sidemenu look cleaner

I think. The scroll attribute ensures that you will get scrollbars if there are too many

items (which of course means you must make sure there never are too many items!).

Next, you create a layout and put the triggering button in it. Note that the sidemenu

isn’t part of this layout, which makes sense. It’s going to slide in from off-screen, so it

shouldn’t be part of the layout. The layout that’s created uses a spacer to push the button

all the way to the right side of the page. If it was on the left, then it would be covered

by the sidemenu, which means you couldn’t close the sidemenu. Putting it on the right

avoids that.

However, you do have to do some extra work to get the open/close toggling you want

on that button since Webix doesn’t offer that out of the box, and that’s where the click

handler comes in. As you can see, it’s a simple toggle: call hide() on the sidemenu when

it’s visible, as reported by its isVisible() method, or call show() when it’s not visible.

Figure 4-4.  The sidemenu and submenu widgets

Chapter 4 Webix: The Final Frontier

143

Most of the config options that you should be starting to be familiar with are

available on a sidemenu. width, height, minWidth, maxWidth, minHeight, maxHeight,

modal, and left all work as previously discussed. Similarly, the common methods such

as enable(), disable(), show(), hide(), and setPosition() are available.

�tooltip
A tooltip is nothing but some static text rendered into an absolutely positioned

container. In general, you don’t need to create tooltips yourself as many Webix

components create them automatically as part of their normal functioning (usually as

an option you can specify). However, you can create them yourself for any purpose you

want, and it’s easy to do, as Listing 4-5 shows.

Listing 4-5.  The tooltip Widget

webix.ui({

 �view : "tooltip", template : "Hello! I am a tooltip that says: '#value#'"

}).show({ value : "Webix rocks!"}, { x : 25, y : 25 });

The result is frankly kind of unremarkable, but it serves the purpose fine, as Figure 4-5

shows.

You can supply static text when the tooltip is created, or you can use the same sort of

data insertion that you’ve used elsewhere, whatever suits your needs. When you call the

show() method, you can pass in the data to use and let the tooltip replace the tokens

in the template with it. You also specify the x and y locations to show the tooltip at, and

you’re basically done.

If, instead, you’d like the tooltip to appear near the user’s cursor, which is typical,

you can specify the dx and dy attributes instead.

There really isn’t much more to a tooltip than that for most use cases.

Figure 4-5.  The tooltip widget

Chapter 4 Webix: The Final Frontier

144

�window
The final context component to look at is the window component, and in many ways, it’s

like the popup and even tooltip components to a certain degree, but it’s generally the

basis for richer desktop-like interfaces. Listing 4-6 shows the code for a window.

Listing 4-6.  The window Widget

webix.ui({

 �id : "myWindow", view : "window", width : 300, height : 200, left : 100,

top : 100,

 move : true, resize : true,

 head : {

 view : "toolbar",

 cols : [

 { view : "label", label : "A window unto the world" },

 { view : "icon", icon : "times-circle",

 click : function() { $$("myWindow").close(); }

 }

]

 },

 body : {

 template :

 `
We can show HTML here, or other Webix components - we could,

 in fact, build an entire application UI in a window!`

 }

}).show();

Of course, code without a screenshot isn’t all that helpful, so check out Figure 4-6.

Chapter 4 Webix: The Final Frontier

145

By default, a window won’t look very much different than a popup, but when you

start playing with some options, you get something that looks more like a window that

you know from your desktop OS. Specifically, setting move to true lets the user drag the

window around, and setting resize to true gives them the little handle on the lower

right to adjust the size of the window with.

Then, when you add a head and build a toolbar into it, you can add things like a

close icon as I’ve done here. Since the window has an id, I can use $$() to get a reference

to it (rather than having to stash that reference in a JavaScript variable) and then call

close() on it when that icon is clicked. You could implement a minimize icon that

just calls hide() on the window, and maximize can be implemented by adjusting the

fullscreen attribute, which actually takes us into another new Webix concept!

�New Concept: “Other”
You may think I just made that up or got lazy, but no, the Webix documentation actually

does refer to them as Other. They are the properties that, mostly, begin with a $ symbol.

They are for internal logic and aren’t generally things you should touch directly. But, you

can. More important for our purposes here, it’s one of these Other properties that doesn’t

actually begin with a $ symbol (but is still an Other!) that we’re interested in: config.

Figure 4-6.  The window widget

Chapter 4 Webix: The Final Frontier

146

The value of config is an object that stores the initial configuration that you set when

creating the component. The reason this is important is because to implement maximize

for a window, you need to do these three things:

•	 Set the fullscreen config attribute to true

•	 Resize the window

•	 Position it in the upper-left of the screen

It’s accomplishing that first bullet where config comes into play. With it, you can do this:

$$("myWindow").config.fullscreen = true;

Now, in and of itself, that will have no effect. The object config points to is effectively

read-only; changing it doesn’t do anything on the fly. However, the window component

also exposes a resize() method, which reads from that config object. So, after you set

fullscreen to true, you do the following:

$$("myWindow").resize();

Now, the window will be sized to fill the browser window. However, you’ve got a

problem. Unless the window’s upper-left corner is already in the upper-left corner of

the page, then the window will be extending over the edges of the screen on the right

and/or bottom. To fix that, you need to reposition it, and to do that, you’ll use the

setPosition() method.

$$("myWindow").setPosition(0, 0);

After executing those three lines, the window will fill the page and not be hanging

off the edge of the browser window in any direction, just like you’d expect a maximized

window to behave.

To finish up, I’ll show another way to accomplish the same thing, by using the

define()method. The define() method lets you set config attributes without directly

accessing the config object, and resize() brings the changes into force. So, the previous

sequence could be accomplished this way:

$$("myWindow").define("fullscreen", true);

$$("myWindow").define("top", 0);

$$("myWindow").define("left", 0);

$$("myWindow").resize();

Chapter 4 Webix: The Final Frontier

147

Interestingly, the setPosition() call is effectively done as part of the resizing with

this pattern, so that’s one less thing you have to do explicitly, which is nice. Aside from

that, there’s not really any reason to favor one approach over the other as far as I can

see, though three lines versus four lines of code might be enough reason. (One could

argue that using define() ensures that any logic the component encapsulates is fired as

expected, and that’s probably fair, though at least in this specific instance that doesn’t

come into play at all.)

�HTML-Oriented Components
Let’s move on to what Webix calls HTML-oriented components. HTML-oriented

components are basically components that mimic some common HTML elements but

are wrapped in Webix goodness. The first of these is iframe.

�iframe
The iframe component is just like its HTML <iframe> (inline frame) counterpart

in that it can show content from a remote system in a region of the page that can be

independently interacted with. In fact, in most browser implementations, it is quite

literally a browser window embedded inside the page. The code for creating an iframe

component is extremely simple, as Listing 4-7 proves.

Listing 4-7.  The iframe Widget

webix.ui({ view : "iframe", width : 1024, height : 600, src : "http://www.

zammetti.com" });

What this looks like obviously depends on what value you give the src attribute,

which is the URL to load into the iframe. Giving it the value that is the address of my

personal web site results in Figure 4-7.

Chapter 4 Webix: The Final Frontier

148

Now, you could always just have an <iframe> element included in the HTML you

feed to the template attribute of a Webix view, which would work just as well. However,

using the iframe component means you get all the usual Webix attributes: width,

height, minWidth, minHeight, maxWidth, maxHeight, css, disabled, config, and so on.

You also get all the helper methods that you’ve seen: enable(), disable(), show(),

hide(), isEnabled(), isVisible(), and so on. Put simply, you get an iframe wrapped

in all the things Webix components give you, which makes it more pleasant to work with,

especially in a Webix app.

�scrollview
Like the iframe component before, the scrollview component effectively wraps a

common HTML element, this time the <div> element. It allows you to create a scrolling

area of your UI independent of the rest. Listing 4-8 shows how this can be coded.

Figure 4-7.  The iframe widget

Chapter 4 Webix: The Final Frontier

149

Listing 4-8.  The scrollview Widget

webix.ui({

 view : "scrollview", scroll : "xy", height : 200, width: 200,

 css : { "border" : "2px solid #ff0000" },

 body : {

 rows : [

 { width : 500, height : 26, template : "2001: A Space Odyssey" },

 { width : 500, height : 26, template : "Rambo: First Blood Part II"

},

 { width : 500, height : 26,

 �template : "Doctor Strangelove or: How I Learned To Stop Worrying

And Love The Bomb"

 },

 { width : 500, height : 26, template : "The Godfather" },

 { width : 500, height : 26, template : "Thor: The Dark World" },

 { width : 500, height : 26, template : "Guardians Of The Galaxy" },

 { width : 500, height : 26, template : "Die Hard" },

 { width : 500, height : 26, template : "Star Wars" },

 { width : 500, height : 26, template : "Real Genius" }

]

 }

});

This code should look quite familiar to you by this point, but aside from the

view attribute set to scrollview, of course, note the scroll attribute. This tells the

component which direction, or directions, to allow scrolling in (values can be x, y,

or true; xy; or false to disable scrolling—of course, then, why would you be using a

scrollview?!). What I’ve done is coded one row in the layout to be much longer than the

others so that horizontal scrolling will be necessary, and the height of the scrollview is

defined such that vertical scrolling will be required too, as you can see in Figure 4-8.

Chapter 4 Webix: The Final Frontier

150

Here, I’ve scrolled to the right a little to show the far end of the long movie title just

to show what that looks like, and you can see there is also a vertical scrollbar to scroll

through the list.

As far as properties and methods go, this component doesn’t really offer any config

options that you haven’t previously seen, and for the most part that’s true of methods

too. However, a few new ones are indeed present, including scrollTo(), which

allows you to programmatically scroll the scrollview to a position of your choosing;

showView(), which allows you specify the id of a view in the scrollview to scroll to (so,

if the Die Hard row had an id of DieHard, then you could call showView("DieHard")

to jump to it); and getBody(), a method available on not only scrollview but other

components that have a body element to get a reference to.

�template
The final HTML-oriented component to look at is template. This component is in

most ways like scrollview in that it basically wraps a <div>, but the difference is that

template isn’t really expected to scroll (though you can accomplish that with the same

scroll attribute as scrollview supports). Listing 4-9 shows this component in action,

well, sort of—Figure 4-9 is really where it’s shown in action I suppose!)

Figure 4-8.  The scrollview widget

Chapter 4 Webix: The Final Frontier

151

Listing 4-9.  The template Widget

webix.ui({

 �width : 400, height : 120, padding : 20, css : { "border" : "2px solid

#000000" },

 rows : [

 { view : "template", type : "section", template : "Snarky Greeting" },

 �{ view : "template", type : "clean", template : "Hello there, ugly bag

of mostly water!" }

]

});

Here I’ve in fact created two template components, and I’ve done this to show you

that a template can have a type. Four types are available: the default (when you specify no

type), which is just a box with a border; clean, which is the same as the default but with

no border; header, which renders what looks like a header bar that you’ve seen before;

and section, which is what I’ve used for the “Snarky Greeting” text. This shows a line on

either side of the template content and is usually used to demarcate a section of content.

The content shown in a template can also be loaded from a remote address using

the url attribute, but in that case, the expected result is JSON data that is the Webix

configuration you want to display. Otherwise, most of the same config options, methods,

and attributes that scrollview supports are also supported by template.

Figure 4-9.  The template widget

Chapter 4 Webix: The Final Frontier

152

�Specialized Widgets
Specialized widgets, or specific widgets as the Webix documentation refers to them as,

are components that serve a specialized purpose of some sort. Either way, they’re just

another group of components for you to look at!

�calendar
The calendar component is one I won’t go into much detail on because it is basically

nothing but the datepicker that you’ve already seen with one key difference:

datepicker pops up its calendar when the user triggers it, but a calendar is always

present on the screen. Aside from that difference, though, they are the same in every way

that matters, so you’ve effectively already seen the calendar.

�colorboard
The colorboard component is the component that forms the basis of the colorpicker

that you’ve already seen. It’s similar to calendar versus datepicker in that the

colorboard doesn’t pop up like colorpicker does and instead is always present on the

screen. As such, there’s nothing new about it as compared to colorpicker, so let’s move

on to newer things!

�excelviewer
The excelviewer component (available only with a Pro license) is one such new thing.

It’s a component that allows you to view a Microsoft Excel file. This is essentially a giant

grid, as you can see in Figure 4-10.

Chapter 4 Webix: The Final Frontier

153

Each worksheet in the Excel workbook gets a tab at the top, with there being only one

in this example. Then, the columns and rows displayed come from the spreadsheet.

You might guess that there is a lot of complicated code to make this happen, and

maybe there is deep in the bowels of Webix, but as far as the API you interact with goes,

it’s exceedingly simple, as Listing 4-10 proves.

Listing 4-10.  The excelviewer Example Code

webix.ui({ rows : [

 { view : "excelbar", id : "toolbar" },

 { view : "excelviewer", toolbar : "toolbar", excelHeader : true,

 url : "binary->excel.xlsx"

 }

] });

Figure 4-10.  Who says spreadsheet are boring? The excelviewer component

Chapter 4 Webix: The Final Frontier

154

The tabs at the top are supplied via another component that goes along with

excelviewer, the excelbar component. The excelviewer is defined after that, with

a reference to the excelbar via its ID in the id config attribute of the excelviewer. If

you want to see column headers, which excelviewer assumes is the first row in the

worksheet, then you set excelHeader to true. Finally, the url attribute is used to point

the component at the file to display. The special binary-> notation is shorthand that

tells Webix to use a binary proxy to load the data, which is necessary in this case to

properly load an Excel file.

What else can the excelviewer do? Well, some things include being able to freeze

columns for one so they don’t scroll as the user scrolls the rest of the sheet, all by setting

leftSplit to freeze a specified number of columns on the left or by setting rightSplit

to do the same but on the right. If you have a Webix Pro license, then you can also freeze

rows by setting the topSplit config option (the value of which is the number of rows to

freeze). Note that there doesn’t look to be a bottomSplit option, though. You can set

headermenu to true to enable a menu on column headers to allow for hiding columns.

You are supposed to be able to set editMath to true to be able to use formulas

in cells, but to be honest, I can’t seem to get this to work! I also wasn’t able to find an

example of it working, so my best guess is this feature may have some bugs. However, I

wanted to at least point it out because it is, in theory, a neat feature, and I want you to be

aware of it in case you need it and want to pursue it on your own.

�google-map
The google-map component is an easy widget you can use to interface with Google’s

mapping service and display geographic data with it. Figure 4-11 shows this in action.

Chapter 4 Webix: The Final Frontier

155

To use this component, you’ll first need to obtain an API key for your application (at

the time of this writing, the address for this is https://developers.google.com/maps/

documentation/javascript/get-api-key). Once you have that, Webix makes it easy to

display a map, which you can see for yourself in Listing 4-11.

Listing 4-11.  The google-map Example Code

webix.ui({

 �view : "google-map", width : 640, height : 480, borderless : false, css :

{ margin : "10px" },

 �key : "AIzaSyAi0oVNVO-e603aUY8SILdD4v9bVBkmiTg", zoom : 11, mapType :

"HYBRID",

 center : [40.758896, -73.985130]

});

Figure 4-11.  Beautiful, beautiful maps, courtesy of google-map

Chapter 4 Webix: The Final Frontier

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

156

What it really comes down to is the center attribute, which provides a longitude

and latitude to serve as the center of your map. You can optionally specify the mapType

attribute, as I’ve done here, specifying that I want to display a HYBRID map that shows

roads and satellite imagery. (No, it’s not real-time satellite imagery. Calm down there,

Jason Bourne!) You can also specify values of ROADMAP to see only roads, SATELLITE to see

just satellite imagery, and TERRAIN to see a terrain map.

You can also show layers as you can with Google Maps itself, though only a

layerType value of marker (which is the default) or heatmap (which uses colors to show

points) are supported. For either of these, you specify a collection of data, which might

look like this:

data : [

 �{ id : 1, lat : 25.355, lng : 2.324, label : "Point A", draggable :

true },

 �{ id : 2, lat : 25.444, lng : 5.43, label : "Point B", draggable :

false },

 �{ id : 3, lat : 25.123, lng : 12.375, label : "Point C", draggable :

false }

]

That data will be displayed as a layer according to the layerType. If a point is marked

as draggable, then the user can drag it around to move it.

�video
It seems like every web site I go to these days wants to show me its content in the form

of a video, which is kind of annoying if you ask me (hey, you kids, get off my lawn!). But

sometimes, a video is something you want to show for a good reason, and Webix makes

it easy with the video component, shown in Figure 4-12.

Chapter 4 Webix: The Final Frontier

157

In typical Webix fashion, the code behind this is trivial—just look at Listing 4-12 to be

convinced of this!

Listing 4-12.  The video Example Code

webix.ui({

 �view : "video", width : 640, height : 360, borderless : false, css : {

margin : "10px" },

 src : ["video.mp4"]

});

Really, all it takes is the src attribute. This can be a single URL, or it can be an array.

When it’s an array, each element is a different format of the video, perhaps MP4 and

OGV, for example. That way, the browser will use whichever version it understands.

There isn’t a whole lot to the API of the video component, but you can hide or show

the playback controls on the bottom there with the controls Boolean config option,

which is nice. Other than that, it’s got all the usual hide, show, borderless, width,

height, and the rest of the usual suspects—ditto methods and events as well.

Figure 4-12.  Poetry in motion with the video component

Chapter 4 Webix: The Final Frontier

158

�barcode
A Webix Pro license–only component, the barcode widget generates those barcodes

that are on virtually every consumer package in existence—you know, the ones like that

shown in Figure 4-13.

I’m not entirely sure what purpose this serves in a web app, though certainly if you

have a need for it, then you know that and will be happy that Webix provides it. The code

is, as usual, very basic, as Listing 4-13 shows.

Listing 4-13.  The barcode Example Code

webix.ui({ view : "barcode", type : "ean13", value : "867530911111" });

You just need to provide a type, which must be one of ean8, ean13, or upcA (and I’d be

lying if I said I knew what those are!) and of course a value to be encoded in the barcode.

You can set the value dynamically with setValue() as well, but beyond that, it’s a simple

component with just the basic Webix API that all components share beyond that.

�daterange
Like the calendar/datepicker and colorboard/colorpicker relationships, daterange

is just a daterangepicker that doesn’t pop up and is instead “embedded” statically on

the page. Unlike those other two, however, daterange requires a Webix Pro license. As

with those other two combinations, I won’t go into detail here because you’ve effectively

already seen this when you looked at daterangepicker, so let’s move on, shall we?

Figure 4-13.  Hey 1980s kids, recognize the number? It’s a barcode example

Chapter 4 Webix: The Final Frontier

159

�pdfviewer
The pdfviewer component is a lot like the excelviewer component except that now

you’re viewing Adobe Acrobat PDF files, of course, and also that pdfviewer requires a

Webix Pro license. Figure 4-14 gives you an example of this.

This is just displaying a quick PDF I threw together to show that it can display text

and also handles shapes and embedded content just fine. Also, like excelviewer, there

is a partner component involved here, pdfbar, and the API looks familiar too, as you can

see in Listing 4-14.

Figure 4-14.  Viewing PDFs couldn’t be easier with pdfviewer

Chapter 4 Webix: The Final Frontier

160

Listing 4-14.  The pdfviewer Example Code

webix.ui({ type : "space", rows : [

 { view : "pdfbar", id : "pdftoolbar" },

 { view : "pdfviewer", toolbar : "pdftoolbar", url : "binary->pdf.pdf" }

] });

Like excelbar, the pdfbar component generally goes on top of a pdfviewer

component, though that’s entirely up to you. You want it below or to the side? No

problem! Simply alter the layout. In any position, it provides some basic functionality

including page navigation, zoom control, and the ability for the user to download the file.

There’s not too much to add as far as the API goes, though one thing you can do is

specify downloadName to define the name of the file if the user chooses to download it.

There are also some methods available to navigate the PDF documented, which should

be pretty obvious based just on their names: nextPage(), prevPage(), and renderPage()

(that last one essentially jumps to any page you specify). You can also programmatically

set the view scale with a call to setScale(), and you can trigger a download via a call to

the unsurprisingly named download() method.

�Premium Components
The following five components are premium widgets, which means they need to be

downloaded (and even purchased) separately from Webix itself. This means providing a

working example of these wouldn’t make a lot of sense because you wouldn’t be able to

try them out for yourself. While this applies to the Pro components as well, the difference

is that if you try to run those examples, Webix will politely tell you they aren’t available

to you, while these premium components will just error out on you. Therefore, I’m going

to describe them and show them to you briefly, but I’m going to skip any example code

for these, and I’m not going to go into any detail about their APIs. If you are interested

in these, then by all means throw your money at Webix and grab ’em because they are

indeed quite nice, as you’re about to see!

Chapter 4 Webix: The Final Frontier

161

�filemanager
The Webix filemanager component provides a UI for navigating through a file system

containing files and folders and performing basic operations on them such as copying,

pasting, renaming, and so on.

In fact, this component, which you can see in Figure 4-15, can work with any type of

hierarchical data. There’s nothing that says it must represent a file system.

It should be understood that this component doesn’t actually do anything on its

own. In other words, deleting a “file” in a filemanager instance doesn’t actually delete a

file at all. You would need to hook up event handlers for various operations and tie them

back to some (likely) server-side code to perform the specified function if you wanted

to do anything like that. Instead, filemanager will simply modify the data that you load

into it (which is data just like any other data components would use) just like an editable

list does. What you do as a result of those changes is up to you (it won’t by default even

persist the changes to the data).

Figure 4-15.  Managing files with filemanager (what did you expect?)

Chapter 4 Webix: The Final Frontier

162

The filemanager offers more “advanced” functionality too, such as searching and

drag-and-drop interactions. It can even support uploading and downloading files, but

again, this requires you to write some server-side code.

It’s a powerful, full-featured “file” manager component to be sure, saving you a lot of

time and effort building such an interface if you need such an interface.

�kanban
A kanban board generally is a way to visualize task data that is typically seen in projects

using an agile development methodology. It provides a quick way to see what tasks are

currently being worked on, which are being tested, which are done, and which are on the

backlog (which is the list of tasks yet to be worked on). Figure 4-16 is an example of this.

Figure 4-16.  Who makes all the kids happy? The kanban man can!

Chapter 4 Webix: The Final Frontier

163

The kanban component allows you to create whatever high-level groups you want,

those being Backlog, In Progress, Testing, and Done in this example, so it’s a highly

flexible display that can be tuned to fit your needs.

With kanban, you can build any arbitrarily complex workflow. For example, you can

hook a context menu to the tasks listed and provide features such as re-assigning tasks

or of course changing their status, which is then reflected in the item moving to the

appropriate group. The groups themselves can be collapsed and expanded as needed

and can even be moved around. So if workflows are something you need to deal with in

your application, then consider kanban for your needs.

�pivot
The pivot component allows you to visualize and work with huge sets of data and

create reports from it. It generally looks like a grid, but with a lot of added functionality.

Figure 4-17 is an example of a pivot.

The thing that makes a pivot so powerful is what you get when you click the “[Click

to configure]” text, which is shown in Figure 4-18.

Figure 4-17.  Pivot left, pivot right, pivot however you like with the pivot
component

Chapter 4 Webix: The Final Frontier

164

Here, you have the ability to hide and show fields (column), and you can filter the

data, select values, and otherwise slice and dice the data in myriad ways that other

components don’t allow for.

One of the best features of pivot is its built-in support for WebWorkers, which allows

you to load data into the pivot without blocking the main JavaScript thread, which keeps

the UI responsive while enabling you to load a huge amount of data into the pivot for the

user to work with.

The pivot component is an excellent way to deal with a lot of information in a highly

flexible way so if that’s a capability you need, then be sure to explore this widget further.

�scheduler
The scheduler component, shown in Figure 4-19, provides what most of us know as an

agenda and provides a way to maintain the appointments on your agenda.

Figure 4-18.  Configuring a pivot

Chapter 4 Webix: The Final Frontier

165

The scheduler provides all the user interface you need for something like this

including pop-ups to add events and to edit existing events. Of course, being Webix,

you can style and modify those elements as you see fit, and the same is certainly true of

the agenda list. The scheduler can handle recurring events as well as events that span

multiple days.

I’m not sure too many people should go off and build Outlook themselves from the

ground up, but if you ever decided to do something like that, then the scheduler can get

you a decent head start on at least part it!

�spreadsheet
The final component to look at takes the previously seen excelviewer and pushes it to

its logical conclusion, that being a (more or less) full-featured spreadsheet. Take a look

at Figure 4-20 to see it.

Figure 4-19.  Scheduling made fun (kinda?) with the scheduler component

Chapter 4 Webix: The Final Frontier

166

As you can see, it looks a lot like Excel, and that’s by design. Everything you can do

with excelviewer you can do with spreadsheet, and plenty more!

For example, you can import data from Excel and export to it. You can use

conditional cell formatting features, and you can even print your spreadsheet. You can

use formulas, and you can manipulate columns in terms of hiding/showing, moving,

deleting, and inserting. This widget provides a rich API to do all of this programmatically

as well as providing a ready interface for a lot of it as you can see.

Feel like competing with Google Docs? Well, grab the Webix spreadsheet

component, and you’ll be well on your way!

�Strutting with Style
Styling is, of course, an important aspect of web development, and this is no less true

when using Webix. Although much of the styling is in a sense automatic when using

Webix, there’s plenty of flexibility available to you as a developer.

You have of course seen the usage of the css property and the cssClass property

for a few components. You’ve also seen that when you import Webix onto a page,

you include the webix.css file. This provides the basic styles Webix needs to draw its

components properly. As with any CSS file, you can modify this, although that’s generally

not encouraged, certainly not by me. Instead, you should include your own CSS file after

the webix.css file and override any Webix styles you might want to.

Figure 4-20.  Full spreadsheet functionality with Webix!

Chapter 4 Webix: The Final Frontier

167

All of the style classes defined in webix.css begin with .webix_ or .webixtype_, and

what follows is usually pretty obvious. For example, you’ll see a .webix_tree_item class,

and even without looking at the documentation, you can be pretty sure that gets applied

to items in a tree. This class is defined in webix.css as follows:

.webix_tree_item {

 clear : both;

 height : 28px;

 line-height : 28px;

 white-space : nowrap;

}

So, if you wanted, you could include a custom.css file after webix.css is imported

(or just add a <style> section to the <head> of the page after the import of webix.css

and define your styles there, whichever makes the most sense for your development)

and do the following:

.webix_tree_item {

 background-color : #ff0000;

 clear : both;

 height : 28px;

 line-height : 28px;

 white-space : nowrap;

}

Granted, that makes a tree look pretty ugly, but you can add that background-color

if you want to anyway, overriding the Webix style, which surely is nice and is the point

here.

One of the best things about Webix and its documentation is that for each

component you’ll find a CSS map to refer to. An example of this is shown in Figure 4-21,

this one for the button widget. Note that the maps can be a little difficult to find, but at

the time of this writing they are in the “Guides” section of the Webix documentation,

under the “Styling and Animation” section’s Component Styling item (or, to save you

time: https://docs.webix.com/desktop__css_image_maps.html).

Chapter 4 Webix: The Final Frontier

https://docs.webix.com/desktop__css_image_maps.html

168

This map tells you what classes are applied to what parts of the button. Want to

change the text color on that last Mail button on the right? Just override the .webix_img_

btn_text class.

Note  Don’t be surprised if you sometimes have to use !important to get your
styles to apply. You usually want to try to avoid that, but sometimes it’s the only
way to get Webix to cooperate!

You can also, for components that use data, apply inline styles to specific data

elements. For this, you include a $css property. For example, looking back at the tree

example from earlier, if you wanted to make Metallica’s “Enter Sandman” red, and only

that item, you would do the following:

data : [

 { open : true, value : "Metallica",

 data : [

 { value : "Enter Sandman", $css : { color : "#ff0000" } },

 { value : "Ride the Lightning" },

 { value : "Hero of the Day" }

]

Figure 4-21.  CSS map for the button widget

Chapter 4 Webix: The Final Frontier

169

 },

 { value : "Billy Joel",

 data : [

 { value : "Movin' Out" },

 { value : "Piano Man" }

]

 }

]

In this way, you have a great deal of control over individual data items and how

they’re displayed.

Finally, you can dynamically add and remove styles from components using the

addCss() and removeCss() functions, respectively. This allows you to do things like the

following:

webix.html.addCss($$("myDataview").getNode(), "myCSS");

webix.html.addCss($$("myDataview").getNode(), "myCSS");

Assuming you have a dataview with an ID of myDataview, and assuming you have a

CSS class named myCSS defined, the first line will apply that style to the component, and

the second will remove it. You can do this for any Webix component that you have or can

get a reference to.

�Skins
While Webix has a pretty nice look to it by default, in my opinion anyway, you saw in

Chapter 1 that Webix also offers so-called skins, which change the entire look and feel

of your UI. You saw that you can build them with the Skin Builder tool yourself. Before

you go through the effort of creating a skin, though, Webix offers a number of skins right

of the box, including Air, Air Compact, Clouds, Compact, Contrast, Flat (which is the

default), Glamour, Light, Material Design, Metro, Terrace, Touch, and Web. Note that

all of these are included with Webix except the Material Design skin, which must be

downloaded separately (at the time of this writing, you can get it at https://github.

com/webix-hub/material-design-skin). It’s worth looking at each of these skins to

see if they suit your needs, and remember, you can always tweak them if they aren’t

perfect (either by using Skin Builder or by just overriding things as necessary via CSS as

previously described).

Chapter 4 Webix: The Final Frontier

https://github.com/webix-hub/material-design-skin
https://github.com/webix-hub/material-design-skin

170

Whether it’s included with Webix or not, actually using a skin is simple. You import

it in place of webix.css. As an alternative, if you define a webix_skin variable before

importing webix.js and as its value you name a skin, then Webix will take care of

loading the skin CSS file for you (which must be located in the webix/codebase/skins

directory). My advice is to not use this approach since keeping things out of global scope

is a good guideline, but as with most guidelines, you don’t have to follow this one if you

have a reason not to.

One other thing you can do with a skin applied is to adjust the sizes of some UI

elements via JavaScript in a global way. To do this, Webix offers a webix.skin.xx object

where xx is the name of the skin you want to alter. Within it, you’ll find a number of

attributes including things such as sliderHandlerWidth, which defines the width

of the handle on a slider widget; calendarHeight, which is the default height of a

calendar widget; and menuHeight, which is the height of a menubar. It’s not just sizes

here either. You’ll also see things like customCheckbox. So, if you want to use plain old

HTML check boxes by default across your entire UI, then you can set webix.skin.flat.

customCheckboxes to false (assuming you’re using the flat skin).

In addition, you can alter things about the currently active skin using webix.

skin.$active. For example, if you wanted all your input component to be 75 pixels wide,

then you could do webix.skin.$active.inputWidth=75.

Skins give you a great starting point and can change the entire look of your UI, but

even with a skin you still have multiple ways to alter things to suit your needs at the

global level, the specific component level, or even the data element level. That’s the

flexibility of styling with Webix. You get lots of choices and lots of options but all while

being rather simple to deal with!

�Drag and Drop
A number of components you’ve seen to this point have allowed for drag-and-drop

interaction with the user, but did you know you can arbitrarily apply this functionality to

virtually anything in the DOM with Webix? Well, now you do! Take a look at the example

in Listing 4-15.

Chapter 4 Webix: The Final Frontier

171

Listing 4-15.  A Simple Drag-and-Drop Example

<!DOCTYPE html>

<html>

 <head>

 <title>Drag-And-Drop</title>

 <link rel="stylesheet" type="text/css" href="../webix/codebase/webix.css">

 �<script type="text/javascript" src="../webix/codebase/webix_debug.js">

</script>

 <script>

 webix.ready(function() {

 webix.DragControl.addDrag("src", {

 $dragCreate:function(inSource, inEvent) {

 return inSource;

 },

 $dragDestroy : function(inDrag) { }

 });

 webix.DragControl.addDrop("dest", {

 $drop : function(inSource, inTarget, inEvent) {

 console.log("You dropped:", inSource);

 }

 });

 });

 </script>

 </head>

 <body>

 <div style="width:100px;height:100px;">

 <div id="src" title="I am the source"

 style="width:100px;height:100px;background-color:#ff0000;">

 </div>

Chapter 4 Webix: The Final Frontier

172

 </div>

 <div style="height:100px;"></div>

 <div id="dest" title="I am the destination"

 style="width:200px;height:200px;background-color:#00ff00;">

 </div>

 </body>

</html>

Skip down to the <body>, and you’ll see you have a couple of <div>s. The two that

matter the most are the src and dest elements. The src <div> will become draggable,

and the dest <div> will become a drop target, and they will become these things by

virtue of the code executed in the webix.ready() function (the other two <div>s consist

of the one that contains the src <div>, which I’ll return to later, and the empty <div>,

which is just for spacing purposes). To do so, the webix.DragControl.addDrag()

function is called, passing it the ID of the draggable <div>. Webix adds the plumbing to

this element that allows it to be dragged.

But, since I’m talking drag and drop, not just drag, you also need a drop target, and

that’s where the call to webix.DragControl.addDrop() comes in, to make the dest

<div> a drop target.

That’s all you need to do to make things draggable and to be drop targets, but you’ll

notice each of those calls has a second argument that supplies some optional callback

functions. These are necessary for this example because without them you would see

that the src <div> is actually “ghosted,” meaning a copy of it gets dragged around and

the original stays where it is. You would also see that when you drop it on the dest

<div>, nothing actually happens. Webix leaves all of this to you because what should

occur in these situations is dependent on your application. For this example, all I want to

happen is that you drag the real src <div> around without that ghosting, and then I just

want to display information about the object that was dropped when that event occurs.

So, when the drag event begins, I want to redefine the $dragCreate() method, which

is a control method related to drag-and-drop functionality that is executed when the user

begins dragging the <div> around. Note that Webix has default implementations for this

and the other control methods: $drag(), $dragCreate(), and $dragDestroy(), so this

really is redefining that. The return value from $dragCreate() is the object to be dragged

around, so obviously it should be the source of the event, which is the object that the

Chapter 4 Webix: The Final Frontier

173

user dragged. Then, providing an empty $dragDestroy() function results in the src

<div> from being removed from the DOM, from its original location more accurately,

so it can be the thing being dragged around. This is the reason for the container <div>.

Without that, the area the src <div> was in would collapse as the page reflowed, and

everything would shift up as a result. Putting it in the container <div> means that the

space doesn’t collapse and everything stays where it is, which is almost certainly what

you would want to happen in such a situation.

Then, on the drop side, the only override necessary is on the $drop() method

(there’s also $dragIn() and $dragOut() available) where you do a simple console.

log() on the source object.

With this simple API, you can enable drag-and-drop functionality on virtually

any element you like and can provide any functionality you like for the various events

associated with it whether you’re dealing with Webix components or not.

�Extensibility and Integration Points
Webix on its own is pretty great, but sometimes you need just a little more from it, and

that’s where extensibility comes into play. You already saw one component of that,

namely, the ability to extend components. You actually saw another: integration with

services, by way of the google-map component. But, it doesn’t end there! Webix offers

integration with other third-party libraries via extension points, all of which combined

means that Webix can be greater than the sum of its parts!

�Integration with jQuery
jQuery is one of the most popular JavaScript libraries of all time. In fact, an argument can

be made that it is the most popular of all time. There’s a lot of jQuery knowledge in the

JavaScript development community, and while JavaScript itself has evolved to the point

where you can do most things without the need for jQuery any longer, jQuery still has its

place, and you may want to use it in addition to Webix. Rest assured, you most definitely can!

To do so, you need to add what Webix calls the jQuery adapter to the mix. This isn’t

included with Webix any longer, so you need to go grab it here: https://github.com/

webix-hub/webix-jquery. Specifically, download the index.js file in the sources directory.

Then, you’ll need to include both jQuery (obviously!) and that index.js file. I prefer to

rename index.js to adapter.js; you can see the resulting example in Listing 4-16.

Chapter 4 Webix: The Final Frontier

https://github.com/webix-hub/webix-jquery
https://github.com/webix-hub/webix-jquery

174

Listing 4-16.  jQuery Integration Example

<!DOCTYPE html>

<html>

 <head>

 <title>jQuery Integration</title>

 <link rel="stylesheet" type="text/css" href="../webix/codebase/webix.css">

 �<script type="text/javascript" src="../jQuery/jquery-3.2.1.min.js">

</script>

 �<script type="text/javascript" src="../webix/codebase/webix_debug.js">

</script>

 <script type="text/javascript" src="../jQuery/adapter.js"></script>

 <script>

 webix.ready(function() {

 $(".caldiv").webix_calendar();

 });

 </script>

 </head>

 <body>

 <div class="caldiv"></div>

 <div class="caldiv"></div>

 </body>

</html>

The order of the .js imports is important. jQuery must come first, then Webix, and

then the adapter. Once that’s done, you can begin using the integration. This example

shows one of the benefits of this integration: being able to create multiple instances of

a Webix component based on the CSS class. The jQuery $(".caldiv") call returns an

Chapter 4 Webix: The Final Frontier

175

array of DOM nodes (wrapped in some jQuery magic), and then because of the adapter

extending Webix to be jQuery-aware (and vice versa), the webix_calendar() function is

available, and a calendar is created in each matching <div>.

Another benefit is that you can reference container <div> elements on the page

using class names and not just IDs, as is the case with the Webix $$() function because

you can use the jQuery $() function instead, which has more flexibility in getting

references to DOM nodes.

Another benefit is that HTML <table> elements can be a data source for data-

aware Webix components. Each column in the table becomes a template item for the

component. For example, if you have the following:

<tr>

 <td>Frank</td>

 <td>Zammetti</td>

 <td>U.S.A.</td>

</tr>

then you can do the following:

template : "#data1#, #data0# (#data2#)"

The columns are named data0-data2 here; it’s a simple incrementing number

scheme. You can specify this template in a list, for example, and you would see

Zammetti, Frank (U.S.A.) as one item in that list.

Finally, remember that you now have access to the vast world of jQuery components.

So, if Webix doesn’t have what you’re looking for, then the huge jQuery ecosystem

probably does.

�Integration with Third-Party Libraries
In addition to jQuery, Webix integrates with a number of other popular JavaScript

libraries and frameworks. At the time of this writing, integration is available for the

following:

•	 Angular

•	 Angular 2

•	 Backbone

Chapter 4 Webix: The Final Frontier

176

•	 Firebase

•	 Meteor

•	 React

•	 TypeScript

•	 Vue JS

•	 dHTMLx

As with jQuery, an adapter is required for many of these. Once you have the adapter

added to your page, with Webix and of course whatever imports are required for the

library you’re integrating with, you can use them together easily.

Of course, each of these libraries is different, vastly different in some cases, so

showing examples of each could easily take a whole chapter by itself, and possibly one

for each library! However, I’ll give you one or two examples just so you have an idea what

it might look like, depending on which library you’re working with. Let’s start with React

since that’s one of the more popular ones at the time of this writing. Once you have all

the necessary code imported on the page, you’ll be able to do things like this:

const ui = { view:"slider" };

const value = 123;

 const SliderView = () => (

 <Webix ui={ui} data={value} />

)

This creates a React component with a Webix slider widget inside of it. If you’re

familiar with React, then this should look pretty straightforward to you.

What about Angular 2? In that case, you will create a normal Angular 2 component

and nest a webix.ui() call inside of it, like so:

import { Component, ElementRef, OnDestroy, OnInit } from '@angular/core';

@Component({ selector : "datatable", template : "" })

export class DataTableComponent implements OnDestroy, OnInit {

 private ui : webix.ui.datatable;

 constructor(root : ElementRef) {

 this.ui = <webix.ui.datatable> webix.ui({

Chapter 4 Webix: The Final Frontier

177

 container : root.nativeElement

 view : "datatable", autoConfig : true, url : "data.php"

 })

 }

 ngOnInit(){

 this.ui.resize();

 }

 ngOnDestroy(){

 this.ui.destructor();

 }

}

For TypeScript, Webix defines its widgets and mixin interfaces in an index.d.ts file.

Once that’s done, the types will be available in your TypeScript code, and you’ll have the

benefit of static typing of Webix types.

Another bit of integration to mention is with a host of third-party text editors. Webix

offers components for the popular editors Ace, Mercury, NicEdit, TinyMCE, CodeMirror,

and CKEditor. All you need to do for these is add the appropriate JavaScript important

for the editor you want, and then you can do the following:

webix.ui({ id : "editor", view : "tinymce-editor" });

That’s it! You’ll now have a TinyMCE editor available, which provides rich text editing

including HTML styling and all those sorts of goodies.

Finally, what do you do if you want Webix to integrate with a library that isn’t

explicitly supported? Are you dead in the water? Nope! You can implement this

integration yourself because Webix provides extension points for doing exactly that,

which is the basis of all the integration described earlier.

The first step is to define a Webix component that will “host” the UI of the thing

you’re integrating with. All that takes is this:

webix.protoUI({

 name : "myCustomComponent",

 $init : function(config){

Chapter 4 Webix: The Final Frontier

178

 // Do initialization here

 },

 .. // Add other methods as necessary

}, webix.ui.view);

The name is what you’ll specify as the view attribute value when you make a webix.

ui() call later to instantiate this component, and the second argument to webix.

protoUI() is the base class to build your component from, which will almost always

be webix.ui.view. Exactly what initialization code or other method you may need

to implement depends entirely on what you’re integrating with. You may need to do

nothing at all in fact.

Once that’s done, you can instantiate this component with a plain old webix.UI({

view : "myCustomComponent" }); call and you’re off to the races! Remember that

because this component extends from webix.ui.view, it means that all the basic Webix

config options, methods, and events that you’ve learned about thus far are available

despite this being a third-party component in essence.

The sky is the limit given this mechanism and the other integration opportunities.

Webix will often be all you need, but if not, you aren’t boxed in either. Pretty sweet, right?

�Summary
This chapter is the last of the “overview” chapters wherein you learned about some new

things such as context components, HTML-oriented components, “specialized” widgets,

skinning, and extensibility.

With that, you should now have a pretty clear picture of what Webix has to offer and

have a solid foundation for building some real applications with Webix.

In the next chapter, you’ll begin building one such application, wxPIM. You’ll take

the basics that you’ve learned and start to apply them for real to create an application

that you can actually use, and in the process, you’ll gain a deeper familiarity with Webix

and see how to use it for real.

Get ready; it’s going to be a ride!

Chapter 4 Webix: The Final Frontier

179
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_5

CHAPTER 5

Getting Practical: Building
wxPIM
Over the previous four chapters, you have surveyed the Webix landscape and gotten

familiar with many of its concepts. You’ve gained a familiarity with what the library has to

offer and seen how to put most of its widgets to use, at least in very simplistic examples.

With that knowledge in hand, it’s time to take the next step, which is to build an

application with Webix to learn how it all fits together. I’ll break this exercise down

into a couple of steps spread across a couple of chapters, but this chapter will be key

in that you’ll actually build the application in its basic form. You’ll then expand on it in

subsequent chapters, but you need to build the foundation first.

Of course, as with building a house, it’s hard to build something if you don’t have an

idea of what it’s supposed to look like in the end, so let’s begin by discussing what this

wxPIM application is all about.

�First Things First: What’s a PIM, and What’s wxPIM?
The term PIM was made popular back in the days of the original PalmPilot devices,

though it existed before then. PIM stands for “personal information manager” (or

“management,” depending on who you ask) and is basically a fancy way to say an

application (or device, in the case of the PalmPilot) that stores some basic information

that most busy, modern people need to know and allows it to be consumed easily.

Before the electronics age, you might have a little notepad with tabs for various bits of

information, but it all amounts to about the same thing either way. What data constitutes

a PIM can vary, but for most people, there are four basic pieces of information:

appointments, contacts, notes, and tasks. There can be others, and there can even be

some overlap between those four, but those are generally considered to be the basics,

and they are exactly what wxPIM will contain.

180

This application will present four modules, each covering one of those pieces of

information. You’ll provide a way for the user to enter items of each and store them and

then present a way for them to be viewed, edited, and deleted. Also, you’ll build a “day-

at-a-glance” screen that presents items that are time-sensitive, namely, appointments

and tasks for the current day, in a unified view.

As you build the app, you’ll do so in a modular way so that later, if you want, you can

add other modules to deal with other types of data. Maybe bookmarks are something

you’d like in your PIM, or maybe recipes if you’re a chef. The point is, you’ll be able

to add them without much difficulty because you’ll design the code to be reasonably

modular.

In Figure 5-1 you can see this day-at-a-glance screen, and this is what will serve as

the starting point for the application, the first thing the user sees when it is launched.

As you can see, I’ve got two appointments today (although arguably only one is really

an appointment; that’s the overlap I mentioned before) and four tasks to accomplish

today. There may be many more appointments and tasks that I’ve created, but these are

just the ones for today.

Sitting above the day-at-a-glance content is a header that will tell the user what

module they’re in. Whatever module they’re in will appear below the header in what

we’ll call the module content area.

Figure 5-1.  wxPIM day-at-a-glance

Chapter 5 Getting Practical: Building wxPIM

181

You’ll also notice the “hamburger” menu icon in the upper left. This is how the

user navigates the application. Clicking it reveals a sidemenu, a component you’ve seen

before and which is shown in Figure 5-2.

In addition to links for the four modules previously described, you’ll notice there’s a

home icon at the bottom. That allows the user to return to the day-at-a-glance screen.

I’ll show the four modules in turn as you explore the code for each, but for now, let’s

discuss how the data will be stored. In the first iteration of wxPIM, the data will be stored

locally in the browser using local storage. While this limits how much data a user can

store, the average across all browsers is right around 2.5MB, so it’s a decent chunk of

space available, and most browsers actually allow for more, so in terms of whether this

is useful or not for this application, it actually is. More important, however, is that local

storage is exceedingly simple to use, and since we’re more interested in using Webix

than worrying about what the most robust data storage mechanism in a browser is, local

storage does the trick. Of course, as an exercise, you should feel perfectly free to change

the code to deal with something like IndexedDB if you want.

Figure 5-2.  Navigating wxPIM with the sidemenu menu

Chapter 5 Getting Practical: Building wxPIM

182

�High-Level Code Structure
Speaking of code, let’s jump right into that now by first talking about how you’ll organize

the code for wxPIM. As I mentioned, you’ll want to make things fairly modular so it can

be extended, and you’ll want to reflect that in how the code is structured. Figure 5-3

shows the directory structure you’ll use, as well as the files that will make up the app.

The top-level directory could be named anything, so that’s not important, other than

the fact that there’s an index.html file in it, which is the launching point for the app.

Under the root directory there are two subfolders, css and js, to hold stylesheets and

the application code, respectively. The css directory contains two files, animate.css and

Figure 5-3.  Directory/application code structure

Chapter 5 Getting Practical: Building wxPIM

183

core.css. I’ll skip animate.css for now since that’s something I’ll touch on later, but

core.css is where you’ll find the styles for WxPIM, what few there are in this iteration.

You’ll look at that file in detail later.

The js directory is further broken into a modules directory, which will store the code

for the four modules (one .js file for each), and a shellUI directory, which will store the

code for the application shell.

Speaking of the application shell, this is a common pattern used by mobile apps, and

really any web app, mobile or otherwise, that is intended to be in some way modular,

often even when modularity isn’t a concern. The idea here is that you have a core

application, or a core user interface, that you put pieces of functionality into, rather

than trying to build a single, monolithic application. The files in the shellUI directory

comprise that core application, that shell, so to speak. You’ll look at each of these, in

turn, to give them meaning, but at a high level, the baseLayout.js file provides the

high-level layout of the app, which includes the header found in mainHeader.js and

the multiView.js file, which is essentially that module content area I mentioned. The

dayAtAGlance.js file contains the day-at-a-glance screen, which is, in essence, another

module, though a somewhat different one in terms of code structure, as you’ll see.

Finally, the sideMenu.js file contains, naturally, the sidemenu. Breaking the UI up into

files like this provides an organization to it, rather than having one big chunk of JSON to

deal with, though it’s entirely optional to do this (and in fact, as you’ll see, the modules

themselves do not do this).

You can also see there is a core.js file in the js directory, and this is, as the name

implies, the core code of the application. This is where you’ll find the logic that switches

between modules, as well as helper functions that the modules can use to do their work.

This is where execution begins once index.html is loaded and processed, and index.

html is the first stop in our code exploration.

�index.html
To kick off wxPIM, index.html is loaded by the browser. It’s a simple HTML page and

probably holds little surprise, but check out Listing 5-1 to be the judge of that!

Chapter 5 Getting Practical: Building wxPIM

184

Listing 5-1.  The index.html File

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 �<meta name="viewport" content="width=device-width,height=device-

height,initial-scale=1.0,minimum-scale=1.0,user-scalable=yes">

 <link rel="stylesheet" href="../webix/codebase/webix.css" type="text/css"

 media="screen" charset="utf-8">

 <link rel="stylesheet" href="css/animate.css" type="text/css"

 media="screen" charset="utf-8">

 �<link rel="stylesheet" href="css/core.css" type="text/css"

media="screen" charset="utf-8">

 �<script src="../webix/codebase/webix.js" type="text/javascript"

charset="utf-8"></script>

 <script>

 // Webix debug flags.

 //webix.debug = true;

 //webix.debug_size = true;

 //webix.debug_render = true;

 //webix.debug_proto = true;

 //webix.debug_time = true;

 </script>

 <script src="js/core.js" type="text/javascript" charset="utf-8"></script>

 �<script src="js/shellUI/baseLayout.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="js/shellUI/dayAtAGlance.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="js/shellUI/mainHeader.js" type="text/javascript"

charset="utf-8"></script>

Chapter 5 Getting Practical: Building wxPIM

185

 �<script src="js/shellUI/multiView.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="js/shellUI/sideMenu.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="js/modules/Appointments.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="js/modules/Contacts.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="js/modules/Notes.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="js/modules/Tasks.js" type="text/javascript"

charset="utf-8"></script>

 <title>wxPIM</title>

 </head>

 <body></body>

</html>

As I said, this should all look familiar to you by now. Of note, though, is the second

meta tag, which sets up the UI so that it’s scaled 1:1 on the screen to begin with. It

also allows the user to scale it thanks to the user-scalable=yes setting. This is a little

unusual in a mobile app because usually they can’t be scaled (by the using pinching and

zooming, for example). I prefer this be allowed, though, since my eyes are getting older

and being able to zoom is more useful than I’d like to admit these days!

The Webix stylesheet is imported, along with the animate.css file (which, again, I’ll

talk about later) and the core.css file that I previously described. After that comes the

importing of the main Webix script.

After that you’ll notice a <script> block with some Webix stuff that you haven’t seen

before. Webix offers some debugging help in the form of these debug flags, but this is

true only if you use the debug version of Webix by loading webix_debug.js instead of

webix.js. If you do, then these flags become available. They are as follows:

•	 webix.debug: Enables event logging, which allows you to see what

events are available and what events fire

•	 webix.debug_size: Enables logging of component sizes

Chapter 5 Getting Practical: Building wxPIM

186

•	 webix.debug_render: Enables logging about components that are

rendered

•	 webix.debug_proto: Enables logging of information about how

components are created

•	 webix.debug_time: Enables logging of component render-time data

Enabling these will generate a lot of log messages in your browser’s console, but this

can be beneficial to figure out issues you’re having when needed. They’re commented

out for that reason, but they’re present and ready to be used if needed.

After that comes the imports of the various script files that make up the application

code. Note that the core.js file must be imported first because all the others refer to it and

extend the object that’s constructed in it. The order of the others shouldn’t matter, though.

That is, as they say, all there is to that! You’ll note that there isn’t even a JavaScript

call to kick off the application, which may seem odd, but it’s easily explainable and is

part of the interesting stuff that begins in core.js, which is our next stop.

�core.js
The core.js file is where most of the real action is. It defines an object named wxPIM,

the only object in global scope other than its class definition in fact (always a good

thing!), and all the other code files plug into it or make use of it. Rather than just showing

a big listing, I’m instead going to break this file up into chunks to explain it, mostly

broken down to functions, which should make it easier to digest (and I’ll do this with the

other source files as applicable too).

Note I ’ve taken some liberties with spacing and have removed all comments in
the interest of condensing things as much as possible. That's why the actual code
in the code bundle looks a bit different from what you see here. But rest assured
that the actual code hasn’t been changed at all; what you see here is what it
actually is.

Chapter 5 Getting Practical: Building wxPIM

187

�Preamble
To begin with, being good ECMAScript 6 (ES6) citizens, here you’ll write your code in

strict mode (which in fact became available with ES5). This has the consequence that

this app won’t work in Internet Explorer before v10, Firefox before v4, Chrome before

v13, Safari before v5.1, and Opera before v12. Writing for modern browsers is always

more pleasant when feasible, and for this app it definitely is (where “modern” means a

wide swath of browsers). Note that this is going to be true of all the source files from here

on out, so in the interest of not repeating myself, I’ll leave this bit out going forward:

"use strict";

class WXPIM {

...

}

const wxPIM = new WXPIM();

After that, you create a class called WXPIM. The rest of this section will be looking at the

members of this class, so I’ve shortened that all to the ellipses so that I can show you that after

the class is declared, an instance named wxPIM is created. That’s when the app execution

actually begins because the constructor function for the class is executed at this point.

�Constructor
The constructor performs a few key tasks.

constructor() {

 webix.rules.isNumberOrBlank = function(inValue) {

 if (inValue == "") { return true; }

 return webix.rules.isNumber(inValue);

 };

 webix.rules.isEmailOrBlank = function(inValue) {

 if (inValue == "") { return true; }

 return webix.rules.isEmail(inValue);

 };

Chapter 5 Getting Practical: Building wxPIM

188

 this.isEditingExisting = false;

 this.editingID = null;

 this.moduleClasses = { };

 this.modules = { };

 this.activeModule = null;

 webix.ready(this.start.bind(this));

}

First, two new Webix validation rules are needed. The reason for this is that the two

predefined functions, isNumber and isEmail, consider a blank field as being invalid.

But, in some cases, that’s not really what you want because if the field is optional, then

a blank is, in fact, a valid value. So, I’ve created these custom validation functions and

added them to the webix.rules collection so that they can be used when needed. All

that needs to happen is to add the initial check for a blank, after which the existing

functions can be used, which is nice since it avoids duplicating code.

After that, there are two related members, isEditingExisting and editingID. These

are for when you’re editing an existing data item, be it an appointment, contact, note,

or task. When the user selects the item they want to edit, isEditingExisting gets set to

true, and the unique ID of the item, which each item has, is stored in editingID. That

way, when the code that saves the item (which you’ll see soon) is executed, it can look at

the flag and know whether it’s being called in response to adding a new item or editing

an existing one. This way, you can have one common save function that handles both

cases.

After that you have three members that are related to each other. The moduleClasses

object is where the classes for each of the four modules is stored. The modules member

is where the instances of those classes are stored. This is done primarily to keep

those classes and instances within the wxPIM object, not in global scope. Finally, the

activeModule member stores the name of the currently active module, meaning which

one the user is currently working in. You’ll see why that’s needed before long.

The last line in the constructor is our friendly neighborhood webix.ready() call,

specifying the start() method of the wxPIM object as the callback. Note that you want

the this reference within start() to reference the wxPIM object, which it wouldn’t

without the bind() call, which is why that’s done.

Chapter 5 Getting Practical: Building wxPIM

189

�Lifecycle Event Function: start()
As you just saw, the start() method gets called thanks to the webix.ready() call in the

constructor. This function is responsible for building the UI.

start() {

 this.modules.Appointments = new this.moduleClasses.Appointments();

 this.modules.Contacts = new this.moduleClasses.Contacts();

 this.modules.Notes = new this.moduleClasses.Notes();

 this.modules.Tasks = new this.moduleClasses.Tasks();

 webix.ui(this.getBaseLayoutConfig());

 webix.ui(this.getSideMenuConfig());

 wxPIM.dayAtAGlance();

}

First, each of the four modules is instantiated, and the reference to them is stored in

the modules’ members. Next, you use the webix.ui() function with which you’re quite

familiar to build the base layout. Don’t worry about what getBaseLayoutConfig() does

(or getSideMenuConfig() for that matter) because I’ll get to those, but it’s enough right

now to know that they return an object that defines Webix components.

With the base layout and sidemenu built, all that’s left is to display the data on the

day-at-a-glance screen, which is what the call to dayAtAGlance() obviously does, but I’ll

cover that when you get to the dayAtAGlance.js file. Before that, let’s continue with the

core.js code.

�Lifecycle Event Function: launchModule()
Whenever the user clicks one of the module names in the sidemenu, the launchModule()

method is called. This is responsible for showing that module and making sure it’s ready

for use.

launchModule(inModuleName) {

 if (wxPIM.activeModule) {

 wxPIM.modules[wxPIM.activeModule].deactivate();

 }

Chapter 5 Getting Practical: Building wxPIM

190

 wxPIM.activeModule = inModuleName;

 $$("sidemenu").hide();

 $$("headerLabel").setValue(inModuleName);

 wxPIM.editingID = null;

 wxPIM.isEditingExisting = false;

 $$(`module${inModuleName}-itemsCell`).show();

 $$(`module${inModuleName}-container`).show();

 wxPIM.modules[inModuleName].refreshData();

 wxPIM.modules[inModuleName].activate();

}

The first step is to give whatever module is currently active, if any, a change to

deactivate itself. What this means for a given module varies, and it could mean nothing

in fact, as in there’s nothing for a module to do. But, you give them a chance anyway

by calling the deactivate() method (which I’ll describe a little more when I cover the

modules themselves).

Next, you record the name of the module being switched to. The argument passed

into launchModule() will be one of Appointments, Contacts, Notes, or Tasks. After that,

the sidemenu is hidden because if this isn’t done, then it’ll still be visible when the new

module is switched to, and it’s just not a great user experience then.

Now, the header text is updated to reflect the new module name. You’ll be looking at

the mainHeader.js code shortly where this header is found.

After that, the two editing-related members I previously explained are set so that the

module initially won’t think it’s editing an existing item.

After that comes three lines that will make more sense once you examine the first

module’s code, but in short, they ensure that the module is showing its summary view (for

example, the list of contacts in the Contacts module) and that the data displayed is fresh.

I know that it may be a little disconcerting to see all of this without having the context

of the module’s code yet, but I think this gives you the basic idea. Once you look at the

code for the first module, I suggest coming back to examine this function because I think

you’ll understand what’s happening once you do, if you don’t right now. Until then, let’s

continue with the core.js code.

Chapter 5 Getting Practical: Building wxPIM

191

�Utility Function: sortArray()
The next two functions are what I call utility functions in that they aren’t Webix-specific;

they are general-purpose JavaScript functions. The first of these is the sortArray()

function. It’s really nothing more than a typical JavaScript sorting function but one

that includes a little extra logic so that it sorts objects in an array based on a specified

property of those objects and in a specified direction.

sortArray(inArray, inProperty, inDirection) {

 inArray.sort(function compare(inA, inB) {

 inA = (inA[inProperty] + "").toLowerCase();

 inB = (inB[inProperty] + "").toLowerCase();

 if (inA > inB) {

 if (inDirection === "D") {

 return -1;

 } else {

 return 1;

 }

 } else if (inA < inB) {

 if (inDirection === "D") {

 return 1;

 } else {

 return -1;

 }

 } else {

 return 0;

 }

 });

}

As you can see, the inArray parameter is sorted based on the inProperty property

of the objects in the array, and in the direction specified by inDirection. Note the first

two lines in the sort() function; this function converts the property value to a string

and lowercases it. This is so that a case-insensitive sort is done. Of course, the direction

Chapter 5 Getting Practical: Building wxPIM

192

specified is used to determine the correct return value from the sort() function, but

ultimately this isn’t anything Webix-specific at all; it’s just plain JavaScript. You could use

this in any other application whether it uses Webix or not. You’ll see where this method

is used when you look at some module code.

�Utility Function: objectAsArray()
The objectAsArray() method is another general-purpose utility function that isn’t

Webix-specific at all.

objectAsArray(inObject) {

 const array = [];

 for (const key in inObject) {

 if (inObject.hasOwnProperty(key)) {

 array.push(inObject[key]);

 }

 }

 return array;

};

Its job is simply to take in an object and return an array where each element is one

property of the object (the value of the property to be more accurate). So, given an

object { a : "foo", b : "bar" }, you would get back an array ["foo", "bar"].

Alternatively, you might get back ["bar", "foo"] because the order of object key

iteration is nondeterministic. But, if you’re guessing that might be why the sortArray()

method exists, then pat yourself on the back!

�Module Helper Function: getModuleData()
The next three methods are what I call module helper functions. They are functions that

encapsulate some common functions that all the modules need, so rather than duplicate

them in each module, I pulled them out and made them common as part of the core code.

The first of these is getModuleData(), which is used to pull the data for a specified

module out of local storage.

Chapter 5 Getting Practical: Building wxPIM

193

getModuleData(inModuleName) {

 let items = localStorage.getItem(`${inModuleName}DB`);

 if (!items) {

 items = { };

 localStorage.setItem(`${inModuleName}DB`, webix.stringify(items));

 } else {

 items = JSON.parse(items);

 }

 return items;

};

That’s pretty simple, right? In addition to retrieving the data, which is stored

in local storage under a key formed by concatenating the module name with DB (so

AppointmentsDB or ContactsDB or NotesDB or TasksDB), it also includes logic that creates

an empty object in local storage if one isn’t found. This way, assuming this function is

the only place that tries to retrieve the data for a module (hint: it is!), then you can be

assured that you’ll never have null for a data collection fed to a module. That’s a good

way to avoid errors!

Of course, local storage only stores strings, so you need to use JSON.parse() to

get a proper JavaScript object to return to the caller in the case where you already had

something stored for the specified module.

Notice the use of webix.stringify() rather than JSON.stringify() like you might

expect. The webix.stringify() function is one of a number of common helpers, as

they’re called in the Webix documentation, that Webix supplies. There are quite a few

such functions, including things like this:

•	 animate(): Animates some HTML element

•	 clone(): Makes a shallow copy of an object

•	 copy(): Makes a deep copy of an object

•	 delay(): Waits a specified number of milliseconds and then executes

specified code

•	 editStop(): Closes active editors in all Webix components

Chapter 5 Getting Practical: Building wxPIM

194

•	 extend(): Merges the contents of two objects together into the first

object

•	 isArray(): Checks whether a passed value is an array

•	 isDate(): Checks whether a passed value is a Date object

•	 jsonp: Issues a JSON-P request

•	 once(): Allows you to call some code at most one time

•	 print(): Prints a view according to a specified string

•	 send(): Sends an HTTP request to a server, emulating form

submission

•	 toCSV(): Exports the data to a data component as a comma-

separated value file

•	 uid(): Returns a unique ID

As you can see, I’ve just pulled a few to show you, but there are quite a few more,

some of which you’ll see used throughout the rest of this book, but you should explore

what’s available as time allows in the Webix documentation.

For now, why use webix.stringify() rather than JSON.stringify() you ask? Well,

the truth is that in this instance, it wouldn’t have made any difference; I used it just to

serve as an introduction to these helper functions. But, what webix.stringify() does

that JSON.stringify() doesn’t is convert Date objects into strings according to the

current webix.i18n.parseFormat, which is a format specifier (%Y-%m-%d %H:%i" for the

default "en-US" locale, for example) that tells Webix how to format a Date object when

converting to a string. This means you can change how dates are converted throughout

the UI globally by altering the format for a given locale, and then webix.stringify() will

use it too, giving you an important part of internationalization in your Webix apps.

�Module Helper Function: saveHandler()
The next method you’ll encounter in code.js is saveHandler(), which is called by a

module when the user clicks the Save button, whether while creating a new item or

editing an existing one.

Chapter 5 Getting Practical: Building wxPIM

195

saveHandler(inModuleName, inFormIDs) {

 const itemData = { };

 for (let i = 0; i < inFormIDs.length; i++) {

 const formData = $$(inFormIDs[i]).getValues();

 webix.proto(itemData, formData);

 }

 itemData.id = wxPIM.editingID;

 delete itemData.$init;

 const moduleData = wxPIM.getModuleData(inModuleName);

 moduleData[itemData.id] = itemData;

 localStorage.setItem(`${inModuleName}DB`, webix.stringify(moduleData));

 wxPIM.modules[inModuleName].refreshData();

 $$(`module${inModuleName}-itemsCell`).show();

 webix.message({ type : "error", text : "Item saved" });

}

Most modules have a single form, but the Contacts module, as you’ll see later, has

two. Because of this, the inFormIDs argument is present. This is an array of Webix IDs of

any forms a module needs to save, as many as it needs. So, the first step is to take each

form, call getValues() on it to get the data the user entered, and then use the webix.

proto() helper function to merge them. The webix.proto() function is one of those

helper functions that takes one or more objects and merges them into the first one

specified. So here, for each form, you merge it into the itemData object, which starts out

empty. This is done for each form named in the inFormIDs array.

Once that’s done, an id property is added using the value stored in wxPIM.

editingID. This will be set when the user selects an item for editing, and it will also be

set to a new value when they go to add an item.

Next, you have to take care of something: the $init member. The webix.proto()

function adds this member to the target object, but you don’t want to save that to local

storage, so you can delete it here.

Chapter 5 Getting Practical: Building wxPIM

196

After that, a call to wxPIM.getModuleData() retrieves the data for the named module

(named by the inModuleName argument, of course) from local storage. It’s just a plain

JavaScript object at this point, so the next line adds a new member, keyed by the item

ID, to store the item in. Then, a call to localStorage.setItem() saves the data for the

module back into local storage, overwriting what’s there.

The next step is to return the user to the summary view for the module and ensure

the data is refreshed. This means that after adding a contact, you want the user to see

the contact list, including their new data, of course. Every module has a refreshData()

method, as you’ll see shortly, so that method is called through the wxPIM.modules object,

which you’ll recall stores a reference to the object instantiated for each module. After that,

you have to switch from the detail view of the module to the summary view, which uses a

common Webix ID format for each module (Appointments-itemsCell, for example).

Finally, a slide-down message is shown in the upper-right corner of the screen to

indicate the item has been saved using the webix.message() helper function. You may

find it odd that I’ve specified a type of error here, but the reason is that an error message

is a red box, whereas a nonerror message is a plain white box. Frankly, the nonerror

version is hard to see and can be missed by the user, but the error type stands out more.

The message will go away on its own after a second, or the user can click it to dismiss it

entirely. You may know this type of message as a toast message, by the way; it’s essentially

the same thing.

�Module Helper Function: deleteHandler( )
The final bit of code in core.js is another module helper function, deleteHandler(),

which, like saveHandler(), provides a common bit of functionality to modules, this time to

delete items. In Figure 5-4, you can see an example of what it looks like when the user wants

to delete an item, an appointment, in this case, courtesy of this deleteHandler() method.

Chapter 5 Getting Practical: Building wxPIM

197

The code for this is pretty simple, although there’s something new for you to see too.

deleteHandler(inModuleName) {

 webix.html.addCss(webix.confirm({

 �title : `Please Confirm`, ok : "Yes", cancel : "No", type : "confirm-

warning",

 text : `Are you sure you want to delete this item?`, width : 300,

 callback : function(inResult) {

 if (inResult) {

 const dataItems = wxPIM.getModuleData(inModuleName);

 delete dataItems[wxPIM.editingID];

 �localStorage.setItem(`${inModuleName}DB`, webix.

stringify(dataItems));

 wxPIM.modules[inModuleName].refreshData();

 $$(`module${inModuleName}-itemsCell`).show();

 webix.message({ type : "error", text : "Item deleted" });

 }

 }

 }), "animated bounceIn");

};

Figure 5-4.  An example of the delete dialog

Chapter 5 Getting Practical: Building wxPIM

198

Let’s skip the webix.html.addCss() function for now and talk about what’s inside

it, the webix.confirm() call. This is another of those Webix-supplied common helper

functions. It presents the user with a confirmation pop-up. It’s a lot like a window in

that it’s got a title that you can specify, as well as being able to specify a width and/or

a height if you want, which I have here to avoid wrapping the text value supplied. The

type is either confirm-warning or confirm-error and changes the look of the pop-up

by changing the color of the line (red for confirm-error, a yellowish line for confirm-

warning). By default, the confirm pop-up has two buttons: Ok and Cancel. However,

you can set the text on the buttons by providing values for the ok and cancel config

attributes, as I’ve done here.

The most important argument passed to webix.confirm() is the callback option.

This is the function to call when the user clicks a button. This function is passed a

Boolean value, true for Ok and false for Cancel. So, if you get true here, then you do the

work of deleting.

Really, that code should look kind of familiar because it’s not vastly different from the

code in saveHandler()! You get the data for the module just like in that case, and then

the property from the resulting data object is deleted based on the ID of the selected

item, which is the key of the properties in the object. Then, the object is written back to

local storage. Finally, as with saveHandler(), you show the user the module’s summary

view again, being sure to refresh the data, and then show a deleted message.

Now, let’s go back to the webix.html.addCss() function that wraps the call to webix.

confirm(). The webix.html.addCss() function is another kind of helper function

Webix provides as part of the webix.html namespace. These are functions for dealing

generically with HTML and the DOM. The webix.html.addCss() function adds a CSS

class to a DOM node. In this case, it’s the DOM node produced by the call to webix.

confirm(). The class that’s added, "animated bounceIn" (two classes in fact!), is

provided by another library, one of which I’ll quickly discuss now.

Chapter 5 Getting Practical: Building wxPIM

199

More helpers! I n addition to webix.html.addCss(), you’ll also find in the
webix.html namespace addStyle(), which adds a style definition to the
page; insertBefore(), which inserts a new DOM node into the specified
position; pos(), which returns the current mouse position relative to the upper-
left corner of the page; and remove(), which removes an HTML element from
the page, among others. Also note that there are other “helper” namespaces,
namely, webix.ajax, which includes functions for making remote calls; webix.
clipbuffer, which includes functions for working with the clipboard; webix.
color, which includes color transformation functions; webix.env, which includes
flags that describe the current runtime environment; webix.history, which
includes functions for dealing with history tracking; webix.i18n (which you’ve
seen some of already), which contains internationalization/number/date format
functions; webix.markup, which contains functions for loading from HTML;
webix.promise, which contains functions for working with promises; and
webix.rules (which you've also seen) that contains validation rules. As I’ve been
doing, I’ll continue to introduce functions from these namespaces as needed, but
there’s far too much there to cover everything, so please do examine the Webix
documentation to get a fuller picture.

�animate.css
As I’ve mentioned, as powerful as Webix is, sometimes you need to hit up a third party

to provide some extra oomph. One of those third parties you might use is the animate.

css library, which is nothing more than a CSS file that provides additional CSS classes

for you to use. The animate.css library’s motto is “Just-add-water CSS animations,” and

that about sums it up: you just add classes to elements, and you’ll get some wicked-cool

animations with no more effort!

Because Webix is generally very lightweight, it’s easy to get a reference to a top-level

DOM node for any given component. With that, you can apply these animations trivially,

as with the delete pop-up. The "animated bounceIn" classes being added results in the

pop-up bouncing into view, growing and shrinking and gradually stopping. It’s a nice

little effect that gets the user’s attention more than the pop-up just appearing would.

Chapter 5 Getting Practical: Building wxPIM

200

I highly recommend exploring the animate.css site at http://daneden.me/animate

to see all that it offers because it’s a nice complement to Webix (and you can of course

use it without Webix too).

�core.css
The next thing to look at is the core.css file, which contains the main stylesheet for

wxPIM. There isn’t much here, but I’ll go through it anyway, starting with this class

definition:

.cssSideMenu .webix_view {

 background-color : #eceff1;

}

This rule gives you a grayish color as the background of the sidemenu. The next class

also deals with the sidemenu.

.cssSideMenu .webix_list_item {

 line-height : 35px;

 border-bottom-color : #d0d0d0;

}

This one is responsible for two things: making the items in the sidemenu a little

thicker height-wise than they would be by default (to make them better touch targets)

and adding a subtle divider line beneath each to give some visual separation to the

items.

The final rule is a simple one.

.webix_window {

 box-shadow : 0 0 40px #202020;

}

This adds a deeper shadow to any Webix window, which includes the window seen

in the Appointments module when the user clicks a date to see appointments for it. I

just feel like the deeper shadow makes the window stand out better, which to me is more

visually pleasing.

Chapter 5 Getting Practical: Building wxPIM

http://daneden.me/animate

201

That’s about all there is for styling in wxPIM, aside from some styling done inline for

specific things later, which you’ll see as you go through the module code. But, before you

do that, let’s talk about the code that builds the core shell UI.

�baseLayout.js
The next file you’ll look at is baseLayout.js, which, as the name implies, provides the

base layout for the entire wxPIM application.

wxPIM.getBaseLayoutConfig = function() {

 return {

 rows : [

 wxPIM.getMainHeaderConfig(),

 wxPIM.getMultiviewConfig()

]

 };

};

Yes, that’s all there is to it! All you have is the header up top and a multiview

component beneath. The configurations for both are present in the mainHeader.js

and multiView.js files, respectively, and each provides a function to call to get that

configuration, so this is really all you need for the base layout.

�mainHeader.js
The wxPIM.getMainHeaderConfig() function that you saw reference to in baseLayout.

js is of course found in the mainHeader.js file, and its only job is to return an object that

defines a Webix toolbar, which is what the header is built out of.

wxPIM.getMainHeaderConfig = function() {

 return {

 view : "toolbar", id : "toolbar",

 elements : [

 { view: "icon", icon: "bars",

 click : function() {

Chapter 5 Getting Practical: Building wxPIM

202

 if ($$("sidemenu").isVisible()) {

 $$("sidemenu").hide();

 } else {

 $$("sidemenu").show();

 }

 }

 },

 { id : "headerLabel", view: "label",

 label : "", defaultLabel : "wxPIM Day-at-a-glance"

 }

]

 };

};

The toolbar, which has an id because you’ll need to be able to get a reference to it

later in the sideMenu.js code, consists of just two elements: the hamburger menu icon

that triggers display of the sidemenu and a simple text label (which again needs an id

defined) where you’ll show what module the user is currently in. Note that the label also

has a non-Webix attribute, defaultLabel, that I use to store the text for the day-at-a-

glance screen. It’s interesting to know that you can add these sorts of arbitrary attributes,

which you can then access via the config attribute of the component. It’s a good way

to convey extra information as part of a component, keeping it encapsulated within the

component.

The click handler of the menu icon takes care of toggling the sidemenu. You

can always tell if a Webix component is currently visible by calling the isVisible()

method. Interestingly, you can also get this information by examining the config.

hidden properly, which also gets updated as the visibility is changed. But, doing it that

way feels weird to me because the config property is meant to convey what the initial

configuration options are, so in my mind, they shouldn’t change (and in practice, they

mostly don’t), but visibility is an exception. I suggest always using the method approach

to avoid any potential problems, but I wanted to make you aware of the option.

Chapter 5 Getting Practical: Building wxPIM

203

�multiView.js
Next up is the multiView.js file, which, like mainHeader.js, just contains a single

function that returns the Webix configuration for a multiview component, one of the two

main components of the base layout of wxPIM as you know.

wxPIM.getMultiviewConfig = function() {

 return {

 view : "multiview", id : "moduleArea",

 animate : { type : "flip", subtype : "horizontal" },

 cells : [

 wxPIM.getDayAtAGlanceConfig(),

 wxPIM.modules.Appointments.getUIConfig(),

 wxPIM.modules.Contacts.getUIConfig(),

 wxPIM.modules.Notes.getUIConfig(),

 wxPIM.modules.Tasks.getUIConfig()

]

 };

};

Each module gets a cell in the multiview, as does the day-at-a-glance screen, and

since you’ll be switching between these views programmatically, as you saw in core.js,

the component needs an id so you can get a reference to it. In addition, I’ve specifically

defined the animation type here to be a 3D flip animation horizontally. This to my eyes

just looks cooler than the default slide animation that flipping between the cells of a

multiview does.

�sideMenu.js
The sideMenu.js file is next, which houses the code for the navigation sidemenu, and while

it’s got a little more meat on its bones, it’s still not an especially complicated bit of code.

wxPIM.getSideMenuConfig = function() {

 return {

 view : "sidemenu", id : "sidemenu", width : 200,

 position : "left", css : "cssSideMenu",

Chapter 5 Getting Practical: Building wxPIM

204

 state : (inState) => {

 const toolbarHeight = $$("toolbar").$height;

 inState.top = toolbarHeight;

 inState.height -= toolbarHeight;

 },

 body : {

 rows : [

 { view : "list",scroll : true,

 select : false, type : { height : 40 }, id : "sidemenu_list",

 template : ` #value#`,

 data : [

 { id : "Appointments", value : "Appointments", icon : "calendar" },

 { id : "Contacts", value : "Contacts", icon : "address-card" },

 { id : "Notes", value : "Notes", icon : "file-text" },

 { id : "Tasks", value : "Tasks", icon : "tasks" }

],

 click : wxPIM.launchModule

 },

 { height : 2, template : "<hr>" },

 { cols : [

 { },

 { view : "button", type : "icon", label : "", icon : "home",

 align : "right", width : 32,

 click : () => {

 wxPIM.dayAtAGlance();

 $$("sidemenu").hide();

 $$("dayAtAGlance").show();

 }

 },

 { }

] }

]

 }

 };

};

Chapter 5 Getting Practical: Building wxPIM

205

The sidemenu itself is specified to be on the left side of the screen with a width of 200

pixels, and it uses the cssSideMenu style rule that you saw previously to give it a grayish

background color. The state option provides a function that defines the position and

size of the sidemenu. The reason this is necessary is because by default, the sidemenu

would overlap the header. That’s not ideal because then the hamburger icon would be

covered, and the user wouldn’t be able to close the sidemenu, not without selecting a

new module anyway (or the home icon). So, the code in the anonymous state function

grabs the height of the toolbar and makes the height of the sidemenu the height of the

screen minus the height of the toolbar; then it pushes the sidemenu down the same

number of pixels as the height of the toolbar. That way, the sidemenu fills the entire left

of the screen except for the height of the toolbar.

Within the sidemenu you have a list component that uses some inline data to

show each of the modules. Each data item contains a FontAwesome icon reference,

which is used as part of the template for the list to render each module’s name and a

suitable icon next to it. I’ve also made the height of each element 40 pixels using the type

attribute that is used to further define the list items so that they are easier touch targets.

Clicking any item in the list simply calls the wxPIM.launchModule() method you’ve

already looked at.

Below the list is a plain old HTML <hr> element. Since the list by default will fill

the sidemenu, this means the line will be down near the bottom because right after the

line is another row where the home icon is. So, to visualize this, there are three rows in

the layout that makes up the sidemenu: the list, which fills all available space; the row

with the <hr>; and the row with the home icon. Since the latter two either have a height

defined (in the case of the <hr> container row) or have a height by virtue of the content

(in the case of the home icon row), the list won’t fill all the space of the sidemenu, only

the space available after Webix accounts for the other two rows. That’s also why I’ve

set scroll to true on the list. Without that, if you had a lot more modules, then on a

nontouchscreen you wouldn’t be able to scroll the list, and that would be obviously bad.

When the home icon is clicked, there are three steps to get the day-at-a-glance

screen showing. First, the screen must be populated with data, which is what the wxPIM.

dayAtAGlance() call does, which you’ll be looking at next. Then, the sidemenu needs to

be hidden, and finally, the day-at-a-glance cell of the multiview needs to be shown, so

that’s what’s done in the click handler for the icon.

Chapter 5 Getting Practical: Building wxPIM

206

�dayAtAGlance.js
The dayAtAGlance.js file contains all the code for the day-at-a-glance screen and is

broken down into two functions that you need to look at.

�getDayAtAGlanceConfig()
The first function is the one to get the configuration for the UI components, and it’s very

straightforward.

wxPIM.getDayAtAGlanceConfig = function() {

 return {

 id : "dayAtAGlance", view : "scrollview", borderless : true, body : {

 paddingX : 20, paddingY : 20, rows : [

 { view : "fieldset", label : "Appointments",

 body : { id : "dayAtAGlanceScreen_Appointments", rows : [] }

 },

 { height : 20 },

 { view : "fieldset", label : "Tasks",

 body : { id : "dayAtAGlanceScreen_Tasks", rows : [] }

 }

]

 }

 };

};

I’m housing everything is a scrollview component so that the user can scroll

through the items on the screen easily. I’ve removed the border here with borderless :

true to make it all look a bit more clean because within the scrollview are two rows with

each being a fieldset. A fieldset is a border with a text label, so having a border outside

just doesn’t look as clean. Note that I’ve used paddingX and paddingY to give some space

around the two fieldset components on all sides. This again is just an aesthetic choice

on my part. This is the same reason for the row with the height of 20 between them: it

just provides some separation between the two fieldset components. Each fieldset,

of course, has a label to tell the user what it is, and since appointments and tasks are the

only two things in wxPIM that has a date attached to it, that’s all you have a section for.

Chapter 5 Getting Practical: Building wxPIM

207

Within each fieldset, you should note that the rows attribute is an empty array.

That’s very much by design because those arrays will be dynamically filled by the next

function you’ll look at now.

�getAtAGlance()
The dayAtAGlance() function is responsible for populating those two row arrays in the

fieldset components and hence populating the screen. The way I’ve written it attempts

to avoid as much duplicate code as possible.

wxPIM.dayAtAGlance = function() {

 if (wxPIM.activeModule) {

 wxPIM.modules[wxPIM.activeModule].deactivate();

 }

 wxPIM.activeModule = null;

 const worker = function(inWhich) {

 let sortProperty = "when";

 let sortDirection = "A";

 let dateProperty = "when";

 let template = webix.template("#subject# - #when# #location#");

 if (inWhich == "Tasks") {

 sortProperty = "value";

 sortDirection = "A";

 dateProperty = "dueDate";

 template = webix.template("#subject#");

 }

 let dataItems = wxPIM.getModuleData(inWhich);

 dataItems = wxPIM.objectAsArray(dataItems);

 wxPIM.sortArray(dataItems, sortProperty, sortDirection);

 const currentDate = new Date().setHours(0, 0, 0, 0);

 const rows = [];

 for (let i = 0; i < dataItems.length; i++) {

 const item = dataItems[i];

 const itemDate = new Date(item[dateProperty]).setHours(0, 0, 0, 0);

Chapter 5 Getting Practical: Building wxPIM

208

 if (itemDate == currentDate) {

 if (item.location) {

 item.location = "(" + item.location + ")";

 } else {

 item.location = "";

 }

 if (item.status == 1) {

 item.status = "Ongoing";

 } else {

 item.status = "Completed";

 }

 �item[dateProperty] = webix.i18n.timeFormatStr(new

Date(item[dateProperty]));

 �rows.push({ borderless : true, template : template(item), height :

30 });

 }

 }

 webix.ui(rows, $$(`dayAtAGlanceScreen_${inWhich}`));

 };

 worker("Tasks");

 worker("Appointments");

 $$("headerLabel").setValue($$("headerLabel").config.defaultLabel);

};

The first step is to give whatever module is current, if any, a chance to de-activate

itself with a call to its deactivate() method. Remember that dayAtAGlance() will be

called only when the app starts up or when the user clicks the home icon, and it’s this

latter case where deactivate() comes into play, but only for the Appointments module.

The problem here is that, as you’ll see, there is a window that can be displayed in that

module, and a window sits above the z-order of the main layout of the app. This means

that if you’re in the Appointments Module and that window is showing and you click the

home icon, without doing anything special that window will remain and obscure the day-

at-a-glance screen. As you’ll see, the deactivate() method of that module deals with

hiding that window, but to keep things consistent, every module provides such a function

in case they too need to do anything when they are switched away from.

Chapter 5 Getting Practical: Building wxPIM

209

Anyway, once that’s done, you also must ensure that no module is registered as

current, so that’s where wxPIM.activeModule gets set to null.

After that comes the definition of the worker() function, but I want to skip looking

at that code for just a second and go to the part after that where it’s actually called, once

for each module that you want to display data for. The two calls to the worker() function

pass in the name of the module, and with that, it has all the information it needs to

populate the data in a (mostly) generic way. This is where I was talking about avoiding

duplicate code earlier. Having this one function means not having to largely duplicate

the code, once for appointments and once for tasks.

Now, going back to the worker() code now, you see four variables defined first:

sortProperty, sortDirection, dateProperty, and template. The first two define what

property of an object a sort is done on and in what direction. The dateProperty variable

tells you which property of the object contains the date. The template variable provides

the template that will be used to render each row in the fieldset for the appropriate

module within the scrollview of the day-at-a-glance screen that you saw in the previous

section. Here, the webix.template() function is used, which converts a string to a Webix

templating function. This isn’t something you would typically do because simply passing

the string to the data-aware component via its template config option is usually enough.

However, I wanted to demonstrate it, and since the template must be defined dynamically

here based on what type of data is being rendered, it made sense to show it in this case.

Note that you declare these variables assuming you’re populating appointments but

then override them for tasks.

Once that’s done, a call to wxPIM.getModuleData() is done to get the data for the

module named by inWhich. Then, since what you get from that is an object, a call is

made to wxPIM.objectAsArray() to get an array of objects. See, those utility functions

you looked at early are coming into play now! Once you have an array, it’s time to sort it,

and this is where those first two variables that deal with sort direction and what property

to sort on are used.

After that, since this is day-at-a-glance, you care only about appointments or tasks

that are due today, so you need to get the current date. Since you don’t want to take time

into account here, the setHours() method is called, which is a plain old JavaScript Date

object method, and passing it all zeros results in the time being set to midnight. If you do

the same for the date associated with the appointment or task, then you can match the

dates based on the date only, and without having to pull out the individual month, day,

and year values and comparing them individually.

Chapter 5 Getting Practical: Building wxPIM

210

Once you have a sorted array and the current date, then it’s time to render

configuration objects for the rows in the target fieldset, one for each data item, into

the rows variable. But, you only want items for the current date, so the first step is to grab

the date value for the data item, based on the dateProperty variable, since the object

might (and in fact do) store their dates in different property names. The date is again

“normalized” in terms of time, and then you can do a simple comparison on the Date

objects. If the data item is for today, then it needs to be added to the array of rows.

But, first, there are some minor “fixups” to take care of to be sure everything displays

how you want. For appointments, the location attribute you want to be surrounded

with parentheses. That could have been done as part of the template, but then for

appointments without a location, you’d see “()” on the screen, and that just looks kind

of ugly, so this fixup avoids that. Then, for tasks, the status is a numeric code 1 or 2, but

you want to display the status as Ongoing or Completed, so that is done as well. Finally,

for tasks, while you couldn’t consider time when comparing the Date objects, you do

want to display the time of the appointment, so the webix.i18n.timeFormatStr()

function is used, which formats the time component of the Date object only in a format

according to the machine’s current locale.

Finally, an object is added to the rows array for the data item, using the template

determined earlier and the data item that is now all fixed up. After all the data items are

processed, a call to webix.ui() specifying the rows array as well as the ID of the correct

fieldset causes Webix to replace the current contents of that component with the new

content, and you get your appointments and tasks on the screen!

And with that, you’ve looked at all the core code of wxPIM. All that’s left is the code

for each individual module, which you’ll pick up in the next chapter.

�Summary
In this chapter, I began to break down the wxPIM application and explore its code. You

saw how a clearly defined structure allows for a clean, easy-to-understand application

that is also modular and extensible if need be. You saw how you can use Webix to

build a shell application that you can extend by plugging in more code to provide new

functionality.

In the next chapter, you’ll look at those modules in detail and see how each is built.

You’ll see a lot of Webix in action, taking all that you’ve learned so far and applying it as

you continue to build this real application.

Chapter 5 Getting Practical: Building wxPIM

211
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_6

CHAPTER 6

Getting Practical: Building
wxPIM Redux
In the previous chapter, you began dissecting the wxPIM application and looking at the

core code that comprises it. In this chapter, you’ll continue that exploration, ultimately

finishing up the exploration of this code.

You’ll pick up where you left off by examining the basic overall structure of modules.

You should have an idea about this already given what you saw in the previous chapter,

but let’s make sure it’s totally clear before you dive into the individual module’s code.

�Modules: Basic Structure
Each of the modules is housed completely in a single JavaScript source file, and each

defines a class for the module. The class has a standard structure, as shown in Figure 6-1.

Figure 6-1.  Module class diagram

212

In fact, the constructor isn’t required, and as it happens, only one module provides

a constructor. Still, I consider it part of the basic class structure since a JavaScript class

will have a default constructor provided by JavaScript itself even if you don’t specify

one. However, the other methods you see here will be present in every module. You’ve

already seen some of the methods a module provides, but now I’ll get into what each is

for and when they do it.

•	 getUIConfig(): Returns an object that defines the Webix component

tree for the module’s UI

•	 activate(): Called any time the user switches to the module. What it

does, if anything, is dependent on the needs of the module.

•	 deactivate(): Called any time the user switches away from the

module, meaning selects another module or goes to the day-at-a-

glance screen. As with activate(), what deactivate() does, which

could be nothing, is module-dependent.

•	 newHandler(): Called when the user clicks the New button to create a

new item in the module.

•	 editExisting(): Called when the user selects an existing item to edit.

•	 refreshData(): Called any time the data on the summary screen of

the module, which is where existing items are shown, needs to be

refreshed. This can be when the module is switched to, when an item

is added, when an item is updated, or when an item is deleted.

Some modules may have other methods as needed as well. Two of them do, and

two just have the methods described here, but only the ones listed here are required as

they are the ones called at various times during the life of a module by that core code.

Modules may also have data members specific to them, but there are none required by

the core code, so they aren’t part of the foundational module class structure. They’re

used as needed, if at all.

Chapter 6 Getting Practical: Building wxPIM Redux

213

In addition to a standard form in terms of code, wxPIM modules also have a regular

pattern in terms of their UI. There is a multiview that has a summary view and a details

view. The summary view presents a list of the items for the module, in some form or

other (meaning in a literal Webix list component or maybe a tree or maybe something

else entirely, but it’s still a listing of items; that’s the basic idea). This summary view

provides the user with a chance to select an existing item to edit or to create a new item

via a New button in a toolbar on the bottom of the screen. Doing either brings them

to the details view, where they see the data for the selected item or an empty form if

creating a new one. This is also where you find a Delete button on the bottom toolbar to

delete an existing item, as well as a button to return to the summary view. This pattern

works for all modules, and as you saw earlier, the core code makes some assumptions

about this being the layout and the IDs that one or two specific components use.

That gives you the bird’s-eye view of what the structure of a module’s code is. With

that in mind, let’s begin looking at the code for the first module, notes.

�Notes.js
Wait, what? Why are we looking at notes first? Isn’t alphabetical order good enough for

you, Mr. Zammetti? Shouldn’t we look at appointments first?

Well, there’s a simple reason I’ve chosen to do notes first; it’s probably the

simplest module of them all while still covering all the bases. Rather than jump into

appointments, which has some peculiarities and more code, let’s start off with a simpler

one and build from there, so notes it is.

It would help to know what the notes module looks like, wouldn’t it? This also

provides you a general idea what all modules look like because of the common UI

structure described in the previous section. Figure 6-2 shows the summary view of the

notes module.

Chapter 6 Getting Practical: Building wxPIM Redux

214

Each item can be clicked to edit it, or the New button can be clicked to create a new

note. Doing either brings the user to the details view, as shown in Figure 6-3.

Figure 6-2.  The Notes module, in all it’s note-y glory

Chapter 6 Getting Practical: Building wxPIM Redux

215

Here, I’ve clicked the colorpicker at the bottom to make the screenshot more

interesting! I’ve also made some of the text for the note bold and some italic to remind

you that the richtext component allows for this.

Neither of these views is very complicated, but then again, a note app doesn’t need

to be especially complicated, does it? Let’s start looking at the code now, beginning with

the opening of the Notes.js file.

wxPIM.moduleClasses.Notes = class {

...

}

Figure 6-3.  The Note module’s details view

Chapter 6 Getting Practical: Building wxPIM Redux

216

Each of the module source files builds a class that is added to the moduleClasses

property of the wxPIM object. Everything that follows here is inside this class definition.

This will be true of all modules, so I won’t be showing this again because the only thing

different is of course the name of the class, which always matches the source file name.

�Constructor, activate(), and deactivate()
The first thing in the class definition found in notes.js is the constructor…or is it? In

fact, this class doesn’t have a constructor! This module doesn’t need to do anything

during construction, so the default empty constructor that JavaScript provides for the

class is plenty.

As you’ll recall from the section describing the basic structure of a module, while

the constructor doesn’t need to exist at all because JavaScript takes care of that if it

doesn’t, the activate() and deactivate() methods must be present because the core

code assumes they do and calls them. However, nothing says they have to do anything

if nothing is necessary for a given module, and in this case, they are indeed empty

functions.

�getUIConfig()
The first real bit of code present in this class definition is getUIConfig(), which you

know is responsible for providing the Webix component definition for this interface.

Here is that method:

getUIConfig() {

 const cssListItem = `

 color : #000000;

 height : 66px;

 border : 1px solid #000000;

 border-radius : 8px;

 margin : 8px 10px 12px 4px;

 overflow : hidden;

 padding : 6px 6px 20px 6px;

 box-shadow : 4px 4px #aaaaaa;

 cursor : hand;

 `;

Chapter 6 Getting Practical: Building wxPIM Redux

217

 const cssListItemTitle = `

 font-weight : bold;

 padding-bottom : 6px;

 `;

 return {

 id : "moduleNotes-container",

 cells : [

 { id : "moduleNotes-itemsCell",

 rows : [

 { view : "list", id : "moduleNotes-items",

 type : {

 templateStart :

 `<div style="${cssListItem}background-color:#color#;"

 onClick="wxPIM.modules.Notes.editExisting('#id#');">`,

 template :

 `<div style="${cssListItemTitle}">#title#</div>#text#`,

 templateEnd : `</div>`

 }

 },

 { view : "toolbar",

 cols : [

 { },

 { view : "button", label : "New", width : "80",

 type : "iconButton", icon : "plus",

 click : this.newHandler.bind(this)

 },

 { width : 6 }

]

 }

]

 },

 { id : "moduleNotes-details",

 rows : [

 { view : "form", id : "moduleNotes-detailsForm", borderless : true,

Chapter 6 Getting Practical: Building wxPIM Redux

218

 elements : [

 �{ view : "text", name : "title", label : "Title", required :

true,

 bottomPadding : 20, invalidMessage : "Title is required",

 attributes : { maxlength : 50 },

 on : {

 onChange : function() {

 if (this.getParentView().validate()) {

 $$("moduleNotes-saveButton").enable();

 } else {

 $$("moduleNotes-saveButton").disable();

 }

 }

 }

 },

 { id : "moduleNotes-detailsForm-text", view : "richtext",

 �name : "text", label : "Text", attributes : { maxlength :

1000 }

 },

 { view : "colorpicker", name : "color", label : "Color",

 id : "moduleNotes-detailsForm-color"

 },

]

 },

 { view : "toolbar",

 cols : [

 { width : 6 },

 { view : "button", label : "Back To Summary", width : "170",

 type : "iconButton", icon : "arrow-left",

 click : () => {

 $$("moduleNotes-itemsCell").show();

 }

 },

 { },

 { id : "moduleNotes-deleteButton", view : "button",

 label : "Delete", width : "90", type : "iconButton",

Chapter 6 Getting Practical: Building wxPIM Redux

219

 �icon : "remove", click : () => { wxPIM.

deleteHandler("Notes"); }

 },

 { },

 { view : "button", label : "Save", width : "80",

 type : "iconButton", icon : "floppy-o",

 id : "moduleNotes-saveButton", disabled : true,

 click : function() {

 wxPIM.saveHandler("Notes", ["moduleNotes-detailsForm"]);

 }

 },

 { width : 6 }

]

 }

]

 }

]

 };

}

Before the configuration object is built, two strings are defined that provide some

style information. The cssListItem string will provide the styling for the items in the

list (yes, a literal Webix list component in this case). I wanted a rounded-off box with

a little bit of a drop shadow, an attempt to look sort of like a sticky note (hey, work with

me here a little!). The cssListItemTitle string provides styling for the title in the note to

make it bold and to provide some space between it and the note text. I also set overflow

: hidden so that if you have a really long title or text for a note, it’ll just cut off, which I

felt looked better than possibly getting scrollbars in individual notes.

Chapter 6 Getting Practical: Building wxPIM Redux

220

Why not main.css?  You may quite reasonably wonder why I didn’t put these
styles in main.css instead of embedding them in strings here. That certainly
would have been possible, but remember that one of the goals is to make each
module as pluggable as possible, which means having styles for various modules
in a single CSS file wouldn’t be a good design. Sure, each module could have its
own CSS file, but that’s more to load. In the end, keeping everything encapsulated
in a JavaScript file, given that there’s not very much styling required anyway, felt
like a cleaner approach. If these modules had a lot more CSS in them, I assuredly
would have separated it all out.

After those two strings, the configuration object definition begins. Remember, at a

high level, you’ve got two areas, one for the summary view and one for the details, and you

need to be able to flip between them. That sounds like a multiview, no? But hey, where’s

the view : "multiview" like you see in multiView.js? Well, here’s the thing: if you don’t

specify a view but you do specify the cells attribute, then Webix recognizes that and

knows you want a multiview and implicitly creates one for you. That’s what I’ve done here.

The first cell is the summary view, and it has an id of moduleNotes-itemsCell, since

you’ll need to be able to hide and show that later (with hide() and show()). This cell has

two rows in it; the first is the list component, and the second is the toolbar component.

The list has a type attribute that specifies templateStart, template, and templateEnd,

and that’s something you haven’t seen before. The templateStart attribute provides

Webix with the information needed to render the container element for a data item,

wrapping the elements defined by template. It’s the opening element, usually a <div>. The

templateEnd is the opposite. It renders the closing element begun with templateStart.

Using all three gives you more flexibility than just using template to render items in

some components (dataview, list, grouplist, unitlist, menu, tree, datatable, and

treetable), and flexibility is needed here to render the notes in the list like I wanted to.

The toolbar is a simple one with an empty element to push the button all the way to

the right, with a small element to the right of the button just to keep it off the edge of the

screen a bit.

After the summary cell is the details cell where you find an entry form and a toolbar.

The form consists of three elements: a text component for entry of the note subject,

a richtext component for entry of the note itself, and a colorpicker for selecting

a background color for the note. The subject entry field is interesting because it has

Chapter 6 Getting Practical: Building wxPIM Redux

221

required : true on it, which results in a red asterisk being placed by its label to

indicate it’s a required field (and it’s the only one that is required). I’ve also specified an

invalidMessage attribute to define the message that will be shown below the field when

nothing has been entered in it. However, this message will show up only if there is room

for it, which by default there isn’t, and that’s where setting bottomPadding comes into play.

The attributes config option is new, and this gives us a way to feed attributes to the

underlying HTML text field, which Webix renders (and then augments) under the covers.

Here, I’m specifying the maxlength attribute to limit how many characters the user can

enter to 50. Similarly, the note text entry area has a limit of 1000 characters defined in the

same way.

The subject entry field also has an onChange event handler defined. Every time the

field changes, which occurs when it loses focus, the validate() method on the form is

called, which you can always get a reference to by calling this.getParentView() within

the event handler since the this keyword here is a reference to the field itself, so Webix can

look up the component hierarchy to find the parent form (although, be careful, because

depending on how you create your layout, then the parent of the field might not actually

be the form, in which case you’d likely need to reference its id directly). If validate()

returns true, then the Save button is enabled; otherwise, it’s disabled. The only thing that

this form validates is whether the subject field is filled in since required : true is the only

validation rule applied to any of the form’s fields. That’s why this logic works out.

The toolbar is just three buttons: the Back To Summary button, then a spacer,

then the second Delete button, then another spacer, and then the final Save button.

For the Back To Summary button, you just need to show the moduleNotes-itemsCell

element of the implicit multiview. For Delete, it’s simply a call to the common wxPIM.

deleteHandler() function, passing the name of the module. For Save, it’s the same sort

of thing as Delete, but now it’s wxPIM.saveHandler(), passing it the name of the module

and the ID of the form to get the data to save from.

And that’s all there is to this UI definition!

�newHandler()
Whenever the New button on the summary screen is clicked, the uncreatively named

newHandler() method is called, and it’s a pretty simple bit of code.

Chapter 6 Getting Practical: Building wxPIM Redux

222

newHandler() {

 wxPIM.isEditingExisting = false;

 wxPIM.editingID = new Date().getTime();

 $$("moduleNotes-details").show();

 $$("moduleNotes-detailsForm").clear();

 $$("moduleNotes-detailsForm-text").setValue("");

 $$("moduleNotes-detailsForm-color").setValue("#ffd180");

 $$("moduleNotes-deleteButton").disable();

}

First, the flag that tells you whether you’re editing an existing item or not is set to

false, and a new ID is created for this note. After that’s done, it’s just a matter of switching

to the detail screen and clearing the form. Note that the richtext component seems to

not be cleared by the call to clear() on the form, so that’s cleared separately. Likewise,

the colorpicker doesn’t reset to a default color, or at least not the color I want to be the

default, so a default is explicitly set. Finally, since you’re creating a new item here, the

Delete button doesn’t come into play, so it’s disabled.

�editExisting()
When an existing note is clicked on the summary screen, editExisting() is called

to kick off editing of the existing note. If this code looks a bit like newHandler(),

that shouldn’t be surprising. You’re doing essentially the same thing with just a few

differences.

editExisting(inID) {

 const notes = JSON.parse(localStorage.getItem("NotesDB"));

 const note = notes[inID];

 wxPIM.isEditingExisting = true;

 wxPIM.editingID = inID;

 $$("moduleNotes-detailsForm").clear();

 $$("moduleNotes-details").show();

Chapter 6 Getting Practical: Building wxPIM Redux

223

 $$("moduleNotes-detailsForm").setValues(note);

 $$("moduleNotes-deleteButton").enable();

 }

The first difference is that you need to get a reference to the note being edited, so

you first get the data for this module, and then since the returned object is keyed by ID,

a reference to the note is grabbed using the inID passed in by the click handler. After

that, the wxPIM.isEditingExisting flag is set, to true this time, and the inID is stored in

wxPIM.editingID.

Now, you clear the form so that you have a clean slate to start. After that, the details

cell is shown. After that, setValues() is called on the details form, passing it the note

object that was pulled out of the module’s data collection. It’s important to say that if

you try to do the setValues() call before showing the form, then you’ll see a JavaScript

error and things will break. I’m not certain of the reason for this error, but it’s related to

the richtext component, and my guess is that Webix lazy-builds that component, and it

might not be present until you actually show the form. In any case, just keep this in mind

to avoid the problem in your own code.

Once the form is populated and shown, then the only thing left to do is to enable the

Delete button, since you can of course delete an existing note.

See, that wasn’t so bad, was it?

�refreshData()
The final method in the Notes class is refreshData(), which as you know by now is

called any time the summary view needs to be updated, either after an item is added,

updated, or deleted or when the module is switched to.

refreshData() {

 const dataItems = wxPIM.getModuleData("Notes");

 const itemsAsArray = wxPIM.objectAsArray(dataItems);

 wxPIM.sortArray(itemsAsArray, "id", "D");

 $$("moduleNotes-items").clearAll();

 $$("moduleNotes-items").parse(itemsAsArray);

}

Chapter 6 Getting Practical: Building wxPIM Redux

224

It doesn’t take much for this module. You just fetch the data for this module from

local storage, then convert the object to an array, then sort the array in descending order

on the id property (so that newer notes are always shown at the top), call clearAll() on

the list component to start fresh, and then finally call parse(), passing it the fetched

data, for the list to render.

That’s really all there is to it for this particular module!

Commonality makes things easier. N ote that for two of the three remaining
modules, they are pretty similar overall in terms of the code, so I’m going to go
over them pretty quickly. Therefore, make sure you understood all the code for the
notes module because if you did, then you already, by and large, can understand the
contacts and tasks modules without much explanation. Appointments, which you’ll
look at last, has some differences to it, but even it isn’t very different from the others.

�Tasks.js
Now you’ll look at the tasks module, beginning with what it looks like. Figure 6-4 shows

the summary view, which uses a tree to show the notes, broken down by category (those

with no category are in the first “empty” group).

Chapter 6 Getting Practical: Building wxPIM Redux

225

Figure 6-4.  The summary view of the tasks module

Chapter 6 Getting Practical: Building wxPIM Redux

226

Complete tasks are shown in green while ongoing tasks are shown in red. Only the

task’s title is shown since that’s good enough for a basic listing. Being a tree, the user

can collapse and expand groups as they want, and I’ve styled things to make the touch

targets a little bigger because a tree by default isn’t the best component on a small

mobile touchscreen device without that styling. Then, in Figure 6-5 you see the details

view, and I’ve clicked the Due Date field to expand the datepicker.

I chose to use a segmented component for the priority since with a limited number

of choices that provides a direct means to access the options. Of course, that would have

been a fine choice for the Status field as well, but being a learning example, I tried to use

a decent variety of components for you to see in action.

Figure 6-5.  The tasks module’s details view

Chapter 6 Getting Practical: Building wxPIM Redux

227

The Subject field is required (as is Due Date), and you can see that it’s marked as

such with the red asterisk, and you can also see the message when it’s not filled out

below the field.

Now, on to the code!

�Constructor, activate(), and deactivate()
As with the notes module, the constructor, activate(), and deactivate() methods

in the Tasks class definition in the tasks.js file are all empty since this module doesn’t

have any work done in those, so let’s move on to the getUIConfig() method.

�getUIConfig()
Although a bit more voluminous than the notes module, the code inside getUIConfig()

is still pretty basic Webix config data, with just a few minor exceptions. Walk through this

code to see:

getUIConfig() {

 return {

 id : "moduleTasks-container",

 cells : [

 { id : "moduleTasks-itemsCell",

 rows : [

 { view : "tree", id : "moduleTasks-items",

 on : { onItemClick : this.editExisting.bind(this) }

 },

 { view : "toolbar",

 cols : [

 { },

 { view : "button", label : "New", width : "80",

 type : "iconButton", icon : "plus",

 click : this.newHandler.bind(this)

 },

 { width : 6 }

]

Chapter 6 Getting Practical: Building wxPIM Redux

228

 }

]

 },

 { id : "moduleTasks-details",

 rows : [

 { view : "form", id : "moduleTasks-detailsForm", borderless : true,

 �elementsConfig : { view : "text", labelWidth : 100,

bottomPadding : 20,

 on : { onChange : () => {

 �$$("moduleTasks-saveButton")[$$("moduleTasks-detailsForm").

validate() ?

 "enable" : "disable"]();

 } }

 },

 elements : [

 { name : "subject", label : "Subject", required : true,

 invalidMessage : "Subject is required",

 attributes : { maxlength : 50 }

 },

 { view : "text", name : "category", label : "Category",

 suggest : [

 { id : 1, value : "Personal" },

 { id : 2, value : "Business" },

 { id : 3, value : "Other" }

],

 on : {

 onItemClick : function() {

 $$(this.config.suggest).show(this.getInputNode());

 }

 }

 },

 { view : "radio", name : "status", label : "Status", value : 1,

 id : "moduleTasks-category",

 options : [

Chapter 6 Getting Practical: Building wxPIM Redux

229

 �{ id : 1, value : "Ongoing" }, { id : 2, value :

"Completed" }

]

 },

 �{ view : "segmented", name : "priority", label : "Priority",

value : 1,

 options : [

 { id : 1, value : "Low" },

 { id : 2, value : "Medium" },

 { id : 3, value : "High" }

]

 },

 { view : "datepicker", name : "dueDate", label : "Due Date",

 id : "moduleTasks-dueDate", required : true,

 invalidMessage : "Due Date is required"

 },

 { name : "comments", label : "Comments",

 attributes : { maxlength : 250 }

 }

]

 },

 { },

 { view : "toolbar",

 cols : [

 { width : 6 },

 { view : "button", label : "Back To Summary", width : "170",

 type : "iconButton", icon : "arrow-left",

 click : () => {

 $$("moduleTasks-itemsCell").show();

 }

 },

 { },

 { id : "moduleTasks-deleteButton", view : "button",

 label : "Delete", width : "90", type : "iconButton",

Chapter 6 Getting Practical: Building wxPIM Redux

230

 �icon : "remove", click : () => { wxPIM.

deleteHandler("Tasks"); }

 },

 { },

 { view : "button", label : "Save", width : "80",

 type : "iconButton", icon : "floppy-o",

 id : "moduleTasks-saveButton", disabled : true,

 click : function() {

 wxPIM.saveHandler("Tasks", ["moduleTasks-detailsForm"]);

 }

 },

 { width : 6 }

]

 }

]

 }

]

 };

}

As you look through that code, it should look quite familiar by now as it’s the same

overall basic structure as the notes module, and there’s really nothing here that you

haven’t seen before. In fact, the only thing especially worth discussing is the onChange

handler for the form. In contrast to the notes module, where there was an onChange

handler attached to the Title field’s onChange event, here I’ve attached it to the form.

This is the better approach if you have more than one field that’s required because that

way you don’t need to attach code to every required field. What this is doing is calling a

method on the Save button using bracket notation. Remember that x[y]() can always

be used to call a method y of object x in JavaScript, which is the “trick” used here. The

name of the method that’s being called is determined based on the result of the call to

the form’s validate() method. If it’s true, then “enable,” if false, then “disable.” It’s a

simple, concise way to write this code rather than a larger if block of code.

Chapter 6 Getting Practical: Building wxPIM Redux

231

Actually, one other thing warrants mention too, and that’s the onItemClick handler

of the Category text component. What that one line of code does is it finds the suggest

component that Webix constructed under the covers as a result of supplying the suggest

configuration attribute and shows it anchored to the text component. A suggest

component doesn’t do anything on its own; you have to actually show it, and that’s all it

takes to do so.

How do you write code? I t’s a matter of debate for sure in the programming
world, but I almost always choose longer, clearer code over more terse code. I
don’t mind typing more if it makes the code easier to read. Unfortunately, the
trend in JavaScript these days is to write more concise code, but whether it’s truly
clearer or not is sometimes questionable. This is an example of where I break my
own rule essentially, but I do so because I think this form is no less clear ultimately
than an expanded if block. Still, I’m not holding this up as the right or wrong
approach; that’s for you to decide. But seeing an alternate approach I think has
value if for no other reason than making you stop and consider your own viewpoint
on the matter. It’s always good to question things, even if what you’re questioning
is considered a “best practice,” in my opinion.

�newHandler()
When the New button is clicked, the newHandler() function is called, just like in the

notes module, and the code in it is just about the same.

newHandler() {

 wxPIM.isEditingExisting = false;

 wxPIM.editingID = new Date().getTime();

 $$("moduleTasks-details").show();

 $$("moduleTasks-detailsForm").clear();

 $$("moduleTasks-category").setValue(1);

 $$("moduleTasks-deleteButton").disable();

}

Chapter 6 Getting Practical: Building wxPIM Redux

232

The Category field gets a default value of 1, which means Ongoing, which is the

logical default for a new task. Otherwise, there’s no real difference from what you say in

the notes module.

�editExisting()
The editExisting() method is called when an existing task is clicked, and it too is

similar to its counterpart in the notes module, but this time there are a few differences.

editExisting(inID) {

 const tasks = JSON.parse(localStorage.getItem("TasksDB"));

 const task = tasks[inID];

 if (!task) {

 if ($$("moduleTasks-items").isBranchOpen(inID)) {

 $$("moduleTasks-items").close(inID);

 } else {

 $$("moduleTasks-items").open(inID);

 }

 return;

 }

 wxPIM.isEditingExisting = true;

 wxPIM.editingID = inID;

 $$("moduleTasks-detailsForm").clear();

 $$("moduleTasks-details").show();

 if (task.dueDate) {

 task.dueDate = new Date(task.dueDate);

 }

 $$("moduleTasks-detailsForm").setValues(task);

 $$("moduleTasks-deleteButton").enable();

 }

Chapter 6 Getting Practical: Building wxPIM Redux

233

The first big difference here is that because this is called in response to the

onItemClick event in the tree, it will be called whether the user clicks a task or a category

tree node. In the latter case, you obviously aren’t editing anything, but being a tree, you

want that click to expand or collapse that node. So, after getting the data for the module,

you then attempt to get the data for the note with the specified inID. For a node that isn’t

a note, inID will be some internal Webix ID, not a valid note ID, which means you won’t

find a note in the data. That’s where the if branch after that comes into play. When you

don’t find a node, then you use the isBranchOpen() method on the tree to see whether

the specified branch is currently open or closed, and the state is toggled based on that.

Of course, in this case, your work is done, so the code immediately returns.

If you do find a note, though, then the code continues, skipping the if block. Then,

you do all the same sorts of things that you saw in the notes module. However, the Due

Date field needs to be handled specially, because when it’s pulled out of local storage, it’s

a string, but the form needs a Date object, so that conversion is done before passing the

data to the form’s setValues() method.

�refreshData()
The final method in this module is refreshData(), and it’s a bit different (though not all

that different!) than the one in the notes module, as you can see for yourself.

refreshData() {

 const dataItems = wxPIM.getModuleData("Tasks");

 const tasksData = { };

 for (const taskID in dataItems) {

 if (dataItems.hasOwnProperty(taskID)) {

 const task = dataItems[taskID];

 if (!tasksData[task.category]) {

 tasksData[task.category] = {

 $css : { padding : "10px" }, value : task.category,

 open : true, data : []

 };

 }

 tasksData[task.category].data.push(

 { $css : {

Chapter 6 Getting Practical: Building wxPIM Redux

234

 padding : "10px", margin : "10px", "border-radius" : "10px",

 "background-color" : (task.status === 1 ? "#ffe0e0" : "#e0ffe0")

 },

 id : task.id, value : task.subject

 }

);

 }

 }

 const itemsAsArray = wxPIM.objectAsArray(tasksData);

 wxPIM.sortArray(itemsAsArray, "value", "A");

 $$("moduleTasks-items").clearAll();

 $$("moduleTasks-items").parse(itemsAsArray);

}

The tree needs data, of course, but after getting the data for the module, what

you have is a plain old array of objects, not in any sort of hierarchy; there’s no data

items nested inside others. That won’t work. Therefore, the job here is to create that

hierarchical data in the tasksData object from this flat array. So, for each task, you pull

out the category and add a member to the tasksData object for it; this is a member that

is itself an object and that has a data member, which are the tasks that are children of

that category. Then, each task gets added to the data array for the appropriate category.

You wind up with an object that has properties, one for each category, and the data array

for each of those contains the tasks within that category.

For each data object describing a node in the tree, be it a category or a task, the $css

property is present to provide some styling to the tree node. For the category nodes, this is

just some padding to make it a larger touch target and therefore make it easier to expand

and collapse categories on a small mobile touchscreen. For the tasks themselves, there is

again some padding to provide separation between them (and make it less likely for the

user to tap the wrong thing) and a color choice based on the status of the task. The container

for the task is rendered with some rounded corners, just to make it look a little nicer.

Next, the tasksData object that was just built is converted to an array, and the array

is sorted based on the value property. Remember that the tasksData object will have

properties now corresponding to your categories, and the category names are stored in

that value property, so sorting it means the categories will be displayed alphabetically

Chapter 6 Getting Practical: Building wxPIM Redux

235

(and with tasks with no specified category at the top). Finally, it’s a simple matter of

clearing the tree and passing the final day array to its parse() method, and you’ve got

beautiful tasks displayed in a tree!

�Contacts.js
Next up you have the contacts module. This uses a different component for its summary

display, this time a unitlist, which you can see in Figure 6-6.

This makes sense for a list of contacts where, like a rolodex, it’s typical to see it

broken down alphabetically with headings to demarcate each section. I’ve chosen to sort

by last name, though obviously that’s a matter of choice.

Figure 6-6.  The contacts summary display

Chapter 6 Getting Practical: Building wxPIM Redux

236

When you create a new contact or edit an existing one, you’re greeted by the detail

display shown in Figure 6-7, where I’ve used an accordion to split between personal and

business details, so you can use this contact list for either.

The only required fields are First Name and Last Name, though not entering other

details probably isn’t all that useful. When you flip over to the Business pane of the

accordion, you have what you see in Figure 6-8.

Figure 6-7.  Navigating wxPIM with the widemenu menu

Chapter 6 Getting Practical: Building wxPIM Redux

237

The state is a select element, so the user doesn’t have to type out the whole state,

and you don’t need to worry about whether they put in a full state name or just an

abbreviation. Since contacts have quite a few more fields associated with them than do

notes or tasks, scrolling may come into play depending on the screen size, as you can see

in both of the previous screenshots.

�Constructor
The code itself for this module, in the Contacts.js file, begins with the usual class

definition, which has a constructor, where for a change you finally do have something to

accomplish in it.

Figure 6-8.  The business pane of the contact’s accordion

Chapter 6 Getting Practical: Building wxPIM Redux

238

constructor() {

 this.usStates = [

 "", "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado",

 "Connecticut", "Delaware", "District of Columbia", "Florida", "Georgia",

 "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",

 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",

 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska", "Nevada",

 "New Hampshire", "New Jersey", "New Mexico", "New York", "North Carolina",

 "North Dakota", "Ohio", "Oklahoma", "Oregon", "Pennsylvania",

 "Rhode Island", "South Carolina", "South Dakota", "Tennessee", "Texas",

 "Utah", "Vermont", "Virginia", "Washington", "West Virginia", "Wisconsin",

 "Wyoming"

];

}

The options available in the State select are populated in the constructor and stored

as a member called usStates of the Contacts class instance.

�activate() and deactivate()
While the constructor has some content this time around, activate() and deactivate()

again do not for this module, so there’s no need to dwell; let’s get right to getUIConfig().

�getUIConfig()
The configuration object returned for this module is the longest of the bunch, but as you

go through it, I think you’ll find it to be quite straightforward. Let’s meet up on the other

side after you read through this, and I’ll touch on one or two interesting points.

 getUIConfig() {

 return {

 id : "moduleContacts-container",

 cells : [

 { id : "moduleContacts-itemsCell",

 rows : [

Chapter 6 Getting Practical: Building wxPIM Redux

239

 { view : "unitlist", id : "moduleContacts-items",

 type : { height : 40 }, template : "#lastName#, #firstName#",

 uniteBy : (inObj) => {

 return inObj.lastName.substr(0, 1);

 },

 click : this.editExisting.bind(this)

 },

 { view : "toolbar",

 cols : [

 { },

 { view : "button", label : "New", width : "80",

 type : "iconButton", icon : "plus",

 click : this.newHandler.bind(this)

 },

 { width : 6 }

]

 }

]

 },

 { id : "moduleContacts-details",

 rows : [

 { view : "accordion", id : "moduleContacts-accordion",

 rows : [

 { header : "Personal",

 body : {

 view : "form", id : "moduleContacts-personalDetailsForm",

 scroll : true,

 elementsConfig : {

 view : "text", labelWidth : 100, bottomPadding : 20,

 on : {

 �onChange : wxPIM.modules.Contacts.

validateFormsOnChange.bind(this)

 }

 },

 elements : [

Chapter 6 Getting Practical: Building wxPIM Redux

240

 �{ name : "firstName", label : "First Name", required

: true,

 invalidMessage : "First name is required",

 attributes : { maxlength : 20 }

 },

 �{ name : "lastName", label : "Last Name", required :

true,

 invalidMessage : "Last name is required",

 attributes : { maxlength : 20 }

 },

 { name : "homePhone", label : "Home Phone",

 attributes : { maxlength : 12 }

 },

 { name : "cellPhone", label : "Cell Phone",

 attributes : { maxlength : 12 }

 },

 { name : "personalEMail", label : "eMail",

 validate : webix.rules.isEmailOrBlank,

 invalidMessage : "Must be in the form xxx@yyy.zzz",

 attributes : { maxlength : 75 }

 },

 { name : "personalAddress1", label : "Address 1",

 attributes : { maxlength : 50 }

 },

 { name : "personalAddress2", label : "Address 2",

 attributes : { maxlength : 30 }

 },

 { name : "personalAddress3", label : "Address 3",

 attributes : { maxlength : 30 }

 },

 { name : "personalCity", label : "City",

 attributes : { maxlength : 30 }

 },

 { view : "select", name : "personalState",

 label : "State", value : "", options : this.usStates

 },

Chapter 6 Getting Practical: Building wxPIM Redux

241

 { name : "personalZip", label : "Zip Code",

 validate : webix.rules.isNumberOrBlank,

 invalidMessage : "Must be numbers only",

 attributes : { maxlength : 5 }

 },

 { name : "im", label : "IM",

 attributes : { maxlength : 25 }

 },

 { view : "select", name : "imType", label : "IM Type",

 value : "",

 options : [

 { id : "", value : "" },

 { id : "aim", value : "AIM" },

 { id : "allo", value : "Allo" },

 { id : "facebook", value : "Facebook" },

 { id : "imessage", value : "iMessage" },

 { id : "kik", value : "Kik" },

 { id : "snapchat", value : "Snapchat" },

 { id : "skype", value : "Skype" },

 { id : "whatsapp", value : "WhatsApp" },

 { id : "yahoo", value : "Yahoo" }

]

 },

 { view : "datepicker", name : "birthday",

 label : "Birthday"

 },

 { name : "personalWebsite", label : "Website",

 attributes : { maxlength : 100 }

 },

 { name : "personalComments", label : "Comments",

 attributes : { maxlength : 250 }

 }

]

 }

 },

 { header : "Business", collapsed : true,

Chapter 6 Getting Practical: Building wxPIM Redux

242

 body : {

 view : "form", id : "moduleContacts-businessDetailsForm",

 scroll : true,

 elementsConfig : {

 view : "text", labelWidth : 100, bottomPadding : 20,

 on : {

 �onChange : wxPIM.modules.Contacts.

validateFormsOnChange.bind(this)

 }

 },

 elements : [

 { name : "officePhone", label : "Office Phone",

 attributes : { maxlength : 12 }

 },

 { name : "businessEMail", label : "eMail",

 validate : webix.rules.isEmailOrBlank,

 invalidMessage : "Must be in the form xxx@yyy.zzz",

 attributes : { maxlength : 75 }

 },

 { name : "businessAddress1", label : "Address 1",

 attributes : { maxlength : 50 }

 },

 { name : "businessAddress2", label : "Address 2",

 attributes : { maxlength : 30 }

 },

 { name : "businessAddress3", label : "Address 3",

 attributes : { maxlength : 30 }

 },

 { name : "businessCity", label : "City",

 attributes : { maxlength : 30 }

 },

 { view : "select", name : "businessState",

 label : "State", value : "", options : this.usStates

 },

 { name : "businessZip", label : "Zip Code",

 validate : webix.rules.isNumberOrBlank,

Chapter 6 Getting Practical: Building wxPIM Redux

243

 invalidMessage : "Must be numbers only",

 attributes : { maxlength : 5 }

 },

 { name : "company", label : "Company",

 attributes : { maxlength : 40 }

 },

 { name : "title", label : "Title",

 attributes : { maxlength : 25 }

 },

 { name : "businessWebsite", label : "Website",

 attributes : { maxlength : 100 }

 },

 { name : "businessComments", label : "Comments",

 attributes : { maxlength : 250 }

 }

]

 }

 },

]

 },

 { view : "toolbar",

 cols : [

 { width : 6 },

 { view : "button", label : "Back To Summary", width : "170",

 type : "iconButton", icon : "arrow-left",

 click : () => {

 $$("moduleContacts-itemsCell").show();

 }

 },

 { },

 { id : "moduleContacts-deleteButton", view : "button",

 label : "Delete", width : "90", type : "iconButton",

 icon : "remove",

 click : () => { wxPIM.deleteHandler("Contacts"); }

 },

Chapter 6 Getting Practical: Building wxPIM Redux

244

 { },

 { view : "button", label : "Save", width : "80",

 type : "iconButton", icon : "floppy-o",

 id : "moduleContacts-saveButton", disabled : true,

 click : function() {

 wxPIM.saveHandler("Contacts", [

 "moduleContacts-personalDetailsForm",

 "moduleContacts-businessDetailsForm"

]);

 }

 },

 { width : 6 }

]

 }

]

 }

]

 };

 }

Like I said, most of it is stuff you’ve seen a few times before, but one or two things are

new or interesting. First, the unitlist itself has a uniteBy function that uses the first letter

of the last name to group the items by. If you prefer to see your list sorted by first name, then

all you would need to do is change lastName to firstName in this function, and you’d be all

set (and you would likely want to change the template as well, but then again, maybe not).

The next interesting thing to note is inside the two forms that you see, in its

elementsConfig options more specifically. Notice how this time I’ve attached an

onChange function here and it references a method of the Contacts class instance. This

is yet another way you can handle enabling and disabling the Save button depending

on the validity of the form (and you’ll look at the validateFormsOnChange() method

shortly). Which approach you take, if you need to handle changes at all, is entirely up to

you, though I’d suggest either this or handling it at the form level is appropriate when

you have more than one or maybe two fields that have some form of validation attached

to them. On these forms, there’s a couple, so it would make sense either how I’ve done it

here or on the form itself as you saw in the tasks module.

Chapter 6 Getting Practical: Building wxPIM Redux

245

Another thing of note is on the e-mail fields, namely, the usage of that custom webix.

rules.isEmailOrBlank function that you saw when you looked at core.js. Remember,

you want blank to be an allowed value, which the built-in webix.rules.isEmail doesn’t

do, which is why you have the custom function. This is also true of the Zip Code fields,

though this time it’s the webix.rules.isNumberOfBlank function being used.

The IM Type field has its options embedded in the component definition, while the

State field uses that usStates member that you built in the constructor.

Finally, because there are two forms involved in defining a contact, the call to wxPIM.

saveHandler() for the first (and only, as it happens) time is passed the ID of two forms.

As I said, it’s a fair amount of code, more than notes or tasks, but it’s code that

doesn’t hold too many surprises (at least I hope not at this point!)

�newHandler()
The newHandler() for this module is nearly the same as the last two you’ve seen, though

because there’s two forms involved, plus an accordion, there are some small differences.

 newHandler() {

 wxPIM.isEditingExisting = false;

 wxPIM.editingID = new Date().getTime();

 $$("moduleContacts-details").show();

 $$("moduleContacts-accordion").getChildViews()[0].expand();

 $$("moduleContacts-personalDetailsForm").clear();

 $$("moduleContacts-businessDetailsForm").clear();

 $$("moduleContacts-deleteButton").disable();

 }

First, calling getChildViews() on the accordion component provides an array of the

elements within it, the Personal and Business panes, so referencing the first element of

the array means the Personal pane, which a call to expand() causes to be shown. (The

Business pane is automatically collapsed as well, which is what an accordion does by

default.) The getChildViews() method is available on all Webix components because

it’s a member of ui.view, which all Webix components extend from.

After that, both forms need to be cleared, and the delete button is disabled as always.

Chapter 6 Getting Practical: Building wxPIM Redux

246

�editExisting()
Editing as existing contact is much like the other two modules, but with one or two

important differences.

 editExisting(inID) {

 const contacts = JSON.parse(localStorage.getItem("ContactsDB"));

 const contact = contacts[inID];

 wxPIM.isEditingExisting = true;

 wxPIM.editingID = inID;

 $$("moduleContacts-personalDetailsForm").clear();

 $$("moduleContacts-businessDetailsForm").clear();

 $$("moduleContacts-details").show();

 $$("moduleContacts-accordion").getChildViews()[0].expand();

 if (contact.birthday) {

 contact.birthday = new Date(contact.birthday);

 }

 $$("moduleContacts-personalDetailsForm").setValues({

 firstName : contact.firstName,

 lastName : contact.lastName,

 homePhone : contact.homePhone,

 cellPhone : contact.cellPhone,

 personalEMail : contact.personalEMail,

 personalAddress1 : contact.personalAddress1,

 personalAddress2 : contact.personalAddress2,

 personalAddress3 : contact.personalAddress3,

 personalCity : contact.personalCity,

 personalState : contact.personalState,

 personalZip : contact.personalZip,

 im : contact.im,

 imType : contact.imType,

 birthday : contact.birthday,

 personalWebsite : contact.personalWebsite,

Chapter 6 Getting Practical: Building wxPIM Redux

247

 personalComments : contact.personalComments

 });

 $$("moduleContacts-businessDetailsForm").setValues({

 officePhone : contact.officePhone,

 businessEMail : contact.businessEMail,

 businessAddress1 : contact.businessAddress1,

 businessAddress2 : contact.businessAddress2,

 businessAddress3 : contact.businessAddress3,

 businessCity : contact.businessCity,

 businessState : contact.businessState,

 businessZip : contact.businessZip,

 company : contact.company,

 title : contact.title,

 businessWebsite : contact.businessWebsite,

 businessComments : contact.businessComments

 });

 $$("moduleContacts-deleteButton").enable();

 }

First, you’re dealing with two forms of course, so both need to be cleared after the

module’s data and the data for the specific contact is fetched. Next, the birthday field

needs to be a true JavaScript Date object rather than the string it comes out of local

storage as, so that’s done.

After that, you have to call setValues() on both forms, but here is where you run

into an interesting little problem. In the previous two modules, you just passed a single

object to setValues(), and here too you do have a single object in the contact object

that has all the data for the contact. You might think that you can just pass that object to

setValues() on both forms and Webix will just pull out the data it needs for each form

and ignore the rest, but you would be mistaken! What really happens is that Webix stores

all the data on both forms, even though there aren’t fields for each in the forms (i.e., the

Business data is stored on the Personal form even though there are only fields for the

Personal data, and vice versa for the Business form). This becomes a problem when the

Chapter 6 Getting Practical: Building wxPIM Redux

248

wxPIM.saveHandler() function grabs the data from the forms. Recall that it will combine

the data from the two forms into one. Well, walk through in your mind how this works:

•	 Start with an empty target object that will ultimately be saved.

•	 Into it, dump the data from the Personal form, which also includes

the original Business data from when editExisting() populated the

form. So far, that’s not actually a problem.

•	 But now, dump in the data from the Business form, which also

includes the original Personal data. To be clear, it’s not the data

from the Personal form; it’s the Personal data that was retrieved from

local storage when editExisting() executed.

•	 In other words, the Personal data will be overwritten in the target

object with the Personal data stored on the Business form, which is

what it was before the user edited anything. Translation: any changes

the user makes to the Personal data is “reset” when saved to what it

was before their edits. Their Personal changes are effectively lost.

•	 As a wise man named Homer Simpson once said, “D’oh!”

So, what’s the solution? Well, it’s pretty simple: instead of passing that single contact

object, instead pass a new object to each setValues() call that contains only the data

needed by each form. That avoids the overwrite situation entirely, and everything works

as expected, though it means a bit more code required here, as you can see.

�refreshData()
The refreshData() method is next, and it’s entirely mundane at this point.

 refreshData() {

 const dataItems = wxPIM.getModuleData("Contacts");

 const itemsAsArray = wxPIM.objectAsArray(dataItems);

 wxPIM.sortArray(itemsAsArray, "lastName", "A");

 $$("moduleContacts-items").clearAll();

 $$("moduleContacts-items").parse(itemsAsArray);

 }

Chapter 6 Getting Practical: Building wxPIM Redux

249

It’s the same “grab the data, convert to an array, sort the array, clear the list, and

populate it” sequence that you should be quite familiar with by now. The fact that it’s

a unitlist doesn’t change anything; it’s still basically a list at the end of the day, so

there’s nothing new to see here.

�validateFormsOnChange()
What is new is that while refreshData() would usually be the last method in the class,

there is, in fact, one extra new one for contacts; the validateFormsOnChange() method

that you saw when you looked at getUIConfig() is called whenever the form changes.

 validateFormsOnChange() {

 const areBothFormsValid =

 $$("moduleContacts-personalDetailsForm").validate() &&

 $$("moduleContacts-businessDetailsForm").validate();

 �$$("moduleContacts-saveButton")[areBothFormsValid ? "enable" :

"disable"]();

 }

There’s not much to it, but the trick is that you have to validate both forms and only

enable the Save button if both are valid. So, validate() is called on both, and their

return values and’d together into the areBothFormsValid variable. Then, the same sort

of dynamic object method call using bracket notation as you saw in the tasks module is

used to call either enable() or disable() on the Save button and you’re good to go.

�Appointments.js
The final module to look at is the appointments module, housed in the Appointments.

js file. This module has a substantially different look to its summary view, as Figure 6-9

clearly shows.

Chapter 6 Getting Practical: Building wxPIM Redux

250

This is a calendar component, stretched to fill its container. Dates that have

appointments on them get the little red circle below them. I felt this display made more

sense than some sort of list, and since you’ve seen two different types of list and a tree

that in some ways looks like a list, I thought this would be more interesting.

When you click a date, you’ll get a pop-up window, which I’ll show in the section

on the selectDate() method, which is what gets called when the user clicks a date.

Assuming there is an appointment on the selected date, though, if the user clicks it,

they’ll find themselves in the details view shown in Figure 6-10.

Figure 6-9.  Apppointments summary view

Chapter 6 Getting Practical: Building wxPIM Redux

251

Appointments always require a subject and a When value; otherwise, they wouldn’t

really be appointments. Everything else is optional.

�Constructor
The constructor for this module, while not empty, does define a single property on the

class instance that you’ll need later.

constructor() {

 this.currentData = { };

}

Figure 6-10.  Appointments entry screen

Chapter 6 Getting Practical: Building wxPIM Redux

252

The currentData field will store the data for the module but in a different form than

its store in local storage. The reason for this will become clear before long, but first let’s

look at getUIConfig().

�getUIConfig()
The configuration for this module’s interface is not as long as that of contacts, but it is a

bit more than notes and tasks. There are a few new things to see here, so let’s get to it.

getUIConfig() {

 return {

 id : "moduleAppointments-container",

 cells : [

 { id : "moduleAppointments-itemsCell",

 rows : [

 �{ view : "calendar", id : "moduleAppointments-items", width : 0,

height : 0,

 weekHeader : true, events : webix.Date.isHoliday,

 dayTemplate : this.dayTemplate,

 on : {

 onAfterDateSelect : this.selectDateHandler,

 }

 },

 { view : "toolbar",

 cols : [

 { },

 �{ view : "button", label : "New", width : "80", type :

"iconButton",

 icon : "plus", click : this.newHandler.bind(this)

 },

 { width : 6 }

]

 }

]

 },

Chapter 6 Getting Practical: Building wxPIM Redux

253

 { id : "moduleAppointments-details",

 rows : [

 �{ view : "form", id : "moduleAppointments-detailsForm",

borderless : true,

 �elementsConfig : { view : "text", labelWidth : 100,

bottomPadding : 20,

 on : { onChange : () => {

 $$("moduleAppointments-saveButton")

 �[$$("moduleAppointments-detailsForm").validate()?

"enable" : "disable"]();

 } }

 },

 elements : [

 { name : "subject", label : "Subject", required : true,

 �invalidMessage : "Subject is required", attributes : {

maxlength : 100 }

 },

 { view : "text", name : "category", label : "Category",

 suggest : [

 �{ id : 1, value : "Personal" }, { id : 2, value :

"Business" },

 { id : 3, value : "Other" }

],

 on : {

 onItemClick : () => {

 $$(this.config.suggest).show(this.getInputNode());

 }

 }

 },

 �{ view : "datepicker", name : "when", label : "When",

required : true,

 invalidMessage : "When is required", timepicker : true

 },

 �{ name : "location", label : "Location", attributes : {

maxlength : 200 } },

Chapter 6 Getting Practical: Building wxPIM Redux

254

 { view : "slider", name : "attendees", label : "Attendees",

 min : 1, max : 100, step : 1, title : "#value#",

 id : "moduleAppointments-attendees"

 },

 �{ name : "notes", label : "Notes", attributes : { maxlength :

250 } }

]

 },

 { },

 { view : "toolbar",

 cols : [

 { width : 6 },

 { view : "button", label : "Back To Summary", width : "170",

 type : "iconButton", icon : "arrow-left",

 click : () => {

 $$("moduleAppointments-itemsCell").show();

 }

 },

 { },

 �{ id : "moduleAppointments-deleteButton", view : "button",

label : "Delete",

 width : "90", type : "iconButton",

 �icon : "remove", click : () => { wxPIM.

deleteHandler("Appointments"); }

 },

 { },

 �{ view : "button", label : "Save", width : "80", type :

"iconButton",

 �icon : "floppy-o", id : "moduleAppointments-saveButton",

disabled : true,

 click : function() {

 �wxPIM.saveHandler("Appointments", ["moduleAppointments-

detailsForm"]);

 }

 },

 { width : 6 }

Chapter 6 Getting Practical: Building wxPIM Redux

255

]

 }

]

 }

]

 };

}

The first thing of note is related to the calendar in the summary view. Note the

width and height set to zero. This is a special case that tells Webix that you want the

component to fill its parent container. If you don’t do this, the calendar uses its default

width and height, which is a few hundred pixels for both.

That same calendar has a weekHeader config attribute set to true, which results in

seeing the days of the week along the top of the calendar. The events config option uses

a built-in function, webix.Date.isHoliday, which by default returns true for Saturdays

and Sundays. This results in the weekends being in different colors than weekdays,

which is a helpful visual cue.

The dayTemplate is the biggest new item here, and it references the dayTemplate()

method of the Appointments class instance, which tells the calendar how to render each

date. Let’s jump ahead and look at that right now:

dayTemplate(inDate) {

 const cssDayMarker = `

 background-color : #ff0000;

 border-radius : 50%;

 height : 8px;

 margin : 0 auto 8px;

 width : 8px;

 position : relative;

 top : -25px;

 `;

 const thisDate = new Date(inDate).setHours(0, 0, 0, 0);

 const appointment = wxPIM.modules.Appointments.currentData[thisDate];

Chapter 6 Getting Practical: Building wxPIM Redux

256

 let html = `<div class="day">${inDate.getDate()}</div>`;

 if (appointment) {

 html += `<div style="${cssDayMarker}"></div>`;

 }

 return html;

}

The calendar calls this for each date, passing in the date, as a string. So, skipping

over the cssDayMarker variable for a moment, the first step is to get a Date object from

that string and use the same time normalization trick described earlier. Now, you do

a lookup into the currentData object, which you saw defined in the constructor. This

will be populated in refreshData(), as you’ll see later, but the important thing about it

is that the keys of it are dates. This is done so the lookup works, and if you get even one

appointment for the date being processed by dayTemplate(), then you know the red

dot has to be rendered. So, the HTML for it is constructed if you found an appointment.

It’s just a <div> that uses that cssDayMarker variable I mentioned earlier. This defines

the style of the red dot and how to position it. It simply gets centered under the day’s

number, and I pull it up 25 pixels from where it would normally render so that it appears

closer to the number, which I think looks better.

The rest of the UI config code here includes things you’ve seen before, save one

thing: the suggest attached to the Category field. As you type in this field, you’ll notice

that a drop-down appears showing matching values from the list of options defined for

the suggest. So, type a B, and the drop-down appears showing Business. Hit Delete and

you’ll see Personal, Business, and Other, because there’s no match for an empty value.

A suggest is a component that you can attach to a Webix text field, a standard

HTML input field, or a Webix text editor within a component item; it allows you to have

a field that you can enter arbitrary text into but that also offers standard options that the

user can choose from. The suggest won’t automatically do anything, so you need to have

code to show it. This is accomplished by the onItemClick handler for the Category text

field. When the field is clicked and gains focus, the handler fires, retrieves a reference to

the suggest component through the text component’s config attribute, and calls show()

on it, passing it a reference to the text field itself, more specifically, the underlying input

component as provided by the getInputNode() method. This provides the tie-in to

Chapter 6 Getting Practical: Building wxPIM Redux

257

the suggest to be able to populate the field if and when the user selects a value from it.

Interestingly, the suggest takes care of hiding itself when the field loses focus, so it’s just

showing it that you need to code for.

�activate() and deactivate()
While the activate() method for this module is empty like the others, the deactivate()

method has some work to do this time around.

deactivate() {

 if ($$("moduleAppointments-dateWindow")) {

 $$("moduleAppointments-dateWindow").close();

 }

}

Recall that deactivate() gets called any time the user switches away from the

module, and although you haven’t seen it yet, there’s a potential problem here: when the

user clicks a date, a window is shown to display any appointments for that date. However,

if the user switches to another module or the day-at-a-glance screen, that window would

still be present, floating over everything. That wouldn’t be good! So, when this module is

deactivated, if the window is showing, then it is closed, and that problem is avoided.

�newHandler()
The newHandler() method for this module holds no surprises, except for one thing. See

if you can pick it out!

newHandler() {

 wxPIM.isEditingExisting = false;

 wxPIM.editingID = new Date().getTime();

 if ($$("moduleAppointments-dateWindow")) {

 $$("moduleAppointments-dateWindow").close();

 }

Chapter 6 Getting Practical: Building wxPIM Redux

258

 $$("moduleAppointments-details").show();

 $$("moduleAppointments-detailsForm").clear();

 $$("moduleAppointments-attendees").setValue(1);

 $$("moduleAppointments-deleteButton").disable();

}

Yep, you need to deal with that possible window again! Since for a new item you’re

switching between cells of a multiview, the window would still be present on the details

screen, which again wouldn’t be ideal, so you close it if it’s open here as well.

�editExisting()
The editExisting() method in this module is again just like the others, except for that

pesky window once again!

editExisting(inID) {

 if ($$("moduleAppointments-dateWindow")) {

 $$("moduleAppointments-dateWindow").close();

 }

 const appointments = JSON.parse(localStorage.getItem("AppointmentsDB"));

 const appointment = appointments[inID];

 wxPIM.isEditingExisting = true;

 wxPIM.editingID = inID;

 $$("moduleAppointments-detailsForm").clear();

 $$("moduleAppointments-details").show();

 if (appointment.when) {

 appointment.when = new Date(appointment.when);

 }

 $$("moduleAppointments-detailsForm").setValues(appointment);

 $$("moduleAppointments-deleteButton").enable();

}

Chapter 6 Getting Practical: Building wxPIM Redux

259

You have a date field to deal with here, but the rest is basically boilerplate at this

point, aside from closing the window again because you’re switching to the details screen

once again, where the window isn’t applicable.

�refreshData()
Now you come to the anti-penultimate method of this class, refreshData().

refreshData() {

 const dataItems = wxPIM.getModuleData("Appointments");

 wxPIM.modules.Appointments.currentData = { };

 for (const key in dataItems) {

 if (dataItems.hasOwnProperty(key)) {

 const item = dataItems[key];

 �wxPIM.modules.Appointments.currentData[new Date(item.when).

setHours(0, 0, 0, 0)] =

 item;

 }

 }

 $$("moduleAppointments-items").refresh();

}

This is a bit different than the others. First, after getting the data for the module, that

currentData object needs to be built. As stated earlier, this is keyed by the date of the

appointments, with the time component zeroed out since you don’t care about that.

Once that’s done, the refresh() method is called on the calendar component. This

method, which is available on some components, but not all, causes it to repaint itself.

Because every date in the calendar will trigger a call to the dayTemplate() method,

which uses the currentData object to determine how to render each date, the means

that when you add, update, or delete items, the call to refreshData() will result in the

call to refresh() being made, and you’ll wind up with an updated calendar display on

the summary screen.

Chapter 6 Getting Practical: Building wxPIM Redux

260

�selectDateHandler()
The final method to look at is one that is specific to this module and is the method called

when the user clicks a date in the summary calendar, which is selectDateHandler().

But, before you look at the code, it would probably be helpful to know what the pop-up

window that this method will construct looks like, and Figure 6-11 is exactly that.

As you can see, it’s a basic window that shows the selected date with any

appointments for that date displayed in a scrolling list. If there are no appointments,

then it will say that, and there is a close icon as well to dismiss the window. For simplicity,

the window will always center itself on the screen.

Figure 6-11.  Selecting a date on the summary view

Chapter 6 Getting Practical: Building wxPIM Redux

261

selectDateHandler(inDate) {

 const appointments = wxPIM.getModuleData("Appointments");

 const selectedDate = new Date(inDate).setHours(0, 0, 0, 0);

 const listData = [];

 for (const key in appointments) {

 if (appointments.hasOwnProperty(key)) {

 const appointment = appointments[key];

 const appointmentDate = new Date(appointment.when).setHours(0, 0, 0, 0);

 if (appointmentDate == selectedDate) {

 listData.push(appointment);

 }

 }

 }

 if ($$("moduleAppointments-dateWindow")) {

 $$("moduleAppointments-dateWindow").close();

 }

 webix.ui({

 �view : "window", id : "moduleAppointments-dateWindow", width : 300,

height : 284,

 position : "center",

 head : {

 view : "toolbar",

 cols : [

 { view : "label", label : inDate.toLocaleDateString() },

 { view : "icon", icon : "times-circle",

 click : function() { $$("moduleAppointments-dateWindow").close();

}

 }

]

 },

 body : function() {

 if (listData.length == 0) {

 return { rows : [

Chapter 6 Getting Practical: Building wxPIM Redux

262

 { },

 { borderless : true,

 �template : `<div style="text-align: center;">Nothing on this

day`

 },

 { }

] };

 } else {

 return {

 view : "list", id : "appAppointments-itemsList", data : listData,

 �template : "#subject#", click : wxPIM.modules.Appointments.

editExisting,

 };

 }

 }()

 }).show();

}

Before the window is constructed, you have some setup work to do. First, of course,

you get the data for the module from local storage. Then, the selected date is converted

from a string to a Date object with the time zeroed out. Next, you need to go through all

the appointments and pull out just those for the selected date. Remember that you have

an array from local storage, so you can’t do any sort of simple keyed lookup; you have to

scan through the entire array. For each, if the appointment’s when field has a date that

equals the selected date, when time is taken out of the equation thanks to zeroing, then

the appointment is added to the listData array.

With that data ready, now you can deal with the window. But first, you need to close

any window that might be open now; otherwise, you’d just be building windows on top of

windows. Once that’s done, window construction can begin.

A window is conceptually a separate Webix UI context, meaning you can build a full

UI in it independent of whatever is “beneath” it in the main UI. You can build any UI

you want, of course, using all the same techniques as you’ve seen to this point, with no

limitations. You do, however, need to take care to avoid ID collisions because a window,

while it looks separate, is still part of the same DOM as everything else.

Chapter 6 Getting Practical: Building wxPIM Redux

263

The window has position set to center, which tells Webix to center the window on the

screen without you having to do anything else. The window’s UI is just a toolbar up top

with a label for the date and the close icon, with its associated click handler function

to close the window.

For the body of the window, you need to get a little fancy. An anonymous, immediately

invoked function, allows you to have some logic based on whether there were any

appointments for this day or not. If there weren’t, then all you do is show the “Nothing on

this day” text, centered horizontally (using a <div> with text-align set to center) and

vertically, thanks to the spacer elements above and below the one with the text. If there are

appointments, then you define a Webix list component with the data from listData that

you populated earlier. The template just displays the subject of the appointment, and the

click handler triggers the editExisting() method, as you’d expect.

And with that, you’ve now explored all the code of the wxPIM application, at least in

its initial form!

�Summary
In this chapter, you finished the journey through the code of wxPIM. Along the way, you

saw some new components such as the suggest component, and you saw some real-

world usage of many of the concepts that were discussed in the previous chapter.

In the next chapter, you’ll take this application and expand on it in various ways,

beginning with making it a little more desktop-centric, when applicable, to provide a

more robust user experience when not used on a mobile device.

Chapter 6 Getting Practical: Building wxPIM Redux

265
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_7

CHAPTER 7

Taking wxPIM
to the Desktop
In Chapter 6, you built the first iteration of wxPIM. That version is quite mobile-centric,

although it works completely on a nonmobile (and nontouchscreen) device. That’s one

of the big attractions of Webix: your code will, with few exceptions, work fine in both

situations without doing a thing.

However, because it works doesn’t necessarily mean it’s ideal. A UI for a small screen

will often need to be different than for a larger desktop monitor. Interactions will often

need to be different between touchscreens and when users are using just a good ol’

keyboard and mouse.

Fortunately, with just a bit of extra code, you can handle both situations pretty well

with Webix while using the bulk of the same code, and that’s exactly what you’re going

to do in this chapter! You’ll take wxPIM and make it a little better suited to desktop use

while maintaining the mobile experience you already have.

However, before you do that, something is bugging me…

�First, Let’s Fix a Few Things!
If you remember early on, I said that wxPIM is meant to be modular and that you should

be able to easily add modules to it to get other functions you may want. For the most

part, that goal has been achieved, but there are a few places where that model is broken

because the core wxPIM knows about specific modules right now. So, let’s take care of

those cases before going any further.

Fortunately, the changes aren’t necessarily drastic, mostly just some refactoring, but

first, you have to add a few things that you’ll need for this and the rest of the chapter, and

it all kicks off in the wxPIM constructor.

266

this.registeredModules = [];

if (webix.env.mobile) {

 this.uiType = "mobile";

} else {

 this.uiType = "desktop";

}

webix.protoUI({

 name : "ani-window",

 $init : function() {

 this.$ready.push(function() {

 this.attachEvent("onShow", function() {

 let base = this.$view.className.split("animated")[0];

 this.$view.className = base + " animated bounceIn";

 });

 this.attachEvent("onHide", function() {

 this.$view.style.display = "block";

 this.$view.className = this.$view.className + " animated bounceOut";

 });

 });

 }

}, webix.ui.window);

First, notice what’s missing: isEditingExisting and editingID. Those members

become problematic when you make this a more desktop-centric app because it works

fine, with them being members of the wxPIM object, when only a single module can be

visible at any given time. But (spoiler alert!) that’s not going to be the case by the end of

this chapter. Instead, every module needs to track its own state with regard to whether

it’s editing something or not and the ID of that item. So, those two members are going

to move to the constructors of each module (and you’ll, of course, add a constructor if a

given module doesn’t have one already).

The next thing is this new registeredModules member. This is to meet the goal of

not having the core wxPIM code knowing about modules. Instead, each module will

“register” itself with wxPIM by a line in its source file before the class definition like so:

wxPIM.registeredModules.push("Appointments");

Chapter 7 Taking wxPIM to the Desktop

267

I’ll come back to this shortly, but before I do, I should talk about the uiType member.

Webix provides some interesting environment description flags in the webix.env

namespace, one of which is mobile. This purports to tell you whether you’re on a “mobile”

device or not. I put mobile in quotes there because what that actually means is up for debate.

There’s no simple “are you a mobile device?” check that all computing devices or browsers

support. If you look at the Webix source itself, you’ll see that it’s doing a simple check on

whether the strings "Mobile" or "Windows Phone" appear in the navigator.userAgent

string. Whether that’s the right check or not is debatable, but I’d say it’s a good starting point

at least, and chances are it’ll be right most of the time. But, rather than just use the flag’s

value directly, I instead pull it out into the uiType member. That way, if I want to enhance

the logic that determines whether you’re running in a “mobile” environment or not, I can do

so without touching any other code in the app that depends on that determination.

This uiType string is going to be used a lot as you make the rest of the changes

because branching based on whether you’re on a mobile device or not is a key thing when

rendering the UI or performing functions later. Don’t worry; you’ll see all of that shortly!

The next thing you see in the constructor is the creation of a new Webix component,

which is something new! The webix.protoUI() method allows you to create a new view

based on an existing view so that you can use it like any other view. In this case, I want to

create a new type of webix.ui.window component that will have some animation when

shown or hidden using the animate.css library that was previously discussed. Webix.

protoUI() takes two objects as an argument. The first is the target object, the one you’re

creating. The second is the object it builds upon. Technically, you can also include one

or more objects after that, which will be “mixed in” to the target object, but here that’s

not needed. The name attribute of the first object gives a name to the component that you

can later use as the value of a view config option. An overridden $init() method is also

required so the animation can be hooked into the window’s lifecycle. Event handlers are

pushed into the $ready collection for the component, one for handling the onShow event

and one for the onHide event. The handler for each adds the appropriate animate.css

class to the window, which triggers the animation.

That covers the constructor code, so now let’s jump back to that registeredModules

member. The first place you see that used is in the wxPIM.start() method.

for (let moduleName of wxPIM.registeredModules) {

 wxPIM.modules[moduleName] = new wxPIM.moduleClasses[moduleName]();

}

Chapter 7 Taking wxPIM to the Desktop

268

If you look back at the original code, you’ll see that there were four explicit object

instantiations there, one for each module. That of course meant that the wxPIM code

had to be aware of every module, and that’s what you’re trying to avoid. By having each

module add their name to the registeredModules array, you can just iterate the array

in the start() method and instantiate the module’s class for each module. wxPIM no

longer knows what specific modules are present, at least to this point. There are some

other places you have to deal with, though, and that’s next.

�Changing the Base Layout
The base layout also needs to be altered a bit. The change here is minimal but also

consequential. The change is the addition of one config attribute, shown here:

id : "baseLayout"

This will come into play later, so let’s continue for now. The base layout, you’ll recall,

calls the wxPIM.getMultiviewConfig() method to build the multiview that houses the UI

for each of the modules. That call still occurs, but the method itself is now a bit different.

wxPIM.getMultiviewConfig = function() {

 const cellsConfig = [wxPIM.getDayAtAGlanceConfig()];

 if (wxPIM.uiType === "mobile") {

 for (let moduleName of wxPIM.registeredModules) {

 cellsConfig.push(wxPIM.modules[moduleName].getUIConfig());

 }

 }

 return {

 view : "multiview", id : "moduleArea", cells : cellsConfig,

 animate : { type : "flip", subtype : "horizontal" }

 };

};

The difference is that the original version was straightforward in that it had explicit

cells for the day-at-a-glance screen and then the four modules, and that was it. But again,

you want to be able to drop in new modules at will and not have to touch the core code,

so this needs to change. First, the code makes a choice: are you on a mobile device or not

Chapter 7 Taking wxPIM to the Desktop

269

based on the value of uiType? If not on mobile, then the only content that needs to be

present in the multiview (which at this point wouldn’t really be so much of a multiview)

is the day-at-a-glance screen. That’s because the UI of the modules will be displayed

in a different way, not in the multiview, as you’ll see shortly. If wxPIM is running in a

mobile environment, then in addition to day-at-a-glance, you need a view for each of the

modules registered with the core code. To accomplish that, the registeredModules array

is iterated again, and a view is added to the cellsConfig array for each. Finally, what

gets returned is the same as in the original version except that the value of the cells

attribute is now the cellsConfig array rather than a hard-coded chunk of configuration

and now contains either just day-at-a-glance when not on mobile or day-at-a-glance plus

a view for every module when on mobile.

With the base layout out of the way, you can now address the one last place where

the core code knows about modules, and that’s the day-at-a-glance screen.

�Now the Fun Stuff: Day-at-a-Glance Changes
The original wxPIM.dayAtAGlance() method, you’ll recall, is that bit of code that has

the worker function defined, and then a call is made to it for appointments and tasks,

rendering their display on the screen. This was fairly nice in that it was common code

shared between the two. But, the problem is that it’s another place the core code

knows about specific modules. It knows there is an appointments module, and there

is a tasks module. Let’s avoid that. The way you’re going to do that is by using the

registeredModules array again.

wxPIM.dayAtAGlance = function() {

 if (wxPIM.uiType === "mobile") {

 if (wxPIM.activeModule) {

 wxPIM.modules[wxPIM.activeModule].deactivate();

 }

 wxPIM.activeModule = null;

 $$("headerLabel").setValue($$("headerLabel").config.defaultLabel);

 }

Chapter 7 Taking wxPIM to the Desktop

270

 for (let moduleName of wxPIM.registeredModules) {

 wxPIM.modules[moduleName].dayAtAGlance();

 }

};

First, you need to take care of some mobile-only concerns, namely, that call to

deactivate() of the currently active module, if any, and the setting of the header text.

Remember that the header text reflects the module that is currently active, but as you’ll

see soon, that’s no longer needed when in desktop mode.

One interesting thing here is that the header text is specified by the defaultLabel

attribute of the config object of the label component where the header text resides,

as you’ll see a little later. If you go look up the configuration options for the label

component in the Webix documentation, you won’t find a defaultLabel option, and

that may seem odd. But, here’s the trick: you can specify anything you want in the

configuration options for a component and Webix will just ignore anything it doesn’t

understand. Critically, though, Webix will still store those attributes in the component’s

config object. This is nice because it allows you to encapsulate extra information (or

even functions if you want) with the component, and you can get at it later through

config, as I’ve done here. That avoids having to have separate variables floating around

your code. If it’s related to the component, you can store it “in” the component, so to

speak, which is a cleaner way to write code.

Once the mobile-only stuff is handled, then it’s time to render the day-at-a-glance

content. Now, though, it’s yet another iteration of registeredModules (seeing a pattern

yet?) and a call to the dayAtAGlance() method of each, which is new. Basically, you’re now

going to give each registered module a chance to render its own content for the day-at-a-

glance screen. Of course, it’s still only appointments and tasks that have anything to render

(the contacts and notes modules still have a dayAtAGlance() method, but it’s empty), but

before they can, you need to have the baseline day-at-a-glance UI for them to render into.

As it happens, this is simply the removal of the fieldsets (and separator views) that were

hard-coded into the day-at-a-glance UI config. The config now is simply as follows:

wxPIM.getDayAtAGlanceConfig = function() {

 return {

 id : "dayAtAGlance", view : "scrollview", borderless : true, body : {

 id : "dayAtAGlanceBody", paddingX : 20, paddingY : 20, rows : []

 }

Chapter 7 Taking wxPIM to the Desktop

271

 };

};

So, how does the content for each module get rendered? Glad you asked!

�Letting a Module Provide Day-at-a-Glance
As I said, each module now provides a dayAtAGlance() method, and also as mentioned,

only appointments and tasks have code in them. The code in them, which is almost

identical between the two, should look pretty familiar to you.

dayAtAGlance() {

 if (!$$("dayAtAGlanceScreen_Appointments")) {

 $$("dayAtAGlanceBody").addView({

 view : "fieldset", label : "Appointments",

 body : { id : "dayAtAGlanceScreen_Appointments", rows : [] }

 });

 $$("dayAtAGlanceBody").addView({ height : 20 });

 }

 const template = webix.template("#subject# - #when# #location#");

 let dataItems = wxPIM.getModuleData("Appointments");

 dataItems = wxPIM.objectAsArray(dataItems);

 wxPIM.sortArray(dataItems, "when", "A");

 const currentDate = new Date().setHours(0, 0, 0, 0);

 const rows = [];

 for (let i = 0; i < dataItems.length; i++) {

 const item = dataItems[i];

 const itemDate = new Date(item.when).setHours(0, 0, 0, 0);

 if (itemDate == currentDate) {

 if (item.location) {

 item.location = "(" + item.location + ")";

 } else {

 item.location = "";

 }

 item["when"] = webix.i18n.timeFormatStr(new Date(item.when));

Chapter 7 Taking wxPIM to the Desktop

272

 �rows.push({ borderless : true, template : template(item), height :

30 });

 }

 }

 webix.ui(rows, $$("dayAtAGlanceScreen_Appointments"));

}

That’s the code for appointments, of course, and yes, it’s almost the same as the

worker function code in the original version of wxPIM; it was just copied into the

Appointments.js file and modified to not be general-purpose like it was before. Now

it’s specific to appointments. If you look at the dayAtAGlance() function in Tasks.js,

you’ll see that it’s now almost identical to this as well. While duplicate code is usually

something you want to avoid, it’s tangential that the code is highly similar here. It could

be vastly different, and the real point is you now want each module to have its own logic

so each can render whatever is appropriate for it.

But, there are, of course, some differences here, beginning right at the top. Since

the new version of the basic day-at-a-glance UI doesn’t include views for any module,

each module needs to add one using the addView() method of the dayAtAGlanceBody

element. It also adds a spacer view below it so that the next module’s contents don’t run

into this one. Once that view is added, though, then the code is not really any different

from it was in the original version, minus all the branching that was necessary when this

was shared code.

�“Desktop-ization”: A Window unto the World
So, we’ve (mostly!) assuaged my concerns about the modularity of wxPIM…I feel much

better now, so let’s at this point move on to making the app more desktop-friendly.

What exactly does this mean? Well, there’s certainly no one-size-fits-all answer to this; it

means different things to different people. But, to me, and at a minimum, it means using

the (typically) larger space that a desktop monitor affords more efficiently and making

sure the interactions the user performs are optimized for keyboard and mouse.

But, it’s important to remember that wxPIM, as it stands now, works perfectly fine

on a desktop, sans any changes at all. That’s one of the best things about Webix: the

code you write will (generally) work fine on a mobile device or a desktop. However, that

doesn’t mean it’s optimized for one or the other. So, let’s see what you can do about that.

Chapter 7 Taking wxPIM to the Desktop

273

The first change that will be made is a minor thing on the sidemenu. Take a look at

Figure 7-1. Do you see what’s changed?

There’s that little Desktop check box down there, and the home icon has been shifted

to the right. Although one of the more common approaches to dealing with the mobile/

desktop dichotomy is to use responsive design (that is, using usually CSS to “reflow” the

layout in various ways depending on the width of the screen), this isn’t always the best

approach. Especially when you’re talking about an app built with a JavaScript-heavy

framework (heavy in the sense that JavaScript is required for it to function, that is), then

you might as well rely on JavaScript to do this, and at that point, you can do things other

than simply reflowing the application. You can drastically change the presentation, as

Figure 7-2 begins to show.

Figure 7-1.  Notice anything different and new?

Figure 7-2.  Desktop mode means a different navigation scheme

Chapter 7 Taking wxPIM to the Desktop

274

When you switch to desktop mode by checking that box in the sidemenu, the UI

changes to a layout that looks a lot like a typical operating system desktop, complete with

a menu for accessing the points of functionality, in other words, your modules. This is

now presented as part of a taskbar along the top, so you can always quickly access the

modules without having to trigger the sidemenu. Of course, the user may want to switch

back to mobile mode, so the Desktop checkbox is also present in this mode to the right.

When the user launches a module, appointments, say, it no longer needs to fill the

screen since you have a lot more space to work with. So, in keeping with the desktop

metaphor, you’ll instead launch each module in its own window, as Figure 7-3 shows.

Figure 7-3.  wxPIM, now with windows!

Chapter 7 Taking wxPIM to the Desktop

275

Each window can be dragged around, resized, maximized to fill the screen, or

minimized, which just leaves its module icon up top, just like on the taskbar of any

modern OS. They can be closed too, of course, or you can launch more than one, as

Figure 7-4 shows.

Obviously, this is all pretty typical behavior, but it’s also a pretty drastic departure

from the user experience of the mobile version where you could see only one module

at a time. You’ll also notice that the tasks module, behind the notes module’s window,

looks a bit different. That’s more of an attempt to better utilize space, but you’ll get to

that a little later.

Figure 7-4.  No, really, it's like a desktop!

Chapter 7 Taking wxPIM to the Desktop

276

The very best thing about this is that the changes required to make this happen are,

all things considered, pretty minor! In fact, except for some branching in the module’s UI

configuration and a few minor points in their backing code, the only significant change is

in the core code that launches the modules.

Let’s look now at the changes that are required, beginning with the core UI changes.

You already saw some of it, of course, when you modified the base layout, but there’s

more to it than that, beginning with the header bar.

�Modifying the Header
Since the header when in desktop mode is pretty drastically different than in mobile

mode where it only needs to display the sidemenu trigger icon and the name of the

current module, a little branching based on the value of uiType is in order.

wxPIM.getMainHeaderConfig = function() {

 wxPIM.modeSwitchConfig = {

 view : "checkbox", label : "Desktop", labelWidth : 70, width : 110,

 value : (wxPIM.uiType === "mobile" ? 0 : 1), click : wxPIM.switchMode

 };

 if (wxPIM.uiType === "mobile") {

 return {

 view : "toolbar", id : "toolbar", height : 50,

 elements : [

 { view: "icon", icon: "bars",

 click : function() {

 if ($$("sidemenu").isVisible()) {

 $$("sidemenu").hide();

 } else {

 $$("sidemenu").show();

 }

 }

 },

 { id : "headerLabel", view: "label",

 label : "", defaultLabel : "wxPIM Day-at-a-glance"

 }

Chapter 7 Taking wxPIM to the Desktop

277

]

 };

 } else {

 return {

 view : "toolbar", id : "toolbar", height : 50,

 elements : [

 { view : "menu", width : 100, css : { "padding-top" : "4px" },

 data : [

 { value : "Modules", id : "Modules",

 submenu : wxPIM.registeredModules.sort()

 }

],

 on : { onMenuItemClick : wxPIM.launchModule }

 },

 �{ view : "toolbar", id : "taskbar", borderless : true, elements : [

] },

 { },

 wxPIM.modeSwitchConfig

]

 };

 }

};

Of course, since the mode switch checkbox is going to be the same in either mode,

you can pull that out and create the resultant wxPIM.modeSwitchConfig member for it,

and since it’s needed in this mainHeader.js file as well as in sideMenu.js, it makes sense

to make it a member of the wxPIM object itself.

After that, you branch on the value of uiType, and when it’s mobile, the config object

returned is just what it was before in the original code. In desktop mode, though, that’s

when you need to do something different. In this case, though it’s still a toolbar being

built, now it’s a toolbar with four elements: a menu that contains the list of modules

(and note that you use the wxPIM.registeredModules collection for this, taking care to

sort it so that the modules are always displayed in alphabetical order, which is another

“fix” for the modularity issues from earlier), then a toolbar where the module task buttons

Chapter 7 Taking wxPIM to the Desktop

278

will go, and then a spacer that pushes the fourth element (the mode switch checkbox)

over to the right. The taskbar toolbar begins with no elements, and you’ll be adding

buttons to it dynamically as modules are launched and closed.

�Modifying the sidemenu
Next, you need to change the sidemenu to show the mode switch icon and re-arrange

that bottom bar with it so that the home icon goes to the right. But, first things first, the

data for the list needs to be built dynamically instead of statically as it was originally.

const listItems = [];

for (let moduleName of wxPIM.registeredModules) {

 listItems.push({ id : moduleName, value : moduleName,

 icon : wxPIM.modules[moduleName].getUIConfig().winIcon

 });

}

Once again, wxPIM.registeredModules comes to the rescue. Now, instead of the

data attribute of the list being hard-coded module names, that data is built on the fly,

again letting you be more modular. The data attribute just points to listItems now, but

otherwise the list config is unchanged.

However, the footer row on the sidemenu is, of course, different and is now this:

{ cols : [

 wxPIM.modeSwitchConfig,

 { },

 { view : "button", type : "icon", label : "", icon : "home",

 align : "right", width : 32,

 click : () => {

 wxPIM.dayAtAGlance();

 $$("sidemenu").hide();

 $$("dayAtAGlance").show();

 }

 }

] }

The wxPIM.modeSwitchConfig that was built earlier is used, then a spacer, and then

the same button config for the home icon as before.

Chapter 7 Taking wxPIM to the Desktop

279

That takes care of all the code that configures the UI. Now, you come to the two main

attractions: launching modules and switching modes. The former is easily the biggest

change from the original version of the code, and the latter is entirely new. Let’s begin

with launching modules.

�The Big Change: Module Launching
Of all the changes required for the “desktop-ization” of wxPIM, the changes to the

wxPIM.launchModule() are probably the biggest. But, I believe you’ll find it all pretty

logical. Read through this code, and then I’ll walk you through it.

launchModule(inModuleName) {

 if (inModuleName === "Modules") { return; }

 if (wxPIM.uiType === "mobile") {

 if (wxPIM.activeModule) {

 wxPIM.modules[wxPIM.activeModule].deactivate();

 }

 wxPIM.activeModule = inModuleName;

 $$("sidemenu").hide();

 $$("headerLabel").setValue(inModuleName);

 wxPIM.editingID = null;

 wxPIM.isEditingExisting = false;

 $$(`module${inModuleName}-itemsCell`).show();

 $$(`module${inModuleName}-container`).show();

 } else {

 let moduleWindow = $$(`moduleWindow-${inModuleName}`);

 if (moduleWindow) {

 moduleWindow.show();

 return;

 } else {

Chapter 7 Taking wxPIM to the Desktop

280

 const moduleUIConfig = wxPIM.modules[inModuleName].getUIConfig();

 let toolbarHeight = $$("toolbar").$height;

 let vpWidth = document.documentElement.clientWidth - 100;

 �let vpHeight = document.documentElement.clientHeight - 100 -

toolbarHeight;

 let winWidth = moduleUIConfig.winWidth;

 let winHeight = moduleUIConfig.winHeight;

 if (vpWidth < winWidth) {

 winWidth = vpWidth;

 }

 if (vpHeight < winHeight) {

 winHeight = vpHeight;

 }

 const centerX = ((vpWidth - winWidth) / 2) + 50;

 const centerY = ((vpHeight - winHeight) / 2) + (toolbarHeight * 2);

 webix.ui({

 �view : "ani-window", move : true, width : winWidth, height :

winHeight,

 left : centerX, top : centerY,

 resize : true, id : `moduleWindow-${inModuleName}`, toFront : true,

 fullscreen : false,

 head : {

 view : "toolbar",

 cols : [

 { view : "label", label: moduleUIConfig.winLabel },

 { view : "icon", icon : "window-minimize",

 click : function() {

 $$(`moduleWindow-${inModuleName}`).hide();

 $$(`moduleTasbbarButton-${inModuleName}`).toggle();

 }

 },

 { view : "icon", icon : "window-maximize",

 click : function() {

 const win = $$(`moduleWindow-${inModuleName}`);

 win.config.fullscreen = !win.config.fullscreen;

Chapter 7 Taking wxPIM to the Desktop

281

 win.resize();

 if (win.config.fullscreen) {

 this.config.icon = "window-restore";

 win.setPosition(0, 0);

 } else {

 this.config.icon = "window-maximize";

 win.setPosition(centerX, centerY);

 }

 this.refresh();

 this.blur();

 }

 },

 { view : "icon", icon : "times-circle",

 click : function() {

 $$(`moduleWindow-${inModuleName}`).close();

 �$$("taskbar").removeView(`moduleTasbbarButton-

${inModuleName}`);

 }

 }

]

 },

 body : moduleUIConfig

 }).show();

 const taskbar = $$("taskbar");

 const moduleButton = webix.ui({

 id : `moduleTasbbarButton-${inModuleName}`,

 view : "toggle", type : "iconButton", width : 140, height : 50,

 icon : moduleUIConfig.winIcon, label : moduleUIConfig.winLabel,

 click : function() {

 const moduleName = this.config.label;

 if (this.getValue() === 1) {

 $$(`moduleWindow-${moduleName}`).hide();

 } else {

 $$(`moduleWindow-${moduleName}`).show();

 }

Chapter 7 Taking wxPIM to the Desktop

282

 this.blur();

 }

 });

 moduleButton.toggle();

 taskbar.addView(moduleButton);

 }

 }

 wxPIM.modules[inModuleName].refreshData();

 wxPIM.modules[inModuleName].activate();

}

The first “problem” is that when the menu is clicked, the onMenuItemClick event is

fired. This is fine; you need that to happen, except that it’s true for the top-level item as

well, namely, the Modules text. This, of course, isn’t the name of a module, which is all

you care about in this method, so you’ll check to see whether the text you were passed is

“Modules” and if so then just immediately return.

Once that check is passed, then what code path you travel depends on the current

uiType. When it’s mobile, the code is basically the same as before. However, when it’s the

new desktop mode, that’s when it gets different.

In this mode, the first thing that needs to happen is you need to see whether the

module is already “running.” This just means whether a window for it exists already. If it

does, then the task is easy: just call show() on the window (in case it’s behind another),

and that’s it, you’re done.

If no window already exists, though, then you need to build it. To do so, you need the

UI config for the module, and that means a call to getUIConfig() of the module’s class

instance. Next, the code needs to figure out the size the window should be. The logic

here is to first get the height of the toolbar up top and subtract a little bit of buffer space

from both the height and width available in the browser window, taking the toolbar into

account as part of the height. This effectively gives you the maximum size the window

could be while still fitting in the available browser space. After that, you grab the winWidth

and winHeight attributes on the UI config object that tell you how big the window should

initially be. This way, each module can determine its optimal size as part of its design.

These aren’t Webix attributes; they are extra attributes unique to your code. Webix ignores

them, so it’s nice to keep everything all encapsulated like that. Once you have those, you

Chapter 7 Taking wxPIM to the Desktop

283

make a comparison to those max sizes that were determined earlier and use either the

specified winWidth and winHeight or the maximum values. This way, the window always

fits without being cut off. Finally, with the window’s dimensions known, you can now

calculate the X and Y location so that the window is centered on the screen to start.

Now, it’s time to build the window! The view used is the custom ani-window that

you defined earlier in the wxPIM constructor. The window is defined to be movable and

resizable, and toFront is set to true. What that last one does is ensure that when the

user clicks anywhere in the window, it will be brought to the foreground. Without this, it

may still sit behind another window, obscuring it, which isn’t what you expect windows

to do! I also explicitly set the fullscreen attribute to false to indicate to Webix that this

window should not take up the entire available space, at least not initially (hint-hint!).

The head of the window is a toolbar that houses the label of the window as stated

in the winLabel attribute of the config object, another additional attribute especially for

wxPIM usage that Webix ignores. After that are three icon elements, one for minimizing

the window, one for maximizing (or restoring when the window is maximized), and one

for closing the window.

The handler for the minimize icon just needs to hide the window, and also it calls

toggle() on the taskbar button for this window (which you get a reference to by

constructing the appropriate ID for). The button is a toggle button that actually gets

added after the window is built, as you’ll see shortly, so it has a pressed state and a

nonpressed state. As you’ll see, it initially gets set in the pressed state when the window

is launched so that it stands out from the others and indicates which window is “current,”

so when minimized, this state needs to be reversed.

The handler for the maximize icon is a little more involved. First, you need to tell

Webix to make the window full-screen and then reconfigure() it, which results in it

being re-drawn filling the available space. Then, based on whether the window is now

full-screen or not, the icon needs to change to either the maximize icon or the restore

icon. This way, the icon is effectively a toggle. The refresh() method of the icon needs

to be called to reflect the change from window-restore to window-maximize (or vice

versa), and then finally I call blur() on the icon because failing to do that leaves it with a

slight background color difference that I just didn’t think looked so good and certainly is

not what you’d expect given what happens with a real desktop OS window.

The close icon handler is just a call to close() on the window, as well as a call to

removeView() on the toolbar where the module task buttons are. Nothing else needs to

be done to close a module.

Chapter 7 Taking wxPIM to the Desktop

284

Finally, the body of the window is the moduleUIConfig that was retrieved earlier. And

with that, you have a fully constructed module window that you can show with a call to

show().

Note that the UI config for the window is the same as the UI config when in mobile

mode, at least as far as the core code goes. Each module can, of course, determine what

UI config to return given the current uiType, but the core code doesn’t care; it treats it

the same either way.

The final thing that has to happen that is specific to desktop mode is adding a taskbar

button for the module. As I mentioned earlier, it’s a toggle button with a click handler.

The handler looks at the current state of the toggle button, which is either a 0 or a 1.

When it’s a 1, that corresponds to the pressed state, so you expect the module window

to be hidden in that case, which is what a desktop operating system taskbar button does.

If it’s a 0, then the window needs to be shown. Either way, I again blur() off the button

so as to not have it look weird and then toggle() the button so that its visual state is

pressed when the window is current and showing, not pressed when it’s hidden. Finally,

addView() is called, passing the config for the button, and Webix adds the button for you.

After that, you have a few more tasks to accomplish, and they have to happen

regardless of which UI mode you’re in. First, a call to the module’s refreshData()

method ensures that the summary view shows fresh data. This is really important only

when in mobile mode or when first showing a window in desktop mode because doing

it when the window is already visible is redundant. But, it does no harm to do it, so it’s

easier to just make the call without checking any conditions. Finally, the activate()

method gets called since that’s the lifecycle you previously defined for your modules.

And with that, you can launch modules in either UI mode! But, how do you actually

switch between modes? Well, that’s next!

�Switching Modes
Finally, you need to add some code for switching between desktop and mobile modes.

Although wxPIM determines which mode to use when initially launched, the user may

decide they’d prefer to use the other mode, and that’s where that check box comes into

play. When checked, it means use desktop mode; unchecked means mobile mode.

When the checkbox is changed, wxPIM.switchMode() is called.

switchMode() {

 $$("sidemenu").hide();

Chapter 7 Taking wxPIM to the Desktop

285

 for (let moduleName of wxPIM.registeredModules) {

 let moduleWindow = $$(`moduleWindow-${moduleName}`);

 if (moduleWindow) { moduleWindow.close(); }

 }

 wxPIM.activeModule = null;

 $$("baseLayout").destructor();

 switch (this.getValue()) {

 case 0 : wxPIM.uiType = "mobile"; break;

 case 1 : wxPIM.uiType = "desktop"; break;

 }

 wxPIM.start();

};

First, the sidemenu is hidden, regardless of whether it’s showing or not (it might not

even be active, as in desktop mode). Next, all open windows need to be closed. Again,

nothing breaks if this code executes even in mobile mode because of course no window

will be found then, so there’s no need to branch on uiType here. Next, you ensure that

there is no activeModule reference, which matters if you’re switching to mobile mode

(because that member doesn’t come into play in desktop mode anyway).

Next, you get to be destructive! You need to tear down the entire current UI

regardless of what mode you’re in. Do you remember in baseLayout.js how you added

an id to it? Well, here’s why: you can now get a reference to the root element of your UI

based on that ID and call the destructor() method on it, which is available on all Webix

views and which destroys not only that view but also all its children. So, doing this makes

Webix destroy the entire UI in one fell swoop! One command, so much destruction…it’s

like being in charge of a nuclear button!

Ahem.

Anyway, once the UI is destroyed, you, of course, need to build it back up again

in whatever the new mode is. So, you look at the value of the checkbox. If it’s 0, that’s

unchecked, so wxPIM.uiType is set to mobile; otherwise, the box is checked, and you

set it to desktop instead. Then, all you need to do is call wxPIM().start(), which you’ll

recall is what kicks everything off and where the UI is built from. The core UI config code,

of course, branches based on wxPIM.uiType (and all the module class instances are re-

created as part of this too, so all state is reset), and that’s really all it takes to switch modes!

Chapter 7 Taking wxPIM to the Desktop

286

With that, all the changes to the core code have been looked at. Now, let’s move on to

the changes in the modules themselves, and you’ll work from the least amount of change

to the greatest amount of change, picking up some new concepts in the process.

�Module Changes: Notes
The first change that needs to be made to the notes module is to add a constructor so

you can set the isEditingExisting and editingID members on the class instance.

constructor() {

 this.isEditingExisting = false;

 this.editingID = null;

}

Every module will have this now, as I mentioned earlier in the chapter. Rather than

these variables being members of the wxPIM object, they are now members of each class

so that each module tracks its state with regard to editing rather than it being a common

thing. This is necessary to make desktop mode work properly. I’ll skip repeating myself

when I discuss the next three modules as this applies to all of them.

The next change needed is something in the UI config object, and it’s something

you’ve seen before.

winWidth : 500, winHeight : 500, winLabel : "Notes", winIcon : "file-text"

As with the constructor change, all modules have these non-Webix attributes as

part of the UI config object (and as with those, I won’t mention this again for the other

modules). As you saw when I dissected the launchModule() method, the winWidth and

winHeight attributes tell the core code what the initial dimensions of the window for this

module should be, and winLabel tells it what the title test of the window should be. The

winIcon attribute defines the FontAwesome icon that is shown in the sidemenu as well as

on the taskbar buttons.

Chapter 7 Taking wxPIM to the Desktop

287

The next change is a small but important thing in the newHandler() method.

Previously these two lines of code were found in it:

wxPIM.isEditingExisting = false;

wxPIM.editingID = new Date().getTime();

They are now altered to be these:

wxPIM.modules.Notes.isEditingExisting = false;

wxPIM.modules.Notes.editingID = new Date().getTime();

That should be an obvious change. Since you moved isEditingExisting and

editingID into the class instance, you have to update them there now. In a similar way,

this change is necessary for the editExisting() method as well, except there a new ID

isn’t generated; it uses the ID of the selected item. Once again, this is a change that applies

in the same way to the rest of the modules, so I won’t point this out again with them.

The final change is just something that needs to be added to the class.

dayAtAGlance() {

}

As you saw previously, every module gets a chance to participate in the day-at-a-

glance screen, and that’s by virtue of a call to this method. The notes module doesn’t

actually participate, though, so just an empty method is all you need to fulfill the

contract that the core code expects a module to adhere to.

�Module Changes: Contacts
While the notes module wasn’t changed at all in terms of its UI design, let’s do

something a little different with the contacts app and try to use the space afforded in

desktop mode a bit more efficiently. Figure 7-5 shows one way this can be accomplished.

Chapter 7 Taking wxPIM to the Desktop

288

Instead of using a unitlist, let’s instead use a datatable. The change to the code

involves a branch on wxPIM.uiType, and the unitlist configuration is replaced with this:

function() {

 if (wxPIM.uiType === "mobile") {

 return { view : "unitlist", id : "moduleContacts-items",

 type : { height : 40 }, template : "#lastName#, #firstName#",

 uniteBy : (inObj) => {

 return inObj.lastName.substr(0, 1);

 },

 click : wxPIM.modules.Contacts.editExisting.bind(this)

 };

 } else {

 return { view : "datatable", id : "moduleContacts-items",

Figure 7-5.  A grid is more efficient with the available space

Chapter 7 Taking wxPIM to the Desktop

289

 resizeColumn : true, dragColumn : true,

 columns : [

 { id : "firstName", header : "First Name", minWidth : 100,

 sort : "string", adjust : true

 },

 { id : "lastName", header : "Last Name", minWidth : 100,

 sort : "string", adjust : true

 },

 { id : "birthday", header : "Birthday", minWidth : 100,

 sort : "date", adjust : true,

 format : function(inValue) {

 return new Date(inValue).toLocaleDateString();

 }

 },

 { id : "homePhone", header : "Home Phone", minWidth : 120,

 sort : "string", adjust : true

 },

 { id : "officePhone", header : "Office Phone", minWidth : 120,

 sort : "string", adjust : true, fillspace : true

 }

],

 on : { onItemClick : wxPIM.modules.Contacts.editExisting }

 };

 }

}(),

A unitlist is still used in mobile mode, and its configuration is the same, but now

in desktop mode, you use a datatable instead. I’ve pulled out the fields I think you

would most want to see in such a datatable, and resizeColumn and dragColumn both

set to true, respectively, allow the user to drag the divider between columns to change

their size and to drag columns around to put them in any order they want. For the

birthday column, the date needs to be formatted for display, and the plain old JavaScript

toLocalDateString() method of the Date object does the trick. Setting adjust : true

on all the columns instructs the datatable to find the largest item in each column,

whether that is data or the column header itself, and automatically set the width of the

column to that value, which avoids wrapping. All columns support sorting according to

Chapter 7 Taking wxPIM to the Desktop

290

the sort type specified for each. Finally, setting fillspace to true makes the last Office

Phone column fill whatever horizontal space remains in the datatable after all the

columns have been rendered.

Aside from that change, the only other things different about the code in the new

version of wxPIM are the changes common to all modules as previously described, so

let’s move on to the appointments module.

�Module Changes: Appointments
The appointments module, like the notes module, has minimal changes to it. The UI

isn’t changed for desktop mode (that’s only true for contacts and tasks), so it’s really just

the changes common to all modules that you’re well aware of by now.

Aside from those common changes, the only thing different is the addition of the

previously shown dayAtAGlance() method. So, you’re basically done with appointments

at this point!

�Getting Responsive with It: Tasks
For the tasks module, I’m going to introduce a little bit of responsive design. Now,

responsive design is a term that has different meanings for different people, but at the end

of the day it all boils down to the same essential thing: a UI that responds to the device

it’s running on. Most usually that means adjusting the UI to use the available screen

space effectively. This could mean that on a mobile device, your UI is a single column of

content but on a larger desktop monitor it shifts to two columns.

It’s also most typical that people mean a CSS-based solution when they talk about

responsive design. You run into things such as breakpoints that define what the UI layout

should be at various screen sizes (i.e., one column if the width of the display is 640 pixels

or less, two columns if it’s more; 640 is considered a breakpoint). But, there’s absolutely

nothing that says a responsive design has to be CSS-based, and in fact when your entire

UI is built with JavaScript, as is the case with a Webix app, an argument can be made that

it makes more sense to be responsive in a JavaScript-centric approach too.

Chapter 7 Taking wxPIM to the Desktop

291

The philosophical debate aside, the bottom line is adjusting to the available

resources, so let’s see what you can do about that with the tasks module. You already saw

one approach to responsiveness in the contacts module: using a datatable rather than a

unitlist, which allows for more data to be seen at a given time when in desktop mode.

For the tasks module, though, let’s do something different. You’ll have the summary view

and the details view side by side, as shown in Figure 7-6.

This allows the user to see both views simultaneously, which is usually thought of

as being a more efficient way to view summary-detail data (if you’ve heard the term

master-detail view, then you already know what you’re building here). The user can still,

Figure 7-6.  A more efficient layout when there’s space

Chapter 7 Taking wxPIM to the Desktop

292

of course, resize the window as they see fit and can even maximize it, which allows them

to see more or less data as they want. In effect, this layout is responsive in another way.

It will resize based on the window size, and the space is distributed between the two

columns to fit the size of the window. Also, you’ll put a resizer element between the

summary and details view so the user can further adjust the size between them as they

see fit by dragging the resizer left and right.

All of this requires some relatively significant changes to the code, but it’s almost all

contained with the getUIConfig() method.

getUIConfig() {

 const summaryToolbarConfig = [];

 const newButtonConfig = { view : "button", label : "New", width : "80",

 type : "iconButton", icon : "plus", click : this.newHandler.bind(this)

 };

 if (wxPIM.uiType === "mobile") {

 summaryToolbarConfig.push({});

 summaryToolbarConfig.push(newButtonConfig);

 summaryToolbarConfig.push({ width : 6 });

 } else {

 summaryToolbarConfig.push({ width : 6 });

 summaryToolbarConfig.push(newButtonConfig);

 }

 const summaryView = {

 �id : "moduleTasks-itemsCell", width : (wxPIM.uiType === "mobile" ? 0 :

330),

 minWidth : 330,

 rows : [

 { view : "tree", id : "moduleTasks-items",

 on : { onItemClick : this.editExisting.bind(this) }

 },

 { view : "toolbar", cols : summaryToolbarConfig }

]

 };

 const detailsToolbarConfig = [

 { width : 6 },

Chapter 7 Taking wxPIM to the Desktop

293

 { id : "moduleTasks-deleteButton", view : "button", disabled : true,

 label : "Delete", width : "90", type : "iconButton",

 icon : "remove", click : () => { wxPIM.deleteHandler("Tasks"); }

 },

 { },

 { view : "button", label : "Save", width : "80",

 type : "iconButton", icon : "floppy-o",

 id : "moduleTasks-saveButton", disabled : true,

 click : function() {

 wxPIM.saveHandler("Tasks", ["moduleTasks-detailsForm"]);

 }

 },

 { width : 6 }

];

 if (wxPIM.uiType === "mobile") {

 detailsToolbarConfig.splice(1, 0,

 { view : "button", label : "Back To Summary", width : "170",

 type : "iconButton", icon : "arrow-left",

 hidden : (wxPIM.uiType === "desktop"),

 click : () => {

 $$("moduleTasks-itemsCell").show();

 }

 },

 { }

);

 }

 const detailsView = {

 id : "moduleTasks-details", minWidth : 350,

 rows : [

 { view : "form", id : "moduleTasks-detailsForm", borderless : true,

 elementsConfig : { view : "text", labelWidth : 100, bottomPadding : 20,

 on : { onChange : () => {

 �$$("moduleTasks-saveButton")[$$("moduleTasks-detailsForm").

validate() ?

 "enable" : "disable"]();

Chapter 7 Taking wxPIM to the Desktop

294

 } }

 },

 elements : [

 { name : "subject", label : "Subject", required : true,

 invalidMessage : "Subject is required",

 attributes : { maxlength : 50 }

 },

 { view : "text", name : "category", label : "Category",

 suggest : [

 { id : 1, value : "Personal" },

 { id : 2, value : "Business" },

 { id : 3, value : "Other" }

],

 on : {

 onItemClick : function() {

 $$(this.config.suggest).show(this.getInputNode());

 }

 }

 },

 { view : "radio", name : "status", label : "Status", value : 1,

 id : "moduleTasks-category",

 options : [

 { id : 1, value : "Ongoing" }, { id : 2, value : "Completed"

}

]

 },

 �{ view : "segmented", name : "priority", label : "Priority",

value : 1,

 options : [

 { id : 1, value : "Low" },

 { id : 2, value : "Medium" },

 { id : 3, value : "High" }

]

 },

 { view : "datepicker", name : "dueDate", label : "Due Date",

 id : "moduleTasks-dueDate", required : true,

Chapter 7 Taking wxPIM to the Desktop

295

 invalidMessage : "Due Date is required"

 },

 { name : "comments", label : "Comments",

 attributes : { maxlength : 250 }

 }

]

 },

 { },

 { view : "toolbar", cols : detailsToolbarConfig }

]

 };

 �const baseObj = { winWidth : 800, winHeight : 600, winLabel : "Tasks",

winIcon : "tasks",

 id : "moduleTasks-container"

 };

 if (wxPIM.uiType === "mobile") {

 baseObj.cells = [summaryView, detailsView];

 } else {

 baseObj.cols = [summaryView, { view : "resizer", },detailsView];

 }

 return baseObj;

}

The first change is an architectural one. Rather than one large JavaScript object,

instead you have a number of objects that get composed at the end into the object

returned by the method. This is a generally good approach anyway, but it’s especially

important (necessary really) when the structure is going to change a fair bit and vary

based on some condition.

The first of these objects is one for the summary view’s toolbar. There’s a single

button for creating a new item in either mode, but in mobile mode, that button is on the

right, whereas in desktop mode it’s on the left. That’s so that in desktop mode, when the

summary view toolbar and details view toolbar are both always visible, there’s some

visual separation between the New button and the detail view buttons.

Chapter 7 Taking wxPIM to the Desktop

296

Next, an object for the summary view is built. The width of the summary view is

determined based on wxPIM.uiType. When in mobile mode, a width of 0 makes this view

fill the available space. In desktop mode, it gets an initial width of 330. The minWidth is

set to this value as well because any smaller and horizontal scrolling starts coming into

play, which makes it a bit less usable. Note that the toolbar at the bottom is a reference

to the one you built before this object, so you’re starting to compose the things already,

building up the object to be returned as you go.

Next up is the configuration for the details view toolbar. Similar to the summary

view toolbar, it needs to change based on mode because in desktop mode there’s no

need for the Back To Summary button. Plus, in desktop mode, since there will be only

two buttons instead of three, it makes sense to push them out to the two ends of the

toolbar (hence the reason the New button needed to be on the left in desktop mode).

Since in either mode the toolbar’s configuration really only differs by the presence of

the Back To Summary view, I create the array of toolbar items as it appears in desktop

mode, and then for mobile mode, I just splice() in the Back To Summary button. This

avoids redundancy and possibly extra branching logic.

After that, the details view configuration is built, and this is essentially the same as it

was in the original version, with the one change being the reference to the toolbar that

was built before this rather than including that configuration inline.

Finally, with all these subobjects, so to speak, built and ready for use, it’s time to

construct the object that will be returned by this method. The baseObj is the object that

will be returned, and it initially contains just the most basic configuration needed for this

module, namely, the special items wxPIM uses to configure the window. Notice, though,

that it has no content yet. That’s where the if statement after that comes in. For mobile

mode, you want this object to be a multiview. Remember that Webix implicitly creates

a multiview if the configuration includes a cells array, so that gets added for mobile

mode. For desktop mode, you’re building a two-column layout instead, so you need to

add a cols array. The addition of the resizer view in between the summary and details

is all you need to do to allow for resizing those two elements. Webix takes care of creating

the draggable handle between them as well as doing the resize when the user drags it.

There are just a few other minor changes necessary in this module, beginning with an

additional line of code at the end of both the newHandler() and editExisting() methods.

$$("moduleTasks-details").enable();

Chapter 7 Taking wxPIM to the Desktop

297

The thing is that when the user clicks the New button or selects an item to edit, the

details side of the window needs to be enabled or the user won’t be able to do anything.

That’s where this statement comes into play.

The final change is at the end of refreshData(). Remember that refreshData() will

be called when a task is added, modified, or deleted (as well as when activate() is called).

In all those cases, the problem is that the detail side will usually be enabled and have data

in it, but it won’t be the right data potentially. So, you need to clear and disable the form.

$$("moduleTasks-detailsForm").clear();

$$("moduleTasks-details").disable();

With that last change in place, the new version of the contacts module is done!

�A Few Leftover Bits: saveHandler( )
and deleteHandler( )
With the modules taken care of, you’re almost done with the changes to wxPIM now. All that

remains are a few leftover bits that need to be modified to make it all work in the core code.

First, in both the wxPIM.saveHandler() and wxPIM.deleteHandler() methods there

is this line:

itemData.id = wxPIM.editingID;

Well, as you know, the editingID is no longer a member of the wxPIM object itself; it’s

a member of each module’s class instance. So, that line needs to be changed to this:

itemData.id = wxPIM.modules[inModuleName].editingID;

Finally, again in both methods, you want to be sure that the day-at-a-glance screen

gets updated no matter what mode you’re in. In the original mobile-only version, day-

at-a-glance gets updated when you switch to it, so if you add a task in the tasks module,

you’ll see that task (if it’s for the current day, of course) when you switch back to day-at-

a-glance because it gets updated at that point. But, in desktop mode, day-at-a-glance is

effectively the background over which module windows float. It’s always visible, so if you

add a task in the task module window, you expect to see it reflected in the background

immediately. To accomplish that, all you need to do is add one line.

wxPIM.dayAtAGlance();

Chapter 7 Taking wxPIM to the Desktop

298

I do this right before the webix.message() call (though the order doesn’t actually

matter).

And with that change, you’re done! wxPIM is now a mobile/desktop app that

intelligently switches between the modes at startup and also allows the user to switch

between the modes at will manually. It’s a little more responsive, using the available

space a bit more effectively, and at the end of the day you used probably 90 percent the

same codebase, give or take. Not too shabby!

�Summary
In this chapter, you modified the wxPIM application to work better in a desktop

environment. In the process, you saw some approaches to creating a responsive Webix

app, that is, a single codebase that reacts to its runtime environment and modifies its UI

to suit that environment better. You saw some further usage of Webix components and

helper functions, and most importantly you saw how with just a few considerations, the

same underlying Webix codebase can run on mobile devices as well as on classic desktops.

In the next chapter, I’ll introduce a server component into the mix so that wxPIM can

become an even more useful application while at the same time demonstrating some

important concepts in terms of client-server capabilities with Webix.

Chapter 7 Taking wxPIM to the Desktop

299
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_8

CHAPTER 8

Taking wxPIM to the Cloud
In the two previous chapters, you built an application called wxPIM. You used the

knowledge of Webix you built up in prior chapters and learned a few new things as you

built the app. Now, wxPIM is a decent little app: it’s nominally useful and works whether

on a desktop or mobile device.

However, what happens if you want to use it on more than one device? Indeed, you

can already, but the data you create won’t be shared between them. That’s a little bit of a

deal-breaker, no?

To address that issue, you need a server. As the title of the chapter says, you need

a cloud (since everything is a cloud these days if it’s connected to other machines it

seems!), and you need to hook wxPIM up to it.

Now, this is a book about Webix, not about building servers. But, fortunately, there’s a

tool out there that makes building serves remarkably easy, and best of all, it uses the same

fundamental technology as you used when building wxPIM itself, namely, JavaScript.

I am, of course, talking about the famous and popular Node.js, or just Node for short.

In this chapter, you’ll build a simple Node-based server to store your data on and then

modify wxPIM to talk to that server. If you do this right, you’ll be able to run wxPIM on

multiple devices, save your data to the server, and access it on other devices as well.

Of course, if the name Node, REST, Express, and NeDB all already have strong meaning

for you, then, by all means, skip ahead to the “Hooking wxPIM Up to the Server” section.

But, otherwise, read on, and consider the next few sections an added bonus on top of

learning Webix! (Hey, I like to give my readers more than they bargain for when I can!)

�Building a Server with Node…Wait, What’s Node?
Ryan Dahl. That cat has some talent, I tell ya! Ryan is the creator of a fantastic piece of

software called Node.js, or just plain Node from here on out. Ryan first presented Node

at the European JSConf conference in 2009, and it was quickly recognized as a potential

game-changer, as evidenced by the standing ovation his presentation received.

300

Node is a platform for running (primarily, though not exclusively, server-side) code

that is high-performance and capable of handling tons of load with ease. It is based on

the most widely used language on the planet today: JavaScript. It’s extremely easy to get

started with and understand, yet it puts tremendous power in the hands of developers in

large part thanks to its asynchronous and event-driven model of programming. In Node,

almost everything you do is nonblocking, meaning code won’t hold up the processing

of other request threads. This, plus the fact that Node uses Google’s popular and highly

tuned V8 JavaScript engine to execute code (the same engine that powers their Chrome

browser), makes it very high performance and able to handle a large request load.

It’s no wonder that so many significant players and sites have adopted Node to one

degree or another. Moreover, these aren’t minor outfits either; I’m talking about names

you doubtless know, including DuckDuckGo, eBay, LinkedIn, Microsoft, Walmart, and

Yahoo as just a few examples.

Node is a first-class runtime environment, meaning you can do things like interact

with the local file system, access relational databases, call remote systems, and much

more. In the past, you’d need to use a “proper” runtime like Java or .NET to do all this;

JavaScript wasn’t a player in that space. With Node, this is no longer true!

To be clear, Node isn’t in and of itself a server. You can’t just start up Node and

make HTTP requests to it from a web browser. It won’t do anything in response to your

requests by default. No, to use Node as a server, you have to write some (straightforward

and concise, as you’ll see) code that then runs inside Node. Yes, you effectively write

your own web server and app server, if you want to split hairs (or potentially FTP, Telnet,

or any other type of server you might want). That’s a very odd thing to do as a developer,

to say the least, and it does sound daunting! To be sure, it would be if you tried to write

a web server from scratch in many other languages, especially if you want it to do more

than just serve static content files. But not with Node!

But remember, acting as a server is just one capability that Node provides as a

JavaScript runtime, and it can provide this functionality only if you, as a developer, feed it

the code it needs to do so! In fact, a great many developer tools, and other types of apps,

use Node as their runtime nowadays. Node really is all over the place!

Node also allows you to use the same language and knowledge on both client and

server, something that was difficult to accomplish before. In fact, aside from Java and

some Microsoft technologies, there never before has really been an opportunity to do so

until Node came along. It’s a pretty compelling opportunity.

Chapter 8 Taking wxPIM to the Cloud

301

Another key aspect of Node is a driving design goal of the project, which is keeping

its core functionality to an absolute minimum and providing extended functionality by

way of APIs (in the form of JavaScript modules) that you can pick and choose from as

needed. Node gets out of your way as much as possible and allows you only to introduce

the complexity you really need, when you need it.

In addition to all of this, getting, installing, and running Node are trivial exercises,

regardless of your operating system preference. There are no complicated installs with

all sorts of dependencies, nor is there a vast set of configuration files to mess with before

you can bring up a server and handle requests. It’s a five-minute exercise, depending on

the speed of your Internet connection and how fast you can type!

All of this makes working with Node so much simpler than many competing options,

while providing you with top-notch performance and load-handling capabilities.

Moreover, it does so with a consistent technological underpinning as that which you

develop your client applications.

That’s Node in a nutshell! Please be aware that this section is in no way, shape, or

form meant to be an exhaustive look at Node. There’s so much more to Node than this,

and if you’re new to it, I very much encourage you to peruse the Node site for a while.

But, for the purposes of this book, this level of understanding (plus a few additional

items that you’re going to get to next) should be sufficient.

Next, let’s see about getting it onto your machine so that you can start playing with

some code together.

�Getting and Installing Node
Getting and installing Node couldn’t be easier, and there’s only one address to

remember: http://nodejs.org. That’s your one-stop shop for all things Node,

beginning with, right on the front page, downloading it, as you can see in Figure 8-1.

Chapter 8 Taking wxPIM to the Cloud

http://nodejs.org/

302

Although it really shouldn’t matter for our purposes here, I do suggest using the LTS

(Long Term Support) version. The LTS version tends to be more stable with fewer bugs,

at the cost of not having all the latest and greatest features.

Figure 8-1.  Whatever the button label, you’re probably not going to miss it!

Chapter 8 Taking wxPIM to the Cloud

303

The download will install in whatever fashion is appropriate for your system. For

example, on Windows, Node provides a perfectly ordinary and straightforward installer

that will walk you through the necessary (and extremely simple) steps. On Mac OS X, a

typical install wizard will do the same.

Once the install completes, you will be ready to play with Node. The installer should

have added the Node directory to your path. So, as a first simple test, simply type node

at a command prompt and press Enter. You should be greeted with a > prompt. Node is

now listening for your commands in CLI mode. To test it, type the following:

console.log("test");

Press Enter, and you should be greeted with something like what you see in

Figure 8-2 if running on Windows. (On Mac OS X or *nix, it should look substantially the

same, accounting for platform differences.)

Interacting with Node in CLI mode is fine, but it’s limited. What you really want to

do is execute a saved JavaScript file using Node. As it happens, that’s easy to do! Simply

create a text file named listing_08-01.js, for example, and type the code shown in

Listing 8-1 into it and save it.

Figure 8-2.  Say hello to my little friend, Node!

Chapter 8 Taking wxPIM to the Cloud

304

Listing 8-1.  A Quick Node Test

var a = 5;

var b = 3;

var c = a * b;

console.log(a + " * " + b + " = " + c);

To execute this file, assuming you are in the directory in which the file is located, you

simply need to type this:

 node listing_08-01.js

Press Enter after that, and you should be greeted with an execution, such as the one

you see in Figure 8-3 (in which I’ve also displayed the JavaScript file to be executed).

Now, clearly this little bit of code is unexceptional, but it does demonstrate that Node

can execute plain old JavaScript just fine. You can experiment a bit here if you like, and

you will see that Node should execute any basic, plain old JavaScript that you care to

throw at it.

Even if that were all Node did, it would be pretty cool and useful for many things. Of

course, that’s far from all that Node can do! I’m here to talk about writing server software,

and Node makes that a trivial exercise indeed.

Figure 8-3.  An elementary Node example

Chapter 8 Taking wxPIM to the Cloud

305

�My First Node Server
When I say that Node makes writing server software trivial, that may well be the

understatement of the year! Perhaps the simplest example (that actually does something

anyway) is what you can see in Listing 8-2.

Listing 8-2.  A Simple Web Server in Node

var http = require("http");

var server = http.createServer(function (inRequest, inResponse) {

 inResponse.writeHead(200, { "Content-Type" : "text/plain"});

 inResponse.end("Hello from my first Node server!");

});

server.listen(80, "127.0.0.1");

Type that into a file, save it as listing_08-02.js, and then launch it from a

command line the same way you did for the previous example. Now fire up your favorite

web browser, and visit http://127.0.01. You’ll be greeted with the text “Hello from my

first Node server!” If that isn’t a little bit amazing to you, then you’ve probably seen the

Flying Spaghetti Monster travel one too many times around your neighborhood and

have been totally desensitized to the amazing!

Obviously, this is a simplistic example, but it should get the basic idea across well

enough. But, what exactly is going on in that simple example at a code level? As it

happens, quite a bit actually, and most of it is key to how Node works.

The first concept is the idea of importing modules. In the example code, http is a

module. This is one of the core Node modules, and, as such, it is compiled directly into

the Node binary. Therefore, you won’t find a separate JavaScript file for it in the Node

installation directory. This is true of all the Node core modules, all of which you can find

in the Node documentation on the Node site. To import any of them, you just require()

them by name.

You can create your own modules too just by adding other .js files and

require()’ing them. This gets a little more involved, with discussions of things like

scope and exports, but for the purposes of this book you won’t need to do that, but I

wanted to at least mention it in case you really are completely new to Node so that you

can find the appropriate section in the Node docs to describe this.

Chapter 8 Taking wxPIM to the Cloud

306

The require() function returns an object that is essentially the API provided by the

module. This object can include methods, attributes, or whatever you want. In fact, it

could conceivably be just a variable with some data in an array. More times than not,

though, it will be an object with some methods and attributes. In the case of http in

this example, one of the methods the object returned is createServer(). This method

creates a web server instance and returns a reference to it. The argument you pass to this

method is a function that serves as a request listener, that is, the function executed any

time a request is made to the server.

Creating a web server alone won’t actually do anything. It won’t respond to requests

until you do a little more work. The createServer() method returns a reference to the

web server instance, which contains the method listen(). That method accepts a port

number on which the server should listen and, optionally, the hostname on which to

listen. In the example, the standard HTTP port 80 is specified, along with the standard

local machine address 127.0.0.1. Once you call this method, the server will begin

listening for requests (assuming nothing else is already using that port on your system,

that is!), and for each request that comes in, it will call the anonymous function passed to

createServer().

This callback function (callback functions being the most common mechanism by

which Node provides nonblocking functionality) receives two arguments, inRequest

and inResponse, which are objects representing the HTTP request and response,

respectively. In this simple example, all this callback function does is first write an HTTP

header to the response object specifying a good outcome via an HTTP 200 response

code. You also pass, as the second argument to writeHead(), an object that defines

response headers. In this case, the Content-Type header is set to text/plain to indicate a

simple text response. Finally, the end() method is called on the response object, passing

the response you want to send back. This completes the handling of a given request.

As you can see, creating a server with Node is exceedingly simple, in its most basic

form at least. However, there’s an even easier way to do so, and it’s in fact probably the

most common way of writing a Node server, and that’s by using the very popular Express

module. But, before you go there, let’s discuss something else first: NPM.

Chapter 8 Taking wxPIM to the Cloud

307

�Node’s Partner in Crime: NPM
NPM, which stands for Node Package Manager, is a companion app that installs

alongside Node. With it, you can download packages, which are just JavaScript modules

(and any supporting stuff they might need) from a central package registry, which you

can find at https://www.npmjs.com.

Using NPM is simple: it’s simply another command to run from a command prompt,

just like Node. For example, if you want to see what modules have been installed into the

global cache, you can execute the following:

npm -g ls

The global cache is one place modules can be installed to. This makes them

accessible to any project that uses Node. You can also install modules in a specific

project, and this is usually where you do want to install them. For example, let’s say you

create a directory named MyFirstNodeProject. In it, you execute the following:

npm install express

If you do that, you’ll find that a directory called node-modules has been created,

and inside it will be a lot of…well, a lot of stuff you typically don’t need to worry about

too much! In short, though, it’s all the code that makes up the Express package (which

I’ll cover shortly) plus whatever packages Express itself depends on (and whatever they

might depend on, and so on). NPM takes care of fetching all of those dependencies for

you. You’ll also notice a file named package-lock.json has been created, and for our

purposes here you don’t need to worry about that except to know not to delete it as NPM

needs it to do its job.

Now, in all of this, I did skip one step that clearly is optional but is, in fact, typical,

and that’s initializing a new project. With most Node/NPM projects, you’ll also have a file

named package.json in the root directory of the project. This provides information to

NPM and Node about your project that it needs to do certain things. While you can write

this file by hand or even go without it, it’s a good idea to have it, and it’s a good idea to let

NPM create it for you, which you can do by executing this command:

npm init

Chapter 8 Taking wxPIM to the Cloud

https://www.npmjs.com/

308

If you are following along, please make sure the directory you run this from is empty

(delete node_modules and package-lock.json if present). This will trigger an interactive

process that walks you through the creation of the package.json file, something like you

see in Figure 8-4.

Figure 8-4.  Initializing a project with NPM

Chapter 8 Taking wxPIM to the Cloud

309

Opening the generated package.json file should look something like this:

{

 "name": "myfirstnodeproject",

 "version": "1.0.0",

 "description": "Testing",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Me",

 "license": "ISC"

}

Now, let’s say you want to add that Express package to this project. Running the same

install command as before will do that, but it will also update the package.json file,

adding this element:

"dependencies": {

 "express": "^4.16.1"

}

The reason this is important is that now, let’s say you want to give this project to

someone else. You typically do not want to give them all the dependencies your project

requires, all the content of node_modules. Instead, they can re-create it using the

package.json file just by doing this:

npm install

That will read the package.json file and automatically install all the dependencies!

Now, the person you’re working with has the same development environment as you

as far as project dependencies go for this project without having to do any leg work

themselves! Pretty sweet, right?

As you can guess, there’s quite a bit more to NPM than just what I’ve shown here,

but these are the real basics that will allow you to understand the code for the server that

you’re going to write in support of wxPIM. And, in fact, I’m just about ready to discuss

that, but before I do, there’s one last bit of foundational knowledge I need to make sure

you have, namely, REST.

Chapter 8 Taking wxPIM to the Cloud

310

�Taking a Very Active Break with REST
REST, which stands for Representational State Transfer, is an architectural approach to

providing web services. The basic idea is that a given URL represents a resource, and a

client can interact with that resource using standard HTTP methods such as PUT, GET,

POST, and DELETE (which correspond to the well-known CRUD methods of Create,

Retrieve, Update, and Delete). This is all independent of what technology the service is

written in.

For example, let’s say you want to provide access to a bank account resource. The

URL might be as follows:

http://www.fakebank.com/accounts/checking/123456789.json

If you access this URL with an HTTP method of GET, you will retrieve checking

account 123456789, assuming it exists, of course. The format of the response, in this case,

would be JSON since that’s the extension used. Some RESTful web services, as many

people refer to this model as, allow you to request that the response be in XML, JSON, or

other formats, while some don’t give you a choice (in which case you might not have an

extension there at all).

The response is said to be a “representation” of the checking account resource,

which is where the “Representational” portion of REST comes from. Likewise, if you

wanted to update an attribute of this account, you would POST back to the same URL,

and the contents of the POST body would be the JSON for the account with the changes

in it (and this covers the “State Transfer” part of the name). To create a new account, use

the HTTP PUT method and leave off the account number part of the URL; to delete the

account, just use the DELETE method without sending any content (and, most likely,

without the JSON extension part of the URL).

Note that the HTTP methods are usually referred to as verbs, since they specify an

action, and the corresponding operations I’ve described here are typical but not set

in stone. You may encounter a service that uses other HTTP methods for the various

operations the API of the service supports, but what I describe here is what you’re likely

to see most of the time.

I mentioned verbs there, and it’s an important distinction. Notice here is that the

URL doesn’t include anything like getAccount?acctNum=123456789, like you might

typically see in a normal URL. Instead, the HTTP method conveys to the service what

action you want to be performed, while the URL includes the noun, or the object (or type

of object), that is being operated on.

Chapter 8 Taking wxPIM to the Cloud

http://www.fakebank.com/accounts/checking/123456789.json

311

REST is a pretty simple model for web services but one that has gained a ton

of traction precisely because it is so simple! It’s easy to write clients in a variety of

technologies, and creating RESTful service providers is no more difficult. It builds on the

standards we all know and love and use every day (HTTP) and can make use of the same

sorts of security mechanisms used in such environments.

You already know enough of Node to create such a service interface, but it can be

even easier, if you can believe it, and that’s thanks to one specific module, Express, and

that’s what you’re finally getting to now!

�Hurry It Up, Kid: Express It!
Express (https://expressjs.com), which is perhaps the most popular Node module

around, is a minimal framework for creating web applications that offers developers a set

of robust features that eliminates a lot of boilerplate-type code from your application code.

Express offers a large set of APIs, utility methods, and what it calls middleware to provide

many of the common things modern web applications need. Being a minimal, thin

framework means that Express provides excellent performance on top of everything else.

Express is especially useful for, but is in no way specific to, writing RESTful API code.

If you look back at the previous sample server code, you’ll notice that there’s no mention

of HTTP methods there. In fact, every request of any type will be handled by the one

callback function supplied. That means if you want to implement a RESTful service, that

callback will need to interrogate the request object, determine the HTTP method, and

then branch accordingly. That’s not especially difficult to do, but it’s code you have to

write. Then, since REST is based on URL structure, you’ll need to write code to parse the

URL to figure out what operation to perform. Again, it’s not rocket science, but it’s work

you have to do yourself.

Using Express avoids all of that. Instead, you write code like this:

const app = express();

app.get("/cars/:vin", function(inRequest, inResponse) {

 // Return a car object with the specific VIN number

});

app.listen(8080);

Chapter 8 Taking wxPIM to the Cloud

https://expressjs.com/

312

Here, you create an Express application, which is the basis of everything you do with

Express. Then, you tell the app that for a GET request to a URL in the form /cars/:vin,

execute the given function. The :vin part of the URL tells Express that after /cars in the

URL will come a value that you want to have presented in the collection of parameters

that Express parses out of the URL and you want to name it vin (which you can access

in the function by doing inRequest.params.vin). In case you are unaware, VIN is short

for “vehicle identification number” and is the unique number that identifies every car

manufactured. So, assuming you have a database of VIN numbers, a GET request to this

particular URL can return an object representing the car associated with the VIN number

specified. Finally, you just have to start up the Express app by telling it what port to listen

on. That’s it! No parsing the URL yourself, no handling different request methods, not

even creating a server yourself. Express takes care of all those details for you!

As with Node and NPM, there’s quite a bit more than Express can do, and you’ll see some

of it when you write the server code. But for the most part, this example shows you almost

everything you need. I will, of course, describe the additional parts, but before that you have

one final helping hand to look at that you’ll need to write the wxPIM server, called NeDB.

�Third-Party Data Help: NeDB
Since the whole point of writing a server for wxPIM to talk to is to store the data

somewhere beyond local storage in the browser, you obviously need a mechanism to save

that data on the server. There are a great many options for doing so in a Node application,

from just writing plain-text files on the file system to interacting with an Oracle database.

However, for our purposes here, I wanted something with a simple API and something

that doesn’t require setting up yet another server. The module I found that fits the bill on

all counts is NeDB (https://github.com/louischatriot/nedb) by Louis Chatriot.

NeDB has an API that seeks to emulate the popular MongoDB, which is a document-

based database that has no schema. MongoDB and by extension NeDB are not relational

in nature, instead storing (usually) JSON-based objects (called documents) and then

allowing you to query them based on their attributes.

While MongoDB is its own server that a Node-based app can connect to, NeDB is

JavaScript-based and is just a module added to a Node app. NeDB also stores its data

in plain text files that you can open in a text editor if you want, which is nice in case

you ever need to recover anything. It has (most) of the important features of MongoDB,

certainly everything you’ll need: creating items, updating them, finding them and

deleting them, and allowing you to do so across different collections of items.

Chapter 8 Taking wxPIM to the Cloud

https://github.com/louischatriot/nedb

313

To give you a quick flavor of working with NeDB, here’s a simple example:

const db = new nedb({ filename : "people.db", autoload : true });

db.insert({ firstName : "Billy", lastName : "Joel" },

 function (inError, inDocument) {

 if (inError) {

 console.log("Error" + inError);

 } else {

 db.findOne({ firstName : "Billy" },

 function (inError, inDocument) {

 if (inError) {

 console.log("Error" + inError);

 } else {

 console.log(inDocument);

 }

 }

);

 }

 }

);

You create an instance of a database by providing NeDB with the file name of that

database and also tell NeDB to load it at that point automatically. Then, you can call the

insert() method, passing it an object to insert and a callback function. The callback

function can do whatever makes sense. In this case, I just retrieve the document that

was just inserted and log it to the console. Remember that NeDB is almost always

asynchronous, so you’ll need to deal with callbacks (or use a Promise-based approach if

you prefer). The findOne() method does exactly that: finds a specific single document

based on some query, here based on the firstName attribute. Of course, if there’s a

chance there’s more than one document with a firstName of Billy, then chances are you

want to use the find() method instead, which returns an array of matching documents.

For the purposes of this server, you won’t need too much more NeDB than this,

but know that it provides a very rich API, so if you need a simple database module that

doesn’t have any outside dependencies (as in no additional server to run), then NeDB is,

in my opinion, one of the best choices available in the world of Node development.

Chapter 8 Taking wxPIM to the Cloud

314

�Writing the Server
Before you really get into the code behind the server, I want to make a quick disclaimer.

There are two things that won’t be dealt with here: security (and by extension any

notion of multiple users) and robust data synchronization. For the former, it’s simply

not needed for what you’re doing in this book. For the latter, data synchronization is a

complex and tricky topic that, again, isn’t really required in this book. Instead, I’ll be

implementing a simple data synchronization scheme that I’ll admit right up front isn’t

production-ready. But, as a learning exercise, I believe it’s more than sufficient.

With that said, let’s get down to business!

First things first, being a Node application that has a few dependencies, you’re going

to need a properly set up package.json file. It just so happens I’ve got one ready to go.

{

 "name" : "wxPIM",

 "version" : "1.0.0",

 "description" : "wxPIM app from the book Practical Webix",

 "repository" : "https://github.com/fzammetti/wxpim",

 "main" : "server.js",

 "author" : "Frank W. Zammetti",

 "license" : "MIT",

 "dependencies" : {

 "body-parser" : "*",

 "express" : "*",

 "nedb" : "*"

 }

}

As you can see, it’s just like the basic package.json that NPM generated for the

earlier example (with values appropriate for this project inserted, of course), but now

with a few dependencies listed. You know what express and nedb are now. The body-

parser dependency is another module that handles the parsing of incoming request

bodies. You’ll need this because when you perform POST and PUT requests for creating

and updating data items, respectively, the data will be sent as a string of JSON in the

body of the request. Parsing a request body is a little more involved with Node than you

might imagine, so it’s far better to use some good, vetted, and existing code to do that, so

body-parser it is.

Chapter 8 Taking wxPIM to the Cloud

315

One quick note: did you notice the "*" as the value for the three dependency

attributes? Those values specify the version of each dependency you want NPM to pull

down when you do an npm install command. The values here are known as SemVer

values, short for “semantic versioning.” SemVer is a fairly in-depth topic, but it’s also

not especially relevant for our purposes here. But, so as to not leave you hanging, the

string "*" is a SemVer value that means that any version satisfies the dependency. You’re

saying that any version of express and nedb could be used by our project. However, in

practice, what happens is that NPM will pull down the latest available major release

version. It’s a shortcut to say “gimme the latest stable version of this dependency.”

Now, you can move on, finally, to the server code, as housed in the (surprise!)

server.js file. You’ll go through this in chunks, beginning with this bit:

const bodyParser = require("body-parser");

const express = require("express");

const nedb = require("nedb");

const path = require("path");

The first thing you need to do is to import the modules that will be used to write the

server. The body-parser you know about, and express and nedb should be obvious. The

path module is a module that contains useful utility functions for dealing with file system

paths. And, it just so happens, that’s used in the next chunk of code, among other things:

const app = express();

app.use(bodyParser.json());

app.use("/", express.static(path.join(__dirname, "../app/v3_add_Server")));

app.use("/webix", express.static(path.join(__dirname, "../../webix")));

A shown in the previous examples, the first step to using Express is to instantiate it,

and what you get back is a skeleton Express app that you can build upon as necessary.

The app.use() method is one way to build upon it. Express has a notion of something

called middleware. Middleware consists of functions that get inserted into the request/

response cycle of the app. In other words, think of a request coming into an Express-

based server application. There may be a number of things you want to happen to the

request. Maybe you want to log its content, then check it for some security token (aborting

if not found probably), then parse the request URL to get a map of parameters on it, and

finally process the request in whatever application-specific code you’ve written. If you

imagine all those steps as a pipeline that the request goes through, each of the steps can

be considered middleware. Express lets you build up this pipeline by adding whatever

Chapter 8 Taking wxPIM to the Cloud

316

middleware makes sense. You could certainly write all that logic in your application

code, but that’s probably not a great idea, certainly not the most efficient approach.

Using preexisting middleware (or writing your own that you can reuse time and again) is

probably a better idea, and the middleware approach allows for this, as well as changing

the processing flow of requests quickly and easily without changing much code at all.

Here, the first step you want to happen in the pipeline is for the body of the incoming

request to be parsed and translated to a JSON object. So, you tell Express that by calling

app.use() and passing it an instance of the middleware to execute, the return value of

bodyParser.json() in this case. This piece of middleware will execute for all requests

because there is no path specified.

However, what if you want some middleware to execute only for some specific path?

That’s entirely doable: you just need to tell Express what the path is by passing it as the

first parameter to app.use(). There’s two such calls after the first, and these use a built-in

bit of middleware, express.static(). This tells Express that for a specific path, / and /

webix here, the request should be served as static content. In other words, a request URL

in the form /test.htm will return the file test.htm without executing any application-

specific code. This is necessary for this app because the wxPIM code needs to be served

when the initial request to <server_ip>/ is requested. Express intelligently assumes that

if there’s nothing after that, then the index.html will be the default. Since the Webix code

and resources need to be loadable too, a second app.use() call is made to cover those.

The middleware for both of those is returned by the call to express.static(). The

argument to that function is a file system path, but here is where that path module

comes into play. Using path.join(), and telling it to join __dirname with a relative path

specification, results in a true, absolute file system path being generated. The variable

__dirname is something Node supplies that corresponds to the path to the script that

was executed, so that’s server.js in this case. The path.join() function takes care of

the system-specific details of creating the path so that the code can move from server to

server, and as long as the location of the application code and Webix code stays the same

relative to the server.js file, path.join() can create an absolute path that express.

static() needs to work.

With the modules imported and the Express processing pipeline set up, it’s time to

think about data, and that means creating/opening some databases with NeDB.

const databases = {

 �appointments : new nedb({ filename : `${__dirname}/appointments.db`,

autoload : true }),

Chapter 8 Taking wxPIM to the Cloud

317

 �contacts : new nedb({ filename : `${__dirname}/contacts.db`, autoload :

true }),

 notes : new nedb({ filename : `${__dirname}/notes.db`, autoload : true }),

 tasks : new nedb({ filename : `${__dirname}/tasks.db`, autoload : true })

};

I’ve created a single object with four attributes, one for each database associated

with each wxPIM module.

�(C)RUD: Create (POST Handler)
The reason I house the databases in an object keyed by name is because it will allow

us to write generic code, as you can see in the first of five functions (one for each HTTP

method POST, GET, PUT and DELETE, plus on extra that you’ll get to soon):

const postHandler = function(inRequest, inResponse) {

 let [collection, id, item] = commonOpening("POST (create)", inRequest);

 const db = databases[collection];

 db.insert(item, function (inError, inDocument) {

 if (inError) {

 commonErrorHandler(inError, inResponse);

 } else {

 inResponse.status(201);

 inResponse.send(JSON.stringify(inDocument));

 }

 });

};

app.post("/data/:collection", postHandler);

This handler handles POST requests (which corresponds to the C, Create, in CRUD),

as you can tell by the fact that the final line is to tell Express to use it for post requests,

but only for URLs in the form /data/:collection. The :collection token means that

Express will look for a single value after /data/ in the URL and will grab that value and

put it in the inRequest.params map. The term collection here corresponds to the name

of a wxPIM module, which matches up with the database members in the databases

object (in all lowercase, though).

Chapter 8 Taking wxPIM to the Cloud

318

Terms of endearment. W hen speaking of REST, especially in the Express world, you
may hear the term routes and endpoints. Route means the part of the URL following the
server name and the base part that identifies the API. So, if you make a GET request to
this server app at 127.0.0.1/data/notes/1234, the route is notes/1234 (and
the API itself is said to reside at 127.0.0.1/data). An endpoint represents a specific
operation within an API, so that really refers to the HTTP method that’s used. To put
it another way, a route is the name you use to access an endpoint, and the endpoint
specifies the operation to perform on the item that name specifies (and of course, the
URL is the combination of the two, plus the server path to the API itself).

The first thing this function does is call a common helper function,

commonOpening(), which is this:

const commonOpening = function(inMethodDescription, inRequest) {

 const collection = inRequest.params.collection;

 const id = inRequest.params.id;

 const item = inRequest.body;

 console.log(

 `${inMethodDescription}\ncollection: ${collection}\n

 id: ${id}\nitem: ${JSON.stringify(item)}`

);

 return [collection, id, item];

};

The goal here is to return the :collection token value, as well as the ID of an item

and the parsed POST body as an object. There’s also some logging so you can see a

request coming into the server on the console.

Now, it’s important to realize that this function is used by all the request handlers,

even though for some, not all of the data items it pulls out of the request are present.

For example, for this POST handler, there’s not going to be an ID on the URL; there’s only

going to be a collection. But, that’s fine. You’ll just get null values for the things that aren’t

applicable. Later, you’ll see that for a DELETE request, you have no POST body, and

that’s likewise not a problem. Using this common code, though, reduces duplication, and

Don’t Repeat Yourself (DRY) is usually a good principle to follow, so I have!

Chapter 8 Taking wxPIM to the Cloud

319

After that, you can finally see why the databases are contained in an object. You can

use the :collection value as an index into that object to get a reference to the correct

database for the module. This way, this POST handler will work for any wxPIM module

and doesn’t need to know what they are (only the databases code needs to know about

modules, but that’s a little harder to avoid frankly).

Once a reference to the correct database is obtained, then it’s just a matter of

making a simple db.insert() call on it, passing it the parsed POST body in the variable

item, which is whatever item the wxPIM client app is trying to create (an appointment,

contact, note or task) and giving it a callback function.

The callback function, as you saw previously, first checks for an error, and if one

occurs, it calls the commonErrorHandler() function.

const commonErrorHandler = function(inError, inResponse) {

 console.log(inError);

 inResponse.status(500);

 inResponse.send(`{ "error" : "Server error" }`);

};

This again avoids repeating too much code. If any error occurs, you send back an

HTTP 500 error response and a response body that is a bit of JSON that the client can

display to the user.

If no error occurs, then you send back an HTTP 201 (created) and the created object,

in case there are new members added to it that the client may need (in fact there is:

NeDB adds an _id attribute, though the client code doesn’t actually need this). This is a

best practice RESTful design in terms of both response code and what gets returned.

�C(R)UD: Read (GET Handler)
The next bit of code you find in server.js is the R in CRUD, Read, or the GET HTTP

request method handler.

const getHandler = function (inRequest, inResponse) {

 let [collection, id, item] = commonOpening("GET (read)", inRequest);

 const db = databases[collection];

 const callback = function (inError, inDocuments) {

Chapter 8 Taking wxPIM to the Cloud

320

 if (inError) {

 commonErrorHandler(inError, inResponse);

 } else {

 inResponse.status(200);

 inResponse.send(JSON.stringify(inDocuments));

 }

 };

 if (id) {

 db.findOne({ id : id }, callback);

 } else {

 db.find({}, callback);

 }

};

app.get("/data/:collection/:id?", getHandler);

As you can see, it’s substantially the same as the POST handler, a theme you’ll see

repeated for the remaining method. The commonOpening() function is used again to get

the name of the collection to operate on, the ID of the item to get, and the POST body

as the item (which of course isn’t relevant for this operation, but commonOpening() gets

it anyway). This time, there are two types of request: getting a single specific item or

getting all items for a specified collection. That’s where the if branch after the callback is

defined comes into play. Notice that the callback isn’t passed inline to the NeDB method

this time; it’s assigned to the callback variable instead. That’s because which NeDB

method is called depends on whether the URL included an ID or not, but either way,

the same callback handler should be used. If it did include an ID, then the findOne()

method, with the first argument being the match criteria to find the document with the

specific ID, is what you need because the caller requested a specific item. If there was

no ID, however, then the caller wants all items in the collection, so the find() method,

with no match criteria, is used instead. But, for either, the same callback function is used;

that’s why it’s separate this time, as compared to the POST handler. An HTTP 200 (ok)

response code with the document(s) in the body is the response in either case.

Note how the path passed to the app.get() method specifies both :collection and

:id? as tokens. The ? character has special meaning: it tells Express that the token is

optional. Without that, Express wouldn’t recognize a request to get all because it would

expect two tokens while only one would be passed (there’s no :id when requesting all

items in a collection).

Chapter 8 Taking wxPIM to the Cloud

321

�CR(U)D: Update (PUT Handler)
Next up is the PUT method handler, which handled the U in CRUD, Update.

const putHandler = function (inRequest, inResponse) {

 let [collection, id, item] = commonOpening("PUT (update)", inRequest);

 const db = databases[collection];

 db.update({ id : id }, item, { returnUpdatedDocs : false },

 function (inError, inNumAffected, inAffectedDocuments, inUpsert) {

 if (inError) {

 commonErrorHandler(inError, inResponse);

 } else {

 getHandler(inRequest, inResponse);

 }

 }

);

};

app.put("/data/:collection/:id", putHandler);

Once again, it’s almost identical in most ways to the previous two. Of course, this

time, it’s the update() method of the database object that gets called, and it is passed

a query, the ID of the item to update, and the updated item itself. The third argument

tells the method that you do not want the document returned. The reason for this is that

instead you’re going to call the getHandler() method. I ran into some issues when trying

to use the returned document; some sporadic corrupt documents were being returned.

I suspect it’s a NeDB bug, but the solution was simple enough: just use the code you

already know works in the getHandler() method!

As with the GET handler, the URL that maps to this function includes two tokens,

one for the collection and one for the ID of the item to update, but this time the ID is not

optional, so there’s no question mark involved.

�CRU(D): Delete (DELETE Handler)
To complete the set of four CRUD methods, you, of course, need an HTTP DELETE

handler, and that’s up next.

Chapter 8 Taking wxPIM to the Cloud

322

const deleteHandler = function (inRequest, inResponse) {

 let [collection, id, item] = commonOpening("DELETE (delete)", inRequest);

 const db = databases[collection];

 db.remove({ id : id }, { }, function (inError, inRemovedCount) {

 if (inError) {

 commonErrorHandler(inError, inResponse);

 } else {

 inResponse.status(200);

 inResponse.send(id);

 }

 });

};

app.delete("/data/:collection/:id", deleteHandler);

Of course, this is extremely similar to updateHandler() because like that method,

deleting requires a specific ID be specified, and it is passed as the query argument first.

The second argument, an empty object, is used to specify options for the removal. NeDB

supports a multi-option here (which is, in fact, the only one supported at the time of this

writing) to allow for deleting multiple matching documents. But since that’s not something

you need since you’re specifying a unique ID to delete, that’s just an empty object. Finally,

app.delete() is called to map this function to the DELETE HTTP method with a path that

includes :collection and :id tokens, as you’d (ideally at this point!) expect.

The response from this function is an HTTP 200 and the ID of the deleted item,

which is a typical convention for REST DELETE operations.

�And, As an Added Bonus…
That takes care of the four CRUD operation handlers, but there’s one additional function

that I alluded to earlier that you need, and that’s one to get all the data in all collections

at once. This will be used whenever wxPIM starts up, so all the data on the server can be

retrieved and stored in local storage in one request.

app.post("/getAllData", function(inRequest, inResponse) {

 let [collection, id, item] = commonOpening("POST (getAll)", inRequest);

Chapter 8 Taking wxPIM to the Cloud

323

 const returnObject = { };

 let collectionsToLoad = item.length;

 for (let collectionName of item) {

 databases[collectionName.toLowerCase()].find({},

 function (inError, inDocuments) {

 if (inError) {

 commonErrorHandler(inError, inResponse);

 } else {

 returnObject[collectionName] = inDocuments;

 collectionsToLoad = collectionsToLoad - 1;

 if (collectionsToLoad === 0) {

 inResponse.status(200);

 inResponse.send(JSON.stringify(returnObject));

 }

 }

 }

);

 }

});

You’ll notice first that I wrote this a little differently than the other four: the handler

function is now an anonymous function passed to app.post(). There’s no reason this

is better or worse really; it’s nothing beyond aesthetics and the code style you prefer.

The only thing I’d say is that if you think or know you will need to call a handler method

directly, as I did with getHandler() being called from updateHandler(), then you really

can’t use this inline anonymous function style.

But, regardless of style, the function isn’t too complex. It handles a POST request to

the path /getAllData. Note that you might expect it to be something like /data/getAll

so that it’s part of the base API, and that would be a reasonable expectation. However,

that would clash with the previous POST handler because remember that it expects

a collection name after the /data route, so /data/getAll would treat getAll as the

collection name, and you’d have a problem since there is no such collection. By giving

this function its own API route, that problem is avoided.

Chapter 8 Taking wxPIM to the Cloud

324

The POST body here will contain an array of module names, which remember

means collection on the server side, which is really a synonym of database. That array

is iterated over, and for each, the name is lowercased so that it matches what’s in the

databases object, and then the find() method is called with no query on each database

object, which returns to you all items in that database.

Now, this means you’ll have four asynchronous operations running at once, once for

each database. For each, the returned documents are added to the returnObject object.

When all of them are complete, a response needs to be rendered by the server. However,

since the calls are asynchronous, you don’t know which order they’ll finish in, so how do

you know when to render the response? Easy: you count down, starting from the number of

items in the incoming array, until you hit zero in the callback. The order then doesn’t matter

because whichever callback invocation results in the countdown reaching zero, that’s the

one that fired last and so it knows to render the response, which is just a JSON serialization

of returnObject, which then will contain all the data for all modules. You could write this in

a Promise-centric way as well if you prefer that style of asynchronous coding.

Just one small bit of code remains in server.js, and it’s the code that kicks it all off.

app.listen(8080, function () {

 console.log("wxPIM server listening on port 8080")

});

Yep, it’s just like you saw in the earlier example! Once this executes, the server is up

and running, and wxPIM has a remote API to call to persist its data!

�Hooking wxPIM Up to the Server
With the server code fully investigated, you can now look at the changes required to

the wxPIM version you’ve developed over the past two chapters and make the changes

necessary to connect the client app to the server. It turns out to not be all that much, but

it does introduce some new Webix capabilities, so let’s dive right in!

�Modules: A Small but Necessary Change
Virtually all of the changes are in the core code, save one minor but important change in

all four modules. Previously, in the newHandler() of each module was this line of code:

wxPIM.modules.Appointments.editingID = new Date().getTime();

Chapter 8 Taking wxPIM to the Cloud

325

Now, that line is changed to the following:

wxPIM.modules.Appointments.editingID = "" + new Date().getTime();

This was needed because NeDB seemed not to be able to find documents when the

IDs were numbers. So, by concatenating the time value with an empty string, JavaScript

coerces the value to a string, which makes the queries with NeDB work as expected. Like

I said, it’s a very minor thing but critical to making this work, and this is literally the only

change to any module’s code!

�Starting a Little Differently
To begin looking at the core code changes, you first have a small but important change in

the start() method in core.js.

start() {

 for (let moduleName of wxPIM.registeredModules) {

 wxPIM.modules[moduleName] = new wxPIM.moduleClasses[moduleName]();

 }

 webix.ui(this.getBaseLayoutConfig());

 webix.extend($$("baseLayout"), webix.ProgressBar);

 webix.ui(this.getSideMenuConfig());

 wxPIM.getAllData();

}

There are two changes here. The first is the line that adds a ProgressBar to the

base layout using the webix.extend() method. This will be needed when you call the

server. Since those requests are asynchronous, and because you want to keep this code

as simple as possible, I’ll use the “block the user from doing anything until the code is

finished” approach and mask the screen when a request is in flight. The ProgressBar

will show a spinning icon during that period to give the user some indication that work is

occurring. Blocking the user isn’t typically a great user experience (UX), but it is simple

and effective, so it’s suitable for our purposes here.

Chapter 8 Taking wxPIM to the Cloud

326

�Before You Go Any Further, Let’s Talk About Good Ol’ AJAX
AJAX is a technique that came to life, so to speak, at the hands of one Jesse James Garrett

in an essay he wrote in February 2005. There, he coined the term AJAX, which stands

for Asynchronous JavaScript and XML. The interesting thing about AJAX, though, is

that it doesn’t have to be asynchronous (but virtually always is), doesn’t have to involve

JavaScript (but virtually always does), and doesn’t need to use XML at all (but probably

doesn’t 99+ percent of the time).

Ajax is, at its core, an exceedingly simple, and by no stretch of the imagination

original, concept: it is not necessary to refresh the entire contents of a web page for

each user interaction, or each “event,” if you will. When the user clicks a button, it is no

longer necessary to ask the server to render an entirely new page, as is the case with the

“classic” Web. Instead, you can define regions on the page to be updated and have much

more fine-grained control over user event handling as a result. No longer are you limited

to simply submitting a form to a server for processing or navigating to an entirely new

page when a link is clicked.

The interesting thing about Ajax is that it is in no way, shape, or form new, and it

actually wasn’t even when Mr. Garrett coined the term. A few years ago, when AJAX was

still somewhat new, I liked to say that you could always tell who has done AJAX before

and who hadn’t because those who had are mad that it was a big deal and they didn’t get

credit for “inventing” it themselves!

Nowadays, the term AJAX isn’t used as much as before. People tend to talk about

“out-of-band requests” or simply “asynchronous requests,” and as I alluded to earlier it’s

virtually never XML nowadays. It’s almost always JSON. But, the core concept remains

the same: call the server, get some data, and use it in some way without repainting the

entire screen. That’s ultimately the point.

However, there are still remnants of AJAX it floating around, and one of the places

you can find such remnants in in Webix itself, where you find the webix.ajax() function.

This is the singular function that allows the client application to interact with the server.

When you call webix.ajax(), you get back an object that has a number of methods

on it for configuring the call to the server, plus some methods for actually executing that

call. There are also some shortcut methods available if you’re making typical GET and

POST requests, so which call syntax you use comes down to what your needs are. I’m

going to use the more verbose approach in the wxPIM server code because I think it’s

slightly easier to see what’s going on.

Chapter 8 Taking wxPIM to the Cloud

327

And, rather than give you any contrived examples here, because it’s not at all

fundamentally complicated, you’ll just look at the real use of webix.ajax() in the code.

�Back to That getAllData( ) Method
With AJAX generically out of the way, you can look at the second change in the start()

method, which is the call to wxPIM.getAllData(). This implements our very simplistic

form of synchronization, as you can see here:

getAllData() {

 wxPIM.maskUI();

 webix.ajax()

 .timeout(10000)

 .headers({ "Content-Type" : "application/json" })

 .post("/getAllData", JSON.stringify(wxPIM.registeredModules))

 .then(function(inResult) {

 localStorage.clear();

 const allModuleData = inResult.json();

 for (let moduleName of wxPIM.registeredModules) {

 const moduleDataArray = allModuleData[moduleName];

 const moduleDataObject = { };

 for (let i = 0; i < moduleDataArray.length; i++) {

 const nextItem = moduleDataArray[i];

 moduleDataObject[nextItem.id] = nextItem;

 }

 �localStorage.setItem(`${moduleName}DB`, webix.

stringify(moduleDataObject));

 }

 localStorage.setItem("dataLoaded", true);

 wxPIM.unmaskUI();

 wxPIM.dayAtAGlance();

 })

 .fail(function(inXHR) {

 $$("baseLayout").hide();

 webix.message({

 type : "error", text : "Server not available, wxPIM cannot start"

Chapter 8 Taking wxPIM to the Cloud

328

 });

 });

}

The first step is to block the UI with the ProgressBar that was added to the base

layout. This is done with a call to wxPIM.maskUI().

maskUI(inModuleName) {

 $$("baseLayout").disable();

 $$("baseLayout").showProgress({ type : "icon" });

 if (wxPIM.uiType === "desktop") {

 for (let moduleName of wxPIM.registeredModules) {

 let moduleWindow = $$(`moduleWindow-${moduleName}`);

 if (moduleWindow) {

 moduleWindow.disable();

 if (moduleName === inModuleName) {

 moduleWindow.showProgress({ type : "icon" });

 }

 }

 }

 }

}

First, the base layout is disabled, so no user input is possible, and the ProgressBar

on it is shown. If you’re in mobile mode, then you’re done at this point, but if in desktop

mode, then there’s more work to do. The problem is that the module windows aren’t part

of the base layout, which means that the ProgressBar on it won’t block the windows.

It doesn’t do much good to block the base layout if the user can still interact with a

module window! So, you iterate the collection of modules and look for a window for

each. If one is found, then it’s disabled. That covers all windows. Then, when you find the

window corresponding to the name of the module that was passed in, then you show the

ProgressBar on it (which is added when the window is launched, just like it’s added to

the base layout). In the case of calling this from getAllData(), there is no module name

passed in, but that’s fine—no harm, no foul.

Chapter 8 Taking wxPIM to the Cloud

329

Small launchModule( ) change. A s mentioned, there is a small change in
launchModule() related to this. The change is simply that when webix.ui() is
called to create the window, now the returned reference is captured in a variable
win. Then, rather than immediately calling show() on it anonymously, a call to
webix.extend() is first made to add the ProgressBar, just like is done to the
base layout. Only after that is win.show() called. The reason for this is that if you
call show() before the extend() call, then an error occurs, and the window doesn’t
get built properly. Since show() was previously called directly on the reference
returned by webix.ui() anonymously, this change was necessary; otherwise, there
would have been no way to call extend() on it first and avoid that error.

Once that’s done, you can go ahead and call the server using that webix.ajax()

method I mentioned. All of the AJAX calls that are made from here on out will have some

common configuration: setting a timeout and headers. Because the UI is being blocked,

you don’t want there to be a long timeout in case of problems. I decided on ten seconds,

though you could argue for a lesser or greater value. It’s also necessary to ensure that the

server knows that you’re sending in JSON in the POST body, so the Content-Type header

needs to be set. Without this, the content won’t be parsed properly by Express body-

parser middleware.

After the timeout() and headers() methods are called, it’s time to make the request,

and that’s done through one of the methods of the object returned by webix.ajax(),

which correspond to HTTP methods: del() (for DELETE), get(), patch(), post(), or

put(). You provide these methods with the URL to send the request to, which here is that

/getAllData route you created earlier. Then, in this case, you need to send an array of

module names in the POST body so that object is serialized to JSON and provided as the

second argument to the post() method.

The return value from any of these methods is a promise, so you can then attach

a then() handler for successful responses and a fail() handler for error responses.

Assuming no errors occur, the first step in the then() handler is to clear local storage.

Remember, this is a “cheap” method of synchronization here, so you’re literally just

replacing whatever data you have locally with what the server gives you, making the

server the canonical source of wxPIM data at all times.

Chapter 8 Taking wxPIM to the Cloud

330

After that, you, of course, need to populate local storage with what the server sent

back, so the array of module names is iterated, and for each, the data from the returned

object is pulled out based on the name. Each item in the data array is attached to an

initially empty object using the id field of each array element as the key in the new

object, and finally, that object is stored in local storage. That ensures the data structure

that the client-side wxPIM code depends on is there.

When all the data has been stored, then it’s just a simple matter of calling wxPIM.

unmaskUI() to reenable the UI.

unmaskUI() {

 $$("baseLayout").enable();

 $$("baseLayout").hideProgress();

 if (wxPIM.uiType === "desktop") {

 for (let moduleName of wxPIM.registeredModules) {

 let moduleWindow = $$(`moduleWindow-${moduleName}`);

 if (moduleWindow) {

 moduleWindow.enable();

 moduleWindow.hideProgress();

 }

 }

 }

}

It’s exactly like wxPIM.maskUI() except of course you’re calling enable() on the base

layout and all windows and hiding the ProgressBar components on each. Finally, a call

to wxPIM.dayAtAGlance() is made to populate that screen, like would normally happen

at this point even without the call to the server.

Now, in the case of a failure, you take drastic but simple and effective measures: hide

the ProgressBar, hide the entire UI, and tell the user that wxPIM couldn’t start. This

is far from being a robust approach, but this isn’t an app you’ll be selling to people for

real-world use, so it doesn’t need to be production-ready (and besides, this gives you an

opportunity to enhance the app later as an independent learning exercise!).

Chapter 8 Taking wxPIM to the Cloud

331

�Saving to the Server
Next up is the common wxPIM.saveHandler() method, which naturally needs to make

an AJAX call to the RESTful API that is the wxPIM server code.

saveHandler(inModuleName, inFormIDs) {

 const itemData = { };

 for (let i = 0; i < inFormIDs.length; i++) {

 const formData = $$(inFormIDs[i]).getValues();

 webix.proto(itemData, formData);

 }

 itemData.id = wxPIM.modules[inModuleName].editingID;

 delete itemData.$init;

 wxPIM.maskUI(inModuleName);

 const thenHandler = function(inResult) {

 const moduleData = wxPIM.getModuleData(inModuleName);

 moduleData[itemData.id] = itemData;

 localStorage.setItem(`${inModuleName}DB`, webix.stringify(moduleData));

 wxPIM.modules[inModuleName].refreshData();

 $$(`module${inModuleName}-itemsCell`).show();

 wxPIM.dayAtAGlance();

 wxPIM.unmaskUI();

 webix.message({ type : "error", text : "Item saved" });

 };

 const failHandler = function(inXHR) {

 wxPIM.unmaskUI();

 webix.message({

 �type : "error", text : "Server not available, data changes not

currently possible"

 });

 };

 const callURL = `/data/${inModuleName.toLowerCase()}`;

 const callTimeout = 10000;

Chapter 8 Taking wxPIM to the Cloud

332

 const callHeaders = { "Content-Type" : "application/json" };

 const callBody = JSON.stringify(itemData);

 if (wxPIM.modules[inModuleName].isEditingExisting) {

 webix.ajax()

 .timeout(callTimeout)

 .headers(callHeaders)

 .put(`${callURL}/${itemData.id}`, callBody)

 .then(thenHandler)

 .fail(failHandler);

 } else {

 webix.ajax()

 .timeout(callTimeout)

 .headers(callHeaders)

 .post(callURL, callBody)

 .then(thenHandler)

 .fail(failHandler);

 }

}

Things are the same early on: the same sort of form merging you already know about

is still done, but the changes start with masking the UI, as you saw in wxPIM.getAllData().

Next, you define a success and failure handler, which corresponds to thenHandler and

failHandler. You have to remember that this method handles both creating a new item

and updating an existing one, so there’s two different calls that can be made from here,

a POST for creating and a PUT for updating. But, the basic logic in the then() handler

and fail() handler is the same in both cases, so they get defined and stored in the

thenHandler and failHandler references. Likewise, the URL starts off the same (but with

the ID of the item added when doing an update), so the callURL variable contains that

common base. To avoid repeating too much code, the callTimeout, callHeaders, and

callbody variables are likewise created independently of the actual call.

Then, with all those variables populated with the appropriate value, the code

interrogates the isEditingExisting member of the current module. If it’s true, then the

if branch is followed, resulting in a put() call. This is where the ID is added to the base

URL to create the complete appropriate URL for that operation. If a new item is being

created, then the else branch executes, making a post() request.

Chapter 8 Taking wxPIM to the Cloud

333

Upon a successful call, the thenHandler code fires. You can update local storage

only once the response comes back successfully from the server; otherwise, you would

have a synchronization problem, so that’s the first step done in the callback. In fact, the

code in the callback is essentially the same as before you added the server component

to this app, save for hiding the mask and reenabling the UI. So, as before, the module is

given a chance to update its data (its summary screen more specifically), and then the

day-at-a-glance screen is asked to refresh itself as well in case this new or updated item

is to be displayer there.

Similarly, the failHandler code simply unmasks and reenables the UI and tells the

user the change couldn’t be saved. Nothing is saved to local storage in that case, and

the user can retry the save if they want. Otherwise, they can treat the app as if it’s in a

read-only mode.

�Deleting from the Server
The final difference in the core code, meaning the last thing you need to do to make

wxPIM server-aware, is a similar change to wxPIM.saveHandler() but this time in the

wxPIM.deleteHandler().

deleteHandler(inModuleName) {

 webix.html.addCss(webix.confirm({

 �title : `Please Confirm`, ok : "Yes", cancel : "No", type : "confirm-

warning",

 text : `Are you sure you want to delete this item?`, width : 300,

 callback : function(inResult) {

 if (inResult) {

 wxPIM.maskUI(inModuleName);

 webix.ajax()

 .timeout(10000)

 �.del(`/data/${inModuleName.toLowerCase()}/${wxPIM.

modules[inModuleName].editingID}`)

 .then(function(inResult) {

 const dataItems = wxPIM.getModuleData(inModuleName);

 delete dataItems[wxPIM.modules[inModuleName].editingID];

 �localStorage.setItem(`${inModuleName}DB`, webix.

stringify(dataItems));

Chapter 8 Taking wxPIM to the Cloud

334

 wxPIM.modules[inModuleName].refreshData();

 $$(`module${inModuleName}-itemsCell`).show();

 wxPIM.dayAtAGlance();

 wxPIM.unmaskUI();

 webix.message({ type : "error", text : "Item deleted" });

 })

 .fail(function(inXHR) {

 wxPIM.unmaskUI();

 webix.message({

 �type : "error", text : "Server not available, data changes

not currently possible"

 });

 });

 }

 }

 }), "animated bounceIn");

}

This code is the same as before until you get inside the callback. Masking and

disabling the UI has been added again, and now a webix.ajax() call is made to the

server to do the delete, this time using the del() method, which corresponds to the

HTTP DELETE method. Since there’s just one type of call here, the code is simpler than

in wxPIM.saveHandler() since there’s no branching involved. All the configuration for

the call is therefore inlined, as are the then() and fail() handlers. Upon a successful

response, the data is again deleted from local storage, the module is given a chance to

refresh its data and summary screen, and the same goes for day-at-a-glance. The UI is

returned to its usable state, and a message is shown to the user. If a failure occurs, the

same message is given to the user indicating they appear to be in an offline state, and no

data changes occur.

With that, wxPIM is now fully server-capable!

Chapter 8 Taking wxPIM to the Cloud

335

�Summary
In this chapter, you took a small detour from Webix to learn about some server-side

technologies including Node, NPM, Express, RESTful APIs, and NeDB. Then, you took a

detour right back into Webix to learn how to hook wxPIM up to the server. You saw how

easy it is to make calls to remote systems from a Webix app.

In the next chapter, you’ll take the next logical step, which is making wxPIM a true

mobile app using the popular Cordova (aka Phonegap) tool.

Chapter 8 Taking wxPIM to the Cloud

337
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_9

CHAPTER 9

Packaging wxPIM
with PhoneGap
Now that wxPIM is feature-complete on both the client and server sides, it’s time to talk

about truly mobilizing this application.

That’s where a new piece of technology comes into play: PhoneGap. With this tool,

you’ll be able to transfer the app into a native application (more or less) that will run

across multiple mobile platforms including Android and iOS.

While it’s entirely possible merely to put the client app on a web server and have

people access it with their web browser, that’s not a true native app experience, like

many people expect these days. You can’t just go and download your app from the app

store on your device, such Google Play for Android or the App Store for iOS. That’s a

piece of the puzzle that you need to supply, and PhoneGap is precisely what you need to

pull off that trick!

�The Problems with Mobile Development
Mobile development has historically been a bit tricky if you had it in your head to

support multiple platforms. If you wanted an app to run on Android, iOS, Windows

Phone, and so on, you faced a Herculean task. The only real option for a long time was

to write multiple applications using native SDKs specific to each platform. You’d write

your app in Objective-C for iOS, in Java for Android, in .NET for Windows Phone, and in

C++ for BlackBerry. Sure, you could design the code of the application in such a way that

rewriting it for each platform was slightly easier (that’s just good architecture after all),

but it was still essentially rewriting it for each platform, so a little easier or not, it was still

a major chore.

338

This is a form of fragmentation; the market itself is fragmented with the multiple

platforms available. This fragmentation is fantastic for consumer choice, but it does

make life difficult for a developer, unless you choose not to support some platforms,

and that’s usually not a great idea if you want to reach the widest possible audience. Of

course, the market has largely narrowed to two main players, iOS and Android, but there

are still other players out there that you may want to consider, and certainly the future

could find new players on the field at any time.

However, rewriting code for each platform is becoming less and less the approach

that most developers take in favor of (arguably, at least) better choices such as cross-

platform libraries that let you write a single codebase that runs on multiple platforms

(well, mostly a single codebase anyway). Libraries such as Corona, Ionic, and React

Native, for example, allow you to do this, and they do so rather well in many situations.

In this context, the combination of HTML, JavaScript, and CSS can also be viewed

as such a cross-platform tool. It’s not always thought of like that, but that’s what it is in

effect. You target this “platform” made up of these three technologies, and as long as

a mechanism is available on a given “physical” platform to execute your application

(read: a web browser), it will generally work across platforms. As it happens, a web

browser is exactly that mechanism! Using these technologies, you can avoid a number

of forms of fragmentation all at once.

Before I talk about that, though, let’s look at the forms of fragmentation you’re trying

to avoid in the first place, that is, the forms of fragmentation that come along with actual

native development that make it harder than you’d like it to be.

�Fragmentation of User Experience
Another problem with mobile development across multiple platforms is that of

providing a consistent user experience. Each platform has its own UI design and patterns

that the native development methodologies provide an application. That means the

application will look, feel, and function differently in terms of its UI from one platform

to another. While there are means by which a developer can to some extent work around

this default behavior, it is usually frowned upon. Creating an app that follows the iOS

modes of operation and UI metaphors and running it on Android isn’t typically the best

answer even when you can pull it off.

Still, it’s a starting point at least, and for some apps, it’ll be acceptable, but it’s still a

form of fragmentation that you as a developer need to at least consider.

Chapter 9 Packaging wxPIM with PhoneGap

339

�Fragmentation of Features
It’s also true that not all platforms are created equal in terms of features (though the gap

there too has narrowed to a significant degree). Android, for example, has the notion

of home screen widgets while iOS does not. If your application’s basic functionality

depends on widgets, the experience will be different, perhaps drastically so, on iOS

(and it might not even be possible to bring your app to a given platform because of it).

This means your application may have considerably different capabilities running

on one platform than it does on another platform by necessity. Especially for users who

might jump between platforms, that’s not going to endear them to your application,

more so if they lose features they depended on previously.

�Fragmentation of Development Tools
Another problem is that of the various development tools. Developing an iOS

application, for example, requires you to have a Mac. If you’re more of a Windows user,

like I am, that’s a bit of a problem. Even if you’re a Mac user, you still need to have Xcode

installed to do iOS development. Even though you can do Android development just fine

on a Mac, you don’t need to have Xcode installed for that. There can be vast differences

in the platforms and tools you need to develop for various mobile platforms; that’s the

basic point here. And, that’s before even talking about the vastly different APIs that each

platform presents.

If you want to develop for multiple platforms, then the situation becomes worse.

Each platform has its own SDK if nothing else, and you’ll need to install them all for the

platforms you want to support. That aside, you’ll still need to learn different languages,

APIs, and platform-specific tools. While it’s true that a capable developer can generally

jump between technologies without too much difficulty, there’s no question that it slows

them down and sometimes leads to less optimal designs. Something that works great

in Objective-C might not work as well in Java, architecturally speaking. Being able to

optimize a design across technologies is a huge task no matter how capable you are, and

the best developer in the world may not be able to overcome some challenges because of

the intrinsic differences between mobile platforms.

Chapter 9 Packaging wxPIM with PhoneGap

340

�Enter the White Knight: PhoneGap
Now let’s go back to what I proposed earlier, that is, building an app with HTML,

JavaScript, and CSS that runs in a browser on a mobile device (because in theory that

should avoid all of that fragmentation). HTML, JavaScript, and CSS are all standards-

based technologies, which means that aside from some relatively minor differences here

and there between browsers, an app written using them will generally look, feel, and

function consistently across platforms. That sure sounds like the Holy Grail of mobile

development, doesn’t it? Especially if you narrow the scope a bit to HTML5, which to

most people actually means the combination of HTML5, CSS3, and the latest version of

JavaScript you can make a strong case for it being exactly that.

There’s still a significant problem to deal with, though: the “native experience.”

What I mean by that is the experience that a user has of downloading an app to their

device from an online store that appears to run like any other native app written

with Objective-C for iOS or Java for Android, for example. Yes, they can point their

web browser at a URL and launch your app, and in some ways, that’s arguably better

as it ensures that they always run the latest code. However, it’s not the same thing,

and people seem to prefer not having to do that. (I make this statement based on the

popularity of apps.)

Is there a way to accomplish that goal with these technologies? Of course, there is:

PhoneGap.

�What Is It?
PhoneGap is a framework that allows you to use standardized web technologies to build

mobile applications. In short, you more or less build your application using HTML5 as

you always would and then “package” it using PhoneGap to create a native application.

This application can be built to target multiple platforms, and it can then be offered for

download in each platform’s online app store. The application, to the end user, looks and

works just like any other application. It gets an icon in the launcher, for example, which

launches the app without opening the web browser.

Not only does PhoneGap provide this native “wrapper” around your HTML5

application code, but it also provides a robust collection of JavaScript APIs that you can

(optionally) use to gain access to the native device capabilities that your HTML5-based

application running in a web browser otherwise wouldn’t have access to use. Things

Chapter 9 Packaging wxPIM with PhoneGap

341

such as gyroscopes, accelerometers, GPS, databases, and more, are made available to

you via these APIs. While you certainly can write an application that doesn’t use them,

you often will want to incorporate them in order to provide all the capabilities that users

expect from a modern mobile app.

The underlying goal of PhoneGap is to offer, effectively, a runtime that provides

parity across platforms. Develop a PhoneGap application using standard HTML5

technologies, one that targets the PhoneGap APIs where necessary, and the result is that

your app will work the same across all supported platforms without you having to lift a

finger to achieve that goal. In other words, it’s Nirvana!

�A Brief History of PhoneGap
PhoneGap was birthed at an event in San Francisco named iPhoneDevCamp in

2008 as a means to deal with the issue that many developers run into when starting

iOS development, which is that Objective-C can be challenging or, at the very least,

unfamiliar even to experienced developers. Although somewhat less true today because

of the popularity of iOS development, it was certainly true in 2008. At that point in time,

it was called PhoneGap. It quickly gained popularity because it provided experienced

web developers with an avenue into native iOS development using technologies with

which they were already comfortable, rather than having to learn Objective-C and a

completely new way of doing things. Then, in 2009, Cordova (still known as PhoneGap)

won the People’s Choice Award at O’Reilly Media’s Web 2.0 conference. That’s when

people really started to take notice, and it was the catalyst for PhoneGap usage to

explode quickly.

Though originally created by a company named Nitobi, PhoneGap was purchased

by Adobe in 2011. Shortly thereafter, Adobe contributed the PhoneGap codebase to the

Apache Software Foundation where it lives now under the name Cordova.

Don’t let this confuse you! In simple terms, Cordova is the underlying open source

library, while PhoneGap, still very much alive and kicking under the Adobe banner, is

the most commonly used distribution of Cordova, so to speak. Perhaps a better way to

put it is that it is analogous to how WebKit relates to Safari: WebKit powers Safari, and,

in the same way, Cordova powers PhoneGap. Yes, that also means there could be other

competing versions of Cordova, and it also means that PhoneGap could have different

capabilities than the basic distribution of Cordova.

Chapter 9 Packaging wxPIM with PhoneGap

342

As a developer, you can choose to use “naked” Cordova if you like, or you can use

PhoneGap specifically. The differences will, by and large, not be huge, aside from some

differences in tooling. For the sake of simplicity, you’re going to use PhoneGap because

that gives you the ability to use something that Adobe provides called PhoneGap Build,

which will make life much easier for you here. We’ll get to that shortly, but before then,

let’s cover something else: how PhoneGap does what it does.

�How Does This Black Magic (Basically) Work?
I’ve been using the term native app a bit loosely here with regard to PhoneGap. In fact,

PhoneGap apps are actually “hybrid” apps, not true native apps. The difference is that

a hybrid app runs within a WebView, which handles rendering the UI, rather than the

native toolkit of the underlying OS platform.

A WebView is something that nearly all modern mobile OSs have. Some platforms

have different names for it, but probably the most common one is WebView. Whatever

it’s called, it’s a specific UI component that can be embedded directly into the UI of a

true native application. Typically, this is used to show things such as online help content

or registration pages—any web site really that the application needs.

This is done without launching a separate web browser, and I’m sure you can see how

that’s a handy capability for any app to have! A WebView differs from a web browser in that

it doesn’t have typical web browser controls such as the back, forward, and home buttons.

Instead, it’s just the viewport portion of a browser—the blank canvas onto which HTML is

rendered. Beyond being simply handy for a native app, though, it’s the key to PhoneGap!

At the most basic level, PhoneGap is not much more than a small native app with a

UI that is nothing but a full-screen WebView control within which your HTML5 web app

is launched. From there on, your app works as if it were running in a web browser, which,

of course, it actually is, as far as the HTML and JavaScript that make up your app are

concerned! Remember, though, it’s a web browser that doesn’t look like a web browser to

the user since it doesn’t have the usual navigation controls or other “chrome” around the

rendering surface of a typical browser. The canvas on which your app renders its UI is the

entire screen of the mobile device effectively, just as is the case for a native app.

It’s really one of the more clever ideas to come along, but it’s also quite simple and

obvious after the fact, which, of course, is a hallmark of any great idea! There is, of course,

slightly more to it than that. Every WebView control allows for one other key capability:

the ability of JavaScript code to call native code, be it C/C++, Objective-C, or Java,

depending on the OS. It presents these calls as part of a large JavaScript API that you can

Chapter 9 Packaging wxPIM with PhoneGap

343

use, or not use at all; it’s completely up to you. Since this book isn’t about PhoneGap, it’s

about Webix, I won’t go into much detail on these APIs, just like I didn’t go into the vast

API provided by Node or Express. However, near the end of this chapter, I will use an API

to enhance wxPIM, just to give you a little bit of a view into what the APIs have to offer.

�A Simpler Build Approach: PhoneGap Build
Creating a PhoneGap app isn’t hard. You essentially build it like any other web app you

would build and then you use the command-line tools provided by PhoneGap (or just

Cordova if you want to stay completely open source). Either of those provides a robust

command-line interface (CLI) that allows you to take that simple web app and package it

up into a native app.

The problem with that, though, is that it requires all that native tooling I talked

about earlier. You need the SDKs for the platforms you want to support installed, plus

whatever IDEs or tools they require, and that assumes you’re on the appropriate desktop

platform to install any of it in the first place! It can be quite a nightmare to get a proper

cross-platform mobile development platform set up. It’s time and effort even if it goes

smoothly or it could be a huge pain in the tuchus, as my mom likes to say!

Thankfully, there is a much simpler solution that takes virtually all of this pain away:

PhoneGap Build. PhoneGap Build is a cloud-based solution offered by Adobe that

allows you to upload your application’s source code, plus a small XML configuration file

that provides some details needed by the servers that then builds your application for a

number of platforms and ultimately makes download links available to you. You simply

upload an archive of your app, and after a few minutes, you’ll be able to download

versions for various supported mobile platforms.

It really is a fantastic service that removes virtually all the pain of building for

multiple mobile platforms. Let’s dive in, shall we?

�Get Ready: Signing Up
The first thing you’ll need to do is to sign up for a PhoneGap Build account. To do so,

visit https://build.phonegap.com and click the big Get Started! button next to the

floating robot over the scrolling sky. (I know, it sounds crazy, but that’s what’s there, and

it actually looks cool!) When you click the button, the page will automatically scroll to a

section that outlines your plan choices, as shown in Figure 9-1.

Chapter 9 Packaging wxPIM with PhoneGap

https://build.phonegap.com/

344

If you happen already to have an Adobe ID, then you are all set! Simply sign in with

your credentials for that service, and you’re good to go. You will have the ability to create

25 separate private apps within PhoneGap Build, and you can then manage and build

them independently. You’ll also have the ability to have unlimited open source apps.

Figure 9-1.  PhoneGap Build plan options

Chapter 9 Packaging wxPIM with PhoneGap

345

The difference between a public app and a private app in this context is simply where

the source code of your app is found. If your code can be found on GitHub or some other

publicly available Git repository, then it is public. Otherwise, it’s private. For your needs

here, you’ll be dealing with a private app, so there’s no need to get set up with Git and no

need for you to have any knowledge of it if you don’t want to. The number of private apps

allowed is the big differentiating factor in the PhoneGap Build plans available to you. For

your purposes here, a single private app is fine, but if you need more, then that’s when

you’ll need to fork over some cash to Adobe.

Of course, you can remove an existing private app to make room for another at any

time, and so as long as you’re working on only one app at a time, then the free option

would be sufficient. The free service also, from my experience, is subject to longer lines

in terms of queuing for a build to occur. In other words, you might wait five minutes for

your build to complete instead of 30 seconds if you have a paid plan (though most of the

time the build speed actually is measured in seconds). That’s a small price to pay in my

mind. Either way, for what you need to do here, it’s perfectly fine.

Once you select your plan, you’ll be asked to sign into an existing Adobe account

or to create a new one (you can also log in with Facebook or Google credentials if you

prefer).

Once you create the account or log in, then you’ll find yourself staring at a screen

very much like the one shown in Figure 9-2, which is your personal app console. At

this point, you can do a number of things. First, you can create a new private app by

supplying the URL to a Git repository (or connect to your GitHub account if you have

one) or upload a ZIP archive of your application. If you already have an app uploaded, as

I do in the screenshot, you can update the code (if I’m creating a new build) or request

PhoneGap Build to rebuild all the available versions (iOS, Android, and Windows

Phone). You can also click the icons for each of the supported platforms to download the

packaged application for that platform. There’s even a QR code you can scan with your

phone to access the download link (because typing is for suckers!)

Chapter 9 Packaging wxPIM with PhoneGap

346

Really, for what you’re doing in this book, that’s just about all you need to know

about PhoneGap Build, well, except for one very important thing that allows it to work at

all: the configuration file.

�Get Set: The Configuration File
The configuration file, which you’ll name config.xml and place in the root directory of

the app alongside the index.html file that serves as the app’s starting point, is where you

specify metadata about your application that informs PhoneGap Build about various

parameters it needs to build your application. Most of the information you can put in

this file is optional, and you can get away with a small subset of all that is available to

you. Listing 9-1 is the config.xml file for wxPIM. As you can see, it is rather spartan.

Listing 9-1.  The config.xml File for wxPIM

<?xml version="1.0" encoding="UTF-8"?>

<widget xmlns="http://www.w3.org/ns/widgets"

 xmlns:gap="http://phonegap.com/ns/1.0"

 id="com.etherient.wxPIM"

 version="1.0.0">

 <name>wxPIM</name>

 �<description>wxPIM fom the book Practical Webix by Frank W. Zammetti

</description>

Figure 9-2.  Your app console

Chapter 9 Packaging wxPIM with PhoneGap

347

 �<author href="http://www.zammetti.com" email="fzammetti@etherient.

com">Frank W. Zammetti</author>

 <preference name="phonegap-version" value="cli-6.5.0" />

 <plugin name="cordova-plugin-vibration" spec="2.1.5" />

</widget>

The first required element is the <widget> element. This must be the root element

that lets PhoneGap Build know you’re following the widget specification, which the

config file is based on. This element has a number of attributes, but only id and version

are required.

The id attribute is the unique identifier of your application, which must be unique

across all apps built using PhoneGap Build. The way you ensure this without meeting up

with every other developer in the world and coming to some sort of arrangement is to

use reverse-domain name naming. This is typically seen in Java package names, and it is

simply your domain name backward, plus an app name. For example, I own the domain

name etherient.com, so com.etherient.wxPIM fits the bill. Now I only have to ensure

the final portion of that, wxPIM, is unique within the domain I control. I’m not averse to

arguing with myself at times, but I’m sure even I can manage this level of cooperation

with myself!

The version attribute is a free-form field, but typically the value is in the common

major.minor.patch form, as you can see.

The <name> and <description> elements, children of the root <widget> element,

are not actually required by the widget spec, but the PhoneGap Build documentation

calls them out as required by the build servers. The <author> element is similarly not

required, not even by the build servers, though it’s a good element to include anyway.

The <preference> element is how you define various options to direct the build

servers what to do. None are required, but at a minimum, the phonegap-version option

should usually be specified so that you know what version of the library the build servers

will build your code with.

Finally, the <plugin> element tells PhoneGap Build that your app is going to use

a PhoneGap plug-in, which are JavaScript modules that expose various native device

capabilities through a JavaScript API. In this case, you’re going to use the vibration plug-

in so you can make the device vibrate under certain conditions that you’ll see shortly.

There’s quite a lot more you can specify in the config file, including things like

images for icons and splash screens and plug-ins to use (plug-ins being extra PhoneGap

libraries that provide more capabilities to your app), but that’s going beyond the scope of

Chapter 9 Packaging wxPIM with PhoneGap

348

this book. If you’re interested, and certainly I hope you are at this point, the PhoneGap

Build documentation provides all the details (and there are even GUI tools available to

create the config file if you prefer; search online for configap to find one).

�Go: Starting the Build
With a config.xml file written and added to the root of your application, it’s time to

kick off a build. The first step to doing this is a simple one: create a ZIP archive from

your application’s directory. This needs to include all your application code, including

libraries (like Webix).

Note when I say “zip up that directory,” I mean you should zip up the contents

of the directory, not the directory itself. Put another way, after you zip it up, copy the

archive file to an empty directory somewhere else and try to extract it. When you do so,

you should not see a new directory created in the empty directory. Instead, you should

see the contents of the root of the application “spill out,” so to speak, directly into the

previously empty directory into which you’re extracting the archive.

With the archive created, you can send it off to PhoneGap Build. To do so, click that

New App button on the app console, which will lead to a screen like in Figure 9-3.

Figure 9-3.  Adding a new app

Here, I’ve clicked the Private tab since that’s the kind of app I want to send. And,

given that you have a ZIP file to upload, the Git repo part doesn’t matter; only that big

“Upload a .zip file” does. Once you click that button and select the ZIP file, you’ll be

greeted by a progress bar for a few seconds before finding yourself back on the app

console screen with the new app listed.

Chapter 9 Packaging wxPIM with PhoneGap

349

But, at this point, nothing has been done other than shipping the archive off to the

build servers. To initiate the build, you click the Ready to Build button that you’ll find is

available. Once you do, it shouldn’t really take more than ten seconds or so for an app

the size of wxPIM to be built.

�Crossing the Finish Line: The Output Files
After the build completes and you’re back at the app console screen, you can click the

name of your app to see details about it, as shown in Figure 9-4.

Figure 9-4.  wxPIM details

Each of the supported platforms uses its own native bundle formats, but all of them

are archives containing platform-specific code. On iOS, the format is IPA. For Windows

Phone, it’s an APPX file. For Android, the answer is an APK.

Notice in Figure 9-4 that the iOS build has failed, as indicated by the error icon. If you

click the Error button, it will explicitly tell you that this is because you need to provide

a signing key for iOS. While Android and Windows Phone support signing keys as well,

they aren’t required for development and so don’t cause an error. I’ll touch on this in the

next section.

Chapter 9 Packaging wxPIM with PhoneGap

350

At this point, you can download the bundle for each platform using the buttons next

to each (except for iOS) and install those bundles onto a real device, or an emulator, and

begin testing your app.

From here you can also upload a new archive via the Update code button, or you

can trigger a rebuild with the “Rebuild all” button. You can also rebuild for a specific

platform with the Rebuild button next to each, and you can select signing keys with the

drop-downs (which also include functionality to add those keys).

PhoneGap Build also has the notion of “collaborators,” others that are working on a

project with you. The Collaborators tab lets you maintain this list of people and provides

them with the ability to, for example, download builds. You can also view and maintain

plug-ins that your app uses on the Plugins tab (if any are used, obviously). Finally, the

Settings tab allows you to control some things about your app. This includes enabling

debugging capabilities to your app and enabling hydration (something beyond the scope

of this book, but in short, it’s a means to allow you to easily push new builds to testers

quickly). You can also switch an app between being public and private (subject to the

limitations of your account type of course), and you can delete the app entirely from here

as well (to make room for a different single private app if you’re using a free account, for

example).

�Getting Files onto Your Device
As described in the previous section, the native bundles for each platform for which your

app was successfully built are easily downloadable from the app info page or the Install

page. However, that tells you nothing about how to get that bundle onto a real device or

an emulator. Let’s talk about that now, shall we?

�Deploying to Android Devices
For Android, the answer is quite simple: plug in your device and copy the APK to the

device like you would any other file. When that’s done, use whatever file manager you

prefer and execute the APK. That will trigger an application installation like any other,

providing you do one thing first: enable the “Unknown sources” option, which allows

for the installation of apps from sources other than the Play store. This option is under

Security in your devices’ settings.

Chapter 9 Packaging wxPIM with PhoneGap

351

Another approach, and the technique I personally use most because it is arguably

the simplest and most convenient, at least in my mind, is to create a share to a network

directory on my PC. Next, I make sure that the APK is present in that directory, and then

I use a file system browser on my device, such as FX File Explorer, ES File Explorer, or

Astro File Explorer (all of which critically include SMB capabilities) to browse to that

share and directly launch the file. This approach is nice because I don’t have to bother

with USB cables, making sure that drivers are installed, or any of that. I also don’t have

to worry about uploading to a web server (of course, the web server could be running

locally, which would make that approach not much different from this one frankly). It’s

still a two-step process, as all of these are, but now it’s very straightforward. In addition,

when I’m testing on multiple devices, it’s easy since the same APK is always at the same

location, and I can browse to it any time I like to install it.

If you are already familiar with Android development and have the Android SDK

installed, then you can use ADB (Android Debug Bridge, a command line tool for

interacting with an Android device) to push the APK to your device. But, since that requires

installing some development tools to work and you’re trying to avoid that as much as

possible, I’ll leave that to an exercise for you if you’d like to explore that option on your own.

�Deploying to iOS Devices
To deploy to an iOS device, you’ll need a few things.

•	 First, you’ll need a Mac because the development tools you’ll need

to accomplish the next few steps (OpenSSL and most likely Xcode)

are available only on a Mac. (OpenSSL isn’t Mac-only, but Apple

only allows you to complete these steps on a Mac, and Xcode is most

definitely Mac-only.)

•	 Then, you’ll need to sign up for the iOS developer program ($99 per

year). This will give you access to the Apple Developer Portal.

•	 Next, you’ll need to obtain an Apple developer certificate using the

Keychain Access application.

•	 After that, you'll need to register the devices you want to be able to

deploy to on the Apple Developer Portal.

•	 Once that’s done, you’ll need to create a provisioning profile, also

through the Apple Developer Portal.

Chapter 9 Packaging wxPIM with PhoneGap

352

•	 With that accomplished, you’ll be able to use the certificate you

created as a signing key on PhoneGap build.

•	 Finally, with a build successful using the key, you’ll then be able

to plug in your i-device and push the app to it for testing using the

developer tools you installed.

And if that sounds like a lot of effort, you are 100 percent correct!

It’s not really that difficult once you walk through the steps, but if it’s your first time, it

can seem very daunting—so daunting, in fact, that I’m not going to try to cover it all here!

Instead, I’m going to point you to one address.

http://docs.phonegap.com/phonegap-build/signing/ios

That’s the PhoneGap Build page that describes the steps and provides links to

everything you’ll need. The bottom line is that if you want to deploy an app build with

PhoneGap Build to iOS, unlike Android or Windows Phone, you’ll need to pay for the

privilege, and you’ll need to run the iOS development gauntlet to at least some degree to

be able to do so.

�A Few Necessary Code Changes and Enhancements
If you take the wxPIM app code as it exists right now and submit it to PhoneGap Build,

assuming you add the config.xml file, it won’t work. That’s because there are a few

changes that are necessary. The first is that since you need to include everything your

app needs in the archive, which includes Webix, that means that in index.html, the

paths to Webix need to be updated. Fortunately, that’s as easy as changing the Webix CSS

and JS file imports to the following:

<link rel="stylesheet" href="webix/webix.css" type="text/css"

media="screen" charset="utf-8">

<script src="webix/webix.js" type="text/javascript" charset="utf-8"></

script>

Now, the Webix source is copied into the root directory of the project, and that minor

issue is taken care of.

Something else you need to do is to add a new import.

<script type="text/javascript" src="phonegap.js"></script>

Chapter 9 Packaging wxPIM with PhoneGap

http://docs.phonegap.com/phonegap-build/signing/ios/

353

That brings in the core PhoneGap code that is required to use any of PhoneGap’s

capabilities, like the vibration API. In fact, you can leave the app as it is now and build

it, and it will ostensibly work, but you won’t be able to use any PhoneGap capabilities.

Note that the PhoneGap Build documentation says that you should not include this file.

However, in practice, using the vibration API, or indeed any PhoneGap plug-in, seems to

depend on this import being present. I’m not certain if this is a bug in PhoneGap Build,

though that’s my guess, and either way, at the time of this writing, this import is required.

That isn’t quite enough, though, because up until now you’ve been either loading

wxPIM directly off the file system or getting it from the Node server. This presents a

problem because the AJAX code doesn’t know the address to the Node server now. To

deal with that, you’ll add a prompt where the user can enter the server address at startup.

To do so, the following code is added to the start() method in the core.js file, right at

the end:

const serverAddress = localStorage.getItem("serverAddress");

if (!serverAddress) {

 wxPIM.promptForServerAddress();

} else {

 // Get all data from server.

 wxPIM.getAllData();

}

The server address will be stored in local storage, so if it isn’t found at startup, then

you need to prompt for it via a call to wxPIM.promptForServerAddress(), which is this:

promptForServerAddress() {

 wxPIM.maskUI();

 const win = webix.ui({

 view : "ani-window", move : false, width : 260,

 �position : "center", resize : false, id : "serverAddressWindow",

toFront : true,

 fullscreen : false, head : "Information needed",

 body : { height : 140, rows : [

 �{ borderless : true, height : 30, template : "Please enter server

address",

Chapter 9 Packaging wxPIM with PhoneGap

354

 �css : { "text-align" : "center", "padding-top" : "10px", "padding-

bottom" : "10px" }

 },

 �{ view : "text", id : "serverAddressText", css : { "padding-bottom" :

"10px" } },

 { view : "button", label : "Ok",

 click : () => {

 �localStorage.setItem("serverAddress", $$("serverAddressText").

getValue());

 $$("serverAddressWindow").close();

 wxPIM.unmaskUI();

 wxPIM.getAllData();

 }

 }

] }

 });

 win.show();

}

This shows a window asking the user for the server address. After that, the window

is closed, and wxPIM.getAllData() is called, which you’ll notice is what is done if the

address was found in start(). Of course, what if the server address isn’t correct or isn’t

reachable? Well, that’s where some changes to getAllData() come into play.

getAllData() {

 wxPIM.maskUI();

 const failOrExceptionHandler = function(inObj) {

 navigator.vibrate(3000);

 localStorage.removeItem("serverAddress");

 $$("baseLayout").hide();

 webix.message({

 �type : "error", text : "Server not available, wxPIM is in read-only

mode"

 });

 };

Chapter 9 Packaging wxPIM with PhoneGap

355

 try {

 webix.ajax()

 .timeout(10000)

 .headers({ "Content-Type" : "application/json" })

 .post(`${localStorage.getItem("serverAddress")}/getAllData`,

 JSON.stringify(wxPIM.registeredModules)

)

 .then(function(inResult) {

 const serverAddress = localStorage.getItem("serverAddress");

 localStorage.clear();

 const allModuleData = inResult.json();

 for (let moduleName of wxPIM.registeredModules) {

 const moduleDataArray = allModuleData[moduleName];

 const moduleDataObject = { };

 for (let i = 0; i < moduleDataArray.length; i++) {

 const nextItem = moduleDataArray[i];

 moduleDataObject[nextItem.id] = nextItem;

 }

 �localStorage.setItem(`${moduleName}DB`, webix.

stringify(moduleDataObject));

 }

 localStorage.setItem("serverAddress", serverAddress);

 wxPIM.unmaskUI();

 wxPIM.dayAtAGlance();

 })

 .fail(failOrExceptionHandler);

 } catch (inException) {

 failOrExceptionHandler(inException);

 }

}

The basic logic here is that you make the call to the server to get all data like always,

but now you have the possibility of a failure or an exception. Both are treated the same:

the server can’t be reached for some reason, whether it’s a network problem or the

user fat-fingered the address. To reduce code, you have a single handler for both, the

Chapter 9 Packaging wxPIM with PhoneGap

356

failOrExceptionHandler function. If this executes, then the server address is removed

from local storage, and a slightly altered message from the last version of wxPIM is

shown. The user can then reload the app to enter the server address again, but note that

the UI is not hidden this time like before. This allows them to use the app in read-only

mode. (If they try to mutate data, assuming the server still can’t be reached, they’ll get

the failure message like before.)

You’ll also see a call to navigator.vibrate() in that handler code. This is using the

PhoneGap vibration API and causes the device to buzz for three seconds (assuming the

device has haptic feedback capabilities; if it doesn’t, this line will simply do nothing).

This is just a little extra alert to the user that the server wasn’t reachable.

Of course, if the AJAX request is successful, then everything just continues as

before…well, almost! Since the procedure here is to clear local storage before filling it

with the data retrieved from the server, you have a problem because that includes the

server address! So, before the clear, the address is saved and then set again after the clear

and the data load.

Another required change in wxPIM is in the common saveHandler() and

deleteHandler() methods, which are just prepending the server address to the URL, the

same as is done in getAllData(). Other than these changes, wxPIM works as expected

as a PhoneGap-ified app.

One final change must be made to make this all work, and it’s in the constructor.

Previously, the last line of the constructor was as follows:

webix.ready(this.start.bind(this));

Now, however, in the world of PhoneGap, you have to change that to the following:

document.addEventListener("deviceready", this.start.bind(this), false);

The reason this change is necessary is because you can’t use PhoneGap APIs

like vibration until the device tells you it’s ready for that, and PhoneGap provides a

deviceready event to signal that. To ensure the API hasn’t been used before, then you no

longer use webix.ready() since that, it turns out, fires before deviceready does (at least

some of the time), so you delegate to PhoneGap’s event instead to ensure you don’t really

start the app until it says you’re good to go. (The app being used before is unlikely given

it wouldn’t occur until the UI is built and the user enters a server address and clicks the

button on the dialog, but this is still something you should try to avoid.)

Chapter 9 Packaging wxPIM with PhoneGap

357

With that, wxPIM is now PhoneGap-ready and is a true mobile app, at least as close

as you’re going to get without having to deal with Objective-C, Java, and all the other stuff

that comes with doing true native development!

�Summary
In this chapter, you took wxPIM and created a “native” app out of it using the popular

PhoneGap tool. You saw how this allows you to have a package specific to a mobile

platform like Android or iOS that can be installed like any other application from that

platform’s app store. You also saw how the APIs that PhoneGap provides can be used to

enhance an application running in such a mode and how PhoneGap Build allows you to

do builds in the cloud without mucking about with native SDKs and tooling installation.

In the next chapter, you’ll see a whole new side of Webix as we developer another

whole app that is nothing at all like wxPIM: a game!

Chapter 9 Packaging wxPIM with PhoneGap

359
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9_10

CHAPTER 10

The Fun Side of Webix:
A Game!
All work and no play makes Jack a dull boy (and a murderer at a snowy resort lodge, as

we learned in The Shining). With luck, you’ll avoid that fate, but the point stands: if you

don’t stop to smell the roses every now and again, you tend to not have as good a life as

you should. This is true for web development and Webix too! (You didn’t think I would

be able to pull this back to relevance, did you?)

Throughout this book, you’ve seen Webix through the prism of writing actual useful

code and applications. But, nothing says that’s all you can do with Webix. No, you can do

something more frivolous, something more fun, something like, say, write a game!

Games are a great project for any developer to undertake because they touch on

so many different disciplines in programming, from graphics and sound to AI, data

structures, algorithmic efficiency, and so on. In my position as a lead architect, I’m

sometimes asked by developers how they can sharpen their skills. My answer is always

the same: write a game! I don’t believe any other project allows the diversity and

creativity and, therefore, opportunity for learning.

Plus, by their very nature, games are fun to write!

In this chapter, you’ll use Webix to write a game. The benefit in terms of this book is

that you’ll get to see a few new Webix facilities and see others in ways you maybe haven’t

before. In the end, you’ll learn while ideally having fun.

Let’s kick things off by figuring out what kind of game to make and coming up with

what every great game needs: a story!

360

�The Story So Far
The inhabitants of Gorgona 6 are a cosmic contradiction: a technologically advanced

civilization that is simultaneously technologically backward! For example, they visited

their own moon before figuring out that they should put wheels on luggage and, more

importantly for the purposes here, they can build fast, sleek spaceships, but they are

pretty wimpy ships that can’t survive much of anything! Just a bump into a space rock

is enough to do them in (and being a peaceful people, the Gorgonians never develop

weapons of any sort).

This is problematic because their star system has a vermin problem: it’s lousy with

space-born critters and dangers! They have the gargantuan space fish of the third moon

of Valtrax; the naturally occurring sentient machine beings of protoplanet 10101110;

space zombies (but who doesn’t have space zombies, amiright?), and your basic rogue

asteroids tumbling about. These things gum up the works of the shipping lanes and

pleasure cruise trails (though how anyone can derive pleasure from a cruise where your

piece of garbage ship could be destroyed at any moment by the slightest impact is yet

another contradiction embodied by the Gorgonians).

Fortunately, there is a solution to these problems: on the outskirts of the solar system

is an alien crystal that emits an unknown type of energy that kills the space vermin, at

least for a little while. The Gorgonians have figured out how to collect this energy, little

by little. So, they send out ships that are essentially space tankers (but being Gorgonian

ships, they at least look cool!) to collect the energy and return it to the home world.

Your job, as one of the brave pilots of the “crystal tanker fleet,” is to make your way

through the space vermin to extract energy from the crystal and then bring it home.

When you collect enough energy, the vermin are destroyed, and you’re a Gorgonian hero!

At least for a little while.

You get some points or something for doing this, of course! Let’s call ’em space credits

with which you can maintain your Gorgonian lizard-licking habit.

And that, friends, is how you conceive a simple game that you can code up with

web technologies, obviously including Webix. I mean, I’ll say up front that if you’re

expecting Call of Duty, Halo, or Destiny levels of gameplay, then you’re going to be sorely

disappointed. This ain’t gonna be no AAA title, and it’s not a game you’ll want to be

playing over and over again (probably—hey, you could wind up loving it I suppose!). But

it’ll be a good learning experience, which of course is the goal here.

Let’s get to it; the vermin need destroying!

Chapter 10 The Fun Side of Webix: A Game!

361

�The Basic Layout
So, what does this game look like? Well, if you’ve ever played a game with, say, a frog that

hops across lanes of traffic of various types to get to a goal on the other side…well, this

game may or may not be conceptually similar to that. To be more precise, Figure 10-1

shows what it looks like.

Figure 10-1.  Maybe we should call it Spacershipper?

Your ship starts at the bottom of the screen, near the home world. You use the cursor

keys to move through the lanes of vermin (asteroids, zombies, sentient machines, and

space fish, starting from the bottom). When you reach the top, you touch the crystal, and

the energy bar at the top fills. Then, you return through the vermin, touch your home

world, and the energy is transferred, at which point all the vermin explode, you get some

points, and the vermin come back so you can do it all over again. Of course, you explode

if you touch anything but the crystal or your home world.

Like I said, it’s not exactly a complex, top-tier game, but it is a game!

Chapter 10 The Fun Side of Webix: A Game!

362

�Basic Application Architecture
In many respects, this is a simple application to architect. As with most web apps, it

starts with an index.html file that loads all the resources, including a single CSS file and

a number of JavaScript source files. There is a main class, WXGAME, which contains the

webix.ready() call in its constructor, as you’ve come to expect from a Webix app.

Games usually have a loop that executes for the duration of the game’s run. This loop

is responsible for moving game objects (which can be anything that makes up the game,

like the crystal, planet, player’s ship, and vermin in this game), checking for collisions,

updating scores, and so on. WXGAME is no exception, as you’ll see when you get to main.js.

But, in terms of architecture, the key is the main game loop, so keep that in mind for later.

You also, of course, need some graphics, and there are a number of image files in

an img directory. The files are named consistently: XX-Y, where XX is the type of graphic

(enemy, explosion, planet, player) and Y is the frame number because these objects

are animated. So, for example, to show an explosion on the screen, you’ll need to show

images explosion-0.png, explosion-1.png, explosion-2.png, explosion-3.png, and

explosion-4.png in rapid succession. The one exception are the enemy files, which are

actually named XXZ-Y where Z is just a number from 1 to 4 (because there’s four types

of enemies: space fish, sentient machines, zombies, and asteroids). There’s also a static

background image, named, unsurprisingly enough, background.png.

I’ll go through each file, in an order that I think will make sense, but just to give you a

bird’s-eye view, Figure 10-2 shows the files you’ll be looking at.

Chapter 10 The Fun Side of Webix: A Game!

363

Figure 10-2.  The directory structure and files for this project

Chapter 10 The Fun Side of Webix: A Game!

364

In terms of the architecture of what’s on the screen, it’s a simple setup: a toolbar of

content at the top that contains the current score and the energy bar that fills and unfills

as the player contacts the crystal and the planet, and below that is the playfield area

where the action happens. That’s all there is to it!

Now, let’s start exploring some code, starting with index.html.

�index.html
The index.html file, shown in Listing 10-1, is really the same as any you’ve seen before,

but for the sake of completeness, I’m showing it here.

Listing 10-1.  The index.html File

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 �<meta name="viewport" content="width=device-width,height=device-

height,initial-scale=1.0,minimum-scale=1.0,user-scalable=yes">

 �<link rel="stylesheet" href="../webix/codebase/webix.css" type="text/

css" media="screen" charset="utf-8">

 �<link rel="stylesheet" href="main.css" type="text/css" media="screen"

charset="utf-8">

 �<script src="../webix/codebase/webix_debug.js" type="text/javascript"

charset="utf-8"></script>

 �<script src="GameObject.js" type="text/javascript" charset="utf-8"></

script>

 �<script src="Player.js" type="text/javascript" charset="utf-8"></

script>

 <script src="Enemy.js" type="text/javascript" charset="utf-8"></script>

 �<script src="Crystal.js" type="text/javascript" charset="utf-8"></

script>

Chapter 10 The Fun Side of Webix: A Game!

365

 �<script src="Planet.js" type="text/javascript" charset="utf-8"></

script>

 �<script src="Explosion.js" type="text/javascript" charset="utf-8"></

script>

 <script src="main.js" type="text/javascript" charset="utf-8"></script>

 <title>wxGame</title>

 </head>

 <body></body>

</html>

Really, except for all the JS files aside from main.js being imported, it’s exactly the

same as before. All the interesting stuff is in the JavaScript files. Before you get to those,

though, let’s see what’s in main.css (hint: not much!).

�main.css
The main.css file contains a grand total of one class, as you can see in Listing 10-2.

Listing 10-2.  It Doesn’t Get Much Simpler Than main.css!

.cssPlayfield {

 background-image : url("img/background.png");

 overflow : hidden;

 position : relative;

}

As you can probably guess, this class will be applied to the main playfield area to

provide the space background. This class also tells you that any overflowing content

will be hidden, which is important so that your vermin will smoothly move off one edge

of the playfield and can then be brought back from the other side. To put it another

way, content will be “clipped” at the edges of the playfield area. Also, as you’ll see, all

the game objects are positioned absolutely, which means they need to be children of a

positioned element. That’s the purpose of setting position:relative here.

Chapter 10 The Fun Side of Webix: A Game!

366

�main.js
The main.js file is where the core code is, including that main game loop I mentioned.

I’ll walk you through this code in sections to make it more easily digestible, beginning

with this bit:

"use strict";

class WXGAME {

}

const wxGame = new WXGAME();

I’m cheating a little here and showing you the high-level structure of the code.

There’s obviously a lot more code in this file, but it’s all in that WXGAME class. Showing

it this way shows that it’s a single class and a single instance of that class that you’re

dealing with.

Now, in terms of the code inside the class, it begins with the constructor.

constructor() {

 this.score = 0;

 this.enemies = [];

 this.player = null;

 this.crystal = null;

 this.planet = null;

 this.KEY_UP = 38;

 this.KEY_DOWN = 40;

 this.KEY_LEFT = 37;

 this.KEY_RIGHT = 39;

 this.explosionCount = 0;

 this.explosions = { };

 for (let i = 0; i < 360; i = i + 45) {

 this[`CSS_ROTATE_${i}`] = webix.html.createCss({

 "transform" : `rotate(${i}deg)`,

 "-webkit-transform" : `rotate(${i}deg)`,

 "-moz-transform" : `rotate(${i}deg)`,

Chapter 10 The Fun Side of Webix: A Game!

367

 "-o-transform" : `rotate(${i}deg)`,

 "-ms-transform" : `rotate(${i}deg)`

 });

 }

 webix.ready(this.start.bind(this));

}

First up, you have a member to record the player’s score. After that are four members

that are references to the game objects: all the enemies on the screen, the player’s ship,

the crystal, and the planet. Whenever you write a game, two things you need to keep in

mind are optimization and performance. One thing this means, especially in JavaScript,

is to cache references to things you’ll frequently be accessing, especially in the main

game loop, so you don’t need to incur the overhead of a lookup every time. That’s the

reason for these members.

After those are four pseudoconstants (since there’s no real constants in JavaScript)

that store the key codes associated with the up, down, left, and right arrow keys. You’ll

need them when you handle keypress events to determine what to do.

Next up are two variables for dealing with explosions. At any point in time, there

could be multiple explosions on the screen (when you return all the energy to the planet,

all the vermin explode, for example), and that means you’ll need to keep track of how

many there are, which is why you need explosionCount. The explosions object will

store a reference to each of those explosions as they occur. (Remember, an explosion is a

sequence of animation frames, and it takes time to cycle through those frames, and then

there is work to do when each completes, as you’ll see.)

Next up, you see something new from Webix land: the webix.html.createCss()

method. This method allows you to create a new CSS class, which will be inserted into

the DOM and which you can then apply to DOM nodes. In this case, the image of the

player’s ship always faces up, but when they are moving, you need it to point in different

directions, 45 degrees apart (up, down, left, right, up+left, up+right, down+left, and

down+right). So, you’ll use CSS to rotate the static image, and for each possible rotation

direction, you’ll create a CSS class to apply. That’s what’s happening here. The transform

CSS style allows you to perform all sorts of various transformations on an object, rotate

being just one of them. The interesting thing about webix.html.createCss(), though, is

that you don’t specify the name of the CSS class. Webix controls that (though, critically, it

does return it from the call). But, of course, in order to apply this class, you need to know

Chapter 10 The Fun Side of Webix: A Game!

368

that name. So, you’ll record that name as a member of a CSS_ROTATE_X member on the

wxGame instance, where X is the rotation degrees. So, when you want to rotate the ship

so that it points to the right when the player moves it right, you will apply the class name

stored in wxGame["CSS_ROTATE_90"] (since that’s a 90-degree rotation from its static

image pointing upward).

Finally, you have the familiar webix.ready() call, which fires wxGame.start():

start() {

 webix.ui({

 type : "clean",

 cols : [

 { },

 { width : 800, type : "clean",

 rows : [

 { },

 { type : "clean", height : 600,

 rows : [

 { view : "toolbar", id : "header", height : 40,

 elements : [

 �{ id : "score", width : 90, view : template", template :

"Score: 0000" },

 { view : "chart", type : "barH", padding : 5,

 value : "#count#", id : "energyBar", color : "green",

 xAxis : {

 start : 0, end : 100, step : 1, lines : false,

 color : "#ffffff"

 },

 data : [{ id : "energy", count : 0 }]

 }

]

 },

 { id : "playfield", css : "cssPlayfield" }

]

 },

 { }

Chapter 10 The Fun Side of Webix: A Game!

369

]

 },

 { }

]

 });

 this.playfield = $$("playfield").$view;

 for (let y = 0; y < 4; y++) {

 for (let x = 0; x < 3; x++) {

 this.enemies.push(new Enemy({

 type : y + 1, x : x, y : y, playfield : this.playfield

 }));

 }

 }

 this.player = new Player({ playfield : this.playfield });

 this.crystal = new Crystal({ playfield : this.playfield });

 this.planet = new Planet({ playfield : this.playfield });

 �this.player.animate = webix.wrap(this.player.animate, this.

transferEnergy.bind(this));

 document.onkeydown = this.keyHandler.bind(this);

 document.onkeyup = this.keyHandler.bind(this);

 setInterval(this.run.bind(this), 100);

}

First, the basic screen structure is built. Here, you’re just using the basics of Webix

that by now you’ve come to know (and, I’d bet, love!). To make life simpler (trying to

make the game responsive to the screen size is a much more difficult endeavor), I’ve

decided on an 800×600 viewport in which to make the game. So in essence, you have a

columnar layout with three columns and two spacers flanking an 800-pixel wide area.

Inside that center area goes three rows: a spacer, the top bar where the score and energy

bar go, and then the main play area with a height of 600. That first spacer is needed to

push it all down, so you wind up with the viewport centered on the page.

Chapter 10 The Fun Side of Webix: A Game!

370

The top bar is a Webix toolbar with two elements: a simple text area (via a Webix ui.

template component) for the score and a horizontal bar chart for the energy bar. The

data for the bar chart is a single series with an ID of energy, which is relevant because

you’ll need that in order to update the value of the chart later.

You’ll note that the playfield area doesn’t have any content, just an ID and the

cssPlayfield style class applied to provide the background and overflow clipping.

That’s as it should be. Everything that shows up there will be drawn separately by the

game code.

After the construction of the layout, you have some more work to do. First,

a reference to the playfield is retrieved. To be more specific, the DOM node that

encapsulates the playfield is retrieved, which you can get for most any Webix component

via its $view property. This is done for speed; you’ll need this reference a lot throughout

the code, and you don’t want to have to look it up each time with $$().

Next, it’s time to create some enemy vermin! Looking back at Figure 10-1, you can

see that there are four rows of them with three vermin in each. So, there are two loops:

the y loop for the rows and the x loop for the vermin in each row. For every enemy, an

instance of the Enemy class is created and is added to the enemies array on the wxGame

instance. Each enemy is of a specific type, numbered 1 through 4, which just so happens

to be what the y loop is when you add 1 to it. The x and y config values are not x and y on

the screen but x and y in terms of which row (y) and enemy on that row (x) each is. These

will be used to construct a unique ID for each enemy, as you’ll see shortly. To create an

enemy and put them on the screen, a reference to the playfield is required, so that is

passed in to the Enemy constructor as well.

After that, you need to create the other game objects, namely, the player, crystal,

and planet. You’ll get into the game objects themselves in the next section, but for now

it’s enough to know that each is an object that encapsulates things like the animations

frames each needs, the logic behind flipping between them, and things such as moving,

showing, and hiding the objects.

After that comes a new Webix facility, the webix.wrap() function. What this does is

allow you to “wrap” a function and have another execute before it does. In other words, it

intercepts the execution of the target function. In this case, for reasons that will become

clear later, I need to execute some additional code whenever the animate() method

of the player object is called. I didn’t want to put the logic in that function because

that function is actually part of a common base class that Player extends from. While I

certainly could have overridden animate() in the Player class, in good object-oriented

Chapter 10 The Fun Side of Webix: A Game!

371

form, taking care to call animate() on the superclass too, of course, that wouldn’t have

given me an opportunity to show you webix.wrap(), would it? This probably isn’t

the best way to do it (overriding animate() arguably is), but this works and is a good

demonstration of webix.wrap(), which just requires you to pass a reference to the

function to wrap, and the function to wrap it with, in that order. The transferEnergy()

function, as its name implies, is used to transfer energy to and from the ship (and, at the

risk of sounding like a broken record: as you’ll see later).

Next, you need some event handlers for key up and key down events, and

keyHandler() is that handler. I call bind() on it to ensure the this reference in it points

to the wxGame instance.

Finally, it’s time to kick off that main game loop I mentioned earlier, and

setInterval() does that. I decided on 100ms as the interval here because in my testing,

most modern machines with a modern browser can handle that speed without issue.

Note that there are more complex methods to deal with the situation when it can’t,

called time-based animation, but that’s beyond the scope of this book and for a simple

example like this isn’t really necessary. The run() method is the main game loop (which

I also bind() to the wxGame instance), and that’s the next stop.

�Over and Over Again: run( )
The main game loop is actually quite simple, as you can see here. Note that most of the

functions called here will be examined after this, but I think the names are pretty clear,

and you shouldn’t, I expect, have any difficulty understanding this code conceptually

even if you don’t know all the details beyond the functions it calls just yet.

run() {

 this.player.move();

 this.player.animate();

 this.crystal.animate();

 for (let e in this.explosions) {

 if (this.explosions.hasOwnProperty(e)) {

 this.explosions[e].animate(this.explosions);

 }

 }

Chapter 10 The Fun Side of Webix: A Game!

372

 for (let i = 0; i < this.enemies.length; i++) {

 this.enemies[i].animate();

 this.enemies[i].move(this.playfield);

 if (wxGame.collision(this.enemies[i])) {

 this.explosions[`e${this.explosionCount}`] = new Explosion({

 �playfield : this.playfield, explosionNumber : this.

explosionCount++,

 x : this.player.xLoc - 10, y : this.player.yLoc - 5

 });

 this.adjustScore(-50);

 this.player.energy = 0;

 $$("energyBar").updateItem("energy", { count : 0 });

 this.player.hide();

 this.player.toStartingPosition();

 }

 }

 this.player.touchingCrystal = wxGame.collision(this.crystal);

 this.player.touchingPlanet = wxGame.collision(this.planet);

}

A few tasks need to be accomplished with each 100ms iteration of this method,

beginning with moving the player. As you’ll see next, the keyHandler() method doesn’t

actually move the player in response to keypresses; it only sets flags to tell us which way

to move it. The move() method of the player is what looks at those flags and actually

moves the player, but that’s coming a bit later.

The crystal and player game objects are animated, but that doesn’t happen by

itself; you have to write code for that, and that code is inside the animate() method of

those objects, so they get called next.

The same is true for the enemies, which is where that enemies array comes into play

as it gives us an easy way to loop through the enemies and animate them. Enemies also

have to move, of course, so their move() method is also called.

Next, things get a little more complicated because any time the player collides with

an enemy, an explosion needs to occur. So, the wxGame.collision() method is called

to determine when a collision occurs. Since collisions can only occur between a player

and an enemy, you only have to pass a reference to each enemy to check the player

Chapter 10 The Fun Side of Webix: A Game!

373

against. When this function returns true, then an Explosion game object needs to be

created. There can be more than one explosion on the screen at once (not because the

player can collide with more than one enemy—it can’t because of the spacing between

the enemies—but when the player brings energy back to the planet, all of the enemies

explode simultaneously). So, the explosionCount member is used to number each

explosion (and used to generate a unique ID for each). The explosion’s location needs

to be offset a little from the player’s coordinates (the actual screen coordinates, that is,

which the xLoc and yLoc attributes of the player tells you) because of the geometry of

the graphics used. There’s no magic here; it’s just trial and error to get it to look like it’s

centered on the player! Unlike the enemies, x and y in this case do mean real screen

location (which means left and top style attributes correspondingly since all these

game objects are just img elements, as you’ll see later).

In addition to exploding, the player needs to lose a few points too, so a call to the

adjustScore() method does that, which accepts a positive number to increase the

score or a negative number to decrease it. Also, any energy the ship is carrying should be

cleared out, so player.energy is set to zero. This also means that the energy bar needs

to be emptied immediately, so its value is set to zero. To update the chart, you need to

alter its data, which is where the updateItem() method comes in. This takes an ID and

a hash of values to set and updates a specific data item in the collection of data items

the chart is rendering. Since you have only a single series in this chart, though, you have

only a single data item, and it’s the one with an ID of energy, and its count property is

the property that the chart uses to render itself, so it’s a pretty obvious call. One last thing

needs to happen, which is that the player must be hidden until the explosion animation

cycle completes, plus the player needs to be returned to its starting position. The hide()

method takes care of the first part, and the aptly named toStartingPosition() takes

care of the second.

Two more tasks need to be accomplished with each game loop iteration, and that’s

to see whether the player is touching the crystal or the planet. The same sort of call to

collision() as was done to check for collisions with the vermin is done, and a flag is set

on the player for either condition, which will be used in some other code later.

Chapter 10 The Fun Side of Webix: A Game!

374

�Up and Down: keyHandler( )
As you saw earlier, the keyHandler() method is bound to both the key up and key down

events, and that code is as follows:

keyHandler(inEvent, inKeyDown) {

 const evt = (inEvent) ? inEvent : (window.event) ? window.event : null;

 const keyCode = (evt.charCode) ? evt.charCode:

 ((evt.keyCode) ? evt.keyCode : ((evt.which) ? evt.which : null));

 switch (keyCode) {

 case this.KEY_UP: this.player.dirUp = inKeyDown; break;

 case this.KEY_DOWN: this.player.dirDown = inKeyDown; break;

 case this.KEY_LEFT: this.player.dirLeft = inKeyDown; break;

 case this.KEY_RIGHT: this.player.dirRight = inKeyDown; break;

 }

}

The first line ensures that you have an event object because not all browser types

pass one in to the handler; some require the handler to get it from the window object.

The second line then uses that object to determine the key code of the key that was

pressed or released. These two lines are relatively standard and nothing Webix-specific.

The switch statement then looks to see whether the key code is one of the four

defined in the constructor corresponding to the four cursor keys. For any match, one of

the dirXX flags on the player instance is set. As previously mentioned, these flags will be

used in the player’s move() method, which you just saw is called from run().

�When Worlds Collide: collision( )
Most video games, including this one, require the ability to detect when two images (two

game objects) run into each other. For instance, you need to know when your player’s

ship hits one of the enemy vermin. There are numerous collision detection algorithms,

but many of them are not available to you in a browser setting because they require

access to pixel-level data. For instance, checking each pixel of one image against each

pixel of another, while giving 100 percent accurate detection, isn’t possible in a browser

(at least not without using the canvas element).

Chapter 10 The Fun Side of Webix: A Game!

375

Instead, a simpler method is available to you than what is used here: bounding

boxes. This is a simple method that basically just checks the four bounds of the objects.

If the corner of one object is within the bounds of the other, a collision has occurred.

As illustrated in the example in Figure 10-3, each game object has a square (or

rectangular) area around it, called its bounding box, which defines the boundaries of

the area the object occupies. Note in the diagram how the upper-left corner of object

1’s bounding box is within the bounding box of object 2. This represents a collision. You

can detect a collision by running through a series of simple tests comparing the bounds

of each object. If any of the conditions are untrue, then a collision cannot possibly have

occurred. For instance, if the bottom of object 1 is above the top of object 2, there’s

no way a collision could have occurred. In fact, since you’re dealing with a square or

rectangular object, you have only four conditions to check, any one of which being false

precludes the possibility of a collision.

This algorithm does not yield perfect results. For example, in this game, you will

sometimes see the ship “hitting” an object when they clearly did not touch (most

obvious with the asteroids). This is because the bounding boxes can collide without the

object itself actually colliding because the graphics aren’t all themselves perfect squares

or rectangles. This could only be fixed with pixel-level detection, which, again, is not

available to you. However, the bounding boxes approach gives an approximation that

yields “good enough” results in many cases, including this one, so all is right with the

world.

Chapter 10 The Fun Side of Webix: A Game!

376

Figure 10-3.  The basic idea behind bounding boxes

The actual code behind the collision() therefore becomes pretty straightforward.

collision(inObject) {

 if (!this.player.isVisible || !inObject.isVisible) { return false; }

 const left1 = this.player.xLoc;

 const left2 = inObject.xLoc;

 const right1 = left1 + this.player.pixWidth;

 const right2 = left2 + inObject.pixWidth;

Chapter 10 The Fun Side of Webix: A Game!

377

 const top1 = this.player.yLoc;

 const top2 = inObject.yLoc;

 const bottom1 = top1 + this.player.pixHeight;

 const bottom2 = top2 + inObject.pixHeight;

 if (bottom1 < top2) {

 return false;

 }

 if (top1 > bottom2) {

 return false;

 }

 if (right1 < left2) {

 return false;

 }

 return left1 <= right2;

}

If the player isn’t visible, as determined by examining its isVisible attribute, or if

the player isn’t visible, then there’s no need to check for a collision because game objects

are only ever not visible when they’re exploding. After that, you get the values to be

compared, which means the coordinates of the top, bottom, left, and right bounds of the

player and the test object. Finally, it’s just the four simple checks described to tell you if a

collision has occurred.

�To and From: transferEnergy( )
Transferring energy from crystal to ship, or from ship to planet, occurs every time

the animation frame of the player changes. Or, more precisely, it can occur because

whether it does occur or not depends on whether the ship is in contact with either

object (and whether there’s energy to transfer, of course). As you’ll recall, the animate()

method of the player object is called with every tick of the main game loop, which is

the run() method, and since the webix.wrap() method was used to intercept the call

to animate(), that means transferEnergy() will also be called with each game loop

iteration.

Chapter 10 The Fun Side of Webix: A Game!

378

transferEnergy() {

 if (this.player.touchingCrystal && this.player.energy < 100) {

 this.player.energy = this.player.energy + 5;

 $$("energyBar").updateItem("energy", { count : this.player.energy });

 if (this.player.energy === 100) {

 �while (this.crystal.randomlyPosition()) { this.crystal.

randomlyPosition(); }

 }

 } else if (this.player.touchingPlanet && this.player.energy > 0) {

 this.player.energy = this.player.energy - 5;

 $$("energyBar").updateItem("energy", { count : this.player.energy });

 if (this.player.energy === 0) {

 �while (this.planet.randomlyPosition()) { this.planet.

randomlyPosition(); }

 this.blowUpAllEnemies();

 this.adjustScore(100);

 $$("energyBar").updateItem("energy", { count : 0 });

 }

 }

}

The first branch of the if statement covers the case when the player is touching

the crystal, as the player.touchingCrystal flag denotes. It also accounts for when the

player touches the crystal even though their energy is full, in which case you skip the

work here too. If both conditions are met, though, then with each tick of the game loop

you add 5 to the player’s energy stores, and you also set the value on the bar chart to the

player’s current energy value, which causes it to fill up. When the energy reaches 100,

then the crystal is randomly repositioned. Why the while loop, you ask? That’s because

each call to crystal.randomlyPosition() could result in the crystal being positioned

still in contact with the ship. You don’t want that. So, the while loop will keep calling

crystal.randomlyPosition() until it returns false, which means the crystal is not in

contact with the ship.

The second if branch is for when the player is touching the planet. There, the

player’s energy is reduced by 5 each iteration, and when it hits zero, it’s the planet this

time that needs to be repositioned. Then, all the enemies need to explode, which is what

Chapter 10 The Fun Side of Webix: A Game!

379

blowUpAllEnemies() does. The player has to score some points here, so adjustScore()

is called. Finally, the energy bar has to be cleared again, so its value is set to zero, as

previously described.

�Making It Worth It: adjustScore( )
The adjustScore() method you’ve seen called a few times now, and it’s just about as

simple as you’ve probably imagined it was.

adjustScore(inAmount) {

 this.score = this.score + inAmount;

 if (this.score < 0) {

 this.score = 0;

 }

 $$("score").setHTML(`Score: ${this.score}`);

}

In fact, the only interesting bit here is the use of setHTML(), which is a method of the

ui.template component that allows you to set any arbitrary HTML in the component

you want.

�Winning: blowUpAllEnemies( )
One final method is present in main.js, and that’s the method called when the player

returns all the energy to the planet and that blows up all the enemies.

blowUpAllEnemies() {

 for (let i = 0; i < this.enemies.length; i++) {

 const enemy = this.enemies[i];

 enemy.hide();

 enemy.moveTo(enemy.startingX, enemy.startingY);

 this.explosions[`e${this.explosionCount}`] = new Explosion({

Chapter 10 The Fun Side of Webix: A Game!

380

 playfield : this.playfield, explosionNumber : this.explosionCount++,

 x : enemy.xLoc, y : enemy.yLoc

 });

 }

 webix.delay(function() {

 for (let i = 0; i < this.enemies.length; i++) { this.enemies[i].show();

}

 }, this, [], 1000);

}

This works a lot like how the explosion is created when the player collides with an

enemy, but here you need one explosion per vermin. Each is positioned according to the

location of the vermin (and it doesn’t really need those adjustments like was done for

the player explosion because the geometry of the graphics lines up pretty well without

it). Every enemy is hidden before its corresponding explosion is created, and it is also

moved back to its original starting position via the call to its moveTo(), passing it the

startingX and startingY members attached to each enemy (which are populated when

the enemy is created, as you’ll see shortly).

Now, that’s great for blowing up the vermin, but the game has to continue after that,

which means they need to be shown again. How do you do that? Well, in the interest of

showing you another new Webix function, I’ve gone with usage of the webix.delay()

function. This works a lot like the JavaScript-standard setTimeout() function, but

with some additional features. First, this function takes the code you want to execute,

which here is simply an iteration over the array of enemies, calling show() on each.

The second argument is what scope that code should execute in, meaning what the

this keyword points to when it executes. The third argument is an array of arguments

to pass to the code, which is just an empty array here since you don’t need to pass any.

Finally, the last argument tells webix.delay() how long to wait until calling the code, in

milliseconds. Since there are five frames of animation for an explosion and since each

frame takes 100 milliseconds (because that’s how long there is between main game loop

ticks, and the frames are flipped from there), that means you have to wait at least 500

milliseconds before showing the vermin again. I doubled that for good measure, so 1,000

milliseconds, or one second, is it.

Chapter 10 The Fun Side of Webix: A Game!

381

�Object Orientation for Fun and Profit: The Game
Object Hierarchy
By this point, you’ve examined the core game code, but that’s only part of the equation.

Throughout, you’ve seen reference to the various game objects, namely, crystal,

explosion, planet, player, and enemy. Next, you’ll look at those classes, beginning the

hierarchy they are built from, shown in Figure 10-4.

Figure 10-4.  The object hierarchy of game objects

The five game objects are each represented by a class, and each of them extends

from a common base GameObject class. This structure allows you to push as much of the

common code that each object shares into that base class. It’s always good to not repeat

yourself, right? So, let’s begin by looking at the GameObject class in detail and start to see

the code behind the functions that you saw called upon from the core code.

�GameObject.js
As with the WXGAME class in main.js, GameObject.js defines a class named GameObject,

so it begins the same.

class GameObject {

}

Chapter 10 The Fun Side of Webix: A Game!

382

However, in this case, there is no instantiation of a single instance like with WXGAME

because this is a base class that all the other game objects extend from, not something that

is instantiated on its own. As with most classes, this one opens with a constructor.

constructor(inConfig) {

 this.baseName = inConfig.baseName;

 this.pixWidth = inConfig.pixWidth;

 this.pixHeight = inConfig.pixHeight;

 this.frameCount = inConfig.frameCount;

 this.currentFrame = 0;

 this.frameSkipCount = 0;

 this.frameSkip = 0;

 this.xLoc = 0;

 this.yLoc = 0;

 this.isVisible = true;

}

All game objects share a few common attributes. First, you need a baseName, which

is the name of the graphics files associated with the object, minus any numbers (i.e., just

crystal, not crystal-1 and crystal-2 like the image files are named). Next, the object needs

to know its width and height, and that’s what pixWidth and pixHeight are for. Then,

since all game objects, except for the planet, are animated, the code will need to know

how many frames of animation there are, and frameCount denotes that. All of these are

passed into the constructor via the inConfig object.

After those, you have some attributes that are the same for all game objects, at least

to start, and so aren’t passed in. The currentFrameCount is used internally to keep track

of what animation frame is visible. The frameSkipCount and frameSkip attributes are

used to slow the animation down. If you changed frames with every game loop tick,

every 100ms in other words, the animations would look kind of manic! You’ll see how

these are used later, but that’s their purpose. Finally, isVisible obviously tells you

whether the object is currently visible and all objects start out visible by default.

Chapter 10 The Fun Side of Webix: A Game!

383

�Pixar Would Be Proud: loadFrames( )
After the constructor, there needs to be a method that can load all the frames of

animation for a given object. That’s exactly what loadFrames() is for.

loadFrames(inConfig) {

 for (let i = 0; i < this.frameCount; i++) {

 const id = `${this.baseName}${inConfig.n}${i}`;

 const img = webix.html.create("img",

 { id : id, src : `img/${this.baseName}-${i}.png`,

 width : this.pixWidth, height : this.pixHeight

 }

);

 img.style.position = "absolute";

 img.style.left = `${inConfig.x}px`;

 this.xLoc = inConfig.x;

 img.style.top = `${inConfig.y}px`;

 this.yLoc = inConfig.y;

 if (inConfig.hidden) {

 img.style.display = "none";

 }

 if (inConfig.z) {

 img.style.zIndex = inConfig.z;

 }

 webix.html.insertBefore(img, null, inConfig.playfield);

 this[`frame${i}`] = webix.toNode(id);

 }

}

As you saw, frameCount tells you how many frames there are, so the code loops

with that value. Each animation frame winds up being a separate DOM node, and since

you need to be able to access each, that means each must have a unique id, so the id

value is constructed using the baseName and the loop count at the end. There’s also an

inConfig.n value that is optional and is inserted even before the frame number. This is

specifically for explosions since there can be more than one of those at a time, so each

needs to have an extra value in the id, and that’s where inConfig.n comes into play.

Chapter 10 The Fun Side of Webix: A Game!

384

So, for example, the player will wind up with two nodes, one with an id of player1 and

the other player2, and an explosion will have an ID of explosion11, exposion12,

and so on.

Speaking of creating a DOM node, that’s exactly the next step! The webix.html.

create() function lets you do that easily. The first argument is the type of element to

create, an element in the case of game objects. As you can see, that previously

described unique id is included in the second argument, which is an object containing

all the attributes associated with the element. These are any attributes that an take

can take, so src is one that is clearly necessary! The baseName again comes into play here

to construct that src attribute value (so img/player-1.png, for example).

Once the element is created, you can set some style attributes on it. (Yes, you could

do this by specifying a style attribute in the second argument to webix.html.create(),

but that means building a string, and I find this style of coding it cleaner.) The element is

positioned absolutely, and its left and top attributes are set using the inConfig.x and

inConfig.y values passed in. You also store those as xLoc and yLoc for easier access later

(which saves you from having to access DOM node attributes, so it’s a little faster this

way). The game object could be hidden initially via the inConfig.hidden attribute, and

if so, then display is set to none. There’s also a concern with z-index in that the player

should always be on top, even if it’s not created last (which it can’t be because some

other code depends on it having been created earlier). It’s only a concern for the player,

but being able to pass inConfig.z to set zIndex lets you deal with it consistently in all

cases.

Next, you have two new Webix functions. First, all you’ve done so far is create an

 element in memory. It’s not actually on the screen at this point. In fact, it’s not

even in the DOM yet. So, you need to insert it into the DOM, and that’s where webix.

html.insertBefore() comes into play. You pass this function the object to insert, then

a reference to the DOM node to insert the new one before (its “sibling,” so to speak),

and then a parent node if the sibling doesn’t exist. In this case, you just want to append

the element to the playfield node, which is passed in as inConfig.playfield, and not

actually before any other element, so that’s why null is the second argument. The third

kicks in, and you get an append, as the last child, of the playfield node.

Finally, you need to have a reference to every element created for each

animation frame. While you could have gotten that reference from the call to webix.

html.create(), since it returns the reference to the new node, I instead decided to use

webix.toNode() to show you something new. This function allows you to get a reference

Chapter 10 The Fun Side of Webix: A Game!

385

to any DOM node by ID. Here, the reference is stored as an attribute of the game object

instance, with each frame being a new attribute named frameX, where X is the frame

number. That will allow later code to access these DOM nodes quickly and easily. In fact,

the next thing you’re going to look at makes use of that!

�Make It Move: animate( )
Animating a game object is fairly simple and, as you know, is triggered by a call to each

object’s animate() method from the run() method.

animate(inCollection) {

 if (!this.isVisible) { return; }

 this.frameSkipCount++;

 if (this.frameSkipCount < this.frameSkip) {

 return;

 }

 this.frameSkipCount = 0;

 this[`frame${this.currentFrame}`].style.display = "none";

 this.currentFrame++;

 if (this.currentFrame === this.frameCount) {

 this.currentFrame = 0;

 if (this.animationCallback) {

 this.animationCallback(inCollection);

 }

 }

 this[`frame${this.currentFrame}`].style.display = "";

}

First, you abort if the object isn’t currently visible because why do the work of

animating it if it can’t be seen? If that check is passed, then the frameSkipCount member

is increased, and until it equals the frameSkip value, no animation is done. This means

that a certain number of main game loop ticks can be skipped before an object’s

animation frame is changed, effectively slowing the animation.

Chapter 10 The Fun Side of Webix: A Game!

386

Once it’s time to animate, the first thing to do is to hide the current frame. Remember

that each frame is a separate DOM node, so only one can be showing at any given time

for a given game object. The attribute name is formed using the currentFrame value, and

from there it’s a simple matter of setting its display style attribute to none.

Next, currentFrame is bumped up. When it equals frameCount, then it’s time to

restart the animation cycle. There’s also the opportunity for some code to be executed

when the animation cycle completes via a callback attribute of the game object that

can optionally be set. This is specifically for explosions, as you’ll see later. When the

callback function is called, it is passed the inCollection argument that is passed to

animate(), which is only ever done for explosions and is the collection of all explosions

(and again, why that is will become apparent when you look at the Explosion class).

Finally, the new animation frame is shown by getting a reference to it through those

frameX attributes I described earlier. Setting the style attribute to an empty string,

which is the default for that attribute, makes it visible.

�Yes, I See You: show( )
There is also a show() method on every game object, and it’s simple.

show() {

 for (let i = 0; i < this.frameCount; i++) {

 this[`frame${i}`].style.display = "";

 }

 this.isVisible = true;

}

It’s just a matter of setting the style attribute of each animation frame node to

an empty string and of course marking the object as visible too.

�Playing Hide (But Not Seek?): hide( )
Where there’s a show() method, there’s likely to be a hide() method, and you won’t be

disappointed to know that there in fact is!

Chapter 10 The Fun Side of Webix: A Game!

387

hide() {

 for (let i = 0; i < this.frameCount; i++) {

 this[`frame${i}`].style.display = "none";

 }

 this.isVisible = false;

}

I’m gonna go out on a limb here and say that doesn’t need an explanation.

�A Little Randomness in Your Day: randomlyPosition( )
The crystal and the planet get randomly positioned at the start of the game, and when

energy transfer is complete to and from them, that’s where the randomlyPosition()

method comes in.

randomlyPosition() {

 const min = Math.ceil(70);

 const max = Math.floor(730);

 this.xLoc = Math.floor(Math.random() * (max - min + 1)) + min;

 for (let i = 0; i < this.frameCount; i++) {

 this[`frame${i}`].style.display = "none";

 this[`frame${i}`].style.left = `${this.xLoc}px`;

 }

 const didCollide = wxGame.collision(this);

 if (!didCollide) {

 for (let i = 0; i < this.frameCount; i++) {

 this[`frame${i}`].style.display = "";

 }

 }

 return didCollide;

}

Chapter 10 The Fun Side of Webix: A Game!

388

First, a random number between 70 and 730 (inclusive) is chosen. These values

result in the object never going off either edge of the playfield area. Once you have a

location, every animation frame is hidden and then moved to the new location. Only the

left style attribute needs to be changed since this is only randomizing the horizontal

location; the vertical location never changes.

Once that’s done, you need to see whether the object now collides with the player.

If not, then animation frames are all shown (which doesn’t matter for the planet since

there’s only one frame, and for the crystal this will be undone with the next game loop

tick and only a single frame shown). The collision result is returned so that those while

loops you saw earlier can kick in and randomlyPosition() will be called again (and

again, and again, and…) until a noncollision location is determined. This isn’t the most

efficient way to go about doing this, but it’s pretty simple and does the job well enough.

�Go Where I Tell You: moveTo( )
The final common function that all game objects should provide is being able to move

them to a specific location on the screen directly, which is what moveTo() is for.

moveTo(inX, inY) {

 for (let i = 0; i < this.frameCount; i++) {

 this[`frame${i}`].style.left = `${inX}px`;

 this[`frame${i}`].style.top = `${inY}px`;

 }

}

This simply takes in X and Y values, which are set as the left and top style attributes,

respectively, of every animation frame for the object. Its visibility isn’t impacted, there

are no worries about collision, and it’s just an immediate move. This is primarily present

for the enemies, as you’ll see soon.

That done, your look at the GameObject class is concluded. Now let’s move on to

some specific game objects, starting with the Crystal class.

Chapter 10 The Fun Side of Webix: A Game!

389

�Crystal.js
The Crystal class is one of the simpler game object classes, but it’s a good starting point

because the others are not much more complex and, except for the Enemy class, look

pretty similar to start.

"use strict";

class Crystal extends GameObject {

 constructor(inConfig) {

 super((function() {

 return webix.extend(inConfig,

 �{ pixWidth : 32, pixHeight : 30, frameCount : 4, baseName :

"crystal" }

);

 }()));

 super.loadFrames({

 x : 0, y : 2, playfield : inConfig.playfield, hidden : true

 });

 this.randomlyPosition();

 }

}

The constructor starts with a call to the constructor of the superclass, GameObject.

The trick here is that the inConfig object that’s passed into the constructor needs to

have some additional information added to it specific to this game object. Of course,

that’s a problem because the super() call must be the first thing in the constructor of a

JavaScript class. So, to deal with that, I’ve used the immediately invoked function pattern

here. That is, an anonymous function is created and then immediately called, and the

return value from this function becomes the argument passed to super(). What this

anonymous function does is take inConfig and extend it using the webix.extend()

function. This takes a target object as the first argument, so inConfig, and then “extends”

it by taking all the attributes of a second object and adding them to the target. The

return value is the target object but now including all the attributes of the second

Chapter 10 The Fun Side of Webix: A Game!

390

(which here is just an object defined inline containing pixWidth, pixHeight,

frameCount, and baseName). If you look back on main.js, you’ll see that for all game

objects, inConfig contains playfield, while enemies also include a type and x and y

attributes, which is why this is all done.

After the super() call, the loadFrames() method that you saw in the base class is

then called. That gets all the animation frames loaded up, inserted into the DOM, and

references stored on the object being constructed here.

Finally, in the case of the crystal, it needs to be randomly positioned. Note here that

there’s no need to care about collision checks because the crystal would never collide

with the player at this point. At this point, the Crystal instance is fully constructed.

There’s no more code in this class because the base GameObject class includes any

additional functionality it needs.

Note that for the remainder of the game object source files, I’ll just be showing the

methods each contains. I’ll skip the "use strict" and opening class XXX extends

GameObject line for brevity. But rest assured, they are indeed there!

�Planet.js
Let’s look at the Planet class next since like the Crystal class, it is quite simple.

constructor(inConfig) {

 super((function() {

 return webix.extend(inConfig,

 { pixWidth : 64, pixHeight : 64, frameCount : 1, baseName : "planet"

}

);

 }()));

 super.loadFrames({

 x : 0, y : 492, playfield : inConfig.playfield, hidden : true

 });

 while (this.randomlyPosition()) { this.randomlyPosition(); }

}

Chapter 10 The Fun Side of Webix: A Game!

391

Yep, it’s almost identical to the Crystal class except for one detail. The

randomlyPosition() method is wrapped in a while loop so that it can be retried until

a position is chosen that doesn’t collide with the player. This also means that the player

must have been created before the planet is; otherwise, the call to collision() in

randomlyPosition() will fail. As with the Crystal class, there’s no more code beyond

this as GameObject handles everything else.

�Explosion.js
The Explosion class is next, and it starts off very much like Crystal and Planet do.

constructor(inConfig) {

 super((function() {

 return webix.extend(inConfig,

 �{ pixWidth : 50, pixHeight : 50, frameCount : 5, baseName :

"explosion" }

);

 }()));

 this.explosionNumber = inConfig.explosionNumber;

 super.loadFrames({

 x : inConfig.x, y : inConfig.y, n : inConfig.explosionNumber,

 playfield : inConfig.playfield, hidden : true

 });

}

One difference here is that each explosion is given a number, which is used to create

the unique id of the DOM node, as you saw in loadFrames(). The number is attached to

the Explosion instance being constructed, and it is also passed to loadFrames() as the n

attribute. In addition, an explosion is initially hidden.

Finally, you have a game object class with some additional functionality! Recall

earlier that when the explosion’s animation cycle concludes, a callback function is

called. Now it’s time to see what happens in that function.

Chapter 10 The Fun Side of Webix: A Game!

392

animationCallback(inCollection) {

 for (let i = 0; i < this.frameCount; i++) {

 const id = `explosion${this.explosionNumber}${i}`;

 webix.html.remove(webix.toNode(id));

 }

 delete inCollection[`e${this.explosionNumber}`];

 if (!wxGame.player.isVisible) {

 wxGame.player.show();

 }

}

As it happens, not all that much! First, explosions aren’t like the crystal or player or

even the enemies in that they are shown and then aren’t needed anymore; they don’t

need to hang around. So, you have to clean up the DOM nodes for each of the tags

associated with each animation frame. The webix.html.remove() function is used for

that. You hand it a reference to a DOM node, which you get with the previously shown

webix.toNode() function, and remove it. That’s all well and good. It cleans up the DOM

nicely, but you still have a game object hanging around. To avoid leaking memory, that

is removed from the wxGame instance, which is where that inCollection being passed

as an argument comes into play. That’s an object where a reference to each explosion is

stored, so it’s a simple matter of deleting the attribute from that object associated with

the constructed attribute name for this explosion (e1, e2, e3, etc., depending on however

many explosions there are).

One final task is needed: showing the player if they are currently hidden. This occurs

only when the explosion is shown as a result of the player running into an enemy, but it

does no harm when the explosion is the result of all enemies exploding.

�Enemy.js
The Enemy class is the first you hit that is a bit more complex, and that’s because there’s

more logic involved in creating them and positioning them. That work all happens in the

constructor.

Chapter 10 The Fun Side of Webix: A Game!

393

constructor(inConfig) {

 super((function() {

 return webix.extend(inConfig,

 { pixWidth : 48, pixHeight : 48, frameCount : 2 }

);

 }()));

 const x = inConfig.x;

 const y = inConfig.y;

 const type = inConfig.type;

 for (let i = 0; i < this.frameCount; i++) {

 const id = `enemy${x}${y}${i}`;

 const img = webix.html.create("img",

 { id : id, src : `img/enemy${type}-${i}.png`,

 width : this.pixWidth, height : this.pixHeight

 }

);

 img.style.position = "absolute";

 img.style.display = "none";

 this.moveDirection = "right";

 if (type % 2 === 0) {

 this.moveDirection = "left";

 this.frameSkip = 2;

 }

 let leftAdjust = 0;

 if (type === 1) { leftAdjust = 0; this.moveSpeed = 10; }

 if (type === 2) { leftAdjust = 80; this.moveSpeed = 6; }

 if (type === 3) { leftAdjust = 120; this.moveSpeed = 14; }

 if (type === 4) { leftAdjust = 200; this.moveSpeed = 8; }

 this.xLoc = x * 300 + leftAdjust;

 this.startingX = this.xLoc;

 img.style.left = `${this.xLoc}px`;

 this.yLoc = y * 120 + 60;

Chapter 10 The Fun Side of Webix: A Game!

394

 this.startingY = this.yLoc;

 img.style.top = `${this.yLoc}px`;

 webix.html.insertBefore(img, null, inConfig.playfield);

 this[`frame${i}`] = webix.toNode(id);

 }

}

If you compare this to loadFrames() in the base GameObject class, you’ll see a lot of

similarity, and usually duplicate code is to be avoided. However, here, I felt there was

enough difference to warrant copying it and then modifying it as necessary.

After the usual super() call, you get to work creating each of the animation frames,

just like in loadFrames(). First, the x, y, and type attributes from inConfig are grabbed

into local variables to make things more concise. Then you loop by frameCount and

create an for each using webix.html.create() as before. The id of each is a

little different here in that it consists of the base name (which you know here is enemy),

followed by the x and y values and the loop iteration variable. That ensures you have a

unique id for each where x and y correspond to the column and row they’re logically in

on the screen relative to each other. Each is positioned absolutely like always and

is also hidden. That way, the player won’t see the initial movements as you get them all

created and into place (they might not have, depending on how fast the browser works

anyway, but better safe than sorry).

Next, you need to determine how fast and in what direction each enemy moves. You

start off assuming they’re moving to the right, but for types 2 and 4 you change that to

the left (so that each row of enemies alternate movement direction) and also adjust the

animation speed via the value of frameSkip so that types 2 and 4 animate a little slower.

That just adds some visual variety to the proceedings.

Next, you need to account for the starting horizontal location of each enemy. If

you picture the screen, each row of enemies is a different type, starting with 1 at the

top. For each row, each enemy starts a little more to the right than the row above it.

This creates consistent gaps between the enemies as they move. That’s where the

leftAdjust variable comes into play. The value is determined based on the enemy type,

and the values are just trial-and-error, but what I thought looked good and, critically

for gameplay purposes, presented enough space to be not impossible yet small enough

gaps that it wouldn’t be a piece of cake to get through. In addition, the speed of each row

is determined in the same way. Each row of vermin moves at a different speed, which

Chapter 10 The Fun Side of Webix: A Game!

395

means how many pixels they move horizontally, as determined by the value of the

moveSpeed attribute attached to the object instance.

With all that determined, it’s a simple matter of positioning the setting the left

and top style attributes to the values of xLoc and yLoc. These are calculated from the

leftAdjust value and the x and y values (the multiplied values are again trial-and-error

based on the gaps I wanted between them). In addition, the starting location for each is

recorded as startingX and startingY so that after the player returns all the energy to

the planet and the enemies blow up, you can reposition them in the right place without

running through all the logic again. Finally, the enemy is inserted into the DOM with

webix.html.insertBefore() and a reference stored to it via a call to webix.toNode().

With the enemy constructed, the other thing that this class needs to supply is a

move() function, called on every iteration of the main game loop, to move each enemy.

move() {

 if (!this.isVisible) { return; }

 if (this.moveDirection === "right") {

 this.xLoc = this.xLoc + this.moveSpeed;

 if (this.xLoc >= 850) {

 this.xLoc = -50;

 }

 } else {

 this.xLoc = this.xLoc - this.moveSpeed;

 if (this.xLoc <= -50) {

 this.xLoc = 850;

 }

 }

 this["frame0"].style.left = `${this.xLoc}px`;

 this["frame1"].style.left = `${this.xLoc}px`;

}

Of course, this logic needs to be done only if the enemy is visible. If it’s not, then the

explosions are occurring, so there’s no need to move them in that case. If it is visible, though,

then the moveDirection is interrogated to see whether to increase or decrease the xLoc

attribute value. When moving right, there is a point where the vermin has moved off the

Chapter 10 The Fun Side of Webix: A Game!

396

edge of the playfield to the right far enough, and you need to position it off the playfield to

the left so that it appears to “wrap around” and move across the playfield again. That value

is 850, and the same sort of logic applies when moving left except that the value is now -50

to trigger a reset off the right edge of the playfield. These values are of course based on the

edges of the playfield (0 and 800, since the width is 800) plus (or minus) 50, which accounts

for the width of a vermin. That way, it’s always completely unseen when it hits those reset

points. Finally, regardless of which direction the vermin are moving and regardless of

whether it wrapped around the opposite side or not, the enemy is repositioned.

�Player.js
The final class you need to examine is Player, and it starts off very much like Crystal

and Planet did.

constructor(inConfig) {

 super((function() {

 return webix.extend(inConfig,

 { pixWidth : 40, pixHeight : 34, frameCount : 2, baseName : "player"

}

);

 }()));

 super.loadFrames({

 x : 0, y : 0, playfield : inConfig.playfield, hidden : true, z : 100

 });

 this.toStartingPosition();

 this.dirUp = false;

 this.dirDown = false;

 this.dirLeft = false;

 this.dirRight = false;

 this.energy = 0;

 this.touchingCrystal = false;

 this.touchingPlanet = false;

}

Chapter 10 The Fun Side of Webix: A Game!

397

You again have a call to super(), followed by a call to loadFrames(). In the case of

the latter, the z attribute is passed so that the zIndex style attribute will be set (any value

higher than zero would have worked here; I just like a nice, round century!). This ensures

that the player always appears on top of other game objects, which only really matters

for the crystal and planet, but it just doesn’t look right for the ship to be behind those!

After that is a call to the toStartingPosition() method, which you’ll be looking at next.

But, before that, you have a couple of additional attributes on this class. The four dirXX

attributes are the flag values that you saw set in the WXGAME.keyHandler() method. This

tells you which direction the player is moving. The energy attribute is how much energy

the ship currently has onboard, and touchingCrystal and touchingPlanet are the flags

that tell you whether the ship is currently touching the crystal or planet, respectively, so

that WXGAME.transferEnergy() knows when to do its work, as you saw earlier.

Now, moving on to that toStartingPosition() method:

toStartingPosition() {

 for (let i = 0; i < this.frameCount; i++) {

 const frame = this[`frame${i}`];

 this.xLoc = 376;

 frame.style.left = `${this.xLoc}px`;

 this.yLoc = 512;

 frame.style.top = `${this.yLoc}px`;

 }

}

Well, that’s clearly nothing too complicated! Each animation frame element is

moved to some hard-coded values that correspond to centering the player on the bottom

of the playfield area.

The final bit of code in this class, and in fact the last bit of code to examine for this

project, is the move() method. This method moves the player with each run() execution.

move() {

 if (!this.isVisible) { return; }

 const xMoveSpeed = 5;

 const yMoveSpeed = 5;

 let xAdj = 0;

Chapter 10 The Fun Side of Webix: A Game!

398

 let yAdj = 0;

 let degrees = 0;

 if (this.dirUp && !this.dirDown && !this.dirLeft && !this.dirRight) {

 yAdj = -yMoveSpeed;

 degrees = 0;

 } else if (this.dirUp && !this.dirDown && !this.dirLeft && this.dirRight)

{

 xAdj = xMoveSpeed;

 yAdj = -yMoveSpeed;

 degrees = 45;

 �} else if (!this.dirUp && !this.dirDown && !this.dirLeft && this.

dirRight) {

 xAdj = xMoveSpeed;

 degrees = 90

 } else if (!this.dirUp && this.dirDown && !this.dirLeft && this.dirRight)

{

 xAdj = xMoveSpeed;

 yAdj = yMoveSpeed;

 degrees = 135;

 �} else if (!this.dirUp && this.dirDown && !this.dirLeft && !this.

dirRight) {

 yAdj = yMoveSpeed;

 degrees = 180;

 } else if (!this.dirUp && this.dirDown && this.dirLeft && !this.dirRight)

{

 xAdj = -xMoveSpeed;

 yAdj = yMoveSpeed;

 degrees = 225;

 �} else if (!this.dirUp && !this.dirDown && this.dirLeft && !this.

dirRight) {

 xAdj = -xMoveSpeed;

 degrees = 270;

 } else if (this.dirUp && !this.dirDown && this.dirLeft && !this.dirRight)

{

 xAdj = -xMoveSpeed;

Chapter 10 The Fun Side of Webix: A Game!

399

 yAdj = -yMoveSpeed;

 degrees = 315;

 }

 for (let i = 0; i < 360; i = i + 45) {

 webix.html.removeCss(this["frame0"], wxGame[`CSS_ROTATE_${i}`]);

 webix.html.removeCss(this["frame1"], wxGame[`CSS_ROTATE_${i}`]);

 }

 webix.html.addCss(this["frame0"], wxGame[`CSS_ROTATE_${degrees}`]);

 webix.html.addCss(this["frame1"], wxGame[`CSS_ROTATE_${degrees}`]);

 const newX = this.xLoc + xAdj;

 if (newX > 2 && newX < 756) {

 this.xLoc = newX;

 }

 const newY = this.yLoc + yAdj;

 if (newY > 0 && newY < 516) {

 this.yLoc = newY;

 }

 this["frame0"].style.left = `${this.xLoc}px`;

 this["frame1"].style.left = `${this.xLoc}px`;

 this["frame0"].style.top = `${this.yLoc}px`;

 this["frame1"].style.top = `${this.yLoc}px`;

}

Of course, it only makes sense to move the player when it’s visible, so that’s the

first check done, and you abort if it isn’t visible. Assuming it is, then the code needs to

determine two things: which direction it’s moving and how to rotate the image. There

are four flags (as Picard would say, “THERE! ARE! FOUR! LI–err, FLAGS!”) for up, down,

left and right, and they can be set to true simultaneously, which gives you a grand total of

16 possible combinations (four “bits,” 2^4=16). However, there are really only eight that

have meaning here: up, down, left, right, up+left, up+right, down+left, and down+right.

Any other combination won’t be caught by the if block here and will result in the player

not moving (and being “rotated” to its normal “up” orientation since the degrees variable

defaults to zero, which effectively means no rotation). Each branch of the if statement

corresponds to one of those combinations.

Chapter 10 The Fun Side of Webix: A Game!

400

Whichever branch is hit, assuming any are, the values of xMoveSpeed and

yMoveSpeed, either one or the other or both depending on the direction of travel, are

stored as xAdj and/or yAdj. These values are negated when the values need to be

decreased instead of increased.

In addition to determining these movement adjustment values, the if branches also

determine the number of degrees the ship needs to be rotated. With that determination

made, the rotation is performed on every animation frame element for the player.

Here, two new Webix functions are used: webix.html.removeClass() and webix.html.

addClass(). You’ll recall in the constructor of WXGAME that the CSS classes were created

corresponding to each rotation amount and references stored to them on wxGame. Now,

when you know the degrees to rotate, you can get a reference to the appropriate CSS

class and use webix.html.addClass() to apply it, thereby rotating the ship appropriately

for the direction it’s traveling. However, before you can even do that, you need to ensure

that only one class is ever applied. The easiest way to do this is to just clear any class

that might currently be applied by looping through the possible degree increments and

calling webix.html.removeClass(). Both webix.html.addClass() and webix.html.

removeClass() take as arguments a reference to the DOM node to operate on and the

name of the class to add or remove. Assuming the CSS class exists on the page, which it

does since you created them all in the WXGAME constructor, the rotation is done.

With the rotation out of the way, the last step is to physically move the player. This

just means adding xAdj to xLoc and yAdj to yLoc and then “clamping” the values on the

high and low ends so that the player can’t ever move off the edge of the playfield. With

that done, you just need to set new left and top style attributes on the two animation

frames for the player and you’re all done!

�Summary
In this chapter, the final one of this book, you did something with Webix that is a bit

unusual: you wrote a game! In the process, you saw some new “helper”-type functions

that Webix provides including ones for creating CSS classes, intercepting function

invocations, and extending objects. You also got a basic flavor for how JavaScript games

can be written and the fundamental architecture that goes into them.

I hope you’ve enjoyed this book and that you’ve learned about Webix and come to

appreciate the power it brings to web development. Now, go forth, be fruitful, and create

great web apps with Webix. Thanks very much for giving me the opportunity to serve as

your guide on this journey of discovery!

Chapter 10 The Fun Side of Webix: A Game!

401
© Frank Zammetti 2018
F. Zammetti, Practical Webix, https://doi.org/10.1007/978-1-4842-3384-9

Index

A
abslayout layout, 53–54
accordion layout, 55–57
Android devices, 350–351

B
Blossoming adulthood, 3–5
Buttons, 81

C
carousel layout, 58–59
checkbox widget, 81
Chips, 89
Code Snippet, 16

angular, 18
using XML, 17–18

Command-line interface (CLI), 343
Common Gateway Interface (CGI), 1–2
Components, 43
Context, 133–136
contextmenu, 133–136
Cordova, 341
CSS

cssListItemTitle string, 219
inline, 60
methods, 30

counter control, 84

D
Data

components
bullet, 127–128
chart, 101–102, 105
datatable, 106, 108–109
dataview, 109–110
gage, 125–126
grouplist, 113, 115
list, 111–112
organogram, 128–130
pager, 113
property, 117
rangechart, 130–132
tree, 118, 120
treemap, 123–125
treetable, 121–123
unitlist, 115, 117
webix.protoUI()

method, 120
DataStore, 98
dynamic data

loading, 98
from external source, 97
proxies, 99, 101

Data entry control widgets
button, 81
checkbox, 81
code, 73

https://doi.org/10.1007/978-1-4842-3384-9

402

colorpicker, 82
combo, 82
counter control, 84
datepicker component, 84, 86
daterangepicker, 87
dbllist component, 88
events, 77–78
fields and form

validation, 83–84
fieldset component, 89
form component, 77
forminput

component, 95–96
htmlform, 78, 80
icon component, 89
label component, 89
multicombo control, 89–90
multiselect component, 90
multitext component, 91
radio widget, 91
rangeslider, 93
richselect, 92
richtext component, 95
search component, 94
segmented component, 91
select, 92
slider component, 93
text widget, 94
textarea widget, 95
toggle widget, 82

deactivate() method, 208
Don’t Repeat Yourself (DRY), 318
Drag and drop, 170–173

E
editExisting() method, 222–223, 232–233
Extensions, 45

F
Fisher-Price’s

index.html file, 24
ready() method, 28
ui() method, 28

Form and data
entry control widgets

button, 81
checkbox, 81
code, 73
colorpicker, 82
combo, 82
counter control, 84
datepicker

component, 84, 86
daterangepicker, 87
dbllist component, 88
events, 77–78
fields and form

validation, 83–84
fieldset component, 89
form component, 77
forminput component, 95–96
htmlform, 78, 80
icon component, 89
label component, 89
multicombo control, 89–90
multiselect component, 90
multitext component, 91
radio widget, 91
rangeslider, 93
richselect, 92
richtext component, 95
search component, 94
segmented component, 91
select component, 92
slider component, 93
text widget, 94

Data entry control widgets (cont.)

Index

403

textarea widget, 95
toggle widget, 82

Form builder, 19

G
Gorgona 6

architecture, 362, 364
Crystal.js, 389
Enemy.js, 392
Explosion.js, 391–392
game object

hierarchy, 381
GameObject.js

animate(), 385
hide(), 386
loadFrames(), 383, 385
moveTo(), 388
randomlyPosition(), 387–388
show(), 386
WXGAME class, 381

index.html, 364
layout, 361
main.css, 365
main.js

adjustScore(), 379
blowUpAllEnemies(), 379–380
collision(), 374, 376–377
constructor, 366
explosions, 367
keyHandler(), 374
run(), 371–373
transferEnergy(), 377–378
webix.ready(), 368, 370

Planet.js, 390–391
Player.js, 396

Graphical user
interface (GUI), 2

H
HTML5, 340
HTML-oriented components

iframe, 147
scrollview, 148–150
template, 150–151

I
init method, 18
iOS device, 351–352
isVisible() method, 202

J, K
JavaScript object notation (JSON), 5

L
Layouts

abslayout, 53–54
accordion, 55–57
carousel, 58–59
component styling, 55
datalayout, 60–62
headerlayout, 48–50
inline CSS, 60
isolate configuration, 66–67
methods, 57–58
multiview, 62–64
nested, 50–51
portlet, 64–65
spacer widget, 51, 53
tabview, 68–69
toolbar, 69–70
type attribute, 46–47
types on parade, 47–48
visibleBatch, 70

Index

404

M
Microframework, see Webix Jet
Mobile development fragmentation

features, 339
form of, 338
tools, 339
user experience, 338

multiview layout, 62–64

N, O
Native application, 340, 342–343
Nested layouts, 50–51
newHandler() method, 221, 231
Node

AJAX, 326
app.post() function, 323
button label, 302
callback function, 306
CLI mode, 303
createServer() method, 306
DELETE handler, 321–322
elementary, 304
Express application, 312
find() method, 324
getAllData() method, 327–330
getHandler() function, 319–320, 323
LTS version, 302
modules, 324
NeDB, 312–313
NPM, 307, 309
POST handler, 317–319
PUT handler, 321
quick node test, 304
require() function, 306
REST, 310
returnObject object, 324
server, 314–316, 324

start() method, 325
updateHandler() function, 323
webix.extend() method, 325
Web Server, 305

Node Package Manager
(NPM), 22, 307, 309

P, Q
Personal information manager (PIM),

179–181
PhoneGap

APIs, 356
defined, 340
goal, 341
history, 341–342
HTML5, 340
native application, 340, 342–343
plug-in, 353
WebView, 342

PhoneGap Build
configuration file, 346–348
create ZIP archive, 348–349
defined, 343
signing up, 343–346
wxPIM, 349–350

portlet layout, 64–65
Premium components

filemanager component, 161–162
kanban, 162–163
pivot component, 163
scheduler component, 164–165
spreadsheet, 165–166

Pro-only widget
fieldset component, 89
multicombo, 89–90
multiselect, 90–91
multitext, 91

Index

405

Property sheet, 117
Proxies, 99, 101

R
radio widget, 91
refreshData() method, 196
Rich Internet Application (RIA), 3

S
setHours() method, 209
Single-page app (SPA), 3–4
Skins, 169–170
spacer widget, 51, 53
Spinner, see counter control
Static icon image, 89
submenuConfig option, 138

T
tabview layout, 68–69
Teen years, 2–3
text widget, 94
Toddler years, 1–2
toggle widget, 82

U, V
User experience, 338

W, X, Y, Z
Web development

blossoming adulthood, 3–5
Code Snippet tool, 16–19
“Direct” way, 24
Form Builder tool, 19–20
NPM way, 22–23

online tools, 16
open source (Standard) vs. pro

versions, 14, 15
Skin Builder tool, 21
teen years, 2–3
toddler years, 1–2
Webix

airline reservation manager, 6–7
dashboard, 9–10
editions table, 13
geo explorer, 10
trade manager, 7–8

Webix
addCss() and removeCss()

functions, 169
advantage, 11
barcode widget, 158
calendar component, 152
class, 167
clipboard option, 139
colorboard component, 152
config method, 146
context and

contextmenu, 133–134, 136
CSS and JS file, 352
CSS map, button widget, 168
css property and cssClass property, 166
custom.css file, 167
daterange component, 158
define() method, 146
drag and drop components, 170–173
excelviewer component, 152–154
google-map component, 154–156
integration, third-party

libraries, 175–178
integration with jQuery, 173–175
menu component, 136, 138
pdfviewer component, 159–160

Index

406

popup component, 139–140
resize() method, 146
setPosition() method, 146
sidemenu component, 140–142
skins, 169–170
source, 352
structuring, 33–38
tooltip widget, 143
UI components, 5
video component, 156, 157
webix.html.addCss() function, 198
webix.proto() function, 195
window Widget, 144–145

Webix Jet
definition, 39
models directory, 41
URL, 40
users model, 42
views, 39

WebView, 342
Widgets

checkbox, 81
colorpicker, 82
complex, 44
controls, 45
counter, 84
forminput, 95–96
forms and data entry control, 73
htmlform, 78, 80
Pro-only, 89–91
radio, 91
segmented, 92
select, 92
slider, 93
spacer, 51, 53
specialized, 44
text, 94

textarea, 94
toggle widget, 82

worker() function, 209
wxPIM

animate.css, 199
baseLayout.js, 201
cellsConfig array, 269
cloud

European JSConf conference
in 2009, 299

JavaScript, 300
Node, 300
server deletion, 333–334
thenHandler and failHandler, 332
wxPIM.saveHandler()

method, 331–332
constructor, 187–188, 265–266
core.css file, 200
core.js file, 186
dayAtAGlance.js file, 206–210
dayAtAGlance() method, 271–272
“desktop-ization”, 272–276
ECMAScript 6, 187
getUIConfig() method, 292–295
header modification, 276–277
high-level code structure, 182–183
index.html, 183, 185
$init() method, 267
Internet Explorer, 187
JavaScript object, 295
launchModule()

method, 279–284
lifecycle event function

launchModule()
method, 189–190

start() method, 189
mainHeader.js, 201–202
module changes

Webix (cont.)

Index

407

appointments, 290
contacts, 287–290
notes module, 286–287

module helper function
deleteHandler() method, 196–199
getModuleData() method, 192–194
saveHandler() method, 194–196

multiView.js file, 203
navigator.userAgent string, 267
newHandler() and editExisting()

methods, 296
PIM, 179–181
refreshData(), 297
registeredModules, 266, 269
responsive design, 290
saveHandler() and deleteHandler(), 297
sideMenu.js file, 203, 205
sidemenu modification, 278
switching modes, 284–285
tasks module, 291
toolbar, 295–296
uiType member, 267
utility function

objectAsArray() method, 192
sortArray() method, 191

webix.protoUI() method, 267
wxPIM.dayAtAGlance()

method, 269–271
wxPIM.getMainHeaderConfig()

function, 201
wxPIM.getMultiviewConfig()

method, 268
wxPIM.start() method, 267–268

wxPIM application, 353–354, 356
Appointments.js

activate() and deactivate()
method, 257

calendar component, 250

constructor, 251–252
editExisting() method, 258–259
entry screen, 251
getUIConfig() module, 252–253,

255–256
newHandler() method, 257
refreshData() method, 259
selectDateHandler() method,

260–262
selectDate() method, 250

Contacts.js
activate() and deactivate()

method, 238
constructor, 237–238
editExisting() method, 246–247
getUIConfig() method, 238–241,

243–244
newHandler() method, 245
refreshData() method, 248
validateFormsOnChange()

method, 249
widemenu menu, 235–237

module class
diagram, 211–212

Notes.js, 213–215
constructor, activate(), and

deactivate(), 216
editExisting() method, 222–223
getUIConfig() method, 216–221
newHandler() method, 221
refreshData() method, 223

Tasks.js
constructor, activate(), and

deactivate() methods, 227
editExisting() method, 232–233
getUIConfig() method, 227–230
newHandler() function, 231
refreshData() method, 233–234

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Better Web Development with Webix
	Web Development: The Toddler Years
	Web Development: The Teen Years
	Web Development: Blossoming Adulthood?
	So, Uh, What Is Webix Exactly?
	Why Webix?
	Multiple Editions to Choose From
	Online Tools
	Code Snippet
	Form Builder
	Skin Builder

	Getting Started
	The NPM Way
	The “Direct” Way

	Fisher-Price’s My First Webix App
	Summary

	Chapter 2: Getting to Know Webix
	How to Structure a Webix App
	Webix Jet

	Widgets, Controls, Complex Widgets, and Extensions
	Components
	Widgets
	Specialized Widgets
	Complex Widgets
	Controls
	Extensions
	Layouts

	The Basics of Layout
	Specific Layout Components
	abslayout
	New Concept: Component Styling

	accordion
	New Concept: Methods

	carousel
	New Concept: Inline CSS

	datalayout
	multiview
	portlet
	New Concept: Isolation

	tabview
	toolbar
	New Concept: Visibility Batching

	Summary

	Chapter 3: Getting to Know Webix Even More!
	Forms and Data Entry Controls
	form
	New Concept: A Brief Introduction to Events

	htmlform
	button
	checkbox
	toggle
	colorpicker
	combo
	New Concept: Required Fields and Form Validation

	counter
	datepicker
	daterangepicker
	dbllist
	fieldset
	icon
	label
	multicombo
	multiselect
	multitext
	radio
	segmented
	select
	richselect
	slider
	rangeslider
	text
	search
	textarea
	richtext
	forminput

	The Basics of Data
	Loading Data from an External Source
	Dynamic Data Loading
	DataStore
	Proxies

	Specialized Data Components
	chart
	datatable
	dataview
	list
	New Concept: Data Paging

	grouplist
	New Concept: Filtering

	unitlist
	property
	tree
	New Concept: Extending Webix Components

	treetable
	treemap
	gage
	bullet
	organogram
	rangechart

	Summary

	Chapter 4: Webix: The Final Frontier
	Context Components
	context and contextmenu
	menu
	New Concept: Clipboard Support

	popup
	sidemenu
	tooltip
	window
	New Concept: “Other”

	HTML-Oriented Components
	iframe
	scrollview
	template

	Specialized Widgets
	calendar
	colorboard
	excelviewer
	google-map
	video
	barcode
	daterange
	pdfviewer

	Premium Components
	filemanager
	kanban
	pivot
	scheduler
	spreadsheet

	Strutting with Style
	Skins

	Drag and Drop
	Extensibility and Integration Points
	Integration with jQuery
	Integration with Third-Party Libraries

	Summary

	Chapter 5: Getting Practical: Building wxPIM
	First Things First: What’s a PIM, and What’s wxPIM?
	High-Level Code Structure
	index.html
	core.js
	Preamble
	Constructor
	Lifecycle Event Function: start()
	Lifecycle Event Function: launchModule()
	Utility Function: sortArray()
	Utility Function: objectAsArray()
	Module Helper Function: getModuleData()
	Module Helper Function: saveHandler()
	Module Helper Function: deleteHandler()

	animate.css
	core.css
	baseLayout.js
	mainHeader.js
	multiView.js
	sideMenu.js
	dayAtAGlance.js
	getDayAtAGlanceConfig()
	getAtAGlance()

	Summary

	Chapter 6: Getting Practical: Building wxPIM Redux
	Modules: Basic Structure
	Notes.js
	Constructor, activate(), and deactivate()
	getUIConfig()
	newHandler()
	editExisting()
	refreshData()

	Tasks.js
	Constructor, activate(), and deactivate()
	getUIConfig()
	newHandler()
	editExisting()
	refreshData()

	Contacts.js
	Constructor
	activate() and deactivate()
	getUIConfig()
	newHandler()
	editExisting()
	refreshData()
	validateFormsOnChange()

	Appointments.js
	Constructor
	getUIConfig()
	activate() and deactivate()
	newHandler()
	editExisting()
	refreshData()
	selectDateHandler()

	Summary

	Chapter 7: Taking wxPIM to the Desktop
	First, Let’s Fix a Few Things!
	Changing the Base Layout
	Now the Fun Stuff: Day-at-a-Glance Changes
	Letting a Module Provide Day-at-a-Glance

	“Desktop-ization”: A Window unto the World
	Modifying the Header
	Modifying the sidemenu
	The Big Change: Module Launching
	Switching Modes
	Module Changes: Notes
	Module Changes: Contacts
	Module Changes: Appointments

	Getting Responsive with It: Tasks
	A Few Leftover Bits: saveHandler() and deleteHandler()
	Summary

	Chapter 8: Taking wxPIM to the Cloud
	Building a Server with Node…Wait, What’s Node?
	Getting and Installing Node
	My First Node Server
	Node’s Partner in Crime: NPM
	Taking a Very Active Break with REST
	Hurry It Up, Kid: Express It!
	Third-Party Data Help: NeDB

	Writing the Server
	(C)RUD: Create (POST Handler)
	C(R)UD: Read (GET Handler)
	CR(U)D: Update (PUT Handler)
	CRU(D): Delete (DELETE Handler)
	And, As an Added Bonus…

	Hooking wxPIM Up to the Server
	Modules: A Small but Necessary Change
	Starting a Little Differently
	Before You Go Any Further, Let’s Talk About Good Ol’ AJAX
	Back to That getAllData() Method
	Saving to the Server
	Deleting from the Server

	Summary

	Chapter 9: Packaging wxPIM with PhoneGap
	The Problems with Mobile Development
	Fragmentation of User Experience
	Fragmentation of Features
	Fragmentation of Development Tools

	Enter the White Knight: PhoneGap
	What Is It?
	A Brief History of PhoneGap
	How Does This Black Magic (Basically) Work?

	A Simpler Build Approach: PhoneGap Build
	Get Ready: Signing Up
	Get Set: The Configuration File
	Go: Starting the Build
	Crossing the Finish Line: The Output Files

	Getting Files onto Your Device
	Deploying to Android Devices
	Deploying to iOS Devices

	A Few Necessary Code Changes and Enhancements
	Summary

	Chapter 10: The Fun Side of Webix: A Game!
	The Story So Far
	The Basic Layout
	Basic Application Architecture
	index.html
	main.css
	main.js
	Over and Over Again: run()
	Up and Down: keyHandler()
	When Worlds Collide: collision()
	To and From: transferEnergy()
	Making It Worth It: adjustScore()
	Winning: blowUpAllEnemies()

	Object Orientation for Fun and Profit: The Game Object Hierarchy
	GameObject.js
	Pixar Would Be Proud: loadFrames()
	Make It Move: animate()
	Yes, I See You: show()
	Playing Hide (But Not Seek?): hide()
	A Little Randomness in Your Day: randomlyPosition()
	Go Where I Tell You: moveTo()

	Crystal.js
	Planet.js
	Explosion.js
	Enemy.js
	Player.js
	Summary

	Index

